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Abstract The present paper intends to summarize the main results of Harbrecht and
Tausch (Inverse Probl 27:065013, 2011; SIAM J Sci Comput 35:A104–A121, 2013)
on the numerical solution of shape optimization problems for the heat equation.
This is carried out by means of a specific problem, namely the reconstruction of a
heat source which is located inside the computational domain under consideration
from measurements of the heat flux through the boundary. We arrive at a shape
optimization problem by tracking the mismatch of the heat flux at the boundary. For
this shape functional, the Hadamard representation of the shape gradient is derived
by use of the adjoint method. The state and its adjoint equation are expressed as
parabolic boundary integral equations and solved using a Nyström discretization and
a space-time fast multipole method for the rapid evaluation of thermal potentials.
To demonstrate the similarities to shape optimization problems for elliptic state
equations, we consider also the related stationary shape optimization problem
which involves the Poisson equation. Numerical results are given to illustrate the
theoretical findings.
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1 Introduction

Shape optimization is a well established mathematical and computational tool in
case of an elliptic state equation, see, e.g., [2,13,14,19,25,26,28,29,32,35] and the
references therein. In contrast, the literature on shape optimization is rather limited
for a parabolic state equation. Theoretical results for the latter case can be found, for
instance, in [4, 20, 23, 31] and the references therein. However, the development of
efficient numerical methods for shape optimization problems with a parabolic state
equation is still in its beginning stages, especially for three-dimensional geometries.

With the goal to develop such efficient methods, we considered in [17,18] shape
identification problems for the heat equation. Specifically, besides the computation
of the Hadamard representation of the shape gradients, we applied boundary integral
equations to provide that data from the state and its adjoint which enter the shape
functional and shape gradient. These boundary integral equations have been solved
by multipole-based space-time boundary element methods which cluster sources in
space and time have become available recently [33, 34]. That way, we were able to
reconstruct unknown shapes in three dimensions on a laptop in less than half an hour
computation time even though up to 1,200 design parameters and about 120,000
boundary elements have been used for the discretization of the shape optimization
problem.

If one takes a closer look at [17,18], it turns out that for a parabolic state equation
both, the shape calculus and the formulation by boundary integral equations, are
in principle rather similar to the case of an elliptic state equation. Besides being
numerically more challenging, the main difference is that in the parabolic case
singularities appear since the initial data do not generally fit the given boundary
data, especially in the adjoint state equation. The similarities stem from the fact that
the sought shape has not been allowed to change in time. Future research should
thus go into the direction of shape optimization problems where the shape varies in
time.

The present paper intends to summarize the main results of [17, 18] by focusing
on a specific shape reconstruction problem with parabolic state equation. The goal is
to reconstruct the shape of a heat source inside a given domain from the knowledge
of the temperature and the heat flux at the boundary of the domain. Practical
applications of the problem under consideration arise from the detection of any
kind of heat source like e.g. fire or radioactive decay in non-accessible areas. We
provide the ingredients (shape gradient, discretization of the shape, discretization
of the state equation and its adjoint) for an efficient shape reconstruction algorithm
and compare them with the ingredients for the related stationary problem which is
obtained by letting time tend to infinity.

The paper is organized as follows. In Sect. 2, the problems under consideration
are formulated. The Hadamard representation of the shape gradients is derived
in Sect. 3. The following section describes the discretization of the shape. The
computation of the state and the adjoint state by boundary integral equations is
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proposed in Sect. 5. Finally, in Sect. 6, we compare the reconstruction of shapes
in case of the elliptic state equation with the reconstruction of shapes in case of the
parabolic state equation.

2 Problem Formulation

The shape identification problem under consideration is as follows. Let D be a
domain contained in a domain � � R

n, n D 2; 3, and consider the initial boundary
value problem

@t u � �u D �D in � � .0; T / (2.1)

with boundary condition

u D 0 on † � .0; T / (2.2)

and initial condition

u D 0 on � � f0g: (2.3)

Here, † D @� denotes the boundary of the domain �, whereas we will denote the
boundary of D by � WD @D, see also Fig. 1. Throughout the paper, we assume that
the boundaries † and � are respectively Lipschitz-continuous and C 2-smooth.

