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2 G. Leugering et al.

Problems of optimization and optimal control subject to constraints governed
by partial differential equations (PDEs) arise in a huge variety of industrial,
technological, economic, medical and environmental applications. The questions
that appear in this field range from shape and topology optimization problems, such
as optimal design of the wing of an aircraft, to optimal control of water flow in
irrigation canals and medical separation processes of biological cells. For a fruitful
and comprehensive study of such optimization problems, it is crucial to combine
innovative optimization techniques with new algorithmic and numerical approaches.

The contributors to this special volume are mostly members of the Deutsche
Forschungsgemeinschaft (DFG) priority program 1253 “Optimization with Partial
Differential Equations” which was active from 2006 until 2013. This priority pro-
gram, in which forty research projects were involved, brought together specialists
in the field of PDE constrained optimization and optimal control from more than
fifteen German universities. The results of their work, which are presented in this
special volume, received a matchless benefit from the synergetic collaboration and
networking within the priority program. Landmark results with respect to solving
the underlying industrial, technological and medical problems have been achieved.

The topics presented in this special volume cover almost the entire field of
recent research in PDE constrained optimization and optimal control. The results
range from derivation of new mathematical paradigms to design and analysis of
new numerical approaches. Innovative algorithmic schemes have been developed,
implemented and validated in the context of real-world applications. The book is
organized in the following five thematic parts:

• Constrained Optimization, Identification and Control
• Shape and Topology Optimization
• Adaptivity and Model Reduction
• Discretization: Concepts and Analysis
• Applications

Research articles present recent results in almost the entire range of PDE constrained
optimization and optimal control. Survey articles give an overview of central topics
which set sustainable trends for future research.

The editors and authors would like to thank the DFG for their financial support
and all the referees who were involved in this special volume and in the priority
program. The work presented in this book has benefitted enormously from their
helpful comments and suggestions. The editors and authors also would like to thank
Dr. Markus Dick for his continuous work in organizing this special volume. In the
following we give a short summary of the five thematic parts of this book. A more
detailed description can be found in the introduction that precedes each part.
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1 Constrained Optimization, Identification and Control

This first part contains eight progress reports and one survey article. The latter
describes and analyses a general one-shot methodology for solving already dis-
cretized design optimization problems for which explicitly forming and directly
solving the already discretized KKT conditions is impossible. Bott et al. developed
a general framework for the solution of PDAE constrained optimal control problems
by an adaptive SQP method in Hilbert spaces. Several other reports establish
existence, uniqueness and regularity results for particular problem classes, often
deriving optimality conditions for regularized problems and then driving the
regularization or penalty parameters to zero. Of particular concern is the treatment
of state constraints and variational inequalities, sometimes in a bilevel setting. All
papers report numerical results, often using second-order methods with trust region
stabilization.

2 Shape and Topology Optimization

Shape and topology optimization is indispensable for designing and constructing
industrial components. Many problems that arise in application, particularly in
structural mechanics and in the optimal control of distributed parameter systems,
can be formulated as the minimization of functionals defined over a class of
admissible domains. In this part of the book, novel approaches are presented
to deal with such optimization problems. First, a two-scale model for elastic
shape optimization within a stochastic framework is considered. Then, results on
shape optimization with parabolic state equation are given. Finally, multi-material
structural topology and shape optimization problems are formulated and solved
within a phase field approach.

3 Adaptivity and Model Reduction

In the part Adaptivity and Model Reduction, different techniques for reducing the
complexity of solving PDE constrained optimization problems numerically are
discussed. One possibility is to use tailored discretizations that adapt the meshsize
according to the optimization goal. A different approach consists in model order
reduction, i.e., application of mathematical methods for automatically reducing the
state-space dimension of the control problem while preserving accuracy in the map
from the input functions or parameters to the optimized quantity-of-interest. Both
approaches to complexity reduction are discussed in corresponding survey chapters.
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4 Discretization: Concepts and Analysis

The chapter Discretization: Concepts and Analysis summarizes recent trends and
addresses future research directions in the field of discrete concepts for PDE
constrained optimization with elliptic and parabolic PDEs in the presence of point-
wise constraints. It covers the range from tailored discrete concepts over adaptive
a posteriori finite element approaches, to the modern algorithmical treatment of
challenging optimal control applications with fluid flows.

5 Applications

The work of researchers in the priority program was driven not only by challenging
mathematical problems but also by fascinating future applications. This section
is dedicated to a presentation of recent application results in the field of PDE
constrained optimization and optimal control. The results range from optimal
treatment planning in radiotherapy to stabilization of gas transportation networks.
Optimization of particle synthesis in chemical industry is studied as well as optimal
control of self-consistent classical and quantum particle systems which play an
important role in the design of semiconductor devices. Another focus of this part
is optimal control of biomedical and -technological separation processes.
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Introduction to Part I
Constrained Optimization, Identification
and Control

Stefan Ulbrich and Andreas Griewank

In the article Optimal Control of Allen-Cahn Systems the authors Luise Blank,
M. Hassan Farshbaf-Shaker, Claudia Hecht, Josef Michl and Christoph Rupprecht
report results of their project regarding a control problem for a multi-component
Allen-Cahn equation that incorporates elastic effects. This gives rise to a coupled
elliptic-parabolic system. Distributed control of the Allen-Cahn equation and
Neumann boundary for the stress tensor on a part of the boundary are considered.
Existence results and optimality conditions are given for multi-component systems
and smooth potential without distributed control. Concerning obstacle potentials,
first-order conditions for the limiting systems of approximating problems are given
for the boundary control using a penalization approach and for distributed control
by a relaxation technique. Finally, there are some numerical results obtained with
Trust-Region-Newton-Steihaug-CG method.

In the article Optimal Control of Elastoplastic Processes: Analysis, Algo-
rithms Numerical Results the authors Roland Herzog, Christian Meyer and Gerd
Wachsmuth report their results on the optimal control of elastoplasticity systems,
where they concentrate on static elastoplasticity with small strains in its so-
called dual (stress-based) formulation with linear kinematic hardening; in addition,
also some results for the quasi-static case are stated. They consider the forward
problem as well as a regularized problem and show the existence of optimal
solutions. Moreover, an optimality system of C-stationary type is derived and also
strong stationarity as well as B-stationarity are discussed. The authors consider the
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computational approximation of stationary points and present numerical results for
the quasi-static case.

In the survey article One-Shot Approaches to Design Optimization the authors
Torsten Bosse, Nicolas R. Gauger, Andreas Griewank, Stefanie Günther and Volker
Schulz describe a general methodology for solving design optimization problems
for which explicitly forming and directly solving the KKT conditions is impossible.
Given an iterative state equation solver a corresponding adjoint solver can be
obtained by algorithmic differentiation or hand coding. Certain Seidel and Jacobi
type variants and their asymptotic rate of convergence to second order sufficient
constraint optimizers are presented and analyzed. In particular it is shown that the
Seidel variant achieves 2-cycle quadratic convergence in the limiting case where
the state equation solver is close to Newton’s method and the reduced Hessian is
available. The methods are verified on the incompressible Navier Stokes equation
with a boundary control and a tracking type objective.

In the article Optimal Design with Bounded Retardation for Problems with
Non-separable Adjoints the authors Torsten Bosse, Nicolas R. Gauger, Andreas
Griewank, Stefanie Günther, Lena Kaland, Claudia Kratzenstein, Lutz Lehmann,
Anil Nemili, Emre Özkaya and Thomas Slawig report results from their SPP project.
Problems ranging from oceanography to aerodynamics, and Burgers equation were
attacked as test cases, using a one shot approach specifically geared to problems
with a nonlinear interaction between state and control, which leads to nonseparable
Jacobians. In special cases asymptotic convergence rates and thus the retardation
factor compared to the underlying state space iteration are derived.

In the article On a Fully Adaptive SQP Method for PDAE-Constrained Optimal
Control Problems with Control and State Constraints the authors Stefanie Bott,
Debora Clever, Jens Lang, Stefan Ulbrich, Jan Carsten Ziems and Dirk Schröder
present an adaptive multilevel SQP method to solve complex optimal control
problems for time-dependent nonlinear partial PD(A)Es with control and state con-
straints. The multilevel method generates adaptive finite-element approximations
during the optimization, where the refinement strategy is based on a posteriori error
estimators for the PDE-constraint, the adjoint equation and the criticality measure.
The resulting optimization method allows to use existing adaptive PD(A)E-solvers
and error estimators in a modular way. State constraints are handled by Moreau-
Yosida regularization and convergence results for the resulting algorithm are
presented. The multilevel SQP method is combined with the space-time adaptive
PD(A)E-solver Kardos. The efficiency of the method is demonstrated for a 3-D
radiative heat transfer problem modeling the cooling process in glass manufacturing
and a 2-D thermistor problem modeling the heating process in steel hardening.

In the article Optimal Control of Nonlinear Hyperbolic Conservation Laws
with Switching the authors Sebastian Pfaff, Stefan Ulbrich and Günter Leugering
consider optimal control problems governed by nonlinear hyperbolic conservation
laws at junctions, where switching between different states occurs in node or
boundary controls. The authors analyze in particular the Fréchet-differentiability of
the reduced objective functional with respect to switching times of the controls. This
is done by showing that the control-to-state mapping of the considered problems
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satisfies a generalized notion of differentiability. They consider both, the case where
the controls are the initial and the boundary data as well as the case where the system
is controlled by the switching times of the node condition. Differentiability results
are presented for the considered problems in a quite general setting including an
adjoint-based gradient representation of the reduced objective function.

In the article Elliptic Mathematical Programs with Equilibrium Constraints in
Function Space: Optimality Conditions and Numerical Realization the authors
Michael Hintermüller, Antoine Laurain, Caroline Löbhard, Carlos Rautenberg and
Thomas Surowiec report their results on elliptic mathematical programs with equi-
librium constraints (MPECs) in function space. They derive stationarity conditions
for control problems with point tracking objectives and subject to the obstacle
problem as well as for optimization problems with variational inequality constraints
and pointwise constraints on the gradient of the state. A bundle-free solution method
as well as adaptive finite element discretizations are introduced and verified. More-
over, shape design problems subject to elliptic variational inequality constraints
are treated analytically and numerically. Finally, the authors propose a fixed-point-
Moreau-Yosida-based semismooth Newton solver for a class of nonlinear elliptic
quasi-variational inequality problems involving gradient constraints.

In the article Models and Optimal Control in Freezing and Thawing of Living
Cells and Tissues the authors Karl-Heinz Hoffmann, Nikolai D. Botkin and Varvara
L. Turova outline the results obtained in their SPP project. They apply the theory of
partial differential equations and optimal control techniques to minimize damaging
factors in cryopreservation of living cells and tissues in order to increase the survival
rate of frozen and subsequently thawed out cells. The authors present mathematical
models of the processes of freezing and thawing and describe the application of
optimal control theory to the design of optimal cooling and warming protocols
which reduce damaging effects and improve the survival rate of cells.

In the article Optimal Control-Based Feedback Stabilization of Multi-field Flow
Problems the authors Eberhard Bänsch, Peter Benner, Jens Saak and Heiko K.
Weichelt consider the numerical solution of the feedback stabilization problem for
multi-field flow problems. The approach is based on an analytical Riccati feedback
concept derived by Raymond for the incompressible Navier-Stokes equations.
The approach uses a linear-quadratic regulator (LQR) approach for the linearized
Navier-Stokes equations. The authors extend the approach to the Navier-Stokes
equations coupled with a diffusion-convection equation describing the transport
of a reactive species in a fluid. The feedback LQR-control is obtained via solving
an operator Riccati equation. The authors describe a numerical procedure to solve
this Riccati equation and illustrate the performance of the proposed method by a
numerical example.



Optimal Control of Allen-Cahn Systems

Luise Blank, M. Hassan Farshbaf-Shaker, Claudia Hecht,
Josef Michl, and Christoph Rupprecht

Abstract Optimization problems governed by Allen-Cahn systems including elas-
tic effects are formulated and first-order necessary optimality conditions are pre-
sented. Smooth as well as obstacle potentials are considered, where the latter leads
to an MPEC. Numerically, for smooth potential the problem is solved efficiently by
the Trust-Region-Newton-Steihaug-cg method. In case of an obstacle potential first
numerical results are presented.

Keywords Allen-Cahn system • Parabolic obstacle problems • Linear elasticity •
Mathematical programs with complementarity constraints • Optimality condi-
tions • Trust-Region-Newton method

Mathematics Subject Classification (2010). Primary 49J40; Secondary 49K20,
49J20, 49M15, 74P99.

1 Introduction and Problem Formulation

Optimization problems with interfaces and free boundaries frequently appear in
materials science, fluid dynamics and biology (see i.e. [6] and the references
therein). In this paper we concentrate on a phase field approach, more precisely on
a multi-component Allen-Cahn model, to describe the dynamics of the interface.
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This allows complex topological changes. The possibly sharp interface between
the phases is replaced by a thin transitional layer of width O."/ where " > 0

is a small parameter, and the N different phases are described by a phase field
variable c D .c1; : : : ; cN /

T , where ci denotes the fraction of the i -th material.
The underlying non-convex interfacial energy is based on the generalized Ginzburg-
Landau energy, see [13],

E.c;u/ WD
Z
�

�
"

2
jrcj2 C 1

"
‰.c/CW.c; E.u//

�
dx; (1.1)

where � � R
d , 1 � d � 3, is a bounded domain with either convex or C1;1-

boundary. Moreover, u is the displacement field mapping into R
d and ‰ is the

bulk potential. In general the potential ‰ is assumed to have global minima at
the pure phases and in physical situations there are many choices possible, see [5].
Here we consider two different cases: a smooth double-well potential in Sects. 2.1
and 3.1, and a nonsmooth obstacle potential in Sects. 2.2 and 3.2. The latter ensures
in particular that the pure phases correspond exactly to ci D 1, whereas in the
smooth case those are given by ci � 1. The term W.c; E.u// in (1.1) is the elastic
free energy density. Since in phase separation processes of alloys the deformations
are typically small we choose a theory based on the linearized strain tensor (see [7])
given by E WD E.u/ D 1

2
.ru C ruT / and

W.c; E/ D 1

2
.E � E�.c// W C.E � E�.c//: (1.2)

Here C is the symmetric, positive definite, possibly anisotropic elasticity tensor
mapping from symmetric tensors in R

d�d into itself. The quantity E�.c/ is the
eigenstrain at concentration c and following Vegard’s law we choose E�.c/ DPN

iD1 ciE�.ei /, where E�.ei / is the value of the strain tensor when the material
consists only of component i and is unstressed. Here .ei /NiD1 denote the standard
coordinate vectors in R

N . The dynamics of the interface motion can be modelled by
the steepest descent of (1.1) with respect to theL2-norm, see [4,12]. The mechanical
equilibrium is obtained on a much faster time scale and therefore we assume quasi-
static equilibrium for the mechanical variable u. For a smooth potential ‰ this
results after suitable rescaling of time in the following elastic Allen-Cahn equation

�
"@tc

0

�
D
�
"�c � 1

"
D‰.c/�DcW.c; E.u//

�r �DEW.c; E.u//

�
: (1.3)

We denote by Dc and DE the differentials with respect to c and E , respectively. In
the case of a nonsmooth obstacle potential,‰ is given as the sum of a differentiable
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and a non-differentiable convex function and the derivative D‰.c/ has to be
understood as the sum of the differentiable part plus the subdifferential of the non-
differentiable convex summand, and so the first component of (1.3) will result in a
variational inequality, see Sect. 2.2. We have DcW.c; E/ D �E� W C.E � E�.c//
andDEW.c; E/ D C.E � E�.c//.

We assume now that a volume force f acts on �T WD � � .0; T / and a surface
load g 2 L2.0; T IL2.�g;Rd // acts on �g � � WD @� until a given time T > 0.
Then with �D WD � n �g , �T WD � � .0; T / and the outer unit normal n the
mechanical system is given by

8<
:

�r �DEW.c; E.u// D 0 in �;
u D 0 on �D;

DEW.c; E.u// �n D g on �g

(1.4)

which has to hold for a.e. t 2 .0; T /, and the Allen-Cahn system is given by

8<
:
"@tc � "�c C 1

"
D‰.c/CDcW.c; E.u// D f in �T ;

rc �n D 0 on �T ;
c.0/ D c0 in �

(1.5)

in case of a smooth potential‰. Our aim in this paper is to transform an initial phase
distribution c0 W � ! R

N with minimal cost of the controls to some desired phase
pattern cT 2 L2.�/ WD L2.�;RN / at a given final time T > 0 while tracking
a desired evolution cd 2 L2.�T / WD L2.0; T IL2.�//. Hence we consider the
following objective functional:

J.c;f ;g/ WD�T

2
kc.T; � /� cT k2

L2.�/
C �d

2
kc � cdk2

L2.�T /
C

C �f

2"
kf k2

L2.�T /
C �g

2
kgk2

L2.0;T IL2.�g;Rd //: (1.6)

This leads to the following optimal control problem:

.P/

8<
:

min J.c;f ;g/

over .c;f ;g/ 2 V �L2.�T / � L2.0; T IL2.�g;Rd //
s.t. (1.4) and (1.5) hold

(1.7)

with V WD L1.0; T IH 1.�//\H1.0; T IL2.�//\L2.0; T IH 2.�//. We assume,
that the Dirichlet part �D has positive .d � 1/-dimensional Hausdorff measure and
introduce the notation H1

D.�;R
d / WD fu 2 H1.�;Rd / j uj�D D 0g. Later on we

will use also the space W.0; T / WD L2.0; T IH 1.�// \H1.0; T IH 1.�/�/.



14 L. Blank et al.

2 Existence Theory and First-Order Optimality Conditions

In this section we discuss the existence of a minimum and the derivation of
first-order necessary optimality systems. First we present the smooth potential
case. Here, the standard optimization theory in function spaces is applicable and
delivers a first-order necessary optimality system. Afterwards, we focus on the
control problem with an obstacle potential leading to an optimal control problem
with variational inequalities. Hence this belongs to the class of MPECs, where
the standard control theory is in general not applicable. Here we employ a penalty
approach for the problem without distributed control and a relaxation approach for
the model without elasticity.

2.1 Smooth ‰

We start by considering the setting without volume force, i.e. f � 0. In a system
with two phases, i.e. N D 2, the problem can be reduced to a single unknown by
defining c WD c1 � c2, which results in a scalar problem. One typical choice of a
smooth potential is then the double-well potential ‰.c/ D 1

4
.c2 � 1/2. The scalar

case with this ‰ is studied extensively in [15] without tracking cd , i.e. �d D 0.
For a regularized obstacle potential‰� (see Sect. 2.2.1) the vector-valued case with
possibly �d ¤ 0 is discussed in [11]. However, ‰� is not a physical potential. The
following theorem summarizes the results of [11, 15].

Theorem 2.1. Let .P/ be given as a scalar problem for N D 2 with potential
‰ D 1

4

�
c2 � 1�2 and �d D 0 or for N 	 2 and �d 	 0 arbitrary with a

regularized obstacle potential ‰� as mentioned above. For fixed initial distribution
c0 2 H 1.�/ and given surface load g 2 L2.0; T IL2.�g;Rd // there exists a
unique solution .c;u/ 2 V � L2.0; T IH1

D.�;R
d // of (1.4)–(1.5) and hence the

solution operator S W L2.0; T IL2.�g;Rd // ! V � L2.0; T IH1
D.�;R

d // with its
components S .g/ WD .S 1.g/;S 2.g// D .c;u/ is well-defined.

Then the control problem .P/ is equivalent to minimizing the reduced cost func-
tional j.g/ WD J.S 1.g/;g/ over L2.0; T IL2.�g;Rd //. This result is established
by applying energy methods to a time-discretized version of (1.4)–(1.5) and showing
a series of uniform a priori estimates for the time discretized solutions, where one
has to consider the particular functions‰ and ‰� , respectively, and the coupling of
the systems. By the direct method in the calculus of variations one can then show
existence of a minimizer for .P/. The differentiability of the solution operator can
be shown by an implicit function argument and thus we can differentiate the reduced
cost functional to obtain the following necessary optimality condition:

Theorem 2.2. Every minimizer g 2 L2.0; T IL2.�g;Rd // of j fulfills the follow-
ing optimality system: (1.4), (1.5) and
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q C �gg D 0 a.e. on .0; T / � �g; (2.1)

8<
:

�"@tp � "�p C 1
"
D2‰.c/p CDpW.p; E.q// D �d .c � cd / in �T ;

rp �n D 0 on �T ;
"p.T / D �T .c.T / � cT / in �;

(2.2)

8<
:

�r �DEW.p; E.q// D 0 in �;
q D 0 on �D;

DEW.p; E.q// �n D 0 on �g:
(2.3)

For a setting without elasticity but with distributed control, i.e. f 6� 0 and arbitrary
�d ; �T 	 0, we refer for instance to [10]. There, the scalar case, i.e. N D 2 as
above, is considered with a penalized double obstacle potential ‰� . Moreover, the
optimality system is investigated rigorously and is given by (1.5), (2.2) without
elastic energy together with the gradient equation

p C �f

"
f D 0 a.e. in �T : (2.4)

2.2 Obstacle Potential

In the case of an obstacle potential each component of c stands, in contrast to the
smooth potential, exactly for the fraction of one phase. Hence the phase space is
the Gibbs simplex G WD fv 2 R

N j vi 	 0;
PN

iD1 vi D 1g and the bulk potential
‰ W R

N ! R [ f1g is the multi-obstacle potential ‰.v/ WD ‰0.v/ C IG .v/,
where e.g. ‰0.v/ WD � 1

2
kvk2, which we consider, and IG is the indicator function

of the Gibbs simplex. The differential of the indicator function has to be understood
in the sense of subdifferentials, and thus the Allen-Cahn system (1.5) results in a
variational inequality, which can also be written in the following form (see [3]):

8<
:
"@tc � "�c �P†

�
1
"
.c C �/�DcW.c; E.u//

� D f in �T ;

rc �n D 0 on �T ;
c.0/ D c0 in �;

(2.5)

together with the complementarity conditions

c 	 0 a.e. in �T ; � 	 0 a.e. in �T ; .�; c/L2.�T / D 0; (2.6)
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the additional constraint c 2 † WD fv 2 R
N j PN

iD1 vi D 1g a.e. in �T and the
requirement f 2 T† WD fv 2 R

N j PN
iD1 vi D 0g a.e. in �T . Here P† W RN !

T† is the projection operator defined by P†v WD v � 1 1
N

NP
iD1

vi . The variable � can

be interpreted as a Lagrange multiplier corresponding to the constraint c 	 0, and
as a slack variable used for reformulating the variational inequality into a standard
MPEC problem. Denoting L2T† .�T / WD ˚

v 2 L2.�T / j v 2 T† a.e. in �T

�
and

VT† , V† respectively, the optimal control problem in the case of the obstacle
potential is given by

.P0/

8<
:

min J.c;f ;g/

over .c;f ;g/ 2 V† �L2T†.�T / � L2.0; T IL2.�g;Rd //
s.t. (1.4); (2.5) and (2.6) hold:

(2.7)

The optimization problem .P0/ belongs to the problem class of so-called MPECs
(Mathematical Programs with Equilibrium Constraints) which violate classical NLP
constraint qualifications. In the next two subsections we present results concerning
first-order necessary optimality systems obtained by the penalization approach, see
[11], or the relaxation approach, see [9]. These techniques have been discussed also
in [2, 16, 17].

2.2.1 Penalization Approach Without Distributed Control

In this section we discuss the penalization approach for the case f � 0. For the
scalar Allen-Cahn case with f 6� 0 but without elasticity we refer the reader
to [10]. Following [11] we replace the indicator function for the Gibbs simplex
by a convex function Q � 2 C2.R/, � > 0, given by Q �.r/ WD 0 for r 	 0,
Q �.r/ WD � 1

6�2
r3 for �� < r < 0 and Q �.r/ WD 1

2�

�
r C �

2

�2 C �
24

for

r � �� , and define the regularized potential function by ‰�.c/ D ‰0.c/C O‰�.c/
with O‰�.c/ WD

NP
iD1

Q �.ci /. For the resulting penalized optimal control problem

denoted by .P� /, exploiting techniques as in Sect. 2.1, we derive for � > 0

first-order necessary optimality conditions. Proving a priori estimates, uniformly
in � > 0, employing compactness and monotonicity arguments and using the
definition W0.0; T / D fv 2 W.0; T / W v.0; � / D 0g with dual space W0.0; T /

�,
we are able to show the following existence and approximation result:

Theorem 2.3. Whenever fg�g � L2.0; T IL2.�g;Rd // is a sequence of opti-
mal controls for .P� / with the sequence of corresponding states .c� ;u� ; �� / 2
V† � L2.0; T IH1

D.�;R
d // � L2.�T /, where ��� WD D O‰�.c� /, and adjoint

variables .p� ; q� ; �� / 2 VT† � L2.0; T IH1
D.�;R

d // � L2.�T /, where ��� WD
D2 O‰�.c� /p� , there exists a subsequence, which is denoted again by fg�g, that
converges weakly to g in L2.0; T IL2.�g;Rd //. Moreover, g is an optimal control
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of .P0/ with corresponding states .c;u; �/ 2 V†�L2.�T /�L2.0; T IH1
D.�;R

d //

and adjoint variables .p; q; �/ 2 L2.0; T IH 1.�// � L2.0; T IH1
D.�;R

d // �
W0.0; T /

� and we have for � & 0:

c� �! c weakly in H1.0; T IL2.�// \L2.0; T IH 2.�//;

u� �! u weakly in L2.0; T IH1
D.�;R

d //;

�� �! � weakly in L2.�T /;

p� �! p weakly in L2.0; T IH 1.�//;

q� �! q weakly in L2.0; T IH1
D.�;R

d //;

P†.�� / �! � weakly-star in W0.0; T /
�:

(2.8)

Furthermore we obtain first order conditions:

Theorem 2.4. The following optimality system holds for the limit elements
.g; c;u; �/ with adjoint variables .p; q; �/ of Theorem 2.3:
(1.4), (2.1), (2.3), (2.5), (2.6), c 2 †, f 2 T† a.e. in �T and

� 1

"
�.v/C "

Z T

0

h@tv;pi dt C "

Z T

0

Z
�

rp � rv dx dtC

� 1

"

Z T

0

Z
�

p � v dx dt C
Z T

0

Z
�

P†.DpW.p; E.q/// � v dx dtC

�
Z T

0

Z
�

�d .c � cd / � v dx dt �
Z
�

�T .c.T; � /� cT / � v.T / dx D 0; (2.9)

which has to hold for all v 2 W0.0; T /. Moreover, the limit elements satisfy some
sort of complementarity slackness conditions:

lim
�&0

.�� ;p� /L2.�T / � 0; (2.10)

lim
�&0

.�� ;max.0; c� //L2.�T / D 0; (2.11)

lim
�&0

.p� ; �� /L2.�T / D 0: (2.12)

2.2.2 Relaxation Approach with Distributed Control and Without
Elasticity

Studying the control problem with distributed control, i.e. f 6� 0 in general, and
without elasticity we use a relaxation approach. Details for our presented results
can be found in [9]. After reformulating as in (2.5) and (2.6) the Allen-Cahn system
with the help of a slack variable � into an MPEC, we add to the problem .P0/
an additional constraint 1

2
k�k2

L2.�T /
� R and denote this modified optimization

problem by .PR/. The constantR is sufficiently large. This approach is also used in
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[2] where the control of an obstacle problem is considered. As a first step we treat
the state constraint c 	 0, which usually raises problems concerning regularity,
by adding a regularization term to J . I.e. we define J�.c;f / D J.c;f / C
1
2�"

NP
iD1

k max.0; 	 � �ci /k2L2.�T / where 	 2 L2.�T / is fixed, nonnegative and

corresponds to a regular version of the multiplier associated to c 	 0. Next we
relax the complementarity condition to .�; c/L2.�T / � "˛� for some ˛� > 0. We
denote this regularized relaxed version of .PR/ as .PR;� /. Subsequently we are
interested in � % 1 where simultaneously ˛� & 0. We are able to use techniques
from mathematical programming in Banach spaces, see [18], and get an optimality
system for .PR;� /, where � is fixed. Considering � % 1 we then obtain optimality
conditions for problem .PR/. Similar to the process in Sect. 2.2.1 we have: for any
� > 0 there exists a minimizer .c� ;f � ; �� / 2 V † � L2.�T / � L2.�T / of .PR;� /
with corresponding adjoint variables. Using the Lagrange multiplier r� 2 R of the
constraint .�� ; c� /L2.�T / � "˛� one defines 
�;i WD r���;i � max.0; 	 � �c�;i / and
�� WD .
�;i /

N
iD1. Then we obtain:

Theorem 2.5. Whenever ff �g is a sequence of optimal controls .PR;� / with the
sequence of corresponding states .c� ; �� / and adjoint variables .p� ; �� /, there
exists a subsequence, which is denoted the same, with f � ! f weakly in

L2.�T / and �� ! � weakly-star in W0.0; T /
� as � % 1. The convergence

of the variables c� , �� and p� is as in (2.8). These limits fulfill the corresponding
optimality system for .PR/ as in Theorem 2.4 without elasticity system but with
distributed control, i.e. (2.4), (2.5), (2.6), (2.9), c 2 †, f 2 T† a.e. in�T and the
limits with .p� ; �� / satisfy the complementarity slackness conditions (2.10)–(2.12)
for � % 1 instead of � & 0. In addition we have the constraint 1

2
k�k2

L2.�T /
� R.

The last inequality is in practice inactive using R large enough.

3 Numerics

In this section we neglect elastic effects, but study smooth as well as nonsmooth
obstacle potentials with distributed control numerically.

3.1 Smooth Potential

3.1.1 Newton’s Method

For smooth ‰ we obtain an unconstrained optimal control problem when eliminat-
ing the state equation. Hence, numerical methods for unconstrained problems can
be applied to the reduced problem
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min j.f / WD J.S.f /;f /; f 2 L2.�T /:

We choose the Trust-Region-Newton-Steihaug-cg (TRN) method, see [8], since it
is capable of solving large scale optimization problems very efficiently because the
underlying cg-solver is matrix-free and it attains the local convergence properties of
Newton’s method. Iteratively the modelmk.ıf / D j.f k/C.rj.f k/; ıf /L2.�T /C
1
2
.r2j.f k/ıf ; ıf /L2.�T / is minimized within a trust-region and the method is

stopped if krj.f k/kL2.�T / < tol.
Based on Sect. 2.1 the L2-gradient is given by rj.f / D �f

"
f Cp. The Hessian

we derived formally for �d D 0, see [23], and is given by r2j.f /ıf D �f
"
ıf Cıp,

where ıp can be calculated by first solving the linear forward equation "@tıc �
"�ıc C 1

"
D2‰.c/ıc D ıf in �T , r.ıc/ �n D 0 on �T and ıc.0/ D 0 in �

and then solving the linear backward equation �"@tıp � "�ıp C 1
"
D2‰.c/ıp D

� 1
"
D3‰.c/Œıc;p; :� in �T , r.ıp/ �n D 0 on �T and "ıp.T / D �T ıc.T / in �.

The cost of one iteration of the algorithm consists in evaluating j , which means
solving the nonlinear state equation, in calculating rj.f /, which means solving
the linear adjoint equation, and in performing the Steihaug-cg method, where in
each cg-iteration r2j.f / has to be evaluated in some direction ıf . For similar
control problems gradient type methods have been used, see e.g. [14,22]. However,
they cannot solve our problems in reasonable time.

The following numerical results summarize the investigations in [23].

3.1.2 Discretization and Error Estimation

We consider an implicit and a semi-implicit Euler scheme in time. Although solving
the semi-implicit discrete equations is much faster, it has the disadvantage that the
two approaches “first discretize then optimize” and “first optimize then discretize”
do not commute. This has been shown by looking upon the implicit discretization
as a discontinuous Galerkin ansatz [23]. Thus we use semi-implicit discretization
only in an initialization phase to compute an approximative optimal control, and
use implicit discretization in the main phase.

In space we discretize with standard P1-elements. For equidistant meshes we
implemented the TRN method with the toolbox FEniCS [19], exploiting the struc-
ture of the arising systems for equidistant meshes. The existing adaptive strategy
for the Allen-Cahn equation without control uses a fine mesh on the interface and
coarse mesh on the bulk regions, see e.g. [1]. However, with control, nucleation of
a phase may appear. This cannot be resolved using the concept in [1]. Moreover,
a method of adaptively controlling the time steps for Allen-Cahn equations is not
available. Hence, for studying adaptive meshes we use the toolbox RoDoBo, where
the TRN method together with a dual weighted residual (DWR) error estimator
is implemented, see [20]. In our applications the DWR error estimator establishes
both: adequate adaptive spatial meshes and adaptive time steps. For example in a
nucleation situation the mesh in [1] is only fine when the new phase was already
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created, whereas the DWR mesh is also fine at timesteps before the nucleation
process starts.

3.1.3 Numerical Results

In all experiments we choose d D N D 2, �T D 1, �d D 0, �f D 0:01,
" D .14/�1, tol D 10�13 and � D .�1; 1/2. As mentioned above we reduce the
problem to a scalar problem and use ‰.c/ D 1

4
.c2 � 1/2. Figure 1 depicts the large

speed up using the TRN method instead of the gradient method. Here the Newton
residual krj.fk/kL2.�T / for the TRN method and the gradient method are listed for
an example where c.T / shall be the same circle as c0. The cpu-time is still large for
the TRN method using RoDoBo. However, using an equidistant mesh and therefore
being able to exploit the structure of the problem, our implementation in FEniCS is
significantly faster. Already the adjoint equation can be solved 25 times faster.

In order to get quadratic convergence of the Newton-cg method for smooth
problems the inner tolerance tolcg has to be appropriate. While one can decrease
tolcg with the number of iterations, we set tolcg D 10�13 in order to solve the inner
problem nearly exact and the resulting numerical error does not influence the perfor-
mance of the Newton-method. In most experiments the Newton method converged
just superlinearly which reveals that the problem is not smooth enough. Only in
an experiment where a vertical interface is moved from left to right we could

Fig. 1 krj.fk/kL2.�T / depending on cpu-time for the TRN and the gradient method applied to
have c.T /D c0
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Fig. 2 Newton residual for moving a vertical interface from left to right

observe quadratic convergence in rj.fk/, see Fig. 2. For the first 660 iterations
in this example, an approximation of the model problem is computed with less than
40 Steihaug-cg-iterations. They always lie on the boundary of the trust-region. In
the last three iterations the trust-region constraint stays inactive and then about 600
cg-iterations are necessary to solve the quadratic subproblem. In these last three
outer iterations the convergence rate of Newton’s method can be observed. Also
in the other experiments in [23] the Steihaug-cg method performs only few inner
cg-iterations when the trust-region constraint is active. In the last few steps the
calculation of the unconstrained minimizer ofmk is much more expensive.

Next we consider the situation where a circle in the center shall be split into
two circles next to each other. Figure 3 shows the optimal state and control. The
circle is stretched horizontally until it separates into two circles. In Fig. 4 the plot of
t 7! kf .t/kL2.�/ is depicted. The peak is at the time when the topological change
occurs. The large increase of the cost at the end time is due to the fact that cT has a
smaller interface thickness than proposed by the model with ".

In the following we investigate the temporal mesh. Figure 5 shows the time steps
created by the DWR error estimator together with the value c.t/ at the location
x D 0. We can see that the time steps are small before the pinching occurs, attain
their minimum in the middle of the pinching process and are larger in the second
half of the pinching process. To study how the time steps depend on the interface
velocity we consider an experiment where a circle shrinks and vanishes at finite
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Fig. 3 Optimal state (top) and optimal control (bottom) at times t D 0; 1
2
T; 3

4
T; T , for a splitting

circle scenario

Fig. 4 L2.�/-norm of the control corresponding to Fig. 3

time. The end time is chosen in such a way that f � 0 is the optimal control,
i.e. the interface evolution is given by the Allen-Cahn equation without outer force.
Figure 6 depicts the interface velocity together with the time steps. As expected, the
larger the interface velocity becomes, the smaller the time steps have to be chosen.
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Fig. 5 Temporal mesh for a
splitting circle scenario

Fig. 6 Temporal mesh for
the time evolution without
control

3.2 Obstacle Potential

In the case of an obstacle potential we studied first the differences in the approaches
“first discretize then optimize” and “first optimize then discretize”. As in the
smooth case the choice of discretization is essential. We choose again an implicit
discretization of the Allen-Cahn system, which is understood as a discontinuous
Galerkin discretization in time. Hence the time integrals of functions are discretized
by an iterated rectangle rule using the right endpoints. This approximation is also
used in the cost function. We compared the discretized optimality system of the
ansatz presented in Sect. 2.2.2 with the optimality system arising for the discretized
optimization problem, where the first order conditions (C-stationarity) are derived
by the relaxation approach in [24] for finite dimensional MPECs assuming MPEC-
LICQ. In the latter only the complementarity condition is relaxed as in Sect. 2.2.2 to
.�˛; c˛/L2.�T / � ˛ . The systems are identical apart from the additional constraint
on �, which is inactive in the numerics, and, as expected, the complementarity
slackness conditions, which hold pointwise for the ansatz, where the problem is
discretized first [21].

Our first numerical experiments are based on the MATLAB solver fmincon
where the discretized, relaxed optimization problem is solved—due to the memory
limitations—using an interior point algorithm with internal cg-solver for decreasing
˛. The initial ˛0 D 1 is successively divided by 10 and the solutions for ˛i are used
as initial data for the problem with relaxation parameter ˛iC1. In the first example
with N D 3 the goal is to keep the initial setting unchanged for the time interval
Œ0; 0:0005�, where one phase in a circle is surrounded by an annulus with a second
phase and a third phase in the remainder of the domain � D .0; 1/2. Without any
control the two inner phases would vanish due to the curvature. We set �T D 1,
�d D 104, �f D 0:001, " D 0:1 and the time step � D 10�4 while the equidistant
mesh size in space is h D 1=59. The phases stay nearly constant as do the controls
which we therefore list only for T D 0:0003 and ˛ D 10�9 in Fig. 7. The control
f1 is positive on the innermost interface to ensure that this circle does not shrink.
However, noticeable is that f1 is negative on the other interface, where it seems
that c1 would otherwise increase, i.e. phase one would develop. In the same way
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Fig. 7 The state c and the control functions f1 and f2 for three phases, which shall stay constant,
at time T D 0:0003

Fig. 8 Results for varying ˛ for the example in Fig. 7

f2 is negative on the innermost circle while positive to hold the interface constant
on the outer circle. Correspondingly f3 behaves. In Fig. 8 the first plot shows the
values of the cost function J neglecting the constant part for decreasing ˛. For
˛ � 10�3 it changes only mildly. The main effort of calculating the optimal control
is used for large ˛ as the other two plots in Fig. 8 indicate, which list the number of
interior point iterations and the number of nonlinear function evaluations together
with the cg-iterations. They indicate also the expected cost if a more sophisticated
implementation of an optimization solver is employed.

In the next example three phases are vertically aligned. Since the interfaces
have no curvature the phases would stay constant without control. However, in this
experiment we set the target cd such that in the end the enclosed phase occupies a
larger rectangle than the others as the numerical result shows in Fig. 9 for ˛ D 10�9.
Hence the controls are now time dependent. In the first row of Fig. 10 f1 is depicted
and in the second f2 while f3 D �f1 � f2 is neglected. As expected the controls
work mainly on the interfaces. The control f2 is positive at both interfaces while
the other two controls support the movement by negative force. Like in the first
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Fig. 9 The state c for three phases for moving walls

Fig. 10 Control functions f1 in the first and f2 in the second row corresponding to Fig. 9

example the value of the cost function stays nearly constant for ˛ � 10�3 and the
substantial work of determining the optimal control is done for large ˛. We therefore
omit the figures.
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Optimal Control of Elastoplastic Processes:
Analysis, Algorithms, Numerical Analysis
and Applications

Roland Herzog, Christian Meyer, and Gerd Wachsmuth

Abstract An optimal control problem is considered for the variational inequality
representing the stress-based (dual) formulation of static elastoplasticity. The linear
kinematic hardening model and the von Mises yield condition are used. The
forward system is reformulated such that it involves the plastic multiplier and a
complementarity condition. In order to derive necessary optimality conditions, a
family of regularized optimal control problems is analyzed. C-stationarity type
conditions are obtained by passing to the limit with the regularization. Numerical
results are presented.

Keywords Mathematical programs with complementarity constraints in function
space • Variational inequalities • Elastoplasticity • Regularization • Optimality
conditions

Mathematics Subject Classification (2010). Primary 49K20, 70Q05, 74C05;
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1 Introduction

Solid bodies depart from their rest shape under the influence of applied loads. In case
the applied loads or stresses are sufficiently small, many solids exhibit a linearly
elastic and reversible behavior. If, however, the stress induced by the applied loads
exceeds a certain threshold (the yield stress), the material behavior switches from
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the elastic to the so-called plastic regime. In this state, the overall loading process
is no longer reversible and permanent deformations remain even after the loads
are withdrawn. Mathematically, this leads to a description involving variational
inequalities (VIs), or equivalently, complementarity conditions.

Plastic deformation is desired for instance as an industrial shaping technique of
metal workpieces, as e.g. by deep-drawing of body sheets in the automotive industry.
The task of finding appropriate time-dependent loads which effect a desired final
deformation leads to optimal control problems for elastoplasticity systems. These
problems are also motivated by the desire to reduce the amount of springback, i.e.,
the partial reversal of the final material deformation due to a release of the stored
elastic energy once the loads are removed.

In this review, we concentrate for the sake of brevity on the model of static
elastoplasticity with small strains in its so-called dual (stress-based) formulation,
and with linear kinematic hardening. Within the project, similar results were
achieved also for the more challenging quasi-static model, see [24–26] and the
dissertation [23]. The system describing the quasi-static forward problem is given
in Sect. 2.3. We also refer to [3] for the analysis of an optimal control problem
involving the static primal (strain-based) counterpart.

According to the standard approach for infinite strains we do not distinguish
between reference and actual configuration and identify�with the workpiece under
consideration. In its strong form, the static problem of elastoplasticity in its dual
formulation with linear kinematic hardening reads

C
�1� C ".u/C 	 .�D C �D/ D 0 in �;

H
�1� C 	 .�D C �D/ D 0 in �;

div � D �f in �;

with complement. conditions 0 � 	 ? �.†/

and boundary conditions u

� 0

D 0

in �;

on �D;

� �n D g on �N :

9>>>>>>>>>>>=
>>>>>>>>>>>;

(1.1)

The state variables consist of the stress � and back stress �, combined into the
generalized stresses † D .� ;�/, plus the displacement u and the plastic multiplier
	 associated with the yield condition �.†/ � 0which we assume to be of von Mises
type, see (2.1). The first two equations in (1.1), together with the complementarity
conditions, represent the material law of static elastoplasticity. The tensors C�1 and
H
�1 are the inverses of the elasticity tensor (the compliance tensor) and of the

hardening modulus, respectively, �D denotes the deviatoric part of � , while ".u/
is the linearized strain. The third equation in (1.1) represents the equilibrium of
forces. The boundary conditions correspond to clamping on �D and the prescription
of boundary loads g on the remainder �N D � n �D .
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Due to the complementarity between the plastic multiplier 	 and the yield
condition �.†/, the optimal control of (1.1) leads to a mathematical program with
complementarity constraints (MPCC) in function space. As is known already for
finite dimensional MPCCs, classical constraint qualifications such as MFCQ fail
to hold. To overcome these difficulties, several competing stationarity concepts
tailored for MPCCs have been developed, see for instance [15, 21] for an overview
in the finite dimensional case. For the infinite dimensional case, we refer to the
classical works [1, 19, 20] and the recent contributions [14, 16, 22].

2 Optimal Control Problems in Small-Strain Static
Elastoplasticity

In this section we present the optimal control problem under consideration. We set
up some notation in Sect. 2.1. Afterwards, we discuss the static forward problem
in Sect. 2.2 and state the quasi-static forward problem in Sect. 2.3. The optimal
control problem of static plasticity is considered in Sect. 2.4. As mentioned in the
introduction, we concentrate on the model of static elastoplasticity with small strains
in its so-called dual formulation, and with linear kinematic hardening.

2.1 Notation and Standing Assumptions

2.1.1 Variables

Our notation follows [8] for the forward problem. Since the presentation of
optimality conditions relies on adjoint variables and Lagrange multipliers associated
with inequality constraints, additional variables are needed.

2.1.2 Function Spaces

Let � � R
d be a bounded domain with Lipschitz boundary � D @� in dimension

d 2 f2; 3g. We point out that the presented analysis is not restricted to the case
d � 3, but for reasons of physical interpretation we focus on the two and three
dimensional cases. The boundary consists of two disjoint parts �N and �D . We
denote by S WD R

d�d
sym the space of symmetric d -by-d matrices, endowed with the

inner productA :B D Pd
i;jD1 AijBij, and we define

V D H1
D.�IRd / D fu 2 H1.�IRd / W u D 0 on �Dg;

S D L2.�IS/
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as the spaces for the displacement u, stress � , and back stress �, respectively. The
control .f ;g/ belongs to the space

U D L2.�IRd / � L2.�N IRd /:

2.1.3 Yield Function and Admissible Stresses

We restrict our discussion to the von Mises yield function. In the context of linear
kinematic hardening, it reads

�.†/ D �j�D C �Dj2 � Q�20
�
=2 (2.1)

for† D .� ;�/ 2 S2, where j � j denotes the pointwise Frobenius norm of matrices,

�D D � � 1

d
.trace� / I

is the deviatoric part of � , and Q�0 is the yield stress. The yield function gives rise to
the set of admissible generalized stresses

K D f† 2 S2 W �.†/ � 0 a.e. in �g: (2.2)

Due to the structure of the yield function, �D C �D appears frequently and we
abbreviate it and its adjoint by

D† D �D C �D and D?� D
�
�D

�D

�

for matrices † 2 S
2 as well as for functions † 2 S2. When considered as an

operator in function space, D maps S2 ! S . For later reference, we also remark
that

D?D† D
�
�D C �D

�D C �D

�

holds.

2.1.4 Operators and Forms

We begin by defining the bilinear forms associated with (1.1). For† D .� ;�/ 2 S2
and T D .�;�/ 2 S2, let

a.†;T / D
Z
�

� : C�1� dx C
Z
�

� : H�1� dx: (2.3)
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Here C
�1.x/ and H

�1.x/ are maps from S to S which may depend on the spatial
variable x. For† D .� ;�/ 2 S2 and v 2 V , let

b.†; v/ D �
Z
�

� : ".v/ dx: (2.4)

We recall that ".v/ D 1
2

�rv C .rv/>
�

denotes the (linearized) strain tensor.
The bilinear forms induce operators

A W S2 ! S2; hA†; T i D a.†;T /;

B W S2 ! V 0; hB†; vi D b.†; v/:

Here and throughout, h � ; � i denotes the dual pairing between V and its dual V 0, or
the scalar products in S or S2, respectively.

Assumptions.

1. The domain � � R
d , d 	 2 is a bounded domain with Lipschitz boundary in

the sense of [4, Chapter 1.2]. The boundary of �, denoted by � , consists of two
disjoint measurable parts �N and �D such that � D �N [ �D . While �N is a
relatively open subset, �D is a relatively closed subset of � . Furthermore �D
is assumed to have positive measure. In addition, the set � [ �N is regular in
the sense of Gröger, cf. [6]. A characterization of regular domains for the case
d 2 f2; 3g can be found in [7, Section 5]. This class of domains covers a wide
range of geometries.

We make these assumptions in order to apply the regularity results in [10]
pertaining to systems of nonlinear elasticity. The latter appear in the forward
problem and its regularizations. Additional regularity leads to a norm gap, which
is needed to prove the differentiability of the control-to-state map.

2. The yield stress Q�0 is assumed to be a positive constant. It equals
p
2=3 �0, where

�0 is the uni-axial yield stress.
3. C�1 and H

�1 are elements of L1.�IL.S;S//, where L.S;S/ denotes the space
of linear operators S ! S. Both C

�1.x/ and H
�1.x/ are assumed to be uniformly

coercive. Standard examples are isotropic and homogeneous materials, where

C
�1� D 1

2�
� � 	

2� .2�C d 	/
trace.� / I

with Lamé constants � and 	. (These constants appear only here and there is
no risk of confusion with the plastic multiplier 	 or the Lagrange multiplier �.)
In this case C

�1 is coercive, provided that � > 0 and d 	 C 2� > 0 hold. A
common example for the hardening modulus is given by H

�1� D �=k1 with
hardening constant k1 > 0, see [8, Section 3.4].

Assumption (3) shows that a.†;†/ 	 ˛ k†k2
S2

for some ˛ > 0.
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2.2 The Forward Problem and Its Regularization

In this section, we address the lower-level problem of static plasticity. The weak
formulation of (1.1) is given by

a.†;T /C b.T ;u/C
Z
�

	D† : DT dx D 0 for all T 2 S2; (2.5a)

b.†; v/ D h`; vi for all v 2 V; (2.5b)

0 � 	 ? �.†/ � 0 a.e. in �; (2.5c)

and it represents an energy minimization problem subject to a feasibility constraint
for the generalized stresses. Here, 	 ? �.†/ represents the pointwise a.e.
complementarity condition 	�.†/ D 0. It is well known that given ` 2 V 0, (2.5)
has a unique solution .†;u; 	/, see, e.g., [9, Proposition 3.1] and [12, Theorem 2.2].
The components .†;u/ 2 S2 � V of the solution depend Lipschitz continuously on
` 2 V 0. For the equivalence of (2.5) with a mixed VI of first kind, we refer to [11,
Theorem 1.4] and [12, Theorem 2.2].

A standard way to derive qualified optimality conditions for the upper-level
problem is based on the differentiability of the load-to-state map ` 7! .†;u/.
However, the load-to-state operator associated with problem (2.5) is not Gâteaux-
differentiable, since the directional derivative in turn involves a complementarity
system and is thus not linear w.r.t. the direction, see [13]. What one can show is
that the load-to-state map is Bouligand-differentiable under additional smoothness
assumptions, see [2], but the nonlinearity of the directional derivative precludes the
application of the standard adjoint approach.

To remedy the lack of Fréchet differentiability, we regularize the complemen-
tarity condition of the lower-level problem. This regularization is two-fold. First,
the constraint �.†/ � 0 is replaced by a quadratic penalty term in the lower-level
objective. Second, the occurring maxf0; � g-term is locally smoothed. We require
that the smooth replacement max" of maxf0; � g satisfies the following conditions:
for all " > 0, the function max" W R ! R is of class C1;1 and satisfies

1. max".x/ 	 maxf0; xg,
2. max" is monotone increasing and convex,
3. max".x/ D maxf0; xg for jxj 	 ".

It is easy to see that there exists a class of functions satisfying these requirements,
and we refrain from fixing a certain choice of max" here. This leaves a choice for
numerical implementations.

It is convenient to define

J�;".†/ D p�;".jD†j/D?D† where p�;".x/ D max"
�
� .1 � Q�0=x/

�
; (2.6)

which acts pointwise on functions in S2. Here, � > 0 is the penalty parameter.
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In [12, Section 2.2] we obtained the following smoothed version of the optimality
condition (2.5):

a.†�;";T /C b.T ;u�;"/C hJ�;".†�;"/; T i D 0 for all T 2 S2; (2.7a)

b.†�;"; v/ D h`; vi for all v 2 V: (2.7b)

Note that the expression hJ�;".†�;"/; T i is well defined for T 2 S2, since
J�;".†�;"/ 2 S2 due to p�;".jD†�;"j/ 2 L1.�/. The existence and uniqueness
of a solution can be shown by the theory of monotone operators. We obtain that for
any ` 2 V 0, (2.7) has a unique solution

G�;".`/ D .G†�;".`/; G
u
�;".`// D .†�;";u�;"/ 2 S2 � V: (2.8)

Moreover, †�;" and u�;" depend Lipschitz continuously on `, with a Lipschitz
constant L independent of � and ".

By using the Lp-regularity result (with p > 2) of [10], we obtain the Fréchet
differentiability of G�;". The derivative at .†�;";u�;"/ D G�;".`/ in the direction
ı` 2 U is given by the unique solution .ı†; ıu/ of

.AC J 0�;".†�;"// ı† C B?ıu D 0; (2.9a)

B ı† D ı`: (2.9b)

Here, J 0�;" is the derivative of J�;".†/ given by

J 0�;".†/T D p0�;".jD†j/ D† : DT
jD†j D?D† C p�;".jD†j/D?DT (2.10)

with

p0�;".x/ D max0"
�
� .1 � Q�0 x�1/

�
� Q�0 x�2:

Let us remark that the differentiability of the solution operator of (2.7) is a non-
trivial result. This can be appreciated when we reformulate (2.7) as the following
quasi-linear system in u, where the principal part depends nonlinearly on the
gradient of u:

B .AC J�;"/
�1.�B?u�;"/ D `:

General differentiability results for such systems can be found in [27].
Finally, we obtain the convergence of the regularization. Let us denote by

.†;u; 	/ the solution of (2.5) with right hand side ` 2 V 0 and by .†�;";u�;"/ the
solutions of the regularized problems (2.7) with right hand side `�;" for �; " > 0.
Then we obtain
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k† �†�;"k2S2 � C
�k` � `�;"kV 0ku � u�;"kV C ��1 k`kV 0k`�;"kV 0 C "

�
;

ku � u�;"kV � C
�k` � `�;"kV 0ku � u�;"kV C ��1 k`kV 0k`�;"kV 0 C "

C k† �†�;"kS2
�
;

where C is independent of `, `�;", � and ". In particular, we find .†�;";u�;"/ !
.†;u/ if � ! 1, " ! 0 and `�;" ! ` in V 0.

The comparison of (2.5a) and (2.7a) gives rise to the definition

	�;" WD p�;".jD†�;"j/: (2.11)

From the definition of p�;", we see that 0 � 	�;" � maxf�; "g holds. Finally, we
obtain the convergence 	�;" ! 	 in L2.�/ under the same assumptions as for the
convergence of .†;u/.

Similar results are obtained in the case of quasi-static plasticity in [23, 25].

2.3 The Quasi-static Forward Problem

For convenience of the reader, we state the forward problem of quasi-static
plasticity. This problem is time-dependent but rate-independent. We denote by
H1.0; T IX/ the standard Bochner-Sobolev space of functions which map the
interval Œ0; T � into the Banach space X and which possess a square-integrable weak
derivative in time.

The time-dependent load ` 2 H1.0; T IV 0/ satisfies `.0/ D 0. The associated
states .†;u/ 2 H1.0; T IS2 � V / also satisfy homogeneous initial conditions
.†.0/;u.0// D 0. In the case of a pre-loaded workpiece, non-zero initial conditions
apply. Together with the plastic multiplier 	 2 L2.0; T IL2.�//, the system

A P† C B? Pu C 	D?D† D 0 in L2.0; T IS2/; (2.12a)

B† D ` in L2.0; T IV 0/; (2.12b)

0 � 	 ? �.†/ � 0 a.e. in .0; T / ��: (2.12c)

constitutes the forward problem. The existence and uniqueness of solutions can be
found in [8, Sec. 8], regularity of the plastic multiplier was proved in [11], and
continuity results are given in [5, 24].
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2.4 An Optimal Control Problem

As was mentioned before, the volume and boundary forces f and g act as control
variables. They induce in the forward system (2.5) the load ` D R.f ;g/ defined by

h`; vi D hR.f ;g/; vi WD �
Z
�

f � v dx �
Z
�N

g � v ds; v 2 V (2.13)

for .f ;g/ 2 U . The optimal control, or upper-level problem under consideration
reads

Minimize
1

2
ku � udk2

L2.�IRd / C �1

2
kf k2

L2.�IRd / C �2

2
kgk2

L2.�N IRd /

where .†;u; 	/ solves the static plasticity problem (2.5)

with right-hand side ` D R.f ;g/:

9>>>=
>>>;

(P)

The desired displacement ud is an element of L2.�IRd /. Moreover, �1 and �2
are positive constants. The objective expresses the goal of reaching as closely as
possible a desired deformation ud . In the interest of not further complicating the
presentation, control constraints are not considered but they could be easily included
with obvious modifications.

The optimal control problem in the quasi-static case reads

Minimize
1

2
ku.T /� udk2

L2.�IRd / C �

2
kgk2

H1.0;T IL2.�N IRd //

where .†;u; 	/ solves the quasi-static problem (2.12)

with right-hand side `.t/ D R.0;g.t//

and g.0/ D g.T / D 0:

9>>>>>>=
>>>>>>;

(Pq)

Note that volume forces are not present. The control constraints on g refer to an
unloaded initial and terminal state. We mention that optimal control problems with
more general objectives and additional control constraints are considered in [24].

Existence of solutions for problem (P) was proved in [9, Proposition 3.6] by
using the compactness of R W U ! V 0. The existence result in the quasi-static
variant is a little bit more involved, since the pointwise application of R considered
as a mapping H1.0; T IU / ! H1.0; T IV 0/ is not compact. However, one can
show that the solution mapping is weakly continuous, which yields the existence
of solutions, see [24, Theorem 2.9].

Additionally, one can show that local solutions of (P) can be approximated by
solutions of the regularized versions of (P), where (2.5) is replaced by (2.7). For the
precise formulation of this approximation result, consult [12, Section 3.2]. Similar
results in the case of quasi-static plasticity are obtained in [25, Section 4], see
also [23].
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3 Optimality Conditions

As was mentioned in the introduction, minimizers of MPCCs often do not fulfill
the KKT conditions, and thus alternative stationarity concepts must be devised,
along with tailored constraint qualifications. Briefly speaking, one disposes of the
Lagrange multiplier pertaining to the complementarity conditions. One also rede-
fines those multipliers belonging to the inequalities involved in the complementarity
relation. In our setting, the latter comprise the multiplier � (associated with the non-
negativity of the plastic multiplier 	 	 0) and � (associated with the yield condition
�.†/ � 0). Existing stationarity concepts differ in what conditions are imposed for
� and � .

Our first result provides an optimality system of C-stationary type. It is charac-
teristic for this class that a sign is known only for the product � �, in the sense that
� � 	 0 holds a.e. in �.

A† C 	D?D† C B?u D 0; (3.1a)

B† D R.f ;g/; (3.1b)

0 � 	 ? �.†/ � 0; (3.1c)

A‡ C 	D?D‡ C � D?D† C B?w D 0; (3.2a)

B‡ D �.u � ud /; (3.2b)

.�1 f ; �2 g/ �R?w D 0; (3.3)

D† : D‡ � � D 0; (3.4a)

�	 D 0; (3.4b)

� �.†/ D 0; (3.4c)

� � 	 0: (3.4d)

The following result was proved in [12, Theorem 3.16] by means of a family
of regularized optimal control problems, wherein the lower-level static plasticity
problems are replaced by their approximations (2.7), and passage to the limit.

Theorem 3.1. Let .f ;g/ be a local optimal solution of (P). Let .†;u/ and 	
denote the associated stresses, displacements, and plastic multiplier. Then there
exist adjoint stresses and displacements .‡ ;w/ 2 S2 �V and Lagrange multipliers
�; � 2 L2.�/ such that the C-stationarity system (3.1)–(3.4) is satisfied.
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C-stationarity was also obtained in the quasi-static setting for a semi-discretized
in time problem, see [26, Section 2]. In passing to the limit in the time discretization
parameter, the sign condition corresponding to � � 	 0 is lost. What remains is
weak stationarity, see [26, Section 3].

A stronger stationarity concept than C-stationarity is strong stationarity, which
asks for � 	 0 and � 	 0 on the so-called biactive set, defined by B WD fx 2
� W �.†.x// D 	.x/ D 0g. Results for various MPCC control problems in the
literature which imply the strong stationarity of local minimizers have in common
that the control functions must be sufficiently rich. A long-standing open question
whether or not control constraints impede strong stationarity was recently resolved
in [28]. Nevertheless, it still stands as a conjecture that the controls need to be
distributed controls in the range space of the differential operators defining the
forward problem, see (2.5a)–(2.5b). In accordance with this, we proved in [13,
Theorem 4.5] a strong stationarity result for local minimizers of a modified problem
with richer controls.

Moreover, we also obtained optimality conditions from the class of B-stationarity
conditions. Rather than working with dual quantities, these conditions state that at
a local minimizer, directional derivatives of the objective are non-negative in all
directions from certain cones. By showing the weak directional differentiability
of the control-to-state map, we obtained in [13, Corollary 3.12] the non-negativity
of all directional derivatives of the reduced objective in tangential directions. It is
noteworthy that the cone of tangential directions is taken to be the closure of the
cone of feasible directions w.r.t. the weak topology. For the precise formulation of
these results, we refer to [13].

Finally, sufficient second-order optimality conditions for the static problem were
derived in [2]. For this purpose, the weak differentiability results from [13] had
to be sharpened. To be more precise, it was shown that, under mild additional
assumptions on the integrability of the hardening variable �, the control-to-state
mapping is Bouligand differentiable from W

1;p
D .�/0 to S2 � V , where p > 2. The

associated remainder term property allows to deduce sufficient conditions by means
of a second-order Taylor expansion of a particularly chosen Lagrange functional.
The obtained sufficient conditions are comparable to the ones known from finite
dimensional MPCCs, see e.g. [21]. However, one observes a substantial gap to the
necessary optimality conditions, since the sufficient conditions involve a system
which is even more rigorous compared to strong stationarity.

4 Numerical Results

Within this project, we also developed some algorithms to solve the optimal control
problems. For the quasi-static variant of the optimal control problem (Pq), we built
a solver using the finite element library FEniCS, see [17]. The results shown below
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are based on a discretization by continuous, piecewise quadratic functions for the
displacement, whereas the stresses are discretized only at the quadrature points.
The temporal derivatives were replaced by an implicit Euler scheme. We used a
globalized Newton-CG approach to compute stationary points of the discretized and
regularized problem.

In Fig. 1 we present the computed (optimal) state for a problem with 96 time
steps and 50,115 DoFs (per time step) for the displacement and 460,800 DoFs (per
time step) for the stresses. The control boundary is located in the middle of the
upper boundary, as can be seen from the red (pressure) and green (tension) arrows in
Fig. 1. The observation boundary coincides with the control boundary. The desired
final deformation is a deflection of the observation boundary by �0:1 in z-direction.
The final deformation approaches this desired deformation very well, see Fig. 2.

Fig. 1 The computed optimal state for different time steps t D i T=6, i D 1; : : : ; 6, where T is
the final time. The control is shown by red (pressure) and green (tension) arrows. The workpiece
is colored by the von Mises equivalent stress. The deformation is 20 times enlarged

Fig. 2 Final deformation, 500 times enlarged
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5 Further Results of the Project and Ongoing Work

We finally mention some further results of the project and related ongoing work in
this section. In a recent manuscript [3] we considered an optimal control problem
similar to (P), but with the static forward problem given in its primal (strain-
based) formulation. The latter involves a variational inequality of the second kind
in place of a complementarity system. Instead of the generalized stresses † and
plastic multiplier 	, the plastic strain p appears as a state variable. By means
of regularization, we obtained in [3, Theorem 1.1] a certain system of first-order
necessary optimality conditions. Since a classification paralleling the notions of
B-, C- or strong stationarity for optimal control problems involving variational
inequalities of the second kind is not available in the literature, it is a priori
not clear how strong this result is. Interestingly, we were able to show that the
optimality system obtained is precisely equivalent to the C-stationarity conditions
for the optimal control problem (P), i.e., when the formulation is replaced by the
corresponding dual system (2.5).

Concerning the finite element error analysis for MPCCs in function space,
optimal control problems governed by the obstacle problem were investigated in
[18]. Quasi-optimal a priori error estimates for state and control were derived and
confirmed by numerical examples. At the moment, a posteriori error representations
based on the dual weighted residual approach are being developed in cooperation
with A. Rademacher (TU Dortmund) and W. Wollner (University of Hamburg). The
transfer of the a priori and a posteriori results to optimal control of elastoplastic
deformation processes will be the subject of future research.

In the paper [28], we considered the distributed control of the obstacle problem
subject to control constraints. As already mentioned, it was an long-standing open
problem whether local minimizers (together with suitable multipliers) satisfy the
strong stationarity conditions. We were able to prove that the answer is affirmative
if certain mild conditions on the control constraints are satisfied. Moreover, it is
possible to construct counter-examples when these conditions are violated.

Preprints and technical reports can be found at our publication page http://
www.tu-chemnitz.de/mathematik/part_dgl/publications.php and at the preprint
page of the DFG priority program SPP 1253 http://www.am.uni-erlangen.de/home/
spp1253/wiki/index.php/Preprints.
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Abstract The paper describes general methodologies for the solution of design
optimization problems. In particular we outline the close relations between a fixed
point solver based piggy back approach and a Reduced SQP method in Jacobi and
Seidel variants. The convergence rate and general efficacy is shown to be strongly
dependent on the characteristics of the state equation and the objective function.
In the QP scenario where the state equation is linear and the objective quadratic,
finite termination in two steps is obtained by the Seidel variant with Newton state
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1 From Simulation to Optimization

In many applications of scientific computing one wishes to convert a system
simulation code into one that optimizes certain performance indices with respect
to design and control variables. We consider primarily the case where system
simulation means solving a coupled systems of partial differential equations (PDEs)
to obtain the system state for a given design. Within the SPP 1253 many such
applications were considered and described in the first volume of [42]. In virtually
all such cases an adjoint state equation was set up explicitly or implicitly to yield
sensitivities of objectives and global constraint functions w.r.t. to design and control.
If the state equations can be solved rather rapidly by Newton-like methods, the same
is usually true for the adjoint equation, though consistency of the discretization and
error control may be issues. In that Newton-like scenario recovering primal and dual
feasibility after each design update more or less exactly is a valid and widely applied
algorithmic strategy, which one may refer to as hierarchical design optimization.

In some important applications like shape optimization in aerodynamics even the
concerted effort of a large expert community over several decades has only yielded
primal solver of fixed-point type with rather sluggish linear convergence. Rather
than expanding a large effort to recover primal and adjoint feasibility at far from
optimal design point it then is rather promising to pursue a One-shot approach,
where feasibility and optimality is pursued simultaneously.

Several authors have developed simultaneous optimization strategies where state
and adjoint feasibility is never fully achieved during the optimization process until
the optimal design point is reached. In the literature this strategy is variously known
as all-at-once approach [12, 16, 33, 56], Simultaneous Optimization Approach [54]
or simultaneous analysis and design (SAND) [30] and also optimization boundary
value approach [6,7]. The One-shot method for simultaneous optimization was first
proposed by Ta’asan et al. [53] in a multi-grid framework. In this approach, only few
iterations of the primal and adjoint solvers are performed in each optimization cycle.
Since then, the One-shot method has been further developed with special application
in aerodynamic shape optimization [23,43]. In practical terms, this strategy requires
the coordination of suitable primal and adjoint correction steps with the design
changes. The latter typically require grid modifications and other additional efforts,
so their appropriate spacing is rather important.

The structure of this paper is as follows: In Sect. 2 we lay out our framework of
design optimization problems including a user provided state equation solver. We
will quantify certain key characteristics of given problems, which will determine
the efficacy of optimization schemes and their appropriate tuning. In the central
Sect. 3 we develop and analyze one-shot schemes of Jacobi and Seidel type with the
aim of guaranteeing local convergence and estimating the asymptotic convergence
rate. These methods differ in that the Jacobi variant utilizes everywhere previous
iteration values whereas the Seidel variant always utilizes the latest information.
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Throughout we will illustrate the close relation between a reduced SQP approach
based on block preconditioning the KKT optimality system (see e.g. [36]) and
a piggy back approach based on augmenting the primal solver with a dual iteration
and a design optimization step (see e.g. [14]). In Sect. 4 we quote some comparative
numerical results from [29] and very briefly discuss other one-shot approaches like
those proposed in [6, 7] and [56]. The survey is concluded with a Summary and an
Outlook.

2 Problem Formulation and Optimality Conditions

The focus of this paper is on numerical methods for simulation-driven design
optimization. In contrast to general non-linear optimization tasks we can assume
that the variables are a-priori partitioned into a state vector y 2 Y and a design
vector u 2 U , where Y and U are closed convex subsets of Hilbert spaces. The
problem can be then stated as

min
.u;y/2U�Y f .u; y/ subject to c.u; y/ D 0: (2.1)

where f W U � Y ! R is the objective function and c W U � Y ! Y � is the state
equation with Y � being the topological dual of Y . Then the set of feasible points is
given by

F � f.u; y/ 2 U � Y W c.u; y/ D 0g: (2.2)

The simulations and applications can be found in various fields such as in marine-
science (cf. [40, 48]), geo-science (cf. [15, 18, 22, 41]) and aerodynamics. For
example in aerodynamics, one wants to optimize a variable airfoil shape in order
to reduce the drag (cf. [37, 43, 45, 46]). In this case the constraint could be some
variant of the Navier-Stokes equation that simulates the airflow around the airfoil
with an appropriate turbulence model.

We assume that all functions are at least twice continuously Fréchet differentiable
and denote their partial derivatives with respect to the variable x by fx , cx etc.

We restrict our attention to cases with a minimizer .u�; y�/ in the interior of
U�Y , where second order sufficiency conditions hold. Furthermore, we require that
for any u 2 U there is a non-singular solution y 2 Y of the state equations. Thus,
we assume throughout the paper, that cy.u; y/ has a bounded inverse for all points
of interest. The implicit function theorem then ensures the existence of a locally
unique state y D y.u/ 2 Y with c.u; y.u// D 0. The optimization parameters
of (2.1) can therefore be reduced to the design space U by introducing the reduced
objective function Of WU ! R with Of .u/ � f .u; y.u// and considering

min
u2U

Of .u/: (2.3)
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Any design change causes a change in the state variable through the state
condition c.u; y/ D 0. The sensitivity of the state variable with respect to design
changes can be computed from the identity

cy.u; y/yu.u/C cu.u; y/ D 0: (2.4)

Introducing the adjoint variable 	 2 Y � via the adjoint equation

�fy.u; y/ D h	; cy.u; y/i (2.5)

the sensitivity of Of with respect to design changes, the so called reduced gradient,
can be derived using the chain rule

d Of .u/
du

D fu.u; y/C hfy.u; y/; yu.u/i

D fu.u; y/� hfy.u; y/; c�1y .u; y/cu.u; y/i
D fu.u; y/C h	; cu.u; y/i:

(2.6)

Any local minimizer u� 2 U of (2.3) is a root of the reduced gradient resulting in
the first order necessary optimality condition, i.e. there exists 	� 2 Y � and y� 2 Y
such that the following equalities hold

0 D fu.u�; y�/C h	�; cu.u�; y�i
0 D c.u�; y�/;

0 D fy.u�; y�/C h	�; cy.u�; y�i:
(2.7)

The optimality condition can equivalently be formulated in terms of the
Lagrangian function (cf. [44])

L.u; y; 	/ � f .u; y/C h	; c.u; y/i: (2.8)

whose gradient must vanish so that

Lu.u�; y�; 	�/ D 0; L	.u�; y�; 	�/ D 0; Ly.u�; y�; 	�/ D 0: (2.9)

Note, that the above KKT-conditions in terms of the Lagrangian formulation are
equivalent to the first order necessary optimality conditions (2.7) of the reduced
problem. Rather than solving (2.7) or (2.9) by a pure first order method one usually
needs to collect or approximate some second order information at least on the
tangent space of (2.2).
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In PDE constrained optimal control, as discussed in [11, 13, 35, 55], often the
reduced Hessian is a compact perturbation of the identity. Then, this information has
to be reflected also in the update technique as presented in [28]. In PDE constrained
shape optimization, the reduced Hessian has been studied in detail in [20, 50] in
terms of the so-called shape Hessian. Because a low-cost direct implementation of
the shape Hessian is not possible, Fourier analysis has been used, in order to obtain
information on the symbol of the Hessian. This operator symbol guides the way
to preconditioners with mesh independent contraction properties. It has been found
in [50] for aerodynamic shape optimization problems involving the Stokes and the
incompressible Navier-Stokes equations that the symbol is a first order operator on
the shape to be optimized involving the Dirichlet-to-Neumann-map which is a non-
local operator. However, this operator can be efficiently approximated by a linear
combination of the identity with the Laplace-Beltrami-operator on the boundary,
thus providing very fast convergence results in combination with a one-shot strategy
within a realistic framework in [51].

The adjoint variable as introduced in (2.5) provides us with an efficient way of
computing the reduced gradient of the optimization problem. In contrast to direct
sensitivity computation, only one primal state solution y and one solution of the
adjoint equation for 	 is needed. The cost of solving the adjoint equation is roughly
the same as that of solving the primal so that the reduced gradient is obtained at
about twice the cost of just simulating the system.

The adjoint approach was first introduced by Pironneau in control theory [49]
and has since been widely used for sensitivity computations in optimization with
state constraints.

Two approaches where developed, namely the discrete adjoint approach, where
the adjoint equation is derived from the discretized optimization problem and
the continuous adjoint approach where an adjoint operator is derived from the
continuous optimization problem in an appropriate function space. The discrete
approach can be automated by applying Automatic Differentiation (AD) to the state
equation solver and the objective function.

For notational simplicity, we will assume from now on as in [14, 36] that the
problem has already been discretized and denote by m the number of design
variables u 2 U 
 R

m and n the dimension of the primal state y 2 Y 
 R
n.

Provided 	 2 Y � or Ny 2 Y � are initialized to 0 the algorithms discussed in this
article are invariant w.r.t. to linear transformations on Y � 
 R

n. Hence, we may
interpret 	 and Ny as row vectors in R

n and write the duality pairing in matrix vector
notation as h Ny; yi D Ny>y.

The second derivative of the reduced objective function, the so called reduced
Hessian, can analogously be computed using the adjoint variable resulting in

H � d2 Of .u/
du2

D ŒZ>; I �
	
fyy C 	>cyy fyu C 	>cyu

fuy C 	>cuy fuu C 	>cuu


 	
Z
I



(2.10)

where Z D �c�1y cu. The columns of ŒZ>; I �> span the tangent space of F .
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The second order sufficiency optimality condition ensures that any stationary
point .u�; y�; 	�/ satisfying the first order optimality conditions is a strict local
minimizer of (2.3) if the reduced Hessian is positive definite at u�.

In terms of the Lagrangian function L the above reduced Hessian (2.10) is
the projection of the full Hessian r2

y;uL onto the range of ŒZ>; I �> 2 R
.nCm/�m

spanning the tangent space of F .
Many gradient-based optimization strategies perform preconditioned design

updates while Newton’s method indicates that the preconditioner should approx-
imate the reduced Hessian. Often, secant updates of the reduced Hessian from
the Broyden-class are used such that positive definiteness and symmetry of the
approximation is preserved as long as a proper initialization is implemented
(cf. [44]).

2.1 The Fixed-Point Solver Paradigm

In view of practical scenarios, where simulation codes have been developed and
refined over long periods of time, we also cast the state equation in terms of a fixed-
point equation y D G.u; y/ with a contractive function G W U � Y ! Y . In
particular, we assume that any solution of the state equation is a solution of the
fixed-point equation and vice versa, i.e.

c.u; y/ D 0 ” y D G.u; y/: (2.11)

The functionG represents one step of an iterative solver with a contraction rate that
is smaller than 1 close to a solution for any fixed design u. Then we can reformulate
the original non-linear problem (2.1) as

min
.u;y/2U�Y f .u; y/; s.t. G.u; y/� y D 0: (2.12)

with the Lagrangian function

L.u; y; 	/ � f .u; y/C Ny>.G.u; y/� y/ : (2.13)

In terms of the new Lagrangian the first order optimality conditions for a stationary
point .u�; y�/ are given by

Lu.u�; y�; Ny�/ D 0; L Ny.u�; y�; Ny�/ D 0; Ly.u�; y�; Ny�/ D 0 (2.14)

with some Lagrange multiplier Ny� 2 Y �. The reduced Hessian for the second order
optimality conditions is
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H � ŒZ>; I �
	
Lyy Lyu

Luy Luu


 	
Z

I



(2.15)

where we now haveZ D .I�Gy/�1Gu. The columns of ŒZ>; I �> 2 R
.nCm/�m span

again the tangent space of the feasible set F , which is the same for (2.1) and (2.12).
In particular, it holds that Z D Z and H D H at .u�; y�/ since both have to
coincide with the Hessian of the reduced problem (2.3).

Often the state equation iteration will take the Newton-like form

yC D G.u; y/ D y � A�1c.u; y/ ” A .yC � y/ D �c.u; y/

where A 2 R
n�n is an approximation to the Jacobian cy.u; y/ serving as a

preconditioner. In case of Newton’s iteration G.u; y/ D y � cy.u; y/�1c.u; y/ we
have Gy.y�; u�/ D 0, which is also the limiting scenario for multi-grid and other
fast solvers.

For simplicity we will later assume that the corresponding adjoint solver is
based on the transposed A> even though in some applications their may be some
discrepancy, which is for example accounted for in the theoretical development of
[36]. Naturally, A like G will depend on u; y but we will mostly not mark that
dependency explicitly and also neglect its derivatives with respect to y and u, since
they are multiplied by the hopefully small residual c.u; y/.

Then we effectively solve the preconditioned problem

minf .u; y/ such that A�1c.u; y/ D 0

which is mathematically, but not algorithmically equivalent to (2.1). As we will
see later, there is a close relation between the quantities associated with the two
Lagrangians L and L, in particular the adjoint vectors 	 and Ny.

2.2 Problem and Solver Characteristics

Obviously, some problems are easier to solve than others, e.g. a quadratic problem
with a quadratic goal functional and linear constraints is not as challenging as
some problem with highly non-linear functions. This fact should be reflected in
the required effort needed to solve the underlying problem. Moreover, the choice of
the optimization scheme and its parameters is important, i.e. a bad choice for the
solver might result in excruciatingly slow convergence, whereas a suitable choice
can reduce the computational effort drastically.

We will quantify the efficiency of an optimization method for a specific fixed-
point problem in terms of the retardation factor
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r � 1 � �.Gy.x�//
1 � �.J�/

� ln.�.Gy//

ln.�.J�//
: (2.16)

This ratio reflects the increase in the number of steps needed for a comparable
reduction in the residuals when going from simulation to optimization. Here, J�
denotes the Jacobian of the outer optimization scheme iteration

J� D @.uC; yC; NyC/=@.u; y; Ny/ at .u�; y�; Ny�/ (2.17)

and �.M/ an estimate of the spectral radius of a square matrix M . Then �.Gy/ D
�.I �A�1cy/ < 1 implies for a suitable inner product norm k � k on the state space
that

��Gy.u; y/�� � �0 < 1; for all .u; y/ 2 U � Y: (2.18)

In general, we cannot expect that such contractivity will be obtained w.r.t. more
or less natural norms on the state space. Pseudo-time-stepping with specialized
Runge-Kutta schemes can achieve spectral radii below 1 in the case that the Courant-
Friedrichs-Lewy condition is ensured. However, the typical plots of successive
residual norms show non-monotonic decline with periodic structure (cf. Fig. 5,
Sect. 5). Therefore, estimates of the contraction factors should be based on geomet-
ric averages over a large number of iterations, which are asymptotically identical for
all equivalent norms. The results in Sect. 3 are formulated in terms of a norm that
ensures contractivity of the given state equation solver for fixed design. This norm
will generally be unknown so that the estimates of related quantities must be based
on topologically equivalent norms, which is likely to degrade the choice of method
parameters.

Apart from �0 the following characteristics of the optimization problem are
important.

• The partial derivatives fy , fu, cy and cu represent the sensitivity of the objective
function and the primal state equation w.r.t. state and design changes. We assume
that cy is invertible.

• The columns of the matrix

Z D .I �Gy/
�1Gu D �c�1y cu

span the tangent space of fy 2 Y W c.u; y/ D 0; u 2 U g. With Gu � A�1cu

the sensitivity of the fixed-point solver and preconditioned state equation w.r.t.
changes in the design variable u we find the bound kZk � k.I �Gy/�1k kGuk �
kGuk=.1 � �0/:

• The partial Hessian Lyy and Lyy represent the sensitivity of the adjoint w.r.t. to
the primal variable. The norm of these derivatives may be viewed as a measure
of the coupling between the primal and adjoint variables. When the state space
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equation is linear we have Lyy D fyy D Lyy independently of the adjoints 	
and Ny. Throughout we will abbreviate p � kLyyk and d D pkZk2.

• The mixed derivative Lyu and Lyu represent the sensitivity of adjoint equation
with respect to design variables. Often one has a separable adjoint in that
Lyu D Lyu D 0, which holds for many standard test problems. As a measure
of seperability we use the ratio q � maxv kLyuvk=kGuvk and we define c ���Lyu C LyyZ

�� kZk, analoguous to d .
• The partial Hessian Luu and Luu need not be positive definite for second order

sufficiency condition H � 0. However, this property is often guaranteed by a
regularization of the design vector u, e.g. when Luu and Luu is gradually scaled
up to infinity we have likely u� ! 0 and r ! 0. Conversely one might have
ku�k ! 1 and r ! 1 as Luu and Luu becomes small and H nearly singular.

• The reduced Hessian H D H and the positive definiteness condition H � 0

for .u; y/ � .u�; y�/ representing second order sufficiency is completely
independent of the chosen state equation formulation and iteration functionG.

• The quality of the preconditionerB occurring later in the stepping schemes (3.1)
and (3.6) is measured by the spectral norm

� � kI � �H 1
2 B�1H

1
2 k;

so that � D 0 in the ideal case where B is equal to the reduced Hessian H and
the step-size � equals 1.

When the adjoint is separable in that Lyu D 0 it follows from the consistency
of the operator norms that c � d . In contrast to Z and H , which are independent
of the state fixed-point solver G, the constants defined in items 2 and 3 are slightly
dependent on G. Their values are crucial for the estimation of the retardation factor
and the selection of the number of primal and dual steps between design updates.
The minimal values of c; d and thus the tightest bound on the retardation factor are
attained when the projected Hessian at the minimizer .u�; y�; 	�/ is the identity, i.e.

I � ŒH
� 1
2� Z>; I �

	
Lyy LyQu
LQuy LQuQu


"
ZH

� 1
2�

I

#
:

This ideal situation can be theoretically always achieved by changing variables to

Qu D H
1
2� u on the design space. It then follows by elementary arguments that

j2c � d j . kI � LQuQuk � 2c C d :

holds for the parameters c and d . Assuming that LQuQu is positive definite but not too
large, which indicates some degree of regularization, we find that approximately
2c � d � 1. In the separable case we have c � d so that we may assume both
of them to be roughly of order O.1/. In [14] it is described how c and d can be
estimated from various numerical quantities obtained during the coupled iteration
such that the ideal scaling is implicitly realized.
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3 Jacobi and Seidel One-Shot

3.1 Jacobi One-Shot Iteration

In [25, 26] the authors considered a Jacobi type One-shot method to solve the
problem (2.12). The basic idea is to augment the given fixed-point solver for the
underlying PDE by an adjoint and design step based on the Lagrangian (2.13). Using
the necessary condition for a stationary 0 D Ly D fy C Ny>�Gy.u; y/� I

�
one

can formulate a fixed-point iteration for the adjoint vector Ny 2 Y �. Moreover, the
contractivity of Gy implies that this adjoint equation is also non-singular yielding
a unique solution Ny D Ny.u; y/. For the iterative solution of the design equation
0 D Lu one can use any pre-conditioned gradient descent method of the form
uC D u � �B�1JacLu. Here BJac is a symmetric positive definite matrix and � a
suitable step multiplier. We will refer to BJac as the design space preconditioner.
The partial derivatives Lu and Ly of the Lagrangian can be efficiently evaluated
by applying common techniques from Automatic Differentiation (AD) [24] on the
functions f and G.

All three update steps can be combined into one simultaneous update yielding
the iteration of the single step One-shot method as explored in [24]:

uC D u � �B�1JacLu.u; y; Ny/;
yC D G.u; y/;

NyC D Ny CLy.u; y; Ny/ :
(3.1)

starting from some initial value .u0; y0; Ny0/. Since the coupled iteration updates all
variables simultaneously it is referred to as Jacobi One-shot method and abbreviated
(see [14]) by

� � � ! . DESIGN, STATE, ADJOINT/ ! : : : or � � � ! .DSA/ ! : : : :

Following the notation of [36] the stepping scheme (3.1) can be written as

2
4BJac 0 0

0 A 0

0 0 A>

3
5
2
4�u
�y

�	

3
5 D �

2
4Lu.u; y; 	/
L	.u; y; 	/
Ly.u; y; 	/

3
5 ; (3.2)

where �u D uC � u, �y D yC � y, and �	 D �A�>. NyC � Ny/, if we assume
that � D 1, G.u; y/ D y � A�1c.u; y/, and 	 D �A�> Ny. It can easily be seen
by some inductive argument that the later equivalence holds true for all subsequent
iterations.
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3.2 Augmented Lagrangian Preconditioning

First differentiating the new iterate .uC; yC; NyC/ with respect to the old .u; y; Ny/,
and then evaluating at .u�; y�; Ny�/ we obtain the coupled Jacobian

J� D
2
4 .I � B�1JacLuu/ �B�1JacLuy �B�1JacG

>
u

Gu Gy 0

Lyu Lyy G>y

3
5 2 R

.2nCm/�.2nCm/ (3.3)

Block elimination yields for � 2 spect.J�/ n spect.Gy/ the characterization

detŒP.�/� D 0 with P.�/ D .� � 1/BJac CH.�/ (3.4)

where

H.�/ D �
Z.�/> I

 	Lyy Lyu

Luy Luu


 	
Z.�/

I



for Z.�/ � .�I �Gy/�1Gu (3.5)

Note that H.1/ D H is the reduced Hessian of the optimization problem. It was
shown in [27] that

Proposition 3.1. The preconditioner

BJac � Luu C ˛ G>u Gu C ˇ LuyLyu � H.1/

where

˛ D p

.1 � �0/2 C q

.1 � �0/
and ˇ D 1

q.1 � �0/
ensures that

detP.	/ ¤ 0 for all 	 2 R with j	j 	 1:

The preconditioner BJac given above can be viewed as an approximation to the
partial Hessian of the augmented Lagrangian w.r.t. the design variable u

La.u; y; Ny/ D L.u; y; Ny/C ˛
2
kG.u; y/� yk2 C ˇ

2
kLy.u; y; Ny/k2 :

where weighted residuals of the primal and adjoint variables are added to the
standard Lagrangian function. It has properties close to H.�1/ � BJac, which has
some theoretical advantages but is rather costly to evaluate. Rather than evaluating
the derivative matrices Luu; Gu D �A�1cu and Lyu explicitly one may use secant
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updating to compute BJac approximately. That has worked quite well, though even
approximatingLyu may be costly unless the problem is separable. WhileLuu suggest
a Newton like step the additional terms G>u Gu and LuyLyu caution effectively
against design changes that strongly perturb the primal and adjoint state equation.

The choice of the penalty parameters ˛ and ˇ is quite critical. In [31] it was
shown that the values of ˛ and ˇ given above imply that the fixed points of the
coupled Jacobi one-shot iterations are exactly the stationary points ofLa. They also
ensure that the Hessian of the augmented Langrangian is positive definite at all local
minimizers .u�; y�/ where second order sufficiency is satisfied. These properties
are also sought in standard strategies for the selection of penalty parameters, as
described for example in Chapter 17 of [44]. The updating rules usually require
an increase in the parameters whenever primal or dual feasibility is slipping and a
reduction when the primal and dual residuals are sufficiently small. The estimates
given in the proposition are definitely on the conservative side with a small estimate
for .1 � �0/ leading to rather large penalty factors.

The Jacobi One-shot approach combined with an approximate augmented
Hessian preconditioning has been implemented for various numerical applications
especially in the field of aerodynamic shape optimization. In [45, 47] the shape of
an airfoil under transonic flight conditions governed by the 2D Euler equations was
optimized. A drag reduction up to 40 % was achieved while a retardation factor
of 4 was measured compared to a primal flow computation. Shape optimization
with Reynolds-averaged Navier-Stokes equations (RANS) using k � ! turbulence
model was applied in [46] for an airfoil in subsonic flow. The measured retardation
factor r � 3 clearly demonstrates the efficiency gain of the One-shot method over
hierarchical optimization methods.

3.3 Seidel One-Shot Approach

As observed in [27] a rather disappointing aspect of the Jacobi One-shot approach
is that even when G represents Newton’s method on the state equation and BJac D
H.1/ is the reduced Hessian only rather slow linear convergence is obtained. Also,
while our choice precludes the existence of real eigenvalues outside the unit circle,
it was observed in [10] that complex eigenvalues with modulus greater than 1 may
indeed occur.

Alternatively, one may follow the philosophy of the Seidel method (cf. [38, 39])
by always using the most recent variable values. Then we obtain the Seidel variant:

uC D u � �B�1SeidLu.u; y; Ny/
yC D G.uC; y/

NyC D Ny C Ly.uC; yC; Ny/;
(3.6)
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or in short

� � � ! DESIGN ! STATE ! ADJOINT ! : : : or � � � ! D ! S ! A ! : : : :

Approximating by Taylor

G.uC; y/ D y � A�1c.uC; y/ � y � A�1Œc.u; y/C cu.u; y/�u�

and

Ly.uC; yC; 	/ � Ly.u; y; 	/C Lyu.u; y; 	/�u C Lyy.u; y; 	/�y

we obtain for the full step method where � D 1 the matrix form

2
4BSeid 0 0

cu A 0

Lyu Lyy A
>

3
5
2
4�u
�y

�	

3
5 D �

2
4Lu.u; y; 	/
L	.u; y; 	/
Ly.u; y; 	/

3
5 : (3.7)

Also, the update of the preconditionerBSeid, to be discussed later will be based on
the new information yC and NyC. The resulting method is similar to the one proposed
in [32] for the specific aerodynamic context. The matrix in Eq. (3.7) has also been
used as preconditioner for Lagrange-Newton-Krylov methods as in [1, 4]. More
general preconditioning studies for KKT systems can be found, e.g., in [3, 34, 52].

The Seidel One-shot methods can be visualized as in Fig. 1. It shows the sequence
of primal and adjoint states .y; Ny/ coupled with the design vector u converging
towards a stationary point .u�; y�; Ny�/ of (2.1). It satisfies the optimality condition
Lu.u�; y�; Ny�/ D 0 and lies on the manifold S of feasible primal and dual points,
i.e. the set where y� D G. � ; y�/ and Ly. � ; y�; Ny�/ D 0 holds.

In terms of function and derivative evaluations the computational effort of the
Seidel variant can be almost twice that of the Jacobi variant. The iteration function
G must now be evaluated at two different combinations .u; y/ and .uC; y/, though
only one of them involves a design change compared to the previous cycle. Only
at .u; y/ the trajectory of all intermediate values must be stored for the subsequent
accumulation of the gradient componentsLu.u; y; Ny/ and Ly.u; y; NyC/. Notice that
the adjoint arguments Ny and NyC differ so that two reverse sweeps are required.
In summary the Seidel variant requires one additional forward and one additional
reverse sweep, but both are a little cheaper than the original ones, because there is
no design change and no need for a new trajectory, respectively.

One advantage of the Seidel type method demonstrated in [24] (relying on [25])
is that the Lagrangian converges twice as fast to the optimal value of the objective
than in the Jacobi variant. As observed in [27] another important distinction is that
in the Newton case Gy.u; y�/ D 0 two step quadratic convergence can be achieved
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Fig. 1 Geometry of Seidel one-shot methods

by the Seidel variant, but no choice of BJac yields super-linear convergence of the
Jacobi variant except when Gyu.u; y�/ D 0.

3.4 Finite Termination on QPs

Of particular theoretical interest is the QP case when the objective f .u; y/ is
quadratic and the constraint c.u; y/ is linear. Here we would expect finite conver-
gence from an optimization scheme that is given all the required information.

In [36] three-step quadratic convergence was shown for the update sequence

� � � ! ADJOINT ! DESIGN ! STATE ! : : : or � � � ! A ! D ! S ! : : : :

More specifically it was shown that on a linear quadratic problem (QP) the Jacobian
corresponding to a (Newton) adjoint step, followed by a (reduced Hessian) design
step and a subsequent (Newton) state step has the nil-potency degree 3. Earlier in
[1], it has been observed that exact preconditioners derived from this iterations lead
to convergence of appropriate Krylov methods in three steps. Here, we will see that
this sequence has a Jacobian even with nil-potency 2 and that the Jacobian of the
sequence S ! A ! D ! S ! A vanishes already. This means that with regards
to the number of design steps we can achieve one-step quadratic convergence if we
interleave two S ! A pairs in between them.

To obtain this result we may break (3.3) into three pieces using Gy D 0 for
Newtons step
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JD D
2
4.I � B�1SeidLuu/ �B�1SeidLuy �B�1SeidG

>
u

0 I 0

0 0 I

3
5 ; (3.8)

JS D
2
4 I 0 0

Gu 0 0

0 0 I

3
5 and JA D

2
4 I 0 0

0 I 0

Lyu Lyy 0

3
5 : (3.9)

Multiplication yields immediately that

JA JS JD JA JS D
2
4 R 0 0

.LyyGu C Lyu/R 0 0

GuR 0 0

3
5 ; (3.10)

where R D I � B�1SeidH , which vanishes if BSeid D H . In other words in order
to obtain fast convergence when the state equation can be solved in a Newton like
fashion the reduced Hessian H is the only choice for the preconditioner.

When the optimization problem is sufficiently smooth and the state equation
is efficiently solvable quite accurately, e.g. by multi-grid method, one would
still expect fast convergence using the Seidel approach with an approximation
BSeid � H . It seems natural to base this approximation on secant updating with
respect to differences in the reduced gradientLu.u; y; Ny/ (from (2.6)), but care must
be taken that inaccuracies in its evaluation do not lead to instabilities in the updating
process. Also we cannot expect that the steps .�u; �y/ really become tangential to
the feasible set F . Consequently we cannot expect that BSeid converges to H but
rather another Schur complement as observed in [36].

3.5 Asymptotic Convergence Rate

In [36] an exact perturbation argument relative to the three-step termination result
is used to quantify a linear convergence rate in the QP case with approximate
primal and adjoint solver. The iteration discussed there is of the type (3.7) or
equivalently (3.6). Convergence of this iteration is shown, if the forward and adjoint
iterative method is sufficiently contractive and the matrix BSeid is sufficiently close
to a so-called consistent reduced Hessian, where Z in Eq. (2.10) is based on the
approximate solver rather than the matrix cy . The bounds on the perturbations are
rather involved and difficult to verify in practice. The convergence analysis cannot
be compared to the discussion in this paper because of this different approach.

Now we present a single iteration analysis which also yields a bound on the
spectral radius of the coupled iteration at a second order sufficient minimum. So
strictly speaking we are again talking about the QP scenario, but with inaccurate
solvers and reduced Hessian approximation.
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While the contraction rate �0 is considered a constant we can reduce it to � D �s0
by performing s > 0 primal followed by s adjoint steps before each design change,
i.e. we consider the Multistep One-shot method

� � � ! DESIGN ! STATEs ! ADJOINTs ! : : : ; s 2 N:

The s adjoint steps can all be based on the last primal step, whose trajectory
of intermediate values can be reused s times. This multi-step strategy has been
advocated already by S. Ta’asan and is being used by many practitioners. In the
paper [14] there has been an attempt to optimize the s in view of the efforts for
the various sub-steps. For example, if design changes entail expensive regriding
operations s should be selected rather large. We also expect the optimal s to grow
when the problem becomes more QP like as we approach an optimal point.

In [14] the following bound on the eigenvalues of the coupled iteration was
obtained based on the problem quantities that were defined in Sect. 2.2:

Proposition 3.2. Under the stated assumptions all eigenvalues � 2 C of J� for the
Multi-step one-shot iteration with the preconditioner matrix BSeid satisfy

j� j � � or j� j � � C .1C �/

"
d

�
�

j� j C 1

j� j � �
�2

C 2 c

�
�

j� j C 1

j� j � �

�#

(3.11)

For j� j > �, the rational function '.j� j; �/ on the right hand side has continuous
positive and negative derivatives w.r.t. � and j� j, respectively.

In the Newton case � D 0 the bound given in Proposition 3.11 is tight in that we
simply have j� j � � D kI��H 1

2 B�1SeidH
1
2 k. This is the convergence rate of a quasi-

Newton or variable metric method on the reduced system, where primal and adjoint
feasibility is recuperated exactly after each design step. Otherwise the inequality is
likely to hold strictly since the bound on the right hand side can only be reached if,
for example, the eigenmodes of .I �Gs

y/
�1 associated with its largest eigenvalues in

modulus are also the dominant eigenvectors of Lyy. Hence we expect that the ratio
between the right and left hand side at the largest eigenvalue can be sizable for small
� close to 1 but tends to 1 as � tends to 0. These ranges of � D �s0 can be achieved
by selecting s sufficiently large or rather small, respectively.

Due to the monotonicity properties, the implicit function theorem ensures the
existence of a unique solution j��j D j��.�/j at the intersection of the diagonal with
the right hand side '.j� j; �/ of (3.11) which is differentiable and strictly increasing
on the interval .�;1/. This situation is depicted in the Fig. 2. When � is sufficiently
small, e.g. �1 D 0:12 one obtains an upper bound ��1 on the spectral radius of the
coupled iteration below 1 so that we have contraction. When � D �2 D 0:35 the
resulting bound ��2 is greater than 1 and thus useless.
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Fig. 2 Left side j� j and right
side '.j� j; �/ of (3.11) for
two different values �1 D �

s1
0

and �2 D �
s2
0 with �1 < �2

and two arbitrarily chosen
positive constants c and d

Unfortunately, the above bound cannot be solved explicitly for j� j. However
given a desired overall contraction � 	 j��j we obtain a quadratic equation for
� whose solution is given by

�.�/ D �.� � �/

.� � �/C .1 � �/.1C �/
�p

d.� � �/=.1 � �/C c2 C c
� (3.12)

� �2

�C .1C �/
�p

d �C c2 C c
� � �2

2 c
if � � 0 (3.13)

where the second bound is obtained by setting � to 0 and its approximation by
considering rather small �. Taking the logarithm of that inequality we obtain a lower
bound for the retardation factor estimate namely

� � log.�.�//

log.�/
& 2C 2 c

j log.�/j ! 2 for � ! 0

Hence we see that the retardation factor is always bounded below by 2 and with
good preconditioning that lower bound is almost achieved as both the primal rate
� D �s0 and the combined rate � tend to 0, i.e. we recover feasibility quite well
before after each design step. The predicted retardation is plotted in Fig. 3.

It should be noted that adaptivity issues for optimization methods of (reduced)
SQP type have been studied, e.g. in [33, 56] and in a more general framework
adaptivity aspects of Newton methods for nonlinear equations are discussed, e.g.,
in [17, 19].
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Fig. 3 Retardation factor
surface as a function of
c and d

4 Other Approaches

A particular variant of one-shot methods is the optimization boundary value
approach originating from [6, 7]. It is representative also for other approaches like
the simultaneous optimization approach [54] or SAND [30]. They have in common
that they form a nonlinear set of equations related to the KKT conditions, which
is then solved by Newton’s method. A separation of steps in design, adjoint and
forward step in the fashion above based on fixed point iterations is not explicitly
made, although this distinction is blurred to some extent depending on the particular
choice of the approximation of the KKT matrix used. In particular, in [8], the explicit
treatment of inexact linear solves in the forward and adjoint problem is taken into
account and generalized to inequality constraints. In combination with a multiple-
shooting parametrization of the time history of dynamical systems, the boundary
value problem approach allows for very flexible adaptivity with the respect to
the discretization accuracy. This accuracy and the Newton step size selection is
controlled by the restrictive monotonicity test [9]. Similarly, in [4, 5] a large scale
KKT system for a PDE constrained optimization problem is formed and solved
by Newton-Krylov methods. Furthermore, multi-grid optimization techniques as
surveyed in [12] fall in this class of setting up a large KKT system and solving
it as a whole.

There are several contributions on inexact SQP methods in the literature (see e.g.
[33, 56]). There not only discretization errors but also residuals of inexact equation
solvers are coordinated to achieve global convergence to the continuous solution.
The grid adaption is based on suitable error estimators, especially the dual weighted
residual approach of Becker and Rannacher [2]. In the papers of Ziems and Ulbrich
the effects of non-linearity are controlled using a trust region.
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5 Numerical Results

In this section we present numerical results that demonstrate the efficiency of the
Jacobi as well as the Seidel variant of the One-shot method. As a test case we choose
an inverse design optimization problem subject to the incompressible Navier-Stokes
equations. By controlling the boundary conditions a prescribed flow field has to be
reproduced.

As PDE-constraint of the optimization problem, we investigate buoyancy driven
flow in a cavity � D Œ0; 1�2 governed by the incompressible Navier-Stokes
equations. The left wall �1 D f0g � Œ0; 1� is isothermal, while the temperature
distribution at the right wall �2 D f1g � Œ0; 1� can be altered choosing a variable
temperature to control the fluid flow, these temperature values serve as design
variables in the optimization problem. While cool fluid is falling along the left
wall, the heated and thus hotter fluid is rising along the right wall producing a
counterclockwise flow in�. Figure 4 shows the temperature distribution of a steady-
state reference flow field that we want to reproduce as well as the corresponding
reference temperature at the right wall.

As an objective function of the optimization problem we choose the following
tracking type functional

f .u; y/ � ky � yrefk22 C �kuk22: (5.1)

where y D �Ev; p; T  denotes the state vector consisting of the velocities Ev, pressure
p and temperature T of the fluid while yref denotes the reference flow field. A
regularization term consisting of the weighted norm of the design u is added with a
factor � D 0:001.

Fig. 4 Reference temperature distribution (left) and resulting flow field for the temperature of
reference at the right wall �2(right)
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The optimization problem is defined by

min
u;y

f .u; y/ subject to (5.2)

@Ev
@t

C .Ev � r/Ev ��Ev C rp D Eb in �
div Ev D 0 in �

@T
@t

C Ev � rT ��T D 0 in �
Ev D 0 on @�

@T
@n

D 0 on @� n .�1 [ �2/

T D 0 on �1
T D u on �2

(5.3)

where the buoyancy force is given as Eb D Œ0;RaPr T � with the dimensionless
Rayleigh and Prandtl number Ra D 105;Pr D 0:1 (cf. [21]).

The governing incompressible Navier-Stokes equations are solved using an
implicit finite volume method that performs pressure-correction iterations until
a steady-state of the system is reached. In other words the iteration function
G represents one step of the SIMPLE-method (c.f. [21]). In Fig. 5, the 2-norm
of the corresponding residuum of the primal equations during the iterative flow
computation is plotted. As mentioned in Sect. 2.2, we observe a monotonic decline
only for geometric averages.

Automatic Differentiation in reverse mode is applied to the iteration function
G and evaluating the objective function f in order to generate an iterative
adjoint solver and compute the reduced gradient. The design space preconditioners
BJac; BSeid are approximated using secant updates of the gradient of the augmented
Lagrangian and the gradient of the standard Lagrangian, respectively. As stopping
criterion we used the condition kLuk2 < 10�5 on the reduced gradient.

Fig. 5 Residuum of the
incompressible Navier-Stokes
equations during flow
computation
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Fig. 6 Convergence history of Jacobi- and Seidel-type one-shot optimization (left) and optimized
temperature distribution with reference profile (right)

Figure 6 shows the objective function f .uk; yk/ as well as the norm of the
reduced gradient kLu.uk; yk; Nyk/k2 during the optimization for both the Jacobi and
the Seidel type One-shot method. From the reduction of the reduced gradient it
can be seen that both approaches converge with a similar convergence rate. Since
the Seidel variant hits the stopping criterion slightly earlier a retardation factor
of approximately r D 7:2 is achieved whereas a retardation factor of r D 7:9

is measured for the Jacobi type One-shot method. Both optimization approaches
recover the reference temperature distribution quite well as can be seen from Fig. 6.
Furthermore, the residuum of the Navier-Stokes equations and its adjoint is reduced
to the order of 10�6 at the optimal point, thus optimality and feasibility is achieved
simultaneously during the One-shot iterations.

The numerical results demonstrate, that both variants of the One-shot method
yield an efficient optimization of the inverse design problem while the cost for
an optimization is only a small multiple of the cost of a primal simulation. The
considered test case indicates a slight advantage of the Seidel type One-shot
approach, which is in good agreement with numerical results for solving linear
equations with the Seidel and the Jacobi method.

6 Summary and Outlook

In this paper we mainly surveyed two closely related approaches for one-shot opti-
mization. As it turns out the main theoretical difference is a different representation
of the adjoint states, which are however closely related, though a comparative
investigation of their regularity property in function space remains to be done. On a
numerical test for the incompressible Navier Stokes equation both approaches were
found to be similarly effective. An asymptotic analysis of the retardation factor
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between simulation and optimization confirmed the usual understanding that the
latter is at least twice as expensive as the former.

The ideal ratio is reached if either the state space solver is Newton-like, or
the cross term c representing the total sensitivity of the adjoint equation with
respect to design vector is quite small. Generally speaking, the success of the
one-shot approach depends on a good synchronization between primal, dual and
optimization steps. As in other reported implementations of inexact SQP methods
the synchronization is based on several tolerances, norm estimates and method
parameters. Their appropriate setting remains to be a serious challenge and for the
time being require a tuning process by an expert user for a particular class of design
optimization problems.
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Abstract In the natural and enginiering sciences numerous sophisticated simula-
tion models involving PDEs have been developed. In our research we focus on the
transition from such simulation codes to optimization, where the design parameters
are chosen in such a way that the underlying model is optimal with respect to
some performance measure. In contrast to general non-linear programming we
assume that the models are too large for the direct evaluation and factorization of
the constraint Jacobian but that only a slowly convergent fixed-point iteration is
available to compute a solution of the model for fixed parameters.

Therefore, we pursue the so-called One-shot approach, where the forward
simulation is complemented with an adjoint iteration, which can be obtained by
handcoding, the use of Automatic Differentiation techniques, or a combination
thereof. The resulting adjoint solver is then coupled with the primal fixed-point
iteration and an optimization step for the design parameters to obtain an optimal
solution of the problem. To guarantee the convergence of the method an appropriate
sequencing of these three steps, which can be applied either in a parallel (Jacobi)
or in a sequential (Seidel) way, and a suitable choice of the preconditioner for the
design step are necessary. We present theoretical and experimental results for two
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choices, one based on the reduced Hessian and one on the Hessian of an augmented
Lagrangian. Furthermore, we consider the extension of the One-shot approach to
the infinite dimensional case and problems with unsteady PDE constraints.

Keywords Simulation • Optimization • PDE • Automatic differentiation •
Fixed-point solver • Retardation factor • One-shot • Piggyback • Numerics

1 Introduction

In the research project Automated Extension of Fixed Point PDE Solvers for Optimal
Design with Bounded Retardation we focus on design optimization problems of the
form

min
.u;y/2U�Y f .u; y/ s. t. c.u; y/ D 0 (DOP)

where f W U � Y ! R denotes an objective function and c W U � Y ! H

with dimH D dim Y D n represents some state equation. This scenario has been
approached by many computational scientist with inexact variants of large-scale
SQP methods. For a partial survey we recommend [1–3, 12, 21].

As a key assumption we require that for any control u 2 U there is a non-singular
solution y.u/ 2 Y of the state equation c.u; y/ D 0. Moreover, we assume that
the state constraint can be equivalently written as a fixed-point equation with some
contractive function G W U � Y ! Y , i.e.

��Gy.u; y/�� � �0 < 1 for all .u; y/ 2 U � Y;

such that the fixed-point iteration ykC1 D G.u; yk/ provides a solution y.u/ D
limk!1 yk of the original state equation for any fixed control u 2 U and
initial state y0 2 Y . We also assume in the statement and for the execution of
numerical algorithms that the functions are at least once continuously differentiable
to guarantee well posedness of the problem and twice continuously differentiable
for the convergence theory.

Thus, by standard results from nonlinear optimization [16] we see in the finite
dimensional case (n < 1) that for any local minimum .u�; y�/ of (DOP) in the
interior of U �Y there exists a Lagrange multiplier Ny� 2 R

n such that the first order
necessary optimality conditions

0 D Lu.u�; y�; Ny�/; y� D G.u�; y�/; and 0 D Ly.u�; y�; Ny�/

hold, where L W U � Y � R
n ! R denotes the Lagrangian function

L.u; y; Ny/ D f .u; y/C Ny>.G.u; y/� y/ :
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Assuming that second order sufficient optimality conditions are satisfied we find
that the projected Hessian of the Lagrangian

H� WD �
I; Z>

 	Luu Luy

Lyu Lyy


 	
I

Z



with Z WD .I �Gy/

�1 Gu (1.1)

evaluated at a strict local minimum .u�; y�; Ny�/ is positive definite and the same
holds true in an neighborhood of the minimizer.

In the first part of our project we pursued a so-called (Jacobi) One-shot strategy
[4, 8, 9, 11]

uC D u � ˛stepB
�1
JacLu.u; y; Ny/

yC D G.u; y/

NyC D Ny C Ly.u; y; Ny/
(1.2)

or in short

: : : ! . DESIGN, STATE, ADJOINT/ ! : : :

to find first order optimal points. Here ˛step 2 R denotes some step-multiplier and
B is a suitable symmetric positive definite preconditioner, which may depend on
the variables .u; y; Ny/, the given functions f;G and their derivatives. As a special
choice we investigate the augmented Lagrangian preconditioner

BJac D Luu C ˛ GuG
>
u C ˇ LuyLyu

and BFGS approximations of it with some suitable coefficients ˛; ˇ 2 R.
Beside the original (Jacobi) one-step One-shot method [8], several other stepping

schemes can be found. Therefore, we also propose the Multistep-Seidel-version

: : : ! .DESIGN/ ! .STATE/s ! .ADJOINT/s ! : : : ;

where after one design update several repeated state updates are followed by the
same number of repeated adjoint updates, or in detail,

uC D u � ˛B�1SeidLu.u; y; Ny/ single design update;

yC D Gs.uC; y/ s state updates;

NyC D NGs.uC; yC; Ny/ s adjoint updates :

(1.3)

where

GkC1.u; y/ WD G
�
u; Gk.u; y/

�
and

NGkC1.u; y; Ny/ WD NG �u; y; NGk .u; y; Ny/�

for k D 1; : : : ; s � 1 with NG.u; y; Ny/ WD Ly.u; y; Ny/C Ny.
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In contrast to before, the preconditioner BSeid � H� may also depend on the
number of state/adjoint updates s. We present the basic ideas (cf. [5]) needed to
prove that the Multistep One-shot method is locally convergent for a sufficient
choice of ˛, BSeid and the step number s which is mainly depending on the
contraction rate �0 of G and problem specific derivative information.

In the sequel, we will give a short summary of our project for the last research
period of the DFG SPP-1253 project. The structure is as follows:

In Sects. 2–4 we present some of our results for the Jacobi method containing
the findings for the exact quantification of the retardation factor, an application
in marine science and the extension of the approach to function space. For the
Multistep One-shot method we will state sufficient conditions for the convergence of
the method in terms of problem dependent quantities and present some numerical
examples for an application in aerodynamic shape optimization, which is done in
Sects. 5 and 6, respectively. Furthermore, we will consider in Sect. 7 the case where
the constraint mapping c represents a PDE only allowing for unsteady solutions.

2 Exact Quantification of Retardation

In One-shot methods, retardation refers to the increase of steps needed for a
comparable reduction in the residuals when going from simulation to optimization
in the coupled iteration. Bounded retardation, i.e., a limited increase of these steps,
has been achieved by many groups in the priority program. However, a general
theoretical statement to quantify the factor of retardation for the Jacobi method
has not been achieved yet. In the second period, we obtained theoretical results
for separable problems [9], where Lyu D Luy D 0. We investigated:

1. A Newton scenario for separable problems,
2. Jacobi and multigrid scenarios for a standard elliptic problem.

In the Newton scenario for the separable case, we have Gy D 0 and thus Gu D
dy=du. We expect the observed results to remain valid also in the case when G
represents an inner iteration. We tested the example of several multigrid cycles
that resolve the state equation with higher accuracy before a change of the design
variables. In this case, the retardation factor was found to be �=3, where � D k�k
is the weighted Euclidean norm of G>u LyyGu w.r.t. to the projected Hessian H .

In the Jacobi and multigrid scenarios, we consider an elliptic boundary value
problem with a tracking type objective function and Tikhonov regularization on the
L2 norm of the control with the weighting parameter �. This standard test problem
was solved by the rather slow Jacobi method and the rather fast multigrid method.
Here, we find that the preconditioner should be a multiple of the identity and its
optimal scaling can be found by solving a system of three cubic polynomials, which
can be reduced to a single polynomial in the convergence factor �0.

In Fig. 1, the retardation factors as a function of the reciprocal 1=� for three
different grid sizes N are shown. As one can see, the retardation factor for the
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Fig. 1 Retardation factor for
Jacobi and multigrid methods
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Jacobi scenario is very small until 1=� is about 102, then grows quite rapidly until
it becomes a linear function of 1=�, and finally for very large 1=� it becomes
constant. The same behavior is also observed for the V-cycle multigrid case with
Jacobi smoother. In all cases, we observed a much better retardation factor than the
theoretical upper bound without optimized step multiplier (yellow line).

