A Combinatory Approach to Assessing
User Performance of Digital Interfaces

P. K. A. Wollner, P. M. Langdon and P. J. Clarkson

Abstract Digital devices are often restricted by the complexity of their user
interface (UI) design. While accessibility guidelines exist that reduce the barriers
to access information and communications technology (ICT), guidelines alone do
not guarantee a fully inclusive design. In the past, iterative design processes using
representative user groups to test prototypes were the standard methods for
increasing the inclusivity of a given design, but cognitive modelling (the model-
ling of human behaviour, in this instance when interacting with a device) has
recently become a feasible alternative to rigorous user testing (John and Suzuki
2009). Nonetheless, many models are limited to an output that communicates little
more than the assumed time the modelled user would require to complete the task
given a specific way of doing so (John 2011). This chapter introduces a novel
approach that makes use of the overlay of user modelling output (timings) onto a
graphical representation of an entire Ul, thereby enabling the computation of new
metrics that indicate the relative inclusiveness of individual screens of the UL

1 Introduction

Digital devices are often restricted by the complexity of their user interface (UI)
design. While accessibility guidelines exist that reduce the barriers to access
information and communications technology (ICT), guidelines alone do not
guarantee a fully inclusive design. In the past, iterative design processes using
representative user groups to test prototypes were the standard methods for
increasing the inclusivity of a given design, but cognitive modelling (the model-
ling of human behaviour, in this instance when interacting with a device) has

P. K. A. Wollner (IX)) - P. M. Langdon - P. J. Clarkson

Engineering Design Centre, Department of Engineering, University of Cambridge,
Cambridge, UK

e-mail: pkaw2@cam.ac.uk

P. M. Langdon et al. (eds.), Inclusive Designing, DOI: 10.1007/978-3-319-05095-9_4, 39
© Springer International Publishing Switzerland 2014

40 P. K. A. Wollner et al.

recently become a feasible alternative to rigorous user testing (John and Suzuki
2009). Nonetheless, many models are limited to an output that communicates little
more than the assumed time the modelled user would require to complete the task
given a specific way of doing so (John 2011).

In this chapter, we present a novel way of combining the output of user sim-
ulations into a unified mathematical representation, allowing for a more holistic
interpretation of the simulation results. From a universal access perspective, this
contributes to the field through improved accessibility of product designs which
employ this novel approach. This is achieved through a more complete under-
standing of models that are based on specific impairments, as postulated by
Langdon and Thimbleby (2010) and further explored by work such as Biswas et al.
(2012). While we present this method to be utilised in combination with cognitive
architectures (toolkits that combine theories of cognition to simulate human
behaviour), it also may be presented as a novel way of interpreting studies
involving real users and their performance data.

This chapter outlines (i) the structure and function of cognitive architectures,
(ii) how these architectures can be employed to simulate user behaviour whilst
interacting with touchscreen devices, (iii) the limitations of the output data (par-
ticularly from a universal access perspective), (iv) a proposed extension based on
the application of graph theory on the output data and (v) how this mathematical
model can be communicated to designers and developers in order to inform uni-
versally accessible designs.

2 Cognitive Architectures

Cognitive architectures are toolkits that combine theories of cognition to simulate
human behaviour. The simulations are not purely a model of the behavioural
output of the human mind but rather aim to replicate the structural properties of the
modelled system. They do not physically replicate the components of the system—
rather, virtual machines replicate the behaviour and knowledge of humans. By
employing these frameworks to ‘experience’ the stimuli of a specific human—
machine interaction scenario and in turn ‘act’ upon these stimuli, valuable user
performance data can be generated by the model. This data is often represented as
timings, based on a predefined set of actions which the architecture simulates,
evaluates and outputs as a time value, indicating how long a real user would
require to complete the same task.

Employing cognitive architectures in the design of interactive products and
services allows the designer to gain insight on user behaviour without requiring the
physical presence of users. Using a modelling approach as a replacement for user
testing provides multiple benefits for both designers and—through the creation of
improved products—for users.

Benefits for the designer include a process that supports quicker design itera-
tions through the reduction of time-consuming participant recruitment and testing.

