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Abstract We summarize our findings in the analysis of adaptive finite element
methods for the efficient discretization of control constrained optimal control
problems. We particularly focus on convergence of the adaptive method, i.e., we
show that the sequence of adaptively generated discrete solutions converges to the
true solution. We restrict the presentation to a simple model problem to highlight
the key components of the convergence proof and comment on generalizations of
the presented result.
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1 Statement of the Main Result

In this summary we analyze adaptive finite element discretizations for control
constrained optimal control problems of the form

min
.u;y/2Uad�Y

1

2
ky � ydk2

U
C ˛

2
kuk2

U

subject to y 2 Y W BŒy; v� D hu; vi v 2 Y:

(1.1)
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In order to highlight the basic ideas of our convergence analysis we focus on the
most simple model problem in the following setting. We let � � R

d be a bounded
domain that is meshed exactly by some conforming initial triangulation G0. We
consider distributed control in U D L2.�/ with a non-empty, convex, and closed
subset Uad of admissible controls. We use theL2.�/ scalar product h � ; � i and write
k � kU D k � k2I� for its induced norm. The PDE constraint is given by Poisson’s

problem in the state space Y D VH1.�/ equipped with norm k � kY D kr � k2I� and
the continuous and coercive bilinear form

BŒy; v� D hry; rvi 8y; v 2 Y:

Finally, yd 2 L2.�/ is a desired state and ˛ > 0 is some given cost parameter.
Turning to the discretization of (1.1) we denote by G the class of all conforming

refinements of G0 that can be constructed using refinement by bisection [13]. For
a given grid G 2 G we let Y.G/ � Y be a conforming finite element space of
piecewise polynomials of fixed degree q 2 N. We then consider the variational
discretization of (1.1) by Hinze [4], i.e., we solve the discretized optimal control
problem

min
.U;Y /2Uad�Y.G/

1

2
kY � ydk2

U
C ˛

2
kU k2

U

subject to Y 2 Y.G/ W BŒY; V � D hU; V i V 2 Y.G/:
(1.2)

It is well-known that (1.1) as well as (1.2) admit a unique solution pair .Ou; Oy/,
respectively . OUG; OYG/; compare with [9, 15]. Below we additionally utilize the
continuous and discrete adjoint states Op 2 Y, OPG 2 Y.G/, and consider the solution
triplets .Ou; Oy; Op/ 2 U

ad � Y � Y and . OUG; OYG; OPG/ 2 U
ad � Y.G/ � Y.G/.

We use the following adaptive algorithm for approximating the true solution
of (1.1). Starting with the initial conforming triangulation G0 of � we execute the
standard adaptive loop

SOLVE �! ESTIMATE �! MARK �! REFINE: (1.3)

In practice, a stopping test is used after ESTIMATE for terminating the iteration;
here we shall ignore it for notational convenience.

Assumption 1.1 (Properties of modules). For a given grid G 2 G the four used
modules have the following properties.

1. The output . OUG ; OYG; OPG/ WD SOLVE
�G� 2 U

ad � Y.G/ � Y.G/ is the exact
solution of (1.2).

2. The output fEG.. OUG; OYG; OPG/IE/gE2G WD ESTIMATE
�
. OUG; OYG ; OPG/IG

�
is a

reliable and locally efficient estimator for the error in the norm k � kU�Y�Y. In
Sect. 2 below we give an example of such an estimator.



Convergence of Adaptive Finite Elements for Optimal Control Problems 405

3. The output M D MARK
�fEG.. OUG; OYG; OPG/IE/gE2G; G

�
is a subset of elements

subject to refinement. We shall allow any marking strategy such that M contains
an element holding the maximal indicator, i.e.,

maxfEG.. OUG; OYG; OPG/IE/ j E 2 Gg � maxfEG.. OUG; OYG; OPG/IE/ j E 2 Mg:

All practically relevant marking strategies do have this property.
4. The output GC WD REFINE

�G; M� 2 G is a conforming refinement of G such
that all elements in M are bisected at least once, i.e., GC \ M D ;.

The main contribution of this report is the following convergence result.

