
Chapter 4
An Implicit Finite-Difference Algorithm

4.1 Introduction

A numerical solution algorithm for the Navier-Stokes equations converts the original
system of partial differential equations (PDEs) to a much larger system of algebraic
equations, which is then solved. Many such algorithms discretize space and time
independently, such that the PDEs are first reduced to ordinary differential equations
(ODEs) through the discretization of the spatial terms in the governing equations.
This semi-discrete ODE system is then converted to a system of ordinary difference
equations (OΔEs) through a time-marching method. This assumes that the PDE
system is time-dependent. If one is interested only in the steady solution of the
Navier-Stokes equations, then the time-derivative terms can be dropped, and there is
no intermediate ODE system. In this case, the spatial discretization directly reduces
the original nonlinear PDE system to a system of nonlinear algebraic equations.
Being nonlinear, this algebraic system cannot be solved directly and must be solved
using an iterative method. It can often be useful to retain the time-dependent terms
even if one is interested only in the steady solution, as a time-marching method
that follows a quasi-physical path to the steady solution can be an effective iterative
method.

Both the implicit algorithm presented in this chapter and the explicit algorithm
presented in the next chapter retain the time-derivative terms in the Navier-Stokes
equations even when solving for steady flows. Moreover, both algorithms involve
independent discretization of space and time, andhence an intermediate semi-discrete
ODE form. In principle, the spatial and temporal components of the algorithms could
be presented independently. However, in these two algorithms the two are quite
closely linked. In other words, the time-marching methods are particularly effective
with the specific spatial discretization used. Nonetheless, the reader should be aware
that it is of course possible and reasonable to develop an explicit finite-difference
algorithm or an implicit finite-volume algorithm.
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The key characteristics of the algorithm presented in this chapter are as follows:

• node-based data storage; the numerical solution for the state variables is associated
with the nodes of the grid

• second-order finite-difference spatial discretization; centered with added numeri-
cal dissipation; a simple shock-capturing device

• transformation to generalized curvilinear coordinates; applicable to structured
grids

• implicit time marching based on approximate factorization of the resulting matrix
operator

All of these termswill be explained in this chapter. Key contributions to this algorithm
were made by Beam and Warming [1], Steger [2], Warming and Beam [3], Pulliam
and Steger [4], Pulliam and Chaussee [5], and Pulliam [6].

The exercises at the end of the chapter provide an opportunity to write a com-
puter program to apply this algorithm to several one-dimensional problems. Neither
approximate factorization nor the coordinate transformation will enter into this pro-
gram, but the exercise will enable the reader to develop a greater understanding of
most other aspects of the algorithm.

4.1.1 Implicit Versus Explicit Time-Marching Methods

As discussed in Chap. 2, time-marching methods can be classified as implicit or
explicit, and the two types have significantly different properties with respect to
stability and cost. A simple characterization of implicit and explicit methods states
that implicit methods have a much higher computing cost per time step, but their
stability properties permit much larger time steps to be used. Depending on the
nature of the problem, specifically its stiffness, either method can be more efficient.
Implicit methods become relatively more efficient with increasing problem stiffness.

In computational fluid dynamics, stiffness has many sources, both physical and
numerical. Physical stiffness comes from varying scales and speeds associated with
different physical processes contained in the PDEs. For example, if the computation
includes chemical reactions that proceed at rates much higher than those associated
with the basic fluid dynamics, and time-accurate resolution of the chemical reactions
is not required, then this will lead to a stiff system. Figure 2.2 shows one way
in which numerical stiffness is introduced. There exist many modes in the system
at high wavenumbers that are completely inaccurate. Such modes are inherently
parasitic. This means that resolving them accurately in time will not improve the
accuracy of the solution, because the spatial discretization is not accurate for these
components of the solution. Thus these modes and their associated eigenvalues must
lie within the stable region of the time-marching method, but need not lie within its
region of accuracy (see Fig. 2.6). Furthermore, in many computations, very small
grid spacings are needed in some regions of the flow, such as boundary layers, while
much larger spacings are sufficient elsewhere. This too can cause stiffness, as the
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time taken for information to pass through a small cell is much shorter than that
taken to pass through a large cell, introducing widely different time scales from a
numerical point of view.Moreover, if gradients are much higher in one direction than
another, then it is efficient to use small grid spacings in the direction of large gradient
and larger spacings in the smaller gradient direction, leading to grid cells with high
aspect ratios. As the time taken for waves to traverse the cell in one direction is thus
much different from the other direction, multiple time scales and hence stiffness can
again be introduced.

One way to understand the choice between implicit and explicit methods is to
consider the limiting factor in the choice of the time step. Accuracy considerations
place one bound on the maximum allowable time step. In other words, the time step
must be small enough that the time accuracy of the solution is sufficient. Stability
considerations place another bound on the time step. If the accuracy bound is smaller
than the stability bound, then the time step is said to beaccuracy limited. If the stability
bound is smaller, then it is said to be stability limited. In a simulation where the time
step is accuracy limited, there is little point in using an implicit method, as the same
time step must be used in either case, so the extra cost per time step of an implicit
method is not worthwhile. Conversely, if the stability bound is much smaller than the
accuracy bound, then the explicit method will require a much smaller time step than
an unconditionally stable implicit method, and hence the latter can be more efficient.

In the context of the numerical solution ofODEs, it is straightforward to categorize
a method as explicit or implicit. In the context of PDEs, it is more accurate to classify
methods according to a spectrum ranging from fully explicit to fully implicit. At the
fully explicit end of the spectrum lies a method such as the explicit Euler method,
without any additional convergence acceleration techniques, such as multigrid or
implicit residual smoothing (which the reader will learn about in the next chapter).
A multi-stage method, such as an explicit Runge-Kutta method, is still officially
explicit, but generally has a larger stability bound at the expense of an increased
cost per time step and can therefore be considered to have moved slightly toward the
implicit end of the spectrum. Similarly, convergence acceleration techniques such
as implicit residual smoothing and multigrid move the resulting “explicit” algorithm
further in the implicit direction. This is typically associated with increased transfer of
information across the mesh during a time step, which is a characteristic of implicit
methods, an increased stability bound, and an increased cost per time step. At the
fully implicit end of the spectrum lies the implicit Euler methodwith a direct solution
of the linear problem at each time step. As this is usually infeasible and inefficient, for
reasons to be discussed in this chapter, the linear problem is usually solved inexactly
using an iterativemethod,whichmoves the algorithm slightly in the explicit direction.
Alternatively, the linear problem can be approximated in a manner that makes it
easier to solve, as in the approximate factorization algorithm that is the subject of
this chapter. This reduces the cost per time step but can also reduce the optimal time
step for convergence; in other words, it moves the algorithm somewhat further away
from the fully implicit end of the spectrum.

Both the extreme explicit and the extreme implicit ends of the spectrum lead
to inefficient algorithms for large problems. Therefore, all practical algorithms
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in use today for large-scale problems, including the algorithms described in this
and the following chapter, lie somewhere between these two extremes, with the
choice depending on the stiffness of the particular problem under consideration. It is
interesting to note that, although this chapter’s algorithm is nominally classified as
implicit, while next chapter’s algorithm is nominally classified as explicit, their cost
per time step is quite comparable.

4.2 Generalized Curvilinear Coordinate Transformation

Finite-difference formulas are most naturally implemented on rectilinear meshes,
as described in Chap. 2. On such meshes, the mesh lines are orthogonal, and it is
straightforward to align the mesh such that each mesh line is associated with a spe-
cific coordinate direction. The derivative in a given coordinate direction can then be
easily approximated based on finite differences along the corresponding mesh line.
On the other hand, implementation of boundary conditions is simplified if the mesh
is body-fitted, in other words the mesh conforms to the boundary of the geometry
under consideration. If the boundary is curved, as is the case for most geometries
of interest, this precludes the use of a mesh that is both rectilinear and body-fitted.
In the present algorithm, this issue is addressed by transforming the physical space
in which the mesh has curved, potentially non-orthogonal mesh lines into a com-
putational space in which the mesh is rectilinear through a generalized curvilinear
coordinate transformation. Such a transformation enables the straightforward appli-
cation of finite-difference formulas on a body-fitted mesh. Our exposition will be
in two dimensions, but extension to three dimensions should not present the reader
with any conceptual difficulties.

An example of a mesh about an airfoil is shown in Fig. 4.1, and the corresponding
curvilinear coordinate transformation is shown schematically in Fig. 4.2. In this case,
the body is an airfoil, and the flow domain is bounded by an outer boundary. In the
physical space defined by the Cartesian coordinates x, y, one set of mesh lines forms
a “C” and hence such a mesh is known as a “C-mesh.” The innermost “C” conforms
to the airfoil surface and awake cut alongwhich twomesh lines correspond to a single
line in physical space. The outermost “C” corresponds to the curved portion of the
outer boundary. This set of lines is defined to be the one along which the curvilinear
coordinate ξ varies, and the curvilinear coordinate η is constant. The second set of
mesh lines is roughly orthogonal to the first and emanates from the body or the wake
cut toward the outer boundary. Along these lines, η varies, and ξ is constant. The
coordinate transformation is chosen such that the mesh is mapped to a computational
space where the mesh lines are orthogonal, and the spacings Δξ and Δη are unity in
both directions. Therefore, standard finite-difference formulas can be easily applied.
The computational space is a rectangle, where the bottom side includes the grid
line lying on the airfoil and the wake cut, the top is the curved portion of the outer
boundary, the left side is the portion of the back boundary below the wake cut, and
the right side is the portion of the back boundary above the wake cut. Although
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Fig. 4.1 A sample airfoil grid with a “C” topology showing only the region near the airfoil

Fig. 4.2 An example of a generalized curvilinear coordinate transformation for a C-mesh

meshes can be defined by an analytical transformation for simple geometries, they
are typically defined solely by the Cartesian coordinates of their nodes, and the
underlying transformation to computational space is not known explicitly.

It is important to note that the mesh topology shown in Figs. 4.1 and 4.2 is just one
possible topology. Another possibility, an “O” mesh, is shown in Fig. 4.3. The key
property of such meshes, known as structured meshes is that the nodes are aligned
along coordinate directions. This contrasts with unstructured meshes, which have no
such constraint. An interior node in a two-dimensional structured mesh must have
four neighbors (six in three dimensions), while a node in an unstructured mesh can
have an arbitrary number of neighbors. This characteristic of a structured mesh sim-
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Fig. 4.3 A sample airfoil grid
with an “O” topology showing
only the region near the airfoil
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plifies its storage. In two dimensions, a structured mesh is defined by a set of x and
y coordinates that are assigned indices j and k, where j corresponds to the index in
the ξ direction, and k corresponds to the η direction. The four immediate neighbors
of node ( j, k) are the nodes with indices ( j + 1, k), ( j − 1, k), ( j, k + 1), ( j, k − 1);
the connectivity is implied by the indices. For more complex geometries, it can
be impossible to define a mesh such that a single, simply connected, rectangular
computational space exists. For such cases, block-structured meshes can be defined
such that multiple rectangular computational domains are produced by the transfor-
mation. These domains can be interfaced in a number of different ways, including
overlapping and abutting blocks.

In order to make use of finite-difference formulas defined in computational space,
the governing equations must be transformed such that derivatives with respect to
the Cartesian coordinates x and y are replaced by derivatives with respect to compu-
tational coordinates ξ and η. The coordinate transformation introduced here follows
the development of Viviand [7] and Vinokur [8]. The Navier-Stokes equations can
be transformed from Cartesian coordinates to generalized curvilinear coordinates
where

τ = t

ξ = ξ(x, y, t)

η = η(x, y, t). (4.1)

If the grid does not deform over time, then ξ = ξ(x, y) and η = η(x, y). Typically
there will be a one to one correspondence between a physical point in space and a
computational point, except for regions where there are singularities or cuts due to
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the topology, such as the wake cut in the C-mesh example above. In those cases it
may be necessary to map one physical point to more than one computational point.

The present coordinate transformation differs from some in that only the inde-
pendent variables are transformed. The dependent variables remain defined in the
Cartesian space, e.g. in terms of the Cartesian velocity components u and v. Chain-
rule expansions are used to represent the derivatives in Cartesian space, ∂t , ∂x , and
∂y of (3.1), in terms of the curvilinear derivatives, as follows:

∂

∂x
= ∂ξ

∂x

∂

∂ξ
+ ∂η

∂x

∂

∂η

∂

∂y
= ∂ξ

∂y

∂

∂ξ
+ ∂η

∂y

∂

∂η
(4.2)

∂

∂t
= ∂

∂τ
+ ∂ξ

∂t

∂

∂ξ
+ ∂η

∂t

∂

∂η
.

Introducing the notation

∂x ≡ ∂

∂x
and ξx ≡ ∂ξ

∂x
, (4.3)

these can be written in matrix form as
⎡
⎣

∂t

∂x

∂y

⎤
⎦ =

⎡
⎣
1 ξt ηt

0 ξx ηx

0 ξy ηy

⎤
⎦

⎡
⎣

∂τ

∂ξ

∂η

⎤
⎦ . (4.4)

Applying these chain-rule expansions to theNavier-Stokes equations (3.1), we obtain

∂τ Q + ξt∂ξ Q + ηt∂η Q + ξx∂ξ E + ηx∂η E + ξy∂ξ F + ηy∂η F

= Re−1 (
ξx∂ξ Ev + ηx∂η Ev + ξy∂ξ Fv + ηy∂η Fv

)
. (4.5)

4.2.1 Metric Relations

In (4.5), derivatives with respect to t, x , and y have been replaced by deriv-
atives with respect to τ , ξ, and η. Since the computational space is rectilinear
and equally spaced, the latter can be easily approximated using finite-difference
expressions—these will be presented in a subsequent section. The coefficients in-
troduced (ξt , ξx , ξy, ηt , ηx , ηy) are known as grid metrics. Since in most cases the
transformation from physical space to computational space is not known analyti-
cally, the metrics must be determined numerically. That is, we usually are provided
with just the x, y coordinates of the grid points and must numerically generate the

http://dx.doi.org/10.1007/978-3-319-05053-9_3
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metrics (ξt , ξx , ξy, ηt , ηx , ηy) using finite differences. This introduces a difficulty in
that these are derivatives with respect to the original Cartesian coordinates.

In order to address this, consider the inverse of the transformation given in (4.1):

t = τ

x = x(ξ, η, τ ) (4.6)

y = y(ξ, η, τ ).

Reversing the role of the independent variables in the chain rule formulas (4.3), we
have,

∂τ = ∂t + xτ ∂x + yτ ∂y, ∂ξ = xξ∂x + yξ∂y, ∂η = xη∂x + yη∂y, (4.7)

which can be written in matrix form as
⎡
⎣

∂τ

∂ξ

∂η

⎤
⎦ =

⎡
⎣
1 xτ yτ

0 xξ yξ

0 xη yη

⎤
⎦

⎡
⎣

∂t

∂x

∂y

⎤
⎦ . (4.8)

Comparing (4.4) and (4.8), it is immediately clear that

⎡
⎣
1 ξt ηt

0 ξx ηx

0 ξy ηy

⎤
⎦ =

⎡
⎣
1 xτ yτ

0 xξ yξ

0 xη yη

⎤
⎦

−1

(4.9)

= J

⎡
⎣

(xξ yη − yξxη) (−xτ yη + yτ xη) (xτ yξ − yτ xξ)

0 yη −yξ

0 −xη xξ

⎤
⎦, (4.10)

where J = (xξ yη − xη yξ)
−1 is defined as the metric Jacobian. This yields the

following metric relations:

ξt = J (−xτ yη + yτ xη), ξx = J yη, ξy = −J xη

ηt = J (xτ yξ − yτ xξ), ηx = −J yξ, ηy = J xξ . (4.11)

Using these relations, the metrics (ξt , ξx , ξy, ηt , ηx , ηy) can be determined from
(xτ , xξ, xη, yτ , yξ, yη), where the latter are easily found using finite differences,
since they are derivatives in computational space. Finite-difference formulas for
these terms will be presented later in this chapter.
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4.2.2 Invariants of the Transformation

At this pointwe notice that the transformed equations (4.5) are in aweak conservation
law form. That is, even though none of the flow variables (or functions of the flow
variables) occur as coefficients in the differential equations, the metrics, which are
spatially varying, lie outside of the derivative operators. There is some argument
in the literature which advocates the use of the so called “chain rule form,” since
it should still have good shock capturing properties and in some ways is a simpler
form. Here, though, we shall restrict ourselves to the strong conservation law form
which will be derived below.

To simplify our derivation, we will consider the inviscid terms only. This reduces
(4.5) to

∂τ Q + ξt∂ξ Q + ηt∂η Q + ξx∂ξ E + ηx∂η E + ξy∂ξ F + ηy∂η F = 0. (4.12)

To produce the strong conservation law form we first multiply (4.12) by J−1 and
apply the product rule to all terms. For example, the fourth term on the left-hand side
can be expanded as

(
ξx

J

)
∂ξ E = ∂ξ

(
ξx

J
E

)
− E∂ξ

(
ξx

J

)
. (4.13)

Each term can thus be rewritten as the difference between a term in the form we are
looking for, with no coefficient outside the derivative operator, and a second term
that is the product of a function of Q and a derivative of a quantity that is strictly a
function of the grid. Collecting all the terms into two groups, with Term1 representing
the first group of terms and Term2 the second, we obtain

Term1 + Term2 = 0,

where

Term1 = ∂τ (Q/J ) + ∂ξ[(ξt Q + ξx E + ξy F)/J ] + ∂η[(ηt Q + ηx E + ηy F)/J ]
Term2 = −Q[∂τ (J−1) + ∂ξ(ξt/J ) + ∂η(ηt/J )] (4.14)

−E[∂ξ(ξx/J ) + ∂η(ηx/J )] − F[∂ξ(ξy/J ) + ∂η(ηy/J )].

