
Chapter 3
Governing Equations

The governing equations are presented in the PDE form solved numerically by finite-
difference methods as well as the integral form solved numerically by finite-volume
methods. In addition, the quasi-one-dimensional Euler equations and the shock-tube
problem are given, along with a means for obtaining their exact solutions. These
form the basis of the programming assignments in this and subsequent chapters.

3.1 The Euler and Navier-Stokes Equations

3.1.1 Partial Differential Equation Form

Flow of a continuum fluid is governed by a set of partial differential equations
collectively known as the Navier-Stokes equations.1 They can be written in various
different forms.We present the following form, known as conservative form, because
it is advantageous for numerical solution, as we shall see later, and restrict our interest
to two-dimensional Cartesian coordinates for simplicity of exposition. Extension to
three dimensions is straightforward. In two dimensions, there are four equations,
representing the conservation of mass, two components of momentum, and energy.
For an unsteady compressible flow, these can be written as follows:

∂Q

∂t
+ ∂E

∂x
+ ∂F

∂y
= ∂Ev

∂x
+ ∂Fv

∂y
, (3.1)

1 Formally, the Navier-Stokes equations are the equations arising from the conservation of momen-
tum; they do not include the equations describing conservation of mass and energy. We follow the
prevailing usage and term the whole set the Navier-Stokes equations.
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where

Q =

⎡
⎢⎢⎣

ρ
ρu
ρv
e

⎤
⎥⎥⎦ , E =

⎡
⎢⎢⎣

ρu
ρu2 + p

ρuv
u(e + p)

⎤
⎥⎥⎦ , F =

⎡
⎢⎢⎣

ρv
ρuv

ρv2 + p
v(e + p)

⎤
⎥⎥⎦ , (3.2)

Ev =

⎡
⎢⎢⎣

0
τxx

τxy

f4

⎤
⎥⎥⎦ , Fv =

⎡
⎢⎢⎣

0
τxy

τyy

g4

⎤
⎥⎥⎦ . (3.3)

The variable Q represents the conservative dependent variables per unit volume,
including the density, ρ, the components of momentum per unit volume, ρu and ρv,
where u and v are the Cartesian velocity components, and the total energy per unit
volume, e. The total energy includes internal and kinetic energy and can be written as

e = ρ

(
ε + u2 + v2

2

)
, (3.4)

where ε is the internal energy per unit mass. The vectors E and F are known as
the inviscid flux vectors. They contain convective fluxes plus terms associated with
pressure. For some flow problems, other terms, such as gravitational forces, can be
important and should be included. In the momentum equations, the pressure terms
represent forces; in the energy equation they are associated with the work done
by the pressure forces. Although it is important to understand these equations as
conservation laws for mass, momentum, and energy, it is also instructive to recognize
that themomentum equations are an expression of the fact that in an inertial reference
frame, the time rate of change of momentum of a particle or collection of particles is
equal to the net force acting on the particle or collection of particles. In other words,
the momentum equations are a statement of Newton’s second law, force equals mass
times acceleration.

Wewill restrict our attention here to thermally and calorically perfect gases, giving
the relations

p = ρRT (3.5)

and
ε = cvT , (3.6)

where p is the pressure, R is the specific gas constant, T is the temperature, and cv
is the specific heat capacity at constant volume. The equation of state enables the
pressure to be expressed in terms of the conservative flow variables as follows:

p = ρRT (3.7)
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= ρR

(
ε

cv

)
(3.8)

= (γ − 1)ρε (3.9)

= (γ − 1)
(

e − ρ

2
(u2 + v2)

)
(3.10)

= (γ − 1)

[
e − 1

2ρ

(
(ρu)2 + (ρv)2

)]
, (3.11)

where γ is the ratio of specific heats, cp/cv, cp is the specific heat capacity at constant
pressure, and we have used the relation

cv = R

γ − 1
. (3.12)

For a perfect gas, the speed of sound, a, satisfies the relations

a2 = γp

ρ
= γRT . (3.13)

Alternative equations of state must be used under conditions when the perfect gas
law does not apply, such as flows at very high temperatures.

