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Abstract An optimal control problem is considered for the variational inequality
representing the stress-based (dual) formulation of static elastoplasticity. The linear
kinematic hardening model and the von Mises yield condition are used. The
forward system is reformulated such that it involves the plastic multiplier and a
complementarity condition. In order to derive necessary optimality conditions, a
family of regularized optimal control problems is analyzed. C-stationarity type
conditions are obtained by passing to the limit with the regularization. Numerical
results are presented.

Keywords Mathematical programs with complementarity constraints in function
space • Variational inequalities • Elastoplasticity • Regularization • Optimality
conditions

Mathematics Subject Classification (2010). Primary 49K20, 70Q05, 74C05;
Secondary 90C33, 35R45.

1 Introduction

Solid bodies depart from their rest shape under the influence of applied loads. In case
the applied loads or stresses are sufficiently small, many solids exhibit a linearly
elastic and reversible behavior. If, however, the stress induced by the applied loads
exceeds a certain threshold (the yield stress), the material behavior switches from
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the elastic to the so-called plastic regime. In this state, the overall loading process
is no longer reversible and permanent deformations remain even after the loads
are withdrawn. Mathematically, this leads to a description involving variational
inequalities (VIs), or equivalently, complementarity conditions.

Plastic deformation is desired for instance as an industrial shaping technique of
metal workpieces, as e.g. by deep-drawing of body sheets in the automotive industry.
The task of finding appropriate time-dependent loads which effect a desired final
deformation leads to optimal control problems for elastoplasticity systems. These
problems are also motivated by the desire to reduce the amount of springback, i.e.,
the partial reversal of the final material deformation due to a release of the stored
elastic energy once the loads are removed.

In this review, we concentrate for the sake of brevity on the model of static
elastoplasticity with small strains in its so-called dual (stress-based) formulation,
and with linear kinematic hardening. Within the project, similar results were
achieved also for the more challenging quasi-static model, see [24–26] and the
dissertation [23]. The system describing the quasi-static forward problem is given
in Sect. 2.3. We also refer to [3] for the analysis of an optimal control problem
involving the static primal (strain-based) counterpart.

According to the standard approach for infinite strains we do not distinguish
between reference and actual configuration and identify � with the workpiece under
consideration. In its strong form, the static problem of elastoplasticity in its dual
formulation with linear kinematic hardening reads

C
�1� C ".u/ C � .� D C �D/ D 0 in �;

H
�1� C � .� D C �D/ D 0 in �;

div � D �f in �;

with complement. conditions 0 � � ? �.†/

and boundary conditions u

� 0

D 0

in �;

on �D;

� � n D g on �N :

9
>>>>>>>>>>>=

>>>>>>>>>>>;

(1.1)

The state variables consist of the stress � and back stress �, combined into the
generalized stresses † D .� ; �/, plus the displacement u and the plastic multiplier
� associated with the yield condition �.†/ � 0 which we assume to be of von Mises
type, see (2.1). The first two equations in (1.1), together with the complementarity
conditions, represent the material law of static elastoplasticity. The tensors C�1 and
H�1 are the inverses of the elasticity tensor (the compliance tensor) and of the
hardening modulus, respectively, � D denotes the deviatoric part of � , while ".u/

is the linearized strain. The third equation in (1.1) represents the equilibrium of
forces. The boundary conditions correspond to clamping on �D and the prescription
of boundary loads g on the remainder �N D � n �D .
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Due to the complementarity between the plastic multiplier � and the yield
condition �.†/, the optimal control of (1.1) leads to a mathematical program with
complementarity constraints (MPCC) in function space. As is known already for
finite dimensional MPCCs, classical constraint qualifications such as MFCQ fail
to hold. To overcome these difficulties, several competing stationarity concepts
tailored for MPCCs have been developed, see for instance [15, 21] for an overview
in the finite dimensional case. For the infinite dimensional case, we refer to the
classical works [1, 19, 20] and the recent contributions [14, 16, 22].

2 Optimal Control Problems in Small-Strain Static
Elastoplasticity

In this section we present the optimal control problem under consideration. We set
up some notation in Sect. 2.1. Afterwards, we discuss the static forward problem
in Sect. 2.2 and state the quasi-static forward problem in Sect. 2.3. The optimal
control problem of static plasticity is considered in Sect. 2.4. As mentioned in the
introduction, we concentrate on the model of static elastoplasticity with small strains
in its so-called dual formulation, and with linear kinematic hardening.

