
Chapter 5
An Explicit Finite-Volume Algorithm
with Multigrid

5.1 Introduction

The salient features of the algorithm presented in this chapter are as follows (the
reader is urged to contrast thesewith the key characteristics of the algorithmpresented
in Chap. 4, which are listed in Sect. 4.1):

• cell-centered data storage; the numerical solution for the state variables is associ-
ated with the cells of the grid

• second-order finite-volume spatial discretization with added numerical dissipa-
tion; a simple shock-capturing device

• applicable to structured grids (see Sect. 4.2)
• explicit multi-stage time marching with implicit residual smoothing and multigrid

Key contributions to the development of this algorithm were made by Jameson et al.
[1], Baker et al. [2], Jameson and Baker [3], Jameson [4, 5], and Swanson and
Turkel [6, 7]. The reader is referred to Swanson and Turkel [7] for further analysis
and description of the algorithm.

The exercises at the end of this chapter again provide an opportunity to apply the
algorithm presented to several one-dimensional problems.

5.2 Spatial Discretization: Cell-Centered Finite-Volume
Method

The cell-centered approach contrasts with the node-centered approach described in
Chap. 4. The meshes described thus far are known as primary meshes. One can
also construct a dual mesh by joining the centroids of the cells associated with the
primary mesh. In the case of a two-dimensional structured mesh, the dual mesh also
consists of quadrilaterals and is qualitatively similar to the primary mesh. For more
general unstructured meshes this is not the case. For example, for a primary mesh
consisting of regular triangles the dual mesh consists of hexagons. A scheme that is
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cell centered on the primary mesh can be considered to be node centered on the dual
mesh. Hence, in the case of quadrilateral structured meshes, the cell-centered nature
has little impact on the spatial discretization in the interior, and both cell-centered
and node-centered finite-volume schemes are in common use on both structured and
unstructured meshes. The main differences between the two arise at boundaries and
in the construction of coarse meshes for multigrid. This will be discussed further
below.

A finite-volume method numerically solves the governing equations in integral
form, as presented in Sect. 3.1.2. In their most general coordinate-free form, conser-
vation laws can be written as

d

dt

∫
V (t)

QdV +
∮

S(t)
n̂ · FdS =

∫
V (t)

PdV, (5.1)

where P is a source term, and the other variables are defined in Chap. 3. If we restrict
our interest to two-dimensional problems without source terms and meshes that are
static with respect to time, we obtain

d

dt

∫
A

QdA +
∮

C
n̂ · Fdl = 0, (5.2)

where A is a control volume bounded by a contour C . Writing the flux tensor F in
Cartesian coordinates and separating inviscid and viscous fluxes gives

d

dt

∫
A

QdA +
∮

C
n̂ · (Eî + F ĵ)dl =

∮
C

n̂ · (Ev î + Fv ĵ)dl. (5.3)

Finally, writing the product of the outward normal and the length of the cell edge in
Cartesian coordinates as

n̂dl = dyî − dx ĵ (5.4)

gives the final form to be discretized using the finite volume method:

d

dt

∫
A

QdA +
∮

C
(Edy − Fdx) =

∮
C
(Evdy − Fvdx). (5.5)

The semi-discrete form of (5.5) is written as

A j,k
d

dt
Q j,k + LiQ j,k + LadQ j,k = LvQ j,k, (5.6)

where A j,k is the area of the cell,Li is the discrete approximation to the inviscid flux
integral, Lad is the artificial dissipation operator, Lv is the discrete approximation to
the viscous flux integral, and Q j,k denotes the conservative variables averaged over
cell j, k as follows:

http://dx.doi.org/10.1007/978-3-319-05053-9_3
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5.2 Spatial Discretization: Cell-Centered Finite-Volume Method 149

Q j,k = 1

A j,k

∫
A j,k

QdA. (5.7)

The terms LiQ, LvQ, and LadQ are described next.

5.2.1 Inviscid and Viscous Fluxes

The inviscid flux integral is approximated by summing over the four edges of the
cell as follows:

LiQ =
4∑

l=1

(Fi)l · sl , (5.8)

where

sl = (Δy)l î − (Δx)l ĵ . (5.9)

is the discrete analog of (5.4) for straight cell edges, and (Fi)l is an approximation
to the inviscid flux tensor at the cell edge. We use boldface to emphasize that sl is
a vector. The terms (Δx)l and (Δy)l must be defined such that the normal vector
points out of the cell. Since the cell edges are straight, the outward normal is con-
stant along each edge. The only exception might arise at the body surface; there the
approximation of the edge as straight is adequate for a second-order discretization,
but the curvature of the boundary must be taken into account if higher-order accuracy
is desired.

In Sect. 2.4.2, we saw that the combination of a piecewise constant reconstruction
with a simple average for resolving the discontinuity in fluxes at cell interfaces leads
to a second-order centered finite-volume scheme that is analogous to a second-order
centered finite-difference scheme on a uniform mesh. The same approach is taken
here. With the minus sign superscript defining quantities in the cell on one side of
the interface and the plus sign indicating the other side, the averaged flux on a given
cell edge is given by

(Fi)l = 1

2
(F−

i + F+
i ) = 1

2
(Q−v− + Q+v+)l + P̄l , (5.10)

where v = uî + v ĵ , and

P̄l = [ 0, 1

2
(p− + p+)l î,

1

2
(p− + p+)l ĵ,

1

2
(p−v− + p+v+)l ]T .

(5.11)

http://dx.doi.org/10.1007/978-3-319-05053-9_2
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This scheme is second order and nondissipative. Numerical dissipation must be
added, as described in Sect. 5.2.2.

For the viscous terms, we turn again to Sect. 2.4.2. In that section, a second-order
finite-volume scheme was derived for the diffusion equation using two different
approaches. The first approach is based on the use of a one-dimensional version of
(2.58), which is given by

∫
A

∇QdA =
∮

C
n̂Qdl. (5.12)

This approach is simple to extend to multidimensions but is restricted to second-
order accuracy. Given that we seek a second-order approximation, we will follow
this approach to obtain a discretization for the viscous flux terms.

The difficulty associated with the viscous fluxes is that they include velocity
gradients, and these cannot be obtained directly from the solution vector. In order
to obtain a suitable approximation to the velocity gradients at the cell edges, (5.12)
is applied to auxiliary cells that surround each edge of the cell in question. When
applied to the Cartesian velocity components, (5.12) gives the components of the
velocity gradient as follows:

∫
A′

∂u

∂x
dA =

∮
C ′

udy
∫

A′
∂u

∂y
dA = −

∮
C ′

udx, (5.13)

with analogous expressions for the components of the gradient of v, where the primes
are added to remind the reader that these expressions are used for auxiliary cells
surrounding the edges of the finite volume. A second-order approximation to the
integrals on the right-hand side of these expressions divided by the cell area pro-
vides an approximation to the average gradient in the cell. This then provides an
approximation, valid to second order, to the gradient along the edge contained in the
auxiliary cell.

A sample auxiliary cell is depicted in Fig. 5.1 [7]. The cell in question is cell j, k
defined by ABCD. The auxiliary cell A′B′C′D′ provides the approximation to the
velocity gradient on edge BC. In order to evaluate the integrals on the right-hand side
of (5.13), the midpoint rule is applied on each edge of cell A′B′C′D′. The velocity
at the midpoint of edge A′B′ is taken as the average of the velocities associated with
the four cells surrounding this edge. The same applies to edge C′D′. The velocity
at the midpoint of edge B′C′ is simply that associated with cell j, k + 1, while the
velocity on edge D′A′ is that associated with cell j, k. Once the velocity gradients are
approximated, all other quantities needed to form the viscous fluxes on the edges of
cell j, k, including the viscosity, are obtained by averaging the quantities associated
with the cells on either side of the edge in question.

