Chapter 1
Introduction

1.1 Background

The field of computational fluid dynamics (CFD) is the subset of computational
science concerned with the solution of the equations governing fluid flow. Although
its birth date cannot be pinpointed precisely, it can be said to have begun in earnest
in the 1960s. Not surprisingly, this coincides with the development of practical com-
puters. However, the development of the pertinent theory began much earlier. A 1950
paper by Von Neumann and Richtmyer [1] contains a surprising number of the ideas
of modern CFD. Furthermore, names such as Gauss, Richardson, and Courant, all of
whom predate computers, crop up regularly in the CFD literature. Nevertheless, the
development and application of CFD has paralleled that of computers. It is interest-
ing to note that the concept of CFD was envisioned as soon as computers became a
reality. For example, in 1946 Alan Turing remarked of the computer he was devel-
oping that it “ . .. would be well adapted to deal with heat transfer problems, at any
rate in solids or in fluids without turbulent motion” [2].

In addition to the emergence of viable computers, a second impetus for CFD comes
from the inherent difficulty in obtaining general analytical solutions to the equations
governing the flow of a fluid, the nonlinear partial differential equations known as
the Navier-Stokes equations. At the core of CFD are algorithms for the numerical
solution of these equations. Hence the theory associated with CFD algorithms is
closely related to the more general theory of numerical methods for the solution of
partial differential equations, appropriately specialized to the Navier-Stokes equa-
tions. Moreover, CFD in its broadest sense incorporates many other disciplines, from
computational geometry to turbulence modeling.

The scientist or engineer often has a need for a quantitative knowledge of the flow
of a fluid, such as the velocity, pressure, density, or temperature of the fluid at various
locations in the flow domain, under a specific set of conditions. For the scientist, the
purpose may be to gain an understanding of a particular phenomenon, such as tur-
bulence or combustion. The engineer typically uses such information in the design
process. In general, there are three means by which a quantitative understanding of
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the flow field of interest can be found: theory, experiment, and computation. Given
that analytical solutions are rarely available, one is often left with two alternatives,
experiment and CFD, each of which has its strengths and weaknesses. The primary
advantages of CFD are typically cost and speed. The primary advantage of experi-
ments is that they are in principle a true representation of reality. These generaliza-
tions are an oversimplification, since many CFD solutions can be time-consuming
and require an expensive computer, and some experiments contain significant arti-
facts. Nevertheless, these characteristics of computation and experiment underly the
decision process in choosing one or the other. In the aircraft industry, for example,
the relatively low cost of CFD has led to a substantial reduction in the wind-tunnel
testing performed when designing a new aircraft. However, final verification of the
performance of an aircraft normally involves both wind-tunnel and flight testing.

Computing the solution to a specific flow problem using CFD involves a number of
tasks, and for each task there exist numerous different approaches and methodologies.
Despite this diversity, several common elements can be identified. Let us consider
the following four basic steps involved in developing a useful numerical solution of
a flow problem:

1. Problem and geometry specification

2. Mesh generation

3. Numerical solution of governing partial differential equations
4. Post-processing, assessment, and interpretation of results.

In order to discuss each of these tasks in more detail, we will consider a hypothetical
problem, that of computing the forces generated on a specified aircraft wing in flight.
In practice, one may be interested in knowing these forces for a wide range of flight
conditions, but for our purpose here we will restrict our interest to one set of operating
conditions.

In order to specify the problem, the operating conditions must be precisely defined.
These include the speed of the aircraft, the orientation of the wing, and the state of
the fluid through which the wing is flying, i.e. its pressure, density, and temperature.
This information permits the calculation of key non-dimensional parameters such
as the Reynolds number, Mach number, and Knudsen number. In addition, before
embarking on a CFD adventure, one should have some qualitative idea of the answers
to the following questions: How soon is the solution needed? What level of accuracy
is needed in the forces? In other words, what level of error can be tolerated?

Atthis stage, based on the information described in the previous paragraph, several
decisions must be made that will determine the success or failure of the venture. The
following are examples of questions that must be asked: Is this a continuum flow?
Will the flow be laminar or turbulent? If the latter, what is known about the onset
of turbulence, the location of the transition from laminar to turbulent flow? Can
compressibility effects be neglected? The answers to questions like these are needed
to address the following critical question:

What governing equations will suffice to describe the expected flow phenomena to
the desired level of accuracy?
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For laminar flows, the correct answer is often the Navier-Stokes equations, as
long as the continuum hypothesis holds, which depends on the Knudsen number.
Nevertheless there are further questions to be answered: What is the equation of state
of the fluid? Is the fluid Newtonian? If not, how are the viscous stresses defined?
How does the viscosity vary with temperature? Are the expected flow phenomena
time dependent?

