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Abstract In the natural and enginiering sciences numerous sophisticated simula-
tion models involving PDEs have been developed. In our research we focus on the
transition from such simulation codes to optimization, where the design parameters
are chosen in such a way that the underlying model is optimal with respect to
some performance measure. In contrast to general non-linear programming we
assume that the models are too large for the direct evaluation and factorization of
the constraint Jacobian but that only a slowly convergent fixed-point iteration is
available to compute a solution of the model for fixed parameters.

Therefore, we pursue the so-called One-shot approach, where the forward
simulation is complemented with an adjoint iteration, which can be obtained by
handcoding, the use of Automatic Differentiation techniques, or a combination
thereof. The resulting adjoint solver is then coupled with the primal fixed-point
iteration and an optimization step for the design parameters to obtain an optimal
solution of the problem. To guarantee the convergence of the method an appropriate
sequencing of these three steps, which can be applied either in a parallel (Jacobi)
or in a sequential (Seidel) way, and a suitable choice of the preconditioner for the
design step are necessary. We present theoretical and experimental results for two
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choices, one based on the reduced Hessian and one on the Hessian of an augmented
Lagrangian. Furthermore, we consider the extension of the One-shot approach to
the infinite dimensional case and problems with unsteady PDE constraints.

Keywords Simulation ¢ Optimization * PDE e Automatic differentiation ¢
Fixed-point solver * Retardation factor * One-shot * Piggyback ¢ Numerics

1 Introduction

In the research project Automated Extension of Fixed Point PDE Solvers for Optimal
Design with Bounded Retardation we focus on design optimization problems of the
form

i , tooce(u,y) =0 DOP
Lmin fGey) stoe(y) (DOP)

where f : U x Y — R denotes an objective function and ¢ : U x Y — H
with dim H = dim Y = n represents some state equation. This scenario has been
approached by many computational scientist with inexact variants of large-scale
SQP methods. For a partial survey we recommend [1-3,12,21].

As a key assumption we require that for any control # € U there is a non-singular
solution y(u) € Y of the state equation c(u, y) = 0. Moreover, we assume that
the state constraint can be equivalently written as a fixed-point equation with some
contractive function G : U x Y — Y, ie.

||Gy(u,y)H <po<1 forall (u,y)eUxY,

such that the fixed-point iteration yx+1 = G(u, yr) provides a solution y(u) =
limy o yr of the original state equation for any fixed control u € U and
initial state yp € Y. We also assume in the statement and for the execution of
numerical algorithms that the functions are at least once continuously differentiable
to guarantee well posedness of the problem and twice continuously differentiable
for the convergence theory.

Thus, by standard results from nonlinear optimization [16] we see in the finite
dimensional case (n < 00) that for any local minimum (i, y«) of (DOP) in the
interior of U x Y there exists a Lagrange multiplier y, € R" such that the first order
necessary optimality conditions

0= L,(ux, Y5, Yx), Y+ = G(ux, ), and 0 = Ly(u*, Vo V)

hold, where L : U x ¥ x R" — R denotes the Lagrangian function

Lw.y.7) = fu,y)+ 7 (Gu,y)—y).
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Assuming that second order sufficient optimality conditions are satisfied we find
that the projected Hessian of the Lagrangian

Ly Ly

Ho= (17| )

Hé} with Z:= (I -G,)™' G, (1.1)

evaluated at a strict local minimum (u«, y«, V«) is positive definite and the same
holds true in an neighborhood of the minimizer.

In the first part of our project we pursued a so-called (Jacobi) One-shot strategy
[4,8,9,11]

Ut = — OyepBi Lu(u, y, 7)
v+ =G, y) 1.2)
V+ =V + Ly y,y)

or in short

... — ( DESIGN, STATE, ADJOINT) —> ...

to find first order optimal points. Here a,, € R denotes some step-multiplier and
B is a suitable symmetric positive definite preconditioner, which may depend on
the variables (u, y, ¥), the given functions f, G and their derivatives. As a special
choice we investigate the augmented Lagrangian preconditioner

Bje = L+ GuG;r+ ﬂ LuyLyu

and BFGS approximations of it with some suitable coefficients ¢, 8 € R.
Beside the original (Jacobi) one-step One-shot method [8], several other stepping
schemes can be found. Therefore, we also propose the Multistep-Seidel-version