An alternative auxiliary cell can be formed with the vertices being the end points
of the edge and the centroids of the cells on either side of the edge, sometimes called

http://dx.doi.org/10.1007/978-3-319-05053-9_2
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Fig. 5.1 Auxiliary cell
A′B′C′D′ for computing
viscous fluxes

Fig. 5.2 Alternative auxiliary
cell based on diamond path

a diamond path, as shown in Fig. 5.2. In this case, the trapezoidal rule is used for the
integration to calculate the velocity gradients.

Once the viscous flux tensor (Fv)l has been approximated at the cell edges, the
net flux is determined from

LvQ =
4∑

l=1

(Fv)l · sl . (5.14)

5.2.2 Artificial Dissipation

In analogy to the inviscid fluxes, we write the dissipation model in the following
form:
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LadQ =
4∑

l=1

Dl · sl , (5.15)

where Dl is the numerical dissipation tensor associated with each cell edge. We
exploit the fact that the algorithm is applied to structured meshes. Although there is
no coordinate transformation, there are effectively two coordinate directions ξ and η
associated with each cell, as depicted in Fig. 5.1. Hence there are two opposing cell
edges along which η varies but ξ does not, and there are two opposing cell edges
along which ξ varies but η does not. For the two edges at constant ξ, the artificial
dissipation tensor is given by

D = −ε(2)(|Aî + B ĵ |)Δξ Q + ε(4)(|Aî + B ĵ |)Δξ∇ξΔξ Q, (5.16)

where the superscripts (2) and (4) denote second- and fourth-difference dissipation,
respectively, the meaning of |Aî + B ĵ | is consistent with (2.103), A and B are the
Jacobians of the inviscid flux vectors E and F , and Δξ and ∇ξ represent undivided
differences in the ξ direction. For example, Δξ Q is the difference between the Q
values in the cells on either side of the edge. The coefficients ε(2) and ε(4) control
the relative contribution from the two terms, analogous to the artificial dissipation
scheme described in Chap. 4, and are defined below.

The reader should observe the similarity between (5.16) and (4.85). The artificial
dissipation scheme described in this section is a finite-volume analog to the scheme
presented in Sect. 4.4.3. Therefore it has the same basic properties. For example,
the second-difference term is first order and is used near shocks, while the fourth-
difference term is third order and is used in smooth regions of the flow.

Substituting the definition of sl given in (5.9), we obtain for the two edges with
constant ξ

Dl · sl = −ε
(2)
l (|AlΔyl − BlΔxl |)Δξ Q + ε

(4)
l (|AlΔyl − BlΔxl |)Δξ∇ξΔξ Q.

(5.17)

The flux Jacobians are based on an average of the two states on either side of the
edge. The Roe average (Sect. 6.3) can be used. A scalar form is obtained as follows:

Dl · sl = −ε
(2)
l (λξ)lΔξ Q + ε

(4)
l (λξ)lΔξ∇ξΔξ Q, (5.18)

where

λξ = |uΔy − vΔx | + a
√

Δy2 + Δx2 (5.19)

is the appropriate spectral radius for edges of constant ξ (see Warming et al. [8]).
The spectral radius term in the η direction has the same form, but the values of Δx
and Δy are associated with edges of constant η.

http://dx.doi.org/10.1007/978-3-319-05053-9_2
http://dx.doi.org/10.1007/978-3-319-05053-9_4
http://dx.doi.org/10.1007/978-3-319-05053-9_4
http://dx.doi.org/10.1007/978-3-319-05053-9_4
http://dx.doi.org/10.1007/978-3-319-05053-9_6
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The treatment of the pressure sensor is consistent with (4.83), giving for the edge
j + 1

2 , k:

ε(2)
l = κ2 max(Υ j+2,k, Υ j+1,k, Υ j,k, Υ j−1,k)

Υ j,k =
∣∣∣∣p j+1,k − 2p j,k + p j−1,k

p j+1,k + 2p j,k + p j−1,k

∣∣∣∣
ε
(4)
l = max(0,κ4 − ε

(2)
l ), (5.20)

where typical values of the constants are κ2 = 1/2 and κ4 = 1/32.
The artificial dissipation terms for the edges with constant η are analogous. They

are obtained by replacing ξ with η in (5.16) and (5.17).
As described, this artificial dissipation model parallels that used with the implicit

algorithm described in Chap. 4. When used with an explicit multigrid algorithm, it
is sometimes modified in the following manner [7]. The spectral radius associated
with the ξ direction given in (5.19) is multiplied by φ(r), which is given by

φ(rηξ) = 1 + r ζ
ηξ, (5.21)

with

rηξ = λη

λξ
, (5.22)

where ζ is typically equal to 2/3. The spectral radius in the η directionλη is multiplied
by φ(r−1). This increases the amount of numerical dissipation, thus improving the
high-frequency damping properties of the scheme and leading to better convergence
rates with the multigrid method. This is particularly important in the case of high
aspect ratio cells, for example in high Reynolds number boundary layers. In such
cases, the ratio λη/λξ approximates the cell aspect ratio. With a cell aspect ratio of
1000, for example, φ is on the order of 100, and the numerical dissipation in the
streamwise direction is greatly increased.

5.3 Iteration to Steady State

5.3.1 Multi-stage Time-Marching Method

The semi-discrete form (5.6) can be written as

d

dt
Q j,k = − 1

A j,k
LQ j,k, (5.23)

http://dx.doi.org/10.1007/978-3-319-05053-9_4
http://dx.doi.org/10.1007/978-3-319-05053-9_4
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where L = Li +Lad −Lv. Here we will concentrate on an explicit multi-stage time-
marchingmethodwhich canbeused for steadyflowsor to solve the nonlinear problem
arising at each time step in the dual-time-stepping approach to unsteady flows (see
Sect. 4.5.7). In both of these settings there is no benefit to higher-order accuracy in
time, and we will consider methods designed specifically for rapid convergence to
steady state when used in conjunction with the multigrid method.

The effectiveness of a time-marching method for convergence to a steady state
can be assessed in terms of the amplification factor (based on the σ eigenvalues in
the terminology of Chap. 2) arising from the λh eigenvalues resulting from a specific
spatial discretization. This is discussed further below, but we beginwith amore quali-
tative discussion.When iterations are performed from an arbitrary initial condition to
the steady-state solution, we can consider the difference between the initial condition
and the steady solution to be an error that must be removed. Since the time-marching
iterations represent a physical process, one can give a physical interpretation of the
path to steady state. The error is removed through two mechanisms associated with
the governing PDEs: (1) it convects out of the domain through the boundary, and
(2) it dissipates within the domain through both physical and numerical dissipation.
If one thinks of the error as being decomposed into modes, then low frequency error
modes will typically be eliminated through convection and high frequency modes
through dissipation.

A time-marching method with good convergence properties addresses these two
mechanisms in the following manner. In order to enable convection of the error
through the boundary, the method should be at least second-order accurate, so that
the physics of convection is accurately represented, andwhen combinedwith a partic-
ular spatial discretization, the maximum stable Courant number should be as large as
possible. Themethod should also provide damping of high frequencymodes, again in
combination with the spatial discretization. The latter property is particularly impor-
tant in the context of the multigrid method, which will be discussed in Sect. 5.3.3.
Finally, the computational cost per time step is also an important consideration.