The expressions from Term2,

∂τ (J−1) + ∂ξ(ξt/J ) + ∂η(ηt/J )

∂ξ(ξx/J ) + ∂η(ηx/J )

∂ξ(ξy/J ) + ∂η(ηy/J ), (4.15)
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are defined as invariants of the transformation. Substituting themetric relations (4.11)
into the invariant expressions gives

∂τ (xξ yη − yξxη) + ∂ξ(−xτ yη + yτ xη) + ∂η(xτ yξ − yτ xξ)

∂ξ(yη) + ∂η(−yξ) (4.16)

∂ξ(−xη) + ∂η(xξ). (4.17)

Analytically, differentiation is commutative, and the above terms sum to zero. This
eliminates Term2 of (4.15), and the resulting equations are in strong conservation
law form.

There is an important issue associated with these invariants. It is not true in
general that finite-difference approximations are commutative. Consequently, when
numerical differencing is applied to these equations (as developed in the Sect. 4.4),
the finite-difference formulas used to evaluate the spatial derivatives of the fluxes
and the finite-difference formulas used to calculate the metrics do not necessarily
satisfy the commutative law. Second-order central differences commute, but mixed
second-order and fourth-order formulas do not. This is further discussed in Sect.
4.4.1.

4.2.3 Navier-Stokes Equations in Generalized Curvilinear
Coordinates

The Navier-Stokes equations written in strong conservation law form are

∂τ Q̂ + ∂ξ Ê + ∂η F̂ = Re−1[∂ξ Êv + ∂η F̂v], (4.18)

with

Q̂ = J−1

⎡
⎢⎢⎣

ρ
ρu
ρv

e

⎤
⎥⎥⎦ , Ê = J−1

⎡
⎢⎢⎣

ρU
ρuU + ξx p
ρvU + ξy p

U (e + p) − ξt p

⎤
⎥⎥⎦ , F̂ = J−1

⎡
⎢⎢⎣

ρV
ρuV + ηx p
ρvV + ηy p

V (e + p) − ηt p

⎤
⎥⎥⎦ ,

where

U = ξt + ξx u + ξyv, V = ηt + ηx u + ηyv (4.19)

are known as the contravariant velocity components—see Sect. 4.2.4 for more de-
tails. The viscous flux terms are Êv = J−1(ξx Ev + ξy Fv) and F̂v = J−1(ηx Ev +
ηy Fv).The viscous stress and heat conduction terms must also be transformed using
the chain rule such that they are written in terms of ξ and η derivatives, giving
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τxx = μ(4(ξx uξ + ηx uη) − 2(ξyvξ + ηyvη))/3

τxy = μ(ξyuξ + ηyuη + ξxvξ + ηxvη)

τyy = μ(−2(ξx uξ + ηx uη) + 4(ξyvξ + ηyvη))/3

f4 = uτxx + vτxy + μPr−1(γ − 1)−1(ξx∂ξa2 + ηx∂ηa2)

g4 = uτxy + vτyy + μPr−1(γ − 1)−1(ξy∂ξa2 + ηy∂ηa2). (4.20)

The above discussion of metric invariants suggests a useful test for a finite-
difference formulation. A minimum requirement of any finite-difference formula-
tion is that a steady uniform flow be a valid solution of the discrete equations. If the
chain-rule form (4.5) is evaluated for a steady uniform flow defined by

ρ = 1,

u = M∞,

v = 0,

e = 1

γ(γ − 1)
+ 1

2
M2∞, (4.21)

it is clearly satisfied, since all terms must equal zero given that the solution has
no spatial or temporal variation. We would also like this steady uniform flow to
satisfy (4.18) after the various derivatives have been replaced by finite-difference
approximations. If the discrete form of (4.18) is not satisfied by a steady uniform
flow, this can reveal a multitude of possible errors, including possibly a choice of
difference operators for which the metric invariants are not zero.

4.2.4 Covariant and Contravariant Components in Curvilinear
Coordinates

In Sect. 4.2.3 we introduced the contravariant velocity components associated with
the curvilinear coordinate system. Since we will continue to work with Cartesian
velocity components, a detailed knowledge of covariant and contravariant compo-
nents is not necessary to understand the rest of the algorithm description. However,
we will later need, for example, expressions for velocity components tangential and
normal to a boundary in terms of the Cartesian components, so it is helpful to have
a sufficient understanding to be able to derive such expressions.

We will assume a steady mesh in two dimensions, so we have x(ξ, η), y(ξ, η) and
the inverse transformation ξ(x, y), η(x, y). First, define the vector

r = xî + y ĵ . (4.22)

In curvilinear coordinates, two sets of basis vectors can be defined. The covariant
basis vectors are tangent to the ξ and η axes and are not required to be orthogonal.



86 4 An Implicit Finite-Difference Algorithm

They are given by

b1 = ∂r

∂ξ
, b2 = ∂r

∂η
. (4.23)

It can be more convenient to scale these such that they are unit vectors, giving

ê1 =
∂r
∂ξ∣∣∣ ∂r
∂ξ

∣∣∣
, ê2 =

∂r
∂η∣∣∣ ∂r
∂η

∣∣∣
. (4.24)

Note that these vectors are defined locally. The contravariant basis vectors are normal
to the η and ξ axes and are defined by

B1 = ∇ξ, B2 = ∇η, (4.25)

where ∇ is the gradient operator. The contravariant basis vectors can also be scaled
such that their length is unity:

Ê1 = ∇ξ

|∇ξ| , Ê2 = ∇η

|∇η| . (4.26)

With these bases, an arbitrary vector A can be defined in the following ways:

A = A1ê1 + A2ê2 = a1 Ê1 + a2 Ê2

= C1b1 + C2b2 = c1B1 + c2B2. (4.27)

Here C1 and C2 are the contravariant components of A, i.e. C1 = B1 · A and
C2 = B2 · A, and c1 and c2 are the covariant components of A, i.e. c1 = b1 · A and
c2 = b2 · A. Note that Bi · b j = δi j , where δi j is the Kronecker delta.

For example, let A represent the velocity vector uî + v ĵ . From (4.25) we have

B1 = ξx î + ξy ĵ, B2 = ηx î + ηy ĵ . (4.28)

Therefore, we obtain for the contravariant components of velocity

C1 = B1 · A = ξx u + ξyv, C2 = B2 · A = ηx u + ηyv, (4.29)

consistent with the definitions of U and V in (4.19) when the coordinate transfor-
mation is time invariant.

In the application of boundary conditions, one often needs expressions for the
velocity components normal and tangential to the boundary in terms of the Cartesian
velocity components. In this case, we must work with unit basis vectors to preserve
the magnitude of the velocity. We assume that the boundary is a grid line of constant
η, such as the airfoil surface in Figs. 4.1 and 4.2, but the result is easily generalized
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to other boundaries. Recall that ê1 is tangent to the ξ axis, and Ê2 is normal to the η
axis. Therefore, we can write

uî + v ĵ = Vt ê1 + Vn Ê2, (4.30)

where Vt and Vn are the tangential and normal velocity components, respectively.
The two unit vectors are given by

ê1 = xξ î + yξ ĵ√
x2ξ + y2ξ

= ηy î − ηx ĵ√
η2x + η2y

Ê2 = ηx î + ηy ĵ√
η2x + η2y

, (4.31)

where the metric relations are used to obtain the second expression for ê1. Noting
that

ê1 · Ê2 = 0, ê1 · ê1 = Ê2 · Ê2 = 1, (4.32)

we find the following expressions for the tangential and normal velocity components:

Vt = ê1 · (uî + v ĵ) = ηyu − ηxv√
η2x + η2y

Vn = Ê2 · (uî + v ĵ) = ηx u + ηyv√
η2x + η2y

. (4.33)

These are the velocity components tangential and normal to a grid line of constant η
at a specific point in space.

As a second example, consider the derivative of pressure in a direction normal
to a surface which again corresponds to a grid line of constant η. The gradient of
pressure can be expressed in terms of the basis vectors ê1 and Ê2 as follows:

∇ p = ∂ p

∂x
î + ∂ p

∂y
ĵ = ∂ p

∂t
ê1 + ∂ p

∂n
Ê2, (4.34)

where here t refers to the tangential coordinate. The normal derivative can be isolated
by taking the dot product with Ê2 (which is identical to n̂):

∂ p

∂n
= Ê2 · ∇ p = ηx

∂ p
∂x + ηy

∂ p
∂y√

η2x + η2y

. (4.35)
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The chain rule gives

∂ p

∂x
= ηx

∂ p

∂η
+ ξx

∂ p

∂ξ
,

∂ p

∂y
= ηy

∂ p

∂η
+ ξy

∂ p

∂ξ
, (4.36)

from which we obtain the final expression for the normal derivative:

∂ p

∂n
= (ηxξx + ηyξy)

∂ p
∂ξ + (η2x + η2y)

∂ p
∂η√

η2x + η2y

. (4.37)

4.3 Thin-Layer Approximation

We introduce the thin-layer approximation [9] here only to simplify the treatment
of the viscous terms in the exposition of the algorithm. It is not of fundamental
importance and is applicable only if the following criteria are satisfied:

• The Reynolds number is high; the geometry is streamlined and at a modest angle
of incidence with respect to the flow direction. Consequently, boundary layers
remain attached or mildly separated, and both boundary layers and wakes are thin
relative to the characteristic dimension of the geometry.

• The mesh is body fitted, and mesh lines are at least close to orthogonal to the
surface, as depicted in Fig. 4.4. Moreover, lines of constant η are reasonably well
aligned with wakes. As a result of this last constraint, a C-mesh is a better choice
than an O-mesh when the thin-layer approximation is used.

Under these conditions, boundary-layer theory shows that streamwise gradients
of viscous and turbulent stresses are small compared to normal gradients in bound-
ary layers and wakes, and viscous and turbulent stresses are negligible outside of
boundary layers and wakes. Therefore, mesh resolution requirements typically dic-
tate a smaller mesh spacing in the direction normal to the surface in boundary lay-
ers, leading to meshes with cells having high aspect ratios near the surface, as in
Fig. 4.4. Moreover, streamwise gradients of viscous and turbulent stresses can often
be neglected with little impact on solution accuracy, leading to the thin-layer Navier-
Stokes equations. It is important to recognize that although the rationale for the
thin-layer Navier-Stokes equations is closely related to that for the boundary-layer
equations, unlike the latter, the thin-layer Navier-Stokes equations retain all inviscid
terms in full. Hence they are applicable both within boundary layers and wakes and
outside these regions, where the flow is effectively inviscid.

We will assume that mesh lines along which η varies are nearly normal to the
surface, as shown in Fig. 4.4. Applying the thin-layer approximation to (4.18) then
involves neglecting the term ∂ξ Êv as well as all derivatives with respect to ξ in F̂v ,
leading to
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Fig. 4.4 Mesh near body
surface

∂τ Q̂ + ∂ξ Ê + ∂η F̂ = Re−1∂η Ŝ, (4.38)

where

Ŝ = J−1

⎡
⎢⎢⎣

0
ηx m1 + ηym2
ηx m2 + ηym3

ηx (um1 + vm2 + m4) + ηy(um2 + vm3 + m5)

⎤
⎥⎥⎦ , (4.39)

with

m1 = μ(4ηx uη − 2ηyvη)/3

m2 = μ(ηyuη + ηxvη)

m3 = μ(−2ηx uη + 4ηyvη)/3

m4 = μPr−1(γ − 1)−1ηx∂η(a
2)

m5 = μPr−1(γ − 1)−1ηy∂η(a
2). (4.40)

Although the thin-layer approximation was quite popular in the early days of
CFD, it is important for the reader to understand that the algorithms presented here
do not depend on this approximation and are applicable to the full Navier-Stokes
equations. We proceed with the thin-layer approximation only because it simplifies
our presentation of the algorithms while retaining their key features.

4.4 Spatial Differencing

We will now present an algorithm for the numerical solution of the transformed
Navier Stokes equations (4.18), which in turn will provide a solution to the original
equations in Cartesian coordinates (3.1). The algorithm will follow the semi-discrete
approach described in Chap. 2 in which the spatial derivatives are approximated first
to produce a system of ODEs.

Whether we are interested in a steady solution or a time-accurate solution to an
unsteady problem, the first step is to take the continuous differential operators ∂ξ

and ∂η and approximate them with finite-difference operators on a discrete mesh.
This is facilitated by the use of the generalized curvilinear coordinate transformation

http://dx.doi.org/10.1007/978-3-319-05053-9_3
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described in Sect. 4.2. A structured mesh is defined by a set of coordinate pairs
x( j, k), y( j, k), where j and k are integer indices. If one defines ξ ≡ j and η ≡ k,
then the grid spacing in the computational space is unity in both directions, that is

Δξ = 1, Δη = 1. (4.41)

Since the mesh is rectilinear and uniform in computational space, one can apply
finite-difference formulas in a straightforward manner. We will use subscripts to
indicate the coordinates of a flow variable in computational space, i.e.

Q j,k := Q( jΔξ, kΔη). (4.42)

We can use second-order centered difference operators for the inviscid flux deriva-
tives ∂ξ Ê and ∂η F̂ as follows:

δξ Ê j,k = Ê j+1,k − Ê j−1,k

2Δξ
, δη F̂j,k = F̂j,k+1 − F̂j,k−1

2Δη
.

(4.43)

Similarly, second-order centered differences can be used for the metric terms, such
as

(
xξ

)
j,k = x j+1,k − x j−1,k

2Δξ
. (4.44)

Since Δξ = Δη = 1 as a result of the transformation to computational space, we
omit these terms for the remainder of this presentation.

For the viscous derivatives, the terms take the form

∂η

(
α j,k∂ηβ j,k

)
, (4.45)

whereα j,k represents a spatially varying coefficient, such as a grid metric or the fluid
viscosity, and β j,k is a velocity component or the square of the sound speed. Such
a term can be approximated by differencing ∂ηβ j,k using a second-order centered
difference at each node,multiplying by the spatially varying coefficient, and applying
the centered first-derivative approximation again. However, this leads to a five-point
stencil involving values from k −2 to k +2 in the evaluation of (4.45). In the interest
of retaining a compact three-point form, the term ∂ηβ j,k can instead be evaluated
at intermediate locations k − 1

2 and k + 1
2 using the following centered difference

formulas:
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(
∂β

∂η

)

k+1/2
= β j,k+1 − β j,k

(
∂β

∂η

)

k−1/2
= β j,k − β j,k−1. (4.46)

To second-order accuracy, the values of the spatially varying coefficient at the inter-
mediate nodes can be found by averaging as follows:

α j,k+1/2 = 1

2

(
α j,k + α j,k+1

)

α j,k−1/2 = 1

2

(
α j,k−1 + α j,k

)
. (4.47)

A compact three-point finite-difference approximation to (4.45) can be obtained by
applying a centered difference approximation at j, k using the intermediate points
j, k + 1

2 and j, k − 1
2 , as follows:

(
α j,k+1 + α j,k

)
2

(
β j,k+1 − β j,k

) −
(
α j,k + α j,k−1

)
2

(
β j,k − β j,k−1

)
. (4.48)

We will consider only second-order schemes in this chapter, but higher-order op-
erators, as described in Sect. 2.2, can offer improved efficiency in certain contexts. If
higher-order differencing operators are used, the metric terms should also be evalu-
ated using the same first-derivative operator, boundary schemes of appropriate order1

should be used, and the accuracy of other approximations in the algorithm, such as
numerical integration to obtain forces, should also be raised to a consistent order.

At this point it is reasonable to ask whether the second-order centered difference
formula remains second order on a nonuniform mesh when a curvilinear coordinate
transformation is used. To address this question, consider a nonuniform mesh in one
dimension, for which the coordinate transformation gives for a first derivative

∂ f

∂x
= ξx

∂ f

∂ξ
= 1

xξ

∂ f

∂ξ
. (4.49)

Application of second-order centered difference formulas to both ∂ f/∂ξ and xξ at
node j gives

(δx f ) j = f j+1 − f j−1

x j+1 − x j−1
. (4.50)

1 The order of a boundary scheme can often be one less than that of the interior scheme, and the
global accuracy of the interior operator is still achieved (see Gustafsson [10]). The stability of
boundary schemes for higher-order methods is also an important consideration but is beyond the
scope of this book.

http://dx.doi.org/10.1007/978-3-319-05053-9_2
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Denoting the mesh spacing immediately to the right of node j as

Δx+ = x j+1 − x j , (4.51)

and that to the left as

Δx− = x j − x j−1, (4.52)

a Taylor series expansion of the derivative operator gives the following error term:

1

2

(
∂2 f

∂x2

)

j
(Δx+ − Δx−) + 1

6

(
∂3 f

∂x3

)

j

(
Δx3+ + Δx3−
Δx+ + Δx−

)
+ · · · . (4.53)

The second term is clearly second order, but, at first glance, the first term appears to
be first order. However, it is important to recall that the notion of the order of accuracy
relates to the behavior of the error when a smooth mesh is refined uniformly.

For our present example,we can define amesh function x(ξ) = g(ξ/M) = g(ξD),
where M is the number of cells in the one-dimensional mesh, and D = 1/M is a
nominal mesh spacing parameter. For example, if the number of nodes M is doubled,
then D is halved. With this mesh function, Taylor series expansions for Δx+ and
Δx− give

Δx+ = x j+1 − x j = Dg′
j + 1

2
D2g′′

j + 1

6
d3g′′′

j + · · · (4.54)

and

Δx− = x j − x j−1 = Dg′
j − 1

2
D2g′′

j + 1

6
d3g′′′

j − · · · . (4.55)

Taking the difference gives

Δx+ − Δx− = D2g′′
j + · · · = O(D2), (4.56)

and we see that the error term remains second order, even on a nonuniform mesh. It
is important to note that the error (4.53) contains a term proportional to ∂2 f/∂x2, so,
although it is second order, this approximation is not exact for a quadratic function,
as is the case on a uniform mesh, where Δx+ −Δx− is zero. One can easily define a
finite-difference scheme on a nonuniformmesh that is exact for a quadratic function,
but this approach extends to multiple dimensions in a straightforward manner only
if the mesh is rectangular.