A Combinatory Approach to Assessing User Performance 41

Furthermore, due to the ability to extend the model to factor in elements of the
simulated users’ prior knowledge, the resulting performance data can be tailored to
the specific abilities of a subset of real users. This supports the design of interfaces
targeted specifically at particular impairments, aiming to fulfil the overarching
goal of more inclusive designs.

Benefits for the user may be defined in a similar way; the product better meets
the cognitive requirements of a subsample of users based both on the cognitive
impairments the users may have and the impact prior experience (Langdon et al.
2010) may have on their ability to interact with a new interface design. Benefits for
the user, once the design is completed, include an optimised experience that is
designed with the specific user type in mind.

While there are a number of cognitive architectures that are suitable for the
automated performance evaluation of UI designs, we base much of the subsequent
discussion on the assumed utilisation of ACT-R, one of the most extensive and
evolved cognitive architectures (Anderson et al. 2004). This is based on the
environment in which the related testing is performed (see Wollner et al. 2013) and
represents the framework in which the model introduced in this chapter will be
tested and deployed.

Originally, more advanced modelling tools such as ACT-R (which includes
capabilities for simulated knowledge acquisition, i.e. the ability to learn and act
upon learned facts) required extensive experience with the modelling language and
the underlying assumptions in order to simulate cognitive processes accurately.

This implies that the entirety of the interaction process and environment are
translated into a form that the architecture can interpret. Hence, this requires
experts in these architectures to manually perform the translation and makes the
potentially valuable data output inaccessible to most designers and/or developers.

Recently, cognitive models have become more accessible to designers with
limited or no modelling experience (Councill et al. 2003); examples of this include
Salvucci and Lee’s (2003) ACT-Simple which uses a KLM-GOMS-based (John
et al. 2004) descriptive language to automatically translate a specific UI design
into a form that can be utilised as the basis of the simulation environment. Despite
this simplification, there is still an inaccessibility in the assessment and commu-
nication of the output of cognitive models. Large amounts of segmented user data,
mainly based on individual timings of actions within the UlI, are presented to the
designer without further analysis.

2.1 Screen Flow Network

The basis for this chapter is extending and combining the output of cognitive
architectures. This is provided by establishing a graphic representation of the
interaction paradigms and interaction routes available on digital interfaces. We
present two types of elements included in this abstraction of Ul progression:
(i) elements that represent individual screens and (ii) connections that represent

42 P. K. A. Wollner et al.

Fig. 1 In this screen flow, network circles represent individual screens within a UI progression,
the lines represent the directionality of actions on individual screens that allow movement to
another. E.g. C| has buttons or provides an implicit function to move to C, and C3; Cs, in turn,
only allows movement to C;

actions that the user may complete when moving between these screens, including
data input such as keyboard entry or drawing on the screen. The preliminary work
(before running a cognitive model) builds this representation, the subsequent
simulation extends the aforementioned connections between UI screens with
values that represent the time a simulated user may require to move between
screens. We refer to this as a ‘screen flow network’, as depicted in Fig. 1.

Despite the fact that the network displayed in Fig. 1 is not fully representative
of a UI (in lacking the option to include global actions, such as a ‘home’ button
and/or virtual global actions, such as an on-screen keyboard), it enables the rep-
resentation of most actions that are based on the transition from one UI screen to
the next. Further work will gradually extend the screen flow network to allow the
representation of global actions.

Through the network introduced above, the designer can, through visual
methods, explore design alternatives based on hot spots within the UI progression
(indicated by timings). While this improves the design process, it cannot represent
the entire network of possible screen flows the user may choose to explore. This is
because the cognitive modelling approach is limited to a specific screen pro-
gression that the simulated user navigates through rather than making all screen
flows possible. This means that the screen flow network provides a visual model
indicating all possible screen flows given a specific UI design, but the modelled
output of the same UI design is limited by the restricted information cognitive
architectures can provide.