2.1 Notation and Standing Assumptions

2.1.1 Variables

Our notation follows [8] for the forward problem. Since the presentation of
optimality conditions relies on adjoint variables and Lagrange multipliers associated
with inequality constraints, additional variables are needed.

2.1.2 Function Spaces

Let � � R
d be a bounded domain with Lipschitz boundary � D @� in dimension

d 2 f2; 3g. We point out that the presented analysis is not restricted to the case
d � 3, but for reasons of physical interpretation we focus on the two and three
dimensional cases. The boundary consists of two disjoint parts �N and �D . We
denote by S WD R

d�d
sym the space of symmetric d -by-d matrices, endowed with the

inner product A : B D Pd
i;j D1 AijBij, and we define

V D H 1
D.�IRd / D fu 2 H 1.�IRd / W u D 0 on �Dg;

S D L2.�IS/
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as the spaces for the displacement u, stress � , and back stress �, respectively. The
control .f ; g/ belongs to the space

U D L2.�IRd / � L2.�N IRd /:

2.1.3 Yield Function and Admissible Stresses

We restrict our discussion to the von Mises yield function. In the context of linear
kinematic hardening, it reads

�.†/ D �j� D C �Dj2 � Q�2
0

�
=2 (2.1)

for † D .� ; �/ 2 S2, where j � j denotes the pointwise Frobenius norm of matrices,

� D D � � 1

d
.trace � / I

is the deviatoric part of � , and Q�0 is the yield stress. The yield function gives rise to
the set of admissible generalized stresses

K D f† 2 S2 W �.†/ � 0 a.e. in �g: (2.2)

Due to the structure of the yield function, � D C �D appears frequently and we
abbreviate it and its adjoint by

D† D � D C �D and D?� D
�

� D

� D

�

for matrices † 2 S2 as well as for functions † 2 S2. When considered as an
operator in function space, D maps S2 ! S . For later reference, we also remark
that

D?D† D
�

� D C �D

� D C �D

�

holds.

2.1.4 Operators and Forms

We begin by defining the bilinear forms associated with (1.1). For † D .� ; �/ 2 S2

and T D .�; �/ 2 S2, let

a.†; T / D
Z

�

� : C�1� dx C
Z

�

� : H�1� dx: (2.3)
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Here C�1.x/ and H�1.x/ are maps from S to S which may depend on the spatial
variable x. For † D .� ; �/ 2 S2 and v 2 V , let

b.†; v/ D �
Z

�

� : ".v/ dx: (2.4)

We recall that ".v/ D 1
2

�rv C .rv/>�
denotes the (linearized) strain tensor.

The bilinear forms induce operators

A W S2 ! S2; hA†; T i D a.†; T /;

B W S2 ! V 0; hB†; vi D b.†; v/:

Here and throughout, h � ; � i denotes the dual pairing between V and its dual V 0, or
the scalar products in S or S2, respectively.

Assumptions.

1. The domain � � Rd , d � 2 is a bounded domain with Lipschitz boundary in
the sense of [4, Chapter 1.2]. The boundary of �, denoted by � , consists of two
disjoint measurable parts �N and �D such that � D �N [ �D . While �N is a
relatively open subset, �D is a relatively closed subset of � . Furthermore �D

is assumed to have positive measure. In addition, the set � [ �N is regular in
the sense of Gröger, cf. [6]. A characterization of regular domains for the case
d 2 f2; 3g can be found in [7, Section 5]. This class of domains covers a wide
range of geometries.

We make these assumptions in order to apply the regularity results in [10]
pertaining to systems of nonlinear elasticity. The latter appear in the forward
problem and its regularizations. Additional regularity leads to a norm gap, which
is needed to prove the differentiability of the control-to-state map.

2. The yield stress Q�0 is assumed to be a positive constant. It equals
p

2=3 �0, where
�0 is the uni-axial yield stress.