... — (DESIGN) — (STATE)® — (ADJOINT)® — ...,

where after one design update several repeated state updates are followed by the
same number of repeated adjoint updates, or in detail,

uy =u—aBg,L,(u,y,7) single design update,
v+ =G (ug,y) s state updates, (1.3)
J+ =G (us,y+.7) s adjoint updates .
where
Gk+1(u, y) =G (u, Gk(u, y)) and

G wy, 7) =G (u,y,G" (u,y.7))

fork =1,...,5s — 1 with G(u, y, ) := Ly(u,y,y)+ 7.
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In contrast to before, the preconditioner Bs.;; ~ H, may also depend on the
number of state/adjoint updates s. We present the basic ideas (cf. [5]) needed to
prove that the Multistep One-shot method is locally convergent for a sufficient
choice of «, B,y and the step number s which is mainly depending on the
contraction rate po of G and problem specific derivative information.

In the sequel, we will give a short summary of our project for the last research
period of the DFG SPP-1253 project. The structure is as follows:

In Sects.2—4 we present some of our results for the Jacobi method containing
the findings for the exact quantification of the retardation factor, an application
in marine science and the extension of the approach to function space. For the
Multistep One-shot method we will state sufficient conditions for the convergence of
the method in terms of problem dependent quantities and present some numerical
examples for an application in aerodynamic shape optimization, which is done in
Sects. 5 and 6, respectively. Furthermore, we will consider in Sect. 7 the case where
the constraint mapping ¢ represents a PDE only allowing for unsteady solutions.

2 Exact Quantification of Retardation

In One-shot methods, retardation refers to the increase of steps needed for a
comparable reduction in the residuals when going from simulation to optimization
in the coupled iteration. Bounded retardation, i.e., a limited increase of these steps,
has been achieved by many groups in the priority program. However, a general
theoretical statement to quantify the factor of retardation for the Jacobi method
has not been achieved yet. In the second period, we obtained theoretical results
for separable problems [9], where L,, = L,, = 0. We investigated:

1. A Newton scenario for separable problems,
2. Jacobi and multigrid scenarios for a standard elliptic problem.

In the Newton scenario for the separable case, we have G, = 0 and thus G, =
dy/du. We expect the observed results to remain valid also in the case when G
represents an inner iteration. We tested the example of several multigrid cycles
that resolve the state equation with higher accuracy before a change of the design
variables. In this case, the retardation factor was found to be y/3, where y = ||T'||
is the weighted Euclidean norm of G,| L,,G, w.r.t. to the projected Hessian H .

In the Jacobi and multigrid scenarios, we consider an elliptic boundary value
problem with a tracking type objective function and Tikhonov regularization on the
L, norm of the control with the weighting parameter p. This standard test problem
was solved by the rather slow Jacobi method and the rather fast multigrid method.
Here, we find that the preconditioner should be a multiple of the identity and its
optimal scaling can be found by solving a system of three cubic polynomials, which
can be reduced to a single polynomial in the convergence factor py.

In Fig. 1, the retardation factors as a function of the reciprocal 1/u for three
different grid sizes N are shown. As one can see, the retardation factor for the
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Fig. 1 Retardation factor for
Jacobi and multigrid methods

— Jacobi, N=32
-~ Jacobi,N=64
--- Jacobi,N=128
MG,N=64
—MG,N=128
Rbound

Retardation R
87\)

Jacobi scenario is very small until 1/ is about 10%, then grows quite rapidly until
it becomes a linear function of 1/u, and finally for very large 1/u it becomes
constant. The same behavior is also observed for the V-cycle multigrid case with
Jacobi smoother. In all cases, we observed a much better retardation factor than the
theoretical upper bound without optimized step multiplier (yellow line).