In order tomake the abovediscussionmore concrete, consider the one-dimensional
mesh function

x(ξ) = eξ/M − 1

e − 1
. (4.57)
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This function produces a uniform stretching ratio given by

Δx+
Δx−

= e1/M − 1

1 − e−1/M
. (4.58)

With M = 10, the stretching ratio is roughly 1.105; if M is increased to 100, the
stretching ratio is reduced to roughly 1.010. With each increase in M , not only
does the mesh spacing decrease in proportion to 1/M , but the stretching ratio also
decreases. Consequently, the difference Δx+ − Δx− is of order (1/M)2. If mesh
refinement is performed such that the stretching ratio is constant, this is not a suitable
refinement and the second-order behaviour of the difference operator (4.50) will not
be observed .

4.4.1 Metric Differencing and Invariants

The second-order centered difference formulas used in two dimensions naturally
produce consistent metric invariants, but in three dimensions some additional mea-
sures must be taken to ensure this property. Examining one of these terms in two
dimensions, ∂ξ(yη)+∂η(−yξ), using second-order centered differences both to form
the metric terms and to approximate the flux derivatives, we obtain

δξδη y j,k − δηδξ y j,k = δξ(y j,k+1 − y j,k−1)/2 − δη(y j+1,k − y j−1,k)/2

= [y j+1,k+1 − y j−1,k+1 − y j+1,k−1 + y j−1,k−1]/4
−[y j+1,k+1 − y j+1,k−1 − y j−1,k+1 + y j−1,k−1]/4

= 0, (4.59)

as desired.
In three dimensions, there are several different ways to ensure that these terms

are zero. For example, consider the metric ξx , which is given by2

ξx = J (yηzζ − yζ zη), (4.60)

where z and ζ are the third coordinate directions in Cartesian and computational
space, respectively. One approach is to form ξx through the following formula:

ξx = J
[
(μζδη y)(μηδζ z) − (μηδζ y)(μζδηz)

]
, (4.61)

where δ is the second-order centered difference operator, and μ is an averaging
operator defined, for example, by μηx j,k,l = (x j,k+1,l + x j,k−1,l)/2, where l is the

2 See Sect. 4.7.1
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index in the ζ direction. If all of the metric terms are calculated in this manner, then
the metric invariants will be satisfied.

An alternative approach in three dimensions that extends to higher order involves
writing the expression for ξx as [11]:

ξx = J ((yηz)ζ − (yζ z)η), (4.62)

which is analytically equivalent to (4.60). Analogous expressions can be written for
the other metrics of the transformation. If consistent centered difference formulas
are used for both the derivatives in such expressions for the metric terms as well as
the flux derivatives, e.g. δξ Ê , then the metric invariants will be zero (within the limits
of round-off error).

In (4.59) we saw that second-order centered differencing of both the metric re-
lations and the flux derivatives leads to satisfaction of the invariant relations in two
dimensions. However, consider the case of centered differencing to form the metrics
combined with first-order one-sided backward differencing for the fluxes. We obtain

∇ξδη y − ∇ηδξ y = [y j,k+1 − y j−1,k+1 − y j,k−1 + y j−1,k−1]/2
+[−y j+1,k + y j+1,k−1 + y j−1,k − y j−1,k−1]/2 �= 0.

(4.63)

The error associated with not satisfying the invariant relations is a truncation error
that corresponds to the order of the lowest-order-accurate operator used or higher.

4.4.2 Artificial Dissipation

The concept of numerical dissipation was introduced in Sect. 2.5. Numerical dissi-
pation can be added to a spatial discretization for three distinct purposes:

• to eliminate high-frequency modes that are not resolved and can contaminate the
solution;

• to enhance stability and convergence to steady state;
• to prevent oscillations at discontinuities, such as shock waves.

The idea is to achieve these three purposes by introducing a level of numerical
dissipation that does not significantly increase the overall numerical error.

In linear problems, such as the linear convection equation, the frequencies or
wavenumbers present in the solution are dictated by the initial and boundary condi-
tions. In the numerical solution of such equations, the componentswithwavenumbers
that are not well resolved (see Fig. 2.2) are essentially spurious. They will not be
handled accurately by the numerical scheme in terms of either convection or diffu-
sion. Therefore, it can be worthwhile to remove them through numerical dissipation
or filtering.

http://dx.doi.org/10.1007/978-3-319-05053-9_2
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In solutions of the Euler and Navier-Stokes equations, nonlinear interactions
occur between waves as a result of the nonlinearity in the convection terms of the
momentum equations. If scale is represented by wavelength or frequency, it can be
shown that two waves interact as products to form a wave of higher frequency (the
sum of the original two) and one of lower frequency (the difference). In a physical
system, this can lead to turbulence and the formation of shock waves. As a result of
viscosity, there is a limit to the smallest length scales that arise. Numerically, if all
scales are well resolved, for example in a well-resolved direct numerical simulation
of a turbulent flow or a well-resolved simulation of a laminar flow, then numerical
dissipation is not needed. However, in most flow computations, these smallest scales
are typically not resolved. As a result, the true physical mechanism that puts an upper
bound on the frequencies present in the solution is not accurately represented in the
numerical solution. The lower frequencies do not cause a problem, but the continual
cascading into higher and higher frequencies can lead to instabilities. These can be
addressed through numerical dissipation. Even in linear problems, instabilities can
arise from numerical implementation of boundary conditions and other approxima-
tions that might cause some eigenvalues of the semi-discrete operator matrix to lie
slightly in the right half-plane. Numerical dissipation can address such instabilities
as well and speed up convergence to a steady state.

The Euler equations support discontinuities such as shock waves, slip lines, and
contact surfaces. Across these discontinuities, the differential form of the PDEs does
not apply, so the appropriate jump conditions must be determined from the integral
form. In essence, shock waves are a limiting case of the frequency cascade described
in the previous paragraph. The Euler equations contain no mechanism to limit the
minimum length scale, so a shock wave is a true discontinuity in an inviscid flow. In
a real viscous flow, shock waves have a finite thickness, but it is so small that it is
rarely practical to resolve a shock, and in any case it is not clear that the continuum
hypothesis would be applicable within a shockwave. Therefore, although theNavier-
Stokes equations do not support discontinuities, the issue of the numerical treatment
of shock waves is present even in computations of viscous flows. Without a careful
treatment, oscillations will occur at and near shock waves and other discontinuities.

Historically, the numerical treatment of shock waves has been divided into two
approaches, shock fitting and shock capturing. In shock fitting, one must know the
location of the shock and apply the jump conditions across it. While this is an inher-
ently elegant approach, in practice it is very difficult to track the precise location of
shock waves. As a result, shock capturing, in which the shock wave is smoothed out
by numerical dissipation and the flow is treated as if it were continuous, has become
the predominant approach.

A substantial amount of research has gone into the development of numerical
methods for capturing shocks. We will cover such methods in more detail in Chap. 6.
For our purpose here it suffices to say that in order to prevent oscillations, first-
order numerical dissipation is needed in the vicinity of discontinuities. However,
use of first-order numerical dissipation throughout the flow domain would lead to
very large numerical errors, or, alternatively, the need for a very fine mesh to reduce
numerical errors to the desired levels. Consequently, the numerical dissipation added
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to a spatial discretization of the Euler or Navier-Stokes equations generally consists
of the following three components:

• a high-order component for smooth regions of the flow field,
• a first-order component for shock capturing,
• a means of sensing shocks and other discontinuities so that the appropriate dissi-
pation operator can be selected in different regions of the flow field.

Before continuing, the reader may wish to review Sect. 2.5, which introduced
the basic concepts underlying numerical dissipation. The dissipation is associated
with the symmetric part of the difference operator and can be added either explicitly
through artificial dissipation or through one-sided or upwind schemes that inherently
include a symmetric component. In this chapter and the next we will concentrate on
centered schemes with added artificial dissipation, while Chap. 6 discusses upwind
schemes in more detail. The close relationship between the two approaches is clear
from Sect. 2.5.

4.4.3 A Nonlinear Artificial Dissipation Scheme

Recalling Sect. 2.5, numerical dissipation can be added to a centered differencing
scheme by adding a symmetric component to the difference operator approximat-
ing the first derivatives in the inviscid flux terms. For a constant-coefficient, linear
hyperbolic system of equations in the form

∂u

∂t
+ ∂ f

∂x
= ∂u

∂t
+ A

∂u

∂x
= 0, (4.64)

where f = Au, the dissipation can be added in the following manner:

δx f = δax f + δsx (|A|u), (4.65)

where δax and δsx are antisymmetric and symmetric difference operators, X is the
matrix of right eigenvectors of A, Λ is a diagonal matrix containing the eigenvalues
of A, and |A| = X |Λ|X−1. The antisymmetric operator is simply the centered
difference scheme, and the symmetric operator introduces the dissipation.

An antisymmetric or centered difference operator for a first derivative has an
even order of accuracy, while the symmetric term has an odd order of accuracy. For
smooth regions of the flow, the symmetric operator should be at least third order,
since a first-order term is generally too dissipative and will add too much numerical
error. With second-order centered differences, a third-order dissipation term is thus
a good choice for regions where the flow variables behave smoothly, i.e. away from
discontinuities.

Consequently, the following symmetric operator is often used together with
second-order centered differences:

http://dx.doi.org/10.1007/978-3-319-05053-9_2
http://dx.doi.org/10.1007/978-3-319-05053-9_2
http://dx.doi.org/10.1007/978-3-319-05053-9_2
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(
δsx u

)
j = ε4

Δx
(u j−2 − 4u j−1 + 6u j − 4u j+1 + u j+2) ∝ ε4Δx3

∂4u

∂x4
, (4.66)

where ε4 is a user defined constant. This operator is sufficient to damp unwanted
high-frequency modes and provide stability while generally adding an error that is
smaller than the second-order error associated with the centered difference scheme.
However, it is not sufficient to prevent oscillations at discontinuities. For this purpose,
the following first-order symmetric operator is typically used:

(
δsx u

)
j = ε2

Δx
(−u j−1 + 2u j − u j+1) ∝ −ε2Δx

∂2u

∂x2
. (4.67)

The artificial dissipation scheme used in the implicit finite-difference algorithm
of this chapter combines the above two operators using a pressure sensor to detect
shockwaves [6, 12]. This approach is intended for flowswith shockwaves, where the
pressure is discontinuous; it will not sense a discontinuity such as a contact surface
across which the pressure is continuous. Before presenting the operator, we note that

∇Δ∇Δu j = u j−2 − 4u j−1 + 6u j − 4u j+1 + u j+2 (4.68)

and

∇Δu j = u j−1 − 2u j + u j+1, (4.69)

where ∇u j = u j − u j−1 and Δu j = u j+1 − u j are undivided differences.
Before moving to the two-dimensional equations in curvilinear coordinates, let

us first consider the one-dimensional Euler equations (3.24):

∂Q

∂t
+ ∂E

∂x
= 0, (4.70)

where E = AQ as a result of the homogeneous property of the Euler equations (see
[13],AppendixC).Anatural application of (4.65) and (4.66) gives a fourth-difference
dissipative term in the following form:

D j = ∇Δ∇Δ|A j |Q j . (4.71)

In the constant-coefficient, linear case, |A| is constant, but that is no longer true in
the nonlinear case, and hence its position in the above equation can have a significant
effect. For example, the choice

D j = |A j |∇Δ∇ΔQ j (4.72)

is not conservative. The preferred choice, motivated by analogy to flux-difference
splitting, is

http://dx.doi.org/10.1007/978-3-319-05053-9_3
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D j = ∇|A j+1/2|Δ∇ΔQ j , (4.73)

where A j+1/2 is some sort of average, such as a simple average or a Roe average
(see Sect. 6.3).

Now consider the strong conservation law form of the Navier-Stokes equations
in generalized curvilinear coordinates (4.18) with the spatial derivatives replaced by
second-order centered differences, as in (4.43), and all of the spatial terms moved to
the right-hand side:

∂τ Q̂ = −δξ Ê − δη F̂ + Re−1[δξ Êv + δη F̂v], (4.74)

where the compact three-point form (4.48) is assumed for the viscous derivatives.
Let us restrict our interest for now to the inviscid term in the ξ direction, giving

∂τ Q̂ = −δξ Ê . (4.75)

This can be written in the conservation form

∂τ Q̂ = −( f j+1/2 − f j−1/2), (4.76)

where

f j+1/2 = 1

2
(Ê j + Ê j+1). (4.77)

Thus the discrete form applied to the conservation law form of the equation pre-
serves the conservative property of the original PDE. It is important that the artificial
dissipation scheme maintain this property.

We now introduce an artificial dissipation term (Dξ) j,k in the ξ direction into
(4.75) as follows:

(∂τ Q̂) j,k = −(δξ Ê) j,k + (Dξ) j,k, (4.78)

where

(Dξ) j,k = ∇ξ

(
ε(2)| Â|J−1

)
j+1/2,k

Δξ Q j,k

−∇ξ

(
ε(4)| Â|J−1

)
j+1/2,k

Δξ∇ξΔξ Q j,k . (4.79)

Analogous terms are used in the η direction. There are many aspects to this expres-
sion; these will be explained one at a time. The first term on the right-hand side is
the second-difference term, which is first order, that is needed near shock waves.
The second term is the fourth-difference term, which is third order, that is used in
smooth regions of the flow field. Their relative contributions are controlled by the
two coefficients ε(2) and ε(4), which are defined below. Next, Â is the flux Jacobian

http://dx.doi.org/10.1007/978-3-319-05053-9_6
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in the ξ direction defined as follows:

Â = ∂ Ê

∂ Q̂
. (4.80)

This is given in Sect. 4.5.
Notice that the dissipation operates on Q, not Q̂; J−1 is moved together with | Â|.

This ensures that no dissipation is generated for a uniform flow. On a nonuniform
mesh, Q̂ is not constant in space, even if Q is constant, as a result of the spatial
variation of J−1. Consequently, nonzero dissipation would arise in a uniform flow
if the dissipation were to operate on Q̂.

The location of the terms ε(2)| Â|J−1 and ε(4)| Â|J−1 is consistent with (4.73).
These can be evaluated through simple averages, e.g.

(
ε(2)| Â|J−1

)
j+1/2,k

= 1

2

[(
ε(2)| Â|J−1

)
j,k

+
(
ε(2)| Â|J−1

)
j+1,k

]
(4.81)

(
ε(4)| Â|J−1

)
j+1/2,k

= 1

2

[(
ε(4)| Â|J−1

)
j,k

+
(
ε(4)| Â|J−1

)
j+1,k

]
, (4.82)

or a Roe average can be used for Â j+1/2,k .
The contribution of the second-difference term is controlled by a pressure sensor

that detects shock waves [6, 12]. It is defined as follows:

ε
(2)
j,k = κ2 max(Υ j+1,k, Υ j,k, Υ j−1,k)

Υ j,k =
∣∣∣∣

p j+1,k − 2p j,k + p j−1,k

p j+1,k + 2p j,k + p j−1,k

∣∣∣∣
ε(4)

j,k = max(0,κ4 − ε(2)
j,k), (4.83)

where typical values of the constants are κ2 = 1/2 and κ4 = 1/50. The switch is
based on a normalized undivided second difference of pressure, which is much larger
at shockwaves than in smooth regions. The logic turns off the fourth-difference dissi-
pation when the second-difference coefficient is large. The max function spreads out
the contribution of the second-difference dissipation to ensure that it is not switched
off in the interior of the shock.

Consistent with (4.76), the dissipative term can be written as

(Dξ) j,k = (dξ) j+1/2,k − (dξ) j−1/2,k, (4.84)
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where

(dξ) j+1/2,k =
(
ε(2)| Â|J−1

)
j+1/2,k

Δξ Q j,k

−
(
ε(4)| Â|J−1

)
j+1/2,k

Δξ∇ξΔξ Q j,k . (4.85)

This ensures that the dissipation is conservative.
In order to reduce the cost of the dissipation model, one can replace the matrix

| Â| with the spectral radius of Â, which is its largest eigenvalue by absolute value.
The spectral radius of Â is given by

σ = |U | + a
√

ξ2x + ξ2y . (4.86)

The spectral radius of B̂ is used for the η dissipation term. This approach, known as
scalar artificial dissipation, leads to an inexpensive artificial dissipation scheme that
is robust but can be excessively dissipative in certain contexts.

The astute reader may be wondering where theΔx terms in (4.66) and (4.67) have
gone. These are implicit in Â and the spectral radius σ through the metric terms ξx

and ξy , which scale with the inverse of the mesh spacing. This ensures that the two
dissipation operators in (4.79) are first order and third order as desired.

Let us consider the fourth-difference dissipation term in more detail. Temporarily
ignoring the coefficient term, we have

(D(4)
ξ ) j,k = −∇ξΔξ∇ξΔξ Q j,k

= −Q j−2,k + 4Q j−1,k − 6Q j,k + 4Q j+1,k − Q j+2. (4.87)

This operator involves values of Q from j − 2, k to j + 2, k, i.e. a five-point stencil,
in contrast to the finite-difference approximations to the inviscid and viscous flux
derivatives, which involve data from j − 1 to j + 1 only, i.e. a three-point stencil.
As we shall see in Sect. 4.5, this has significant implications for an implicit time-
marching method. Here we are concerned with its implications near the boundaries
of the grid. Boundary conditions are discussed later in this chapter. For now we will
assume that the values of Q at the boundary are known, so the governing equations
are not solved at the boundary. At the first interior node, the three-point operators for
the inviscid and viscous fluxes as well as the second-difference dissipation can be
applied without modification. However, the five-point operator cannot be applied, as
either Q j−2,k or Q j+2,k is unavailable, depending on the boundary.