3 Simulation Network Analysis

Given the mismatch of the available and exploited data presented in the previous
section, we propose to use a graph theoretical approach to make use of the overlay
of user modelling output (timings) onto the entire screen flow network. This is

A Combinatory Approach to Assessing User Performance 43

Fig. 2 Intersection network
used in factor graph notation,
where the arrows indicate
actions that allow the
navigation between screens
(denoted by C,,) and the
variables 8, ,, are defined by
the simulation output

possible through the mapping of individual screens and their connections. We
propose that the user modelling is executed on all screen progressions (rather than
one specified route) and the resultant progression timings are included as weigh-
tings of the connecting elements of the screen flow network.

More specifically, we propose to integrate the availability of rich data regarding
the interconnectedness of individual screens and the sparse timings-based data that
is available as an output of user modelling of interfaces. Vertices in this repre-
sentation match individual screens within the context of the application; edges are
the actions the user may complete to move between these screens. The edges are
reweighted by each iteration of implicit modelling (user simulations), allowing—
once a critical mass of simulations has been reached—a representation of both user
progression and potential (timing-based) performance bottlenecks within.

Figure 2 outlines the factor graph approach in more detail. The vertices C,
represent individual screens within the UI flow. Screens are connected by edges
that have a weighting 8, ,,, which represents the relative complexity of moving
from vertex C,, to C,,. The diagram indicates only one-directional weightings, in
cases, where there are no actions available to move to another screen. In the
example shown in Fig. 2, this applies to screen Cs, which can, for instance, only be
reached from screens C, and C,. Hence the weightings f3, 5 and S, 5 are non-zero.
The weightings fi5, and f5 4 are zero and hence not depicted in the diagrammatic
representation. In contrast, screen Cs only provides a direct action to move to
screen Cs, which, in turn, is indicated by the non-zero weighting fs 5.

In this context, we need to define the factor graph theoretical relationships that
govern the weightings introduced in Fig. 2.

44 P. K. A. Wollner et al.

3.1 Longitudinal User Progression (Buyny)

The probabilistic interpretation that a user will experience difficulties when tran-
sitioning from screen C,, to screen C,, may be represented by the longitudinal user
progression introduced in this section. By determining the timing of an individual
screen change within the screen flow network, this descriptor can be numerically
assessed based on the distribution of timings across all actions in the network. The
descriptor is outlined in Eq. (1) where § is the set of all possible timed actions
(edges) within the screen flow network and ¢, ,, is the timing for transitioning

from vertex C,, to C,,.
B _ Zies i (1)
N [N

In other words, the descriptor introduced compares the simulated time an
individual action takes in relation to the mean time of all available actions in that
screen flow. This descriptor does not account for variations in user type.

3.2 Latitudinal User Progression (B, ,,(u))

The probabilistic interpretation of the relative difficulty of a specific screen action
for a specific user type u, based on the overall results is defined as latitudinal user
progression. This is determined by comparing the variation in user timings based
on the non-linear difference of timings of all user types, adjusted linearly by o(u),
and compared to the mean timing of that action.

() |U|(tn, ny (1))

In this representation, o(x) (defined in Eq. 3) is a function to correct for the
specific user type, U is the set of all tested user types and t,, ,, (1) is the timing for
transitioning from vertex C,, to C,, for user u.

oa(u) = M
& [UL s ti(u) }

S is the set of all possible timed actions (edges) within the screen flow network
and ¢; is the timing for transitioning within vertex i.

In other words, the descriptor introduced in Eq. (2) is determined by the sim-
ulated time required for one action to be completed by one user type compared to
the mean time of the same action for all other user types. This mean time is
corrected to account for the overall (non-task specific) performance differences
between user types by o(u) (defined in Eq. 3).

By s (u) =)

3)

A Combinatory Approach to Assessing User Performance 45

3.3 Comparison of Models

For both models, we have a simple distribution of values that allows the assess-
ment of individual stages within the screen progression:

Buymy, =0 It is impossible to progress from vertex C,, to C,,
0<B, <1 Itis difficult to transition from vertex C,, to Cy,
Bujm, =1 It is possible to transition from vertex C,, to C,,
1<By It is easy to transition from vertex C,, to C,,

Furthermore, there are subtle differences between the two models introduced in
the sections above; while the first model is defined for only one user type, it is
limited to compare performance timing only to all other actions within the same
screen flow network.