3 Application in Marine Science

Parameter optimization is an important task in all models that simulate parts of
the climate system, as for example ocean or atmosphere models. In these models,
many processes are not well-understood or cannot be resolved. These processes
are parametrized using simplified model functions with parameters that have to be
optimized for calibration according to measurements or other models’ data. The
parameters appear as factors of the state variables, thus leading to nonseparability in
the state equations. Often, calibration is performed for a steady stationary or periodic
solution, the latter representing a stable annual cycle. Computation of a steady state
is usually the result of a spin-up, i.e., a time integration until no significant changes
are observed. For ocean models, the spin-up needs thousands of years of model
time, which reflects the long time scales of the global ocean circulation. In three
space dimensions, the pure simulation of the ocean circulation is a challenging
computational task which requires considerable time. As a consequence, the
One-shot method is a promising approach for parameter optimization in ocean
models. However, the additional computational effort of simultaneous update of the
state and parameter corrections must not be ignored and we propose simplifications
of the strategy. We considered two examples.
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3.1 Calibration of a Box Model of the North Atlantic
Circulation

At first, we calibrated a conceptual box model of the North-Atlantic thermohaline
circulation by Rahmstorf [20]. It has eight nonlinear ODEs and a global warming
parameter that varies in a given range and is not to be optimized. For each value
of this parameter f1, the amount of water overturning m.u; y.f1// is obtained as
an aggregated quantity from the state variables and the parameters. The model is
numerically integrated into a steady state where c.u; y.f1// D 0 by an explicit
Euler scheme. Since it is computationally cheap and has been calibrated using other
methods (see [18]), we used it to investigate the applicability of the One-shot method
and to compare results and performance in a real world problem. Data md from a
more complex model (see [18]) are used as desired state in a tracking type functional
with regularization term incorporating a prior guess uguess for the six parameters to
be optimized:

min
u;y

f .u; y/ WD 1

2
km.u; y.f1// �mdk22 C �

2
ku � uguessk22;

s.t. 0 D c.u; y.f1;i //; i D 1; : : : ; l:

The parameters are subject to box constraints, which were not treated explicitly in
the One-shot method. Without regularization, typically several local minima occur.

We compared the One-shot results both with full computation of the precondi-
tionerBJac and using its BFGS approximation on the one hand with results obtained
by direct optimization using a full spin-up in every function evaluation on the other
hand. For the direct optimization we applied our own BFGS implementation as well
as the L-BFGS and L-BFGS-B codes from [19].

As summarized in [14], the One-shot method was successful, even though no
contractivity, but only quasi-contractivity (see [7]) is given. Simplifications of the
algorithm as fixing the parameter � representing the contraction factor to 0.9 and
limiting the exact computation of BJac to every 1,000th iteration was adequate. The
latter reduced computational time to about half of the time needed in optimization
runs with computation of BJac in each iteration. The final states obtained by the
two One-shot variants are close to the data and to the ones obtained by the direct
methods, also with small regularization parameter �. The parameters computed
by One-shot were to some extent similar to those of the direct optimization
with L-BFGS-B. They stayed in acceptable ranges without any explicit constraint
treatment, but differ among the chosen methods when � < 1, which is due to the
ill-posedness of the problem.

As can be seen in Fig. 2, the One-shot strategy showed good performance:
The number of iterations was about 10–40 times larger than those for a spin-up.
Direct optimization strategies needed at least 30 optimization steps, each requiring
several complete spin-ups. Using full computation of BJac performs well for most
regularization parameters �, whereas the One-shot-BFGS strategy does not show
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Fig. 2 Typical optimization run for parameter optimization of the box model: comparison of total
necessary Euler steps by direct BFGS optimization and One-shot method with full computation of
the preconditioner

good performance. This behavior also varies with respect to the global warming
parameter, likely because the model itself has difficulties finding the steady state for
high values of this parameter.

3.2 Calibration of a 3-D Marine Ecosystem Model

Marine ecosystem models describe the physical and bio-geochemical processes that
determine the oceanic part of the global carbon cycle. They are non-linearly coupled
transport or advection-diffusion-reaction equations, with ocean circulation data as
forcing. In three dimensions, the computation of a steady annual cycle of such
models takes several days on a parallel machine.

We performed parameter optimization for a characteristic model (see [17])
consisting of two spatially distributed state variables (tracers), namely phosphate
and dissolved organic phosphorus. The parameter optimization problem is of
tracking type including a regularization term with an initial parameter guess:

min
u;y

f .u; y/ WD 1

2
ky � ydatak2 C �

2
ku � uguessk2 s.t. 0 D c.u; y/

At first synthetic data created by the model were used as desired state, tests with real
data taken from the World Ocean Atlas are work in progress. Direct optimization
runs that are still possible in coarse resolutions suggest that for this configuration
several local minima exist. Nevertheless, the One-shot optimization method without
regularization found the correct parameters u� for synthetic data. Figure 3 shows an
example with regularization parameter � D 0:01, but where the initial guess uguess

did not equal the value u� used to create the synthetic desired state. The convergence
of the parameters differs. The cost function is significantly reduced, as can be seen
in Fig. 4. Comparing performance, the One-shot method leads to results comparable
with a direct optimization after about 15,000 steps (equal model years). A usual
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Fig. 3 Some parameters during optimization, uguess ¤ u�, � D 0:01. Straight lines represent
optimal values u�
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Fig. 4 Typical tracer distribution at the ocean surface (left) and cost function f during One-shot
optimization (uguess ¤ u�, � D 0:01)

Table 1 Computation of derivatives using different approaches

Derivative Mode of Computation

fy; fu; fyu Analytically

Gu Forward mode of ADC analytically for linear parts

Ny>Gy , Ny>Gu One reverse sweep of ADC analytically for linear parts

Ny>Gyu Finite differences applied to Ny>Gy

spin-up takes about 5,000 years, but it has to be noticed that a One-shot iteration
requires additional effort due to adjoint and parameter updates. In this example, the
One-shot iteration step requires about 23 times the computational time needed for
one step of the spin-up. The costs can be reduced to a factor of only eight, if the
update of BJac is performed only every fifth iteration step.

Table 1 summarizes the use of Automatic Differentiation (AD) in the realization
of the One-shot method.
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4 One-Shot in Function Spaces

For the treatment of the One-shot method in function spaces we again consider
problem (DOP) for general Hilbert spaces U and Y . Here, c.u; y/ D 0 with
c W U � Y ! Y � denotes the governing equations in form of a PDE. In order
to define the Lagrange function with respect to the fixed point operator G.u; y/ in
a Hilbert space setting correctly we need to consider the transition from the PDE
to the fixed-point formulation. According to [13], this is given in terms of a linear,
bounded and bijective operator F.y/ W Y ! Y � so that

c.u; y/ D F.y/Œy �G.u; y/�:

For the sake of simplicity, we assume F.y/ to be independent of u. The Lagrangian
is now defined incorporating the fixed-point formulation as follows

L.u; y; Ny/ D f .u; y/ � h Ny; c.u; y/iY;Y �

D f .u; y/ � hF.y/� Ny; y �G.u; y/iY �;Y : (4.1)

Computing the KKT system based on (4.1) yields a fixed-point formulation of the
optimality system and a simultaneous update of state, adjoint and design equation

yC D G.u; y/ (4.2)

NyC D ˆ.u; y; Ny/ (4.3)

uC D u � B�1Lu.u; y; Ny/: (4.4)

with an appropriate preconditioner B . Here, the operator ˆ.u; y; Ny/ in (4.3) is the
fixed-point operator of the adjoint equation and defined by (see [13])

hF.y/�ˆ.u; y; Ny/;wiY �;Y WD fy.u; y/w � h Ny; Fy.y/wŒy �G.u; y/�iY;Y �

C hF.y/� Ny;Gy.u; y/wiY �;Y

for all w 2 Y . Note that it holds

Ly.u; y; Ny/w D hF.y/�ˆ.u; y; Ny/;wiY �;Y � hF.y/� Ny;wiY �;Y :

In [13] a convergence proof is given for the general case and specified for model
problems including the solid fuel ignition model and the viscous Burgers equations.
In the following, we only note the leading steps of the general convergence proof.
Therefore, consider the augmented Lagrangian defined as

La.u; y; Ny/ D L.u; y; Ny/C ˛

2
kG.u; y/ � yk2Y C ˇ

2
kˆ.u; y; Ny/ � Nyk2Y (4.5)

with the penalty parameters ˛; ˇ > 0. The convergence proof follows the idea of the
finite dimensional setting to show that the augmented Lagrangian acts as a penalty
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function, i.e. that every local minimum of the original optimization problem (DOP)
is also a local minimum of La. Further, we show that the One-shot method yields
descent on La and therefore reaches the minimum correctly. The next theorem
(cf. [13]) is the main result in this procedure and ensures the equivalence of the
stationary points as well as the descent condition.

Theorem 4.1. If there exist constants ˛ > 0 and ˇ > 0 such that the following
conditions are fulfilled

˛.1 � �0/ � ˛2

2Q� kGuk2 > kF.y/k C ˇ

2
kˆyk;

ˇ.1 � �0/ > kF.y/k C ˇ

2
kˆyk; and � >

Q�
2
;

for a positive preconditioner B with .Bh; h/U 	 �khk2U , kˆ Nyk � �0 < 1 and a
constant Q� > 0, then a point is a stationary point of La if and only if it is a solution
of the KKT-system to (DOP). Additionally, the increment vector of the One-shot
method is a descent direction for La.

These general conditions are difficult to verify. Nevertheless, for specific model
problem they can be simplified and tested [13]. Numerical investigations of
the method, with a preconditioner chosen as a scaled identity operator, show a
mesh-independent behavior for several model problems:

Example (see [13]). Consider the minimization of the tracking type functional

minf .y; u/ WD 1

2

Z
�

jy � zd j2 dx C �

2

Z
�

juj2 dx

subject to .y; u/ 2 H1
0 .�/ � L2.�/ fulfilling the Viscous Burgers equation

���y C .y � r/y D u in �; and y D 0 on �:

The corresponding first order optimality system

���y C .y � r/y � u D 0; yj� D 0

��� Ny � .y � r/ Ny � div.y/ Ny C .ry/T Ny � y C zd D 0; Nyj� D 0

�u C Ny D 0 a.e. in �:

was solved by the One-shot iteration:

yC D G.y; u/ D .���C y � r/�1.u/
NyC D .��� � y � r � div.y//�1.y � zd � .ry/T Ny/

uC D u � 1

�
.�u C Ny/

The resulting number of iterations for the 2D case are given in Table 2.
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Table 2 2D Burgers equation with � D 0:01, � D 0:1 and zd � 1

# Degree of freedom � D 0:5 � D 0:55 � D 0:6 � D 0:65 � D 0:7

882 389 424 460 497 534

1922 1 429 459 494 530

3362 1 1 460 493 529

5202 1 1 463 493 528

It is important to note that in this example the focus does not lie on the efficiency
of the method, it rather demonstrates the mesh-independency. Therefore, the total
number of iterations necessary for the optimization does not increase significantly.
The formulation and analysis of the method in function spaces as well as the
numerical mesh-independent behavior motivates an extension of the method in
terms of an additional adaptive step (cf. [13]).

5 Adaptive Sequencing of Primal, Adjoint and Control
Updates

As a part of our research we also considered various stepping schemes, one of
them being the Multistep One-shot (1.3). Assuming for the analysis that the design
variables were transformed in such a way that the projected Hessian is the identity,
i.e., we set u D T Qu and Qu D T �1u if T �>T �1 WD H� D H.1/, we were able (see
[5]) to bound all complex eigenvalues of the Jacobian

J� D @.uC; yC; NyC/
@.u; y; Ny/

for the coupled iteration in terms of the problem dependent quantities

d � kLyyk k QZk2; e � ��LyQu CLyy QZ�� k QZk; and � � kI � ˛step QB�1Seidk:

Here QZ D Z T and QBSeid D T >BSeidT represent the transformed quantities.

Proposition 5.1. Under the stated assumptions all eigenvalues 	 2 C of J� for the
Multistep One-shot iteration with the preconditioner matrix BSeid satisfy

j	j � � or j	j � � C �
�
d �2.�; j	j/C 2 e �.�; j	j/ : (5.1)

where � D �s0, � D ˛stepk QB�1Seidk and �.�; j	j/ D �.j	j C 1/=.j	j � �/.

Note that Lyy D @Ly=@y is the partial derivative of the adjoint equation w.r.t.
y and LyyZ C Lyu D dLy=du is the total derivative of the adjoint equation w.r.t.
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u. thus, e and d can be understood as a measure for the sensitivity of the adjoint
equation with respect to state and design, respectively. Moreover, we have:

Proposition 5.2. If � < 1, then by adjusting s and thus � D �s0, any rate � 2
.�; 1/ can be attained as upper bound of the spectrum of J�. The following relation
between s, � and � for given e, d , � and � is sufficient:

�s0 D � � ��.�/ D �.� � �/
.� � �/C �.1C �/

�p
d.� � �/=� C e2 C e

� (5.2)

In other words, we found a sufficient condition on the number s of primal and
adjoint iterations that ensures the local convergence of the approach in terms of the
above mentioned quantities.

Corollary 5.3. The spectral radius � of J� is less than 1 if the number of inner
iterations s 2 N satisfies

s > s D log.1=�0/
h
1C 2

�p
d .1 � �/=� C e2 C e

�
�=.1 � �/

i

This theoretical lower bound on the number s of primal and adjoint updates
was used to implement an self-adapting algorithm ABOSO. Within the algorithm all
required quantities, such as e, ı, �; and �0, are approximated by difference quotients
and other already computed information instead of the exact calculation which is in
general too expensive. Also, the measurements are averaged over the last iterations
to have more reliable estimates.

Example. The self-adapting algorithm was verified on various examples, e.g. on the
non-linear problem Bratu problem (see [15])

min
.u;y/

1

2
k@2y. � ; 1/� �1k2L2.�/ C �

2
kuk2H1.�/

; .u; y/ 2 H1.�/ � H1
0.�/ s.t.

��y D 	 exp.y/ in �; y.s; 1/ D u.s/; y.s; 0/ D �2.s/; y.1; t/ D y.0; t/

that describes the combustion of solids over the unit square � D Œ0; 1�2 � R
2

for given functions �1 and �2. The fixed-point function yC D z D G.u; y/ was
computed on purpose in a Seidel type iteration by solving the implicit univariate
equations

zij � h2

4
exp.zij/ D ymean D 1

4
.yi;j�1 C yi;jC1 C yi�1;j C yiC1;j /

using the equidistant grid points .i=m; j=m/ with m D 12 so that ym;j D y0;j and
copying the values ui into zi;m after each inner iteration. Naturally, there are faster
solvers for this elliptic problem, but we deliberately wished to mimic slow fixed
point solvers in more complicated application areas. The behavior of the algorithm
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Fig. 5 Residuals for the simulation (right)and optimization(left)

is displayed in Fig. 5 for the parameters 	 D 1 and � D 10�4. In particular, it can
be seen by comparing the residual of the simulation without design changes on the
left side and the residual of the optimization on the right that the retardation factor
is approximately 2:5, i.e. for achieving the same residual in the optimization only
an small number of additional simulation steps by a factor of 2:5 is required.

6 Application in Aerodynamic Shape Optimization

We have applied the Multistep One-shot method for the shape optimization of
a NACA0012 airfoil at transonic flow conditions using Euler equations. As the
shape parameterization, the free-node parametrization is chosen, in which all the
mesh points on the airfoil surface are taken as shape parameters. This type of
parameterization enables that maximum degree of freedom can be given to the
optimization algorithm. The shape sensitivities, which are required for the One-
shot method, are computed using the consistent discrete adjoint approach based on
Automatic Differentiation [6]. Although this approach is slower than the continuous
and hand-discrete adjoint approaches, it has been chosen because of its robustness
and its ability to compute exact derivative information without utilizing any
approximations. The test case is chosen as the inviscid drag minimization scenario
at constant lift. The Mach number and the angle of attack for this case are chosen
as 0.85 and 2 respectively. The grid used for the study is the 325 � 65 C-type grid
with 196 grid points on the airfoil surface. As it can be seen in the Fig. 6, the initial
NACA0012 airfoil creates a strong inviscid shock on the suction side of the airfoil,
which leads to a high amount of drag in the transonic flow regime (left figure). In
the right figure, the pressure distribution for the optimized shape is illustrated. It can
be observed that inviscid shock disappears in the optimized airfoil, which leads to a
substantial drag reduction of 60% while maintaining the lift.

In order to assess the performance of Multistep One-shot method, we have made
a comparison between a nested optimization approach using BFGS method with
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Fig. 6 Initial NACA0012 and optimized airfoils with pressure contours for the transonic case

Table 3 Iteration count and run-time measurements for the primal simulation, nested optimization
and One-shot optimization

Case Iteration counts Ret. factor Run-time (s) Ret. factor

Primal simulation 2613 1 107 1

Nested opt. 192788 73.8 102016 953

One-shot opt. 10140 3.9 3867 36.1

line searches and One-shot method with s D 10. The performance results of both
methods compared to a single primal simulation are presented in Table 3. The nested
approach takes totally 11 adjoint and 65 primal solver evaluations. Note that in the
nested approach, the number of iterations taken by the primal and adjoint solvers
for each run vary since five decade residue fall is set as the stopping criteria. The
nested approach takes totally 192;788 primal/dual steps and the optimization takes
ca. 28 h on a 2.4 GHz Intel machine. The retardation factor of the nested approach is
measured as 73:8 in iteration counts and 107 in run-time. As it can be observed from
the results, the One-shot method is significantly faster than the nested approach and
has a factor of retardation 3:9 in iteration counts and 36:1 in run-time.

7 One-Shot Optimization with Unsteady PDE Constraints

For time-dependent PDEs, the state variable varies with time and thus is a function
yW Œ0; T � ! Y . The objective function to be minimized is typically given by some
time averaged quantity. The general formulation of the optimization problem with
unsteady PDEs reads

min
u;y

1

T

Z T

0

f .u; y.t// dt s.t.

(
@y.t/

@t
C c.u; y.t// D 0 8t 2 Œ0; T �

y.0/ D y0 :
(7.1)
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Unsteady PDEs are typically discretised by an implicit time marching scheme. The
resulting implicit equations are solved iteratively by applying a fixed point solver at
each physical time step until a steady-state solution at that time step is achieved:

for i D 1; : : : ; N W yikC1 D G.u; yik; y
i�1� ; yi�2� ; : : :/

k!1����! yi� (7.2)

Here, yi� denotes the converged steady-state at the discrete time step ti D i�t . N
is the total number of time steps, given by T D N�t . The contractive fixed-point
iterator G not only depends on the design variable but also on the converged state
solutions at previous time steps.

In order to extend to One-shot, where one incorporates design updates already
during the primal flow computation, the time marching scheme (7.2) is modified as

for k D 1; 2; : : : W yikC1 D G.u; yik; y
i�1
kC1; yi�2kC1; : : :/ 8i 2 f1; : : : ; N g :

(7.3)

In contrast to (7.2), where fixed point iterations are performed at each time step for
a state yi , in the One-shot framework (7.3) the complete trajectory of the unsteady
solution is updated within one iteration. Interpreting the state as a discrete vector
from the product space y 2 Y N WD Y � : : : � Y with state components yi , we can
write (7.3) in terms of an update function

ykC1 D H.u; yk/ (7.4)

where HWU � Y N ! Y N performs the update formulas (7.3) for all time steps.
Using the contractivity of the fixed point iterator G it can be shown, that H is
contractive with respect to y 2 Y N and, thus, yk converges to the unsteady solution
of the PDE (cf. [10]).

Replacing the unsteady PDE constraint by the fixed point equation y D H.u; y/,
the Lagrangian function corresponding to the unsteady optimization problem is
defined as

L.u; y; Ny/ WD I.u; y/C NyT .H.u; y/� y/ ; (7.5)

where I.u; y/ D 1
N

PN
iD1 f .u; yi / approximates the objective function. This

formulation has the same structure as the definition of the Lagrangian in Sect. 1.
Thus, the concept of One-shot optimization can be applied in the same way by
replacing the fixed point iterator with the mapping H and the objective function
with the approximation I .

For a fixed design u 2 U , iterating only in the state and the adjoint variable
simultaneously in the so called piggy-back iteration is implemented for the problem
of optimal active flow control around a 2D cylinder. Eight actuation slits are
installed on the surface of the cylinder where sinusoidal blowing and suction is
applied in order to reduce vorticity downstream the cylinder. Amplitude and phase
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Fig. 7 Convergence history
of primal and adjoint states
for incompressible URANS
in One-shot framework

shift of the actuation are used as design variables. The governing incompressible
URANS (unsteady Reynolds-averaged Navier-Stokes) equations are solved by
applying the new approach to a second order implicit finite volume code. To
study the convergence behavior, the L2-norm of the state and the adjoint residuals
ky � H.u; y/k2, kLy.u; y; Ny/k2 are computed. From Fig. 7 it can be observed, that
both variables converge with the same asymptotic convergence rate. In future, a
preconditioned control update will be incorporated in the piggy-back iteration for
the implementation of One-shot in unsteady framework.

Conclusion
In the second phase of the project, the theoretical results and the applications
from the first one have been extended in different ways. First of all, it
was possible to quantify the retardation factor of some test problems and
Newton, Jacobi and multigrid iterations. Moreover, the application of the One-
shot method in its Jacobi variant was shown to be feasible and successful
for parameter optimization in complex, spatially three-dimensional climate
models using a fixed-point type iteration to compute steady seasonal cycles.
These results show a high potential for application on various real-world
problems in climate research, thus emphasizing the interdisciplinary benefit
of the project.

Whereas these theoretical results and applications are based on the
finite-dimensional setting of the method, we additionally extended the theory
for the One-shot Jacobi variant on two prominent infinite-dimensional prob-
lems, namely the viscous Burger and the solid fuel ignition model. For both
cases also numerical studies were performed.

(continued)
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Furthermore, we developed the Multistep One-shot method that uses an
adaptive sequencing or adjustment of the number of primal, adjoint and
control updates used during the algorithm. For this method, we provide a
theory relating the number of necessary primal and adjoint steps per control
update to the spectral radius of the Jacobian and thus the convergence speed
of the coupled iteration. This modified method was applied successfully in
shape optimization in Computational Fluid Dynamics. In this context, we also
extended the method to non-linear (inner) iterations in non-stationary flow
solvers.
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On a Fully Adaptive SQP Method
for PDAE-Constrained Optimal Control
Problems with Control and State Constraints
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Abstract We present an adaptive multilevel optimization approach which is
suitable to solve complex real-world optimal control problems for time-dependent
nonlinear partial differential algebraic equations with point-wise constraints on
control and state. Relying on Moreau-Yosida regularization, the multilevel SQP
method presented in Clever et al. (Generalized multilevel SQP-methods for
PDAE-constrained optimization based on space-time adaptive PDAE solvers. In:
Constrained optimization and optimal control for partial differential equations.
Volume 160 of International series of numerical mathematics. Springer, Basel,
pp 37–60, 2012) is extended to the state-constrained case. First-order convergence
results are shown. The new multilevel SQP method is combined with the
state-of-the-art software package KARDOS to allow the efficient resolution of
different space and time scales in an adaptive manner. The numerical performance
of the method is demonstrated and analyzed for a real-life three-dimensional
radiative heat transfer problem modeling the cooling process in glass manufacturing
and a two-dimensional thermistor problem modeling the heating process in steel
hardening.
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1 Introduction

To explore the fundamental scientific issues of high dimensional complex engi-
neering applications such as optimal control problems with time-dependent par-
tial differential algebraic equations (PDAEs) scalable numerical algorithms are
requested. This means that the work necessary to solve increasingly larger problems
should grow all but linearly – the optimal rate. Therefore, we combine modern
numerical solution strategies to solve time-dependent systems of PDAEs such as
adaptive multilevel finite element methods and error-controlled linearly implicit
time integrators of higher order with novel generalized adaptive multilevel SQP
methods. The environment is used to solve two showcase engineering applications
arising during the manufacturing process of glass and steel.

In this paper, we present a multilevel algorithm for optimal control problems
governed by a system of partial differential equations (PDEs) or partial differential
algebraic equations (PDAEs), which do not only contain control constraints but also
state constraints. More specifically, we consider

min
y2Y;u2UJ.y; u/ s.t. C.y; u/ D 0; u 2 Uad; y 2 Yad; (P)

where J W Y � U ! R is the objective function and C W Y � U ! V � is the
state equation. The control space is a Hilbert space U , for concreteness U D L2,
the state space Y and the space of test functions V are Banach spaces. The state
equation C.y; u/ D 0 is assumed to be a system of PDEs or PDAEs in weak form
and the control and state constraints are defined by

Yad WD fy D .yC ; yF / 2 Y j ya � yC � ybg;
Uad WD fu 2 U j ua � u � ubg;

with ya; yb; ua; ub 2 L1. Here, yC are the constrained components of y and we
assume that y 2 Y implies that yC 2 C0.

For simplicity of presentation, we assume in the following, that all state variables
are constrained, i.e. Y � C0 and Yad WD fy 2 Y j ya � y � ybg. Our considerations
are based on the generalized multilevel adaptive SQP method presented in [5, 31].
It was developed in the first funding period of this program for control-constrained
problems, see also the dissertation of Ziems [29] and the papers [30, 32]. The main
idea of this “first-optimize-then-discretize” – approach is to combine a trust-region
SQP method with a successive adaptive grid refinement based on appropriate error
estimators. In the generalized multilevel SQP method, the discretized state and
adjoint PDE are solved exactly in contrast to the inexact SQP method of Ziems
and Ulbrich [29, 30, 32].
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In [5,31], the multilevel SQP algorithm has been designed for control constrained
optimal control problems. Here, we will involve state constraints by combining
this method with the Moreau-Yosida regularization. More precisely, we solve the
Moreau-Yosida regularized subproblems with the multilevel SQP method. In order
to fulfill the assumptions of the multilevel SQP method, we choose for simplicity a
cubic regularization of the state constraints. However, also a quadratic regularization
can be used, which leads to a nonquadratic SQP subproblem.

Moreover, we extend this approach to a new multilevel SQP method for state
constraints. To this end the error control criteria invoke now the penalty parameter
in addition to the criticality measure and we couple the penalty parameter update
with the criticality measure. This allows us to show a first-order convergence result.

We realize the algorithm by coupling it with the software package KARDOS

based on a semi-discretization of Rothe’s type. For each PDAE the space-time mesh
is refined adaptively to meet a predefined accuracy depending on the optimization
progress. Due to the modular structure of the algorithm, we can exploit the structure
of each PDE separately. This reduces the computational costs in such a way that we
obtain a highly efficient optimization method.

In [5], we have treated control constraints only in a theoretical way. In order
to numerically cope with them we use an inexact variant of the projected Newton
method [1, 13] that uses an �-active set strategy and a projected BiCGstab method
[5, 29]. Our numerical examples, the glass cooling problem and the thermistor
problem, contain in parts control and state constraints, PDAEs as state equation and
additionally difficult computational domains. Despite these obstacles of real-world
applications we see that our algorithm works very well in practice.

The paper is organized as follows. In Sect. 2 we introduce the basic concepts and
develop the adaptive multilevel SQP method for state constraints based on Moreau-
Yosida regularization. Moreover, we summarize first-order convergence results. In
Sect. 3 we describe the realization of the algorithm by using the PD(A)E-solver
KARDOS. Finally we present numerical results for the glass cooling problem and
the thermistor problem.

2 Adaptive Multilevel Generalized SQP Method

Our goal is to extend the multilevel SQP method of [5, 31] for control-constrained
problems to state constrained problems of the form (P). It is well known that the
efficient numerical treatment of state constraints is involved, since the Lagrange
multipliers for the state constraints are Radon measures. Hence, the complemen-
tarity conditions cannot be written in a pointwise fashion. Therefore, we apply
Moreau-Yosida regularization to approximate the state constraints by a penalty term.
The regularized problem can be solved by the adaptive SQP method of Ziems and
Ulbrich [29, 31]. By coupling the adaptive mesh refinement with the adjustment
of the penalty parameter we will obtain a new multilevel SQP method for state
constraints.
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Assumptions We make the assumptions of [31].

• The functionals J and C are twice continuously Fréchet differentiable
• The derivative Cy.u/ has a bounded inverse for all u 2 U
• The functionals J; Jx; Jxx; C; Cu are bounded

see [31] for more details. Moreover, we assume that every local solution Nu of (P)
satisfies the Slater-type condition

9u0 2 Uad W G.Nu/CG0.Nu/.u0 � Nu/ 2 int.Yad/:

These assumptions ensure in particular that first order necessary conditions hold at
local solutions of (P). We assume that they hold throughout this section.

2.1 Moreau-Yosida Regularization

An efficient approach to treat state constraints is a quadratic penalty approach,
which is often called Moreau-Yosida regularization in this context. The basic idea
is to replace the state constraints by a penalty term [9, 12]. For shorter notation,
we consider only state constraints from above, the bilateral case can be treated
analogously. We use the penalty function

R W Y ! R; R.y/ D 1

p

Z
�

.y.!/ � yb.!//
p
Cd!; (2.1)

where p 	 2 and . � /C D max.0; � /. While the usual choice p D 2 would also
be possible in our multilevel method, we use for simplicity the choice p D 3,
since R is then twice continuously differentiable which allows to work with a
quadratic subproblem in the SQP method. We now approximate (P) by the following
regularized subproblems for � > 0; p D 3.

min
y2Y;u2U J

� .y; u/ D J.y; u/C �R.y/ s.t. C.y; u/ D 0; u 2 Uad: (2.2)

The basic procedure is now to solve this subproblem for a fixed � > 0. Then � is
increased and the new subproblem is solved where the starting iterate is the solution
of the previous subproblem. We will embed this approach in a multilevel scheme
with error control.

Neitzel and Tröltzsch [24] showed for semilinear parabolic optimal control
problems that there exists a sequence of global solutions .x� /�>0 of (2.2) that
converges strongly in L2 to the original solution. Meyer and Yousept proved in
[23] for an optimal control problem governed by the stationary heat equation with
radiation that a similar result holds also for a sequence of local solutions.
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It can be shown by standard arguments that for a local solution .y� ; u�/ of (2.2)
the first order necessary optimality conditions are satisfied:

C.y� ; u� / D 0;

L�y.y� ; u� ; 	� / D 0; (2.3)

PUad�u� .�ruL
�.y� ; u� ; 	� // D 0;

where L�.y; u; 	/ D J � .y; u/ C h	;C.y; u/iV;V � , ruL
�.y� ; u� ; 	� / 2 U denotes

the Riesz representation of L�u .y� ; u� ; 	� / and PUad�u� is the orthogonal projection
onto Uad � u� .

2.2 Multilevel Generalized Adaptive SQP Algorithm

Since the penalized subproblems are no longer state constrained we can apply the
adaptive SQP method. In this subsection we will give a short summary of this
method for the penalized subproblem (2.2) with fixed � > 0.

Discretization For simplicity of presentation, we choose a conformal finite ele-
ment discretization, i.e. the discretized spaces Yh; Uh, and Vh are subspaces of the
infinite dimensional spaces Y;U and V and Uh

ad � Uad, see [29, 31]. We introduce
the discretized optimization problem of (2.2) by

min
yh2Yh;uh2Uh

J � .yh; uh/ s.t. Ch.yh; uh/ D 0; uh 2 Uh
ad; (2.4)

where h indicates the current grid. Denote by y D G.u/ and yh D Gh.uh/
the solution operators of the state equation C.y; u/ D 0 and the discretized
state equation Ch.yh; uh/ D 0, respectively, and by 	 D Gad;� .y; u/ and 	h D
Gh

ad;� .y
h; uh/ the solution operators of the adjoint equation and the discretized

adjoint equation. We assume that the discretization schemes are convergent, i.e., for
any u 2 U we can generate a sequence of grids hk such that kGhk .u/�G.u/kY ! 0

and kGhk
ad;� .G

hk .u/; u/ � Gad;� .G.u/; u/kV ! 0 as k ! 1. For simplicity we
assume that the control spaces are nested, i.e., Uhk � UhkC1

� U .

Reduced trust-region SQP subproblem Let hk denote the current grid, uk 2 Uhk
the current control and yk D Ghk .uk/, 	k D G

hk
ad;� .yk; uk/ the corresponding

discrete state and adjoint state. We obtain the reduced SQP subproblem of (2.4)
by approximating the objective function quadratically and the constraints linearly.
Thus, the next iterate is computed by xkC1 D .ykC1; ukC1/ with ukC1 D uk C
su;k ; ykC1 D Ghk .ukC1/, where su;k is the solution of the reduced SQP problem at
.xk; 	k/ with trust region radius�k > 0
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min
su;k2Uhk

q
�

k .su;k/ WD J
�

k C
�

Oghk� ; su;k

�
U

C 1

2

D
su;k ; OH�

k su;k

E
U;U�

s.t. uk C su;k 2 Uhk
ad ; ksu;kkU � �k; (2.5)

where J �k D J �.xk/; Oghk� D ruL
�.xk; 	k/ denotes the Riesz representation of

L
�
u .xk; 	k/ and OH�

k is an approximation of the reduced Hessian. The discretized
state and adjoint equation lead to inexact solutions of the state and adjoint equation,
i.e., kC.yk; uk/kV � � "

y

k , kL�y.xk; 	k/kY � � "	k , and we will reduce these errors
appropriately within the multilevel method.

2.3 Multilevel SQP Method for State Constraints

The aim is to solve the penalized subproblems (2.2) with an adaptive SQP method.
Recall that the original adaptive multilevel SQP method of [29,31] solves problems
of the form (2.2) by using subproblems similar to (2.5) but without penalty term
in the objective function. It can be shown that the convergence theory of [29, 31]
remains valid for the regularized problem (2.2) with fixed � .

Additionally we will integrate a penalty parameter update and modify the refine-
ment conditions of the grid. For that, let us introduce the function a W R

C ! R
C

which is monotone decreasing and which satisfies

lim
�!1a.�/ D 0: (2.6)

2.3.1 Refinement Conditions

The refinement conditions rely on the adaptive SQP method of Ziems and Ulbrich,
see [29, 31]. Thus we assume that we have reliable error estimators �hky ; �

hk
	 ; �

hk
u

available such that with constants C1; C2; C3 > 0 holds

kC.yk; uk/kV � � C1�
hk
y .yk; uk/; (2.7)

kL�y.yk; uk; 	k/kY � � C2�
hk
	 .yk; uk; 	k/; (2.8)

kPUad�uk .� Oghk� /� P
U
hk
ad �uk

.� Oghk� /kU � C3�
hk
u . Oghk� ; uk/: (2.9)

These error estimators can be regarded as a measure for the quality of the discretiza-
tion. In contrast to the former adaptive SQP method without state constraints, the
new refinement conditions are not only dependent on the criticality measure but also
on the penalty parameter and the stopping parameter. We now check the following
refinement criteria:
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�hky .yk; uk/ � max. Qc1kPUhkad �uk
.� Oghk� /kU ; Qc2a.�/; Qc3"term/; (2.10)

�
hk
	 .yk; uk; 	k/ � max. Qc4kPUhkad �uk

.� Oghk� /kU ; Qc5a.�/; Qc6"term/; (2.11)

�hku . Oghk� ; uk/ � max. Qc7kPUhkad �uk
.� Oghk� /kU ; Qc8a.�/; Qc9"term/; (2.12)

with fixed "term > 0 and fixed constants Qci > 0; i D 1; : : : 9. Thus, the grid will
be refined adaptively if the criticality measure is small and the penalty parameter is
large compared to the accuracy of the discretization.

2.3.2 Penalty Parameter Update

Each request of a penalty parameter update in one fixed iteration k is called trial
iteration. We denote the number of trial iterations by l . We denote �k as the
last updated penalty parameter in a fixed iteration k and Q�k;l as the trial penalty
parameter in the k-th iteration and l-th trial iteration. We set Q�k;0 D �k�1.

For the penalty parameter update we check if the criticality measure and the stop
tolerance "term are smaller than a. Q�k;l /, more precisely

a. Q�k;l / > max.kPUhad�uk
.� OghkQ�k;l /kU ; "term/: (2.13)

If condition (2.13) holds, then we increase the trial penalty parameter, e.g., we set
Q�k;lC1 D � Q�k;l , for a fixed � > 1, l WD l C 1 and we go back to the beginning
of the algorithm. Otherwise we set �k D Q�k;l . In order to indicate that the penalty
parameter can differ for every SQP subproblem we write (SQP�k ).

As in the multilevel SQP method of [29, 31] we require that the approximate
solution of (2.5) satisfies a generalized Cauchy decrease condition and we evaluate
the step depending on the ratio of actual and predicted reduction. If the step is
rejected, the inexactness of the reduced gradient Oghk�k is controlled by the gradient
accuracy condition

j hJ �x .xk/; OskiX�;X �
�

Oghk� ; su;k

�
U

j

� �1 minfkP
U
hk
ad �uk

.� Oghk� /kU ;�kgksu;kkU (2.14)

for some �1 > 0 and with the tangential step Osk D ..Ghk .uk//0su;k ; su;k/. More
details can be found in [29, 31].

2.3.3 Algorithm

By combining these ingredients, we arrive at the following multilevel SQP method,
which is also visualized in Fig. 1.
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Fig. 1 Flowchart of the multilevel SQP Algorithm 2.1

Algorithm 2.1 (Multilevel SQP algorithm for state constraints).

0. Initialization: Choose "term > 0, �1 2 .0; 1/, Qci > 0; i D 1; : : : 9, � > 1, a
function a with the property (2.6) and an initial discretization h0. Set k; l WD 0.
Choose �0 > 0 and a starting control u0 2 Uh0

ad . Set Q�0;0 WD �0.
For k D 0; 1; 2; : : :

1. Compute the solution yk D Ghk .uk/ of the discretized state equation.
2. Compute the solution 	k D G

hk
ad;Q�k;l .yk; uk/ of the discretized adjoint equation,

OghkQ�k;l D ruL
Q�k;l .yk; uk; 	k/ and kP

U
hk
ad �uk

.� OghkQ�k;l /kU .

3. If the refinement conditions (2.10)–(2.12) hold for � D Q�k;l , then go to step 4.
Otherwise refine the Y -, V - or U - grid adaptively leading to an updated grid hk
and go to step 1 respectively 2.

4. If (2.13) holds then choose Q�k;lC1 	 � Q�k;l , set l WD l C 1 and go to step 2.
Otherwise set �k WD Q�k;l , l D 0 and go to step 5.
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5. If kP
U
hk
ad �uk

.� Oghk�k /kU � "term then stop and return xk as approximate solution

for (P).
6. Compute the step su;k as an inexact solution of (SQP�k ) satisfying a generalized

Cauchy decrease condition.
7. Compute ukC1 WD uk C su;k ; ykC1 WD Ghk .ukC1/, aredh.su;k/, predh.su;k/.
8. If aredh.su;k/

predh.su;k/
	 �1 then update the trust-region radius (as in [31]), accept the step

and go to step 9. Otherwise check the gradient condition (2.14). If it is fulfilled
then reject the step su;k and reduce the trust-region radius (as in [31]) and go back
to step 6. Otherwise refine the Y - and V -grid and go to step 1.

9. If a condition for reasonable refinement (see [31]) is satisfied then accept the step
su;k and go to step 2 with Q�kC1;0 WD �k and k WD k C 1. Otherwise reject su;k ,
refine the Y - grid properly and go to step 1.

Remark 2.2. In contrast to [29], the refinement conditions (2.10)–(2.12) in the
multilevel SQP method for state constraints involve additionally Qci � a. Q�k;l / for
i D 2; 5; 8. Under the assumptions on the discretization (see Assumption 3.2.1
of [31]) step 3 of Algorithm 2.1 is satisfied after finitely many refinements, since
Q�k;l is constant in step 3 and the error estimators become smaller than Qci � a. Q�k;l / for
i D 2; 5; 8 after finitely many refinements.

Remark 2.3. If we do not update the penalty parameter � and if we set
Qc2; Qc3; Qc5; Qc6; Qc8; Qc9 D 0 and Qc1; Qc4; Qc7 > 0 arbitrary in Algorithm 2.1 then it
coincides with the adaptive SQP method of [29, 31] applied to (2.2). Now the
convergence result of [29, 31] yields for "term D 0 and xk D .yk; uk/

lim inf
k!1

�
kC.xk/kV � C kL�y.xk; 	k/kY � C kPUad�uk .�ruL

�.xk; 	k//kU
�

D 0:

2.4 Auxiliary Lemmas

We analyze now the interplay of the mesh refinement with the adjustment of the
penalty parameter �k . The proofs build on the results in [29–32] and will be
published in a forthcoming paper.

Lemma 2.4. For "term > 0, step 4 of Algorithm 2.1 is satisfied after finitely many
trial iterations, i.e. for all k 2 N there exists l 2 N with

a. Q�k;l / � max.kP
U
hk
ad �uk

.� OghkQ�k;l /kU ; "term/: (2.15)

For "term D 0, we either obtain the same result as in the first case or we obtain an
iterate k with

lim
l!1kP

U
hk
ad �uk

.� OghQ�k;l /kU D lim
l!1 a. Q�k;l / D 0: (2.16)
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The next lemma is needed in order to apply convergence results of Moreau-
Yosida-type penalization to the above algorithm.

Lemma 2.5. Let "term D 0. Then Algorithm 2.1 produces infinitely many penalty
parameter updates, i.e. the sequence . Q�k;l /k;l is increasing and unbounded.

Theorem 2.6. Let �k be fixed in Algorithm 2.1. If "term D 0 then the algorithm
terminates finitely or

lim inf
k!1 kP

U
hk
ad �uk

.� Oghk�k /kU D 0:

If "term > 0 then the algorithm stops finitely with kP
U
hk
ad �uk

.� Oghk�k /kU � "term.

2.5 Main Convergence Results

The following convergence results extend our previous results in [29–32] to the case
of state constraints. The proofs will be published in a forthcoming paper.

Let us define the residual of the optimality system (2.3) for (2.2)

K.y; u; 	; �/ WD kC.y; u/kV � C kL�y.y; u; 	/kY � C kPUad�u.�ruL
�.y; u; 	//kU :

Our first convergence result addresses the case "term > 0.

Theorem 2.7. If "term > 0, Algorithm 2.1 terminates finitely. The last iterate
.yk; uk; 	k/ 2 Yhk � Uhk � Vhk satisfies with xk D .yk; uk/

kP
U
hk
ad �uk

.�ruL
�k .yk; uk; 	k//kU � "term;

kC.yk; uk/kV � � C1 max. Qc1; Qc2; Qc3/"term;

kL�ky .xk; 	k/kY � � C2 max. Qc4; Qc5; Qc6/"term;

a.�k/ � "term:

In particular, there holds

K.yk; uk; 	k; �k/ �.1C C1 max. Qc1; Qc2; Qc3/
C C2 max. Qc4; Qc5; Qc6/C C3 max. Qc7; Qc8; Qc9//"term:

Next we state the convergence of the criticality measure along a subsequence of
the iterates in the case that "term is zero.

Theorem 2.8. If "term D 0, the multilevel SQP algorithm for state constraints
generates a sequence of iterates that satisfies
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lim inf
kCl!1kP

U
hk
ad �uk

.� OghkQ�k;l /kU D 0; (2.17)

lim inf
kCl!1K.yk; uk; 	k; Q�k;l / D 0: (2.18)

In order to obtain stronger convergence results we need additional assumptions.
Let f D J ıG denote the reduced objective function. Let x�k D .y�k ; u�k / denote
a sequence of solutions of (2.2) that converges strongly to a solution Nx D . Ny; Nu/ of
the original problem (P), see also Sect. 2.1.

Assumptions

• For �k > 0 sufficiently large, there holds in the solution .y�k ; u�k / of (2.2) a
quadratic growth condition:

J �k .y; u/ 	 J �k .y�k ; u�k /C ˇP ku � u�kk2U ;

for all .y; u/ 2 Y � Uad with C.y; u/ D 0, ku � u�kkU � ıP , where ˇP and ıP
are independent of �k .

• The sequence uk of the adaptive SQP method for state constraints satisfies

kuk � NukU �
QıP
2
;

with QıP � ıP .
• Furthermore the second-order sufficient condition for uk holds

˝
f �k

uu .uk/.u � uk/; u � uk
˛
U�;U

	 �ku � ukk2U for all u 2 Uad;

for � > 0.
• The second derivative of the reduced objective function f �k

uu .u/ is bounded for
all u 2 Uad.

• The functions f �k
uu .u/; J

�k
x .y; u/ and C�1y .y; u/C.y; u/ are Lipschitz continuous.

The first, statement is for example shown for the elliptic case in [16] and [15].
The third statement holds in the elliptic case for u�k , see e.g. [16] and [15]. Thanks
to this, we obtain the third statement with the aid of the second one.

Now we state a convergence result in the case that there are no control constraints.

Theorem 2.9. If Uad D U and the above assumptions hold then there exists a
C > 0 such that it holds

kuk � u�kkU � C�kk Oghk�k kU� : (2.19)

Thus if "term D 0 and if we set a.�k/ D b.k/

C�k
with b W N ! R

C bounded, then for a
subsequence ukn of uk it holds

kukn � u�kn kU � b.kn/:
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If b is a null sequence then for this subsequence it holds

kukn � NukU ! 0 for �kn ! 1:

We consider now the case of control constraints. For that purpose, we addition-
ally need the following requirement.

Assumptions There exists C > 0 such that

Uad � BC .0/ D fu 2 U j kukU � C g:

Furthermore, C �u .y; u/ is bounded for all .y; u/ 2 Y � Uad and C �u ; J
�k
u , Gad;�k are

locally Lipschitz continuous w.r.t. y.

Theorem 2.10. Let all assumptions above hold then we have

ku�k � ukk2U � C�kkPUhkad �uk
.� Oghk�k /kU :

Additionally, let a be defined as in Theorem 2.9 then it holds for a subsequence ukn
of uk

kukn � u�kn k2U � b.kn/: (2.20)

If b is a null sequence then for this subsequence it holds

kukn � NukU ! 0 for �kn ! 1:

3 Numerical Experiments

To realize the presented multilevel SQP algorithm we couple it with the fully
space-time adaptive PDAE-solving environment KARDOS, which is based on a
semi-discretization of Rothe’s type. Here, we rely on linearly implicit one-step
methods of Rosenbrock type to integrate in time and multilevel finite elements to
discretize in space. In Sect. 3.1 we give a short overview about the coupling. For
more details on the KARDOS-based optimization environment we refer to [2,5]. For
a detailed description of KARDOS we refer to [7, 17].

To study the performance of the developed optimization environment, we focus
on two real-world applications. In Sect. 3.2 we present the optimization of the
cooling process in glass manufacturing [8, 22] and in Sect. 3.3 we discuss the
optimization of the heating process in steel hardening [11]. Using an appropri-
ate reduced model, the first application is a suitable test case for an optimal
boundary control problem on a three-dimensional computational domain with
point-wise constraints on the control. The second application describes a control
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and state-constrained optimal control problem on a two-dimensional non-convex
domain, where the control only acts on a small sub-interval of the boundary.

In both cases we consider a quadratic objective functional, where state and
control occur in separated terms, which are twice continuously differentiable on
the state and control space, respectively. The glass cooling problem is analyzed
in [25–27] with the state space Y D .W � V / \ L1..0; te/ � �/2, where
V D L2.0; teIH1.�//, W D fv 2 V W @tv 2 L2.0; teIV �/g, and the control
space U D H1.0; te/ of spatially constant boundary controls. For more details we
refer to [25–27]. For the Thermistor problem it is not sufficient to consider classical
L2-theory. It is necessary to use Lr -spaces in time and W 1;q-spaces in space with
r > 2q=.q� 2/ and q > d D 2 for the two-dimensional case. Furthermore we have
to take into account that the control u 2 L1..0; te/; L2.�N // only acts on a part of
the spatial boundary and that it vanishes on another part. For more details see [11].

3.1 Optimization Environment

Reporting on the results of the first funding period, we have presented the strategy
of coupling the multilevel SQP algorithm with the space-time adaptive PDAE
solver KARDOS in [5]. To tailor the grid refinement in accordance to the current
level of accuracy, we build on local error estimates and rely on the principle
of tolerance proportionality in time and hierarchical basis techniques in space.
However, the implementation we have presented in [5] only allows for problems
without additional constraints on control and state.

To include point-wise constraints on the control within the KARDOS-based
environment we use a projected Newton method for the approximate solution of the
SQP subproblem based on the �-active set strategy presented in [5], which has been
first introduced by Bertsekas [1] and further developed by Kelley [13] and Ziems
[29]. The main idea is to solve the Newton problem only on an underestimated
inactive set and combine it with a gradient step on the active part. Since the
implemented SQP method is matrix free, the reduced Hessian can only be applied
to a direction. Therefore, the reduced Hessian cannot be restricted directly, as it has
been suggested in [13]. To this end, we modify the linear solver as suggested in
[29] for CG. However, as in [5] we use BICGSTAB as inner iteration, since we use
an optimize-then-discretize approach which can lead to a slightly non-symmetric
reduced Hessian on the discrete level.

To include point-wise constraints on the state, we take advantage of a cubic
Moreau-Yosida regularization as described in Algorithm 2.1. The regularized
objective and all resulting modifications in adjoint system, adjoint-for-Hessian
system, and sensitivities are handled by the PDAE-solver KARDOS directly. Hence,
except for the refinement strategy (2.10)–(2.12), there is no difference of the
actual optimization code for the case with or without point-wise constraints on
the state. In particular there is no modification of the inner iteration. Note, that
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in the KARDOS-implementation we divide the global estimates �hky ; �
hk
	 for state

and adjoint error in a temporal and a spatial part and that the control discretization
is inherited by the state discretization. Therefore we can neglect (2.12) and
implement (2.10) and (2.11) by the four checkable conditions

�ft=xgy � maxfcft=xgy kP
U
hk
ad �uk

.� Oghk� /kU ; Qc2a.�/; Qc3"termg (3.1a)

�
ft=xg
	 � maxfcft=xg	 kP

U
hk
ad �uk

.� Oghk� /kU ; Qc5a.�/; Qc6"termg: (3.1b)

3.2 Glass Cooling Problem

The aim of the cooling process in glass manufacturing is to track the glass
temperature distribution as close as possible to a desired profile, for which good
performance of the involved chemical processes is known. The cooling process itself
takes place in a preheated furnace, where the spatially constant furnace temperature
acts as control on the glass surface. Due to the physically given operation interval of
the furnace the control has to be restricted to the feasible setUad WD Œ300; 1;200�. For
regularization reasons, we additionally include a tracking of the glass temperature
at final time and a tracking of the control to a given guideline. Due to the high
temperatures that occur especially at the beginning of the cooling process, the
direction- and frequency-dependent thermal radiation field and the spectral radiative
properties of semi-transparent glass play a dominant role.

As state system, which describes the behavior of the glass temperature with
respect to the control, we consider the well studied Gray-Scale-Model on a space-
time cylinder with three dimensional spatial domain. In this model, radiation
is described by a mean intensity, averaging the dependency on wavelength and
frequency [14]. It leads to a system of PDEs of differential-algebraic type with a
highly nonlinear coupling of state and control. For an analysis of the well-posedness
of the problem, we refer to [25]. For more details on the model, the objective
function and the parameters, we refer to [2].

In the following, we examine the performance of the 3d-optimization environ-
ment on the computational domain �3d, which is given by the convex hull of the
eight points

p1 D .�1;�1;�1/; p2 D .1;�1;�1/; p3 D .1; 1;�1/; p4 D .�1; 1;�1/;
p5 D .0:5; 0:5; 1/; p6 D .1; 0:5; 1/; p7 D .1; 1; 1/; p8 D .0:5; 1; 1/;

see Fig. 2a. We use linear finite elements and the third-order Rosenbrock method
ROS3PL [18,19] to solve the underlying PDAEs. On each level of accuracy the grids
are adaptively refined to meet the accuracy requirements of the current level, using



On a Fully Adaptive SQP Method for PDAE-Constrained Optimal Control. . . 99

p1

p8

p2

p4

p6

p7

z

x

y

0 0.1
300

600

900

 fu
rn

ac
e 

te
m

pe
ra

tu
re

time

uinit
u1
u2
u3
u4
uopt

a b

p5

Fig. 2 Spatial domain and optimal control. (a) Three dimensional computational domain�3d with
initial grid. (b) Control iterates and optimal control

the refinement constants cty D 5:0e�3, cxy D 2:5e�2, ct	 D 5:0e�2, cx	 D 5:0e�1,
and Qc2 D Qc3 D Qc5 D Qc6 D 1:0e�5. The optimization starts on a common time
grid of 17 nodes and an initial spatial grid with 1;399 spatial nodes for the state
system. To meet the required accuracy in the adjoint system, the number of spatial
nodes varies between 1;399 and 3;672. The optimization algorithm terminates after
five optimization iterations, on a space-time mesh with 73 time steps and up to
72;987 spatial nodes. Then, the objective value is reduced by more than 50% and
the criticality measure by approximately three orders of magnitude.

The optimal control uopt WD u5 and all previous control iterates are shown in
Fig. 2b. The level lines of the glass temperature at final time resulting from the
optimal control uopt through three representative cuts through the geometry are
shown in Fig. 3. On the left (Fig. 3a) we study the glass temperature evolution at
the bottom of the pyramid. In the middle we see the cut through z D 1

3
(Fig. 3b) and

on the right we cut the geometry at y D 0:5 which is a vertical cross section through
the points p5 and p6 (Fig. 3c). In all figures, the level lines have a distance of ten.
Hence, the closer the lines are in a certain region, the greater are the temperature
changes within this region. It can be seen that the optimal control enforces a final
state that is close to the desired value of 300 in terms of an integral mean and is
distributed quite homogeneously.

In Table 1 we present the reduction of objective values and criticality measures
during the optimization. In column 4 and 5, we show the number of grid points of
the state and adjoint space-time mesh, autonomously controlled by the multilevel
strategy. Comparing the coarsest level of accuracy to the finest, we see an increase
of the number of grid points by a factor of 60. In the fifth column we present the
number of inner iterations, which we restrict to a maximum of 5. Whereas in the
first two outer iterations the inner iteration terminates due to a small residuum in
the last three outer ones it terminates due to the number of maximum iterations. In
the last column, we show the numerical effort in each optimization iteration. It is
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Fig. 3 Glass temperature distribution resulting from optimal control uopt. (a) Bottom. (b) Cross
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Table 1 Optimization protocol, Glass Cooling Problem

Opt. it. Objective Crit. meas. dofy dof	 #it. BICGSTAB cpt (%)

0 1.4602eC03 4.0245eC01 23,783 26,056 – 0.001

1 5.4880eC02 2.8733eC00 23,783 25,683 2 0.04

1 5.5664eC02 2.9758eC00 49,869 53,775 – 0.04

2 5.4908eC02 3.4451e�01 49,869 51,704 5 0.35

2 5.4507eC02 9.5386e�01 139,208 144,550 – 0.07

3 5.4478eC02 3.0787e�01 148,263 151,285 5 1.05

3 5.5319eC02 5.4405e�01 426,208 426,192 – 0.50

4 5.5302eC02 1.0118e�01 428,554 428,538 5 9.96

4 5.6995eC02 8.5377e�01 1,716,852 1,713,806 – 2.84

5 5.6997eC02 6.8337e�02 1,756,763 1,753,717 5 85.10

remarkable that the last optimization iteration on the finest level requires more than
85% of the entire computing time, whereas the other four iterations need less than
15%.

For more details on the model and the involved parameters and on further
numerical experiments including a wider class of objective functionals and different
approximative models for the radiative heat transfer equations we refer to [2–4].

3.3 Thermistor Problem

The task is to heat the teeth of a steel rack up to a desired temperature profile by
induction of a direct current on a part of the boundary. In a second step the steel rack
is cooled immediately such that it gets hardened.

The non-convex computational space-domain together with the initial grid is
shown in Fig. 4a, top. The current is induced on �N . The temperature is tracked
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Fig. 4 Steel rack with initial grid. (a) Domain � with boundary �N and �D . (b) Zoom including
sub-domain D WD �\ ..0:1; 0:3/ � .0:015; 0:02// (highlighted)

within D WD � \ Œ.0:1; 0:3/ � .0:015; 0:02/�, which is the domain covered by the
teeth, see Fig. 4b. The rack is quite similar to the one considered in [11]. However,
we cut the tips of the teeth to obtain a more realistic shape and substitute the 19
teeth by just 7 teeth, which is only motivated by reasons of visualization. Note, that
the initial grid is significantly refined in the region of the teeth.

In the following we determine an optimal control for the first part of the process,
where heating takes place. The state y WD .�; '/ consists of the steel temperature �
and the electrical potential '. The control is the current u. The state system, which
describes the temperature evolution in accordance to the induced current, is given
by the following system of partial differential algebraic equations:

C�@t� � r � .�r�/ D .�.�/r'/ � r' in Q (3.2a)

�r � .�.�/r'/ D 0 in Q (3.2b)

n � .�r�/ D ˛.�l � �/ in † (3.2c)

n � .�.�/r'/ D Cuu in †N (3.2d)

n � .�.�/r'/ D 0 in †R (3.2e)

' D 0 in †D (3.2f)

�.x; 0/ D �0 in � (3.2g)

It couples the instationary heat equation (3.2a) with the quasi-static potential
equation (3.2b), both defined on the space-time cylinder Q WD � � .0; te/. In
contrast to the boundary conditions for the heat equation (3.2c), which are defined
on† WD @�� .0; te/, the boundary conditions for the potential equation are defined
piecewise. To model the induction of a direct current on the boundary part �N , we
use a Neumann condition with right hand sideCuu on†N WD �N�.0; te/. The anode
on the boundary part �D is modeled by a Dirichlet condition on†D WD �D�.0; te/.
The remaining boundary �R WD @�n. N�N [ �D/ is assumed to be isolated on
†R WD �R � .0; te/.
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Here, C D 470 J/kg K is the heat capacity, � D 7;900 kg/m3 the density, � D
50W/m K the heat conduction coefficient, and ˛ D 20W/m2 K the heat transfer
coefficient. The electric conductivity � depends non-linearly on � and is modeled
by �.�/ D .a C b� C c�2 C d�3/�1, with a D 4:9659e�7, b D 8:4121eC10,
c D �3:7246e�13, d D 6:1960e�17.

As a modification to the model presented in [11], we substitute uorig by Cuu, with
Cu D 1:0eC 3. The constant Cu is introduced to balance the orders of magnitude of
the involved quantities, especially the control u and the reduced gradient r OJ .u/.

The optimal control problem is then given by

min
.y;u/

J.y; u/ D ıy

2

Z te

0

Z
D��

.�.x; t/ � �d .t//2dxdt

C ıe

2

Z
D��

.�.x; te/� �d .te//
2dx C ıu

2

Z te

0

Z
�N

u.t/2dxdt; (3.3)

subject to the state system (3.2), and

�.x; t/ � �max.x; t/; a.e. in Q (3.4)

0 � u.t/ � umax.t/; a.e. in Œ0; te�: (3.5)

The steel temperature � is tracked to a desired profile �d on the open part
D � � with special weighting at final time te . Furthermore, we include a Tikhonov
regularization for the control u, where u describes a scaled current induced to the
Neumann boundary �N . The upper control bound umax reflects the technical limits
for the control, the upper state bound �max prevents the material from melting. The
desired state �d is set spatially constant to enforce a homogeneous temperature
distribution, which is especially important at final time te , as the terminal state of
the heating phase serves as initial state for the cooling phase.

The non-negative parameters ıy , ıe, ıu, allow for a different weighting within the
objective. Whereas we assume ıe > 0 and ıu > 0, the parameter ıy may be set to
zero. For an analysis of the well-posedness of the problem we refer to [11].

As described in Sects. 1 and 2 we rely on the Moreau-Yosida regularization to
define a regularized objective J�.y; u/, with upper bound �max. Furthermore, we
consider the initial value �0;0 D 1:0, the factor � D 10:0 and the function a.�/ D
500�� 13 to control the autonomous increase of the penalty parameter �k;l .

In [11] it has been observed, that if an upper state constraint of 1;800K is
considered, a process time of 2 s is too short to force the final steel temperature
to the desired profile. Since we have made the same observation for our setting, we
consider a final time of te D 4 s.

Using the parameters given in Table 2, the optimization starts on a space-time
mesh with 35 nodes in time and 677 nodes in space. During the optimization the
number of nodes is increased by approximately one order of magnitude. However,
due to the fact that the initial grid is significantly refined in the region of the
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teeth already, there is no additional mesh refinement necessary. As in the previous
example we set Qc2 D Qc3 D Qc5 D Qc6 D 1:0e�5.

The penalty term R.�/ D 1
3

R te
0

R
�
.max.0; �.x; t/ � �max.x; t///

3dxdt has an
initial value of 3:2761eC5 and is reduced by more than nine orders of magnitude to
a value of 2:5014e�4, see Table 3.

We terminate the optimization if the criticality measure cmk descends below
"term D 10�2cm0 C 10�2 and if the maximal penalization of the state constraints
is less then 1% of the maximal value of the upper bound �max. In this setting this
means less than 18K.

The resulting optimal control is visualized in Fig. 5a. Comparing the control
profile obtained with state constraints to that without state constraints, it can be seen
that the maximal induced current is reduced. To achieve a proper final state, the
current is hold almost constant between 2:5 and 3:5 s, whereas in the unconstrained
case it decreases faster.

Heating the steel rack with the optimal control presented in Fig. 5a the maximal
violation of the upper state bound occurs at time t D 2:10 s in the point .2:93e �
01; 1:50e � 02/, which is located on the right of the teeth, see Fig. 6a. There, the
steel takes a temperature of 1;817:3K, which violates the upper bound by 0:96%.

Whereas in the state constrained case the optimal control results in a penalty term
ofR.�/ D 2:50e�4 and a maximal violation of 1:73eC1K, in the case without state

Table 2 Problem and model specific qualities

Uad Feasible control set Œ0; 5:0eC 4�K �0;0 Initial penalty para. 1:0eC0
�max Upper state bound 1:8eC3K tolty;0 Initial time tol., state 5:0e�5
te Final time 4:0eC0 s tolxy;0 Initial space tol., state 5:0e�3
�0.x/ Initial steel temp. 2:9eC2K tolt	;0 Initial time tol., adj. 5:0e�5
�d .te/ Desired final steel temp. 1:5eC3K tolx	;0 Initial space tol., adj. 1:0e�2

cty Time ref. const., state 1:0e�6
u0.t / Initial control 5:0eC4.te � t /=te K cxy Space ref. const.,state 1:0e�4
ıy State reg. weight 0:0 ct	 Time ref. const., adj. 1:0e�5
ıe Final value weight 1:0eC0 cx	 Space ref. const., adj. 5:0e�4
ıu Control reg. weight 1:0e�10 "term,a Abs. term. parameter 1:0e�2
�k Trust region 5:0eC4 "term,r Rel.term. parameter 1:0e�2

Table 3 Optimization protocol, Thermistor Problem

� Oit Iit Objective Pen. term Max. pen. Crit. meas. dofy cpt (%)

1eC0 0 0 3.2769eC5 3.2761eC5 9.2458eC2 1.4979eC2 2.37eC4 0.17

1eC1 2 10 1.2535eC5 1.2534eC4 4.9127eC2 1.2846eC2 2.37eC4 2.66

1eC2 3 15 1.3885eC4 1.3884eC2 2.4801eC2 3.4204eC1 2.64eC4 4.33

1eC3 2 10 1.3390eC4 1.3389eC1 1.5877eC2 3.8208eC1 7.24eC4 8.85

1eC4 3 15 2.5161eC3 2.5155e�1 6.3363eC1 1.5264eC1 6.97eC4 11.45

1eC5 3 15 2.6217eC2 2.6115e�3 2.4467eC1 3.9273eC0 2.34eC5 44.57

1eC6 2 10 2.5128eC2 2.5014e�4 1.7350eC1 3.3702eC0 2.32eC5 27.97
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Fig. 5 Initial and optimal control with and without state constraints. (a) State constrained. (b)
Without state constraints

Fig. 6 Steel temperature (in (K)) at the point of maximal violation x D .2:93e�01; 1:50e�02/ at
time t D 2:1 s with state constraints and t D 2:16s without state constraints. (a) State constrained.
(b) Without state constraints

constraints we have R.�/ D 3:61e�1 and a maximal violation of 2:20eC2K. This
maximal violation of more than 10% occurs at time t D 2:16 s, also in the point
.2:93e�01; 1:50e�02/, see Fig. 6b. It can also be seen, that the area of violation is
much greater in the unconstrained case than in the constrained case, compare dark
regions around .2:93e � 01; 1:50e � 02/ in Fig. 6a, b.
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Fig. 7 Optimal steel temperature (in (K)) at final time in the state-constrained case. Note, that D
covers only the region of the teeth. (a) Computational domain�. (b) Zoom including subdomainD

Fig. 8 Optimal steel temperature (in (K)) at final time in the unconstrained case. Note, that
D covers only the region of the teeth. (a) Computational domain �. (b) Zoom including sub-
domain D

In both cases the desired temperature of 1;500K on the subdomainD is reached
quit well, see Figs. 7b and 8b. Note, that D covers only the region of the teeth,
which is the area between y D 0:015 and y D 0:02. The value of the tracking
term ıe

2

R
D��.�.x; te/ � �d .te//

2dx in the state-constrained case is only less than
one order of magnitude higher than in the unconstrained case. This is achieved by
the optimized control profile in the constrained case (Fig. 5a) and the sufficient long
process time.

A detailed protocol of the optimization including the number of outer and
inner iterations (oit and iit), objective values, penalty terms, criticality measure
and relative computing time (cpt) is given in Table 3. Since in the presented
computations the dimension of the space-time state-grid coincides with the space-
time adjoint-grid, we only include the value for dofy within the table. As in the
first example, we again restrict the number of inner iterations to five BICGSTAB-
iterations, which is exploited in all iterations. It can be observed that for each new �k
the sub-optimization only needs two to three iterations to achieve a proper decrease.
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Conclusions
We have presented an adaptive multilevel generalized SQP-method to solve
PDAE-constrained optimal control problems with point-wise constraints on
control and state. To this end we combine the Moreau-Yosida regularization
[23, 24] with the adaptive multilevel trust-region SQP-method of Ziems and
Ulbrich, see [5, 29, 31]. In order to apply the adaptive SQP-method to the
regularized subproblems (P� ) we ensure that (P� ) satisfies the assumptions
of the adaptive SQP-method. We introduce an augmented refinement criteria
and a penalty parameter update, such that global convergence of the finite
dimensional iterates to an infinite dimensional stationary point can be shown.

Relying on continuous adjoint calculus, we realize the multilevel SQP-
method for state constraints by coupling it with the space-time adaptive
PDAE-solving environment KARDOS [7]. To meet the accuracy requirements
given by the multilevel strategy, we use global a posteriori error estimators
based on local strategies and the principle of tolerance proportionality in time
and hierarchical basis techniques in space [6, 20, 28].

Two real-world applications serve as test cases to study the performance
of the developed optimization environment: the cooling process in glass
manufacturing [8, 22] and the heating process in steel hardening [11]. The
numerical experiments show, that the combination of space-time adaptivity
and the multilevel strategy has a high potential to solve real-world applications
even in three spatial dimensions and on complicated spatial domains. The
inclusion of the Moreau-Yosida regularization results in a robust and reliable
implementation of point-wise state constraints. The efficiency is improved
by approaching feasibility mainly on coarse meshes. In the case of state con-
straints of order 0, the cubic penalization has turned out to be a convenient tool
to ensure twice continuous Fréchet differentiability. However, the situation
gets more complicated in the case of state constraints of order one, as they
naturally occur for the glass cooling problem. In this case, it seems reasonable
to combine a quadratic regularization with a semi-smooth Newton method,
see e.g. [10].

Further improvements with respect to the numerical efficiency can be
obtained by using reduced order models (ROMs) in the multilevel method.
While the FEM-solutions on the sequence of suitably refined grids serve as
an approximation of the PD(A)E-solutions, the ROM-solutions serve as an
approximation of their FEM-counterparts. A sophisticated coupling of full
space-time adaptivity and ROMs is work in progress.

Even though the presented multilevel SQP-method for state constraints
controls the inexact reduction by a multilevel strategy, it is of numerical
benefit with respect to efficiency and robustness to apply discrete adjoint
discretization techniques, such that discrete-adjoint and adjoint-discretization

(continued)
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commute. Promising progress has, for example, been made in the context of
discrete-adjoint W-methods, see [21].
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Optimal Control of Nonlinear Hyperbolic
Conservation Laws with Switching

Sebastian Pfaff, Stefan Ulbrich, and Günter Leugering

Abstract We consider optimal control problems governed by nonlinear hyperbolic
conservation laws at junctions and analyze in particular the Fréchet-differentiability
of the reduced objective functional. This is done by showing that the control-
to-state mapping of the considered problems satisfies a generalized notion of
differentiability. We consider both, the case where the controls are the initial and
the boundary data as well as the case where the system is controlled by the
switching times of the node condition. We present differentiability results for the
considered problems in a quite general setting including an adjoint-based gradient
representation of the reduced objective function.

Keywords Optimal control • Scalar conservation law • Network

1 Introduction

This paper serves as a final report of the project Optimal Control of Switched
Networks for Nonlinear Hyperbolic Conservation Laws. In this work we consider
optimal control problems for entropy solutions of hyperbolic conservation laws
involving objective functionals of the form

J.y.u// WD
Z b

a

 .y.Nt ; xI u/; yd .x// dx; (1.1)
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where  2 C
1;1
loc .R

2/ and yd 2 BV.Œa; b�/ is a desired state. The state y

is the entropy solution of either an initial-boundary value problem for a scalar
conservation law

yt C f .y/x D g. � ; y; u1/

or of a traffic light problem, as we will call it throughout this paper, where two
conservation laws are coupled through a node at which the switching times between
red and green phases is controlled. Our motivation is to develop a variational
calculus for initial, boundary and switching time control that has the potential to
be extended to the optimal control of networks with switching control at nodes.

It is well-known that weak solutions to Cauchy problems of nonlinear hyperbolic
conservation laws are in general not unique and that one has to consider entropy
solutions, that can be obtained as the vanishing viscosity limit of a parabolic
regularization [4, 26]. Even for smooth initial and boundary data entropy solutions
can develop discontinuities (shocks) after finite time [7]. This leads to fundamental
difficulties for the sensitivity analysis and optimal control theory, since the shock
locations depend on the control. Hence, the control-to-state mapping u 7! y.Nt ; � I u/
is at best differentiable with respect to the weak topology of measures and
sensitivities are necessarily measures with singular part along the shock curves. For
networks, where the solutions on two or more intervals are connected by a (possibly
controlled) node, the situation gets even more involved.

Motivated by its practical relevance, despite these difficulties the analysis and
numerical solution of optimal control problems for hyperbolic conservation laws
has become an active research field in recent years.

The existence of optimal controls for the Cauchy problem and the initial-
boundary value problem was discussed for example in [1, 2, 35, 36].

The issue of non-differentiability of the solution operator was treated by different
authors by introducing generalized notions of differentiability, e.g. [5, 8, 9, 11, 15,
36, 37]. The present work is based on the notion of shift-differentiability, that was
introduced in [36], where it was also shown to hold for the Cauchy problem. Here
the theory of generalized characteristics by Dafermos [17] is a crucial instrument.
This approach also includes an adjoint calculus for the reduced objective function,
see also [19, 20, 38].

Networks for hyperbolic conservation laws have been considered in various
contexts in recent years. Several node conditions have been discussed, most of them
are tailored to specific applications, such as traffic modeling [10, 13, 22, 25], gas
pipelines [3, 16, 23] or supply chains [21]. The conditions are mostly formulated
for Riemann problems and then generalized by wave front tracking. Besides the
question of well-posedness also aspects from the optimal control viewpoint have
been considered. But these approaches often either consider the linear case or
assume the existence of a strong solution. Conservation laws with modal switching
have been discussed for the first time in [24], where switching is considered in the
fluxes, the boundary condition and the coupling condition at the nodes of a network.
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This paper is organized as follows. In Sect. 2 we introduce the two considered
problems, the initial-boundary value problem and the traffic light problem. In Sect. 3
we collect results on the well-posedness for these problems and structural properties
of the corresponding solutions. The main results will be presented in Sect. 4, where
we show the generalized differentiability of the solution operator and the resulting
Fréchet-differentiability of the reduced objective function.

2 The Models

In this paper we focus on two types of problems for a scalar conservation law. The
first one is the initial-boundary value problem (IBVP), the second is the traffic light
problem (TLP). We will also consider the pure initial value problem (IVP), since
on one hand the IVP is helpful to understand the more involved IBVP and on the
other hand the traffic light problem is a combination of both. While the IBVP is an
important step towards node conditions on networks, the traffic light problem can
be seen as a relevant node condition with switching in a traffic network.

2.1 Initial-Boundary Value Problem

The first model problem under consideration is an initial-boundary value problem
(IBVP) on an interval � D .a; b/, where we explicitly allow for a; b to be ˙1,
respectively. The IBVP is then given by

yt C f .y/x D g. � ; y; u1/; on �T ; (2.1a)

y.0; � / D u0; on �; (2.1b)

y. � ; aC/ D uB;a; in the sense of (2.4a) .if a > �1/; (2.1c)

y. � ; b�/ D uB;b; in the sense of (2.4b) .if b < 1/; (2.1d)

where�T WD Œ0; T ���. In order to show existence of a unique solution, following
[4, 26], the conservation law (2.1a) has to be understood in sense of an entropic
solution, which can be characterized by requiring that for every (Kružkov-) entropy
�c.	/ WD j	 � cj, c 2 R, and associated entropy flux qc.	/ WD sgn.	 � c/.f .	/ �
f .c// the following entropy inequality holds in the sense of distributions

.�c.y//t C .qc.y//x � �0c.y/g. � ; y; u1/ in D0.�T /: (2.2)

The initial data in (2.1b) have to be understood in the weakL1loc-sense, which means
that for everyR > 0

esslim
t!0C ky.t; � / � u0k1;�\.�R;R/ D 0 (2.3)
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is fulfilled. The Dirichlet-like boundary conditions (2.1c), (2.1d) must not be
understood literally. Rather, the solution y of (2.1a)–(2.1d) has to be interpreted
as the limit of its parabolic regularization, that is (2.1a)–(2.1d) with the term "yxx
added on the right hand side of (2.1a). The boundary condition of the limit solution
can then be characterized, as shown in [4], by

min
k2I.y. � ;aC/;uB;a/ sgn.uB;a � y. � ; aC//.f .y. � ; aC// � f .k// D 0; a.e. on Œ0; T �;

(2.4a)

min
k2I.y. � ;b�/;uB;b/ sgn.y. � ; b�/ � uB;b/.f .y. � ; b�//� f .k// D 0; a.e. on Œ0; T �;

(2.4b)

with I.˛; ˇ/ WD Œmin.˛; ˇ/;max.˛; ˇ/�, see also [18, 27, 30, 31]. In the literature
the above formulation of the boundary condition from [4] is sometimes called the
BLN-condition.

2.2 Traffic Lights

The second topic of this work is a problem that is motivated by a traffic flow
problem. This special type of problem is also of great interest because it is a simple
example for a network of conservation laws with modular switchings in the node
condition. Before we formulate the mathematical problem, we give a short overview
on traffic flow modeling by hyperbolic conservation laws.

2.2.1 Macroscopic Model for Traffic Flow

In the mid 1950s, Lighthall and Whitham [29] and Richards [34] proposed a
continuum model for heavy traffic. The traffic is described by means of a traffic
density � and the conservation of cars is ensured by

�t C f .�/x D 0; f .�/ WD �v.�/;

where the velocity v of the traffic depends only on the density. This model is widely
used and is known as the LWR-model. For a detailed overview on traffic flow
modeling by partial differential equations we refer to [25]. Usually one assumes
that f is a concave function, but since most theoretical results on conservation laws
work with convex fluxes, we will make a change of signs and work with a convex
flux function. In the following the state y can be interpreted as the negative traffic
density ��. We further assume that the road reaches its maximum density when
y D �1 and is empty for y D 0. The flux f .y/ is equal to 0 for these two values
and strictly convex in between. In particular, f is negative on .�1; 0/.
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2.2.2 A Traffic Light on an Open Road

We consider a long unidirectional road I D R that has to be closed for some reason
(e.g. because of pedestrian or railway crossings) for some time periods at a specific
point x D 0, most likely by a traffic light. So the considered time interval Œ0; T � is
split into two different types of phases, namely green Œ�i�1g ; �ir /, i D 1; : : : ; n� C 1

and red phases Œ�ir ; �
i
g/, i D 1; : : : ; n� where the incoming traffic at x D 0 is or is

not allowed to cross respectively. A similar problem was already briefly introduced
in [29].

For the sequel we assume � D .�0g ; �
1
r ; �

1
g ; : : : ; �

n�
g ; �n�C1r / 2 †, where

† WD ˚
� 2 R

2.n�C1/ W 0 D �1 < �2 < : : : < �2n�C1 < �2n�C2 D T
�
: (2.5)

for the sake of simplicity. The presented analysis can also be carried over to the case
where the first and/or the final phase is a red phase.

During the i -th green phase a solution y of such a traffic light problem (TLP) is
determined by solving a Cauchy problem on�g;i WD Œ�i�1g ; �ir ��R with initial data

u0 D y.�i�1g �; � /; i D 2; : : : ; n� C 1:

Here, y.�i�1g �; � / is the final state of the previous red phase.
For the i -th red phase the solution y consists of two parts, namely y1 and y2, its

restriction to the incoming and outgoing part I1 WD .�1; 0/ and I2 WD .0;1/ of
the road. The restriction y1 is the solution of an initial-boundary value problem on
�1

r;i WD Œ�ir ; �
i
g � � I1 with initial value y.�ir �; � / and boundary data uB;0 � �1.

Similarly, y2 solves an IBVP on �2
r;i WD Œ�ir ; �

i
g� � I2 with uB;0 � 0. For the first

green phase, i.e. the first IVP, the initial data are given by some function uI . The
traffic light problem can then formulated in the following way:

yt C f .y/x D g. � ; y; u1/; on �g;iC1; i D 0; : : : ; n� ; j D 1; 2;

(2.6a)

yt C f .y/x D g. � ; y; u1/; on �j
r;i ; i D 1; : : : ; n� ; j D 1; 2;

(2.6b)

y.0; � / D uI ; on I; (2.6c)

y.�ig; � /
ˇ̌
ˇ
Ij

D yj .�
i
g�; � /; on Ij ; i D 1; : : : ; n� ; j D 1; 2;

(2.6d)

yj .�
i
r ; � / D y.�ir�; � /ˇ̌

Ij
; on Ij ; i D 1; : : : ; n� ; j D 1; 2;

(2.6e)

y1. � ; 0�/ D �1; on Œ�ir ; �
i
g�; i D 1; : : : ; n� ; (2.6f)

y2. � ; 0C/ D 0; on Œ�ir ; �
i
g�; i D 1; : : : ; n� : (2.6g)
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The conservation laws (2.6a), (2.6b) model the conservation of cars. The source
term g can be seen as additional traffic that enter or leave the road from minor
roads or parking lots, that are not modeled in detail. The boundary conditions that
model the red lights (red light conditions) (2.6f), (2.6g) guarantee, that during these
periods no cars enter or leave the two roads over the artificial boundary, since, as
stated in Sect. 2.2.1, the flux f .y/ is equal to zero for y 2 f�1; 0g. Moreover, even
if formally one has to interpret these boundary conditions in the BLN-sense, we will
see that under mild assumptions they may be considered literally. We will discuss
these conditions more detailed in Sect. 3.2. The continuity conditions between the
phases (2.6d), (2.6e) describe the transition from one phase into another.

3 Properties of Entropy Solutions

In this section we collect important properties of the solutions to (2.1) and (2.6).

3.1 General and Structural Properties of Solutions to IBVPs

First we consider the initial value problem (2.1a)–(2.1b) for � D R. We make the
following assumptions:

(A1) The flux function satisfies f 2 C2.R/ and there exists mf 00 > 0 such that

f 00 	 mf 00 . The source term satisfies g 2 L1
�
�T IC0;1

loc .R � R
m/
�

\
L1

�
0; T IC1

loc.R � R � R
m/
�

and for all Mu > 0 there exist constants
C1; C2 > 0 such that for all .t; x; y; u1/ 2 �T �R� Œ�Mu;Mu�

m it holds that

g.t; x; y; u1/sgn.y/ � C1 C C2jyj:

(A2) The set of admissible controls Uad is bounded in U1 WD L1.R/�L1.�T /
m

by some constantMu and closed in U1 WD L1loc.R/ �L1loc.�T /
m.

We recall Proposition 1 from [38], that covers some of the most important properties
of the solution to the IVP.

Proposition 3.1 (Existence and Uniqueness for Cauchy problems). Let (A1) and
(A2) hold. Then for every u D .u0; u1/ 2 U1 there exists a unique entropy solution
y D y.u/ 2 L1.�T / of (2.1a)–(2.1b) on � D R. After a possible modification
on a set of measure zero it even holds y 2 C.Œ0; T �IL1loc.R//. There are constants
My;Ly > 0 such that for every u; Ou 2 Uad and all t 2 Œ0; T � the following estimates
hold:

ky.t; � I u/k1 � My;

ky.t; � I u/� y.t; � I Ou/k1;Œa;b� � Ly.ku0 � Ou0k1;It C ku1 � Ou1k1;Œ0;t ��It /;
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where a < b and It WD Œa � tMf 0 ; b C tMf 0 �, Mf 0 WD maxjyj�My
jf 0.y/j.

Set OUad WD fu 2 Uad W ku1kL1.0;T IC1.�T /m/ � Mug. Then there is a constant

M > 0 such that for all u 2 OUad and all t 2 .0; T � Oleinik’s entropy condition

yx.t; � I u/ � �
.1� e�mf 00 Mt/M�1 C e�mf 00 Mt.Cu;M /

�1��1

holds with Cu;M WD max
n
M; esssupx¤z

u0.x/�u0.z/
x�z

o
. In particular y.t; � / 2

BV loc.R/ for all t 2 .0; T � and y 2 BV.Œs; T � � Œ�R;R�/ for all s; R > 0.

For the case of an initial-boundary value problem we have a similar result. We
restrict ourselves to the case of � D .0;1/. The first thing to mention here
is the fact that the BLN-condition (2.4a) involves the boundary trace y. � ; 0C/.
When Bardos, le Roux and Nédélec stated this formulation they only considered
the case where the solution has bounded total variation, see Remark 3.3. In order
to also allow for L1-data in [30, 31] Otto proposed another characterization of
the boundary condition that is equivalent to the one in [4] if the boundary trace
exists. But Vasseur showed [39] that under mild assumptions even for L1-entropy
solutions there always exist boundary traces. Therefore the formulation in (2.4a)
(and (2.4b)) is valid even in the L1-setting, see also [14].

We make the following assumptions:

(A10) The flux function satisfies f 2 C2.R/ and there exists mf 00 > 0 such
that f 00 	 mf 00 . The source term is non-negative and satisfies g 2
C
�
�T IC0;1

loc .R � R
m/
�

\C1
�
Œ0; T �IC1

loc .� � R � R
m/
�

and for allMu > 0

there exist constants C1; C2 > 0 such that for all .t; x; y; u1/ 2 �T � R �
Œ�Mu;Mu�

m holds:

g.t; x; y; u1/sgn.y/ � C1 C C2jyj:

(A20) The set of admissible controls Uad is bounded in U1 WD L1.R/ �
L1.0; T / � L1.Œ0; T � � R/m by some constant Mu and closed in U1 WD
L1loc.R/ �L1.0; T / � L1loc.Œ0; T � � R/m.

For technical reasons we consider the source term and the corresponding control u1
not only for the considered spatial domain. Of course the solution depends only on
its restriction to �T .

Under the above assumptions we get the following properties of a solution
to (2.1), cf. [4, 14, 31].

Proposition 3.2 (Existence and Uniqueness for IBVPs). Let (A10) and (A20) hold.
Then for every u D .u0; uB; u1/ 2 U1 there exists a unique entropy solution
y D y.u/ 2 L1.�T / of (2.1) on � D .0;1/. After a possible modification on a
set of measure zero it even holds that y 2 C.Œ0; T �IL1loc.�//. Moreover, there are
constantsMy;Ly > 0 such that for every u; Ou 2 Uad and all t 2 Œ0; T � the following
estimates hold:
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ky.t; � I u/k1 � My;

ky.t; � I u/� y.t; � I Ou/k1;Œa;b� � Ly.ku0 � Ou0k1;It
C kuB � OuBk1;Œ0;t � C ku1 � Ou1k1;Œ0;t ��It /;

where a < b and It WD Œa � tMf 0 ; b C tMf 0 �\�, Mf 0 WD maxjyj�My
jf 0.y/j.

Remark 3.3. Under the stronger assumptions u0 2 BV loc.�/ and uB 2
BV.Œ0; T �/, (2.1) admits a solution satisfying y 2 BV.Œ0; T � � Œ0; R�/ for all
R > 0 (cf. [4, 28]).

The basic idea behind the proof of the main result of this work is the theory of
generalized characteristics from [17], which will be considered in the remaining
part of this section. We will assume that in addition to (A1)–(A2), (A10)–(A20)
respectively, the following assumption holds.

(A3) g is globally Lipschitz w.r.t. x and y.

Furthermore we will only consider .u0; u1/ 2 OUad (see Proposition 3.1), u0 2
BV loc.�/ and boundary data uB 2 PC1.Œ0; T �I t1; : : : ; tnt /, that is a piecewise
continuously differentiable function with possible kinks or discontinuities at 0 <
t1 < : : : < tnt for some nt 2 N.

Using the properties collected in Propositions 3.1 and 3.2, we conclude that
y 2 L1.�T / \ C.Œ0; T �IL1loc.�// has the following properties: For all .t; x/ 2
.0; T � �� the one-sided limits y.t; x�/ and y.t; xC/ exist and satisfy y.t; x�/ 	
y.t; xC/. It will be convenient to work with a pointwise defined representative of
y 2 C.Œ0; T �IL1loc.�// where y.t; x/ is identified with one of the limits y.t; x�/ or
y.t; xC/.

We now recall the definition of a generalized characteristic in the sense of
Dafermos from [17].

Definition 3.4 (Generalized characteristics). A Lipschitz curve

Œ˛; ˇ� � Œ0; T � ! �T ; t 7! .t; �.t//

is called a generalized characteristic on Œa; b� if

P�.t/ 2 Œf 0.y.t; �.t/C//; f 0.y.t; �.t/�//�; a.e. on Œ˛; ˇ�: (3.1)

The generalized characteristic is called genuine if the lower and upper bound in (3.1)
coincide for almost all t 2 Œ˛; ˇ�.
In the following we will also call � a (generalized) characteristic instead of t 7!
.t; �.t//. It will also be useful to introduce notions of extreme or maximal/minimal
characteristics �˙, that satisfy

P�˙.t/ D f 0.y.t; �.t/˙//:
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Since by Propositions 3.1 or 3.2 y is (essentially) bounded on �T , an a
priori bound on the speed of all generalized characteristic is known. Therefore,
characteristics do not escape and they either exist for the whole time period Œ0; T � or
(in the bounded case) leave the spatial domain at some point .�; �.�// 2 Œ0; T ��@�.
Moreover it can be shown [17] that (3.1) can be restricted to

P�.t/ D
(
f 0.y.t; �.t/// if f 0.y.t; �.t/C// D f 0.y.t; �.t/�//
Œf .y.t;�.t///�

Œy.t;�.t//�
if f 0.y.t; �.t/C// ¤ f 0.y.t; �.t/�// ; a.e. on Œ˛; ˇ�;

where for ' 2 BV.R/ the expression

Œ'.x/� WD '.x�/ � '.xC/

denotes the height of the jump of ' across x.
Based on the notion of generalized characteristics in [17] Dafermos exploits

structural properties of BV-solutions that are essential for the analysis in the present
paper.

Proposition 3.5 (Structure of BV-Solutions). Let (A1)–(A3) hold. Consider an
entropy solution y D y.u/ of the Cauchy problem (2.1a)–(2.1b) on � D R for
controls u D .u0; u1/ 2 OUad, u0 2 BV loc.R/.

For .Nt ; Nx/ 2 �T fixed denote by � a backward characteristic on Œ0; Nt � through
.Nt ; Nx/. Then � has the following properties:

1. If � is an extreme backward characteristic, i.e. � D �˙, then � is genuine, i.e.
y.t; �˙.t/�/ D y.t; �˙.t/C/ for all t 2 .0; Nt/.

2. If � is genuine, i.e. y.t; �.t/�/ D y.t; �.t/C/, t 2 .0; Nt/, then it satisfies

�.t/ D 
.t/; t 2 Œ0; Nt �; y.t; �.t// D v.t/; t 2 .0; Nt/; (3.2a)

u0.�.0/�/ � v.0/ � u0.�.0/C/; y.Nt ; �.Nt/�/ 	 v.Nt/ 	 y.Nt ; �.Nt /C/;
(3.2b)

where .
; v/ is a solution of the characteristic equation

P
.t/ D f 0.v.t//; (3.3a)

Pv.t/ D g.t; 
.t/; v.t/; u1.t; 
.t///: (3.3b)

For extreme characteristics �˙ the initial values are given by

.
; v/.Nt/ D . Nx; y.Nt ; Nx˙//: (3.3c)

Although this classical result by Dafermos is widely-known and gives important
information about the inner structure of entropy solutions, the earliest extension to
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be found in the literature to a bounded spatial domain is in a work of Perrollaz
in [32] published in 2013. Here the situation for characteristics � that stay inside
the spatial domain for the whole considered time interval is exactly the same as in
Proposition 3.5. But there are two cases that require special consideration. On the
one hand there are backward characteristics through some .Nt ; Nx/ 2 �T that leave the
spatial domain at some time, say � 2 .0; Nt/, on the other hand one has to consider
characteristics that enter the spatial domain at some time � .

It turns out that for � D .0;1/ the non-negativity condition on g is crucial for
the second and third part of Proposition 3.6, since it avoids some degeneracy of the
characteristics near the boundary. For a spatial domain .�1; 0/ the condition on the
source term becomes a non-positivity condition and consequently this leads to the
requirement that g has to vanish if one considers general intervals .a; b/ of finite
length. But as mentioned, this property is only important near the boundary and can
therefore be weakened to a local condition.

The following proposition collects the results of section 3 in [32].

Proposition 3.6. Let (A10), (A20) and (A3) hold. Consider an entropy solution
y D y.u/ of the mixed initial-boundary value problem (2.1) on � D .0;1/

for controls u D .u0; uB; u1/ 2 Uad with .u0; u1/ 2 OUad, u0 2 BV loc.R/ and
uB 2 PC1.Œ0; T �I t1; : : : ; tnt /. Then the following holds:

1. Consider � 2 .0; T / with f 0.y.�; 0C// < 0, then there exists a genuine
backward characteristic � through .�; 0/ with P�.�/ D f 0.y.�; 0C//.

2. Let � be a genuine characteristic through .Nt ; Nx/ 2 �T satisfying �.t/ 2 � for
t 2 .�; Nt � � Œ0; T � and limt&� �.t/ D 0. Denote by .
; v/ the solution of the
characteristic equation (3.3a)–(3.3b) associated to � by Proposition 3.5 on every
ŒQt ; Nt � � .�; Nt �. Then with v.�/ WD limt&� v.t/ it holds

uB.�C/ � v.�/ � uB.��/: (3.4)

3. Let � be a forward characteristic in Œ0; Qt � � � for every Qt 2 .0; �/ and .
; v/ be
the associated solution of the characteristic equation. If now limt%� �.t/ D 0

then

f 0.Nv/ � 0 and f .Nv/ 	 f .uB.��//; (3.5)

where Nv WD limt%� v.t/.

This connection between the genuine characteristics and the characteristic
equation is very useful, since by the following lemma, that is a consequence of
a result on ordinary differential equations (cf. Proposition 3.4.5 and Lemma 3.4.6
in [36] or chapter 5.6 in [33]) this yields some important information on the local
differentiability properties of a solution y of the I(B)VP.

Lemma 3.7. Let (A10) and (A3) hold and denote for .�; z;w; u1/ 2 Œ0; T � � R
2 �

C1.Œ0; T ��R
m/ by .
; v/. � ; �; z;w; u1/ the solution of (3.3a)–(3.3b) for initial data

.
; v/.�/ D .z;w/:
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Let Mw;Mu > 0 be given and set

Bi WDŒ0; T � � R
2 � L2.0; T IC i.R/m/; i D 0; 1;

NB WD ˚
.�; z;w; u1/ 2 B1 W jwj < Mw; ku1kC1.Œ0;T ��Rm/ < Mu

�
:

Then the mapping

.�; z;w; u1/ 2 . NB; k � kBi / 7�! .
; v/. � ; �; z;w; u1/ 2 C.Œ0; T �/2

is Lipschitz continuous for i D 0 and continuously Fréchet-differentiable for i D 1

and on NB the right hand side is uniformly Lipschitz w.r.t. t .

Lemma 3.7 is a direct generalization of the first assertion of Lemma 3.4.6 in [36]
to the case where the dependence on the time � where the initial datum is specified,
is considered, too. The remaining statements of Lemma 3.4.6 can also be carried
over to this generalized case.

3.2 General and Structural Properties of Solutions to Traffic
Light Problems

In this section we analyze the structure of solutions to traffic light problems. We
consider uI 2 BV loc.R/ and u1 bounded in C1.Œ0; T � � R/m. Since a solution of a
TLP is a concatenation of solutions to IVPs and IBVPs on a finite number of time
slabs, the existence, uniqueness and stability properties can easily be transferred to
such solutions.

We add the following requirements to our setting.

(A4) g is non-positive on .�1; 0/, non-negative on .0;1/ and vanishes on .�"; "/
for some " > 0. In addition g is chosen such that �1 � y � 0 is guaranteed.
Furthermore, let Uad � f.u0; u1/ 2 U1 W �1 � u0 � 0g and let †ad � † be
a closed set in Œ0; T �, with † defined in (2.5).

Remark 3.8. The condition on g in (A4) holds clearly for the choice g � 0.

Corollary 3.9 (Existence and Uniqueness for traffic light problems). Let (A10),
(A20) and (A4) hold. Then for every u D .u0; u1/ 2 U1 and � 2 †ad there exists a
unique entropy solution y D y.u; �/ 2 L1.�T / of (2.1) on � D .0;1/. After a
possible modification on a set of measure zero it even holds y 2 C.Œ0; T �IL1loc.�//.

Moreover for every t 2 Œ0; T � and a < b we have the following stability
estimates:

1. For fixed u 2 Uad there is L† > 0 such that for all Q�; O� 2 †ad holds

ky.t; � I u; Q�/� y.t; � I u; O�/k1;.a;b/ � L† k Q� � O�k :
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2. For fixed � 2 †ad there is LU > 0 such that for all Qu; Ou 2 Uad holds

ky.t; � I Qu; �/ � y.t; � I Ou; �/k1;.a;b/
� LU

�kQu0 � Ou0k1;It C kQu1 � Ou1k1;Œ0;t ��It
�
;

where It WD Œa � tMf 0 ; b C tMf 0 � \�, Mf 0 WD maxjyj�My
jf 0.y/j.

One can easily verify that the structural features for solutions to IBVPs provided
by Propositions 3.5 and 3.6 also hold for genuine backward characteristics � that
correspond to the solution y D .y1; y2/ of a TLP as long as they do not touch the
switching points .�; 0/.

We now discuss what happens to the solution y D .y1; y2/ during a red phase
and at the beginning of the green phase. The following considerations are illustrated
in Fig. 1.

First we consider the initial-boundary value problem for y1 during a red phase
Œ�ir ; �

i
g�. Here especially the situation on the boundary is of interest. We recall, that

the boundary data uB;0 are chosen to be equal to �1 and that by assumption (A4)
�1 � y D .y1; y2/ � 0 holds. Therefore the BLN-boundary condition (2.4b)
becomes
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Fig. 1 Characteristics in a neighborhood of a red phase
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min
k2Œ�1;y. � ;0�/� sgn.y. � ; 0�/C 1/.f .y. � ; 0�//� f .k// D 0:

Since k may be chosen equal to y. � ; 0�/, the condition is equivalent to

sgn.y.t; 0�/C 1/.f .y.t; 0�//� f .k// 	 0; 8k 2 Œ�1; y.t; 0�/�:

Here the first factor is strictly positive whenever y. � ; 0�/ ¤ �1 and for k D �1,
the second factor is negative if f .y. � ; 0�// ¤ 0. Hence we can deduce that there
are only two possibilities for the boundary trace, namely y.t; 0�/ 2 f0;�1g for
almost all t 2 Œ�ir ; �

i
g �. If y.�; 0�/ D 0 for some � 2 .�ir ; �

i
g/, then the existence

of a backward characteristic � satisfying P�.�/ D f 0.0/ < 0 can be deduced
from Proposition 3.6. Since by the sign condition on the source term, all genuine
characteristics on �1

r;i are concave and since two genuine characteristics may not
intersect each other, this implies that y.t; 0�/ D 0 must hold for all t 2 .�ir ; ��.
Conversely speaking, this means, that if y. Q�; 0�/ D �1 for some Q� 2 .�ir ; �

i
g/,

then y.t; 0�/ D �1 holds for all t 2 Œ Q�; �ig�. Consequently, if the initial data
of the IBVP on �1

�ig
are bounded away from 0 in a small neighborhood of the

right boundary at x D 0, y. � ; 0�/ D �1 holds during the whole time slab. We
will assume this property for the sequel.In this case a generalized characteristic �
emanates from .�ir ; 0/ having strictly negative speed at least for a small time period
.�ir ; Q�/, see Fig. 1. (More precisely, � is either a shock or a characteristic traveling
with speed f 0.�1/.) After that period, it keeps traveling with non-positive speed
at least up to t D �ig . The solution y1 is constantly equal to �1 on the nonempty
set f.t; x/ 2 Œ�ir ; �

i
g� � Œ�"; 0/ W �.t/ < xg with " from assumption (A4). The

situation for y2 is completely analogous. If the initial data of the IBVP on �2
r;i

are bounded away from �1 in a small neighborhood of the boundary at x D 0,
y. � ; 0C/ D 0 holds during the whole time slab and we conclude that y2 D 0 on a set
f.t; x/ 2 Œ�ir ; �ig �� .0; "� W N�.t/ > xg. Therefore, for every t 2 .�ir ; �ir / the solution
y.t; � / is known at least in a small neighborhood of x D 0, compare the area filled
with characteristics in Fig. 1. We now examine the solution y on the subsequent
green phase Œ�ig ; �

iC1
r �. Here the situation at x D 0 is again of special interest. By

the previous considerations we know that there is a ı > 0 such that with u0 being the
initial data of the considered Cauchy problem on�g;iC1, u0.x/ D 1

2
.sgn.x/�1/ for

all x 2 .�ı; ı/. Together with the finite propagation speed this implies that locally
y is the solution of a Riemann problem producing a rarefaction wave.

We subsume the previous considerations in the following lemma. The assertions
and occurring quantities are also illustrated in Fig. 1.

Lemma 3.10. Let (A10), (A20) and (A4) hold and let uI 2 BV loc.R/, u1 2
C1.Œ0; T � � R/m. Consider for i D 1; : : : ; n� the i -th red phase of the traffic light
problem (2.6). Assume that the final state of the i -th green phase y.�ir ; � / is bounded
away from 0 on .�Q"; 0� and bounded away from �1 on Œ0; Q"/ for some Q" > 0. Then
the solution of (2.6) satisfies the following equations.
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1. For every � 2 .�ir ; �ig/ there exists Qı > 0 such that there holds

y1.t; x/ D �1; .t; x/ 2 .�; �ig/ � .�Qı; 0/;
y2.t; x/ D 0; .t; x/ 2 .�; �ig/ � .0; Qı/:

2. There exists ı > 0 such that for all 0 < � < ı
2Mf 0

there holds

y.�ig C �; x/ D

8̂
<̂
ˆ̂:
f 0�1

�
x
�

�
; if x 2 Œf 0.�1/�; f 0.0/��;

0; if x 2 .f 0.0/�; ı �Mf 0�/;

�1; if x 2 .�ı CMf 0�; f 0.�1/�/;

with Mf 0 from Corollary 3.9.

4 Shift-Differentiability

In this section we present the main results of this paper, namely the shift-
differentiable dependence of the control-to-state mapping for the considered
problems (2.1) and (2.6).

4.1 Motivation and Preliminary Work

One of the main difficulties that arise when one considers optimal control problems
concerning entropy solutions of hyperbolic conservation laws is, that the control-
to-state mapping u 7! y.u/ is generally not differentiable in a sense, that is strong
enough in order to simply deduce Fréchet-differentiability of the reduced objective
functional. This issue of non-differentiability is caused by the presence of shocks
in the entropic solution, even for smooth (e.g. C1) data. However we illustrate
the situation by means of an example where the data are discontinuous, namely a
Riemann problem.

Example. Consider the parametrized Cauchy problem

y"t C
�
1
2
.y"/2

�
x

D 0 on Œ0; T � � R

y".0; � / D " � sgn on R:

Then the entropy solution is almost everywhere given by
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y".t; x/ D
(
"C 1; if x � "t;

" � 1; if x > "t:

Furthermore, consider the mapping S W R ! L1.Œa; b�/; " 7! y".Nt ; � /. Clearly S
is not differentiable in 0, since the obvious candidate for the derivative, 1 C 2Ntı0,
where ı0 denotes the Dirac measure at x D 0, does not belong to L.R; L1.Œa; b�//.
In fact, differentiability does only hold in the weak topology of the measure space
M.Œa; b�/.

In order to still achieve a differentiability result for the reduced objective, a non-
standard variational calculus was introduced in [9] and [36, 37]. The so called
shift-variations mimic the observed behavior of the solution in the neighborhood
of discontinuities. Shift-variations consist of an additive part (in L1) and a second
part that allows for horizontal shifts of discontinuities. We recall the definitions of
the notions of shift-variations and shift-differentiability.

Definition 4.1 (Shift-variations, shift-differentiability).

1. Let a < b and v 2 BV.Œa; b�/. For a < x1 < x2 < : : : < xN < b we associate
with .ıv; ıx/ the shift-variation S.xi /v .ıv; ıx/ 2 L1.Œa; b�/ of v by

S.xi /v .ıv; ıx/.x/ WD ıv.x/ �
nX
iD1
Œv.xi /�sgn.ıxi /1I.xi ;xiCıxi /.x/;

where Œv.xi /� WD v.xi�/ � v.xiC/ and I.˛; ˇ/ WD Œmin.˛; ˇ/;max.˛; ˇ/�.
2. Let U be a real Banach space and D � U open. Consider a locally bounded

mapping D ! L1.R/; u 7! v.u/. For Nu 2 U with v.Nu/ 2 BV.Œa; b�/, we call
v shift-differentiable at Nu if there exist a < x1 < x2 < : : : < xN < b and
Dsv.Nu/ 2 L.U;Lr.Œa; b�/ � R

N / for some r 2 .1;1�, such that for ıu 2 U ,
.ıv; ıx/ WD Dsv.Nu/ � ıu

��v.u C ıu/� v.u/� S.xi /v .ıv; ıx/
��
1;Œa;b�

D o.kıukU /:

The utility of this variational concept lies in the feature that it implies the Fréchet-
differentiability of tracking type functionals as in (1.1) (see Lemma 3.2.3 in [36])
as long as yd and y.Nt ; � / do not share discontinuities on Œa; b�. The derivative is
given by

duJ.y.u// � ıu D �
 y.y.Nt ; � I u/; yd /; ıy

�
2;Œa;b�

C
NX
iD1

N y.xi /Œy.Nt ; � I u/�ıxi ;

with

N y.x/ WD
Z 1

0

 y .y.Nt ; xCI u//C �Œy.Nt ; xI u/�; yd .xC/C �Œyd .x/�/ d�:
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4.2 Shift-Differentiability of Solutions to IBVPs and Traffic
Light Problems

We now state the main results. First we consider the differentiability of the solution
operator for the initial-boundary value problem. We restrict ourselves to the case
� D .0;1/, where the result for general intervals is similar. A reinspection of the
formulation of the boundary condition (2.4a) motivates to only consider boundary
data with uB 	 f 0�1.0/, since both the choices uB and max.uB; f 0�1.0// as
boundary data will yield the same solution. Therefore it is useful to define the space

U˛
B WD f' 2 PC1.Œ0; T �I t1 : : : ; tK/ W f 0.'/ 	 ˛g (4.1)

for given 0 < t1 < t2 < : : : < tK . Consider u D .u0; uB; u1/ where uB 2 U˛
B for

some small ˛ > 0, u0 2 PC1.�I x1; : : : ; xN / for some 0 < x1 < x2 < : : : < xN and
u1 2 C.Œ0; T �IC1.R/m/. We want to investigate the shift-differentiable dependence
of ıu 7! y.Nt ; � I u C ıu/ on ıu. In addition to usual variations in the controls, we
additionally consider some shift-variations of the initial and the boundary data. This
means that we consider explicit shifts of discontinuities that create shocks, but no
rarefactions. For this purpose we define

S.xi / WD fs 2 R
N W u0.xi�/ < u0.xiC/ ) si D 0; i D 1; : : : ; N g;

S.tj / WD fs 2 R
K W uB.tj�/ > uB.tjC/ ) sj D 0; j D 1; : : : ; Kg

and consider variations in

W WD PC1.�I x1; : : : ; xN / � S.xi /

� PC1.Œ0; T �I t1; : : : ; tK/ � S.tj / � C.Œ0; T �IC1.R/m/: (4.2)

Under a nondegeneracy condition on the shocks (see Definition 3.6.1 in [36]) we
get the following result.

Theorem 4.2 (Shift-Differentiability for IBVPs). Let (A10) and (A3) hold and let
in addition g be affine linear w.r.t. y. Let� D .0;1/ and 0 < x1 < x2 < : : : < xN ,
0 < t1 < t2 < : : : < tK u0 2 PC1.�I x1; : : : ; xN /, uB 2 U˛

B for some ˛ > 0 and
u1 2 C.Œ0; T �IC1.R/m/. For u D .u0; uB; u1/ denote by y D y.u/ 2 L1.�T / \
C.Œ0; T �IL1loc.�// the entropy solution of the initial-boundary value problem (2.1)
on �T . Let 0 < a < b and Nt 2 .0; T / such that on Œa; b� y.Nt ; � I u/ has no shock
generation points and only a finite number of shocks at a < Nx1 < : : : < Nx NN <

b, that all are neither degenerated nor shock interaction points. Further assume
that for almost all t 2 Œ0; T � the boundary trace y. � ; 0CI u/ 2 L1.0; T / satisfies
uB.t/ ¤ y.t; 0CI u/ ) f .uB.t// ¤ f .y.t; 0CI u//.
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For W from (4.2) we consider the mapping

.ıu0; ıx; ıuB; ıt; ıu1/ 2 W 7�!
y
�

Nt ; � I u0 C S.xi /u0
.ıu0; ıx/; uB C S

.tj /
uB .ıuB; ıt/; u1 C ıu1

�
2 L1.a; b/: (4.3)

If .xi /; .tj / are real discontinuities of u0; uB , i.e. u0.xi�/ ¤ u0.xiC/ and
uB.tj�/ ¤ uB.tjC/, respectively, then the mapping (4.3) is continuously
shift-differentiable on a sufficiently small neighborhood BW

� .0/ WD fıu 2
W W kıukW � �g. The shift-derivative satisfies Ts.0/ D Dsy.Nt ; � I u/ 2
L.W;PC.Œa; b�I Nx1; : : : ; Nx NN / � R

NN /.

Remark 4.3. If u0 or uB are continuous at some xi or tj , respectively, similarly to
the second assertion of Theorem 3.3.2 in [36], the shift-differentiability of (4.3) in 0
is preserved. The shift-derivative satisfies Ts.0/ 2 L.W;PC.Œa; b�I Nx1; : : : ; Nx NN ; Qx1;
: : : ; Qx QN /�R

NN /, where the set of discontinuities of y.u/ is augmented by continuity
points Qxk that are starting points of genuine backward characteristics that end in a
(pseudo-) discontinuity xi or tj .

The proof can be obtained by a very careful extension of the proof of Theorem 3.3.2
in [36]. This requires a proper analysis of the solution y in small neighborhoods
of different types of generalized backward characteristics. A detailed proof will be
presented in a forthcoming paper.

The following corollary is a simple consequence of the above theorem and
Lemma 3.2.3 in [36].

Corollary 4.4. Let the assumptions of Theorem 4.2 hold and consider J defined
as in (1.1). If yd is continuous in a small neighborhood of f Nx1; : : : ; Nx NN g, then the
reduced objective functional ıu 2 W 7! J.y.u C ıu// is continuously Fréchet-
differentiable on BW

� .0/ for � > 0 small enough.

An adjoint-based formula for the gradient of the considered mapping will be
presented in Theorem 4.8.

For the traffic light problem we have a very similar result.

Theorem 4.5 (Shift-Differentiability for traffic light problems). Let (A10) and
(A4) hold and let in addition g be affine linear w.r.t. y. Let x1 < x2 <

: : : < xN , � D .�0g ; �
1
r ; �

1
g ; : : : ; �

n�
g ; �n�C1r / 2 †ad, PC1.RI x1; : : : ; xN / and

u1 2 C.Œ0; T �IC1.R/m/. For � 2 †ad denote by y D y.�/ 2 L1.�T / \
C.Œ0; T �IL1loc.�// the solution of the traffic light problem (2.6). Let a < b and Nt 2
.�n�g ; �n�C1r / such that on Œa; b� y.Nt ; � I �/ has no shock generation points and only a
finite number of shocks at a < Nx1 < : : : < Nx NN < b, that all are neither degenerated
nor shock interaction points. Furthermore assume that for almost all t 2 Œ�ig ; �

i
r �,

i D 1; : : : ; n� the boundary traces .y. � ; 0�I �/; y. � ; 0CI �// 2 L1.0; T /2 are
equal to .�1; 0/.
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Finally let †0 WD f� 2 R
2.n�C1/ W �1 D �2.n�C1/ D 0g then the mapping

ı� 2 †0 7�! y .Nt ; � I � C ı�/ 2 L1.a; b/

is continuously shift-differentiable on a sufficiently small neighborhood B†
� .0/ WD

fı� 2 †0 W kı�k � �g. The shift-derivative satisfies Ts.0/ D Dsy.Nt ; � I �/ 2
L.†0;PC.Œa; b�I Nx1; � ; Nx NN / � R

NN /.

It is important to emphasize that in comparison to the result for the initial
(-boundary) value problem, also green switching times, i.e. rarefaction centers, may
explicitly be shifted. This is because the solution in a neighborhood of such points
is thoroughly known for TLPs, see Lemma 3.10, whereas the structure for general
rarefaction waves may be more delicate.

As for the IBVP, one can deduce from Lemma 3.2.3 in [36] the total differentia-
bility for reduced objective functionals.

Corollary 4.6. Let the assumptions of Theorem 4.5 hold and consider J defined
as in (1.1). If yd is continuous in a small neighborhood of f Nx1; : : : ; Nx NN g, then the
reduced functional ı� 2 †0 7! J.y.� C ı�// is continuously differentiable on
B†
� .0/ for � > 0 small enough.

One also may consider the optimal control of the traffic light problem for fixed
switching times where the source term and the initial data is controlled. Here one
can obtain similar results as for the initial (-boundary) value problem without any
traffic lights.

4.3 Adjoint Equation

The sensitivity of the shock position, that is needed in order to obtain the
shift-differentiability result of Theorem 4.2, is based on an adjoint-argument. As
already discussed in [36] for the Cauchy problem, the classical adjoint calculus
is not applicable for problems concerning discontinuous solutions of hyperbolic
equations. Nevertheless one can define an adjoint state as a solution of the following
equation

pt C f 0.y/px D �gy. � ; y; u1/p; on �Nt ; (4.4a)

p.Nt ; � / D p
Nt ; on �: (4.4b)

The adjoint equation (4.4) is a linear transport equation with discontinuous coef-
ficients, since y may contain shocks. In [6] Bouchut and James showed that for
� D R, g � 0 and Lipschitz continuous end data p Nt Eq. (4.4) does not admit a
unique solution within the space of Lipschitz continuous functions. Nevertheless
they give a definition and a characterization of a reversible solution for (4.4),
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which satisfies a crucial duality relation. In [36, 38] this notion was extended to
more general source terms g and discontinuous end data. In this case the reversible
solution p can be characterized as the solution along generalized characteristics of
the state y. For the IBVP on � D .0;1/ we have to deal with the fact that this
definition might lead to an underdetermined problem, since not all characteristics
on �Nt intersect the line fNtg ��, where the initial (or terminal) condition acts. One
can show by the theory of generalized characteristics that the set D of points that
lie on a genuine characteristic that does not reach the line fNtg �� is a connected set
that lies in the lower left corner of the space-time cylinder�Nt .

Definition 4.7. Let p Nt be a bounded function that is the pointwise everywhere limit
of a sequence .wn/ in C0;1.0;1/, with .wn/ bounded inC.0;1/\W 1;1

loc .0;1/. The
adjoint state p associated to (4.4) for � D .0;1/ is characterized by the following
requirements:

1. For every generalized characteristic � of y through .Nt ; Nx/ 2 �T

t 7! p�.t/ D p.t; �.t//

is the solution of the ordinary differential equation

Pp�.t/ D �gy.t; �.t/; y.t; �.t//; u1.t; �.t///p�.t/; t 2 .0; Nt � W �.t/ > 0;
p�.Nt/ D p Nt . Nx/:

2. For every .t; x/ 2 D there holds p.t; x/ D 0, where

D WD f.t; x/ 2 �Nt W t 2 Œ0; ��; x � Q�.t/g:

Here Q� denotes the maximal backward characteristic through .�; 0/, where � WD
esssupft 2 Œ0; Nt � W f 0.y.t; 0C// < 0g.

Using the above definition of an adjoint state, we are now able to formulate a
representation of the gradient of the reduced objective function.