The goal is to reconstruct the discontinuous source D from measurements of the
Neumann data @u=@n at the boundary †. More precisely, we will minimize the least
square functional

J.D/ D 1

2

Z T

0

Z
†

�
@u

@n
� h

�2

d� dt ! inf : (2.4)

Fig. 1 The domain � with
boundary † and the source D

with boundary �

ΣΓ

Ω

D
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This problem has firstly been considered by Hettlich and Rundell in [22] and
is known to be severely ill-posed. Since we track the Neumann data over the
whole boundary †, uniqueness of the solution D immediately follows from [24],
where the steady state case has been considered, governed by the Eq. (2.5) below.
Nevertheless, uniqueness can be proven under much milder assumptions, see [22]
and the references therein.

For comparison reasons, we shall also consider the steady state case which is
obtained for T ! 1. Then, the state equation (2.1) simplifies to the Poisson
equation

� �u D �D in �; (2.5)

while the initial condition (2.3) disappears and the boundary condition (2.2)
becomes

u D 0 on †: (2.6)

The analogue of the shape functional (2.4) reads now as

J.D/ D 1

2

Z
†

�
@u

@n
� h

�2

d� ! inf : (2.7)

To the best of our knowledge, this problem has not been considered before in the
literature.

We will demonstrate the similarities between the shape calculus of the transient
and the steady state case, using the shape identification problems (2.4) and (2.7).
Both cost functionals (2.4) and (2.7) can be minimized by means of gradient based
iterative methods. To this end, we need to compute the Hadamard representations
of the shape gradients. They are obtained by applying the so-called adjoint method.
The shape gradients are scalar distributions on the free boundary � , involving in
general only information of the state and the associated adjoint state.

3 Computing the Shape Gradients

Shape calculus has to be used to derive the shape gradients of the shape optimization
problems under considerations. For a general overview on shape calculus, mainly
based on the perturbation of identity (Murat and Simon) or the speed method
(Sokolowski and Zolesio), we refer the reader for example to [2, 27, 28, 30, 32] and
the references therein.

The shape gradient of the cost functional (2.4) with parabolic state equa-
tions (2.1)–(2.3) is given in the following theorem which has been proven in [17].
Nevertheless, we present its proof here for the sake of completeness. In particular,
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a comparison with the proof of Theorem 3.2 reveals clearly the similarities to the
derivation of the shape gradient of the associated cost functional (2.7) with elliptic
state equation (2.5) and (2.6).

Theorem 3.1. For an arbitrary boundary perturbation field V 2 C 2.�/, the
shape gradient to the cost functional (2.4) with parabolic state equation (2.1)–(2.3)
reads as

ıJ.D/ŒV� D �
Z T

0

Z
�

hV; nip d� dt; (3.1)

where p denotes the adjoint state which satisfies the adjoint state equation

�@t p � �p D 0 in � � .0; T /;

p D @u

@n
� h on † � .0; T /;

p D 0 on � � fT g:

(3.2)

Proof. Given an arbitrary boundary perturbation field V 2 C 2.�/, the directional
derivative of the cost functional (2.4) is

ıJ.D/ŒV� D
Z T

0

Z
†

�
@u

@n
� h

�
@ıu

@n
d� dt

with ıu D ıuŒV� denoting the local shape derivative. According to [22], it satisfies
the following coupled initial boundary value problem

@t ıue � �ıue D 0 in .� n D/ � .0; T /;

@t ıui � �ıui D 0 in D � .0; T /;

ıue D 0 on † � .0; T /;

ıue D ıui ;
@ıue

@n
D @ıui

@n
C hV; ni on � � .0; T /;

ıue D 0 on .� n D/ � f0g;
ıui D 0 on D � f0g:

(3.3)

Observing (3.2) and (3.3), integration by parts leads to

0 D
Z T

0

Z
�nD

.@t ıue � �ıue/p C .@t p C �p/ıue dx dt

D
Z

�nD

Z T

0

f@t ıuep C ıue@t pg dt dx �
Z T

0

Z
�nD

f�ıuep � ıue�pg dx dt
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D
Z

�nD

˚
ıue. � ; T /p. � ; T / � ıue. � ; 0/p. � ; 0/„ ƒ‚ …

D0

�
dx

C
Z T

0

Z
†[�

�
ıue

@p

@n
� @ıue

@n
p

�
d� dt:

In view of ıue D 0 on † � .0; T /, this implies

ıJ.D/ŒV� D
Z T

0

Z
†

@ıue

@n
p d� dt D

Z T

0

Z
�

�
@ıue

@n
p � ıue

@p

@n

�
d� dt: (3.4)

In complete analogy to above, we find again by integration by parts

0 D
Z T

0

Z
D

.@t ıui � �ıui /p C .@t p C �p/ıui dx dt

D
Z T

0

Z
�

�
ıui

@p

@n
� @ıui

@n
p

�
d� dt:

Due to the jump condition of ıu at � , we thus conclude

0 D
Z T

0

Z
�

�
ıue

@p

@n
C
�

hV; ni � @ıue

@n

�
p

�
d� dt;

cf. (3.3). Inserting this equation into (3.4) yields finally (3.1). ut
In case of the shape optimization problem (2.7) with elliptic state equation (2.5)

and (2.6), we obtain the following shape gradient. Here, the underlying operator of
the elliptic state equation is self adjoint. Thus, the adjoint state equation involves the
same operator as the primal state equation.

Theorem 3.2. For an arbitrary boundary perturbation field V 2 C 2.�/, the shape
gradient to the cost functional (2.7) with elliptic state equation (2.5) and (2.6) reads
as

ıJ.D/ŒV� D �
Z

�

hV; nip d�; (3.5)

where p denotes the adjoint state which satisfies the adjoint state equation

�p D 0 in �; p D @u

@n
� h on †: (3.6)

Proof. The proof uses the same arguments as the proof of Theorem 3.1. For an
arbitrary boundary perturbation field V 2 C 2.�/, we find the directional derivative
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ıJ.D/ŒV� D
Z

†

�
@u

@n
� h

�
@ıu

@n
d�

with ıu D ıuŒV� satisfying the coupled boundary value problem (cf. [21])

�ıue D 0 in � n D;

�ıui D 0 in D;

ıue D 0 on †;

ıue D ıui ;
@ıue

@n
D @ıui

@n
C hV; ni on �:

(3.7)

Integration by parts gives in view of (3.6) and (3.7)

0 D
Z

�nD

�pıue � �ıuep dx D
Z

†[�

�
ıue

@p

@n
� @ıue

@n
p

�
d�

and, since ıue D 0 on †, thus

ıJ.D/ŒV� D
Z

†

@ıue

@n
p d� D

Z
�

�
@ıue

@n
p � ıue

@p

@n

�
d�: (3.8)

Using next integration by parts on the domain D, we likewise conclude

0 D
Z

D

�pıui � �ıui p dx D
Z

�

�
ıui

@p

@n
� @ıui

@n
p

�
d�:

The jump condition of ıu at � (cf. (3.7)) implies

0 D
Z

�

�
ıue

@p

@n
C
�

hV; ni � @ıue

@n

�
p

�
d�;

which, together with (3.8), shows finally (3.5). ut
With the help of the Hadamard representations (3.1) and (3.5) of the shape

gradients, we are able to develop efficient gradient based algorithms for the
minimization of the cost functionals (2.4) and (2.7), respectively.

4 Discretization of the Free Boundary

In order to solve the shape optimization problems under consideration we seek a
stationary point D?, being C 2-smooth, which satisfies

ıJ.D?/ŒV� D 0 for all V 2 C 2.�/: (4.1)
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This is called the necessary optimality condition of the shape optimization problem
J.D/ ! inf. For related sufficient optimality conditions, we refer the reader to
[9, 13] and the references therein. Nevertheless, we emphasize that, in the current
context of severely ill-posed problems, sufficient optimality conditions cannot hold
since the adjoint state vanishes in the optimal domain D?.