Wewill begin by considering a time-marchingmethod for the spatially discretized
Euler equations, i.e. applied to the ODE system

d

dt
Q j,k = − 1

A j,k
(Li + Lad)Q j,k = −R(Q j,k). (5.24)

Consider a multi-stage time marching method in the following form

Q(0)
j,k = Q(n)

j,k

Q(m)
j,k = Q(0)

j,k − αmh R(Q(m−1)
j,k ), m = 1, . . . , q

Q(n+1)
j,k = Q(q)

j,k, (5.25)

where n is the time index, h = Δt , q is the number of stages, and the coefficients
αm, m = 1, . . . , q define the method. The reader should recognize that this is not a

http://dx.doi.org/10.1007/978-3-319-05053-9_4
http://dx.doi.org/10.1007/978-3-319-05053-9_2
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general form for explicit Runge-Kutta methods. For example, the classical fourth-
order method given in Sect. 2.6 cannot be written in this form. Nevertheless, this
form is equivalent to the more general form with respect to homogeneous ODEs and
thus enables the design of schemes with tailored convergence properties.

For the purpose of discussing the analysis of such methods we will concentrate
on five-stage methods, i.e. q = 5. Consider the homogeneous scalar ODE given by

du

dt
= λu, (5.26)

where λ represents an eigenvalue of the linearized semi-discrete system. When
applied to this ODE, the method given by (5.25) with q = 5 produces the solu-
tion

un = u0σ
n, (5.27)

where u0 is the initial condition, and σ is given by

σ = 1 + β1λh + β2(λh)2 + β3(λh)3 + β4(λh)4 + β5(λh)5, (5.28)

with

β1 = α5

β2 = α5α4

β3 = α5α4α3

β4 = α5α4α3α2

β5 = α5α4α3α2α1. (5.29)

Second-order accuracy is obtained by choosing α5 = 1 and α4 = 1/2, giving
β1 = 1 and β2 = 1/2. This leaves three free parameters that can be chosen from the
perspective of optimizing convergence to steady state.

The values β3 = 1/6, β4 = 1/24, and β5 = 1/120 lead to a σ that approximates
eλh , which maximizes the order of accuracy of the method, at least for homogeneous
ODEs such as (5.26). This is obtained with α1 = 1/5, α2 = 1/4, and α3 = 1/3.
Figure5.3 shows contours of |σ| for this method plotted in the complex λh plane.
The method has a large region of stability that includes a portion of the imaginary
axis.

The convergence rates this method will produce depend upon the specific spatial
discretization and the time step. To examine this, consider the linear convection
equation

∂u

∂t
+ a

∂u

∂x
= 0, (5.30)

http://dx.doi.org/10.1007/978-3-319-05053-9_2
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Fig. 5.3 Contours of |σ| for
the five-stage time-marching
method with β3 = 1/6,
β4 = 1/24, and β5 = 1/120.
Contours shown have |σ|
equal to 1, 0.8, 0.6, 0.4,
and 0.2
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with a > 0 and periodic boundary conditions. Apply second-order centered differ-
enceswith fourth-difference artificial dissipation to approximate the spatial derivative
term:

− aδxu = − a

Δx

[
u j+1 − u j−1

2
+ κ4(u j−2 − 4u j−1 + 6u j − 4u j+1 + u j+2)

]
.

(5.31)

Since the boundary conditions are periodic, Fourier analysis can be used to obtain
the λ eigenvalues of the resulting semi-discrete form. They are given by

λm = − a

Δx

{
i sin

(
2πm

M

)
+ 4κ4

[
1 − cos

(
2πm

M

)]2}
, m = 0 . . . M − 1,

(5.32)

where M corresponds to the number of nodes in the mesh. Multiplying by the time
step gives

λmh = −Cn

{
i sin

(
2πm

M

)
+ 4κ4

[
1 − cos

(
2πm

M

)]2}
, m = 0 . . . M − 1,

(5.33)

where Cn = ah/Δx is the Courant number.
The λh values given by (5.33) are plotted in Fig. 5.4 for M = 40, κ4 = 1/32,

and Cn = 2.5 together with the |σ| contours arising from the five-stage scheme
(5.25) with α1 = 1/5, α2 = 1/4, and α3 = 1/3. Figure5.5 plots |σ(λmh)| vs.
κΔx for 0 ≤ κΔx ≤ π, where κΔx = 2πm/M . This plot shows poor damping for
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Fig. 5.4 Plot of λh values
given by (5.33) for M = 40,
κ4 = 1/32, andCn = 2.5with
contours of |σ| for the five-
stage time-marching method
withα1 = 1/5,α2 = 1/4, and
α3 = 1/3. Contours shown
have |σ| equal to 1, 0.8, 0.6,
0.4, and 0.2
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Fig. 5.5 Plot of |σ| values vs.
κΔx for the spatial operator
given by (5.31) withCn = 2.5,
κ4 = 1/32, and the five-stage
time-marching method with
α1 = 1/5, α2 = 1/4, and
α3 = 1/3
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low wavenumbers and good damping at high wavenumbers. As we shall see later,
this provides a smoothing property suitable for use with the multigrid method. It
is important to recognize that this model problem includes only the mechanism of
damping within the domain. With periodic boundary conditions, the error cannot
convect out of the domain, so this mechanism is not represented. Therefore, the
Courant number is also an important quantity to be aware of. Although the effect
is not seen in the present analysis, a higher stable Courant number translates into a
larger time step, which enables the error to convect out through the outer boundary
of the domain in fewer time steps.

Through careful selection of the free parameters, α1, α2, and α3, a multi-stage
method can be designed for fast convergencewhen used in conjunctionwith a specific
spatial discretization. For example, consider the choice α1 = 1/4, α2 = 1/6, and
α3 = 3/8, which maximizes the stable region on the imaginary axis (see Van der
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Fig. 5.6 Plot of λh values
given by (5.33) for M = 40,
κ4 = 1/32, and Cn = 3 with
contours of |σ| for the five-
stage time-marching method
with α1 = 1/4, α2 = 1/6,
and α3 = 3/8
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Fig. 5.7 Plot of |σ| values vs.
κΔx for the spatial operator
given by (5.31) with Cn = 3,
κ4 = 1/32, and the five-stage
time-marching method with
α1 = 1/4, α2 = 1/6, and
α3 = 3/8 (solid line). The
dashed line shows the results
with Cn = 2.5 and α1 = 1/5,
α2 = 1/4, and α3 = 1/3
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Houwen [9]). The associated plots are shown in Figs. 5.6 and 5.7 with a Courant
number of 3. The improvement in damping properties is small, but the higher Courant
number enables the error to be propagated to the outer boundary more rapidly. This
particular choice of α coefficients is intended for use with a spatial discretization
that combines centered differencing (or an equivalent finite-volume method) with
artificial dissipation.One can also designmulti-stage schemes specifically for upwind
schemes.

Onemust be aware of the limitations of such scalar Fourier analysis in this context.
It provides a useful guide for the design of multi-stage schemes, but, since it does not
account for systems of PDEs, multidimensionality, or the effect of boundaries, the
performance of such schemes when applied to the Euler equations must be assessed
through more sophisticated theory or numerical experiment.
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Fig. 5.8 Plot of λh values
given by (5.33) for M = 40,
κ4 = 1/32, and Cn = 3 with
contours of |σ| for the five-
stage time-marching method
withα1 = 1/4,α2 = 1/6, and
α3 = 3/8 with the artificial
dissipation computed only on
stages 1, 3, and 5
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A further generalization of (5.25) can be introduced if the distinct components
of R(Q), for example LiQ and LadQ, are handled differently by the multi-stage
method. Consider a scheme where at stage m the residual term R(Q(m−1)

j,k ) in (5.25)
is replaced by

R(m−1) = 1

A

⎛
⎝LiQ

(m−1) +
m−1∑
p=0

γmpLadQ(p)

⎞
⎠ . (5.34)

The γmp coefficients can be chosen such that the artificial dissipation operator is
evaluated only at certain stages, thus reducing the computational effort per time step.
The following values lead to a method in which the artificial dissipation is evaluated
at the first, third, and fifth stages:

γ10 = 1

γ20 = 1, γ21 = 0

γ30 = 1 − Γ3, γ31 = 0, γ32 = Γ3 (5.35)

γ40 = 1 − Γ3, γ41 = 0, γ42 = Γ3, γ43 = 0

γ50 = (1 − Γ3)(1 − Γ5), γ51 = 0, γ52 = Γ3(1 − Γ5), γ53 = 0, γ54 = Γ5.