Theorem 4.8. Let the assumptions of Corollary 4.4 hold and let the terminal data
in (4.4) be given by

p
Nt .t; x/ WD �.x/

Z 1

0

 y.y.Nt ; xC/C �Œy.Nt ; x/�; x/ d�:

Then there exists an adjoint state p according to Definition 4.7, satisfying

p 2 B..0; Nt / � .0;1//\ BV loc.Œ0; Nt � � Œ0;1//;

where B..0; Nt / � .0;1// denotes the space of measurable bounded functions
(defined pointwise everywhere).
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The derivative of the reduced functional ıu 2 W 7! OJ .ıu/ D J.y.u C ıu// for
� > 0 small enough is given by

OJ 0.0/ � ıu D .p; gu1 . � ; y; u1/ıu1/2;.0;Nt /�RC

C .p.0; � /; ıu0/2;RC C �
p. � ; 0/; f 0.uB/ıuB

�
2;.0;Nt /

C
NX
iD1

p.0; xi /Œu0.xi /�ıxi C
KX
jD1

p.tj ; 0/Œf .uB.tj //�ıtj :

Conclusion and Outlook
We have presented a generalized differentiability result for an initial-boundary
value problem for a nonlinear hyperbolic conservation law on an interval
by using the theory of generalized characteristics. This property implies
the Fréchet-differentiability of the reduced objective functional, for which
we also presented an adjoint-based gradient representation. The result is
an important step to make such problems accessible to gradient based
optimization algorithms. Furthermore we have discussed the dependence of
the state on the switching times of a traffic light on a single road. Also in
this case we were able to show shift-differentiability by similar arguments.
The considered problem for the traffic light can also be seen as a network
problem involving one node and two edges and can be in a straight-forward
manor extended to the case of multiple incoming and outgoing roads that
are connected by a similar modular node condition that time dependently
connects some pairs of incoming and outgoing roads and closes others. If
one chooses the sequence of modes in such a way, that no road is open for
two or more consecutive time phases, the same arguments as for the traffic
light problem can be used. Questions for future research will be whether one
may drop the latest assumption. Moreover we will have to investigate the case
when the boundary data of the red light condition (2.6f), (2.6g) is not assumed
by the boundary trace, which means that the traffic light turns red, when either
the incoming road is empty near the traffic light or the outgoing road has
already reached its maximum capacity. This becomes more important, if one
considers multiple traffic lights in a row. Another interesting modification of
the traffic problem is the case where the flux functions on the two sides of
the junction are not necessarily the same. Moreover, it will be of interest how
the shift-differentiability concept applies to networks of three edges, that are
connected by more common node conditions, as those from [10] and [13].

Finally, our results form the basis for the convergence analysis of numerical
approximations of the considered optimal control problems. So far, there exist
several results in the context of initial value problems with initial control and

(continued)
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sometimes also with control in the source term. The convergence of optimal
solutions of discretized optimal control problems was considered e.g. in
[11, 35]. The convergence of sensitivities, adjoints and reduced gradients was
analyzed in [19, 20, 36–38], see also [11] for an alternating descent method.
We are currently investigating the extension of these results to the case of the
initial-boundary value problem with boundary control and to the traffic light
problem. Here, we follow the approach in [12] for the discrete approximation
of the boundary condition, where the convergence to the unique entropy
solution of the initial-boundary value problem according to [4] is shown.
A particular issue will be the appropriate discrete approximation of shift
variations for boundary controls. We plan to consider the variation of the times
step sizes between switching times as well as discretization techniques with
fixed time steps.
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Elliptic Mathematical Programs
with Equilibrium Constraints in Function
Space: Optimality Conditions and Numerical
Realization

Michael Hintermüller, Antoine Laurain, Caroline Löbhard,
Carlos N. Rautenberg, and Thomas M. Surowiec

Abstract Recent advances in the analytical as well as numerical treatment of
classes of elliptic mathematical programs with equilibrium constraints (MPECs)
in function space are discussed. In particular, stationarity conditions for control
problems with point tracking objectives and subject to the obstacle problem as well
as for optimization problems with variational inequality constraints and pointwise
constraints on the gradient of the state are derived. For the former problem class
including the case of L2-tracking-type objectives (rather than pointwise ones) a
bundle-free solution method as well as adaptive finite element discretizations are
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to problems involving gradient constraints, the paper ends with a fixed-point-
Moreau-Yosida-based semismooth Newton solver for a class of nonlinear elliptic
quasi-variational inequality problems.

Keywords MPECs and MPCCs in function space • Gradient constraints •
Point-tracking • Adaptive finite element methods • Nonlinear elliptic quasivari-
ational inequality problem • Optimal shape design subject to elliptic variational
inequalities

Mathematics Subject Classification (2010). 49K20, 49M25, 65K10, 90C33.

1 Introduction

A variety of phenomena in engineering, life sciences, mathematical finance, eco-
nomics, and physics can be modeled by variational and quasi-variational inequali-
ties. Among the many applications within these areas one finds contact problems in
elasticity, torsion problems in plasticity, option pricing in finance, the magnetization
of superconductors, ionization problems in electrostatics as well as economic
phenomena such as the behavior of oligopolies and coalitions. In addition to the
challenging aspects of analysis and numerical treatment of these “equilibrium
problems”, one is often interested in influencing the system under consideration
in order to optimize a certain output quantity. The resulting optimization/optimal
control problems fall under the category of mathematical programs with equilibrium
constraints (MPECs).

In the following, we use as a prototype the following class of problems to
represent a general MPEC:

Minimize J.u; y/ over .u; y/ 2 U � Y; (1.1a)

subject to (s.t.) y 2 S.u/; and u 2 Uad � U (1.1b)

Here, J is an objective functional dependent on both the control variable u 2 U

and the state variable y in a reflexive Banach space Y with Y � the associated dual
space. Duality pairs are typically denoted by h � ; � i. We denote the set of admissible
controls by the nonempty subset Uad and we let S W U ! 2Y be the possibly set-
valued solution mapping for a given equilibrium problem

Find y 2 K W hAy � Bu � f; z � yi 	 0; 8z 2 K: (1.2)

Above K � Y is nonempty, closed, and convex; A 2 L.Y; Y �/ is coercive or
A W Y ! Y � is a strongly monotone, hemicontinuous operator; and f 2 Y �.
Here, the control u enters via Bu, where B 2 L.U; Y �/. However, one may also
encounter situations in which a domain � acts as a control (see Sect. 4). Problems
of this class are called elliptic variational inequalities (VIs) for a fixed feasible setK
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as given above, and (1.2) becomes a so-called elliptic quasi-variational inequality
(QVI) when K depends on y. The study of such problems has a long history going
back to the influential work of Fichera, Lions, Stampacchia and Brezis in the 1960s,
cf. [7, 8, 10, 29] and the references in [7].

In most cases, the solution mapping, even when it is single-valued, fails to have
the necessary properties needed for the derivation of a classical multiplier-based
first-order optimality system, e.g. Gâteaux differentiability. Even in settings where
one can introduce a slack variable 	 and reformulate the problem (1.2) e.g. as

Ay � Bu � f D 	; y 	 0; 	 	 0; h	; yi D 0; (1.3)

the resulting problem has an inherently degenerate feasible set, for which classical
KKT theory cannot be applied. These problems are often referred to as mathematical
programs with complementarity constraints (MPCC) in the literature, cf. [32,37,38]
in a finite dimensional setting, or [14, 15, 17] for problems posed in function space.

Using penalty and regularization techniques, much work was done in the 1970s
and 1980s concerning the optimal control of elliptic VIs as can be seen in the
monograph by Barbu [2], in which the ‘adapted penalty’ approach of Lions [30,31]
and Yvon [43] is generalized to a larger setting. Without using this penalty approach,
Mignot and Puel [34] derive stronger optimality conditions than those in [2] for the
optimal control of the obstacle problem by relying on earlier work by Mignot on the
generalized differentiability of S , cf. [33].

Nevertheless, the results mentioned in the works above, with the exception of
those of Yvon in [43, 44], stop short of developing numerical methods and were
mainly concerned with the derivation of first-order optimality conditions. In [44],
the solution operator S was smoothed and a sequence of related optimal control
problems was solved, thus foreshadowing some of the more popular methods
currently in use, cf. [17, 18, 39]. Later in [25], conditions similar to those in [2] are
rederived and a numerical method via a Gauss-Seidel-type iteration, as suggested by
Barbu [2, p. 89], is implemented. However, no convergence results were provided.

This paper highlights some important recent results on the development of a
suitable optimality theory as well as the design and implementation of efficient
solution algorithms for classes of MPECs in function space, as well as for Quasi
Variational Inequalities (QVIs) with gradient constraints.

2 Analytical Methods for the Derivation of Stationarity
Conditions for MPECs in Function Space

In this section, we discuss different techniques to provide new stationarity condi-
tions for two classes of MPECs which are modified variants of those derived in [34]
and similar to those in [17, 18].

For an open bounded domain � � R
n, n 2 N, we consider aij 2 L1.�/

(i; j 2 f1; : : : ; ng) such that the linear operator A W Y D H1
0 .�/ ! H�1.�/,
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defined by A D � div..aij/r � / is uniformly coercive and bounded. Further, we
assume K � H1

0 .�/, u; f 2 L2.�/, and B D iL2,!H�1 the embedding of L2.�/
intoH�1.�/ in the variational inequality problem (1.2) with the (thus well-defined)
solution operator S W L2.�/ ! H1

0 .�/. In Sect. 2.1, the objective is defined on
L2.�/ � C.�/ and the solution operator S of an obstacle type constraint has to be
considered as a mapping into C.�/. In Sect. 2.2 we consider the optimal control of
a variational inequality with gradient constraints.

2.1 Optimal Control of an Obstacle Problem with Pointwise
Tracking Term

By adapting the proof of [27, IV, Thm.2.3], it was shown in [6] that if � � R
2

is a Lipschitz domain, then the solution operator S of (1.2) with K D fy 2
H1
0 .�/ j y 	 0 a.e. on �g maps W �1;q.�/ into W

1;q
0 .�/ for some q > 2.

Furthermore, S. � / is a singleton. Since W 1;q
0 .�/ � C.�/ for q > 2, we may

thus consider the following optimal control problem:

Minimize J.u; y/ D 1

2

X
w2I
.y.w/ � yw/

2 C ˛

2
kuk2L2.�/ (2.1a)

over .y; u/ 2 W 1;q
0 .�/ � L2.�/; (2.1b)

s.t. y D S.u/ solves (1.2); (2.1c)

and u 2 Uad D fu 2 L2.�/ j u � u � U a.e. in �g: (2.1d)

Here, w 2 R
2 denotes an evaluation point in a finite set I � �, yw 2 R is a

desired (or measured) value of the state y at w, ˛ > 0 represents the cost of the
control and the bounds satisfy u; U 2 L2.�/ and u < U a.e. in � or u D �1,
U D 1. The point evaluation of y 2 W 1;q

0 .�/ in w is also denoted by hıw; yi�1;q0 ,
where ıw 2 W �1;q0

.�/ D .W
1;q
0 .�//�, the dual of W 1;q

0 .�/, with q0 D q

q�1 .

The weak continuity of S W L2.�/ ! W
1;q
0 .�/ with respect to subsequences,

the weak closedness of Uad, and the weak lower semi-continuity of the objective
functional J W L2.�/ � W

1;q
0 .�/ ! R yield the existence of a solution of (2.1).

In a physical interpretation of this model problem, one would aim to control the
deflection of a membrane, which is clamped at the boundary of �, such that it is
as close as possible to certain values of interest (e.g. measurements in an inverse
problem context), and ˛ > 0 is the cost of the control.

Auxiliary Problem We approximate the variational inequality in the constraints
by a sequence of semi-linear partial differential equations and replace the point
evaluation in the objective by an averaging integral. In this way, we obtain the
following auxiliary optimal control problem:
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Minimize Jr.u; y/ D
X
w2I

1

2jBr.w/j ky � ywk2L2.Br .w// C ˛

2
kuk2L2.�/ (2.2a)

over .y; u/ 2 H1
0 .�/ � Uad; s.t. Ay � � maxl�.0;�y/ D u C f: (2.2b)

Here, for r > 0, Br.w/ D fx 2 � j jx � wj < rg, maxl� is for example the locally
smoothed max-operator from [18, Eq. (2.4)], � > 0 is the penalization and � > 0

the smoothing parameter. Moreover, for the ease of notation, we do note write B .
One can prove the following convergence result, cf. [6]:

Theorem 2.1. Let �k ! 1, rk ! 0 be positive sequences and let .�k/k2N D
.�.�k//k2N � RCnf0g satisfy limk!1 �k�k D 0. For all k 2 N let .uk; yk/ denote
a solution of the smoothed penalized problem (2.2) with parameters .�; �; r/ D
.�k; �k; rk/. Then there exists a subsequence of .uk; yk/k2N (denoted the same) and
a solution .u; y/ of (2.1) such that yk ! y in W 1;q

0 .�/, uk * u in L2.�/, and
�k maxl�k .0;�yk/ * 	 WD Ay � u � f in L2.�/.

Resulting stationarity system By applying Theorem 3.1 in [45], one can derive a
stationarity system for solutions of (2.2). We utilize Theorem 2.1 and a technique
from [1] (which requires the averaging of the point evaluations in the objective
functional) to show that stationary points of the auxiliary problem converge to
solutions of the system stated in Theorem 2.2 below, see [6] for details. In its
formulation we use the inactive set I.y/ WD fx 2 � j y.x/ > 0g.

Theorem 2.2. An optimal solution solution .y; u; 	/ 2 W 1;q
0 .�/�Uad �W �1;q.�/

of (2.1) satisfies the so-called limiting "-almost C-stationary conditions, i.e., there

exist multipliers p 2 W
1;q0

0 .�/ and � 2 .L1.�//� and sequences .pk/k2N �
H1
0 .�/, .�k/k2N � H�1.�/ such that pk * p in W 1;q0

0 .�/, and �k *� � in
.L1.�//�, and the following conditions are satisfied:

u D ProjUad
.
1

˛
p/; A�p � ��

X
w2I
.y.w/ � yw/ıw D 0; (2.3a)

h�; yi�1;q0 D 0; h	; pi�1;q D 0; (2.3b)

8� > 0 9E� � I.y/ s.t. jI.y/ n E� j < � and

8' 2 L1.�/; 'j�nE� D 0; h�; 'i.L1.�//� D 0; (2.3c)

lim supfh�k; pki�1;2 j k 2 Ng � 0: (2.3d)

Here, ProjUad
is the L2.�/-projection onto Uad. Note that in finite dimensional

subspaces, condition (2.3c) yields � D 0 on the inactive set, whereas the limiting
sign property in line (2.3d) reduces to h�;pi � 0. In particular, when using a
conforming discretization, solutions of (2.1) satisfy the C-stationarity conditions.
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2.2 Optimal Control of a Variational Inequality with Gradient
Constraints

Another possible variational inequality of practical interest arises when one consid-
ers the state constraint K WD ˚

y 2 H1
0 .�/ jjryj �  ; a.e. on �

�
. When  � 1

and f D c 2 R, the variational inequality models the elastoplastic torsion of a
cylinder. However, there are a number of more complex phenomena, which can be
modeled with such a framework; see Sect. 5 below. This highly nonlinear constraint
adds additional difficulties when considering the MPEC and certain assumptions on
regularity of the data are currently needed for the derivation of an optimality system.
We briefly sketch two methods here.

Method 1 Recall that the tangent and normal cones to a closed convex set C � X

in a normed linear space at a point z 2 X are given by

TC .z/ WD
�
d 2 X

ˇ̌
ˇ̌9tk # 0; dk X! d W z C tkdk 2 C

�
;

NC .z/ WD ˚
v 2 X� ˇ̌hv; z0 � zi � 0; 8z0 2 C � :

In addition, we define the active and the inactive set belonging to y 2 K by A WD
fx 2 � j jry.x/j D  g and I WD �nA, respectively. It was shown in [21], that if

1. y 2 H1
0 .�/ solves the variational inequality,

2. TK.y/ D ˚
d 2 H1

0 .�/ jry � rd � 0; a.e. on A
�
,

3. NK.y/ D ˚
v D �div.	ry/ 2 H�1.�/ ˇ̌	 2 L2.�/ W 0 � 	? � jryj 	 0

�
,

4. For v 2 NK.y/ such that Ay C v D u C f and 	 2 L1.�/,
then the solution operator S for the variational inequality is (Hadamard) direction-
ally differentiable from the control space into H1

0 .�/. The directional derivative of
S at u in direction h is given by the unique solution d of the following variational
inequality:

Find d 2 TK.y/\fvg? W hAd�2 div.	rd/�h; d 0�d i 	 0; 8d 0 2 TK.y/\fvg? :

This in turn leads to the following first order optimality conditions, which in the
finite dimensional literature would be known as strong stationarity conditions:

Theorem 2.3. Let .u; y/ be a (locally) optimal solution to the corresponding
MPEC. Under the assumptions above, there exist multipliers p 2 H1

0 .�/ and
� 2 L2.�/, such that

0 D ruJ.u; y/ � p; (2.4)

0 D ryJ.u; y/C A�p � 2div.	rp/C 2div.�ry/; (2.5)

0 D Ay � u � 2div.	ry/: (2.6)
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Defining the strongly active and the biactive set belonging to y and 	 by AC WD
fx 2 A j	.x/ > 0g and B WD fx 2 A j	.x/ D 0g, the multipliers satisfy the
following sign conditions,

ry � rp 	 0 a.e. on B;
ry � rp D 0 a.e. on AC;

� � 0 a.e. on B;
� D 0 a.e. on I;

	 	 0 a.e. on A;
	 D 0 a.e. on I:

This assumption on the form of the tangent cone is known in the optimization
literature as Abadie’s constraint qualification. Though it is one of the weakest
possible conditions to require in regard to the tangent cone, it can sometimes be very
difficult to verify. The additional requirement on the regularity of the multiplier 	
is somewhat strong, though examples can be found where 	 enjoys this increased
regularity.

Method 2 In order to avoid the assumptions made above, which guarantee strong
stationarity of an optimal solution, one can approach the problem as in [2]. Here, an
‘adapted penalty’ approach as mentioned in the introduction is applied in which
the variational inequality is replaced by a quasi-linear PDE in divergence form.
However, this method also requires further assumptions, in particular, the boundary
of � must be C2 and the regularity of the solutions of the quasi-linear PDE are
required to have a higher regularity (W 2;q.�/ \ H1

0 .�/ for q > n). Upon passing
to the limit, a much weaker form of stationarity is obtained than in (2.4)–(2.6); see
the diploma thesis [26].

3 Numerical Treatment of MPECs in Function Space

Suitable stationarity conditions, like those in Sect. 2, can be used to design efficient
mesh independent solvers for the MPEC. This section provides a globally conver-
gent function-space-based descent method for the solution of B- and C-stationarity
systems (Sect. 3.1) as well as a goal-oriented mesh refinement technique in the spirit
of the dual weighted residual approach (cf. [4]) for the adaptive discretization of
MPECs in function space (Sect. 3.2).

3.1 An Algorithm for the Solution of C- or B-Stationarity
Systems

The differentiability results on the solution operator S corresponding to (1.2) of [33]
were extended to a much wider class of problems in [21] using techniques from
non-smooth analysis. Moreover, in the absence of biactivity, S is typically Gâteaux
differentiable. These facts lead one to naturally consider the following subclass of
MPECs:
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Minimize J .u/ WD J.u; S.u// over u 2 U; (3.1a)

where, in addition to the usual assumptions needed to prove the existence of
an optimal control, we assume that S W U ! Y is Lipschitz continuous and
directionally differentiable and J is Fréchet differentiable in both arguments.

We demonstrate in [22] that it is theoretically possible to obtain a descent
direction h for J at u by solving the following regularized auxiliary problem:

Minimize
1

2
q.h; h/C J 0.uIh/ over h 2 U; (3.2)

where q is a coercive quadratic form. Of course, when S is smooth, (3.2) has a
unique solution and a descent direction can be obtained by solving the first-order
optimality conditions associated with (3.2). Otherwise, we proposed in [22] a new
method for obtaining a descent direction in nonsmooth settings when S 0.uIh/ has
an explicit form. With these ideas, we develop a first order method for solving (3.1)
and discuss its convergence properties.

Optimal Control of an Obstacle Problem Throughout the rest of this sec-
tion, let � � R

n, n 2 f1; 2; 3g, be either convex polyhedral or have a C1;1-
boundary. In addition, we set Uad D L2.�/, Y D H1

0 .�/ and K D fy 2
H1
0 .�/ j y 	 0 a.e. on �g as in Sect. 2.1. The solution operator of (1.2) is denoted

by S , B 2 L.L2.�/;H�1.�// and f 2 L2.�/. A is a symmetric second-order
linear elliptic operator associated with the bilinear form a W H1

0 .�/ �H1
0 .�/ ! R

defined by

hAv;wi WD a.v;w/ D
nX

i;jD1

Z
�

aij
@v

@xj

@w

@xi
dx C

Z
�

cvwdx; 8v;w 2 H1
0 .�/;

with c 2 L1.�/, c 	 0, and aij 2 C0;1.�/, i.e., Lipschitz continuous on the closure
of�, with

P
i;j wi aijwj 	 �jwj2

Rn
for all w 2 R

n and some real � > 0. A solution y
of the variational inequality satisfies y 2 H2.�/\H1

0 .�/.
We define the active set A WD fx 2 � jy.x/ D 0g and the inactive set I WD

� n A. Moreover, using 	 from the complementarity formulation (1.3) we define
the strongly active set AC WD fx 2 A j	.x/ > 0 g and the biactive set B WD
fx 2 A j	.x/ D 0 g.

It is possible to show that d D S 0.uIh/ if and only if d is the unique solution to
the optimization problem

min 1
2
hAd; d iH�1;H1

0
� .Bh; d /L2 over d 2 H1

0 .�/

s:t: d D 0; a.e. on AC;
d 	 0; q.e. on A:

(3.3)
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Here, ‘q.e’ stands for ‘quasi-everywhere’ and refers to a relation which is satisfied
up to a set of zero capacity; see [13] for details in this concept. If strict complemen-
tarity holds, A D int.A/, and the free boundary is sufficiently regular, then it can
be argued that we may write (3.3) in the more compact form:

d D 0; q.e. on AC; Ad D Bh; in I: (3.4)

Otherwise, i.e., if biactivity is present, d solves a VI. By letting maxg" .0; � / be
a global C2-smoothing of the pointwise max.0; � /-operator, we can approximate
S 0.uI � / by the solution operator of the semilinear equation:

Ad C ��ACd � ��A maxg" .0;�d/0 D Bh: (3.5)

Here, � represents the standard characteristic function whereas � > 0 and " > 0

are penalty and smoothing parameters, respectively. We let S 0�;".uI � / represent the
solution operator associated with (3.5).

For a tracking type objective J defined by

J.u; y/ WD 1

2
ky � ydk2

L2.�/
C ˛

2
kuk2

L2.�/
; ˛ > 0; yd 2 L2.�/; (3.6)

define

F�;".h/ WD 1

2
q.h; h/C ˛.u; h/L2 C .y � yd ; S 0�;".uIh//L2 ;

where . � ; � /L2 or sometimes just . � ; � / is the usualL2-inner product. One can show
that if � > 0 is large enough then h D �F 0�;".0/ is a proper descent direction for
the original reduced objective functional J at u. Note that the calculation of F 0�;".0/
requires the solution of the adjoint equation

Ap C ��ACp D �ryJ.u; y/ (3.7)

where y D S.u/ and ryJ.u; y/ is the partial derivative of J with respect to y.
These results and observations lead to Algorithm 1, which, if the step sizes �k are
generated by an Armijo line search and �k 6! 0 as k ! 1, can be shown to provide
the following:

1. If strict complementarity holds for all sufficiently large k, then a type of C-
stationarity is obtained. Moreover, a B-stationary point is obtained if the function
J .u/ is Clarke-regular at the solution u?.

2. Otherwise, one has �-almost-C-stationarity of weak accumulation points.

Moreover, by replacing S with the solution operator for

Ay C ımaxg�.0;�y/ D Bu C f; ı > 0; � > 0;
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Algorithm 1 A first-order method for MPECs
Input: u0, �0; "0 > 0, ˇ > 1, k WD 0

1: while Convergence criterion is not fulfilled do
2: Calculate yk D S.uk/
3: if m.B/D 0 then
4: Calculate descent direction hk by solving (3.2) with u D uk .
5: else
6: while descent criterion violated do
7: Set �k � ˇ�k
8: end while
9: Set hk D �F 0

�k ;"k
.0/.

10: end if
11: Determine a step size �k > 0 according to Armijo line search.
12: Set ukC1 WD uk C �khk , k WD k C 1.
13: end while

whenever �k appears to be rapidly converging to zero, one can embed Algorithm 1
into an outer loop that uses a standard steepest descent method for the smoothed
MPEC in order to generate a new Quk. Afterwards, Algorithm 1 can be restarted with
k D 0, uk D Quk . In such a case, the conditions on �k can be dropped and the
enhanced algorithm will provide sequences whose weak accumulation points are
"-almost-C-stationary, cf. [17, 18, 22]

Finally, we mention that although the methods in [17, 18], when used in
conjunction with a non-linear PATH strategy or a heuristic line search argument
exhibit globally convergent behavior experimentally, Algorithm 1 is the only proven
globally convergent function-space-based algorithm for this problem class.

Example 1. This example is taken from the literature specifically due to the pres-
ence of a large biactive set at the solution, see [18]. Here, we let� D .0; 1/� .0; 1/,
J is a tracking type functional (3.6) with ˛ D 1 and given

y�.x1; x2/ D
�
1600.x31 � x21 C 0:25x1/.x32 � x22 C 0:25x2/ in .0; 0:5/2;
0 else,

	�.x1; x2/ D max.0;�2jx1 � 0:8j � 2jx1x2 � 0:3j C 0:5/

we set f D ��y��y��	�; and yd D y�C	��˛�y�. Let furtherA D ��, B D
iL2,!H�1 , and discretizeA using the standard five-point finite difference stencil. For
the numerical solution, a nested grid strategy is applied. The algorithm was stopped
when either the maximum residual of the C-stationarity system reached 10�6 or the
direction khkkL2 � 10�6. An Armijo line search was used in which we set � D 0:5�

until

J .uk C �hk/ � J .uk/C 0:01�J 0.uk Ihk/:
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Table 1 Performance of Algorithm 1 for Example 1

dof lnsrch C-stat. khk lnslve nsstep sstep

9 3 6.0848e�09 6.0848e�09 16 2 2

49 3 1.7046e�09 1.7046e�09 16 2 2

225 3 1.1502e�09 1.1502e�09 24 2 2

961 3 5.5962e�10 5.5962e�10 21 2 2

3,969 3 4.1594e�10 4.1594e�10 18 2 2

16,129 3 3.7574e�10 3.7574e�10 16 2 2

65,025 1 1.9297e�06 7.2621e�10 10 2 0

261,121 2 8.3587e�10 2.59e�12 14 3 0

The underlying VI was solved using a primal-dual active set strategy, which is
known to be locally superlinearly convergent for each mesh, [23]. The semilinear
equation in the nonsmooth step is solved using a standard Newton step. The
performance of the algorithm can be seen in Table 1. We use the notation: dof D
degrees of freedom, lnsrch D number of line searches, C-stat D maximum residual
of C-stationarity, khk norm of step, lnslve D total number of linear systems solved,
nsstep D number of nonsmooth steps, sstep D number of smooth steps.

3.2 An Adaptive Finite Element Method for a Class of MPECs

Assuming that we can find solutions of suitable stationarity systems with the
algorithm from Sect. 3.1 above, this section suggests a mesh adaption technique
from [24] that allows us to find a discrete space that fits to special properties of
the solution. The dual weighted residual approach to a posteriori error estimation
for optimal control problems has been pioneered in [4, 12, 16, 42]. A residual type
estimator for the optimal control of an obstacle problem can be found in [11].

Based on the notion of a modified Lagrangian function associated with the MPEC
(MPEC-Lagrangian) one employs suitable first order stationarity conditions for the
function space setting, see e.g. (2.3) for the point evaluation case, or [17] for the
L2-tracking objective functional, as well as for a discretized version of the MPEC.
Then using Taylor’s expansion of the MPEC-Lagrangian one can derive the error
representation formula as stated in Theorem 3.1 below, see [6, 24] for details.

For the state yh and the adjoint state ph, we use a conforming discretization of Y
with P1 finite elements on a regular triangulation Th of the domain�. The discrete
multipliers 	h and �h are defined in the discrete dual space and prolongated to
linear continuous mappings on the full space Y , whereas the control uh as well as
the respective multipliers �ah; �bh result from an L2.�/-projection of ph onto the
admissible set Uad. In this section, we assume .uh; yh; 	h; ph; �h; �ah; �bh/ to be
C-stationary for the discrete MPEC in the resulting discrete space, i.e., it satisfies
conditions (2.1c), (2.3) (or those in [17]) tested in the finite element space.
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Theorem 3.1. For .u; y; 	; p; �; �a; �b/ satisfying (2.1c), (2.3) or the respective C-
stationarity system from [17] and every ıxh D .ıuh; ıyh; ı	h; ıph/ in the discrete
space, it holds that

2.J.u; y/� J.uh; yh// D
a.yh; p � ıph/ � .uh C f; p � ıph/ � .	h; p � ıph/

C a.y�ıyh; ph/C hJy.uh; yh/� �h; y�ıyhi
C .Ju.uh; yh/ � ph � �ah C �bh; u � ıuh/

� h�; yhi C h�h; yi C h	h; pi � .	; ph/

� .uh � a; �a/C .u � a; �ah/ � .b � uh; �b/C .b � u; �bh/ :

This error representation involves primal residuals weighted by dual variables
and vice versa as well as error terms covering the mismatch in complementarity.
The latter error indicators are relevant in the location of the coincidence or active
sets which arise due to the variational inequality constraint.

We suggest a heuristic way to replace the continuous solutions, e.g. y, which
typically arise in goal oriented dual weighted error estimation, locally by a quadratic
function that minimizes the least square distance to the values of the respective
discrete function (e.g. yh) in the midpoints of the edges of a triangle T and in the
nodes of its neighbors sharing an edge with T which are no nodes of T . The formula
can then be written as a sum over terms that reflect the error contribution on each
triangle in Th.

Example 2. We consider A D �� on the L-shaped domain � D .�1; 0/ �
.�1; 1/ [ .0; 1/ � .0; 1/, and the MPEC (1.1) with the L2-tracking type objective
functional (3.6),U D Uad D L2.�/, and obstacle problem constraint as in Sect. 3.1.
Furthermore, we set ˛ D 0:01 and define yd and f by

yd .x/ D
� �1 if jxj 	 1

10
;

1 � 100x21 � 50x22 else,
f .x/ D 1

2
C 1

2
.x1 � x2/:

Figure 1 compares the errors jJ.uh; yh/ � J.u; y/j for discrete solutions on
uniform meshes (solid blue lines) with the total values of the respective estimators
(dashed blue lines), and the errors in the objective for discrete solutions on
adaptively refined meshes (solid red lines) with the corresponding total value of the
estimator (dashed red lines). Here, the superscript ‘A’ denotes quantities related to
the adaptive refinement, whereas ‘U’ refers to the uniform mesh refinement. Since
the exact solution .y; u/ is not known, we estimate it by a discrete solution on a
sufficiently fine mesh. The associated objective value is J �. The convergence plot
shows the reliability of the estimator and the faster convergence of the adaptive
method. The right part shows that the adaptively generated mesh exhibits a higher
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Fig. 1 Left: Convergence of the estimators �A as �U as well as the errors in the objective values
jJA�J�j and jJU�J�jw.r.t. the number of degrees of freedom for Example 2. Right: Adaptively
generated mesh with strongly active set (blue) and biactive set (red)

density of nodes in the region around the non-convexity of � as well as at the free
boundary between strongly active (blue) and biactive (red) and inactive sets.

4 Shape Design for a Variational Inequality

In contrast to the previous sections, we now consider shape and topology optimiza-
tion problems subject to VIs. This means that the domain � acts as the control.
These problems have received considerably less attention than problems governed
by elliptic partial differential equations; see [3, 35, 36, 40, 41], and the literature
on solution algorithms in function space is even more scarce. In addition to the
challenges with VI constraints discussed in the previous sections, in the present
context VI constraints pose several additional difficulties in analysis and numerics,
since the shape derivative is typically non-linear, which is, as before, related to the
presence of biactive sets. We present some of the key aspects of the paper [19].

Let � � R
2 be a bounded domain with a C1;1-boundary †. Assume � � D

where D is a bounded domain and let  2 H4.D/ with 0 < M <  � M and
f 2 H2.D/. We set K D fy 2 H1

0 .�/ j y �  a.e. in �g and B�0 in (1.2). For
the unique solution y D y.�/ 2 H2.�/ \H1

0 .�/ of (1.2) there exists a Lagrange
multiplier 	 2 L2.�/ satisfying the complementarity formulation

��y C 	 D f; y �  ; 	 	 0; 	.y �  / D 0 a.e. in �: (4.1)

Define the active, inactive and biactive sets with respect to the solution y and the
multiplier 	 as

A D fx 2 � W y.x/ D  .x/g; I D � n A; B D fx 2 A W 	.x/ D 0g;
respectively. The continuity of y �  on � and of 	 on A (note that 	 enjoys extra
regularity on A due to the invoked data regularity and the first equation in (4.1))
yield that A and B are closed in� and I is open. Let V 2 C.Œ0; T �; C2.�;R2// and
Tt.V /.X/ D x.t/ be the solution of
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dx

dt
.t/ D V.t; x.t//; 0 < t < �; x.0/ D X 2 R

2

for � > 0 sufficiently small, i.e. such that�t.V / � D, where�t.V / WD Tt.V /.�/.
The shape derivative y0 of y D y.�/ at � in direction V is defined (formally) as

y0.�IV / WD lim
t#0
.y.�t .V // � y.�//=t: (4.2)

Here, we provide a characterization of y0.�IV / for obstacle problems. It is known
that if B is non-empty, then one has to solve an obstacle problem to obtain y0. We
introduce the function v� WD V.0/ � � defined on @� (with the outer unit normal �
on @�) and the set IC WD I [ int.B/ which is assumed to be a Lipschitz domain,
and use Corollary 4.17 of [40, p. 183].

Theorem 4.1. The shape derivative y0 2 H1.�/ is the unique solution of

y0 2 Sv.�/ W
Z
�

ry0 � r.� � y0/ 	 0 8� 2 Sv.�/; (4.3)

where the cone Sv.�/ � H1.�/ is of the form

Sv.�/D
�
�2H1.�/ W � D �@�y v� on @�; ��0 q.e. in A;

Z
�

ry � r� D
Z
�

f �

�
:

To circumvent the non-linearity of y0 with respect to � , we regularize (4.1). This
allows to compute the shape derivative for the regularized problem on all of � and
to use standard numerical algorithms. For this purpose, consider

��y� C 	� D f in �; y� D 0 on @�; (4.4)

	� D max.0; N	C �.y� �  //2; (4.5)

with � > 0. We choose N	 2 L4.�/ such that

N	 	 0; N	2 � .f C� / 	 0 a.e. in �: (4.6)

Corollary 4.2 (cf. Cor.2 in [19]). If (4.6) holds we have 	� ! 	 in L2.�/ and
y� ! y in H2.�/ as � ! 1, respectively.

According to [40], the shape derivative y0� 2 H1
0 .�/ of y� solves:

��y0� C 2�

q
	�y

0
� D 0 in �; y0� D �@�y� v� on @�: (4.7)
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Introduce AC WD f	 > 0g which is assumed to be Lipschitz and define y01 as the
solution of

��y01 D 0 in � n AC DW IC; (4.8)

y01 D �@�y v� on @�; (4.9)

y01 D 0 on @AC; (4.10)

y01 � 0 in AC: (4.11)

Theorem 4.3. If AC and IC have a Lipschitz boundary, the solution y0� of (4.7)
converges to the solution y01 of (4.8)–(4.11) strongly in H1.�/ as � ! 1.

Example 3. We consider an application to electrochemical machining (ECM) [3, 9,
41]. Let B � E � � � D be smooth domains. The set � is the control domain,D
is fixed, and E is a target shape for the active set A. The aim is to minimize

J .�/ D
Z
EnB

y2.x/ dx C
Z
�nE

.y � yl /2.x/ dx; (4.12)

where y is the solution of the obstacle problem

� ��y C 	 D f in � n B; with y D 1 on @� and y D 0 on @B;
y 	 0; 	 � 0; 	y D 0 a.e. in � n B; (4.13)

and yl is the solution of the linear problem

��yl D f in � n E; yl D 1 on @�; yl D 0 on @E:

The penalized version of problem (4.13) corresponds to minimizing

J�.�/ D
Z
EnB

y2� .x/ dx C
Z
�nE

.y� � yl/
2.x/ dx; (4.14)

where y� is the solution of

��y� � 	� D f in � n B; y� D 0 on @B; y� D 1 on @� (4.15)

with � > 0 and 	� WD min.0; N	C �y�/
2. We introduce the adjoint states p1 and p2

as the solutions of

��p1 C 2�

q
	�p1 D 2y��EnB C 2.y� � yl /��nE in � n B; p1 D 0 on @� [ @B;

��p2 D � 2.y� � yl / in � nE; p2 D 0 on @� [ @E:
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Fig. 2 From left to right: solution y, history of the cost J� , target set E n B and solution active
set A n B

where � stands for the indicator function of a set. We obtain for the shape derivative
of (4.14)

dJ� .�; V / D
Z
@�

�rp1 � ry� C rp2 � ryl
�

v�:

We use the descent direction

v� D �rp1 � ry� � rp2 � ryl
in a level-set based steepest descent method for minimizing J� . Choosing � D 104

for the penalization, Fig. 2 depicts the numerical results for the ECM problem with
the penalization approach and shows a good match between the target E n B and
the solution active set A n B .

5 Stationarity and a Solution Algorithm for QVIs
with Gradient Constraints

Quasi-variational inequalities (QVIs), introduced by Bensoussan and Lions in [5]
and [30], arise as mathematical models of various phenomena in the applied
sciences. These involve, for instance, game theory, solid and continuum mechanics
or superconductivity. QVIs generalize VIs in the sense that the constraint set is no
longer a constant set but a set-valued mapping. More precisely, the constraint set
depends on the solution. In this section, we briefly sketch the results of [20].

Let � be a bounded domain of R
n, n 2 N and p 	 2. Suppose that C is a

closed and convex subset ofW 1;p
0 .�/ such that 0 2 C and we are given a nonlinear

completely continuous mapping ˆ W C � W
1;p
0 .�/ ! L1� .�/ � L1.�/, where

L1� .�/ D f' 2 L1.�/ W '.x/ 	 � a.e. on x 2 �g with � > 0. The set-valued

constraint map K W C � W
1;p
0 .�/ ! 2W

1;p
0 .�/ is given by
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K.z/ D fy 2 W 1;p
0 .�/ W jry.x/j � ˆ.z/.x/ a.e. on �g:

Note that for every z 2 C ,K.z/ contains the zero element and is closed and convex.
Suppose that f 2 W �1;p0

.�/ and A W W
1;p
0 .�/ ! W �1;p0

.�/ is a
strongly monotone, hemicontinuous operator and A.0/ D 0. Then we define the
problem (PQVI) as the following QVI:

Find y 2 C s.t. y 2 K.y/ W hA.y/� f; z � yi 	 0; 8z 2 K.y/: (PQVI)

Note that if C 3 z 7! S.z/ is the solution mapping of problem (1.2) with
K D K.z/, then solutions to (PQVI) are equivalently solutions to y D S.y/. A
prototypical example for A is given by the p-Laplacian, given by h��p.y/; zi DR
�

jryjp�2ry � rz, which reduces to the usual Laplacian when p D 2. Existence
of solutions for (PQVI) can be proven by the application of well-known fixed-point
theorems (see [28]), e.g., Schauder and Leray-Schauder, however the derivation of
numerical methods requires further results.

In what follows, assume that A.ty/ D tkA.y/ for each y 2 W 1;p
0 .�/, t > 0 and

some k 2 N, and that the Gâteaux derivative of Qa.y/ WD 1
kC1 .A.y/; y/ is given by

Qa0.y/ D A.y/. Note that (PQVI) is in general not equivalent (see [20]) to

min j.y/ WD 1

k C 1
hA.y/; yi � hf; yi; s.t. y 2 K.y/; (5.1)

unless C D W
1;p
0 .�/ and ˆ.z/ D ' 2 L1� .�/ for all z 2 W

1;p
0 .�/. The latter

fact can be utilized to derive that z 7! K.z/ D K is constant and then the problem
reduces to a VI.

Returning to a non-trivial QVI setting, we note that if C D W
1;p
0 .�/, ˆ is

Lipschitz with constant Lˆ, f 2 Lq.�/ for large enough q, and A satisfies certain
conditions regarding its strong monotonicity (see [20]), then it can be proven that

kS.y/ � S.z/k
W
1;p
0 .�/

� LS.Lˆ; f /ky � zk
W
1;p
0 .�/

; (5.2)

such that limLˆ#0 LS.Lˆ; f / D 0 and limkf kLq.�/#0 LS.Lˆ; f / D 0. This implies
that, under certain conditions, the mapping z 7! S.z/ is contractive and the iteration
yn D S.yn�1/ converges strongly to the unique solution to (PQVI). The above
contractive property proves that there exist non-trivial cases for which a numerical
method with guaranteed convergence can be developed. In fact, given yn�1, an
approximation of yn D S.yn�1/ can be obtained by solving the penalized problem

min j� .y/ WD j.y/C �

2
k.jryj �ˆ.yn�1//Ck2

L2.�/
over y 2 W 1;p

0 .�/: (P� )
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Here, the solution y�n satisfies lim�!1 y�n D yn D S.yn�1/ as well as the optimality
system

.�.jry�n j�ˆ.yn�1//C; q�rz/ D hf; zi � hA.y�n /; zi 8z2W 1;p
0 .�/I

q�.x/ 2

8̂
<
:̂
ry�n
jry�n j .x/; if jry�n .x/j > 0;

NB1.0/l ; otherwise,

(OS� )

where NB1.0/l denotes the usual closed unit ball in R
l . The above can be written as

F.y/ D A.y/� f C �P.y/ with P.y/ WD r�.jryj �ˆ.yn�1//Cq.ry/r. Then,
provided that y 7! A.y/ is differentiable, F is Newton (or slantly) differentiable,
i.e., semismooth, as a mapping from W

1;p
0 .�/ to .W 1;s0

0 /0 for 3 � 3s � p < 1
where 1=s C 1=s0 D 1. This can be utilized to derive a semismooth Newton solver
for each � > 0 and an algorithm arises for the approximation of solutions to (PQVI).
The algorithm can be compactly summarized as follows: (i) Choose y0 2 W 1;p

0 .�/

and set n D 1. (ii) Approximate yn D S.yn�1/ by solving (OS� ) for large �
by means of a continuation technique in combination with a semismooth Newton
solver. (iii) Unless stopping criteria are satisfied, set n WD n C 1 and go to (ii). For
further details, we refer to [20].

Example 4. Let p D 3, � D .0; 1/ � .0; 1/, A D ��p (the p-Laplacian),
f .x1; x2/ D sin.2x1/ sin.x2/ and ˆ.z/.x/ D 10�1.x/j

R
�
�2.w/z.w/dwj C 0:05

with the functions �1 and �2 defined by �1.x1; x2/ WD exp.�5..x1 � 1=3/2 C .x2 �
1=3/2// and �2.x1; x2/ WD 10��0.x1; x2/C0:1;where ��0 denotes the characteristic
function of the set �0 D .0:5; 1/ � .0:5; 1/. The approximation of the solution to
the QVI and its active set are depicted in Fig. 3.

Fig. 3 (a): approximate solution to the QVI. (b): approximation of the active set (red) A D fx 2
� W jryj D ˆ.y/g
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Models and Optimal Control in Freezing
and Thawing of Living Cells and Tissues
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Abstract This paper outlines results obtained by the authors in the framework of
the DFG Priority Program “Optimization with partial differential equations” (SPP
1253). The intention of the authors was related to the application of the theory of
partial differential equations and optimal control techniques to the minimization of
damaging factors in cryopreservation of living cells and tissues in order to increase
the survival rate of frozen and subsequently thawed out cells. The paper presents
mathematical models of the processes of freezing and thawing and describes the
application of optimal control theory to the design of optimal cooling and warming
protocols which reduce damaging effects and improve the survival rate of cells.

Keywords Freezing and thawing of biological cells • Damaging factors •
Mathematical model • Control system • Hamilton-Jacobi equations • Grid
methods • Optimal cooling and warming rates
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1 Introduction

The authors of patent [1] have found that certain tooth follicles contain the so
called pluripotent (able to develop into multiple types) stem cells. The patent also
outlines the application of such stem cells in tissue engineering, gene therapy, and
in identifying, assaying or screening with respect to cell-cell interactions.

These technologies involve freezing and thawing out of small tissue samples in
such a manner that the cells preserve their functional properties. Optimization and
control are necessary here because of several competitive effects of cooling. Slow
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cooling causes slow freezing of the extracellular fluid, which results in an increase in
the concentration of salt in the remaining unfrozen part of the extracellular solution.
Since the intracellular liquid remains unfrozen relatively long, the osmotic effect
leads to the cellular dehydration and shrinkage. Another effect of this process is a
large stress which can damage the integrity of cell membranes. If cooling is rapid,
the water inside the cells forms small, irregularly-shaped ice crystals (dendrites)
that are relatively unstable. If frozen cells are subsequently thawed out too slowly,
dendrites will aggregate to form larger, more stable crystals that may cause damage.
Maximum viability is obtained by cooling at a rate in a transition zone in which
the combined effect of both these mechanisms is minimized. Thus, an optimization
problem can be formulated for mathematical models describing the processes
of freezing and thawing. Moreover, some general arguments and our freezing
experiments show that better results can be obtained if the ambient temperature falls
not monotonically in time, especially in the temperature range where the latent heat
is released. Thus, time dependent optimal controls (optimal cooling protocols) are
reasonable. Our numerical simulations and experiments show that positive effects
can be achieved by creating temperature gradients in the freezing area or by forcing
ice nucleation through mechanical vibration or some temperature shocks localized
in a small area (seeding). Another control tool is related to cryoprotective agents
which vary eutectic properties of solutions.

Additional difficulties arise when preserving structured solid tissues. Significant
problems are associated with the difficulty of controlling heat transfer in a large
object with a complex internal structure. The presence of different cell types, each
with its own requirements for optimal cryopreservation, limits cell survival when a
single thermal protocol is imposed on all of the cells. Extracellular ice can cause
damage of the structural integrity of the tissue. Mechanical stresses caused by
delayed freezing of the intracellular water are dangerous for cell membranes. Each
of these is an additional source of damage, over and above those that are already
known from studies of cells in suspension. Therefore, optimization and optimal
control are necessary in this case.

2 Mathematical Models

Usually, tissue samples are being frozen using special plants e.g. of the IceCube
family developed by SY-LAB, Geräte GmbH (Austria), see Fig. 1. The main part
of such plants is a freezing chamber supplied by a cooling system. The plant is
controlled by a computer that allows the user to prescribe a cooling protocol to
be tracked. Tissue samples are put into plastic ampoules containing solutions. The
ampoules are placed into a rack located in the freezing chamber.

The main objective of this report is to outline mathematical models describing
processes running in the ampoules during freezing and to sketch the application
of optimal control theory to the design of improved cooling protocols that reduce
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Fig. 1 Outlook of the IceCube plant (to the left) and its freezing chamber with two temperature
sensors and ampoules containing tissue samples (to the right)

damaging effects caused by the release of the latent heat and by stresses arising due
to delayed freezing of the intracellular water.

Such models can be classified as follows.

• The first model utilizes mean values of thermodynamical parameters to describe
the mean boundary temperature of the ampoule. The control here is the tem-
perature regime in the freezing chamber. A version of such a model including
the design of improved cooling protocols is implemented in IceCube plants and
tested in experiments on freezing of dental tissues.

• The second model of freezing deals with spatially distributed parameters and
describes ice formation in the liquid surrounding the tissue sample. This approach
is based on the so-called phase-field models described by partial differential
equations. They have been introduced by Caginalp (see [2]) and studied by many
scientists. We base the study here on the results of [3] where an optimal control
problem for a phase-field model is considered and investigated both from the
mathematical and algorithmic points of view. The design of optimal controls
utilizes gradient descent methods and techniques of adjoint equations.

• The third model should describe ice formation on the cellular level. This includes
modeling of phase changes in the extracellular liquid confined inside of small
pores of the extracellular matrix and computing of mechanical stresses exerted
on cell boundaries due to delayed freezing of the intracellular water. Another
effect is dehydration of cells due to the osmotic outflow caused by the increase
of the salt concentration in the extracellular liquid during its freezing. The
opposite effect, rehydration, occurs during thawing. Formation of dendrites that
can aggregate into lagre sharp ice crystals should also be accounted for in this
model.

The basic tools here are the theory of ice formation in porous media and Stefan
type models, see [4–6].
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3 Mean Value Temperature Response Model

A preliminary approach to the control of global (averaged) thermodynamical
parameters was elaborated and verified using a Freezer IceCube 15M (SY-LAB,
Geräte GmbH, Austria). IceCube 15M is developed for controlled freezing of small
tissue samples put into plastic ampoules (see Fig. 1).

The main parts of the plant are a freezing chamber containing a cooling system
based on gas nitrogen, a rack for placing ampoules, and two temperature sensors that
measure the chamber and sample temperatures, respectively. The plant is equipped
with a computer that allows the user to input a cooling protocol either manually or
as a file prepared in off-line regime. The computer controls the cooling system and
forces the chamber temperature to track the prescribed cooling protocol.

Freezing experiments show an irregular behavior of the temperature near the
freezing point because of the release of the latent heat and the crystallization. A
typical response of the object to the cooling with a constant rate is shown in Fig. 2.

The supercooling (S) is not too dangerous itself but in combination with the latent
heat release (L). This yields the creation of damaging dendrites: the longer runs the
latent heat release (L), the more dendrites appear. A sudden drop of the temperature
(D) causes a temperature shock to cells. Therefore, it would be preferable to reduce
both the duration of the latent heat release (L) and the temperature drop (D).

The following simple thermodynamical model is based on averaged values of
parameters (see [7] and [8]):

d

dt
H D �˛�T .H/� Te

�
(3.1)

PTe D u; juj � �: (3.2)

Here H and T are the averaged enthalpy density and the temperature, respectively;
Te the chamber temperature; u the chamber temperature rate whose maximal
absolute value � is about 20ıC/min; ˛ D jS jjV j�1h, where S , V , and h are the
surface area, the volume, and the overall heat transfer coefficient of the ampoule,

Fig. 2 Idealized typical
temperature response of the
sample when the chamber
temperature falls linearly in
time. Three dangerous
processes are pointed out
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respectively. The main part of the model is the constitutive law T D T .H/, which
is specific for the sample. Nevertheless such a relation is robust for a series of
similar samples. The function T .H/ can be obtained approximatively by recovering
the mean surface temperature T .t/ of the ampoule from measurements for a given
temperature profile Te.t/. Substituting the functions T .t/ and Te.t/ into (3.1) and
computing H.t/ yields the pair fT .t/;H.t/g, which defines implicitly the desired
function.

The aim of the control is to smooth the temperature response of the sample during
the production of the latent heat (see Fig. 2). Formally, this is expressed through the
minimization of the following performance index:

J D
t2Z

t1

� d
dt
T .H.t// � �0

�2
dt �

t2Z

t1

�
˛
@T

@H
.H/ � .T .H/� Te/C �0

�2
dt; (3.3)

where �0 is a desirable slope of the temperature curve. Ordinary differential
equations (3.1), (3.2) and functional (3.3) form a controlled system, where the
control variable u is the rate of the chamber temperature. This model possesses
the following nice property: the functional J does not depend (up to a positive
multiplier) on the choice of ˛, whenever the constitutive law T .H/ is restored
using (3.1), and H.t/ is found from (3.1) with the same value of ˛. Therefore, the
value of ˛ can be simply chosen as ˛ D 1, which saves the trouble of measuring the
physical parameters jV j; jS j, and h. Application of optimal control theory allows
us to find cooling profiles which essentially improve the temperature response of
samples.

A very important question is the robustness of optimal control if the chamber and
sample temperatures are measured with an error. This has been investigated using
the theory of optimal conflict control. The disturbances were considered as controls
of an opposite player maximizing the objective functional. New numerical methods
for solving Hamilton-Jacobi equations arising from conflict control problems with
state constraints were (see [9–11]) applied, and the robustness of solutions was
validated.

The above sketched optimization techniques are implemented in IceCube freez-
ers. With the graphical interface of an IceCube plant, users can choose an opti-
mization option to compute the optimizing cooling impulse. The corresponding
optimized temperature response is much better than a non-optimized one (see [7]).

4 Distributed Modeling of Ice Formation in the Liquid
Milieu

Nowadays, phase field techniques for modeling of solidification and freezing
processes become very popular. They are based on the consideration of the Gibbs
free energy which depends on an order parameter that assumes values from -1 (solid)
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to 1 (liquid) and changes sharply but smoothly over the solidification front so that the
sharp liquid/solid interface becomes smoothed. The rate of smoothing is controlled
by a small parameter, which enables to reach arbitrary approximation of the sharp
interface.

We use a phase field model (see [2, 3, 5], and [12]) to describe phase changes
in the milieu containing a tissue. The control parameter is the temperature in the
chamber. Note that the heat flux on the boundary of the ampoule is proportional to
the temperature jump on the boundary. For simplicity, we do not include the solid
part (i.e. the tissue and the walls of the ampoule) into the following description
bearing in mind that they are accounted for in numerical simulations presented in
[8]. Therefore, � being the interior of the ampoule, � the boundary of �. The
equations read as follows:

ut C `

2
�t �K�u D 0; x 2 �; (4.1)

��t � �2�� � 1
2
.� � �3/ � 2u D 0; x 2 �; (4.2)

�K @u

@n
D h.u � ue.t/ � g/; @�

@n
D 0; x 2 �; (4.3)

ujtD0 D u0 � const > 0; �jtD0 D �0 � �1: (4.4)

Here, u is the scaled distribution of the temperature; � the phase function: � D 1 for
the frozen state and � D �1 for the liquid state; ` the scaled latent heat;K the scaled
heat conductivity coefficient; h the scaled overall heat conductivity; g the boundary
control (add-on to the nominal cooling protocol ue.t/ D u0C�0t , where �0 < 0 is a
given slope). In contrast to the work [3], we do not assume C2 regularity of � . It is
supposed that � is of the class C0;1, i.e. Lipschitz continuous. Such an assumption
covers various technical designs of ampoules and permits a direct extension of the
result to the case where a solid part (tissue) immersed into the fluid is present.

The regularity of solutions is investigated in [13] and [14]. In particular, the
existence and continuity of solutions in time under discontinuous initial dates,
�0 2 L2.�/, is proved.

First, the following functional that estimates the mean quadratic deviation from
the nominal cooling protocol ue.t/ was considered:

J D 1

2

Z tf

0

Z
�

.u � ue.t//
2 dxdt: (4.5)

The adjoint system is derived as in [3] with some modifications related to the
boundary method of control:
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�pt �K�p � 2q D h.u � ue.t//; x 2 �;

��qt � `
2
pt � �2�q � 1

2
.1 � 3�2/q D 0; x 2 �;

�K @p
@n

D hp;
@q

@n
D 0; x 2 �;

p.tf / D 0; q.tf / D 0:

(4.6)

Here, p is the adjoint variable corresponding to u; q the adjoint variable related to �.
The appropriate regularity of solutions of (4.6) was established (see [7]) so that the
derivative of the functional J with respect to the control g is defined by the formula:

J 0.u; �/.ıg/ D
Z tf

0

Z
�

ıg.t; s/p.t; s/dsdt; for all ıg 2 L2�.t0; tf / � ��:
(4.7)

Therefore, we can identify J 0.u; �/ with pj.0;tf /�� . The method of conjugate
gradients looks as follows. Consider the n th step. Assume that the control gn is
already known. Compute then the states un; �n, and the adjoint states pn and qn.
Compute gnC1 as gnC1 D gn C ˛ndn, where ˛n is an approximate solution of the
line search problem ˛n ! min˛ J.gn C ˛dn/, and the conjugate direction dn is
found from the relation (see [15] for finite dimensional case)

dn D �pn C ˇndn�1; ˇn D
	Z tf

0

Z
�

.pn�1/2dsdt


�1 Z tf

0

Z
�

.pn/2dsdt:

The numerical results obtained by minimizing the functional (4.5) show oscil-
lations around the nominal protocol ue.t/ (see [8]), which makes this functional
practically unusable. To avoid such effects, it is necessary to include the time
derivative of the temperature into the functional. Several functionals of such a
type have been considered and rejected because of essential technical difficulties
carefully discussed in [8].

An appropriate solution is the use of the following functional that estimates the
deviation of the slope of the mean temperature from a given slope:

J D 1

2

Z tf

0

.Œu�t � �0/
2dt; where Œu� D 1

j�j
Z
�

udx:

The idea is to express Œu�t through values that do not contain time derivatives.
Integrating the model equations (4.1) and (4.2) over� yields:
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Œu�t � �0 D �u;�;g.t/ WD

� 1

j�j
"
h

Z
�

Œu � ue.t/ � g�ds C 1

4�

Z
�

.� � �3/dx C 1

�

Z
�

udx

#
� �0:

(4.8)

It was shown that the corresponding adjoint system is well-posed, and the derivative
of the last functional J is correctly defined. Nevertheless, the implementation of
such method is not simple. First, the computation of an optimized cooling protocol
is time consuming. Second, optimized controls obtained have a complex structure
on the boundary, which can hardly be implemented technically. Therefore, it is
reasonable to look for a control that is constant on the boundary so that g is
a function of t only. Such a control g.t/ can be computed from the condition
�u;�;g.t/ D 0, i.e. Œu�t � �0 D 0 (see relation (4.8)). This yields the following
feedback rule:

g.t/ D 1

hj�j
"
h

Z
�

Œu � ue.t/�ds C 1

4�

Z
�

.� � �3/dx C 1

�

Z
�

udx

#
C j�j
hj�j�0:

(4.9)

The result of such a heuristic rule seems to be comparable with that obtained by
using adjoint equations, but the run time is sufficiently shorter (see [7]).

4.1 Improvement of the Heat Conductivity of Ampoule Walls

The authors of patent [16] have shown that the temperature gradient inside the
ampoule during freezing is favorable for the homogeneous ice nucleation and
avoiding the dendritic crystal growth. The idea of the invention [16] is to cover
the bottom of ampoules with a metal, say copper, and to place the tissue sample
at a certain distance from the bottom. Computations performed with the use of the
above-described phase field model (4.1)–(4.4) confirm this idea and indirectly show
the improvement of the phase transition process (see [7]). Paper [17] confirms the
idea to improve the heat conductivity of the ampoule walls by placing of micro rods
on its surfaces.

4.2 Ice Formation in the Extracellular Matrix

The description of ice formation in the extracellular matrix of a tissue is based on
the thermodynamics of porous media (see e.g. [4]). The main feature of porous or
soil media is that the unfrozen water content is a function of the temperature only.
Such a function can be considered as material property that depends on the pore size
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distribution and the material of the solid matrix. The interaction of the liquid with the
solid matrix causes as a rule the homogenous nucleation of the liquid and, therefore,
avoids it from supercooling. Thus, the unfrozen water content is not defined from
any equation but is a given function of the temperature. In freezing soil science,
it is measured directly by NMR (Nuclear Magnetic Resonance). There are a lot of
theoretical works on derivation of this function (see e.g. [4] and [18]).

The model looks as follows:

�C
@�

@t
C �L

@̌ `

@t
� K�� D 0; �K@�

@n
D 	.� � �0t � g/: (4.10)

Here, � is the density (assume that the densities of the liquid and ice are equal),
L is the phase change latent heat, C is the specific heat capacity (assume they are
equal for the liquid and ice), ˇ` is the liquid water volume fraction (unfrozen water
content), and g is the boundary control (add-on to the nominal cooling protocol
�0t , where �0 < 0 being a given slope). The function ˇ` was recovered from data
obtained in experiments with tissue samples on an IceCube plant (see [7, 8] for ˇ`,
simulations with system (4.10), and optimization problems).

It is well known that the increase of the volume during the water to ice phase
change is rather large. If the phase change occurs in a pore of a porous material,
a very large stress can be exerted on the pore walls. The computation of stresses
in porous media is based on the theory of linear elasticity, homogenization theory,
and the model of ice formation from the previous section. Simulations show that
the stress inside porous media can rise up to 2 Bar. The stress exerted on a sole cell
located in a pore with freezing water is about 1 Bar (see [7]).

5 Consideration of Damaging Processes on Cellular Level

Processes of freezing and thawing inside of pores of the extracellular matrix play
an imported role in cryopreservation. One of the objectives of our study was the
development of mathematical models of such processes and elaboration of control
procedures to reduce damaging factors arising during freezing and thawing.

Three injuring factors are considered. One of them is a large stress exerted
on cell membranes. Another factor is excessive shrinkage and swelling due to
osmotic dehydration and rehydration occurring during the freezing and warming
phases, respectively. The third effect is related to the growth of dendrites that appear
during freezing and can aggregate into large crystals during thawing. The growth of
dendritic seeds occurs at rapid cooling rates.

Large stresses exerted on cell membranes occur at slow cooling because of non-
simultaneous freezing of extracellular and intracellular fluids. The use of rapid
cooling rates is limited by dendritic growth. Therefore, it is reasonable to apply
control theory to provide simultaneous freezing of extracellular and intracellular
fluids even for slow cooling rates. To this end, mathematical models containing
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control variables and optimization criteria were formulated. We have started with
spatially distributed models describing the dynamics of phases in each spatial point
(see e.g. [2, 4], and [3]), and then an averaging was applied to reduce partial differ-
ential equations to a few ordinary differential equations with control parameters and
uncertainties (see [19]). These equations contain nonlinear dependencies given by
tabular data, which complicates the application of traditional control design methods
based on Pontryagin’s maximum principle. Nevertheless, dynamic programming
methods related to Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations are suitable.
Stable grid procedures that enable to design optimized controls (cooling protocols)
for ODE systems describing competitive ice formation inside and outside of living
cells have been developed (see [9, 10], and [8]). It should be noticed that the
formation of dendritic seeds are also included into our models by utilizing of the
corresponding thermodynamical relations.

Cell dehydration and rehydration occur because of abnormal water transport
across cell membranes. This effect is caused by the osmotic pressure arising because
of different salt concentrations in intra- and extracellular fluids. Conventional
models of cell dehydration during freezing (see e.g. [20] and [21]) describe the
change of the cell volume. The cell shape is supposed to be spherical or cylindrical.
However, as it is reported by biologists (see e.g. [22]), controlling cell shape is
also important for the survival rate of cells. For this reason, mathematical models
concerned with the evolution of cell shape depending on the temperature distribution
and the amount of intra- and extracellular ice have been developed in our project.
The study was based on the theory of ice formation in porous media (see [4]) and
Stefan-type models (see [5]) describing the motion of the cell membrane due to
osmotic flow into and out of the cell. The evolution of cell shape was described
with Hamilton-Jacobi type equations solved using both finite-difference schemes
and reachable set methods (see [23] and [24]).

5.1 Balance of Ice Formation in Intra- and Extracellular
Liquid

The cells of a tissue are surrounded by an extracellular liquid confined in small
vessels of an extracellular matrix. Biologists suppose that cells may communicate
through these vessels. Since the mechanism and the role of cell-cell interactions
are still not well understood (see e.g. [25]), we have considered a simplified model
which does not take into account possible cell-cell interactions. For this reason,
the extracellular liquid is assumed to be confined in small non-communicating
cavities or pores of the extracellular matrix (see a sketch in the left part of
Fig. 3). Each cell has a membrane that provides a physical separation between
the intra- and extracellular environments, which may cause delayed freezing of
intracellular liquid. This effect results in a very large stress exerted on the cell
membrane. The magnitude of this effect can be approximately estimated as follows:
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Fig. 3 To the left: two-dimensional sketch of a cell located inside a pore of the extracellular matrix.
The pore is filled with an extracellular fluid, whereas the cell contains intracellular liquid. At the
center: a typical form of the function defining the fraction of unfrozen liquid. The graphs of these
functions can be shifted to the left or right according to the freezing points of the extra- and
intracellular liquids. To the right: the inverse to the function e D � C� C �Lˇ`.�/ (expression
of the temperature through the internal energy)

p � E ice æ � .1 � ˇ`/, where p is the pressure, E ice is the elastic modulus of ice, æ
is the ratio of volume expansion due to the water-to-ice phase transition, and ˇ` is
the unfrozen water fraction so that 1�ˇ` is the ice content. A rough estimate yields
p � 1Bar, which may be dangerous for cell membranes. To reduce this effect, the
fluids inside and outside the cell must freeze simultaneously. This can be achieved
by lowering the freezing point of the extracellular fluid using a cryoprotector, say
dimethyl sulfoxide, and optimizing cooling protocols.

Some averaging technique described in [8, 19, 24] yields the following ODE
model:

Px D �˛1Œ‚1.x/ �‚2.y/� � 	Œ‚1.x/ � z�C v1;

Py D �˛2Œ‚2.y/�‚1.x/�C v2;

Pz D u:

(5.1)

Here, x is the averaged density of the internal energy of the extracellular liquid, y
is the same for the intracellular fluid, z is the temperature outside the pore (chamber
temperature), u is the cooling rate, and v1, v2 are disturbances interpreted as data
errors. The control variable u (cooling rate) is restricted by juj � �, the disturbances
v1, v2 are bounded by jv1j � �, jv2j � �. The functions ‚1.x/ and ‚2.y/ are
the inverse to the functions x D � C�1 C �Lˇ1` .�1/ and y D � C�2 C �Lˇ2` .�2/,
respectively. The functionsˇ1` and ˇ2` express the unfrozen liquid fractions for extra-
and intracellular fluids, respectively, � is density, C the specific heat capacity, and
L the specific latent heat. Thus, ‚1.x/ and ‚2.y/ express the temperatures in the
extra- and intracellular liquids through the internal energies x and y, respectively.
See also Fig. 3 for the further explanations.
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According to the meaning of the functions ˇi`; i D 1; 2, exact simultaneous
freezing of the extra- and intracellular liquids can be expressed as vanishing of the
following functional:

JD
Z tf

0

ˇ̌
ˇ1`
�
‚1.x.t//

� � ˇ2`
�
‚2.y.t//

�ˇ̌2
dt (5.2)

that estimates the difference of the ice fractions in the extra- and intracellular
regions.

Differential game (5.1) and (5.2) assumes that the objective of the control u is to
minimize the functional (5.2), whereas the objective of the disturbance is opposite.
Moreover, the trajectories should remain in a state constraint set represented in the
form of inequalities defined on trajectories of (5.1).

The value function of differential game (5.1) and (5.2) has been computed as
a viscosity solution (see [26]) to the corresponding HJBI equation using upwind
grid methods developed in [9–11]. The optimal feedback control was designed
by applying the procedure of extremal aiming (see [27]). The computations have
been performed on a Linux computer admitting 64 GB memory and 32 threads. The
coefficient of parallelization was equal to 0.7 per thread (23 times speedup totally).
The grid size was equal 3003, the number of time steps equaled 30000. The runtime
is approximately 60 min.

The simulation presented in Fig. 4 shows the case of different freezing points for
the pore, �1s , and the cell, �2s , with �1s � �2s D �13ıC. Thus, the freezing point of
the extracellular fluid is lowered, e.g. by adding a cryoprotector. This enables us to
freeze the intracellular fluid using temperatures laying above the freezing point of
the extracellular liquid, which makes possible simultaneous freezing.

The effect of supercooling of the intracellular fluid can be accounted for by
introducing a kink into the dependence of the temperature on the internal energy
at the freezing point (see [28] and [8] for the exact definition and the corresponding
simulations).
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Fig. 4 Almost simultaneous freezing of extra- and intracellular liquids
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5.2 Balance of Ice Formation with Accounting for Dendrite
Growth

Accounting for the growth of dendrite seeds is done by the following modification
of the internal energy inside the cell: y D �C�2 C �Lˇ2` .�2/C �D � ˇ2`.�2/; where
the last term is treated as a dendrite generation energy (D is the specific latent
heat of dendrite growth). The value � is computed as follows: � D �0. Py/� D
��0˛2.�2 � �1/

C; where .a/� D min fa; 0g and .a/C D max fa; 0g. The objective
of the control is to minimize the generation of dendrite seeds along with the balance
of ice formation so that the following extended functional is considered:

J D
tfZ

0

ˇ̌
ˇ1`
�
‚1

� � ˇ2`
�
‚2

�ˇ̌2
d� C �0�D˛2

tfZ

0

�
‚2 �‚1

�C
ˇ2`
�
‚2

�
d�: (5.3)

Here ‚1 D ‚1.x.t// and ‚2 D ‚2.x.t/; y.t//. Additionally, the state constraint
z � 2ıC (remember that z is the temperature outside the pore) is imposed.

It was observed in simulations (see [8]) that 30% less dendritic seeds are formed
if functional (5.3) is used instead of functional (5.2).

5.3 Simulation of Cell Thawing with Optimization
of the Osmotic Inflow and Accounting for the Dendrite
Growth

Optimization of the Osmotic Inflow First note that, compared to the freezing
procedure, the dependence of the unfrozen water fraction on the temperature is
modified (the graph of the function is shifted to the right to account for the delay of
thawing). The functional to minimize expresses the amount of liquid moving into
the cell, which is proportional to the difference between the concentration of the
physiological salt solution and salt concentration in the cell

J D ˛

tfZ

0

ˇ̌
ˇc0 � g

� m0

W0 ˇ
2
`.‚2.y.�///

�ˇ̌
ˇd�: (5.4)

Here, c0 is the concentration of the physiologic salt solution, m0 the salt amount
in the cell, W0 the initial cell volume, g a function defining the saturation of salt
concentration in the cell. Thus, W0ˇ

2
` is the unfrozen water volume inside the

cell, and g.m0=.W0ˇ
2
` // the salt concentration in the cell. Additionally, the state

constraints
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� 50ıC � z � 40ıC and ‚2.y/ � 20ıC (5.5)

are imposed to prevent excessive warming. Optimization results and optimized
warming protocols are presented in [8].

Accounting for the Dendrite Growth Dendrite seeds formed during freezing can
form large ice crystals at the thawing stage, which may be dangerous for cells. To
take into account the growth of dendrites, the following functional is considered:

J D ˛

tfZ

0

ˇ̌
ˇc0�g

� m0

W0 ˇ
2
`

�
‚2.y.�//

��ˇ̌ˇd�C

max
t2Œ0;tf �

��
1 � ˇ2` .‚2.y.t///

�
p.t/ˇ2` .‚2.y.t///


:

(5.6)

The first term in (5.6) coincides with (5.4), and the second one expresses the
amount of ice formed due to aggregation of dendrite seeds according to the Poisson
law (see [29])

p.t/ D 1 � e�	.�;�E;D.�//t :

The nucleation rate 	 is a function of the temperature, the activation energy, and the
diffusive mobility of dendritic seeds, respectively. In the simulation, the nucleation
rate 	 is supposed to be constant.

Since both terms in the functional are non-antagonistic, it is clear that rapid
thawing is preferable. To prevent excessive warming, state constraints (5.5) were
applied.

Two simulations of system (5.1) with state constraints (5.5) were performed:
the first one with functional (5.4), and the second one with functional (5.6). The
comparison of the simulation results shows that 7% less dendrites are formed in the
second case, see [8].

5.4 Mathematical Models of Dehydration and Rehydration
of Cells

Each biological cell is located inside a pore or channel filled with a saline solution
called extracellular fluid. The cell interior is separated from the outer liquid by a cell
membrane whose structure ensures a very good permeability for water. This leads
to abnormal water transport across the cell membrane in the presence of osmotic
pressure caused by different salt concentrations in intra- and extracellular fluids.
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5.4.1 Dehydration of Cells

In the freezing phase, the mechanism of the osmotic effect is the following. Ice
formation occurs initially in the extracellular solution. Since ice is practically free
of salt, the water-to-ice phase change results in the increase of the salt concentration
(cout) in the remaining extracellular liquid. The osmotic pressure forces the outflow
of water from the cell to balance the intracellular (cin) and extracellular (cout) salt
concentrations. Modeling of cell shrinkage is based on free boundary problem
techniques. The main relation here is the so-called Stefan condition: V D ˛.cout �
cin/; where V is the normal velocity of the cell boundary (directed to the cell
interior), and the right-hand-side represents the osmotic flux that is proportional
to the difference of the salt concentrations. The coefficient ˛ is the product of
the Boltzmann constant, the temperature, and the hydraulic conductivity of the
membrane (see e.g. [21]). Note that ˛ is practically constant in our case. The
extracellular salt concentration cout depends on the unfrozen fraction ˇ`.�/ of the
extracellular liquid.

The intracellular and extracellular salt concentrations are estimated using the
mass conservation law as follows:

cin D c0inW
0
c =Wc.t/; cout D c0outW

0=W.t/; W.t/ D
Z

W 0

ˇ`.�.t; x//dx;

where W 0
c and Wc.t/ are the initial and current cell volumes, respectively, W 0

and W.t/ are the initial and current volumes of the unfrozen part of the pore. The
distribution of the temperature �.t; x/ is found from the phase field model (4.10).

The cell region†.t/ is searched as the level set of a function‰.t; x/, i.e.

†.t/ D fx W ‰.t; x/ � 1g; x 2 R3 .or R2/:

Assuming that the cell boundary propagates with the normal velocity V yields
the following Hamilton-Jacobi equation for the function ‰.t; x/:

‰t � ˛.cout � cin/jr‰j D 0; ‰.0; x/ D inff	 > 0 W x 2 	 �†.0/g: (5.7)

Here jr‰j denotes the Euclidean norm of the gradient. Examples of the correspond-
ing computer simulations can be found in [8, 23, 24].

5.4.2 Rehydration of Cells

In the thawing phase, the osmotic effect results in the inflow of water into cells and
therefore causes cell swelling. We use the following mass conservation law for the
salt content:
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W 0
c c

0
in D Ws c

0
in CW` cin; Wc D Ws CW`; W`.t/ �

Z

W 0
c

ˇ` .�.t; x//dx; (5.8)

whereW 0
c is the initial volume of the frozen cell, Wc the current volume of the cell,

Ws and W` are volumes of the frozen and unfrozen parts of the cell, respectively,
c0in and cin the salt concentrations in the frozen and unfrozen parts of the cell,
respectively. Relation (5.8) yields:

cin D c0in
�
1C .W 0

c �Wc/=W`

�
;

where Wc is calculated from the current cell shape. The salt concentration cout

outside the cell is supposed to be a constant, and finally we arrive at an equation
of the form of (5.7). The corresponding computer simulation can be found in [8].

5.4.3 Accounting for the Membrane Tension Using Reachable Set
Approach

In reality, the deformation of the cell membrane depends on the membrane tension
which is a function of the curvature. Therefore, a more realistic expression for the
normal velocity of the cell boundary would be:

V.t; x/ D ˛.cout.t/ � cin.t//C ��.x/;

where �.x/ is the angular curvature at the current point x of the cell boundary (see
[8]), and � is a constant. The resulting equation reads

‰t � �
˛.cout � cin/C ��.x/

�jr‰j D 0; ‰.0; x/ D inff	 > 0 W x 2 	 �†.0/g:
(5.9)

Note that accounting for the curvature can alter the convexity/concavity structure of
the Hamiltonian depending on the state x.

The problem was treated using the method of reachable sets (see [27, 30]).
Examples of the application of reachable sets method to (5.9) in R2 can be found in
[8, 23, 24]).
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Abstract We discuss the numerical solution of the feedback stabilization problem
for multi-field flow problems. Our approach is based on an analytical Riccati
feedback concept derived by Raymond which allows to steer a perturbed flow back
to its desired state, assumed to be a stationary, possibly unstable, flow profile.
This concept, originally derived for incompressible flow fields described by the
Navier-Stokes equations, uses a linear-quadratic regulator (LQR) approach for
the linearized Navier-Stokes equations formulated on the space of divergence-
free velocity fields. We extend this approach to a setting where the Navier-Stokes
equations are coupled to a diffusion-convection equation describing the transport
of a reactive species in a fluid. The stabilizing feedback control resulting from
the LQR problem is obtained via solving the associated operator Riccati equation.
We describe a numerical procedure to solve this Riccati equation numerically. This
involves several technical difficulties on the algebraic level that we address in this
report. We illustrate the performance of our method by a numerical example.
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1 Introduction

In this article we extend the ideas from [4, 5, 8, 18] for a closed-loop (boundary)
control of the linearized Navier-Stokes equations to a coupled flow problem
consisting of the Navier-Stokes equations and a diffusion-convection problem.
The latter models passive transport of a reactive species by the flow field. A
homogeneous Dirichlet condition on part of the boundary of the domain is used
as a toy model for surface reaction. Although this setting is rather academic, it may
serve as a paradigm to solve more involved problems.

In the present paper we focus on the computational realization of the feedback
control for the coupled flow problem. More details about the underlying mathe-
matical basis may be found in [5, 18]. The present article builds upon [4] and
demonstrates how the numerical solution concept outlined there is realized for a
multi-field flow problem.

Let us mention some related work. The numerical realization of a linear-quadratic
regularization process applied to the Stokes equations is discussed in [8], where
the focus lies on efficient solution strategies for the arising saddle point systems.
These ideas are extended to the more general Navier-Stokes equations in [5].
Furthermore, a different approach to stabilize Navier-Stokes flow problems via
boundary influence is shown in [1]. Extending these ideas and numerical techniques
to a more general coupled multi-field flow problem is the main issue of this paper.

The rest of this article is organized as follows. In Sect. 2 the coupled flow problem
is stated. Section 2.1 outlines the necessary concept of linearization. Discretization
by finite elements leads to a finite dimensional system of differential-algebraic
equations (DAEs), which is described in Sect. 2.2. Before we introduce the problem
setting used for numerical testing in the Sect. 3, we discuss some details about
the block structured saddle point systems in Sect. 2.4. The paper is concluded in
Section “Conclusions and Outlook”, where we discuss some further ideas that are
part of ongoing research.

2 The Coupled Flow Problem

The basis for the coupled flow problems is described by the incompressible Navier-
Stokes equations defined on a spatial inflow/outflow domain � � R

2 and the time
interval of interest I � Œ0;1/. For x 2 �, t 2 I, the velocity Ev.t; Ex/ 2 R

2 and
pressure p.t; Ex/ 2 R satisfy

@

@t
Ev � 1

Re
�Ev C .Ev � r/Ev C r� D Ef ; (2.1a)

divEv D 0 (2.1b)

with the Reynolds number Re, see [5].
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Moreover, we consider the passive transport of some concentration field
c.t; Ex/2R described by a diffusion-convection equation (DCE):

@

@t
c � 1

ReSc
�c C .Ev � r/c D 0 (2.2)

with the Schmidt number Sc.
The joint evolution for both systems takes place within�� I with the boundary

@� DW � D �in [ �wall [ �out [ �r :

In this decomposition of the boundary, �r denotes the boundary of an obstacle
within the domain. For (2.1), we prescribe a parabolic inflow at �in, “no-slip”
boundary conditions at �wall and �r , and “do-nothing” conditions for the outflow.
The initial condition is given by a stationary solution to (2.1). We impose the
following boundary and initial conditions for the concentration:

c.t; Ex/ D hin.Ex/ on �in; (2.3a)

@c.t; Ex/
@En D 0 on �wall [ �out; (2.3b)

c.t; Ex/ D 0 on �r ; (2.3c)

c.0; Ex/ D 0 in � (2.3d)

with En the outward normal to �out and �wall. The initial and boundary conditions can
be interpreted as follows. The concentration enters the domain through �in (2.3a)
and leaves the domain, only convection driven, via �out (2.3b). As soon as the
concentration reaches the obstacle, a fast reaction is assumed absorbing the species.
In the case considered here, the reaction is much faster than the transport in � and
can thus be modeled by a homogeneous Dirichlet condition for c.t; Ex/ (2.3c). We
will omit the arguments t; Ex hereafter for better readableness.

2.1 Linearization

In this section we show how to linearize equations (2.1) and (2.2). Linearization
is necessary for applying the Riccati based feedback stabilization approach to the
coupled system. Using the linearization idea [5, Section 2.1], we define

Ez WD Ev � Ew; (2.4a)

p WD � � �s (2.4b)
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that fulfill the linearized equations

@

@t
Ez � 1

Re
�Ez C .Ew � r/Ez C .Ez � r/Ew C rp D 0; (2.5a)

divEz D 0 (2.5b)

with the same boundary and initial conditions, as in [5]. Furthermore, we define the
stationary diffusion-convection equation

� 1

ReSc
�cEw C .Ew � r/cEw D 0 (2.6)

with similar boundary conditions like those in (2.3). The goal now is to stabilize
cEw, when this field is subject to (small) perturbations. We may for instance imagine
the situation when the field arises from an open-loop controller [13] and thus is a
desired state to be maintained. Let us define

cEz D c � cEw (2.7)

as the difference between the actual concentration c and the stationary concentration
cEw. Using the linearization points (2.4), (2.7) together with (2.6) yields the linearized
diffusion-convection equation

@

@t
cEz � 1

ReSc
�cEz C .Ew � r/cEz C .Ez � r/cEw D 0; (2.8)

defined for t 2 I and Ex 2 � with boundary and initial conditions

cEz D 0 on �in [ �r ;

@cEz
@En D 0 on �wall [ �out ;

cEz.0; Ex/ D 0 in �:

The main goal of boundary feedback stabilization is the asymptotic stabilization
of Ez and cEz, which implies that the actual velocity field fulfills Ev � Ew and the actual
concentration c � cEw, respectively. In the following we are going to apply a finite
dimensional LQR approach, based on a spatial semi-discretization of the linearized
Navier-Stokes (2.5) and diffusion-convection (2.8) equations. The discretization by
finite elements is described in the following subsection.
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2.2 Discretization

We use the same discretization idea for (2.5) as described in [5, Section 2.2] using
the P2 � P1 Taylor-Hood [14] element and end up with the discretized linearized
Navier-Stokes equations

Mz
d

dt
z.t/ D Azz.t/CGp.t/C fz.t/; (2.9a)

0 D GT z.t/ (2.9b)

with nv degrees of freedom for the velocity space and np degrees of freedom for
the pressure space. Equation (2.8) is discretized in space by linear finite elements
yielding

Mc
d

dt
c.t/ D Acc.t/ �REwz C fc.t/ (2.10)

with the nodal vector of discretized concentrations c.t/2R
nc , the concentration

mass matrix Mc DMT
c � 02R

nc�nc , the concentration system matrix Ac 2R
nc�nc ,

and the reaction termREw that depends on the stationary velocity Ew and couples (2.9)
and (2.10). Similar to the velocity field, the concentration field may be subject to a
control uc acting through the source term fc.t/ WD Bcuc.t/.

After reordering (2.9) and (2.10), we obtain the system of DAEs [15]

2
4Mz 0 0

0 Mc 0

0 0 0

3
5 d

dt

2
4z

c
p

3
5 D

2
4 Az 0 G

�REw Ac 0

GT 0 0

3
5
2
4z

c
p

3
5C

2
4Bz 0

0 Bc

0 0

3
5
	

uz

uc



: (2.11a)

We assume that only parts of the states z and c are observed. Therefore, we add the
observation equations

	
yz

yc



D
	
Cz 0

0 Cc


 	
z
c



: (2.11b)

The DAE system (2.11) is of differential index 2 if G has full rank [19]. Since we
use the inf-sup stable Taylor–Hood element, the latter condition is fulfilled. Defining
the block matrices

M D
	
Mz 0

0 Mc



; A D

	
Az 0

�REw Ac



; QG D

	
G

0



; x D

	
z
c



;

B D
	
Bz 0

0 Bc



; C D

	
Cz 0

0 Cc



; u D

	
uz

uc



; y D

	
yz

yc



;

(2.12)
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(2.9) can be written as

	
M 0

0 0



d

dt

	
x
p



D
	
A QG
QGT 0


 	
x
p



C
	
B

0



u; (2.13a)

y D Cx: (2.13b)

The matrix pencil

�	
A QG
QGT 0



;

	
M 0

0 0


�

of the DAE (2.13) has nv C nc � np finite eigenvalues 	i 2 C and 2np infinite
eigenvalues 	1 D 1 [10].

The DAE system (2.13) has the same structure as the DAE system arising from
the Navier-Stokes equations in [5]; there, the projection approach of [12] is applied
to transform the DAE [5, Equation (6)] into a generalized state space system. The
main difficulty here is that we only want to project the velocity part z of the state
variable x. In the next subsection we show that this is indeed possible by adapting
the projection idea from [12] to our block structured DAE system (2.13).

2.3 Projection Method

In order to adapt the projector definition of [12] to the case of our block matri-
ces (2.12), we define

Q̆ WD Ix � QG. QGTM�1 QG/�1 QGTM�1

D
	
Iv 0

0 Ic



�
	
G

0


��
GT 0

 	M�1z 0

0 M�1c


 	
G

0


��1 �
GT 0

 	M�1z 0

0 M�1c




D
	
Iv 0

0 Ic



�
	
G.GTM�1z G/�1GTM�1z 0

0 0



D
	
˘ 0

0 Ic




with the discrete Helmholtz projector ˘ 2 R
nv�nv as defined in [5]. Note that we

have the following equivalences:

˘T z D z ^ c D c ,
	
˘ 0

0 Ic


T 	
z
c



D
	

z
c



, Q̆ T x D x:

Using (formally) the decomposition˘ D ‚l‚
T
r as in [12, Section 3], the projection

matrix Q̆ can be decomposed into
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Q̆ D Q‚l
Q‚T
r ,

	
˘ 0

0 Ic



D
	
‚l 0

0 Ic




„ ƒ‚ …
DW Q‚l

	
‚T
r 0

0 Ic




„ ƒ‚ …
DW Q‚Tr

with Q‚T
l

Q‚r D Ix. This decomposition is used to project the discretized velocity z
onto the nv � np dimensional subspace of discretely divergence-free functions as in
[12], without changing the discrete concentration c. Substituting

Qx D Q‚T
l x D

	
‚T
l 0

0 Ic


 	
z
c



D
	
‚T
l z
c



D
	Qz

c



2 R

.nv�np/Cnc

in (2.13) yields

Q‚T
r M

Q‚r

d

dt
Qx D Q‚T

r A
Q‚r Qx C Q‚T

r Bu;

y D C Q‚r Qx:

We define the projected block structured matrices

M D
	
‚T
r Mz‚r 0

0 Mc



; A D

	
‚T
r Az‚r 0

�REw‚r Ac



;

B D
	
‚T
r Bz 0

0 Bc



; C D

	
Cz‚r 0

0 Cc


 (2.14)

and end up with the generalized state space system

M d

dt
Qx D AQx C Bu; (2.15a)

y D C Qx (2.15b)

with M D MT � 0 2 R
.nv�np/Cnc .

2.4 The Linear-Quadratic Regulator Approach

To test the feedback stabilization approach for a coupled flow problem let us define

q WD
Z
�r

@EncEw ds (2.16)
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as the total flux of the stationary concentration cEw through the obstacle boundary�r .
Analogously to the LQR approach in [5] we define the cost functional

J .c;u.t// WD 1

2

Z 1
0

	

ˇ̌
ˇ̌Z
�r

@Enc ds � q
ˇ̌
ˇ̌2 C ju.t/j2 dt (2.17)

measuring the difference of the actual flux of c through �r and q, as well as the
control costs u, in the square of the Euclidean norm. Using the definition (2.16)
in (2.17) we obtain

Z
�r

@Enc ds � q D
Z
�r

@En.c � cEw/ ds D
Z
�r

@EncEz ds:

After discretization, this yields

Ccc D yc

as the observation equation in (2.11b). We do not consider any observation of the
velocity field such that we set Cz D 0 and reduce the output Equation (2.11b)
to y D Ccc. Using this output equation, the minimization problem for the LQR
approach can be written as:

Minimize

J .c.t/;u.t// WD 1

2

Z 1
0

	
�
c.t/T C T

c Ccc.t/
�C u.t/T u.t/ dt; (2.18)

subject to (2.15a).
Minimizing this cost functional subject to (2.15a) forces the discrete velocity

field z and concentration c asymptotically to zero for t ! 1 so that the actual flow
field Ev and concentration c are expected to approach the stationary velocity field Ew
and the concentration cEw, respectively. Introducing the regularization parameter 	
in the first term of (2.18) provides the possibility to achieve qualitatively different
results.

On the one hand, we observe only parts of the concentration c. On the other hand,
we want to influence the whole system only via a control influence on the velocity

field z; that means we define Bc D 0 and reduce the control input to
�
BT

z 0 0
T

uz

in (2.11). We will skip details about the realization of Bz.
Starting from the setting to minimize (2.18) subject to (2.15a), the whole process

to compute the optimal control u�.t/ D �K Qx�.t/ with the feedback K via a
generalized Newton-ADI iteration analogous to [5] is used. In short, this method
consists in applying Newton’s method to the algebraic Riccati equation obtained
from the LQR problem after (implicitly) projecting onto the space of discretely
divergence-free functions. In each step of Newton’s method applied to an algebraic
Riccati equation, a Lyapunov equation has to be solved. This is a linear system of
equations having tensor structure. As suggested in [6], we employ the alternating



Optimal Control-Based Feedback Stabilization of Multi-field Flow Problems 181

directions implicit (ADI) method for this purpose. This requires the solution of a
linear system of equations involving the projected system matrices (2.14) in each
ADI step, see also [9]. How to avoid the explicit formation of the projected matrices
following the approach from [12] is discussed in detail in [5] for the Navier-Stokes
case. In the following, we will adapt this to the case of the multi-field flow problem
discussed here. Therefore, we consider a projected system of the form

�
.A.m//T C qiM

�
ƒ D Y (2.19)

in the innermost step of the nested Newton-ADI iteration. Equation (2.19) is of the
same structure as in the Navier-Stokes case and the approach in [12] to avoid this
explicit projection can be applied in a similar way for the coupled flow problem. To
this end we observe that the solutionƒ is determined by solving the linear system

Q̆ �.A � BK.m//T C qiM
� Q̆ Tƒ D Q̆ Y;

which is equivalent to solving the saddle point system

	
.A� BK.m//T C qiM QG

QGT 0


 	
ƒ





D
	
Y

0



(2.20)

with the feedback matrix K.m/ in the m-th Newton step and qi the ADI shift in the
i -th ADI step. (“” denotes an auxiliary quantity not further used.)

The feedback matrix K can then be computed via the generalized low-rank
Cholesky factor Newton method as it is shown in Algorithm 1. The whole algorithm
uses the original large-scale and sparse matrices from (2.11). We will skip details
about shift selection in this paper and refer to [5, 16].

The Newton iteration consists of a number of Newton steps, each of which
requires a certain amount of ADI steps to determine the update for the Newton
iteration [5] and, in our formulation, to directly update the feedback matrix K .
In turn, the saddle point system (2.20) has to be solved for different ADI shifts
qi in every ADI step for a couple of right hand sides during the Newton-ADI
iteration. Solving the large-scale saddle point system efficiently is crucial for a
suitable computation time.

Following the algebra in [5], where the Sherman-Morrison-Woodbury formula is
exploited, one eventually ends up with a system to be solved having the form

	
AT C qiM QG

QGT 0


 	
ƒ





D
	 QY
0



:

Using the block matrix definitions (2.12) yields

2
4A

T
z C qiMz �RTEw G

0 ATc C qiMc 0

GT 0 0

3
5

„ ƒ‚ …
DWA

2
4ƒz

ƒc



3
5 D

2
4

QYz
QYc

0

3
5
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Algorithm 1 Generalized low-rank Cholesky factor Newton method for coupled
flow problems

Input: Mz;Mc; Az; Ac; G; REw; Bz; Cc, initial feedback K.0/
z ,

ADI shift parameters qi 2 C
� W i D 1; : : : ; nADI,

tolADI , tolNewton, and regularization parameter 	
Output: feedback operator K
1: for m D 1; 2; : : : ; nNewton do

2: W .m/ D
"

0
p
	 Cc 0

.K
.m�1/
z / 0 0

#

3: Get
�
V T
1;z V

T
1;c

T
by solving

2
64
ATz � .K.m�1/

z /T BT
z C q1Mz �RT

Ew
G

0 ATc C q1Mc 0

GT 0 0

3
75
2
4V1;zV1;c
�

3
5 D p�2Re .q1/ .W

.m//T

4: K
.m/
1;z D

h
BT

z V1;zV
T

1;zMz BT
z V1;zV

T

1;cMc

i
5: for i D 2; 3; : : : ; nADI do
6: Get

� QV T
z
QV T

c

T
by solving

2
64
ATz � .K.m�1/

z /T BT
z C qiMz �RT

Ew
G

0 ATc C qiMc 0

GT 0 0

3
75
2
4
QVzQVc

�

3
5 D

2
4Mz Vi�1;z

Mc Vi�1;c

0

3
5

7:

	
Vi;z
Vi;c



DpRe .qi /=Re .qi�1/

�	
Vi�1;z

Vi�1;c



� .qi C qi�1/

	 QVzQVc


�

8: K
.m/
i;z D K

.m/
i�1;zC

h
BT

z Vi;zV
T

i;zMz BT
z Vi;zV

T

i;cMc

i

9: if
�

jjK
.m/
i;z �K

.m/
i�1;zjjF

jjK
.m/
i;z jjF

< tolADI

�
then

10: break
11: end if
12: end for
13: K

.m/
z D K

.m/
nADI;z

14: if
�

jjK
.m/
z �K

.m�1/
z jjF

jjK
.m/
z jjF

< tolNewton

�
then

15: break
16: end if
17: end for
18: K D

h
K
.nNewton/
z 0

i

with Mz;Mc symmetric positive definite, G;REw full rank, and qi 2 C
�. The full

system matrix A is indefinite 8qi 2 C
�.

Details about the solution strategy for such block structured indefinite saddle
point systems are not part of this article. Note that the use of preconditioned iterative
solvers is necessary if the dimension of the system grows. In this case the block
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preconditioning ideas in [5, 8] can be extended. However, more details regarding
this have to be postponed to future publications due to space limitations.

In the next section the configurations for the numerical tests used to illustrate our
numerical procedure are introduced.

3 Numerical Examples

The main focus of this section is to verify the usability of the Newton-ADI
iteration described in the previous section to compute the optimal control u.t/
for the linearized version of a diffusion-convection equation coupled with the
linearized Navier-Stokes equations. All computations are based on the finite element
discretization of the reactor model shown in Fig. 1.

The reactor consists of an inflow channel on the left and an outflow channel
on the right. Both have a diameter of 1:0 and a length of 3:0. Inside the reactor
of dimension 5:0 � 7:0 there is a quadratic obstacle of dimension 1:5 � 1:5. The
fluid flows around the obstacle and transports the concentration via the convection
through the domain. Additionally, the concentration is spread due to a diffusion
process. As described above, we assume a fast reaction of the concentration at the
surface �r of the obstacle, such that concentration that arrives at the obstacle is
absorbed immediately.

The coarse discretization depicted in Fig. 1 is refined using a Bänsch refinement
[2]. We apply this refinement strategy as a threefold bisection in the whole domain,
ninefold bisection in the outflow channel and elevenfold bisection on the boundary
of the obstacle, yielding the dimensions in Table 1b. Furthermore, we use heuristic
Penzl ADI shifts for all configurations [16].

The FORTRAN90 based finite element software NAVIER [3] was used to
assemble the matrices representing the finite element discretization. The compu-
tations for the resulting matrix equations were executed in MATLAB R	 R2012b on
a a 64-bit server with Intel R	 Xeon R	 X5650 @2.67 GHz, with 2 CPUs, 12 Cores (6

Fig. 1 Initial triangulation of
the reactor model with
coordinates and boundary
conditions

(0, 3)

(0, 4)

(3, 0) (8, 0)

(3, 7) (8, 7)

(11, 3)

(11, 4)

Γin Γout

Γwall

Γr
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Cores per CPU) and 48 GB main memory available. We refer the reader to [5] for
more details regarding the interaction of both software packages.

3.1 Reynolds Number and Regularization Parameter �

The Newton-ADI method is tested for five different combinations of Reynolds
number Re and Schmidt number Sc, as given in Table 1a. Figure 2 depicts
the convergence behavior of the Newton-ADI method clustered in subfigures for
different regularization parameters. Each subfigure shows the evolution of the
relative change

jjK.m/ �K.m�1/jjF
jjK.m/jjF

of the feedback matrix dependent on the Newton step m for all different
sets in Table 1a. It shows that the graphs group for the different products of
Re Sc 2 f1; 10; 100g. If the product becomes larger, the Newton-ADI iteration needs
more steps to converge. Note that the convergence for the set with larger Reynolds
number is slightly slower within the group.

The regularization parameter 	 penalizes the output y in the cost func-
tional (2.18); that means the computed feedback K should stabilize our system
more efficiently. This is reflected in the increasing number of Newton steps for
increasing 	. Nevertheless, the Newton-ADI method computes the feedback matrix
K for all settings to a suitable accuracy.

The quadratic convergence of the Newton iteration highly depends on the
accuracy of the ADI method. In Fig. 2e stagnation appears for Set V during the
iteration. In that case we would need to use a higher ADI accuracy. We analyze this
phenomenon in more detail in the next subsection.

Table 1 Test parameter settings

Set Re Sc

I 1 1

II 1 10

III 10 1

IV 1 100

V 10 10

(a) Different parameter settings.

Variable Dimension

nv 9 092

nc 1 187

np 1 276

nx 11 555

(b) Different dimensions of FE space.



Optimal Control-Based Feedback Stabilization of Multi-field Flow Problems 185

1 3 5 7 9 11 13 15 17

100

10−4

10−8

10−12

Newton step m

||
K

(m
)
−

K
(m

−
1
)
||
F

||
K

(m
)
||
F

Regularization parameter λ = 10−2.

1 3 5 7 9 11 13 15 17

100

10−4

10−8

10−12

Newton step m

||
K

(m
)
−

K
(m

−
1
)
||
F

||
K

(m
)
||
F

Regularization parameter λ = 10−1.

1 3 5 7 9 11 13 15 17

100

10−4

10−8

10−12

Newton step m

||
K

(m
)
−

K
(m

−
1
)
||
F

||
K

(m
)
||
F

Set I: Re = 1; Sc = 1
Set II: Re = 1; Sc = 10
Set III: Re = 10; Sc = 1
Set IV: Re = 1; Sc = 100
Set V: Re = 10; Sc = 10

Regularization parameter λ = 100.

1 3 5 7 9 11 13 15 17

100

10−4

10−8

10−12

Newton step m

||
K

(m
)
−

K
(m

−
1
)
||
F

||
K

(m
)
||
F

Regularization parameter λ = 101.

1 3 5 7 9 11 13 15 17

100

10−4

10−8

10−12

Newton step m

||
K

(m
)
−

K
(m

−
1
)
||
F

||
K

(m
)
||
F

Regularization parameter λ = 102.

a b

c

d e

Fig. 2 Influence of Reynolds/Schmidt numbers and regularization parameter 	 on the Newton-
ADI convergence (tolNewton D 10�8; tolADI D 10�7)
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Fig. 3 Influence of tolADI for Newton-ADI convergence (tolNewton D 10�8, Set V: Re D 10; Sc D
10)

3.2 ADI Tolerance vs. Newton Convergence

Figure 3 illustrates the influence of the ADI accuracy. We increase the ADI
accuracy to avoid the observed stagnation for Set V. Figure 3a shows that for
tolADI D 10�8 stagnation still occurs. For tolADI D 10�9 the Newton iteration
converges quadratically. The higher ADI accuracy implies more ADI steps, as it
is depicted in Fig. 3b. In total, the Newton-ADI with a higher ADI accuracy needs
more time, although we can save one Newton step. To avoid these problems we will
extend the idea of inexact Newton methods for the standard state space case worked
out theoretically in [11] and for practical implementations in [7] to the structured
DAE problems in the future. The difficulty here is the necessity for the projected
ADI residuals in order to perform the accuracy control but also avoiding the explicit
projection. A formulation of the index-2 ADI that has this capability is currently
being investigated.

Conclusions and Outlook
In this report, we have extended the Riccati feedback stabilization approach
for incompressible Navier-Stokes flows developed by Raymond in [17, 18]
to a multi-field flow setting. For this purpose, we have coupled the Navier-

(continued)
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Stokes equations with a convection-diffusion equation modeling the passive
transport of a reactive species in a fluid.

We have extended the numerical method detailed in [5] for stabilization
of the perturbed Navier-Stokes equations to this setting. For a proof-of-
concept, we have used a merely academic problem configuration and tested
our algorithm on this setting. The numerical results indicate that the Newton-
ADI framework from [5] extended to the coupled problem can be used to
robustly solve for the Riccati feedback in a regime of modest Reynolds and
Schmidt numbers.

Future work will include the extension of our approach in several direc-
tions. This includes the development of efficient preconditioners for the saddle
point problems to be solved in the innermost step of the Newton-ADI method
for the coupled setting, the extension to higher Reynolds/Schmidt numbers
(though highly turbulent flow can probably not be tackled by this stabilization
method), and the adaptation of our approach to more complicated multi-
field flow problems. The latter also requires the extension of Raymond’s
functional analysis framework to coupled stabilization problems, as well
as a convergence analysis for the computed finite-dimensional feedback
operators and an investigation of their stabilization properties for the infinite-
dimensional system.
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Introduction to Part II
Shape and Topology Optimization

Helmut Harbrecht

This part contains several results of recent research in shape and topology optimiza-
tion. It consists of the following three independent sections:

Sergio Conti, Benedikt Geihe, Martin Rumpf, and Rüdiger Schultz combine, in
Two-stage stochastic optimization meets two-scale simulation, a two-scale model
in elastic shape optimization with a stochastic framework. The microstructured
material to be optimized is composed of an elastic material with geometrically
simple perforations located on a regular periodic lattice, whose parameters depend
on the macroscopic position.

Helmut Harbrecht and Johannes Tausch review, in On shape optimization with
parabolic state equation, their results on numerical methods for the efficient
solution of shape optimization problems with parabolic state equation. For a
specific parabolic shape optimization problem, both the shape calculus and the
discretization by means of a modern space-time multipole method are demonstrated.
For comparison reasons, also the related stationary shape optimization problem is
considered.

Luise Blank, M. Hassan Farshbaf-Shaker, Harald Garcke, Christoph Rupprecht,
and Vanessa Styles present, in Multi-material phase field approach to structural
topology optimization, how to formulate and solve multi-material structural topol-
ogy and shape optimization problems within a phase field approach. The first-order
optimality system is determined and then numerically solved by an H1-gradient
projection method.
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Two-Stage Stochastic Optimization Meets
Two-Scale Simulation

Sergio Conti, Benedict Geihe, Martin Rumpf, and Rüdiger Schultz

Abstract Risk averse stochastic optimization is investigated in the context of
elastic shape optimization, allowing for microstructures in the admissible shapes.
In particular, a two-stage model for shape optimization under stochastic loading
with risk averse cost functionals is combined with a two-scale approach for the
simulation of microstructured materials. The microstructure is composed of an
elastic material with geometrically simple perforations located on a regular periodic
lattice. Different types of microscopic geometries are investigated and compared
to each other. In addition they are compared to optimal nested laminates, known
to realize the optimal lower bound of compliance cost functionals. We combine
this two-scale approach to elastic shapes with a two-stage stochastic programming
approach to risk averse shape optimization, dealing with risk neutral and risk averse
cost functionals in the presence of stochastic loadings.

Keywords Two-stage stochastic programming • Risk averse optimization •
Two-scale elastic shape optimization • Microstructure optimization • Finite
element method • Boundary element method
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1 Introduction

In nature, when biological material has to resist strong mechanical loading, fine
scale structures frequently characterize the material. Prominent examples are the
microstructure of wood [5] or the substantia spongiosa of bones [35]. The pattern
formed by these elastic structures is not uniform but varies spatially. This spatial
variation seems to be adapted to the local load configuration, which supports the
hypothesis of nature optimizing mechanical structures in the ontogenesis [45]. Thus,
a natural question arises, what are “optimal” microstructures, which are observable
in nature or can be used in the design of mechanical devices. When optimizing
material structures one has to take into account that load configurations in nature
and in engineering are usually not deterministic but stochastic.

This paper addresses the optimization of microstructures in elastic materials
under stochastic loading. It is well known that microstructures form when min-
imizing compliance or tracking type cost functionals, unless a penalty on the
area of material interfaces is taken into account. The optimal microstructures are
well-understood and can be represented by nested laminates [1]. The laminate con-
struction is an analytically elegant tool but can hardly be reproduced in mechanical
devices, nor is it observed in optimization problems posed in nature. Thus, the
question arises how close one can get to the optimal design with constructible
microstructures. To this end, different types of parametrized microstructures will
be investigated and compared.

2 Related Work

Shape optimization under deterministic loading has extensively been investigated in
the literature. For an overview we refer to the textbooks [1, 13]. Most approaches
deal with a macroscopic shape description under the assumption of sufficient
shape regularity, which is usually guaranteed by an additional regularizing cost
functional such as the shape perimeter. If only scale invariant cost functionals
are taken into account, then in general an optimal shape will not exist. Indeed,
minimizing sequences of shapes will be characterized by very fine microstructures.
The theory of homogenization allows to describe the set of possible microstructures
and the associated set of attainable effective material properties [20, 21, 23, 36].
The heterogeneous multi-scale method (HMM) [49, 50] depicts a very general
paradigm for efficient numerical treatment of multi-scale problems using indepen-
dent macroscopic and microscopic models. Homogenization theory was extended
from multiphase, uniformly coercive materials to perforated structures and porous
materials, see for example [24] and references therein. In [34] a two-scale adaptive
finite element scheme has been proposed for elliptic problems on perforated
domains.
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Optimal microstructures in elasticity have first been derived by Hashin in 1962
[31] in the concentric sphere construction for hydrostatic loads. The construction
was later generalized for anisotropic strains using confocal ellipsoids in [29]. The
investigation of nested laminate structures dates back to the 1980s [40, 46] and
was later used in a practical numerical scheme for topology optimization in [2].
In all these cases proofs of optimality rely on the Hashin-Shtrikman bounds on the
attainable sets of effective elastic properties [32]. Related to the homogenization
approach is the so called free material optimization method where the optimization
is directly carried out on the coefficients of the elasticity tensor, as for example in
[33].

Alternatively, the cost functional can be reduced by a proper design of fine scale
perforations drilled into a homogeneous material. The layout of elastic structures
based on this approach has been investigated already in the early 1990s [14]. The
shape optimization via such mechanically feasible, periodic perforation patterns on
the microscale has also been studied in [9]. Closely related to our approach is the
approach by Barbarosie and Toader. In [10, 11] they optimized the geometry of fine
scale perforations. The numerical method is based on a boundary tracking approach
of a triangulated domain with additional remeshing steps to ensure mesh quality.
In [12] this approach is extended to a two-scale setting combining a finite element
scheme on the macroscale with the above treatment of locally periodic perforations
on the microscale.

Shape optimization under a fixed load is rarely realistic. Multiload approaches
consider a fixed (usually small) number of different loading configurations and have
been developed for example in [3, 30] and references therein. In this paper, we deal
with stochastic loading and risk averse optimization. Optimization under uncertainty
requires an appropriate treatment of the available uncertain data information. Differ-
ent approaches have been analyzed, which are appropriate for different types of risk.
Robust optimization corresponds to a treatment of the worst-case [15] and is based
on information about the ranges of the uncertain parameters. Applications to shape
optimization can be found in [8, 22]. In stochastic optimization data uncertainty,
typically quantified by probability distributions, has been largely studied in a finite-
dimensional setting, both in a linear situation for mixed-integer and other nonlinear
models, see for example [42]. Shape optimization with stochastic loading has been
discussed previously in various contexts, for example for beam models in [38]. A
number of papers addressed worst-case optimization, see for example [4, 8, 16] and
the optimization scenario in aerodynamic design in [43]. A trust-region algorithm
for PDE optimization under uncertainty was developed in [37]. In [25] we have
proposed an efficient optimization approach for stochastic loading based on the
representation of realizations of surface and volume loads as linear combinations
of a few basis modes. In our previous work [25, 26, 28] we have shown how
this approach can be used to effectively perform shape optimization with different
treatments of the stochastic loads.
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3 Elasticity of Micro Perforated Elastic Material

We consider here an elastic body composed of microstructured material and suppose
that the microstructure is composed of mechanically constructible perforations. On
the microscale these perforations form a regular lattice, which is not necessarily
oriented parallel to the macroscopic axes. The geometry of these perforations and
the orientation of the lattice vary macroscopically and are locally described by a
finite set of parameters.

Before we investigate a computationally feasible two-scale formulation let us
discuss the case of an elastic object with perforation on a fine scale lattice with
regular lattice spacing ı > 0, as illustrated in Fig. 1. We denote by D � R

d the
underlying object domain, connected, with Lipschitz boundary and suppose that
�D � @D is the Dirichlet boundary where the elastic object is fixated and �N � @D

the Neumann boundary on which boundary forces are applied. We suppose that
Dirichlet and Neumann boundaries are relatively open subsets of @D with Lipschitz
boundary, the first one nonempty. The elastic object itself is perforated with holes of
size less than ı drilled into homogeneous elastic bulk material on D and described
by the perforated domainDı

˛ D D n�Sx2ıZd x C ım˛.x/

�
:Here, m˛.x/ � Œ��; ��d

with � fixed and 0 < � < 1
2

describes the geometry of the perforation placed at
x 2 ıZd and defined on the reference domain Œ� 1

2
; 1
2
�d for a parameter function ˛ W

D ! R
m withm 2 N. We denote by Uad a closed set of admissible parameters such

that ˛.x/ 2 Uad for every x 2 D. Let us assume that there are no perforations close
to the Dirichlet and Neumann boundary, i. e. m˛.x/ D ; for dist.x; �D [ �N / � �

for some fixed � > 0. For a displacement uı W Dı
˛ ! R

d and a boundary force
density g W �N ! R

d the elastic energy is given by

EıŒ˛; uı� D 1

2

Z
Dı
˛

C.x/�Œuı �.x/ W �Œuı�.x/ dx �
Z
�N

g.x/ � uı.x/ da

where C is the elasticity tensor of the homogeneous bulk material, �Œ�� D 1
2
.D� C

D�T / denotes the strain tensor with D� being the Jacobian of the displacement
� and A W B WD tr.ATB/. If C is uniformly coercive and g 2 L2.�N ;R

d /, the
unique minimizer in the space H1;2

�D;ı
WD f u 2 H1;2.Dı

˛/
d j u D 0 on �Dg is the

Fig. 1 Single-scale model
for a carrier plate under
shearing with 45� 45
ellipsoidal holes. The two
blow-ups show regions with
locally (almost) periodic
patterns
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solution of the associated variational problem
R
Dı
˛

C.x/�Œuı�.x/ W �Œ�ı�.x/ dx DR
�N
g.x/ � �ı.x/ da for all �ı 2 H1;2

�D;ı
. Figure 1 shows an elastic object with

a perforation based on ellipsoidal holes where the parameters of the ellipses are
optimized with respect to a compliance type cost functional.

A classical result from homogenization theory [21, 23] describes the elastic
behavior of the material in the limit for ı ! 0. Indeed a suitable extension of
the elastic displacement uı onto the whole domain D converges to a displacement
u? 2 H1;2

�D
WD f u 2 H1;2.D/d j u D 0 on �Dg which solves the variational problem

Z
D

C?.x/�Œu?�.x/ W �Œ��.x/ dx D
Z
�N

g.x/ � �.x/ da (3.1)

for all � 2 H
1;2
�D

. Here, C?.x/ is the effective elasticity tensor encoding the
effective properties of the perforated material on the macroscale. Thereby, the
underlying two-scale formulation of the limit problem is as follows. Find an
effective macroscopic displacement u? 2 H

1;2
�D

and a microscopic correction w? 2
W˛ which solve the equation

Z
D

Z
C˛.x/

C.y/.�Œu?�.x/ C �Œw?�.x; y// W .�Œ��.x/ C �Œ �.x; y// dy dxD
Z
�N

g.x/ ��.x/ da

for all � 2 H1;2
�D

and all functions  2 W˛ where C˛.x/ WD .� 1
2
; 1
2
/d n m˛.x/ and

the function space of microscopic periodic displacement corrections is defined as

W˛ WD f � W .x; y/ ! �.x; y/ 2 R
d j x 2 D ; y 2 C˛.x/ ;

�.x; y C z/ D �.x; y/8z 2 Z
d with k�kW˛ � 1g

where k�kW˛ WD
�R

D

R
C˛.x/ �.x; y/

2 C jDy�.x; y/j2 dy dx
� 1
2
. The effective elas-

ticity tensor C? D C?Œ˛� can be defined variationally

C?.x/�Œu�.x/ W �Œu�.x/ D
Z
C˛.x/

C.y/�ŒR?Œu��.x; y/ W�ŒR?Œu��.x; y/ dy

where R?Œu�.x; y/ WD u.x/ C w.x; y/ for u 2 H
1;2
�D

is the microscopic recon-
struction with w solving the correction problem

R
C˛.x/ C.y/.�Œu�.x/ C �Œw�.x; y// W

�Œ �.x; y/ dy D 0 for all  2 W˛ . Indeed, using the symmetry assumption
C?

ijkl D C?
jikl D C?

ijlk D C?
klij, also for the effective elasticity tensor C? one observes

that

C?
ijkl D C?�ij W �kl D C?�ijCkl W �ijCkl � C?�ij�kl W �ij�kl (3.2)
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with �ij D 1
2
.ei ˝ej Cej ˝ei / and �ij˙kl D 1

2
.�ij ˙�kl/ where ei is the i th canonical

basis vector in R
d . Thus, for every x 2 D one evaluates the reconstructionR? for a

basis of affine displacements and then via the above representation the coefficients
of the effective elasticity tensor C?

ijkl for all 1 � i; j; k; l � d .
In shape optimization it turns out to be advantageous to allow also spatially vary-

ing orientation of the microscopic perforation pattern, for which the microscopic
perforation m˛.x/ is no longer contained in Œ��; ��d . This enlarges substantially
the class of possible microstructures which can be achieved without increasing
much the number of parameters. To this end, we allow for a rotation Q.˛.x//
of the microscopic cell x C ıŒ� 1

2
; 1
2
�d depending on the local value ˛.x/ of the

macroscopic parameter function and use C˛.x/ D Q.˛.x//.� 1
2
; 1
2
/d n m˛.x/ in

the definition of the two-scale approach above. Furthermore, we have to adopt
the definition of W˛ using the rotated periodicity assumption �.x; y C z/ D
�.x; y/8z 2 Q.˛.x//Zd . Let us emphasize that in this case the fine scale problem
on a scale ı need not be properly defined any longer.