4.1 Nonlinear Ritz-Galerkin Approximation for the Shape

From now on we restrict ourselves to the practically most important case of n D 3

and consider the minimization of the cost functional over heat sources that are
topologically equivalent to the unit sphere S2. Then, we can represent the heat source
D � R

3 by a parameterization � D .�1; �2; �3/ W S2 ! � , which is one-to-one,
preserves orientation, and the Jacobian matrix � 0.Ox/ is invertible for all Ox 2 O� . By
restricting the parameterization to a finite dimensional ansatz space VN , we arrive at
the nonlinear Ritz-Galerkin scheme for (4.1):

Seek �?
N 2 VN such that ıJ.�?

N /ŒVN � D 0 for all VN 2 VN : (4.2)

For the numerical solution of the nonlinear variational problem (4.2), we apply
the quasi-Newton method, updated by the inverse BFGS-rule without damping. A
second order approximation is used for performing the line search update if the
descent does not satisfy the Armijo rule. Since we use a gradient based iterative
method, regularization is not necessary provided that we stop the iteration early
enough. For all the details and a survey on available optimization algorithms, we
refer to [3, 10–12] and the references therein.

Following [17, 18], we can distinguish two types of parameterizations. The first
type is of the form

�.Ox/ D r.Ox/ � Ox; r 2 C 2.S2/ (4.3)

and is able to represent any given star-shaped source with center in 0. The
discretization of � is based on the ansatz

rN .Ox/ D
NX

nD0

nX
mD�n

am
n Y m

n .Ox/; Ox 2 S
2;

where am
n 2 R are the design parameters and Y m

n 2 C 1.S2/ denote the spherical
harmonic functions of degree n and order m. This leads to the finite dimensional
parameterization

�N .Ox/ D rN .Ox/ � Ox; Ox 2 S
2: (4.4)
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The advantage of this approach is that the identification of the function rN , given by
the design parameters, and the heat source is one-to-one. In particular, the distance
between two domains can be simply measured via the `2-norm of the difference of
the associated design parameters. This approach is used in our numerical example.

The second type, also referred to as flexible shape representation, allows a
more general boundary representation than the somehow restrictive approach (4.3).
Namely, we choose

�N .Ox/ D
NX

nD0

nX
mD�n

am
n Y m

n .Ox/; Ox 2 S
2; (4.5)

where ai 2 R
3 are vector valued design parameters. The ansatz (4.5) does not

impose any restriction to the topology of the domain except for its genus. However,
we lose the one-to-one correspondence between the shape of the heat source and the
design parameters. Thus, a regularization of the shape function (see e.g. [13,15,17])
or a suitable remeshing algorithm (see e.g. [18]) needs to be applied.

4.2 Surface Mesh Generation

We shall assume that the boundary manifold � � R
3 is given as a parametric

surface consisting of smooth patches. More precisely, let � WD Œ0; 1�2 denote the
unit square. The manifold � is partitioned into a finite number of patches

� D
M[

iD1

�i ; �i D �i .�/; i D 1; 2; : : : ; M; (4.6)

where each �i W � ! �i defines a diffeomorphism of � onto �i . The intersection
�i \ �i 0 , i 6D i 0, of two patches �i and �i 0 is assumed to be either ;, or a common
edge, or a common vertex. A mesh of the boundary � is then obtained by mapping
a mesh of � to � via a parametrization.

The construction of the parametric representation of the moving boundary �

should be presented in more detail. The surface of the cube Œ�0:5; 0:5�3 consists
of six patches. Each point x 2 @.Œ�0:5; 0:5�3/ can be lifted onto the boundary � via
the operation

y.x/ D �

�
x

kxk
�

2 �: (4.7)

In this manner, the boundary � is subdivided into M D 6 patches. The parametric
representations �i W � ! �i can be derived easily from (4.7). Finally, we construct
a mesh of � , required for the boundary element method, by mapping a triangular
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γ−→

Fig. 2 Parametric representation of � with triangular mesh on level 4

or quadrangular mesh of the unit cube via the sphere to � . We refer to Fig. 2 for an
illustration of the proposed parametric representation and mesh generation.