Note that the coefficients sum to unity at each stage. With Γ3 = 0.56 and Γ5 = 0.44,
the results shown in Figs. 5.8 and 5.9 are obtained for the linear convection equation.
This method retains the favourable damping properties of the previous method while
reducing the computational cost per time step, thereby reducing the overall cost to
achieve a converged solution.

The above multi-stage method is also appropriate for the numerical solution of
the Navier-Stokes equations. In this case, the residual includes the contribution from
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Fig. 5.9 Plot of |σ| values vs.
κΔx for the spatial operator
given by (5.31) with Cn = 3,
κ4 = 1/32, and the five-
stage time-marching method
with α1 = 1/4, α2 = 1/6,
and α3 = 3/8 with the
artificial dissipation computed
only on stages 1, 3, and 5
(solid line). The dashed line
shows the results with the
artificial dissipation computed
at every stage, and the dash-
dot line shows the results with
Cn = 2.5 and α1 = 1/5,
α2 = 1/4, and α3 = 1/3
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the viscous and heat conduction terms, Lv. The residual can be computed at each
stage as follows:

R(m−1) = 1

A

⎛
⎝LiQ

(m−1) − LvQ(0) +
m−1∑
p=0

γmpLadQ(p)

⎞
⎠ . (5.36)

The viscous terms are evaluated at the first stage only, thereby minimizing the addi-
tional cost per time step.

Local Time Stepping. Use of a local time step specific to each grid cell is important
to improve the convergence rate of an explicit algorithm for steady flows. In order to
understand why, consider first the use of a constant time step. For example, for the
one-dimensional Euler equations we have

Δt ≤ Δx

|u| + a
(Cn)max, (5.37)

where |u| + a is the largest eigenvalue of the flux Jacobian, and (Cn)max is the
maximum Courant number for stability of the particular combination of spatial dis-
cretization and time-marching method, as determined by Fourier analysis, for exam-
ple (bearing in mind that Fourier analysis provides a necessary condition for stability
but not a sufficient one). The stability requirement resulting from the conditional sta-
bility associated with explicit schemes will dictate that the time step be determined
based on the grid cell with the smallest value ofΔx/(|u|+a). Typically the variation
in mesh spacing far exceeds the variation in the maximum wave speed; hence the
time step is often limited by the size of the smallest cells in the mesh. If the smallest
cells are several orders of magnitude smaller than the largest cells, then this time step
will be much smaller than the optimal time step for the larger cells.
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Wecanassign aphysicalmeaning to theCourant number. It is the distance travelled
by the fastest wave in one time step expressed in terms of the mesh spacing. For
example, with a Courant number of 3, the fastest wave travels a distance 3Δx in
one time step. However, if the time step is determined by a very small cell, then the
effective Courant number at a large cell is very small, and it will take many time
steps for a disturbance to propagate through the large cell.

On a mesh with a wide variation in mesh spacing, much faster convergence to
steady state can be achieved by using a time step at each cell that gives the desired
value of the Courant number for that cell. For example, in our one-dimensional
example the local time step is computed from

(Δt) j = (Δx) j

(|u| + a) j
Cn, (5.38)

where Cn is the desired (optimal) Courant number. The use of such a local time step
destroys time accuracy but has no impact on the converged steady solution.

For the one-dimensional Euler equations, the definition of the local time step
(5.38) is a relatively straightforward matter. Extension to multidimensions and to
the Navier-Stokes equations is not straightforward, and a number of approximations
are typically made. In order to present some of the issues, we will consider the
convection-diffusion equation as a model problem:

∂u

∂t
+ a

∂u

∂x
= ν

∂2u

∂x2
. (5.39)

With periodic boundary conditions and second-order centered-difference approxi-
mations to both the first and the second spatial derivatives on a mesh with M nodes,
the eigenvalues of the semi-discrete operator matrix are, from Fourier analysis:

λm = − a

Δx
i sin

(
2πm

M

)
− 4ν

Δx2
sin2

(πm

M

)
, m = 0, . . . , M − 1, (5.40)

where Δx = 2π/M . The imaginary part of the eigenvalue is associated with the
convective term, the real part with the diffusive term.

Let us consider the solution of this semi-discrete system using the five-stage time-
marching method described previously with α1 = 1/4, α2 = 1/6, and α3 = 3/8.
From Fig. 5.6 we see that this method is stable for imaginary eigenvalues up to 4 and
for negative real eigenvalues up to −2.59. We will attempt to define a local time step
based solely on this information about the time-marching method. Multiplying the
above eigenvalues by h gives

λmh = −Cni sin

(
2πm

M

)
− 4Vn sin

2
(πm

M

)
, m = 0, . . . , M − 1, (5.41)
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Fig. 5.10 Plot of λh values
given by (5.33) for M = 40,
κ4 = 1/32, and Cn = 3 with
contours of |σ| for the five-
stage time-marching method
withα1 = 1/4,α2 = 1/6, and
α3 = 3/8. Time step based on
minimum of hc and hd

real(λ h)

im
ag

(λ
 h

)

−4 −3 −2 −1 0 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

where Vn = νh/Δx2 is sometimes referred to as the von Neumann number. Based
on the above properties of the time-marching method, we require for stability:

Cn = ah

Δx
≤ 4

Vn = νh

Δx2
≤ 2.59

4
. (5.42)

Based on the first criterion, one can define a convective time step limit as

hc ≤ 4Δx

a
, (5.43)

while the second criterion gives the diffusive time step limit as

hd ≤ 2.59Δx2

4ν
. (5.44)

It is tempting, therefore, to choose the time step as the minimum of hc and hd, which
ensures that the imaginary part of all eigenvalues is less than 4 and the negative
real part is less than 2.5. However, consider an example with a = 1, ν = 0.01 and
M = 40. The resulting spectrum is displayed in Fig. 5.10 along with the |σ| contours
of the time-marching method. Some eigenvalues lie outside the stable region; hence
this time step definition is not adequate to ensure stability.

A more conservative time step definition is obtained from

1

h
= 1

hc
+ 1

hd
. (5.45)
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Fig. 5.11 Plot of λh values
given by (5.33) for M = 40,
κ4 = 1/32, and Cn = 3 with
contours of |σ| for the five-
stage time-marching method
withα1 = 1/4,α2 = 1/6, and
α3 = 3/8. Time step based on
(5.45)
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With this choice, the time step is less than the minimum of hc and hd. For the above
example, the λh values plotted in Fig. 5.11 are obtained. All of the eigenvalues lie
well within the stable region of the time-marching method.

Based on approximations such as this, various local time stepping strategies have
been developed for explicit multi-stage time-marching methods with the goal of
providing robust and rapid convergence. One such approach, which is based on
(5.45), is given by Swanson and Turkel [7] as follows:

h = NiA

λC + λD
, (5.46)

where

λC = λξ + λη

λD = (λD)ξ + (λD)η + (λD)ξη, (5.47)

with

(λD)ξ = γμ

ReρPr
A−1(x2η + y2η)

(λD)η = γμ

ReρPr
A−1(x2ξ + y2ξ )

(λD)ξη = μ

Reρ
A−1

[
−7

3
(yηyξ + xξxη) + 1

3

√
(x2η + y2η)(x2ξ + y2ξ )

]
. (5.48)

The quantity Ni is the stability bound on pure imaginary eigenvalues associated
with the time-marching method used. The assumption made is that the maximum
negative real eigenvalue is of a similar magnitude. The cell area is denoted by A,
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and the terms λξ and λη are defined as in (5.19). For the cell in question, λξ is
obtained by averaging the values obtained from the two edges of constant ξ, while
λη is obtained by averaging the values obtained from the two edges of constant η. The
diffusive terms (λD)ξ , (λD)η , and (λD)ξη are approximations to the spectral radii of
the respective viscous flux Jacobians. The metric terms appearing in these terms are
also calculated based on undivided differences for the appropriate edges and then
averaging to get a value for the cell. For example, yη is obtained by averaging Δy
for opposing edges of constant ξ, and the other terms are obtained similarly.