In this paper we will compare the performance of different types of microscopic
perforations on two dimensional domains (d D 2). In what follows we will describe
the associated parametrization (cf. Fig. 2):

– Cells with single ellipsoidal holes. An ellipsoidal shaped hole is considered,
parametrized by the lengths ˛1; ˛2 2 .0; �/ of its two semiaxes and a rotation
˛3 (cf. Fig. 1).

– Cells with 2 � 2 ellipsoidal holes. A natural extension is achieved by allowing
2 � 2 holes with 12 independent parameters per cell.

– Cell structures consisting of axes-aligned trusses. As an alternative construction
we consider truss like structures along the edges and the diagonals of the cell,
where the thickness ˛i (i D 1; : : : ; 6) can be varied. Additional constraints make
sure that the holes generated between the trusses maintain a triangular shape.

– Cell structures consisting of freely rotated orthogonal trusses. Finally two
orthogonal trusses connecting midpoints of opposing edges of the cell are
allowed to rotate freely. This periodic pattern is equivalently determined by the
rectangular hole centered at the corners of the cell and parametrized by the half
edge lengths ˛1; ˛2 2 .0; �/ and an unconstrained rotation ˛3.

Fig. 2 Form left to right the different cells with different type of perforation are displayed: cells
with single ellipsoidal holes, cells with 2 � 2 ellipsoidal holes, cell structures consisting of axes
aligned and diagonal trusses, freely rotated cells with rectangular holes representing orthogonal
trusses (see red marking)
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All parametrizations described above lead to perforations of the fundamental
cell leaving behind a certain amount of rigid constituent. The fraction �.x/ D
Vol.C˛.x// can be interpreted as the macroscopic local density of the effective
material. To rule out trivial solutions to the shape optimization problem we impose
a global volume constraint. The total amount of material spent ‚ D R

D
�.x/ dx is

to be kept fixed throughout the optimization procedure.
In the implementation of our two-scale simulation method we use a finite element

scheme on the macroscale and a boundary element scheme on the microscale (cf.
Sect. 5).

4 Two-Scale Shape Optimization Under Stochastic Loadings

For every choice of the parameter function ˛ we can compute a corresponding
macroscopic displacement u?Œ˛�. Given a cost functional J, which may depend
directly on the parameter function ˛ and the macroscopic displacement u?, we ask
for an optimal shape, described via macroscopically parametrized microscopic per-
forations. Precisely, we want to compute a parameter function ˛ which minimizes
J Œ˛� WD JŒ˛; u?Œ˛��. Before dealing with stochastic shape optimization we briefly
discuss the deterministic case.

Deterministic shape optimization In this article we will focus on the compliance
cost functional as a global measure of rigidity. We can write the resulting cost in the
following equivalent ways (cf. (3.1)):

JŒ˛; u� D
Z
�N

g.x/ � u.x/ da D
Z
D

C?Œ˛�.x/ "Œu�.x/ W "Œu�.x/ dx : (4.1)

The derivative J 0Œ˛�, which plays in our context the role of the shape derivative,
takes the formJ 0Œ˛� D J;˛Œ˛; u?Œ˛��CJ;uŒ˛; u?Œ˛��.@˛u?Œ˛�/ ;where J;˛Œ˛; u?Œ˛�� DR
D
@˛C?Œ˛�.x/�Œu?Œ˛��.x/ W �Œu?Œ˛��.x/ dx : To avoid computing sensitivities

@˛u?Œ˛� of the displacement w.r.t. the perforation parameter function ˛ we employ
the dual problem. Here, the dual solution p? D p?Œ˛� 2 H1;2

�D
is defined as the weak

solution ofZ
D

C?Œ˛�.x/�Œp?�.x/ W �Œ��.x/ dx D �J;uŒ˛; u?Œ˛��.�/ (4.2)

for all � 2 H1;2
�D

. In our case of a compliance type cost functional p?Œ˛� D �2u?Œ˛�.
With the dual solution at hand one can rewrite the derivative of the cost

J 0Œ˛� D J;˛Œ˛; u?Œ˛��C
Z
D

.@˛C?Œ˛�/ .x/�Œu?Œ˛��.x/ W �Œp?Œ˛��.x/ dx

D �
Z
D

.@˛C?Œ˛�/ .x/�Œu?Œ˛��.x/ W �Œu?Œ˛��.x/ dx : (4.3)
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Finally, we are left to compute @˛C?Œ˛�.x/ for x 2 D. To this end, taking
into account (3.2) we consider C?Œ˛�.x/"ij˙kl W "ij˙kl for fixed i; j; k; l and for
fixed x 2 D and define the local cost functional jC Œ˛� D jC Œ˛;w?ij˙klŒ˛��

with jC Œ˛;w� D R
C˛.x/ C.y/

�
"ij˙kl C "Œw�.x; y/

� W �"ij˙kl C "Œw�.x; y/
�

dy and
w?ij˙klŒ˛�.x; � / is given as the solution of the local correction problem 0 DR
C˛.x/ C.y/

�
"ij˙kl C "Œw�.x; y/

� W "Œ �.x; y/ dy for all  2 W˛ and with x being
fixed. This implies

jC Œ˛;w?ij˙klŒ˛�� D
Z
C˛.x/

C.y/
�
"ij˙kl C "Œw?ij˙klŒ˛��.x; y/

�
W�

"ij˙kl C "Œw?ij˙klŒ˛��.x; y/
�

dy :

From the correction problem we immediately deduce that @wjC Œ˛;w?ij˙klŒ˛�� D 0.
Hence, one obtains @˛jC Œ˛� D @˛jC Œ˛;w?ij˙klŒ˛��. Taking into account a family of
perforations defined via the mapping s 7! m˛.x/Csˇ for s 2 R with jsj small, we
then obtain for the variation of the local cost jC Œ˛� in direction ˇ 2 R

m

@˛jC Œ˛�.ˇ/ D d

ds
jC Œ˛ C sˇ�

ˇ̌
ˇ̌
sD0

D d

ds
jC Œ˛ C sˇ;w?ij˙klŒ˛��

ˇ̌
ˇ̌
sD0

D
Z
@m˛.x/

.v˛;ˇ.y/ �n@m˛.x/
.y//C.y/

�
"ij˙kl C "Œw?ij˙klŒ˛��.x; y/

�
W�

"ij˙kl C "Œw?ij˙klŒ˛��.x; y/
�

dy

where n@m˛.x/
.y/ denotes the inner normal of the perforationm˛.x/ at y 2 @m˛.x/ and

v˛;ˇ.y/ is the velocity vector associated with the variation of m˛.x/ in the direction ˇ
at position y 2 @m˛.x/. Finally, we obtain for the variation of the effective elasticity
tensor in a direction ˇ 2 R

m

@˛C?
ijklŒ˛�.ˇ/ DZ

@m˛.x/

C.y/
��
"ijCkl C "Œw?ijCkl�.x; y/

�
W
�
"ijCkl C "Œw?ijCklŒ˛��.x; y/

�
��

"ij�kl C "Œw?ij�kl�.x; y/
�

W
�
"ij�kl C "Œw?ij�klŒ˛��.x; y/

��

� .v˛;ˇ.y/ �n@m˛.x/
.y// dy :

Two-stage stochastic shape optimization In a more realistic situation the actual
loading of an elastic work piece is usually not fixed but varies stochastically.
Therefore we now extend the above framework and consider random surface loads
g.!/ 2 L2.�N IRd / with ! being a realization on an abstract probability space
.�;A; }/. Here, finite-dimensional linear stochastic programs serve as blueprints
for our stochastic shape optimization models. In this context a two-stage scheme of
alternating decision and observation applies. The first-stage decision of a concrete
shape, in our context the parameter vector ˛, must not anticipate future information
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on the random data, here the random boundary force g.!/. The second-stage
decision in our context corresponds to the solution of the elastic problem and the
evaluation of the cost value for a concrete realization ! and for fixed ˛ and g.!/.
The overall aim of two-stage stochastic programming is to find an ˛ which is in a
stochastic sense “optimal” under these circumstances. Different modes of ranking
random variables then lead to different types of stochastic programs. In a risk neutral
setting the ranking is done by taking the expectation E! . With risk aversion, see
[17, 41] for a recent textbook and a monograph as well as the journal publications
[27,39,44], expectation is replaced by statistical parameters reflecting some percep-
tion of risk (risk measures) or stochastic dominance relations are employed. In what
follows we will focus on risk measures. For a fixed realization! and fixed parameter
function ˛ primal and dual solutions uŒ˛�.!/, pŒ˛�.!/ can be computed as described
above in the deterministic setting. As the solutions now depend on ! so do the
associated variational problems (3.1) and (4.2) as well as the cost functional (4.1)
and its gradient (4.3). Altogether we obtain the random shape optimization model
min fJŒ˛; u; !� W ˛ 2 Uadg ; which amounts to finding a “minimal” member in
the family of random variables JŒ˛; u; !�. Taking the expectation yields the risk
neutral problem min fQEVŒ˛� WD E!.JŒ˛; u; !�/ W ˛ 2 Uadg: Risk averse problems
are the expected excess min

˚
QEE� Œ˛� WD E!.maxfJŒ˛; u; !� � �; 0g/ W ˛ 2 Uad

�
or the excess probability min

˚
QEP� Œ˛� WD P!.JŒ˛; u; !� > �/ W ˛ 2 Uad

�
over a

preselected target � 2 R. For the numerical realization we will use smooth approx-
imations of the max-function and the Heaviside function leading to Q"

EE�
Œ˛� WD

E! .q
".JŒ˛; u; !�// ; where q".t/ WD 1

2
.
p
.t � �/2 C " C .t � �// and Q"

EP�
Œ˛� WD

E! .H
".JŒ˛; u; !�// with H".t/ WD .1 C e�

2.t��/
" /�1 for " > 0. For actual

computations .�;A; }/ is assumed to be finite, in the sense that there are finitely
many realizations !i and probabilities i , i D 1; : : : ; Ns . We can then rewrite
QEVŒ˛� D PNs

iD1 iJŒ˛; u; !i �; and Q"
EE�
Œ˛� and Q"

EP�
Œ˛� accordingly. The shape

derivative as derived above can directly be applied to the stochastic functionals. The
chain rule yields

Q0EVŒ˛�.ˇ/ D
NsX
iD1

i J0Œ˛; u; !i �.ˇ/ ;

.Q"
EE� /

0Œ˛�.ˇ/ D
NsX
iD1

i
2

J0Œ˛; u; !i �.ˇ/
�

JŒ˛;u;!i ���p
.JŒ˛;u;!i ���/2C"

C 1

�
;

.Q"
EP� /
0Œ˛�.ˇ/ D

NsX
iD1

2
"
iJ0Œ˛; u; !i �.ˇ/ e�

2
" .JŒ˛;u;!i ���/�

1Ce�
2
" .JŒ˛;u;!i ���/

�2

for a direction ˇ W D ! R
m in which ˛ is varied. So far it seems that for every !i

one has to compute a primal and a dual solution. The solution, however, depends
linearly on the right hand side; therefore a significant amount of computational time
can be spared when a large number Ns of scenarios is generated by a small set
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of basis surface loads g1; : : : ; gK , as was discussed in [25]. The actual loads g.!/
are given as linear combinations g.!/ D PK

jD1 	j .!/gj , with random coefficients
	j .!/ 2 R; j D 1; : : : ; K . We thus only need to solve the elasticity problem for
the different basis forces. To be more precise let uj;?Œ˛� be the solution of (3.1) for
g D gj , j D 1; : : : ; K . Then we find u?Œ˛�.!/ WD PK

jD1 	j .!/ uj;?Œ˛� to be the
unique solution of (3.1) with g D g.!/. The same procedure can be taken for the
dual solution if the cost functional is at most quadratic guaranteeing the linearity
in the right hand side. As discussed, in our case of a compliance objective the dual
problem is already trivial.

5 Implementation

The two-scale simulation is based on a finite element discretization on the
macroscale and a boundary element method on the microscale. We use a regular
mesh with N quadratic cells on the macroscale and piecewise biquadratic finite
elements as checkerboard instabilities were reported in [18] for the related case
of nested laminates when using linear ansatz functions. We use a Gaussian
quadrature of consistency order 5 with 3 � 3 quadrature points per square cell.
Within each cell the underlying microstructure is specified by a set of parameters
in R

m as the discrete counterpart of the local parameter function ˛. For the cell
problem a collocation type boundary element method is used to compute numerical
approximations to the microscopic correction profiles. For details we refer to the
corresponding discussion for the single-scale model in [6]. The design constraints
described in Sect. 3 are implemented as inequality constraints in the optimization.
The global volume constraint leads to an additional equality constraint. Unless
otherwise noted we use a material with moderate anisotropy for the construction of
microscopic geometries. It is characterized by the elasticity tensor

Caniso D
0
B@
3 1

1 3

1:1

1
CA

using Voigt’s notation. For all numerical experiments we prescribe a volume fraction
of 67% as global constraint. Loads usually have magnitude 1.

Our algorithm for the two-scale shape optimization approach is written in
C++ based on the quocmesh library for finite element and boundary element
computations and the open source software Ipopt [47,48] performing constrained
finite-dimensional optimization.
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6 Numerical Results

In this section we present numerical results for shape optimization problems both
with deterministic and stochastic loadings, comparing the different microstructure
models. The key scenario we consider is a carrier plate, in which the computational
domain is the unit square, with homogeneous Dirichlet boundary data on the bottom
and Neumann boundary conditions corresponding to a shearing on the top. To
illustrate the generality of the method we also study two classical problems from
the literature.

6.1 Deterministic Optimization

We start with the simplest microstructure, in which every unit cell has one ellipsoidal
hole (first sketch in Fig. 2). The results for the three model problems discussed above
are presented in Fig. 3 based on computations on a macroscopic grid with 64 � 64

square cells.
Comparing the results for the carrier plate scenario to the single-scale case illus-

trated in Fig. 1 a remarkable similarity is apparent. The oscillating pattern observed
in the single-scale case (Fig. 1, left blow-up) for the upper middle region however
seems to be gone. The apparent reason for these oscillations was to approximate
criss-crossing beams. Such a construction is ruled out by the kinematics in the two-
scale setting, since each unit cell only contains one hole, which then gets repeated
over and over again at the microscale.

This suggests to allow for more than one hole within the fundamental cell, each
with its own set of parameters. We investigated this structure using 2 � 2 holes on
each cell, which is the microstructure sketched in the second panel of Fig. 2. In the
result, see Fig. 4c, the oscillating pattern is now captured as expected while other
regions keep their microstructure by just reproducing the shape of the former single
hole four times.

Fig. 3 Local minima for two-scale optimization of a carrier plate under shearing, a cantilever on a
square domain and a bridge scenario, all on a macroscopic regular rectangular mesh with 64 � 64
cells. The local configuration is drawn within each macroscopic element as a representative for the
underlying microstructure. Furthermore, the same results are presented using a HSV color code:
color corresponds to the rotation of the major semiaxis, saturation to the degree of anisotropy and
value to the volume of the hole
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Fig. 4 Local minima for two-scale optimization of a carrier plate under shearing for different
configurations: (a) 64 � 64 macroscopic cells with 1 ellipsoidal hole each (same as in Fig. 3), (b)
128� 128 macroscopic cells with 1 ellipsoidal hole each, (c) 64� 64 macroscopic cells with 2� 2
ellipsoidal holes each, (d) 64� 64 macroscopic cells with 6 trusses at fixed positions each, and (e)
64� 64 macroscopic cells with 2 rotated orthogonal trusses each. Final objective values are listed
in (f)

Since we already conjectured that a framework with diagonal trusses would
perform best in the upper middle region, we now explicitly consider such a
microstructure. First we place six trusses at fixed positions within the fundamental
cell (third panel in Fig. 2). In the resulting shape, see Fig. 4d, the expected criss-
crossing pattern is found. However we now see solid trusses in the macroscopic
picture. This is because the optimal shape has trusses which are not inclined by 45ı
and therefore cannot be reproduced by the microstructure; the optimization hence
generates “macroscopic trusses” with the appropriate slope. This suggests to allow
for a rotation of the whole periodic lattice (fourth panel in Fig. 2). The results are
shown in Fig. 4e. The last panel of Fig. 4 gives an overview of the final objective
values for the optimized designs. One can clearly see that the improvement of the
shape by allowing a more complex microstructure using 2�2 holes per cell becomes
manifest also in a quantitative way. The introduction of structures made from fixed
trusses leads to a further significant drop in the objective functional. Finally allowing
the structures to rotate freely again contributes to a substantial improvement.

So far we have successively constructed microscopic geometries that lead to a
stepwise reduction in the objective value for the optimized design. It seems natural
to compare the results to a microstructure that is known to be optimal a priori.
For our comparison we decided to adopt the nested laminates construction as it
is valid on the full range of feasible strains and explicit formulae as well as an
algorithmic treatment are available in [1]. The microstructure is built up in an
iterative procedure. One starts by successively layering a given rigid and a very weak
material, determined by elasticity tensors B and A respectively, with proportions
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m1 and .1 � m1/ in a direction e1. The obtained material is then layered again
with the rigid material B , now with proportionm2 and in direction e2. In our shape
optimization context one considers the degenerate case in which the weak material
A is replaced by voids. By a limiting process the effective elasticity tensor C?

L of the
nested laminate can be given in closed form with the ratios m1, m2, the directions
e1, e2, and the overall material density � as degrees of freedom [1]. Moreover, these
parameters depend explicitly on the local effective stress �? D C?

Lu?. Indeed, the
ratios m1 and m2 D 1 �m1 are given by the ratio of the eigenvalues of �? and the
directions e1 and e2 are aligned with the orthogonal system of eigenvectors. Finally
using a Lagrange multiplier approach also the optimal local density � depends, apart
from elastic constants, only on the eigenvalues.

The variational structure of the problem and the values of the objective function
listed in Fig. 4f give a clear ordering in the quality of the different microstructure
patterns and show in particular that the rotated orthogonal trusses are superior to the
other models considered, at least in the present scenario. To assess how much room
for improvement is left we compare with the lower bound given by the Hashin-
Shtrikman formula, focusing for simplicity on the case of an isotropic material.
In the present setting this lower bound is known to be optimal and can indeed be
attained by lamination [1,7]. To this end we reimplemented the alternating algorithm
for the nested lamination construction proposed in [1]. The local density of the
optimal structure obtained in the carrier plate scenario is compared in Fig. 5b with
the result of our two-scale method for perforated isotropic material. The latter has
been computed with the isotropic elasticity tensor

Ciso D
0
B@
3 1

1 3

1

1
CA

in which the lower right entry was replaced by 1:0001, since we use in our boundary
element scheme a fundamental solution for anisotropic elasticity. The perforation
pattern in Fig. 5a is qualitatively very similar to the one obtained with anisotropic
elasticity in Fig. 4e, the quantitative values of the objective function, however, differ

Fig. 5 A comparison of the computed optimal pattern for a carrier plate under shearing is
displayed. The computations are performed on a 64 � 64 grid: (a) shows the microstructure
composed of rotated orthogonal trusses, and (b) renders the density in the case of sequential
laminates. The values of the objective function are listed below
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significantly. The comparison of Fig. 5a, b demonstrates that the performance of
the two-scale approach with rotated orthogonal trusses is indeed very close to
the one of the optimal microstructure, which can be realized for example by the
construction with second-order laminates. Analytically, it is known that in the low-
volume-fraction limit the construction with single-scale laminates is optimal [19].
Single-scale laminates are, in the definition of [19], structures in which thin trusses
with different orientations coexist without interacting; for low volume fraction and
second-order laminates they correspond to our rotated trusses. The present results
show that rotated trusses give almost the same objective function as laminates even
for a total volume fraction of 67%, at least in this geometry.

6.2 Risk Averse Stochastic Optimization

In this section we show that our developed two-scale algorithm can directly be
applied to the more general situation of stochastic shape optimization. We consider
a variant of the carrier plate scenario with sets of different loads on the upper
left and upper right edge with different probabilities, as illustrated in Fig. 6 and
described in the figure caption, similar to the one that was studied for single-scale
stochastic shape optimization in [26]. For the optimization we consider both the risk
neutral and the risk averse cost functionals introduced in Sect. 4. In this stochastic
optimization we focus on the simplest choice of microstructure, the ellipsoidal
holes, and on the one that performed best in the deterministic setting, the rotated
trusses.

Figure 6 shows the result of the deterministic optimization using the expected
value of the loads. The larger probability of the forces on the right results in a larger
expected value of the force, and hence on a strong concentration of the available

Fig. 6 Left panel: configuration used in the stochastic optimization. The lower boundary has
homogeneous Dirichlet boundary conditions. The possible forces on the left have a probability
of 1%, those on the right 19%. Right panel: result of the deterministic optimization using the
expected value of loads and the ellipsoidal holes microstructure
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mass on the right-hand side of the computational domain. The (on average!) minor
forces on the left-hand side are dealt with by two small trusses which connect the
main pillar to the other side of the domain.

In Fig. 7 we compare, using the microstructure of rotated orthogonal trusses,
three different approaches to the forcing. In Fig. 7a we show the optimization of the
expected value of the costs, in which both left and right forcing play a significant
role. In particular, the presence of a scenario with forcing only on the left-hand
side generates a substantial mass on the left-hand side of the computational domain.
Figure 7b illustrates the result of optimizing w.r.t. the expected value of the loads.
The two types of microstructures lead to similar shapes. In Fig. 7c we show, for
a comparison, the result of the optimization in the symmetric case, with the same
forces acting on both parts of the top boundary.

We now turn to the optimization of the expected excess. Figure 8 shows the
results for ellipsoidal holes and rotated trusses, respectively. As in the previous case,
the two types of microstructure generate similar patterns. Introducing a threshold
makes the largest deviations more important, and therefore the forces on the
left, which are large but have a small probability, become more important in the
optimization. Indeed, for small � (and for the EV optimization) the forces on the
right-hand side dominate, and correspondingly the largest structures are the vertical
one on the right (which takes care of the vertical component of the forces on the
right) and the diagonal from the lower left to the upper right corner (which takes
care of the horizontal component of the forces on the right). With increasing � the
situation becomes first symmetric, and then tilted in the other direction, with the left
side and the lower right to upper left diagonal dominant at � D 0:0005.

In the case of the optimization of the excess probability, only the probability,
and not the amplitude, of the large deviations plays a role. Results are shown
with ellipsoidal holes for the microstructure in Fig. 9. Indeed, for small � the best
result the optimization can achieve is to keep the cost functional in the scenarios
corresponding to the small forces on the right-hand side below the threshold; in
order to do this the small probability forces on the left-hand side are given up. The
cost of these forces would, in the ideal case, be infinite (it is not due to the many

Fig. 7 Results of the two-scale shape optimization procedure using rotated trusses for the
microstructure: stochastic optimization of the expected value of costs (a), deterministic optimiza-
tion using the expected value of the loads (b), deterministic optimization computed for equal loads
on the left and right parts (c)
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Fig. 8 Results of the two-scale stochastic optimization of the expected excess for different values
of the threshold �, using ellipsoidal holes (top) and rotated trusses (bottom) for the microstructure.
(a) EV. (b) �D 0.0001. (c) �D 0.0003. (d) �D 0.0005. (e) �D 0.0001. (f) �D 0.0002. (g) �D
0.0003. (h) �D 0.0005

Fig. 9 Results of the two-scale stochastic optimization of the excess probability for different
values of the threshold �, using ellipsoidal holes for the microstructure. (a) � D 0.0003.
(b) �D 0.0004. (c) �D 0.0005. (d) �D 0.0006

numerical regularizations, including for example the fact that the volume fraction
cannot be zero in any cell). This divergence does not, however, result in a divergence
of the total cost functional because only the probability of these large deviations
enters the optimization, not their amplitude. With increasing �, it is less important
to keep the response to the small forces very small: as above, the thresholding makes
the exact value of the cost functional in that case irrelevant, as long as it is below
threshold. The optimization can devote material to improving the response to the
forces on the left. Since they are large (but unlikely) more material is needed to bring
them below threshold than for the smaller forces on the right, hence the pattern also
in this case changes to a left-dominated one. When the threshold � becomes larger
and larger, it is easy to keep the response to all 10 forces below it, and the problem
degenerates: in a sense, there is “too much material” to achieve the aim, and the
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details of the shapes are not any more meaningful. We stress that the discontinuity
of the excess probability has been regularized in the numerics, hence the transitions
discussed are to be interpreted as gradual transitions, not as abrupt discontinuities
from “above threshold” to “below threshold”.

In closing we remark that, although the details of the shapes differ, the qualitative
trends we discussed are very similar to the ones we had observed in the single-scale
computations in [26].

Conclusions
In this paper we derived a two-scale framework for shape optimization in
which the parameters of microscopic perforations on a locally periodic lattice
are optimized. We compare the performance of different types of perforation
geometries and demonstrate that the best performing geometry of locally
rotated orthogonal trusses gets very close to the known optimal approach
based on nested lamination construction on the microscale. Furthermore, we
studied stochastic shape optimization in the class of two-scale materials with
approximate models for expected excess and the excess probability as risk
averse cost functionals.
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Abstract The present paper intends to summarize the main results of Harbrecht and
Tausch (Inverse Probl 27:065013, 2011; SIAM J Sci Comput 35:A104–A121, 2013)
on the numerical solution of shape optimization problems for the heat equation.
This is carried out by means of a specific problem, namely the reconstruction of a
heat source which is located inside the computational domain under consideration
from measurements of the heat flux through the boundary. We arrive at a shape
optimization problem by tracking the mismatch of the heat flux at the boundary. For
this shape functional, the Hadamard representation of the shape gradient is derived
by use of the adjoint method. The state and its adjoint equation are expressed as
parabolic boundary integral equations and solved using a Nyström discretization and
a space-time fast multipole method for the rapid evaluation of thermal potentials.
To demonstrate the similarities to shape optimization problems for elliptic state
equations, we consider also the related stationary shape optimization problem
which involves the Poisson equation. Numerical results are given to illustrate the
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1 Introduction

Shape optimization is a well established mathematical and computational tool in
case of an elliptic state equation, see, e.g., [2,13,14,19,25,26,28,29,32,35] and the
references therein. In contrast, the literature on shape optimization is rather limited
for a parabolic state equation. Theoretical results for the latter case can be found, for
instance, in [4, 20, 23, 31] and the references therein. However, the development of
efficient numerical methods for shape optimization problems with a parabolic state
equation is still in its beginning stages, especially for three-dimensional geometries.

With the goal to develop such efficient methods, we considered in [17,18] shape
identification problems for the heat equation. Specifically, besides the computation
of the Hadamard representation of the shape gradients, we applied boundary integral
equations to provide that data from the state and its adjoint which enter the shape
functional and shape gradient. These boundary integral equations have been solved
by multipole-based space-time boundary element methods which cluster sources in
space and time have become available recently [33, 34]. That way, we were able to
reconstruct unknown shapes in three dimensions on a laptop in less than half an hour
computation time even though up to 1,200 design parameters and about 120,000
boundary elements have been used for the discretization of the shape optimization
problem.

If one takes a closer look at [17,18], it turns out that for a parabolic state equation
both, the shape calculus and the formulation by boundary integral equations, are
in principle rather similar to the case of an elliptic state equation. Besides being
numerically more challenging, the main difference is that in the parabolic case
singularities appear since the initial data do not generally fit the given boundary
data, especially in the adjoint state equation. The similarities stem from the fact that
the sought shape has not been allowed to change in time. Future research should
thus go into the direction of shape optimization problems where the shape varies in
time.

The present paper intends to summarize the main results of [17, 18] by focusing
on a specific shape reconstruction problem with parabolic state equation. The goal is
to reconstruct the shape of a heat source inside a given domain from the knowledge
of the temperature and the heat flux at the boundary of the domain. Practical
applications of the problem under consideration arise from the detection of any
kind of heat source like e.g. fire or radioactive decay in non-accessible areas. We
provide the ingredients (shape gradient, discretization of the shape, discretization
of the state equation and its adjoint) for an efficient shape reconstruction algorithm
and compare them with the ingredients for the related stationary problem which is
obtained by letting time tend to infinity.

The paper is organized as follows. In Sect. 2, the problems under consideration
are formulated. The Hadamard representation of the shape gradients is derived
in Sect. 3. The following section describes the discretization of the shape. The
computation of the state and the adjoint state by boundary integral equations is
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proposed in Sect. 5. Finally, in Sect. 6, we compare the reconstruction of shapes
in case of the elliptic state equation with the reconstruction of shapes in case of the
parabolic state equation.

2 Problem Formulation

The shape identification problem under consideration is as follows. Let D be a
domain contained in a domain � � R

n, n D 2; 3, and consider the initial boundary
value problem

@tu ��u D �D in � � .0; T / (2.1)

with boundary condition

u D 0 on † � .0; T / (2.2)

and initial condition

u D 0 on � � f0g: (2.3)

Here, † D @� denotes the boundary of the domain �, whereas we will denote the
boundary of D by � WD @D, see also Fig. 1. Throughout the paper, we assume that
the boundaries† and � are respectively Lipschitz-continuous and C2-smooth.

The goal is to reconstruct the discontinuous sourceD from measurements of the
Neumann data @u=@n at the boundary†. More precisely, we will minimize the least
square functional

J.D/ D 1

2

Z T
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†
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�2
d� dt ! inf : (2.4)

Fig. 1 The domain � with
boundary † and the source D
with boundary �
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This problem has firstly been considered by Hettlich and Rundell in [22] and
is known to be severely ill-posed. Since we track the Neumann data over the
whole boundary †, uniqueness of the solution D immediately follows from [24],
where the steady state case has been considered, governed by the Eq. (2.5) below.
Nevertheless, uniqueness can be proven under much milder assumptions, see [22]
and the references therein.

For comparison reasons, we shall also consider the steady state case which is
obtained for T ! 1. Then, the state equation (2.1) simplifies to the Poisson
equation

��u D �D in �; (2.5)

while the initial condition (2.3) disappears and the boundary condition (2.2)
becomes

u D 0 on †: (2.6)

The analogue of the shape functional (2.4) reads now as

J.D/ D 1

2

Z
†

�
@u

@n
� h

�2
d� ! inf : (2.7)

To the best of our knowledge, this problem has not been considered before in the
literature.

We will demonstrate the similarities between the shape calculus of the transient
and the steady state case, using the shape identification problems (2.4) and (2.7).
Both cost functionals (2.4) and (2.7) can be minimized by means of gradient based
iterative methods. To this end, we need to compute the Hadamard representations
of the shape gradients. They are obtained by applying the so-called adjoint method.
The shape gradients are scalar distributions on the free boundary � , involving in
general only information of the state and the associated adjoint state.

3 Computing the Shape Gradients

Shape calculus has to be used to derive the shape gradients of the shape optimization
problems under considerations. For a general overview on shape calculus, mainly
based on the perturbation of identity (Murat and Simon) or the speed method
(Sokolowski and Zolesio), we refer the reader for example to [2, 27, 28, 30, 32] and
the references therein.

The shape gradient of the cost functional (2.4) with parabolic state equa-
tions (2.1)–(2.3) is given in the following theorem which has been proven in [17].
Nevertheless, we present its proof here for the sake of completeness. In particular,
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a comparison with the proof of Theorem 3.2 reveals clearly the similarities to the
derivation of the shape gradient of the associated cost functional (2.7) with elliptic
state equation (2.5) and (2.6).

Theorem 3.1. For an arbitrary boundary perturbation field V 2 C2.�/, the
shape gradient to the cost functional (2.4) with parabolic state equation (2.1)–(2.3)
reads as

ıJ.D/ŒV� D �
Z T

0

Z
�

hV;nip d� dt; (3.1)

where p denotes the adjoint state which satisfies the adjoint state equation

�@tp ��p D 0 in � � .0; T /;

p D @u

@n
� h on † � .0; T /;

p D 0 on � � fT g:

(3.2)

Proof. Given an arbitrary boundary perturbation field V 2 C2.�/, the directional
derivative of the cost functional (2.4) is

ıJ.D/ŒV� D
Z T

0

Z
†

�
@u

@n
� h

�
@ıu

@n
d� dt

with ıu D ıuŒV� denoting the local shape derivative. According to [22], it satisfies
the following coupled initial boundary value problem

@t ıue ��ıue D 0 in .� nD/ � .0; T /;
@t ıui ��ıui D 0 in D � .0; T /;

ıue D 0 on † � .0; T /;

ıue D ıui ;
@ıue
@n

D @ıui
@n

C hV;ni on � � .0; T /;

ıue D 0 on .� nD/ � f0g;
ıui D 0 on D � f0g:

(3.3)

Observing (3.2) and (3.3), integration by parts leads to

0 D
Z T

0

Z
�nD

.@t ıue ��ıue/p C .@tp C�p/ıue dx dt

D
Z
�nD

Z T

0

f@t ıuep C ıue@tpg dt dx �
Z T

0

Z
�nD

f�ıuep � ıue�pg dx dt
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D
Z
�nD

˚
ıue. � ; T /p. � ; T / � ıue. � ; 0/p. � ; 0/„ ƒ‚ …

D0

�
dx

C
Z T

0

Z
†[�

�
ıue

@p

@n
� @ıue

@n
p

�
d� dt:

In view of ıue D 0 on † � .0; T /, this implies

ıJ.D/ŒV� D
Z T

0

Z
†

@ıue
@n

p d� dt D
Z T

0

Z
�

�
@ıue
@n

p � ıue @p
@n

�
d� dt: (3.4)

In complete analogy to above, we find again by integration by parts

0 D
Z T

0

Z
D

.@t ıui ��ıui /p C .@tp C�p/ıui dx dt

D
Z T

0

Z
�

�
ıui

@p

@n
� @ıui

@n
p

�
d� dt:

Due to the jump condition of ıu at � , we thus conclude

0 D
Z T

0

Z
�

�
ıue

@p

@n
C
�

hV;ni � @ıue
@n

�
p

�
d� dt;

cf. (3.3). Inserting this equation into (3.4) yields finally (3.1). ut
In case of the shape optimization problem (2.7) with elliptic state equation (2.5)

and (2.6), we obtain the following shape gradient. Here, the underlying operator of
the elliptic state equation is self adjoint. Thus, the adjoint state equation involves the
same operator as the primal state equation.

Theorem 3.2. For an arbitrary boundary perturbation field V 2 C2.�/, the shape
gradient to the cost functional (2.7) with elliptic state equation (2.5) and (2.6) reads
as

ıJ.D/ŒV� D �
Z
�

hV;nip d�; (3.5)

where p denotes the adjoint state which satisfies the adjoint state equation

�p D 0 in �; p D @u

@n
� h on †: (3.6)

Proof. The proof uses the same arguments as the proof of Theorem 3.1. For an
arbitrary boundary perturbation field V 2 C2.�/, we find the directional derivative
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ıJ.D/ŒV� D
Z
†

�
@u

@n
� h

�
@ıu

@n
d�

with ıu D ıuŒV� satisfying the coupled boundary value problem (cf. [21])

�ıue D 0 in � nD;
�ıui D 0 in D;

ıue D 0 on †;

ıue D ıui ;
@ıue
@n

D @ıui
@n

C hV;ni on �:

(3.7)

Integration by parts gives in view of (3.6) and (3.7)

0 D
Z
�nD

�pıue ��ıuep dx D
Z
†[�

�
ıue

@p

@n
� @ıue

@n
p

�
d�

and, since ıue D 0 on †, thus

ıJ.D/ŒV� D
Z
†

@ıue
@n

p d� D
Z
�

�
@ıue
@n

p � ıue
@p

@n

�
d�: (3.8)

Using next integration by parts on the domainD, we likewise conclude

0 D
Z
D

�pıui ��ıuip dx D
Z
�

�
ıui

@p

@n
� @ıui

@n
p

�
d�:

The jump condition of ıu at � (cf. (3.7)) implies

0 D
Z
�

�
ıue

@p

@n
C
�

hV;ni � @ıue
@n

�
p

�
d�;

which, together with (3.8), shows finally (3.5). ut
With the help of the Hadamard representations (3.1) and (3.5) of the shape

gradients, we are able to develop efficient gradient based algorithms for the
minimization of the cost functionals (2.4) and (2.7), respectively.

4 Discretization of the Free Boundary

In order to solve the shape optimization problems under consideration we seek a
stationary pointD?, being C2-smooth, which satisfies

ıJ.D?/ŒV� D 0 for all V 2 C2.�/: (4.1)
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This is called the necessary optimality condition of the shape optimization problem
J.D/ ! inf. For related sufficient optimality conditions, we refer the reader to
[9, 13] and the references therein. Nevertheless, we emphasize that, in the current
context of severely ill-posed problems, sufficient optimality conditions cannot hold
since the adjoint state vanishes in the optimal domainD?.

4.1 Nonlinear Ritz-Galerkin Approximation for the Shape

From now on we restrict ourselves to the practically most important case of n D 3

and consider the minimization of the cost functional over heat sources that are
topologically equivalent to the unit sphere S2. Then, we can represent the heat source
D � R

3 by a parameterization 	 D .�1; �2; �3/ W S2 ! � , which is one-to-one,
preserves orientation, and the Jacobian matrix 	 0.Ox/ is invertible for all Ox 2 O� . By
restricting the parameterization to a finite dimensional ansatz space VN , we arrive at
the nonlinear Ritz-Galerkin scheme for (4.1):

Seek 	?N 2 VN such that ıJ.	?N /ŒVN � D 0 for all VN 2 VN : (4.2)

For the numerical solution of the nonlinear variational problem (4.2), we apply
the quasi-Newton method, updated by the inverse BFGS-rule without damping. A
second order approximation is used for performing the line search update if the
descent does not satisfy the Armijo rule. Since we use a gradient based iterative
method, regularization is not necessary provided that we stop the iteration early
enough. For all the details and a survey on available optimization algorithms, we
refer to [3, 10–12] and the references therein.

Following [17, 18], we can distinguish two types of parameterizations. The first
type is of the form

	.Ox/ D r.Ox/ � Ox; r 2 C2.S2/ (4.3)

and is able to represent any given star-shaped source with center in 0. The
discretization of � is based on the ansatz

rN .Ox/ D
NX
nD0

nX
mD�n

amn Y
m
n .Ox/; Ox 2 S

2;

where amn 2 R are the design parameters and Y mn 2 C1.S2/ denote the spherical
harmonic functions of degree n and order m. This leads to the finite dimensional
parameterization

	N .Ox/ D rN .Ox/ � Ox; Ox 2 S
2: (4.4)
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The advantage of this approach is that the identification of the function rN , given by
the design parameters, and the heat source is one-to-one. In particular, the distance
between two domains can be simply measured via the `2-norm of the difference of
the associated design parameters. This approach is used in our numerical example.

The second type, also referred to as flexible shape representation, allows a
more general boundary representation than the somehow restrictive approach (4.3).
Namely, we choose

	N .Ox/ D
NX
nD0

nX
mD�n

amn Y
m
n .Ox/; Ox 2 S

2; (4.5)

where ai 2 R
3 are vector valued design parameters. The ansatz (4.5) does not

impose any restriction to the topology of the domain except for its genus. However,
we lose the one-to-one correspondence between the shape of the heat source and the
design parameters. Thus, a regularization of the shape function (see e.g. [13,15,17])
or a suitable remeshing algorithm (see e.g. [18]) needs to be applied.

4.2 Surface Mesh Generation

We shall assume that the boundary manifold � � R
3 is given as a parametric

surface consisting of smooth patches. More precisely, let � WD Œ0; 1�2 denote the
unit square. The manifold � is partitioned into a finite number of patches

� D
M[
iD1

�i ; �i D 
i .�/; i D 1; 2; : : : ;M; (4.6)

where each 
i W � ! �i defines a diffeomorphism of � onto �i . The intersection
�i \ �i 0 , i 6D i 0, of two patches �i and �i 0 is assumed to be either ;, or a common
edge, or a common vertex. A mesh of the boundary � is then obtained by mapping
a mesh of � to � via a parametrization.

The construction of the parametric representation of the moving boundary �
should be presented in more detail. The surface of the cube Œ�0:5; 0:5�3 consists
of six patches. Each point x 2 @.Œ�0:5; 0:5�3/ can be lifted onto the boundary � via
the operation

y.x/ D 	

�
x

kxk
�

2 �: (4.7)

In this manner, the boundary � is subdivided into M D 6 patches. The parametric
representations 
i W � ! �i can be derived easily from (4.7). Finally, we construct
a mesh of � , required for the boundary element method, by mapping a triangular
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γ−→

Fig. 2 Parametric representation of � with triangular mesh on level 4

or quadrangular mesh of the unit cube via the sphere to � . We refer to Fig. 2 for an
illustration of the proposed parametric representation and mesh generation.

We shall finally specify how to distinguish between “nice” and “bad”
parametrizations. A “nice” parametrization maps orthonormal tangents of the unit
cube onto orthogonal tangents of length � j�j=6 with respect to the boundary � .
This means that the first fundamental tensor of differential geometry, given by

Si .s/ D �h
i;j .s/;
i;k.s/ij;kD1;2; s D Œs1; s2�
T 2 �;

satisfies Si � j�j=6 � I. Hence, one can employ the shape functional

M.	/ D
6X
iD1

Z
�

�����
"

h
i;1.s/;
i;1.s/i � j�j
6

h
i;1.s/;
i;2.s/i
h
i;2.s/;
i;1.s/i h
i;2.s/;
i;2.s/i � j�j

6

#�����
2

F

ds

for regularizing the shape functional or as the base of a remeshing procedure.

5 Numerical Method to Compute the State and Its Adjoint

We shall discuss the numerical solution of the state equations and their adjoints by
boundary element methods. With this technique only the boundaries of � an D
need to be discretized, which avoids the complicated triangulation of the domain�
with the varying source D. In particular, in case of the parabolic state equation, we
immediately arrive at a space-time formulation. This is very advantageous since the
solution’s complete temporal history which enters the adjoint state, being reverse in
time, is available.
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5.1 Solving the Heat Equation

The thermal layer operators are given by

.Vg/.x; t/ D
Z t

0

Z
†

G.kx � yk; t � �/g.y; �/ d�y d�;

.Kg/.x; t/ D
Z t

0

Z
†

@G

@ny
.kx � yk; t � �/g.y; �/ d�y d�;

.K?g/.x; t/ D
Z t

0

Z
†

@G

@nx
.kx � yk; t � �/g.y; �/ d�y d�;

.Wg/.x; t/ D � @

@nx

Z t

0

Z
†

@G

@ny
.kx � yk; t � �/g.y; �/ d�y d�;

(5.1)

where .x; t/ 2 † � Œ0; T � and G. � ; � / is the heat kernel, given by

G.r; t/ D 1

.4t/3=2
exp

�
� r

2

4t

�
:

With these boundary integral operators at hand, Green’s representation formulae for
the interior heat equation with homogeneous initial conditions can be written as

�
1

2
C K

�
u � V @u

@n
D N and

�
1

2
C K?

�
@u

@n
C Wu D �@N

@n
; (5.2)

where N denotes the thermal Newton potential of the inhomogeneity. It is nonzero
and, in accordance with [17], given by

N .x; t/ WD
Z t

0

Z
D

G.kx � yk; t � �/ dy d� D
Z
�

@H

@ny
.kx � yk; t/ d�y;

where the kernelH. � ; � / is defined as

H.r; t/ D 2
p
t

.4/3=2

"
p
 erfc

�
r

2
p
t

� 
r

2
p
t

C
p
t

r

!
C exp

�
� r

2

4t

�#
: (5.3)

Since the temperature satisfies u D 0 at †, the unknown heat flux @u=@n at † can
be derived from the boundary integral equations (5.2). Thus

� V @u

@n
D N and

�
1

2
C K?

�
@u

@n
D �@N

@n
: (5.4)
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We will employ the second boundary integral equation for our shape reconstruction
scheme. Nevertheless, the first boundary integral equation will be used to compute
synthetic data in order to avoid an inverse crime.

For the computation of the solution of the state adjoint equation, we first perform
the change of variables t 7! T � t to obtain it in a more familiar form:

@t Qp �� Qp D 0 in � � .0; T /;
Qp D f on † � .0; T /;
Qp D 0 on � � f0g:

(5.5)

Here, Qp.x; t/ D p.x; T � t/ and

f .x; t/ D @u

@n
.x; T � t/ � h.x; T � t/:

It is convenient to use the indirect method where the solution is written as a double
layer potential

Qp.x; t/ D
Z t

0

Z
†

@G

@ny
.kx � yk; t � �/g.y; �/ d�y d�; x 2 �; (5.6)

where g is an unknown density on †. By letting x approach the boundary surface
from the inside of � and using the usual jump conditions, we arrive at

�
�1
2

C K
�
g D f: (5.7)

Once g has been determined, the double layer potential (5.6) must be evaluated on
� to obtain the quantity needed in the evaluation of the shape gradient in (3.1).

The approximate solution of the boundary integral equations (5.4) and (5.7) by
traditional discretization schemes poses serious difficulties since the total number
of unknowns is the product of the number of spatial unknowns Ns and temporal
unknowns Nt which becomes extremely large. Therefore, we proposed in [17, 18]
the application of the multipole-based space-time boundary element method which
has been developed in [33,34]. We then arrive at an algorithm which computes both,
the state and its adjoint, in a complexity that scales essentially linearly with the total
number of unknownsNsNt . We refer the reader to [17] for further details concerning
the particular realization.
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5.2 Solving the Poisson Equation

In case of the Laplacian, the fundamental solution is G.r/ D 1=.4r/. Hence, the
standard boundary integral operators (cf. (5.1)) become

.Vg/.x/ D
Z
†

G.kx � yk/g.y/ d�y

.Kg/.x/ D
Z
†

@G

@ny
.kx � yk/g.y/ d�y

.K?g/.x/ D
Z
†

@G

@nx
.kx � yk/g.y/ d�y

.Wg/.x/ D � @

@nx

Z
†

@G

@ny
.kx � yk/g.y/ d�y

9>>>>>>>>>>>=
>>>>>>>>>>>;

x 2 †:

The Dirichlet and Neumann data at † are again coupled by the boundary integral
equations (5.2), which, in view of the homogeneous boundary conditions, results in
the boundary integral equations (5.4). The Newton potential involved there can be
computed as follows:

Lemma 5.1. For x 2 R
3 nD, the Newton potential admits the representation

N .x/ WD
Z
D

G.kx � yk/ dy D � 1

8

Z
�

hx � y;nyi
kx � yk d�y:

Proof. We shall write the Laplace kernel as the divergence of a radially symmetric
vector field. That is, we find a scalar function F. � / such that

divy

h
F.kx � yk/.x � y/

i
D G.kx � yk/:

Simple differentiation shows that F. � / satisfies the differential equation in r

rF0.r/C 3F.r/ D �G.r/; r > 0:

A particular solution of this ordinary differential equation is F.r/ D �1=.8r/.
Thus, by construction, the Gauss theorem implies the assertion:

Z
D

G.kx � yk/ dx D
Z
�

F.kx � yk/hx � y;nyi d�y:

ut
We will employ the first boundary integral equation in (5.4) for the shape

reconstruction scheme, since it is more accurate when applying a Galerkin method.
Moreover, for the adjoint state, it is then more efficient to use the indirect method
for the single layer potential, i.e.,
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p.x/ D
Z
†

G.kx � yk/g.y/ d�y; x 2 �: (5.8)

Here, the density g is the solution of the boundary integral equation Vg D f with
the right hand f .x/ WD .@u=@n/.x/� h.x/.

As proposed in several earlier papers on shape optimization with elliptic state
equation, see e.g. [5–8], the present boundary integral equations can be solved
efficiently by the wavelet Galerkin method which has been developed in [1, 16].
Then, the computational complexity scales linearly in the number of boundary
elements.

6 Numerical Results

We shall illustrate our algorithms by some numerical experiments. To that end, we
choose the unit ball as computational domain�. The given heat source D is acorn-
shaped as shown in Fig. 3. Since it is star-shaped, we employ the ansatz (4.4) with
N D 10, that are 100 design parameters.

We apply first the reconstruction algorithm for the time interval Œ0; T � with
T D 0:1 and T D 1:0 and a noise level of 1 %. It turns out that the reconstruction for
the short time interval (see Fig. 4) is quite similar but somewhat worse than for the
long time interval (see Fig. 5). This has nevertheless already been observed in [17].

The reconstruction for the stationary situation is seen in Fig. 6. Its quality is
clearly inferior to the time-dependent problem. Moreover, we have observed that
the reconstruction is much more robust with respect to noise if the time dependent
heat flux is used in the tracking functional rather than the stationary heat flux.

Fig. 3 The domain � with boundary † and the acorn-shaped source D with boundary �
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Fig. 4 The reconstruction of the heat source D in case of the heat equation and T D 0:1

Fig. 5 The reconstruction of the heat source D in case of the heat equation and T D 1:0

Fig. 6 The reconstruction of the heat source D in case of the stationary problem
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formulated within a phase field approach. First-order conditions are stated and the
relation of the necessary conditions to classical shape derivatives are discussed.
An efficient numerical method based on an H1–gradient projection method is
introduced and finally several numerical results demonstrate the applicability of the
approach.
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sensitivity analysis • Gradient projection method
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1 Introduction

The efficient use of material and related to that the optimization of shapes and
topology is of high importance for the performance of structures. Many different
methods have been introduced to solve shape and topology optimization problems
and we refer to Bendsoe, Sigmund [2], Sokolowski, Zolesio [14] and Allaire, Jouve,
Toader [1] for details. In this paper we analyze a multi-phase field approach for
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shape and topology optimization problems. This approach is related to perimeter
penalizing methods. However, instead of the perimeter the Ginzburg-Landau energy

E".'/ WD
Z
�

�
"
2
jr'j2 C 1

"
‰.'/

�
; " > 0; (1.1)

is added to the objective functional. In (1.1) the set � is a given design domain, the
function ' which takes values in R

N is a phase field vector,‰ is a potential function
with absolute minima which describe the different materials and the void and " > 0
is a small parameter related to the interface thickness. It can be shown that (1.1)
converges in the sense of �–limits to the perimeter functional, see Modica [12]. The
phase field method has been introduced in topology optimization by Bourdin and
Chambolle [7] and was subsequently used by Burger, Stainko [8], Wang, Zhou [16],
Takezawa, Nishiwaki, Kitamura [15], Dedé, Borden, Hughes [9], Blank et al [3, 4]
and Penzler, Rumpf, Wirth [13]. However, so far a rigorous derivation of first order
conditions and an analysis of these conditions in the sharp interface limit " ! 0was
missing. In this paper we not only discuss recent progress in this direction but also
introduce and analyze a new efficient method to solve the constrained minimization
problem.

Although in principle the phase field approach can as well be used for other
shape and topology optimization problems we restrict ourselves to situations where
we seek a domain�M and a displacement u such that

Z
�M
f � u C

Z
@�M

g � u (1.2)

or an L2–error to a target displacement

�Z
�M

cju � u�j2
� 1

2

(1.3)

is minimized subject to the equations of linear elasticity. Here f and g are volume
and surface forces and c 	 0 is a given weight function on �. The optimization
problem (1.2) is a mean compliance minimization problem and (1.3) is an example
of a compliant mechanism problem, see [1, 2] for details. In this contribution we
will be brief and refer to [3] and to the forthcoming article [6] for details.

2 Setting of the Problem

In this section we introduce how structural topology optimization problems can be
formulated within the phase field approach.

The goal in multi-material shape and topology optimization is to partition a given
bounded Lipschitz design domain � � R

d into regions occupied by either void or
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byN �1 different materials such that a given cost functional is minimized subject to
given constraints. Within the phase field approach we describe the different material
distributions with the help of a phase field vector ' WD .'i /NiD1, where 'N describes
the fraction of void and '1; : : : ; 'N�1 describe the fractions of the N � 1 different
materials. The phase field approach allows for a certain mixing between materials
and between materials and void but the mixing will be restricted to a small interfacial
region. In order to ensure that the phase field vector ' describes fractions we require
that ' lies pointwise in the Gibbs simplex G WD fv 2 R

N j vi 	 0 ;
PN

iD1 vi D 1g:
In this work we prescribe the total spatial amount of the material fractions

through
R
�

� ' D m D .mi/NiD1, where it is assumed that
PN

iD1 mi D 1 with
mi 2 .0; 1/, i D 1; : : : ; N , and where

R
�

� ' denotes the mean value on �. We
remark that in principal inequality constraints for

R
�

� ' can also be dealt with.
The potential ‰ W RN ! R [ f1g is assumed to have global minima at the unit

vectors ei , i D 1; : : : ; N , which correspond to the different materials and to the
void.

In (1.1) we choose an obstacle potential ‰.'/ D ‰0.'/ C IG .'/ where ‰0
is smooth and IG is the indicator function of the Gibbs-simplex G . Introducing
G WD fv 2 H1.�;RN / j v.x/ 2 G a.e. in �g and Gm WD fv 2 G j R

�
� v D mg we

obtain

OE".'/ WD
Z
�

�
"

2
jr'j2 C 1

"
‰0.'/

�
(2.1)

and on G we have E".'/ D OE".'/.
We describe the elastic deformation with the help of the displacement vector

u W � ! R
d and with the strain tensor E D E.u/ D 1

2
.ru C .ru/T /. The boundary

@� is divided into a Dirichlet part �D , a non-homogeneous Neumann part �g and
a homogeneous Neumann part �0. Furthermore, C is the elasticity tensor, f 2
L2.�;Rd / is the volume force and g 2 L2.�g;Rd / are boundary forces.

The equations of linear elasticity which are the constraint in our optimization
problem are given by

8̂
<̂
ˆ̂:

�r � ŒC.'/E.u/� D �
1 � 'N �f in �;

u D 0 on �D;
ŒC.'/E.u/� n D g on �g;
ŒC.'/E.u/� n D 0 on �0;

(2.2)

where n is the outer unit normal to @�. The elasticity tensor C is assumed to depend
smoothly on ', C has to fulfill the usual symmetry condition of linear elasticity
and has to be positive definite on symmetric tensors. More information and detailed
literature on the theory of elasticity can be found in [3]. For the phase field approach
the void is approximated by a very soft material with an elasticity tensor C

N ."/

depending on the interface thickness, e.g. CN D "2 QCN with a fixed tensor QCN .
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Discussions on how to interpolate the elasticity tensors Ci , for i D 1; : : : ; N , given
in the pure materials onto the interface can also be found in Sect. 5 and in [2, 3].
Introducing the notation hA;BiC WD R

�A W CB, where for any matricesA andB the

product is given as A W B WD Pd
i;jD1AijBij, the elastic boundary value problem (2.2)

can be written in the weak formulation:
Given .f ;g;'/ 2 L2.�;Rd /�L2.�g;Rd /�L1.�;RN / find u 2 H1

D.�;R
d /

such that

hE.u/; E.�/iC.'/ D
Z
�

�
1 � 'N

�
f ��C

Z
�g

g � � DW F.�;'/; (2.3)

which has to hold for all � 2 H1
D.�;R

d / WD f� 2 H1.�;Rd / j � D 0 on �Dg.
The well-posedness of (2.3) can be shown by using the Lax-Milgram lemma and
Korn’s inequality, for details see [3].
Summarized, the structural optimization problem can be formulated as: Given
.f ;g;u�; c/ 2 L2.�;Rd / � L2.�g;Rd / � L2.�;Rd / � L1.�/ and measurable
sets Si 
 �, i 2 f0; 1g, with S0 \ S1 D ;, we want to solve

.P"/

8̂
<̂
ˆ̂:

min J ".u;'/ WD ˛F.u;'/C ˇJ0.u;'/C � OE".'/;

over .u;'/ 2 H1
D.�;R

d / �H1.�;RN /;

s.t. (2.3) is fulfilled and ' 2 Gm \U c ;

where ˛; ˇ 	 0; �; " > 0,m 2 .0; 1/N with
PN

iD1 mi D 1,

U c WD f' 2 H1.�;RN / j 'N D 0 a.e. on S0 and 'N D 1 a.e. on S1g

and the functional for the compliant mechanism is given by

J0.u;'/ WD
�Z

�

�
1 � 'N

�
c ju � u�j2

� 1
2

; (2.4)

with a given non-negative weighting factor c 2 L1.�/ fulfilling jsupp cj > 0.
The existence of a minimizer to .P"/ is shown by classical techniques of the

calculus of variations in [3].

Remark 2.1. From the applicational point of view it might be desirable to fix
material or void in some regions of the design domain, so the condition ' 2 U c

makes sense. Moreover by choosing S0 such that jS0 \ supp cj ¤ 0 we can ensure
that it is not possible to choose only void on the support of c, i.e. in (2.4) we ensure
jsupp .1 � 'N /\ supp cj > 0.
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3 Optimality System

In order to derive first-order necessary optimality conditions for the optimization
problem .P"/, it is essential to show the differentiability of the control-to-state
operator, which is well-defined because of the well-posedness of (2.3).

Theorem 3.1. The control-to-state operator S W L1.�;RN / ! H1
D.�;R

d /,
defined by S.'/ WD u, where u solves (2.3), is Fréchet differentiable. Its directional
derivative at ' 2 L1.�;RN / in the direction h 2 L1.�;RN / is given by
S 0.'/h D u�, where u� denotes the unique solution of the problem

hE.u�/; E.�/iC.'/ D �hE.u/; E.�/iC0.'/h �
Z
�

hNf � �; 8� 2 H1
D.�;R

d /:

(3.1)

The expression (3.1) formally can be derived by differentiating the implicit state
equation hE.S.'//; E.�/iC.'/ D F.�;'/ with respect to ' 2 L1.�;RN /. The
proof of Theorem 3.1 can be found in [3].

With Theorem 3.1 at hand, we can now derive first order conditions. Indeed, it
follows from the chain rule that the reduced cost functional j.'/ WD J ".S.'/;'/

is Fréchet differentiable at every ' 2 H1.�;RN / \ L1.�;RN / with the Fréchet
derivative j 0.'/h D J "0u.u;'/u

�CJ "0'.u;'/h. Here we have to assume that J0 ¤ 0

in case of ˇ ¤ 0. Owing to the convexity of Gm \U c , we have for every minimizer
' 2 Gm \ U c of j in Gm \ U c that j 0.'/. Q' � '/ 	 0;8 Q' 2 Gm \ U c . We can
now state the complete optimality system, see [3] for a proof.

Theorem 3.2. Let ' 2 Gm \ U c denote a minimizer of the problem .P"/ and
S.'/ D u 2 H1

D.�;R
d /, p 2 H1

D.�;R
d / are the corresponding state and adjoint

variables, respectively. Then the functions .u;';p/ 2 H1
D.�;R

d / � .Gm \ U c/ �
H1
D.�;R

d / fulfill the following optimality system consisting of the state equation

(SE) hE.u/; E.�1/iC.'/ D F.�1;'/; 8�1 2 H1
D.�;R

d /;

the adjoint equation

(AE)

8̂
<̂
ˆ̂:

hE.p/; E.�2/iC.'/
D ˛F.�2;'/C ˇJ�10 .u;'/

R
�
c.1 � 'N /.u � u�/ ��2;

8�2 2 H1
D.�;R

d /;

and the gradient inequality

(GI)

8̂
ˆ̂̂<
ˆ̂̂̂
:

�"
R
� r' W r. Q' � '/C �

"

R
� ‰
0
0.'/ � . Q' � '/

�ˇ

2
J�10 .u;'/

R
�
c. Q'N � 'N /ju � u�j2

� R
�
. Q'N � 'N /f � .˛u C p/� hE.p/; E.u/iC0.'/.Q'�'/ 	 0;

8 Q' 2 Gm \U c:
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4 Sharp Interface Asymptotics

In this section we present the sharp interface limit of the optimality system given in
Theorem 3.2; for a detailed derivation of the sharp interface limit using the method
of formally matched asymptotic expansions we refer to [3]. We now consider a
more concrete form of the '-dependent elasticity tensor. We choose the elasticity
tensor starting with constant elasticity tensors C

i ; i 2 f1; : : : ; N � 1g which are
defined in the pure materials, i.e. when ' D ei , and model the void as a very
soft material. As mentioned, a possible choice of the elasticity tensor in the void
is C

N D C
N ."/ D "2 QCN where QCN is a fixed elasticity tensor. In order to model

the elastic properties also in the interfacial region the elasticity tensor is assumed to

be a tensor valued function C.'/ WD �
Cijkl.'/

�d
i;j;k;lD1 which interpolate between

C
1; : : : ;CN�1;CN ."/. Furthermore we assume that the weighting factor c in the

compliant mechanism functional J0 is a smooth function.
The asymptotic analysis gives that the phase field functions converge as " tends

to zero to a limit function ' which only takes values in fe1; : : : ; eN g. This implies
that the domain � is partitioned into N regions �i ; i 2 f1; : : : ; N g, which are
separated by interfaces �ij; i < j . We choose a unit normal at �ij such that for
ı > 0 small we have x C ı� 2 �j and x � ı� 2 �i . Moreover we define Œw�ji WD
lim
ı&0

.w.x C ı�/ � w.x � ı�//. We obtain in regions occupied by material, i.e. for

i D 1; : : : ; N � 1, that the state and the adjoint equation, respectively, have to hold

�r � �CiE.u/ D f and � r � �CiE.p/ D ˛f C ˇJ�10 .u;'/.u � u�/c :

In case of material-material interfaces, i.e. �ij, i; j 2 f1; : : : ; N � 1g we have
continuity in the variables u, p and continuity for the normal stresses CE.u/�
and CE.p/�, i.e. for i; j 2 f1; : : : ; N � 1g and w 2 fu;pg we have Œw�ji D
0; ŒCE.w/��ji D 0 on �ij. On �iN we get CiEi .u/� D C

iEi .p/� D 0. Moreover
we obtain for all i; j ¤ N

0 D ��ij� � ŒCE.u/ W E.p/�ji C ŒCE.u/� � .rp/��ji
C ŒCE.p/� � .ru/��ji C 	i � 	j on �ij (4.1)

where � is the mean curvature of �ij and � 2 R
N are Lagrange multipliers. We

remark that the terms involving u and p generalize the Eshelby traction known
from materials science, see [3]. In addition for all i ¤ N it holds

0 D ��iN � C C
iEi .u/ W Ei .p/� ˇ

2
J�10 .u;'/c ju � u�j2

� f � .˛u C p/C 	i � 	N on �iN :
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Above the Lagrange multipliers 	1; : : : ; 	N sum up to zero and they are related
to volume constraints

R
�i

� 1 D mi which are obtained from the integral constraintsR
�

� ' D m in the sharp interface limit.
In case that void and two or more materials appear junction points emerge,

where e.g. void and two materials meet, see e.g. Fig. 7, and it might be desirable
in applications to influence the angles at the junctions. By an appropriate choice of
the potential‰ the angles at the junctions can be prescribed, see [3] for details.

Remark 4.1. In the case of one material we recover the classical first order
conditions for the sharp interface structural optimization problem, see e.g. Allaire,
Jouve, Toader [1]. The conditions we derived above generalize the first order
conditions in [1] to the multi-phase case.

5 Numerical Methods

5.1 Choice of the Potential

In the previous section we studied the Ginzburg-Landau energy with an obstacle
potential which leads to an optimization problem with inequality constraints. Using
instead a smooth potential would lead to equality constraints only which are usually
easier to handle. However, there is a subtle problem, namely, we can not prescribe
the total spatial amount of the material by

R
�

� ' D m since the identification of pure
i -th-material with 'i D 1 does not hold any longer but the value attained in phase
i depends on ". Only in the limit for " ! 0 there is a pure i -th phase at x 2 � if
'i.x/ D 1. In Table 1 the shift of one phase is presented for a numerical experiment.
The listed values are the values in areas where the values stay nearly constant,
reflecting a pure phase. Therefore, the i -th material does not have approximately
volume mi by prescribing

R
�

� 'i D mi . Consequently one has to use the obstacle

potential or the spatial amount has to be modelled in a different way.

5.2 Choice of the Stiffness Tensor on the Interface

The choice of the stiffness tensor on the interface also has a quite severe
influence on the solution. A rough explanation in the presence of one material
is the following: The stiffest structure has material everywhere. The mass

Table 1 Values for the phase identification using the double well potential

" 0.02 0.01 0.005 0.0025 0.001

'1 
1.33942 
1.21378 
1.13630 
1.11450 
1.05818
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constraints prohibit this. However, since it is possible to choose 'i 2 .0; 1/

on the interface, it can happen that it is best to have a large mushy region
with a mixture of void and material, i.e. a broad interface, which leads to
a stiffer structure. Therefore the stiffness tensor on the interface should drop
down fast but smoothly from the higher stiffness to the lower stiffness. We
use an quadratic interpolation of the elasticity tensors C

1; : : : ;CN and set
the directional derivative in direction from the lower to the higher stiffness
at the material with the lower stiffness to zero. One possibility for N -phases
is C.'/ D P

i;j C
maxfi;j g'i'j

where the tensors are ordered from high to low stiffness. A similar kind of
interpolation is used in the SIMP approach for one material and void [2]. The
choice of the elasticity tensor on the interface influences also the speed of the
numerical algorithm.

5.3 Projected H1-Gradient Method

In this section we focus on the mean compliance problem, i.e. ˇ D 0 and we use
the reduced problem formulation

min
'2Gm

j.'/ WD J ".S.'/;'/

where Gm D f� 2 H1 j R
�

� � D m; �i 	 0;
P
�i � 1 a.e. in �g is convex and

closed and j W H1.�;RN /\L1.�;RN / ! R is Fréchet-differentiable, where the
directional derivatives are given by:

j 0.'/� D �".r';r�/C �

"
.‰00.'/;�/ � ˛.C0.'/.�/E.u/; E.u// : (5.1)

The first-order condition of a general minimization problem min j.'/ s.t. ' 2 U

where U is convex and closed can be rewritten as a fixed point equation: For any
	 > 0 the solution is given as ' D PH.' � 	rHj.'// where PH is the projection
onto the convex feasible set U with respect to the scalar product in H , see [10].
Based on this projected gradient methods have been developed. We propose to use
the following new variant:

Algorithm 5.1. Having a current approximation 'k and given a positive 	 perform
a line-search along the descent direction

vk WD PH.'k � 	rHj.'k//� 'k
to obtain the step length ˇk . Then set 'kC1 WD 'k C ˇkvk .

Stop the iteration if kvkkH < tol.
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This is not the more known search along the projected gradient path 'kC1 WD
PH.'k � ˇkrHj.'k// which requires in each line-search step an (expensive)
projection. We can prove a global convergence result [6] which can be found for
convex functions in [10].

Theorem 5.2. Let H be a Hilbert space, U � H be convex, closed and non-empty
and j W U ! R be continuously Fréchet differentiable. Then, every accumulation
point '� of f'kg generated by Algorithm 5.1 is first order critical if the Armijo step
length rule is used.

The reduced cost functional j is differentiable inH1.�;RN /\L1.�;RN /, which
is not a Hilbert-space. Nevertheless, we choose the Hilbert-space H D f� 2
H1.�;RN / j R

�

� � D 0g with the scalar product .�;�/H D .r�;r�/. The gradient

does not exist in H1. However, since

1
2
k.� � 'C 	rHj.'//k2H D 1

2
k� � 'k2H C 	j 0.'/.� � '/C c (5.2)

for some constant c, we do not need the H -gradient but only the directional
derivatives for the projection. Hence, we define and use instead of the projection
PH the projection type operator PH where PH.'; 	/ is given by the solution of

min 1
2
k� � 'k2H C 	j 0.'/.� � '/ (5.3)

s. t.
R
�

� � D m;
PN

iD1 
i � 1; 
i 	 0 8 i D 1; : : : ; N :

The existence and uniqueness of a solution PH.'; 	/ of (5.3) can be shown in our
application, see [6]. Moreover, under some regularity conditions on j which are
fulfilled for our problem, we can show the same global convergence result as in
Theorem 5.2, see [6]. Numerically we solve the obstacle type problem (5.3) with a
primal-dual active set approach.

5.4 Scaling

In the following we address the choice of the parameter 	 in the algorithm. It turned
out the scaling of the employed norm is essential for efficiency and for iteration
numbers independent of the interface thickness, i.e. of ". One can motivate this by
the fact that the perimeter is approximated by the Ginzburg-Landau energy, which
roughly speaking entail "jjr'"jj2L2 � const: for the minimizer '". Hence we have
jj'"jjH D O.1=

p
"/ and jj'"jjp"H D O.1/. This is confirmed also numerically.

As a consequence we choose the
p
"H metric. Since Pp"H D PH this leads to the

use of a scaled H -gradient since rp"H j D 1
"
rHj , respectively this emphasizes

to use 	 D 1
"
. However, the iterates 'k fulfill jj'kjjH � jj'"jjH only when phases
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Fig. 1 Behaviour of 	 and
the phase distribution with
respect to the iterations

are separated and interfaces are present with thickness according to ". In the first
iterations this is in general not the case. Hence, it is more appropriate to adapt 	
during the iterations. As a first approach we used the following updating strategy:

Set 	0 D 0:01
"

and choose some 0 < Nc < 1,
in the following set 	k D 	k�1= Nc if ˛k�1 D 1 and 	k D 	k�1 Nc else.
The changes in 	 with respect to the iterations can be seen examplarily in Fig. 1,

where underneath the evolution of the phases can be seen. We remark that this is
no line search with respect to 	. In the following algorithm we outline one iteration
step and indicate with it the cost of the method.

Algorithm 5.3. Given 'k and a fixed � 2 .0; 1/
– Solve the elasticity equation (2.3) for uk D S.'k/ W � ! R

d ,
– Assemble the directional derivatives j 0.'k/� 8� 2 H \ L1,
– Update 	k ,
– solve the obstacle type problem (5.3) for the PH1.'k; 	k/ W � ! R

N ,
– Set vk WD PH1.'k; 	k/� 'k and stop if kvkkp"H < tol,
– Determine the Armijo-step length ˇk D �mk using back tracking

where in each iteration we have to solve the elasticity equation
for u D S.'k C ˇvk/ W � ! R

d ,
– Set 'kC1 WD 'k C ˇkvk .

5.5 Numerical Experiments

The numerical experiments which underline the above statements are for the
cantilever beam in two dimensions and with one material and void. The design
domain is � D .�1; 1/ � .0; 1/ and ˛ D 1. There is no volume force but a
boundary force g � .0;�250/T is acting on �g D .0:75; 1/ � f0g. The Dirichlet
part is �D D f�1g � .0; 1/. For the stiffness tensor of the material we take
C
1E D 2�E C 	.trE/I with Lamé constants � D 	 D 5;000. Moreover we use

the constant � D 0:5 and prescribe the masses by 50% material and 50% void.
Figure 2 displays the setting and the result for " D 0:03.
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Fig. 2 Cantileaver beam, geometry (left) and numerical result (right)

1e−12

1e−10

1e−08

1e−06

1e−04

1e−02

1e+00

1e+02

 0  2000  4000  6000

j(p
hi

i)−
j(p

hi
* )

i

eps = 0.060
eps = 0.050
eps = 0.045
eps = 0.042
eps = 0.040

Fig. 3 With and without scaling

All computations are done using the finite element toolbox FEniCS [11]. So far
we only use equidistant meshes. The elasticity equation is discretized with P1-finite
elements and the arising linear systems are solved directly. In the computations with
one material the problem setting is reduced to one phase field only by working
with ' WD '2 � '1. In Fig. 3 the upper five lines correspond to the results without
scaling the gradient and shows the approximated error in the cost functional with
respect to the iteration numbers. We clearly see a dependency on ". The lower
five lines correspond to the results with scaling and are nearly not distinguishable,
independent of " and lead to much better approximations for a lower number of
iteration. In Fig. 4 the influence of the choice of the linear versus the quadratic
interpolation of the stiffness tensor is depicted for " D 0:04.

In Table 2 we study the dependency on the mesh size h and compare the
approaches without scaled gradient and with linear interpolation of the elasticity
tensors (called old in the table) to the approach using the scaled gradient and the
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Fig. 4 Interpolated elasticity
tensor
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Table 2 Comparison of the previous and the new approach as well as with nested iteration for
"D 0:04

Old New Nested
h DOF CPU Iter. CPU Iter. CPU Iter.

2�4 561 12 min 9,956 5 s 112 4 s 85

2�5 2,145 2 h 25 min 14,590 1 min 408 7 s 52

2�6 8,385 20 h 40 min 16,936 4 min 321 14 s 24

2�7 33,153 3 day 20 h 28 min 19,416 21 min 276 2 min 33

2�8 131,841 23 day 15 h 0 min 18,891 3 h 1 min 270 25 min 63

Total 28 min

quadratic interpolated elasticity tensor (called new in the table). In the last column
we listed the result for the latter approach but using in addition nested iteration,
i.e. using the result of the previous h as initial data for the next and solving
with an decreasing tolerance tol. This leads to the expected speed up, here the
nested approach needs roughly 15 % of the CPU-time of the new approach. The
more severe speed up of the old approach is obtained by the new ansatz, which
leads to a reduction to 0.5 % of the corresponding CPU-time of the old approach.
Nevertheless, in any case the expected mesh independent number of iterations is
confirmed. We do not list but would like to mention that in the above example the
number of line search iterations stay also mesh independent and are between 1 and
3. The number of PDAS iterations are mildly mesh dependent but stay below 10
after the first few iterations.
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Initial data
ϕ0 (38.43,21.33,40.24) random data

Local Minima

j(ϕ∗) =19.4871 19.9138 18.5631

Fig. 5 Cantilever beam with two materials and void in 2d

Fig. 6 A long cantilever beam with low material fraction and a low interfacial energy penalization

Fig. 7 A cantilever beam with four phases

As expected we can obtain different local minima if we start with different initial
data as can be seen in Fig. 5 for a cantilever beam with two materials and void. The
first column shows the result where the initial data is a constant mixture of materials
and void, the second started with separated material distribution and the third with
random data. The last yields the lowest value of the cost functional.

The following three Figs. 6–8 illustrate some results for a long cantilever beam
with one material, for a case with three materials and void and an example for a
cantilever beam in 3d with one material.

5.6 Numerical Results for a Compliant Mechanism

In this section we present a compliant mechanism simulation, in particular we set
˛ D 0 in .P"/. The configuration we consider is depicted in Fig. 9, where zero



244 L. Blank et al.

Fig. 8 A cantilever beam in
three space dimensions

Fig. 9 Push configuration fixed

fixed fixed

fixed

g g

g

g

g

g

Dirichlet boundary conditions are posed on the left and right boundaries at the top
and bottom and horizontal forces are applied at sections along the left and right
boundaries.

In order to solve the gradient inequality (GI) in Theorem 3.2, we use here as a
first numerical approach a classical L2-gradient flow dynamic for the reduced cost
functional. The gradient flow yields the following parabolic variational inequality
for all Q' 2 Gm and all t > 0:

"

Z
�

@'

@t
. Q' � '/dx C �"

Z
�

r' W r. Q' � '/dx C �

"

Z
�

‰00.'/ � . Q' � '/dx

�1
2
ˇJ0.u;'/�1

Z
�

. Q'N � 'N / c ju � u�j2

�
Z
�

. Q'N � 'N /f � .˛u C p/ � hE.p/; E.u/iC0.'/.Q'�'/ 	 0: (5.4)

In addition, u and p have to solve the state equation (SE) and the adjoint equation
(AE), see Theorem 3.2. The constraints 'N D 0 on S0 and 'N D 1 on S1 can be
easily incorporated by imposing these conditions when a mesh point lies in S0 [
S1. We replace @'

@t
in (5.4) by a time discrete approximation which corresponds

to a pseudo time stepping approach. We then discretize the resulting inequality,
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Fig. 10 Push simulation with three phases (left) and deformed configuration with the outline of
the initial geometry (right)

Fig. 11 Displacement vector u, x-component (left), y component (right)

the state equation (SE) and the adjoint equation (AE) using standard finite element
approximations, see [3–5].

In the computation we present we take the weighting factor c D 2;000 in � WD
.�1; 1/ � .�1; 1/ and u� D 0. We set �D D f.�1; y/ [ .1; y/ 2 R

2 W y 2
Œ�1;�0:9� [ Œ0:9; 1�g and �g D �g�

[ �gC
with �g

˙
WD f.˙1; y/ 2 R

2 W y 2
Œ�0:8;�0:7�[ Œ�0:1; 0:1�[ Œ0:7; 0:8�g. We take g D .˙7; 0/T on �g

˙
and S1 D ;.

Since we wish to have material adjacent to the parts of the boundary that are fixed
and where the forces are applied we set S0 D f.x; y/ 2 R

2 W x 2 Œ�1;�0:9� [
Œ0:9; 1�; y 2 Œ�1;�0:9�[ Œ�0:8;�0:7�[ Œ�0:1; 0:1�[ Œ0:7; 0:8�[ Œ0:9; 1�g. We take
N D 3 and use an isotropic elasticity tensor C1 of the formC

1E D 2�1EC	1.trE/I
with 	1 D �1 D 10 and we choose C

2 D 1
2
C
1 and C

3 D "2C1 in the void. The
interfacial parameters we use are " D 1

18
and � D 0:2 and we set ˇ D 10. In

addition, we choose the massesm D .0:35; 0:15; 0:5/T .
In Fig. 10 we display the optimized configuration (left hand plot) and the

deformed optimal configuration together with the outline of the initial geometry
(right hand plot), here hard material is shown in red and soft material in green. In
Fig. 11 we display the displacement vector u.
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Part III
Adaptivity and Model Reduction



Introduction to Part III
Adaptivity and Model Reduction

Peter Benner and Rolf Rannacher

Despite all effort and progress in the numerical techniques to solve PDE-constrained
optimization and control problems, the cost for their solution is still substantially
higher than that for solving the associated forward problem for the PDE. In a
practical situation, the associated computational work and memory requirement may
still be too high to be acceptable, e.g., in an engineering design process. Therefore,
further techniques are needed to reduce the computational cost.

In the section “Adaptivity and Model Reduction” of this book, two different
techniques are discussed for reducing the complexity of solving PDE-constrained
optimization problems numerically. One possibility is to use tailored discretizations,
e.g., finite element (FE) Galerkin methods, that adapt the mesh size locally
according to the optimization goal. This usually leads to meshes different from a
possibly optimal, adapted finite element mesh used for solving the forward problem
alone. High accuracy of the PDE solution may not be necessary in the same regions
as needed for an accurate computation of the cost functional of the optimization
problem and the associated (sub)optimal control. Also, a changing control input
during an optimization algorithm leads to different PDE solutions that may require
different locally refined meshes, necessitating the adaptation of the mesh during the
optimization procedure. Therefore, mesh adaptivity should be based on error bounds
taking this goal-orientation into account. A further reduction of the computational
cost may be achieved by adaptive stopping criteria providing a proper balancing
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with the discretization error for the various outer and inner algebraic iterations in
solving the discretized optimization problems.

A different approach for reducing the complexity of solving PDE-constrained
optimization problems consists in model order reduction, i.e., the application of
mathematical methods for automatically reducing the state-space dimension of the
control problem while preserving the accuracy in the map from the input function
or design parameters to the optimized quantity-of-interest. Like in adaptive FE
methods, reduced-order models generated to accelerate the simulation of a PDE may
not be sufficient in the optimization context: in an iterative optimization algorithm,
the control function changes from step to step, and this variation of input may not
be covered by a snapshot-based model reduction method like proper orthogonal
decomposition (POD) that is based on a pre-defined training input. On the other
hand, re-computing a reduced-order model in each optimization step may become
too expensive. Thus, the construction of the reduced-order model should reflect the
optimization goal.

The section “Adaptivity and Model Reduction” consists of four papers, two
dealing with local mesh adaptation for optimal control problems and two are
concerned with model reduction techniques. In the survey paper “Model reduction
by adaptive discretization in optimal control” by Rannacher, an overview is given
of goal-oriented adaptive FE methods for PDE-constrained optimization problems.
For problems with singularities, a quasi-uniform mesh refinement is known to
result in a reduced order of convergence. In the survey “Graded meshes in
optimal control for elliptic partial differential equations” by Apel, Pfefferer and
Rösch, the strategy of local mesh grading, known to recover the full convergence
order for the forward problem, is discussed for elliptic optimal control problems.
Regarding model reduction, the paper “Model order reduction for PDE-constrained
optimization” by Benner, Sachs, and Volkwein provides a survey on approaches
based on reduced-order models for solving PDE-constrained optimization problems.
Due to the above-mentioned shortcomings of traditional model reduction methods
used in forward simulation, special model management strategies are required.
These either update the reduced-order model from a previous step or determine
when a new reduced-order model must be computed in an optimization loop.
Two successful strategies are discussed serving these purposes, adaptive POD
and trust-region POD. Moreover, the application of snapshot-free methods based
on system-theoretical considerations, having a wide validity range w.r.t. input
variations, to PDE-constrained optimization problems is also considered. The use
of trust-region POD is also the topic of “Adaptive trust-region POD methods in
PDE-constrained optimization” by Sachs, Schneider, and Schu. Here, this model
reduction strategy is extended to solving optimization problems subject to partial
integro-differential equations such as occurring in calibration problems for the
pricing of financial derivatives.



Model Reduction by Adaptive Discretization
in Optimal Control

Rolf Rannacher

Abstract This article gives a survey of recent developments in the economical
numerical solution of PDE-based optimal control problems by adaptive methods.
Systematic mesh adaptivity combined with adaptive stopping criteria for linear and
nonlinear algebraic iterations is one approach to reducing the computational cost to
an acceptable level. These various steps of adaptivity are driven by “goal-oriented”
a posteriori error estimates derived within the general framework of the DWR (Dual
Weighted Residual) method. The presented material is mainly based on results
obtained within the second funding period 2011–2013 of this subproject of the DFG
Priority Program 1253 “Optimization with Partial Differential Equations”. In this
sense it is the continuation of the article “A posteriori error estimation in PDE-
constrained optimization with pointwise inequality constraints” by R. Rannacher,
B. Vexler, and W. Wollner in “Constrained Optimization and Optimal Control for
Partial Differential Equations” (G. Leugering et al., eds), Birkhüser, Basel, 2012.

Keywords PDE-based optimization • Model reduction • Adaptive discretiza-
tion • A posteriori error estimation • Goal-oriented adaptivity • DWR method •
Adaptive stopping criteria

Mathematics Subject Classification (2010). Primary 35B37, 49J20, 49M05,
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1 Introduction

The use of adaptive techniques based on a posteriori error estimation is well
accepted in the context of finite element discretization of partial differential
equations. There are mainly two approaches in this context: error estimation with
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respect to natural norms, see Verfürth [81], Ainsworth and Oden [1], and Babuska
and Strouboulis [2] for surveys, and the “goal-oriented” approach going back to
Eriksson et al. [28] and Becker and Rannacher [9]; see also the surveys Becker and
Rannacher [11] and Bangerth and Rannacher [4]. In the last years both approaches
were extended to optimal control problems (OCPs) governed by partial differential
equations. In Gaevskaya et al. [29], Hoppe et al. [49], Li et al. [58], Liu and Yan [61],
and Liu [60] a posteriori error estimates are derived with respect to natural norms
for elliptic OCPs with distributed or Neumann control subject to box constraints on
the control variable. For an OCP with pointwise state constraints a posteriori error
estimates were derived in Hoppe and Kieweg [50].

The motivation of “goal-oriented” adaptivity is the fact that in many applications
the error in global norms does not provide useful bounds for the error in the quantity
of physical interest. This is the idea underlying the so-called “Dual Weighted
Residual (DWR) method” for a posteriori error control and mesh adaptation
developed in Becker and Rannacher [9, 11] and Bangerth and Rannacher [4]. This
general concept can directly be used in the special situation of OCPs, where the error
control functional is chosen as the given cost functional of the OCP; Kapp [53]. In
Becker and Vexler [12, 13] this approach has been extended to the estimation of the
discretization error with respect to an arbitrary functional – a so called “quantity
of interest” – depending on both the control and the state variable. This allows,
among other things, an efficient treatment of parameter identification and model
calibration problems. The extension of these results to nonstationary problems has
been developed in Meidner [65] and Meidner and Vexler [68], where separate error
estimators for temporal and spatial discretization errors are derived. These error
contributions are balanced in the corresponding adaptive algorithm. Only recently
goal-oriented error estimation has been considered for optimal control problems
subject to inequality constraints. The case of pointwise control constraints has been
treated in Vexler and Wollner [82] and Hintermüller and Hoppe [42]. In Becker [6]
similar techniques are used explicitly to estimate the error in the control with respect
to its natural norm. For problems with pointwise state constraints recent work has
been done simultaneously by Guenther and Hinze [34], Wollner [84], and Benedix
and Vexler [14]. For a survey see Rannacher et al. [72]. In the present article these
results are completed by incorporating multiple-shooting methods for enhancing
the global stability in nonstationary problems and adaptive stopping criteria for the
various linear and nonlinear algebraic iterations in solving the discretized OCPs.

2 The Framework of the DWR Method in Optimal Control

We consider the minimization of a cost functional subject to the state equation
(elliptic or parabolic PDE)

J.u; q/ ! minŠ A.u; q/ D 0; (2.1)
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possibly accompanied by control and/or state constraints q 2 Qad � Q and
g.u/ � 0. In this general setting the state equation in (2.1) may be stationary
or nonstationary. The “state space” V is usually a Sobolev Hilbert space, e.g.,
V D H1.�/ or V D H1

0 .�/ in the stationary case, incorporating the pre-
scribed boundary conditions, and the “control space” Q may be a function space
(“distributed control”), e.g., Q D L1.�/ or Q D L2.@�/, or a discrete space
Q D R

m. In this setting the state equation is usually given in variational form

hA.u; q/; ıui D 0 8ıu 2 V; (2.2)

where h � ; � i denotes the duality pairing between V and its dual V �.
We assume that the above setting allows for the application of the Euler-Lagrange

approach, which yields necessary first-order conditions for optimal solutions.
Within this framework, in the basic unconstrained case without control and state
constraints, an optimal solution fu; qg 2 V �Q is characterized as stationary point
of the Lagrangian functional

L.u; q; z/ WD J.u:q/ � hA.u; q/; zi

defined on V �Q�V , where z 2 V is the corresponding adjoint state (“Lagrangian
multiplier”). The resulting stationarity condition for the triple fu; q; zg 2 V �Q�V
(so-called KKT system) reads

L0u.u; q; z/.ıu/ D 0 8ıu 2 V; (2.3a)

L0q.u; q; z/.ıq/ D 0 8ıq 2 Q; (2.3b)

L0z.u; q; z/.ız/ D 0 8ız 2 V: (2.3c)

For the discretization of the above OCP, we consider the finite element (FE)
Galerkin method. The spatial discretization is by a standard “continuous” FE
method (“cG(r) method”) of polynomial degree r 	 1, while the time discretization
uses a “discontinuous” FE method (“dG(r) method”) of polynomial degree r 	 0.
The use of a Galerkin discretization with the corresponding Galerkin orthogonality
property is essential for the special approach to adaptivity – the DWR method –
considered in this article. For a mesh-size parameter h 2 RC let Vh � V and
Qh � Q be standard finite element spaces defined on meshes Th D fT g (triangular
or quadrilateral in 2D and tetrahedral or hexahedral in 3D) covering N�, which
satisfy the usual regularity conditions (see Bangerth and Rannacher [4], Carey and
Oden [19], or Brenner and Scott [18]). Then, the discretized OCP (without control
and state constraints) seeks fuh; qhg 2 Vh �Qh such that

J.uh; qh/ ! minŠ hA.uh; qh/; ıuhi D 0 8ıuh 2 Vh: (2.4)
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The corresponding discrete KKT system for stationary points fuh; qh; zhg 2 Vh �
Qh � Vh reads

L0u.uh; qh; zh/.ıuh/ D 0 8ıuh 2 Vh; (2.5a)

L0q.uh; qh; zh/.ıqh/ D 0 8ıqh 2 Qh; (2.5b)

L0z.uh; qh; 	h/.ızh/ D 0 8ızh 2 Vh: (2.5c)

In the case of a Galerkin discretization (with exact evaluation of integrals) the
system (2.5) is just the Galerkin discretization of the continuous KKT system
(2.3), i.e., in this case “optimization” (formation of the necessary optimality
condition) and “discretization” commute. For the error resulting from the Galerkin
discretization of the KKT system (2.3), without control or state constraints, there
holds the following a posteriori error representation (cf. Becker et al. [7] and Becker
and Rannacher [11]):

J.u; q/ � J.uh; qh/ D 1
2
�u.z� h/C 1

2
�q.q��h/C 1

2
�z.u�'h/

C R.3/

h ;
(2.6)

with arbitrary approximations f'h; �h;  hg 2 Vh �Qh � Vh and a remainder R.3/

h ,
which is cubic in the errors eu WD u � uh, eq WD q � qh, and ez WD z � zh. The
residual functionals in (2.6) are explicitly given by

�u. � / WD L0u.uh; qh; zh/. � / D J 0u.uh; qh/. � /� hA0u.uh; qh/ � ; zhi;
�q. � / WD L0q.uh; qh; zh/. � / D J 0q.uh; qh/. � / � hA0q.uh; qh/ � ; zhi;
�z. � / WD L0z.uh; qh; zh/. � / D �hA.uh; qh/; � i:

The evaluation of the error representation (2.6) requires approximations to the
unknown “interpolation errors” z �  h, q � �h, and u � 'h. For this, we use
postprocessing of the computed discrete solutions fuh; qh; zhg by local higher-
order interpolation, e.g., on quadrilateral meshes zh WD i

.2/

2h zh may be taken as
the patchwise bi-quadratic interpolation of the computed piecewise bi-linear zh as
depicted in Fig. 1.
This technique has been described and analyzed in detail in Becker and Rannacher
[11] and Bangerth and Rannacher [4]. Then, setting

Fig. 1 Local post-processing
by higher-order interpolation:
“biquadratic” interpolation of
computed “bilinear” nodal
values

(2)
2h ZZh  hI
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�dis WD 1
2
j�u.zh�zh/C �q.qh�qh/C �z.uh�uh/j; (2.7)

for a prescribed error tolerance TOL the condition

�dis � TOL ) stop (2.8)

may be used as stopping criterion for the mesh adaptation process. Here, the
nonlinear “cubic” remainder term R.3/

h in (2.6) is neglected, which has turned out
to be justified in most practical applications. However, there may be situations (e.g.,
problems close to bifurcation) in which the remainder term dominates the error
representation and requires estimation.

For steering the local mesh adaptation (refinement or coarsening) the residual
terms in (2.7) have to be localized to the single mesh cells T 2 Th . A direct
localization of the terms like �z.uh; zh/.uh�Quh/ to each mesh cell leads, in general,
to local contributions of wrong order (overestimation) due to oscillatory behavior of
the residual terms. To overcome this problem, one may integrate in the residual
terms cellwise by parts (see Becker and Rannacher [11]) or use a nodewise filtering
operator (see Schmich and Vexler [77]). This results in cellwise “error indicators”
�T 	 0, which govern the mesh adaptation by the usual rule

�T 	 4
TOL

N
) refine T ; �T � 1

4

TOL

N
) coarsen T ;

where N D dimVh. Obviously, this rule is rather crude and, since N is only
implicitly defined, requires costly iteration. Alternatively, one may order the error
indicators according to their size, 0 � �1 � � � � � �N , and then refine or coarsen
a fixed percentage of cells with largest or smallest indicator values, respectively.
This “fixed fraction strategy” ensures that in each refinement cycle a sufficiently
large number of cells is refined or the total number of cells is kept constant. For
a more detailed discussion of this issue, especially of “optimal” strategies of mesh
adaptation, and the derivation of local error indicators �T , we refer to Bangerth and
Rannacher [4]. It is important to use the “global” error estimator �dis in the stopping
criterion (2.8) rather than its usually too crude upper bound

jJ.u; q/� J.uh; qh/j � �dis �
X
T2Th

˚
�u
T C �

q
T C �	T

�
:

The framework of mesh adaptation described so far is the essence of the DWR
method. Since its development in 1995 (Becker and Rannacher [9, 10]) this
technique has been successfully applied to various problems in sciences and
engineering, including problems in structural and fluid mechanics, chemically
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reactive flow, radiative transfer, and most recently also optimal control and param-
eter estimation; for overviews see Becker and Rannacher [11] and Bangerth and
Rannacher [4].

Remark 2.1. In the above framework of residual-based error estimation and mesh
adaptation in the approximation of OCPs the essential point is that of the concept
of “admissibility” of states. Here, “admissible” is meant relatively to the target
functional J. � / to be optimized. A computed “optimal” control qopt

h may be
reasonable even if the corresponding “optimal” state uopt

h .q
opt
h / is admissible in an

only weak sense, i.e. satisfies the state equation only approximately with possible
large deviations in certain parts of the computational domain. The mesh adaptation
is driven by residual- and sensitivity-based a posteriori error estimates, which is
natural for this type of problems. Significant reduction of complexity and work can
be achieved by adaptive discretization and parameter tuning, dynamic stabilization
by multiple-shooting techniques, and balanced stopping criteria for nonlinear and
linear algebraic iterations.

The development described above has resulted by 2006 in the following state-of-
the-art in residual-based adaptivity in solving stationary OCPs:

– Elliptic reaction-diffusion problems in 2D (Kapp [53] and Becker et al. [7])
– Flow control problems in 2D (Becker [5])
– Parameter estimation (Becker and Vexler [12])
– Problems with control constraints (Vexler and Wollner [82])

Since then these initial results have been developed further into several directions:

1. Development of the DWR method for stationary OCPs with control and state
constraints (cf. Benedix and Vexler [14] and Wollner [85–87]): In the case of
control constraints of box type, Qad WD fq 2 Qj a � q � b; a.e. in �g , the
variational equality (2.3b) becomes a variational inequality of the form

L0q.uh; qh; zh/.ıqh � qh/ 	 0 8ıqh 2 Qad;h:

A brief survey of solution methods for control-constrained OCPs is given in
Herzog and Kunisch [37]. For this case an a posteriori error representation similar
to (2.6) can be derived. However, due to the control constraint more care has to be
taken in approximating the residual term �q.q�qh/ where in this case qh cannot
be replaced by an arbitrary element in the discrete control space Qad;h . In this
context mesh-adaptivity in the traditional norm-oriented sense has been studied
in Hintermüller et al. [43] and Hintermüller and Kunisch [46]. In the case of state
constraints g.u/ � 0 the adjoint variable is only a measure the approximation of
which is troublesome (cf. Meyer et al. [70], Hintermüller and Hinze [41], Hinze
and Schiela [48], and Hintermüller and Kunisch [45, 46]). In order to avoid this
complication, one may use a barrier or penalty technique, i.e., the cost functional
is modified like (cf. Bergounioux [15] and Rannacher et al. [72])
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J� .u; q/ WD J.u; q/C �

2
kg.u/Ck2�;

where g.u/C denotes the positive part of g.u/ , or (see Wollner [85])

J� .u; q/ WD J.u; q/ � �
Z
�

log.g.u.x/// dx:

These techniques have also been used for incorporating higher-order state
constraints of the form jruj � c with applications in elasto-plasticity (see
Wollner [84–87], Schiela and Wollner [75], and also Ortner and Wollner [71]).
Related work on a priori and a posteriori error estimates for state-constrained
elliptic OCPs is described in Casas [21], Casas and Fernandez [22], Deckelnick
[24], and Günther et al. [35].

2. Development of the DWR method for simultaneous spatial mesh and time step
adaptivity in the solution of nonstationary OCPs (cf. Meidner [65], Meidner
and Vexler [68, 68], and Meidner et al. [66]): In the nonstationary case (without
control or state constraints), one obtains a posteriori error representations such
as (2.6), in which the effects of time and space discretization are separated and
can therefore also be adapted separately. For the rather technical details, we
refer to Meidner and Vexler [69]. Space-time adaptivity in the framework of
the DWR method has been developed in Schmich and Vexler [77] for standard
parabolic problems and in Schmich [76] and Besier and Rannacher [17] for the
nonstationary Navier-Stokes equations.

3. Adaptive tuning of regularization parameters for ill-posed OPCs (cf. Griesbaum
et al. [31] and Kaltenbacher et al. [52]).

4. Adaptive balancing of discretization and algebraic iteration errors in solving
the KKT system of OCPs (see Meidner et al. [67], Rannacher et al. [74], and
Rannacher and Vihharev [73]).

5. Adaptive multiple shooting solution of the KKT system of parabolic OCPs (cf.
Hesse and Kanschat [39] and Carraro et al. [20]).

The results on item (1) have been surveyed in Rannacher et al. [72], while the
research on items (2) and (3) has largely be done in cooperations outside this
project. In this article, we report on the recent results obtained for items (4) and
(5). The numerical computations cited from the corresponding literature have been
done using the following software environments:

– GASCOIGNE (http://www.gascoigne.de),
– RoDoBo (http://www.rodobo.uni-hd.de),
– deal.II (http://www.dealii.org),
– DOpElib (http://www.dopelib.net).

http://www.gascoigne.de
http://www.rodobo.uni-hd.de
http://www.dealii.org
http://www.dopelib.net
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3 Balancing of Discretization and Algebraic Iteration Errors

The material presented in this section is based on Meidner et al. [67] and Rannacher
and Vihharev [73]. The error representation (2.6) assumes that the discrete solution
fuh; qh; zhg is computed exactly, which in reality is not possible. We rather obtain
an approximation fQuh; Qqh; Qzhg by an iterative solution process on the discrete level.
The estimation of this “iteration error” and its balancing with the “discretization
error” is the subject of the following discussion.

3.1 The “Linear” Case

We consider the linear-quadratic OCP

J.u; q/ WD 1
2
ku � Nuk2� C 1

2
˛kqk2� ! minŠ

��u D f C q in � WD .0; 1/2; u D 0 on @�;
(3.1)

with state u, force f , target Nu , ˛ D 10�3 , and “distributed control” q . In this
case the Euler-Lagrange method uses the Lagrangian functional (dropping the
subscript˝)

L.u; q; z/ WD J.u; q/C .f C q; z/ � .ru;rz/;

with the adjoint variable z . For any optimal pair fu; qg 2 V �Q WD H1
0 .�/�L2.�/

there exists an adjoint state z 2 V such that the triplet fu; q; zg is a stationary point
of the Lagrangian, i.e., it solves the linear KKT system (cf. Tröltzsch [79]):

.rıu;rz/� .u; ıu/ D �.Nu; ıu/ 8ıu 2 V; (3.2a)

.ıq; z/C ˛.ıq; q/ D 0 8ıq 2 Q; (3.2b)

.ru;rız/� .q; ız/ D .f; ız/ 8ız 2 V: (3.2c)

Using conforming (bilinear) Q1 functions for discretizing all three variables
fu; q; zg in FE subspaces Vh � V and Qh � Q results in the discrete KKT
systems

.rıuh;rzh/� .uh; ıuh/ D �.Nu; ıuh/ 8ıuh 2 Vh; (3.3a)

.ıqh; zh/C ˛.ıqh; qh/ D 0 8ıqh 2 Qh; (3.3b)

.ruh;rızh/� .qh; ızh/ D .f; ızh/ 8ızh 2 Vh: (3.3c)

These linear saddle point problems are solved by a multigrid (MG) method using
simple block iterations as smoothers. In the course of this iteration, we obtain
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approximate discrete solutions fQuh; Qqh; Qzhg . The following theorem provides an
error estimate for the resulting combined discretization and iteration error.

Theorem 3.1 (Meidner et al. [67]). Let fu; q; zg 2 V �Q � V be the solution of
the KKT system and fQuh; Qqh; Qzhg 2 Vh �Qh � Vh the approximative solution of the
discrete KKT system on the mesh Th . Then,

J.u; q/ � J.Quh; Qqh/ D 1
2
�z.Quh; Qzh/.u� Quh/C 1

2
�q. Qqh; Qzh/.q� Qqh/

C 1
2
�u.Quh; Qqh/.z�Qzh/C �u.Quh; Qqh/.Qzh/

DW �dis C �it;

(3.4)

with the residuals

�z.Quh; Qzh/. � / WD .Quh� Nu; � / � .r � ;rQzh/;
�q. Qqh; Qzh/. � / WD ˛. � ; Qqh/C . � ; Qzh/;
�u.Quh; Qqh/. � / WD .f C Qqh; � /� .r Quh;r � /:

Remark 3.2. The proof of Theorem 3.1 is a simple variation of the corresponding
argument for the unperturbed nonlinear case leading to (2.6). Using the partic-
ular projection structure of the multigrid algorithm the iteration residual term
�u.Quh; Qqh/.Qzh/ can be rewritten in a more detailed form, which provides further
insight into the performance of the smoothing iteration on the different mesh levels.

3.1.1 Evaluation of the Error Representation

The evaluation of the iteration residual �it D �u.Quh; Qqh/.Qzh/ only involves the
actually computed approximations Quh; Qqh; Qzh and therefore does not require any
approximation. The discretization residual �dis , however, involves the unknown
exact solution fu; q; zg , which needs to be approximated. For this, we employ
post-processing using local higher-order interpolation as described above, which
yields approximations f Quh;  Qzhg . This technique usually works satisfactorily for
the primal and adjoint states. The approximation of the term �q. Qqh; Qzh/.q� Qqh/
usually requires more care. In contrast to state and adjoint state the control variable
q can generally not be approximated by “local higher-order approximation” for
the following reasons: Firstly, in the case of finite dimensional control space Q

there is no “patch-like” structure. Secondly, if q is a distributed control, it typically
does not possess sufficient smoothness (due to the inequality constraints) for the
improved approximation property. Therefore in Rannacher et al. [72] an alternative
approach has been proposed, which employs the projection of the control space into
the set of admissible controls, q W Qh ! Qad . This construction again results in
an estimator for the discretization error similar to that in (2.7),
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�dis � 1
2
�z.Quh; Qzh/. Quh� Quh/C 1

2
�q. Qqh; Qzh/.q Qqh� Qqh/C 1

2
�u.Quh; Qqh/. Qzh�Qzh/:

In order to use this error estimator for guiding mesh refinement, we have to localize
it to cell-wise or node-wise contributions. This may be achieved as described above.

3.1.2 Numerical Example for the Liner Case

We consider the above linear-quadratic OCP with target distribution Nu D
22�1
22

sin.x/ sin.y/ and the exact solution u D � 1
22

sin.x/ sin.y/,
q D 1

2˛2
sin.x/ sin.y/, z D � 1

22
sin.x/ sin.y/, and the forcing term

f being accordingly adjusted. The corresponding KKT system is discretized as
described above. The resulting discrete saddle point system is solved by a multigrid
method with the stopping criterion

j�itj � 1
10

j�disj; (3.5)

using the V -cycle with, firstly, 4C4 block-ILU smoothing steps and, secondly, only
one undamped block Jacobi smoothing step on each level. For measuring the quality
of the above error estimates, we use the “effectivity indices”

I dis
eff WD

ˇ̌
ˇ �dis

Edis

ˇ̌
ˇ; I it

eff WD
ˇ̌
ˇ �it

Eit

ˇ̌
ˇ;

where Edis WD J.u; q/ � J.uh; qh/ , Eit WD J.uh; qh/ � J.Quh; Qqh/ and E WD
J.u; q/ � J.Quh; Qqh/ are the exact errors. Tables 1 and 2 show that the adaptive
stopping criterion (3.5) leads to a good match of discretization and iteration errors
and that the separate error estimators are sharp.

Table 1 Results for the linear-quadratic model problem with ˛ D 10�3 : MG method with 4C 4
block-ILU smoothing

N E #it Edis �dis I dis
eff Eit �it I it

eff

25 9.35e�4 2 9.35e�4 1.83e�3 1.96 1.14e�7 1.97e�7 1.73

81 1.64e�4 2 1.78e�4 2.19e�4 1.22 1.42e�5 1.68e�5 1.18

289 3.75e�5 2 4.16e�5 4.39e�5 1.05 4.13e�6 4.33e�6 1.04

1,089 1.05e�5 2 1.02e�5 1.03e�5 1.01 3.48e�7 3.52e�7 1.01

3,985 2.67e�6 2 2.54e�6 2.55e�6 1.00 1.28e�7 1.28e�7 1.00

13,321 6.65e�7 2 6.48e�7 6.49e�7 1.00 1.63e�8 1.63e�8 1.00

47,201 1.76e�7 2 1.70e�7 1.69e�7 0.99 6.76e�9 6.77e�9 1.00

163,361 4.89e�8 2 4.69e�8 4.68e�8 0.99 1.97e�9 1.97e�9 1.00



Model Reduction by Adaptive Discretization in Optimal Control 261

Table 2 Results for the linear-quadratic model problem with ˛ D 10�3 : MG method with 4C 4
block Jacobi smoothing

N E #it Edis �dis I dis
eff Eit �it I it

eff

25 9.44e�4 4 1.83e�3 9.35e�4 1.96 1.55e�5 8.99e�6 1.73

81 1.84e�4 5 2.20e�4 1.78e�4 1.23 7.59e�6 6.44e�6 1.18

289 4.36e�5 5 4.40e�5 4.16e�5 1.05 2.04e�6 1.96e�6 1.04

1,089 1.10e�5 4 1.03e�5 1.02e�5 1.01 8.53e�7 8.44e�7 1.01

3,985 2.69e�6 4 2.55e�6 2.56e�6 0.99 1.31e�7 1.30e�7 1.00

13,321 6.94e�7 4 6.47e�7 6.69e�7 0.96 2.51e�8 2.51e�8 1.00

47,201 1.95e�7 4 1.69e�7 1.90e�7 0.88 4.39e�9 4.40e�9 1.00

171,969 7.24e�8 3 4.42e�8 6.93e�8 0.63 3.07e�9 3.10e�9 0.99

3.2 The “Nonlinear” Case

Next, we consider a general nonlinear optimization problem of the form

J.u; q/ WD J1.u/C J2.q/ ! minŠ

subject to the constraint

A.u; q/.ıu/ D 0 8ıu 2 V;

with cost functional J. � ; � / and a semilinear form A. � ; � /. � /. We assume that
there is a locally unique minimum fu; qg 2 V �Q , which corresponds to a saddle-
point of the Lagrange functional

L.u; q; z/ D J.u; q/ �A.u; q/.z/;

where z 2 V denotes the associated adjoint state. The triplet fu; q; zg 2 V �Q�V
is determined by the first-order optimality condition (KKT system):

A0u.u; q/.ıu; z/ D J 01.u/.ıu/ 8ıu 2 V; (3.6a)

A0q.u; q/.ıq; z/ D J 02.q/.ıq/ 8ıq 2 Q; (3.6b)

A.u; q/.ız/ D 0 8ız 2 V: (3.6c)

This nonlinear system is solved by the Newton method. Let, for x D fu; q; zg,
H.x/ be the Hessian operator of the Lagrangian L. � ; � ; � / . Then, the Newton
increment ıxn D fıun; ıqn; ı	ng is determined by the linear system

H.xn/ıxn D �L0.xn/ (3.7)
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and the Newton update (with damping �n ) reads xnC1 D xn C �nıx
n. Usually

this Newton iteration is performed in inexact form, i.e., the linear Newton equations
(3.7) are solved only approximately (e.g., by an MG method). Hence, we have to
balance three sources of errors:

�dis � �nonlin
it � �lin

it : (3.8)

This can be achieved on the basis of the following general result.

Theorem 3.2 (Rannacher and Vihharev [73]). Let fQuh; Qqh; Qzhg 2 Vh � Qh � Vh
be an approximation to the solution fu; q; zg 2 V � Q � V � of the KKT system
obtained by any iterative process on the mesh Th . Then, there holds the following
error representation:

J.u; q/� J.Quh; Qqh/ D 1
2
�z.Quh; Qqh; Qzh/.u� Quh/C 1

2
�q. Qqh; Qzh/.q� Qqh/

C 1
2
�u.Quh; Qqh/.z�Qzh/� �u.Quh; Qqh/.Qzh/C R.3/

h ;
(3.9)

where the residual terms are given by

�z.Quh; Qqh; Qzh/. � / WD J 01.Quh/. � / �A0u.Quh; Qqh/. � ; Qzh/;
�q. Qqh; Qzh/. � / WD J 02. Qqh/. � /� A0q.Quh; Qqh/. � ; Q	h/;
�u.Quh; Qqh/. � / WD �A.Quh; Qqh/. � /;

and the remainder term R.3/

h is cubic in the errors eu WD u � Quh, eq WD q� Qqh, and
ez WD z � Qzh.

We use the first residual terms for estimating the discretization error of an iterated
approximation funh; q

n
h ; z

n
hg :

�ndis WD 1
2

ˇ̌
�z.unh; q

n
h; z

n
h/.unh�unh/C �q.qnh ; z

n
h/.q

n
h�qnh/C �u.unh; q

n
h/.znh�znh/

ˇ̌
:

For estimating the error caused by solving the Newton equations only approx-
imately, we consider the difference of two consecutive approximations, xnh D
funh; q

n
h; z

n
hg 2 Vh � Qh � Vh , obtained be the n-th Newton iterates on the discrete

level Th . There holds

J.unC1h ; qnC1h / � J.unh; qnh/ D hdnh ; eıunhi C hgnh; eıqnhi � hrnh ; znhi
C �.unh; q

n
h/.z

n
h/ C O

�fjıunhj2 C jeıqnhj2�;
(3.10)

with the corresponding linear iteration residuals hdnh ; � i; hgnh; � i; hrnh ; � i . Then, the
adaptive stopping strategy uses the following error indicators:

�
n;out
it WD j�.unh; qnh/.znh/j; �

n;in
it WD max

˚jhrnh ; znhij; jhdnh ; eıunhij; jhgn; eıqnhij�:
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The “inner” linear Newton correction equations and the “outer” nonlinear Newton
iteration are iterated until

�
n;in
it � 1

10
�
n;out
it ; �

n;out
it � 1

10
�ndis: (3.11)

3.2.1 Numerical Example for the Nonlinear Case

We consider the OCP

J.u; q/ WD 1
2
ku � Nuk2� C 1

2
˛kqk2� ! minŠ

subject to the nonlinear PDE constraint

�"�u C q

.1C u/2
D 0; in � WD .0; 1/2; u D 0; on @�; (3.12)

and the state constraint ua � u; in �, with " D 10�4 and ua D �0:99. The target
distribution is given by Nu.x/ D �ua � 3 ua jx � .0:5; 0:5/j . For treating the state
constraint a barrier approach is employed, (see Wollner [85] and Rannacher et al.
[72]), i.e., the cost functional is augmented as follows:

J�.u; q/ D J.u; q/C b�.u/; b� .u/ WD �
Z
�

� log.u � ua/ dx:

In the tests the parameters are chosen as ˛ D 10�6 and � D 10�4. For this modified
problem the appropriate solution spaces are V D H1

0 .�/ for the state function and
Q WD L2.�/ for the control. For any optimal solution fu; qg 2 V �Q there exists
an adjoint solution z 2 V such that the triplet fu; q; zg 2 V � Q � V solves the
following KKT system (dropping again the subscript˝):

.rıu;rz/ � 2 .q .1C u/�3 z; ıu/� .u � Nu; ıu/ D b0� .u/.ıu; z/; (3.13a)

˛.ıq; q/ � .ıq .1C u/�2; z/ D 0; (3.13b)

.ru;rız/C .q .1C u/�2; ız/ D 0; (3.13c)

for all fıu; ıq; ızg 2 V �Q�V . This KKT system is discretized again by the FEM
using conforming bilinear functions for all three variables fu; q; zg. The resulting
nonlinear saddle point problems are solved by an inexact Newton iteration, where
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in each linear substep a V -cycle MG is employed with one block-ILU pre- and post-
smoothing step on each mesh level. The starting values for the Newton iteration are
taken from the approximate solution on the preceding coarser mesh level. For the
“algebraic” stopping criterion (iteration to convergence), we require that the initial
nonlinear and linear residuals are reduced by the factor 10�11 (Figs. 2 and 3).

Tables 3–5 show the convergence history of the tree different approximation
processes involving increasing degrees of adaptivity. The total effectivity index is
defined by I tot

eff WD .�dis C �it/=E . The reported computational results confirm the
effectivity of the algebraic adaptive strategy using the stopping criterion (3.11).