The vectors Ev and Fv include terms associated with viscosity and heat conduc-
tion. We will consider Newtonian fluids here, but the reader is reminded that this
assumption is not universally applicable. For a Newtonian fluid, the viscous stresses
are given in two dimensions by

τxx = μ

(
4

3

∂u

∂x
− 2

3

∂v

∂y

)
,

τxy = μ

(
∂u

∂y
+ ∂v

∂x

)
,

τyy = μ

(
−2

3

∂u

∂x
+ 4

3

∂v

∂y

)
, (3.14)

where μ is the dynamic viscosity, which is typically a function of temperature, and
for air can often be determined using Sutherland’s law. The viscous terms appearing
in the momentum equations are forces. The terms f4 and g4 in the energy equation
represent the work done by the viscous forces as well as heat conduction.

Heat conduction is governed by Fourier’s law, which states that the local heat flux,
which is the rate of flow of heat per unit area per unit time, is directly proportional
to the local gradient of the temperature. The constant of proportionality, k, is known
as the thermal conductivity. Based on Fourier’s law, the heat conduction terms can
be written in two-dimensional Cartesian coordinates as

∂

∂x

(
k
∂T

∂x

)
+ ∂

∂y

(
k
∂T

∂y

)
. (3.15)
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It is convenient to introduce the Prandtl number, Pr, which is the ratio of kinematic
viscosity to thermal diffusivity. It is given by

Pr = μcp
k

. (3.16)

This dimensionless number depends on the properties of the fluid. For air, the Prandtl
number is close to 0.71 for a wide range of temperatures. For a perfect gas, the heat
conduction terms can thus be written as

∂

∂x

(
μ

Pr(γ − 1)

∂a2

∂x

)
+ ∂

∂y

(
μ

Pr(γ − 1)

∂a2

∂y

)
, (3.17)

where we have used the relation

cp = γR

γ − 1
. (3.18)

Hence we obtain the following expressions for the terms f4 and g4 in the energy
equation:

f4 = uτxx + vτxy + μ

Pr(γ − 1)

∂a2

∂x
,

g4 = uτxy + vτyy + μ

Pr(γ − 1)

∂a2

∂y
. (3.19)

It is often convenient to non-dimensionalize the equations. In order to do so, we
require a reference length, l, normally chosen as some characteristic physical length
scale in the problem, a reference density, ρ∞, often chosen for an external flow as the
density of the undisturbed fluid far from the body, and a reference velocity scale. It
is traditional in fluid dynamics to choose a velocity scale such as u∞, the velocity of
the body moving through the fluid. For our purpose here, it is more convenient to use
a∞, the speed of sound in the undisturbed air far from the body, since u∞ could be
zero for some flow problems, such as a helicopter in hover. The conditions far from
the body are often called free stream conditions. With these reference quantities, we
obtain the following non-dimensional quantities (indicated by the tilde):

x̃ = x

l
, ỹ = y

l
, t̃ = ta∞

l
,

ρ̃ = ρ

ρ∞
, ũ = u

a∞
, ṽ = v

a∞
,

ẽ = e

ρ∞a2∞
, μ̃ = μ

μ∞
. (3.20)
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Substituting these non-dimensional quantities into the Navier-Stokes equations,
dropping the tildes, and defining the Reynolds number as

Re = ρ∞la∞
μ∞

, (3.21)

we obtain the following non-dimensional form of the equations:

∂Q

∂t
+ ∂E

∂x
+ ∂F

∂y
= Re−1

(
∂Ev

∂x
+ ∂Fv

∂y

)
, (3.22)

where all terms are as previously defined except in terms of non-dimensional quan-
tities. It is important to note that this definition of the Reynolds number based on a∞
differs from the conventional definition based on u∞. The two are related by the free
stream Mach number, M∞ = u∞/a∞.