Given the various approximations made in determining the local time step for
the Navier-Stokes equations in multidimensions, it is typical to include a factor
in the time step definition that is determined to be effective, i.e. both reliable and
efficient, through numerical experimentation. The use of a local time step enables fast
convergence of an explicit method on a mesh with a large variation in mesh spacing.
However, it does not address the slow convergence of explicit methods resulting from
grid cells with high aspect ratios.

5.3.2 Implicit Residual Smoothing

Implicit residual smoothing is a convergence acceleration technique that enables
a substantial increase in the Courant number, thus speeding up the propagation of
disturbances to the outer boundary. First we define a residual that incorporates the
local time step:

R̃(m−1)
j,k = (Δt) j,k

A j,k

⎛
⎝LiQ

(m−1)
j,k − LvQ(0)

j,k +
m−1∑
p=0

γmpLadQ(p)
j,k

⎞
⎠ . (5.49)

A smoothed residual R̄(m−1)
j,k is found from the following:

(1 − βξ∇ξΔξ)(1 − βη∇ηΔη)R̄(m−1)
j,k = R̃(m−1)

j,k (5.50)

and replaces the term h R(Q(m−1)
j,k ) in (5.25). As in Sect. 5.2.2, Δξ and ∇ξ represent

undivided differences in the ξ direction, and Δη and ∇η are the corresponding oper-
ators in the η direction. The smoothing coefficients βξ and βη are discussed below.
The operator in the ξ direction can be rewritten as

(1 − βξ∇ξΔξ)R̄(m−1)
j,k =

[
−βξ R̄(m−1)

j−1,k + (1 + 2βξ)R̄(m−1)
j,k − βξ R̄(m−1)

j+1,k

]
.

(5.51)

The residuals of the individual equations, i.e. mass, x and y-momentum, and energy,
are smoothed separately. Hence in two dimensions implicit residual smoothing
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requires the solution of two scalar tridiagonal systems per stage of the multi-stage
time-stepping scheme. This adds considerably to the computational cost per time
step.

In order to understand and analyze implicit residual smoothing, we return to the
linear convection equation with periodic boundary conditions discretized using the
operator given in (5.31). In a one-dimensional scalar problem, the implicit residual
smoothing operator is given by

Bp(M : −β, 1 + 2β,−β)R̄ = R, (5.52)

or

R̄ = [Bp(M : −β, 1 + 2β,−β)]−1R, (5.53)

where we use the notation for the banded periodic matrix Bp(M : a, b, c) given in
(2.33). Hence we can obtain the eigenvalues of the system with implicit residual
smoothing by dividing those given in (5.33) by the eigenvalues of Bp(M : −β, 1 +
2β,−β),1 leading to

λmh = −Cn
i sin

( 2πm
M

)+ 4κ4
[
1 − cos

( 2πm
M

)]2
1 + 4β sin2

(
πm
M

) , m = 0 . . . M − 1.

(5.54)

For the problem studied previously, with M = 40, Cn = 3, and κ = 1/32
coupled with a smoothing coefficient of β = 0.6, the eigenvalues λh are displayed
in Fig. 5.12. There are two primary observations to be made. First, the magnitude
of the eigenvalues has generally been reduced as a result of the implicit residual
smoothing. This means that a larger Courant number can be used while remaining
within the stability bounds of a given time-marchingmethod. Second, the eigenvalues
associated with small m, which are those at the origin and just above and below, are
affected the least by the residual smoothing. These eigenvalues correspond to well
resolved modes, i.e. low frequency modes, which are those that convect out through
the boundary. Hence the residual smoothing has little effect on the manner in which
these modes are propagated.

Figure5.13 shows these eigenvalues superimposed on the |σ| contours of the
five-stage method with dissipation evaluated on the first, third, and fifth stages. As a
result of the implicit residual smoothing, a Courant number of 7 can be used while
remaining in the stable region. Consequently, disturbances will propagate to the outer
boundary in fewer time steps than without residual smoothing (where the Courant
number is 3). Figure5.14 shows that the damping properties are similar to those
obtained without residual smoothing, so the primary benefit is the higher Courant
number. It is important to recognize that the use of implicit residual smoothing entails

1 as a result of the properties of circulant matrices

http://dx.doi.org/10.1007/978-3-319-05053-9_2
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Fig. 5.12 Plot of λh values
given by (5.33) for M = 40,
κ4 = 1/32, and Cn = 3 with-
out implicit residual smooth-
ing (x) and with implicit
residual smoothing (+) with
β = 0.6
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Fig. 5.13 Plot of λh values
given by (5.33) for M = 40,
κ4 = 1/32, and Cn = 7 with
implicit residual smoothing
with β = 0.6 and contours
of |σ| for the five-stage time-
marching method with α1 =
1/4, α2 = 1/6, and α3 = 3/8
with the artificial dissipation
computed only on stages 1, 3,
and 5
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a significant computational expense per time step that must be weighed against the
reduced number of time steps to steady state associated with the increased Courant
number.

The main purpose of implicit residual smoothing is to enable the use of a larger
time step, or Courant number. Typically the Courant number limit is increased by
a factor of two to three. This enables disturbances to propagate more rapidly to the
domain boundary without compromising damping properties, as shown in Fig. 5.14.
The maximum stable Courant number continues to increase as β is increased. How-
ever, at some point this does not lead to faster convergence, and there is an optimum
value of β. The reason is that the implicit residual smoothing eliminates time accu-
racy and therefore interfereswith the physics of convection and hence the propagation
of error to the outer boundary. In Fig. 5.12 we saw that the smaller eigenvalues are not
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Fig. 5.14 Plot of |σ| val-
ues vs. κΔx for the spatial
operator given by 5.31 with
Cn = 7 with implicit resid-
ual smoothing (β = 0.6),
κ4 = 1/32, and the five-stage
time-marching method with
α1 = 1/4, α2 = 1/6, and
α3 = 3/8 with the artificial
dissipation computed only on
stages 1, 3, and 5 (solid line).
The dashed line shows the
results without implicit resid-
ual smoothing with Cn = 3
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greatly affected by the smoothing with β = 0.6. As β is increased, these eigenvalues
begin to deviate more from their values without implicit residual smoothing. Hence
there is a compromise between a large Courant number and accurate representation
of the convection process for low frequency modes.

Based on one- and two-dimensional stability analysis as well as numerical exper-
iments, Swanson and Turkel [7] developed the following formulas for βξ and βη:

βξ = max

{
1

4

[(
N

N∗
1

1 + ψrηξ

)2

− 1

]
, 0

}

βη = max

⎧⎨
⎩
1

4

⎡
⎣
(

N

N∗
1

1 + ψr−1
ηξ

)2

− 1

⎤
⎦ , 0

⎫⎬
⎭ . (5.55)

Here N∗ is the Courant number for the unsmoothed scheme, while N is the Courant
number for the smoothed scheme, so N/N∗ typically takes a value between 2 and
3. The ratio of inviscid spectral radii was defined in (5.22), and ψ is a user-defined
parameter generally between 0.125 and 0.25.