We shall finally specify how to distinguish between “nice” and “bad”
parametrizations. A “nice” parametrization maps orthonormal tangents of the unit
cube onto orthogonal tangents of length � j�j=6 with respect to the boundary � .
This means that the first fundamental tensor of differential geometry, given by

Si .s/ D �h�i;j .s/; �i;k.s/i�
j;kD1;2

; s D Œs1; s2�T 2 �;

satisfies Si � j�j=6 � I. Hence, one can employ the shape functional

M.�/ D
6X

iD1

Z
�

					
"

h�i;1.s/; �i;1.s/i � j�j
6

h�i;1.s/; �i;2.s/i
h�i;2.s/; �i;1.s/i h�i;2.s/; �i;2.s/i � j�j

6

#					
2

F

ds

for regularizing the shape functional or as the base of a remeshing procedure.

5 Numerical Method to Compute the State and Its Adjoint

We shall discuss the numerical solution of the state equations and their adjoints by
boundary element methods. With this technique only the boundaries of � an D

need to be discretized, which avoids the complicated triangulation of the domain �

with the varying source D. In particular, in case of the parabolic state equation, we
immediately arrive at a space-time formulation. This is very advantageous since the
solution’s complete temporal history which enters the adjoint state, being reverse in
time, is available.
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5.1 Solving the Heat Equation

The thermal layer operators are given by

.Vg/.x; t/ D
Z t

0

Z
†

G.kx � yk; t � 	/g.y; 	/ d�y d	;

.Kg/.x; t/ D
Z t

0

Z
†

@G

@ny
.kx � yk; t � 	/g.y; 	/ d�y d	;

.K?g/.x; t/ D
Z t

0

Z
†

@G

@nx
.kx � yk; t � 	/g.y; 	/ d�y d	;

.Wg/.x; t/ D � @

@nx

Z t

0

Z
†

@G

@ny
.kx � yk; t � 	/g.y; 	/ d�y d	;

(5.1)

where .x; t/ 2 † � Œ0; T � and G. � ; � / is the heat kernel, given by

G.r; t/ D 1

.4
t/3=2
exp

�
� r2

4t

�
:

With these boundary integral operators at hand, Green’s representation formulae for
the interior heat equation with homogeneous initial conditions can be written as

�
1

2
C K

�
u � V @u

@n
D N and

�
1

2
C K?

�
@u

@n
C Wu D �@N

@n
; (5.2)

where N denotes the thermal Newton potential of the inhomogeneity. It is nonzero
and, in accordance with [17], given by

N .x; t/ WD
Z t

0

Z
D

G.kx � yk; t � 	/ dy d	 D
Z

�

@H

@ny
.kx � yk; t/ d�y;

where the kernel H. � ; � / is defined as

H.r; t/ D 2
p

t

.4
/3=2

"
p


 erfc

�
r

2
p

t

� 
r

2
p

t
C

p
t

r

!
C exp

�
� r2

4t

�#
: (5.3)

Since the temperature satisfies u D 0 at †, the unknown heat flux @u=@n at † can
be derived from the boundary integral equations (5.2). Thus

� V @u

@n
D N and

�
1

2
C K?

�
@u

@n
D �@N

@n
: (5.4)
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We will employ the second boundary integral equation for our shape reconstruction
scheme. Nevertheless, the first boundary integral equation will be used to compute
synthetic data in order to avoid an inverse crime.

For the computation of the solution of the state adjoint equation, we first perform
the change of variables t 7! T � t to obtain it in a more familiar form:

@t Qp � � Qp D 0 in � � .0; T /;

Qp D f on † � .0; T /;

Qp D 0 on � � f0g:
(5.5)

Here, Qp.x; t/ D p.x; T � t/ and

f .x; t/ D @u

@n
.x; T � t/ � h.x; T � t/:

It is convenient to use the indirect method where the solution is written as a double
layer potential

Qp.x; t/ D
Z t

0

Z
†

@G

@ny
.kx � yk; t � 	/g.y; 	/ d�y d	; x 2 �; (5.6)

where g is an unknown density on †. By letting x approach the boundary surface
from the inside of � and using the usual jump conditions, we arrive at

�
�1

2
C K

�
g D f: (5.7)

Once g has been determined, the double layer potential (5.6) must be evaluated on
� to obtain the quantity needed in the evaluation of the shape gradient in (3.1).