Theorem 1.2 (Main result). Let .Ou; Oy; Op/ 2 U
ad � Y � Y be the true solution

of (1.1). Suppose that f OUk; OYk; OPkgk�0 � U
ad � Y � Y is any sequence of discrete

solutions generated by the adaptive iteration (1.3), where the modules have the
properties stated in Assumption 1.1. Then we have

lim
k!1 k. OUk; OYk; OPk/� .Ou; Oy; Op/kU�Y�Y D 0 and lim

k!1 EGk . OUk; OYk; OPk IGk/ D 0:

The proof of this theorem uses results and ideas from the convergence proofs of
Morin, Siebert, and Veeser in [12] and Siebert in [14]. It is a two step procedure
presented in Sects. 3 and 4. In Sect. 3 we utilize basic stability properties of the
algorithm to show that the sequence of discrete solutions converges to some triplet
.Ou1; Oy1; Op1/. The second step in Sect. 4 then relies on the steering mechanisms
of (1.3), mainly encoded in properties of ESTIMATE and MARK, to finally prove
.Ou1; Oy1; Op1/ D .Ou; Oy; Op/.

We shortly comment on an existing convergence result for constrained optimal
control problems given in [2]. It is based on some non-degeneracy assumptions
on the continuous and the discrete problems and a smallness assumption on the
maximal mesh-size of G0. Our approach does not require any of these assumptions
and it is valid for a larger class of adaptive algorithms. In addition, it can easily be
extended in several directions; compare with Sect. 5.

2 Aposteriori Error Estimation

In this section we shortly summarize our findings from [6, 7] providing a unifying
framework for the aposteriori error analysis for control constrained optimal control
problems. In what follows we shall use a.b for a � Cb with a constant C that may
depend on data of (1.1) and the shape regularity of the grids in G but not on a and
b. We shall write a ' b whenever a.b.a.
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2.1 First Order Optimality Systems

The analysis in [6] is based on the characterization of the solutions by the first order
optimality systems. We let S; S�WU ! Y be the solution operators of the state and
the adjoint equation, i.e., for any u 2 U we have

Su 2 Y W BŒSu; v� D hu; vi 8 v 2 Y (2.1)

and for any g 2 U we have

S�g 2 Y W BŒv; S�g� D hg; vi 8 v 2 Y: (2.2)

We denote by …WU ! U
ad the nonlinear projection operator such that ….p/ is the

best approximation of � 1
˛
p in U

ad, i.e.,

….p/ 2 U
ad W h˛….p/C p; ….p/� ui � 0 8u 2 U

ad: (2.3)

Utilizing these operators, the continuous solution .Ou; Oy; Op/ 2 U
ad � Y � Y is the

unique solution of the coupled nonlinear system

Oy D S Ou; Op D S�. Oy � yd /; Ou D …. Op/: (2.4)

For G 2 Gwe next defineSG; S�
G WU ! Y.G/ to be the discrete solution operators

for (2.1) and (2.2), i.e., for any u 2 U we have

SGu 2 Y.G/ W BŒSGu; V � D hu; V i 8V 2 Y.G/; (2.5)

and for any g 2 U we have

S�
Gg 2 Y.G/ W BŒV; S�

Gg� D hg; V i 8V 2 Y.G/: (2.6)

The discrete solution . OUG; OYG ; OPG/ 2 U
ad � Y.G/ � Y.G/ is then uniquely

characterized by

OYG D SG OUG; OPG D S�
G. OYG � yd /; OUG D …. OPG/: (2.7)

Note, that this variational discretization of Hinze requires the evaluation of the
continuous projection operator… for discrete functions P 2 Y.G/.

We have kSk; kS�k; kSGk; kS�
Gk � CF ; employing coercivity of B with

constant 1 in combination with the Friedrichs inequality kvk2I� � CF krvk2I� for

v 2 VH1.�/.
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2.2 Basic Error Equivalence

The main obstacle in the aposteriori error analysis encountered for instance in [3,10]
can be explained as follows. One would like to exploit Galerkin orthogonality in the
linear state equation (2.1) and the adjoint equation (2.2). However, we observe that
triplet . OUG; OYG ; OPG/ is the Galerkin approximation to the triplet .Ou; Oy; Op/ but OYG is
not the Galerkin approximation to the solution Ou of the linear problem (2.1) since
we have Oy D S Ou but not Oy D S OUG . The same argument applies to the adjoint states.
This observation shows that we cannot directly employ Galerkin orthogonality for
single components of (2.4) and the nonlinearity in (2.3) prevents us from making use
of Galerkin orthogonality for the system (2.4). The resort to this problem is given
by the following result from [6, Theorem 2.2].