3. C�1 and H�1 are elements of L1.�IL.S;S//, where L.S;S/ denotes the space
of linear operators S ! S. Both C�1.x/ and H�1.x/ are assumed to be uniformly
coercive. Standard examples are isotropic and homogeneous materials, where

C
�1� D 1

2 �
� � �

2 � .2 � C d �/
trace.� / I

with Lamé constants � and �. (These constants appear only here and there is
no risk of confusion with the plastic multiplier � or the Lagrange multiplier �.)
In this case C

�1 is coercive, provided that � > 0 and d � C 2 � > 0 hold. A
common example for the hardening modulus is given by H

�1� D �=k1 with
hardening constant k1 > 0, see [8, Section 3.4].

Assumption (3) shows that a.†; †/ � ˛ k†k2
S2 for some ˛ > 0.
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2.2 The Forward Problem and Its Regularization

In this section, we address the lower-level problem of static plasticity. The weak
formulation of (1.1) is given by

a.†; T / C b.T ; u/ C
Z

�

�D† : DT dx D 0 for all T 2 S2; (2.5a)

b.†; v/ D h`; vi for all v 2 V; (2.5b)

0 � � ? �.†/ � 0 a.e. in �; (2.5c)

and it represents an energy minimization problem subject to a feasibility constraint
for the generalized stresses. Here, � ? �.†/ represents the pointwise a.e.
complementarity condition � �.†/ D 0. It is well known that given ` 2 V 0, (2.5)
has a unique solution .†; u; �/, see, e.g., [9, Proposition 3.1] and [12, Theorem 2.2].
The components .†; u/ 2 S2 � V of the solution depend Lipschitz continuously on
` 2 V 0. For the equivalence of (2.5) with a mixed VI of first kind, we refer to [11,
Theorem 1.4] and [12, Theorem 2.2].

A standard way to derive qualified optimality conditions for the upper-level
problem is based on the differentiability of the load-to-state map ` 7! .†; u/.
However, the load-to-state operator associated with problem (2.5) is not Gâteaux-
differentiable, since the directional derivative in turn involves a complementarity
system and is thus not linear w.r.t. the direction, see [13]. What one can show is
that the load-to-state map is Bouligand-differentiable under additional smoothness
assumptions, see [2], but the nonlinearity of the directional derivative precludes the
application of the standard adjoint approach.

To remedy the lack of Fréchet differentiability, we regularize the complemen-
tarity condition of the lower-level problem. This regularization is two-fold. First,
the constraint �.†/ � 0 is replaced by a quadratic penalty term in the lower-level
objective. Second, the occurring maxf0; � g-term is locally smoothed. We require
that the smooth replacement max" of maxf0; � g satisfies the following conditions:
for all " > 0, the function max" W R ! R is of class C 1;1 and satisfies

1. max".x/ � maxf0; xg,
2. max" is monotone increasing and convex,
3. max".x/ D maxf0; xg for jxj � ".

It is easy to see that there exists a class of functions satisfying these requirements,
and we refrain from fixing a certain choice of max" here. This leaves a choice for
numerical implementations.

It is convenient to define

J�;".†/ D p�;".jD†j/D?D† where p�;".x/ D max"

�
� .1 � Q�0=x/

�
; (2.6)

which acts pointwise on functions in S2. Here, � > 0 is the penalty parameter.
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In [12, Section 2.2] we obtained the following smoothed version of the optimality
condition (2.5):

a.†�;"; T / C b.T ; u�;"/ C hJ�;".†�;"/; T i D 0 for all T 2 S2; (2.7a)

b.†�;"; v/ D h`; vi for all v 2 V: (2.7b)

Note that the expression hJ�;".†�;"/; T i is well defined for T 2 S2, since
J�;".†�;"/ 2 S2 due to p�;".jD†�;"j/ 2 L1.�/. The existence and uniqueness
of a solution can be shown by the theory of monotone operators. We obtain that for
any ` 2 V 0, (2.7) has a unique solution

G�;".`/ D .G†
�;".`/; Gu

�;".`// D .†�;"; u�;"/ 2 S2 � V: (2.8)

Moreover, †�;" and u�;" depend Lipschitz continuously on `, with a Lipschitz
constant L independent of � and ".