The Euler equations are obtained from the Navier-Stokes equations by neglecting
the terms associatedwith viscosity and heat conduction, i.e. settingEv andFv to zero.
Numerical solutions of the Euler equations can be useful if the effect of viscosity
and heat conduction on the quantities of interest is small. There are many other
simplified forms of the Navier-Stokes equations that can be useful for specific classes
of problems. It is important that their limitations be well understood.

We stated earlier that the above equations are in conservative form. There are two
aspects to this. The first is that we choose the conserved quantities, mass, momen-
tum, and energy, per unit volume as the dependent variables. It is also possible to
write a system of equations in terms of other variables, such as the primitive vari-
ables, density, velocity, and pressure, that is analytically equivalent but can lead
to different solutions when solved numerically. For example, for a perfect gas the
one-dimensional Euler equations can be written in terms of the primitive variables
R = [ρ, u, p]T as follows:

∂R

∂t
+ Ã

∂R

∂x
= 0 , (3.23)

where

Ã =
⎡
⎣

u ρ 0
0 u ρ−1

0 γp u

⎤
⎦ .

The second aspect is related to the products appearing in the fluxes. In the con-
servative form, the product rule of differentiation is not applied. A term such as

∂

∂x
(ρu)

appearing in the mass conservation equation is not expanded as
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ρ
∂u

∂x
+ u

∂ρ

∂x
,

which is in non-conservative form. Again the two forms are analytically equivalent,
but under some circumstances, such as flows with nonstationary shock waves, an
algorithm that is not conservative can produce substantially inaccurate solutions.

Although we do not normally solve non-conservative forms of the equations,
they can be useful for analysis. For example, consider the one-dimensional Euler
equations in conservative form:

∂Q

∂t
+ ∂E

∂x
= 0, (3.24)

where

Q =
⎡
⎣

Q1
Q2
Q3

⎤
⎦ =

⎡
⎣

ρ
ρu
e

⎤
⎦ , E =

⎡
⎣

E1
E2
E3

⎤
⎦ =

⎡
⎣

ρu
ρu2 + p
u(e + p)

⎤
⎦. (3.25)

If the solution is smooth, (3.24) can be rewritten in the following form:

∂Q

∂t
+ A

∂Q

∂x
= 0 , (3.26)

where

A = ∂E

∂Q
(3.27)

is known as the flux Jacobian. The flux Jacobian is derived by first writing the flux
vector in terms of the conservative variables

E =

⎡
⎢⎢⎢⎢⎢⎢⎣

Q2

(γ − 1)Q3 + 3−γ
2

Q2
2

Q1

γ Q3Q2
Q1

− γ−1
2

Q3
2

Q2
1

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.28)

which gives, for a perfect gas,

A = ∂Ei

∂Qj
=

⎡
⎢⎢⎣

0 1 0
γ−3
2

(
Q2
Q1

)2
(3 − γ)Q2

Q1
γ − 1

A31 A32 γ
(

Q2
Q1

)

⎤
⎥⎥⎦, (3.29)
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where

A31 = (γ − 1)

(
Q2

Q1

)3

− γ

(
Q3

Q1

) (
Q2

Q1

)

A32 = γ

(
Q3

Q1

)
− 3(γ − 1)

2

(
Q2

Q1

)2

. (3.30)

This can be rewritten in terms of ρ, u, and e as

A =

⎡
⎢⎢⎢⎢⎣

0 1 0

γ−3
2 u2 (3 − γ)u γ − 1

A31 A32 γu

⎤
⎥⎥⎥⎥⎦
, (3.31)

where

A31 = (γ − 1)u3 − γ
ue

ρ

A32 = γ
e

ρ
− 3(γ − 1)

2
u2. (3.32)