The approximate solution of the boundary integral equations (5.4) and (5.7) by
traditional discretization schemes poses serious difficulties since the total number
of unknowns is the product of the number of spatial unknowns Ns and temporal
unknowns Nt which becomes extremely large. Therefore, we proposed in [17, 18]
the application of the multipole-based space-time boundary element method which
has been developed in [33,34]. We then arrive at an algorithm which computes both,
the state and its adjoint, in a complexity that scales essentially linearly with the total
number of unknowns NsNt . We refer the reader to [17] for further details concerning
the particular realization.
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5.2 Solving the Poisson Equation

In case of the Laplacian, the fundamental solution is G.r/ D 1=.4
r/. Hence, the
standard boundary integral operators (cf. (5.1)) become

.Vg/.x/ D
Z

†

G.kx � yk/g.y/ d�y

.Kg/.x/ D
Z

†

@G

@ny
.kx � yk/g.y/ d�y

.K?g/.x/ D
Z

†

@G

@nx
.kx � yk/g.y/ d�y

.Wg/.x/ D � @

@nx

Z
†

@G

@ny
.kx � yk/g.y/ d�y

9>>>>>>>>>>>=
>>>>>>>>>>>;

x 2 †:

The Dirichlet and Neumann data at † are again coupled by the boundary integral
equations (5.2), which, in view of the homogeneous boundary conditions, results in
the boundary integral equations (5.4). The Newton potential involved there can be
computed as follows:

Lemma 5.1. For x 2 R
3 n D, the Newton potential admits the representation

N .x/ WD
Z

D

G.kx � yk/ dy D � 1

8


Z
�

hx � y; nyi
kx � yk d�y:

Proof. We shall write the Laplace kernel as the divergence of a radially symmetric
vector field. That is, we find a scalar function F. � / such that

divy

h
F.kx � yk/.x � y/

i
D G.kx � yk/:

Simple differentiation shows that F. � / satisfies the differential equation in r

rF0.r/ C 3F.r/ D �G.r/; r > 0:

A particular solution of this ordinary differential equation is F.r/ D �1=.8
r/.
Thus, by construction, the Gauss theorem implies the assertion:

Z
D

G.kx � yk/ dx D
Z

�

F.kx � yk/hx � y; nyi d�y:

ut
We will employ the first boundary integral equation in (5.4) for the shape

reconstruction scheme, since it is more accurate when applying a Galerkin method.
Moreover, for the adjoint state, it is then more efficient to use the indirect method
for the single layer potential, i.e.,



226 H. Harbrecht and J. Tausch

p.x/ D
Z

†

G.kx � yk/g.y/ d�y; x 2 �: (5.8)

Here, the density g is the solution of the boundary integral equation Vg D f with
the right hand f .x/ WD .@u=@n/.x/ � h.x/.

As proposed in several earlier papers on shape optimization with elliptic state
equation, see e.g. [5–8], the present boundary integral equations can be solved
efficiently by the wavelet Galerkin method which has been developed in [1, 16].
Then, the computational complexity scales linearly in the number of boundary
elements.

6 Numerical Results

We shall illustrate our algorithms by some numerical experiments. To that end, we
choose the unit ball as computational domain �. The given heat source D is acorn-
shaped as shown in Fig. 3. Since it is star-shaped, we employ the ansatz (4.4) with
N D 10, that are 100 design parameters.

We apply first the reconstruction algorithm for the time interval Œ0; T � with
T D 0:1 and T D 1:0 and a noise level of 1 %. It turns out that the reconstruction for
the short time interval (see Fig. 4) is quite similar but somewhat worse than for the
long time interval (see Fig. 5). This has nevertheless already been observed in [17].

The reconstruction for the stationary situation is seen in Fig. 6. Its quality is
clearly inferior to the time-dependent problem. Moreover, we have observed that
the reconstruction is much more robust with respect to noise if the time dependent
heat flux is used in the tracking functional rather than the stationary heat flux.

Fig. 3 The domain � with boundary † and the acorn-shaped source D with boundary �
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Fig. 4 The reconstruction of the heat source D in case of the heat equation and T D 0:1

Fig. 5 The reconstruction of the heat source D in case of the heat equation and T D 1:0

Fig. 6 The reconstruction of the heat source D in case of the stationary problem
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