Proposition 2.1 (Basic error equivalence). If we set W D U�Y�Y we have for
Ny D S OUG and Np D S�. OYG � yd / the basic error equivalence

k. OUG ; OYG; OPG/� .Ou; Op; Oy/kW ' k. OYG; OPG/ � . Ny; Np/kY�Y:

For the problem under consideration, the constant hidden in ' depends on ˛�1.
For general B it will in addition depend on the inf-sup constant of B. Employing this
error equivalence it is sufficient to construct a reliable and efficient estimator for the
right hand side k. OYG ; OPG/� . Ny; Np/kY�Y: The functions Ny and Np are solutions to the
linear problems (2.1) and (2.2) with given source OUG and OYG � yd , respectively.
They play a similar role as the elliptic reconstruction used in the aposteriori error
analysis of parabolic problems; compare with [11].

2.3 Aposteriori Error Estimation

We realize that OYG is the Galerkin approximation to Ny and OPG the one to Np. We
therefore can directly employ (existing) estimators for the linear problems (2.1)
and (2.2) and their sum then constitutes an estimator for the optimal control
problem; compare with [6, Theorem 3.2]. For ease of presentation we focus here
on the residual estimator. If � is an interior side we denote by ŒŒry�� the flux of the
normal derivative @Eny across � . For any subset G0 � G we set �.G0/ WD S

E2G0 E

and for given E 2 G we denote by NG.E/ � G the subset consisting of E and its
direct neighbors. Finally, we indicate by k � kW.!/ the natural restriction of k � kW to
a subset ! � �. We then have the following result.

Theorem 2.2 (Aposteriori error control). For E 2 G we define the indicator

E2G.. OUG; OYG; OPG/IE/ WD hE
2k� OYG C OUGk22IE C hEkŒŒr OYG ��k22I@E\�

C hE
2k� OPG C . OYG � yd /k22IE C hEkŒŒr OPG ��k22I@E\�:
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Then we have the global upper bound

k. OUG; OYG; OPG/ � .Ou; Op; Oy/k2
W
.E2G.. OUG; OYG; OPG/IG/ WD

X

E2G
E2G.. OUG; OYG; OPG/IE/:

For any E 2 G we have the local lower bound

E2G.. OUG; OYG; OPG/IE/
.k. OUG ; OYG; OPG/� .Ou; Op; Oy/k2

W.�.NG.E/// C osc2G. OUG; yd ING.E//;

where

osc2G. OUG; yd IE/ WD hE
2
�k OUG � PG OUGk22I�.NG.E// C kyd � PGydk22I�.NG .E//

�

is the typical oscillation term with the L2-projection PG onto the set of discontinu-
ous, piecewise polynomials of degree q over G.

2.4 Bounds for the Residuals

We shortly comment on the derivation of the estimators for the linear problems
and thereby recording an important intermediate estimate. For given u 2 U we set
y D Su and let Y D SGu be its Galerkin-approximation in Y.G/. Defining the
residual of the state equation (2.1) by

hR.SGuI u/; vi D hR.Y I u/; vi WD BŒY; v� � hu; vi D BŒY � y; v� 8v 2 Y;

we find kR.Y I u/kY� ' kY � ykY D k.SG � S/ukY.
Employing Galerkin-orthogonality hR.Y I u/; V i D 0 for all V 2 Y.G/ and

using piecewise integration by parts we deduce for any v 2 Y and V 2 V.G/ the
bound

jhR.Y I u/; vij �
X

E2G
k�Y C uk2IEkv � V k2IE C 1

2
kŒŒrY ��k2I@E\�kv � V k2I@E:

Using for v 2 Y the Scott-Zhang interpolant V 2 Y.G/ one obtains from
interpolation estimates in H1 by standard arguments the upper bound

kY � ykY ' kR.Y I u/kY�.
� X

E2G
hE

2k�Y C uk22IE C hEkŒŒrY ��k22I@E\�
�1=2

:
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If v is smooth, i.e., v 2 H2.�/ \ Y, we may employ interpolation estimates in H2

to obtain the improved bound

jhR.Y I u/; vij.
� X

E2G
hE

2
�
hE

2k�Y C uk22IE C hEkŒŒrY ��k22I@E\�
��1=2jvjH2.�/:

(2.8)

Similar arguments apply to the adjoint problem. For given g 2 U we set p D S�g
and let P D S�

Gg be its Galerkin-approximation in Y.G/. For the residual of (2.2),
defined by

hR�.S�

GgIg/; vi D hR�.P Ig/; vi WD BŒv; P �� hg; vi D BŒv; P � p� 8v 2 Y;

we have

jhR�.P Ig/; vij.
� X

E2G
hE

2s
�
hE

2k�P C gk22IE C hEkŒŒrP ��k22I@E\�
��1=2

jvjHsC1.�/

(2.9)

for any v 2 HsC1.�/ \ Y, s D 0; 1. With s D 0 we may deduce the upper bound
for k.S�

G � S�/gkY D kP � pkY ' kR�.P Ig/kY� The choice s D 1 yields the
improved estimate for the adjoint problem. Equations (2.8) and (2.9) will become
important in Sect. 4 to access local density of adaptively generated finite element
spaces; compare also with [14, Remark 3.4].