Fig. 2 Locally refined meshes

Fig. 3 Target Nu (left) and optimal state u (right)

Table 3 (1) Fully converged “exact” Newton iteration

N #it E �dis C �it �dis �it I tot
eff

3,313 15 3.96e�03 2.54e�03 2.54e�03 1.86e�22 0.64

6,897 6 1.61e�03 1.30e�03 1.30e�03 4.15e�17 0.81

14,113 5 5.56e�04 4.50e�04 4.50e�04 2.05e�15 0.82

28,609 5 1.72e�04 9.49e�05 9.49e�05 2.37e�14 0.55

57,649 4 4.50e�05 3.45e�05 3.45e�05 2.81e�15 0.77

121,777 4 1.03e�05 9.99e�06 9.99e�06 4.09e�14 0.97
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Table 4 (2) Adaptively stopped “exact” Newton iteration

N #it E �dis C �it �dis �it I tot
eff

3,313 3 3.96e�03 2.68e�03 2.68e�03 2.13e�08 0.68

6,897 2 1.61e�03 1.30e�03 1.33e�03 2.78e�06 0.81

14,113 2 5.56e�04 4.53e�04 4.72e�04 6.74e�06 0.81

28,609 2 1.72e�04 9.57e�05 9.50e�05 6.68e�07 0.55

57,649 2 4.50e�05 3.45e�05 3.45e�05 8.91e�09 0.77

121,777 2 1.03e�05 9.99e�06 9.99e�06 1.08e�09 0.97

Table 5 (3) Adaptively stopped “inexact” Newton iteration

N #it E �dis C �it �dis �it I tot
eff

3,313 3 3.96e�03 2.68e�03 2.68e�03 2.14e�08 0.68

6,897 2 1.61e�03 1.30e�03 1.33e�03 2.78e�06 0.81

14,113 2 5.56e�04 4.54e�04 4.73e�04 6.74e�06 0.82

28,609 2 1.72e�04 9.59e�05 9.50e�05 8.73e�07 0.55

57,649 2 4.50e�05 3.44e�05 3.45e�05 6.75e�08 0.77

121,777 2 1.03e�05 9.99e�06 9.99e�06 1.32e�09 0.97

4 Nonstationary Problems: The Multiple Shooting Method

The content of this section is based on Carraro et al. [20]. In the past decade,
several approaches have been developed toward the solution of nonstationary OCPs.
Standard FE methods with adaptive mesh refinement have been presented in Becker
et al. [8] and Meidner and Vexler [68]. A summarizing survey of theoretical as well
as practical aspects of such OCPs is given in Hinze et al. [47].

In solving nonstationary OCPs based on the corresponding KKT system, which
in this case is a boundary value problem in time, one is frequently confronted with
the problem of instability. The generally nonlinear state operator may be unstable if
governing an initial value problem, though allowing for a stable solution of the OCP.
This phenomenon may become critical in the context of a Newton iteration when the
starting trajectory is still too inaccurate. To overcome this problem it is common to
employ the concept of “multiple shooting” (MS). In this approach the time interval
is split into finitely many subintervals such that on each local subinterval the stability
properties of the state operator are sufficient for the convergence of a global Newton
iteration linking the subtrajectories together and enforcing the boundary conditions.
In the limit one obtains a globally admissible state, corresponding adjoint state and
control. There are two different versions of the MS method applied to OCPs: (a)
direct MS (DMS) and (b) indirect MS (IMS). In applying an MS method for solving
a nonstationary OCP adaptivity may be used in choosing the shooting intervals for
increasing stability, in solving the subproblems on the single shooting intervals by
space-time FE methods, and in the outer inexact Newton iteration for installing a
globally admissible solution.



266 R. Rannacher

For the last three decades MS methods have been extensively studied for solving
ODE- or DAE-governed OCPs (see Leineweber et al. [57], Körkel et al. [55], and the
literature cited therein). Early on, their capability of integrating even highly unstable
systems made them an indispensable tool in the solution of complex OCPs. In the
more recent field of PDE-based optimal control MS has not yet been thoroughly
investigated, except in the framework of the method of lines (MOL) approach, which
essentially reduces the more difficult PDE constraint to the standard, though high-
dimensional, ODE case. There are some publications on special topics related to
the application of MS as part of the solution process. Serban et al. [78] develop an
approach toward spatial grid adaptation in the MOL framework called “structured
adaptive mesh refinement” (SAMR). Heinkenschloss [36] investigates different
preconditioners for time domain decomposition methods, thereby choosing MS as
a representative example. All these publications are exclusively concerned with
direct multiple shooting (DMS). To our knowledge, the only work on indirect
multiple shooting in the PDE context is that of Hesse [38] and Hesse and Kanschat
[39], which applies the DWR approach described above for dynamic spatial mesh
adaptation within the IMS framework, though without going into the details of the
shooting procedure itself.

In the following, we will discuss the IMS approach for the solution of PDE-
based parabolic OCPs mainly without control or state constraints. The inclusion of
control constraints has been discussed in Carraro et al. [20]. State constraints may
be treated analogously as in the stationary case discussed above by a penalty or
barrier technique. Numerical results for linear and nonlinear model problems with
and without control constraints illustrate the efficient use of IMS, particularly in
cases where standard methods fail.

Remark 4.3. There is another motivation of employing MS for the solution of
parabolic OCPs. It enables parallel computation on the different shooting intervals.
This aspect is addressed by the so-called “Parareal Method” developed in Lions et al.
[59] and applied to OCPs in Maday and Turinici [62], but will not be discussed in
this article. For further work in this direction, we refer to Bal [3] and Ulbrich [80].
Actually, Gander and Vandewalle [30] pointed out that the Parareal Method may be
interpreted in the framework of multiple shooting.

4.1 The Parabolic OCP and Its KKT System

In the following, we will show how shooting methods may be included into the
framework of OCPs with or without control constraints of box-type. The focus is
on the detailed presentation of an algorithm for the IMS, thereby highlighting the
particular difficulties to be overcome in the PDE context. We consider OCPs of the
following form:

min
.u;q/

J.u; q/; (4.1)
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subject to a parabolic PDE constraint

@tu.x; t/C A.u/.x; t/C B.q/.x; t/ D f .x; t/; .x; t/ 2 � � I;
u.x; 0/ D u0.x/; x 2 �; (4.2)

supplemented by suitable spatial boundary conditions. We will also briefly discuss
the treatment of additional control constraints of box type:

q�.x; t/ � q.x; t/ � qC.x; t/; .x; z/ 2 � � I: (4.3)

Remark 4.4. Other global types of control constraints such as

Z
��I

q.x; t/ dx dt � c;

are not considered. It is not clear how to handle such global constraints in the IMS
context since they cannot be localized to the different shooting intervals.

Following Carraro et al. [20], we explain some details of problem (4.1)–(4.3)
and fix the notation used further on. The computational domain is a space-time
cylinder � � I with a bounded spatial domain � � R

d , d 2 f1; 2; 3g, which
for simplicity is assumed to be convex polygonal or polyhedral, and a finite time
interval I D .0; T �. Additional boundary conditions of Dirichlet or Neumann type
are prescribed on the boundary part @� � I . We adopt the usual Bochner space
notation W.I IY / for spaces of functions that map from I to a normed function
space Y . If V ,! H ,! V � is a Gelfand triple of Hilbert spaces of functions on
� (V � being the dual space of V ) and R a Banach space of functions on � or
� , the usual setting for the parabolic PDE (4.2) is as follows: For a given control
q 2 L2.I IR/ and source f 2 L2.I IV �/, find a function u.x; t/ that satisfies (4.2)
and the imposed boundary conditions in a certain weak sense. The natural solution
space for the state u.x; t/ is

X WD fv j v 2 L2.I; V /; @t v 2 L2.I; V �/g;

which is well-known to be continuously embedded into the space C. NI IH/ of
continuous functions on the closure NI with values in H (cf. Dautray and Lions
[23]). As usual, we require the differential operator A W X ! L2.I IV �/ to be
elliptic and coercive, linear or nonlinear, and the control operator B W L2.I IR/ !
L2.I IV �/ to be linear or simply the identity operator, where R ,! V �. These
operators are understood as pointwise-in-time operators A W V ! V � and
B W R ! V �. Then, using the semilinear forms and scalar products
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aI .u/.ıu/ WD
Z T

0

hA.u/; ıuiV ��V dt; bI .q/.ıu/ WD
Z T

0

hB.q/; ıuiV ��V dt;

..u; ıu//I WD
Z T

0

.u; ıu/H dt; ıu 2 X;

the weak formulation of (4.2) with weakly included initial condition reads

..@tu; ıu//I C aI .u/.ıu/C bI .q/.ıu/C .u.0/� u0; ıu.0// D ..f; ıu//I ; (4.4)

for all ıu 2 X . Further on, we will skip the interval index I in the notation
.. � ; � //I , aI . � /. � / and bI . � /. � / if the respective interval is given by the context.

The “cost functional” J.u; q/ is assumed to have the following structure:

J.u; q/ D �1J1.u/C �2J2.u.T //C ˛
2
kqk2Q:

It consists of a term J1 distributed in time, a term J2 evaluated at the final time
T , and a usual regularization term. We will only consider one of the two terms
depending on the state variable, i.e., we impose the conditions �1; �2 2 f0; 1g; �1 ¤
�2, whereas ˛ > 0 . As we will see later, it is important for the purpose of MS that
the time-distributed term J1 can be localized or split up to contributions from the
different subintervals Ij � I . This is the case for functionals of tracking type:

J1.u/ D
Z T

0

ku.t/ � Ou.t/k2V dt;

with some prescribed function Ou 2 L2.I IV / . If we impose the additional control
constraint (4.3), the set Qad of admissible control functions is given by

Qad D fq 2 Q j q� � q � qC; a.e. in � � I g; (4.5)

where q�; qC 2 Q are given functions satisfying q� < qC. Thus, the set Qad is
a convex subset of Q and may even coincide with Q in the case without control
constraints. In compact form, our OCP thus reads

min
q2Qad;u2X

J.u; q/ subject to (4.4): (4.6)

Results on the well-posedness of such OCPs can be found, e.g., in Hinze et al. [47]
or Tröltzsch [79]. We will always assume the unique solvability of (4.4), which
enables the definition of a solution operator S W Qad ! X by S.q/ D u and of the
reduced cost functional j.q/ WD J.S.q/; q/. Using this notation the OCP (4.6) can
be written in short as

min
q2Qad

j.q/: (4.7)



Model Reduction by Adaptive Discretization in Optimal Control 269

Next, we briefly recall the first-order necessary optimality conditions for problem
(4.6) with and without control constraints. The corresponding Lagrange functional
L W Q �X �X ! R has the form

L.q; u; z/ WD J.q; u/C ..@tu; z//C a.u/.z/C b.q/.z/� ..f; z//

C .u.0/� u0; z.0//;
(4.8)

where z 2 X denotes the adjoint variable (“Lagrange multiplier”). Then, under
certain conditions, for any optimal solution fu; qg 2 X � Q of (4.6) there exists
a z 2 X such that the triple fu; q; zg is stationary point of the Lagrangian L. The
corresponding PDE system comprises the “state”, “adjoint” and “control equations”.
It can be written in the following explicit form for all variations ıu, ız 2 X and
ıq 2 Q:

..@tu; ız//C a.u/.ız/C b.q/.ız/� ..f; ız//C .u.0/� u0; ız.0// D 0; (4.9a)

J 0u.q; u/.ıu/� ..@t z; ıu//C a0u.u/.ıu; z/C .z.T /; ıu.T // D 0; (4.9b)

J 0q.q; u/.ıq/C b0q.q/.ıq; z/ D 0: (4.9c)

The three Eqs. (4.9) form a boundary value problem in time for the state and adjoint
variables. Here, the boundary values are the given initial condition u.x; 0/ D u0.x/
for the state variable, and the condition z.x; T / D 0 or, if �2 ¤ 0, z.x; T / D
J 02.u.T //.ıu.T // for the adjoint variable at end time T . The solution of the adjoint
equation is running backward in time, and the state and adjoint problems are coupled
by the third equation via the control variable.

Remark 4.5. In the presence of box constraints on the control of the form (4.3), we
simply have to replace the control equation (4.9c) by the variational inequality

J 0q.q; u/.ıq � q/C b0q.q/.ıq � q; z/ 	 0 8ıq 2 Qad; (4.10)

while the state and adjoint equations remain unchanged. This is due to the convexity
of the set Qad. The direct treatment of the resulting optimality system is complicated
by the control inequality, but there is a way of transforming (4.10) into several
equations by using the concept of “active sets”. This has already been used, e.g.,
by Bergounioux, Ito and Kunisch [16], Griesse and Vexler [32], and Vexler and
Wollner [82], for the elliptic case. For the parabolic case, a similar procedure has
been suggested by Kunisch and Rösch [56] and was used, e.g., by Griesse and Vexler
[32] and Griesse and Volkwein [33]. Our numerical treatment of control constraints
is also based on this concept; the technical details in the context of the IMS method
are described in Carraro et al. [20].



270 R. Rannacher

4.2 Indirect Multiple Shooting (IMS)

There are two ways of integrating multiple shooting into the solution process of
OCPs such as (4.1)–(4.3). The “direct multiple shooting” (DMS) applies multiple
shooting to the side condition (4.4) in weak form, which leads to a sequence of initial
value problems on subintervals of I D Œ0; T �. The “indirect multiple shooting”
(IMS) method produces a sequence of intervalwise boundary value problems of
type (4.13) governed by systems of optimality conditions on subintervals of I .
An advantage of IMS is that one can use standard routines for the solution of
the local OCPs on the subintervals. In the ODE context DMS methods have
been preferred because they transform the original OCP into a finite dimensional
nonlinear programming problem (NLP), which allows for the use of efficient
methods for solving NLPs. In the following, we first give a brief survey of known
results on convergence and stability of shooting methods and comment on the
additional problems that occur in the PDE context.

4.2.1 Preliminaries: Stability and Convergence of Shooting Methods

It is well-known that even linear and well conditioned ODE boundary value
problems (BVP) often become highly sensitive to perturbations in the data when
reformulated as initial value problems (IVP). In the context of multiple shooting,
such perturbations cannot be avoided, because one has to replace the unknown initial
values by parameterized ones (in the PDE framework, even the discretization of the
initial value functions entails a perturbation of the exact value). This phenomenon,
examined by deHoog and Mattheij [25], is caused by a dichotomic behavior of
the BVP solution y.t/ which determines the conditioning of the BVP. This leads
to an exponential amplification over time of errors in the initial data s of the
parameterized IVP (L a Lipschitz constant):

ky.t I s1/ � y.t I s2/k � ceL.t�t0/ks1 � s2k: (4.11)

Local stability estimates of this type are common in IVP and can be proven, e.g.,
with the help of Gronwall’s inequality. Reformulation of BVP as parameterized IVP
is the idea behind the simple shooting method. The mentioned instability of the
IVP reflects the frequently observed fact that simple shooting is in many cases an
unstable algorithm. Fortunately, inequality (4.11) suggests a way how to cope with
this deficiency. Therefore, we decompose the time interval I D Œ0; T � into smaller
subintervals, referred to as “shooting intervals”, by choosing intermediate “shooting
points” 0 D �0 < �1 < � � � < �M�1 < �M D T :

I D f0g [ �[M�1
jD0 Ij

�
; Ij D .�j ; �jC1�: (4.12)
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By this splitting into subintervals the local exponential factors in (4.11) are reduced
thus stabilizing the algorithm, which is now referred to as “multiple shooting” (MS).
In the following a variant of this algorithm will be described, which is suitable for
PDE-governed OCPs.

When concerned with the convergence of shooting methods, one has to distin-
guish between the convergence of the Newton-type iteration applied on the shooting
system (see (4.13d)–(4.13g) below) and the convergence of the discrete solutions
to a limit (the continuous solution). We will briefly discuss both aspects without
going into detail. Conditions for the convergence of Newton’s method in shooting
algorithms are presented in Weiss [83] who also observes that the domain of starting
values for Newton’s method is enlarged with an increasing number of shooting
intervals. Deuflhard [26] is concerned with globalization techniques for Newton’s
method. In summary, a variety of Newton-type methods are available for solving the
shooting system, but there is always some trade-off between finding good starting
values and exploiting the full quadratic convergence.

In the ODE context, convergence orders of multiple shooting are coupled to the
orders of the IVP solvers used on the subintervals. This is standard in the linear
case, whereas for nonlinear ODE boundary value problems it was examined, e.g., by
Jankowski [51] and Hieu [40]. We conjecture that most results achieved for shooting
methods in the ODE context carry over to the PDE framework in case of a fixed
spatial mesh (this corresponds to the so-called method of lines).

Some of the most challenging aspects in the transfer of shooting methods from
the ODE to the PDE context are due to the additional spatial dimensions. Shooting
variables s (the local initial values) are no longer scalars or vectors in R

n, but
functions in certain Sobolev spaces. Hence the proper choice of norms in the
analysis is a crucial aspect. All spatially distributed functions have to be discretized
in space, which leads to large stiffness matrices at the time-points and therefore
to huge linear systems that cannot be treated directly and have to be solved in a
matrix-free manner by an iterative solver, e.g., a Krylov space method.

On the time domain decomposition (4.12), we consider restrictions uj ; zj , and
qj of the global state, adjoint and control variables u; z, and q, respectively, to
the single subintervals Ij , and define corresponding function spaces by Xj D
fvj j vj 2 L2.Ij ; V /; @tvj 2 L2.Ij ; V

�/g and Qj 
 L2.Ij ; R/. The goal is to
solve a BVP of the form (4.9) on each Ij in such a way that the composition of the
intervalwise solutions constitutes a solution to the original global OCP. In this way
the possible global instability of the state equation can be reduced by decreasing the
lengths of the shooting intervals. First, we define the extended Lagrange functional,
denoted by NL, on the single shooting intervals Ij , for j D 0; : : : ;M � 1 :
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NL..qj ; uj ; zj /M�1jD0 ; .sj ; 	j /MjD0/ WD �1

M�1X
jD0

J1.u
j /C �2J2.u

M�1.�M //

C ˛

2

M�1X
jD0

Z
Ij

kqj k2 dt C
M�1X
jD0

�
..@tu

j ; zj //C a.uj /.zj /C b.qj /.zj / � ..f jIj ; zj //


C
M�1X
jD0

.uj .�j /� sj ; zj .�j //C
M�1X
jD0

.sjC1 � uj .�jC1/; 	jC1/C .s0 � u0; 	
0/;

involving the unknown values of the intervalwise solutions sj D uj and 	j D zj

at the shooting points �j . The “shooting variables” sj ; 	j 2 H are either arbitrarily
chosen or guessed approximations to u.�j / and z.�j /. The extended functional
constitutes the Lagrangian of a new OCP that is similar to the original one (4.1)–
(4.3) but is subject to additional equality constraints. The corresponding optimality
system reads as follows:

..@tu
j ; ız//C a.uj /.ız/C b.qj /.ız/ � ..f jIj ; ız//

C.uj .�j / � sj ; ız.�j // D 0;
(4.13a)

�1J
0
1;uj .u

j /.ıu/� ..@t z
j ; ıu//C a0uj .u

j /.ıu; zj /

C.zj .�jC1/�	jC1; ıu.�jC1// D 0;
(4.13b)

˛..qj ; ıq//C b0
qj
.qj /.ıq; zj / D 0; (4.13c)

.s0 � u0; ı	/ D 0; (4.13d)

j D 1; : : : ;M W .sj � uj�1.�j /; ı	/ D 0; (4.13e)

j D 0; : : : ;M � 1 W .	j � zj .�j /; ıs/ D 0; (4.13f)

.	M ; ıs/ D 0; (4.13g)

where Eqs. (4.13a)–(4.13c) hold for j D 0; : : : ;M � 2. For j D M � 1, however,
in the case �2 ¤ 0 there appears an additional term �2J

0
2.: : : /.: : : / in the adjoint

equation, which describes the initial value of the adjoint equation on IM�1. In
system (4.13), the first three equations bear the structure of the optimality conditions
of the original OCP, whereas the remaining four equations represent continuity
conditions for the state and adjoint variables.

Obviously, the IMS based on the extended Lagrange functional NL leads to a
sequence of boundary value problems similar to (4.9) on the different subintervals
Ij . The additional equality constraints given by (4.13d)–(4.13g) ensure global
admissibility of the composed intervalwise solutions, i.e., that the prescribed initial
value is matched, s0 � u0 D 0 , that the jumps between the interval solutions
at the interval endpoints and the initial values on the following intervals vanish,
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sj � uj�1.�j / D 0 and 	j � zj .�j / D 0, respectively. These conditions can be
deduced formally as the derivatives NL0

sj
.'/ and NL0

zj
.'/ of NL with respect to the

shooting variables sj and 	j , respectively. The intervalwise optimality systems
(4.13) show that the shooting variables sj and 	jC1 are state and adjoint initial
values on the subintervals Ij .

Remark 4.6. As there is no need to fit given values at the end time �M for the
global state variable and at the end time �0 for the global adjoint variable, the
corresponding equations in (4.13) are artificial. We therefore skip the variables sM

and 	0 in order to decrease the size of the shooting system. Furthermore, we could
also skip the variables s0 and 	M and replace them by the known initial values
s0 � u0 and 	M � 0. The main reason for keeping them in the system is the
resulting simplification in the implementation of the method.

4.3 Numerical Methods and Implementation

The foregoing discussion has shown that the IMS formulation (4.13) is fully
equivalent to the original OCP (4.6). Next, we will discuss the discretization of
(4.13) and the practical implementation of the resulting large algebraic systems.

4.3.1 The Intervalwise Optimal Control Problems

The optimality systems (4.13a)–(4.13c) on the single subintervals bear the same
structure as the optimality conditions (4.9) of the original global problem. They may
be solved independently (which allows for parallelization of the MS code), and any
algorithm designed for problems of type (4.9) can be employed for their solution.
We follow the procedure presented in Meidner and Vexler [68], which is based on
the direct minimization of the reduced cost functional j.q/ . For that, we have to
recall some well-known results concerning the gradient and Hessian of j.q/ . A
detailed presentation can also be found in Hinze et al. [47].

The first-order derivative of j.q/ in direction ıq is given by the identity
j 0.q/.ıq/ D L0q.q; u; z/.ıq/. The derivatives L0z and L0u vanish. In our context,
we obtain the following representation:

j 0.q/.ıq/ D ˛..q; ıq//C b0q.q/.ıq; z/; ıq 2 Q: (4.14)

In a similar way, the second-order derivative j 00.q/.ıq; �q/ is given by

j 00.q/.ıq; �q/ D L00qq.q; u; z/.ıq; �q/C L00uq.q; u; z/.ıu; �q/

C L00zq.q; u; z/.ız; �q/; ıq; �q 2 Q;
(4.15)
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where ıu and ız are the solutions of

L00qz.q; u; z/.ıq; '/C L00uz.q; u; z/.ıu; '/ D 0; (4.16a)

L00qu.q; u; z/.ıq; '/C L00uu.q; u; z/.ıu; '/C L00zu.q; u; z/.ız; '/ D 0; (4.16b)

holding for all ' 2 X . These equations are referred to as “tangent equation” and as
additional “adjoint equation”. They can be written explicitly as

..@t ıu; '//C a0u.u/.ıu; '/C b0q.q/.ıq; '/C .ıu.0/; '.0// D 0; (4.17a)

J 0uu.q; u/.ıu; '/� ..@t ız; '//C a00uu.u/.ıu; '; z/C a00zu.u/.'; ız/

C.ız.T /; '.T // D 0:
(4.17b)

Then, in the context of our problem j 00.q/.ıq; �/ has the form

j 00.q/.ıq; �/ D J 00qq.q; u/.ıq; �/C b00qq.q/.ıq; �; z/C b00zq.q/.�; ız/: (4.18)

Considering the reduced optimal control problem (4.7) is the crucial step in solving
the intervalwise OCPs in an iterative process by a matrix-free Newton-CG method.

4.3.2 The System of Shooting Conditions

The application of the IMS method consist in the solution of the system of continuity
conditions (4.13d)–(4.13g). This is written as F.y/ D 0, i.e., the variable y

comprises all shooting variables fs0; 	1; : : : ; sM�1; 	M g. To find a zero of this
system, we employ Newton’s method, which in each iteration step requires the
solution of the linear system

rF.yk/ıy D �F.yk/: (4.19)

The Jacobian rF is of size 4RM � 4RM , where M is the number of shooting
intervals. The directional derivatives with respect to s and 	 are obtained as
solutions of certain variational equations (cf. Carraro et al. [20] for details).

The computation of the whole Jacobian rF with the sensitivity method (see,
e.g., Hinze et al. [47]) requires for each pair of derivatives ujs ; zjs and uj	; zj	
the solution of variational equations for ıs and ı	 running through a set of
basis functions of the discrete space V s

h . This is very costly on strongly refined
spatial meshes. To avoid this, we want to solve (4.19) by a matrix-free approach.
For that, we choose a Newton-CG method, which requires only the solution of
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two additional problems in each iteration. Similarly, for the solution of (4.19), we
employ a Newton-GMRES iterative method. This approach resembles the adjoint
approach for solving reduced OCP (see again Hinze et al. [47]).

Remark 4.7. With increasing number of shooting intervals, the conditioning of
the Jacobian rF deteriorates, thus necessitating the use of a preconditioner. In
Heinkenschloss [36] different preconditioners are compared in the context of the
DMS method and a symmetric Gauss-Seidel block preconditioner is recommended.
Numerical tests confirm that this result carries over to the described IMS method.
This preconditioner is easily applied, since it only requires the solution of two
additional linear boundary value problems per GMRES iteration and may easily
be included in our matrix-free framework.

Remark 4.8. In the above discussion it is assumed that the OCP does not involve
control or state constraints. This is mainly for simplifying the presentation. The
inclusion of local (pointwise) control constraints is considered in Carraro et al.
[20]. As in the stationary case considered above, state constraints may be treated
by penalization techniques. For solving the control-constrained problem, one may
use the so-called “gradient projection method, which is globally convergent but with
an only linear rate (see Hinze et al. [47] and Dunn [27]). Projected Newton methods
have to be used with care (see Kelley and Sachs [54]). Alternatives are the “primal-
dual active set strategies” which involve both state and adjoint variables and have
been extensively studied (see Bergounioux et al. [16] and Kunisch and Rösch [56]).
These methods are known to be equivalent to a superlinearly convergent “semi-
smooth Newton method” (cf. Hintermüller et al. [44]).

4.4 Space-Time Discretization

Finally, we briefly describe the general setting of a FE discretization in space and
time for solving problem (4.1)–(4.3) together with the variational equations for the
Hessian and the gradient of the reduced cost functional j. � / .

(i) Time semi-discretization
For discretization in time, we use the so-called “discontinuous Galerkin
method” of degree r 	 0 (in short: “dG(r) method”). To this end, the
single shooting intervals I j D f�j g [ .�j ; �jC1� are partitioned into further
subintervals I j

n D .t
j
n�1; t

j
n � of length k

j
n with left and right end points

�j D t
j
0 < t

j
1 < � � � < t

j
Nj

D �jC1. For the lowest-order case r D 0

the dG(0) method can be interpreted as the classical first-order backward
Euler time-stepping method if the time integrals are evaluated by the box
rule. Alternatively, one could also use the “continuous” counterpart of the
dG(r) methods, the cG(r) method, of degree r 	 1 . For further details on
the formulation of the corresponding discrete Galerkin equations, we refer to
Meidner and Vexler [68], Becker et al. [8] and Carraro et al. [20].
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(ii) Spatial discretization
The spatial discretization uses a standard conforming finite element method as
described above. On shape regular meshes Th (cf. Carey and Oden [19] or
Brenner and Scott [18]) consisting of closed cells T , quadrilaterals (in 2D) or
hexahedra (in 3D) the FE subspaces are given by V s

h WD fvh 2 V j vhjT 2
Qs.T /; T 2 Thg. Here, Qs.T /; s 2 N, is the space of functions obtained
by isoparametric transformations of bilinear ( s D 1 ), biquadratic ( s D 2 )
and in general higher order polynomials defined on a reference unit cell. For
simplicity, we only consider the dG(0) method for the discretization in time
and bilinear shape functions in space. Then, the full space-time discretization
of the state equation seeks ujhk 2 X

s;r
h;k.Ij / and s

j

h 2 V s
h , j D 0; : : : ;M �1,

satisfying the corresponding discretized Galerkin equations. For the technical
details, we again refer to Meidner and Vexler [68], Becker et al. [8] and Carraro
et al. [20].

Remark 4.9. In this article, we only consider the case of a fixed mesh Th for all
discrete time levels. More generally, one could also allow the mesh to change in
time, i.e., use meshes Th;n. In the framework of shooting methods such dynamic
meshes have been used in Hesse and Kanschat [39].

4.5 Numerical Experiments

We illustrate the performance of the IMS method described above by three
numerical examples. We begin with a linear-quadratic OCP that necessitates the
use of a multiple shooting method. This example is then extended by introducing an
additional nonlinearity into the state equation. Finally, the example is additionally
supplemented by a control constraint of box type.

4.5.1 Linear Example

The following test example from Hesse and Kanschat [39] is chosen in order to
demonstrate the necessity of using the multiple shooting method in solving general
nonstationary OPCs:

J.u; q/ WD 1

2
ku.T / � 0:5k2� C ˛

2

Z T

0

kq.t/k2� dt ! minŠ (4.20)

subject to the nonstationary Helmholtz problem

@tu.x; t/ ��u.x; t/� !u.x; t/ D q.x; t/; in � � .0; T �;
u.x; 0/ D u0.x/; in �; u.x; t/ D 0; on @� � Œ0; T �;

(4.21)
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where u0.x/ D cos
�
1
2
x1

�
cos

�
1
2
x2

�
. We choose � D .�1; 1/2 � R

2, T D 5,
and ˛ D 10�2. The parameter ! runs through a set of integers 5 � ! � 10. The
initial value u0.x/ is the eigenfunction corresponding to the smallest frequency
of the Laplacian on � , 	min D 2=2 � 4:9348. The goal is to fit the constant
function Ou.x; 5/ � 0:5 at the end time T D 5 . In Fig. 4, we see that the state
variable obviously tries to match this prescribed value at the end time, but develops a
boundary layer due to the incompatible homogeneous Dirichlet boundary condition.
The adjoint solution resembles a regularized line Dirac function along @� .

For values of ! exceeding 	min there occur instabilities in the state equation
and consequently the behavior of our solution method in simple shooting form may
deteriorate at about ! D 5. This effect is illustrated in Table 6. There, the IMS
method is compared to simple shooting and to a state-of-the-art method described,
e.g., in Becker et al. [8]. The latter method solves the KKT system directly, whereas
simple shooting treats the problem as a BVP and uses Newton’s method to solve
an additional equation representing the shooting system. The comparison is made
with respect to the number of Newton-GMRES steps needed for achieving about
the same accuracy in the optimal values J.q; u/ . These results were obtained on a
four times globally refined spatial mesh of 256 cells and with 500 uniform time
steps. For ! � 5 all three methods yield equally good results. However, for ! > 5
the simple shooting method and the state-of-the-art method are not able to solve the

Fig. 4 Optimal state variable (left) and adjoint variable (right) at end time T D 5

Table 6 Comparison in terms of # of iterations of a state-of-the-art algorithm (StA), simple
shooting (SimS) and multiple shooting with 5 shooting intervals (IMS5)

! # itStA J.u; q/ # itSimS J.u; q/ # itIMS5 J.u; q/

3 36 0.0938 20 0.0938 22 0.0938

5 58 0.0794 20 0.0794 25 0.0794

6 – – – – 25 0.0884

7 – – – – 26 0.0971

8 – – – – 52 0.1058

9 – – – – – –
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problem, whereas the IMS method still works well for increasing !. For ! D 8

two iterations of the outer Newton-type solver (with 26 GMRES iterations each)
are needed to solve the problem, where normally Newton-type methods should only
require one iteration for each linear subproblem. For ! 	 9, using five shooting
intervals is no longer sufficient for solving the problem at all. Table 7 shows that
for larger ! also the least number of required shooting intervals increases due to
increasing ill-conditioning. In this case the preconditioner mentioned in Remark 4.7
turned out to be indispensable.

4.5.2 A Nonlinear Example

Next, we add the nonlinear term u3 to the constraining Helmholtz equation.
Furthermore, our goal is no longer to match a constant function at the end time
T but rather to match a function Ou.x; t/ on the whole time interval. This means
that we want to solve the problem

J.u; q/ WD 1

2

Z T

0

ku � Ouk2� dt C ˛

2

Z T

0

kqk2� dt ! minŠ (4.22)

subject to the nonstationary nonlinear Helmholtz problem

@tu.x; t/ ��u.x; t/ � 7u.x; t/C u3.x; t/ D q.x; t/; in � � .0; T �;
u.x; 0/ D u0.x/; in �; u.x; t/ D 0; on @� � Œ0; T �:

(4.23)

We take � D .�1; 1/2 and T D 5 as before, fix ˛ D 0:5 and ! D 7 at a value
for which simple shooting is expected to fail. Further, we choose the target function

Ou.x; t/ WD
n 2
5
t � .1 � x121 /.1 � x122 /; t � 5

2
;

. 2
5
t � 2/ � .1 � x121 /.1 � x122 /; t >

5
2
;

(4.24)

with zero boundary conditions and a maximum absolute value at the center .0; 0/ of
� . The initial function u0.x/ � 0 is chosen such that it fits the value Ou.x; 0/. The
computations are again carried out on a four times globally refined mesh, but this

Table 7 Minimum number
of shooting intervals (SI)
required for a stable time
integration depending on !

! # iter. SI J.u; q/ Residue

5 20 1 0.0794 8.4e�10

6 22 2 0.0884 7.1e�09

7 23 2 0.0971 1.4e�07

8 43 7 0.1058 3.4e�10

9 48 7 0.1143 2.1e�09

10 48 7 0.1226 7.2e�09
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time, we choose 10 equally distributed shooting intervals each of which comprises
50 interior time steps. Figure 5 shows the temporal development of the state variable
u.0; 0; t/ and control q.0; 0; t/ at different cycles of the MS procedure. In the first
iteration with arbitrary initial values (solid curves), we can clearly distinguish the
10 shooting intervals. The second shooting cycle (dotted curves) is already close to
convergence, but more shooting cycles are needed to reach the prescribed tolerance
(dashed curves).

4.5.3 An Example Involving Control Constraints

Finally, we supplement the above OCP by the box-type control constraint �0:5 �
q.x; t/ � 0:5. Figure 6 shows the computed state and control variable at different
multiple shooting iterations. We see that the control constraint is fulfilled, while
there is only little difference in the optimal state variables. In this case, we need
almost twice as many Newton steps for fulfilling the global continuity conditions as
in the unconstrained case. This could be caused by the preconditioner proposed in
Remark 4.7. For more details on the solution issue, we refer to Carraro et al. [20].
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Fig. 5 State u.0; 0; t / and control q.0; 0; t / at different IMS cycles in the unconstrained case
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280 R. Rannacher

4.6 Final Remarks

The concrete numerical realization of the IMS method suggested in Carraro at al.
[20] is especially well-suited for problems with a high-dimensional control space,
because it avoids the generation of the Hessian matrix during the solution of the
intervalwise OCPs as well as building up the whole Jacobian of the system of
shooting conditions. This matrix-free approach works for nonlinear problems with
or without control constraints. One advantage of the IMS method is the possible use
of already existing algorithms and software for the solution of PDE-based OCPs.
The shooting subproblems can be solved by standard methods while an external
Newton loop acts on the shooting system. A comparison to DMS methods within
the framework of the DWR method for nonlinear PDE-governed OCPs is subject of
current work.

The proper choice of shooting points �j is a critical issue in the PDE context,
since with an increasing number of shooting points the dimension of the shooting
system (4.19) gets ever larger leading to a significant increase in computational
work. Therefore, the determination of the minimal number of shooting points and
their position is crucial for the efficient solution of problems that respond very
sensitively to perturbations in the data. The above numerical results have been
achieved by a trial and error method. In order to avoid such rather cumbersome
processes, criteria are desirable for adaptively determining the optimal total number
of shooting points. However, even for ODE-based boundary value problems with
solution y.t I s/, there are only few results concerning this question. Maier [63]
develops a method that starts from a given shooting point distribution and automat-
ically discards or inserts shooting points whenever necessary, but works only for a
certain problem class. Alternatively, Mattheij and Staarink [64] suggest to impose a
bound for the growth of the sensitivity matrix G.t/ WD d

dsy.t I s/ , which is given as
the solution of a matrix ODE arising from the linearization of the original ODE w.r.t.
the shooting parameter s. Proceeding forward in time, whenever kG.t/k exceeds
a pre-chosen threshold value C (k � k being an arbitrary matrix norm), the current
time-point ti is taken as a new shooting point �j . This approach has some major
deficiencies, e.g., there is no indication how to choose the bounding constant C
reasonably and what to do in the nonlinear case. More importantly, its transfer to
the PDE context is not clear even in the linear case. The necessity of matrix-free
computation means that the sensitivity matrices are not available. We only have
directional derivatives, i.e., choosing a norm of the sensitivities as bounding constant
C is thus not feasible in the PDE case. This issue is currently under investigation.
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Abstract It is well known that singularities in the solution of boundary value
problems due to corners and edges of the domain lead to a reduction of the
convergence order of the standard finite element method when quasi-uniform
meshes are used. It is also well known that locally graded meshes are suited to
recover the optimal convergence order. Less well known are the critical angles when
mesh grading becomes necessary; it is not always the same but depends on the norm
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1 Introduction

Discretization and a priori error estimates of optimal control problems are well
studied topics. It starts with publications from Falk, Geveci, and Malanowski
[16, 18, 20]. The topic came back into the focus of the optimal control community
by a paper from Arada, Casas, and Tröltzsch [14].

Until now, there is a significant number of publications concerning the a priori
error analysis of discretization for optimal control problems. However, most of them
deal with quasi-uniform meshes. Of course, if the domain is polygonal or polyhedral
and has re-entrant corners this is not the appropriate choice. But there are also
situations for convex domains where quasi-uniform meshes do not produce optimal
approximation rates.

In this paper, we will give an overview in which situations locally refined meshes
improve the approximation rates of finite element discretizations for elliptic optimal
control problems. We introduce the idea of graded meshes in a natural way. To keep
the presentation as clear as possible, we desist from defining the whole technical
machinery which is needed to prove the presented results.

The paper is structured as follows. In Sect. 2, we discuss a priori error estimates
for finite element discretizations of the elliptic equation

��y C y D f in � (1)

with Dirichlet boundary condition

y D 0 on � (2)

or Neumann boundary condition

@ny D g on �: (3)

Since we consider week formulations of the elliptic problems, we can easily discuss
nonhomogeneous Neumann boundary conditions, but for simplicity we restrict
ourselves to homogeneous Dirichlet boundary conditions. We assume that the
domain � � R2 is polygonal. In Sect. 3, we consider different types of elliptic
optimal control problems. The extension to the three-dimensional case is explained
in Sect. 4.

2 Regularity and Mesh Grading

The quality of numerical results depends on different aspects. We will discuss in
detail a possible singular behavior of the solution of the elliptic boundary value
problem near the corners of the domain. Moreover, we will assume that the data f
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and g are sufficiently smooth. Consequently, the essential analytical and numerical
difficulties are caused by the corners of the domain.

A common opinion in the community is that uniform meshes are the appropriate
choice for convex domains. We will see that this is only correct in special cases.

2.1 Singular Exponents

The Laplacian as main part of our elliptic partial differential equation (1) allows
us to analyze the behavior in the corner in an explicit way. In order to keep the
notation simple we will focus on one single corner. The polygonal domain has, of
course, more than one corner; hence, a complete discussion would lead to a sum
of these terms for each corner. The inner angle of the single corner is denoted by
! 2 .0; 2/. The distance of a point x 2 � to that corner is denoted by r , and
the corresponding polar angle by �. The solution y of (1), (2), or (1), (3), can be
represented in a form

y D yreg C ysing

where ysing is the singular part of the solution and yreg stays for a (more) regular
part. Using a cut-off function �, the singular part of the solution can be described by

ysing D cs �.r/ r
	 sin.	�/

for Dirichlet boundary conditions and

ysing D cs �.r/ r
	 cos.	�/

for Neumann boundary conditions with 	 D =! and a stress intensity coeffi-
cient cs . Consequently, we have 	 > 1=2 for an arbitrary corner of the polygon. In
any case, we have at least yreg 2 H2.�/.

The quantity 	 is often called singular exponent. The singular exponent describes
the behavior of the solution of the elliptic equation close to a corner. Of course in
a polygonal domain we have several corners and consequently each corner has its
own singular exponent depending on the size of the angle.

Remark 2.1 ([9]). Consider the more general linear elliptic equation

Ly D f in � (1)

with

Ly.x/ WD �
2X

i;jD1

@

@xi

�
aij.x/

@

@xj
y.x/

�
C

2X
iD1

ai .x/
@

@xi
y.x/Ca0.x/y.x/; (2)
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and Dirichlet or Neumann boundary conditions. The regularity of the solution y is
characterized by one particular eigenvalue of an operator pencil, which is obtained
by an integral transformation of the Dirichlet or Neumann boundary value problem
for the equationL0y D g in�, where the operatorL0 is obtained from the principal
part of the operator L by freezing the coefficients in the corner point. That means,
the regularity is not influenced by the lower order terms with the coefficients ai ,
i D 0; 1; 2. Moreover, the coefficient functions aij.x/ are of interest only in the
corner, see, for example, [26]. In that paper the eigenvalue of interest is denoted by
	� 2 C. For our purposes we introduce the real quantity 	 D � Im	�.

In the case of the Dirichlet or Neumann problem for the Laplace operator and a
two-dimensional domain with a re-entrant corner with interior angle ! 2 .; 2/,
the value of 	 is explicitly known, 	 D =!. That means in particular 	 2 .1=2; 1/.
In the more general case of an elliptic operator L we follow [24, Chap. 5] and
consider the linear coordinate transformation y1 D x1 C d1x2, y2 D d2x2, with

d1 D �a12=a22 and d2 D
q
a11a22 � a212=a22. In this way, the differential operator

L0 is transformed into a multiple of the Laplace operator and the neighborhood of
the corner, a circular sector with opening !, into another sector with opening !0.
The quantity of interest is then 	 D =!0. Since !0 2 .; 2/ for ! 2 .; 2/ we
have also in the general case 	 2 .1=2; 1/.

2.2 Quasi-uniform Meshes

We denote the energy space by V , i.e., V D H1
0 .�/ for Dirichlet boundary

condition and V D H1.�/ for Neumann boundary condition. Let us assume a
quasi-uniform mesh of triangles with the associated mesh size h. Moreover we
will use piecewise linear finite elements. The corresponding finite element space
is denoted by Vh � V . We motivate the results for the problem with Neumann
boundary condition.

The finite element solution yh is given as the solution of

.ryh;rvh/� C .yh; vh/� D .f; vh/� C .g; vh/� 8vh 2 Vh (3)

A standard finite element analysis yields

ky � yhkH1.�/ � c inf
vh2Vh

ky � vhkH1.�/:

The best approximation error is given by

ky � yhkH1.�/ � c inf
vh2Vh

ky � vhkH1.�/ � chmin.1;	/kykX	 (4)
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where X	 is an appropriately chosen function space representing the characteristic
singular behavior of the solution. The space X	 may differ in every occurrence
throughout this paper. We found 	 > 1 for convex corners. In this case, we can
set X	 D H2.�/. Consequently, we get the approximation order h for convex
domains. For non-convex corners we have 	 < 1. Thus, the largest angle ! limits
the approximation rate. The space X	 can be chosen as an appropriate Besov space.

Approximation rates in the L2-norm can be obtained by the Aubin-Nitsche trick

ky � yhkL2.�/ � ch2min.1;	/kykX	 : (5)

The finite element error and the interpolation error have the same order in the L2-
norm for convex domains. In contrast to this, the order of the finite element error,
h2	, is worse than the order of the interpolation error, h1C	. The order of the finite
element error cannot be improved in the non-convex case. This can be easily seen
in the case g � 0 because of

ky � yhk2H1.�/
D a.y; y � yh/ D .f; y � yh/� � kf kL2.�/ky � yhkL2.�/:

Next, we consider the approximation rate on the boundary � . We apply the
Aubin-Nitsche trick directly: Let w be the solution of the dual problem

.rv;rw/� D .y � yh; v/� 8v 2 V:

We find for an appropriately chosen interpolant Ihw

.y � yh; y � yh/� D .r.y � yh/;rw/�

D .r.y � yh/;r.w � Ihw//�

� chmin.1;	/kykX	h1=2kwkH3=2.�/

� ch1=2Cmin.1;	/kykX	ky � yhk�
which implies

ky � yhkL2.�/ � ch1=2Cmin.1;	/kykX	 :

However, this simple estimate is only optimal in the non-convex case. An improve-
ment of this estimate in the convex case was obtained in [21]. Numerical experi-
ments indicate a better behavior of approximately

ky � yhkL2.�/ � h1=2Cmin.3=2;	/;

see [21]. Let us mention that the interpolation error has exactly this size. A
corresponding error estimate with an additional logarithmic factor is contained in
the upcoming PhD thesis of Johannes Pfefferer [25].
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Pointwise error estimates are also of interest. The finite element error estimate

ky � yhkL1.�/ � c.1C j loghj/h2 (6)

can be proved for y 2 W 2;1.�/. This regularity property of the solution can only
be expected if the largest angle of the polygon is at most =2.

2.3 Mesh Grading

We have seen, in the last subsection, that uniform meshes can guarantee best
approximation rates only up to a certain size of the largest angle. This behavior
is caused by the singular part of the solution.

2.3.1 The Idea of Mesh Grading

The loss of accuracy is always connected with the factor r	 in the singular part of the
solution. A simple idea (see [23]) is to use a local transformation of coordinates via

r D %1=�:

We will use this transformation in a certain neighborhood of each corner. Let us
denote by �C and�0C the neighborhood and the transformed one. One easily finds

@%%ysing � @%%r
	 D @%%%

	=�

and

y 2 H2.�0C / , 	=� > 1 , � < 	: (7)

For a quasi-uniform discretization with respect to the new variable and mesh size h
we can expect

ky � IhykL2.�0

C /
� ch2jyjH2.�0

C /

for an appropriate interpolant Ihy and � < 	.
Next, we explain how this idea is realized in computations. We denote by hT the

diameter of the element T and by rT its distance to a specific corner. We consider
meshes of the form
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c1h
1=� � hT � c2h

1=� for rT D 0;

c1hr1��T � hT � c2hr1��T for 0 < rT � R;

c1h � hT � c2h for rT > R:

The quantity R describes the radius of the refinement region. This quantity allows
to have a specific mesh grading to more than one corner. Let us mention that � D 1

corresponds to quasi-uniform meshes (no mesh grading). The number of unknowns
is proportional to h�2 like for quasi-uniform meshes.

Usually, the introduced transformation of coordinates does not appear in the
papers. A very similar argumentation can be done in weighted Sobolev spaces. The
corresponding estimate to (4) in the energy space is given by

ky � yhkH1.�/ � chkykX	 (8)

for � < 	. Applying the Aubin-Nitsche trick, we get

ky � yhkL2.�/ � ch2kykX	 ; (9)

again for � < 	.

Remark 2.2. For convex corners we have 	 > 1. Hence, quasi-uniform meshes
represented by � D 1 can guarantee optimal error estimates in the sense of (8)
or (9).

2.3.2 Pointwise Error Estimates

Here we will discuss pointwise error estimates. We start with estimate (6). As
mentioned in the last section, an optimal error estimate for quasi-uniform meshes is
obtained if the solution y belongs to W 2;1.�/.

Again we use the local transformation of coordinates

r D %1=�:

From the relation

@%%ysing � @%%r
	 D @%%%

	=�

we find

y 2 W 2;1.�0C / , 	=� > 2 , � < 	=2: (10)

This derivation indicates that a mesh grading with � < 	=2 guarantees a pointwise
approximation order of .1C j loghj/h2.
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The numerical analysis to this aspect was published in [8, 28] for Dirichlet
boundary conditions where techniques from [27] were adapted to locally refined
meshes. The pointwise error estimate in [28] can be written in the form

ky � yhkL1.�/ � c.1C j loghj/h2kykX	 (11)

for � < 	=2.

Remark 2.3. The estimate (11) shows that mesh grading (� < 1) is necessary to
obtain optimal approximation rates for all corners with interior angle ! > =2.

2.3.3 Error Estimates on the Boundary

Let us now discuss the accuracy of finite element solutions on the boundary. To
obtain the estimate ky � yhkL2.�/ � ch2 for quasi-uniform meshes we need at least
H2-regularity on each side of the polygon. This regularity can only be expected
for angles ! < 2=3. It turns out that some weighted Sobolev space W 2;1

1=2 .�/ is
more appropriate for the numerical analysis. The condition on the angle remains
! < 2=3.

Again, a different mesh grading is necessary to obtain the desired accuracy
for arbitrary polygonal domains. Let us start with the local transformation of
coordinates

r D %1=�:

Now the condition

ysing 2 W 2;1
1=2 .�

0
C /

can be formulated as

%1=.2�/@%%%
	=� 2 L1.�0C /:

This leads to the condition

1

2�
C 	

�
� 2 > 0

which can be equivalently expressed by

� <
1

2

�
1

2
C 	

�
: (12)
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Table 1 Summary of mesh grading results for different norms

Norm Grading parameter Approximation rate Critical angle

ky � yhkH1.�/ � < 	 h 

ky � yhkL2.�/ � < 	 h2 

ky � yhkL1.�/ � < 	=2 .1C j loghj/h2 =2

ky � yhkL2.�/ � < 1
2

�
1
2
C 	� .1C j loghj3=2/h2 2=3

The derivation of approximation rates can be found in [6]. The corresponding
numerical experiments are published in [5]. The error estimate in [6] can be
written as

ky � yhkL2.�/ � c.1C j loghj3=2/h2kykX	 (13)

for � < 1
2

�
1
2

C 	
�
.

Remark 2.4. Mesh grading (� < 1) is necessary for all angles with ! 	 2=3 to
obtain optimal approximation rates in the L2.�/-norm.

2.3.4 Short Overview

In Table 1 we present the principles for the choice of the grading parameter and
the critical angle for quasi-uniform meshes for each specific norm. Recall that the
number of elements for graded meshes has the same order as for quasi-uniform
meshes.

3 Graded Meshes in Optimal Control

As we have seen, mesh grading is useful to obtain good approximation rates for
the numerical solution of an elliptic partial differential equation. These results can
be applied to different types of optimal control problems. We will focus mainly on
results for control constrained problems. However, we will comment on problems
with pointwise state constraints, too.

3.1 Distributed Control

We consider the minimization of

J.y; u/ D 1

2
ky � ydk2

L2.�/
C �

2
kuk2

L2.�/
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subject to

.ry;rv/� C .y; v/� D .u; v/� 8v 2 V;

u 2 U D L2.�/, and

ua � u.x/ � ub a.e. in �:

We assume ua < ub and � > 0.
The discretized problem aims to minimize

Jh.yh; uh/ D 1

2
kyh � ydk2

L2.�/
C �

2
kuhk2L2.�/

subject to

.ryh;rvh/� C .yh; vh/� D .uh; vh/� 8vh 2 Vh;
u 2 Uh, and

ua � uh.x/ � ub a.e. in �:

The first order optimality systems contain the adjoint states p and ph, respec-
tively. The corresponding adjoint equations are given by

.rv;rp/� C .v; p/� D .y � yd ; v/� 8v 2 V;
.rvh;rph/� C .vh; ph/� D .yh � yd ; vh/� 8vh 2 Vh:

In the sequel, we use a bar to indicate optimal solutions.
The choice Uh D U leads to the variational approach by Hinze [19]. In this case,

we can apply directly the relations (5), (6), (9), and (11). We note only the mesh
grading results. We remark that the following estimates include different regularity
assumptions for yd . However, all these assumptions are satisfied for yd 2 C0;� .�/

with an arbitrary � > 0.

Lemma 3.1. Assume � < 	 for the mesh grading and Uh D U . Then we have the
estimate

kNu � NuhkL2.�/ C k Ny � NyhkL2.�/ C k Np � NphkL2.�/ � ch2:

A strong mesh grading � < 	=2 yields

kNu � NuhkL1.�/ C k Ny � NyhkL1.�/ C k Np � NphkL1.�/ � .1C j loghj3=2/ch2:
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Similar results can be obtained for a spaceUh of piecewise constant functions and
a post-processing step. Here an additional assumption is needed. The triangulation
is divided into two parts. In one part of the triangulation the optimal control Nu is
smooth, i.e., it belongs toH2.Ti / for such finite elements Ti . The control Nu has kinks
in finite elements belonging to a second partK of the triangulation. The assumption
jKj � ch is needed to obtain the desired results. The post-processed control Qu is
defined by

Quh D PŒua ;ub �

�
�1
�

Nph
�
:

The following results are contained in [8, 9].

Lemma 3.2. Assume � < 	 for the mesh grading, jKj � ch, and Uh be a space
of piecewise constant functions. Then the estimate

kNu � QuhkL2.�/ C k Ny � NyhkL2.�/ C k Np � NphkL2.�/ � ch2:

is valid. A strong mesh grading � < 	=2 yields

kNu � QuhkL1.�/ C k Ny � NyhkL1.�/ C k Np � NphkL1.�/ � .1C j loghj3=2/ch2:

Remark 3.3. Numerical experiments show the approximation rates of Lemma 3.2
also for piecewise linear controls. However, there is no theoretical justification for
that effect until now.

3.2 Neumann Boundary Control

We consider the minimization of

J.y; u/ D 1

2
ky � ydk2

L2.�/
C �

2
kuk2

L2.�/

subject to

.ry;rv/� C .y; v/� D .f; v/� C .u; v/� 8v 2 V;

u 2 U D L2.�/, and

ua � u.x/ � ub a.e. on �:

We assume ua < ub and � > 0.
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The discretized problem aims to minimize

Jh.yh; uh/ D 1

2
kyh � ydk2

L2.�/
C �

2
kuhk2L2.�/

subject to

.ryh;rvh/� C .yh; vh/� D .f; vh/� C .uh; vh/� 8vh 2 Vh;

uh 2 Uh, and

ua � uh.x/ � ub a.e. on �:

The corresponding adjoint equations are given by

.rv;rp/� C .v; p/� D .y � yd ; v/� 8v 2 V;
.rvh;rph/� C .vh; ph/� D .yh � yd ; vh/� 8vh 2 Vh:

A post-processed control Qu is defined by

Quh D PŒua;ub �

�
�1
�

Nphj�
�
:

For the following result we refer to [6].

Lemma 3.4. Assume � < 1
2
. 1
2

C 	/ for the mesh grading. Then we get for the
variational approach (U D Uh)

kNu � NuhkL2.�/ C k Ny � NyhkL2.�/ C k Np � NphkL2.�/ � c.1C j loghj3=2/h2:

If jKj � ch and Uh is a space of piecewise constant functions then we have

kNu � QuhkL2.�/ C k Ny � NyhkL2.�/ C k Np � NphkL2.�/ � c.1C j loghj3=2/h2

for the post-processing approach.

3.3 Problems with Piecewise State Constraints

Here we consider the minimization of

J.y; u/ D 1

2
ky � ydk2

L2.�/
C �

2
kuk2

L2.�/
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subject to

.ry;rv/� C .y; v/� D .u; v/� 8v 2 V;

u 2 U D L2.�/,

y � yc a.e. in �0;

and possibly

ua � u.x/ � ub a.e. in �:

We assume ua < ub , � > 0, yd 2 L2.�/, �0 � �, and yc 2 C. N�0/.
There are several publications on a priori error estimates for finite element

approximations for smooth domains. Let us mention the basic papers [15, 22].
In both approaches the obtained approximation rate is the square root of the
L1.�0/-error of the state equation using the optimal regularity of the control Nu.
Consequently, an L1.�0/-error estimate for the state equation is a key result to
derive a priori error estimates for state constrained problems. In [27] we find the
estimate for the boundary value problem

ky � yhkL1.�0/ � c..1C j loghj/ inf
vh2Vh

ky � vhkL1.�00/ C ky � yhkL2.�// (1)

implying

ky � yhkL1.�0/ � ch2�2"

with an arbitrary small " > 0 which hides logarithmic terms. For smooth domains
the convergence order for a piecewise linear finite element approximation is the
square root of this expression, i.e.,

kNu � NuhkL2.�/ C k Ny � NyhkL2.�/ � ch1�": (2)

The situation is similar for the case of polygonal domains and �0 �� �. One
can benefit from elliptic regularity for the first term in (1) since the state constraints
are separated from the corner singularities. The second term requires a moderate
mesh grading for non-convex domains, i.e., � < 	. For a mesh grading with � < 	
and �0 �� � the derivation of estimate (2) with the methods of [15, 22] seems to
be possible.

The situation becomes more delicate for �0 D �. A strong mesh grading with
� < 	=2 is already needed for the optimal convergence of the state equation in
the L1-norm. However, the derivation of an approximation result for the optimal
control problem requires additional results like uniform boundedness properties of
discrete solutions in appropriate spaces and additional smoothness properties. We
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expect that the desired approximation properties for the optimal control problem
can be derived using a careful analysis in weighted Sobolev spaces but this is not
done yet.

4 Results for Three-Dimensional Domains

4.1 Regularity

The solution of (1), (2), or (1), (3), can again be written as

y D yreg C ysing:

However, the singular part is in general not as simple as in the two-dimensional case
but it consists of terms that correspond to the edges and the vertices of the domain.

In the vicinity of edges the singular part can be written in cylindrical coordi-
nates as

using.r; �; z/ D cs.r; z/ �.r/ r
	eˆ.�/ (1)

with ˆ.�/ D sin.	e�/ in the case of Dirichlet boundary conditions and ˆ.�/ D
cos.	e�/ in the case of Neumann boundary conditions. The singularity exponent is
	e D =! in both cases, as in the two-dimensional case. The main difference to the
two-dimensional case is that the stress intensity distribution cs is now a function.
Note that this function does in general not only depend on the edge variable z.

In the vicinity of vertices of the domain the singular part can be written in
spherical coordinates as

using.r; �; �/ D cs �.r/ r
	vˆ.�; �/

where .	v; ˆ/ is an eigenpair of a corresponding operator pencil. The eigenpair
is explicitly known only in very special cases, in general is has to be computed
numerically. The stress intensity coefficient, however, is a constant as in the two-
dimensional case.

There are no singular parts if 	e > 1 and 	v >
1
2
, that means the global regularity

can be described by

	 D minf	e; 	v C 1

2
g; (2)

and we have u 2 Hs.�/ for s < 1 C 	. The minimum is taken over all (singular)
edges e and all (singular) vertices v.
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4.2 Discretization with Shape-Regular (Isotropic) Finite
Elements

The discretization of the boundary value problems can be discussed with arguments
similar to Sects. 2.2 and 2.3.

By using piecewise linear finite elements on quasi-uniform meshes we obtain

ky � yhkH1.�/ � chmin.1;	/�"kykX	 ;
ky � yhkL2.�/ � ch2min.1;	/�"kykX	

for arbitrary " > 0 and with 	 from (2). Probably the estimate holds also for " D 0

but an investigation would need regularity results in Besov spaces which are not
known to the authors.

Graded meshes can be introduced as in the two-dimensional case by requiring
that the element diameter hT and the distance rT to the singular edges and vertices
are related by

c1h
1=� � hT � c2h

1=� for rT D 0;

c1hr1��T � hT � c2hr1��T for 0 < rT � R;

c1h � hT � c2h for rT > R:
(3)

As long as � > 1
3

the complexity is the same as for quasi-uniform meshes since
the number of elements is of order h�3. For stronger mesh grading as it would be
required in the case of mixed boundary conditions or discontinuous coefficients,
the number of unknowns would increase to O.h�1=�/ if � < 1

3
, see [10]. For the

discretization error we get

ky � yhkH1.�/ � chkykX	 ; (4)

ky � yhkL2.�/ � ch2kykX	 ; (5)

for sufficient mesh grading with parameter � < 	, see [10] and also [2, 17] for
earlier results. The corresponding pointwise error estimates and estimates of the
error on the boundary (for the Neumann problem) are work in progress.

On the basis of the estimate (5) we proved in [13] that the L2-error estimates of
Lemmas 3.1 and 3.2 (distributed control problems) hold in the three-dimensional
case as well. The error estimates for boundary control problems (Lemma 3.4) are
only currently proved for the three-dimensional case, see [7].

4.3 Anisotropic Discretizations in Tensor Product Domains

The structure of the solution near edges, see (1), reveals that the critical term
r	eˆ.�/ acts only in planes perpendicularly to the edge. The z-derivatives of u are
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much more regular than the derivatives in directions perpendicular to the z-axis. This
indicates that the many elements along the edge, see Fig. 1, might be unnecessary.

The elements of the mesh on the right hand side of Fig. 1 are characterized by
two size parameters. The size in edge direction is the global mesh size h, whereas
only the size hT in perpendicular direction satisfies the usual grading conditions
(3). Note that these elements are not shape regular since the aspect ratio behaves
like O.h1�1=�/ for elements with rT D 0 and like O.r��1T / when rT > 0; we call
them anisotropic. Note that such meshes have O.h�3/ elements independent of the
value of the grading parameter � 2 .0; 1�.

Since some standard error estimates for the local interpolation error do not hold
for anisotropic elements, the proof of estimate (5) was proved only recently, [11],
although estimate (4) was proved already about 20 years earlier, [1]. Based on
this result we proved in [12] that the L2-error estimates of Lemmas 3.1 and 3.2
(distributed control problems) hold in the three-dimensional case as well. Error
estimates in the L1.�/- and the L2.�/-norms are not proved for anisotropic
meshes until now.

4.4 Anisotropic Discretization in General Polyhedral Domains

For treating general polyhedral domains with anisotropic grading near edges one
needs to combine this with isotropic grading towards the singular corners. In [4] we
devised the strategy first to split the domain into O.1/ macro-elements (tetrahedra)
such that each macro-element touches at most one singular edge and at most one
singular vertex. We described the regularity of the elliptic equation in these macro-
elements and, based on this, devised a local refinement strategy for each type of
macro-element. Due to limitations of the Lagrange interpolation we were, however,
only able to prove the H1-error estimates (4) for the boundary value problem. Only
recently, we succeeded to construct a quasi-interpolation operator that allowed to

Fig. 1 Isotropic versus anisotropic mesh grading near an edge
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prove the estimate (5) in the L2-norm, see [3]. An immediate consequence for
the variational discretization of distributed optimal control problems in polyhedral
domains is that Lemma 3.1 holds as well for this kind of graded mesh, [3].

4.5 Summary of Sect. 4

In the three-dimensional case we have to consider edge and vertex singularities.
Nevertheless, the solution is characterized by the quantity 	 defined in (2). For the
treatment of the edge singularities one has to decide between the more convenient
isotropic and the more efficient anisotropic mesh grading. Both types of grading are
controlled by a grading parameter � which, as a rule of thumb, should be chosen as
given in Table 1. The theory in the three-dimensional case is an ongoing research
topic and not yet finished.
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to 5–10, this cannot be achieved in all situations and even if this is possible, these
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1 Introduction

Optimal control problems for partial differential equations are often hard to tackle
numerically because their discretization leads to very large scale optimization
problems. Therefore different techniques of model reduction were developed to
approximate these problems by smaller ones that are tractable with less effort.

One popular model reduction technique for large-scale state-space systems is
the moment matching approximation considered first in [28, 30]. This method is
based on projecting the dynamical system onto Krylov subspaces computed by
an Arnoldi- or Lanczos process. Krylov methods prove to be efficient for large-
scale sparse systems, since only matrix-vector multiplications are required. The
moment matching method shows the drawbacks that stability and passivity are not
necessarily preserved in the reduced-order system and that there is no global approx-
imation error bound; see, e.g., [7, 39]. Balanced truncation [92] is another well
studied model reduction technique for state-space systems. This method utilizes the
solutions to two Lyapunov equations, the so-called controllability and observability
Gramians. The balanced truncation method is based on transforming the state-space
system into a balanced form so that its controllability and observability Gramians
become diagonal and equal. Moreover, the states that are difficult to reach or
to observe, are truncated. The advantage of this method is that it preserves the
asymptotic stability in the reduced-order system. Furthermore, a-priori error bounds
are available. Recently, the theory of balanced truncation model reduction was
extended to descriptor systems; see, e.g., [61] and [43]. Both the moment matching
approximation and the balanced truncation approach do not rely on snapshots, which
have to be taken more or less arbitrarily. For an overview we refer the reader to
[3,78]. However, up to now, both strategies can be applied more or less only to linear,
time-invariant dynamical systems and do not yet cover time variant or nonlinear
models. There are attempts to deal with time variant equations by approximating
them through piecewise constant models; see, e.g., [14].

Recently the application of reduced-order models to linear time varying and
nonlinear systems, in particular to nonlinear control systems, has received an
increasing amount of attention. The reduced-order approach is based on projecting
the dynamical system onto subspaces consisting of basis elements that contain
characteristics of the expected solution. This is in contrast to, e.g., finite element
techniques, where the basis elements of the subspaces do not relate to the physical
properties of the system that they approximate. The reduced basis (RB) method, as
developed in [35, 66] and [51], is one such reduced-order method, where the basis
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elements correspond to the dynamics of expected control regimes. Let us refer to
[26, 44, 63, 68] for the successful use of reduced basis method in PDE constrained
optimization problems. Currently Proper Orthogonal Decomposition (POD) is
probably the mostly used and most successful model reduction technique for
nonlinear optimal control problems, where the basis functions contain information
from the solutions of the dynamical system at pre-specified time-instances, so-called
snapshots. Due to a possible linear dependence or almost linear dependence the
snapshots themselves are not appropriate as a basis. Hence a singular value
decomposition is carried out and the leading generalized eigenfunctions are chosen
as a basis, referred to as the POD basis. POD is successfully used in a variety of
fields including fluid dynamics, coherent structures [1, 4] and inverse problems [8].
Moreover, in [6] POD is successfully applied to compute reduced-order controllers.
The relationship between POD and balancing was considered in [56, 75, 90]. An
error analysis for non-linear dynamical systems in finite dimensions was carried out
in [71] and a missing point estimation in models described by POD was studied in
[5]. Let us also mention that POD and the reduced basis method are successfully
combined by variants of the POD greedy algorithm; see [42] and [41], for instance.

Reduced-order models are used in PDE-constrained optimization in various
ways; see, e.g., [37,48,76] for a survey. In optimal control problems it is sometimes
necessary to compute a feedback control law instead of a fixed optimal control. In
the implementation of these feedback laws, models of reduced order can play an
important and very useful role, see [2, 6, 31, 55, 58, 72]. Another useful application
is the use in optimization problems, where a PDE solver is part of the function
evaluation. Obviously, thinking of a gradient evaluation or even a step-size rule in
the optimization algorithm, an expensive function evaluation leads to an enormous
amount of computing time. Here, the reduced-order model can replace the system
given by a PDE in the objective function. It is quite common that a PDE can be
replaced by a five- or ten-dimensional system of ordinary differential equations.
This results computationally in a very fast method for optimization compared to the
effort for the computation of a single solution of a PDE. There is a large amount
of literature in engineering applications in this regard, we mention only the papers
[60, 64]. Recent applications can also be found in finance using the RB model [67]
and the POD model [80] in the context of calibration for models in option pricing.

To explain the reduced-order modelling we choose the following generic nonlin-
ear optimal control problem: Minimize the cost functional

J.y; u/ D 1

2

Z T

0

Z
�

jy.t;x/� yd .t;x/j2 dxdt C �

2
kuk2U (1.1a)

subject to the semilinear parabolic partial differential equation

yt .t;x/ ��y.t;x/C f .t;x; y.t;x// D .Bu/.t;x/; .t;x/ 2 Q;
y.t;x/ D 0; .t;x/ 2 †;
y.0;x/ D y0.x/; x 2 �

(1.1b)
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and to the control constraints

u 2 Uad: (1.1c)

In (1.1) we suppose that T > 0 holds and the spatial domain � � R
d , d 2

f1; 2; 3g, is a bounded open set with Lipschitz-continuous boundary � . We set
Q D .0; T / � � and † D .0; T / � � . Furthermore, the set Uad 
 U of
admissible controls is a closed and convex subset of a Hilbert space U , which
is identified by its dual space U 0. Let us refer to the recent paper [38], where
the authors investigate a state-constrained linear-quadratic optimal control problem
using proper orthogonal decomposition. Let us set H D L2.�/ and V D H1

0 .�/

with dual space V 0 D H�1.�/. In (1.1a) we suppose that yd belongs toL2.0; T IH/
and � > 0 holds. Let f W Q � R ! R contain the semilinear term and the control
operator B W U ! L2.0; T IH/ be linear and continuous. Finally, we suppose that
y0 2 L2.�/. For given control u 2 Uad a solution to (1.1b) is understood as a weak
solution, i.e., y satisfies

d

dt
hy.t/; 'iH C

Z
�

ry.t/ � r' C �
f .t; � ; y.t// � .Bu/.t/

�
' dx D 0

8' 2 V; t 2 .0; T �;
hy.0/; �iH D hy0; �iH 8� 2 H;

(1.1b0)

where y.t/ stands for y.t; � / as a function in the spatial variable x. We suppose
that (1.1b0) admits a unique weak solution y D y.u/ for any u 2 Uad. We refer to
[19, 73] for sufficient conditions, but also for the proof that (1.1) possesses a local
optimal solution Nx D . Ny; Nu/. Let us introduce the so called reduced cost functional1

OJ .u/ D J.y.u/; u/; u 2 Uad;

where y.u/ is the unique weak solution to (1.1b0).
The paper is organized as follows: First we consider two venues how to discretize

a PDE-constrained optimization problem followed by an introduction to POD-based
methods. We address various aspects about the proper choice of the POD basis in
the course of the optimization. The fourth section is devoted to system-theoretic
aspects such as techniques based on Krylov subspaces and system balancing.

1Not to be confused with the “reduced-order” terminology used in the model reduction context—
here, “reduced” means that the cost functional is written in dependence of the control only, using
the fact that the weak solution y.u/ is uniquely determined by the chosen u!
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2 Optimization with Surrogate Models

The reduced-order approximation to (1.1) can be derived by a discretize-then-
optimize or by an optimize-then-discretize approach. In the first case, the optimal
control problem is projected onto the reduced-order subspace and the resulting
low-dimensional optimal control problem is solved by appropriate optimisation
methods., like, e.g., a sequential quadratic programming algorithm [65, Chapter 18].
In the second case, we start by deriving optimality conditions for (1.1) and discretize
the obtained conditions by a reduced-order projection.

Next we describe both approaches for (1.1). Suppose that  1; : : : ;  ` 2 V are
given linearly independent functions in V . Then, we define the subspace V ` D
span f 1; : : : ;  `g. Let us mention that we avoid a discretization of the control space
U ; see [47].

2.1 Discretize-Then-Optimize

In this approach we only replace the state y by a reduced-order approximation. For
that reason we introduce the affine Galerkin ansatz

y`.t/ D yp.t/C
X̀
iD1

y`i .t/ i ; t 2 Œ0; T �; (2.1)

with a chosen particular element yp.t/ 2 V and coefficient functions y`i W Œ0; T � !
R, 1 � i � `. Then, the reduced-order Galerkin projection for (1.1) reads as follows:

minJ.y`; u/ D
Z T

0

Z
�

ˇ̌
y`.t/ � yd .t/

ˇ̌2
dxdt C �

2
kuk2U (2.2a)

subject to the projected nonlinear dynamical system

d

dt
hy`.t/;  iH C

Z
�

ry`.t/ � r C �
f .t; � ; y`.t// � .Bu/.t/

�
 dx D 0 (2.2b)

8 2 V `; t 2 .0; T �;
hy`.0/;  iH D hy0;  iH 8 2 V `

and

u 2 Uad: (2.2c)

Notice that (2.2b) is a finite-dimensional system of ordinary differential equations
for the coefficient vector y` D .y`1; : : : ; y

`
`/
T W Œ0; T � ! R

`. Throughout this work
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we suppose that there exists a unique weak solution y` D y`.u/ to (2.2b) for any u 2
Uad. Then, we can define the reduced cost functional associated with the reduced-
order approximation as follows:

OJ `.u/ D J.y`.u/; u/; u 2 Uad;

where y`.u/ denotes the weak solution to (2.2b).

2.2 Optimize-Then-Discretize

Using a Lagrangian framework it is straightforward to derive first-order necessary
optimality conditions for (1.1); see, e.g., [46, Chapter 1]. Assuming that . Ny; Nu/ is
a local optimal solution to (1.1) and that a constraint qualification condition is
satisfied, there exists a Lagrange multiplier or dual variable Np satisfying together
with Nx D . Ny; Nu/ the following adjoint or dual equation [85, Chapter 6]

� d

dt
h Np.t/; 'iH C

Z
�

r Np.t/ � r' C fy.t; � ; Ny.t// Np.t/' dx

D
Z
�

�
yd .t/ � Ny.t/�' dx 8' 2 V; t 2 .0; T �;

h Np.T /; �iH D 0 8� 2 H
(2.3a)

and the variational inequality

h� Nu � B? Np; u � NuiU 	 0 8u 2 Uad (2.3b)

where B? W L2.0; T IH/ ! U denotes the adjoint operator of B. Now, the state
equation (1.1b0) as well as the system (2.3) are discretized by a reduced-order
Galerkin scheme. Here, we choose the same Galerkin ansatz functions as for the
state variable which its motivated by the error analysis in [37]. Analogous to (2.1)
we make the ansatz

p`.t/ D pp.t/C
X̀
iD1

p`i .t/ i ; t 2 Œ0; T �; (2.4)

for the adjoint variable, where pp.t/ 2 V is a chosen particular function and
p`i W Œ0; T � ! R stands for the ` nodal coefficient functions. Then, we arrive
at the following reduced-order system for the unknown reduced-order solution
Nx` D . Ny`; Nu`/ and Np`
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d

dt
h Ny`.t/;  iH C

Z
�

r Ny`.t/ � r C �
f .t; � ; Ny`.t// � .B Nu`/.t/� dx D 0;

hy`.0/;  iH D hy0;  iH ;

� d

dt
h Np`.t/;  iHC

Z
�

r Np`.t/ � r C�fy.t; � ; Ny`.t// Np`.t/C Ny.t/� yd .t/
�
 dxD 0;

h Np`.T /;  iH D 0

for all  2 V `, t 2 Œ0; T � and

h� Nu` � B? Np`; u � Nu`iU 	 0 8u 2 Uad:

To solve the obtained reduced-order scheme for the first-order necessary optimality
conditions one can apply, e.g., semismooth Newton [45] or interior point methods
[77, 87].

3 POD-Based Methods

LetX be either the spaceH or the space V . InX we denote by h � ; � iX and k � kX D
h � ; � i1=2X the inner product and the associated norm, respectively. Notice that X is
separable, i.e., X has a countable dense subset. This implies that X possesses a
countable orthonormal basis; see, e.g., [74, p. 47].

For fixed n; } 2 N let the so-called snapshots wk1 ; : : : ;w
k
n 2 X be given for

1 � k � }. To avoid a trivial case, we suppose that at least one of the wkj ’s is
nonzero. Then, we introduce the finite-dimensional, linear subspace

V D span
n
wkj j 1 � j � n and 1 � k � }

o
� X (3.1)

with dimension d 2 f1; : : : ; n}g. We call the set V snapshot subspace.The method
of POD consists in choosing a complete orthonormal basis f i g1iD1 in X such that
for every ` 2 f1; : : : ; d ng the mean square error between the n} elements wk` and
their corresponding `-th partial Fourier sum is minimized on average:

8̂
ˆ̂<
ˆ̂̂:

min
}X
kD1

nX
jD1

˛j

���wkj �
X̀
iD1

hwkj ;  i iX  i
���2
X

s.t. f i g`iD1 � X and h i ;  j i
X

D ıij; 1 � i; j � `;

(3.2)

where the ˛j ’s denote positive weighting parameters. Here, the symbol ıij denotes
the Kronecker symbol satisfying ıii D 1 and ıij D 0 for i ¤ j . An optimal solution
f N ni g`iD1 to (3.2) is called a POD basis of rank `.
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To solve (3.2) we define the linear operator R W X ! X as follows:

R D
}X
kD1

nX
jD1

˛j h ;wkj i
X

wkj for  2 X (3.3)

with positive weights ˛1; : : : ; ˛n. Then, R is a compact, nonnegative and selfadjoint
operator. Suppose that f N	ig1iD1 and f N ni g1iD1 denote the nonnegative eigenvalues and
associated orthonormal eigenfunctions of R satisfying

R N i D N	i N i ; N	1 	 : : : 	 N	d > N	dC1 D : : : D 0:

Then, for every ` 2 f1; : : : ; d g, the first ` eigenfunctions f N i g`iD1 solve (3.2).
Moreover, the value of the cost evaluated at the optimal solution f N i g`iD1 satisfies

}X
kD1

nX
jD1

˛j

���wkj �
X̀
iD1

hwkj ; N i iX N i
���2
X

D
dX

iD`C1
N	i :

For more details we refer the reader to [48, 50] and [37, Chapter 2], for instance.

Remark 3.1. (a) In the context of the optimal control problem (1.1) a reasonable
choice for the snapshots is w1j � y.tj / and w2j � p.tj / for the time grid 0 D
t1 < : : : < tn D T . Utilizing new POD error estimates for evolution problems
[20,82] and optimal control problems [49,86], convergence and rate of conver-
gence results are derived for linear-quadratic control constrained problems in
[37] for the choices X D H and X D V .

(b) For the numerical realization, the space X has to be discretized by, e.g., finite
element discretizations. In this case the Hilbert space X has to be replaced by
an Euclidean space R

m endowed with a weighted inner product; see [37].

3.1 A-Posteriori Error Analysis

In contrast to methods of balanced truncation type, the POD method is somehow
lacking a reliable a-priori error analysis. Unless its snapshots are generating a
sufficiently rich state space, it is not a-priorily clear how far the optimal solution
of the POD problem is from the exact one. On the other hand, the POD method is
a universal tool that is applicable also to problems with time-dependent coefficients
or to nonlinear equations. Moreover, by generating snapshots from the real (large)
model, a space is constructed that inhibits the main and relevant physical properties
of the state system. This, and its ease of use makes POD very competitive in practical
use, despite of a certain heuristic flavor.

Based on a perturbation argument [27] it is derived in [53, 86] how far the
suboptimal control Nu`, computed on the basis of the POD model, is from the
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(unknown) exact Nu. Let D be an open, bounded subset of R
p and U D L2.D/.

By Uad � U we define the closed, convex and bounded subset

Uad D ˚
u 2 L2.D/ ˇ̌ ua.s/ � u.s/ � ub.s/ for almost all s 2 D

�

with ua; ub 2 L2.D/ satisfying ua � ub in D a.e. Suppose that f � 0 holds, i.e.,
(1.1b) is a linear evolution problem. Then, the error estimate reads as follows:

kNu` � NukU � 1

�
k
`kU ; (3.4)

where the computable perturbation function 
` 2 U is given by


` D

8̂
<̂
ˆ̂:

� min
�
0; � Nu` � B? Qp`� in A`

a D ˚
s 2 D

ˇ̌ Nu` D ua a.e.
�
;

max
�
0; � Nu` � B? Qp`� in A`

b D ˚
s 2 D

ˇ̌ Nu` D ub a.e.
�
;

� �
� Nu` � B? Qp`� in D n �A`

a [ A`
b

�
:

Furthermore, Qy and Qp solve

d

dt
h Qy`.t/; 'iH C

Z
�

r Qy`.t/ � r' � .B Nu`/.t/' dx D 0;

h Qy`.0/;  iH D hy0;  iH ;

� d

dt
h Qp`.t/; 'iH C

Z
�

r Qp`.t/ � r' C � Qy`.t/ � yd .t/
�
' dx D 0;

h Qp`.T /; 'iH D 0

for all ' 2 V , t 2 Œ0; T �. It is shown in [37, 86] that k
`kU tends to zero as `
tends to infinity. Hence, increasing the number of POD ansatz functions leads to
more accurate POD suboptimal controls. This idea turns out to be numerically very
efficient. For linear-quadratic problems we refer to [37, 38, 83, 84, 89]. It is able
to compensate for the lack of a priori analysis for POD methods. The analysis
is extended to nonlinear optimal control problems in [26, 53]. For a parameter
estimation example we also refer to [57]. Unfortunately, the a-posteriori error
estimates requires a lower bound for the smallest eigenvalue of the reduced Hessian,
which is—unless the control space is low dimensional—usually computationally
expensive. Another approach is to use the a-posteriori error estimate in an inexact
sequential quadratic programming (SQP) approach, where the sufficient accuracy
of each level of the SQP method is guaranteed by the error control; see [52]. Let
us mention that there is related work also available in the reduced-basis literature;
see, e.g., [24, 34, 63]. Here, the authors concentrate on deriving online efficient
a-posteriori error estimators.
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3.2 Optimality System POD

The accuracy of the reduced-order model can be controlled by the a-posteriori error
analysis presented in the previous subsection. However, if the POD basis is created
from a reference trajectory containing features which are quite different from those
of the optimally controlled trajectory, a rather huge number of POD ansatz functions
have to be included in the reduced-order model. This fact may lead to non-efficient
reduced-order models and numerical instabilities. To avoid these problems, the
POD basis is generated in an initialization step utilizing optimality system POD
(OS-POD); see [54]. In OS-POD, the POD basis is updated in the direction of the
minimum of the cost. Recall that the POD basis is computed from the state y D y.u/
with some control u 2 Uad. Thus, the reduced-order Galerkin projection depends
on the state variable and hence on the control u at which the eigenvalue problem
R i D 	i i for i D 1; : : : ; ` is solved for the basis f i g`iD1. This may deter
from one of the main advantages of the POD approach for model reduction, which
consists in the fact that unlike typical finite element basis functions the elements of
the POD basis reflect the dynamics of the system. In optimal control this feature
gets lost if the dynamics of the state corresponding to the reference control is
significantly different from the trajectory corresponding to the optimal approach.
Hence, we propose to consider the extended problem [54]:

minJ.y`; u/ s.t.

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

z D .y`; y; 	i ;  i /; u 2 Uad

.y`; u/ 2 H1.0; T IV `/ � Uad satisfy (2.2b);

.y; u/ satisfy (1.1b0);

R.y/ i D 	i i ; 1 � i � `:

(P`ospod)

Notice that the second line of the constraints in (P`ospod) coincide with the constraints
in (2.2), the next two are the infinite-dimensional state equation and the eigenvalue
problem characterizing the POD basis. For the optimal solution the problem
formulation (P`ospod) has the property that the associated POD reduced system
is computed from the trajectory corresponding to the optimal control and thus,
differently from (2.2), the problem of unmodelled dynamics is removed. Of course,
(P`ospod) is more complicated than (2.2). For practical realization an operator splitting

approach is used in [54], where also sufficient conditions are given so that (P`ospod)

possesses a unique optimal solution . Ny`; Ny; N	i ; N i ; Nu`/, which can be characterized
by first-order necessary optimality conditions. Convergence results for OSPOD are
studied in the Ph.D thesis [62]. The combination of OS-POD and a-posteriori error
analysis is investigated in the paper [88] and the recent master thesis [36].
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3.3 Trust Region POD

In PDE-constrained optimization the use of reduced order models is highly efficient,
since the complex and time-consuming constraint in form of a partial differential
equation is replaced by a relatively small system of ordinary differential equations.
There is, however, one caveat that needs to be addressed. Suppose, one uses a
reduced order model as in (2.2a)–(2.2b), where the state y`k is based on a reduced
order model at a certain control vector uk . Then it is usually numerically very
efficient to minimize this reduced order model and obtain a solution . Ny`; Nu/.

J. Ny; Nu/ � J.y`k; u/ for all .y`k; u/ that satisfy (2.2b):

The problem that might occur is the fact that during this minimization one usually
moves away from the original control uk on which the reduced order model was
built. In this case, it could happen that the quality of the model deteriorates and, in
particular, Ny` is no longer a good approximation of the solution Ny to the full model.

In [1], a direct estimate is used to monitor the accuracy of the model. In [4] a
trust region approach was proposed to manage updating the reduced order model.
The trust region method is a well known method for the globalization of locally
convergent methods like Newton’s method. Here the quadratic Taylor expansion is
used as a model function for the nonlinear objective function. However, it is known
that this globalization strategy also works for nonlinear models. Hence, one could
use it also in this context, where a nonlinear model is replaced by another nonlinear
model, e.g. POD, but of much smaller complexity than the original one.

The main key for controlling the quality of the model approximation in the trust
region framework is the comparison between the predicted reduction starting from
full model evaluation at .yk; uk/

vpred D OJ `.Nu/ � OJ .uk/
and the actual reduction

vactual D OJ .Nu/� OJ .uk/;
where Ny is the true solution at the control Nu. If the quotient � D vpred=vactual is close
to 1, then the reduced model is a good model and we accept Nu as ukC1 and likewise Ny
as ykC1. If � differs significantly from 1, we have to modify the model, for example,
by introducing more snapshots or restricting the controls to a ball around uk.

One drawback of this strategy is the evaluation of the full model at the control
u�. This problem can be alleviated by the introduction of a hierarchy of models, e.g.
created by different fine discretizations of the PDE, and the full model in this case
is replaced by the next finer model. In this way, when approaching the finest level in
the hierarchy, we already are very close to the optimal point. This approach is also
closely related to multifidelity optimization.

With respect to convergence in an optimization framework, the accuracy of
the gradient of the model function has to be monitored. As it is shown in [80],
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a-priori-estimates on the accuracy of the POD approximation can be used to
establish error bounds for the distance between the gradient of the model function
and the original function.

Trust region POD (TRPOD) is meanwhile a well established method in appli-
cations: In the control of fluid flow problems, applications of TRPOD go back to
Bergmann and Cordier [17]. More recently, Navon and co-workers [21] use this
methodology in order to accomplish a 4-D VAR simulation for the shallow water
equation. In [91], the TRPOD framework is combined with an efficient error bound
for defining the trust region in the design optimization of vibrating structures using
frequency domain formulations. An application of TRPOD to the optimization of
simulated moving bed chromatography (a separation process in chemical process
engineering) is discussed in [59]. Also, in financial applications, reduced order
models, see [22] or [79], are gaining importance and TRPOD is a promising tool
in the calibration process.

In [33] the Carter condition

kr OJ .uk/� r OJ `.uk/kU � � kr OJ `.uk/kU ; � 2 .0; 1/;

which is essential for the convergence of the inexact trust region method, is
replaced by an a posteriori error estimation in order to control the reduced-order
approximation of the reduced cost functional. For that purpose error estimates for
the state and the dual variable are utilized. This offers a bridge between trust region
POD and the a posteriori analysis presented in Sect. 3.1.

4 System-Theoretic MOR Approaches

A disadvantage of POD-based methods is that the control function u.t/ has to be
chosen in advance in order to compute the training set. As this reference control
may differ significantly from the optimal control, the reduced order model may not
be suitable for optimization, or the optimal control computed using the reduced
order model may be too far away from the one obtained from the full-order model.
The alternative OS-POD avoiding this problem is discussed in Sect. 3.2. As already
noted there, solving the extended problem (P`ospod) is computationally challenging.
The advantage of using system-theoretic approaches is that these are so-called
“simulation-free” methods which do not require training sets. The quality of the
reduced order model thus is independent of the chosen control function u.t/. For the
purpose of deriving error bounds, it is usually assumed that Uad D L2.0;1IRm/,
that is, we assume m scalar input functions that are square-integrable for an infinite
time horizon. It should be stressed, though, that this assumption is only required for
the derivation of error bounds for the reduced order models, while the model itself
is applicable of course also in the presence of control constraints or other spaces of
admissible control functions.

The starting point for system-theoretic approaches to model order reduction is
the description of a mathematical model as a linear or nonlinear system. As these
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methods were developed mainly for linear problems, and extensions to nonlinear
problems exist, but are either based on heuristics or are computationally intractable,
we only discuss the application to linear systems here. But significant progress in
nonlinear model reduction using system-theoretic concepts can be expected in the
near future and this may then lead to useful methods also in the context of PDE
constrained optimization.

Thus, in the following we will consider linear, time-invariant (LTI) systems

MPy.t/ D �Sy.t/C QBu.t/ (4.1a)

z.t/ D Cy.t/; (4.1b)

for a given initial condition y.0/ D y0 2 R
N . Here, y is the state of the system and

in this context is usually the discrete vector obtained by discretization of (1.1b0),
i.e., yj .t/ are the coefficients in the ansatz y.t/ � PN

jD1 yj .t/ j , with basis
functions  j of the chosen trial space, when evaluating hy.t/; �j iH for the basis
functions �j 2 VN , j D 1; : : : ; N , where VN � V is the chosen N -dimensional
space of test functions. In this setting, M and S contain the corresponding mass
and stiffness matrices and QB is the discretized version of the input operator B. The
second equation in (4.1) is called the output equation, and z.t/ 2 R

q is a vector
of quantities of interest which in the setting considered here could be derived from
a linear cost functional z.t/ D L.y/.t/ which might be goal of optimization. In
practice, it is often a model for the possible measurements of the system, i.e., it
is assumed that the full state y is not accessible for measurements. In case one
assumes all state information is available, one might simply set C D IN , the identity
matrix on R

N . We will discuss the use of the output equation in the context of PDE
constrained optimization below.

As the mass matrix M is invertible, for the clarity of presentation we work with
the transformed system

Py.t/ D Ay.t/C Bu.t/ (4.2a)

z.t/ D Cy.t/; (4.2b)

where A WD �M�1S and B WD M�1 QB. It should be noted, though, that we do this
only formally, that is, in all computations of reduced order models, one never forms
A;B explicitly but works with the original QB and the usually sparse matrices M;S in
order to avoid fill-in as well as possible round-off errors implied by ill-conditioning
of M.

The core observation of system-theoretic approaches is that the relation from
inputs u to the outputs z can be represented algebraically using the Laplace
transform, yielding

z.s/ D C.sIN � A/�1Bu.s/ DW G.s/u.s/; (4.3)

where by abuse of notation, we denote the Laplace transforms of z; u again by
z; u, and s 2 C is the Laplace variable. The transfer function matrix (TFM) G is
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a complex q �m matrix for any s whose entries are scalar real rational functions of
a complex variable and with degree less than or equal to N . The particular case of
a single input, single output (SISO) system with m D q D 1 is often of particular
interest in PDE constrained optimization as many problems can be formulated such
that a single quantity is to be minimized using only a scalar control function u.t/.

Equation (4.3) shows that the output of the system can be well approximated
when we can find a reduced order model with TFM G` for which kG.:/ � G`.:/k is
small in an appropriate norm. It is convenient here to use L2-related norms as they
result in L2- or L1-norm error bounds for z.:/� z`.:/, where z` is the output of the
reduced order model. Therefore it is the aim to find a reduced order LTI system

Py`.t/ D A`y`.t/C B`u.t/; (4.4a)

z`.t/ D C`y`.t/; (4.4b)

where y`.t/ 2 R
` with ` � N and corresponding matrices of compatible sizes such

that the TFM

G`.s/ D C`.sI` � A`/�1B` (4.5)

of (4.4) approximates G well. The strength of system-theoretic model reduction
methods now shows in the fact that the reduced order model (4.4) uses the same
control function u.t/ as the full-order model (4.2). Thus, neither a discretization
of the input space U nor an a priori choice of a reference control u are necessary,
and the optimal control Nu obtained from using (4.4) as surrogate in the optimization
process can be directly applied in the full-order model (4.2) or even in the original
PDE problem when the problem is formulated such that only the amplitude of the
control signal is subject to optimization.

In the following, we will discuss the two main concepts used in model order
reduction of LTI systems of the form (4.2). Both are based on Petrov-Galerkin
projection, i.e., the reduced order model is computed using two full-rank matrices
V;W 2 R

N�`:

A` WD W TAV; B` WD W T B; C` WD CV; (4.6)

corresponding to projecting the state-space onto range.W / and using the ansatz
y.t/ � V y`.t/. The basis matrices V and W for the trial and test spaces are chosen
to be bi-orthonormal, i.e.,W TV D I` such that VWT becomes an oblique projector.
Inserting the ansatz into (4.4) leads to a nonzero residual V Py` � AVy` � Bu which
obviously is orthogonal to range.W / as

W T .V Py` � AVy` � Bu/ D Py` � A`y` � B`u D 0:

In this sense, all the considered methods in this section are Petrov-Galerkin methods
and become Galerkin projection methods when W D V . The two model reduction
techniques discussed in the following subsections only differ in the way V;W are
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computed, and in the resulting theoretical properties of the reduced order model. For
more details on system-theoretic model order reduction techniques, consult, e.g., the
recent monographs, edited volumes and survey papers [3, 10, 14, 78]. Also note that
extensions to so-called descriptor systems, where M in (4.1) is singular, are possible,
see, e.g., [14, Chapter 3].

4.1 Rational Interpolation Based Techniques

The first family of system-theoretic model order reduction methods is based on
(rational) interpolation of the TFM. The interpolant is chosen as a rational matrix
function of lower degree satisfying certain interpolation conditions. Hence, the
original and reduced order TFMs (and some of their first derivatives) coincide:

dj

dsj
G.sk/ D dj

dsj
G`.sk/; k D 0; : : : ; K; j D 0; : : : ; Jk; (4.7)

where the interpolation points sk are chosen such that .A � skIN / is nonsingular.
Practically this is usually realized by certain Krylov subspace methods.

The classical approach using K D 0 and a sufficiently large JK , leading to
rational Hermite interpolation at s0, has become popular as moment matching or
Padé(-type) approximation since the mid-1990s. These methods can be derived by
power series expansions of the TFMs of the original and reduced order systems
about s0. The reduced order model is then determined so that the first coefficients
in the series expansions match. In this context, the coefficients of the power series
expansions are called moments, explaining the name “moment matching”. Padé-
approximation in this context means that the number of matching moments is
maximized for a given degree of the approximating rational function G`. The
observation that a reduced order model with the moment matching property is
obtained by applying r steps of the (block) Arnoldi or Lanczos processes to
.A � s0IN /

�1 or its (real) transpose with B or CT as starting (block) vector and
using bi-orthonormal bases of the resulting Krylov subspaces Kr ..A � s0IN /�1;B/
and Kr ..AT � s0IN /

�1;CT / for V and W was the breakthrough of this approach
as model reduction method—previous attempts employing explicit computations
of the moments were so prone to round-off errors that they could not be used in
practice, see [28, 30] for details.

For the SISO case, one obtains r D ` and J0 D 2r � 1. The bi-orthonormal
bases for the two Krylov subspaces are obtained automatically using the two-sided
(unsymmetric) Lanczos process. One can also run the standard Arnoldi process for
both Krylov subspaces independently and enforce bi-orthonormality afterwards to
obtain the same results. Using only one of the Krylov subspaces and V D W , one
has only J0 D r � 1, but the computation can be performed with the stable Arnoldi
process and orthogonal projection can be used to compute the reduced order model.
This is beneficiary if A is, e.g., negative definite as for stiffness matrices resulting
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from the Galerkin finite element methods for linear diffusion-reaction problems, as
in this case, negative definiteness of A` is guaranteed.

For m; q > 1, things become a lot more complicated, starting from the fact
that V;W necessarily need to be of the same size, but the block Krylov subspaces
will usually differ in dimension whenever m 6D q (and often even if m D q due
to deflation). Computations in this case can be performed using block or band
Lanczos/Arnoldi processes. For many more details on this, see the monographs and
surveys already mentioned above or [29]

Also observe that the use of an expansion point s0 62 R will lead to a complex-
valued reduced order system (4.4). Often, this is undesired. An easy remedy is to use
two expansions point s0; s1 D s0 and to concatenate the resulting bases. If performed
with care, the resulting V;W are then real.

Note that interpolation at s0 D 1 is also possible. In that case, one computes
Krylov subspaces for .A;B/ and/or .AT ;CT /. Then the moments are called Markov
parameters and the “moment matching” problem is known as partial realization.

The use of a single expansion point s0 leads to good approximation only locally.
Hence, it is often useful to use more than one expansion point, yielding multi-point
moment matching methods, also called rational Krylov methods, see, e.g., [3, 10].
By fixingK D `�1 in (4.7), in [40] a fix-point iteration to determine locally optimal
expansion points w.r.t. approximation of the TFM in the H2-norm (basically, this is
theL2-norm of the TFM evaluated on the whole imaginary axis) is suggested. In the
SISO case, if this iteration converges, the obtained rational Krylov subspaces yield
basis matrices V;W such the reduced order model satisfies (4.7) for Jk D 1 for all
k D 0; : : : ; K at the mirror images (w.r.t. the imaginary axis) of the eigenvalues of
A`, i.e., the poles of the reduced order TFM. This property of a reduced TFM is
known to be the necessary condition for a local minimizer of kG � G`kH2 .

Some extensions of the presented approaches to nonlinear systems are discussed
in the recent survey [10].

4.2 Methods Based on System Balancing

Balanced Truncation (BT) has been the workhorse for model reduction in systems
and control theory, in particular for controller design, for the last three decades,
see, e.g., [3, 10] for a thorough discussion and references to original work. Its
advantages over most other methods is that for asymptotically stable models it
guarantees stability of the reduced-order model—a property that none of the other
methods discussed here possesses unless additional assumptions are posed or a
post-processing step is included—and it has a computable a priori error bound that
allows the adaptive selection of the reduced model order given a user-defined error
threshold. The method is based on two main ingredients: balancing and truncation.
In the following, we will briefly introduce these concepts, starting with the latter
one.
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The concept of truncation is based on finding a suitable state-space transforma-
tion T defined by a nonsingular matrix T 2 R

n�n:

T�1 Py.t/ D .T�1AT/T�1y.t/C .T�1B/u.t/ (4.8a)

z.t/ D .CT/T�1y.t/ (4.8b)

with partitioning

T�1AT D
	

A11 A12

A21 A22



; T�1B D

	
B1
B2



; CT D ŒC1 C2� ; (4.9)

where A11 2 R
`�` and the other blocks are of compatible sizes. The reduced

order model is then simply obtained by truncating the states ` C 1; : : : ; N of the
transformed state vector T�1y.t/ i.e., setting them to zero so that

A` D A11; B` D B1; C` D C1: (4.10)

The challenge, of course, is to find a T yielding a reduced order model with good
approximation properties. Here is where the second ingredient, balancing, comes
into the game.

For the following, we assume that A is asymptotically stable, i.e., all its
eigenvalues are in the left half plane. This implies that the transfer function G.s/
of (4.2) has all its poles in the open left half plane, thus such systems are called
(asymptotically) stable. Extensions to unstable systems are possible, but will not
be discussed here for brevity (see [11] for some more details and references and
[13] for a recent application to the control of unstable flow problems). Strictly
speaking, a balancing transformation Tb yields a realization of an asymptotically
stable LTI system (4.2) in the form (4.8) such the unique solutions P;Q 2 R

N�N of
the Lyapunov equations

AP C PAT C BBT D 0; AT Q C QA C CT C D 0 (4.11)

are equal and diagonal, P D Q D diagf�1; : : : ; �N g, with decaying Hankel singular
values �k , i.e., �1 	 �2 	 : : : 	 �N > 0. Such a balancing transformation does
not always exist, it requires some additional system-theoretic assumption (see, e.g.,
[3] for a full account of these), but even if it does not exist, it is possible to obtain a
partial transformation that suffices to compute a reduced order model with exactly
the same properties as described in the following, see [15]. If one now assumes that
a balancing transformation was used to compute (4.9) and the reduced order model
is then obtained via truncation as in (4.10), it holds:

1. A` and thus G` are asymptotically stable.
2. The reduced-order model satisfies the error bound
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kz � z`kL2 �
nX

kD`C1
�j kukL2 :

As the Hankel singular values can be computed as a by-product of the balancing
transformation, it is possible to use this error bound to adapt the size of the reduced
order model to match a desired maximal approximation error.

It should be noted that in practical computations, neither the full transformation
matrix T nor the solutions P;Q should be computed explicitly. Efficient imple-
mentations determine the matrices A`;B`;C` directly from (approximate) low-rank
factors of P;Q. With the advance of numerical algorithms for solving Lyapunov
equations, see [16,81] for recent surveys, nowadays these techniques can be applied
to any kind of system for which linear systems Ax D b with the matrix A as above
are solvable, see [11] for details.

There also exist numerous variants of BT that can be useful as model reduction
techniques in PDE-constrained optimization by exchanging P;Q by other useful
pairs of positive (semi-)definite matrices, see [3, 11] and [14, Chapter 1] for some
of these.

4.3 Applications to PDE-Constrained Optimization

The system-theoretic model reduction methods discussed in the previous sections
have so far found wide-reaching applications in simulation and control, see, e.g.,
[3,10,11,14,28] and many more references therein. There have also been numerous
attempts to apply balanced truncation directly to PDE control problems, mostly with
the target of feedback control rather than optimization. The theory for balanced
truncation of distributed parameter systems, i.e., linear instationary PDE control
problems, was already derived in the 1980ies, see [32]. The use of this approach
for deriving robust control strategies from the reduced order model is discussed
in [23]. The practical use of these approaches needs, of course, computational
methods, and thus discretization at some stage of the reduction process. In [12],
it is discussed how to combine BT with classical finite element discretization in
the spatial variables of linear parabolic control problems while [70] goes a step
further and derives an implementation of a balanced truncation algorithm where
the discretization is delayed until the inner loop of the numerical algorithm is
entered—the latter approach is more in the spirit of “optimize-than-discretize”,
while the approach in [12] can be seen as “semi-discretize-than-optimize”. Balanced
truncation and related methods have also been applied to flow control problems, see,
e.g., [6, 13, 43, 90].

The methods based on rational interpolation have merely been used so far in
simulation of dynamical systems, but also for feedback control purposes. Further
reading on this includes [3, 7, 10, 14, 28, 29] and references therein. Their use for
model reduction of infinite-dimensional control problems is discussed in [69] and
for linear-quadratic parabolic optimal control problems in [89]. The recent paper
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[18] uses rational tangential interpolation for a flow control problem. Certainly,
these methods can be employed in a similar fashion as balanced truncation in PDE-
constrained optimization problems, but so far this topic has received less attention.

Note that all these approaches do not discretize in time, no discretization of the
controls is needed whenever the control variables are only time-dependent, and
only the spatial part needs to be discretized for controls of the form u.x; t/ D
v.x/u.t/. Hence, optimization based on reduced order models obtained from these
methods can be performed with respect to the original Uad rather than a discretized
version or subset of the full space of admissible controls. The full potential of this
advantageous property has yet to be explored in PDE-constrained optimization.
Little work has been dedicated so far to using system-theoretic methods in an
optimization context. The application of balanced truncation to a fully discrete
linear-quadratic PDE optimal control problem is discussed in [9, Section 6.2]. The
use of balanced truncation and rational interpolation techniques as well as POD for
linear-quadratic parabolic optimal control problems is considered in [89]. Balanced
truncation to accelerate a descent method for optimization of nonlinear evolution
problems is analyzed in [25]. There, balanced truncation is applied to the linear
adjoint system while the full state equation is solved. Speed-ups of factors 2–
3 can be obtained this way compared to applying the same descent method to
the full order optimality system. More research in the direction of using system-
theoretic methods in a PDE-constrained optimization setting for evolution problems
is certainly needed to leverage their full potential.

Conclusions
In this chapter, we have reviewed model reduction techniques for PDE-
constrained optimization, where we have focused on instationary PDEs only.
There is also a vast amount of literature on optimization of stationary PDEs,
like linear elliptic PDEs in the simplest case. Model reduction methods as
discussed here are not suitable for these problems as they rely on techniques
for time-varying systems. Moreover, the computational complexity of insta-
tionary PDE-constrained optimization problems is often not so high that such
a great benefit can be expected from model order reduction as for instationary
problems. Nevertheless, model reduction techniques for such problems exist.
These are based, e.g., on POD w.r.t. the optimization parameters rather than
time, or on the Reduced Basis Method, see, e.g., [34, 52, 63, 68, 84] for some
recent work on this.

We would also like to point out that there are many further possibilities for
research. As already mentioned, the capabilities of system-theoretic methods
in the context of PDE-constrained optimization are yet to be explored in detail.
Also, the combined optimization with regard to a time-dependent control
function plus one or more stationary design parameters as it occurs in many
practical engineering applications is a widely open field.
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Adaptive Trust-Region POD Methods
in PIDE-Constrained Optimization

Ekkehard W. Sachs, Marina Schneider, and Matthias Schu

Abstract Solving optimization problems with partial integro-differential equations
can be a challenging task from a theoretical but also numerical point of view.
These equations arise e.g. in jump-diffusion models for the pricing of financial
derivatives. We provide a formulation of calibration problems for financial market
models in a proper mathematical framework. In the sequel we also address the issue
of an efficient numerical solution of these problems. The main focus lies in the
adequate use of reduced order models in order to achieve a computationally tractable
optimization problem.

Keywords Trust region method • Proper orthogonal decomposition • Partial
integro-differential equation
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1 Introduction

In the field of partial differential equations (PDE) or partial integro-differential
equations (PIDE), the use of reduced order models is well-known. The idea is
to replace the common finite element basis functions of a space discretization by
only a few problem-dependent basis functions in a Galerkin approach. However, in
PDE-constrained optimization we have in addition control or design variables which
influence the solution of the PDEs. It can be observed that solutions of parameter-
dependent differential equations are not arbitrary functions of the solution space.
Often they can be approximated in a lower-dimensional subspace. Thus, we use
more complex, problem-dependent basis functions which only span this subspace
and not the whole function space. A survey of several model reduction techniques
for linear dynamical systems in state space form is provided in [3, 4]. The most
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famous ones are balanced truncation and proper orthogonal decomposition (POD).
Both methods have a close connection to singular value decomposition (SVD).
Balanced truncation is mainly applicable to linear time-invariant systems and since
POD can be even used for nonlinear systems this will be the method of our choice.

Reduced order models can be applied for the calibration of financial market
models. So-called jump-diffusion models with local volatility provide many advan-
tages concerning the pricing of financial derivatives. However, from a mathematical
point of view they are quite complex since the corresponding model prices have
to be calculated via a partial integro-differential equation (PIDE). The optimization
problem consists of the calibration of the parameters of such a model. We compare
market prices of standard European options with the model prices in a least-squares
approach yielding a PIDE-constrained optimization problem. Local a priori error
estimates for the reduced differential equations as well as for the corresponding
reduced objective function combined with a globalizing trust-region framework
yield an efficient algorithm that clearly reduces the computing time.

The application of reduced order models in financial applications, e.g. the
solution of partial integro-differential equations resulting from jump-diffusion
option pricing models, is a quite new issue first described in [18] where POD is
used, and by [16] using a reduced basis approach with basis functions based on
Black-Scholes solutions. It has been further investigated in [19] and [8]. Another
application in finance can be found in [17] where reduced order models are used for
the efficient computation of the implied variance in a local volatility framework as
the solution of a quasilinear degenerate parabolic partial differential equation.

In this paper, we only give an overview on the results achieved in the project, for
more detailed statements and proofs see the references cited throughout the paper.

2 PIDE Constrained Optimization

Partial integro-differential equations (PIDEs) arise in several fields of research. We
mention for example biological applications like cell adhesion models discussed
in [6, 12]. Another area of application is the area of peridynamics in continuum
mechanics where these type of integral operators occur, see [24].

Here, we consider an application in finance, i.e., the calibration of option
pricing models based on Lévy processes, see [9, 22]. As a financial derivative, the
value of an option depends on the value of some underlying. In the past decade,
several extensions of the Black-Scholes model for the pricing of options have
been developed. We use a jump-diffusion model with an additional local volatility
function and the following dynamics written as a stochastic differential equation

dSt D �St�dt C �.t; St�/St�dW t C St�d
� NtX
jD1

.eZj � 1/
�
; (2.1)
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where the Zj ’s are independent and identically distributed. The corresponding
option prices can be computed by solving a PIDE. Recently, a Dupire-like PIDE
for the original equation similar to the Black-Scholes framework was derived in [1]
and [15]. In view of the calibration problem that is discussed below, we focus on
this Dupire-like version of the PIDE for the price of an option depending on its
expiration time T and strike priceK . Usually we are only interested in the call price
today, so in the following – without loss of generality – we assume that the option is
priced at time t0 D 0 and the price of the underlying is given by S0. For numerical
reasons we apply a variable transformation x D ln.K=S0/ and obtain the following
PIDE:

DT � 1

2
N�2.T; x/Dxx C

�
r.T /C 1

2
N�2.T; x/ � 	


�
Dx C 	.1C 
/D (2.2)

�	
C1Z

�1
D.T; x � z/ezf .z/ dz D 0; in Œ0; Tmax/ � .�1;1/

D.0; x/ D S0 � maxf1 � ex; 0g DW D0.x/; x 2 .�1;1/:

This equation contains several parameters and parameter functions: The local
volatility function � , the jump intensity 	 and the jump size distribution func-
tion f . For the density function we use Merton’s model and define f .z/ D

1p
2�J

exp.� .z��J /2
2�2J

/ for all z 2 .�1;1/ with �J the expected value, �J the

standard deviation of the normally distributed jump sizes and 
 D exp.
�2J
2

C�J /�1.
Now we are able to state the corresponding calibration problem in a least-squares
formulation as

min
D;�;	;f

J.D; �; 	; f / WD 1

2

MX
iD1

�
D.Ti ; ln.Ki=S0// �DM

i

�2
(2.3)

subject to PIDE (2.2);

i.e., we adjust the parameters in such a way that the model prices fit some given
market prices DM

i at M data points .Ti ;Ki /. Thus, the calibration problem is a
PIDE constrained optimization problem. Note that for one function evaluation of J ,
the PIDE constraint (2.2) has to be solved only once.

3 Numerical Solution of the PIDE

Partial integro-differential equations in contrast to PDEs do not lead to sparse
systems when discretized due to the nonlocal behavior of the integral operator.
Hence, their efficient numerical solution will play an important role in the solution
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of the calibration problem (2.3). For the discretization of the spatial variable by a
finite element approach, the first step is a variational formulation of the problem.
In order to formulate the problem properly, we have to set a framework for the
existence and uniqueness of weak solutions of the original equation. Therefore, we
define

W.Œa; b�; V / WD
n
u W u 2 L2..a; b/; V /; u0 2 L2..a; b/; V �/

o
(3.1)

for a; b 2 R, where V is a Hilbert space with its dual V �. Since the initial condition
of (2.2) is not L2.R/-integrable, it is necessary to introduce some appropriate
function spaces.

Definition 3.1 (Weighted function spaces).

1. L2��.R/ WD fv 2 L1loc.R/ W v. � /e��j � j 2 L2.R/g
with inner product hv;wiL2

��
WD R

R
v.x/w.x/e�2�jxjdx,

2. H1��.R/ WD fv 2 L1loc.R/ W v. � /e��j � j; v0. � /e��j � j 2 L2.R/g
with inner product hv;wiH1

��
WD hv;wiL2

��
C hv0;w0iL2

��
.

We state the variational formulation of the PIDE (2.2) and address its solvability:

Definition 3.2 (Weak formulation of the PIDE). Let 	; 
 be given constants
and assume that r.T /, �.T; � /, �.T; � /x are continuous and bounded functions
on R. The variational formulation of the PIDE (2.2) consists of finding D 2
W.Œ0; Tmax�;H

1��.R// such that for all T 2 .0; Tmax�

d

dT
hD.T; � /;w. � /iL2

��
C a��.T ID.T; � /;w. � // D 0 8 w 2 H1��.R/ (3.2)

holds with initial condition

hD.0; � /;w. � /iL2
��

D hD0. � /;w. � /iL2
��

8 w 2 H1��.R/: (3.3)

For each constant � > 0 and T > 0 the bilinear form a��.T I � ; � / W H1��.R/ �
H1��.R/ ! R is defined as
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Z
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This leads to the following existence and uniqueness theorem, see [19] and [20].

Theorem 3.3 (Existence and uniqueness of a weak solution). For each T 2
Œ0; Tmax�, let �.T; � / be continuously differentiable on R and positive. Let r. � /,
�. � ; x/, �x. � ; x/ be uniformly Lipschitz-continuous functions in the variable T .
Furthermore, assume that there exists � > 0 such that

R
R

eyC�jyjyf .y/ dy < 1:

Then there exists a unique solution D 2 W.Œ0; Tmax�;H
1��.R// of the problem

specified in Definition 3.2.

Regarding the numerical solution of the PIDE, we use a finite element approach
for the spatial variable and an implicit finite difference scheme, like Crank-Nicolson,
for the time discretization. The discretization of the spatial variable via a finite
element approach leads to a dense stiffness matrix due to the non-local integral
term in the PIDE. Since these matrix exhibits a Toeplitz structure the matrix-vector
multiplications can be computed efficiently using fast Fourier transformation (FFT).
For the time discretization, an implicit method is desirable since the problem is
known to be very stiff and explicit methods are restricted by strong CFL conditions.
We use a Crank-Nicolson scheme with additional Rannacher smoothing of the non-
smooth initial condition yielding a second-order convergence in time. The linear
systems of equations for such implicit methods are dense such that we propose
to use a preconditioned GMRES method for their solution. However, the repeated
solution of the PIDE in the calibration problem will still be expensive. One way to
deal with this issue is the use of reduced order models.

4 Model Order Reduction via POD

We briefly introduce proper orthogonal decomposition (POD), a technique to
replace a large mathematical problem – in our case a discretized partial integro-
differential equation – by a small one. The error between the original model and
the reduced model should be small, however, the computational effort is supposed
to be reduced significantly. The idea is to extract the most significant information
from a set of given functions or vectors (called snapshots). To be precise, we want to
find those basis functions which represent the set of snapshots better than any other
basis. Mathematically, this can be written as a constrained optimization problem.

Definition 4.1 (POD basis). Given snapshots u1; : : : ; un 2 H with dim.span.u1;
: : : ; un// D r > 0, find orthonormal functions ‰1; : : : ; ‰r 2 span.u1; : : : ; un/ by
solving the minimization problem

min
‰1;:::;‰l

nX
iD1

�i

ˇ̌
ˇ
ˇ̌
ˇui �

lX
jD1

hui ; ‰j iH‰j
ˇ̌
ˇ
ˇ̌
ˇ2
H

(4.1)

s:t: h‰j ;‰kiH D ıjk 8j; k D 1; : : : ; l
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for all l 2 f1; : : : ; rg with weights �i > 0, i D 1; : : : ; n. The first l vectors
‰1; : : : ; ‰l are called a POD basis of rank l . The spanning subspace is denoted
by V l D span.‰1; : : : ; ‰l/.