When the flow is turbulent, the situation is much more complicated. The Navier-
Stokes equations remain the appropriate governing equations. However, the physical
time and space scales associated with high Reynolds number turbulent flows, espe-
cially wall-bounded flows, are usually much smaller than the scales associated with
the geometry and flow speed. As a consequence, the numerical solution of such
turbulent flows is extremely demanding computationally. Therefore, a hierarchy of
approaches has been developed for tackling turbulent flow problems, ranging from
a complete resolution of all relevant scales (known as direct numerical simulation
or DNS [3]) to Reynolds averaging (or Favre averaging) in which the equations are
time averaged and the resulting so-called Reynolds stresses are modeled. The time-
averaged equations are known as the Reynolds-averaged Navier-Stokes (or RANS)
equations. The models used for the Reynolds stresses are known as turbulence models
and can be a significant source of error. In between the DNS and RANS approaches lie
intermediate, hybrid approaches such as large-eddy simulation (LES) [4] or detached-
eddy simulation (DES) [5]. These are intermediate in terms of both accuracy and
computing cost.

The purpose of the above discussion is to demonstrate that a deep understanding
of fluid dynamics is needed in order to properly formulate a problem for numerical
solution. Next, we should discuss geometry specification and mesh generation, but
before we can do that we need to define what we mean by a mesh, and we need at
least a qualitative understanding of the errors that occur in CFD computations.

The methods we will describe in this book rely on a mesh, or grid—we will use the
two terms interchangeably. A mesh is a collection of points that span the flow domain
and are connected in some manner. There are two perspectives from which one may
view the concept of a mesh. From a finite-difference perspective, the mesh supplies
the points at which the solution is approximated, and the connectivity identifies the
neighboring points to be used in constructing the finite-difference approximations.
From a finite-volume perspective, the purpose of the mesh is to divide the flow
domain into a large number of contiguous subdomains, or cells. Therefore, in two
dimensions, the lines connecting the grid nodes are the edges of polygonal cells. In
three dimensions, they are the edges of polyhedral cells.

The errors that occur in a computation of a fluid flow can be classified as numerical
errors or physical model errors. Unless a suitable mesh is chosen for a specific
application, numerical errors can be very large. They are typically reduced by adding
additional mesh points to the flow domain. We call this mesh refinement and we
describe the mesh with the added points as having an increased density. In principle,
mesh dependent numerical error can be reduced to an arbitrarily small level by
refining the mesh. With finite precision arithmetic, round-off error prevents the error
from being reduced below some lower bound. In practice, this lower bound is rarely
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approached due to the high computing costs associated with such a highly refined
mesh. This has two important implications. First, it means that a certain degree of
error is generally accepted. Thus it is important to have an understanding of this error
and a means of measuring and controlling it. Second, it means that the properties
of the mesh have a significant effect on the accuracy as well as the computational
expense of the solution. Consequently a good understanding of both the flow and
the algorithm is needed to generate an effective mesh. This motivates the idea of
solution-adaptive meshing, in which the mesh is determined automatically as part of
the solution process.

Numerical errors can be further subdivided into those that are dependent on the
refinement of the computational mesh and those that are not. An example of the
latter is the error arising as a result of performing an external flow computation on a
finite computational domain, which implies enforcing boundary conditions at a finite
distance from the body that theoretically should be applied an infinite distance from
the body. We will not discuss such errors further at this stage except to remind the
reader to be aware of them and to take the necessary steps to reduce them to appro-
priate levels. Another important type of error is round-off error, which results from
finite precision arithmetic. For example, when calculating the difference between
two numbers whose difference is many orders of magnitude smaller than either of
the numbers, many significant digits are lost. Round-off error has implications for
development and implementation of numerical algorithms. However, in practical
CFD computations, it is rarely the predominant source of error.

Physical model errors are associated with the various models underlying the gov-
erning equations. The largest source of physical model error is often the turbulence
model used together with the RANS equations, including the prediction of laminar-
turbulent transition. However, it is important to be aware of other possible sources of
physical model error, such as the perfect gas law and Sutherland’s law, especially if
they are used near the limits of their applicability. In comparisons with experiments,
incorrect specification of boundary conditions related to the incoming flow can also
be a source of error.

Physical model error is much more difficult to estimate and control than numerical
error. Physical models must be validated through comparison with reliable experi-
mental data. If the comparison is conducted properly, which means that the numerical
errors are negligible compared to the physical model errors, the experimental errors
are small, and the computation is an accurate representation of the experiment in terms
of geometry, flow conditions, etc., then the physical model error for that particular
flow is known. Through a number of such comparisons, a quantitative understanding
of the physical model error for a range of flows is obtained. This can be used to
estimate the physical model error for a given computation of a flow that lies within
this range. If a model is applied outside the range of flows for which it has been
validated, then the physical model error is not known and may be very large.