3 Application in Marine Science

Parameter optimization is an important task in all models that simulate parts of
the climate system, as for example ocean or atmosphere models. In these models,
many processes are not well-understood or cannot be resolved. These processes
are parametrized using simplified model functions with parameters that have to be
optimized for calibration according to measurements or other models’ data. The
parameters appear as factors of the state variables, thus leading to nonseparability in
the state equations. Often, calibration is performed for a steady stationary or periodic
solution, the latter representing a stable annual cycle. Computation of a steady state
is usually the result of a spin-up, i.e., a time integration until no significant changes
are observed. For ocean models, the spin-up needs thousands of years of model
time, which reflects the long time scales of the global ocean circulation. In three
space dimensions, the pure simulation of the ocean circulation is a challenging
computational task which requires considerable time. As a consequence, the
One-shot method is a promising approach for parameter optimization in ocean
models. However, the additional computational effort of simultaneous update of the
state and parameter corrections must not be ignored and we propose simplifications
of the strategy. We considered two examples.
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3.1 Calibration of a Box Model of the North Atlantic
Circulation

At first, we calibrated a conceptual box model of the North-Atlantic thermohaline
circulation by Rahmstorf [20]. It has eight nonlinear ODEs and a global warming
parameter that varies in a given range and is not to be optimized. For each value
of this parameter f}, the amount of water overturning m(u, y( f1)) is obtained as
an aggregated quantity from the state variables and the parameters. The model is
numerically integrated into a steady state where c(u, y(f1)) = 0 by an explicit
Euler scheme. Since it is computationally cheap and has been calibrated using other
methods (see [18]), we used it to investigate the applicability of the One-shot method
and to compare results and performance in a real world problem. Data m, from a
more complex model (see [18]) are used as desired state in a tracking type functional
with regularization term incorporating a prior guess Ug,.ss for the six parameters to
be optimized:

. 1 €
I}tnyn f(uv y) = E”m(us y(fl)) —md”% + E”M - uguess“%a
st. 0=c(uy(fri), i=1,...,L

The parameters are subject to box constraints, which were not treated explicitly in
the One-shot method. Without regularization, typically several local minima occur.

We compared the One-shot results both with full computation of the precondi-
tioner By, and using its BFGS approximation on the one hand with results obtained
by direct optimization using a full spin-up in every function evaluation on the other
hand. For the direct optimization we applied our own BFGS implementation as well
as the L-BFGS and L-BFGS-B codes from [19].

As summarized in [14], the One-shot method was successful, even though no
contractivity, but only quasi-contractivity (see [7]) is given. Simplifications of the
algorithm as fixing the parameter p representing the contraction factor to 0.9 and
limiting the exact computation of By, to every 1,000th iteration was adequate. The
latter reduced computational time to about half of the time needed in optimization
runs with computation of By, in each iteration. The final states obtained by the
two One-shot variants are close to the data and to the ones obtained by the direct
methods, also with small regularization parameter €. The parameters computed
by One-shot were to some extent similar to those of the direct optimization
with L-BFGS-B. They stayed in acceptable ranges without any explicit constraint
treatment, but differ among the chosen methods when ¢ < 1, which is due to the
ill-posedness of the problem.

As can be seen in Fig.2, the One-shot strategy showed good performance:
The number of iterations was about 10-40 times larger than those for a spin-up.
Direct optimization strategies needed at least 30 optimization steps, each requiring
several complete spin-ups. Using full computation of By, performs well for most
regularization parameters €, whereas the One-shot-BFGS strategy does not show



Project Summary: Optimal Design with Bounded Retardation 73

——BFGS
—+— Oneshot
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Fig. 2 Typical optimization run for parameter optimization of the box model: comparison of total
necessary Euler steps by direct BFGS optimization and One-shot method with full computation of
the preconditioner

good performance. This behavior also varies with respect to the global warming
parameter, likely because the model itself has difficulties finding the steady state for
high values of this parameter.

3.2 Calibration of a 3-D Marine Ecosystem Model

Marine ecosystem models describe the physical and bio-geochemical processes that
determine the oceanic part of the global carbon cycle. They are non-linearly coupled
transport or advection-diffusion-reaction equations, with ocean circulation data as
forcing. In three dimensions, the computation of a steady annual cycle of such
models takes several days on a parallel machine.

We performed parameter optimization for a characteristic model (see [17])
consisting of two spatially distributed state variables (tracers), namely phosphate
and dissolved organic phosphorus. The parameter optimization problem is of
tracking type including a regularization term with an initial parameter guess:

. 1 €
I}}lynf(’/h y) = E”y - ydalauz + E”M - uguesS”z s.t.0= C(M, y)