It is well-known in literature that the POD basis functions are given by
eigenfunctions of a specific eigenvalue problem. If we only use a part of this POD
basis, the average approximation error for the snapshots can be expressed by a sum
over those eigenvalues 	j whose eigenfunctions are not used. We are especially
interested in error estimates of POD reduced systems in the context of parabolic
differential equations and, furthermore, in optimal control problems governed by
such PDEs. If we want to apply the POD technique to a parabolic differential
equation – like the calibration problem with a PIDE – we choose the solution of the
problem at fixed time steps t0; : : : ; tn as snapshots. We then obtain some orthonormal
basis functions containing specific information about the solution of the PIDE in the
above-mentioned sense. Approximating the PIDE problem via a POD approach then
means that we replace the finite element basis functions by the POD basis functions
calculated from the given solution. Since the original problem, the PIDE, is replaced
by a smaller one, the POD approximation, we need to estimate the corresponding
error. For the derivation of error estimates, we rewrite the weak form of our parabolic
problem (3.2) in a more general formulation. To set up the framework we make the
following assumptions (cf. [10]):

Assumption 4.2. (a) Let V and H be real, separable Hilbert spaces with the
inner products h � ; � iV and h � ; � iH and the induced norms jj � jjV and jj � jjH ,
respectively. With the dual spaces V � and H� they form a Gelfand triple
V ,! H D H� ,! V � with dense embeddings. Furthermore, assume an
˛ > 0 with jjvjj2H � ˛jjvjj2V for all v 2 V .

(b) Let a W Œ0; T � � .V � V / ! R for all t 2 Œ0; T � be a uniformly continuous and
coercive bilinear form. In addition let a. � I � ; � / be Lipschitz continuous with
respect to t .

(c) Let L W Œ0; T � � V ! R be a linear form with L 2 L2.V �/ and cL > 0 such
that jL.t I v/j � cLjjvjjV for all t 2 Œ0; T �; v 2 V .

Definition 4.3 (Continuous problem). For given initial value y0 2 H find a
solution y 2 W.Œ0; T �; V / which satisfies

d

dt
hy.t/; viH C a.t I y.t/; v/ D L.t I v/ 8 v 2 V; t 2 .0; T / (4.2)

and initial condition hy.0/; viH D hy0; viH for all v 2 V:
Problem (4.2) discretized in time on a subspace V l of V with equidistant time

steps t0; : : : ; tm looks as follows:

Definition 4.4 (Discretized problem). For given initial value y0 2 H and some
� 2 Œ0; 1� find fyli gniD0 � V l with



Adaptive Trust-Region POD Methods in PIDE-Constrained Optimization 333

hN@yli ; viH C � � a.ti I yli ; v/C .1 � �/ � a.ti�1I yli�1; v/ D (4.3)

� �L.ti I v/C .1 � �/ �L.ti�1; v/ 8 v 2 V l ; i D 1; : : : ; n

and initial condition hyl0; viH D hy0; viH for all v 2 V l , where N@ is an abbreviation
for the finite difference quotients.

Using the stated assumptions, we can invoke an existence and uniqueness
theorem in [10, pp. 512ff] to conclude that there exists a unique solution for both
problems. In the following we want to address the average error between the solution
y.t/ of problem (4.2) and the solution yl;1 on the POD subspace, discretized in
time via the �-method in problem (4.3). The POD basis functions are calculated in
the sense of (4.1) from the snapshots of the solution y.t/ and the corresponding
difference quotients, i.e., the snapshots are Nyi D y.ti�1/ and NyiCnC1 D y.ti /�y.ti�1/

ti�ti�1 ,
i D 1; : : : ; n.

Defining the H -projection…l
H by

…l
H W V ! V l , h…l

Hu � u; viH D 0 8 v 2 V l ; (4.4)

one can state the following error estimate.

Theorem 4.5. Let y.t/ be the solution of (4.2), fyl;1i gniD0 the solution of (4.3). Then
with appropriate constants Ci (i D 0; 1; 2), independent of n, we have

1

n

nX
iD1

ˇ̌ˇ̌
y.ti /� y

l;1
i

ˇ̌ˇ̌2
H

� C0jjy.t0/�…l
Hy.t0/jj2H C C1�t

j C C2jjS jj2
rX

jDlC1
	j

with j D 2 for the implicit Euler method assuming ytt 2 L2.Œ0; T �IH/ and j D 4

for the Crank-Nicolson method, assuming yttt 2 L2.Œ0; T �IH/ and �t sufficiently
small.

Furthermore, for some constant C we have

jjy.t0/ �…l
Hy.t0/jj2H � n C

rX
jDlC1

	j :

This result, stated in [20], is an extension of the results of [14] to the time
dependent case.

Next we give estimates on the error between the POD solution compared to a
discretized FE solution.

Theorem 4.6. Let fyFE
i gniD0 be the finite element solution using the finite element

space Hnx in the Galerkin approximation. Let fyl;2i gniD0 be the solution of prob-
lem (4.3) based on the FEM snapshots.
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Then with appropriate constants QC0; QC1 independent of n, we get for the implicit
Euler method and, for sufficiently small �t , also for the Crank-Nicolson method

1

n

nX
iD1

ˇ̌ˇ̌
yFE
i � yl;2i

ˇ̌ˇ̌2
H

� QC0 jjyFE
0 �…l

Hy
FE
0 jj2H C QC1jjS jj2

rX
jDlC1

	j

where jjyFE
0 �…l

Hy
FE
0 jj2H � 3n

Pr
jDlC1 	j .

5 Numerical Solution of the Calibration Problem

Given an efficient numerical method for the solution of the PIDE constraint, we turn
to the numerical solution of the corresponding calibration problem (2.3). This can
be rewritten in an abstract vector form, in which the PIDE is replaced by its weak
formulation with state variable y and control u as:

min
y2W;u2U J.y; u/ WD 1

2

DX
iD1

jjCy.Oti /� di jj2H (5.1)

s:t: Py.t/C A.uI t/y.t/ � l.uI t/ D 0 ; t 2 .0; T � (5.2)

y.0/ D y0:

Here we made use of the fact that for a given control u and with V WD H1��.R/ ,
there exist unique operators A.T / 2 L.V; V �/ and l.T / 2 V � for all T 2 .0; Tmax�

such that (3.2) can be rewritten as (5.2) in the sense of L2.V �/. This form provides
some advantages in terms of a simpler notation. The above problem can also be
written as an unconstrained optimization problem, in the literature also known as
the reduced problem

min
u2U f .u/ WD J.y.uI � /; u/: (5.3)

Considering the discretization of the optimal control problem, there are mainly
two approaches common in literature: Optimize-then-discretize or discretize-then-
optimize. Regardless of whether we discretize or optimize first, we solve the
optimization problem by a gradient-based method. The gradient of the problem can
be calculated efficiently by means of the adjoint equation. However, second-order
information is more complicated and the calculation of the exact Hessian is usually
not reasonable.

Since the least-squares objective function involves pointwise observations of the
PIDE solution, the corresponding adjoint equations contain delta Dirac functions.
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Fig. 1 First optimize: solutions of the adjoint equation (�T D 0:02, �x D 0:0025). (a) Crank-
Nicolson. (b) Rannacher time stepping

These functions will lead to high-frequency end conditions in the backward adjoint
equations and thus to oscillations in the numerical solution, so it is advisable to
apply a smoothed time discretization scheme, see [21]. If we first optimize, we
are free in the choice of an appropriate discretization method. A standard Crank-
Nicolson method applied to the adjoint equation leads to the result illustrated in
Fig. 1a. The adjoint is formally divided into two parts with end conditions at the
points, where market data is available. The peaks occurring in these end conditions
oscillate strongly over the whole time domain. As in the case of nonsmooth initial
conditions for the state equation, Rannacher smoothing can be applied at each end
condition, see Fig. 1b.

Regarding the first discretize approach with a Rannacher time stepping scheme
for the state equation, Fig. 2 shows the numerical solution of the corresponding
discrete adjoint equation. The Rannacher method in the state equation yields a
Crank-Nicolson method for the adjoint except for the last time step before T D 0,
where four implicit Euler quarter steps are used. The peaks are not as pronounced as
in the first optimize approach due to the fact that the end condition contains a kind of
built-in smoothing through the elliptic operator weighted with step size. However,
there are still small oscillations observable through the whole time domain, denying
a quadratic convergence of the scheme.

Our main aim is the use of POD in the optimal control problem (5.1), so the error
between a discretized objective function based on a finite element space, f .u/ D
J.yFE.uI � /; u/, and an objective function based on a POD approximation with rank
l , fl.u/ D J.yl .uI � /; u/, has to be estimated. A relation between this error and the
sum over the remaining eigenvalues is established in [23]. For fixed but arbitrary u
and a k1 > 0, we obtain

jf .u/� fl.u/j2 � k1

rX
jDlC1

	j
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Fig. 2 First discretize: solution of the adjoint equation (�T D 0:02, �x D 0:0025)

if the POD basis contains the snapshots from the state solution at u. A similar result
is then obtained for the gradient of f . However, we need to include snapshots from
the adjoint solution as well to get for a k2 > 0:

jjrf .u/� rfl.u/jj2 � k2

rX
jDlC1

	j :

k2 has several dependencies, mainly a proper weighting of adjoint and state
snapshots has to be guaranteed. In general, we observe that the inclusion of
adjoint snapshots in one combined basis with state snapshots leads to a far better
approximation of gradients. It further has a positive effect on the otherwise strong
locality of a fixed POD basis, which is illustrated in Fig. 3. First, (a) and (b) show
the finite element state and adjoint solution of the PIDE for the control u. Those
solutions are used as snapshots for the basis computation where we keep l D 15

fixed. The adjoint solution clearly shows peaks at each point where market data is
available. Note that we are especially interested in the values of our state solution at
these points. The pointwise difference between the full finite element state solution
y for the control u and the corresponding reduced state solution based on a basis
only containing state snapshots, yl;S is illustrated in Fig. 3c. Given the scaling of
the graph this error is negligible. Figure 3d shows the same result using a basis
with space and weighted adjoint snapshots to compute the POD approximation,
yl;SwA. This leads to a larger, observable error especially at the beginning for
T close to zero. However, if we now make a step in steepest descent direction
with step size � D 1.0e-2 without updating the POD model, the results are quite
different. Figure 3e illustrates a strongly increasing pointwise error compared to (c),
unfortunately in a region of great interest. However, the basis including weighted
adjoint snapshots provides further information in this region, leading to a smaller
error in (f).
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Fig. 3 Influence of adjoint snapshots on the POD state error when the control u is changed
and the basis not updated. (a) State solution y.uI � /. (b) Adjoint solution p.uI � /. (c) Error
y.uI � /� yl;S .uI � /. (d) Error y.uI � /� yl;SwA.uI � /. (e) Error y.u�I � /� yl;S .u�I � /. (f) Error
y.u�I � /� yl;SwA.u�I � /

6 Trust-Region POD

We have seen in the previous section that POD is only a local model. Therefore, if
we veer away from the starting parameters during the calibration process, the error
estimates that hold true for unchanged parameters cannot be applied any longer. For
this reason, a trust region POD algorithm for an optimal flow control problem is
proposed by [5] in order to adaptively adjust the POD model. To explain the idea,
we consider a discretized version of the calibration problem (5.1)
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min
u2U f .u/ D 1

2

DX
iD1

jjCyFE.uI tki /� di jj2H; (6.1)

where fyFE
k gntkD0 denotes the finite element approximation to the state equation

discretized with the �-method, i.e,

N@yFE.tk/C �A.uI tk/yFE.tk/C .1 � �/A.uI tk�1/yFE.tk�1/ D
�l.uI tk/C .1 � �/l.uI tk�1/; k D 1; : : : ; nt (6.2)

yFE
0 .t0/ D y0:

For a given control uk, the idea of TRPOD is to use a POD model function instead
of the well-known quadratic model functionmquad.uk Cs/ D f .uk/Crf .uk/T sC
1
2
sTr2f .uk/s. The POD model function is defined by

ml
k.uk C s/ D 1

2

DX
iD1

jjCylki .uk C s/� di jj2H; (6.3)

where fylkgntkD0 � V l is the POD approximation to the state equation discretized in
time with the �-method.

With this new model function one can formulate the adaptive trust-region POD
method stated in Algorithm 1. Its general structure is given by a basic trust-region
algorithm. In the lines 1– 3 we first calculate the state and adjoint snapshots for
the current control uk to get our model. These are then used to calculate a POD
basis where the rank l is chosen such that the inequality in line 3 is satisfied.

This condition is supposed to control the relative gradient error
jjrf .uk /�rmlk.uk/jj
jjrmlk.uk/jj

, as

proposed in [7]. Lines 4– 5 describe the step calculation. The solution of the trust-
region subproblem is approximated via the step determination algorithm proposed
in [11,25]. The quotient �k in line 7 compares the predicted reduction of the model
function with the actual reduction of the objective function. It provides a good
measure for the capability of the model function, which is used in the lines 8 to
17 to decide whether the point uk C sk is accepted as a new iterate or not. If �k is
greater than �1 > 0, the step sk is accepted. If further �k > �2, a value typically
chosen to be close to one, then the model seems to be a good approximation on the
trust region and the trust radius may be increased. Otherwise, the radius should be
decreased. A step sk is rejected if �k < �1. In that case the model seems to be poor
on the trust region and the radius, �k , has to be decreased. We want to stress that it
is not necessary to compute a new POD model in case of an unsuccessful iteration.

Our main result, a global convergence proof for the algorithm above, can now be
stated, see [23].



Adaptive Trust-Region POD Methods in PIDE-Constrained Optimization 339

Algorithm 1 Adaptive TRPOD algorithm

Input: �0 > 0, k D 0, an initial control u0 2 U and constants �1; �2; �1; �2; �3; 
 satisfying
0 < �1 � �2 < 1, 0 < �1 � �2 < 1 � �3, 0 < 
 < 1� �2:

1: compute state y.uk/ and adjoint p.uk/ to form the set of snapshots S
2: compute for S the POD basis of rank l and model ml

k such that
3: jjrf .uk /�rml

k.uk/jj � 
jjrml
k.uk/jj

4: compute an approximate solution sk 2 U to
5: min

jjsjj��k
ml
k.uk C s/

6: compute f .uk C sk/ and
7: �k D f .uk /�f .ukCsk /

mlk.uk /�mlk.ukCsk /

8: if �k � �2 then
9: set ukC1 D uk C sk and �kC1 2 Œ�k; �3�k�

10: set k k C 1 and go to line 1
11: else if �1 � �k < �2 then
12: set ukC1 D uk C sk and �kC1 2 Œ�2�k;�k�

13: set k k C 1 and go to line 1
14: else if �k < �1 then
15: set ukC1 D uk and �kC1 2 Œ�1�k; �2�k�

16: set k k C 1 and go to line 4
17: end if

Theorem 6.1 (Strong global convergence of the adaptive TRPOD). Given prob-
lem (6.1) with Lipschitz continuous Fréchet derivatives A0 and l 0 in (6.2) and

 2 .0; 1� �2/, let the Assumption 4.2 be satisfied. Further, assume that an implicit
discretization scheme as the backward Euler or Crank-Nicolson method is used and
the reduced order model includes adjoint information. Let fukg be a sequence of
iterates produced by Algorithm 1. Then,

lim
k!1 jjrf .uk/jj D 0:

In the proof of this theorem it is vital that the POD model function can fulfil the
assumptions on the gradient accuracy in the sense of [7]. The size of the POD
basis can be managed adaptively by comparing reduced and exact gradient until
this condition is satisfied. For more details we refer to [23].

It is clear that the solution of the state and adjoint equation being discretized
on a sufficiently fine finite element grid is a major part of the total computing time.
To further reduce computational cost, a multi-level approach was introduced in [13].
The discretization of the PIDE is not kept fixed, but one can switch between different
discretization levels. The goal is to avoid solutions on the finest grids especially
when we are not near the optimal point. If we are far away from the optimal solution
of the problem, we do not only use less POD basis functions to compute our model,
but we also compute the snapshots, i.e. the FE solutions, on a coarser grid.
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Table 1 Iterations of a TRPOD calibration run with corresponding gradient norm, function values,
ratios �k ,trust radius �k , number of used POD basis functions l and 
lk

k jjrf .uk /jj2 f .uk/ mk.ukC1/ �k �k #POD l 
lk

0 3.58eC0 1.21eC0 2.43e�1 1.00 0.10 10 0.0228

1 1.77eC0 2.44e�1 2.76e�4 1.00 0.11 16 0.0286

2 4.91e�2 3.63e�4 1.29e�5 1.00 0.11 22 0.0216

3 1.43e�3 1.38e�5 1.14e�5 0.83 0.12 28 0.1562

4 1.24e�4 1.18e�5

Example. To illustrate the efficiency of the adaptive trust-region POD algorithm,
we consider an example, where we calibrate Merton’s jump-diffusion model to the
market data presented in [2]. The volatility is assumed to be parameterized with 20
parameters, thus, together with the jump intensity 	, the average jump size �J and
the mean jump size �J , there are 23 parameters to be calibrated. Table 1 shows the
corresponding calibration run.

For each iteration it contains the norm of the ‘exact’ – i.e. based on the full
finite element state and adjoint solution – gradient, the ‘exact’ function value in
uk, the value of the model function in the optimal solution of the trust-region
subproblem mk.ukC1/, the ratio between actual reduction and predicted reduction
�k and the corresponding trust radius �k . The last two columns contain values
directly connected to the POD model function: the number of POD functions l
that is used in the current iteration and the ratio 
lk . We observe that all iterations
are successful and all ratios �k are close to one. Note that in each iteration we
need several evaluations of the discretized state and adjoint equations. First of all
a state and adjoint solution on the full finite element grid is required to form the
snapshot set for the new POD model, see lines 1– 3 of Algorithm 1. Furthermore,
the approximate solution of the trust-region subproblem in lines 4– 5 involves
several solutions of the differential equations discretized in the POD space for
the computation of the POD model function and its gradient. The total number
of evaluations of the differential equations in the TRPOD algorithm is shown in
Table 2. There we compare the performance of the TRPOD algorithm, a multi-level
version of the TRPOD algorithm using three different finite element grids (level 1:
�x��T D 0:01� 0:025, level 2: 0:005� 0:025, level 3: 0:0025� 0:0125) and the
quasi-Newton approach. The quasi-Newton needs 274 evaluations of the state and
the adjoint equations, all computed on the full finite element grid. In contrast, the
TRPOD algorithm needs 10 C 600, this means even more, evaluations. However,
most of them are computed via the reduced order model and we only need five state
and five adjoint solutions on the full grid. The optimal values shown in the last two
columns have the same order of magnitude. Regarding the computational effort,
TRPOD needs 86 s for the optimization compared to 888 s in the quasi-Newton
approach corresponding to a time saving of 90 %. In the table, the total computing
time is further split into the time needed for the full PIDE solutions, the time needed
for the POD solutions and the time for the basis computation, i.e. the solution of
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Table 2 Comparison between TRPOD, Multi-level TRPOD and a quasi-Newton algorithm

Evaluations Timing (sec.) Optimal values

Algorithm FE POD Total FE POD Basis f .uopt/ jjrf .uopt/jj2
TRPOD 10 600 86 30 45 2 1.18e�5 1.24e�4

ML TRPOD 18 768 59 21 29 1 1.19e�5 2.42e�4

quasi-Newton 274 – 888 809 – – 9.62e�6 8.29e�4

the eigenvalue problem. As expected, implementing a multi-level strategy yields a
further reduction of the computing time. Although we need more iterations in this
case, the main time saving is observable in the solution of the full PIDE.

Conclusion
In this work we deal with reduced order models based on proper orthogonal
decomposition and their application to a PIDE constrained optimization prob-
lem arising in finance. After space and time discretization of the differential
equation constraint, the dense linear systems of equations are solved by an
implicit time stepping scheme using a preconditioned GMRES algorithm for
each time step. However, when an optimization algorithm is applied, the
repeated solution of the PIDE is still expensive. Since the PIDE is of parabolic
type, POD is well suited to create a reduced order model. Theoretically,
we show error estimates for the approximation quality of the reduced order
models based on the work of [14]. All estimates only hold true for unchanged
parameters, but a globalization has been achieved by embedding this in
a trust-region framework as proposed by [5], for which we have shown
convergence. The theoretical results are not only valid for the calibration
problem considered here and the algorithm can be applied to a wide class
of optimization problems with general parabolic constraints.
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Introduction to Part IV Discretization: Concepts
and Analysis

Michael Hinze

This chapter summarizes recent trends and addresses future research directions in
the field of discrete concepts for PDE constrained optimization with elliptic and
parabolic PDEs in the presence of pointwise constraints. It covers the range from
tailored discrete concepts over adaptive a posteriori finite element approaches, to
the modern algorithmical treatment of challenging optimal control applications with
fluid flows.

Malte Braack, Markus Klein, Andreas Prohl and Benjamin Tews consider an
optimal control problem with respect to the two-phase Navier–Stokes equations.
They present different numerical schemes, in particular a level-set method, as well
as an approach based an Allen-Cahn phase field model. They also consider a
geometrical approach to treat the interface and address the question of convergence
of numerical schemes.

Klaus Deckelnick and Michael Hinze consider the finite element approximation
of an elliptic optimal control problem with pointwise bounds on the gradient of
the state. They review recent results on the error analysis for various discretization
approaches and prove a new bound for the problem without control constraints.

Michael Hinze, Michael Köster, and Stefan Turek present a Newton-type solver
strategy for optimal flow control problems using space-time multigrid solution
techniques. Based on the standard Newton approach for optimal control, they derive
a space-time multigrid preconditioner, which is analyzed numerically for distributed
and boundary control problems.

Kristina Kohls, Arnd Rösch and Kunibert G. Siebert summarize their findings
in the analysis of adaptive finite element methods for the efficient discretization
of control constrained optimal control problems. They focus on convergence of
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the adaptive method, i.e., show that the sequence of adaptively generated discrete
solutions converges to the true solution. At hand of a simple model problem
they highlight the key components of the convergence proof and comment on
generalizations of the presented result.

Thomas G. Flaig, Dominik Meidner and Boris Vexler in their paper transfer the
a priori error analysis for the discretization of parabolic optimal control problems
on domains allowing for H2 regularity to a large class of nonsmooth domains.
There estimation technique combines two ingredients which are used to prove the
optimal convergence rates with respect to the spatial and the temporal discretization;
a time discretization scheme which has the desired convergence rate in the smooth
case, and a method to treat the singularities due to non-smoothness of the domain
for the corresponding elliptic state equation. They demonstrate the approach with
a Crank-Nicolson time discretization scheme combined with finite elements on
graded meshes for the spatial discretization.

The Editor of this chapter wishes to thank all authors who contributed to this
volume, and also all involved referees, whose notes and comments were very
valuable in preparing this chapter.



Optimal Control for Two-Phase Flows

Malte Braack, Markus Klein, Andreas Prohl, and Benjamin Tews

Abstract We consider an optimal control problem with respect to the two-phase
Navier–Stokes equations. Different numerical schemes are presented, in particular a
level-set method, as well as an approach based an Allen-Cahn phase field model. We
also consider a geometrical approach to treat the interface and address the question
of convergence of a numerical scheme.

Keywords Two-phase • Optimal control • Stabilized finite elements • Level set •
Allen-Cahn

Mathematics Subject Classification (2010). 49Q10, 76D55, 76M10, 76T05,
93C20.

1 Introduction

Multi-phase fluid dynamical problems arise in many industrial, technical and
biological applications. A prototype example is the control of the interface in
aluminum production, cf. [14]. The simulation of such processes becomes more
important in recent years. The typical difficulties of two-phase (or multi-phase)
flows are the treatment of the interface of the different fluids, because the interface
should remain sufficiently sharp in order to distinguish between the two phases
and to formulate surface tension forces properly. Therefore, appropriate numerical
schemes are very demanding. The situation becomes even more complicated in the
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context of optimal control. For example, boundary control can be used in order to
separate the different fluid phases in a controlled manner, i.e., to track the interface
into a desired position.

In this work, we report on different numerical schemes for such optimal control
processes. In particular, we present the level-set technique in the context of optimal
control, an Allen-Cahn phase field model and a phase field model with a geometric
interface functional. For the later one we present an analytical convergence result
for spatio-temporal mesh sizes tending to zero.

1.1 Governing Equations

The domain � � R
d , d 2 f2; 3g, can be split into two time-depending subregions

� D �1.t/ P[�2.t/. The interface between the two fluids is denoted by �.t/ WD
�1.t/ \ �2.t/. The governing equations are the incompressible Navier-Stokes
equations with variable density. By v we denote the velocity field, by � the density
of the fluid. At initial time t D 0 the (piecewise-constant) density and the velocity
are given by:

�jtD0 WD �i on �i.0/; (1.1)

vjtD0 WD v0; (1.2)

with different densities 0 < �1 < �2. The time evolution of the density is described
by the advection equation

@t �C .v � r/� D 0 in �T (1.3)

on the space-time cylinder

�T WD f.x; t/ ˇ̌ t 2 I; x 2 �1.t/ [�2.t/g;

with time interval I D Œ0; T �. Due to the absence of diffusive terms in (1.3), the
density remains discontinuous across the interface �.t/. The splitting of the domain
is given implicitly by

�i.t/ WD fx 2 � ˇ̌
�.x; t/ D �i g :

The momentum equation is given by

�@tv C �.v � r/v � �� v C rp D �g in �T ; (1.4)
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where � is the viscosity, g external (gravitational) forces, and p the pressure. The
pressure is necessary in order to inforce the incompressibility of the fluid:

div v D 0 in �T : (1.5)

The system (1.3)–(1.5) is complemented by an appropriate boundary condition on
@� e.g.

v D vD on �D; (1.6)

�
@v
@n

� pn D 0 on �N ; (1.7)

on a Dirichlet part �D 
 @� and a natural outflow part �N 
 @� of the boundary.
On the boundary part �C 
 @� a (finite dimensional) boundary control u is applied:

v D Bu on I � �C ; (1.8)

with a linear and continuous operator B W Rm ! L2.�C /
d . These three boundary

parts should partition the entire boundary, @� D �D P[�N P[�C . Furthermore,
conditions on the interface �.t/ are needed. The velocity is assumed to be
continuous and the surface of the normal stresses is balanced by surface tension
forces

Œv� D 0 on �.t/; (1.9)

Œ�rv � p� �n D �K � n on �.t/ : (1.10)

Here, Œ � � denotes the jump across the interface in direction of n, K D �divn
describes the mean curvature of the interface and � 	 0 is a given surface tension
coefficient.

In order to formulate an optimal control problem for such two-phase flows we
use the notation y D .v; p; �/ for the state variable. The continuous version of the
optimal control problem is given by

J.y ;u/ ! min Š (1.11)

subject to the state equation system (1.3)–(1.5), the initial conditions (1.1)–
(1.2), boundary conditions (1.6)–(1.7) and interface conditions (1.9)–(1.10). In our
numerical test cases, the set Q of admissible controls will be a finite dimensional
subspace of L2.�/d . In practise, such control may result e.g. from an exterior
magnetic field. A reasonable functional J is, e.g., of end time control with respect
to the density and additionalL2.0; T IL2.�// regularization of the control:

J.y ;u/ WD 1

2
jj�. � ; T / � �d jj2� C ˛

2

Z T

0

jju. � ; t/jj2dt;
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with a positive parameter ˛ > 0. In the following sections we introduce different
numerical methods to treat the interface and report on the corresponding numerical
results. In particular, Sect. 2 addresses the level-set method in the context of optimal
control and Sect. 3 the Allen-Cahn phase field approach. Finally, in Sect. 4, a
geometric functional is considered which implicitly includes the interface length.
These approaches exhibit different advantages and disadvantages. In particular, the
issue of reinitilization in the level-set approach is delicate in the context of optimal
control, and the Allen-Cahn model is not mass conservative.

2 Level Set Formulation

The level set method is one of the most established methods to capture evolution in
two-phase flows. We shortly introduce the main concept of level sets and address
this method in the context of optimal control. In particular, we formulate the first
order necessary condition. In the numerical example we report on the effect of
reinitialization which is applied to the level set function.

The main idea of the level set formulation, firstly introduced by Osher and
Sethian [18] and later extended to incompressible two-phase flows by Sussman,
Smereka and Osher [19], is the embedding of the interface as the zero level set of
another state variable �. This continuous function is a signed distance function to
the interface. At initial time � is set to

�.x; 0/ WD ˙dist.x; �.0// :

The sign of � indicates whether x belongs to �1.0/ or �2.0/. At initial time it
obviously holds jr�.x; 0/j D 1. For t 	 0 the interface is defined by

�.t/ WD fx 2 � W �.x; t/ D 0g :

Since the interface moves with the fluid particles, the governing equation for the
level set function is given by

@t� C .v � r/� D 0 : (2.1)

Although the interface is only given implicitly, the normal vector of the interface
can be expressed directly in terms of �:

n D r�=jr�j;

and therefore the curvature K D �divn can be written in terms of derivatives of �.
The density can be expressed by the Heaviside function H.�/, so that the interface
remains sharp. However, for optimization problems we need derivatives with respect
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to the density. Hence, it is numerically reasonable to use a smooth density with the
help of a regularized Heaviside functionH":

H�.�/ WD
8<
:
0 if � < �";
0:5.1C �="C �1 sin.�="// if � � � � � ";

1 if � > ";

with small parameter " > 0. The smoothened density is obtained by (see [20])

�.�/ D �2 C .�1 � �2/H".�/ : (2.2)

The interface thickness is approximately � 2"=jr�j. Hence, as long as jr�j
remains constant, the interface thickness is almost constant, too. However, jr�j
will in general not remain constant for t > 0. For large times this distortion
will give a non-uniform thickness of the interface. In [20] a procedure, (called
‘renormalization’) is proposed to maintain jr�j D 1. To this end, in each time
step an additional nonstationary nonlinear partial differential equation is solved to
steady state. However, such a renormalization is delicate in the context of gradient
based algorithms to solve optimal control problems. This is due to the fact that such
a procedure does not correspond to a Galerkin formulation of the state equation.
Therefore, the discrete gradient of the cost functional is perturbed and may cause
slow convergence, or even divergence of the optimization algorithm. We will report
on this effect in the next section.

It remains to reformulate the surface tension effects, because the interface is only
implicitly given. According to [13], the integral of K �n along � can be expressed in
terms of a volume integral including the Dirac distribution ı. In the discrete setting,
the Dirac distribution is replaced by a regularized version ı" D H 0" . We arrive at the
following approximation of the momentum equation (1.4) including surface tension:

�@t v C �.v � r/v � �� v C rp � �K.�/ı".�/r� D �g; (2.3)

valid in �T . In summary, the corresponding set of equations consists of (1.5)–(1.8),
(2.1)–(2.3).

2.1 Variational Formulation for the Level Set Approach

In this section we express the variational formulation of the state equation [21]. By
. � ; � / we denote the standard L2.�/ scalar product. For the weak formulation of
the equations we consider homogeneous Dirichlet conditions on �D 
 @� n �C ,
and boundary control on �C . We introduce the following Hilbert spaces with respect
to �:

V WD fv 2 H1.�/d W v D 0 on �Dg :
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For the formulation in space-time we define:

X v WD fv 2 L2.I;V / W @tv 2 L2.I;V �/g;
X� WD f� 2 L2.I;H3.�// W @t� 2 L2.I;H3.�/�/g;
Xp WD L2.I; L20.�// :

The state y D .v; �; p/ will be sought in the space Y WD X v �X� �Xp . The higher
spatial regularity for � is necessary to ensure K.�/ 2 L2.I;H1.�//. For the test
functions the corresponding space is .w; �; q/ 2 Y . The control space is a subspace
of L2.I;Rm/: u 2 U 
 L2.I;Rm/. Furthermore, we use the following semi-linear
form and bilinear form, resp.:

A.y I w; �; �/ WD .�.v � r/v � �g;w/C .�r v;rw/� .p; div w/

C.div v; �/ � .�K.�/ı".�/r�;w/C ..v � r/�; �/;

B.y ;uI w/ WD
Z
�C

.v�Bu/w ds :

The primal problem reads in variational formulation for given u 2 U : Seek y 2 Y
s.t. vjtD0 D v0 and

Z T

0

fh�@tv;wi C h@t�; �i C A.y I w; �; �/C B.y ;uI w/g dtD0 (2.4)

for all .w; �; q/ 2 Y . The term h�@tv;wi is well-defined in two dimensions, d D 2, if
� 2 L1.I;H1.�// due to the Sobolev embedding. Since the density is determined
by (2.2) we have to ensure that �.�.t// 2 H1.�/ for a.e. t 2 I .

2.2 First Order Optimality System for Level Set

Denoting the adjoint variable by z D .zv; z�; zp/ 2 Y and defining the Lagrange
functional

L.y;u; z/WDJ.y ;u/�
Z T

0

˚h�@tv; zvi C h@t�; z�i CA.y I z/C B.y ;uI z/
�

dt;

we arrive at the following first order optimality system for the solution y 2 Y of the
minimization problem (1.11) under the constraint (2.4):

@zL.y ;u; z/. / D 0 8 2 Y ; (2.5)

@yL.y ;u; z/.'/ D 0 8' 2 Y ; (2.6)

@uL.y ;u; z/.	/ D 0 8	 2 U : (2.7)
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These optimality conditions are formally derived in [21]. These three equations
consist of the primal equation (2.5), the dual equation (2.6), and the gradient
equation (2.7). The issue of existence and uniqueness of solutions is still an open
problem, as it is for the simple forward Navier-Stokes system.

In order to maintain a uniform interface thickness the normalization jr�j � 1 is
required. However, because this is not guaranteed yet, an additional reinitilization
procedure was proposed in [19]. The reinitilization step consists of solving a further
non-stationary, non-linear PDE after certain time steps. This procedure starts at
the interface first and then moves outwards in normal direction. In our numerical
examples it was not necessary to solve this equation to steady state. Usually the
computation of a few time steps is sufficient in order to ensure that the level set is
renormalized to a signed distance function in an �-region around the interface. This
numerical experience is also reported in [19]. A detailed description of this equation
and its properties can be found in [21]. However, this reinitilization is not included
in the optimality system (2.5)–(2.7), because it can not be formulated in variational
form.

2.3 Space-Time Finite Element Formulation

For the finite-dimensional formulation, we use piecewise constant discontinuous
finite elements in time (dG(0)) and piecewise biquadratic elements in space (cG(2)).
The reformulation of (2.5)–(2.7) in these finite element spaces is straight-forward,
except for the aspect of ensuring the inf-sup condition for the velocity-pressure
coupling, and the stabilization of the convective terms. We use the local projection
stabilization for both aspects, see [9]. Hence, the additional term added to the semi-
linear form A.yI z/ reads:

Sh.y; z/ D .˛p�hrp; �hrzp/C .˛v�h.v � r/v; �h.v � r/zv/

C.˛��h.v � r/�; �h.v � r/z�/ :

Here, �h D id � h is a space fluctuation operator and h the local L2-projection
onto a space of patch-wise discontinuous functions. The stabilization parameters
˛p; ˛v; ˛� are chosen to be mesh-dependent according to [9]. The quadratic order
of the polynomials in space is necessary to capture the surface tension term K.�/ in
the momentum equation which contains second derivatives.

This stabilization technique is analyzed for the optimal control system with
the linearized Navier-Stokes system (Oseen equation). In that case, the discrete
optimality system is symmetric, so that optimization and discretization commute,
see [10, 11].

As numerical solver we apply a Newton iteration to a reduced cost functional
combined with an Armijo step length control. For details we refer to Becker
et al. [8]. We use the finite element software packages GASCOIGNE3D [6] and
RODOBO [7].
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Fig. 1 Configuration of the ‘kissing bubbles’ (left), initial density �jtD0 (middle), and desired
density �d

Fig. 2 Density solution without control, u D 0, at time steps t D 0:1, t D 0:35 and t D 2 (from
left to right)

Fig. 3 Optimal density (left) and corresponding level set variable � (right)

2.4 Numerical Results

In order to numerically investigate the dependency of Newton’s method on the
reinitialization procedure we consider a numerical example on a rectangular domain
� D .0; 1/ � .0; 0:5/; see Fig. 1. We apply a parameter control u 2 R at the
Dirichlet boundary part �C for the second component of the velocities and set
v2.x; t/ D ˙u.7=16� x/.9=16 � x/t . At the boundary part �N we impose natural
outflow conditions. The densities are set to be �1 D 1 (blue) as well as �2 D 2 (red),
and the initial distribution is given by two touching bubbles. The external force g is
set to be zero, and the remaining parameter " is set to be 1

32
. The optimization goal

consists of separating these bubbles by tracking a desired density distribution.
The discretization parameters are given by the spatial mesh width h D 1=64 and

the time step size is set to be 0:01. These values are sufficient to properly resolve
the interface. Figure 2 shows snapshots of the density if the control is set to be
zero which corresponds to homogeneous Dirichlet conditions at the upper and lower
boundary part. As expected, the two bubbles merge to one big bubble due to the
surface tension force. The interface width remains constant due to the reinitialization
after each time step. In Fig. 3 we depicted the level set function (right) and the
density distribution (left) with respect to the optimal control uopt � 239. One can
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Fig. 4 Dependency of
Newton’s convergence on
reinitialization steps
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observe that the level set function equals the signed distance function nearby its zero
level which causes a uniform interface thickness.

Figure 4 shows the dependency of the Newton residual corresponding to each
Newton iteration on the number of reinitialization steps. Without applying these
steps (green line), the Newton residual decreases with quadratic order close to the
optimal point. In contrast to that, the convergence rate is reduced to only linear
order if the level set function is renormalized after each time step (red line). It is
also conceivably that, considering another example, the convergence order is further
reduced or even that the Newton direction does not correspond to a decent direction
any more. This major drawback of the level set method is due to the fact that the
reinitilization step can not be expressed as a Galerkin formulation and, therefore, is
not captured in the optimality system.

3 Allen-Cahn Phase Field Model

The basic idea of phase field models consists of the consideration that the two
immiscible fluids do mix within a narrow interfacial region �".t/ � � of width
" > 0 around the interface �.t/, [12]. A phase field function  W Œ0; T � � � !
Œ�1; 1� is introduced which can be interpreted as the volume fraction of the
individual fluids. The zeros of  indicate the position of the interface, � D fx 2
� j .x/ D 0g. Since the interface is not given explicitly, the interface condition
(1.10) is replaced by an additional volume force in the momentum equation. To be
more specific, the surface tension effect is modelled by the term �pf div .r ˝r /.
Here, the parameter �pf is proportional to the surface tension coefficient � in (1.10),
that is, � � �pf=". An incompressible two-phase fluid with Allen-Cahn model,
according to [16], extended to variable density can be modeled by the following
system of equations:
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�@tv C �.v � r/v � �� v C rp C �pf div .r ˝ r / D �g;

div v D 0;

@t C .v � r/ � �pf� C �pf

"2
F 0. / D 0 :

The boundary condition for  consists of an homogeneous Neumann condition on
the entire boundary:

r �n D 0 on @� : (3.1)

The Allen-Cahn model uses the Ginzburg-Landau bulk energyF. / D 1
4
. 2�1/2.

The density is expressed in terms of  :

�. / D 1

2
..1C  /�1 C .1 �  /�2/ : (3.2)

The semi-linear form for the Allen-Cahn model is

A.yI w; �; �/ WD .�.v � r/v � �g;w/C .�r v;rw/� .p; div w/

C.div v; �/C .�pf r ˝ r ;rw/C ..v � r/ ; �/
C.�pf r ;r�/C .�pf "

�2. 3 �  /; �/ :

The density is treated as a coefficient determined by (3.2). One advantage of this
Allen-Cahn model is that the solution satisfies the maximum principle as mentioned
in [16]. The optimality system for the optimal control problem constraint by this
two-phase Allen-Cahn model is formally of the same type as (2.5)–(2.7).

However, even with boundary conditions v D 0 on @� and (3.1) the Allen-Cahn
model is not mass preserving. This can be seen by taking the test function � � 1

and integration by parts. Since the convective term and the diffusive term vanish, we
obtain

vj@� D 0 H) @

@t

Z
�

 dx D
Z
�

�pf

"2
 .1 �  2/ dx :

The expression on the right hand side is in general not zero. In the case of the
natural outflow condition (1.7), an additional term is obtained. In order to reduce
this mass error we may use local mesh refinement and choose the constant �pf

to be proportional to the local mesh size hK . Since the interface moves as the
time increases, we have to allow the locally refined mesh to follow the interface
propagation in time. For this purpose, we apply the goal-oriented a posteriori error
estimator developed by Meidner and Vexler [17] which assesses the discretization
error with respect to an arbitrary functional j . The adaptation process identifies
adaptive time steps and local mesh sizes.
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Since there do not occur second derivatives in the variational formulation,
(bi-)linear elements can be used for the spatial discretization. We use the same
(adaptive) time step and the same spatial mesh for the discretization of the forward
problem and for the backward problem.

3.1 Numerical Results

In the following numerical example we are interested in the behavior of the error
estimator as well as the reduction of the mass error.

The interface thickness is known to be proportional to ". In order to resolve the
interface properly, the interface thickness should be in the range of the local (in
the vicinity of the interface) mesh size. Therefore, it is reasonable to choose the
parameter " mesh-size dependent, "jT D ˛hT , for each cell T of the triangulation.
By a previous coarse grid computation we obtain with ˛ D 0:64 a properly resolved
interface, so that we identify this value as a reasonable proportionality factor. The
surface tension coefficient � of (2.3) is equal to the ratio �pf =". Therefore, a fixed
surface tension coefficient requires to choose �pf mesh-size dependent as well.
Hence, we obtain �pf jT D �˛hT D 3:2 � 10�3hT . For numerical reasons (sufficient
diffusion), the parameter �pf is choosen as �pf D 10 �pf . Since we are interested in
minimizing the error with respect to the density, we choose the mean of the density,
that is, j. / WD 1

j�T j
R
�T
�. / dx; as target fuctional for mesh adaptation.

In Fig. 5 we depict the interface propagation at several time steps. The dynam-
ically changing meshes follow the interface evolution and ensure a well-resolved

Fig. 5 Evolution of density distribution for the Allen-Cahn model with control at time t D 0

(upper left), t D 1:48 (upper right) and t D 2 (lower left). The optimal control at t D 2 is
visualized in the lower right figure
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Table 1 Obtained values by adaptive refinement of Allen-Cahn Navier-Stokes equations with
optimal control

dofs Nmax M �h �k �h C �k jex � j.�kh/ ieff

109,395 2;145 50 8.63e�4 1:19e�3 2:06e�3 8:40e�3 4:08

248,073 5;673 52 1.75e�5 1:16e�3 1:18e�3 3:65e�3 3:09

1,148,253 17;121 96 �1.10e�5 5:13e�4 5:02e�4 1:42e�3 2:83

6,481,145 46;277 188 �9.58e�7 2:05e�4 2:04e�4 5:38e�4 2:64

Table 2 Obtained values of the optimal control uopt and the corresponding functional value with
the level set method and the Allen-Cahn model

Level set Allen-Cahn

uopt 239.29 193.1

Jopt 5.12e-3 4.87e-2

interface thickness. Similar to the level set method, the control u is able to match
the desired density �d to a certain extent. However, the optimal solution of level set
and Allen-Cahn shows differences.

Table 1 shows the behavior of the error estimator for different levels of
discretization.Nmax denotes the maximum of the spatial degrees of freedom over all
time steps, M displays the number of time steps, �k and �h represent the estimated
error in time and space, respectively. jex D j.�0/ denotes the exact mass, that is, the
domain integral of the density at initial time, and ieff describes the effectivity index
which is defined by the exact error divided by the estimated error. One can observe
that this index remains nearly constant over all levels of mesh refinement and the
mass error is reduced by the factor of approximately 16 from the coarsest to the
finest discretization level. The corresponding ratio of mesh points is approximately
60.

In order to make a comparison of these results with the ones for the level-set
method in Sect. 2, we list the obtained values for the optimal control uopt and for the
corresponding functional value Jopt in Table 2.

4 Phase Field Model with Geometric Interface Functional

In this section, we consider the modified geometric functional (� > 0),

QJ .�;u/ WD J.�;u/C ˇ

Z
�T

�
�jr�j2 C 1

4�
.� � �1/

2.� � �2/2
�
dxdt

where the functional J is enriched by the ˇ term, which is the approximation for the
length of the surface interface� by means of a phase-field formulation (cf. [1,3] and
the references therein). This geometric part of the function helps to avoid oscillatory
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Fig. 6 Desired state �d , initial condition, density at t D T for ˇ ¤ 0, density at t D T for ˇ D 0

(from left to right)

effects in the interface. In Fig. 6, it is shown that ˇ D 0 and ˇ > 0 lead to different
dynamics.

We neglect the surface tension given in (1.9)–(1.10), set g � 0 for simplicity
and study the optimal control problem of a two-phase fluid with distributed control
u together with homogeneous Dirichlet boundary conditions for v. A distributed
control is a mathematical idealization of a large amount of very small control
devices distributed in a fine grid over the domain�. For instance, this is relevant in
semiconductor industry, e.g. [2]. In order to have QJ well-defined, and to get regular
Lagrange multipliers related to the mass equation (1.3), we introduce an artificial
diffusion term �ı��. The problem of this section then reads as follows:

Minimize QJ subject to

1

2
.�@tv C @t .�v/C �.v � r/v C div .�v ˝ v//� div .�rv/C rp D �u;

div v D 0;

@t�C .v � r/� � ı�� D 0;

together with boundary conditions v D 0 and @n� D 0 on @�. This multi-parameter
approach accomplishes the following goals: The objective functional QJ is forcing
the density to approximate a given shape �d , and also to minimize the perimeter of
involved interfaces. In most studied situations, the fluids behave as if surface tension
is present, see e.g. Fig. 6. By the parameter ı > 0 in the equation, we gain regularity
for solutions of the equation by making jumps in the density diffusive (this was
also done in order to show existence of the equation, cf. [15]). This helps to derive
optimality conditions in a rigorous way, and it helps to have the objective functional
QJ well-defined. We note that there is a motivation to have a proper limit function for

either ı ! 0 or � ! 0, but it is not clear what the limit would be if both parameters
tend to zero simultaneously. Based on a priori estimates, a necessary condition for
any convergence result is ı D O.�/. Experiments also indicate this relation, cf. [3].

In [3], it is shown that the above optimization problem has at least one solution,
and necessary optimality conditions are derived rigorously for ı; � > 0. A key
ingredient for the derivation of optimality conditions are a priori estimates for the
states v and �, both relying on the artificial diffusion.
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4.1 Discrete Optimization Problem

In this section, we focus on the corresponding discrete problem to QJ for ı; � > 0

and the numerical analysis for positive spatial mesh size h and time step k, which
will later tend to zero. Let Th be a quasi-uniform triangulation of � with h WD
maxT2Th diam T . We introduce the following spaces.

• Rh for the approximation of the density �, which consists of globally continuous,
piecewise linear standard finite element functions.

• V h and Mh as an inf-sup stable conforming pair (e.g. Taylor–Hood or MINI
Elements) for velocity v and pressure p, involving zero Dirichlet boundary
conditions for v.

We use a semi-implicit Euler scheme with time step size k > 0, which is combined
with a Galerkin-type scheme in space for the discretization of the governing
equations, which is a modification of the scheme studied in [4]. The modified
scheme is given in full detail in [3, Section 5]. We introduce a fully discrete version
of the optimization problem with the geometric functional QJ , and it is easy to show
that this finite-dimensional problem has at least one solution (since the fully discrete
version of QJ is a continuous function on some finite dimensional space and the
discrete equation is solvable), as well as to derive necessary optimality conditions
(by the finite dimensional Lagrange multiplier theorem).

In [3], it is shown that these discrete solutions of the fully discrete optimal
control problem converge to some functions with respect to numerical parameters
h; k > 0 (up to subsequences), and the limit functions solve the continuous
optimality conditions. Moreover, it can be shown that the sequence of discrete
optimal control convergences to a optimal control u of the continuous problem
strongly in L2.0; T IL2.�//.

In order to show this result, we proceed as follows.

1. Derive uniform bounds for the fully discrete scheme in standard parabolic norms
as well as in higher norms (such that the solutions are indeed strong). By stability
of the interpolation, all time-continuous interpolants inherit these bounds.

2. With these bounds, and a discrete version of Aubin–Lions’ compactness theorem,
it is possible to derive strong convergence for the affine and constant in time
interpolants. This will lead to the convergence of the discrete scheme to the state
equation (up to subsequences).

3. It remains to show that the adjoint variables are bounded in proper norms. Here,
the strong coupling between the adjoint variables and the state variables, as well
as the coupling between the two adjoint variables corresponding to the mass
equation and the momentum equation, respectively, causes problems. We derive
standard parabolic regularity properties for the discrete adjoint variables. Here,
we need the regularity of the state variables and a combined argumentation:
Since derivatives of both adjoint variables are present in both adjoint equations,
we have to multiply the adjoint equations simultaneously with different test
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functions and to consider a proper weighted sum of the resulting inequalities. At
this point, it is necessary that the state variables have strong stability properties.

4. The bounds for all discrete variables are sufficient to pass to the limit in the
optimality system, which proves the main convergence result.

4.2 Numerical Results

In the numerical experiments included here, we compare the behavior for ˇ D 0

and ˇ ¤ 0, as well as the behavior of the ˇ term for two different scenarios. A
detailed explanation and many more experiments can be found in [3]. The numerical
experiment was done with grid size h D 1=64 and time step size k D 0:05. In all
experiments, the initial velocity is zero. The discrete optimality system is solved
by a steepest descent algorithm using a Barzilai-Borwein step size for line search,
cf. [5].

In Fig. 6, we can see a different evolution depending on ˇ: If ˇ D 5 > 0, the
geometric properties of the desired state are reached. For ˇ D 0, the L2-distance is
minimized and the shape of the desired state fits, while geometric properties (like
convexity) are not the same like in the desired state.

For the next two experiments, we neglect the k� � �dk2
L2.0;T IL2.�//-term in the

functional QJ and consider only the ˇ-term. In the first experiment, the two disjoint
circles are forced to join in order to reduce the ˇ term, see Fig. 7. In the second
experiment, there is a pinch-off of the connected region into two separated regions
which become circular, see Figs. 8 and 9, respectively, for the optimal velocity. For
comparison, we included the evolution for the non-controlled situation where the
initial condition only becomes diffuse.

Fig. 7 Optimal solution at time t D 0; 0:15; 0:5; 1; only ˇ term present
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Fig. 8 Optimal solution at time t D 0; 0:15; 0:5, and the solution at t D 0:5 without control (from
left to right); only ˇ term present

Fig. 9 Optimal velocity at time t D 0:1; 0:15; 0:5 (from left to right; the velocity vectors are
scaled by a factor 0:1, 0:15, 0:4, respectively); only ˇ term present
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A-Priori Error Bounds for Finite Element
Approximation of Elliptic Optimal Control
Problems with Gradient Constraints

Klaus Deckelnick and Michael Hinze

Abstract The finite element approximation of an elliptic optimal control problem
with pointwise bounds on the gradient of the state is considered. We review recent
results on the error analysis for various discretization approaches and prove a new
bound for the problem without control constraints.

Keywords Elliptic optimal control problem • State constraints • Error estimates
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1 Introduction

The subject of this report is the finite element approximation of optimal control
problems with constraints on the gradient of the state. A typical example is the
optimization of a cooling process in which the temperature acts as the state variable
and large temperature gradients are prohibited in order to avoid possible damage
in the material. We shall restrict ourselves to a model problem which involves the
optimal control of a linear elliptic partial differential equation in the presence of
pointwise bounds on the gradient of the state, while the control variable can be
both constrained or unconstrained. In order to discretize this problem it is common
to approximate the underlying objective functional by a sequence of functionals
which are obtained by discretizing the state equation with the help of a finite element
method. Natural choices in this step are continuous, piecewise linear finite elements
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but also the lowest order Raviart–Thomas mixed finite element. The control variable
can be handled in two ways: either by variational discretization (see [11]), which
means that the first order optimality conditions give rise to an implicit discretization
in terms of the discrete adjoint state; another possibility consists in discretizing the
control explicitly, typically by piecewise constant functions.

This report focusses on the a-priori error analysis for the abovementioned
approaches. Apart from reviewing results that have been obtained in [5, 8, 12] we
prove a new bound in the case in which the control variable is unconstrained and
the objective functional contains an Lr–norm (r > 2). In the remaining part of the
paper we present a number of test calculations.

Let us close this section with a short survey of related publications. Elliptic opti-
mal control problems with gradient constraints in nonsmooth polygonal domains
are considered by Wollner in [16,17]. While [16] is concerned with the existence of
solutions, first order conditions and regularity, [17] derives a-priori error bounds
for a finite element discretization. A general Moreau–Yosida framework for the
treatment of elliptic optimal control problems with state and gradient constraints
is presented by Hintermüller and Kunisch in [9]. Interior point approaches are
investigated by Schiela and Wollner in [13]. In [15] Wollner presents an a-posteriori
error analysis for an interior point approach to elliptic optimal control problems with
general state constraints, including the case of pointwise bounds on the gradient of
the state. A residual based adaptive approach to elliptic optimal control problems
with pointwise gradient state constraints is presented by Hintermüller et al. in [10].

2 Mathematical Setting

Let � � R
d .d D 2; 3/ be a bounded domain with a C1;1-boundary and consider

the differential operator

Ay WD �
dX

i;jD1
@xj
�
aijyxi

�C a0y;

where for simplicity the coefficients aij and a0 are assumed to be smooth functions
on N�. In what follows we assume that aij D aji, a0 	 0 in � and that there exists
c0 > 0 such that

dX
i;jD1

aij.x/�i �j 	 c0j�j2 for all � 2 R
d and all x 2 �:

We consider the elliptic boundary value problem

Ay D u in �
y D 0 on @�:

(2.1)
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It is well–known that for every 1 < p < 1 (2.1) has a unique solution y 2
W 2;p.�/ \W 1;p

0 .�/ with

kykW 2;p � CkukLp : (2.2)

Here k � kLp and k � kW k;p denote the usual Lebesgue and Sobolev norms. If p D 2

we simply write k � k D k � kL2 .
We consider the following optimal control problem:

min
u2K J.u/ D 1

2

Z
�

jy � y0j2 C ˛

r

Z
�

jujr

where y solves (2.1) and ry 2 C:
(2.3)

Here, ˛ > 0 and y0 2 L2.�/ are given, while

C D fz 2 C0. N�/d j jz.x/j � ı; x 2 N�g;

for some given ı > 0 and j � j denotes the Euclidian norm in R
d . Furthermore, we

consider the following two possible choices forK and r :

(I) K D fu 2 L1.�/ j a � u � b a.e. in �g, r D 2, where a < b are given
constants.

(II) K D Lr.�/ for some r > d .

Note that in both cases a well–known embedding result implies that ry 2 C0. N�/d
for the solution of (2.1), so that the condition ry 2 C in (2.3) makes sense.

Existence of solutions, first order conditions as well as the structure and
regularity of multipliers for control problems with pointwise constraints on the
gradient of the state were investigated by Casas and Fernández in [4]. The authors
allow a semilinear state equation and rather general constraints on the control and
the gradient of the state. The above choices (I) and (II) fit into the framework of [4].
In order to formulate the first order optimality conditions we introduce the space
of regular Borel measures M. N�/, which is the dual space of C0. N�/. The norm on
M. N�/ is given by

k�kM. N�/ D sup
f 2C0. N�/;jf j�1

Z
N�
fd�:

In case (I) we assume in addition that the following Slater condition holds:

9Ou 2 K jr Oy.x/j < ı; x 2 N�; where Oy solves (2.1) with u D Ou: (2.4)

Note that in case (II) one may simply choose Ou D 0 to satisfy this condition.
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Theorem 2.1. An element u 2 K is a solution of (2.3) if and only if there exist
� 2 M. N�/d and p 2 Lt.�/ (t < d

d�1 ) such that

Z
�

pAz �
Z
�

.y � y0/z �
Z
N�

rz �d� D 0 8z 2 W 2;t 0.�/ \W 1;t 0

0 .�/;

(2.5)Z
�

.p C ˛jujr�2u/.Qu � u/ 	 0 8Qu 2 K; (2.6)

Z
N�
.z � ry/ �d� � 0 8z 2 C: (2.7)

Here, y is the solution of (2.1) and 1
t

C 1
t 0

D 1.

Proof. see, [4, Theorem 3] and [4, Corollary 1]. ut
Remark 2.2. We may infer from (2.6) that in case

(I) u.x/ D ProjŒa;b�
��p.x/

˛

�
a.a. x 2 �,

(II) u.x/ D �˛� 1
r�1 jp.x/j 2�rr�1 p.x/ a.a. x 2 �.

In the latter case it is shown in [12, Corollary 5] that this relation together with (2.5)

implies that u 2 W 1� d
r ��

r�1 ;r .�/ for any � > 0. An embedding result (see [14, 4.6.1])
then yields u 2 Lp� .�/, where p� D r�1

1� 1
dC�

for any � > 0.

3 Finite Element Discretization

Let Th be a triangulation of�with maximum mesh size h WD maxT2Th diam.T /. We
suppose that N� is the union of the elements of Th; boundary elements are allowed to
have one curved face. In addition, we assume that the triangulation is quasi-uniform
in the sense that there exists a constant � > 0 (independent of h) such that each
T 2 Th is contained in a ball of radius ��1h and contains a ball of radius �h.

3.1 Piecewise Linear Approximation of the State

Let us recall the definition of the space of linear finite elements,

Xh WD fvh 2 C0. N�/ j vh is a linear polynomial on each T 2 Thg
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and letXh0 WD Xh\H1
0 .�/. For a given function u 2 L2.�/we denote by yh 2 Xh0

the solution of
Z
�

Aryh � rvh C
Z
�

a0yhvh D
Z
�

uvh for all vh 2 Xh0: (3.1)

Here, we have abbreviated A.x/ D �
aij.x/

�d
i;jD1. Let us define

Ch WD fch W N� ! R
d j chjT is constant and jchjT j � ı; T 2 Thg: (3.2)

We approximate (2.3) by the following control problem depending on the mesh
parameter h:

min
u2K Jh.u/ WD 1

2

Z
�

jyh � y0j2 C ˛

r

Z
�

jujr

subject to yh solves (3.1) and ryh 2 Ch:
(3.3)

Note that the control variable is not discretized. Problem (3.3) represents a
convex infinite–dimensional optimization problem of similar structure as problem
(2.3), but with only finitely many constraints on the state.The following first order
conditions yield an implicit discretization of the control variable in terms of the
discrete adjoint state. Using (2.4) it is not difficult to see that a Slater condition
holds for (3.3) provided that 0 < h � h0.

Lemma 3.1. Problem (3.3) has a unique solution uh 2 K . For 0 < h � h0 there
are �T 2 R

d ; T 2 Th and ph 2 Xh0 such that

Z
�

.Arvh � rph C a0vhph/ �
Z
�

.yh � y0/vh �
X
T2Th

rvhjT ��T D 0 8vh 2 Xh0;

(3.4)Z
�

.ph C ˛juhjr�2uh/.Qu � uh/ 	 0 8Qu 2 K;
(3.5)

X
T2Th

�
chjT � ryhjT

� ��T � 0 8ch 2 Ch:

(3.6)

Here, yh 2 Xh0 is the solution of (3.1) with right hand side uh.

Proof. See [4, Theorem 7] with the choices U D Lr.�/,K � U , Ch � Z WD R
Nh ,

where Nh is the number of triangles in Th. ut



370 K. Deckelnick and M. Hinze

Remark 3.2. Similar to Remark 2.2 we deduce from (3.5) that for

(I) uh.x/ D ProjŒa;b�
��ph.x/

˛

�
a.a. x 2 �,

(II) uh.x/ D �˛� 1
r�1 jph.x/j 2�rr�1 ph.x/ a.a. x 2 �,

so that in both cases the discrete control is expressed implicitly in terms of the
piecewise linear discrete costate ph, the relation however being nonlinear.

For the unconstrained case (II), the following error bound has been proved in [8,
Theorem 2.5]:

Theorem 3.3. Let u and uh be the solutions of (2.3) and (3.3) in case (II)
respectively. Then there exists h0 > 0 such that

ku � uhkLr � Ch
1
r .1� dr /; ky � yhk � Ch

1
2 .1� dr /

for all 0 < h � h0.

The proof relies on a careful combination of the information given by the primal
and adjoint equations and we present the main ideas in the following section for a
mixed finite element discretization of the state equation. The bounds in Theorem 3.3
are still satisfied if one employs a discretization of the control variable by piecewise
constant functions on Th, see [8, Theorem 2.8]. We also remark that the above
results are obtained by Ortner and Wollner in [12] without making use of adjoint
information by working directly with the functionals J and Jh. Such a technique
was previously used in [6] for the numerical analysis of elliptic optimal control
problems with pointwise bounds on the state.

In general, both the control u and the adjoint variable p have low regularity even
allowing jumps. For this reason, piecewise linear, continuous finite elements are
not ideally suited for the discretization as they tend to develop oscillations near
discontinuities. In the next section we present an alternative approach on the basis of
a mixed finite element approach of lowest order for the state equation. This approach
leads in particular to piecewise constant approximations for the state, costate and
control and therefore seems to be better suited to handle discontinuities.

3.2 Mixed Finite Element Approximation of the State

As already mentioned we now use a mixed formulation in order to approximate the
solution of (2.1). Let us introduce

H.div; �/ WD fw 2 L2.�/d j divw 2 L2.�/g

and write .y; v/ D G.u/, where v D Ary and y is the solution of (2.1).
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We use a mixed finite element method based on the lowest order Raviart–Thomas
element. Let

Vh WD RT0.�; Th/ WD fwh 2 H.div; �/ j whjT 2 RT0.T / for all T 2 Thg;

where RT0.T / D fw W T ! R
d j w.x/ D aCˇx; a 2 R

d ; ˇ 2 Rg. Furthermore, let

Yh WD fzh 2 L2.�/ j zh is constant on each T 2 Thg:

For a given function u 2 Lr.�/ the discrete solution .yh; vh/ 2 Yh � Vh is given by

Z
�

A�1vh � wh C
Z
�

yh divwh D 0 8wh 2 Vh (3.7)

Z
�

zh divvh �
Z
�

a0yh zh C
Z
�

u zh D 0 8zh 2 Yh: (3.8)

Introducing Gh.u/ D .yh; vh/ 2 Yh � Vh as an approximation of G it is well–known
[3] that the following error estimate holds:

ky � yhk C kv � vhk � Ch
�kykH1 C kArykH1

� � ChkykH2 � Chkuk (3.9)

by (2.2). In what follows it will be crucial to control the error between v and vh in
L1.�/.

Lemma 3.4. Let d < p < 1; u 2 Lp.�/ and .y; v/ D G.u/, .yh; vh/ D Gh.u/.
Then there exists h0 > 0 such that for 0 < h � h0

kv � vhkL1 � Ch1�
d
p j loghj1� 2

p kukLp :

Proof. Let us denote by T the linear operator which assigns to u the error v � vh.
We deduce from (3.9) that

kT kL2!L2 � Ch:

On the other hand we infer from [7, Corollary 3] that there exists h0 > 0 so that for
0 < h � h0

kv � vhkL1 � Chj loghj kukL1

for all u 2 L1.�/, so that

kT kL1!L1 � Chj loghj:
The Riesz convexity theorem then implies that

kT kLp!Lp � kT k
2
p

L2!L2kT k1�
2
p

L1!L1
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and hence

kv � vhkLp � Ch
2
p
�
hj loghj�1� 2

p kukLp D hj loghj1� 2
p kukLp

for all u 2 Lp.�/. Denoting by Ih the usual Lagrange interpolation operator
we deduce with the help of standard interpolation estimates, (2.2) and an inverse
estimate that

kv � vhkL1 � kv � IhvkL1 C kIhv � vhkL1

� ch1�
d
p kvkW 1;p C ch�

d
p kIhv � vhkLp

� ch1�
d
p kukLp C ch�

d
p kv � IhvkLp C ch�

d
p kv � vhkLp

� ch1�
d
p kukLp C ch1�

d
p j loghj1� 2

p kukLp

which yields the result. ut
Similarly to (3.3) we now consider the following discrete control problem:

min
u2K Jh.u/ WD 1

2

Z
�

jyh � y0j2 C ˛

r

Z
�

jujr

subject to .yh; vh/ D Gh.u/ and
��

T

A�1vh

�
T2Th

2 Ch;
(3.10)

where Ch is as in (3.2) and
�
T

� D 1
jT j
R
T

� . We note that the control again is not
discretized and that the gradient of the state variable is only constrained on average
on each element. Similar to Lemma 3.1 and Remark 3.2 one has

Lemma 3.5. Problem (3.10) has a unique solution uh 2 K . There exists 0 < h1 �
h0 such that for 0 < h < h1 there are �T 2 R

d ; T 2 Th and .ph;�h/ 2 Yh � Vh

such that with .yh; vh/ D Gh.uh/ we have

Z
�

A�1�h � wh C
Z
�

ph divwh C
X
T2Th

�T �
�
T

A�1wh D 0 8wh 2 Vh;

(3.11)Z
�

zh div�h �
Z
�

a0ph zh C
Z
�

.yh � y0/ zh D 0 8zh 2 Yh;
(3.12)Z

�

.ph C ˛juhjr�2uh/.Qu � uh/ 	 0 8Qu 2 K; (3.13)

X
T2Th

�T � �chjT �
�
T

A�1vh
� � 0 8ch 2 Ch:

(3.14)
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Remark 3.6. The discrete control uh and the discrete adjoint state ph are related
by

(I) uh.x/ D ProjŒa;b�
��ph.x/

˛

�
a.a. x 2 �,

(II) uh.x/ D �˛� 1
r�1 jph.x/j 2�rr�1 ph.x/ a.a. x 2 �.

In particular, in both cases the discrete solution uh is piecewise constant on the
triangulation Th.

The following a–priori estimate is crucial for the convergence analysis.

Lemma 3.7. Let uh 2 Lr.�/ be the optimal solution of (3.10) with corresponding
state .yh; vh/ 2 Yh � Vh and adjoint variables .ph;�h/ 2 Yh � Vh, �T; T 2 Th.
Then

kuhkLr C kyhk C
X
T2Th

j�Tj � C

for all 0 < h � h1.

Proof. The proof is carried out in [5, Lemma 3.6] for case (I), but the analysis can
be adapted to case (II) in a straightforward way. ut

The error analysis depends on the choice of the admissible setK and the structure
of the objective functional. In case (I) the controls belong to L1.�/ leading to
better convergence properties in the state equation. We have the following result:

Theorem 3.8. Let u and uh be the solutions of (2.3) and (3.10) in case (I) with
corresponding states y and yh respectively. Then

ku � uhk C ky � yhk � Ch
1
2 j loghj 12

for all 0 < h � h1.

Proof. See [5, Theorem 4.1]. ut
Let us next turn to case (II), for which Theorem 3.3 gives convergence rates

of O.h
1
r .1� dr // for the control and O.h

1
2 .1� dr // for the state if a piecewise linear

approximation of the state is used. Adapting the corresponding proof to the case of
the Raviart–Thomas element it would be possible to derive the same convergence
rates. However, as observed in [12, Remark 2], these rates are not optimal since

u 2 W
1� d

r ��

r�1 ;r .�/ for any � > 0. The following result improves these bounds and
appears to be optimal as far as the control variable is concerned.

Theorem 3.9. Let u and uh be the solutions of (2.3) and (3.10) in case (II) with
corresponding states y and yh respectively. Then for every � > 0 there exists C�
such that
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ku � uhkLr � C�h
˛1��; ky � yhk � C�h

˛2��;

where ˛1 D 1� dr
r�1 ; ˛2 D .1 � d

r
/ r
2.r�1/ .

Proof. To begin, we note that for r 	 2

.jajr�2a � jbjr�2b/.a � b/ 	 22�r ja � bjr 8a; b 2 R:

Hence, using (2.6) and (3.13),

˛22�r
Z
�

ju � uhjr � ˛

Z
�

�jujr�2u � juhjr�2uh
�
.u � uh/

D
Z
�

ph.u � uh/C
Z
�

p.uh � u/ � I C II: (3.15)

Let us introduce . Qyh; Qvh/ D Gh.u/ 2 Yh � Vh. Using (3.8) and (3.11) we infer for
the first term

I D �
Z
�

phdiv
�Qvh � vh

�C
Z
�

a0 ph
� Qyh � yh

�

D
Z
�

A�1�h � �Qvh � vh
�C

X
T2Th

�T �
�
T

A�1
�Qvh � vh

�C
Z
�

a0 ph
� Qyh � yh

�

D
Z
�

A�1�h � �Qvh � vh
�C

X
T2Th

�T �
�
Pı
��

T

A�1 Qvh
� �
�
T

A�1vh

�

C
Z
�

a0 ph
� Qyh � yh

�C
X
T2Th

�T �
��

T

A�1 Qvh � Pı
��

T

A�1 Qvh
��
;

where Pı denotes the orthogonal projection onto NBı.0/ D fx 2 R
d j jxj � ıg. Note

that

jPı.x/ � Pı. Qx/j � jx � Qxj 8x; Qx 2 R
d : (3.16)

Since by definition

�
Pı
��

T

A�1 Qvh
��
T2Th

2 Ch

we deduce from (3.14) that

I �
Z
�

A�1�h � �Qvh � vh
�C

Z
�

a0 ph
� Qyh � yh

�

C max
T2Th

ˇ̌�
T

A�1 Qvh � Pı

��
T

A�1 Qvh

� ˇ̌ X
T2Th

j�Tj:
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In order to estimate the last term we note that ry 2 C implies that
��
T

ry�
T2Th D��

T
A�1v

�
T2Th 2 Ch. Using Lemma 3.4 with .y; v/ D G.u/; . Qyh; Qvh/ D Gh.u/ we

infer

kQvh � vkL1 � Ch
1� d

p� j loghj1� 2
p� kukLp� D C�h

1� d
p� j loghj1� 2

p� ; (3.17)

since u 2 Lp� .�/ with p� D r � 1

1 � 1
d

C �
(� > 0) in view of Remark 2.2. As a

consequence,

ˇ̌�
T

A�1 Qvh � Pı
��

T

A�1 Qvh
�ˇ̌ � ˇ̌�

T

A�1.Qvh � v/
ˇ̌C ˇ̌

Pı
��

T

A�1 Qvh
� � Pı

��
T

A�1v
�ˇ̌

� CkQvh � vkL1 � C�h
1� d

p� j log hj1� 2
p�

in view of (3.16) and (3.17). Combining this estimate with Lemma 3.7 we deduce

I �
Z
�

A�1�h � �Qvh � vh
�C

Z
�

a0 ph
� Qyh � yh

�C C�h
1� d

p� j loghj1� 2
p� :

The symmetry of A, (3.7) and (3.12) finally give

I � �
Z
�

� Qyh � yh
�

div�h C
Z
�

a0 ph
� Qyh � yh

�C C�h
1� d

p� j loghj1� 2
p�

D
Z
�

.yh � y0/
� Qyh � yh

�C C�h
1� d

p� j loghj1� 2
p� : (3.18)

In order to analyze the second term in (3.15) we define .yh; vh/ D G.uh/. Recalling
(2.5) we have

II D
Z
�

p
�
Ayh � Ay

�

D
Z
�

.y � y0/.yh � y/C
Z

N�

�ryh � ry� � d�

D
Z
�

.y � y0/.yh � y/C
Z

N�

�
Pı.ryh/� ry� � d�C

Z
N�

�ryh � Pı.ryh/
� � d�:

Since x 7! Pı.ryh.x// 2 C we infer from (2.7)

II �
Z
�

.y � y0/.y
h � y/C max

x2 N�
jryh.x/ � Pı.ryh.x//j k�kM. N�/d : (3.19)
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Let x 2 N�, say x 2 T for some T 2 Th. Since uh is feasible for (3.10) we have that�
T
A�1vh 2 NBı.0/ so that (3.16) implies

ˇ̌ryh.x/� Pı.ryh.x//
ˇ̌

� ˇ̌ryh.x/ �
�
T

A�1vh
ˇ̌C ˇ̌

Pı.ryh.x// � Pı
��

T

A�1vh
�ˇ̌

� 2
ˇ̌ryh.x/ �

�
T

A�1vh
ˇ̌
: (3.20)

Using a well–known interpolation estimate (cf. [2], Corollary (4.4.7)) and (2.2) we
obtain

ˇ̌ryh.x/ �
�
T

A�1vh
ˇ̌ D ˇ̌

A�1.x/vh.x/ �
�
T

A�1vh
ˇ̌

� ˇ̌
A�1.x/.vh � v/.x/�

�
T

A�1.vh.x/ � v/
ˇ̌

Cˇ̌A�1.x/v.x/ �
�
T

A�1v
ˇ̌C ˇ̌�

T

A�1.vh � vh/
ˇ̌

� Ch1� dr kvh � vkW 1;r C Ch1�
d
p� kvkW 1;p� C Ckvh � vhkL1

� Ch1� dr kuh � ukLr C Ch1�
d
p� kukLp� C Ckvh � vhkL1 :

Applying Lemma 3.4 with u � uh as well as (3.17) we infer

kvh � vhkL1 � k.vh � v/� .vh � Qvh/kL1 C kv � QvhkL1

� Ch1�
d
r j loghj1� 2r ku � uhkLr C C�h

1� d
p� j loghj1� 2

p� ;

which combined with (3.20) yields

max
x2 N�

ˇ̌ryh.x/�Pı.ryh.x//ˇ̌ � Ch1� dr j loghj1� 2
r ku�uhkLr CC�h1� d

p� j loghj1� 2
p� :

Returning to (3.19) we have

II �
Z
�

.y � y0/.y
h � y/C Ch1�

d
r j loghj1� 2r ku � uhkLr C C�h

1� d
p� j loghj1� 2

p� :

(3.21)

If we insert (3.21) and (3.18) into (3.15) we finally obtain

˛22�rku � uhkrLr �
Z
�

.yh � y0/. Qyh � yh/C
Z
�

.y � y0/.y
h � y/

CCh1� dr j loghj1� 2r kuh � ukLr C C�h
1� d

p� j loghj1� 2
p�
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D �
Z
�

jy � yhj2 C
Z
�

�
.y0 � yh/.y � Qyh/C .y � y0/.yh � yh/

�

CCh1� dr j loghj1� 2r kuh � ukLr C C�h
1� d

p� j loghj1� 2
p�

� �ky � yhk2 C C
�ky � Qyhk C kyh � yhk

�

C˛22�r

2
ku � uhkrLr C Ch.1�

d
r /

r
r�1 j loghj.1� 2r / r

r�1 C C�h
1� d

p� j loghj1� 2
p�

by Young’s inequality. A simple calculation shows that

1 � d

p�
D .1 � d

r
/
r

r � 1
� �d

r � 1 < .1 � d

r
/
r

r � 1
;

while 1 � 2

p�
< .1 � 2

r
/
r

r � 1 . In conclusion we obtain after another application

of (3.9)

ku � uhkrLr C ky � yhk2 � C�h
.1� dr / r

r�1� �d
r�1 j loghj.1� 2r / r

r�1 ;

from which we deduce the result of the theorem. ut

4 Numerical Examples

We consider (2.3) with the choices� D B2.0/ � R
2, ˛ D 1,

C D fz 2 C0. N�/2 j jz.x/j � 1

2
; x 2 N�g

as well as

y0.x/ WD
�
1
4

C 1
2

ln 2 � 1
4
jxj2; 0 � jxj � 1;

1
2

ln 2 � 1
2

ln jxj; 1 < jxj � 2:

In order to construct a test example we allow an additional right hand side f in the
state equation and replace (2.1) by

��y D f C u in �
y D 0 on @�;

where

f .x/ WD
�
2; 0 � jxj � 1;

0; 1 < jxj � 2:
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In case (I) we consider K D fu 2 L1.�/ j � 2 � u � 2 a.e. in �g, while in case
(II) we choose r D 4. The optimization problem then has in both cases the unique
solution

u.x/ D
� �1 ; 0 � jxj � 1

0 ; 1 < jxj � 2

with corresponding state y � y0. We note that in case (I) the bounds on the control
are not active, so that we obtain equality in (2.6), i.e. p D �u. Furthermore, the
action of the measure � applied to a vectorfield � 2 C0. N�/2 is given by

Z

N�
� �d� D �

Z

@B1.0/

x � �dS:

In what follows we frequently use the experimental order of convergence, which is
defined for an error functionalE.h/ by

EOC D lnE.h1/ � lnE.h2/

ln h1 � ln h2
:

For the numerical solution we use the routine fmincon contained in the Matlab
optimization toolbox. The actual calculations were carried out on a polygonal
approximation of B2.0/. Note that while our analysis did not take into account
the approximation of the domain, the observed rates show that this error doesn’t
dominate.

4.1 Piecewise Linears for the State with Variational
Discretization

Many existing finite element codes employ continuous, piecewise linear finite
elements, so that it is natural to use this element in order to discretize the state
equation in optimization problems for elliptic pdes. Numerical results for case (II)
are reported in [8] to which we refer for details. Table 1 shows the experimental
order of convergence for the error functionals

ku � uhkL4.�/; ku � uhk; and ky � yhk:

Figure 1 illustrates the optimal solution uh and the corresponding adjoint state ph
on a mesh consisting of nt D 512 triangles. Note that in view of the relation
uh.x/ D �jph.x/j� 2

3 ph.x/ the variational control uh necessarily is a continuous
function, while the exact control u has a jump. This inconsistency is reflected
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Table 1 Errors (top) and
EOCs for piecewise linears

nt ku� uhkL4.�/ ku� uhk ky � yhk
32 8:34633 � 10�1 1:36003 2:20346 � 10�1

128 5:88566 � 10�1 9:04770 � 10�1 7:97200 � 10�2

512 4:84191 � 10�1 5:82014 � 10�1 3:52102 � 10�2

0:54884 0:64041 1:59745

0:29263 0:66136 1:22499

−2
0

2

−2
0

2

0

0.2

0.4

0.6

0.8

Fig. 1 Control (left), and adjoint state (right) (variational discretization)

in the appearance of oscillations near the set @B1.0/ in Fig. 1, and also affects
the performance of the optimization solvers implemented within the fmincon
package. We conclude that variational discretization combined with continuous,
piecewise linear finite elements for the state approximation is not ideally suited to
control problems with gradient constraints on the state.

4.2 Mixed Finite Element Approach with Variational
Discretization

The state equation is now approximated with the help of the lowest order
Raviart–Thomas element for which we used the implementation provided by [1].
Numerical results for case (I) can be found in [5].

Let us report on the corresponding results for case (II). In Table 2 we display the
experimental order of convergence for the error functionals

ku � uhkL4.�/; ku � uhk and ky � yhk:

The errors show a similar behaviour as in the case of piecewise linear finite elements
and are slightly better than predicted by Theorem 3.9. Figure 2 shows the optimal
state and the optimal control on a grid containingm D 1;089 gridpoints. In Table 3



380 K. Deckelnick and M. Hinze

Table 2 Errors and EOCs
for the controls and the state
with Raviart–Thomas
approximation of the state

NT ku� uhkL4.�/ ku� uhk ky � yhk
32 6:85 � 10�1 1:10 3:00 � 10�1

128 6:77 � 10�1 8:70 � 10�1 1:51 � 10�1

512 6:05 � 10�1 6:04 � 10�1 7:25 � 10�2

2,048 5:22 � 10�1 4:21 � 10�1 3:61 � 10�2

8,192 4:44 � 10�1 2:96 � 10�1 1:80 � 10�2

0:01881 0:36245 1:08340

0:16899 0:54697 1:09552

0:21730 0:53219 1:02287

0:23488 0:51182 1:01139
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−0.2

0

0.2

Fig. 2 Optimal state (left), and optimal control

Table 3 Behaviour of the
discrete multipliers NT

NTP
iD1

j�T j
32 2.32

128 4.32

512 5.29

2,048 5.79

8,192 6.04

we display the values of
P

T2Th j�T j which appear to converge to 2 , the total
variation of the measure �. The modulus of �T ; T 2 Th as well as the set of
elements T on which �T ¤ 0 is shown in Fig. 3. It can be seen that these elements
concentrate around jxj D 1.
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Fig. 3 j�Tj (left), and support of �T
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Space-Time Newton-Multigrid Strategies
for Nonstationary Distributed and Boundary
Flow Control Problems

Michael Hinze, Michael Köster, and Stefan Turek

Abstract This paper considers a Newton-type solver strategy for optimal flow
control problems using space-time multigrid solution techniques. Based on the stan-
dard Newton approach for optimal control, a space-time multigrid preconditioner is
derived and numerically analysed for distributed and boundary control.

Keywords Distributed control • Boundary control • Finite elements • Time-
dependent Navier–Stokes • Newton • Space-time multigrid • Optimal control
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1 Introduction

The optimal control of incompressible, nonstationary flow problems belongs to
todays most challenging problems in the field of optimisation. By design, the
underlying equations are of elliptic nature (in space and time), and thus, all variables
in the discretised equations are fully coupled (in space and time). Such very high-
dimensional discrete problems can only be solved with specialised solvers which
exploit the structure of the underlying equations.

There are different approaches available to deal with nonstationary flow control,
see [5,10] for an overview. In [2,3], the state of the art of multigrid methods in PDE
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constrained optimisation is summarised. Building upon [4] and the ideas proposed
there, the present paper presents results for a multigrid-based solution strategy
for the distributed and L2 boundary control of nonstationary incompressible flow
problems. A special Newton-type solver in the control space is developed which
utilises space-time multigrid techniques for the Newton systems to enhance the
efficiency.

In Sect. 2 the model problems considered in this paper are introduced. Section 3
presents a description of the standard Newton method in the control space and
draws a comparison to other known methods. Section 4 introduces appropriate
discretisation strategies for the space-time problems. The multigrid-based solver
for the linear subproblems in the Newton approach is described in Sect. 5. Section 6
presents numerical tests regarding efficiency, and finally in Sect. 7, we draw some
conclusions.

2 Model Problems

Our paper investigates nonstationary distributed as well as L2 Dirichlet boundary
control. In the following, let � � R

d (d D 2; 3) denote an open, bounded domain
with boundary � D @� and outer unit normal vector �, T > 0 a final time, Q WD
.0; T / � � the corresponding space-time domain and † WD .0; T / � � . Let the
boundary � be decomposed into the three different, disjoint parts �D , �N , �C , with
� D �D [ �N [ �C . �D specifies the Dirichlet part of the boundary, �N the
Neumann part, and �C the Dirichlet control part. Furthermore, let †N WD .0; T / �
�N , †C WD .0; T / � �C and †D WD .0; T / � �D .

2.1 Optimal Distributed Control of the Navier–Stokes
Equations

Let �C D ; in the following. Take a function z W Q ! R
d , the so-called target

function, a Dirichlet boundary condition g W .0; T / � �D ! R
d and an initial

condition y0 W � ! R
d . The aim is to find a control u W Q ! R

d , a velocity
field y W Q ! R

d and a pressure field p W Q ! R which solve the following
minimisation problem,

J.y; u/ D 1

2
jjy � zjj2

L2.Q/
C ˛

2
jjujj2

L2.Q/
! min; (2.1)

for a regularisation parameter ˛ > 0, where y, p and u are coupled through the
nonstationary Navier–Stokes equations,
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yt � ��y C .yr/y C rp D u in Q,

� divy D 0 in Q,

y D g on †D ,

�@�y � p� D 0 on †N ,

y.0/ D y0 in �.

Using the Lagrange multiplier technique, the following corresponding KKT system
can be derived,

yt � ��y C .yr/y C rp D u in Q,

� divy D 0 in Q,

y D g on †D ,

�@�y � p� D 0 on †N ,

�	t � ��	 � .yr/	C .ry/T 	C r� D y � z in Q,

� div	 D 0 in Q,

	 D 0 on †D ,

�@�	 � ��C .y � �/	 D 0 on †N ,

y.0/ D y0; 	.T / D 0 in �,

˛u C 	 D 0 in Q. (2.2)

Here, 	 W Q ! R
d denotes a dual velocity and � W Q ! R a dual pressure. It

follows from (2.2) that in this setting, the control u lives in the same space as the
dual velocity 	.

2.2 Optimal L2 Boundary Control of the Navier–Stokes
Equations

In the case of L2 boundary control our minimisation problem reads: Find u W †C !
R
d , y W Q ! R

d and p W Q ! R which solve the following minimisation problem,

J.y; u/ D 1

2
jjy � zjj2

L2.Q/
C ˛

2
jjujj2

L2.†C /
! min; (2.3)



386 M. Hinze et al.

where y, p and u are coupled through the nonstationary Navier–Stokes equations,

yt � ��y C .yr/y C rp D 0 in Q,

� divy D 0 in Q,

y D g on †D ,

y D u on †C ,

�@�y � p� D 0 on †N ,

y.0/ D y0 in �.

Using the Lagrange multiplier technique, the following corresponding KKT system
can be derived,

yt � ��y C .yr/y C rp D 0 in Q,

� divy D 0 in Q,

y D g on †D ,

y D u on †C ,

�@�y � p� D 0 on †N ,

�	t � ��	 � .yr/	C .ry/T 	C r� D y � z in Q,

� div	 D 0 in Q,

	 D 0 on †D [†C

�@�	 � ��C .y � �/	 D 0 on †N ,

y.0/ D y0; 	.T / D 0 in �,

˛u � .�@�	 � ��/ D 0 on †C . (2.4)

The control u acts only on the boundary and thus has a much smaller dimension than
in the distributed case. However, for u to be computed, the fully coupled system has
to be solved.

3 The Integral Equation Method for Nonlinear Problems

The integral equation approach to solve our control problems is based on the control
equations of the KKT system, compare [7, 8]. At first, one defines the reduced cost
functional
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OJ .u/ WD J.Su; u/ (3.1)

with S W u 7! y being the solution operator that maps a control u to the solution y
of the nonstationary Navier–Stokes equations. The first order optimality condition

.r OJ .u/; Nu � u/ 	 0 for all Nu 2 Uad

leads to the Eqs. (2.2) and (2.4), respectively, with Uad WD L2.Q/ in the distributed
control andUad WD L2.†C / in the boundary control case. From these equations, one
derives a Newton method which we present exemplarily for the control Eq. (2.2).

The Newton iteration The Newton iteration in the control space based on (2.2)
reads

unC1 WD un � DF.un/
�1F.un/; (3.2)

i.e., expressed in two steps, with an intermediate defect dn,

(a) solve DF.un/Nun D dn WD �F.un/ (3.3a)

(b) update unC1 D un C Nun (3.3b)

with

F.u/ WD r OJ .u/ D ˛u C 	 .
ŠD 0/; DF.u/Nu D H OJ.u/Nu D ˛ Nu C N	; (3.4)

where H denotes the Hessian. .	; �/, .y; p/ and . N	; N�/, . Ny; Np/ are the solutions of
the following systems:

1. Primal/dual equation

yt � ��y C .yr/y � rp D u; in Q,

� divy D 0; in Q,

y D g; on †D ,

�@�y � p� D 0; on †N ,

�	t � ��	� .yr/	C .ry/T 	C r� D y � z in Q,

� div	 D 0 in Q,

	 D 0 on †D ,

�@�	 � ��C .y � �/	 D 0 on †N ,

y.0/ D y0; 	.T / D 0 in �,
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2. Linearised primal equation

Nyt � �� Ny C .yr/ Ny C . Nyr/y C rp D Nu in Q,

� div Ny D 0 in Q,

Ny D 0 on †D ,

�@� Ny � Np� D 0 on †N ,

Ny.0/ D 0 in �,

3. And linearised dual equation

�N	t � �� N	 � .yr/ N	C .ry/T N	C r N� D Ny C . Nyr/	 � .r Ny/T 	„ ƒ‚ …
(3.5)

in Q,

� div N	 D 0 in Q,

N	 D 0 on †D ,

�@� N	 � � N�C .y � �/ N	 D �. Ny�/	 on †N ,

N	.T / D 0 in �.

Remarks

(a) The calculation of F.un/ involves the simulation of a nonlinear forward and a
linear backward equation in (1). The functions yn and 	n have to be stored.

(b) The Eq. (3.3a) is linear and can be solved with an iterative solver; in Sect. 5,
we introduce a multigrid solver for this task. The iteration is based on the
application of the operator DF. � /, which involves the simulation of a linear
forward and a linear backward equation (2)/(3). Both problems can be solved at
roughly the same costs. Thus, each Newton iteration amounts to one nonlinear
forward simulation and one linear backward iteration in (1) plus a couple of
linear forward and backward iterations for the linearised equations in (2)/(3).

(c) The term (3.5) on the right-hand side in (3) was found to impose numerical
difficulties in the first couple of Newton iterations. Numerical tests in this
paper skip this term in the right-hand side assembly during the first one or two
iterations, so the update is a kind of a mixture between a Picard and a Newton
update.

4 Discretisation

The discretisation of the optimal control problem is chosen in such a way that the
optimise-then-discretise approach yields the same as the discretise-then-optimise
approach. We demonstrate this idea in a formal way based on (2.1). For the
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following illustration, we assume no-slip boundary conditions on the complete
boundary, where we require y � � D 0, compare the example in Sect. 6.1.

The following notations are used:

A.y/ WD A.y; p/ WD ���y C .yr/y C rp;
A0.y/ Ny WD A0.y; p/. Ny; Np/ D ��� Ny C .yr/ Ny C . Nyr/y C r Np;
A0.y/�	 WD A0.y; p/�.	; �/ D ���	 � .yr/	C .ry/T 	C r�:

Let k > 0 define a timestep size andN 2 N the number of considered time intervals.
Choosing the rectangular rule for the discretisation in time of the cost functional and
the implicit Euler scheme for the discretisation of the primal equation leads to

J.yk;uk/ D 1

2
k

NX
iD1

jjyi � zi jj2� C ˛

2
k

NX
iD1

jjui jj2�;

where yk D .y0; : : : ; yN /, uk WD .u0; : : : ; uN / and

.yi � yi�1/C kA.yi / D kui in �;

� divyi D 0 in �;

y0 C kA.y0/ D y0 C kA.y0/ in �;

yi D g.ti / on �:

Setting �k WD .	0; : : : ; 	N / and applying formally the Lagrange multiplier
technique leads to

L.yk;uk;�k/ WD J.yk;uk/C
NX
iD1

�
	i ; kui � .yi � yi�1 � kA.yi //

�

C �
	0; .y

0 C kA.y0//� .y0 � kA.y0//
�
; (4.1)

where boundary conditions are not shown here. From DL.yk;uk;�k/ D 0, one
obtains the time-discretised system of equations,

.yi � yi�1/C kA.yi / D kui in �;

� divyi D 0 in �;

y0 C kA.y0/ D y0 C kA.y0/ in �;

yi D g.ti / on �;
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.	i � 	iC1/C kA0.yi /�	i D k.yi � zi / in �;

� div	i D 0 in �;

	N C kA0.yN /�	N D k.yN � zN / in �;

	i D 0 on �;

˛ui C 	i D 0 in �;

The discrete counterparts of the linearised primal/dual equations are derived by
taking the Fréchet derivatives of the complete system,

. Nyi � Nyi�1/C kA0.yi / Nyi D kNui in �;

� divyi D 0 in �;

y0 C kA.y0/ D 0 in �;

Nyi D 0 on �;

. N	i � N	iC1/C kA0.yi /� N	i D k. Nyi � Nzi / � kA0. Nyi /�	i in �;

� div	i D 0 in �;

N	N C kA0.yN /�	N D k. NyN � NzN / in �;

N	i D 0 on �;

˛ Nui C N	i D 0 in �;

The fully discretised system After applying the time discretisation, a space
discretisation can be used to generate the fully discretised system. In the following,
the fully discretised, vector valued variables are denoted by

y WD yk;h WD .yh0 ; : : : ; y
h
N /;

u WD uk;h WD .uh0; : : : ; u
h
N /;

� WD �k;h WD .	h0; : : : ; 	
h
N /;

with yhi , uhi and 	hi vectors of degrees of freedom in the R
n in every timestep (for

a corresponding n depending on the space). The domain � is approximated by a
mesh �h. The index h indicates the discretisation in space and the index k the
discretisation in time. In this work, we employ a discretisation with the Q2 element
for the velocity and the P disc

1 element for the pressure, see, e.g., [14].
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The discrete Newton method The discrete counterpart of the Newton iteration
used in this work reads

1: Solve DFk;h.un/g D d WD �Fk;h.un/; (4.2a)

2: Update unC1 WD un C g; (4.2b)

with

Fk;h.u/ WD ˛u C �; DFk;h.u/ Nu D ˛ Nu C N�: (4.3)

5 Multigrid for the Control Equation

Equation (4.2a) defines a linear system for the correction g of the control. The linear
system is defined in space and time, each component of g D gk;h D .gh0 ; : : : ; g

h
N /

defines one discrete function in space at a specified point in time. In this work,
a multigrid approach according to Hackbusch [6–8] is applied to (4.2a) in order
to solve this equation, see also [4]. This necessitates to begin with a couple of
definitions.

5.1 The Space-Time Mesh Hierarchy

At first, we define a hierarchy of space-time meshes as follows, which is based on a
space-time fine mesh withN equidistant intervals in time and a mesh�h in space.

• Space hierarchy: Let �1, �2,. . . , �M denote a hierarchy of M 2 N regularly
refined meshes, i.e., new vertices are generated by connecting opposite mid-
points. We assume �M D �h to be the finest mesh of this hierarchy.

• Time hierarchy: Let T1,. . . , TL denote a hierarchy of L 2 N regularly refined
meshes in time, defined by the following decomposition. We set NL WD N and
assume for convenience that there is an N1 2 N with N D 2L�1N1. Then, for
l D 1; : : : ; L, the mesh Tl is given by Nl D 2l�1N1 equidistant time intervals in
Œ0; T � with interval length kl WD T

Nl
.

• Space-time hierarchy: A space-time hierarchy can be created by different
coarsening strategies, starting from the finest combination of space and time
mesh. For simplicity, we assume L D M and denote by Q1,. . . ,QL a sequence
of L nested space-time meshes. Typical choices for these hierarchies are, with
l D 1; : : : ; L,

– Coarsening in space and time: Ql WD .Tl ;�l/,
– Semi-coarsening in time: Ql WD .Tl ;�L/,
– Semi-coarsening in space: Ql WD .TL;�l/.
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5.2 Discretisation and Problem Hierarchy

Secondly, we have to define a discretisation on every level. In this work, the time
discretisation is carried out with the Implicit Euler scheme, while theQ2=P

disc
1 finite

element pair is used for the space discretisation. We use the following notations:

• V m denotes for m D 1; : : : ; L the space discretisation of the control space,
realised by the degrees of freedom of the underlying finite element space for
the velocity.

• W l;m denotes for l; m D 1; : : : ; L the space-time discretisation of the control
space using V m for the discretisation in space on the time mesh Tl .

• W l defines for l D 1; : : : ; L the space-time discretisation of the control space
corresponding to Ql . As a consequence, a coarsening strategy in space in time
induces W l D W l;l , a semi-coarsening in time W l D W l;L and a semi-
coasening in space W l D W L;l .

Problem hierarchy The space-time discretisation induces a hierarchy of problems.
For l D 1; : : : ; L, a hierarchy of discrete equations, derived from (3.2), reads

F l.ul / WD ˛ul C �l
ŠD 0 in W l , (5.1)

with ul 2 W l the discrete counterpart to u (to be determined), �l the discrete
counterpart to � and the operator F l the discrete counterpart to F on W l .
Correspondingly, the discrete linearised system to be solved in every step of the
Newton method on level l reads

DFl .ul / Nul D �F l.u/l ; for DFl .ul / Nul WD ˛ Nul C N�l ; (5.2)

with N�l D N�l .Nyl . Nul // the solution of the linearised discrete dual equation. The
solution of the problem is sought at level L, i.e., on the finest mesh.

Primal/dual equations on lower levels Let yL and �L define the solutions of the
primal and dual equation on level L. For the operator DFl to be applied on level
l < L, corresponding primal/dual solutions yl and �l are needed. They can be
obtained with an L2 projection of the finite element counterparts of yL and �L in
space and time to the lower level, realised approximately by a proper interpolation
of the degrees of freedom.

5.3 Multigrid Components

Multigrid needs a couple of components to be properly defined in order to be
effective:
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Prolongation Let the prolongation operator from level l to level l C 1 be denoted
by I lC1l W W l ! W lC1. Depending on the choice of the coarsening strategy,
the operator has a temporal and a spatial component. Each component uhi of a
control vector ul D .uh0; u

h
1; : : : ; u

h
Nl
/ 2 W l corresponds to a finite element function

and thus, meaningful prolongation in space is the finite element prolongation.
On the other hand, a prolongation in time is derived by a linear finite difference
interpolation of the solutions in time, i.e.,

.uh0; u
h
1; : : : ; u

h
Nl
/ 7!

�
uh0;

uh0 C uh1
2

; uh1;
uh1 C uh2
2

; : : : ; uhNl

�
:

Restriction Let a restriction operator from level l to level l � 1 be denoted by
I l�1l W W l ! W l�1, and let d l WD .dh0 ; : : : ; d

h
Nl
/ 2 W l be a defect vector. Similar

to the prolongation, the restriction has a temporal and a spatial component. One
possible choice for a restriction in time is a weighted mean in the sense of finite
differences. However, for a discretisation with the implicit Euler, it is enough to
apply a constant restriction in time, given by

.dh0 ; d
h
1 ; : : : ; d

h
Nl
/ 7!

�
dh0 ;

dh1 C dh2
2

; dh2 ;
dh3 C dh4

2
; dh4 ; : : : ; d

h
Nl

�
:

This restriction is ‘backward directed’, thus, respects the direction of the propaga-
tion of information in time specified by the dual equation and will be shown to be
effective in numerical tests.

For the restriction in space, one has to take into account that the discrete operator
F l maps W l ! W l , i.e., the operator works directly in the control space without
any test functions, mass matrices or similar things involved. An appropriate choice
is therefore the L2 projection of the control space to a lower level, which is realised
approximately by a simple interpolation of the degrees of freedom.

Coarse grid solver and smoother Typical choices for coarse grid solver and
smoothers are iterative algorithms which only necessitate the application of the
corresponding operator. For example, provided a damping parameter 0 < ! � 1,
the Richardson iteration reads

gnew WD g C !.d � DFl .un/g/:

In a similar way, it is possible to apply a CG, BiCGStab or GMRES method.
Applying such an algorithm on the coarse level until convergence is the usual
choice for a coarse grid solver. Taking only a fixed number of iterations on any
level except for the coarse level, one obtains a smoother for that level. In the
following, g 7! Sl.g;d;NSM/ denotes such a smoother on level l which applies
NSM smoothing steps using a right-hand side d.

The operator to be applied in such algorithms reads DFl and is realised by a
forward-backward solving process: A forward iteration solves for Ny and a backward
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iteration for N�. During the forward and the backward iteration, linear problems in
space must be solved. In this work, we apply a multigrid solver in space for this task
which provides low, level independent convergence rates. Smoothing and coarse
grid solving processes in space are realised with local pressure-Schur-Complement
(‘Vanka’-) like techniques which process all variables in space (velocity/pressure)
simultaneously.

5.4 The Multigrid Algorithm

With the above components, Algorithm 1 describes a basic V-cycle multigrid in the
control space. For a more general implementation (also concerning other cycles,
etc.), the interested reader is referred to [1, 9, 16].

Algorithm 1 Space-time multigrid

Predefined constant: NSM 2 N0: number of (post-)smoothing steps

1: function SPACETIMEMULTIGRID(Nu;d;l)
2: if (l D 1) then
3: return DFl .ul /�1d F coarse grid solver
4: end if
5: while (not converged) do
6: dl�1  I l�1

l .d� DFl .ul /Nu/ 2 W l�1 F restriction of the defect
7: gl�1  SPACETIMEMULTIGRID.0I dl�1I l � 1/ 2 W l�1

8: F coarse grid solution
9: Nu NuC I ll�1.g

l�1/ F coarse grid correction
10: Nu Sl .Nu; d;NSM/ F postsmoothing
11: end while
12: return Nu F solution
13: end function

6 Numerical Examples

The following numerical tests focus on the optimal control of a cavity flow and a
backward-facing step flow. Tests are carried out for single-grid solvers, multigrid
solvers, for distributed control as well as for boundary control.

6.1 Distributed Control for Driven–Cavity Flow

Example We consider the optimal distributed control of the Navier–Stokes equa-
tions, see Sect. 2.1. The underlying domain is � WD .0; 1/2 with the four boundary
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Fig. 1 ‘Driven–Cavity’ example, velocity profile. Initial flow y0 (left), target flow z (centre),
optimal control u at t D 0:0625 (right)

Table 1 Driven–Cavity:
Mesh statistics for distributed
control, different refinement
levels

Space-level #vertices #edges #elements #dofpd #dofc
4 81 144 64 770 578

5 289 544 256 2,946 2,178

6 1,089 2,112 1,024 11,522 8,450

7 4,225 8,320 4,096 45,570 33,282

parts �1, �2, �3 and �4 on the bottom, left, top and right. The problem is set up
as a pure Dirichlet problem with y.x; t/ D .0; 0/ for x 2 �1 [ �2 [ �4 and
y.x; t/ D .1; 0/ for x 2 �3. The coarse grid consists of only one square element.
The time interval is defined as Œ0; T � with T D 1, the viscosity parameter is set to
� D 1=400. The initial flow y0 is the stationary fully developed Navier–Stokes
flow at � D 1=400, while the target flow z is chosen as the fully developed,
stationary Stokes flow, see Fig. 1. The regularisation parameter for the control is
set to ˛ D 0:01.

The basic spatial coarse grid used in this test is a mesh containing one cell
Œ0; 1�2 three times refined, i.e., h D 1=8. The basic time mesh contains 20 time
intervals. Both meshes are regularly refined to generate a hierarchy of meshes. The
solution is sought at the finest mesh. Table 1 presents statistical data about the space
and the time mesh for different refinement levels (with ‘#vertices’ the number of
vertices, ‘#edges’ the number of edges, ‘#elements’ the number of elements, #dofpd

the number of degrees of freedom in the primal and the dual space, resp., and #dofc
the number of degrees of freedom in the control space). As mentioned, the spatial
discretisation is carried out with Q2=P

disc
1 .

Solver configuration For the following tests we apply an inexact version of
the described Newton algorithm above. The space-time Newton algorithm was
configured to reduce theL2 norm of the initial residual by six digits. The space-time
multigrid algorithm in every Newton step reduces its residual adaptively (at least
gaining two digits) such that one obtains quadratic convergence; for a description
of this strategy, see, e.g., [15]. The same stopping criterion was also used for the
coarse grid solver. A V-cycle is used. For smoothing, four steps of a space-time CG
method are applied.
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Table 2 Driven–Cavity: Solver statistics for distributed control. Single grid and multigrid solver
applied on different coarsening strategies

Single grid CG preconditioner

S.-Lv. #int Topt Tsim #NL
P

#LIN
Topt

Tsim

P
#LIN

#NL

5 40 0:16:35 0:00:13 4 67 79.0 16.8

6 80 2:14:23 0:01:41 4 64 79.6 16.0

7 160 15:37:20 0:11:33 4 63 81.1 15.8

Multigrid preconditioner, pure space coarsening

S.-Lv. #int Topt Tsim #NL
P

#LIN
Topt

Tsim

P
#LIN

#NL

5 40 0:41:32 0:00:13 4 17 197.8 4.2

6 80 3:48:29 0:01:41 4 14 135.3 3.5

7 160 25:48:41 0:11:33 4 16 134.0 4.0

Multigrid preconditioner, pure time coarsening

S.-Lv. #int Topt Tsim #NL
P

#LIN
Topt

Tsim

P
#LIN

#NL

5 2 0:26:47 0:00:13 4 10 127.5 2.5

6 3 3:22:01 0:01:41 4 8 119.7 2.0

7 4 21:30:05 0:11:33 4 7 111.6 1.8

Multigrid preconditioner, space-time coarsening

S.-Lv. #int Topt Tsim #NL
P

#LIN
Topt

Tsim

P
#LIN

#NL

5 40 0:36:46 0:00:13 4 17 175.1 4.2

6 80 3:11:02 0:01:41 4 15 113.1 3.8

7 160 21:41:53 0:11:33 4 11 112.6 2.8

Nonlinear and linear problems in space (calculated during the forward and
backward loops) were solved until the l2 norm of the residual drops below 10�14;
a spatial (Newton-)Multigrid solver with coarse grid solver on level four is applied
in every timestep for this purpose. The local multigrid solver in space applies a
local pressure Schur complement technique for smoothing and coarse grid solving,
see also [11–13, 15]. This smoother is capable of processing velocity and pressure
variables simultaneously, which renders it ideal for saddle-point problems.

Solver efficiency test The following test applies a single grid and a multigrid solver
strategy. On different refinement levels in space and time the Newton algorithm
is applied, see Table 2. ‘S.-Lv.’ specifies the refinement level in space, ‘#int’ the
number of intervals in time, ‘Topt’ documents the time which was necessary for the
computation of the optimisation problem and ‘Tsim’ the time which was needed for
the computation of the first forward simulation, i.e., for a simulation without any
control applied. ‘#NL’ and ‘

P
#LIN’ depict the number of Newton steps and the

sum of all steps of the linear solver, respectively.
The numerical test is applied for four different solver configurations. The first

part of the table contains the result for a single grid CG solver. In the second and
third part, a multigrid solver is used where the space-time hierarchy is build up using
coarsening in space only (until space level 4) or in time only (until the time mesh has
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20 time intervals). The last part finally uses full space-time coarsening, i.e., coarser
meshes are generated by coarsening in space and time.

One can see that for this configuration, already the single-grid solver provides
linear complexity. Each refinement gives a factor of 8 in the number of unknowns
and the computing time. The ratio between simulation and optimisation is a factor
of about 80.

If space-time multigrid is used for preconditioning (second to fourth part of the
table), the results are two-fold. The total number of multigrid steps in this test is
either constant or even reducing with increasing refinement level, in particular upon
increasing the number of timesteps. Counting the number of CG steps on the finest
level, there are 63 CG steps for the single grid solver and 28 steps (7� NSM, with
NSM D 4 smoothing steps per multigrid step) for the multigrid solver with time
coarsening. So multigrid successfully accellerates the convergence. A hierarchy
generated from pure space-coarsening is rather ineffective.

Numerical efficiency From the viewpoint of numerical efficiency, the overhead
for the space-time Newton algorithm is rather large. The ratio Topt

Tsim
is much higher

than that of a single-grid algorithm. It depends on the configuration of the coarse
grid problems and the solver parameters if the approach is effective. In the above
test, one can expect that the use of the multigrid approach will pay off for large
problems if space-time coarsening is used, see, e.g., [4]. The convergence speeds up
with higher refinement levels and the effort for solving the coarse grid problems is
not too large. However it must be said, that the underlying space-time meshes for
our applications in this project could not be chosen fine enough to properly work
out this effect.

Possible enhancements which may help to render the approach more efficient
than a single-grid solver are the choice of a different hierarchy (e.g., coarsening
twice in time per space coarsening), the use alternative smoothers (e.g., GMRES)
or the application of an advanced strategy to choose the stopping criteria of all the
involved solver components. A detailed analysis is, however, out of the scope of this
work.

Comparison to SQP In the following, a small comparison of the solver
efficiency results between the Newton solver in this paper and the SQP-type
solver analysed in [11, 12, 15] is drawn. The latter one applies an inexact
Newton strategy in the primal/dual space where the solution vector is given as
x D .y0; p0; 	0; �0; : : : ; yN ; pN ; 	N ; �N /. The control is eliminated. An outer
space-time Newton solver reduces the L2 norm of the nonlinear residual by the
factor 10�6. Linear subproblems are solved either with a one-level space-time
BiCGStab(FBSimSolver) solver or a space-time multigrid solver (using V-cycle,
four steps BiCGStab(FBSimSolver) for smoothing and BiCGStab(FBSimSolver)
for coarse grid solving). The stopping criterion of the linear solver is configured
adaptively to obtain quadratic convergence. Subproblems in space are solved with a
spatial multigrid which is set up to gain two digits. The test configuration is chosen
as above.
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Table 3 Driven–Cavity: Solver statistics for distributed control. SQP-type solver in the pri-
mal/dual space (u eliminated), space-time BiCGStab and multigrid preconditioner

Single grid BiCGStab preconditioner

S.-Lv. #int Topt Tsim #NL
P

#LIN
Topt

Tsim

P
#LIN

#NL

5 40 0:13:58 0:00:13 5 25 66.5 5.0

6 80 1:54:21 0:01:41 5 37 67.7 7.4

7 160 18:24:56 0:11:33 4 36 95.6 9.0

Multigrid preconditioner, space-time coarsening

S.-Lv. #int Topt Tsim #NL
P

#LIN
Topt

Tsim

P
#LIN

#NL

5 40 0:15:26 0:00:13 3 6 41.5 2.0

6 80 2:04:08 0:01:41 3 7 40.3 2.3

7 160 11:24:15 0:11:33 3 6 53.9 2.0

Remark (FBSimSolver) The FBSimSolver iteration is a counterpart to the
forward-backward loop applied in the computation of the space-time defect for
a solution Nu. It basically works as follows: For a given iterate Nx D . Ny; Np; N	; N�/ in the
linearised primal/dual system

• Compute a new solution . Nynew; Npnew/ using Nu D � 1
˛

N	 in the right-hand side,
• Compute a new solution . N	new; N�new/ using Nynew in the right-hand side,
• Define the new iterate as Nxnew D . Nynew; Npnew; N	new; N�new/:

For a detailed description and definition of this and the other mentioned solver
components, see [12, 15].

Table 3 gives the results for the SQP solver. The solver is very stable, it basically
needs only three nonlinear iterations to converge. In comparison to the Newton
solver, the computing time is rather the same on low levels. For higher levels, if
a space-time multigrid preconditioner is applied, the SQP solver is more efficient in
this example. Space-time multigrid is indeed necessary in this case, as a single-grid
solver loses efficiency on higher levels – the number of linear steps per nonlinear
step †#LIN/#NL rises if only BiCGStab is applied. However, one should be careful
with a comparison of the total time Topt between both solvers, as to gain six digits
in the primal/dual space does not necessarily mean to gain six digits in the control
space and vice versa.

Remark: The number of nonlinear iterations differs whether the one-level
preconditioner or the space-time multigrid preconditioner is applied. This is due
to technical reasons. The BiCGStab solver checks the preconditioned residual while
the multigrid preconditioner checks the real residual in the stopping criterion. As
a consequence, BiCGStab does not solve accurately enough for the Newton to
converge in three steps while multigrid does.
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Fig. 2 Test configuration ‘Backward-facing step’

Table 4 Backward-facing
step: Mesh statistics for
boundary control, different
refinement levels

S.-Lv. #vertices #edges #elements #dofpd #dofc
2 97 168 72 890 1

3 337 624 288 3,362 3

4 1,249 2,400 1,152 13,058 5

5 4,801 9,408 4,608 51,458 9

6.2 L2 Boundary Control for Backward-Facing Step

Example We consider the optimal L2 boundary control of the Navier–Stokes
equations, see Sect. 2.2. The basic domain for this test is a backward-facing step
geometry, see Fig. 2, on a time interval Œ0; T � with T D 10. On the left, a maximum
inflow ymax D 1:5 is prescribed, while on the right, do-nothing boundary conditions
characterise the outflow; using � D 1=100, this results in a Re = 100 optimisation.
The part �C D f2g � .0:5; 1/ � @� defines a control boundary of length 0.5 on the
top of the step.

The initial flow y0 is the fully developed nonstationary Navier–Stokes flow, the
target flow is the stationary Stokes flow, restricted to the observation area �s D
Œ3; 4� � Œ0; 1� (which induces the right-hand side “y � z” of the control equation
being replaced by ��s � .y � z/, with ��s the characteristic function of �s). The
regularisation parameter for the control is set to ˛ D 0:2. Table 4 gives an overview
about the problem size; the cells on the coarse mesh have a size of h D 1:0. Figure 3
visualises the controlled flow at t D 1:25 and t D 5:0.

Single-grid and time-multigrid test Table 5 depicts the solver statistics for a
single-level CG solver and a multigrid solver, carried out on different space-time
levels. Due to the small number of unknowns of the control in space, any coarsening
in space would not make much sense. Therefore, for multigrid tests, pure time
coarsening is applied until a space-time coarse mesh with 20 time intervals is
reached.

The solver configuration is the same as in Sect. 6.1. Both types of linear solvers,
the single-grid CG method as well as the time-multigrid method, converge with
rather level-independent convergence rates. With four CG smoothing steps per
multigrid iteration, the multigrid method needs in this example about 40 CG
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Fig. 3 Test configuration ‘Backward-facing step’. Controlled flow at t D 1:25 and t D 5:0

Table 5 Backward-facing step: Single grid (top) and multigrid test (bottom)

Single-grid test

S.-Lv. #int Topt Tsim #NL
P

#LIN
Topt

Tsim

P
#LIN

#NL

3 40 0:13:46 0:00:17 5 27 48.3 5.4

4 80 2:47:18 0:02:19 6 41 72.2 6.8

5 160 23:35:08 0:14:59 6 46 94.5 7.7

Multigrid test, pure time coarsening

S.-Lv. #int Topt Tsim #NL
P

#LIN
Topt

Tsim

P
#LIN

#NL

3 40 0:32:02 0:00:17 5 8 113.7 1.6

4 80 6:18:30 0:02:19 6 10 163.9 1.7

5 160 47:50:46 0:14:59 6 10 191.6 1.7

iterations on the finest level, which is slightly less than in the one-level CG solver
case. However, due the additional overhead on coarser levels and the fact that the
time mesh is rather coarse, the application of the multigrid method is not really
reasonable. The total time is about twice as high as a single-grid approach as the
costs for solving the coarse grid problems is as large as the costs for the iteration on
the finest grid – which is typical for a multigrid approach. One would need much
finer time meshes until the use of multigrid will be advantageous.