The eigenvalues of the flux Jacobian A are u, u + a, u − a. Since these are all real,
and the eigenvectors of A are linearly independent, the system (3.26) is hyperbolic.
Hence some important properties of these equations can be obtained from charac-
teristic theory. First, the eigenvalues represent the characteristic speeds at which
information is propagated. The convection of the fluid propagates information at
speed u, while sound waves propagate information at speeds u + a and u − a. If the
flow is supersonic, i.e. |u| > a, then all of the eigenvalues have the same sign, and
information is propagated in one direction only. If the flow is subsonic, i.e. |u| < a,
then the eigenvalues are of mixed sign, and information is propagated in both direc-
tions. This is critical in the design of numerical methods and in the development
of boundary conditions. Riemann invariants can be found that are propagated at the
characteristic speeds, as long as the solution remains smooth. The entropy ln(p/ργ)

propagates at speed u, while the quantities u±2a/(γ −1) propagate at speeds u±a.
The flux Jacobian A in (3.26) is related to the matrix Ã in (3.23) by the following

similarity transform:
A = SÃS−1, (3.33)

where S = ∂Q/∂R. Hence the eigenvalues of the two matrices are identical, con-
sistent with the fact that (3.26) and (3.23) are different representations of the same
physical processes.
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3.1.2 Integral Form

The Navier-Stokes equations governing an unsteady compressible flow can also be
written in the following integral form in two-dimensional Cartesian coordinates:

d

dt

∫∫
V(t)

Qdxdy +
∮

S(t)
(Edy − Fdx) = Re−1

∮
S(t)

(Evdy − Fvdx) (3.34)

for an arbitrary control volume V(t) bounded by the surface S(t), with all variables
as defined and non-dimensionalized previously. This form is obtained from the more
general coordinate-free form

d

dt

∫
V(t)

QdV +
∮

S(t)
n̂ · FdS = 0, (3.35)

where n̂ is the unit vector normal to the surface pointing outwards, and F is the flux
tensor, including inviscid, viscous, and heat conduction terms. In two-dimensional
Cartesian coordinates, the flux tensor is given by

F = (E − Re−1Ev)î + (F − Re−1Fv)ĵ, (3.36)

where î and ĵ are unit vectors in the x and y directions, respectively. The contour in
(3.34) is traversed in a counter-clockwise direction; hence the area-weighted outward
normal can be written as

n̂dS = îdy − ĵdx. (3.37)

3.1.3 Physical Boundary Conditions

The physical boundary conditions that must be satisfied at a rigid body surface are
as follows. For an inviscid flow governed by the Euler equations, the flow must be
tangent to the surface; in other words, the velocity component normal to the surface
must be zero:

(uî + vĵ) · n̂ = 0 . (3.38)

For viscous flows governed by the Navier-Stokes equations, the no-slip condition
must be satisfied at the surface: all components of velocity must be zero. In addition,
for viscous flows, it is normally assumed that the surface is either held at a fixed
temperature or is adiabatic. In the latter case, the gradient of the temperature in a
direction normal to the surface is zero at the surface:

∇T · n̂ = 0. (3.39)
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Other physical boundary conditions can vary from problem to problem. For exter-
nal flow problems, there is often a requirement that as the distance from the body
approaches infinity, the flow must approach its undisturbed state. This condition is
usually applied at a boundary some finite distance from the body. Other problems
may involve specified incoming flows.

3.2 The Reynolds-Averaged Navier-Stokes Equations

When the Navier-Stokes equations are time-averaged over a time interval that is long
in comparisonwith the turbulent time scales but short in comparison to other physical
time scales, apparent stresses known as Reynolds stresses as well as additional heat
flux terms appear. It is the function of a turbulence model, which typically involves
the solution of one or more partial differential equations, to furnish these additional
terms and thereby to provide closure to the system. For the remainder of this book,
all algorithms will be presented in the context of the Euler and Navier-Stokes equa-
tions rather than the Reynolds-averaged Navier-Stokes (RANS) equations, although
these algorithms are routinely used for the RANS equations. In order to apply these
algorithms to theRANSequations, theReynolds stressesmust be added to theNavier-
Stokes equations in the form given by the particular turbulence model selected, and
the solution algorithmmust be applied to any partial differential equations associated
with the turbulence model.