5.3.3 The Multigrid Method

The multigrid method systematically uses sets of coarser grids to accelerate the
convergence of iterative schemes. It can be applied to any iterative method that dis-
plays a smoothing property, i.e. it preferentially damps high-frequency error modes.
For explicit iterative methods, multigrid is critical to obtaining fast convergence to
steady-state for stiff problems.
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Multigrid theory is well developed for elliptic problems, such as the steady dif-
fusion equation. For such problems, there is a correlation between the eigenvalues
and the spatial frequencies of the associated eigenvectors. For example, for the dif-
fusion equation, the eigenvalues of the semi-discrete operator matrix resulting from
a second-order centered-difference discretization are all real and negative (see Sect.
2.3.4). The eigenvectors associated with the eigenvalues with small magnitudes have
low spatial frequencies, while those corresponding to eigenvalues with large magni-
tudes have high frequencies. Thismeans that in the exact solution of the semi-discrete
ODE system (see Sect. 2.3.3) the high frequency components in the transient solution
are rapidly damped, while the low frequency components are slowly damped. This
is a fundamental property of a diffusive system that is retained after discretizing in
space.

Given this correlation between eigenvalues with large magnitudes and high space
frequencies, it is a natural property of several iterative methods (such as the Gauss-
Seidel relaxation method) to reduce error components corresponding to high spatial
frequencies more effectively than those corresponding to low spatial frequencies.
Moreover, iterative methods can be specifically designed to have this property, such
as the Richardson method described in Lomax et al. [10]. The multigrid method
exploits this property by systematically using coarser grids to target the removal
of specific components of the error. For example, high frequency error components
are rapidly damped on the initial grid, whose density is determined by accuracy
considerations. Hence the error is smoothed on that mesh. The low frequency error
components can be represented on a coarser mesh on which some of them appear as
high frequencies, where the frequency is relative to the mesh spacing, and are thus
more rapidly damped.

To make this clearer, consider the range of wavenumbers that are representable
on a mesh with spacing Δx f , which are given by 0 ≤ κΔx f ≤ π. If the mesh
spacing is increased by a factor of two (Δxc = 2Δx f ), then the wavenumber range
π/2 ≤ κΔx f ≤ π on the original mesh cannot be represented on the coarse mesh.
However, the range of error modes with 0 ≤ κΔx f ≤ π/2 have their value of κΔx
doubled. Those error modes in the wavenumber range π/4 ≤ κΔx f ≤ π/2 on the
fine mesh, which are poorly damped compared to those in the high wavenumber
range, appear in the wavenumber range π/2 ≤ κΔxc ≤ π, which are well damped
on the coarse mesh. This can be repeated with successively coarser meshes until
the mesh is so coarse that the problem can be affordably solved directly rather than
iteratively, such that on that mesh all error modes are damped. This is essentially
how the multigrid method works for a linear diffusion problem. See Chap. 10 of [10]
for a more detailed description.

Here we are interested in the application of themultigridmethod to the discretized
Euler and Navier-Stokes equations, which introduces two important differences in
comparison to the diffusion equation. First, the Euler and Navier-Stokes equations
are nonlinear, which means that the full approximation storage approach in which
both the residual and the solutionmust be transferred from the fine to the coarsemesh
must be used. Second, in the diffusion problem with Dirichlet boundary conditions,
the only mechanism available to remove error modes is diffusion within the domain.

http://dx.doi.org/10.1007/978-3-319-05053-9_2
http://dx.doi.org/10.1007/978-3-319-05053-9_2
http://dx.doi.org/10.1007/978-3-319-05053-9_10
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When the Euler and Navier-Stokes equations are solved, error is also propagated
through the outer boundary of the domain. This mechanism is primarily associated
with low frequency error modes, for which the spatial discretization is relatively
accurate. Since such modes are typically poorly damped, this is an important mech-
anism for their removal. For example, referring to Figs. 5.9 and 5.14, we see that our
discretization of the linear convection equation, which includes artificial dissipation,
shows preferential damping of high frequencies, i.e. a smoothing property, with the
particular time-marching method used.

The analysis reflected in Figs. 5.9 and 5.14 does not include the mechanism of
error removal by convection through the boundary. In Sects. 5.3.1 and 5.3.2, we
accounted for this by designing schemes to permit as large a Courant number as
possible. The multigrid method also exploits this mechanism of error removal. The
low frequency error modes for which propagation through the boundary is important
are well represented on the coarser mesh. Since the mesh spacing is doubled on the
coarse mesh, maintaining a constant Courant number will lead to a doubling of the
time step, enabling disturbances to propagate to the outer boundary in roughly half as
many time steps. Therefore, when applied to the Euler and Navier-Stokes equations,
the multigrid method enhances the convergence rate both through accelerating the
damping of error modes within the domain and through accelerating the removal of
error through the outer boundary.

We now present the implementation of the multigrid method in conjunction
with the cell-centered finite-volume scheme and multi-stage time-marching method
described in this chapter. The system of ODEs resulting from the spatial discretiza-
tion is

d

dt
Q j,k = − 1

A j,k
LQ j,k = −R j,k . (5.56)

A sequence of grids can be created by successively removing every second grid line
in each coordinate direction from the finest grid. The coarse grid cell is then the
agglomeration of four fine grid cells sharing a common grid node. If the number
of fine grid cells in each coordinate direction is even, then all cells can be merged.
Typically sequences of three to five meshes are used. For a five-mesh sequence, the
finest mesh should have a number of cells in each direction that is a multiple of 16 in
order that the second coarsest mesh have an even number of cells in each direction.

We will now describe a two-grid process that can readily be extended to an arbi-
trary number of grids, since the process is recursive. We first complete one or more
iterations of the five-stage time-marching method with implicit residual smoothing
described previously to obtain Qh . This is followed by an additional computation
of the full residual based on the updated solution, including the convective, viscous,
and artificial dissipation contributions.

The next step is to transfer the residual and the solution from the fine to the coarse
mesh, a process known as restriction. Consider the residual first. The term LQ j,k is
the net flux out of cell j, k. In order to transfer the residual to the coarse mesh in a
conservative manner, the net flux out of the coarse grid cell should be equal to the
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net flux out of the four fine grid cells that were merged to form the coarse grid cell.
This is achieved simply by summing the flux of each of the four fine grid cells, since
internal fluxes will cancel, giving

I 2h
h Rh = 1

A2h

4∑
p=1

Ah Rh, (5.57)

where the subscripts h and 2h denote the fine and coarse grids, respectively, and I 2h
h

is the restriction operator.
Ananalogous conservative approach is taken to restrict the solution Q. The amount

of a conserved quantity, such as mass, momentum, or energy, in the coarse grid cell
should be equal to the sum of the amount of that conserved quantity in the constituent
fine grid cells. Since Q represents the conserved quantities per unit volume in a given
cell, it must be multiplied by the cell area to give the total amount of the conserved
quantity in the cell (noting that in two dimensions the conserved quantities are per
unit depth). Hence the formula for restricting the solution to the coarse mesh is

Q(0)
2h = I 2h

h Qh = 1

A2h

4∑
p=1

Ah Qh, (5.58)

where Q(0)
2h is the solution used to initiate the multi-stage method on the coarse mesh

(see (5.25)).
Now we are ready to solve a problem on the coarse mesh. It is important to

recognize that it is not our goal to find the solution to the governing equations on the
coarse mesh. The purpose of solving on the coarse mesh is to provide a correction
to the solution that will reduce the residual on the fine mesh. To this end, a forcing
term P2h is introduced into the ODE solved on the coarse mesh as follows [7]:

d

dt
Q2h = −[R2h(Q2h) + P2h], (5.59)

where R2h is the residual computed by applying the spatial discretization on the
coarse mesh. The forcing term is

P2h = I 2h
h Rh − R2h(Q(0)

2h ), (5.60)

which is the difference between the restricted residual and the coarse grid residual
computed based on the restricted solution. If we were to drive the coarse mesh
problem (5.59) to convergence, we would drive to zero