7 Summary and Discussion

This paper presented the application of a space-time Newton method for optimal
control of the nonstationary Navier–Stokes equations. A space-time multigrid
method in the control space was used for solving linear subproblems. The basic
method was described and the efficiency of the method was analysed in numerical
examples using distributed and L2 boundary control.

Concerning the numerical results, it is a fact that the Newton approach does
often not need multigrid for the linear subproblems to be solved. Only on very fine
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time meshes in combination with distributed control, the multigrid solver seems to
be advantageous as our numerical results indicate that the solver speeds up with
increasing problem size.
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Convergence of Adaptive Finite Elements
for Optimal Control Problems with Control
Constraints

Kristina Kohls, Arnd Rösch, and Kunibert G. Siebert

Abstract We summarize our findings in the analysis of adaptive finite element
methods for the efficient discretization of control constrained optimal control
problems. We particularly focus on convergence of the adaptive method, i.e., we
show that the sequence of adaptively generated discrete solutions converges to the
true solution. We restrict the presentation to a simple model problem to highlight
the key components of the convergence proof and comment on generalizations of
the presented result.

Keywords Adaptive finite elements • Aposteriori error estimators • Convergence
analysis • Optimal control • Control constraints

Mathematics Subject Classification (2010). 65N30, 65N12, 49J20.

1 Statement of the Main Result

In this summary we analyze adaptive finite element discretizations for control
constrained optimal control problems of the form

min
.u;y/2Uad�Y

1

2
ky � ydk2

U
C ˛

2
kuk2

U

subject to y 2 Y W BŒy; v� D hu; vi v 2 Y:

(1.1)
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In order to highlight the basic ideas of our convergence analysis we focus on the
most simple model problem in the following setting. We let � � R

d be a bounded
domain that is meshed exactly by some conforming initial triangulation G0. We
consider distributed control in U D L2.�/ with a non-empty, convex, and closed
subset Uad of admissible controls. We use theL2.�/ scalar product h � ; � i and write
k � kU D k � k2I� for its induced norm. The PDE constraint is given by Poisson’s

problem in the state space Y D VH1.�/ equipped with norm k � kY D kr � k2I� and
the continuous and coercive bilinear form

BŒy; v� D hry; rvi 8y; v 2 Y:

Finally, yd 2 L2.�/ is a desired state and ˛ > 0 is some given cost parameter.
Turning to the discretization of (1.1) we denote by G the class of all conforming

refinements of G0 that can be constructed using refinement by bisection [13]. For
a given grid G 2 G we let Y.G/ � Y be a conforming finite element space of
piecewise polynomials of fixed degree q 2 N. We then consider the variational
discretization of (1.1) by Hinze [4], i.e., we solve the discretized optimal control
problem

min
.U;Y /2Uad�Y.G/

1

2
kY � ydk2

U
C ˛

2
kU k2

U

subject to Y 2 Y.G/ W BŒY; V � D hU; V i V 2 Y.G/:
(1.2)

It is well-known that (1.1) as well as (1.2) admit a unique solution pair .Ou; Oy/,
respectively . OUG; OYG/; compare with [9, 15]. Below we additionally utilize the
continuous and discrete adjoint states Op 2 Y, OPG 2 Y.G/, and consider the solution
triplets .Ou; Oy; Op/ 2 U

ad � Y � Y and . OUG; OYG; OPG/ 2 U
ad � Y.G/ � Y.G/.

We use the following adaptive algorithm for approximating the true solution
of (1.1). Starting with the initial conforming triangulation G0 of � we execute the
standard adaptive loop

SOLVE �! ESTIMATE �! MARK �! REFINE: (1.3)

In practice, a stopping test is used after ESTIMATE for terminating the iteration;
here we shall ignore it for notational convenience.

Assumption 1.1 (Properties of modules). For a given grid G 2 G the four used
modules have the following properties.

1. The output . OUG ; OYG; OPG/ WD SOLVE
�
G
� 2 U

ad � Y.G/ � Y.G/ is the exact
solution of (1.2).

2. The output fEG.. OUG; OYG; OPG/IE/gE2G WD ESTIMATE
�
. OUG; OYG ; OPG/IG

�
is a

reliable and locally efficient estimator for the error in the norm k � kU�Y�Y. In
Sect. 2 below we give an example of such an estimator.
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3. The output M D MARK
�fEG.. OUG; OYG; OPG/IE/gE2G; G

�
is a subset of elements

subject to refinement. We shall allow any marking strategy such that M contains
an element holding the maximal indicator, i.e.,

maxfEG.. OUG; OYG; OPG/IE/ j E 2 Gg � maxfEG.. OUG; OYG; OPG/IE/ j E 2 Mg:

All practically relevant marking strategies do have this property.
4. The output GC WD REFINE

�
G; M

� 2 G is a conforming refinement of G such
that all elements in M are bisected at least once, i.e., GC \ M D ;.

The main contribution of this report is the following convergence result.

Theorem 1.2 (Main result). Let .Ou; Oy; Op/ 2 U
ad � Y � Y be the true solution

of (1.1). Suppose that f OUk; OYk; OPkgk�0 � U
ad � Y � Y is any sequence of discrete

solutions generated by the adaptive iteration (1.3), where the modules have the
properties stated in Assumption 1.1. Then we have

lim
k!1 k. OUk; OYk; OPk/� .Ou; Oy; Op/kU�Y�Y D 0 and lim

k!1 EGk . OUk; OYk; OPk IGk/ D 0:

The proof of this theorem uses results and ideas from the convergence proofs of
Morin, Siebert, and Veeser in [12] and Siebert in [14]. It is a two step procedure
presented in Sects. 3 and 4. In Sect. 3 we utilize basic stability properties of the
algorithm to show that the sequence of discrete solutions converges to some triplet
.Ou1; Oy1; Op1/. The second step in Sect. 4 then relies on the steering mechanisms
of (1.3), mainly encoded in properties of ESTIMATE and MARK, to finally prove
.Ou1; Oy1; Op1/ D .Ou; Oy; Op/.

We shortly comment on an existing convergence result for constrained optimal
control problems given in [2]. It is based on some non-degeneracy assumptions
on the continuous and the discrete problems and a smallness assumption on the
maximal mesh-size of G0. Our approach does not require any of these assumptions
and it is valid for a larger class of adaptive algorithms. In addition, it can easily be
extended in several directions; compare with Sect. 5.

2 Aposteriori Error Estimation

In this section we shortly summarize our findings from [6, 7] providing a unifying
framework for the aposteriori error analysis for control constrained optimal control
problems. In what follows we shall use a.b for a � Cb with a constant C that may
depend on data of (1.1) and the shape regularity of the grids in G but not on a and
b. We shall write a ' b whenever a.b.a.
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2.1 First Order Optimality Systems

The analysis in [6] is based on the characterization of the solutions by the first order
optimality systems. We let S; S�WU ! Y be the solution operators of the state and
the adjoint equation, i.e., for any u 2 U we have

Su 2 Y W BŒSu; v� D hu; vi 8 v 2 Y (2.1)

and for any g 2 U we have

S�g 2 Y W BŒv; S�g� D hg; vi 8 v 2 Y: (2.2)

We denote by …WU ! U
ad the nonlinear projection operator such that ….p/ is the

best approximation of � 1
˛
p in U

ad, i.e.,

….p/ 2 U
ad W h˛….p/C p; ….p/� ui � 0 8u 2 U

ad: (2.3)

Utilizing these operators, the continuous solution .Ou; Oy; Op/ 2 U
ad � Y � Y is the

unique solution of the coupled nonlinear system

Oy D S Ou; Op D S�. Oy � yd /; Ou D …. Op/: (2.4)

For G 2 Gwe next defineSG; S�G WU ! Y.G/ to be the discrete solution operators
for (2.1) and (2.2), i.e., for any u 2 U we have

SGu 2 Y.G/ W BŒSGu; V � D hu; V i 8V 2 Y.G/; (2.5)

and for any g 2 U we have

S�Gg 2 Y.G/ W BŒV; S�Gg� D hg; V i 8V 2 Y.G/: (2.6)

The discrete solution . OUG; OYG ; OPG/ 2 U
ad � Y.G/ � Y.G/ is then uniquely

characterized by

OYG D SG OUG; OPG D S�G. OYG � yd /; OUG D …. OPG/: (2.7)

Note, that this variational discretization of Hinze requires the evaluation of the
continuous projection operator… for discrete functions P 2 Y.G/.

We have kSk; kS�k; kSGk; kS�Gk � CF ; employing coercivity of B with
constant 1 in combination with the Friedrichs inequality kvk2I� � CF krvk2I� for

v 2 VH1.�/.
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2.2 Basic Error Equivalence

The main obstacle in the aposteriori error analysis encountered for instance in [3,10]
can be explained as follows. One would like to exploit Galerkin orthogonality in the
linear state equation (2.1) and the adjoint equation (2.2). However, we observe that
triplet . OUG; OYG ; OPG/ is the Galerkin approximation to the triplet .Ou; Oy; Op/ but OYG is
not the Galerkin approximation to the solution Ou of the linear problem (2.1) since
we have Oy D S Ou but not Oy D S OUG . The same argument applies to the adjoint states.
This observation shows that we cannot directly employ Galerkin orthogonality for
single components of (2.4) and the nonlinearity in (2.3) prevents us from making use
of Galerkin orthogonality for the system (2.4). The resort to this problem is given
by the following result from [6, Theorem 2.2].

Proposition 2.1 (Basic error equivalence). If we set W D U�Y�Y we have for
Ny D S OUG and Np D S�. OYG � yd / the basic error equivalence

k. OUG ; OYG; OPG/� .Ou; Op; Oy/kW ' k. OYG; OPG/ � . Ny; Np/kY�Y:

For the problem under consideration, the constant hidden in ' depends on ˛�1.
For general B it will in addition depend on the inf-sup constant of B. Employing this
error equivalence it is sufficient to construct a reliable and efficient estimator for the
right hand side k. OYG ; OPG/� . Ny; Np/kY�Y: The functions Ny and Np are solutions to the
linear problems (2.1) and (2.2) with given source OUG and OYG � yd , respectively.
They play a similar role as the elliptic reconstruction used in the aposteriori error
analysis of parabolic problems; compare with [11].

2.3 Aposteriori Error Estimation

We realize that OYG is the Galerkin approximation to Ny and OPG the one to Np. We
therefore can directly employ (existing) estimators for the linear problems (2.1)
and (2.2) and their sum then constitutes an estimator for the optimal control
problem; compare with [6, Theorem 3.2]. For ease of presentation we focus here
on the residual estimator. If � is an interior side we denote by ŒŒry�� the flux of the
normal derivative @Eny across � . For any subset G0 � G we set �.G0/ WD S

E2G0 E

and for given E 2 G we denote by NG.E/ � G the subset consisting of E and its
direct neighbors. Finally, we indicate by k � kW.!/ the natural restriction of k � kW to
a subset ! � �. We then have the following result.

Theorem 2.2 (Aposteriori error control). For E 2 G we define the indicator

E2G.. OUG; OYG; OPG/IE/ WD hE
2k� OYG C OUGk22IE C hEkŒŒr OYG ��k22I@E\�

C hE
2k� OPG C . OYG � yd /k22IE C hEkŒŒr OPG ��k22I@E\�:
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Then we have the global upper bound

k. OUG; OYG; OPG/ � .Ou; Op; Oy/k2
W

.E2G.. OUG; OYG; OPG/IG/ WD
X
E2G

E2G.. OUG; OYG; OPG/IE/:

For any E 2 G we have the local lower bound

E2G.. OUG; OYG; OPG/IE/
.k. OUG ; OYG; OPG/� .Ou; Op; Oy/k2

W.�.NG.E/// C osc2G. OUG; yd ING.E//;

where

osc2G. OUG; yd IE/ WD hE
2
�k OUG � PG OUGk22I�.NG.E// C kyd � PGydk22I�.NG .E//

�

is the typical oscillation term with the L2-projection PG onto the set of discontinu-
ous, piecewise polynomials of degree q over G.

2.4 Bounds for the Residuals

We shortly comment on the derivation of the estimators for the linear problems
and thereby recording an important intermediate estimate. For given u 2 U we set
y D Su and let Y D SGu be its Galerkin-approximation in Y.G/. Defining the
residual of the state equation (2.1) by

hR.SGuI u/; vi D hR.Y I u/; vi WD BŒY; v� � hu; vi D BŒY � y; v� 8v 2 Y;

we find kR.Y I u/kY� ' kY � ykY D k.SG � S/ukY.
Employing Galerkin-orthogonality hR.Y I u/; V i D 0 for all V 2 Y.G/ and

using piecewise integration by parts we deduce for any v 2 Y and V 2 V.G/ the
bound

jhR.Y I u/; vij �
X
E2G

k�Y C uk2IEkv � V k2IE C 1

2
kŒŒrY ��k2I@E\�kv � V k2I@E:

Using for v 2 Y the Scott-Zhang interpolant V 2 Y.G/ one obtains from
interpolation estimates in H1 by standard arguments the upper bound

kY � ykY ' kR.Y I u/kY�.
�X
E2G

hE
2k�Y C uk22IE C hEkŒŒrY ��k22I@E\�

�1=2
:
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If v is smooth, i.e., v 2 H2.�/ \ Y, we may employ interpolation estimates in H2

to obtain the improved bound

jhR.Y I u/; vij.
�X
E2G

hE
2
�
hE

2k�Y C uk22IE C hEkŒŒrY ��k22I@E\�
��1=2jvjH2.�/:

(2.8)

Similar arguments apply to the adjoint problem. For given g 2 U we set p D S�g
and let P D S�Gg be its Galerkin-approximation in Y.G/. For the residual of (2.2),
defined by

hR�.S�

GgIg/; vi D hR�.P Ig/; vi WD BŒv; P �� hg; vi D BŒv; P � p� 8v 2 Y;

we have

jhR�.P Ig/; vij.
�X
E2G

hE
2s
�
hE

2k�P C gk22IE C hEkŒŒrP ��k22I@E\�
��1=2jvjHsC1.�/

(2.9)

for any v 2 HsC1.�/ \ Y, s D 0; 1. With s D 0 we may deduce the upper bound
for k.S�G � S�/gkY D kP � pkY ' kR�.P Ig/kY� The choice s D 1 yields the
improved estimate for the adjoint problem. Equations (2.8) and (2.9) will become
important in Sect. 4 to access local density of adaptively generated finite element
spaces; compare also with [14, Remark 3.4].

3 Convergence 1: Trusting Stability

In this section we start with the convergence analysis, where we first focus on
stability properties of the algorithm that do not depend on the particular decisions
taken in MARK. Hereafter, fGk; . OUk; OYk; OPk/gk�0 is the sequence of grids and
discrete solutions generated by (1.3). For ease of notation we use for k 	 0 the
short hands Yk D Y.Gk/, OUk D OUGk , Sk D SGk etc.

3.1 A First Limit

Using piecewise polynomials in combination with refinement by bisection leads to
nested spaces, i.e., Yk � YkC1. This allows us to define the limiting space

Y1 D
[
k�0

Yk

k � kY
;
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which is exactly the space that is approximated by the adaptive iteration. It is
closed in Y and therefore a Hilbert space. Consequently, the limiting optimal control
problem

min
.u;y/2Uad�Y1

1

2
ky � ydk2

U
C ˛

2
kuk2

U

subject to y 2 Y1 W BŒy; v� D hu; vi v 2 Y1
(3.1)

admits a unique solution .Ou1; Oy1/ 2 U
ad � Y1. If S1; S�1WU ! Y1 denote the

solution operators of the state respectively the adjoint equation in Y1 the associated
first order optimality system reads

Oy1 D S1 Ou1; Op1 D S�1. Oy1 � yd /; Ou1 D …. Op1/: (3.2)

We next show that in fact (3.1) is the limiting problem of the adaptive iter-
ation (1.3) in that . OUk; OYk; OPk/ ! .Ou1; Oy1; Op1/. An important ingredient for
this proof is the following crucial property of the adaptive algorithm shown in [1,
Lemma 6.1] and [12, Lemma 4.2].

Proposition 3.1 (Convergence of solution operators). For any u; g 2 U we have
Sku ! S1u and S�k g ! S�1g in Y as k ! 1.

We next show convergence OUk ! Ou1. In this step we have to deal with the
nonlinearity of the constrained optimal control problem.

Lemma 3.2 (Convergence of the controls). The discrete controls f OUkgk�0 con-
verge strongly to Ou1, i.e.,

lim
k!1 k OUk � Ou1kU D 0:

Proof. Since both OUk D …. OPk/ and Ou1 D …. Op1/ are feasible, i.e., OUk; Ou1 2 U
ad,

the definition of … in (2.3) yields

˛k OUk � Ou1k22I� D h˛ Ou1 C Op1; Ou1 � OUki C h˛ OUk C OPk; OUk � Ou1i
C h OPk � Op1; Ou1 � OUki

� h OPk � Op1; Ou1 � OUki
D hS�k . Oy1 � yd / � Op1; Ou1 � OUki C h OPk � S�k . Oy1 � yd /; Ou1 � OUki:

We next estimate the last two terms separately. For the first one we immediately
obtain from Op1 D S1. Oy1 � yd / by the Cauchy-Schwarz and Young inequalities

hS�k . Oy1 � yd / � Op1; Ou1 � OUki D h.S�k � S�1/. Oy1 � yd /; Ou1 � OUki

� ˛

2
kOu1 � OUkk22I� C 1

2˛
k.S�k � S�1/. Oy1 � yd /k22I�:
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We next turn to the second term. Employing the definition of the solution operators
Sk and S�k in (2.5) and (2.6) we use OPk D S�k . OYk � yd / 2 Yk and Oy1 D S1 Ou1 to
obtain

h OPk � S�k . Oy1 � yd /; Ou1 � OUki D hOu1 � OUk; S�k . OYk � Oy1/i
D BŒSk.Ou1 � OUk/; S�k . OYk � Oy1/� D h OYk � Oy1; Sk.Ou1 � OUk/i
D h OYk � Oy1; Oy1 � OYki C h OYk � Oy1; .Sk � S1/Ou1i

D �k OYk � Oy1k22I˝ C 1

2
k OYk � Oy1k22I˝ C 1

2
k.Sk � S1/Ou1k22I˝

� 1

2
k.Sk � S1/Ou1k22I˝:

Combining the estimates we have shown

˛k OUk � Ou1k22I� � 1

˛
k.S�k � S�1/. Oy1 � yd /k22I� C k.Sk � S1/Ou1k22I� ! 0

as k ! 1 by Proposition 3.1. This finishes the proof. ut
Convergence . OUk; OYk; OPk/ ! .Ou1; Oy1; Op1/ is now a direct consequence of the

linear theory in Proposition 3.1.

Proposition 3.3 (Convergence of discrete solutions). The Galerkin approx-
imations f. OUk; OYk; OPk/gk�0 converge strongly to the solution .Ou1; Oy1; Op1/
of (3.1), i.e.,

lim
k!1 k. OUk; OYk; OPk/� .Ou1; Oy1; Op1/kU�Y�Y D 0:

Proof. We already know k OUk � Ou1kU ! 0 from Lemma 3.2. In combination with
Proposition 3.1 this yields for the discrete states

k OYk � Oy1kY D kSk OUk � S1 Ou1kY � kSk. OUk � Ou1/kY C k.Sk � S1/Ou1kY
� kSkk k OUk � Ou1kU C k.Sk � S1/Ou1kY ! 0;

since kSkk � CF . Writing OPk � Op1 D S�k . OYk � Oy1/C .S�k � S1/. Oy1 � yd / we
finally deduce with the same arguments k OPk � Op1kY ! 0: ut

The convergence of the discrete solutions directly yields a uniform bound on
the estimators. The proof follows the ideas in [14, Lemma 3.3] accounting for the
situation at hand and using the following important property. Let G 2 G be given.
The finite overlap of the patches #NG.E/.1 allows us to deduce for any g 2 L2.�/
the bound
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X
E2G

kgk22I�.NG .E// D
X
E2G

X
E02NG .E/

kgk22IE0 .
X
E2G

kgk22IE D kgk22I�: (3.3)

The constant solely depends on shape-regularity of G and thus on G0.

Lemma 3.4 (Uniform estimator bound). For all k 	 0 we have

Ek.. OUG; OYG; OPG/IGk/.1:

Proof. A scaled trace inequality in combination with an inverse estimate yields for
the error indicators related to the state equation

hE
2k� OYk C OUkk22IE C hEkŒŒr OYk��k22I@Ek\�.kr OYkk22I�.NG.E// C k OUkk22IE:

This in turn implies by (3.3)

X
E2Gk

hE
2k� OYk C OUkk22IE C hEkŒŒr OYk��k22I@E\�.kr OYkk22I� C k OUkk22I�.1;

since f OUk; OYkgk�0 is bounded in L2.�/ � VH1.�/. Similar arguments apply to the
estimator contribution related to the adjoint problem. ut

3.2 A Second Limit

We next turn to the limit of the piecewise constant mesh-size function hk W� ! R

of Gk defined by hk jE D jEj1=d , E 2 G. The behavior of the mesh-size function is
directly related to the decomposition

GCk WD
\
`�k

G` D fE 2 Gk j E 2 G` 8` 	 kg; and G0k WD Gk n GCk :

The set GCk contains all elements that are not refined after iteration k and we
observe that the sequence fGCk gk�0 is nested, i.e., GC` � GCk for all k 	 `. The
set G0k contains all elements that are refined at least once more after iteration k; in
particular, Mk � G0k . Decomposing N� D �Ck [ �0

k WD �.GCk / [ �.G0k/ we have
the following connection to the behavior of the mesh-size function shown in [12,
Lemma 4.3 and Corollary 4.1].

Lemma 3.5 (Convergence of the mesh-size functions). The mesh-size functions
hk converge uniformly to 0 in �0

k in the following sense

lim
k!1 khk �0kk1I� D lim

k!1 khkk1I�0k D 0;

where �0k 2 L1.�/ the characteristic function of �0
k .
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Combining convergence of the discrete solutions with the convergence of the
mesh-size functions we see that the adaptive algorithm can monitor progress in the
following sense.

Lemma 3.6 (Indicators of marked elements). All indicators of marked elements
vanish in the limit, this is,

lim
k!1maxfEG.. OUG; OYG; OPG/IE/ j E 2 Mkg D 0:

Proof. For k 	 0 pick up Ek 2 arg maxfEG.. OUG; OYG; OPG/IE/ j E 2 Mkg ¤ ;:
We follow [14, Lemma 3.4] and show Ek.. OUk; OYk; OPk/IEk/ ! 0:

Arguing as in the proof to Lemma 3.4 we find for the indicator contribution of
the state equation

hEk� OYk C OUkk2IEk C hE
1=2kŒŒr OYk��k2I@Ek\�.kr OYkk2I�.Nk.Ek// C k OUkk2IEk

� kr Oy1k2I�.Nk.Ek// C kOu1k2IEk C kr. OYk � Oy1/k2I� C k OUk � Ou1k2I� ! 0

as k ! 1 for the following reasons: By Assumption 1.1 (4) all elements in Mk are
refined, which implies Ek 2 G0k . Local quasi-uniformity of Gk in combination with
Lemma 3.5 therefore yields j�.Nk.Ek//j.jEkj � khkkd1I�0k ! 0. Consequently,

the first two terms of the right hand side vanish by continuity of k � k2I� with respect
to the Lebesgue measure. The last two terms converge to 0 by Proposition 3.3. The
same arguments apply to the indicator contribution of the adjoint equation, which in
summary yields EG.. OUk; OYk; OPk/IEk/ ! 0 as k ! 1. ut

4 Convergence 2: Making the Right Decisions

In this section we verify the main result by showing . OUk; OYk; OPk/ ! .Ou; Oy; Op/
and Ek. OUk; OYk; OPk IGk/ ! 0: Error convergence requires appropriate decisions in
the adaptive iteration, which we have summarized in Assumption 1.1. Estimator
convergence is then a consequence of local efficiency as stated in Theorem 2.2.

4.1 Convergence of the Indicators

We first show that the maximal indicator of all elements vanishes in the limit.

Lemma 4.1 (Convergence of the indicators). The maximal indicator vanishes in
the limit, this is,

lim
k!1maxfEG.. OUG; OYG; OPG/IE/ j E 2 Gkg D 0:
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Proof. Combining the assumption on marking in Assumption 1.1 (3) with the
behavior of the indicators on marked elements, which we have analyzed in
Lemma 3.6, we find

maxfEG.. OUk; OYk; OPk/IE/ j E 2 Gkg
� maxfEG.. OUk; OYk; OPk/IE/ j E 2 Mkg ! 0

as k ! 1. ut

4.2 Convergence of the Residuals

We next show that residuals of state and adjoint equation in the limiting first
order optimality system (3.2) vanish. The proof adapts the techniques from [14,
Proposition 3.1] to the situation at hand.

Proposition 4.2 (Convergence of the residual). For the residuals R of (2.1) and
R� of (2.2) we have

R. Oy1I Ou1/ D R�. Op1I Oy1 � yd / D 0 in Y
� D H�1.�/:

Particularly, Oy1 D S Ou1 and Op1 D S�. Oy1 � yd /.
Proof. We prove the claim for R. The assertion for R� follows along the same
lines. Using a density argument we only have to show hR. Oy1I Ou1/; vi D 0 for all
v 2 H2.�/ \ VH1.�/.

Suppose any pair k 	 `. Then we have the inclusion GC` � GCk � Gk and the
sub-triangulation Gk n GC` of Gk covers the sub-domain �0

` D �.G0` /, i.e., we can
write �0

` D �.Gk n GC` /. Moreover, khkk1I�`C.1 and khkk1I�0` � kh`k1I�0` :
Pick up any v 2 H2.�/\ VH1.�/with jvjH2.�/ D 1. We next utilize the improved

bound (2.8) for R, decompose Gk D GC` [.GknGC` /, and recall Lemma 3.4 to bound

hR. OYk I OUk/; vi2.
X
E2GC

`

hE
2
�
hE

2k� OYk C OUkk22IE C hEkŒŒr OYk��k22I@E\�
�

C
X

E2GknGC

`

hE
2
�
hE

2k� OYk C OUkk22IE C hEkŒŒr OYk��k22I@E\�
�

.E2k.. OUk; OYk; OPk/IGC` /C kh`k21I�0`E
2
k ..

OUk; OYk; OPk/IGk n GC` /

.E2k.. OUk; OYk; OPk/IGC` /C kh`k21I�0`
Š� 2"
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for any " > 0. This can be seen as follows: By Lemma 3.5 we may first choose
` large such that kh`k21I�0` � ": After fixing ` the “point-wise” convergence of

the indicators in Lemma 4.1 allows us then to choose a suitable k 	 ` with
E2k.. OUk; OYk; OPk/IGC` / � ": This yields for any fixed v 2 H2.�/\ VH1.�/

hR. Oy1I Ou1/; vi D lim
k!1 hR. OYkI OUk/; vi D 0;

observing that R is continuous with respect to its arguments and recalling the
convergence . OUk; OYk/ ! .Ou1; Oy1/ shown in Proposition 3.3. Since v is arbitrary we
have shown R. Oy1I Ou1/ D 0 in Y

�. This in turn implies Oy1 D S Ou1 and finishes
the proof. ut

4.3 Convergence of Error and Estimator

We are now in the position to prove the main result, where we again use the
abbreviation W D U � Y � Y.

Proof of Theorem 1.2. Combining Propositions 2.1, 3.3, and 4.2 we obtain

lim
k!1 k. OUk; OYk; OPk/� .Ou; Op; Oy/kW ' lim

k!1 k. OYk; OPk/� .S OUk; S�. OYk � yd //kY�Y
D k. Oy1; Op1/ � .S Ou1; S�. Oy1 � yd /kY�Y D 0:

This shows convergence of the error.
To show convergence of the estimator we decompose for k 	 ` as in the proof to

Proposition 4.2

E2k.. OUk; OYk; OPk/IGk/ D E2k.. OUk; OYk; OPk/IGC` /C E2k .. OUk; OYk; OPk/IGk n GC` /:

We first bound the second term on the right hand side. The local lower bound of
Theorem 2.2 in combination with the finite overlap of the patches Nk.E/ allows us
to bound

E2k.. OUk; OYk; OPk/IGk n GC` /

.k. OUk; OYk; OPk/ � .Ou; Op; Oy/k2
W

C
X

E2GknGC

`

osc2k. OUk; yd IE/

.k. OUk; OYk; OPk/ � .Ou; Op; Oy/k2
W

C kh`k21I�0`
�k OUkk22I� C kydk22I�

�
;
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using (3.3) and the rough estimate

osc2k. OUk; yd IE/ D h2E
�k OUk � PGk OUkk22I�.NG.E// C kyd � PGk ydk22I�.NG .E//

�

� kh`k21I�0`
�k OUkk22I�.Nk.E//

C kydk22I�.Nk.E//

�
:

Since k OUkk22I˝ C kydk22I˝.1 we find

E2k.. OUk; OYk; OPk/IGk/.E2k.. OUk; OYk; OPk/IGC` /
C k. OUk; OYk; OPk/ � .Ou; Op; Oy/k2

W
C kh`k21I�0` :

By Lemma 3.5 the last term kh`k21I�0` can be made small by choosing ` large.

After fixing ` we may choose as in the proof to Proposition 4.2 k 	 ` such that
E2k.. OUk; OYk; OPk/IGC` / is small. Moreover, the error convergence established above
implies that the middle term k. OUk; OYk; OPk/� .Ou; Op; Oy/k2

W
is small too, if we possibly

increase k further. In summary, for any " > 0 we find a k such that

Ek.. OUk; OYk; OPk/IGk/ � ":

This yields Ek.. OUk; OYk; OPk/IGk/ ! 0 as k ! 1 and finishes the proof. ut

5 Extensions and Outlook

The presented theory has been extended into several directions in the PhD thesis of
the first author [5].

5.1 General Linear-Quadratic Optimal Control Problem

The abstract framework can be found in [6, §2.1] and may be summarized as
follows. We can allow for continuous, non-coercive bilinear forms BWY � Y ! R

that satisfy an inf-sup condition. This setting includes saddle point problems like
the Stokes system and other mixed formulations. More general objectives  .y/ can
replace the simple tracking type functional ky � ydk22I�. The functional  has to
be quadratic and strictly convex. Its Fréchet-derivative 0 has to satisfy a Lipschitz-
condition. We may also consider any type of control space such that Y ,! U ,! Y

�
is a Gelfand triple. This then covers more general cases of distributed control as well
as Neumann-boundary control.

Admitting a general class of PDE constraints requires appropriate assumptions
on the estimators for the linear problems (2.1) and (2.2). Quite weak assumption
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are summarized in [14, §2.2.3] comprising other estimators like the hierarchical
estimator, an estimator based on local problems on stars, an equilibrated residual
estimator, and the ZZ-estimator; compare for instance with [8] for a detailed
description of the diverse estimators. We may also weaken the assumption on
marking to include marking strategies that adaptively focus on specific estimator
contributions, like the indicators for the error in the state or adjoint equation.
Such strategies are used in a comparison of adaptive strategies for optimal control
problems in [6, §6]. We refer to [14, §2.2.4 and §5] for a sufficient and necessary
assumption on marking.

Most of the changes in the presented analysis are then concentrated in the proof
to Lemma 3.2. This proof gets inevitably more involved due to the general structure
of  , where one has to appropriately use convexity of  . All other statements can
be proven using similar arguments with minor adjustments.

5.2 Discretized Control

Up to now we have concentrated on the variational discretization of Hinze [4]. Here,
the precise structure of the set of admissible controls U

ad is not of importance.
The actual computation of a discrete solution yet requires the exact computation
of ….P/ for a discrete function P 2 Y.G/. This typically gives restrictions on U

ad,
like box-constraints with piecewise constant obstacles.

Very often the control space U is discretized by a conforming finite element space
U.G/. Upon setting U

ad.G/ WD U
ad \ U.G/ and assuming that Uad.G/ is non-empty

we can define a discrete projection operator…G WU ! U
ad.G/ for p 2 U by

…G.p/ 2 U
ad.G/ W h˛…G.p/C p; …G.p/� U i � 0 8U 2 U

ad.G/:

An efficient computation of …G benefits from a simple structure of U
ad and a

suitable discrete control space U.G/.
We can still consider the general setting of the previous paragraph. However, the

analysis of adaptive finite elements for discretized controls gets painstakingly more
laborious at several instances that we shortly list.

1. The right hand side in the basic error equivalence in Proposition 2.1 has to be
extended by the term k OUG �…. OUG/kU resulting in

k. OUG ; OYG; OPG/�.Ou; Op; Oy/kW ' k. OUG ; OYG; OPG/�.…. OPG/; S. OUG/; S
� 0. OYG//kWI

compare with [6, Theorem 2.2]
2. As a consequence, the element indicators of the estimator in Theorem 2.2 have

to be enriched by a term k OUG �…. OPG/k2U.E/ D k…G. OPG/�…. OPG/k2U.E/ to grant
reliability of the estimator [6, Theorem 3.2]. Frequently this term is estimated
further in order to completely avoid the computation of the continuous projection
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operator …. OPG/ [3, 10]. This typically results in a non-efficient estimator;
compare with [6, Remark 6.1].

3. Nesting of spaces Yk � YkC1 is essential to verify with current techniques the
point-wise convergence of the discrete solution operators in Proposition 3.1, i.e.,
Sk ! S1 and S�k ! S�1 as k ! 1.

Likewise, nesting U
ad
k � U

ad
kC1 of the sets of discrete admissible controls

is instrumental for proving …k. OPk/ ! Ou1 D …1. Op1/ in Lemma 3.2. This
nesting poses restrictions on data describing the set of admissible controls Uad.
Typically, such data has to be discrete over G0. In the proof to Lemma 3.2 we
additionally have to account for the typical situation Ou1 62 U

ad
k . This increases

substantially the complexity of the proof.
4. The finite element spaces fYkgk�0 are “locally dense” in the subset “�01 WD

limk!1�0
k” of � in that minV 2Yk kv � V k

Y.�0k/
! 0 as k ! 1; compare

with [14, Remark 3.4]. Philosophically speaking, the improved bounds (2.8)
and (2.9) for the residuals allow us to access this local density for showing that
the residuals R. Oy1I Ou1/; R�. Op1I 0. Oy1// 2 Y

� are not supported in �01.
The additional contribution for the control error requires to establish the

convergence

lim
k!1 k OUk �…. OPk/kU.�0k/ D lim

k!1 k…k. OPk/ �…. OPk/kU.�0k/ ! 0: (5.1)

For U D L2 and piece-wise constant box-constraints in combination with a
discontinuous or a continuous, piecewise linear control discretization one can
verify (5.1) employing local density of fUkgk�0 and point-wise properties of …;
compare with [5, §8.4.2 and §8.4.3]. A characterization of properties of … and
U.G/ that ensure (5.1) is a challenging question and topic of future research.

5. The proof of the estimator convergence in Theorem 1.2 strongly relies on local
efficiency of the indicators as stated in Theorem 2.2. For discretized control
this requires k OUG � …. OPG/kU.E/ to be locally efficient, which can be shown
if … and …G are locally Lipschitz continuous with uniformly bounded Lipschitz
constants. This is typically true in case of distributed control.

In case of Neumann boundary control Lipschitz continuity of … and …G
involves the trace operator T W H1.�/ ! L2.@�/. We may therefore show
global efficiency for k OUG � …. OPG/kL2.@�/ using the trace inequality on �.
An estimate of k OUG � …. OPG/kL2.@E\@�/ needs a local trace inequality on E .
The typical scaling arguments yield negative powers of the local mesh-size and
thereby ruling out local efficiency. As a consequence, we still can verify the error
convergence of Theorem 1.2 but a proof of estimator convergence may require
new techniques in that case.
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1 Introduction

In this paper we extend the a priori error analysis for discretizations of a parabolic
optimal control problem to the case of nonsmooth domains. The model problem
under consideration is formulated as

Minimize J.q; u/ D 1

2

Z T

0

Z
�

ju � Ouj2 dx dt C ˛

2

Z T

0

Z
�

jqj2 dx dt; (1.1a)

subject to the state equation

@tu ��u D f C q in .0; T / ��;
u D 0 in .0; T / � @�;

u.0/ D u0 in �;

(1.1b)

where u D u.t; x/ denotes the state variable and q D q.t; x/ is the control variable.
A precise formulation of this problem including a functional analytic setting is given
in the next section.

In the literature on a priori error estimates for this kind of problems, see,
e.g., [3, 17, 18, 24–27], the domain � is always assumed either to have a smooth
boundary @� or to be polygonal and convex. Our main contribution is an extension
of the results from [26] to a more general class of domains including polygonal or
polyhedral domains with (non-convex) reentrant corners.

For optimal control problems governed by elliptic equations on non-convex
domains there are several contributions establishing optimal order error estimates
on properly chosen graded meshes, see [5–7, 10].

Our strategy is as follows. We formulate an assumption (see Assumption 4.2) on
a family of finite element meshes ensuring optimal error estimates for the elliptic
Ritz projection. This assumption is satisfied for different nonsmooth domains with
appropriate mesh grading, see Sect. 5 for details. Under this assumption, which
is of “pure elliptic nature”, we check, that all proofs from [26] can be directly
extended. This means, that for getting optimal order error estimates for the parabolic
optimal control problem, it is enough to check the approximation properties for
the discretization of the corresponding elliptic equation. This philosophy explained
here on the example of the discretization based Petrov-Galerkin Crank-Nicolson
scheme in time and linear finite elements in space for the model problem mentioned
above can be extended in several directions. First of all, one can include control
constraints in the same fashion as in [26], also the consideration of a more
general parabolic problem with variable coefficients is possible. For an extension
of dG(r) (discontinuous Galerkin) discretizations, e.g., from [24, 25] an additional
assumption on the L2-projection similar to Assumption 4.2 is required. This
additional assumption will be fulfilled on the same families of meshes as described
in Sect. 5. Under this assumption we strongly expect that also the error estimates
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for a semi-linear parabolic equation, see [27], as well as for problems with state
constraints, see [17, 23] can be covered.

The outline of the paper is as follows. In the next section we discuss the optimal-
ity conditions and the regularity issues for the optimal control under consideration.
After the description of the discretization scheme in Sect. 3 we formulate and prove
our main result on a priori error analysis in Sect. 4 under Assumption 4.2. Section 5
is devoted to the verification of this assumption for different situations. Finally, in
Sect. 6 we present a numerical example illustration our results.

2 Continuous Problem

In this section, we briefly discuss the precise formulation of the optimization prob-
lem under consideration. Furthermore, we recall theoretical results on existence,
uniqueness, and regularity of optimal solutions as well as optimality conditions. For
this discussion, we explicitly take the possible non-smoothness of the domain �
into account.

To set up a weak formulation of the state equation (1.1b), we introduce the
following notation: For a polygonal or polyhedral Lipschitz domain � � Rn,
n D 2; 3, we denote V to be H1

0 .�/. Together with H WD L2.�/, the Hilbert
space V and its dual V � D H�1.�/ build a Gelfand triple V ,! H ,! V �.
Here and in what follows, we employ the usual notion for Lebesgue and Sobolev
spaces. Furthermore, let D� be the domain of the Laplacian given by D� :D
f v 2 V j �v 2 H g.

Remark 2.1. If � is polygonal and convex or possesses a smooth boundary, then
D� D H2.�/ \ H1

0 .�/ (see e.g. [14, Theorem 4 in Section 6.3] for the case of
a smooth boundary and [19, Remark 2.4.6 and Corollary 2.6.8.] for polygonal and
convex domains). Since we do not assume the convexity of � the space D� is in
general not a subset of H2.�/.

For a time interval I D .0; T / we introduce the state space

X :D W.0; T / D ˚
v
ˇ̌

v 2 L2.I; V / and @tv 2 L2.I; V �/ �

and the control space Q :D L2.I;H/. We use the following notations for the inner
products and norms on L2.�/ and L2.I;H/:

.v;w/ :D .v;w/L2.�/; .v;w/I :D .v;w/L2.I;H/;

kvk :D kvkL2.�/; kvkI :D kvkL2.I;H/:
In this setting, a standard weak formulation of the state equation (1.1b) for given
control q 2 Q, f 2 L2.I;H/, and u0 2 H reads: Find a state u 2 X satisfying
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.@tu; '/I C .ru;r'/I D .f C q; '/I 8' 2 X;
u.0/ D u0:

(2.1)

Assumption 2.2. For our analysis, we will assume the following regularity proper-
ties of the data: f; Ou 2 H1.I;H/ with f .0/; Ou.T / 2 V and u0 2 V with �u0 2 V .

Using this assumption, the following result on existence and regularity can be
proved:

Proposition 2.3. Under Assumption 2.2 and for fixed control q 2 Q, there exists
a unique solution u 2 X of problem (2.1). Moreover, the solution exhibits the
regularity

u 2 L2.I;D�/\H1.I;H/ \ C. NI ; V /
with the estimate

k�ukI C k@tukI C kru.T /k � C
˚kf C qkI C kru0k

�
:

If additionally the fixed control q is in H1.I;H/ � Q, the state u exhibits the
improved regularity

u 2 H1.I;D�/ \H2.I;H/

and the stability estimate

k@t�ukI C k@2t ukI � C
˚kf C qkH1.I;H/ C kr.f C q/.0/k C kr�u0k

�

holds.

Proof. Existence and the regularity u 2 L2.I;D�/ \ H1.I;H/ is proven in [19,
Theorem 5.1.1]. Then, the assertion u 2 C. NI ; V / and the corresponding estimates
for can be obtained by choosing ��u 2 L2.I;H/ and @tu 2 L2.I;H/ as test
function in (2.1).

The improved regularity u 2 H1.I;D�/ \ H2.I;H/ can be proved as in [14]
provided that the right-hand side f C q exhibits the regularity f C q 2 H1.I;H/

with .f C q/.0/ 2 V and the initial condition u0 fulfills �u0 2 V . This is ensured
by Assumption 2.2, the assumed regularity q 2 H1.I;H/, and the embedding
H1.I; V / ,! C. NI ; V /. In contrast to [14], where H2.�/ regularity is used, one
can not expect here the state variable to lie inH1.I IH2.�//. However the proof of
the stated results goes through. ut

The weak formulation of the optimal control problem (1.1) is given as

Minimize J.q; u/ :D 1

2
ku � Ouk2I C ˛

2
kqk2I s.t. (2.1) and .q; u/ 2 Q �X; (2.2)

where ˛ > 0 is the regularization parameter.
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Proposition 2.4. For ˛ > 0 the optimal control problem (2.2) admits a unique
solution . Nq; Nu/ 2 Q �X .

Proof. For the standard proof we refer, e.g., to [22]. ut
Utilizing the adjoint state equation for z D z.q/ 2 X given by

�.'; @t z/I C .r';rz/I D .'; u.q/� Ou/I 8' 2 X;
z.T / D 0;

(2.3)

the optimality condition is given by

Nq D �˛�1z. Nq/: (2.4)

Employing this optimality condition we obtain, the following regularity result:

Proposition 2.5. Let . Nq; Nu/ 2 Q � X be the solution of the optimization prob-
lem (2.2) and Nz D z. Nq/ 2 X be the corresponding adjoint state. Then, there holds:

Nq; Nu; Nz 2 H1.I;D�/ \H2.I;H/:

Furthermore, the following stability estimates are fulfilled:

k@t�NukI C k@2t NukI � C
˚kf C NqkH1.I;H/ C kr.f C Nq/.0/k C kr�u0k

�
;

k@t� NqkI C k@2t NqkI � C.˛/
˚kOukH1.I;H/ C kr Ou.T /k C kf C NqkI C kru0k

�
:

Proof. For Nq 2 Q, Proposition 2.3 implies that Nu 2 L2.I;D�/ \ H1.I;H/ \
C. NI ; V /. This implies that the right-hand side of the adjoint equation (2.3) fulfills
Nu�Ou 2 H1.I;H/ and Nu.T /�Ou.T / 2 V . Consequently, we obtain by Proposition 2.3
that Nz 2 H1.I;D�/\H2.I;H/. This implies the stated regularity of Nq.

The stability estimates for Nu follows directly from Proposition 2.3. For Nz,
Proposition 2.3 applied to the adjoint equation (2.3) implies

k@t�NzkI C k@2t NzkI � C
˚kNukH1.I;H/ C kOukH1.I;H/ C kr Nu.T /k C kr Ou.T /k�

and the estimate for Nu from Proposition 2.3 together with the optimality condi-
tion (2.4) yields the assertion. ut

3 Discretization

In this section, we describe the space-time finite element discretization of the
optimal control problem (2.2).
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3.1 Semidiscretization in Time

At first, we present the semidiscretization in time of the state equation by continuous
Galerkin methods. We consider a partitioning of the time interval NI D Œ0; T � as

NI D f 0 g [ I1 [ I2 [ � � � [ IM
with subintervals Im D .tm�1; tm� of size km and time points

0 D t0 < t1 < � � � < tM�1 < tM D T:

We define the discretization parameter k as a piecewise constant function by setting
k
ˇ̌
Im

D km form D 1; 2; : : : ;M . Moreover, we denote by k the maximal size of the
time steps, i.e., k D maxmD1;2;:::;M km. We impose the following conditions on the
time mesh:

(i) There is a constant � > 0 (independent of k) such that for all m D
1; 2; : : : ;M � 1

��1 � km

kmC1
� �

holds.
(ii) There is a constant � > 0 (independent of k) such that

k � � min
mD1;2;:::;M km:

The semidiscrete trial space is given as

Xk D
n

vk 2 C. NI ; V /
ˇ̌
ˇ vk

ˇ̌
Im

2 P1.Im; V /; m D 1; 2; : : : ;M
o
;

while the test space consisting of discontinuous piecewise polynomials of order 0 is
defined as

QXk D
n

vk 2 L2.I; V /
ˇ̌
ˇ vk

ˇ̌
Im

2 P0.Im; V /; m D 1; 2; : : : ;M; vk.0/ 2 V
o
:

Here, Pr .Im; V / denotes the space of polynomials up to order r defined on Im with
values in V . We use the notations

.v;w/Im :D .v;w/L2.Im;H/ and kvkIm :D kvkL2.Im;H/:

To define the continuous Galerkin approximation (so-called cG(1) approxima-
tion) using the spacesXk and QXk we use for vk 2 Xk the abbreviation vk;m :D vk.tm/
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and for wk 2 QXk we set wk;m D limt"tm wk.t/. The bilinear form B. � ; � / for
uk 2 Xk and ' 2 QXk is then defined by

B.uk; '/ :D .@tuk; '/I C .ruk;r'/I C .uk;0; '0/:

The cG(1) semidiscretization of the state equation (2.1) for a given control q 2 Q

reads: Find a state uk D uk.q/ 2 Xk such that

B.uk; '/ D .f C q; '/I C .u0; '0/ 8' 2 QXk: (3.1)

The existence and uniqueness of solutions to (3.1) can be directly shown by
“elliptic” arguments. For the general cG(r) case we refer to [31].

The semi-discrete optimization problem for the cG(1) time discretization has the
following form:

Minimize J.qk; uk/ subject to (3.1) and .qk; uk/ 2 Q �Xk: (3.2)

The uniquely determined optimal solution of (3.2) is denoted by . Nqk; Nuk/ 2 Q�Xk .

Remark 3.1. Note, that the optimal control Nqk is searched for in the continuous
space Q, and the subscript k indicates only the usage of the semidiscretized state
equation.

Similarly to the continuous case, the optimality condition can be formulated as

Nqk D �˛�1zk. Nqk/;

where zk D zk.q/ 2 QXk denotes the solution of the semidiscrete adjoint equation

B.'; zk/ D .'; uk.q/� Ou/I 8' 2 Xk:

This yields that Nqk is piecewise constant in time, i.e., that Nqk 2 QXk .
Additionally to the partition of NI introduced at the beginning of this section, we

consider a “dual” partition of the time interval NI defined by

NI D f 0 g [ I�1 [ I�2 [ � � � [ I�MC1

with I�m :D .t�m�1; t�m� form D 1; 2; : : : ;M C 1 and

t�0 :D t0; t�m :D tm�1 C tm

2
form D 1; 2; : : : ;M; and t�MC1 :D tM :

On this partition, we define the space Qk by

Qk :D
n

wk 2 C. NI ; V /
ˇ̌
ˇ wk

ˇ̌
I�

m
2 P1.I�m; V /; m D 1; 2; : : : ;M C 1

o
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and the interpolation k WC. NI ; V / [ QXk ! Qk as follows:

1. For J D I�1 [ I�2

kv.t/
ˇ̌
J

:D v.t�1 /C t � t�1
t�2 � t�1

.v.t�2 /� v.t�1 //

2. For J D I�m with m D 3; 4; : : : ;M � 1:

kv.t/
ˇ̌
J

:D v.t�m�1/C t � t�m�1
t�m � t�m�1

.v.t�m/ � v.t�m�1//

3. For J D I�M [ I�MC1:

kv.t/
ˇ̌
J

:D v.t�M�1/C t � t�M�1
t�M � t�M�1

.v.t�M/� v.t�M�1//:

3.2 Discretization in Space

To define the finite element discretization in space, we consider a family of two or
three dimensional finite element meshes fThgh>0, see, e.g., [13]. A mesh consists
of triangular, quadrilateral, tetrahedral, or hexahedral cells K , which constitute a
non-overlapping cover of the computational domain �. The corresponding mesh
is denoted by Th D SfKg, where we define the discretization parameter h as a
cellwise constant function by setting h

ˇ̌
K

D hK with the diameter hK of the cell K .
We use the symbol h also for the maximal cell size, i.e., h D maxhK .

Remark 3.2. We do not assume the family of meshes fThgh>0 to be neither shape-
regular nor quasi-uniform. For dealing with corner or edge singularities, we will use
graded meshes, see Sect. 5 for details.

On the mesh Th we construct a conforming finite element space Vh � V in a
standard way:

Vh D ˚
v 2 V ˇ̌

v
ˇ̌
K

2 Q1.K/ for K 2 Th
�
:

Here,Q1.K/ consists of shape functions obtained via (bi-/tri-)linear transformations
of (bi-/tri-)linear polynomials defined on the reference cell. To obtain the fully
discretized versions of the time discretized state equation (3.1), we utilize the space-
time finite element spaces

Xk;h D
n

vkh 2 C. NI ; Vh/
ˇ̌
ˇ vkh

ˇ̌
Im

2 P1.Im; Vh/
o

� Xk
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and

QXk;h D
n

vkh 2 L2.I; Vh/
ˇ̌
ˇ vkh

ˇ̌
Im

2 P0.Im; Vh/ and vkh.0/ 2 Vh
o

� QXk:

The so-called cG(1)cG(1) discretization of the state equation for given control q 2
Q has the form: Find a state ukh D ukh.q/ 2 Xk;h such that

B.ukh; '/ D .f C q; '/I C .u0; '0/ 8' 2 QXk;h: (3.3)

Then, the corresponding optimal control problem is given as

Minimize J.qkh; ukh/ subject to (3.3) and .qkh; ukh/ 2 Q �Xk;h: (3.4)

The uniquely determined optimal solution of (3.4) is denoted by . Nqkh; Nukh/ 2 Q �
Xk;h. As before, the optimality condition can be formulated as

Nqkh D �˛�1zkh. Nqkh/; (3.5)

where zkh D zkh.q/ 2 QXk;h denotes the solution of the discrete adjoint equation

B.'; zkh/ D .'; ukh.q/� Ou/I 8' 2 Xk;h:

By inspection of the optimality condition (3.5), we obtain that Nqkh 2 QXk;h and so the
control does not need to be discretized explicitly, cf., e.g., [20].

Finally, on the “dual” partition, we define the discrete space Qk;h by

Qk;h :D
n

wk 2 C. NI ; Vh/
ˇ̌
ˇ wk

ˇ̌
I�

m
2 P1.I�m; Vh/; m D 1; 2; : : : ;M C 1

o

and note that k. QXk;h/ � Qk;h.

4 Error Analysis

In this section, we prove the main result of this article, namely an O.k2 C h2/

estimate for the error k Nq � QqkhkI between the continuous solution Nq 2 Q of (2.2)
and the postprocessed discrete solution Qqkh 2 Qk;h defined by

Qqkh D �˛�1kzkh. Nqkh/; (4.1)

where Nqkh 2 QXk;h is the solution of (3.4). The asserted estimate follows directly by
the triangle inequality from the Theorems 4.1 and 4.4 below.
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4.1 Estimates for the Error Due to Time Discretization

Theorem 4.1. Let Assumption 4.2 be fulfilled. For the solution Nq 2 Q of (2.2) and
Qqk defined by

Qqk D �˛�1kzk. Nqk/

with the solution Nqk 2 Q of (3.2), it holds

k Nq � QqkkI � C.˛/k2
˚kf C NqkH1.I;H/ C kOukH1.I;H/

C kr.f C Nq/.0/k C kr Ou.T /k C kr�u0k
�
:

Proof. This result can be proved following the lines of the proof of Theorem 6.6
in [26]. There, the domain is assumed to be polygonal and convex. However, the
proof of Theorem 6.6 there does not exploit H2 regularity. It requires only the
regularity stated in Proposition 2.3. ut

4.2 Estimates for the Error Due to Space Discretization

For the error analysis derived here, we will make use of the spatial Ritz projection
RhWV ! Vh defined by

.rRhv;r'/ D .rv;r'/ 8' 2 Vh: (4.2)

Assumption 4.2. The family of spatial meshes f Th gh is constructed such that for
the Ritz projection defined by (4.2) the estimate

hkr.v �Rhv/k C kv � Rhvk � Ch2k�vk

holds for all v 2 D�.

Remark 4.3. If the domain � is polygonal and convex, then this assumption holds
on shape-regular, quasi-uniform meshes by standard finite element theory with

hkr.v �Rhv/k C kv �Rhvk � Ch2kvkH2.�/ � Ch2k�vk;

where theH2 regularity is used in the last step. In the case of a non-smooth domain,
however, this assumption is typically not fulfilled on quasi-uniform meshes. In
Sect. 5 we discuss several situations, where this assumption holds, if the family of
meshes is constructed using an appropriate mesh grading.
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Theorem 4.4. For Qqk defined by Qqk D �˛�1kzk. Nqk/ from Theorem 4.1 with the
solution Nqk 2 Q of (3.2) and Qqkh defined by (4.1) with the solution Nqkh 2 Q of (3.4),
it holds under Assumption 4.2 that

k Qqk � QqkhkI � C.˛/
˚
k2Ch2

�˚kf C NqkkI Ckru0kCku0k
�Ck2k@t OukI Ch2kOukI :

Proof. Under Assumption 4.2 it is possible to extend the proof of Theorem 6.10
in [26] to the case of a nonsmooth domain. The main component of this proof is
Lemma 5.7 in [26], which shows, that a certain discretization error can be bounded
by the error with respect to the Ritz projection Rh. Using Assumption 4.2, this
lemma can be directly extended to the case considered here and the above result
follows. ut

5 Verification of Assumption 4.2

Now we discuss cases for which the Assumption 4.2 is fulfilled. It is well known,
that for convex polygonal or polyhedral domains the Assumption 4.2 holds for finite
element approximations on shape-regular, quasiuniform meshes (see Remark 4.3).
So we focus on examples of nonconvex domains for which the Assumption 4.2 is
also fulfilled.

5.1 Nonconvex Polygonal Domains

Let � � R2 be a bounded polygonal domain with one non-convex interior angel
! >  , located at the origin. Further we introduce the distance of a finite element �

of the triangulation Th to the origin as r� D inf.x1;x2/2�
q
x21 C x22 . Assume that the

family of shape-regular triangulation fThgh fulfills the conditions

c1h
1=� � h� � c2h

1=�; for r� D 0;

c1hr1��� � h� � c2hr1��� ; for r� > 0;

)
(5.1)

with � < 
!

and h� D diam.�/.

Remark 5.1. For meshes which fulfill the condition (5.1) the number of elements
is of order h�2. Therefore the number of elements is of the same order as in a
quasiuniform triangulation (see e.g. [8, Remark 3.1] or [28, 29]).

On meshes fulfilling (5.1) it is known that Assumption 4.2 is fulfilled, see
e.g. [11, Theorem 5.1], [28, Theorem 1] or [29, Theorem 2].
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Remark 5.2. The results can be transfered to domains with a corner with interior
angle ! >  and smooth boundary everywhere else e.g. a segment of a disk with a
reentrant corner.

Remark 5.3. As the singularities show local behavior, therefore more general two
dimensional domains with more than one non-convex corner can be treated in a
similar fashion, as we can write the solution as the sum of a regular part and the
singularity functions of each non convex corner (see e.g. [21, Section 1.4]).

5.2 Prismatic Domains

Let� D G�Z � R3 be a bounded prismatic domain, whereG � R2 is a bounded
polygonal domain and Z D .0; z0/ is an interval. Again we assume that G has one
corner with interior angel ! >  located at the origin.

As in [32, Section 2.3.2] we construct the triangulation of� in the following way:
Assume that the triangulation of G is constructed such that the condition (5.1) is
fulfilled. From this triangulation we get a triangulation of the domain� by extruding
the triangles in x3 direction quasiuniform with mesh size h. This gives a mesh of
triangular prisms, to get an anisotropic thetraedal mesh each prism is divided into
thetraheda. For elements of this mesh the following estimates hold

c1h
1=� � h�;i � c2h

1=�; for r� D 0 and i D 1; 2;

c1hr1��� � h�;i � c2hr1��� ; for r� > 0 and i D 1; 2;

c1h � h�;3 � c2h;

9>>=
>>;

where h�;i is the length of the projection of the element � to the xi -axis (for D
1; 2; 3), r� D inf.x1;x2/2�

q
x21 C x22 the distance of the element � to the x3-axis and

� < 
!

. On such meshes the Assumption 4.2 is fulfilled, see [9, Theorem 5.2].

Remark 5.4. In [2, Corollary 4.1] the validity of Assumption 4.2 is shown for
prismatic domains with Neumann boundary conditions onG�f 0; z0 g and Dirichlet
conditions on the remaining part of @�.

5.3 General Polyhedral Domains

For the solution of the Dirichlet problem for the Poisson equation on general
polyhedral domains� � R3 we refer to [4], where a refinement strategy is proposed
that the Assumption 4.2 holds (see [4, Corollary 3.12]). As the grading strategy and
construction of corresponding meshes is more complicated as in the previous cases,
we omit the details here and refer for details to [4].
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6 Numerical Results

For the numerical verification we consider the optimal control Problem (1.1) with
˛ D 1 on a L-shaped domain � D .�1; 1/2 n Œ0; 1� � Œ�1; 0� and the unit time
interval .0; T / D .0; 1/. The remaining data f and Ou are chosen, such that the exact
solution in polar coordinates .r; '/ 2 RC � Œ0; 2/ is given by

Nu.r; '; t/ D .e	t �1/ � us.r; '/;

Nz.r; '; t/ D .e	.1�t / �1/ � us.r; '/;

with 	 D 2
3

and

us.r; '/ D r	 sin.	'/ � .r cos' � 1/.r cos' C 1/.r sin ' C 1/.r sin ' � 1/:

For the grading parameter � D 0:6 in (5.1), Fig. 1 depicts the behavior of the errors
k Nq � QqkhkI and kNu � NukhkI for a sequence of temporal and spacial meshes. They
exhibit the proved convergence order O.k2 C h2/.

Remark 6.1. For the Crank-Nicolson time stepping discretizations of [3] similar
convergence results can be observed.

a b

Fig. 1 Observed convergence of the numerical example. Here, N with N�1 D O.h2/ (cf.
Remark 5.1) denotes the number of cells in the spatial mesh and M with M�1 D k is the
number of times steps. (a) Convergence with respect to spatial refinement with fixed time step
size. (b) Convergence with respect to the time step size with fixed spatial mesh
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Introduction to Part V: Applications

In this part a variety of important applications in the field of PDE constrained
optimization and optimal control is presented. The results range from physical
and chemical over electronic to biomedical and -technological applications. Fur-
thermore, an introduction to a new collection of prototypical problems in PDE
constrained optimization is given. This part is structured as follows:

In their article Optimal Treatment Planning in Radiotherapy Based on Boltzmann
Transport Equations Richard C. Barnard, Martin Frank and Michael Herty study the
question of finding an optimal treatment plan for radiotherapy treatment of cancer.
The medical problem is that ionizing radiation shall be delivered to a targeted tissue,
for example a tumor, without damaging healthy tissue around the tumor. The authors
present a model for dose calculation based on the Boltzmann transport equations
and derive optimal control formulations and necessary optimality conditions.
Approximation methods for calculating the optimal dose and implementing the
optimality conditions as well as numerical examples are presented.

In Optimal Control of Self-Consistent Classical and Quantum Particle Systems
Martin Burger, Rene Pinnau, Marcisse Fouego and Sebastian Rau consider optimal
control problems for self-consistent interacting classical and quantum particle
systems both from an analytical and a numerical point of view. This topic is of
great interest, for example, in designing semiconductor devices and in biomedical
applications. The authors study control and design problems for the microscopic
nonlinear Schrödinger-Poisson system and for the macroscopic Quantum Euler-
Poisson model. Furthermore, optimization problems for Drift-Diffusion models are
presented.

In Modeling, Analysis and Optimization of Particle Growth, Nucleation and
Ripening by the way of Nonlinear Hyperbolic Integro-Partial Differential Equations
Michael Gröschel, Wolfgang Peukert and Günter Leugering study the processes of
particle growth, nucleation, precipitation and ripening via modeling by nonlinear
1-D hyperbolic integro-partial differential equations. The authors provide a concise

© Springer International Publishing Switzerland 2014
G. Leugering et al. (eds.), Trends in PDE Constrained Optimization, International
Series of Numerical Mathematics 165, DOI 10.1007/978-3-319-05083-6_27
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predictive forward modeling of the processes and establish a mathematical theory
of the open-loop optimization in this context.

The stabilization of hyperbolic systems on networks is studied by Markus Dick,
Martin Gugat, Michael Herty, Günter Leugering, Sonja Steffensen and Ke Wang
in Stabilization of Networked Hyperbolic Systems with Boundary Feedback. The
authors present a method to stabilize quasilinear systems on fan-shaped networks
using linear feedback controls at the nodes of the networks. The evolution of
the solution is measured with a Lyapunov function, for which the authors obtain
the exponential decay with time. Furthermore, a numerical discretization of the
Lyapunov function and a numerical analysis are presented. The results are applied
to stabilize the gas flow in a fan-shaped pipe network with compressor stations.

A biomedical application in the field of optimal control is presented by Thomas
Franke, Ronald H. W. Hoppe, Christopher Linsenmann, Lothar Schmid and Achim
Wixforth in the article Optimal Control of Surface Acoustic Wave Actuated Sorting
of Biological Cells. The sorting of biological cells is of great importance in many
medical applications such as cancer research. The goal of the control problem
studied in this article is to sort different types of biological cells in a microfluidic
channel. The sorting is effected by surface acoustic waves generated by an interdig-
ital transducer at the wall of the channel. The control variable is the time-dependent
power applied to the interdigital transducer. The PDEs the control problem is based
on are the incompressible Navier-Stokes equations which model the motion of the
carrier fluid and the equations of motion of the boundaries of the cells.

Another example for separation processes based on PDE constrained optimal
control is presented by Malte Behrens, Hans Georg Bock, Sebastian Engell, Phaw-
itphorn Khobkhun and Andreas Potschka in Real-Time PDE Constrained Optimal
Control of a Periodic Multicomponent Separation Process. A biotechnological
separation process in which three or more different components shall be separated
out of a liquid mixture is studied. The authors apply the control method of Modifier
Adaptation to a PDE constrained optimization problem with periodic boundary
conditions in time. As an example the separation of three amino acids in a virtual
plant with real-world parameters is considered.

In OPTPDE – A Collection of Problems in PDE-Constrained Optimization
Roland Herzog, Arnd Rösch, Stefan Ulbrich and Winnifried Wollner introduce
the OPTPDE database of prototypical optimization problems with PDE constraints
which can be accessed at www.optpde.net. In the article the authors describe how
researchers can use the OPTPDE collection for their own work on optimization
problems and how they can submit new problems for the database. Furthermore, the
authors illustrate the main features of OPTPDE by an example problem.

Sebastian Engell and Günter Leugering

www.optpde.net


Optimal Treatment Planning in Radiotherapy
Based on Boltzmann Transport Equations

Richard C. Barnard, Martin Frank, and Michael Herty

Abstract We look at the optimization of radiotherapy treatment planning. By using
a deterministic model of dose deposition in tissue derived from the Boltzmann
transport equations, we can improve on the accuracy of existing models near
tissue inhomogeneities while also making use of adjoint calculus for developing
necessary conditions for optimality. We describe the relevant model and consider the
planning problem in an optimal control framework. Two versions of the problem are
discussed, optimality conditions are derived, and numerical methods are described.
Numerical examples are presented.

Keywords Kinetic equation • Optimal control • Radiotherapy

Mathematics Subject Classification (2010). 35Q20, 49J20.

1 Introduction

For the treatment of cancer, radiotherapy is, along with surgery and chemotherapy,
one of the primary methods in practice today. In conjunction with those methods,
radiotherapy plays a significant role in 40 % of cured patients [24]; overall, over
half of cases should have radiotherapy as part of the treatment process [8, 36].
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The goal is to deliver ionizing radiation to targeted tissue, such as a tumor, while
preserving, where possible, healthy tissue; the resulting damage to the affected
tissue leads to cell death. Delivery of the radiative dose can be through external
sources (teletherapy) as well as sources deposited in tissue (brachytherapy). In
the case of teletherapy, fixed beams may be arranged around the patient and are
often selected using technician/physician experience. With the advent of Intensity-
Modulated Radiation Therapy (IMRT), beams may be moved during treatment and
shaped by multileaf collimators. This potentially also allows for accounting for
motion in the body of the patient during treatment leading to what is known as 4D
Radiotherapy (4DRT) [6]. With these methods, the complexity involved requires
some degree of automation via mathematical models and optimization algorithms
in the treatment planning process [25].

Many dose calculation methods rely on Monte Carlo algorithms or deterministic
models based on the Fermi-Eyges theory of radiation. The former in general show
close correspondence to experimental results, relying on a rigorous model for the
interactions of particles with human tissue. However, dose calculations can be
computationally very expensive [3]. This, coupled with the need for derivative-free
optimization methods, leads to difficulties in the implementation of Monte Carlo-
based algorithms. The latter type of method has the benefit of being computationally
efficient allowing for relatively quick dose calculations; however, near tissue
inhomogeneities such as void-like regions in the lung, the physical assumptions in
the model break down. One source of inaccuracy is that physical assumptions such
as there only being small-angle scattering events and small angle of flight do not
hold in general [22]. This leads to large errors of up to 12 % in such areas [21, 26].
In other cases, such as the irradiation of the vertebral column, dose discrepancies
can be even higher [33].

Dose calculation methods based on a Boltzmann transport model have the benefit
of reliance on rigorous models of particle interactions with the tissue that can be then
solved exactly, in principle [17]. Furthermore, the Boltzmann based method does not
make assumptions on the homogeneity of the tissue being studied. In considering the
treatment planning process, optimization algorithms can exploit the deterministic
nature of the dose calculation methods for derivative-based methods. This approach
has been explored in recent years by various authors [1, 12, 15, 16, 18, 19, 30–32].

The remainder of the paper is structured in the following way. After describing
the model for dose calculation in Sect. 2, we look at two optimal control formu-
lations of the problem of finding an optimal treatment plan in Sect. 3 as well as
the resulting necessary optimality conditions. From there, we present in Sect. 4
methods for calculating the dose and implementing the optimality conditions before
presenting some brief numerical examples in Sect. 5. Finally we look at the open
challenges in optimal control theory for treatment planning in Sect. 6.



Optimal Treatment Planning in Radiotherapy Based on Boltzmann Transport Equations 443

2 Dose Calculation Models

We describe the transport equation modeling the distribution of electrons which
leads to calculation of the radiative dose in the patient’s body. We assume that Z �
R
3 is a convex, open bounded domain with smooth boundary which contains the

relevant portion of the patient’s body. The outward normal vector is denoted by n.
We consider particles moving with unit velocity which do not interact with each
other, only with the media (i.e. the tissue); the direction of movement for a particle
is denoted by � 2 S2 where S2 is the unit sphere in three dimensions. We define
a function  as the density of particles; that is,  .z; �;�/ cos.�/dAd�d� is the
number of particles passing through an area dA at the point z into an angle d�
around� with � the angle between � and dA. Then the linear Boltzmann equation
for electron transport is

� � rz .z; �;�/ D
	 Z 1

�

Z
S2
†s.z; �

0; �;�0 ��/ .z; �0; �0/d�0d�0



(2.1)

�†t.z; �/ .z; �;�/ C q.z; �;�/:

Here,†s and†t are the scattering cross section and total cross section, respectively,
and q is some source of particles. As detailed in [22, 23], through asymptotics, an
approximation known as the Boltzmann Continuous Slowing Down approximation
(BCSD) to (2.1) can be obtained in the following form:

� @�
�
SM.z; �/ .z; �;�/

�C� � rz .z; �;�/ (2.2)

D
Z
S2
†s.z; �;�

0 ��/ .z; �;�0/d�0 �†t.z; �/ .z; �;�/C q.z; �;�/

where

†s.z; �; �/ D
Z 1
0

†s.z; �; �
0; �/d�0:

In (2.1), particles travel in straight lines until collisions occur, upon which discrete
changes in both direction and energy occur. In (2.2), the angular change is still
discrete (and large-angle changes are still permitted) while now the energy losses
from collisions are described differentially. We will assume that the stopping power
is a product of the density of the tissue �.z/ and a function of energy S.�/: That is,
we consider the BCSD in form

�@�
�
�.z/S.�/ .z; �;�/

�C� � rz .z; �;�/

D
Z
S2
†s.z; �;�

0 ��/ .z; �;�0/d�0 �†t.z; �/ .z; �;�/ C q.z; �;�/:
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In general, as discussed in [14,18] and [1], for physically reasonable cross sections,
†t and†s are non-negative and bounded in the sup-norm, and S is nonnegative and
continuous. For constant tissue density, existence of mild solutions to the previous
equation has been established for physically relevant ranges of parameters [18].

Along with the BCSD, we impose boundary conditions and “terminal” condi-
tions. After defining

� D @Z � S2 and �� D f.x;�/ 2 � W n.x/ �� < 0g;

and some maximal allowed energy 0 < �max < 1; we require  satisfy

 .x; �max; �/ D 0 and  .x; �;�/ D qb.x; �;�/; .x;�/ 2 ��

where qb denotes some boundary source, such as particles entering from external
beams. We note that the energy variable acts as a “pseudo-time” variable; with this
in mind, in the case of one dimensional slab-geometry, we define

t.�/ D
Z �max

�

1

S.r/
dr and x.z/ D

Z z

0

�.Qz/d Qz;

and – as S > 0 – (as detailed in [15]), this gives a change of variables. The
z � x transformation can in general not be extended to the 3-dimensional problem.
Nevertheless, suppressing relabeling of the quantities for notational simplicity, we
study the following final transport equation,

@t .t; x;�/C� � rx .t; x;�/ D
Z
S2
†s.x; t;�

0 ��/ .t; x;�0/d�0 (2.3)

�†t.x; t/ .t; x;�/ C q.t; x;�/:

 .t; x;�/ D qb.t; x;�/; .x;�/ 2 ��; t 2 Œ0; T �
 .0; x;�/ D 0; .x;�/ 2 Z � S2:

This will be the model we use for the remainder of this chapter with the reminder
that it has been transformed from the BCSD model. Thus, the physics encoded by �
and S are not lost.

With this, we now introduce the dose operatorD W L2.Œ0; T ��Z�S2/ ! L2.Z/,
which, given a particle distribution  solving (2.3), gives the deposited dose

D. /.x/ WD
Z T

0

Z
S2
 .t; x;�/d�dt:

Despite the mesoscopic nature of both (2.2) and (2.3), we are actually interested in
the macroscopic dose distribution in radiotherapy. This quantity is the primary area
of interest for the optimal treatment planning problem.
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3 The Optimal Treatment Problem

With the model for calculating the dose distribution established, we now turn to
the problem of finding the optimal such dose. Quantifying the “best” distribution
is not automatically apparent; in general, we wish to have a homogeneous level
of cell death in the targeted region and low levels elsewhere. While the death of
cells in the targeted tissue surrounding the tumor is clearly the primary goal (along
with the preservation of healthy tissue), it is known [4] that the dose is not directly
proportional to the death rate of cells. Often (e.g. [13, 14, 25]), in order to avoid
difficulties in radiobiological modeling, the treatment planning problem involves
tracking a desired dose distribution. The simplest version of this is as follows. We
partition Z into three disjoint sections:

• ZT : the target region, containing the tumor tissue;
• ZR: the risk region, a critical portion of Z containing, for instance, vital organs;
• ZN : the normal tissue, the remainder of Z:

Associated with each region, we define a positive scalar: cT ; cR; cN and a function
c1 WD cT �ZT C cR�ZR C cN�ZN that will act as a penalty for deviation from the
desired dose. This is defined simply to be D WD �ZT ; the characteristic associated
with ZT : This data gives, along with c2 > 0, the objective functional

JT . ; q/ WD 1

2

Z
Z

c1.x/
�
D. /.x/�D.x/

�2
dx C c2

2

Z
Z

Z T

0

Z
S2
q2.t; x;�/d�dxdt:

In light of the discussion to follow in Sect. 5, we consider problems where we
require qb � 0. Further discussion of this constraint will be in that section. Thus
JT will only depend on q and  : The quadratic tracking functional is used in the
following treatment planning problem

PT

8̂
ˆ̂̂<
ˆ̂̂̂
:

min ;q JT . ; q/ subject to:

 ; q 2 L2.Œ0; T � �Z � S2/;
 and q solve (2.3);

0 � q.t; x;�/ � f .t/g.x/:

Here f > 0 denotes constraints on the allowed energy levels of the source and
g > 0 constraints on the placement of the source (see Sect. 5 for more details). In
practical applications, further constraints on the source may be necessary as we do
not place requirements on the structure of the source beyond these box constraints.

An alternative to JT involves using one of the radiobiological models of cell
response to radiative doses; the linear-quadratic model is well-established and
studied (see, among many others, [7, 11, 20, 27–29, 35]) for describing cell death
rates. We will neglect cell growth and repair rates for the following analysis. For
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a given dose D; the fraction of surviving cells of a single species is fitted to a
linear-quadratic model

SF D exp.�˛D � ˇD2/

which gives the tumor control probability on a region of one cell type

TCP D exp
Z �

� p exp.�˛iD � ˇiD2/
�

dx

where p is the density of tumor cells as a function of space. Assuming a single type
of tumor cell assigned index 0 and assigning the other cell types in Z the indices
i D 1; : : : ; N; and cell densities pi.x/ 	 0 with

PN
iD0 pi .x/ D 1; we define

JSF. ; q/ WD a0

Z
Z

p0 exp
� � ˛0D � ˇ0.D /

2

dx (3.1)

C
NX
iD1

ai

Z
Z

pi

�
1 � exp

� � ˛iD � ˇi .D /2
�

dx

C c2

2

Z
Z

Z T

0

Z
S2
q.t; x;�/d�dxdt

where we assign constant weights for each cell type ai > 0 and the control c2 > 0:

This leads to the other optimal control problem we consider here

PSF

8̂
ˆ̂̂<
ˆ̂̂̂
:

min ;q JSF. ; q/ subject to:

 ; q 2 L2.Œ0; T � �Z � S2/;
 and q solve (2.3);

0 � q.t; x;�/ � f .t/g.x/:

We make a few comments here about the structure of PT and PSF:We denote by
E W L2.Œ0; T � �Z � S2/ ! L2.Œ0; T ��Z � S2/ the solution operator of (2.3), that
is E.q/ D  if and only if  and q solve (2.3). Then it can be seen rather easily that
E is linear and bounded. As the dose operator D. / is also linear and bounded, it
is rather easy by standard arguments (such as in [34]) to show that PT has a unique
solution and that a necessary optimality condition will also, by the convexity of JT ;
be sufficient as well [1]. However, JSF is not convex and therefore, we only obtain
existence of an optimal solution [1].

The optimality conditions are summed up in the following result.

Theorem 3.1. For the radiotherapy planing problem subject to cost functionals
either of tracking type or given by the surviving fractions, we refer to the first-order
optimality system
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@t 
� C� � rx 

� D
Z
S2
†s.x;�

0 ��/ �.t; x;�0/d�0 �†t.x/ � C q�;

(3.2)

 �.0; x;�/ D 0; on ��;

 �.0; x;�/ D 0; .x;�/ 2 Z � S2:

�@t	� �� � rx	
� D

Z
S2
†s.x;�

0 ��/	�.t; x;�0/d�0 �†t.x/	� C r.x/:

(3.3)

	�.0; x;�/ D 0; on �C;

	�.T; x;�/ D 0:

q�.t; x;�/ D proj
Œ0;f .t/g.x/�

�
� 1

c2
	�.t; x;�/

�
: (3.4)

Here, �C D f.x;�/ W x 2 @Z; n.x/ �� > 0g:
• Given a desired dose distributionD 2 L2.Z/; and let  �; q� be an optimal pair

for PT . Then, there exists 	� 2 L2.Œ0; T � �Z � S2/ so that the above system is
satisfied with r.x/ D c1.D. 

�/ �D/:
• Given a distribution of cells pi and associated parameters ˛i ; ˇi > 0; if  �; q�

is locally optimal for PSF; then the system is satisfied with

r D
h
.�˛0 � 2ˇ0D �/

�
a0p0 expŒ�˛0D� � ˇ0.D 

�/�
�i

�
NX
iD1

h
.�˛i � 2ˇiD �/

�
aipi expŒ�˛iD� � ˇi .D �/�

�i
:

The stationary case has been treated in [13], whereas the full result in the case of a
tracking type functional is discussed in [14] for constant cross–sections†s;†t and
in [18] for spatially dependent cross–sections. In the same setting a rigorous result
for the surviving fractions cost functionals and for f .t/ D g.x/ D C1 has been
established in [1].

4 Approximation Methods

In order to efficiently compute solutions to equations of the form (2.3), approxima-
tion methods have been developed. The main purpose is to reduce the dimension
of the state space by integration on angular velocities. This is motivated by the
primary quantity of interest, namely the dose, which is independent of the particles’
velocities. Hence, we are not concerned with the microscopic characterization of the
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particle distribution in velocity space. Introducing the notation h � i D R
S2 �d�; we

multiply (2.3) by a vector of polynomials m.�/ and integrating, we get a system
with entries of the form (denoting  .i/ WD hmi i):

@t 
.i/ C rxh�mi i D S.x/ .i/ �†t .i/ � q.i/:

We note that this system is not closed, in that the flux depends on a quantity other
than hm iI also, we have not specified the form thatm should take. We will discuss
briefly two options, the spherical harmonics method and the minimum entropy
method.

If we select in one spatial dimension x the spherical harmonics in� as the entries
and truncate after the N -th harmonic, that is we assume  .i/ is zero for any i 	 N;

we obtain a closed system with an explicit flux function which has several benefits;
among them is, that an entry in the system only depends directly on the entry before
and after (due to the orthonormality of the spherical harmonics functions). This
approximation is known as the spherical harmonics method, denoted often by PN :
Additionally, it was shown [13] that the PN approximation of the optimality system
of PT is the same as the optimality system of the control problem using PN as the
underlying approximation model. Further, the dose is simply the 0-th entry in this
approximation. However, it has been known for quite a while [5] that densities  
of particles obtained by the PN approximation may be negative, which is clearly
unphysical.

Alternatively, instead of truncating, we look for a flux that satisfies an entropy
minimization principle. That is, we look for a distribution  ME of particles that
minimizes a strictly convex functional, the entropyH , for example

H. /h log d!i

This minimization is constrained by requiring

hmiI i D  .i/

for i � N: The resulting solution to this minimization problem is used to evaluate
the flux function of the N -th entry in the approximate system. This is the minimum
entropy, or MN method. Clearly there is an immediate drawback to this method:
the need to solve a constrained minimization problem whenever a flux needs to be
computed. However, in the case of M1; the flux can be computed explicity (see
[1, 9]); unfortunately, for N > 1; the minimizer can only be computed numerically.
However, it was shown in [10] that M1 dose calculations are accurate in tissue
regions such as the vertebral column. One significant reason to use the minimum
entropy approximation is that negative particle densities are avoided as well as wave
propagation speeds being preserved.
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5 Numerical Results

We present here a pair of examples; these test problems with different parameters
have been studied in [2]. In each case, we use an optimize-then-discretize approach
and then use theM1 approximation for both forward and adjoint equations. The first
is an academic example taken from [25]; a 9 cm2 square of water has a C-shaped
target, ZT , and a box shaped risk region ZR as shown in Fig. 1a. We prescribe
D D �ZT and cT D 50; cR D 100; cN D 1: The control is allowed to be active
only on the outer edge of cells and with energy between 18 and 20 MeV; additionally
we require q.0/ � 1. The 10 % isocurves of the resulting optimal dose D. / are
shown in Fig. 1b. A useful tool used in evaluation of a treatment plan is the dose
volume histogram (DVH); this shows the portion of the tissue receiving at least a
given dose level. We plot the DVH curves for the targetZT and organ at risk (OAR)
corresponding to ZR: The relative shapes of these curves can, naturally, be adjusted
depending on the values selected for cT and cR:

Fig. 1 C-shaped target on water phantom. (a) Problem layout on Water Phantom Problem.
(b) Optimal Dose Isocurves. (c) Dose Volume Histogram for Target and OAR
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Fig. 2 Target in 2D slice of skull. (a) Optimal Dose Isocurves. (b) Dose Volume Histogram (DHV)
for target and organ at risk (OAR)
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We also consider a test problem involving a more realistic problem geometry.
Using 2D CT data from the Visible Human Project,1 a box target is placed in the
nasal sinus cavity and as OAR, we approximate the location of the eye. Again, a
beam of electrons between 18 and 22 MeV is constructed—with q.0/ � 1—to solve
PT with cT D 100; cR D 225; cN D 1. The resulting optimal dose and associated
DVH curves are displayed in Fig. 2. The OAR and target are outlined in white and
the isocurves of the dose are shown in the first figure and the DVH in the second.
Depending on tolerance for irradiation of the eyes, this source may be scaled in order
to achieve a higher dose on the target (recalling that the dose is a linear functional
of the source).

6 Outlook

Currently several challenges remain in using transport models in treatment planning.
The inclusion of more highly resolved models is required to bring the accuracy
of the dose calculations within levels acceptable for clinical use [10]. However,
in principle, the model problems we have presented will allow for such modeling.
Efficient methods using higher order moment approximations may also be needed
for sufficiently improved accuracy. The current formulations of PT and PSF do
not address several aspects of treatment planning that may be of practical interest.
Foremost, we do not include constraints on the dose. Depending on the region of
the body and organs under consideration, such constraints may require the dose to
remain between a certain set of space-dependent levels. In other organs, it may be
the case that we allow for high levels of dose on the OAR as long as we avoid
doses high enough to lead to cell death on a given percentage of the tissue. This
involves the proper formulation of constraints on the DVH curves resulting from
the proposed treatment problem. Finally, we have not required that the source q be
constructible. Such concerns must be addressed for transport models to be used in
practical treatment planning situations.
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1 Introduction

The optimal control of conducting quantum fluids plays a crucial role in the
optimal design of quantum semiconductor devices as well as in the optimal quantum
control of interacting particle systems [3,19]. Due to the high numerical complexity
of the underlying partial differential equations, the main focus of research lay
during the last decades on the development of fast solvers and the investigation
of approximative models, which allowed to shorten the design cycle significantly
[4, 8]. The interplay of the improved performance of optimization algorithms and
the increasing computing power allows now for the construction and investigation
of computerbased optimization platforms [9]. Nevertheless, several challenges
remained open and new ones did arise during the investigations. In this article we
summarize recent results from [5, 17] showing the progress in this field.

The report is organized as follows. In Sect. 2, we present design and control
problems for the microscopic nonlinear Schrödinger-Poisson (NLSP) system. The
stationary design problem involves a minimization problem for the ground state,
which is given by the solution of an eigenvalue problem. Further, a bilinear optimal
control problem for the transient model is studied. A similar design problem is
investigated in Sect. 3 for the macroscopic Quantum Euler-Poisson (QEP) model.
In Sect. 4, the semiclassical limit for an optimization problem for the macroscopic
Quantum Drift-Diffusion (QDD) model is performed by means of �-convergence
results. Finally, we present in Sect. 5 constrained optimal control problems for the
transient Drift-Diffusion (DD) model.

2 Optimal Design and Control Based on the NLSP Model

The most fundamental model in quantum systems is the Schrödinger equation,
which needs to be self-consistently coupled with the Poisson equation for the
electrical potential as well as additional interactions leading to the Nonlinear
Schrödinger-Poisson system in the case of larger systems in quantum chemistry.
A natural control problem in this respect is to drive a system into an appropriate
stationary state for the (electron) density, by applying external lasers and potentially
by internal doping as in a semiconductor device. Here we discuss a two-step
structure: First of all, we focus on the design of a ground state– the ideal stationary
state since minimizing the quantum energy – via optimal doping, and then control
the evolution by an external field varied in time.

2.1 Designing a Ground State

We first investigate optimal control problems for the cubically nonlinear stationary
nonlinear Schrödinger-Poisson equation [2]
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�
�„2�
2m

C V.x/C 8aj .x/j2
�
 .x/ D � .x/; (2.1)

with

� 	2�V D W D j j2 � C; (2.2)

supplemented with homogeneous Dirichlet boundary conditions on  and V .
Here, (2.1) needs to be interpreted as an eigenvalue problem for a positive energy
level � and in particular we are interested in the first (smallest) eigenvalue given
mass m and interaction constant a. As usual, „ denotes the scaled Planck constant
and 	 a scaled Debye-length. The natural design variable is the doping profile C ,
but as in the case of classical semiconductor devices in [4] one easily observes that
a partial decoupling can be achieved by considering the total charge density W as
the design variable instead and compute C D j j2 �W a-posteriori.

The ground state can also be characterized as a minimizer of the energy
functional

E. / WD
Z
�

�jr j2 C�V j j2 C 4aj j4� dx (2.3)

over the (nonconvex) admissible set

D D
n
 2 H1

0 .�/j jj jj2
L2.�/

D 1
o
: (2.4)

With arguments following [11, 14] it can be shown that for each ground state
there exists a density n such that  D p

nei� with constant phase � . Moreover,
E.

p
n/ is strictly convex for the nonnegative real density n and the constraint

becomes
R
�
n dx D 1, which implies that the ground state respectively the smallest

eigenvalue has single multiplicity.
The wavefunction itself is of ambiguous nature in quantum mechanics, hence

obtaining a specific wavefunction is not a realistic goal, but one rather looks for
properties of observables such as the density j j2. Optimal design can reasonably
be formulated via a least-squares problem of the density to some desired state, i.e.
the minimization of

Q.j j;W / D 1

2

Z
�

.j j2 � j �j2/2 dx C �

2

Z
�

jW �W �j2 dx; (2.5)

over .j j;W / 2 H1
0 .�/ � L2.�/, subject to

� �2� C .8aj j2 C V / D � (2.6)

�	2�V D W ; (2.7)
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with homogeneous Dirichlet boundary conditions. As announced above we use the
total charge density as a control variable, W � is an initial density, e.g. j �j2 � C �
for an initial design of the doping and corresponding ground state. We mention that
optimal control problems for the nonlinear Schrödinger equation (or Schrödinger-
Poisson system) in the stationary case automatically lead to an optimal control
problem constrained by an eigenvalue problem for a nonlinear operator, which is
hardly treated in literature so far. In the case of optimal design of the ground state
the energy formulation can be used, such that effectively the design problem is an
MPEC in function spaces (cf. [7]).

The fundamental existence result is again formulated in terms of the special
nonnegative real groundstate  D p

n and given by (cf. [5, 12] for proofs):

Theorem 2.1. There exists a minimum

.
p
n; V ;W / 2 H1

0 .�/ �H1.�/ � L2.�/ (2.8)

of (2.5).

In order to derive the first-order optimality conditions of the minimization
problem (2.5) subject to (2.6)–(2.7), we use the Lagrangian

L. ; V;W;�; p; q; r/ D Q.j j; W /C Re

�Z
.��2� C .h.j j2/C V / � � /p dx

�

C
Z
�
.�	2�V �W /q dx C

�
1

2

Z
�

j j2 dx � 1

2

�
r: (2.9)

The necessary conditions for a minimum are obtained by taking the Fr Kechet
derivatives of L. ; V;W;�; p; q; r/ with respect to the argument functions  , V ,
W , � (cf. [5] for rigorous justification) and setting them to zero. The variation with
respect to  yields the adjoint equation

� �2�p C .16aj j2 C V � �/p D �2 .j j2 � j �j2/� r (2.10)

with homogeneous Dirichlet boundary condition for p. The derivative with respect
to V yields an adjoint Poisson equation of the form

� 	2�q D � Re. p/ (2.11)

again with homogeneous boundary conditions for q. The variation with respect to �
yields an orthogonality relation

Z
�

 p dx D 0 (2.12)
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and finally the optimality condition with respect toW amounts to the simple relation

W D q=� �W �: (2.13)

We mention that (2.10) and (2.12) should be interpreted as a mixed system for p
and the constant r rather than a single equation forp. Indeed, r can be determined by
taking a scalar product of (2.10) with  , which resembles the Fredholm alternative.
With the orthogonality and (2.6) we find

r. / D 2

Z
�

.j j2j �j2 � j j4/ dx;

such that the adjoint equation can be rephrased as an elliptic equation for p

� �2�p C .16aj j2 C V � �/p D �2 .j j2 � j �j2/� r. / : (2.14)

With this observation one can build an existence proof [5, 12], also uniqueness can
be shown with further effort (noticing that a simple Fredholm alternative does not
work due to the nonlinearity in the original eigenvalue problem):

Theorem 2.2. Let .
p
n;W / 2 H1

0 .�/�L2.�/ be given; then there exists a unique
solution .p; q/ 2 H1

0 .�/ �L2.�/ of the adjoint problem (2.14), (2.11), (2.12).

For the numerical minimization straight-forward spatial discretization strategies
can be coupled with an efficient Gummel-type iteration through the optimality
system (cf. [12]) exploiting the similar structure to [4]. A representative result
related to wave focusing is illustrated in Fig. 1. Here one observes the effect of
the interaction strength a in the model for wave focusing, noticing that negative a
corresponds to attractive interaction.

2.2 Optimal Control of the Transient NLSP Model

Next, we consider optimal control problems for the transient NLSP model:

i"
@ 

@t
D �"

2

2
� C .V C ˛.t/Ve.x/C h. // ; (2.15a)

�	2�V D j j2 (2.15b)

with homogeneous Dirichlet conditions for  and V , and initial condition

 .t D 0; x/ D  0.x/ for x 2 �: (2.15c)
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Fig. 1 Optimal design of ground states: Figures (a) and (c) show the optimized doping profile
and figures (b) and (d) the electron density in the optimal state, with � D 10�3 and interaction
constants a D �0:6 and a D �0:1, respectively

The positive constants "; 	 denote the scaled Planck constant and the scaled Debye
length, respectively. The electrostatic potential V is induced by the electron density

n defined as n
defD j j2 D   :

Possible potential barriers and external fields are modelled by Ve.x/, the function
˛ controls the intensity of Ve and is our control parameter. The space of admissible

controls is U defD H1
0 .0; T /.

For the analytical investigations we define

Q
defD .0; T / ��; T > 0; Y defD H1

0 .�/;

V defD L2.0; T IY/; W defD fv 2 V W vt 2 V�g;
QY defD W � V ; QY1 defD QY \ �

L1.0; T IH1
0 .�//

�2
;

Z defD V � V �L2.�/ k � k QY1

defD k � kV C k � kL1.0;T IH1
0 .�//

:
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For the application of semigroup theory to show the existence of a unique solution
of 2.15, we require the following assumptions to be fulfilled:

Assumption 2.3. (i) Let � 2 R
d ; d 2 f1; 2; 3g be a bounded domain. Further-

more,� is either convex or has a C2-boundary.
(ii) Let  0 2 W 1;4

0 .�/ and Ve 2 W 1;4
0 .�/\ L1.�/.

(iii) Let h 2 C0.0;1/ and let the mapping  7! h. / be locally Lipschitz
continuous in W 1;4

0 .�/.

We note that the physically relevant function h.u/ D juj2 fulfills Assumption 2.3.
(iii). Using semigroup theory we obtain the following existence and uniqueness
results (see also [2, 17]):

Theorem 2.4. (i) There exists a T > 0 such that (2.15) has a unique solution
 2 C.0; T IH1

0 .�// with

d

dt
k k2

L2.�/
D 0; (2.16)

i.e., the mass k k2
L2.�/

is conserved.

(ii) Let h.u/ D juj2. Then, (2.15) has a unique solution  2 C.RIH1
0 .�//, i.e., the

solution  exists globally in time. In addition to (2.16) the apriori estimate

k kW � C (2.17)

holds for a C > 0 depending on the data and k˛kL1.�/.

Those results are by far sufficient to prove the existence of a minimizer for cost
functionals which fulfill standard assumptions (for details see [17]).

Theorem 2.5. There exists at least one solution . �; V �; ˛�/ 2 QY1 � U of the
minimization problem

J . �; V �; ˛�/ D inf
. ;V;˛/2 QY1�U

J . ; V; ˛/; (2.18a)

s.t. 0 D e. �; V �; ˛�/ in Z�; (2.18b)

where the nonlinear operator e
defD .e1; e2; e3/ W QY1 � U ! Z� denotes the weak

formulation of system (2.15).

The continuous Fréchet-differentiability of the operator e and the unique exis-
tence of adjoint variables ensure that the first-order optimality conditions are well
defined (for details see [17]). This information can be used to implement a descent
algorithm for the solution of the optimal control problem.

For the numerical computations we discretize the state and adjoint equations with
a modified Crank-Nicholson scheme and use the BFGS-method [9].



462 M. Burger et al.

We chose the two dimensional domain� D Œ0; 1�2 and an end time of T D 10�1.
Further, we consider the cost functional

J 1.y; ˛/ D 1

2

��j .T /j2 � j d j2��2
L2.�/

C �

2
k˛k2

H1.0;T /

with � D 10�10. As initial distribution we choose a bell shaped distribution (see
Fig. 2a), which we aim to separate into four distinct wave packages, the external
potential Ve is chosen of focusing nature. The numerical results underlining the
feasibility of our approach are presented in Fig. 2.

3 Optimal Control of the QEP Model

We consider the state system given by the stationary Quantum Euler-Poisson (QEP)
equations stated on a bounded domain � � R

d (see [10]):

"2�w D w

�
�20
2

jrS j2 C T0h.w
2/ � V � Vext C S

�
; (3.1a)

div
�
w2rS� D 0; (3.1b)

	2�V D w2 � C in �: (3.1c)

The unknowns are the square root of the electron density w D p
n , the Fermi

level S and the electrostatic potential V induced by the electron density w2 and
the background charge, the nonnegative doping profile C . Further, the potential Vext

allows to incorporate possible potential barriers in the model. The constants "; 	; �0
and T0 are positive and denote the scaled Planck constant, the scaled Debye length,
the scaled relaxation time and the constant temperature. The enthalpy function h. � /
accounts for the electron-electron interaction.

Physically reasonable boundary conditions were derived in [10] and are given by

w D w0; S D S0; V D V0 on @� (3.1d)

w0 D p
C; S0 D U; V0 D T0h.C /C U; (3.1e)

where U is modelling the applied voltage.

The existence of a unique solution y
defD .w; S; V / of (3.1) was shown in

[10] under reasonable regularity assumptions. It lives in the state space Y defD
.w0; S0; V0/C Y0, where

Y0
defD
h�
W 2;p.�/ � C1;� .�/

�\ �
H1
0 .�/

�2i �H1
0 .�/:



Optimal Control of Self-Consistent Classical and Quantum Particle Systems 463

Fig. 2 Wave splitting: Figures (a)-(e) show the electron density j .t/j2 with optimal control ˛opt

from time t D 0 to the end time t D 10�1. The desired distribution j d j2 is shown in (f). The
relative cost, relative gradient and the optimal control are shown in (g)-(i)
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The set of admissible doping profiles for a unipolar device is given by

Uad
defD fC 2 H1.�/ W 0 � C � C ; C D OC on @�g � H1.�/

defD U :

Here, OC 2 H1.�/ with 0 � OC � C is a given reference doping profile.
The regularity results for the state system allow to prove the existence of a

minimizer [17].

Theorem 3.1. Under standard assumptions on the cost functional there exists at
least one minimizer of the minimization problem

J .y�; C �/ D inf
.y;C /2Y�Uad

J .y; C /; (3.2)

s.t. 0 D e.y�; C �/ (3.3)

where e.y; C / W Y � Uad !
��
H1.�/

�3��
denotes the weak formulation of (3.1).

Using the Fréchet-differentiability of the operator e and the Fredholm alternative
we can even show the existence of adjoint states and get the well-posedness of the
first-order optimality conditions (for details see [17]). Numerical examples for the
design of a MESFET device can be found in [16–18].

4 Optimal Control of the Stationary QDD Model
in the Semiclassical Limit

We investigate an optimal control problem constrained by the Quantum Drift-
Diffusion (QDD) model in the semiclassical limit. Stated on a bounded domain
� the QDD model reads

"2
�w

w
D h.w/C V � S; (4.1a)

div.w2rS/ D 0; (4.1b)

�	2�V D w2 � C; (4.1c)

supplemented with the boundary data

w D wD; V D VD; S D SD on �D; (4.1d)

@w

@�
D @V

@�
D @S

@�
D 0 on �N ; (4.1e)

where � denotes the outer normal along @�. The boundary @� splits into two dis-
joint parts �N and �D , modelling the insulating parts and the contacts, respectively.
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The variable w denotes (as in the previous sections) the square root of the electron

density n, i.e., w
defD p

n, S the Fermi level and V is the electrostatic potential
induced by the electron density and the doping profile C , which is our control.
The enthalpy function h.w/ accounts for electron-electron interactions and needs to
fulfill some growth condition (see [1]).

For the analytical investigations we define the spaces and sets

X defD H1.�/; Y0
defD H1

0 .� [ �N /\ L1.�/; Y defD wD C Y0;

and the admissible set

Uad
defD fC 2 H1.�/ W �a � C � a; a > 0; C D OC on @�g:

Existence of solutions of system (4.1) was discussed in [1,15], the results therein
are sufficient to show the existence of a minimizer for special cost functionals
(however, the special structure of the cost functionals is only needed later when
we consider the semiclassical limit):

Assumption 4.1. Let J W X � Uad ! R denote a cost functional which is
continuously Fréchet differentiable with Lipschitz continuous derivatives, radially
unbounded with respect to C and bounded from below. Furthermore, let J be of
separated type, i.e. we can write J .w; C / D Ja.w/ C Jb.C / with Ja W X 7! R

being weakly continuous and Jb being weakly lower semi-continuous in X and
independent of ".

Theorem 4.2. For every " > 0 there exists at least one solution .w�; C �/ 2 Y�Uad

of the minimization problem

J .w�; C �/ D inf
.w;C /2Y�Uad

J .w; C /; (4.2a)

s.t. e".w�; C �/ D 0 in X �; (4.2b)

where e".x; C / W Y � Uad ! X � denotes the weak formulation of (4.1) for fixed ".

Let J " denote the cost functional from (4.2) for a given " > 0. For " D 0, i.e.,
for the classical Drift-Diffusion Model, we only consider those .w; C / as possible
solutions of (4.2), for which we can find a sequence ."h/h2N with "h ! 0 for h ! 1
and a sequence .wh; Ch/h2N with e"h.wh; Ch/ D 0, which weakly converges (in
the H1-sense) to .w; C /. We denote this set as Z0. Until now, it is not clear if all
solutions of the classical Drift-Diffusion model fulfill this property. At least, this set
is nonempty [1].

An interesting question arises if we consider the optimal control problem in the
semiclassical limit: Can we prove (any kind of) convergence for minimizers and
minima? We answer this question by using the concept of ��convergence and equi-
coercivity and can prove the following convergence result.
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Theorem 4.3 (Convergence of minima). Let J " and J 0 be defined as above.
Then J 0.w; C / attains its minimum on Z0 and

min
.w;C /2Z0

J 0.w; C / D lim
"!0 inf

.w;C /2Y�Uad

J ".w; C /:

The convergence of minima allows us to also show the convergence of minimiz-
ers:

Theorem 4.4 (Convergence of minimizers). Let J " and J 0 be defined as above,
and let ."h/h2N be a sequence with "h ! 0 as h ! 1 and . Qwh; QCh/ be a minimizer
of J "h , i.e.,

J "h . Qwh; QCh/ D min
.w;C /2Y�Uad

J h.w; C /:

Then, there exists a subsequence, again denoted by ."h/h2N, such that

. Qwh; QCh/ * . Qw0; QC0/ in Y � Uad

and

J 0. Qw0; QC0/ D min
.w;C /2Y�Uad

J 0.w; C /;

i.e., it is a minimizer of J 0.

For details concerning the proofs we refer to [17].

5 Optimal Control of the Transient Drift-Diffusion Model

Finally, we provide some results on the optimal control of the transient Poisson-drift
diffusion model

@tn D �n � .nrV C nru/ in � � .0; T /; (5.1a)

@tp D �p C .prV C pru/ in � � .0; T /; (5.1b)

where V solves

	2�V D n � p � C in � � .0; T /: (5.1c)

Here u 2 C.Œ0; T �IW 2
2;0/\L2.Œ0; T �IW 2

d;0/\H1.Œ0; T �IX/ is the external potential
and also the control variable, the doping is assumed to be fixed. State variables
are the electron density n, the hole density p, and the electric potential V . The
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Poisson-DD model is the most prominent and best understood transient model for
semiconductor devices and a variety of interesting control problems have been
analyzed and solved numerically in the last years, also in a setup of realistic devices
(cf. [5, 13]).

A typical goal is the control of the current I , which can be realized by optimizing
u such that

Q�.n; p;W / D
Z T

0

jI.t In; p;W / � I�.t/j2 dt CR.W / ! min
n;p;W

; (5.2)

where I is the computed current over a contact

I D
Z
�

.r.n � p/ � .nC p/r.V C u// �d�;

I� is the prescribed current realizing the optimal switching behavior,W D V C u
is the control variable, and

R.W / D �

2

Z T

0

Z
�

j�.W �W /j2 dxdt

is an appropriate regularization functional on the controlW . HereW is a given total
charge.

There are two cases for optimization (5.2)

(a) The optimization problem without further control constraints, i.e.,

W D V C u 2 L1.Œ0; T �IW 1;1.�// \L2.Œ0; T �IH2.�//

can be considered as a spatio-temporal control. In this case the Poisson equation
can be disregarded for the optimization, V and u can be computed at the end
from the optimal solutions for W , n, and p. Moreover, certain natural state
constraints, e.g. on the total charge W or the electrical field E D rV (at least
in one-dimension, see below) can be reformulated into control constraints. For
a detailed analysis we refer to [5, 13].

(b) Additional control constraints u 2 Cad might be considered, where Cad is the
restricted set of admissible control. A typical example is boundary control with
voltages Ui applied on M different contacts. Those can be brought into our
formulation via

u.x; t/ D
MX
iD1

Ui .t/Vi .x/;

where Ui are applied voltages between contacts and the Vi are harmonic func-
tions with special boundary values. Another example are particular penalties
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R forC instead ofW , e.g. a total variation penalty to enforce piecewise constant
doping profiles and allow a change of edges compared to the reference profile
has been considered in [6]. In the case of control constraints one cannot get rid
of the Poisson equation by eliminating u in favour ofW , since the reformulated
constraintW � V 2 Cad then contains the electrical potential.

As an example for constraint problems we consider the minimization problem
with an L1-bound for the control:

min
.n;Dad/

Q�.n; p; V C u/ subject to (5.1); (5.3)

where the admissible domain is given by

Dad WD f.n; p; V; u/ 2 .L2.Œ0; T �IH1.�// \H1.Œ0; T �IH�1.�///2
�L1.Œ0; T �IW 2;1.�//;�Cad; 	

2�V D n � p � C; W D V C ug:

In this case one can easily prove the following result as in [5]:

Theorem 5.1. Let Cad be a bounded set in L1.Œ0; T � � �/. Then optimization
problem (5.3) admits at least one solution .n; p; V ; u/ 2 Dad.

For a detailed statement of optimality conditions and rigorous analysis of adjoint
problems, which is possible without voltage restrictions in the transient case, we
refer to [13].

Finally we discuss an example of treating a natural state constraint as a control
constraint by appropriate reformulation. In the setup of optimal dopant profiling
consider the minimization of

Q�.n; p; V;E; C / D jI.n; p; V /� I�j2 C �

2

Z
�

jE �E�j2 dx

subject to the stationary Poisson-drift diffusion equations and a control constraint

jE.x/j � A a.e. in � (5.4)

for electrical field E D rV Again in this case we eliminate the doping profile and
the Poisson equation from the minimization and instead consider rV D E as a state
equation, the doping profile is to be computed a-posteriori asC D �	2r �E�nCp.

As an optimality condition for the optimal control problem in the one-
dimensional case one can derive (cf. [5])

E D ProjŒ�A;A�
�
E� � 1

�
.

Z
�

eV @xu@x� dx C
Z
�

e�V @xv@x� dx/ � 	
�
;



Optimal Control of Self-Consistent Classical and Quantum Particle Systems 469

Fig. 3 Optimal control with constraint on electrical field: Figures (a) and (c) show the electrical
field in the optimal state and Figures (b) and (d) the optimized doping profile, with � D 10�3 and
constraint values A D 15 and A D 35, respectively

where 	 is a constant defined by the relation

Z
�

E dx D V.1/ � V.0/ D U

and the Slotboom variables u,v and adjoints �, � solve

@x.e
V @xu/ D @x.e

�V @xv/ D @x.e
V @x�/ D @x.e

�V @x�/ D 0:

The optimality system can be solved using a projected Gummel iteration. Results
indicating the effect of changing the constraint are given in Fig. 3, one observes
that the doping profile has additional jumps on the boundaries of regions where the
constraint on E is active.
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1 Intoduction

Modeling, simulation and optimization of nucleation, growth, precipitation and
ripening of nano-particles is field of growing interest. In particular, new challenges
arise when we focus on the future-oriented technological field of printable elec-
tronics. Solar panels have a new competitor in applications where monocrystalline
silicon wafers are too expensive or fragile. For these applications a new technology
is emerging in the form of printing circuits on flexible substrates. Printable
electronics will be used in creating flat panel displays for TVs, backplanes for
TFT (Thin-Film Transistors), flexible circuits for OLED displays, and RFID (Radio-
Frequency Identification) antennas. In this note we dwell on the recent efforts spent
with in the DFG-SPP1253. Out of the vast number of potential models and appli-
cation contexts we have chosen two examples leading, on the mathematical side,
to 1-D hyperbolic nonlinear partial integro-differential equations. The optimization
and control of such systems is a mathematical challenge and is far from being
complete.

In the first part of this note we consider the synthesis of silicon nanoparticles in
a reactor. We introduce the modeling and derive a nonlocal hyperbolic balance law
for the particle size distribution which is subject to controls via initial data and at
the boundary of the reactor, where the nucleation rate can be influenced.

After the modeling is being completed, we embark on an adjoint-based optimal-
ity analysis and derive necessary optimality conditions involving, as a novelty, a
non-local adjoint equation.

The second part of this work presents the application of a Fully Implicit Method
for Ostwald Ripening (FIMOR) for simulating the ripening of ZnO quantum dots
(QDs). Due to its stable numerical behavior, FIMOR employs the full exponential
term of the Gibbs-Thomson equation in the ripening rate which significantly outper-
forms the commonly used approximation of the LSW-theory in the lower nanometer
regime. FIMOR preserves its numeric stability even with respect to the inherent high
sensitivities and wide disparity of scales observed for the stiff PDE-ODE system at
typical QD sizes below 10 nm. The implementation is consistent with experimental
data for temperatures between 10 and 50 ıC and yields a significant reduction by
a factor of 1,000 in the computational effort compared to previous approaches.
Hence, simulation time on a standard PC could be reduced from several hours to
a few minutes. FIMOR represents an appropriate method that can be integrated to
subordinate optimization studies which enables its future application in the context
of continuous particle syntheses and microreaction technology (MRT).

2 Synthesis of Silicon Nano-particles

In order to describe the effect of growth and nucleation on the particle size
distribution, we consider the partial differential equation that evolves the number
distribution q.t; x/ 	 0 in time. One specific realization of the general population
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balance equation (PBE) is given in the case where the particle diameter x 2 R
C

represents the only internal variable. Assuming a constant feed rate in an ideally
mixed system with regard to the cross-section of the reactor, the position of a particle
transfers accordingly to its individual residence time t . This approach leads to a
reduced model for the pyrolysis of monosilane

@

@t
q.t; x/C @

@x
.G.t; x/q.t; x// D B.t; x/: (2.1)

The growth rate is denoted by G and the corresponding term to nucleation is
represented by the source B on the right hand side. No initial seed particles
y.0; x/ D 0; 8x 2 R

C or influx boundary condition y.t; 0/ D 0; 8t 2 Œ0; T �

are assumed since all particles are formed at a critical cluster diameter through
homogeneous nucleation. Due to space limitations, we dispense with a description
of the full model and refer the reader to [6]. The aerosol model accounts for
the formation of non-oxidized crystalline silicon nanoparticles (SiNP) via the
pyrolysis of silane. Thereby, silane can undergo two kinds of possible reactions: A
homogeneous gas phase reaction and a surface reaction on particles. The principally
very complicated reaction network of silane decomposition and the subsequent
formation of silicon hydride species is considerably simplified by taking an overall
reaction equation into account. This equation is based on the studies of [13]. The
equation accounts for the formation of a silylene radical due to the collision of a
silane molecule with any third-body collision partner which is in the present case
argon:

SiH4 C Ar ! SiH2 CH2 C Ar (2.2)

Therefore, the corresponding pressure dependent silane pyrolysis kinetic is given by

dŒSiH4�

dt
D �k1a � ŒSiH4� � ŒAr�; (2.3)

in the isothermal case. The growth rate due to chemical surface reaction GSiH4
with

respect to the diameter of a spherical particle

GSiH4 D F � kp �KSiH4 � ŒSiH4�

1CKSiH4 � ŒSiH4�
� MSi

�Si
:

The coefficients k1a; kp;KSiH4 are given, F is a fitting parameter. The molar
concentration of silane ŒSiH4� is derived from the available mass of silane mSiH4

in the process. For this purpose, the temperature induced change of volume is taken
into account:

ŒSiH4� D psys �mSiH4

MSiH4 � cpVT � T
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assuming the thermodynamic properties of an ideal gas cpVT pV=T D const which
is feasible since the reactor is operated at high temperatures and low pressures. The
surface growth rate therefore essentially depends on the remaining mass of silane
in the system mSiH4

.t/. By the conservation of masses, the initial mass of precursor
gas m0

SiH4
is gradually incorporated in particles which are added to the mass of the

initial particle size distributionm0
PSD

mSiH4 .t/ D m0
SiH4

Cm0
PSD �mPSD.t/:

The current total mass of all formed particlesmPSD.t/ may also be calculated by

mPSD.t/ D k� � �SiH4 �
Z xmax

xmin

x3q.t; x/@x (2.4)

using the volume shape coefficient k� , which is equal to =6 for spherical particles.
By introducing the integral functionW3.t; q/ defined via

W3.t; q/ D
Z xmax

xmin

x3q.t; x/@x;

the corresponding population balance equation for the growth of particles via
surface reaction turns into

@tq.t; x/ D �GSiH4 .T ; W3.t; q// @xq.t; x/ .t; x/ 2 .0; T / � .0; L/
q.t; 0/ D u.t/ t 2 .0; T /
q.0; x/ D q0.x/ x 2 .0; L/:

Hereby, the assumed initial condition q0 corresponds to present seed particles;
whereas the boundary data u.t/ reflects for example either the nucleation rate
inserting new particles or the flow rate of a feed stream. Conclusively, we made
the nonlocal property of the considered system particularly explicit by including
the mass balance into the population balance equation. The observed nonlocal
correlation of the convective term to an integral expression evaluating the entire state
variable is, however, not restricted to particle synthesis processes. Related studies in
the context of highly re-entrant manufacturing systems [2] are also concerned with
this kind of first-order hyperbolic initial-boundary value problems. Motivated by
problems occurring in the production of semiconductors, Coron, Kawski, and Wang
considered in [4] the analytic properties of this class of scalar nonlinear PDEs. Their
modeling comprises in particular a nonlocal dependence of the convective term on
the current solution. Since the special structure therefore covers various applications
and is additionally capable of being transferred to network settings [7, 8], further
investigations are indispensable for a comprehensive analysis of this important class
of problems. We consider the following optimal control problem on the space time
horizon�T D .0; T / � .0; 1/ for T 2 R>0
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min
w2W;a2A

1
2
kq.T; � /� qT,dk2L2.0;1/ C 1

2
k	.W. � ; q// 12 .q. � ; 1/� q1,d/ k2

L2.0;T /

subject to

Pq.t; x/ D �	.W.t; q//qx.t; x/ .t; x/ 2 �T

q.0; x/ D w.x/ x 2 .0; 1/
q.t; 0/ D a.t/

	.W.t;q//
t 2 .0; T /;

whereW.t; q/ is defined by the integral expression

W.t; q/ D
Z 1

0

q.t; s/ ds t 2 Œ0; T �:

Thereby, 	 2 C1.R�0;R>0/, qT,d 2 H1.0; T / and q1,d 2 H1.0; 1/ are given, such
that

qT,d.T / D q1,d.1/; (2.5)

and the spaces W and A are to be specified. This optimal control problem applies
to the setting of particle synthesis processes. Here, population balance equations
represent a state-of-the-art model for the synthesis of polydisperse particulate
products. Modeling the phenomena of growth coupled to a mass balance results in a
partial differential equation describing the evolution of the particle size distribution
in time. Particles are growing in a supersaturated solution due to homogeneous,
transport dominated growth mechanisms. This results in a decrease of the residual
educt concentration strongly depending on the number of currently present particles.
Since the growth rate is in turn essentially determined by the current educt
concentration, we have again the nonlocal correlation of the convective term to
an integral expression evaluating the entire state variable. Closing this remark, we
point out that in this case the assumed initial condition corresponds to present seed
particles; whereas the boundary data reflects for example either the nucleation rate
inserting new particles or the flow rate of a feed stream (see, e.g., [14]). For the
initial boundary value problem

Pq.t; x/ D �	.W.t; q//qx.t; x/ .t; x/ 2 �T (2.6)

q.0; x/ D w.x/ x 2 .0; 1/ (2.7)

q.t; 0/ D a.t/

	.W.t;q//
t 2 .0; T /; (2.8)

we obtain the following regularity result depending on the regularity of w and a:

Theorem 2.1 (W 1;p regularity for the initial boundary value problem). For p 2
Œ1;1/ let w 2 W 1;p..0; 1/IR�0/ and a 2 W 1;p..0; T /IR�0/ be given, such that
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the compatibility condition a.0/

	.W.0;q//
D w.0/ is satisfied. Then, we obtain for the

regularity of q

q 2 C.Œ0; T �IW 1;p..0; 1/IR//\ C.Œ0; 1�IW 1;p..0; T /IR//:

Furthermore, q is unique and nonnegative almost everywhere in �T .