At first synthetic data created by the model were used as desired state, tests with real
data taken from the World Ocean Atlas are work in progress. Direct optimization
runs that are still possible in coarse resolutions suggest that for this configuration
several local minima exist. Nevertheless, the One-shot optimization method without
regularization found the correct parameters u, for synthetic data. Figure 3 shows an
example with regularization parameter € = 0.01, but where the initial guess ug,eqs
did not equal the value u, used to create the synthetic desired state. The convergence
of the parameters differs. The cost function is significantly reduced, as can be seen
in Fig. 4. Comparing performance, the One-shot method leads to results comparable
with a direct optimization after about 15,000 steps (equal model years). A usual
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Fig. 3 Some parameters during optimization, ige,s 7 ux, € = 0.01. Straight lines represent
optimal values u

3 —— cost functional J
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Fig. 4 Typical tracer distribution at the ocean surface (left) and cost function f* during One-shot
optimization (Ugyess 7 Us, € = 0.01)

Table 1 Computation of derivatives using different approaches

Derivative Mode of Computation

Sys fus Sou Analytically

G, Forward mode of AD + analytically for linear parts
yTG s 7T G, One reverse sweep of AD + analytically for linear parts
yT Gy, Finite differences applied to y | G y

spin-up takes about 5,000 years, but it has to be noticed that a One-shot iteration
requires additional effort due to adjoint and parameter updates. In this example, the
One-shot iteration step requires about 23 times the computational time needed for
one step of the spin-up. The costs can be reduced to a factor of only eight, if the
update of By, is performed only every fifth iteration step.

Table 1 summarizes the use of Automatic Differentiation (AD) in the realization
of the One-shot method.
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4 One-Shot in Function Spaces

For the treatment of the One-shot method in function spaces we again consider
problem (DOP) for general Hilbert spaces U and Y. Here, c(u,y) = 0 with
¢ :UxY — Y* denotes the governing equations in form of a PDE. In order
to define the Lagrange function with respect to the fixed point operator G(u, y) in
a Hilbert space setting correctly we need to consider the transition from the PDE
to the fixed-point formulation. According to [13], this is given in terms of a linear,
bounded and bijective operator F(y) : ¥ — Y * so that

cu,y) = F»)ly — G(u, y)].

For the sake of simplicity, we assume F(y) to be independent of u. The Lagrangian
is now defined incorporating the fixed-point formulation as follows

L(“vyv.)j) = f(“,y) - (f’c(“aY))Y,Y*
= f(u,y) = (F(»)*5,y — G, y))y+y. 4.1

Computing the KKT system based on (4.1) yields a fixed-point formulation of the
optimality system and a simultaneous update of state, adjoint and design equation

y+ =G, y) (4.2)
Uy =u— B_lLu(u, v, V). 4.4)

with an appropriate preconditioner B. Here, the operator ®(u, y, y) in (4.3) is the
fixed-point operator of the adjoint equation and defined by (see [13])

(F(y)*qJ(uv Vs y)?"")Y*,Y = fy(”s y)W - (.)_}s Fy(y)W[y - G(Ms y)])YY*
+{F)* 7, Gy(u, y)w)y=y
for all w € Y. Note that it holds
Ly(I/t, Y, )_])W = (F(y)*qD(us Y, Jj)vw)Y*,Y - (F(y)*va>Y*Y

In [13] a convergence proof is given for the general case and specified for model
problems including the solid fuel ignition model and the viscous Burgers equations.
In the following, we only note the leading steps of the general convergence proof.
Therefore, consider the augmented Lagrangian defined as

_ _ o B _ _
Lu,y,y) = L(u,y,y)+ EIIG(u,y) —ylly + §||<I>(u,y,y) il 4.5)

with the penalty parameters ¢, § > 0. The convergence proof follows the idea of the
finite dimensional setting to show that the augmented Lagrangian acts as a penalty
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function, i.e. that every local minimum of the original optimization problem (DOP)
is also a local minimum of L“. Further, we show that the One-shot method yields
descent on L“ and therefore reaches the minimum correctly. The next theorem
(cf. [13]) is the main result in this procedure and ensures the equivalence of the
stationary points as well as the descent condition.

Theorem 4.1. If there exist constants « > 0 and B > 0 such that the following
conditions are fulfilled

2
a(l = po) = £1Gul® > IF )| + 1@y,
B —po) > IFD) + Ell®dy ), and y > L,

for a positive preconditioner B with (Bh,h)y > y|hl3, |®5] < po < 1 and a

constant y > 0, then a point is a stationary point of L* if and only if it is a solution
of the KKT-system to (DOP). Additionally, the increment vector of the One-shot
method is a descent direction for L.