The second model utilises a descriptor that compares the performance of a
particular action within the screen flow network across all user types that were
simulated.

While the first model highlights individual elements of the screen flow network
that will—in relative terms—be more complex to a user and hence improves the
usability across an interaction session, the second model assesses the complexity
across user types and is more relevant for ensuring an inclusive design of the
simulated interface.

Both models are constrained by utilising solely the mean timings (of all actions
for one user type and for one action across all user types, respectively) rather than
integrating the distribution of timings of these measures.

3.4 Complexity Propagation

Using the above-defined complexity models, we may define a formulaic approach
for assigning complexity values to the vertices C, based on the weightings (f) of
the edges between them. For this, we resort to a message passing algorithm. If we
assume the overall network presented in this chapter to be a bipartite graph where
all nodes are either screens, denoted by the set C, or connections between screens
(), we may use the concept of belief propagation to evaluate the values of all
screens. We call this concept complexity propagation. Here, to align the notation
with that of Pearl (1982), we propose to denote screens as factors U and the
movement between screens as variables V.

First, it is necessary to define a joint mass function, which is determined by the
weighting of connections between screens, given a current valuation of the screen
node they are connected to.

46 P. K. A. Wollner et al.

Next, the entire network is evaluated, by setting the values of each screen node,
C,, to a initialisation value and a message passing algorithm is employed until
convergent values of the screen nodes are reached. This means that the screen
nodes are revalued based on messages based through all neighbouring factor nodes
By, n,- These complexity messages are denoted as uc_,p and pg_, ¢, respectively.
The governing equations for this process are defined by Pearl (1982) (and sub-
sequent work) and extend beyond the scope of this chapter.

4 Design Process Integration

Using the resultant graphical model permits the exploitation of various graph
theoretical methods (Bondy and Murty 2008) that allow not only the definition of
optimal routes of UI progression but also the topographical mapping of UI com-
plexity, a method that provides a simplistic, data-rich representation of user
complexity through screen flow networks. Three-dimensional mapping adds
another dimension to the screen flow representation in edge and vertex form. The
same concept as a standard network is utilised, but the third dimension is qualified
by the distribution of weightings of all connected edges. Hence, the most altitu-
dinal points on the visual representation relate to vertices (or screens) that are the
most difficult to reach.

This representation provides a model for UI designers to better understand the
limitations of a proposed design (given the simulation output thereof) without
abstracting the key output of user modelling: timing-based data. While previous
work (such as Thimbleby 2010) has suggested a purely graph theoretical approach
to UI assessment, we propose a direct interpretation based on the timings-based
output of cognitive models.

Here, we can take the final values of factor nodes (the values of screens C,, after
the previously introduced complexity passing algorithm converges) to indicate the
assumed complexity of a specific screen flow. This means that the relative com-
plexity value established may be presented visually to the designer, allowing him
or her to better comprehend the output of the simulation, translation and com-
plexity passing procedure introduced in this chapter.

This could be visualised in a simple three-dimensional framework, where the x-
and y-coordinates are determined arbitrarily (similarly to the screen flow network
introduced earlier in this chapter) and the z-coordinate is established by a nor-
malised representation of the factor value, post-convergence. A simplified example
of such a representation is depicted in Fig. 3.

A Combinatory Approach to Assessing User Performance 47

Fig. 3 Three-dimensional

complexity representation of @
the screen flow network

introduced in Fig. 1, where

the height (along the z-axis)

defines the complexity of

reaching the given screen. In

this example, screen C, is the
one that is most difficult to @
reach @
z
V.
X

5 Conclusion

This chapter presents the mathematical foundation of a graph theoretical approach
for assessing UI complexity, given the timings-based output of cognitive simu-
lations. It outlines (i) the framework in which a screen flow network is constructed,
(ii) the method by which individual cognitive simulations are instantiated and how
algorithmically all possible flows are processed, (iii) the approach by which the
resultant user progression data (i.e. timings) may be agglomerated into weightings,
(iv) the way in which probability of user access, f8, ,,, may be identified and (v)
recommendations for further graph theoretical operations, given the completed
network.