Proof. The proof uses the method of characteristics and is based on the regularity
study of [4]. ut
Remark 2.1 (Lp regularity). Note that in [4] it is shown that for p 2 Œ1;1/,

w 2 Lp..0; 1/IR�0/ and a 2 Lp..0; T /IR�0/

we can expect a unique solution q with

q 2 C.Œ0; T �ILp..0; 1/IR//\ C.Œ0; 1�ILp..0; T /IR//:

Let us furthermore remark that even for the weaker Lp initial and boundary
data the function t ! W.t; q/ for fixed q is absolutely continuous, such that also
	.W. � ; q// is absolutely continuous. Since we are interested in first order optimality
conditions or at least in gradient informations of the cost functional, we apply the
formal Lagrange principle to deduce these conditions.

Theorem 2.2 (The first order optimality system). The KKT-conditions are given
by:

“forward” problem

Pq.t; x/ D �	.W.t; q//qx.t; x/; .t; x/ 2 �T (2.9)

q.0; x/ D w.x/ x 2 .0; 1/ (2.10)

q.t; 0/ D a.t/

	.W.t;q//
; t 2 .0; T / (2.11)

“backward” problem

Pp.t; x/ D 	.W.t; q//px.t; x/ � 	0.W.t; q//
Z 1

0

q.t; s/px.t; s/ ds

� 	0.W.t; q//.q.t; 1/2 � q1,d.t/
2/; .t; x/ 2 �T (2.12)

p.T; x/ D qT,d.x/ � q.T; x/; x 2 .0; 1/ (2.13)

p.t; 1/ D q1,d.t/ � q.t; 1/; t 2 .0; T / (2.14)
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and the conditions

p.t; 0/ D 0; t 2 .0; T / (2.15)

p.0; x/ D 0; x 2 .0; 1/: (2.16)

Proof. The proof consists of applying the formal Lagrange principle. ut
In the context of the gradient information p. � ; 0/ and p.0; � / represent the first

derivative of the cost functional with respect to a and w. To guarantee the well
posedness of the optimality system it is necessary to study the regularity of the
adjoint equation as well.

Theorem 2.3 (Regularity of the adjoint equation with boundary and end
data (2.12)–(2.14)). For p 2 Œ1;1/ let p.T; � / 2 W 1;p.0; 1/ and p. � ; 1/ 2
W 1;p.0; T / be given, such that the compatibility condition at .T; 1/ is satisfied. Then
there exists a unique solution p with regularity

p 2 C.Œ0; T �IW 1;p..0; 1/IR//\ C.Œ0; 1�IW 1;p..0; T /IR//:

Proof. The proof uses in particular that 	0.W.t; q//
R 1
0
q.t; s/px.t; s/ ds is indepen-

dent on the spatial variable x, so assuming sufficient regularity and differentiating
the PDE (2.12) with respect to x leads to a linear transport equation. However, in
the boundary data 	0.W.t; q//

R 1
0q.t; s/px.t; s/ ds will again emerge, such that we

have to apply a fixed point theorem, to obtain the stated result. ut
By the peculiar selection of the cost functional we obtain the compatibility

conditions of the adjoint equation in the corner .T; 1/, since by the assumptions
in Theorem 2.1 we have q. � ; 1/ 2 W 1;p.0; T / as well as q.T; � / 2 W 1;p.0; 1/ and
using Eq. (2.5) we obtain

qT,d. � /� q.T; � / 2 W 1;p.0; 1/ and q1,d. � / � q. � ; 1/ 2 W 1;p.0; T /

which satisfies the compatibility condition

qT,d.1/� �.T; 1/ D q1,d.T / � �.T; 1/:

For the regularity of the adjoint PDE we can, therefore, apply Theorem 2.3 and
have the well posedness of the optimality system stated in Theorem 2.2. With these
results it is now possible to apply standard methods of optimization like steepest
descent methods to compute a solution of the optimal control problem.

Remark 2.2 (The model in the context of supply chains). Let us remark here, that
the presented model is also used to simulated supply chains and meets in this context
a wide field of application (for instance see [1–4, 18]).
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3 A Fully Implicit Method for Ostwald Ripening

Semiconducting zinc oxide (ZnO) nanoparticles are of great interest due to their
interesting optical and electronic properties. Their use ranges from UV shielding,
solar cell, information storage, and sensor applications to electronic and photonic
devices [9, 22]. Nanoscaled ZnO particles also provide new, future-oriented possi-
bilities as markers and probes in medicine, cell and molecular biology.

In this contribution we investigate the specific ripening behavior of semiconduct-
ing ZnO nanoparticles in order to simulate the effect of varying the temperature
profile in the ripening process to the final particle size distribution (PSD). The
numerical realization is based on a novel implicit finite volume scheme for
simulating the Ostwald ripening process (FIMOR-scheme). A subsequent use of the
implementation in an optimization framework will open up the possibility to identify
optimal process control strategies for a precise tuning of the optical properties of the
final product.

3.1 Modeling Approach

In a primary particle formation process, ZnO nanoparticles have been prepared
by a controlled precipitation from zinc acetate and lithium hydroxide in alcoholic
solution. In order to study the effect of the process conditions on the properties
of the final product, we focus on the secondary particle formation process which
is predominant in a post reaction step. Although the solution is no longer highly
supersaturated after the reactants have depleted, the solubilities of the particles
still vary. This effect is due to the fact that the surface tension of a particle in
the lower nanometer regime depends strongly on the curvature of its surface. The
solubility increases exponentially when the particle size decreases (Gibbs-Thomson
effect) and small particles are dissolving [21]. After their dissolution, a local
supersaturation is built up and the free molecules are incorporated at the surface
of larger particles. This process is referred to as Ostwald ripening dedicated to the
Nobel laureate W. Ostwald. Ripening is a thermodynamically-driven spontaneous
process which occurs due to the tendency of the system to decrease the total surface
area. The molar solubility cL of a particle with diameter x is given by

cL.x/ D c1

L
� exp

�
4 � �SF �VB

� �x � kB �T
�
: (3.1)

Thereby, c1

L
is the solubility of a flat ZnO surface, �SF the surface tension, VB the

molecular volume, � a stoichiometric coefficient, x the particle diameter, kB the
Boltzmann constant, and T the temperature. The interfacial energy �SF is modeled
according to A. Mersmann. In [11], a theoretical approach assuming a perfect crystal
is described to calculate the parameter �SF only based on material specific parameters
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�SF D K� � kB �T
3
p
V 2

B

� ln

�
�ZnO

c1

L
�M

�
; (3.2)

where NA denotes the Avogadro constant, �ZnO the density of the material, and
M the molar mass of ZnO. The value of the solubility constant K� D 0:414 is
determined in [11] from theoretical considerations and has further been validated
by a comparison with experimental data [12, K� D 0:333]. The solubility of solids
in liquids c1

L
is generally described by an Arrhenius law according to

c1

L
D kL � exp

�
� �HSOL

kB �NA � T
�

(3.3)

incorporating a positive enthalpy of dissolution �HSOL for ZnO in ethanol and the
solubility constant kL. For the considered ZnO particles in the lower nanometer
range, the relative solubility increases exponentially confirming the fact that larger
particles are more energetically favored than smaller ones. The decision whether a
particle dissolves or grows is determined by offsetting the present global supersat-
uration which promotes growth against its tendency to dissolve. The general rate
equation for the diffusion controlled ripening process therefore reads [19]

R.t; x; c/ D 4�D�M �c1

L

�ZnO�x �
�
c.t/

c1

L

� exp

�
4��SF�VB

��x�kB �T
��

: (3.4)

A change of sign is thus determined by the relation between the global supersat-
uration in the liquid and the local supersaturation at the particle surface given by
the exponential expression. Moreover, D stands for the diffusion coefficient, and
c.t/ for the current concentration of ZnO in the solution. Accordingly, depending
on the temperature T and the particle diameter x, the ripening rate can be either
positive (growth) or negative (dissolution). We refer to the PSD by q.t; x/ denoting
the present density of particles with a diameter x at time t . Thus, the system
describing the evolution of q in time is given by the partial differential equation (3.5)
complemented by the mass balance (3.6) accounting for the required information on
the concentration c.t/ of ZnO in the solution:

@

@t
q.t; x/C @

@x
.R.t; x; c/ � q.t; x// D 0 (3.5)

c.t/C k�

Z 1
xc

x3 � q.t; x/ dx D c0 with k� D 

6

�ZnO

V
(3.6)

xc thereby represents the critical diameter at which the nanoparticles are assumed
to dissolve and k� replaces the material specific coefficients including the volume
shape factor. The total concentration c0 of ZnO is therefore split into the amount
of precipitated particles which are represented by the PSD and the concentration
corresponding to ZnO molecules in the solution. the remaining boundary term
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Fig. 1 Nonlinearity of
ripening function at a ZnO
concentration of
(a) 10�8 kg � m�3,
(b) 3 � 10�9 kg � �3, and
(c) 10�12 kg � m�3
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accounts for the increase of the concentration due to the dissolution of the smallest
particles. A crucial issue related to the numerical realization of the ripening process
is due to the high nonlinearities of the ripening function (see Fig. 1).

Lifshitz and Slyozov [10] and Wagner [21] have developed an asymptotic
description for the evolution of a PSD during Ostwald ripening (LSW theory, see
[19]). In their approach, the exponential term is replaced by a truncated Taylor
series approximation (see Fig. 1). The approximated ripening functions behave
numerically more friendly since the rate of dissolution, which applies for the
smallest particles, is lowered significantly.

3.2 Prior Results

A detailed description on the synthesis procedure of ZnO nanoparticles from a
zinc acetate precursor solution mixed with lithium hydroxide, both dissolved in
ethanol, is found in [16, 17]. The produced particles include sizes between 2 and
8 nm in diameter. The particle size is obtained from Dynamic Light Scattering
(DLS), Transmission Electron Microscopy analysis (TEM), UV-Vis spectroscopy
(UV-Vis), and Hyper Rayleigh Scattering (HRS) measurements. The simultaneous
measurement of UV-Vis and HRS measurements thereby allows to determine
directly the rate of nucleation as well as the growth and ripening rates [17].

An analysis of the optical properties of the sample represents thereby a particu-
larly favorable approach for determining the present PSD throughout the process.
Due to the quantum size effect, the observed spectra which correspond to ZnO
particles at a specific size differ significantly among each other in the smaller
nanometer range. Since the UV-Vis spectra are furthermore easily accessible
by online measurements this fact may therefore be used in order to reconstruct
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Fig. 2 Temporal evolution of
the reconstructed volume
weighted mean diameters x1;3
during the ripening process at
five different temperatures
(Reproduced from [15,
FIG. 10])
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the corresponding PSD. In our group, an algorithm has been developed which
decomposes the measured absorption spectra into the contributions from the
different particle size fractions [16]. As a result, the evolution of the mean
diameters of the PSD in the ripening process is reliably obtained. The approach
is based on a precise tight-binding model which is proposed and validated in
[20] describing the size dependence of the band gap. During the process, the
extinction spectra between 250 and 400 nm are recorded for this purpose using
a UV-Vis absorption spectrophotometer. The general effect of a variation in the
temperature is depicted in Fig. 2 showing the evolution of the mean diameter in the
course of five different ripening experiments. For validating the model established
in Sect. 3.1 against the experimental data, an absorption spectrum is measured
every 10 min. The experimentally determined starting PSD is chosen as initial
condition in the simulation of the PBE (3.5). For the solution of this highly nonlinear
partial differential equation, the commercially available program PARSIVAL by CiT
GmbH [23] is applied. The finite element software is based on the Galerkin h-p
method using Legendre polynomials. Using PARSIVAL to simulate the process,
the exponential term had to be approximated by the first term of the Taylor series
in order to obtain a tractable numerical problem. In Fig. 1, it becomes clear that
the approximation mainly underestimates the ripening kinetics of small particles.
Moreover, the root of the ripening function is shifted towards smaller particles and
lower concentrations. A comparison of the simulations with the experimental data
at 20 and 40 ıC is presented in Fig. 3 showing the evolution of the volume weighted
mean particle size x1;3 over the process time. The variation of process temperature
is qualitatively well reproduced by the simulation. As expected, the simulation is
specifically inaccurate in the initial phase of the ripening procedure which is due to
the use of the approximated ripening rate. However, this error has to be accepted
since the finite element method used by PARSIVAL even requires extremely small
time steps when solving the approximated formulation. Moreover, Fig. 4 reveals
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Fig. 3 Experimental data
compared to PARSIVAL
simulations at a ripening
temperature of 20 and 40 ıC,
respectively (Reproduced
from [15, FIG. 11])

Fig. 4 Ripening velocity of
particles at x˛ , the ˛-quantile
diameter, of the number
density distribution q.t; x/
simulated in PARSIVAL (a
grey linecolor implies a
negative ripening rate; a black
linecolor designates positive
values) (Reproduced from [5,
FIG. 5.48])

that the ripening rate of particles situated around the equilibrium particle size still
exhibits a strong oscillatory behavior.

Practically, to now no numerical scheme is able to solve the stated model of
the ripening process for ZnO particles in the lower nanometer regime within a
reasonable time. In this contribution, a finite volume based fully implicit method for
Ostwald ripening (FIMOR) is proposed which relies on an analytical formulation of
the jacobian with respect to the discretized system. Therefore, we have to provide
derivatives not only with respect to the model under consideration, but also with
respect to the numerical scheme itself.
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3.3 Results and Discussion

The derived FIMOR-method is based on an implicit treatment of the entire coupled
PDE-ODE system. For this purpose, we extended the MUSCL-Hancock method
(MHM) which is second order accurate in both space and time in its standard version
by an implicit treatment of the concentration. Thereby, the integrating in time now
relies on an implicit trapezoidal rule and is solved by a Newton-type iterative
method. This novel approach involves the calculation of derivatives with respect to
the PDE as well as concerning the numerical scheme (MHM) itself. As a result, the
complete system is solved using the analytical derivation of the discrete Jacobean
which drastically reduces the overall computational time by allowing for larger time
steps. More precisely, the effort of a standard computation ranges from 30 s to a few
minutes on a standard workstation. At the same time, the computation is more stable
than the explicit FEM used in [15] and does not require any artificial diffusion term.
In Fig. 5, the evolution of the ripening rates is shown, evaluated at x0:05, x0:50, and
x0:95 denoting the size where 5, 50, and 95 % of particles are smaller than the stated
size (˛-quantile diameter). Compared to the calculations based on the explicit finite
element method in Fig. 4, our algorithm ensures in particular that no oscillations
occur for the value R.x0:50/ which is situated near to the root of the ripening
function (see Fig. 5). Furthermore, the introduced implicit framework opened up
the possibility of using the original ripening rate based on the exponential term.
Thus, the previously obtained parameter estimates [16] which have been presented
in Sect. 3.2 are obviously not valid any more. They were based on the approximation
of the ripening rate and rely therefore on the corresponding assumptions of the
LSW-theory. Since the established simulation is computationally that efficient,
the new implementation opens up the possibility of being usd in an optimization
framework. Therefore, based on a least squares approach, a new set of parameters is
derived using the evolution profiles of the mean diameter according to two different

Fig. 5 Ripening velocity of
particles at x˛ , the ˛-quantile
diameter, of the number
density distribution q.t; x/
simulated by the newly
introduced FIMOR-approach
(a grey linecolor implies a
negative ripening rate; a black
linecolor designates positive
values)
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Fig. 6 Experimental data
compared to the simulation at
a ripening temperature of 20
and 40 ıC using the proposed
FIMOR-approach according
to Fig. 3 (Experimental data
from [15, FIG. 11])

datasets, each database thereby consisted of four different ripening experiments at
varying temperatures. Figure 6 shows the evolution of the mean diameter for 20 and
40 ıC in the simulations incorporating the exponential formulation of the ripening
rate as well as the newly identified set of parameters.

The respective mean values depicted in Fig. 6 are calculated on the basis of the
algorithm presented in [16]. A significant advantage of the introduced framework
consists in the possibility of using the original formulation of the ripening rate
in the simulations, i.e. without an approximation of the exponential term which
describes the local solubilities. Specifically, this achievement allows for a more
accurate description concerned with the dissolution behavior of the small particles.
The simulation runs yield a satisfactory agreement with respect to the mean diameter
of the PSDs. In particular, the simulated values provide now a better matching in the
initial stage of the ripening process as well as for the final size of the particles.

Conclusion
In conclusion, we have demonstrated that mathematical modeling, simulation
and optimization of nonlinear integro-partial differential equations plays
an important role in the optimization of particle synthesis. In future, the
combination of FIMOR and an optimization algorithm is believed to become
an important tool for the prediction and optimization of particle size distri-
butions in the context of continuous particles synthesis and microreaction
technology (MRT). Thereby our methodology does not only allow for an
empiric optimization of process parameters to achieve the desired electro-
optical product properties but allows to account for the dispersity of the
product and to rely on the physical model of Ostwald ripening in terms of
the ageing mechanism.
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Stabilization of Networked Hyperbolic Systems
with Boundary Feedback
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the feedback stabilization of first order quasilinear hyperbolic systems (on net-
works). For the stabilization linear feedback controls are applied at the nodes of the
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system with small C1-norm. For this solution an appropriateL2-Lyapunov function
decays exponentially in time. This implies the exponential stability of the system.
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1 Introduction

Flow processes in networks can often be modeled by coupled quasilinear hyperbolic
systems. For example, the flow of natural gas in pipe networks can be modeled by
the isothermal Euler equations with friction (see (5.1), (5.2)), a hyperbolic system
of conservation laws (see [2,3,27,29,35,36,38]). The Saint-Venant equations are a
model for the flow in open water canals (see [4,5,7,31]). For traffic flow models on
networks see [14].

In the recent literature there has been a lot of research on the stabilization
and controllability of hyperbolic systems on networks (see e.g. [4–7, 9–13, 15, 17–
20, 22, 23, 31, 32, 37, 38, 43, 46]). In this paper we summarize recent results about
the stabilization of hyperbolic systems, numerical discretization and the isothermal
Euler equations as published in [1, 9, 11, 13, 17–19]. The quasilinear system under
consideration is of the form (2.2). We consider this system on a fan-shaped network,
that is a tree-shaped network with exactly one node with a degree larger than
two (see Fig. 1). At the nodes of the network we have coupling conditions of
the form (2.12) and (2.13). Theorem 3.1 presents a result about the exponential
stability of the system (2.2) on the fan-shaped network as published and proved
in [9]: If we apply the feedback controls (3.6) with appropriate feedback constants
k.i;j / 2 .�1; 1/ and if we have C1-initial data (3.7) with sufficiently small C1-
norm, then the initial-boundary value problem (2.2), (2.12), (2.13), (3.6), (3.7) has a
unique C1-solution with small C1-norm on a given finite time interval (see (3.23)).
For this solution the L2-Lyapunov function E!.t/ from (3.5), which is the sum of
weighted and squaredL2-norms of the dependent variables (see (3.3), (3.4)), decays
exponentially with time (see (3.24)). In [13] the stabilization of the system (2.2)
on a star-shaped network has been presented. The structure of the system (2.2)
is motivated by the isothermal Euler equations with friction (5.1), (5.2) which
model the gas flow in pipes. For a nonstationary solution of the Euler equations
locally around a given stationary state, in terms of the characteristic variables
we have a system of the form (2.2). In Corollary 5.1 we apply the stabilization
method presented in Theorem 3.1 to stabilize the gas flow in a fan-shaped pipe
network. This result is in detail presented in [9, 18]. Concerning the numerical
results we consider the problem (2.2) and boundary conditions induced by coupling
conditions of type (2.12) leading to equations of the type (3.6). Similar to the
established theoretical result we present a suitable discretization of (2.2) and
its corresponding Lyapunov function (3.3) and (3.4). For a single arc we show
exponential decay of the discretized system for initial data having small discrete
C1-norm. The constants in Theorem 3.1 may be computed explicitly in the discrete
case. The presented numerical analysis holds true for quasilinear systems for a
single arc. The results have been announced in [1]. Further discussion on appropriate
numerical schemes for the time integration of hyperbolic equations (including non-
smooth solutions) have been investigated in [28, 30, 39]. Therein, the major focus
is on high-order time integration schemes required for example in the solution
of nonlinear hyperbolic equations in conservative form. If interested in optimal
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control, a detailed discussion on the schemes for the adjoint equation is necessary.
The relation between suitable time integrators for hyperbolic systems and their
adjoint equations has been investigated therein. Concerning the theoretical results on
smooth solutions time delay is another important feature. The feedback laws (3.6)
discussed here are without time delay. However, for the stabilization of quasilinear
hyperbolic systems it is also possible to apply feedback controls with time delay.
For the isothermal Euler equations this is studied in [9, 17, 19] where the delays
are given by C1-functions with bounded derivatives. In [9, 13] the time-delayed
feedback stabilization of a general hyperbolic system of the form (2.2) is considered.
In [8, 16, 24, 25, 34, 41, 42] the time-delayed stabilization of the wave equation is
studied. Related problems of the controllability of the wave equation are considered
in [44, 45]. Questions of the well-posedness and optimal control of networked
hyperbolic systems are studied e.g. in [15, 21, 38].

This paper is organized as follows: In Sect. 2 we present the notation for the
fan-shaped network, the quasilinear hyperbolic systems (2.2) and the coupling
conditions (2.12) and (2.13). The network Lyapunov function E!.t/ is defined
in (3.5) in Sect. 3.1. In Sect. 3.2 the exponential stability of the system (2.2) is
presented in Theorem 3.1. An appropriate choice of the feedback constants and the
weight constants for the Lyapunov function is stated in Sect. 3.2. Section 4 contains
the discretization and the result on exponential decay. In Sect. 5 we consider the
isothermal Euler equations (5.1), (5.2) and present a stabilization method for the
gas flow in a fan-shaped pipe network (Corollary 5.1).

2 Network Notation, Quasilinear Hyperbolic System
and Coupling Conditions

2.1 Quasilinear Hyperbolic System on a Network

We consider a tree-shaped network with exactly one node with a degree larger than
two. Such a network is called a fan-shaped network (see Fig. 1). We assume that
this central node of the network has the degreeN (N 	 3) and call this node !. We
denote the paths of edges that meet at the node ! as path 1 to pathN . Furthermore,

edge (1, 2) edge (1, 1)

edge (2, 2)
ed
ge

(2,
1) edge (3, 1)

edge (4, 1) edge (4, 2)ω

node (1, (edon)1 4, 1)

node (2, 1)

Fig. 1 Fan-shaped network. The depicted network has M D 4 paths which consist of N1 D 2,
N2 D 2, N3 D 1 and N4 D 2 edges. The central node is denoted as !
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we assume that path i is a linear sequence of Ni (Ni 	 1) edges and sequentially
denote the edges in path i as edge i; 1 to edge i; Ni where the edge i; 1 is at the
central node !. We introduce the index sets

I D f1; : : : ; N g; Ii D f1; : : : ; Nig: (2.1)

We parameterize the length of edge i; j (i 2 I , j 2 Ii ) by the space interval
Œ0; L.i;j /� with L.i;j / > 0 such that the end x D 0 is closer to the node !. The other
end of edge i; j is denoted as x D L.i;j /. For i 2 I , j 2 IinfNig we denote the
node where the ends x D L.i;j / of edge i; j and x D 0 of edge i; j C 1 meet as
node i; j . The end x D 0 of edge i; 1 (i 2 I ) is at the node !. We consider the
system on a finite time interval Œ0; T � with T > 0.

On edge i; j of the fan-shaped network we consider the following quasilinear
system (i 2 I , j 2 Ii ):

8<
:
@tu

.i;j /
C C ƒ

.i;j /
C .x; u.i;j /C ; u.i;j /� / @xu.i;j /C D ‰

.i;j /
C .x; u.i;j /C ; u.i;j /� /;

@tu.i;j /� C ƒ.i;j /� .x; u.i;j /C ; u.i;j /� / @xu.i;j /� D ‰.i;j /� .x; u.i;j /C ; u.i;j /� /

(2.2)

on Œ0; T � � Œ0; L.i;j /� with the dependent variables u.i;j /C .t; x/ and u.i;j /� .t; x/.

The functionsƒ.i;j /

˙ in (2.2) are of the form

ƒ
.i;j /

˙ .x; u.i;j /C ; u.i;j /� / D 	
.i;j /

˙ .x/C f
.i;j /

˙ .x; u.i;j /C ; u.i;j /� / (2.3)

with 	.i;j /˙ .x/ 2 C1.Œ0; L.i;j /�/ and f .i;j /

˙ .x; u.i;j /C ; u.i;j /� / 2 C1.Œ0; L.i;j /� � R
2/.

In (2.2) the right-hand sides have the form

‰
.i;j /

˙ .x; u.i;j /C ; u.i;j /� / D �.u.i;j /C C u.i;j /� /  
.i;j /

˙ .x/Cg
.i;j /

˙ .x; u.i;j /C ; u.i;j /� / (2.4)

with  .i;j /˙ .x/ 2 C1.Œ0; L.i;j /�/ and g.i;j /˙ .x; u.i;j /C ; u.i;j /� / 2 C2.Œ0; L.i;j /� � R
2/.

We assume that the functions 	.i;j /˙ and  .i;j /˙ satisfy

	
.i;j /
C .x/ > 0; 	.i;j /� .x/ < 0 (2.5)

and

 
.i;j /

˙ .x/ > 0 (2.6)

for all x 2 Œ0; L.i;j /� and that the functions f .i;j /

˙ and g.i;j /˙ satisfy

f
.i;j /

˙ .x; 0; 0/ D 0 (2.7)
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and

g
.i;j /

˙ .x; 0; 0/ D @
u
.i;j /

C

g
.i;j /

˙ .x; 0; 0/ D @
u
.i;j /
�

g
.i;j /

˙ .x; 0; 0/ D 0 (2.8)

for all x 2 Œ0; L.i;j /�.
If we have ju.i;j /˙ j � "0 with a real number "0 > 0, from (2.7) and (2.8) together

with Taylor’s Theorem we obtain that there exist numbers �.i;j /f 	 0 and �.i;j /g 	 0

such that for x 2 Œ0; L.i;j /� we have

jf .i;j /

˙ .x; uC; u�/j � �
.i;j /

f .juCj C ju�j/ for all ju˙j � "0 (2.9)

and

jg.i;j /˙ .x; uC; u�/j � �.i;j /g .u2C C u2�/ for all ju˙j � "0: (2.10)

A detailed derivation of the estimates (2.9) and (2.10) can be found in [9]. In the
stabilization method which we present in Theorem 3.1 we obtain a solution of the
system (2.2) with C1-norm smaller than "1 2 .0; "0� (see (3.23)). Hence, for "0 > 0
sufficiently small, from (2.9) and (2.10) we obtain that jf .i;j /˙ j and jg.i;j /˙ j are small.

In particular, if "0 > 0 is small enough, for ju.i;j /˙ j � "0 we obtain (see (2.3), (2.5))

ƒ
.i;j /
C .x; u.i;j /C ; u.i;j /� / > 0; ƒ.i;j /� .x; u.i;j /C ; u.i;j /� / < 0 (2.11)

for all x 2 Œ0; L.i;j /� and, hence, the system (2.2) is strictly hyperbolic.

2.2 Coupling Conditions

In the following we present the coupling conditions at the nodes of the fan-shaped
network. The structure of the coupling conditions is motivated by the conditions
for a fan-shaped network of gas pipes coupled by compressor stations which we
consider in Sect. 5 (see (5.10)–(5.14)). At the central node !, where the ends x D 0

of edge i; 1 (i 2 I ) meet, we have conditions of the form (i 2 I , t 2 Œ0; T �)

u.i;1/C .t; 0/ D �.i/.u.1;1/� .t; 0/; : : : ; u.N;1/� .t; 0// (2.12)

with C1-functions �.i/. At the other inner nodes of the network where the ends
x D L.i;j / of edge i; j and x D 0 of edge i; j C 1 meet (i 2 I , j 2 IinfNig) we
have the conditions (t 2 Œ0; T �)

u.i;jC1/C .t; 0/ D „.i;j /.u.i;j /C .t; L.i;j //; u.i;j /� .t; L.i;j //; u.i;jC1/C .t; 0// (2.13)
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with C1-functions „.i;j /. As we stabilize the system (2.2) towards the null
equilibrium state, the functions�.i/ and„.i;j / have to satisfy

�.i/.0; : : : ; 0/ D 0 (2.14)

and

„.i;j /.0; : : : ; 0/ D 0: (2.15)

3 Exponential Stability

In Theorem 3.1 we present a method to stabilize the system (2.2) with the coupling
conditions (2.12) and (2.13) on a fan-shaped network. For the stabilization we apply
the linear feedbacks (3.6) at the nodes of the network with appropriate feedback
constants k.i;j / 2 .�1; 1/. For the initial-boundary value problem (2.2), (2.12),
(2.13), (3.6), (3.7) we obtain the existence of a unique C1-solution on the time
interval Œ0; T �. In order to measure the system evolution, we define the network
Lyapunov function E!.t/ in (3.5) which is the sum of weighted and squared
L2-norms for u.i;j /˙ (see (3.3), (3.4)). We obtain the exponential decay of the
Lyapunov function with time (see (3.24)), which implies the exponential stability
of the system.

3.1 Lyapunov Function and Feedback Controls

Let a finite time T > 0 be given. We consider a fan-shaped network and the system
(2.2) with the conditions (2.3)–(2.8) and with the coupling conditions (2.12), (2.13).
We define the real numbers (i 2 I , j 2 Ii )

�.i;j / D
 Z L.i;j /

0

1

	
.i;j /
C .x/

C 1

j	.i;j /� .x/j dx

!�1
> 0 (3.1)

and the functions

h
.i;j /

˙ .x/ D exp

 
��.i;j /

Z x

0

1

	
.i;j /

˙ .s/
ds

!
: (3.2)

The quotient functions h.i;j /� =h
.i;j /
C satisfy (x 2 Œ0; L.i;j /�)

1 D h.i;j /� .0/

h
.i;j /
C .0/

� h.i;j /� .x/

h
.i;j /
C .x/

� h.i;j /� .L.i;j //

h
.i;j /
C .L.i;j //

D exp.1/ D e:
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For i 2 I , j 2 Ii and constants A.i;j /˙ > 0 we define the functions (t 2 Œ0; T �)

E
.i;j /
C .t/ D

Z L.i;j /

0

A
.i;j /
C

	
.i;j /
C .x/

h
.i;j /
C .x/ .u.i;j /C .t; x//2 dx; (3.3)

E.i;j /� .t/ D
Z L.i;j /

0

A.i;j /�
j	.i;j /� .x/j h

.i;j /� .x/ .u.i;j /� .t; x//2 dx: (3.4)

The network Lyapunov function is defined as (t 2 Œ0; T �)

E!.t/ D
X

i2I;j2Ii
E
.i;j /
C .t/C E.i;j /� .t/: (3.5)

Weighted and squared L2-norms of the form (3.3), (3.4) have been introduced in
[6, 7] for constant 	.i;j /˙ and in [20] for space dependent 	.i;j /˙ . The Lyapunov
functionE!.t/ for a fan-shaped network has been presented in [9, 18].

For the stabilization we apply the following linear feedback control at the end
x D L.i;j / of the edge i; j (i 2 I , j 2 Ii )

u.i;j /� .t; L.i;j // D k.i;j /u.i;j /C .t; L.i;j // (3.6)

for t 2 Œ0; T � with constants k.i;j / 2 .�1; 1/. Furthermore, we suppose that for the
system (2.2) we have the following initial data (i 2 I , j 2 Ii )

u.i;j /˙ .0; x/ D �
.i;j /

˙ .x/ (3.7)

for x 2 Œ0; L.i;j /�with C1-functions �.i;j /˙ such that the C1-compatibility conditions
are satisfied at all nodes of the network. The C1-compatibility conditions for the
fan-shaped network can explicitly be found in [9].

3.2 Exponential Decay of the Network Lyapunov Function

In Theorem 3.1 we obtain the existence of a uniqueC1-solution with small C1-norm
of the initial-boundary value problem (2.2), (2.12), (2.13), (3.6), (3.7) on Œ0; T � �
Œ0; L.i;j /�. For this solution the network Lyapunov functionE!.t/ from (3.5) decays
exponentially on Œ0; T � (see (3.24)). For Theorem 3.1 we define the positive numbers
(i 2 I , j 2 Ii )

U
.i;j /

˙ D max
x2Œ0;L.i;j /�

ˇ̌
ˇ̌
ˇ
	
.i;j /

˙ .x/

	
.i;j /
� .x/

ˇ̌
ˇ̌
ˇ
 
.i;j /
� .x/

 
.i;j /

˙ .x/
> 0 (3.8)
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and

V
.i;j /

˙ D min
x2Œ0;L.i;j /�

ˇ̌
ˇ̌
ˇ
	
.i;j /

˙ .x/

	
.i;j /
� .x/

ˇ̌
ˇ̌
ˇ
 
.i;j /
� .x/

 
.i;j /

˙ .x/

 
1C �.i;j /

2 
.i;j /
� .x/

!
> 0: (3.9)

For i 2 I , j 2 Ii we assume that we have

eU .i;j /
C � V

.i;j /
C or eU .i;j /� � V .i;j /� : (3.10)

The condition (3.10) is in detail discussed in [9, 20]. In particular, the condi-
tion (3.10) holds if the length L.i;j / of edge i; j is not too long. Furthermore, for
"0 > 0 and i 2 I with Ni 	 2, j 2 IinfNig we define the nonnegative numbers

˛.i;j / D max
j�j�"0;j
j�"0

�
@

u
.i;j /

C

„.i;j /.�; k.i;j /�; 
/C k.i;j /@
u
.i;j /
�

„.i;j /.�; k.i;j /�; 
/

�2

(3.11)

ˇ.i;j / D max
j�j�"0;j
j�"0

�
@

u
.i;jC1/
�

„.i;j /.�; k.i;j /�; 
/
�2

(3.12)

with the functions„.i;j / from (2.13).
In Theorem 3.1 the feedback constants k.i;j / 2 .�1; 1/ for the feedback

laws (3.6) and the weight constants A.i;j /˙ > 0 for the Lyapunov function have to be

chosen as follows (see [9, 18]): At the central node ! the constants A.i;1/˙ > 0 have
to satisfy (i 2 I )

A.i;1/� 	 1 	 N A
.i;1/
C

X
n2I

max
j
.�/ j�"0 .�2I /

�
@

u
.n;1/
�

�.i/.
.1/; : : : ; 
.N //
�2

(3.13)

where N is the number of edges that meet at the node !. For i 2 I with Ni 	 2,
j 2 IinfNig the inequalities

.k.i;j //2h.i;j /� .L.i;j //A.i;j /� C 2˛.i;j /A
.i;jC1/
C � h

.i;j /
C .L.i;j //A

.i;j /
C ; (3.14)

2ˇ.i;j /A
.i;jC1/
C � A.i;jC1/� (3.15)

have to hold and for i 2 I at the ends x D L.i;Ni / the inequalities

e .k.i;Ni //2 A.i;Ni /� � A
.i;Ni /
C : (3.16)

Finally, for i 2 I , j 2 Ii the following conditions have to be satisfied (see (3.10))

A
.i;j /
C

A.i;j /�
2 ŒeU .i;j /

C ; V
.i;j /
C � or

A.i;j /�
A
.i;j /
C

2 ŒU .i;j /� ; e�1V .i;j /� �: (3.17)
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For a detailed discussion of the choice of k.i;j / and A.i;1/˙ via an inductive scheme
such that the conditions (3.13)–(3.17) are satisfied, see [9, 13, 18].

For the following theorem we define the positive numbers (i 2 I , j 2 Ii )

�.i;j / D max

(
max

x2Œ0;L.i;j /�
eA.i;j /� 	

.i;j /
C .x/

A
.i;j /
C j	.i;j /� .x/j

; max
x2Œ0;L.i;j /�

A
.i;j /
C j	.i;j /� .x/j
A.i;j /� 	

.i;j /
C .x/

)
: (3.18)

Theorem 3.1. Consider a fan-shaped network and define the index sets I and Ii as
in (2.1). Let a finite time T >0 and functions 	.i;j /˙ .x/2C1.Œ0; L.i;j /�/,  .i;j /˙ .x/ 2
C1.Œ0; L.i;j /�/, f .i;j /

˙ .x; u.i;j /C ; u.i;j /� / 2 C1.Œ0; L.i;j /� � R
2/ and g

.i;j /

˙ .x; u.i;j /C ;

u.i;j /� / 2 C2.Œ0; L.i;j /� � R
2/ be given that satisfy (2.5)–(2.8) (i 2 I , j 2 Ii ).

Consider Eqs. (2.2) on Œ0; T �� Œ0; L.i;j /� with the coupling conditions (2.12), (2.13)
where the C1-functions�.i/ and „.i;j / satisfy (2.14) and (2.15).

Let a real number "0 > 0 be given and choose constants �.i;j /f 	 0 and �.i;j /g 	 0

such that (2.9) and (2.10) hold (i 2 I , j 2 Ii ). Define �.i;j /, h.i;j /˙ .x/, U .i;j /

˙ and

V
.i;j /

˙ as in (3.1), (3.2), (3.8), (3.9) and assume that (3.10) holds. Choose constants

k.i;j / 2 .�1; 1/ andA.i;j /˙ > 0 such that (3.13)–(3.16) are satisfied with ˛.i;j /, ˇ.i;j /

as in (3.11), (3.12). Assume that (3.17) holds.
Choose "1 2 .0; "0� that satisfies (i 2 I , j 2 Ii )

2"1�
.i;j /

f < min
x2Œ0;L.i;j /�

ˇ̌
ˇ	.i;j /˙ .x/

ˇ̌
ˇ (3.19)

and

"1

�
�
.i;j /

f C �.i;j /g

� �
3C �.i;j /

�
< 1

2
�.i;j / (3.20)

with �.i;j / as in (3.18). Define the real number

� D min
i2I;j2Ii

n
1
2
�.i;j / � "1

�
�
.i;j /

f C �.i;j /g

� �
3C �.i;j /

�o
> 0: (3.21)

Then there exists "2 2 .0; "1� such that the following statements hold true: Assume
that we have initial conditions (3.7) with C1-functions �.i;j /˙ that satisfy (i 2 I ,
j 2 Ii )

jj�.i;j /˙ jjC1.Œ0;L.i;j /�/ � "2 (3.22)

and such that the C1-compatibility conditions are satisfied at all nodes of the
network. Then the initial-boundary value problem (2.2), (2.12), (2.13), (3.6), (3.7)
has a unique C1-solution .u.i;j /C ; u.i;j /� / on Œ0; T � � Œ0; L.i;j /� that satisfies

jju.i;j /˙ jjC1.Œ0;T ��Œ0;L.i;j /�/ � "1: (3.23)
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For this solution we define the functions E.i;j /
C .t/ and E.i;j /� .t/ as in (3.3), (3.4)

and the network Lyapunov function E!.t/ as in (3.5). Then we have the following
inequality for E!.t/ on Œ0; T �:

E!.t/ � E!.0/ exp.��t/: (3.24)

Proof. The proof of Theorem 3.1 can be found in [9]. In particular, in [9] it is
shown that for the time derivative of the network Lyapunov functionE!.t/ we have
(t 2 Œ0; T �)
d
dtE!.t/ � P

i2I;j2Ii

�
1
2
�.i;j / � "1

�
�
.i;j /

f C �
.i;j /
g

� �
3C �.i;j /

��
E.i;j /.t/

C P
i2I;j2Ii

B
.i;j /
0 .t/C B

.i;j /
L .t/

(3.25)

where B.i;j /
0 .t/ and B.i;j /

L .t/ are boundary terms that appear at the end x D 0 and
x D L.i;j / of edge i; j (i 2 I; j 2 Ii ). The feedback laws (3.6), together with the
appropriate choice of the feedback constants k.i;j / and the weights A.i;j /˙ , guarantee

that the terms B.i;j /
0 .t/ and B

.i;j /
L .t/ are nonpositive for all t 2 Œ0; T �. Thus,

from (3.25) and the definition of E!.t/ and � in (3.5) and (3.21) we obtain (3.24).
The existence and uniqueness of a solution of (2.2) that satisfies (3.23) follows
from [32, 46], where the existence of classical solutions for initial-boundary value
problems with first order quasilinear hyperbolic systems is studied. ut
Remark 3.2. The conditions (3.19) together with "1 2 .0; "0� and (2.3), (2.5), (2.9),
(3.23) guarantee that the inequalities (2.11) hold and, hence, the system (2.2) is
strictly hyperbolic (i 2 I; j 2 Ii ). The statements of Theorem 3.1 still hold if the
constants A.i;1/˙ > 0 satisfy

A.i;1/� 	 c 	 N A
.i;1/
C

X
n2I

max
j
.�/j�"0 .�2I /

�
@

u
.n;1/
�

�.i/.
.1/; : : : ; 
.�//
�2

instead of (3.13) with an arbitrary constant c > 0 which is the same for all i 2 I

(see [9, 13]).
In [6, 7, 9] the stabilization of quasilinear hyperbolic systems without a source

term is considered, that is in our notation ‰.i;j /

˙ D 0. In this case the statements of
Theorem 3.1 also hold true, where the condition (3.17) is not relevant for the choice
of the weight constants A.i;j /˙ and in (3.20) and (3.21) we have �.i;j /g D 0.

4 Numerical Analysis for a Discretization of System (2.2)

Results concerning the numerical analysis do not exist to the same extend as on the
continuous level. For a detailed review we refer to [1]. Here, we apply the existing
results to the presented results. This requires strong simplifications of the previous
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presentation: We consider a single arc and a system in quasilinear form (2.2) with
boundary conditions of type (3.6) at both ends x 2 f0;Lg: We further assume that
ƒ˙ are independent of x, no source term and assume 	˙ D ˙1. Dropping the
superscripts .i; j / Eqs. (2.2) read with dependent variables uC.t; x/ and u�.t; x/ on
Œ0; T � � Œ0; L�, respectively,

@tu˙ Cƒ˙.uC; u�/@xu˙ D 0; u˙.0; x/ D �˙.x/; (4.1a)

uC.t; 0/ D k` u�.t; 0/; u�.t; L/ D kr uC.t; L/: (4.1b)

The focus is on the discussion of numerical discretization and the correspondingL2-
stability of the discrete Lyapunov function. In order to state the stabilization result
corresponding to Theorem 3.1, we introduce further notation. Let �x denote the
cell width of a uniform spatial grid and N the number of cells in the discretization
of the domain Œ0; L� such that �xN D L with cell centers at xi D .i C 1

2
/�x:

The left and right boundary points are x� 12 and xN� 1
2
: The temporal grid is chosen

such that the CFL condition 	 �t
�x

� 1 holds, where 	 D max
kuk��0

kƒ˙.u/k and �0 as

in Theorem 3.1. Let tn D n�t and by possibly further reducing�t assume that for
someK > 0 we haveK�t D T: The value of u˙.t; x/ at the cell center xi and time
tn is approximated by uni;˙. The initial condition is discretized as

u0i;˙ D 1

�x

Z x
iC 1

2

x
i� 1

2

�0˙.x/dx: (4.2)

To compute smooth solutions we use

u�;˙ D
K�1X
nD0

N�1X
iD0

uni;˙�Œx
i� 1

2
;x
iC 1

2
/�Œtn;tnC1/.t; x/;

uni;˙ D 1

�x

Z x
iC 1

2

x
i� 1

2

u˙.tn; x/dx:

We discretize (4.1) by (4.2) and for n D 0; : : : ; K � 1, and i D 0; : : : ; N � 1

unC1i;C D uni;C � �t

�x
ƒC.uni;C; uni;�/.uni;C � uni�1;C/; (4.3a)

unC1i;� D uni;� � �t

�x
ƒ�.uniC1;C; uniC1;�/.uniC1;� � uni;�/; (4.3b)

un�1;C D k`u
n
0;�; unN;� D kru

n
N�1;C: (4.3c)

The discrete Lyapunov function (3.5) in case of (4.1) is given by

En D �x

N�1X
iD0

AC exp.� Q� xi /.uni;C/2 C A� exp. Q� xi /.uni;�/2 (4.4)
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which resembles the sum of (3.3) and (3.4). Note that in the case ƒ˙ independent
of x we obtain from (3.1) and (3.2)

� �

Z x

0

1

	˙
ds D �x 1

2L
; Q� D 1

2L
: (4.5)

For the numerical scheme we furthermore require that kr and k` fulfill

0 < k` <

s
Dmin�
DmaxC

; 0 < kr <

s
DminC
Dmax�

; (4.6)

where for �0 from Theorem 3.1 we define Dmin
˙ D min

ku
˙
k��0

�t
�x

kƒ˙.uC; u�/k and

Dmax
˙ D max

ku
˙
k��0

�t
�x

kƒ˙.uC; u�/k. Assume �t is such that 	 �t
�x

� 1 and 	 D
max

s2fC;�g
max
ku

˙
k��0

kƒs.uC; u�/k: Then, corresponding to Theorem 3.1, we obtain the

discrete counterpart as Theorem 4.1.

Theorem 4.1. Let T > 0 and assume (2.5), (2.7) and (2.11). Consider (4.1) with
discretization (4.2)–(4.4). Let �0 > 0 be given and assume that � is such that
k�i;˙k � �0, k�i;˙��i�1;˙k � �x �0; and that kun0;��un�1;�k � �0 exp.tnM/; and
kunN;C�unN�1;Ck � �0 exp.tnM/ forM D 2 max

s2fC;�g
max
ku

˙
k��0

kr.uC;u�/ƒs.uC; u�/k:
Choose A˙ D 1 and Q� D 2L as in Eq. (4.5). Choose k`; kr , such that (4.6) and

Q� � 1

2
min

8<
:log

 s
Dmax�
DminC

k�rk
!�2

; log

 s
DmaxC
DminC

k�`k
!�29=

; (4.7)

holds true.
Then, there exists � > 0 such that

En � exp.�� tn/E0: (4.8)

For the proof we note that the assumptions onƒ˙ yields two separated eigenvalues
bounded away from zero for �0 sufficiently small. This is due to estimate (2.9).
Further, for sufficiently small k`; kr 2 .�1; 1/; k` 6D 0; kr 6D 0 or L sufficiently
large, the condition (4.7) on Q� is always satisfied. The proof then follows by
combining the results of Theorem 2.1, Remark 1 and Theorem 3.2 in [1]. Therein,
the discrete counterpart to (3.25)

EnC1 �En

�t
� �� En CR

for some � > 0 has been established. Due to (4.7) it can be shown that R � 0 which
yields the desired exponential decay of En:
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5 Application to the Gas Flow in Networks

In this section we apply the stabilization method presented in Theorem 3.1 to the
stabilization of the gas flow in a fan-shaped pipe network. The gas flow in pipes can
be modeled by the isothermal Euler equations with friction, a hyperbolic system of
balance laws. For pipe i; j the isothermal Euler equations have the following form
(i 2 I; j 2 Ii ) (see [2, 3, 27, 29, 35, 36, 38]):

@t �
.i;j / C @x q

.i;j / D 0; (5.1)

@t q
.i;j / C @x

�
.q.i;j //2

�.i;j /
C a2�.i;j /

�
D ��

2

q.i;j /jq.i;j /j
�.i;j /

; (5.2)

where �.i;j /.t; x/ > 0 is the density of the gas and q.i;j /.t; x/ ¤ 0 the mass flux.
The flow velocity is given by the quotient q.i;j /=�.i;j /. The constant a > 0 denotes
the sonic speed in the gas and the constant � > 0 is the quotient of the pipe wall
friction factor and the pipe diameter. In the following we study so called subsonic
or subcritical states which satisfy (i 2 I , j 2 Ii )

jq.i;j /j=�.i;j / < a:

This is satisfied as in real gas transportation networks the absolute value of the flow
velocity is much smaller than the sonic speed (see [9,27]). Equation (5.1) states the
conservation of mass and Eq. (5.2) is a momentum equation that states the loss of
momentum due to the pipe wall friction. The sign of q.i;j / depends of the direction
of the gas flow. The mass flux q.i;j / is positive if the gas in pipe i; j flows from
the end x D 0 to x D L.i;j /, it is negative if the gas flows in the other direction.
For a detailed discussion of the Euler equations see [35, 36]. In [9, 11, 18, 20] the
existence and behavior of stationary subcritical C1-solutions . N�.i;j /.x/; Nq.i;j /.x//
for the system (5.1), (5.2) with given boundary data at one end of each pipe is
studied. The main result presented in [9, 11, 18, 20] is that a unique stationary
subcritical C1-solution exists on a finite space interval Œ0; x0/ with a critical length
x0 > 0. In typical high-pressure gas pipes the critical length is around 180 km (see
[9, 11]). Furthermore, the stationary density is monotonically decreasing along the
direction of the gas flow.

In the following we assume that we have a given finite time T > 0 and a given
stationary state . N�.i;j /.x/; Nq.i;j /.x// 2 C1.Œ0; L.i;j /�/ on a fan-shaped pipe network
(i 2 I , j 2 Ii ) and consider a nonstationary solution .�.i;j /.t; x/; q.i;j /.t; x//
of (5.1), (5.2) on Œ0; T � � Œ0; L.i;j /� in a local C1-neighborhood of the stationary
state. More precisely, we assume that for the difference between the nonstationary
and the stationary state we have the following estimates for the C1-norm with a
small number " > 0 (i 2 I , j 2 Ii ):

jj�.i;j /� N�.i;j /jjC1.Œ0;T ��Œ0;L.i;j /�/ � "; jjq.i;j /� Nq.i;j /jjC1.Œ0;T ��Œ0;L.i;j / �/ � ": (5.3)
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By using a transformation to the characteristic variables u.i;j /˙ .t; x/, in [9,11,20] it is
shown that the nonstationary density and mass flux can be written as (i 2 I , j 2 Ii )

�.i;j / D N�.i;j / exp

 
u.i;j /� � u.i;j /C

2a

!
; (5.4)

q.i;j / D
 

Nq.i;j / � N�.i;j /.u.i;j /C C u.i;j /� /

2

!
exp

 
u.i;j /� � u.i;j /C

2a

!
(5.5)

where the characteristic variables u.i;j /˙ .t; x/ satisfy the system (2.2) on Œ0; T � �
Œ0; L.i;j /�. The functions 	.i;j /˙ and  .i;j /˙ in (2.2) can be calculated from the given
stationary state as (see (2.3), (2.4))

	
.i;j /

˙ .x/ D Nq.i;j /.x/
N�.i;j /.x/ ˙ a; (5.6)

 
.i;j /

˙ .x/ D �

4

j Nq.i;j /.x/j
N�.i;j /.x/

2a N�.i;j /.x/˙ Nq.i;j /.x/
a N�.i;j /.x/˙ Nq.i;j /.x/ : (5.7)

The functions f .i;j /

˙ and g.i;j /˙ are given as (see (2.3), (2.4))

f
.i;j /

˙ .x; u.i;j /C ; u.i;j /� / D �1
2
.u.i;j /C C u.i;j /� /; (5.8)

g
.i;j /

˙ .x; u.i;j /C ; u.i;j /� / D sign. Nq.i;j // �
8
.u.i;j /C C u.i;j /� /2: (5.9)

For a detailed derivation of Eqs. (5.6)–(5.9) we refer to [9, 11]. Note that, if ju.i;j /˙ j
is sufficiently small (see (3.23)), also (5.3) is satisfied. Furthermore, for f .i;j /

˙ and

g
.i;j /

˙ as in (5.8) and (5.9) the conditions (2.9) and (2.10) hold with �.i;j /f D 1
2

and

�
.i;j /
g D �

4
.

At the central node ! of the fan-shaped pipe network we assume that we have
Kirchhoff coupling conditions, that is continuity of the density and conservation of
mass (t 2 Œ0; T �) (see [2, 33]):

�.1;1/.t; 0/ D �.i;1/.t; 0/ .i 2 Inf1g/; (5.10)
X
i2I

q.i;1/.t; 0/ D 0: (5.11)

In terms of u.i;1/˙ .t; 0/ the conditions (5.10) and (5.11) can be written as (see [9, 11,
17])

�
u.1;1/C .t; 0/; : : : ; u.N;1/C .t; 0/

�
D �

u.1;1/� .t; 0/; : : : ; u.N;1/� .t; 0/
�
M! (5.12)
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with an orthogonal, symmetric .N � N/-matrix M! D .mkl/
N
k;lD1. The entries of

the matrix M! only depend on the number N of the paths of pipes in the network
and are given as

mkk D .N � 2/=N .k 2 I /;
mkl D �2=N .k; l 2 I; k ¤ l/:

Note that the coupling conditions (5.12) are of the form (2.12) with (2.14).
At the other nodes of the network where exactly two pipes meet, we assume that

there is a compressor station (see e.g. [26,29,38,40]). The compressor increases the
gas density which has decreased along the incoming pipe. The coupling conditions
at the compressor connecting the end x D L.i;j / of pipe i; j and the end x D 0 of
pipe i; j C 1 (i 2 I , j 2 IinfNig) are given as (see [9, 11, 18, 20, 26, 29, 38, 40]):

q.i;j /.t; L.i;j // D q.i;jC1/.t; 0/; (5.13)

u.i;j /.t/ D c.i;j / jq.i;jC1/.t; 0/j
0
@
�
�.i;jC1/.t; 0/
�.i;j /.t; L.i;j //

�sign.q.i;jC1/.t;0// � �
� 1

1
A

(5.14)

with the compressor power u.i;j /.t/ 	 0, a compressor dependent constant c.i;j / > 0
and the constant � 2 f 2

7
; 2
5
g depending on the gas under consideration. In [9,11,18,

20] it is shown that the conditions (5.13), (5.14) imply that for u.i;j /˙ .t; L.i;j // and

u.i;jC1/˙ .t; 0/ we have a condition of the form (2.13) that satisfies (2.15) (i 2 I ,
j 2 IinfNig).

In the following corollary, which follows from Theorem 3.1, we present a
method to stabilize the isothermal Euler equations on a fan-shaped network with
the coupling conditions (5.10), (5.11), (5.13) and (5.14) locally around a given
stationary subcritical state.

Corollary 5.1. Consider the Euler equations (5.1), (5.2) on a fan-shaped network
with the coupling conditions (5.10), (5.11), (5.13), (5.14). Let a stationary subcriti-
cal C1-state . N�.i;j /.x/; Nq.i;j /.x// be given (i 2 I , j 2 Ii ). Let a finite time T > 0 be
given. For a nonstationary state .�.i;j /.t; x/; q.i;j /.t; x// as in (5.4), (5.5) with the
characteristic variables u.i;j /˙ .t; x/ consider the system (2.2) on Œ0; T � � Œ0; L.i;j /�

with 	.i;j /˙ ,  .i;j /˙ , f .i;j /

˙ and g.i;j /˙ as in (5.6)–(5.9). Then there exist C1-functions
�.i/ and „.i;j / with (2.14) and (2.15) (i 2 I , j 2 IinfNig) such that in terms of
u.i;j /˙ the conditions (5.10), (5.11), (5.13), (5.14) can be written as (2.12), (2.13).

Let a real number "0 > 0 be given. Define �.i;j /, h.i;j /˙ , U .i;j /

˙ and V .i;j /

˙ as
in (3.1), (3.2), (3.8), (3.9) and assume that (3.10) holds. Choose constants k.i;j / 2
.�1; 1/ and A.i;j /˙ > 0 such that (3.13)–(3.16) are satisfied with ˛.i;j /, ˇ.i;j / as
in (3.11), (3.12). Assume that (3.17) holds. Choose "1 2 .0; "0� that satisfies (3.19)
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and (3.20) with �.i;j /f D 1
2
, �.i;j /g D �

4
and �.i;j / as in (3.18). Define � > 0 as

in (3.21).
Then there exists "2 2 .0; "1� such that the following statements hold true:

Assume that for u.i;j /˙ we have initial conditions (3.7) with C1-functions �.i;j /˙ that
satisfy (3.22) and the C1-compatibility conditions at the nodes of the network. If we
apply the feedback controls (3.6) at the nodes i; j (i 2 I , j 2 Ii ), then there exists
a unique C1-solution .u.i;j /C ; u.i;j /� / on Œ0; L.i;j /� � Œ0; T � that satisfies (3.23) and
such that the state .�.i;j /; q.i;j // as in (5.4), (5.5) is subcritical. For this solution the
network Lyapunov functionE!.t/ as in (3.5) with E.i;j /

˙ .t/ from (3.3), (3.4) satisfies
(t 2 Œ0; T �)

E!.t/ � E!.0/ exp.��t/: (5.15)

Remark 5.2. Due to (5.4) and (5.5), the nonstationary density �.i;j / and mass flux
q.i;j / tend to the stationary state N�.i;j / and Nq.i;j / if u.i;j /˙ tend to zero. Hence,
Corollary 5.1 presents a method to stabilize the gas flow locally around a given
stationary state . N�.i;j /; Nq.i;j // on a fan-shaped pipe network.

For i 2 I , j 2 IinfNig, at the end x D L.i;j / of pipe i; j the feedback
control (3.6) can be maintained by the compressor connecting pipe i; j and pipe
i; j C 1. For i 2 I , j D Ni , at the end x D L.i;Ni / of pipe i; Ni the feedback
control can be maintained by the gas producer or consumer. In (3.6) the feedback
controls are given in terms of the characteristic variables u.i;j /˙ . For a discussion how
the feedback laws can be written in terms of the physical variables �.i;j / and q.i;j /

see [9, 11, 20].
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Abstract The sorting of biological cells using biological micro-electro-mechanical
systems (BioMEMS) is of utmost importance in various biomedical applications.
Here, we consider a new type of devices featuring surface acoustic wave (SAW)
actuated cell sorting in microfluidic separation channels. The SAWs are generated
by an interdigital transducer (IDT) and manipulate the fluid flow such that cells
of different type leave the channel through designated outflow boundaries. The
operation of the device can be formulated as an optimal control problem where
the objective functional is of tracking type, the state equations describe the fluid-
structure interaction between the carrier fluid and the cells, and the control is the
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1 Introduction

We consider the optimal control of surface acoustic wave (SAW) actuated high
throughput sorting of biological cells in microfluidic channels which has significant
applications in basic cell biology, cancer research, clinical diagnostics, drug design
in pharmacology, tissue engineering in reproductive medicine, and transplantation
immunology [3, 4, 9, 13, 14].

According to [5], the experimental setup consists of a separation channel with
three inlets and two outlets. The cells are injected through the middle inlet on the
left and can be focused by the inflows through the other two inlets. SAWs are
generated by an Interdigital Transducer (IDT) close to the lateral wall. The IDT
features fingers substantially parallel to one another. A static electric field is applied
to generate a strain which varies across the aperture of the IDT. The electric field
is either perpendicular or parallel to the fingers and created by applying an AC
voltage between two correspondingly positioned conductors. If the IDT is active,
the SAWs enter the fluid filled channel and lead to a distortion of the fluid flow. Let
us assume that we have cells of type A and B such that cells of type A should leave
the channel through the lower outlet, whereas cells of type B are supposed to leave
the channel through the upper outlet. Cells of different type can be distinguished by
fluorescence. Without SAW actuation, the inflow velocities are tuned in such a way
that a cell of type A leaves through the lower outlet. However, if a cell of type B is
detected, the IDT is switched on and the flow is manipulated such that the cell leaves
through the upper outlet (cf. Fig. 1). In an optimal control setting, the objective is

Fig. 1 Surface acoustic wave actuated cell sorting (SAWACS) in a microfluidic channel: without
SAW actuation (top) and with SAW actuation (bottom) (Taken from [7])
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to achieve the sorting as described above, the state equations are given by the fluid-
structure interaction between the carrier fluid and the cells, and the control is the
time-dependent power applied to the IDT.

For the mathematical modeling and numerical simulation of the fluid-structure
interaction between the carrier fluid and the cells we will use the finite element
immersed boundary (FE-IB) method [1, 2, 6] which is the finite element version
of the classical immersed boundary (IB) method originally developed by Peskin
(cf., e.g., [11, 12]). The FE-IB method relies on the variational formulation of a
coupled system of partial differential equations consisting of the incompressible
Navier-Stokes equations and the equations of motion of the boundaries of the
immersed cells. As far as the spatial discretization is concerned, we use Taylor-
Hood P2/P1 elements for the Navier-Stokes equations and periodic cubic splines
for the equations of motion of the immersed boundaries. The discretization in time
is taken care of by the backward Euler scheme for the semi-discretized Navier-
Stokes equations and the forward Euler scheme for the semi-discretized equations
of motion. This results in a semi-implicit scheme (Backward Euler/Forward Euler
FE-IB method) which has to satisfy a CFL-type condition for stability reasons. We
consider a control constrained optimal control problem for the fully discretized FE-
IB method featuring an objective functional of tracking type where we prescribe
desired positions of the immersed cells. Based on the necessary optimality condi-
tions, the optimal control problem is solved by a projected gradient method with
Armijo line search. Numerical results illustrate the performance of the suggested
optimal control approach.

2 The Finite Element Immersed Boundary Method

The IB method comprises three groups of equations:

• The Navier-Stokes equations describing the motion of the incompressible viscous
carrier fluid,

• The material elasticity equations responsible for the total elastic energy and the
resulting forces exerted by the immersed cells,

• The interaction equations translating Eulerian into Lagrangian quantities and vice
versa.

We denote by � � R
2 the Eulerian domain representing the separation channel

wit boundary � D �D [ �N; �D \ �N D ;; and by v.x; t/; p.x; t/ the velocity
and the pressure of the carrier fluid in .x; t/ 2 � � Œ0; T �; T > 0. We further
refer to ƒ D Œ0; L� � R as the Lagrangian domain such that the vector valued
function X.	; t/; 	 2 ƒ; represents the closed, non self-intersecting boundary of an
immersed cell at time t 2 Œ0; T �, T > 0.

The classical formulation of the IB equations then reads as follows: Find a triple
.v; p;X/ such that the incompressible Navier-Stokes equations
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�

�
@v
@t

C .v � r/v
�

� 2 �r � D.v/C rp D fE in � � .0; T � (2.1a)

r � v D 0 in � � .0; T � (2.1b)

v D vD on �D � .0; T � (2.1c)

.�p I C 2 �D.v// � D 0 on �N � .0; T � (2.1d)

v. � ; 0/ D v0 in � (2.1e)

are satisfied. Here, � and � are the density and viscosity of the carrier fluid, D.v/
stands for the rate of deformation tensor D.v/ D .rv C .rv/T /=2, fE is a source
term that will be specified in (2.3a) below, vD is a prescribed velocity, � denotes the
exterior unit normal vector on the Neumann boundary�N, and v0 refers to the initial
velocity. The Navier-Stokes equations are coupled with the equations of motion of
the immersed boundary

@X
@t
.	; t/ D v.X.	; t/; t/ D

Z
�

v.x; t/ � ı.X.	; t/� x/ dx; (2.2a)

X.	; 0/ D X0.	/; (2.2b)

where ı stands for the Dirac delta function and X0 is the initial configuration of
the immersed boundary. The source term fE in (2.1a) is a global force density
according to

fE.x; t/ D
Z
ƒ

FL.	; t/ � ı.X.	; t/ � x/ d	; (2.3a)

FL.	; t/ D � E 0.X. � ; t//.	/; (2.3b)

whereE 0 is the variational derivative of the elastic energy of the immersed boundary
as given by

E.t/ WD E.X. � ; t// WD
Z
ƒ

Ee
�@X.	; t/

@	

�
d	C

Z
ƒ

Eb
�@2X.	; t/

@	2

�
d	: (2.4a)

Here, Ee and Eb stand for the local energy densities

Ee
�@X.	; t/

@	

�
D �e

2

�ˇ̌
ˇ@X
@	
.	; t/

ˇ̌
ˇ2 � 1

�
;

Eb
�@2X.	; t/

@	2

�
D �b

2

ˇ̌
ˇ@2X
@	2

.	; t/
ˇ̌
ˇ2;

with �e > 0 and �b > 0 denoting the elasticity coefficients for elongation-
compression and bending.
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The FE-IB method relies on the variational formulation of the coupled system.
We introduce the function spaces

V.0; T / WD H1..0; T /;H�1.�// \ L2..0; T /;H1.�//;

W.0; T / WD fv 2 V.0; T / j vj�D�.0;T / D vDg;
Q.0; T / WD L2..0; T /; L2.�//;

and

X.0; T / WD H1..0; T /;L2.ƒ//\ L2..0; T /;H3
per.ƒ//;

H3
per.ƒ/ WD fY 2 H3.ƒ/ j @kY.0/=@	k D @kY.L/=@	k; k D 0; 1; 2g:

The FE-IB method amounts to the computation of a triple

.v; p;X/ 2 W.0; T / �Q.0; T / � X.0; T /

such that for almost all t 2 Œ0; T � and all test functions .w; q;Y/ 2 H1
�D;0

.�/ �
L2.�/ � H3

per.ƒ/ it holds

D@v
@t
;w
E
H�1;H1

�D ;0

C a.v;w/� b.w; p/ D `.w/; (2.5a)

b.v; q/ D 0 (2.5b)

v. � ; 0/ D v0; (2.5c)
�@X
@t
;Y
�
0;ƒ

�
Z
ƒ

v.X.	; t/; t/ � Y.	/ d	 D 0; (2.5d)

X. � ; 0/ D X0; (2.5e)

where h � ; � iH�1;H1
0

stands for the dual pairing between H1
0.�/ and H�1�D;0

.�/ and
a. � ; � /; b. � ; � /, as well as the functional `. � / are given by

a.v;w/ WD .�.v � r/v;w/0;� C .�rv;rw/0;� (2.6a)

b.p; v/ WD .p;r � v/0;� ; `.w/ WD hfE;wiH�1;H1
0
: (2.6b)

For the numerical solution of (2.5) we use Taylor-Hood P2/P1 elements for the
spatial discretization of (2.5a)–(2.5c) with respect to a quasi-uniform simplicial
triangulation Th.�/ of � that aligns with the partition of � and periodic cubic
splines for the spatial discretization of (2.5d), (2.5e) with respect to an equidistant
partition

T�	.ƒ/ WD f0 D 	0 < 	1 < � � � < 	R D Lg
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ofƒ into subintervalsƒr WD Œ	r�1; 	r �, 1 � r � R, of length�	 D L=R. We note
that the discrete immersed cell occupies subdomains B�	;t � � with boundaries
@B�	;t that are C2 curves described by the periodic cubic spline.

We introduce the finite element spaces

Vh WD fv 2 C0.�/
ˇ̌

vjT 2 P2.T / ; T 2 Th.�/g
V�D;h WD fvh 2 Vh

ˇ̌
vhj�D D vh;Dg

V0;h WD fvh 2 Vh

ˇ̌
vhj�D D 0g

Qh WD fq 2 L2.�/ ˇ̌ qjT 2 P1.T / ; T 2 Th.�/g;

where vh;D is a piecewise polynomial approximation of vD, and

S�	 WD fX�	 2 C2.ƒ/
ˇ̌

X�	jƒr 2 P3.ƒr/ ; 1 � r � R;

dkX�	=d	k.	0/ D dkX�	=d	k.	R/ ; k D 0; 1; 2g:

The semi-discretization of (2.5) in space requires the computation of a triple

.vh; ph;X�	/ 2 C1..0; T /;V�D;h/ � L2..0; T /;Qh/ � C1..0; T /;S�	/

such that for all t 2 Œ0; T � and all test functions wh 2 V0;h; qh 2 Qh; and Y�	 2 S�	
it holds

�@vh
@t
;wh

�
0;�

C a.vh;wh/� b.wh; ph/ D `.wh/; (2.7a)

b.vh; qh/ D 0 (2.7b)

vh. � ; 0/ D …hv0; (2.7c)
�@X�	

@t
;Y�	

�
0;ƒ

�
Z
ƒ

vh.X�	.	; t/; t/ � Y�	.	/ d	 D 0; (2.7d)

X�	. � ; 0/ D …�	X0; (2.7e)

where…h and …�	 are the L2-projections onto Vh and S�	, respectively.
For the algebraic formulation of (2.7) we equip V0;h,Qh, and S�	 with canonical

bases fi gN1iD1, f i gN2iD1, and fBigN3iD1. Accordingly, we write

vh D
N1X
iD1

vi i ; ph D
N2X
iD1

pi  i ; X�	 D
N3X
iD1

Xi Bi :

Here, the Bi are the B-splines with respect to the partition T�	.ƒ/ andX1; : : : ; XN3
are the de Boor points. As an important assumption we state that the Lagrangian
force density FL gets discretized by means of fBi g as well in order to gain
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a useful transpose property (see (2.8a) below). Furthermore, we denote by ML

and ME the Lagrangian and the Eulerian mass matrix, respectively, by C.v/ the
advection matrix, by A the stiffness matrix, by B the matrix associated with
the divergence operator, and by K.X/ 2 R

N1�N3 the matrix with componentsR
ƒ
i .X�	.	// � Bj .	/ d	. We assume that all (Eulerian) matrices and right-hand

sides are manipulated appropriately in order to enforce the Dirichlet conditions
from (2.1c). Then the algebraic formulation of (2.7) reads: Find .v; p;X/ W Œ0; T � !
R
N1 � R

N2 � R
N3 , such that for almost all t 2 Œ0; T �

ME

dv

dt
.t/C C.v.t// v.t/C A v.t/C B>p.t/ D K.X.t//>FL.X.t// (2.8a)

B v.t/ D 0 ; (2.8b)

N1X
iD1

vi .0/i D …hv0; (2.8c)

ML

dX

dt
.t/ D K.X.t// v.t/; (2.8d)

N3X
iD1

Xi .0/Bi D …�	X0: (2.8e)

3 The Semi-implicit Backward Euler/Forward Euler FE-IB
Method

For the discretization in time we first consider the Backward Euler/Forward Euler
FE-IB method from [6] in the sense that we discretize the Navier-Stokes equations
by the backward Euler method in time and the equation of motion of the immersed
boundary by the forward Euler scheme. In particular, we consider an equidistant
partition

T�t WD f0 DW t0 < t1 < � � � < tM WD T g; M 2 N;

of the time interval Œ0; T � into subintervals of length�t WD T=M and set

v.m/h WD vh. � ; tm/; p
.m/

h WD ph. � ; tm/; X.m/

�	 WD X�	. � ; tm/:

We refer to

DC�tv
.m/

h WD .v.mC1/h � v.m/h /=�t; D��tv
.m/

h WD .v.m/h � v.m�1/h /=�t
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as the forward and backward difference operator. We further define the total discrete
energy by means of

E�	.tm/ WD Ee
�	.tm/C Eb

�	.tm/;

where the discrete elastic energyEe
�	.tm/ and the discrete bending energyEb

�	.tm/

are given by

Ee
�	.tm/ D �e

2

Z
ƒ

�ˇ̌
ˇ@X.m/

�	

@	
.	/
ˇ̌
ˇ2 � 1

�
d	

Eb
�	.tm/ D �b

2

RX
rD1

Z
ƒr

ˇ̌
ˇ@
2X.m/

�	

@	2
.	/
ˇ̌
ˇ2 d	 :

Observing that @3X.m/

�	 .	/=@	
3 is constant onƒr , the discrete force density takes the

form

.F.m/L;�	;wh.X
.m/

�	 //0;ƒ D ��e

Z
ƒ

@X.m/

�	 .	/

@	
� rwh.X

.m/

�	 .	//
@X.m/

�	

@	
d	

C �b

RX
rD1

@3X.m/

�	

@	3

ˇ̌
ˇ
ƒr

�
Z
ƒr

rwh.X
.m/

�	 .	//
@X.m/

�	

@	
d	 : (3.1)

The Backward Euler/Forward Euler FE-IB reads as follows:
Given v.0/h D …hv0 and X0;�	 D X.0/

�	 D …�	X0, for m D 0; : : : ;M � 1 we
perform the following two steps (cf. [6]):

Algorithm 3.1.

(i) Compute .v.mC1/h ; p
.mC1/
h / 2 Vh;�D �Qh such that for all wh 2 Vh;0

.�DC�tv
.m/

h ;wh/0;� C a.v.mC1/h ;wh/� b.p
.mC1/
h ;wh/ D `

.m/

h .wh/; (3.2a)

b.wh; v
.mC1/
h / D 0; (3.2b)

where `.m/h .wh/ WD .FL;�	;wh.X
.m/

�	 //0;ƒ is given by (3.1).

(ii) Compute X.mC1/
�	 2 S�	 according to

DC�tX
.m/

�	 D v.mC1/h .X.m/

�	 /: (3.3)

Referring to @B.m/

�	 as the boundary of the immersed cell at time tm which consists

of C2-segments @B.m;r/

�	 connecting material points X.m/

�	 .	r�1/ and X.m/

�;	.	r /; 1 �
r � R, one can deduce the estimate
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krv.mC1/h k2
0;@B

.m/
�	

� Ccell h
�1krv.mC1/h k20;� (3.4)

with a positive constantCcell depending on the triangulation Th.�/ (see (3.8) in [7]).
A stability analysis reveals that the Backward Euler/Forward Euler FE-IB requires
the CFL-type condition (cf. Theorem 3.1 in [7])

�t

h
� �

8Ccell .�eƒ1 C �eƒ2/
; (3.5)

whereƒ1 and ƒ2 are given by

ƒ1 WD max
0�m�M max

	2ƒ

ˇ̌
ˇ̌
ˇ
@X.m/

�	

@	

ˇ̌
ˇ̌
ˇ ; ƒ2 WD max

0�m�M max
1�r�R

ˇ̌
ˇ̌
ˇ
@3X.m/

�	

@	3
jƒr
ˇ̌
ˇ̌
ˇ :

The CFL-condition (3.5) for the semi-implicit scheme means a restriction of the
time-step size �t in particular depending on the amount of deformation of the
immersed membrane as reflected by the quantities ƒ1 and ƒ2. For problems
characterized by large values of ƒ1 and ƒ2, the time increments need to be chosen
very small, leading to a high computational effort. As a remedy, a fully implicit
time-stepping scheme can be used based on the application of the backward Euler
scheme in time for both the Navier-Stokes equations and the equation of motion
of the immersed boundary. This Backward Euler/Backward Euler FE-IB method is
unconditionally stable at the expense that at each time-step a nonlinear algebraic
system has to be solved. We refer to [10] for details including a predictor-corrector
continuation strategy featuring an adaptive choice of the time-step size.

4 Optimal Control of the Surface Acoustic Wave Actuated
Cell Sorting

In this section, following the strategy ‘discretize first, then optimize’, we will
formulate the optimal control problem for the surface acoustic wave actuated
cell sorting. The objective is to steer the immersed cells to desired positions by
controlling the electric power applied to the IDT. The semi-implicit Backward
Euler/Forward Euler FE-IB method from Sect. 3 serves as the state constraints.
For z WD .v; p;X/, consider the following optimal control problem

8̂
<
:̂

min
z2Z;u2U J.z; u/

s.t. S.z/ D b.u/

u 2 Uad

(4.1)
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The objective functional J is given by

J.z; u/ WD J.XŒ1�; XŒ2�/ WD
2X
iD1

1

2

���X.M.i//

Œi �;�	 � Xdes
Œi �;�	

���2
0;ƒ

; (4.2)

where 1 � i � 2 are the cell indices of two different biological cells and the
functions Xdes

Œi �;�	 2 S�	.ƒ/ mark desired final positions close to the respective
outflow boundaries. The time instants tM.i/ are chosen such that the x1-components
of barycenters of the immersed cells XŒi �;�	.ƒ; t/ and Xdes

Œi �;�	.ƒ/ coincide. The state
operator S reads

S.z/ WD

0
BBBBB@

v0 � v.0/

.ME C�t A/ v.m/ C�tB>p.m/ ��t fE.X.m�1//�ME v.m�1/
B v.m/

X0 �X.0/

MLX
.m/ �MLX

.m�1/ ��t K.X.m�1// v.m/

1
CCCCCA

and

b.u/ D .0;�t g.u.m�1//; 0; 0; 0/>; 1 � m � M:

The volume force term g.u.m// 2 R
N1 comprises components

g.u.m//i WD
Z
�

fvol.u
.m// �i dx ; 1 � i � N1 ;

where the volume force density fvol generated by the IDT is given by

fvol.u
.m//.x/ WD

(
.0; ˇ u.m/ e.�.x2�y0/=d/ k.x1; x0;D//> ; x 2 !
0 ; x 2 � n !

k.x; x0;D/ D sin2.2.x � x0/=D/

.2.x � x0/=D/2
:

Here, ! � � denotes the subdomain where the SAW is effective, ˇ stands for
a transmission coefficient, d for the decay length, .x0; y0/> refers to the center
position of the segment at the lower lateral boundary where the SAWs enter the
domain, and D=2 is the half width of this segment (marked green in Fig. 2 below).
The function k is known as a Kirchhoff function and describes the refraction pattern
of the SAW intensity.

We define the set of admissible controls by

Uad WD fu 2 U WD R
M ˇ̌

umin � u.m/ � umax ; 1 � m � Mg ; (4.3)
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D/2

Fig. 2 Paths of two different cells under the influence of the computed optimal control. The
desired positions are depicted in magenta

where the control u.m/ is the power applied to the IDT at time tm and umin, umax 2
R

M are given bounds. As numerical optimization scheme we use the well-known
projected gradient with Armijo line search (see, e.g., [8]). To this end, we introduce
the reduced objective functional

Jred.u/ WD J.z.u/; u/ ;

where z.u/ D .v.u/; p.u/; X.u// is the solution to S.z/ D b.u/. Then problem (4.1)
can be reformulated as the state-reduced optimal control problem

(
min

u2RM
Jred.u/

s.t. u 2 Uad

(4.4)

being equivalent to (4.1). Problem (4.4) can be solved by the following scheme
where…Uad denotes the projection operator onto the admissible set:

Algorithm 4.1.

(o) Let u0 and a tolerance " > 0 be given.
for k = 0,1,2, ...

(i) Compute the descent direction dk D �rJred.uk/ via adjoint approach.
(ii) If k…Uad.uk C dk/ � ukk < ", stop: u� WD uk.

(iii) Compute a step length ˛k by Armijo line search.
(iv) Update ukC1 D uk C ˛k dk, project it onto Uad and go back to (i).

The computationally most challenging part is the evaluation of rJred.uk/ which is
taken care of by the adjoint approach:
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For the optimization problem (4.1) we consider the Lagrangian

L.z; u; 	/ D J.z; u/ C 	>.S.z/� b.u// ; L W Z � U � Y ! R :

The associated state equations and adjoint state equations are

0 D r	L D S.z.u//� b.u/ (4.5a)

0 D rzL D rzJ.z.u/; u/C S 0.z.u//>	.u/ : (4.5b)

Lemma 4.2. Assume that S.z/ D b.u/ has a unique solution z.u/, 8u 2 U , and
that 	.u/ 2 Y is the unique solution to (4.5b). Moreover assume that the mappings
.z; u/ 7! J.z; u/, z 7! S.z/, u 7! z.u/, and u 7! b.u/ are Fréchet-differentiable.
Then there holds

rJred.u/ D ruL.z.u/; u; 	.u// : (4.6)

Proof. By the chain rule we get rJred.u/ D rz.u/rzJ.z; u/C ruJ.z; u/, whence

rJred.u/� ruJ.z.u/; u/ D �rz.u/ S 0.z/>	.u/ D �rb.u/ 	.u/:

ut
In more detail, one has to perform the following steps to compute the reduced
gradient rJred.uk/ (for notational simplicity, only one cell is considered):

Algorithm 4.3.

(i) Compute the state .vk; pk;Xk/ WD .v.uk/; p.uk/; X.uk//:
v.0/k WD v0, X

.0/

k WD X0 and for 1 � m � M

.ME C�t A/ v.m/k C�t B>p.m/k D �t
�
fE.X

.m�1/
k /C g.u.m�1/k /

�

CME v.m�1/k

B v.m/k D 0

MLX
.m/

k D MLX
.m�1/
k C�t K.X

.m�1/
k / v.m/k :

(ii) Compute the adjoint state .wk; qk; Yk/ WD .w.uk/; q.uk/; Y.uk// backward in
time: w.M/

k WD 0, Y .M/

k WD Xdes � X.M/ and for M � 1 	 m 	 1

MLY
.m/

k D MLY
.mC1/
k C�t

�
f 0E.X

.m/

k />w.mC1/k

C .K 0.X.m/

k /v.mC1/k />Y .mC1/k


:
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.ME C�t A/w.m/k C�t B>q.m/k D �t K.X
.m�1/
k />Y .m/k CME w.mC1/k

B w.m/k D 0

(iii) Set rJred.uk/ WD @J.zk; uk/=@u C�t
PM�1

mD1 .w
.m/

k />r>g.u.m�1/k /.

The derivatives showing up in the adjoint system represent the nontrivial terms
of the adjoint operator S 0.z.u//> from (4.5b). Let us now state the optimality
conditions associated with (4.1).

Theorem 4.4 (Necessary optimality conditions). Assume the set Uad is given
by (4.3) and the assumptions from Lemma 4.2 are fulfilled. Then there exists an
optimal solution .z�; u�/ to (4.1) with associated Lagrange multiplier 	� such that:
.z�; u�/ solves (4.5a), 	� solves (4.5b) and

�rJred.u
�/
�
i

8<
:

� 0 ; u�i D umax
i

D 0 ; umin
i < u�i < umax

i

	 0 ; u�i D umin
i

: (4.7)

Proof. In case of box constraints, the optimality condition for (4.4), namely
.rJred.u�/; u � u�/ 	 0, 8u 2 Uad, can be characterized by (4.7). ut

Condition (4.7) can be written in short form as…Uad.u
�� rJred.u�// D u�. This

justifies the termination criterion from Algorithm 4.1, step (ii).

5 Numerical Results

As a numerical example, we consider the sorting scenario ‘up – down’, meaning that
the first cell (i D 1) is supposed to take the upper outflow channel and the second
cell (i D 2) the lower one.

The separation channel � is shown in Fig. 2 featuring three inflow boundaries
at the left and two outflow boundaries at the right. The main part has a length of
300�m and a width of 180�m. The maximal inflow velocities v.left/

in ; v.top/
in ; and

v.bottom/
in have been chosen according to

v.left/
in D 10 mm=s; v.top/

in D 12:5 mm=s; v.bottom/
in D 10 mm=s;

guaranteeing that without SAW actuation a cell leaves the channel through the lower
outflow boundary. As the density � and the dynamic viscosity � we have chosen

� D 1;000 kg=m3; � D 7:0 mPa � s
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Fig. 3 Evolution of the controls uk arising in the optimization algorithm

Table 1 Decrease of the reduced objective functional Jred.uk/ as a function of the iteration step k
of the optimization algorithm

Iteration k 0 1 5 10 15

Jred.uk/ 8.18eC01 2.53eC00 1.42eC00 1.09eC00 9.40e�01

both for the carrier fluid and the fluid enclosed by the membrane of the two cells. We
note that in practice this can be achieved using density and viscosity matching by
adding suitable chemicals to the carrier fluid. We have considered initially spherical
cells of diameter 16�m and moduli

�e D 5:0 � 10�5 N/m; �b D 1:0 � 10�16 Nm:

The sorting task is complicated by setting the initial distance between the cells to
25�m only. For the spatial discretization of the Navier-Stokes equations we have
used a finite element mesh with mesh size h D 7:5 �m, whereas for the spatial
discretization of the equations of motion of the immersed boundaries we have used
a partition of ƒ with �	 D 3:6 �m. The time-step size �t in the semi-implicit
Backward Euler/Forward Euler FE-IB method has been chosen according to �t D
1=100ms making sure that the CFL-condition (3.5) is satisfied.

Figure 2 shows the computed paths of the cells in the separation channel along
with their designated positions at final time, whereas Fig. 3 displays the computed
controls of the projected gradient method.

Finally, Table 1 reflects the decrease of the reduced objective functional Jred.uk/
as a function of the iteration step k of the optimization algorithm.
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Conclusions
We have presented an optimal control approach to the sorting of different
biological cells by surface acoustic wave (SAW) manipulated fluid flow in
a microfluidic separation channel. The mathematical modeling and numerical
simulation of the fluid-structure interaction has been taken care of by the finite
element immersed boundary (FE-IB) method. The feasibility of the approach
has been documented by numerical results.
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Real-Time PDE Constrained Optimal
Control of a Periodic Multicomponent
Separation Process
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and Andreas Potschka

Abstract We present a case study for a ternary separation process, for which
structural and aleatoric model uncertainty must be taken into account. For the first
time, we apply the control strategy of Modifier Adaptation to a PDE constrained
optimization problem with challenging switched periodic boundary conditions in
time. Numerically, real-time feasibility of the control scheme is possible by the
use of a direct one-shot optimization method, whose efficiency is based on a two-
grid Newton-Picard approach. We demonstrate real-time feasibility for a virtual
plant with experimentally determined isotherm parameters under reasonable model-
plant mismatch conditions. As a result, it is possible to drive the plant into its true
optimum, i.e. to increase the productivity of the plant by 100 and 35 % in the two
scenarios considered here.

Keywords Real-time control • PDE constrained optimization • Time-periodic
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1 Introduction

Advanced model-based control strategies are widely used in the chemical industry
for the efficient and safe production of oil-based bulk chemicals. This trend has
not reached biotechnological processes nor the production of fine chemicals yet
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due to two reasons: On the one hand, developing suitable models for small scale
productions or complex biological systems may not pay off. On the other hand,
the complexity of accurate models for those processes is high and their range of
validity is often small. Additionally, the resulting mathematical problems require
highly sophisticated algorithms to deal with the numerical challenges of large-scale
nonlinear dynamic optimization problems with usually nonconvex feasible regions
of small size.

In practice, the complexity of such models necessitates a trade-off between
accuracy and computation time, especially when the models are applied within
model based controllers. Thus, we need to address the issue of model uncertainty.
One of the most successful and versatile approaches to optimization in the presence
of uncertainty is feedback control (see [8]): On the basis of partial, but repeated
measurements of state variables, we can estimate the system state and adapt model
parameters. However, one needs to take special care that the optimization based
upon this adapted model results in the optimum of the plant. The optimum of the
model can be substantially suboptimal or infeasible for the true plant. A significant
difference between the optimum of the updated model and the plant might occur if
the mathematical structure of the model cannot describe the true behaviour.

In this article, we apply the method of Modifier Adaptation [16] for the first
time to the case of PDE constrained optimization problems of a continuous process.
In a nutshell, Modifier Adaptation is an iterative learning strategy to compensate
structural model mismatches by fitting a Taylor expansion of an error model
that augments the process model to physical measurements of the objective and
constraint functions. We investigate a novel multicomponent separation process
called Multi-Column Solvent Gradient Purification (MCSGP) [22], which is a
highly complex process from the class of chromatographic separation processes
used in the chemical industries. For the MCSGP process, it is possible to perform
Modifier Adaptation based on desorbent consumption and purity measurements.

In order to apply the concept of Modifier Adaptation, we need to solve sequences
of nonlinear, time-periodic, parabolic PDE constrained optimization subproblems.
We demonstrate that a direct optimization method based on two-grid Newton-
Picard inexact Sequential Quadratic Programming [19] can be employed to effi-
ciently and reliably solve the resulting subproblems without the need to formulate
adjoint equations and optimality conditions by hand. Finally, we present numerical
results for several scenarios of an MCSGP process with experimental isotherm
data.

2 Application Example

The MCSGP process is a continuous periodic adsorption process which is used to
separate three or more components within a liquid mixture. We describe the basic
principle of batch chromatography for a single column, its main drawback, and how
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the MCSGP overcomes this drawback by means of complex, periodically switched
interconnections between several chromatographic columns.

2.1 The Chromatographic Principle

Chromatography is a tool to separate mixtures into their compounds at mild
physical conditions. Chromatographic separations are based on different affinities
of the single compounds of the (usually liquid) mixture to a second (mostly
solid) stationary phase. The latter one is usually fixed in a column in form of a
packing with porous particles. A desorbent, the so-called mobile phase, together
with the stationary phase represent the thermodynamic two phase system in which
the substances to be separated interact. To perform the separation the column
is continuously flushed with desorbent and a certain amount of the mixture is
injected for a defined period of time at the inflow port of the column. The specific
interactions of the components of the mixture with the solid bed result in specific
residence times and the compounds leave the column at different points in time.
Compared to the initial composition of the mixture, the single components are
now separated, but diluted in the mobile phase. This is the economic drawback
of this method as a separation technique in chemicals production, because the final
product usually should not include the mobile phase, so it has to be removed in
a second step. Using as little mobile phase as possible is one economic goal of
applying advanced control strategies to chromatographic separations. The operation
mode described above, either collecting (preparative chromatography) or analyzing
(analytic chromatography) the different fractions that are obtained at the end of the
column, is called batch chromatography and is the most often used operation mode.

For large scale applications of chromatography and minimal product dilution and
eluent consumption also continuous operating modes have been developed (see [21]
for an overview). One strategy to overcome the batch characteristics is to connect
different columns to a more complicated switched superstructure. For separations of
two substances the so-called Simulated Moving Bed process realizes this strategy
by implementing a quasi counter flow of the solid and mobile phase. Optimizing
control of batch and SMB chromatography is discussed in [24]. The novel MCSGP
process can be used for separations of more than two substances and is in the focus
of this study.

2.2 Continuous MCSGP: The Chromatographic Column
as a Building Block

In batch chromatography with three substances, the following five fractions will
successively leave the column at the outlet port: Lightly adsorbing compound L,
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Fig. 1 Schematic of the MCSGP column interconnection. The columns in the bottom row are
operated in batch mode (stand alone elution), while the columns in the top row are connected with
two other columns (counter current mode)

product P contaminated with L, pure product P, product P contaminated with
strongly adsorbing compound H, and finally pure H.

In the MCSGP process six columns, each corresponding to one zone, are
interconnected according to Fig. 1. The columns connected in series perform a
purification of the mixed fractions P/H and L/P so that the fractions L, P and H
containing nearly pure substance leave the process. After each switching period
the inlet and outlet ports of each column are switched in a way that simulates a
movement of each column by one position to the left. Column one moves virtually
to position six. In each zone – and this is one of the benefits compared to batch
seperation – a different mobile phase composition can be applied. Thus, in each
zone the adsorption behavior can be adapted corresponding to the separation task of
that specific zone.

3 Problem Formulation

This section deals with the mathematical modeling of the MCSGP optimization
problem based on the chromatographic column model and the MCSGP switching
structure.

3.1 Chromatographic Column Model

For the mathematical model of the chromatographic columns, we assume that radial
variations of the concentrations are negligible, thus giving rise to a system of 1D
PDEs. Furthermore, we assume that the dynamics in the column are dominated by
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an advective term modeled assuming plug flow and a dispersive term following
Fick’s first law of diffusion. We assume a lumped film mass transfer between bulk
and stationary phase. Because the adsorption dynamics take place on a much faster
time scale than the other phenomena, we assume that the adsorption is always in
equilibrium and can thus be described by algebraic isotherm equations.

Each column is of length L and represented by the computational domain � D
.0; L/. For the states we use a standard space for solutions of parabolic PDEs (see,
e.g., [25])

W.0; T / D fy 2 L2.0; T IH1.�// j @y
@t

2 L2.0; T I .H1.�//�/g;

which ensures existence of the appropriate traces in space and time. With the
constants described in Table 1, the bulk phase concentrations ci 2 W.0; T / and
the stationary phase concentrations qi 2 W.0; T / of the species i D 1; : : : ; nspecies

satisfy the coupled system of PDEs

@ci

@t
D �v

@ci

@x
C vL

Pe

@2ci

@x2
� 1 � �

�

@qi

@t
; (1a)

@qi

@t
D keff;i

6

dp

�
q

eq
i .c1; : : : ; cnspecies/ � qi

�
; (1b)

subject to the boundary conditions

@ci

@x
.t; 0/ D Pe

L
Œcin;i .t/ � c.t; 0/� ;

@ci

@x
.t; L/ D 0: (1c)

Table 1 Dynamic parameters of a chromatographic column

Symbol Description Value Unit

A Cross-sectional area 4.91 cm2

cfeed;i .t / Feed concentration Uncertain g=cm3

cin;i .t / Inflow concentration See Table 2 g=cm3

� Void fraction 0.52 –

� Dynamic viscosity 1:2 � 10�2 g=(cm s)

dp Particle diameter 0.0016 cm

L Column length 25 cm

Pe Péclet number Pe D L
�dp

�
1
5
C 11

1000
Re0:48

�
–

Qin Inflow rate see Table 2 cm3=s

Qmin Minimum flow rate 30 cm3=s

Qmax Maximum flow rate 500 cm3=s

Re Reynolds number Re D vdp��=� –

� Fluid density 0.79 g=cm3

v Interstitial velocity v D Qin=.�A/ cm=s
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Table 2 The controlled pump flow rates generate the inflow rates in the corresponding MCSGP
zones with different inflow concentrations

Zone j Pump rate Inflow rate Qj
in Inflow concentration cjin;i

1 QDeH QDeH 0

2 QDe QDe 0

3 QDeP QDeP 0

4 QMo1 QDeCQMo1 c2i .t; L/Q
2
in=Q

4
in

5 QDeL QDeL cfeed;i .t /

6 QMo2 QDeCQMo1 CQMo2 c4i .t; L/Q
4
in=Q

6
in

Beside the stiffness, the difficulty of solving (1) lies in the coupling of all species by
the nonlinear Bi-Moreau isotherm (2a), which describes the total adsorption based
on two different adsorption mechanisms. A simplification is obtained by assuming
just one adsorption mechanism. (2a) then simplifies to the widely used Langmuir
type isotherms (2b).

q
eq
i .c1; : : : ; cnspecies/ D

2X
kD1

qki
bkici C lki.bkici /

2

1CPnspecies

jD1
�
2bkjcj C lkj.bkjcj /2

� : (2a)

q
eq
i .c1; : : : ; cnspecies/ D Hi

ci

1CPnspecies

iD1 ˇi ci
: (2b)

3.2 MCSGP Configuration and Switching

We now consider nzones D 6 zones consisting of one chromatographic column each,
and nspecies D 3 components, named H, P, L for i D 1; 2; 3 (compare Sect. 2.2). We
use the zone index j as a superscript to the corresponding states in (1).

The MCSGP process can be controlled by nzones pumps that generate the inflow
rates Qj

in for each zone j according to Table 2 (see also Fig. 1). We abbreviate the
controls and the free switching time T in the control vector

q D .QDeH;QDe;QDeP;QMo1;QDeL;QMo2; T /
T 2 R

nzonesC1:

The flow rate within each zone must satisfy the box constraints

Qmin � Q
j
in � Qmax; for j D 1; : : : ; nzones; (3a)

and the flow rates of the pumps must satisfy

q 	 0: (3b)
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After one period of length T the ports of the pumps are switched. To understand
the structure of the optimization problem, it suffices here to notice that there is a
zone index permutation  W f1; : : : ; nzonesg ! f1; : : : ; nzonesg such that the switched
periodic boundary condition

c
.j /
i .T; x/ D c

j
i .0; x/; q

.j /
i .T; x/ D q

j
i .0; x/; (4)

is satisfied for x 2 �; i D 1; : : : ; nspecies; j D 1; : : : ; nzones. In this article, the
permutation has the simple form .j / D j C 1 for j < nzones and .nzones/ D 1.

3.3 Optimization Problem

We collect all state variables cji ; q
j
i for i D 1; : : : ; 3; ; j D 1; : : : ; 6 in a vector s.

Our objective is to maximize the average productivity for product P and to penalize
the consumption of the mobile phase, which can be formulated as a weighted sum
minimization with weights w1;w2 	 0 of

J.q; s/ D �w1
1

T

Z T

0

QDeP

60
c32.t; L/dt

C w2.QDeH CQDe CQDeP CQMo1 CQDeL CQMo2/;

subject to a lower bound Purmin on the final purity of P

G.q; s/ D 100y2

y1 C y2 C y3
� Purmin 	 0; where yi D

Z T

0

c3i .t; L/dt: (5)

We finally end up with the PDE constrained optimization problem

min
q2R7;s2W.0;T /18

J.q; s/ s.t. G.q; s/ 	 0; (1); (3); and (4): (6)

The formal difficulty of the free period length T entering the state space W.0; T /
can be easily circumvented by using a time reparametrization from Œ0; T � to Œ0; 1�.
In this case, the right-hand sides of (1a) and (1b) must be multiplied by T .

3.4 Real-Time Control with Modifier Adaptation

We consider from now on only variations in m D 3 manipulated variables u D
.QDe;QDeP; T /

T. This is realistic, because the feed volume flow is often determined
by the upstream operations that are connected to the MCSGP process, QDeH is
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assumed to be on its maximum allowed flow rate due to regeneration issues for the
stationary phase and QMo1;2 contain so-called mobile phase modifiers, also fixed in
their amounts. The MCSGP process can be controlled and optimized from cycle to
cylce (D 6 switches) by Optimizing Model Predictive Control (MPC) [12]. In [12]
structural model mismatch was not considered. In optimizing control solutions for
SMB processes structural model mismatch can be compensated by considering the
difference in the absolute values of the model and plant output (bias update, see
[15]). Another feedback strategy is considered here: Iterative set point optimization
with Modifier Adaptation. This approach was originally proposed by [23] and was
applied to chromatographic batch separations and other chemical batch processes
by [9,18]. These methods have two significant differences compared to MPC. They
consider a sampling time that is larger than the settling time of the system, which is
why it is termed set point optimization and not model predictive control. The second
and most important difference is that not only a bias correction is applied to cope
with plant-model mismatch but also the derivative of the plant with respect to the
inputs is used as feedback information. Modifying the optimization problem using
the true derivatives compensates parameteric and structural model mismatch and
thus leads the process to its true optimum although the model predicts a different
behaviour [18, 23]. This method is applicable to the MCSGP process because it
only needs a few cycles to become stationary and the sampling rate is of the same
order of magnitude. The control algorithm is visualized in Fig. 2 and mathematically
described in detail in the following.

In step k C 1 of the optimization with previous variables uk , we augment the
PDE constrained optimization problem by modifiers 	k; �k 2 R

3; "k1; "k2 2 R and
additional control bounds�u according to

min
ukC12R3;s2W.0;T /18

J.q.ukC1/; s/C "k;1 C .	k/
T.ukC1 � uk/ (7a)

s.t. G.q.ukC1/; s/C "k;2 C .�k/
T.ukC1 � uk/ 	 0; (7b)

uk ��u � ukC1 � uk C�u; (7c)

(1); (3); and (4): (7d)

In each controller iteration, the modifiers "k1; "k2 are updated based on mea-
surements of the plant mass outputs y1; y2; y3 defined in (5). To obtain the
modifiers 	k and �k , the gradients have to be estimated by Finite Differencing with
measurements from previous controller iterations. This iterative gradient correction
with a sufficiently small�u drives the plant to its optimum even if the process model
is subject to considerable errors.

A critical point for the gradient estimation is the inversion of a 3-by-3 matrix U ,
the entries of which are the differences in u at the previousm set points.
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Fig. 2 Control algorithm

U k D

2
64

uk � uk�1
:::

uk � uk�m

3
75 (8)

IfU is ill-conditioned additional set points need to be applied to the plant in order
to estimate the gradients reliably. Different strategies to obtain such a perturbed
matrixUa were compared in [2,14]. The most effective one is based on a geometrical
considerartion of the estimation error combined with a rough feasibility check based
on a linearized plant model. This algorithm is applied here as well. The bounds�u
are the main tuning parameters of this iterative scheme as they define the minimum
number of iterations between controller and plant to get to the optimum, and also
reflect the validity range of the linear error model. For other application examples
in chromatography see, e.g., [2, 3, 9].

4 Numerical Solution of the Optimization Problems

One of the challenges to solve (6) and (7) lies in the fact that no fixed initial values
are given for the states in PDE (1). On the basis of (1) and (4), it is in principle still
possible to use a standard reduced space approach via a solution operator S W R7 !
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W.0; T /nspecies�nzones mapping the controls to states that solve the periodic boundary
value problem. The evaluation of S , however, comprises then inevitably an iterative
method with at least one forward solve, e.g., in a Picard iteration, and maybe even
a few derivatives in each iteration (compare, e.g., [17]). The solution becomes even
more complicated when additionally derivatives of the solution of (1) and (4) need
to be computed for an outer optimization loop, even though we only have seven free
variables.

In this case it is beneficial to employ a simultaneous or one-shot approach (see,
e.g., [5, 7, 10, 13]) in order to achieve stationarity and feasibility in one flat iteration
loop instead of several nested ones. In this article, we use Direct Multiple Shooting
[6] in combination with a structure-exploiting two-grid Newton-Picard inexact
Sequential Quadratic Programming algorithm [19]. As an additional advantage of
this approach, we do not need to formulate adjoint equations for (1), which would
be rather cumbersome and error-prone to carry out by hand due to the nonlinear
isotherm equation (2). Instead, adjoint derivatives can be computed on the basis
of Internal Numerical Differentiation [4] and the reverse mode of Algorithmic
Differentiation [11].

To this end, we use Finite Differences in space on a hierarchy of nested,
equidistant meshes on �. For stability reasons, upwinding is employed for the
convective part in (1). The resulting large-scale ODE constrained optimization
problem is parameterized via local initial state values in time on a so-called shooting
grid on the period horizon. The local shooting solutions must be glued together by
requiring continuity in the shooting nodes as so-called matching constraints of the
resulting large-scale finite dimensional optimization problem.

Finally, the fully discretized problem can be solved efficiently with a structure-
exploiting inexact Sequential Quadratic Programming method based on two-grid
Newton-Picard preconditioning [17, 20] and an extended condensing algorithm
for the preprocessing of the linear-quadratic optimization subproblems [19]. The
key idea of the two-grid Newton-Picard approach is to approximate the derivative
matrices only on relatively coarse spatial grids, while computing the constraint
residuals and the Lagrange gradient on fine grids. The width of the coarse grid
determines the speed of convergence, while the quality of the fine grid determines
the accuracy of the solution. This approach yields fast linear convergence, which is
independent of the degrees of freedom on the fine grid. Furthermore, it is possible
to estimate the convergence rate via so-called �-estimators.

5 Case Studies

The case studies presented here were chosen to demonstrate both the effectiveness
of the method described in Sect. 4 in real-time applications as well as the robustness
of the proposed feedback strategy with respect to considerable model errors in a
realistic application.
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5.1 Scenario I

From the algorithmic point of view it is interesting how the optimization strategy
performs for the most challenging situation of high purity constraints and nonlinear
isotherms in the optimization problem. Therefore we consider a scenario in which
high purities can be achieved and the isotherms in the model are nonlinear. The
virtual plant behaves linear. Table 3 summarizes this scenario, which was solved on
a grid of 201 and 438 points on the coarse and fine level.

5.2 Scenario II

In this scenario a linear adsorption model is used in a feedback controller to
control and optimize a strongly nonlinear virtual plant. This case study concerns
the separation of the three essential amino acids methionine, tryptophan, and
phenylalanine. Amino acids behave strongly nonlinearly in many chromatographic
systems, even for low concentrations. Its separation represents a challenging test
case for model based control strategies if this nonlinearity is not considered in
the model (structural model mismatch). Another challenge results from the fact
that amino acids are partially produced by biotechnological processes in large
scale and the outcomes of the fermentations may vary considerably. All substances
involved may influence the adsorption behavior. The single isotherm parameters
used in the simulated plant for scenario II were estimated based on experiments
with a so-called C18 RP phase with a water/methanol mixture as the mobile phase.
This chromatographic system is very close to the one used in [1] and the resulted
isotherms are shown in Sect. 6. The thermodynamic characterization of tryptophan
in [1] was assumed to be valid also for phenylalanine and methionine, all having
the same strongly nonlinear behavior, based on two physically different adsorption
mechanisms described by the Bi-Moreau isotherms. Furthermore we assume that
the volume flows are known, as well as the temperature and the composition of the
mobile phase. Besides the thermodynamics and feed composition, the uncertainty is
often located in unknown deactivation effects of the stationary phase. Deactivation
takes effect mathematically in the isotherms, its impact on the controlled MCSGP-
process can be found in [14]. Here we present the reaction of the controller to a
sudden step in the constraints and the feed concentration. The estimated isotherms

Table 3 Error scenario I: the model used in the optimization (parameters in parantheses) contains
a nonlinear isotherm of the Langmuir type (2b) whereas we assume that the true plant has a linear
isotherm

i Hi ˇi 6keff;i =dp

1 0.4 (0.38) 0 (0) 4 (3.8)

2 3.2 (3.36) 0 (1.5) 3 (3.15)

3 6.7 (7.04) 0 (3.0) 2.5 (2.63)
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Fig. 3 The isotherms of the
virtual plant and of the model
in error scenario II used in the
online optimization
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Fig. 4 Trajectory of the controlled plant and optima of plant and model in the u space for
Scenario I

are assumed to represent the real plant behavior and the model is a linearization
for small concentration ranges (see Fig. 3). A change in the feed concentrations is
assumed to occur stepwise because of upstream batch unit operations. Such a step
has a direct nonlinear influence on all purities and yields of the virtual plant and
forces the controller to act immediately. Scenario II was solved on a grid of 126 and
486 points on the coarse and fine level.
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6 Results

6.1 Scenario I

As can be seen in Figs. 4 and 5, the controller drives the plant to the true optimum
despite the structural and parametric model mismatch. The productivity of the plant
was improved by about 100 % without increasing the eluent consumption. The final
set point is very close to the true optimum of the plant. The differences between
model and plant are mainly reflected in the purity differences of up to 2 %. This
is significant for high purity requirements. The optimizer terminated successfully
within each iteration, i.e. it always solved the nonlinear subproblems by fulfilling
the optimality conditions.

6.2 Scanario II

Figure 6 shows the key variables of a simulation of the controlled system. In the
upper left plot in Fig. 6 the large difference between model and plant is visible. The
step in the feed concentration from 0.2 to 0.25 g/l occurs between iteration 20 and
21. As expected, the controller acts immediately, forced by a sudden jump in the
modifiers. The process stays feasible except for iteration 23 and the cost function
is further reduced. Set point 23 was computed based on the perturbation algorithm
and is not an optimization result. In the next iteration the process becomes feasible
again. Prior to the concentration step, a step in the minimum purity after iteration
19 was applied The isotherm parameters of error scenario II are given in Table 4.

6.3 Real Time Applicability

An iterative set point optimization strategy should deliver a new set point within
a computation time close to the settling time of the system. This was the case
here. In scenario II and using a 2.5 GHz quad core with 15.7 GB memory the
computation times were always below the settling time, which is between 50 and
90 min. If the system is close to the optimum and the model isotherms are nonlinear,
this ratio gets worse, but is still in an applicable range: The final iteration for
scenario I took approximately three times the settling time of the system, which is
approximately 18 min. But this value strongly depends on the termination tolenrance
of the optimizer, which together with other numerical parameters was not tuned for
minimum computation times yet.
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Fig. 5 Controlled and manipulated variables against iteration index for Scenario I. In the plots on
the left in the first and second line perturbation set points are excluded

Conclusion
We applied an iterative set point optimization with gradient modification to a
virtual MCSGP plant with real-world isotherm data to optimize and robustify

(continued)
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Fig. 6 Controlled and manipulated variables against iteration index for Scenario II. In the upper
left figure the perturbation set points are excluded

the separation of the three essential amino acids tryptophan, methionine and
phenylalanine by Modifier Adaptation feedback control. The underlying opti-
mization problems were solved with a direct one-shot optimization approach

(continued)
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Table 4 Error scenario II: the isotherm parameters of the virtual plant and the model (in
parentheses) differ drastically. In particular, the model isotherm follows (2b) with ˇi D 0

i q1i q2i l1i l2i b1i b2i 6keff;i =dp .Hi /

1 3.55 7.21 0.46 0.70 11.6 5.5 0.26 (9.3)

2 3.74 3.74 1.38 1.38 4.5 4.5 0.35 (11.3)

3 9.55 8.9 0.73 0.71 4.14 3.54 0.69 (14.7)

on the basis of a two-grid Newton-Picard inexact Sequential Quadratic
Programming method. Due to its numerical efficiency we can meet real time
requirements of the process. Despite the parametric and structural model
mismatch, the productivity of the virtual plant was increased by 100 and
35 % in two error scenarios while keeping the process feasible and not
increasing the eluent consumption. Thus, the iterative set point optimization
along with efficient optimization algorithms can be applied to a continuous
chromatographic multi-column separation process with three components in
real time.
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Abstract In this article a first report on a new problem collection in PDE-
constrained optimization, OPTPDE, is given. The goals of this collection are
described and its current features are illustrated for a prototypical example. The
entire problem collection can be accessed under www.optpde.net.
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1 Introduction

The present article is concerned with the OPTPDE collection [1] of problems in
PDE-constrained optimization available at www.optpde.net, which was launched in
February 2013. The problem collection is designed to provide scientists working on
optimization problems with PDE constraints with a common reference framework
of prototypical problems. The problems in this collection are hence selected to show
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various kinds of features and difficulties that have been of interest in recent years. It
will be updated continuously according to current research trends.

We hope that this collection will allow researchers working on PDE-constrained
optimization problems to compare their numerical results in a scientific manner with
previous results without the need to search through the intense amount of literature
available, and without the need of inventing new test problems that may differ only
slightly from those provided by the existing literature. For complex problems with
unknown solution we will also collect numerical results to provide reference values
for those working on similar problems. On purpose, all problems are presented in
their continuous (undiscretized) settings.

The collection consists, at present, of a database in which users can search
for particular problems according to the involved differential operator, additional
complications such as certain types of, e.g., state constraints, or keywords indicating
the general context of the problem.

Each problem can be displayed with a short keyword like display of its main
features, or with a complete description of the problem setting which includes
additional data such as optimality conditions, reference values, and a short text
indicating why this problem is considered in the collection. This description as well
as a BIBTEX entry for the original reference are available as downloads.

Public credit is given to the person submitting the example as well as to anyone
who confirms to have checked and/or contributed to the data or reference values.
When you use an example from the OPTPDE collection in your own research,
please give proper reference to the authors of the example, as well as to the problem
collection itself. A corresponding BIBTEX entry can be found on the OPTPDE
website.

2 Submissions and Reports

New problems can be included into the database, either by invitation of the editors,
or by anyone submitting a new problem to editors@optpde.net. Informal inquiries
whether a problem will be considered for inclusion are welcome, and a short
statement describing the novelty of the proposed problem should be provided. The
final submission should contain a descriptive LATEX file describing the problem
including references to the original source for the example. A template file is
available on the website. The submitted problem will then be subject to a review
process. Successful problems need to contribute to this collection by at least one
significant problem feature not yet available in the collection.

A second type of contribution to the collection is possible by providing additional
material, such as optimality conditions or reference values. Of particular interest are
statements regarding the verification or falsification of examples, in particular of
those involving only numerical reference values.

mailto:editors@optpde.net?subject=[OPTPDE] Submission to the OPTPDE database
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3 An Example Problem

To illustrate the current capabilities, we demonstrate the possibility to search for
problems by some of their features. The respective search mask is displayed in
Fig. 1a. Here, we search for a problem that is constrained by a parabolic PDE
but does not have any further constraints. When searching, we will obtain a
page containing all results in the database matching our requirements, see Fig. 1b,
together with a short list of the problem properties. Selecting one of these, for
instance problem rddist2, will show an overview page with the features of the
problem as stored in the database, see Fig. 1c. In the case of rddist2, we learn
for instance that the problem is of semilinear parabolic type posed on a spatially 1D
domain. The bottom of the screenshot shows who has provided the problem for the
collection. Further, a link to the problem description as a PDF file is provided, and

Fig. 1 Screenshots from the OPTPDE website. (a) Search mask. (b) Search results. (c) The
displayed problem properties
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Fig. 2 The problem data for the rddist2 example
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the relevant bibliography can be downloaded as well. An HTML version (not shown
here) of the problem description is also available, so that a first view on the problem
is possible without following additional links.

The problem description as it appears in the PDF file for the example rddist2,
originating from [2], is shown in Fig. 2. It is important to note that this description
features a short introduction to the problem, followed by complete list of the
unknowns as well as all problem data. Then the description of the optimization
problem is given. As additional material, this example features both a first-order
optimality system, as well as graphical representations of the optimal solution.
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