By using the Lp-regularity result (with p > 2) of [10], we obtain the Fréchet
differentiability of G�;". The derivative at .†�;"; u�;"/ D G�;".`/ in the direction
ı` 2 U is given by the unique solution .ı†; ıu/ of

.A C J 0
�;".†�;"// ı† C B?ıu D 0; (2.9a)

B ı† D ı`: (2.9b)

Here, J 0
�;" is the derivative of J�;".†/ given by

J 0
�;".†/ T D p0

�;".jD†j/ D† : DT

jD†j D?D† C p�;".jD†j/D?DT (2.10)

with

p0
�;".x/ D max0

"

�
� .1 � Q�0 x�1/

�
� Q�0 x�2:

Let us remark that the differentiability of the solution operator of (2.7) is a non-
trivial result. This can be appreciated when we reformulate (2.7) as the following
quasi-linear system in u, where the principal part depends nonlinearly on the
gradient of u:

B .A C J�;"/
�1.�B?u�;"/ D `:

General differentiability results for such systems can be found in [27].
Finally, we obtain the convergence of the regularization. Let us denote by

.†; u; �/ the solution of (2.5) with right hand side ` 2 V 0 and by .†�;"; u�;"/ the
solutions of the regularized problems (2.7) with right hand side `�;" for �; " > 0.
Then we obtain
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k† � †�;"k2
S2 � C

�k` � `�;"kV 0ku � u�;"kV C ��1 k`kV 0k`�;"kV 0 C "
�
;

ku � u�;"kV � C
�k` � `�;"kV 0ku � u�;"kV C ��1 k`kV 0k`�;"kV 0 C "

C k† � †�;"kS2

�
;

where C is independent of `, `�;", � and ". In particular, we find .†�;"; u�;"/ !
.†; u/ if � ! 1, " ! 0 and `�;" ! ` in V 0.

The comparison of (2.5a) and (2.7a) gives rise to the definition

��;" WD p�;".jD†�;"j/: (2.11)

From the definition of p�;", we see that 0 � ��;" � maxf�; "g holds. Finally, we
obtain the convergence ��;" ! � in L2.�/ under the same assumptions as for the
convergence of .†; u/.

Similar results are obtained in the case of quasi-static plasticity in [23, 25].

2.3 The Quasi-static Forward Problem

For convenience of the reader, we state the forward problem of quasi-static
plasticity. This problem is time-dependent but rate-independent. We denote by
H 1.0; T I X/ the standard Bochner-Sobolev space of functions which map the
interval Œ0; T 	 into the Banach space X and which possess a square-integrable weak
derivative in time.

The time-dependent load ` 2 H 1.0; T I V 0/ satisfies `.0/ D 0. The associated
states .†; u/ 2 H 1.0; T I S2 � V / also satisfy homogeneous initial conditions
.†.0/; u.0// D 0. In the case of a pre-loaded workpiece, non-zero initial conditions
apply. Together with the plastic multiplier � 2 L2.0; T I L2.�//, the system

A P† C B? Pu C �D?D† D 0 in L2.0; T I S2/; (2.12a)

B† D ` in L2.0; T I V 0/; (2.12b)

0 � � ? �.†/ � 0 a.e. in .0; T / � �: (2.12c)

constitutes the forward problem. The existence and uniqueness of solutions can be
found in [8, Sec. 8], regularity of the plastic multiplier was proved in [11], and
continuity results are given in [5, 24].
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2.4 An Optimal Control Problem

As was mentioned before, the volume and boundary forces f and g act as control
variables. They induce in the forward system (2.5) the load ` D R.f ; g/ defined by

h`; vi D hR.f ; g/; vi WD �
Z

�

f � v dx �
Z

�N

g � v ds; v 2 V (2.13)

for .f ; g/ 2 U . The optimal control, or upper-level problem under consideration
reads

Minimize
1

2
ku � ud k2

L2.�IRd /
C 
1

2
kf k2

L2.�IRd /
C 
2

2
kgk2

L2.�N IRd /

where .†; u; �/ solves the static plasticity problem (2.5)

with right-hand side ` D R.f ; g/:

9
>>>=

>>>;

(P)

The desired displacement ud is an element of L2.�IRd /. Moreover, 
1 and 
2

are positive constants. The objective expresses the goal of reaching as closely as
possible a desired deformation ud . In the interest of not further complicating the
presentation, control constraints are not considered but they could be easily included
with obvious modifications.