These general conditions are difficult to verify. Nevertheless, for specific model
problem they can be simplified and tested [13]. Numerical investigations of
the method, with a preconditioner chosen as a scaled identity operator, show a
mesh-independent behavior for several model problems:

Example (see [13]). Consider the minimization of the tracking type functional
. 1 2 € 2
min f(y,u) === [ |y —zal"dx+ = [ |u|"dx
2 Jo 2 Ja
subject to (y,u) € Hy(2) x L*(Q) fulfilling the Viscous Burgers equation
—VvAy+ (V) y=u inQ, and y=0 onT.
The corresponding first order optimality system

—VAy +(y-V)y—u=0, ylr=0

—VAY —(y-V)y —div()i + (V) 5=y +2.=0, Flr=0
eu+y =0 ae. in$.

was solved by the One-shot iteration:

y+=Gu) = (—vA+y-V)" ()
J+ = (VA —y-V—div(y))"'(y =z = (V) 7)

1 _
Uy M—;(GM'FY)

The resulting number of iterations for the 2D case are given in Table 2.
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Table 2 2D Burgers equation withe = 0.0l, v =0.1 andz; = 1
# Degree of freedom y=0.5 y = 0.55 y = 0.6 y = 0.65 y =0.7

882 389 424 460 497 534
1922 00 429 459 494 530
3362 00 00 460 493 529
5202 00 00 463 493 528

It is important to note that in this example the focus does not lie on the efficiency
of the method, it rather demonstrates the mesh-independency. Therefore, the total
number of iterations necessary for the optimization does not increase significantly.
The formulation and analysis of the method in function spaces as well as the
numerical mesh-independent behavior motivates an extension of the method in
terms of an additional adaptive step (cf. [13]).

5 Adaptive Sequencing of Primal, Adjoint and Control
Updates

As a part of our research we also considered various stepping schemes, one of
them being the Multistep One-shot (1.3). Assuming for the analysis that the design
variables were transformed in such a way that the projected Hessian is the identity,
ie,wesetu = Tiandit = T 'uif T~TT~" := H, = H(1), we were able (see
[5]) to bound all complex eigenvalues of the Jacobian

7. = 0(ut, y+,y+)
o, y.y)

for the coupled iteration in terms of the problem dependent quantities

d = |ILyll|ZI*. e = |Lyi+LyZ|| I1Z]. and y = ||I — ayep Byl

Here Z = Z T and égeid = TTBSe[dT represent the transformed quantities.
Proposition 5.1. Under the stated assumptions all eigenvalues A € C of J, for the
Multistep One-shot iteration with the preconditioner matrix Bs.iq satisfy

Al<n or [Al<y+v[du’(.IA]) +2epn(nAD]. (5.1)

where 11 = pj, v = depl| Bigiyll and pu(n. 1A1) = n(IAL+ 1)/ (1A] = ).

Note that L,, = dL,/dy is the partial derivative of the adjoint equation w.r.t.
yand L,,Z 4+ L,, = dL,/du is the total derivative of the adjoint equation w.r.t.
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u. thus, e and d can be understood as a measure for the sensitivity of the adjoint
equation with respect to state and design, respectively. Moreover, we have:

Proposition 5.2. If y < 1, then by adjusting s and thus n = pj, any rate p €
(v, 1) can be attained as upper bound of the spectrum of Jx«. The following relation
between s, 1 and p for given e, d, y and v is sufficient:

plp—7v)
(p=y)+v(+p) (VA =)/ +e +e)

Po =1 =n«(p) = (5.2)

In other words, we found a sufficient condition on the number s of primal and
adjoint iterations that ensures the local convergence of the approach in terms of the
above mentioned quantities.

Corollary 5.3. The spectral radius p of J« is less than 1 if the number of inner
iterations s € N satisfies

s> 5 =10g [1+2 (VAT =p)/v el +e)v/(-p)]

This theoretical lower bound on the number s of primal and adjoint updates
was used to implement an self-adapting algorithm ABOSO. Within the algorithm all
required quantities, such as e, §, y, and py, are approximated by difference quotients
and other already computed information instead of the exact calculation which is in
general too expensive. Also, the measurements are averaged over the last iterations
to have more reliable estimates.