3.3 The Quasi-One-Dimensional Euler Equations
and the Shock-Tube Problem

The quasi-one-dimensional Euler equations and the shock-tube problem are used
throughout this book as examples and in the programming assignments. The quasi-
one-dimensional Euler equations govern the inviscid flow in a quasi-one-dimensional
channel with varying cross-sectional area per unit depth S(x) and can be written as
follows [1]:

∂(ρS)

∂t
+ ∂(ρuS)

∂x
= 0, (3.40)

∂(ρuS)

∂t
+ ∂[(ρu2 + p)S]

∂x
= p

dS

dx
, (3.41)

∂(eS)

∂t
+ ∂[u(e + p)S]

∂x
= 0, (3.42)
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where the variables t, x, ρ, u, p, and e have the same definitions as in Sect. 3.1.
These are typically solved for a steady flow in a channel with prescribed boundary
conditions.

The shock-tube problem is an initial-value problem. Viscosity is again neglected,
and the above equations are solved with S(x) = 1. The initial conditions are such
that there are two initial fluid states separated by a diaphragm at t = 0. These are
typically quiescent with different pressures and densities. Using x0 to represent the
location of the diaphragm and subscripts L and R to indicate the fluid states to the
left and right of the diaphragm, the initial conditions can be written as

u = 0, p = pL, ρ = ρL, x < x0 (3.43)

u = 0, p = pR, ρ = ρR, x ≥ x0 . (3.44)

When the diaphragm is removed instantaneously, a flow is initiated in the direction
from high pressure to low. For the example given later in the section, where pR < pL ,
a contact discontinuity separating the original two states propagates to the right, an
expansion wave propagates to the left, and a shock wave propagates to the right at
a speed higher than that of the contact surface. We assume that the process is termi-
nated before any of these waves reach the ends of the shock tube. Hence boundary
conditions are not required.

3.3.1 Exact Solution: Quasi-One-Dimensional Channel Flow

We present the equations needed to write a computer program to determine the exact
solution for a quasi-one-dimensional channel flow as a reference solution for com-
parison with numerical solutions. The relevant theory and explanation can be found
in most good gasdynamics textbooks (see Shapiro [1] for example). A problem is
defined by specifying the channel area variation, S(x), the total pressure and temper-
ature at the inlet, p01 and T01, the critical area, S∗, an indication of whether the initial
Mach number is subsonic or supersonic, and a shock location, xshock, if applicable.
The solution is calculated by marching from inlet to outlet. At a given x location,
both S and S∗ are known, so the local Mach number, M = u/a, can be calculated
from the following nonlinear equation using an iterative technique:

S

S∗ = 1

M

[
2

γ + 1

(
1 + γ − 1

2
M2

)] γ+1
2(γ−1)

. (3.45)

A subsonic or supersonic initial Mach number guess should be used, depending on
the problem specification. The temperature and pressure can then be determined from
the isentropic relations:



3.3 The Quasi-One-Dimensional Euler Equations and the Shock-Tube Problem 69

T = T01

1 + γ−1
2 M2

(3.46)

p = p01

(
1 + γ − 1

2
M2

)−
(

γ
γ−1

)

. (3.47)

Other variables, such as density, velocity, and sound speed, can be calculated using
the perfect gas relations and the definition of the Mach number. Once the specified
location of the shock is reached, if applicable, the Rankine-Hugoniot relations are
used to find the conditions downstream of the shock:

T0R = T0L (3.48)

M2
R = 2 + (γ − 1)M2

L

2γM2
L − (γ − 1)