The optimal control problem in the quasi-static case reads

Minimize
1

2
ku.T / � ud k2

L2.�IRd /
C 


2
kgk2

H 1.0;T IL2.�N IRd //

where .†; u; �/ solves the quasi-static problem (2.12)

with right-hand side `.t/ D R.0; g.t//

and g.0/ D g.T / D 0:

9
>>>>>>=

>>>>>>;

(Pq)

Note that volume forces are not present. The control constraints on g refer to an
unloaded initial and terminal state. We mention that optimal control problems with
more general objectives and additional control constraints are considered in [24].

Existence of solutions for problem (P) was proved in [9, Proposition 3.6] by
using the compactness of R W U ! V 0. The existence result in the quasi-static
variant is a little bit more involved, since the pointwise application of R considered
as a mapping H 1.0; T I U / ! H 1.0; T I V 0/ is not compact. However, one can
show that the solution mapping is weakly continuous, which yields the existence
of solutions, see [24, Theorem 2.9].

Additionally, one can show that local solutions of (P) can be approximated by
solutions of the regularized versions of (P), where (2.5) is replaced by (2.7). For the
precise formulation of this approximation result, consult [12, Section 3.2]. Similar
results in the case of quasi-static plasticity are obtained in [25, Section 4], see
also [23].
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3 Optimality Conditions

As was mentioned in the introduction, minimizers of MPCCs often do not fulfill
the KKT conditions, and thus alternative stationarity concepts must be devised,
along with tailored constraint qualifications. Briefly speaking, one disposes of the
Lagrange multiplier pertaining to the complementarity conditions. One also rede-
fines those multipliers belonging to the inequalities involved in the complementarity
relation. In our setting, the latter comprise the multiplier � (associated with the non-
negativity of the plastic multiplier � � 0) and � (associated with the yield condition
�.†/ � 0). Existing stationarity concepts differ in what conditions are imposed for
� and � .

Our first result provides an optimality system of C-stationary type. It is charac-
teristic for this class that a sign is known only for the product � �, in the sense that
� � � 0 holds a.e. in �.

A† C �D?D† C B?u D 0; (3.1a)

B† D R.f ; g/; (3.1b)

0 � � ? �.†/ � 0; (3.1c)

A‡ C �D?D‡ C � D?D† C B?w D 0; (3.2a)

B‡ D �.u � ud /; (3.2b)

.
1 f ; 
2 g/ � R?w D 0; (3.3)

D† : D‡ � � D 0; (3.4a)

� � D 0; (3.4b)

� �.†/ D 0; (3.4c)

� � � 0: (3.4d)

The following result was proved in [12, Theorem 3.16] by means of a family
of regularized optimal control problems, wherein the lower-level static plasticity
problems are replaced by their approximations (2.7), and passage to the limit.

Theorem 3.1. Let .f ; g/ be a local optimal solution of (P). Let .†; u/ and �

denote the associated stresses, displacements, and plastic multiplier. Then there
exist adjoint stresses and displacements .‡ ; w/ 2 S2 � V and Lagrange multipliers
�; � 2 L2.�/ such that the C-stationarity system (3.1)–(3.4) is satisfied.
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C-stationarity was also obtained in the quasi-static setting for a semi-discretized
in time problem, see [26, Section 2]. In passing to the limit in the time discretization
parameter, the sign condition corresponding to � � � 0 is lost. What remains is
weak stationarity, see [26, Section 3].

A stronger stationarity concept than C-stationarity is strong stationarity, which
asks for � � 0 and � � 0 on the so-called biactive set, defined by B WD fx 2
� W �.†.x// D �.x/ D 0g. Results for various MPCC control problems in the
literature which imply the strong stationarity of local minimizers have in common
that the control functions must be sufficiently rich. A long-standing open question
whether or not control constraints impede strong stationarity was recently resolved
in [28]. Nevertheless, it still stands as a conjecture that the controls need to be
distributed controls in the range space of the differential operators defining the
forward problem, see (2.5a)–(2.5b). In accordance with this, we proved in [13,
Theorem 4.5] a strong stationarity result for local minimizers of a modified problem
with richer controls.

Moreover, we also obtained optimality conditions from the class of B-stationarity
conditions. Rather than working with dual quantities, these conditions state that at
a local minimizer, directional derivatives of the objective are non-negative in all
directions from certain cones. By showing the weak directional differentiability
of the control-to-state map, we obtained in [13, Corollary 3.12] the non-negativity
of all directional derivatives of the reduced objective in tangential directions. It is
noteworthy that the cone of tangential directions is taken to be the closure of the
cone of feasible directions w.r.t. the weak topology. For the precise formulation of
these results, we refer to [13].