In developing a boundary scheme for the fourth-difference dissipation operator,
one must ensure that the resulting scheme is conservative, dissipative, stable, and
sufficiently accurate globally. First, we will consider conservation. The operator in
(4.87) can be rewritten as

(D(4)
ξ ) j,k = (d(4)

ξ ) j+1/2,k − (d(4)
ξ ) j−1/2,k, (4.88)
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where

(d(4)
ξ ) j+1/2,k = Q j−1,k − 3Q j,k + 3Q j+1,k − Q j+2,k . (4.89)

Without loss of generality,wewill consider a boundary located at j = 0. The operator
at j = 1 must be modified because the node j − 2 does not exist. Since the operator
at j = 2 is not modified, conservation dictates that the term (d(4)

ξ ) j+1/2,k at j = 1
cannot be modified. In any case, this term does not involve Q j−2,k , so it need not be

modified. There are several different ways to proceed; one is to define (d(4)
ξ ) j−1/2,k

at node j = 1 as

(d(4)
ξ ) j−1/2,k = −Q j−1,k + 2Q j,k − Q j+1,k . (4.90)

This leads to the following operator for the node at j = 1:

(D(4)
ξ ) j,k = (Q j−1,k − 3Q j,k + 3Q j+1,k − Q j+2,k)

−(−Q j−1,k + 2Q j,k − Q j+1,k)

= 2Q j−1,k − 5Q j,k + 4Q j+1,k − Q j+2,k . (4.91)

Similar formulas are used at other boundaries. This approach has been shown to
be dissipative and stable [14] and is therefore popular, although other options are
also used. This boundary operator is first-order accurate locally and consistent with
second-order global accuracy. If the interior scheme has an order of accuracy greater
than two, then a higher order boundary operator should be used for the fourth-
difference dissipation. Similarly, if better than third-order global accuracy is desired,
then an artificial dissipation scheme of higher order is needed.

We conclude this section with a brief discussion of the application of this artifi-
cial dissipation scheme to the quasi-one-dimensional Euler equations, which are the
subject of the exercises at the end of this chapter. The problems are to be solved on
a uniform grid using the scalar artificial dissipation scheme. The spectral radius of
the one-dimensional flux Jacobian matrix is

σ = |u| + a. (4.92)

Since the mesh is uniform, no coordinate transformation is needed. The dissipation
terms thus become

D j = 1

Δx
∇

(
ε(2)(|u| + a)

)
j+1/2

ΔQ j

− 1

Δx
∇

(
ε(4)(|u| + a)

)
j+1/2

Δ∇ΔQ j , (4.93)

where ∇ and Δ denote undivided differences. Note in particular the 1/Δx scaling.
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4.5 Implicit Time Marching and the Approximate
Factorization Algorithm

After application of the above spatial discretization to (4.18), we obtain the following
semi-discrete equation at each interior node in the mesh:

∂τ Q̂ = −δξ Ê + Dξ − δη F̂ + Dη + Re−1[δξ Êv + δη F̂v], (4.94)

where δ represents the spatial difference operator, in this case second-order centered
differences, and Dξ and Dη the artificial dissipation terms, e.g. (4.79). Collecting
these into a single equation, we obtain the following coupled system of nonlinear
ODEs:

dQ̂
dt

= R(Q̂), (4.95)

where Q̂ is a column matrix containing Q̂ j,k at each node of the mesh, R is a column
matrix containing R j,k at each node, where

R(Q̂) = −δξ Ê + Dξ − δη F̂ + Dη + Re−1[δξ Êv + δη F̂v], (4.96)

and we have replaced τ with t . In order to obtain a time-accurate solution for an
unsteady flow problem, this system of ODEs must be solved using a time-marching
method.Alternatively, if the flowunder consideration is steady, one seeks the solution
to the following coupled system of nonlinear algebraic equations:

R(Q̂) = 0. (4.97)

In the steady case, R(Q̂) is referred to as the residual vector, or simply the residual.
As a result of the nonlinear nature of the residual vector, this system cannot be solved
directly: an iterative method is required.

For the numerical solution of a large system of nonlinear algebraic equations such
as (4.97), it is natural to consider the Newton method, which produces the following
linear system:

AnΔQ̂n = −R(Q̂n), (4.98)

where

An = ∂R

∂Q̂
(4.99)

is the Jacobian evaluated at state Q̂n , and ΔQ̂ = Q̂n+1 − Q̂n . This linear system
must be solved iteratively until a converged solution is obtained that satisfies (4.97).
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The degree towhich a given iterate Q̂n is a solution to (4.97) can bemeasured through
the norm of R(Q̂). In finite precision arithmetic, it is typically not possible to reduce
the norm of the residual below machine zero, so a solution for which this norm is on
the order of machine zero can be considered fully converged. However, with single
precision arithmetic, this level of convergence may not be sufficient.

Application of the Newton method to the large systems of nonlinear algebraic
equations arising from the spatial discretization of the Euler or Navier-Stokes equa-
tions in multiple dimensions leads to two principal challenges. First, the Newton
method converges only from an iterate that is within a finite region of convergence
near the solution. Typically, the initial guess for Q̂ lies outside this region, and some
sort of globalization technique is needed to ensure that the Newton method will
converge for an arbitrary initial iterate. A uniform flow is often used as the initial
iterate. Second, the linear system of equations (4.98) that must be solved is in gen-
eral large and sparse. Direct solution of such systems based on a lower-upper (LU )
factorization can require a large amount of memory relative to the original sparse
system and a number of floating point operations that scales poorly as the system
size increases. Hence direct solution is only effective for linear systems below a
certain size, although the system size for which direct solution of the system is a
feasible approach increases with each new generation of computer hardware. The
high cost of direct solution of this linear system for problems of practical interest
motivates inexact Newton methods in which the linear system (4.98) is instead solved
iteratively to some tolerance at each iteration. Sequences of tolerances can be found
that maintain the quadratic convergence property of the Newton method within the
radius of convergence, provided the residual function meets certain conditions.

A natural way to address the problem that the initial iterate is likely outside
the region of convergence of the Newton method is to consider a time-dependent
path to steady state. Under certain conditions, the solution of the steady problem
(4.97) is also the steady solution of the ODE system (4.95), which can be found by
applying a time-marching method to (4.95) and advancing in time until a steady state
is reached. Time accuracy is not required; we simply wish to integrate in time from
some arbitrary initial state to the steady solution in a manner that will require the
smallest amount of computational work. The entire transient portion of the solution
can be considered parasitic, and hence the problem is stiff. This suggests the use
of an implicit time-marching method, and, given that we are not interested in time
resolution of the transient, there is no reason to seek better than first-order accuracy.
Therefore the implicit Euler method is the logical choice for steady problems. Its
relationship with the Newton method is discussed in Sect. 2.6.3.

For unsteadyflowproblemswhere time-accurate solutions are required, onewould
like at least second-order accuracy. Hence, the trapezoidal and second-order back-
ward methods (see Sect. 2.6), which are both unconditionally stable, are reasonable
choices. The second-order backward method has a larger region of stability than the
trapezoidal method, making it the more robust of the two. Moreover, the trapezoidal
method provides little damping of modes with eigenvalues with large negative real
parts, which is undesirable for stiff problems. Implicit Runge-Kutta methods, which
we will not discuss here, are another option for time-accurate solution of stiff ODEs.

http://dx.doi.org/10.1007/978-3-319-05053-9_2
http://dx.doi.org/10.1007/978-3-319-05053-9_2
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This brings us to the challenge of solving a large sparse linear system, which
is present whether one is solving steady or unsteady problems. Historically, due to
computer hardware limitations, direct solution techniques were not practical even
for relatively small problems. Even today they are not an efficient option for large-
scale three-dimensional problems. Inexact Newton methods have gained in popular-
ity since the introduction of efficient iterative techniques for nonsymmetric sparse
linear systems, such as the generailized minimal residual method (GMRES) [15].
However, these were not available until the mid-1980s, so the first implicit computa-
tions of three-dimensional flowswere performed using the nowclassical approximate
factorization algorithm, which is the subject of Sect. 4.5.4.

4.5.1 Implicit Time-Marching

Based on the above discussion, whether we are solving an unsteady problem or a
steady one, we seek to solve the coupled system of ODEs given by (4.95) using
an implicit time-marching method. We will consider the following two-parameter
family of time-marching methods [3]:

Q̂n+1 = θΔt

1 + ϕ

d

dt
Q̂n+1 + (1 − θ)Δt

1 + ϕ

d

dt
Q̂n + 1 + 2ϕ

1 + ϕ
Q̂n − ϕ

1 + ϕ
Q̂n−1

+O

[
(θ − 1

2
− ϕ)Δt2 + Δt3

]
, (4.100)

where Q̂n = Q̂(nΔt). This family of methods is a subset of two-step linear multistep
methods with the coefficient of

d

dt
Q̂n−1 (4.101)

set to zero. One member of the family is third-order accurate, but that method is
not of interest here, as it is not unconditionally stable. Our interest is in the first-
order implicit Euler method obtained with θ = 1 and ϕ = 0 for steady problems
and the second-order backward method obtained with θ = 1 and ϕ = 1/2 when
time-accuracy is required.

For this exposition we will restrict ourselves to the implicit Euler method, but all
of the subsequent development can easily be extended to any second-order scheme
formed from (4.100). Applying the implicit Euler method to the thin-layer form of
(4.95) results in the following expression at each node of the grid:

Q̂n+1 − Q̂n = h
(
−δξ Ên+1 + Dn+1

ξ − δη F̂n+1 + Dn+1
η + Re−1δη Ŝn+1

)
,

(4.102)

with h = Δt .
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4.5.2 Local Time Linearization

We wish to solve (4.102) for Q̂n+1 given Q̂n . The flux vectors Ê , F̂ , and Ŝ, and the
artificial dissipation terms Dξ , and Dη , are nonlinear functions of Q̂, and therefore
the right-hand side of (4.102) is nonlinear in Q̂n+1. Hence we proceed by locally
linearizing with respect to t .

The flux vectors are linearized in time about Q̂n by Taylor series such that

Ên+1 = Ên + ÂnΔQ̂n + O(h2)

F̂n+1 = F̂n + B̂nΔQ̂n + O(h2)

Re−1 Ŝn+1 = Re−1 [
Ŝn + M̂nΔQ̂n] + O(h2), (4.103)

where Â = ∂ Ê/∂ Q̂ , B̂ = ∂ F̂/∂ Q̂ and M̂ = ∂ Ŝ/∂ Q̂ are the flux Jacobians, and
ΔQ̂n is O(h). As discussed in Sect. 2.6.3, such a local time linearization will not
degrade the order of accuracy of time-marching methods of up to second order.

The inviscid flux Jacobian matrices Â and B̂ are given by

⎡
⎢⎢⎣

κt κx κy 0
−uθ + κxφ

2 κt + θ − (γ − 2)κx u κyu − (γ − 1)κxv (γ − 1)κx

−vθ + κyφ
2 κxv − (γ − 1)κyu κt + θ − (γ − 2)κyv (γ − 1)κy

θ[φ2 − a1] κx a1 − (γ − 1)uθ κya1 − (γ − 1)vθ γθ + κt

⎤
⎥⎥⎦ ,

(4.104)

with a1 = γ(e/ρ)−φ2, θ = κx u +κyv, φ2 = 1
2 (γ −1)(u2 +v2), and κ = ξ or η for

Â or B̂, respectively. As an example, we will derive the first element in the second
row of Â, i.e.

â21 = ∂ê2
∂q̂1

, (4.105)

where

Q̂ =

⎡
⎢⎢⎣

q̂1
q̂2
q̂3
q̂4

⎤
⎥⎥⎦ = J−1

⎡
⎢⎢⎣

ρ
ρu
ρv

e

⎤
⎥⎥⎦ , Ê =

⎡
⎢⎢⎣

ê1
ê2
ê3
ê4

⎤
⎥⎥⎦ = J−1

⎡
⎢⎢⎣

ρU
ρuU + ξx p
ρvU + ξy p

U (e + p) − ξt p

⎤
⎥⎥⎦ . (4.106)

In order to find â21, the first step is to write ê2 in terms of the elements of Q̂. One
obtains

http://dx.doi.org/10.1007/978-3-319-05053-9_2
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ê2 = J−1ρuU + J−1ξx p

= J−1ρuξt + J−1ρu2ξx + J−1ρuvξy

+J−1ξx (γ − 1)e − J−1ξx (γ − 1)
1

2
ρu2 − J−1ξx (γ − 1)

1

2
ρv2

= ξt q̂2 + ξx
q̂2
2

q̂1
+ ξy

q̂2q̂3
q̂1

+ ξx (γ − 1)q̂4 − ξx (γ − 1)

2

q̂2
2

q̂1
− ξx (γ − 1)

2

q̂2
3

q̂1
.

(4.107)

From this we find

â21 = ∂ê2
∂q̂1

= −ξx
q̂2
2

q̂2
1

− ξy
q̂2q̂3
q̂2
1

+ ξx (γ − 1)

2

q̂2
2

q̂2
1

+ ξx (γ − 1)

2

q̂2
3

q̂2
1

= −ξx u2 − ξyuv + ξx (γ − 1)

2
u2 + ξx (γ − 1)

2
v2

= −u(ξx u + ξyv) + ξx (γ − 1)

2
(u2 + v2), (4.108)

consistent with (4.104). The other terms in Â and B̂ are found in a similar manner.
The thin-layer viscous flux Jacobian is

M̂ = J−1

⎡
⎢⎢⎣

0 0 0 0
m21 α1∂η(ρ

−1) α2∂η(ρ
−1) 0

m31 α2∂η(ρ
−1) α3∂η(ρ

−1) 0
m41 m42 m43 m44

⎤
⎥⎥⎦ J, (4.109)

where

m21 = −α1∂η(u/ρ) − α2∂η(v/ρ)

m31 = −α2∂η(u/ρ) − α3∂η(v/ρ)

m41 = α4∂η

[
−(e/ρ2) + (u2 + v2)/ρ

]

−α1∂η(u
2/ρ) − 2α2∂η(uv/ρ)

−α3∂η(v
2/ρ)

m42 = −α4∂η(u/ρ) − m21

m43 = −α4∂η(v/ρ) − m31

m44 = α4∂η(ρ
−1)

α1 = μ[(4/3)ηx
2 + ηy

2], α2 = (μ/3)ηxηy

α3 = μ[ηx
2 + (4/3)ηy

2], α4 = γμPr−1(ηx
2 + ηy

2).
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Its derivation is made more complicated by virtue of the fact that Ŝ includes within it
derivatives of Q̂. Therefore the term M̂nΔQ̂n in (4.103) alsomust contain derivatives
ofΔQ̂n , so this term is not a simple matrix-vector product as is the case for the terms
ÂnΔQ̂n and B̂nΔQ̂n .

To clarify this, let us derive the second element in the second row of M̂ . We begin
by writing the second element of Ŝ in terms of Q̂ as follows:

ŝ2 = α1

J
uη + α2

J
vη

= α1

J

∂

∂η

(
q̂2
q̂1

)
+ α2

J

∂

∂η

(
q̂3
q̂1

)
, (4.110)

whereα1 andα2 are defined below (4.109). For this derivationwe retain the analytical
derivative from the original PDE rather than the finite-difference approximation,
which can be applied later. It is clear that the second term on the right-hand side in
(4.110), which does not involve q̂2, will not enter into the term m̂22 in M̂ . Hence we
define an operator f (q̂2) as follows:

f (q̂2) = α1

J

∂

∂η

(
q̂2
q̂1

)
, (4.111)

which is the first term in (4.110). We can then use a Fréchet derivative to find

∂ f

∂q̂2
Δq̂2 = lim

ε→0

f (q̂2 + εΔq̂2) − f (q̂2)

ε

= lim
ε→0

[
α1

J

∂

∂η

(
q̂2 + εΔq̂2

q̂1

)
− α1

J

∂

∂η

(
q̂2
q̂1

)]
/ε

= lim
ε→0

[
α1

J

∂

∂η

(
εΔq̂2

q̂1

)]
/ε

= α1

J

∂

∂η

(
Δq̂2
q̂1

)
. (4.112)

Thus we see that the product m̂22Δq̂2 is

m̂22Δq̂2 = J−1α1
∂

∂η

(
J

ρ
Δq̂2

)
. (4.113)

This is identical to (4.109) and clarifies the precise meaning of that equation. The ∂η

derivatives in M̂ operate on the product of the term shown in M̂ , e.g. ρ−1 in m̂22, the
J term shown to the right of the matrix in (4.109), and the appropriate component
of ΔQ̂.

The nonlinear artificial dissipation terms Dξ and Dη appearing in (4.102) must
also be locally linearized. As a result of the complexity of (4.79), for example,
an inexact linearization of these terms is often used, especially in the context of
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the approximate factorization algorithm. This is achieved by treating the coefficient
terms in the artificial dissipation, such as ε(4)| Â| in (4.79), as frozen at time level
n, making the linearization straightforward. This approximation is not made on the
right-hand side.