3 Convergence 1: Trusting Stability

In this section we start with the convergence analysis, where we first focus on
stability properties of the algorithm that do not depend on the particular decisions
taken in MARK. Hereafter, fGk; . OUk; OYk; OPk/gk�0 is the sequence of grids and
discrete solutions generated by (1.3). For ease of notation we use for k � 0 the
short hands Yk D Y.Gk/, OUk D OUGk , Sk D SGk etc.

3.1 A First Limit

Using piecewise polynomials in combination with refinement by bisection leads to
nested spaces, i.e., Yk � YkC1. This allows us to define the limiting space

Y1 D
[

k�0
Yk

k � kY
;
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which is exactly the space that is approximated by the adaptive iteration. It is
closed in Y and therefore a Hilbert space. Consequently, the limiting optimal control
problem

min
.u;y/2Uad�Y1

1

2
ky � ydk2

U
C ˛

2
kuk2

U

subject to y 2 Y1 W BŒy; v� D hu; vi v 2 Y1
(3.1)

admits a unique solution .Ou1; Oy1/ 2 U
ad � Y1. If S1; S�1WU ! Y1 denote the

solution operators of the state respectively the adjoint equation in Y1 the associated
first order optimality system reads

Oy1 D S1 Ou1; Op1 D S�1. Oy1 � yd /; Ou1 D …. Op1/: (3.2)

We next show that in fact (3.1) is the limiting problem of the adaptive iter-
ation (1.3) in that . OUk; OYk; OPk/ ! .Ou1; Oy1; Op1/. An important ingredient for
this proof is the following crucial property of the adaptive algorithm shown in [1,
Lemma 6.1] and [12, Lemma 4.2].

Proposition 3.1 (Convergence of solution operators). For any u; g 2 U we have
Sku ! S1u and S�

k g ! S�1g in Y as k ! 1.

We next show convergence OUk ! Ou1. In this step we have to deal with the
nonlinearity of the constrained optimal control problem.

Lemma 3.2 (Convergence of the controls). The discrete controls f OUkgk�0 con-
verge strongly to Ou1, i.e.,

lim
k!1 k OUk � Ou1kU D 0:

Proof. Since both OUk D …. OPk/ and Ou1 D …. Op1/ are feasible, i.e., OUk; Ou1 2 U
ad,

the definition of … in (2.3) yields

˛k OUk � Ou1k22I� D h˛ Ou1 C Op1; Ou1 � OUki C h˛ OUk C OPk; OUk � Ou1i
C h OPk � Op1; Ou1 � OUki

� h OPk � Op1; Ou1 � OUki
D hS�

k . Oy1 � yd / � Op1; Ou1 � OUki C h OPk � S�
k . Oy1 � yd /; Ou1 � OUki:

We next estimate the last two terms separately. For the first one we immediately
obtain from Op1 D S1. Oy1 � yd / by the Cauchy-Schwarz and Young inequalities

hS�
k . Oy1 � yd / � Op1; Ou1 � OUki D h.S�

k � S�1/. Oy1 � yd /; Ou1 � OUki

� ˛

2
kOu1 � OUkk22I� C 1

2˛
k.S�

k � S�1/. Oy1 � yd /k22I�:
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We next turn to the second term. Employing the definition of the solution operators
Sk and S�

k in (2.5) and (2.6) we use OPk D S�
k .

OYk � yd / 2 Yk and Oy1 D S1 Ou1 to
obtain

h OPk � S�
k . Oy1 � yd /; Ou1 � OUki D hOu1 � OUk; S�

k .
OYk � Oy1/i

D BŒSk.Ou1 � OUk/; S�
k .

OYk � Oy1/� D h OYk � Oy1; Sk.Ou1 � OUk/i
D h OYk � Oy1; Oy1 � OYki C h OYk � Oy1; .Sk � S1/Ou1i

D �k OYk � Oy1k22I˝ C 1

2
k OYk � Oy1k22I˝ C 1

2
k.Sk � S1/Ou1k22I˝

� 1

2
k.Sk � S1/Ou1k22I˝:

Combining the estimates we have shown

˛k OUk � Ou1k22I� � 1

˛
k.S�

k � S�1/. Oy1 � yd /k22I� C k.Sk � S1/Ou1k22I� ! 0

as k ! 1 by Proposition 3.1. This finishes the proof. ut
Convergence . OUk; OYk; OPk/ ! .Ou1; Oy1; Op1/ is now a direct consequence of the

linear theory in Proposition 3.1.