R2h(Q2h) + P2h = R2h(Q2h) − R2h(Q(0)
2h ) + I 2h

h Rh . (5.61)
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Thus we would obtain the change in the solution on the coarse mesh (Q2h − Q(0)
2h )

that produces a change in the coarse mesh residual (R2h(Q2h) − R2h(Q(0)
2h )) that

offsets the residual restricted from the fine mesh (I 2h
h Rh), which is the purpose of

the coarse grid correction.
Let us examine the forcing term in more detail. At the first stage of the multi-stage

method on the coarse mesh the residual is

− [R2h(Q(0)
2h ) + P2h] = −[R2h(Q(0)

2h ) + I 2h
h Rh − R2h(Q(0)

2h )] = −I 2h
h Rh,

(5.62)

which is simply the residual restricted from the fine mesh. This means that once the
solution on the fine mesh has converged, the coarse mesh calculation will produce
no correction, which is appropriate. This provides a useful test when debugging a
multigrid algorithm. One can compute the converged solution on the fine mesh using
the basic algorithm without multigrid and use this as the initial condition for the
multigrid algorithm. Quite a few possible errors can reveal themselves if the coarse
mesh correction is nonzero. For example, it is important to enforce the boundary
conditions on the coarse mesh before computing the term R2h(Q(0)

2h ) in the forcing
function P2h . Otherwise, when they are enforced during the first stage of the multi-
stage method, the value of R2h(Q(0)

2h ) will not cancel with the same term in P2h , and
a nonzero correction will be produced.

When the multi-stage method is applied to (5.59), the mth stage becomes

Q(m)
2h = Q(0)

2h − αmh[R(Q(m−1)
2h ) + P2h], (5.63)

where R(Q(m−1)
2h ) is computed as in (5.36). Note that P2h does not depend on m and

remains fixed during the stages. If the present coarse mesh is not the coarsest mesh in
the sequence, then one ormore iterations of themulti-stagemethod are performed and
the problem is transferred to the next coarser mesh after an additional computation of
the residual. The residual and solution are restricted using the operators in (5.57) and
(5.58), respectively.When continuing to a coarser mesh, the residual that is restricted
must include the forcing term, i.e. R2h(Q2h) + P2h .

Once the coarsest grid level is reached, the correction to the solution must be
transferred, or prolonged, back to the next finer grid. There is an important condition
that the transfer operators must satisfy in order to achieve mesh-size independent
rates of convergence of the multigrid algorithm, which can be written as [11]:

pR + pP + 2 > pPDE, (5.64)

where pR and pP are the highest degree polynomials interpolated exactly by the
restriction and prolongation operators, respectively, and pPDE is the order of the PDE.
For the restriction operator given in (5.57), pR = 0. Therefore, a prolongation based
on a piecewise constant interpolation (pP = 0) is adequate for theEuler equations, but
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Fig. 5.15 Bilinear prolonga-
tion operator for cell-centered
scheme in two dimensions

a piecewise linear interpolation (pP = 1) is needed for the Navier-Stokes equations,
for which pPDE = 2.

The prolongation operation for a cell-centered algorithm in two dimensions is
depicted in Fig. 5.15. With bilinear interpolation, the value of the correction ΔQ
in each fine mesh cell is calculated based on ΔQ in four coarse mesh cells. The
resulting prolongation operator is

I h
2hΔQ = 1

16
(9ΔQ1 + 3ΔQ2 + 3ΔQ3 + ΔQ4), (5.65)

where ΔQ1 is the value in the coarse mesh cell containing the fine mesh cell, ΔQ2
and ΔQ3 are the values in the coarse mesh cells that share an edge with the coarse
mesh cell containing the fine mesh cell, and ΔQ4 is the value in the coarse mesh cell
that shares only a vertex with the fine mesh cell.

The ΔQ to be prolonged to the fine mesh is the difference between Q2h after
completing the iteration or iterations on the coarse mesh and the original Q(0)

2h that
was restricted to the coarse mesh based on (5.58). Hence we obtain for the corrected
Qh on the fine mesh:

Q(corrected)
h = Qh + I h

2h(Q2h − Q(0)
2h ), (5.66)

where Qh is the value originally computed on the fine mesh (see (5.58)), and I h
2h is

the prolongation operator given in (5.65).
This basic two-grid framework provides the basis for many variations, known as

multigrid cycles, that depend on the number of grids in the sequence and the manner
in which they are visited. Figure5.16 displays two popular cycles, the V cycle and
the W cycle, based on four grids. Downward pointing arrows indicate restriction to
a coarser mesh, while upward pointing arrows indicate prolongation to a finer mesh.
There are trade-offs between the two cycles, and typically experimentation is needed
to determine which is more efficient and robust for a given problem class. In the W
cycle, relatively more computations are performed on the coarser grid levels; since
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Fig. 5.16 Four-grid V and W multigrid cycles

Fig. 5.17 Full multigrid with
four grids

these are inexpensive, the W cycle is often more efficient than the V cycle. Unlike
the classical approach to multigrid for linear problems, where the problem is solved
exactly on the coarsest mesh, in the present context one simply applies one or more
iterations of the multi-stage method on the coarsest mesh. Experiments show that
there is typically no benefit to converging further on the coarsest mesh. Similarly, it
is rare to see an overall benefit in terms of computational expense in going beyond
four or five grids. Within a given cycle, there are also several possible variants. For
example, one can apply the multi-stage scheme at each grid level when transferring
from the coarse grid levels back to the fine levels, or one can simply add the correction
and prolong the result to the next finer grid. Some authors apply an implicit smoothing
to the corrections. It is also common to apply various simplifications, such as a lower-
order spatial discretization, on the coarser grids. This reduces the computational
expense without affecting the converged solution.

Finally, the full multigrid method combines the concept of mesh sequencing pre-
sented in Sect. 4.5.6 with the multigrid method. Since a sequence of meshes exists
as well as a transfer operator from coarse to fine meshes, this is a natural approach.
The computation begins on the coarsest mesh in the sequence, on which a number
of multi-stage iterations are performed. The solution is transferred to the next finer
mesh, and a number of two-grid multigrid cycles are carried out. This solution is
transferred to the next finer grid, and a number of three-grid cycles are performed.
This process continues until the full cycle is reached, as depicted in Fig. 5.17.

http://dx.doi.org/10.1007/978-3-319-05053-9_4
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5.4 One-Dimensional Examples

As in Chap. 4, we present examples of the application of the algorithm described in
this chapter to the quasi-one-dimensional Euler equations. These examples coincide
with the exercises listed at the end of the chapter, giving the reader a benchmark for
their results. In the context of a one-dimensional uniformmesh, the implementation of
the second-order finite-volumemethod described in this chapter is very similar to that
of the second-order finite-difference method of the previous chapter. Consequently,
wewill use the same spatial discretization as in Sect. 4.8, but coupledwith the explicit
multi-stage multigrid algorithm presented in this chapter. Our focus here is on steady
flows.

The spatial discretization used to illustrate the performance of the multi-stage
multigrid algorithm is node centered. Therefore, the grid transfer operators described
in this chapter cannot be used, andwe introduce suitable operators for a node-centered
scheme in one dimension. The coarse grid is formed by removing every other grid
node from the fine mesh. An odd number of nodes should be used to ensure that
the boundary nodes are preserved in the coarse mesh. For a sequence of p grids, the
finest mesh should have a number of interior nodes equal to some multiple of 2p−1

minus one.
The simplest restriction operator is simple injection, where the coarse grid node is

assigned the value at the correspondingfine grid node. In a linearweighted restriction,
the coarse grid node is assigned a value equal to one-half that at the corresponding
fine grid node plus one-quarter of that at each of the neighbours of the fine grid
node, which do not exist on the coarse grid. The reader should experiment with these
two approaches in order to examine their effect on multigrid convergence. After
restricting the solution to the coarse mesh, the boundary values should be reset to
satisfy the boundary conditions on the coarse mesh.