(3.49)

pR

pL
= 2γM2

L − (γ − 1)

γ + 1
(3.50)

p0R

p0L
=

([(γ + 1)/2]M2
L/{1 + [(γ − 1)/2]M2

L})
γ

γ−1

{[2γ/(γ + 1)]M2
L − (γ − 1)/(γ + 1)} 1

γ−1

. (3.51)

The density and sound speed downstream of the shock can then be found using the
perfect gas relations. The value of S∗ must also be recalculated to correspond to
conditions downstream of the shock from:

S∗
R = S∗

L
ρ∗

La∗
L

ρ∗
Ra∗

R
, (3.52)

where

ρ01 = p01
RT01

ρR
0 = pR

0

RT01

a01 =
√

γp01
ρ01

aR
0 =

√
γpR

0

ρR
0

ρ∗
La∗

L = ρ01a01

(
2

γ + 1

) γ+1
2(γ−1)

ρ∗
Ra∗

R = ρR
0aR

0

(
2

γ + 1

) γ+1
2(γ−1)

.
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Fig. 3.1 Exact solution for
the subsonic channel flow
problem. a Pressure (in Pa).
b Mach number
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The solution downstream of the shock can then be calculated using (3.45) with these
new values of S∗ and p0.

We will consider two examples from Hirsch [2]. In both cases, S(x) is given by

S(x) =
{
1 + 1.5

(
1 − x

5

)2 0 ≤ x ≤ 5

1 + 0.5
(
1 − x

5

)2 5 ≤ x ≤ 10
(3.53)

where S(x) and x are in meters. In both cases, the fluid is air, which is considered to
be a perfect gas with R = 287 N ·m · kg−1 ·K−1, and γ = 1.4, the total temperature
is T0 = 300 K, and the total pressure at the inlet is p01 = 100 kPa. For the first case,
the flow is subsonic throughout the channel, with S∗ = 0.8. The pressure and Mach
number for this case are plotted in Fig. 3.1. For the second case, the flow is transonic,
with subsonic flow at the inlet, a shock at x = 7, and S∗ = 1. The pressure and Mach
number for this case are plotted in Fig. 3.2.



3.3 The Quasi-One-Dimensional Euler Equations and the Shock-Tube Problem 71

Fig. 3.2 Exact solution for
the transonic channel flow
problem. a Pressure (in Pa).
b Mach number
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3.3.2 Exact Solution: Shock-Tube Problem

As in the previous section, we present without explanation the equations needed
to solve a shock-tube problem. See Hirsch [2] for more details. We assume initial
conditions as described earlier in Sect. 3.3, which lead to a solutionwith an expansion
wave traveling to the left, a contact surface moving to the right at speed V , and a
shock wave moving to the right at a speed C, where C > V . We thus define the
following states: The state to the left of the head of the expansion fan is denoted by
the subscript L; it is the original quiescent state to the left of the diaphragm. The
state within the expansion wave, where the variables vary continuously, is denoted
by the subscript 5. The constant state between the tail of the expansion fan and the
contact surface is denoted by the subscript 3. The constant state between the contact
surface and the shock wave is denoted by the subscript 2. Finally, the quiescent state
to the right of the shock, which is the original state to the right of the diaphragm, is
denoted by the subscript R.
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The normal shock relations must hold across the shock. Following Hirsch [2], we
define the pressure ratio across the shock as P = p2/pR. Across the contact surface,
pressure and velocity are continuous. The flow in the expansion wave is isentropic,
and characteristic theory can be applied. After some algebra, the following implicit
equation is found which must be solved for P:

√
2

γ(γ − 1)

P − 1√
1 + αP

= 2

γ − 1

aL

aR

[
1 −

(
pR

pL
P

) γ−1
2γ

]
, (3.54)

where

α = γ + 1

γ − 1
,

and pL , pR, aL , and aR are the pressures and sound speeds associated with the initial
states. Recall that the sound speeds can be determined from the specified pressures
and densities using (3.13). Once the above equation has been solved by an iterative
method for nonlinear algebraic equations, such as Newton’s method, the pressure to
the left of the shock, p2, is known. The density to the left of the shock can be found
from