Proposition 3.3 (Convergence of discrete solutions). The Galerkin approx-
imations f. OUk; OYk; OPk/gk�0 converge strongly to the solution .Ou1; Oy1; Op1/
of (3.1), i.e.,

lim
k!1 k. OUk; OYk; OPk/� .Ou1; Oy1; Op1/kU�Y�Y D 0:

Proof. We already know k OUk � Ou1kU ! 0 from Lemma 3.2. In combination with
Proposition 3.1 this yields for the discrete states

k OYk � Oy1kY D kSk OUk � S1 Ou1kY � kSk. OUk � Ou1/kY C k.Sk � S1/Ou1kY
� kSkk k OUk � Ou1kU C k.Sk � S1/Ou1kY ! 0;

since kSkk � CF . Writing OPk � Op1 D S�
k .

OYk � Oy1/C .S�
k � S1/. Oy1 � yd / we

finally deduce with the same arguments k OPk � Op1kY ! 0: ut
The convergence of the discrete solutions directly yields a uniform bound on

the estimators. The proof follows the ideas in [14, Lemma 3.3] accounting for the
situation at hand and using the following important property. Let G 2 G be given.
The finite overlap of the patches #NG.E/.1 allows us to deduce for any g 2 L2.�/
the bound
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X

E2G
kgk22I�.NG .E// D

X

E2G

X

E02NG .E/

kgk22IE0.
X

E2G
kgk22IE D kgk22I�: (3.3)

The constant solely depends on shape-regularity of G and thus on G0.
Lemma 3.4 (Uniform estimator bound). For all k � 0 we have

Ek.. OUG; OYG; OPG/IGk/.1:

Proof. A scaled trace inequality in combination with an inverse estimate yields for
the error indicators related to the state equation

hE
2k� OYk C OUkk22IE C hEkŒŒr OYk��k22I@Ek\�.kr OYkk22I�.NG.E// C k OUkk22IE:

This in turn implies by (3.3)

X

E2Gk
hE

2k� OYk C OUkk22IE C hEkŒŒr OYk��k22I@E\�.kr OYkk22I� C k OUkk22I�.1;

since f OUk; OYkgk�0 is bounded in L2.�/ � VH1.�/. Similar arguments apply to the
estimator contribution related to the adjoint problem. ut

3.2 A Second Limit

We next turn to the limit of the piecewise constant mesh-size function hk W� ! R

of Gk defined by hk jE D jEj1=d , E 2 G. The behavior of the mesh-size function is
directly related to the decomposition

GC
k WD

\

`�k
G` D fE 2 Gk j E 2 G` 8` � kg; and G0k WD Gk n GC

k :

The set GC
k contains all elements that are not refined after iteration k and we

observe that the sequence fGC
k gk�0 is nested, i.e., GC

` � GC
k for all k � `. The

set G0k contains all elements that are refined at least once more after iteration k; in
particular, Mk � G0k . Decomposing N� D �C

k [ �0
k WD �.GC

k / [ �.G0k/ we have
the following connection to the behavior of the mesh-size function shown in [12,
Lemma 4.3 and Corollary 4.1].

Lemma 3.5 (Convergence of the mesh-size functions). The mesh-size functions
hk converge uniformly to 0 in �0

k in the following sense

lim
k!1 khk �0kk1I� D lim

k!1 khkk1I�0k D 0;

where �0k 2 L1.�/ the characteristic function of �0
k .
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Combining convergence of the discrete solutions with the convergence of the
mesh-size functions we see that the adaptive algorithm can monitor progress in the
following sense.