We believe that this novel approach supports the design process of inclusive
user interfaces through two key mechanisms: representation and adaptability.
Representation is the process in which segmented numerical output data (i.e.
timings from cognitive architectures) is collated in a visual representation which
supports the designer in making better decisions based on data that gives insights
to a broad range of users. Adaptability relates to the underlying strength of cog-
nitive architectures, which allow specific impairments to be modelled, giving the
designer the ability to investigate the usability of an interface for specific user
types.

Further work will focus on the extension of the complexity passing algorithm
introduced in this chapter and in developing a standardised three-dimensional
representation similar to Fig. 3 in order to communicate the output data of this
method to designers. Additionally, the computational framework may be extended
to be utilised not only with the output of cognitive architectures but also with user
performance data gained by actual user tests. This would require an adaption of the
user type variable introduced earlier in this chapter, but would greatly extend the
applicability of user testing in the design process.

48 P. K. A. Wollner et al.

References

Anderson JR, Bothell D, Byrne MD, Douglass S, Lebiere C et al (2004) An integrated theory of
the mind. Psychol Rev 111:1036-1060

Biswas P, Robinson P, Langdon PM (2012) Designing inclusive interfaces through user modeling
and simulation. Int J Human-Comput Interact 28(1):1-33

Bondy A, Murty U (2008) Graph theory. In: Graduate texts in mathematics. Springer, New York

Councill IG, Haynes SR, Ritter FE (2003) Explaining soar: analysis of existing tools and user
information requirements. In: Proceedings of the 5Sth international conference on cognitive
modeling

John BE (2011) Using predictive human performance models to inspire and support UI design
recommendations. In: Proceedings of the ACM CHI conference on human factors in
computing systems, Vancouver, Canada

John BE, Prevas K, Salvucci DD, Koedinger K (2004) Predictive human performance modeling
made easy. In: Proceedings of the SIGCHI conference on human factors in computing
systems, New York, NY, US

John BE, Suzuki S (2009) Toward cognitive modeling for predicting usability. In: Human-
computer interaction. New trends. Lecture notes in computer science, vol 5610, pp 267-276

Langdon PM, Persad U, Clarkson PJ (2010) Developing a model of cognitive interaction for
analytical inclusive design evaluation. Interact Comput 22(6):510-529

Langdon PM, Thimbleby H (2010) Inclusion and interaction: designing interaction for inclusive
populations. Interact Comput 22(6):439-448

Pearl J (1982) Reverend bayes on inference engines: a distributed hierarchical approach. In:
Proceedings of the American association of artificial intelligence national conference on Al,
Pittsburgh, PA, US

Salvucci DD, Lee FJ (2003) Simple cognitive modeling in a complex cognitive architecture. In:
Proceedings of the ACM CHI 2003 human factors in computing systems conference, Ft
Lauderdale, FL, US

Thimbleby H (2010) Press on - Principles of interaction programming. MIT Press, Cambridge

Wollner PKA, Hosking I, Langdon PM, Clarkson PJ (2013) Improvements in interface design
through implicit modeling. In: Universal access in human-computer interaction. Design
methods, tools, and interaction techniques for elnclusion. Lecture notes in computer
science,vol 8009, pp 127-136

	4 A Combinatory Approach to Assessing User Performance of Digital Interfaces
	Abstract
	1…Introduction
	2…Cognitive Architectures
	2.1 Screen Flow Network

	3…Simulation Network Analysis
	3.1 Longitudinal User Progression ({{\varvec \beta}}_{{{{\usertwo n}}_{\bf{1}},{{\usertwo n}}_{\bf{2}} }})
	3.2 Latitudinal User Progression ({{\varvec \beta}}_{{{\usertwo n}_{\bf{1}},{\usertwo n}_{\bf{2}} }} \left({\usertwo u} \right))
	3.3 Comparison of Models
	3.4 Complexity Propagation

	4…Design Process Integration
	5…Conclusion
	References