Substituting the local time linearizations of the nonlinear flux vectors in (4.103)
into (4.102) and grouping the ΔQ̂n terms on the left-hand side produces the delta
form of the algorithm:

[
I + hδξ Ân − hLξ + hδη B̂n − hLη − Re−1h δη M̂

]
ΔQ̂n (4.114)

= −h
(
δξ Ên − Dn

ξ + δη F̂n − Dn
η − Re−1δη Ŝn

)
,

where Lξ and Lη result from the linearization of the artificial dissipation terms. The
right-hand side is simply h times the right-hand side of the thin-layer form of (4.94).
This results in an important property of the delta form. If a fully converged steady
solution of (4.114) is obtained, then it will be the correct steady solution of (4.94),
independent of the left-hand side of (4.114). This means that approximations made
to the left-hand side in order to reduce the computational work needed to converge
to steady state, i.e. to drive the norm of R(Q̂) to machine zero, will have no effect
on the converged solution.

The finite-difference operators on the left-hand side of (4.114) operate on the
product of the terms immediately to their right within the square brackets and the
ΔQ̂n outside the square brackets. For example, the δξ term results in

1

2
h( Ân

j+1,kΔQ̂n
j+1,k − Ân

j−1,kΔQ̂n
j−1,k). (4.115)

The viscous contribution on the left-hand side includes both the δη term shown in
(4.114) and the finite-difference approximations of the partial derivativeswith respect
to η within the viscous flux Jacobian M̂ . These must be consistent with the compact
three-point operator used on the right-hand side given in (4.48). The ΔQ̂n terms are
of course unknown, and (4.114) represents a linear system of equations to be solved
at each iteration of the implicit Euler method. Excluding the I term, the terms within
the square brackets on the left-hand side of (4.114) are a linearization of the negative
discrete residual operator, i.e. the negative of the right-hand side. Consequently, if
the I term is omitted, we obtain the Newton method, consistent with the fact that the
Newton method is obtained from the time linearized implicit Euler method in the
limit as h goes to infinity (see Sect. 2.6.3).

4.5.3 Matrix Form of the Unfactored Algorithm

We refer to (4.114) as the unfactored algorithm. It produces a large banded system
of algebraic equations. We now examine the associated matrix. Let the number of
grid nodes in the ξ direction be J and in the η direction K . Temporarily ignoring the

http://dx.doi.org/10.1007/978-3-319-05053-9_2
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viscous and artificial dissipation terms, the banded matrix is a (J · K ·4) × (J · K ·4)
square matrix of the form

[
I + hδξ Ân + hδη B̂n

]
⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I h Â/2 h B̂/2
−h Â/2 I h Â/2 h B̂/2

−h Â/2 I h Â/2 h B̂/2
−h Â/2 I h Â/2 h B̂/2

−h B̂/2 −h Â/2 I h Â/2 h B̂/2

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

−h B̂/2 −h Â/2 I h Â/2 h B̂/2
−h B̂/2 −h Â/2 I h Â/2 h B̂/2

−h B̂/2 −h Â/2 I h Â/2

.
.
.

.
.
.

.
.
.

.
.
.

−h B̂/2 −h Â/2 I h Â/2
−h B̂/2 −h Â/2 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.116)

where the variables have been ordered with j running first and then k. Each entry
is a 4 × 4 block. If we order the variables with k running first and then j , the roles
of Â and B̂ are reversed in the above matrix, i.e. the h B̂ terms produce a tridiagonal
form, while the h Â terms produce a much larger bandwidth. The thin-layer viscous
terms involve a three-point operator in the η direction, so they add to the diagonal
block and contribute to the h B̂ blocks shown in (4.116), but they do not alter the
overall structure of the matrix. Finally, the artificial dissipation terms involve a five-
point operator in each direction and thus further increase the matrix bandwidth. If
the scalar artificial dissipation model is used, the corresponding entries are in the
form σ I , where σ is a scalar, and I is the 4 × 4 identity matrix.

Although this matrix is sparse, it would be very expensive computationally to
solve the algebraic system directly through an LU factorization. For example, for
an accurate computation of a three-dimensional transonic flow past a wing, one can
easily require over tenmillionmesh nodes. The resulting linear system is a 50million
× 50 million matrix problem to be solved, and although one could take advantage of
its banded sparse structure, it would still be very costly in terms of both computational
work and memory. This motivates iterative and approximate solution strategies for
sparse linear systems, such as the approximate factorization algorithm described
next.

4.5.4 Approximate Factorization

One way to reduce the computational cost of the solution process is to introduce an
approximate factorization of the two-dimensional operator into two one-dimensional
operators. Ignoring the artificial dissipation for now, the left-hand side of (4.114) can
be written as
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[
I + hδξ Ân + hδη B̂n − h Re−1δη M̂n

]
ΔQ̂n

= [
I + hδξ Ân] [

I + hδη B̂n − h Re−1δη M̂n
]

ΔQ̂n

−h2δξ Ânδη B̂n ΔQ̂n + h2Re−1δξ Ânδη M̂n ΔQ̂n . (4.117)

Noting thatΔQ̂n is O(h), the difference between the factored formand the unfactored
form is O(h3). Therefore, this difference can be neglected without reducing the time
accuracy below second order.

The resulting factored form of the algorithm is

[
I + hδξ Ân] [

I + hδη B̂n − h Re−1δη M̂n
]
ΔQ̂n (4.118)

= −h
[
δξ Ên + δη F̂n − Re−1δη Ŝn

]
.

We now have two matrices each of which is block tridiagonal if the appropriate
ordering of the variables is used. The structure of the block tridiagonal matrices is

[
I + hδξ Ân

]
⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I h Â/2
−h Â/2 I h Â/2

−h Â/2 I h Â/2

.
.
.

.
.
.

.
.
.

−h Â/2 I h Â/2
−h Â/2 I h Â/2

−h Â/2 I h Â/2
−h Â/2 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The thin-layer viscous term M̂ is kept with the η factor. Since it is also based upon
a three-point stencil, it will not affect the tridiagonal structure.

The mechanics of the approximate factorization algorithm are as follows. First
solve the system

[
I + hδξ Ân]

ΔQ̃ = −h
[
δξ Ên + δη F̂n − Re−1δη Ŝn

]
(4.119)

for ΔQ̃, where ΔQ̃ is an intermediate variable. This requires K solutions of a
(J ·4)×(J ·4) system.With the variables ordered with j running first, followed by k,
this is a block tridiagonal system, which can be efficiently solved by a block lower-
upper (LU) decomposition. This step is equivalent to solving K one-dimensional
problems, one for each ξ line in the mesh.

The next step is to permute, or reorder, ΔQ̃ such that k is running first, fol-
lowed by j . This reordering is only conceptual. In practice, this is handled through
programming using array indices. Then solve

[
I + hδη B̂n − h Re−1δη M̂n

]
ΔQ̂n = ΔQ̃ (4.120)
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for ΔQ̂n . This requires J solutions of a (K · 4) × (K · 4) system. With the variables
ordered with k running first, followed by j , this is also a block tridiagonal system.
This step is equivalent to solving J one-dimensional problems, one for each η line in
the mesh. The resulting vector ΔQ̂n must be reordered back to the original database
with j running first, again only conceptually, and added to Q̂n to form Q̂n+1.

Since efficient specialized algorithms can be used to solve block tridiagonal sys-
tems, the factored form substantially reduces the computational work required for
one implicit time step. Moreover, as a result of the use of the delta form, we are as-
sured that the steady-state solution is unaffected by the factorization of the left-hand
side operator.What remains to be seen is the effect of the factorization on the number
of iterations needed to converge to the steady state. This we examine next.

For this purpose we will consider the following simple scalar model ODE:

du

dt
= [

λx + λy
]
u + a, (4.121)

where λx , λy , and a are complex constants, which has the exact solution

u(t) = ce(λx +λy)t − a

λx + λy
. (4.122)

Wewill assume that both λx and λy have negative real parts, so the ODE is inherently
stable and has a steady solution given by

lim
t→∞ u(t) = − a

λx + λy
. (4.123)

Following the approach of Sect. 2.6.2, application of the unfactored form of the
implicit Euler method leads to an OΔE that has the following solution:

un = cσn − a

λx + λy
, (4.124)

where

σ = 1

1 − h λx − h λy
.

This method is unconditionally stable and converges rapidly to the steady-state so-
lution for large h because the magnitude of the amplification factor |σ| → 0 as
h → ∞. As discussed, however, when applied to practical problems, the cost of this
method can be prohibitive.

In contrast, the approximate factorization presented in this chapter produces the
following OΔE when applied to (4.121):

(1 − h λx )
(
1 − h λy

)
(un+1 − un) = h

(
λx un + λyun + a

)
,

http://dx.doi.org/10.1007/978-3-319-05053-9_2
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which reduces to

(1 − h λx )
(
1 − h λy

)
un+1 =

(
1 + h2λxλy

)
un + ha.

The solution of this OΔE is given by (4.124) with

σ = 1 + h2λxλy

(1 − h λx )
(
1 − h λy

) . (4.125)

Although this method remains unconditionally stable and produces the exact steady-
state solution independent of h, it converges very slowly to the steady-state solution
for large values of h, since the magnitude of the amplification factor |σ| → 1 as
h → ∞. The factoring error has introduced an h2 term in the numerator of the
amplification factor that destroys the good convergence characteristics at large time
steps. In comparison with the unfactored method, the factored form will take more
iterations to converge, but each iteration will involve much less computational work.

Let us examine this in more detail. The amplification factor approaches unity as
h goes to zero, and, for the factored form, its magnitude also tends to unity as h goes
to infinity. The magnitude of the amplification factor thus has a minimum for some
value of h, and this is the optimum choice of h for rapid convergence to steady-
state. When solving a system of ODEs, there are many eigenvalues, and one cannot
choose the optimum value of h for each one. Instead, one seeks an h that balances
the magnitude of the amplification factor associated with the smallest eigenvalues
with that associated with the largest eigenvalues. Choosing a smaller h will increase
the amplification factor for the smallest eigenvalue, while a larger h will increase the
amplification factor for the largest eigenvalue. Hence this choice of h is optimal in
the sense that it minimizes the maximum amplification factor.

One can contrast this with the time step choice for an explicit time-marching
scheme applied to a steady problem. Such schemes are conditionally stable, so there
is firm upper bound on the time step. Optimal convergence to steady state is usually
achieved with a time step just slightly below this stability limit. In other words, h
must be chosen such that the largest eigenvalues lie in the stable region of the explicit
method, which is generally a smaller time step than would be optimal for the factored
implicit method. Therefore, the amplification factor for the smallest eigenvalues will
be larger than for the factored method, and a larger number of iterations will be
needed to reach a steady state. This must of course be weighed against the reduced
cost per time step of the explicit method. As the spread in the eigenvalues increases,
i.e. the problem becomes stiffer, the advantage tilts toward the implicit method. For
example, implicit methods are typically preferred for problems involving chemical
reactions or grid cells with very high aspect ratios as needed for the computation of
turbulent flows at high Reynolds numbers.

Now we return to the contribution of the linearization of the artificial dissipation
terms to the left-hand side of (4.114). The first operator, Lξ , operates solely in the ξ
direction, while the second, Lη , operates solely in the η direction. Hence these oper-
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ators are amenable to approximate factorization with hLξ added to the
[
I + hδξ Ân

]
factor and hLη to the

[
I + hδη B̂n − h Re−1δη M̂n

]
factor. Since the artificial dissipa-

tion operators involve a five-point stencil, the matrices become block pentadiagonal
rather than block tridiagonal.

4.5.5 Diagonal Form of the Implicit Algorithm

The approximate factorization algorithm based on solving block pentadiagonal fac-
tors is a viable and efficient algorithm. Nevertheless, the majority of the computa-
tional work resides in solving the block pentadiagonal systems, so it is worthwhile
to examine strategies to reduce this. One way to reduce the computational work is
to introduce a diagonalization of the blocks in the implicit operators, as developed
by Pulliam and Chaussee [5]. The eigensystems of the flux Jacobians Â and B̂ are
used in this construction. For now let us restrict ourselves to the Euler equations;
application to the Navier-Stokes equations is discussed later.

The flux Jacobians Â and B̂ each have real eigenvalues and a complete set of
eigenvectors. Therefore, the Jacobian matrices can be diagonalized as follows (see
Warming et al. [16]):

Λξ = T −1
ξ ÂTξ and Λη = T −1

η B̂Tη, (4.126)

where Λξ and Λη are diagonal matrices containing the eigenvalues of Â and B̂, Tξ

is a matrix whose columns are the eigenvectors of Â, and Tη is the corresponding
eigenvector matrix for B̂. These matrices are written out in the Appendix. We take
the factored algorithm in delta form (4.118), neglect the viscous terms, and replace
Â and B̂ with their respective eigensystem decompositions to obtain:

[
Tξ T −1

ξ + h δξ

(
Tξ Λξ T −1

ξ

)] [
Tη T −1

η + h δη

(
Tη Λη T −1

η

)]
ΔQ̂n

= − h
[
δξ Ên + δη F̂n] = R̂n . (4.127)

Note that the identity matrix I has been replaced by TξT −1
ξ and TηT −1

η in each factor,
respectively.

At this point, no approximations have been made, and with the exception of the
viscous terms, (4.118) and (4.127) are equivalent. A modified form of (4.127) can be
obtained by factoring the Tξ and Tη eigenvectormatrices outside the spatial derivative
terms δξ and δη . The eigenvector matrices are functions of ξ and η, and therefore
this modification introduces an approximation on the left-hand side. The resulting
equations are

Tξ

[
I + h δξ Λξ

]
N̂

[
I + h δη Λη

]
T −1

η ΔQ̂n = R̂n, (4.128)

where N̂ = T −1
ξ Tη (see Appendix).
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The approximationmade to the left-hand side of (4.127) reduces the time accuracy
to at best first order, and, moreover, gives time-accurate computations a nonconser-
vative feature that leads to errors in shock speeds and jump conditions. However,
the right-hand side is unmodified, so if the algorithm converges, it will converge
to the correct steady-state solution. The advantage of the diagonal form is that the
equations are decoupled as a result. Rather than a block tridiagonal system, we now
have four scalar tridiagonal systems plus some additional 4 × 4 matrix-vector mul-
tiplies, leading to a substantial reduction in computational work. The computational
work can be further decreased by exploiting the fact that the first two eigenvalues of
the system are identical (see Appendix). This allows us to combine the coefficient
calculations and part of the inversion work for the first two scalar operators.

The diagonal form reduces the computational work per time step and produces
the correct steady solution. The next step is to examine its effect on the number of
time steps needed to converge to steady state. Normally one would turn to linear
stability analysis to assess the stability limits and convergence rate of an algorithm.
However, linear analysis is of no use in analyzing the diagonal algorithm because the
assumption of linear analysis is that the Jacobians are constant.With this assumption,
the diagonalization introduces no approximation at all, so linear stability analysis
predicts the diagonal algorithm to have the sameunconditional stability as the original
block algorithm. Therefore one must resort to computational experiments in order
to investigate the impact of the diagonal form on the convergence properties of the
diagonal algorithm. Pulliam and Chaussee [5] have shown that the convergence and
stability limits of the diagonal algorithm are similar to those of the block form of the
algorithm. The reader will have the opportunity to perform similar experiments as
part of the exercises at the end of this chapter.

The steps involved in applying the diagonal form of the approximate factorization
algorithm are as follows:

1. Beginning with (4.128), premultiply R̂n by T −1
ξ to obtain the system

[
I + h δξ Λξ

]
N̂

[
I + h δη Λη

]
T −1

η ΔQ̂n = T −1
ξ R̂n . (4.129)

2. With the variables ordered with j running first, solve the scalar trididagonal
system

[
I + h δξ Λξ

]
X1 = T −1

ξ R̂n (4.130)

for the temporary variable X1. This produces the following

N̂
[
I + h δη Λη

]
T −1

η ΔQ̂n = X1. (4.131)

3. Premultiply by N̂−1 to obtain

[
I + h δη Λη

]
T −1

η ΔQ̂n = N̂−1X1. (4.132)
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4. With the variables ordered with k running first, solve the scalar tridiagonal system

[
I + h δη Λη

]
X2 = N̂−1X1 (4.133)

for X2, giving

T −1
η ΔQ̂n = X2. (4.134)

5. Premultiply X2 by Tη to find ΔQ̂n .

The diagonal algorithm as presented above is only strictly valid for the Euler
equations. This is because we have neglected the implicit linearization of the viscous
flux Ŝn in the implicit operator for the η direction. The viscous flux Jacobian M̂n is
not simultaneously diagonalizable with the inviscid flux Jacobian B̂n and therefore
to include it in the diagonal form is not straightforward. For viscous flows one can
consider four options. One possibility is to use the diagonal form in the ξ direction
only and the block algorithm in the η direction. This increases the computational
work substantially. Another option is to introduce a third factor to the implicit side
of Eq. 4.118 as follows:

[
I − h Re−1δη M̂n

]
. (4.135)

This again increases the computational work since we now have an added block
tridiagonal inversion. One could diagonalize this term, but it would nevertheless
increase the cost substantially. The third option is to throw caution to the wind and
actually neglect the viscous Jacobian, thereby gaining the increased efficiency of the
diagonal algorithm. This can have an adverse effect on stability and convergence.
The fourth option is to include a diagonal term on the implicit side that is a rough
approximation to the viscous Jacobian spectral radius. Estimates that have been used
successfully are

λv(ξ) = γPr−1μRe−1
(
ξ2x + ξ2y

)
ρ−1

λv(η) = γPr−1μRe−1
(
η2x + η2y

)
ρ−1, (4.136)

which are added to the appropriate operators in Eq. 4.128 with a differencing stencil
taken from Eq. 4.48. With these terms added, the diagonal algorithm is given as

Tξ
[
I + h δξ Λξ − h I δξξλv(ξ)

]
N̂

[
I + h δη Λη − h I δηηλv(η)

]
T −1
η ΔQ̂n = R̂n .