Lemma 3.6 (Indicators of marked elements). All indicators of marked elements
vanish in the limit, this is,

lim
k!1 maxfEG.. OUG; OYG; OPG/IE/ j E 2 Mkg D 0:

Proof. For k � 0 pick up Ek 2 arg maxfEG.. OUG; OYG; OPG/IE/ j E 2 Mkg ¤ ;:
We follow [14, Lemma 3.4] and show Ek.. OUk; OYk; OPk/IEk/ ! 0:

Arguing as in the proof to Lemma 3.4 we find for the indicator contribution of
the state equation

hEk� OYk C OUkk2IEk C hE
1=2kŒŒr OYk��k2I@Ek\�.kr OYkk2I�.Nk.Ek// C k OUkk2IEk

� kr Oy1k2I�.Nk.Ek// C kOu1k2IEk C kr. OYk � Oy1/k2I� C k OUk � Ou1k2I� ! 0

as k ! 1 for the following reasons: By Assumption 1.1 (4) all elements in Mk are
refined, which implies Ek 2 G0k . Local quasi-uniformity of Gk in combination with
Lemma 3.5 therefore yields j�.Nk.Ek//j.jEkj � khkkd1I�0k

! 0. Consequently,

the first two terms of the right hand side vanish by continuity of k � k2I� with respect
to the Lebesgue measure. The last two terms converge to 0 by Proposition 3.3. The
same arguments apply to the indicator contribution of the adjoint equation, which in
summary yields EG.. OUk; OYk; OPk/IEk/ ! 0 as k ! 1. ut

4 Convergence 2: Making the Right Decisions

In this section we verify the main result by showing . OUk; OYk; OPk/ ! .Ou; Oy; Op/
and Ek. OUk; OYk; OPk IGk/ ! 0: Error convergence requires appropriate decisions in
the adaptive iteration, which we have summarized in Assumption 1.1. Estimator
convergence is then a consequence of local efficiency as stated in Theorem 2.2.

4.1 Convergence of the Indicators

We first show that the maximal indicator of all elements vanishes in the limit.

Lemma 4.1 (Convergence of the indicators). The maximal indicator vanishes in
the limit, this is,

lim
k!1 maxfEG.. OUG; OYG; OPG/IE/ j E 2 Gkg D 0:
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Proof. Combining the assumption on marking in Assumption 1.1 (3) with the
behavior of the indicators on marked elements, which we have analyzed in
Lemma 3.6, we find

maxfEG.. OUk; OYk; OPk/IE/ j E 2 Gkg
� maxfEG.. OUk; OYk; OPk/IE/ j E 2 Mkg ! 0

as k ! 1. ut

4.2 Convergence of the Residuals

We next show that residuals of state and adjoint equation in the limiting first
order optimality system (3.2) vanish. The proof adapts the techniques from [14,
Proposition 3.1] to the situation at hand.

Proposition 4.2 (Convergence of the residual). For the residuals R of (2.1) and
R� of (2.2) we have

R. Oy1I Ou1/ D R�. Op1I Oy1 � yd / D 0 in Y
� D H�1.�/:

Particularly, Oy1 D S Ou1 and Op1 D S�. Oy1 � yd /.
Proof. We prove the claim for R. The assertion for R� follows along the same
lines. Using a density argument we only have to show hR. Oy1I Ou1/; vi D 0 for all
v 2 H2.�/ \ VH1.�/.

Suppose any pair k � `. Then we have the inclusion GC
` � GC

k � Gk and the
sub-triangulation Gk n GC

` of Gk covers the sub-domain �0
` D �.G0` /, i.e., we can

write �0
` D �.Gk n GC

` /. Moreover, khkk1I�`C.1 and khkk1I�0` � kh`k1I�0` :
Pick up any v 2 H2.�/\ VH1.�/with jvjH2.�/ D 1. We next utilize the improved

bound (2.8) for R, decompose Gk D GC
` [.GknGC

` /, and recall Lemma 3.4 to bound

hR. OYk I OUk/; vi2.
X

E2GC

`

hE
2
�
hE

2k� OYk C OUkk22IE C hEkŒŒr OYk��k22I@E\�
�

C
X

E2GknGC

`

hE
2
�
hE

2k� OYk C OUkk22IE C hEkŒŒr OYk��k22I@E\�
�

.E2k.. OUk; OYk; OPk/IGC
` /C kh`k21I�0`E

2
k ..

OUk; OYk; OPk/IGk n GC
` /

.E2k.. OUk; OYk; OPk/IGC
` /C kh`k21I�0`

Š� 2"
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for any " > 0. This can be seen as follows: By Lemma 3.5 we may first choose
` large such that kh`k21I�0`

� ": After fixing ` the “point-wise” convergence of

the indicators in Lemma 4.1 allows us then to choose a suitable k � ` with
E2k.. OUk; OYk; OPk/IGC

` / � ": This yields for any fixed v 2 H2.�/\ VH1.�/

hR. Oy1I Ou1/; vi D lim
k!1 hR. OYkI OUk/; vi D 0;

observing that R is continuous with respect to its arguments and recalling the
convergence . OUk; OYk/ ! .Ou1; Oy1/ shown in Proposition 3.3. Since v is arbitrary we
have shown R. Oy1I Ou1/ D 0 in Y

�. This in turn implies Oy1 D S Ou1 and finishes
the proof. ut

4.3 Convergence of Error and Estimator

We are now in the position to prove the main result, where we again use the
abbreviation W D U � Y � Y.