ρ2

ρR
= 1 + αP

α + P
. (3.55)

Since the pressure is continuous across the contact surface, we know that p3 = p2.
The propagation speed of the contact surface can then be found from

V = 2

γ − 1
aL

[
1 −

(
p3
pL

) γ−1
2γ

]
. (3.56)

The fluid velocity on either side of the contact surface must be equal to V, which
gives u3 = u2 = V . To complete the state to the left of the contact surface, the
density can be found by exploiting the fact that the flow in the expansion wave is
isentropic, and hence the entropy to the left of the contact surface is equal to that of
the original quiescent left state, giving

ρ3 = ρL

(
p3
pL

) 1
γ

. (3.57)

The speed at which the shock wave propagates is given by

C = (P − 1)a2R
γu2

. (3.58)
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The head of the expansion wave travels to the left at speed aL . Therefore, for
x ≤ x0−aLt, the fluid state is defined by the original state to the left of the diaphragm.
The tail of the expansion wave moves to the left at a speed given by aL −V(γ +1)/2.
Thus the state between the tail of the expansion wave and the contact surface (state
3) is the solution for x0 + [V(γ + 1)/2− aL]t < x ≤ x0 + Vt. State 2 is the solution
for x0 + Vt < x ≤ x0 + Ct, and finally, for x > x0 + Ct, the solution is the original
state to the right of the diaphragm. To complete the solution, we require the state
within the expansion fan, that is for x0 − aLt < x ≤ x0 + [V(γ + 1)/2 − aL]t. It is
given by

u5 = 2

γ + 1

(
x − x0

t
+ aL

)

a5 = u5 − x − x0
t

p5 = pL

(
a5
aL

) 2γ
γ−1

ρ5 = γp5
a25

.

As an example, we consider the following shock-tube problem from Hirsch [2]:
pL = 105, ρL = 1, pR = 104, and ρR = 0.125, where the pressures are in Pa
and the densities in Kg/m3. The fluid is a perfect gas with γ = 1.4. Figure 3.3
displays the density and Mach number at t = 6.1 ms. Along with the steady channel
flow solutions shown in Figs. 3.1 and 3.2, this exact solution provides an excellent
reference for use in verifying numerical solutions.

3.4 Exercises

3.1 Write a computer program to determine the exact solution of the quasi-one-
dimensional Euler equations for the following subsonic problem. S(x) is given by

S(x) =
{
1 + 1.5

(
1 − x

5

)2 0 ≤ x ≤ 5

1 + 0.5
(
1 − x

5

)2 5 ≤ x ≤ 10
(3.59)

where S(x) and x are inmeters. The fluid is air, which is considered to be a perfect gas
with R = 287 N ·m · kg−1 ·K−1, and γ = 1.4, the total temperature is T0 = 300 K,
and the total pressure at the inlet is p01 = 100 kPa. The flow is subsonic throughout
the channel, with S∗ = 0.8. Compare your solution with that plotted in Fig. 3.1.
3.2Repeat Exercise 3.1 for a transonic flow in the same channel. The flow is subsonic
at the inlet, there is a shock at x = 7, and S∗ = 1. Compare your solution with that
plotted in Fig. 3.2.
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Fig. 3.3 Exact solution for
the shock-tube problem at
t = 6.1 ms. a Density (in
Kg/m3 ). b Mach number
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3.3Write a computer program to determine the exact solution for the following shock-
tube problem: pL = 105, ρL = 1, pR = 104, and ρR = 0.125, where the pressures are
in Pa and the densities in Kg/m3. The fluid is a perfect gas with γ = 1.4. Compare
your solution at t = 6.1 ms with that plotted in Fig. 3.3.
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