We are now ready to return to the tasks required to solve our hypothetical problem,
computing the forces generated on an aircraft wing in flight. Having addressed all of
the questions described above and thereby chosen a set of governing equations, let us
say the compressible RANS equations, that will represent the physics of our problem
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with sufficient accuracy, we are ready to generate a mesh. Therefore, we must have a
suitable representation of the geometry. In the early days of CFD, the geometry was
often represented simply by a surface mesh. Even though a more complete geometry
representation may have existed, the mesh generator was provided with only the
locations of a finite number of points lying on the surface of the geometry. This
approach immediately becomes problematic when a more refined mesh is needed,
especially in the context of solution-adaptive meshing. In order to add additional
mesh points on the surface of the geometry, some sort of interpolation is needed. The
interpolation used, which is dependent on the original surface mesh, then becomes
the effective geometry representation. Different geometries can result from different
initial meshes and different interpolation techniques. It is far preferable to separate
the geometry representation from the mesh generation process and to have a complete
and comprehensive geometry representation prior to generating the mesh.

The cost of a CFD computation (both processing time and memory) is dependent
on the properties of the mesh and generally increases with the total number of nodes
in the mesh. The accuracy of the computation is highly dependent on the properties
of the mesh and generally improves as the total number of nodes is increased. Thus
there is an inherent compromise between cost and accuracy, and it is important
that the mesh points be judiciously distributed in a manner that leads to an efficient
computation. For many flows, there are regions in the flow domain where the solution
varies much more rapidly than in others. As a result, a uniform distribution of mesh
nodes is rarely an efficient strategy. Determining the appropriate mesh density and
an efficient placement of the mesh nodes requires an understanding of both the flow
solution and the algorithm. This creates a dilemma, since the flow solution is not
known prior to its computation. However, for many flows, qualitative features of the
flow field can be identified a priori. For example, for our computation of the flow
around a wing, since the Reynolds number is presumably large, we know that there
will exist thin boundary layers near the surface of the wing. In these regions the flow
velocity will change rapidly in the direction normal to the surface of the wing and
much less rapidly in the directions parallel to the surface. In order to resolve such
a flow field efficiently, the mesh should have a small spacing between mesh points
normal to the wing surface and a larger spacing in the other two directions. Experience
gained with other similar flows can also be used to guide the mesh generation process.
Finally, automated solution-adaptive meshing can alleviate much of the difficulty
associated with mesh generation.

The nature of the mesh has important implications for the solution algorithm and
vice versa; each approach has advantages and disadvantages. A key distinction is
between meshes that are fitted to the geometry and those that are not. Body-fitted
meshes simplify the treatment of boundaries, while meshes that are not body-fitted,
which are often Cartesian, can be easier to generate and can simplify the algorithm
away from the boundaries. Body-fitted meshes can be classified as structured or
unstructured; these terms are defined in Chap. 4. Different mesh types can also be
combined to exploit their individual advantages. The choice of a specific meshing
approach is a critical decision that depends on the geometric complexity and flow
physics involved in the problem at hand.
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Once a mesh has been generated, we are ready to solve the chosen governing
equations. There exist many algorithms with various different properties, and the
selection or development of an algorithm for a specific application depends on several
factors. This we hope to clarify in this book.

After the solution has been computed, post-processing is required. For example,
the forces on our wing must be calculated based on the computed flow solution.
It is important that the post-processing calculations be performed in a manner that
does not add significantly to the error. In addition, some form of error estimation
should be performed, including both numerical and physical model error. If we are to
make intelligent use of the calculated forces and moments, for example in the design
of an aircraft, it is vital that we have a good understanding of the potential errors
in those quantities. Moreover, it is worthwhile to investigate the computed flow
solution, usually through flow visualization. This step may reveal that some sort
of mundane error has occurred, such as an incorrect input, and, more importantly,
it can serve as a check on the initial assumptions made in defining the problem
and choosing the governing equations. Of course, a solution computed based on the
assumption that the fluid is Newtonian will not provide evidence that it is actually non-
Newtonian. However, if the solution has unexpected features, these may challenge
some assumptions. If a flow field was computed on the assumption of steady flow, and
a large region of flow separation is unexpectedly found, it may be worth recomputing
the flow in a time dependent manner. Similarly, examination of the flow solution may
reveal that the assumed location of laminar-turbulent transition is suspect or that the
mesh is inadequately refined in some regions of the domain.

Finally, there are typically various uncertainties in a computation. Some parame-
ters, such as the shape of the geometry, the angle to the flow, and some coefficients
related to the fluid properties, are often known only to within some tolerance. It can
be important to have a quantitative understanding of the sensitivity of important out-
puts of a computation, such as the forces generated by an aircraft wing, to variation
in these uncertain input parameters. If the uncertainty in the inputs can be bounded
or described in terms of a probability density function, this information can aid in
finding a bound on or a probability density function for the outputs.