Proof of Theorem 1.2. Combining Propositions 2.1, 3.3, and 4.2 we obtain

lim
k!1 k. OUk; OYk; OPk/� .Ou; Op; Oy/kW ' lim

k!1 k. OYk; OPk/� .S OUk; S�. OYk � yd //kY�Y

D k. Oy1; Op1/ � .S Ou1; S�. Oy1 � yd /kY�Y D 0:

This shows convergence of the error.
To show convergence of the estimator we decompose for k � ` as in the proof to

Proposition 4.2

E2k.. OUk; OYk; OPk/IGk/ D E2k.. OUk; OYk; OPk/IGC
` /C E2k .. OUk; OYk; OPk/IGk n GC

` /:

We first bound the second term on the right hand side. The local lower bound of
Theorem 2.2 in combination with the finite overlap of the patches Nk.E/ allows us
to bound

E2k.. OUk; OYk; OPk/IGk n GC
` /

.k. OUk; OYk; OPk/ � .Ou; Op; Oy/k2
W

C
X

E2GknGC

`

osc2k. OUk; yd IE/

.k. OUk; OYk; OPk/ � .Ou; Op; Oy/k2
W

C kh`k21I�0`
�k OUkk22I� C kydk22I�

�
;
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using (3.3) and the rough estimate

osc2k. OUk; yd IE/ D h2E
�k OUk � PGk OUkk22I�.NG.E// C kyd � PGk ydk22I�.NG .E//

�

� kh`k21I�0`
�k OUkk22I�.Nk.E//

C kydk22I�.Nk.E//

�
:

Since k OUkk22I˝ C kydk22I˝.1 we find

E2k.. OUk; OYk; OPk/IGk/.E2k.. OUk; OYk; OPk/IGC
` /

C k. OUk; OYk; OPk/ � .Ou; Op; Oy/k2
W

C kh`k21I�0` :

By Lemma 3.5 the last term kh`k21I�0`
can be made small by choosing ` large.

After fixing ` we may choose as in the proof to Proposition 4.2 k � ` such that
E2k.. OUk; OYk; OPk/IGC

` / is small. Moreover, the error convergence established above
implies that the middle term k. OUk; OYk; OPk/� .Ou; Op; Oy/k2

W
is small too, if we possibly

increase k further. In summary, for any " > 0 we find a k such that

Ek.. OUk; OYk; OPk/IGk/ � ":

This yields Ek.. OUk; OYk; OPk/IGk/ ! 0 as k ! 1 and finishes the proof. ut

5 Extensions and Outlook

The presented theory has been extended into several directions in the PhD thesis of
the first author [5].

5.1 General Linear-Quadratic Optimal Control Problem

The abstract framework can be found in [6, §2.1] and may be summarized as
follows. We can allow for continuous, non-coercive bilinear forms BWY � Y ! R

that satisfy an inf-sup condition. This setting includes saddle point problems like
the Stokes system and other mixed formulations. More general objectives  .y/ can
replace the simple tracking type functional ky � ydk22I�. The functional  has to
be quadratic and strictly convex. Its Fréchet-derivative 0 has to satisfy a Lipschitz-
condition. We may also consider any type of control space such that Y ,! U ,! Y

�
is a Gelfand triple. This then covers more general cases of distributed control as well
as Neumann-boundary control.

Admitting a general class of PDE constraints requires appropriate assumptions
on the estimators for the linear problems (2.1) and (2.2). Quite weak assumption
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are summarized in [14, §2.2.3] comprising other estimators like the hierarchical
estimator, an estimator based on local problems on stars, an equilibrated residual
estimator, and the ZZ-estimator; compare for instance with [8] for a detailed
description of the diverse estimators. We may also weaken the assumption on
marking to include marking strategies that adaptively focus on specific estimator
contributions, like the indicators for the error in the state or adjoint equation.
Such strategies are used in a comparison of adaptive strategies for optimal control
problems in [6, §6]. We refer to [14, §2.2.4 and §5] for a sufficient and necessary
assumption on marking.

Most of the changes in the presented analysis are then concentrated in the proof
to Lemma 3.2. This proof gets inevitably more involved due to the general structure
of  , where one has to appropriately use convexity of  . All other statements can
be proven using similar arguments with minor adjustments.