Finally, sufficient second-order optimality conditions for the static problem were
derived in [2]. For this purpose, the weak differentiability results from [13] had
to be sharpened. To be more precise, it was shown that, under mild additional
assumptions on the integrability of the hardening variable �, the control-to-state
mapping is Bouligand differentiable from W

1;p
D .�/0 to S2 � V , where p > 2. The

associated remainder term property allows to deduce sufficient conditions by means
of a second-order Taylor expansion of a particularly chosen Lagrange functional.
The obtained sufficient conditions are comparable to the ones known from finite
dimensional MPCCs, see e.g. [21]. However, one observes a substantial gap to the
necessary optimality conditions, since the sufficient conditions involve a system
which is even more rigorous compared to strong stationarity.

4 Numerical Results

Within this project, we also developed some algorithms to solve the optimal control
problems. For the quasi-static variant of the optimal control problem (Pq), we built
a solver using the finite element library FEniCS, see [17]. The results shown below
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are based on a discretization by continuous, piecewise quadratic functions for the
displacement, whereas the stresses are discretized only at the quadrature points.
The temporal derivatives were replaced by an implicit Euler scheme. We used a
globalized Newton-CG approach to compute stationary points of the discretized and
regularized problem.

In Fig. 1 we present the computed (optimal) state for a problem with 96 time
steps and 50,115 DoFs (per time step) for the displacement and 460,800 DoFs (per
time step) for the stresses. The control boundary is located in the middle of the
upper boundary, as can be seen from the red (pressure) and green (tension) arrows in
Fig. 1. The observation boundary coincides with the control boundary. The desired
final deformation is a deflection of the observation boundary by �0:1 in z-direction.
The final deformation approaches this desired deformation very well, see Fig. 2.

Fig. 1 The computed optimal state for different time steps t D i T=6, i D 1; : : : ; 6, where T is
the final time. The control is shown by red (pressure) and green (tension) arrows. The workpiece
is colored by the von Mises equivalent stress. The deformation is 20 times enlarged

Fig. 2 Final deformation, 500 times enlarged
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5 Further Results of the Project and Ongoing Work

We finally mention some further results of the project and related ongoing work in
this section. In a recent manuscript [3] we considered an optimal control problem
similar to (P), but with the static forward problem given in its primal (strain-
based) formulation. The latter involves a variational inequality of the second kind
in place of a complementarity system. Instead of the generalized stresses † and
plastic multiplier �, the plastic strain p appears as a state variable. By means
of regularization, we obtained in [3, Theorem 1.1] a certain system of first-order
necessary optimality conditions. Since a classification paralleling the notions of
B-, C- or strong stationarity for optimal control problems involving variational
inequalities of the second kind is not available in the literature, it is a priori
not clear how strong this result is. Interestingly, we were able to show that the
optimality system obtained is precisely equivalent to the C-stationarity conditions
for the optimal control problem (P), i.e., when the formulation is replaced by the
corresponding dual system (2.5).

Concerning the finite element error analysis for MPCCs in function space,
optimal control problems governed by the obstacle problem were investigated in
[18]. Quasi-optimal a priori error estimates for state and control were derived and
confirmed by numerical examples. At the moment, a posteriori error representations
based on the dual weighted residual approach are being developed in cooperation
with A. Rademacher (TU Dortmund) and W. Wollner (University of Hamburg). The
transfer of the a priori and a posteriori results to optimal control of elastoplastic
deformation processes will be the subject of future research.

In the paper [28], we considered the distributed control of the obstacle problem
subject to control constraints. As already mentioned, it was an long-standing open
problem whether local minimizers (together with suitable multipliers) satisfy the
strong stationarity conditions. We were able to prove that the answer is affirmative
if certain mild conditions on the control constraints are satisfied. Moreover, it is
possible to construct counter-examples when these conditions are violated.

Preprints and technical reports can be found at our publication page http://
www.tu-chemnitz.de/mathematik/part_dgl/publications.php and at the preprint
page of the DFG priority program SPP 1253 http://www.am.uni-erlangen.de/home/
spp1253/wiki/index.php/Preprints.
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