The goal of the CFD user is to generate a solution that is useful, trustworthy, and
accurate; the goal of the CFD developer is to make this as likely as possible. The above
discussion is intended to demonstrate that a great deal of knowledge and expertise
is needed, of fluid dynamics as well as CFD, not only to develop algorithms and
models, but also to apply them successfully. The purpose of this book is to provide
the foundation needed to achieve the goals of both users and developers of CFD.

1.2 Overview and Roadmap

What are the foundations upon which the field of CFD is based? In other words, what
are the basic topics that anyone intending to make use of CFD should understand?
Our answer is as follows: finite-difference methods, finite-volume methods, as well as
explicit and implicit time-marching methods. In addition, there are two further topics
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that have become key ingredients of modern CFD: multigrid and high-resolution
upwind schemes. These topics provide the foundations of CFD and are sufficiently
mature that it is reasonable to cover them in a basic course in CFD.

Most algorithms used to solve the Euler and Navier-Stokes equations deal with the
spatial and temporal aspects of the governing equations separately. Therefore, it is
tempting to present them separately, and that is how the presentation of fundamentals
proceeds in Chap. 2. However, we choose instead to present two complete algorithms,
including both spatial and temporal discretization. One advantage of this approach
is that it permits the reader to begin programming earlier. Having learned a complete
algorithm in Chap. 4, the reader can immediately program it; this solidifies the
understanding of the concepts and provides an opportunity to investigate the behavior
of the algorithm. Moreover, we present the two specific algorithms in detail, rather
than covering a broader range of different algorithms. This in-depth treatment of
these two algorithms provides the reader with a strong basis for understanding other
methodologies.

The fundamentals of CFD are covered in Chap. 2. This chapter summarizes much
of the material in our previous book and can be omitted by those readers familiar
with that book. It introduces the basic concepts of finite-difference methods, the
semi-discrete approach, finite-volume methods, time-marching methods, stability
analysis, and numerical dissipation in the context of two simple model equations,
the linear convection equation and the diffusion equation. The approach is unified and
general and provides the background needed to understand the subsequent chapters.

The Euler and Navier-Stokes equations are presented without derivation in Chap. 3
in a form suitable for numerical solution. They are given in both the partial differential
equation form solved by finite-difference methods and the integral form solved by
finite-volume methods. In addition this chapter introduces the quasi-one-dimensional
Euler equations that form the basis of most of the programming assignments. This
chapter’s exercises require the development of the exact solutions to several one-
dimensional problems to be used as a benchmark for the numerical solutions to be
developed in the exercises of subsequent chapters.

Chapter 4 presents finite-difference methods and the implicit approximate-factori-
zation algorithm. This classical algorithm forms the basis for many flow solvers,
including the widely used NASA codes OVERFLOW [6] and CFL3D [7]. In addi-
tion, the generalized curvilinear coordinate transformation, artificial dissipation, and
boundary conditions are covered. The exercises in this chapter provide an oppor-
tunity to write an implicit finite-difference solver and to apply it to some steady
and unsteady problems. Some expected solutions and convergence histories are pre-
sented, so the reader can be certain that the algorithm has been properly understood
and coded.

Chapter 5 presents a finite-volume method combined with explicit multi-stage
time marching and multigrid. This classical algorithm was pioneered by Antony
Jameson and his colleagues in various codes designated FLOxx [8—11] and is used
in the NASA code TLNS3D [12]. The combination of explicit multi-stage time-
marching and multigrid is particularly popular and is used in the NASA code
CARTS3D [13], for example. This chapter’s exercises involve coding multi-stage time
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marching and multigrid. Again, the chapter includes plots of expected convergence
behaviour to provide the reader with a reference for comparison.

Finally, Chap. 6 provides an introduction to high-resolution upwind schemes.
These have been developed in order to improve the robustness and accuracy of numer-
ical methods for the Euler and Navier-Stokes equations by maintaining some specific
physical properties of the solution. For example, if a quantity, such as pressure, is
physically required to be positive, then the introduction of a negative pressure as a
result of numerical errors could cause significant problems. Calculation of the speed
of sound for a perfect gas requires the square root of the pressure or temperature,
presupposing that the pressure and temperature are nonnegative. High-resolution
schemes are designed to prevent such unphysical occurrences, while maintaining
accuracy, and are particularly relevant to flows with shock waves. As a result of
their robustness, high-resolution upwind schemes have become quite prevalent in
CFD for compressible flows. This chapter presents Godunov’s method, which has
been influential in the development of high-resolution upwind schemes. The popular
approximate Riemann solver of Roe is also described. This leads into an introduction
to the principles underlying high-resolution schemes and the presentation of some
simple high-resolution upwind schemes with flux limiters. The exercise requires the
programming of such a scheme to solve a shock-tube problem.
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