5.2 Discretized Control

Up to now we have concentrated on the variational discretization of Hinze [4]. Here,
the precise structure of the set of admissible controls U

ad is not of importance.
The actual computation of a discrete solution yet requires the exact computation
of ….P/ for a discrete function P 2 Y.G/. This typically gives restrictions on U

ad,
like box-constraints with piecewise constant obstacles.

Very often the control space U is discretized by a conforming finite element space
U.G/. Upon setting U

ad.G/ WD U
ad \ U.G/ and assuming that Uad.G/ is non-empty

we can define a discrete projection operator…G WU ! U
ad.G/ for p 2 U by

…G.p/ 2 U
ad.G/ W h˛…G.p/C p; …G.p/� U i � 0 8U 2 U

ad.G/:

An efficient computation of …G benefits from a simple structure of U
ad and a

suitable discrete control space U.G/.
We can still consider the general setting of the previous paragraph. However, the

analysis of adaptive finite elements for discretized controls gets painstakingly more
laborious at several instances that we shortly list.

1. The right hand side in the basic error equivalence in Proposition 2.1 has to be
extended by the term k OUG �…. OUG/kU resulting in

k. OUG ; OYG; OPG/�.Ou; Op; Oy/kW ' k. OUG ; OYG; OPG/�.…. OPG/; S. OUG/; S� 0. OYG//kWI

compare with [6, Theorem 2.2]
2. As a consequence, the element indicators of the estimator in Theorem 2.2 have

to be enriched by a term k OUG �…. OPG/k2U.E/ D k…G. OPG/�…. OPG/k2U.E/ to grant
reliability of the estimator [6, Theorem 3.2]. Frequently this term is estimated
further in order to completely avoid the computation of the continuous projection
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operator …. OPG/ [3, 10]. This typically results in a non-efficient estimator;
compare with [6, Remark 6.1].

3. Nesting of spaces Yk � YkC1 is essential to verify with current techniques the
point-wise convergence of the discrete solution operators in Proposition 3.1, i.e.,
Sk ! S1 and S�

k ! S�1 as k ! 1.
Likewise, nesting U

ad
k � U

ad
kC1 of the sets of discrete admissible controls

is instrumental for proving …k. OPk/ ! Ou1 D …1. Op1/ in Lemma 3.2. This
nesting poses restrictions on data describing the set of admissible controls Uad.
Typically, such data has to be discrete over G0. In the proof to Lemma 3.2 we
additionally have to account for the typical situation Ou1 62 U

ad
k . This increases

substantially the complexity of the proof.
4. The finite element spaces fYkgk�0 are “locally dense” in the subset “�01 WD

limk!1�0
k” of � in that minV 2Yk kv � V k

Y.�0k/
! 0 as k ! 1; compare

with [14, Remark 3.4]. Philosophically speaking, the improved bounds (2.8)
and (2.9) for the residuals allow us to access this local density for showing that
the residuals R. Oy1I Ou1/; R�. Op1I 0. Oy1// 2 Y

� are not supported in �01.
The additional contribution for the control error requires to establish the

convergence

lim
k!1 k OUk �…. OPk/kU.�0k/ D lim

k!1 k…k. OPk/ �…. OPk/kU.�0k/ ! 0: (5.1)

For U D L2 and piece-wise constant box-constraints in combination with a
discontinuous or a continuous, piecewise linear control discretization one can
verify (5.1) employing local density of fUkgk�0 and point-wise properties of …;
compare with [5, §8.4.2 and §8.4.3]. A characterization of properties of … and
U.G/ that ensure (5.1) is a challenging question and topic of future research.

5. The proof of the estimator convergence in Theorem 1.2 strongly relies on local
efficiency of the indicators as stated in Theorem 2.2. For discretized control
this requires k OUG � …. OPG/kU.E/ to be locally efficient, which can be shown
if … and …G are locally Lipschitz continuous with uniformly bounded Lipschitz
constants. This is typically true in case of distributed control.

In case of Neumann boundary control Lipschitz continuity of … and …G
involves the trace operator T W H1.�/ ! L2.@�/. We may therefore show
global efficiency for k OUG � …. OPG/kL2.@�/ using the trace inequality on �.
An estimate of k OUG � …. OPG/kL2.@E\@�/ needs a local trace inequality on E .
The typical scaling arguments yield negative powers of the local mesh-size and
thereby ruling out local efficiency. As a consequence, we still can verify the error
convergence of Theorem 1.2 but a proof of estimator convergence may require
new techniques in that case.
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