For prolongation, linear interpolation gives the following transfer operator. Each
fine grid node for which there is a corresponding coarse grid node is assigned the
value at that coarse grid node. For fine grid nodes that do not exist on the coarse
grid, they receive one-half of the value from each neighbouring coarse grid node.
After prolonging the correction to a finer mesh, the boundary values should be reset
to satisfy the boundary conditions on the fine mesh.

For the methods presented in this chapter and the previous one, the converged
steady solution is independent of the details of the iterative method such as the time
step. Since we apply the same spatial discretization as for the results presented in
Sect. 4.8, except for a different value of κ4, the solutions will be nearly identical to
those presented previously, as long as the residual is reduced sufficiently. Therefore,
we concentrate here only on convergence histories.

The example results presented here are based on the five-stage time-marching
method with α1 = 1/4, α2 = 1/6, and α3 = 3/8 and the artificial dissipation
computed only on stages 1, 3, and 5. Without residual smoothing, Cn = 3. Residual
smoothing is applied with β = 0.6 andCn = 7. Themultigrid method is based on the
multi-stage method with implicit residual smoothing and the same parameter values.

http://dx.doi.org/10.1007/978-3-319-05053-9_4
http://dx.doi.org/10.1007/978-3-319-05053-9_4
http://dx.doi.org/10.1007/978-3-319-05053-9_4
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Fig. 5.18 Residual con-
vergence histories for the
subsonic channel flow prob-
lem with 103 interior nodes
using the explicit algorithm
with Cn = 3 (-), Cn = 7 and
implicit residual smoothing
with β = 0.6 (- -), and a four-
level W multigrid cycle with
Cn = 7 and implicit residual
smoothing with β = 0.6 (-.)
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Fig. 5.19 Residual con-
vergence histories for the
subsonic channel flow prob-
lem with 103 interior nodes
(-), 207 interior nodes (- -),
and 415 interior nodes (-.)
using the explicit algorithm
with a W multigrid cycle with
Cn = 7 and implicit residual
smoothing with β = 0.6.
Four grid levels are used on
the coarsest mesh, five on the
intermediate mesh, and six on
the finest mesh
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The solution is restricted through simple injection, while linear weighted restriction
is used for the residual. For both W and V cycles, the time-marching method is not
applied after prolongation except on the finest mesh when the cycle is repeated. The
artificial dissipation coefficients are κ4 = 1/32 and κ2 = 0.5 in all cases.

Figure5.18 compares the convergence of the explicit algorithm on a single grid
without implicit residual smoothing, with implicit residual smoothing, and with a
four-level W multigrid cycle for the subsonic channel on a mesh with 103 interior
nodes. The norm of the residual of the conservation of mass equation is shown. With
themultigrid algorithm, the residual is reduced to below 10−12 in 93multigrid cycles.
Figure5.19 displays the performance of the multigrid algorithmW cycle for varying
numbers of grid nodes. Four grid levels are used with 103 interior nodes, five with
207 interior nodes, and six with 413 interior nodes. Thus the coarsest mesh, which
has 12 interior nodes, is the same in each case. With this approach, the number of
multigrid cycles needed for convergence is nearly independent of the mesh size, as
shown in the figure. Figure5.20 shows that the V cycle does not converge as quickly
for this case and requires more cycles as the mesh is refined.
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Fig. 5.20 Residual conver-
gence histories for the sub-
sonic channel flow problem
with 103 interior nodes (-),
207 interior nodes (- -), and
415 interior nodes (-.) using
the explicit algorithm with a V
multigrid cycle with Cn = 7
and implicit residual smooth-
ing with β = 0.6. Four grid
levels are used on the coarsest
mesh, five on the intermediate
mesh, and six on the finest
mesh
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Fig. 5.21 Residual con-
vergence histories for the
transonic channel flow prob-
lem with 103 interior nodes
using the explicit algorithm
with Cn = 3 (-), Cn = 7 and
implicit residual smoothing
with β = 0.6 (- -), and a four-
level W multigrid cycle with
Cn = 7 and implicit residual
smoothing with β = 0.6 (-.)
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Figures5.21, 5.22, and 5.23 show the same comparisons for the transonic channel
problem. Although the number of iterations or multigrid cycles required for con-
vergence is much higher in this case, the trends are very similar. Implicit residual
smoothing improves the convergence rate by a factor close to two. Multigrid is very
effective in reducing the number of iterations needed, and the W cycle converges in
fewer cycles than the V cycle.

5.5 Summary

The algorithm described in this chapter has the following key features:

• Thediscretization of the spatial derivatives is accomplished through a second-order
cell-centered finite-volume method applied on a structured grid. This approach
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Fig. 5.22 Residual con-
vergence histories for the
transonic channel flow prob-
lem with 103 interior nodes
(-), 207 interior nodes (- -),
and 415 interior nodes (-.)
using the explicit algorithm
with a W multigrid cycle with
Cn = 7 and implicit residual
smoothing with β = 0.6.
Four grid levels are used on
the coarsest mesh, five on the
intermediate mesh, and six on
the finest mesh
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Fig. 5.23 Residual conver-
gence histories for the tran-
sonic channel flow problem
with 103 interior nodes (-),
207 interior nodes (- -), and
415 interior nodes (-.) using
the explicit algorithm with a V
multigrid cycle with Cn = 7
and implicit residual smooth-
ing with β = 0.6. Four grid
levels are used on the coarsest
mesh, five on the intermediate
mesh, and six on the finest
mesh
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can be extended to unstructured grids. Numerical dissipation is added through
a nonlinear artificial dissipation scheme that combines a third-order dissipative
term in smooth regions of the flow with a first-order term near shock waves. A
pressure-based term is used as a shock sensor.

• After discretization in space, the original PDEs are converted to a large system
of ODEs. For computations of steady flows, a five-stage explicit method is used
in which the artificial dissipation is computed only on stages one, three, and five,
and the viscous flux operator is applied only on the first stage. At each stage, the
residual is smoothed by application of a scalar tridiagonal implicit operator in
each coordinate direction. The multigrid method is applied in order to accelerate
convergence to steady state. For computations of unsteady flows, this algorithm
can be used within the context of an implicit dual-time-stepping approach.
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5.6 Exercises

For related discussion, see Sect. 5.4.

5.1 Write a computer program to apply the explicit multigrid algorithm presented in
this chapter to the quasi-one-dimensional Euler equations for the following subsonic
problem. S(x) is given by

S(x) =
{
1 + 1.5

(
1 − x

5

)2 0 ≤ x ≤ 5

1 + 0.5
(
1 − x

5

)2 5 ≤ x ≤ 10
(5.67)

where S(x) and x are inmeters. The fluid is air, which is considered to be a perfect gas
with R = 287 N ·m · kg−1 ·K−1, and γ = 1.4, the total temperature is T0 = 300 K,
and the total pressure at the inlet is p01 = 100 kPa. The flow is subsonic throughout
the channel, with S∗ = 0.8. Use the spatial discretization described in Chap. 4 with
the nonlinear scalar artificial dissipation model, since, on a uniform mesh in one
dimension, it is essentially the same as that presented in this chapter. Compare your
solution with the exact solution computed in Exercise 3.1. Show the convergence
history for each case. Experiment with parameters, such as the multigrid cycle (e.g.
W and V), the number of grid levels, the Courant number, and the implicit residual
smoothing coefficient, to examine their effect on convergence. Find optimal values
of the implicit residual smoothing coefficient and the Courant number for rapid and
reliable convergence.
5.2Repeat Exercise 5.1 for a transonic flow in the same channel. The flow is subsonic
at the inlet, there is a shock at x = 7, and S∗ = 1. Compare your solution with that
calculated in Exercise 3.2.
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