(4.137)

The ξ term is not added if the thin layer approximation is used.Although this approach
is not rigorous, given that the eigenvectors of the viscous Jacobians are distinct from
those of the inviscid Jacobians, it has proven to be effective in terms of both efficiency
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and reliability. It is thus the recommended approach for application of the diagonal
form to viscous flows.

Next we consider the contribution of the linearization of the artificial dissipation
terms, Lξ and Lη in (4.114), in the context of the diagonal algorithm. Recall that the
operator associated with the fourth-difference dissipation leads to a pentadiagonal
matrix rather than a tridiagonal matrix, so the full block algorithm requires the solu-
tion of block pentadiagonal systems. If scalar dissipation is used, the contributions to
the left-hand side are in the form σ I , where σ is a scalar, so this is directly compatible
with the diagonal form. With matrix dissipation, the diagonalization is also straight-
forward, since Â and | Â| share the same eigenvectors, and so do B̂ and |B̂|. With the
linearization of the artificial dissipation included on the left-hand side, the diagonal
form requires the solution of scalar pentadiagonal rather than block pentadiagonal
systems, which results in a significant saving in computational work for the solution
of steady flows.

The diagonal algorithm is an efficient and robust algorithm. However, there are
some cases with specific properties for which it will not converge; in such cases,
the block pentadiagonal algorithm is more reliable. An intermediate block form in
which block tridiagonal systems are solved has also received considerable use. In
this intermediate approach, the contribution of the fourth-difference dissipation on
the left-hand side is approximated by a second-difference dissipation term with a
coefficient equal to twice the coefficient of the fourth-difference dissipation on the
right-hand side. It can be shown using linear theory that this approximation remains
unconditionally stable. Such an algorithm will typically converge much more slowly
than a full pentadiagonal linearization, but it has a lower cost per time step than the
block pentadiagonal algorithm and can be more robust than the scalar pentadiagonal
algorithm in some cases.

4.5.6 Convergence Acceleration for Steady Flow Computations

Local Time Stepping. As discussed in Sect. 4.5.4, the approximate factorization
leads to an amplification factor σ that approaches unity as the time step h tends to
infinity. Consequently, there is an optimum time step that minimizes the maximum
magnitude ofσ for the various eigenvalues associatedwith the Jacobian of the discrete
spatial operator and hence produces the fastest possible convergence to steady state.
For the inviscid flux terms, the eigenvalues of the Jacobian of the discrete residual
vector are proportional to the characteristic speeds, e.g. u, u + a, u − a in one
dimension, divided by a characteristic mesh spacing, e.g. Δx in one dimension. The
amplification factor σ is a function of the product of the eigenvalues and the time
step h. Hence the convergence rate is dependent on the Courant (or CFL) number,
given in one dimension by

Cn = (|u| + a)h

Δx
. (4.138)
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Here we have defined the Courant number based on the largest characteristic speed,
|u|+a, but waves propagating at the other characteristic speeds will have a different
effective Courant number.

Both the characteristic speeds and the mesh spacing can vary widely within a
mesh. With a constant h, the local Courant number associated with each mesh node
will thus also vary widely and will be suboptimal. When computing steady flows, we
have the freedom to vary the time step locally in space. This destroys time accuracy
but has no effect on the converged steady-state solution. Local time stepping can
have a substantial influence on the convergence rate of a factored algorithm. It can
be viewed as a way to condition the iteration matrix of the iterative methods defined
via (4.118) or (4.128), or it can be interpreted as an attempt to use a more uniform
(and hence closer to optimal) Courant number throughout the flow field. In any event,
local time stepping can be effective for grid spacings that vary from very fine to very
coarse—a situation usually encountered in simulations that contain a wide variety
of length scales.

As a rule, one wishes to adjust the local time step at each grid node in proportion
to the local grid spacing divided by the local characteristic speed of the flow, leading
to a constant Courant number. In multiple dimensions, the situation is not quite so
straightforward. For example, a cell with a high aspect ratio has two distinct grid
spacings. In two dimensions, an approximation to a constant Courant number is
achieved by the following formula for the local time step:

Δt = Δt ref

|U | + |V | + a
√

ξ2x + ξ2y + η2x + η2y

, (4.139)

where Δt ref is defined by the user and must be chosen through experimentation to
provide fast convergence.

For highly stretched grids, the grid spacing can vary by over six orders of magni-
tude. The variation in the characteristic speeds is generallymoremoderate. Therefore,
the grid spacing is the more important parameter for maintaining a reasonably uni-
form Courant number, and a purely geometric variation of Δt can be effective. The
following geometric formula for the local time step produces fast convergence when
used with the approximately factored algorithm [2]:

Δt = Δt |ref
1 + √

J
. (4.140)

The term J−1 is closely related to the cell area. Therefore, this formula produces a
Δt that is roughly proportional to the square root of the cell area. The addition of
unity to the denominator prevents Δt from becoming too large at the largest grid
cells.

To illustrate the advantage of using a variable time step, Fig. 4.5 shows the im-
provement in convergence rate when a variable time step based on (4.140) is sub-
stituted for a constant time step in a NACA 0012 airfoil test case where the Euler
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Fig. 4.5 Ċonvergence improvement due to local time stepping

equations are solved at a Mach number of 0.8 and an angle of attack of 1.25 degrees.
The constant time step chosen is the largest stable constant time step. For this com-
parison all other parameters were held constant.

In the above discussion, we have considered only the local Courant number, which
is related to the inviscid fluxes. For an implicit algorithm, determination of the local
time step based on inviscid considerations is generally sufficient for high Reynolds
number flows, as these are convection dominated. For flows at lowReynolds numbers,
consideration also needs to be given to the local Von Neumann number (see Sect.
2.7.4). As we will see in Chap. 5, local time stepping is even more critical for explicit
methods.
Mesh Sequencing. The mesh density is based on accuracy considerations. A suf-
ficiently fine mesh must be used such that the numerical errors from the spatial
discretization lie below a desired threshold. The iterative methods given by (4.118)
or (4.128) require an initial solution to begin the process. Fewer iterations are needed
to converge to steady state if the initial solution is not too far from the converged
solution, which is of course unknown at the outset. It is common to initiate the it-
erations with a solution given by a uniform flow that satisfies some free-stream or
inflow boundary conditions. This provides a relatively poor initial guess that is much
different from the eventual steady solution. Therefore, one way to improve conver-
gence is to begin the iterations using a much coarser mesh than that dictated by the
accuracy requirements. On a coarse mesh, the iterations will converge with relatively
little computational work to a solution that provides a much improved initial guess
for the fine mesh iterations. The solution obtained after reducing the norm of the
residual on the coarse mesh by a few orders of magnitude can be interpolated onto

http://dx.doi.org/10.1007/978-3-319-05053-9_2
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Fig. 4.6 İmprovement in convergence of lift coefficient due to mesh sequencing

the finer mesh to provide the initial iterate for the iterations on the fine mesh. This
process can be repeated on a sequence of meshes, beginning with a very coarse mesh
and ending on the fine mesh dictated by accuracy requirements. The use of mesh
sequencing in this manner can also improve the robustness of a solver, as the coarse
meshes are effective at damping initial transients, when nonlinear effects are large.

Figure 4.6 shows an example of the improvement in convergence resulting from
mesh sequencing. For an inviscid flow over the NACA 0012 airfoil at aMach number
of 0.8 and an angle of attack of 1.25 degrees, a sequence of four C-meshes has been
used. The first mesh is 32 by 17, the second 63 by 33, the third 125 by 69, and the
final mesh has 249 by 98 nodes. Both cases were started with a free-stream initial
condition.

4.5.7 Dual Time Stepping for Unsteady Flow Computations

The implicit algorithm described above is suitable for time-accurate computations
of unsteady flows where the equations are integrated through time from some mean-
ingful initial condition. A sufficiently fine mesh is needed to ensure that spatial
discretization errors are small; in addition, the time step must be selected such that
the temporal discretization errors are also below the desired threshold. Generally
speaking, at least second-order temporal accuracy is desired. The local time lineariza-
tion and approximate factorization preserve the order of accuracy of a second-order
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implicit time-marching method, such as the second-order backward and trapezoidal
methods discussed earlier. Neither the diagonal form nor local time stepping should
be used for time-accurate computations of unsteady flows.

The second-order backwards time-marching method is given by

un+1 = 1

3
[4un − un−1 + 2hu′

n+1]. (4.141)

Applying this method to the thin-layer form of (4.95) gives

Q̂n+1 = 4

3
Q̂n − 1

3
Q̂n−1

+2h

3

(
−δξ Ên+1 + Dn+1

ξ − δη F̂n+1 + Dn+1
η + Re−1δη Ŝn+1

)
. (4.142)

After local time linearization and approximate factorization, a form analogous to
(4.118) is obtained:

[
I + 2h

3
δξ Ân

] [
I + 2h

3
δη B̂n − 2h

3
Re−1δη M̂n

]
ΔQ̂n

= Q̂n − Q̂n−1 − 2h

3

[
δξ Ên + δη F̂n − Re−1δη Ŝn

]
. (4.143)

The method given by (4.143) is the approximately factored form of the second-order
backward time-marching method. It is an efficient second-order implicit method
for time-accurate computations of unsteady flows. However, despite the fact that
the linearization and factorization errors do not diminish the order of accuracy of the
method, they increase the error incurred per time step. This is the motivation for the
dual time stepping approach, which eliminates linearization and factorization errors.

In order to demonstrate the dual time stepping approach, we begin by rearranging
(4.142) as follows

3Q̂n+1 − 4Q̂n + Q̂n−1

2h
+ R(Q̂n+1) = 0, (4.144)

where

R(Q̂n+1) =
[
δξ Ên+1 − Dn+1

ξ + δη F̂n+1 − Dn+1
η − Re−1δη Ŝn+1

]
. (4.145)

This is a nonlinear algebraic equation that must be solved for Q̂n+1 at each time step.
To reflect this, we define Ru(Q̂) as

Ru(Q̂) = 3Q̂ − 4Q̂n + Q̂n−1

2h
+ R(Q̂), (4.146)
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so the nonlinear equation to be solved is simply

Ru(Q̂) = 0. (4.147)

One can readily observe the similarity between the nonlinear equation to be solved
at every iteration of the second-order backward time-marching method, Ru(Q̂) = 0,
and the equation to be solved for a steady flow, R(Q̂) = 0. Therefore, any method
developed for steady problems, such as inexact-Newton methods and implicit or
explicit time-marching methods that follow a time-dependent path to steady state,
can be used to solve (4.147).

In this chapter, our focus is on the approximate factorization algorithm, which
follows a time-dependent, though not necessarily time-accurate, path to the steady
solution. In order to enable application of this algorithm to the solution of (4.147),
we introduce a pseudo-time variable τ (not to be confused with the variable τ in the
generalized curvilinear coordinate transformation) to produce a system of ODEs as
follows:

dQ̂

dτ
+ Ru(Q̂) = 0. (4.148)

In order to solve for the steady-state solution of this ODE, which is the solution to
(4.147), we can apply the approximately-factored implicit Euler method. We intro-
duce a pseudo-time index p such that Q̂ p = Q̂(pΔτ ), where Δτ = τp+1 − τp, to
obtain

[
I + Δτ

b
δξ Â p

] [
I + Δτ

b
δη B̂ p − Δτ

b
Re−1δη M̂ p

]
ΔQ̂ p (4.149)

= −Δτ

b
Ru(Q̂ p),

where

b = 1 + 3Δτ

2h
,

and we have divided by b before factoring. The converged solution obtained from
this iterative process provides Q̂n+1. The accuracy of the time-marching method is
dictated by the time step h, while the pseudo-time step Δτ can be chosen for fast
convergence with no regard for time accuracy, since it has no effect on the converged
solution of (4.147). Similarly, for the pseudo-time iterations, the diagonal form and
local time stepping can be used to speed up convergence.

Dual time stepping is an example of an approachwhere an iterativemethod is used
to solve the nonlinear equation that arises at each time step of an implicit method.
This approach eliminates linearization and factorization errors and can also simplify
the implementation of boundary conditions. It is natural to use a fast steady solver
for the solution of this nonlinear equation along with any convergence acceleration
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techniques developed for steady flows. One may question the efficiency of an ap-
proach where the unsteady problem is in effect solved as a sequence of steady prob-
lems. However, it is important to note that the initial iterate for the pseudo-time
iterations is Q̂n , which is a much better estimate of Q̂n+1 then is usually available
for steady computations. Hence one can expect the number pseudo-time steps needed
to obtain a converged solution to (4.147) to be much less than the number of time
steps needed to obtain a converged solution to a steady flow problem.

4.6 Boundary Conditions

There are a number of different ways to implement boundary conditions. Before de-
scribing one particular approach,wewill introduce the important aspects of boundary
condition development that must be considered in selecting an approach, which are
as follows:

1. The physical definition of the flow problem must be properly represented. For
example, a viscous flow ordinarily requires a no-slip condition at solid surfaces.

2. The physical conditions must be expressed in mathematical form and must be
consistent with the mathematical description of the problem. For example, the
no-slip condition referred to above must be expressed in terms of the variables se-
lected. Moreover, this condition cannot be applied if inviscid governing equations
are chosen.

3. The boundary conditions expressed in mathematical form must be approximated
numerically.

4. Depending on the algorithm, the numerical scheme in the interior may require
more boundary information than the physics provides. Hence a means must be
developed for providing this additional boundary information.

5. The combination of the interior scheme with the boundary scheme must be
checked for stability and accuracy. In general, the two should have consistent
accuracy.

6. The boundary condition formulation must be assessed in terms of its impact on
the efficiency and generality of the solver.

With these considerations inmind, one can approach the development of boundary
conditions from several different directions. Moreover, there exist various different
boundary types, such as inflow/outflow boundaries, solid walls, symmetry bound-
aries, and periodic boundaries, one or more of which can be present in a specific flow
problem. In this chapter, we will cover an approach to the boundary conditions typ-
ically associated with computations of external flows. The basic principles covered
are easily extended to other boundary types.

With an implicit solver, one might expect implicit boundary conditions to be
a strict requirement. In order to obtain the benefits of an inexact-Newton method,
they are certainly recommended. For an approximately-factored solver, however, the
optimal time step is not so large that implicit boundary conditions are essential, and
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the use of explicit boundary conditions does not typically degrade the convergence
rate.

For external flows, one is faced with the problem that the boundary conditions are
defined at an infinite distance from the body. Although coordinate transformations
can be used to address this, it is much more common to introduce an artificial far-
field boundary in order to limit the size of the computational domain. This boundary
must be located a sufficient distance from the body that the error introduced does
not exceed the desired error threshold. At a far-field boundary, viscous effects are
typically negligible and the flow can be considered inviscid. Consequently, a charac-
teristic approach is taken to inflow and outflow boundary conditions at the far-field
boundary. Proper application of characteristic theory is essential in order to ensure
well-posedness. At a far-field boundary through which a wake is advecting or vis-
cous effects are not negligible, a different approach is used; this is discussed further
below.

4.6.1 Characteristic Approach

The concept of characteristic theory is most easily demonstrated with the linearized
one-dimensional Euler equations, where

∂t Q + ∂x (AQ) = 0 (4.150)

represents the model equation. Since A is a constant-coefficient matrix, we can diag-
onalize (4.150) using the relation A = XΛA X−1, where X is the right eigenvector
matrix, and

ΛA =
⎡
⎣

u 0 0
0 u + a 0
0 0 u − a

⎤
⎦ . (4.151)

Premultiplying by X−1 and inserting the product X X−1 after A, we obtain

∂t

(
X−1Q

)
+ ΛA∂x

(
X−1Q

)
= 0. (4.152)

Defining X−1Q = W , we now have a diagonal system. The equations have been
decoupled into three equations in the form of the linear convection equation with the
characteristic speeds u, u + a, and u − a. The associated characteristic variables,
or Riemann invariants, for this constant-coefficient linear system are defined by W .
One can also obtain these same characteristic speeds and the associated Riemann
invariants for the full nonlinear Euler equations without the assumption that A is a
constant coefficient matrix.
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Fig. 4.7 Ċharacteristics at
subsonic inflow and outflow
boundaries of a closed domain

With the diagonalized form of the equations, the boundary condition requirements
are clear. Consider first a subsonic flow. At the left boundary of a closed physical
domain, see Fig. 4.7, where 0 < u < a (for example, subsonic inflow for a channel
flow), the two characteristic speeds u, u + a are positive, while u − a is negative.
At inflow then, two pieces of information enter the domain along the two incoming
characteristics, and one piece leaves along the outgoing characteristic. At the outflow
boundary, one piece of information enters and two leave. Thus we can obtain a well-
posed problem by specifying the first two components of W , which are the two
incoming characteristic variables, at the inflow boundary and then handling the third
characteristic variable such that its value is not constrained, i.e. it is determined
by the interior flow. At the outflow boundary, we specify the third component of
W and determine the first two from the interior flow. If the flow is supersonic, all
characteristic speeds have the same sign. Hence one must specify all variables at
inflow and none at outflow.

It is not necessary to specify the characteristic variables; other flow quantities can
be used, as long as they lead to well-posed conditions. The major constraint is that
the correct number of boundary values corresponding to incoming characteristics
must be specified, regardless of the variables that are chosen. Some combinations
of variables lead to a well-posed problems, others do not. In the next section, we
describe a test to establish whether a given choice of variables is well posed.