Example. The self-adapting algorithm was verified on various examples, e.g. on the
non-linear problem Bratu problem (see [15])

1 "
{Iullyl’)l 5”82.))( ’ 1) - ¢1 ||2£2(Q) + 5”””%—{1(9)7 (“a y) € HI(Q) X 7_[(1)(§2) s.t.

— Ay =2Xdexp(y)in 2, y(s,1)=uls), y(s,0)=¢as), y(l,1)=y(0,1)

that describes the combustion of solids over the unit square 2 = [0,1]> C R?
for given functions ¢; and ¢,. The fixed-point function y4 = z = G(u, y) was
computed on purpose in a Seidel type iteration by solving the implicit univariate
equations

2
1
Zj — ZexP(Zij) = Ymean = Z(yi,j—l + Yij+1+ Vi1 + Yit1)
using the equidistant grid points (i /m, j/m) with m = 12 so that y,, ; = yo; and
copying the values u; into z; , after each inner iteration. Naturally, there are faster
solvers for this elliptic problem, but we deliberately wished to mimic slow fixed
point solvers in more complicated application areas. The behavior of the algorithm
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Fig. 5 Residuals for the simulation (right)and optimization(left)

is displayed in Fig. 5 for the parameters A = 1 and u = 10~*. In particular, it can
be seen by comparing the residual of the simulation without design changes on the
left side and the residual of the optimization on the right that the retardation factor
is approximately 2.5, i.e. for achieving the same residual in the optimization only
an small number of additional simulation steps by a factor of 2.5 is required.

6 Application in Aerodynamic Shape Optimization

We have applied the Multistep One-shot method for the shape optimization of
a NACAOQ012 airfoil at transonic flow conditions using Euler equations. As the
shape parameterization, the free-node parametrization is chosen, in which all the
mesh points on the airfoil surface are taken as shape parameters. This type of
parameterization enables that maximum degree of freedom can be given to the
optimization algorithm. The shape sensitivities, which are required for the One-
shot method, are computed using the consistent discrete adjoint approach based on
Automatic Differentiation [6]. Although this approach is slower than the continuous
and hand-discrete adjoint approaches, it has been chosen because of its robustness
and its ability to compute exact derivative information without utilizing any
approximations. The test case is chosen as the inviscid drag minimization scenario
at constant lift. The Mach number and the angle of attack for this case are chosen
as 0.85 and 2 respectively. The grid used for the study is the 325 x 65 C-type grid
with 196 grid points on the airfoil surface. As it can be seen in the Fig. 6, the initial
NACAOQ012 airfoil creates a strong inviscid shock on the suction side of the airfoil,
which leads to a high amount of drag in the transonic flow regime (left figure). In
the right figure, the pressure distribution for the optimized shape is illustrated. It can
be observed that inviscid shock disappears in the optimized airfoil, which leads to a
substantial drag reduction of 60 % while maintaining the lift.

In order to assess the performance of Multistep One-shot method, we have made
a comparison between a nested optimization approach using BFGS method with
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Fig. 6 Initial NACA0012 and optimized airfoils with pressure contours for the transonic case

Table 3 Iteration count and run-time measurements for the primal simulation, nested optimization
and One-shot optimization

Case Iteration counts Ret. factor Run-time (s) Ret. factor
Primal simulation 2613 1 107 1

Nested opt. 192788 73.8 102016 953
One-shot opt. 10140 3.9 3867 36.1

line searches and One-shot method with s = 10. The performance results of both
methods compared to a single primal simulation are presented in Table 3. The nested
approach takes totally 11 adjoint and 65 primal solver evaluations. Note that in the
nested approach, the number of iterations taken by the primal and adjoint solvers
for each run vary since five decade residue fall is set as the stopping criteria. The
nested approach takes totally 192,788 primal/dual steps and the optimization takes
ca. 28 h on a 2.4 GHz Intel machine. The retardation factor of the nested approach is
measured as 73.8 in iteration counts and 107 in run-time. As it can be observed from
the results, the One-shot method is significantly faster than the nested approach and
has a factor of retardation 3.9 in iteration counts and 36.1 in run-time.