4.6.2 Well-Posedness Test

A check on the well posedness of boundary conditions is given by Chakravarthy [17].
Let us consider one-dimensional flow with subsonic inflow and subsonic outflow.
Then two variables can be specified at inflow, associated with the first two eigenval-
ues, and one variable can be specified at outflow, associated with the third eigenvalue.
As an example, we test the following specified values: ρ = ρin, ρu = (ρu)in and
p = pout. These can be written as
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Bin(Q) =
⎡
⎣

q1
q2
0

⎤
⎦ = Bin(Qin), (4.153)

Bout(Q) =
⎡
⎣

0
0

(γ − 1)(q3 − 1
2q2

2/q1)

⎤
⎦ = Bout(Qout), (4.154)

with q1 = ρ, q2 = ρu, q3 = e.
Forming the Jacobians Cin = ∂Bin/∂Q, and Cout = ∂Bout/∂Q we have

Cin =
⎡
⎣
1 0 0
0 1 0
0 0 0

⎤
⎦ , Cout =

⎡
⎣

0 0 0
0 0 0

((γ − 1)/2) u2 −(γ − 1)u γ − 1

⎤
⎦ . (4.155)

The left eigenvector matrix X−1 for the one-dimensional Euler equations is3

⎡
⎢⎣

1 − u2
2 (γ − 1)a−2 (γ − 1)ua−2 −(γ − 1)a−2

β[(γ − 1) u2
2 − ua] β[a − (γ − 1)u] β(γ − 1)

β[(γ − 1) u2
2 + ua] −β[a + (γ − 1)u] β(γ − 1)

⎤
⎥⎦ , (4.156)

with β = 1/(
√
2ρa).

The condition for well-posedness of these example boundary conditions is that

C
−1
in and C

−1
out exist, where

C in =
⎡
⎣

1 0 0
0 1 0

β[(γ − 1) u2
2 + ua] −β[a + (γ − 1)u] β(γ − 1)

⎤
⎦ , (4.157)

and

Cout =
⎡
⎢⎣

1 − u2
2 (γ − 1)a−2 (γ − 1)ua−2 −(γ − 1)a−2

β[(γ − 1) u2
2 − ua] β[a − (γ − 1)u] β(γ − 1)

(γ − 1) u2
2 −(γ − 1)u γ − 1

⎤
⎥⎦ . (4.158)

Thesematrices are formed by adjoining the eigenvectors associatedwith the outgoing
characteristics at the boundary in question to the Jacobian matrices of the boundary
conditions. The inverses of the above matrices will exist if their determinants are
nonzero. For the two boundaries, we have det(C in) = β(γ−1) �= 0, and det(Cout) =
β(γ−1)a �= 0. Therefore, this particular choice of boundary conditions iswell posed.
Other choices for specified boundary values can be similarly checked.

3 The rows of X−1 are the left eigenvectors of A.
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4.6.3 Boundary Conditions for External Flows

We shall outline below some of themore commonly used boundary conditions. These
will be presented in the context of a body-fitted C mesh, as depicted in Fig. 4.2, and
are easily generalized to other mesh topologies. The approach taken is to solve the
governing equations only at the interior nodes of the mesh. Therefore, all variables
must be given at the boundary by the numerical boundary conditions. Since the phys-
ical boundary conditions provide boundary values for only some of the variables, the
others must be determined by extrapolation from the interior flow solution. More-
over, the numerical boundary conditions can be implemented either explicitly or
implicitly. In an explicit treatment, the boundary values are held fixed during one
iteration of the approximate factorization algorithm. They are then updated based on
the new Q̂, and the process is repeated. For an implicit implementation, the numer-
ical boundary conditions must be linearized and the appropriate terms included in
the left-hand-side operator of the implicit algorithm.
Body Surfaces. At a body surface, tangency must be satisfied for inviscid flow and
the no-slip condition for viscous flow. In two-dimensions, body surfaces are usually
mapped to η = constant coordinates, as in Fig. 4.2. In this case, as shown in Sect.
4.2.4, the normal component of velocity is given in terms of the metrics of the
transformation by

Vn = ηx u + ηyv√
η2x + η2y

, (4.159)

and the tangential component by

Vt = ηyu − ηxv√
η2x + η2y

. (4.160)

For inviscid flows, flow tangency is satisfied by setting Vn = 0. The tangential
velocity Vt is obtained at the body surface through linear extrapolation along the
coordinate line approaching the surface, using the interior values of Q at the nodes
above the surface. It is preferable to extrapolate Cartesian velocity components and
then form the tangential velocity component based on the extrapolated values. The
Cartesian velocity components at the surface are found from the following relation
obtained by solving (4.159) and (4.160) for u and v:

(
u
v

)
= 1√

η2x + η2y

[
ηy ηx

−ηx ηy

] (
Vt

Vn

)
, (4.161)

with Vn set to zero, and Vt determined from the extrapolation. For a viscous flow,
the no-slip condition gives u = v = 0.
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For an inviscid flow, flow tangency is the only physical boundary condition. There-
fore only one variable can be specified, which is the normal velocity component, and
three more variables must be determined from the interior flow solution. The tan-
gential velocity component is extrapolated, as described above. In addition, pressure
and density, for example, can be extrapolated. For steady inviscid flows with uniform
upstream conditions, the total or stagnation enthalpy (H = (e + p)/ρ) is constant,
at least in the exact solution. This requirement can be exploited to determine one
variable. For example, after u, v, and p are obtained at the surface, the density can
be found by requiring that the total enthalpy at the boundary be equal to the free-
stream total enthalpy. Once boundary values for u, v, p, and ρ are determined, the
corresponding conservative variables are easily found using their definitions along
with the equation of state.

For viscous flows, there is an additional boundary condition related to heat trans-
fer that determines the temperature or its gradient normal to the surface. If the wall
remains at constant temperature, then this temperature must be specified. More com-
monly, an adiabatic condition is appropriate. In this case, there is no heat transfer to
or from the wall, giving

∂T

∂n
= 0, (4.162)

where n is the direction normal to the wall, and the derivative must be approximated
numerically using a one-sided difference formula. This condition provides the tem-
perature at the wall. The wall pressure can be determined by extrapolation from the
interior; the conservative variables can then be found from the values of u, v, T ,
and p.
Far-Field Boundaries. The far-field boundary must be located a sufficient distance
away from the body that its effect on the computed solution is negligible. This can be
determined by experimentation. The basic goal of the boundary conditions at the far-
field boundary is to permit disturbances to exit the domain with little or no reflection,
as such artificial reflections can pollute the solution in the interior of the domain. For
problems where accurate propagation of waves to and through the outer boundary is
critical, specialized non-reflecting boundary conditions have been developed (see for
example the discussion by Colonius and Lele [18]). For many flow problems, non-
reflecting boundary conditions based on the method of characteristics are sufficient;
these are described here.

Following the discussion in Sect. 4.6.1, the idea is to specify incoming Riemann
invariants and determine outgoing Riemann invariants from the interior solution by
extrapolation. For subsonic flows, we describe an extension to two dimensions based
on locally one-dimensional Riemann invariants. The relevant velocity component
is that normal to the outer boundary Vn . With n pointing outward from the flow
domain, a positive Vn defines an outflow boundary, while a negative Vn defines
an inflow boundary. As shown in the Appendix, the two-dimensional inviscid flux
Jacobians have three distinct eigenvalues, with the eigenvalue corresponding to the
convective speed repeated. From the one-dimensional theory, we have three Riemann
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invariants, so one more variable is needed in two dimensions that will be associated
with the repeated eigenvalue. The velocity component tangential to the boundary can
be used for this purpose. Therefore, we have the following characteristic speeds and
associated variables:

λ1 = Vn − a, R1 = Vn − 2a/(γ − 1)

λ2 = Vn + a, R2 = Vn + 2a/(γ − 1)

λ3 = Vn, R3 = S = ln
p

ργ
(entropy)

λ4 = Vn, R4 = Vt . (4.163)

For a subsonic inflow boundary, where Vn < 0, the characteristic speeds satisfy
the following:

λ1 < 0, λ2 > 0, λ3 < 0, λ4 < 0.

A negative characteristic speed corresponds to an incoming characteristic; hence the
associated variables must be specified based on free-stream values. The variables
associated with positive characteristic speeds must be determined from the interior
flow. In this case, R1, R3, and R4 must be specified, and R2 must be extrapolated
from the interior. Once these four variables are determined at the boundary, the four
conservative variables can be obtained.

For a subsonic outflow boundary, where Vn > 0, the eigenvalues satisfy the
following:

λ1 < 0, λ2 > 0, λ3 > 0, λ4 > 0.

Therefore, R1 must be set to its free-stream value, and R2, R3, and R4 must be
extrapolated from the interior.

For supersonic inflow boundaries, all flow variables are specified; for supersonic
outflow boundaries, all variables are extrapolated. For a subsonic boundary through
which a viscous wake is flowing, all variables are extrapolated (see [19] for a detailed
discussion). Special treatments may be needed at interfaces between blocks in multi-
block meshes or at wake cuts. See, for example, Osusky and Zingg [20].
Far-Field Circulation Correction. For computations of two-dimensional flows over
lifting bodies, the far-field circulation correction reduces the effect of the far-field
boundary location. This enables the distance to the far-field boundary to be reduced
without compromising accuracy.Far from a lifting airfoil in a subsonic free-stream,
the perturbation caused by the airfoil approaches that induced by a point vortex. This
can be exploited by adding the perturbation associated with a point vortex to the
free-stream values when applying the far-field boundary conditions.

Following Salas et al. [21], a compressible potential vortex solution is added as a
perturbation to the free-stream quantities at the far-field boundary. With the present
nondimensionalization, the free-stream velocity components are u∞ = M∞ cosα
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and v∞ = M∞ sinα, where M∞ is the free-stream Mach number, and α is the
angle of incidence of the flow relative to the x axis. The perturbed far-field boundary
velocities are defined as

uf = u∞ + βΓ sin(θ)

2πr
(
1 − M2∞ sin2(θ − α)

) (4.164)

and

vf = v∞ − βΓ cos(θ)

2πr
(
1 − M2∞ sin2(θ − α)

) , (4.165)

where the circulation Γ = 1
2 M∞lCl , l is the chord length,Cl is the coefficient of lift,

α is the angle of attack, β = √
1 − M2∞, and r, θ are polar coordinates to the point

of application on the outer boundary relative to an origin at the quarter-chord point
on the airfoil center line. A corrected speed of sound is used that enforces constant
free-stream enthalpy at the boundary:

a2
f = (γ − 1)

(
H∞ − 1

2
(u2

f + v2f )

)
. (4.166)

Equations (4.164), (4.165) and (4.166) are used instead of free-stream values in
defining the specified quantities for the far-field characteristic boundary conditions.
The circulation Γ is determined by the solution and is not known at the outset; hence
it must be calculated and updated as the iterations progress. At convergence, the value
of Γ used in the far-field circulation correction is consistent with the lift coefficient
computed for the airfoil.

Figure 4.8 shows the coefficient of liftCl plotted against the inverse of the distance
to the outer boundary for an inviscid flow over the NACA0012 airfoil at M∞ = 0.63,
α = 2.0 degrees. The distance to the outer boundary varies from 5 to 200 chord
lengths, where outer mesh rings were eliminated from the largest mesh to produce
the smaller meshes.

4.7 Three-Dimensional Algorithm

The three-dimensional form of the implicit algorithm follows the same development
as the two-dimensional algorithm. The curvilinear coordinate transformation is car-
ried out in the same fashion. The block and diagonal algorithms take the same format.
Boundary conditions are analogous. In this section, we briefly outline the equations
in three dimensions.
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4.7.1 Flow Equations

The full three-dimensional Navier-Stokes equations in strong conservation law form
are reduced to the thin-layer form under the same restrictions and assumptions as in
two dimensions. The equations in generalized curvilinear coordinates are

∂τ Q̂ + ∂ξ Ê + ∂η F̂ + ∂ζ Ĝ = Re−1∂ζ Ŝ, (4.167)

where

Q̂ = J−1

⎡
⎢⎢⎢⎢⎣

ρ
ρu
ρv

ρw

e

⎤
⎥⎥⎥⎥⎦

, Ê = J−1

⎡
⎢⎢⎢⎢⎣

ρU
ρuU + ξx p
ρvU + ξy p
ρwU + ξz p

U (e + p) − ξt p

⎤
⎥⎥⎥⎥⎦

,

F̂ = J−1

⎡
⎢⎢⎢⎢⎣

ρV
ρuV + ηx p
ρvV + ηy p
ρwV + ηz p

V (e + p) − ηt p

⎤
⎥⎥⎥⎥⎦

, Ĝ = J−1

⎡
⎢⎢⎢⎢⎣

ρW
ρuW + ζx p
ρvW + ζy p
ρwW + ζz p

W (e + p) − ζt p

⎤
⎥⎥⎥⎥⎦

, (4.168)
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with

U = ξt + ξx u + ξyv + ξzw,

V = ηt + ηx u + ηyv + ηzw

W = ζt + ζx u + ζyv + ζzw, (4.169)

and

Ŝ = J−1

⎡
⎢⎢⎢⎢⎣

0
μm1uζ + (μ/3)m2ζx

μm1vζ + (μ/3)m2ζy

μm1wζ + (μ/3)m2ζz

μm1m3 + (μ/3)m2(ζx u + ζyv + ζzw)

⎤
⎥⎥⎥⎥⎦

. (4.170)

Here m1 = ζ2x + ζ2y + ζ2z , m2 = ζx uζ + ζyvζ + ζzwζ , and m3 = (u2 + v2 +
w2)ζ/2 + Pr−1(γ − 1)−1(a2)ζ . Pressure is again related to the conservative flow
variables, Q, by the equation of state:

p = (γ − 1)

(
e − 1

2
ρ(u2 + v2 + w2)

)
. (4.171)

The metric terms are defined as

ξx = J (yηzζ − yζ zη), ηx = J (zξ yζ − yξzζ)

ξy = J (zηxζ − zζ xη), ηy = J (xξzζ − zξxζ)

ξz = J (xη yζ − yηxζ), ηz = J (yξxζ − xξ yζ)

ζx = J (yξzη − zξ yη), ξt = −xτ ξx − yτ ξy − zτ ξz

ζy = J (zξxη − xξzη), ηt = −xτ ηx − yτ ηy − zτ ηz

ζz = J (xξ yη − yξxη), ζt = −xτ ζx − yτ ζy − zτ ζz (4.172)

with

J−1 = xξ yηzζ + xζ yξzη + xη yζ zξ − xξ yζ zη − xη yξzζ − xζ yηzξ . (4.173)

4.7.2 Numerical Methods

The implicit approximate factorization algorithm applied to the three-dimensional
equations is

[
I + hδξ Ân] [

I + hδη B̂n] [
I + hδζ Ĉn − h Re−1δζ M̂n

]
ΔQ̂n

= −h
(
δξ Ên + δη F̂n + δζ Ĝn − Re−1δζ Ŝn

)
. (4.174)
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The three-dimensional inviscid flux Jacobians Â, B̂, Ĉ are defined in the Appendix
along with the viscous flux Jacobian M̂ . The spatial discretization, including the
artificial dissipation, extends directly to three dimensions. Calculation of the grid
metrics in three dimensions is discussed in Sect. 4.4.1. The diagonal algorithm in
three dimensions has the form

Tξ

[
I + h δξ Λξ

]
N̂

[
I + h δη Λη

]
P̂

[
I + h δζ Λζ

]
T −1

ζ ΔQ̂n = R̂n (4.175)

with N̂ = T −1
ξ Tη and P̂ = T −1

η Tζ .
A linear constant-coefficient Fourier analysis for the three-dimensional model

wave equation shows unconditional instability for the three-dimensional factored
algorithm in the absence of numerical dissipation. This is due to the cross term
errors. In contrast to the case of two dimensions where the cross term errors just
affect the rapid convergence capability of the algorithm at large time steps, in three
dimensions they result in a weak instability. The method becomes stable when a
small amount of artificial dissipation is added to the spatial discretization.

4.8 One-Dimensional Examples

In order to demonstrate the performance of the algorithm presented in this chap-
ter, we present numerical results obtained for steady flows governed by the quasi-
one-dimensional Euler equations and an unsteady flow in a shock tube. The flow
conditions coincide with those associated with the exercises of Chap. 3 and the
present chapter. Hence the results presented in this section provide a useful reference
for the reader when developing the code associated with this chapter’s exercises.
These one-dimensional problems should not be used to assess the efficiency of the
algorithm, as their properties are simply too different from multi-dimensional prob-
lems. In particular, the implicit operator is tightly banded, which is not the case in
multidimensions.

Three problems are considered, a subsonic channel flow, a transonic channel flow,
and a shock tube. Flow conditions are as described in Sect. 3.3. The implicit algorithm
is implemented as described in this chapter, although the coordinate transformation,
the approximate factorization, and the viscous terms are not needed in this context.
Boundary conditions are handled explicitly based on prescribing or extrapolating
Riemann invariants. Zeroth-order extrapolation is used for outgoing Riemann in-
variants, i.e. the boundary value is set to the value at the first interior node. This is
not desirable but leads to fast convergence for the two steady problems and has no
impact on the shock-tube problem. Linear extrapolation is preferred and is needed to
obtain second-order accuracy. It can be implemented through some minor changes
to how the boundary values are handled (for example by choosing an updated bound-
ary value that is the average of the value calculated using linear extrapolation and
the previous value) or through an implicit treatment of the boundary conditions.

http://dx.doi.org/10.1007/978-3-319-05053-9_3
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Alternatively, convergence can be obtained with linear extrapolation through the use
of a low Courant number (e.g. Cn = 2). In multidimensional external flows, good
convergence can typically be obtained with linear extrapolation. Finally, in the im-
plementation of the diagonal form, the contribution of the source term to the left-hand
side operator is neglected.