7 One-Shot Optimization with Unsteady PDE Constraints

For time-dependent PDE:s, the state variable varies with time and thus is a function
y:[0, T] — Y. The objective function to be minimized is typically given by some
time averaged quantity. The general formulation of the optimization problem with
unsteady PDEs reads

min T flu,y(t))dt st a T c(u,y()) =0 t €l0,T]

(7.1
wy 0 y(0) = yo.
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Unsteady PDE:s are typically discretised by an implicit time marching scheme. The
resulting implicit equations are solved iteratively by applying a fixed point solver at
each physical time step until a steady-state solution at that time step is achieved:

fori =1,...,N: y,iH = G(u,y,i,yi_l,yi_z,...) — y! (7.2)

Here, yi denotes the converged steady-state at the discrete time step t; = i At. N
is the total number of time steps, given by T = NAt. The contractive fixed-point
iterator G not only depends on the design variable but also on the converged state
solutions at previous time steps.

In order to extend to One-shot, where one incorporates design updates already
during the primal flow computation, the time marching scheme (7.2) is modified as

fork =1,2,...: Yig =Gy i3 Vigis---) Vie{l,...,N}.
(7.3)

In contrast to (7.2), where fixed point iterations are performed at each time step for
a state y’, in the One-shot framework (7.3) the complete trajectory of the unsteady
solution is updated within one iteration. Interpreting the state as a discrete vector
from the product space y € YV := Y x ... x Y with state components y’, we can
write (7.3) in terms of an update function

Yi+1 = H(u, yi) (7.4)

where H:U x YV — YV performs the update formulas (7.3) for all time steps.
Using the contractivity of the fixed point iterator G it can be shown, that H is
contractive with respect to y € Y and, thus, y; converges to the unsteady solution
of the PDE (cf. [10]).

Replacing the unsteady PDE constraint by the fixed point equation y = H(u, y),
the Lagrangian function corresponding to the unsteady optimization problem is
defined as

L(u,y,f) = I(u,y)+)7T(H(u,y)—y), (75)

where I(u,y) = ﬁ ZzN=l f(u,y") approximates the objective function. This
formulation has the same structure as the definition of the Lagrangian in Sect. 1.
Thus, the concept of One-shot optimization can be applied in the same way by
replacing the fixed point iterator with the mapping H and the objective function
with the approximation /.

For a fixed design u € U, iterating only in the state and the adjoint variable
simultaneously in the so called piggy-back iteration is implemented for the problem
of optimal active flow control around a 2D cylinder. Eight actuation slits are
installed on the surface of the cylinder where sinusoidal blowing and suction is
applied in order to reduce vorticity downstream the cylinder. Amplitude and phase
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Fig. 7 Convergence history 1
of primal and adjoint states 0.1
for incompressible URANS
in One-shot framework
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shift of the actuation are used as design variables. The governing incompressible
URANS (unsteady Reynolds-averaged Navier-Stokes) equations are solved by
applying the new approach to a second order implicit finite volume code. To
study the convergence behavior, the L,-norm of the state and the adjoint residuals
ly —H(@u, y)|l2, ILy(u, y, ¥)|» are computed. From Fig. 7 it can be observed, that
both variables converge with the same asymptotic convergence rate. In future, a
preconditioned control update will be incorporated in the piggy-back iteration for
the implementation of One-shot in unsteady framework.

Conclusion

In the second phase of the project, the theoretical results and the applications
from the first one have been extended in different ways. First of all, it
was possible to quantify the retardation factor of some test problems and
Newton, Jacobi and multigrid iterations. Moreover, the application of the One-
shot method in its Jacobi variant was shown to be feasible and successful
for parameter optimization in complex, spatially three-dimensional climate
models using a fixed-point type iteration to compute steady seasonal cycles.
These results show a high potential for application on various real-world
problems in climate research, thus emphasizing the interdisciplinary benefit
of the project.

Whereas these theoretical results and applications are based on the
finite-dimensional setting of the method, we additionally extended the theory
for the One-shot Jacobi variant on two prominent infinite-dimensional prob-
lems, namely the viscous Burger and the solid fuel ignition model. For both
cases also numerical studies were performed.

(continued)
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Furthermore, we developed the Multistep One-shot method that uses an
adaptive sequencing or adjustment of the number of primal, adjoint and
control updates used during the algorithm. For this method, we provide a
theory relating the number of necessary primal and adjoint steps per control
update to the spectral radius of the Jacobian and thus the convergence speed
of the coupled iteration. This modified method was applied successfully in
shape optimization in Computational Fluid Dynamics. In this context, we also
extended the method to non-linear (inner) iterations in non-stationary flow
solvers.
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