The artificial dissipation coefficient values are κ2 = 0, κ4 = 0.02 for the subsonic
channel flow problem, κ2 = 0.5, κ4 = 0.02 for both the transonic channel flow
problem and the shock-tube problem. A nonzero value of κ2 can be used for the
subsonic problem but is not needed. The state at the inflow boundary is used as
the initial condition for the channel flow problems. For these problems, which are
steady, a local time step is calculated from (4.138) based on an input value of the
Courant number. For the shock-tube problem, a constant time step is used based on
an input Courant number and representative values of u and a. The values used are
u = 300m/s and a = 315m/s.

For the subsonic channel flow, Fig. 4.9 shows that the solution computed on a
meshwith 49 interior nodes lies very close to the exact solution. Some oscillations are
visible near the boundaries; these are associated with the zeroth-order extrapolation
of the outgoing Riemann invariants. With linear extrapolation these are not seen.
Results with 199 interior nodes are shown in Fig. 4.10; the oscillations are reduced.

One can compute the numerical error in density, for example, as

eρ =
√√√√

M∑
j=1

(ρ j − ρexactj )2

M
, (4.176)

where M is the number of grid nodes, and ρexact is the exact solution. The error
in density is plotted versus the grid spacing in Fig. 4.11. The numerical solution
was obtained with linear extrapolation of the outgoing Riemann invariants at the
boundaries and κ2 = 0. The slope of the log-log plot is very close to two, consistent
with second-order accuracy. This is a good test to verify a code.

Figures 4.12 and 4.13 display some convergence histories for the block form of
the implicit algorithm applied to the subsonic channel problem. The L2 norm of the
residual is plotted versus the number of iterations for various grid sizes and Courant
numbers. Figure 4.12 shows the dependence on the Courant number for a grid with
99 interior nodes, while Fig. 4.13 shows the dependence on the number of nodes in
the grid with Cn = 40.

The convergence of the diagonal form of the implicit algorithm is displayed in
Fig. 4.14. The convergence behaviour of the diagonal form is comparable to that of
the block form shown in Fig. 4.13. As a result, the savings associated with solving
scalar pentadiagonal systems rather than block pentadiagonal systems translate into
savings in computing time.

Results for the transonic channel flow problem are displayed in Figs. 4.15 through
4.17. The solutions again show good agreement with the exact solution, as shown
in Fig. 4.15. Note in particular the manner in which the shock is captured with the
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Fig. 4.9 Comparison of exact
(-) solution for the subsonic
channel flow problem with
the numerical (x) solution
computed on a grid with with
49 interior nodes
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solution at one grid node lyingmidway between the values upstream and downstream
of the shock. Figure 4.16 shows the residual convergence achieved with the block
form of the algorithm at a Courant number of 120. The diagonal form proves to be
unstable at a Courant number of 120 with a grid consisting of 99 interior nodes.
However, at a Courant number of 70 it converges in slightly fewer iterations than the
block form, as shown in Fig. 4.17.

Finally, Fig. 4.18 compares the numerical and exact solutions for the shock-tube
problem on a grid with 400 cells with a maximum Courant number of unity. With the
present numerical dissipation model, the shock wave and contact surface are spread
out over several cells. This is the motivation for the methods described in Chap. 6.
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Fig. 4.10 Comparison of
exact (-) solution for the
subsonic channel flow
problem with the numeri-
cal (x) solution computed on
a grid with 199 interior nodes
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4.9 Summary

The algorithm described in this chapter has the following key features:

• The discretization of the spatial derivatives is accomplished through second-order
centered difference operators applied in a uniform computational space. This is
facilitated by a curvilinear coordinate transformation that is defined implicitly
through a structured grid. This approach is restricted to structured or block-
structured grids. Numerical dissipation is added through a nonlinear artificial
dissipation scheme that combines a third-order dissipative term in smooth regions
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Fig. 4.11 Numerical error in density plotted versus grid spacing for the subsonic channel flow
problem computed with linear extrapolation of outgoing Riemann invariants and κ2 = 0
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Fig. 4.12 Residual convergence histories for the subsonic channel flow problem using the block
form of the implicit algorithm on a grid with 99 interior nodes with Cn = 40 (-), Cn = 20 ( - -),
and Cn = 10 (-·)

of the flowwith a first-order term near shock waves. A pressure-based term is used
as a shock sensor.

• After discretization in space, the original PDEs are converted to a large system
of ODEs. For computations of steady flows, the implicit Euler method is used to
follow a time dependent, though not time accurate, path to steady state. A local
time linearization is applied, and the implicit operator is approximately factored
in order to reduce the computational work required at each time step. With the
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Fig. 4.13 Residual con-
vergence histories for the
subsonic channel flow prob-
lem using the block form of
the implicit algorithm with
Cn = 40 on a grid with 49
interior nodes (-), 99 interior
nodes (- -), and 199 interior
nodes (-·)
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Fig. 4.14 Residual con-
vergence histories for the
subsonic channel flow prob-
lem using the diagonal form
of the implicit algorithm on
a grid with 99 interior nodes
with Cn = 40 (-), Cn = 20
(- -), and Cn = 10 (-·)
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approximately factored form, block pentadiagonal linear systems must be solved.
The approximate factorization has a detrimental effect on the convergence rate at
large time steps but greatly reduces the computational cost per time step in compar-
ison with a direct solution technique. The cost per time step can be further reduced
through the use of the diagonal form, which reduces the necessary inversions to
scalar pentadiagonal matrices. Convergence can be further accelerated through
local time stepping and mesh sequencing. For time-accurate computations of un-
steady flows, the block form of the approximate factorization algorithm can be
applied to the second-order backward or the trapezoidal implicit time-marching
methods. Alternatively, the dual time stepping approach can be used where the
steady form of the algorithm is used to solve the nonlinear problem arising at each
implicit time step.
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Fig. 4.15 Comparison of
exact (-) solution for the
transonic channel flow prob-
lem with the numerical (x)
solution computed on a grid
with with 99 interior nodes
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4.10 Exercises

For related discussion, see Sect. 4.8.

4.1 Write a computer program to apply the implicit finite-difference algorithm pre-
sented in this chapter to the quasi-one-dimensional Euler equations for the following
subsonic problem. S(x) is given by

S(x) =
{
1 + 1.5

(
1 − x

5

)2 0 ≤ x ≤ 5

1 + 0.5
(
1 − x

5

)2 5 ≤ x ≤ 10
(4.177)
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Fig. 4.16 Residual con-
vergence histories for the
transonic channel flow prob-
lem using the block form of
the implicit algorithm with
Cn = 120 on a grid with 49
interior nodes (-), 99 interior
nodes (- -), and 199 interior
nodes (-·)
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Fig. 4.17 Residual con-
vergence histories for the
transonic channel flow prob-
lem using the block form (-)
and the diagonal form (- -)
of the implicit algorithm with
Cn = 70 on a grid with 99
interior nodes
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where S(x) and x are in meters. The fluid is air, which is considered to be a perfect
gas with R = 287 Nm kg−1 K−1, and γ = 1.4, the total temperature is T0 = 300 K,
and the total pressure at the inlet is p01 = 100 kPa. The flow is subsonic throughout
the channel, with S∗ = 0.8. Use implicit Euler time marching with and without the
diagonal form. Use the nonlinear scalar artificial dissipation model. Compare your
solution with the exact solution computed in Exercise 3.1. Show the convergence
history for each case. Experiment with parameters, such as the Courant number and
the artificial dissipation coefficients, to examine their effect on convergence and
accuracy.
4.2Repeat Exercise 4.1 for a transonic flow in the same channel. The flow is subsonic
at the inlet, there is a shock at x = 7, and S∗ = 1. Compare your solution with that
calculated in Exercise 3.2.
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Fig. 4.18 Comparison of the exact solution (-) for the shock-tube problem at t = 6.1 ms with the
numerical solution (x) computed on a grid with 400 cells with a maximum Courant number of unity

4.3 Write a computer program to apply the implicit finite-difference algorithm pre-
sented in this chapter to the following shock-tube problem: pL = 105, ρL = 1,
pR = 104, and ρR = 0.125, where the pressures are in Pa and the densities in
kg/m3. The fluid is a perfect gas with γ = 1.4. Use both implicit Euler and second-
order backwards time marching with and without the diagonal form. Compare your
solution at t = 6.1 ms with that found in Exercise 3.3. Examine the effect of the time
step and the artificial dissipation parameters on the accuracy of the solution.
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Appendix: Flux Jacobian Eigensystems in Two
and Three Dimensions

The flux Jacobian matrices of Eq. 4.104 have real eigenvalues and a complete set of
eigenvectors. The similarity transforms are

Â = TξΛξT −1
ξ and B̂ = TηΛηT −1

η . (4.178)

where

Λξ =

⎡
⎢⎢⎢⎢⎣

U
U

U + a
√

ξ2x + ξ2y

U − a
√

ξ2x + ξ2y

⎤
⎥⎥⎥⎥⎦

(4.179)

Λη =

⎡
⎢⎢⎢⎢⎣

V
V

V + a
√

η2x + η2y

V − a
√

η2x + η2y

⎤
⎥⎥⎥⎥⎦

, (4.180)

with

Tκ =

⎡
⎢⎢⎢⎣

1 0 α α
u κ̃yρ α(u + κ̃x a) α(u − κ̃x a)

v −κ̃xρ α(v + κ̃ya) α(v − κ̃ya)
φ2

(γ − 1) ρ(̃κyu − κ̃xv) α
[

φ2+a2

(γ − 1) + aθ̃
]

α
[

φ2+a2

(γ − 1) − aθ̃
]

⎤
⎥⎥⎥⎦ (4.181)

T −1
κ =

⎡
⎢⎢⎣

(1 − φ2/a2)

−(̃κyu − κ̃xv)/ρ

β(φ2 − aθ̃)

β(φ2 + aθ̃)

(γ − 1)u/a2

κ̃y/ρ
β [̃κx a − (γ − 1)u]

−β [̃κx a + (γ − 1)u]
(γ − 1)v/a2

−κ̃x/ρ
β [̃κya − (γ − 1)v]

−β [̃κya + (γ − 1)v]

−(γ − 1)/a2

0
β(γ − 1)
β(γ − 1)

⎤
⎥⎥⎦ ,(4.182)

and α = ρ/(
√
2a), β = 1/(

√
2ρa), θ̃ = κ̃x u + κ̃yv,φ = 1

2 (γ − 1)(u2 +
v2) and, for example, κ̃x = κx/

√
κ2

x + κ2
y .

Relations exist between Tξ and Tη of the form
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N̂ = T −1
ξ Tη, N̂−1 = T −1

η Tξ, (4.183)

where

N̂ =

⎡
⎢⎢⎣
1 0 0 0
0 m1 −μm2 μm2

0 μm2 μ2(1 + m1) μ2(1 − m1)

0 −μm2 μ2(1 − m1) μ2(1 + m1)

⎤
⎥⎥⎦ , (4.184)

and

N̂−1 =

⎡
⎢⎢⎣
1 0 0 0
0 m1 μm2 −μm2

0 −μm2 μ2(1 + m1) μ2(1 − m1)

0 μm2 μ2(1 − m1) μ2(1 + m1)

⎤
⎥⎥⎦ , (4.185)

with m1 = (
ξ̃x η̃x + ξ̃y η̃y

)
, m2 = (

ξ̃x η̃y − ξ̃y η̃x
)
and μ = 1/

√
2. It is interesting

to note that the matrix N̂ is only a function of the metrics and not the flow variables.
In three dimensions the Jacobian matrices Â, B̂, or Ĉ =

⎡
⎢⎢⎢⎢⎣

κt κx

κxφ
2 − uθ κt + θ − κx (γ − 2)u

κyφ
2 − vθ κxv − κy(γ − 1)u

κzφ
2 − wθ κxw − κz(γ − 1)u

−θ
(
γe/ρ − 2φ2

)
κx

(
γe/ρ − φ2

) − (γ − 1)uθ

κy κz 0
κyu − κx (γ − 1)v κzu − κx (γ − 1)w κx (γ − 1)

κt + θ − κy(γ − 2)v κzv − κy(γ − 1)w κy(γ − 1)
κyw − κz(γ − 1)v κt + θ − κz(γ − 2)w κz(γ − 1)

κy
(
γeρ−1 − φ2

) − (γ − 1)vθ κz
(
γeρ−1 − φ2

) − (γ − 1)wθ κt + γθ

⎤
⎥⎥⎥⎥⎦

,

(4.186)

where

θ = κx u + κyv + κzw

φ2 = (γ − 1)(
u2 + v2 + w2

2
), (4.187)

with κ = ξ , η, or ζ for Â, B̂, or Ĉ , respectively.
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The viscous flux Jacobian is

M̂ = J−1

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0
m21 α1∂ζ(ρ

−1) α2∂ζ(ρ
−1) α3∂ζ(ρ

−1) 0

m31 α2∂ζ(ρ
−1) α4∂ζ(ρ

−1) α5∂ζ(ρ
−1) 0

m41 α3∂ζ(ρ
−1) α5∂ζ(ρ

−1) α6∂ζ(ρ
−1) 0

m51 m52 m53 m54 α0∂ζ(ρ
−1)

⎤
⎥⎥⎥⎥⎥⎦

J, (4.188)

where

m21 = −α1∂ζ(u/ρ) − α2∂ζ(v/ρ) − α3∂ζ(w/ρ)

m31 = −α2∂ζ(u/ρ) − α4∂ζ(v/ρ) − α5∂ζ(w/ρ)

m41 = −α3∂ζ(u/ρ) − α5∂ζ(v/ρ) − α6∂ζ(w/ρ)

m51 = α0∂ζ

[
−(e/ρ2) + (u2 + v2 + w2)/ρ

]

−α1∂ζ(u
2/ρ) − α4∂ζ(v

2/ρ) − α6∂ζ(w
2/ρ)

−2α2∂ζ(uv/ρ) − 2α3∂ζ(uw/ρ) − 2α5∂ζ(vw/ρ)

m52 = −α0∂ζ(u/ρ) − m21, m53 = −α0∂ζ(v/ρ) − m31

m54 = −α0∂ζ(w/ρ) − m41, m44 = α4∂ζ(ρ
−1)

α0 = γμPr−1(ζx
2 + ζy

2 + ζz
2), α1 = μ[(4/3)ζx

2 + ζy
2 + ζz

2]
α2 = (μ/3)ζxζy, α3 = (μ/3)ζxζz, α4 = μ[ζx

2 + (4/3)ζy
2 + ζz

2]
α5 = (μ/3)ζyζz, α6 = μ[ζx

2 + ζy
2 + (4/3)ζz

2]. (4.189)

The eigensystem decompositions of the three-dimensional Jacobians have the
form Â = TξΛξT −1

ξ , B̂ = TηΛηT −1
η , and Ĉ = TζΛζ T −1

ζ . The eigenvalues are

λ1 = λ2 = λ3 = κt + κx u + κyv + κzw

λ4 = λ1 + κa, λ5 = λ1 − κa

κ =
√

κ2
x + κ2

y + κ2
z . (4.190)
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The matrix Tκ, representing the left eigenvectors, is

Tκ =

⎡
⎢⎢⎢⎢⎢⎢⎣

κ̃x κ̃y

κ̃x u κ̃yu − κ̃zρ

κ̃xv + κ̃zρ κ̃yu

κ̃xw + κ̃yρ κ̃yw + κ̃xρ[
κ̃xφ2/(γ − 1) + ρ(κ̃zv − κ̃yw)

] [
κ̃yφ

2/(γ − 1) + ρ(κ̃x w − κ̃zu)
]

κ̃z α α

κ̃zu + κ̃yρ α(u + κ̃x a) α(u − κ̃x a)

κ̃zv − κ̃xρ α(v + κ̃ya) α(v − κ̃ya)

κ̃zw α(w + κ̃za) α(w − κ̃za)[
κ̃zφ

2/(γ − 1) + ρ(κ̃yu − κ̃x v)
]

α
[
(φ2 + a2)/(γ − 1) + θ̃a

]
α

[
(φ2 + a2)/(γ − 1) + θ̃a

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(4.191)

where

α = ρ√
2a

, κ̃x = κx

κ
, κ̃y = κy

κ
, κ̃z = κz

κ
, θ̃ = θ

κ
. (4.192)

The corresponding T −1
κ is

T −1
κ =

⎡
⎢⎢⎢⎢⎣

κ̃x (1 − φ2/a2) − (̃κzv − κ̃yw)/ρ κ̃x (γ − 1)u/a2

κ̃y(1 − φ2/a2) − (̃κxw − κ̃zu)/ρ κ̃y(γ − 1)u/a2 − κ̃z/ρ
κ̃z(1 − φ2/a2) − (̃κyu − κ̃xv)/ρ κ̃z(γ − 1)u/a2 + κ̃y/ρ

β(φ2 − θ̃a) −β[(γ − 1)u − κ̃x a]
β(φ2 + θ̃a) −β[(γ − 1)u + κ̃x a]

κ̃x (γ − 1)v/a2 + κ̃z/ρ κ̃x (γ − 1)w/a2 − κ̃y/ρ −κ̃x (γ − 1)/a2

κ̃y(γ − 1)v/a2 κ̃y(γ − 1)w/a2 + κ̃x/ρ −κ̃y(γ − 1)/a2

κ̃z(γ − 1)v/a2 − κ̃x/ρ κ̃z(γ − 1)w/a2 −κ̃z(γ − 1)/a2

−β[(γ − 1)v − κ̃ya] −β[(γ − 1)w − κ̃za] β(γ − 1)
−β[(γ − 1)v + κ̃ya] −β[(γ − 1)w + κ̃za] β(γ − 1)

⎤
⎥⎥⎥⎥⎦

,

(4.193)

where

β = 1√
2ρa

. (4.194)
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