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Preface

The field of computational fluid dynamics (CFD) has matured substantially over
the past 30 years and has proven its worth in numerous areas of science and
engineering. Although there are different numerical algorithms that can be used to
solve the equations governing fluid flow, the key algorithmic concepts that provide
the foundations of CFD are by now well established. The purpose of this book is to
give a detailed and comprehensive description of some important and widely used
algorithms. While the field of CFD will continue to evolve, the algorithms
described in this book will continue to provide a basis for understanding most
numerical approaches to the solution of the Euler and Navier-Stokes equations in
the foreseeable future.

This book is intended to be used as a textbook, that is, within the context of a
course in CFD. It is suitable as either a first or a second course at the senior
undergraduate or graduate level. As a result of the popularity of CFD, the number
of engineers and scientists using it has greatly increased. Many of these users will
not have a graduate-level education in CFD; hence the field is increasingly being
covered in the undergraduate curricula. It is important to recognize that even a user
(as opposed to a developer) of CFD needs some exposure to the underlying theory
of both fluid dynamics and numerical algorithms in order to make intelligent use of
CFD. The material in this book is equally appropriate to both users and developers
of computational methods for fluid dynamics.

In a sense, this is a sequel to our previous book, Fundamentals of Computa-
tional Fluid Dynamics, written with Harvard Lomax. Whereas that book deals
primarily with simple model equations, this one concentrates on the Euler and
Navier-Stokes equations. The two books can be used quite naturally in a two-
course sequence.1 However, the present book can also be used as a first course in
CFD, as long as the students have had some previous exposure to basic numerical
methods. Chapter 2 provides a concise summary of some of the key ideas in our
earlier book. Our emphasis is again on a detailed treatment of specific core topics
rather than a comprehensive treatment of the entire field. Moreover, our focus is on
mature algorithms as opposed to those currently under development.

1 They have been used in this manner at the University of Toronto for many years.
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Given our emphasis on depth as opposed to breadth, several important topics
are deferred. Examples include spatial discretizations on unstructured grids, finite-
element and spectral methods, and turbulence models, which are left to authors
with greater experience in these particular subjects. The algorithms presented here
form the basis of several important flow solvers and have been used for countless
computations. While many other worthy algorithms exist, understanding and
programming the algorithms primarily emphasized in this book should provide the
reader with a basis for understanding virtually any algorithm in use today.

A key feature of this text is the use of examples and programming assignments
based on the one-dimensional and quasi-one-dimensional Euler equations. Of
course, these equations omit important physics (viscosity, heat conduction, and
turbulence) and numerics (factorization, meshing). Nevertheless, a great deal can
be learned from implementing and studying the algorithms in this context, and the
assignments are feasible within a typical one-term course. In order to derive the
full benefit of this text, the reader is encouraged to complete the programming
assignments associated with each chapter.

We present this book in the hope that it will contribute to an intelligent and
creative approach to the development and application of CFD.

Moffett Field, August 2013 Thomas H. Pulliam
Toronto David W. Zingg
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Chapter 1
Introduction

1.1 Background

The field of computational fluid dynamics (CFD) is the subset of computational
science concerned with the solution of the equations governing fluid flow. Although
its birth date cannot be pinpointed precisely, it can be said to have begun in earnest
in the 1960s. Not surprisingly, this coincides with the development of practical com-
puters. However, the development of the pertinent theory beganmuch earlier. A 1950
paper by Von Neumann and Richtmyer [1] contains a surprising number of the ideas
of modern CFD. Furthermore, names such as Gauss, Richardson, and Courant, all of
whom predate computers, crop up regularly in the CFD literature. Nevertheless, the
development and application of CFD has paralleled that of computers. It is interest-
ing to note that the concept of CFD was envisioned as soon as computers became a
reality. For example, in 1946 Alan Turing remarked of the computer he was devel-
oping that it “ . . . would be well adapted to deal with heat transfer problems, at any
rate in solids or in fluids without turbulent motion” [2].

In addition to the emergence of viable computers, a second impetus forCFDcomes
from the inherent difficulty in obtaining general analytical solutions to the equations
governing the flow of a fluid, the nonlinear partial differential equations known as
the Navier-Stokes equations. At the core of CFD are algorithms for the numerical
solution of these equations. Hence the theory associated with CFD algorithms is
closely related to the more general theory of numerical methods for the solution of
partial differential equations, appropriately specialized to the Navier-Stokes equa-
tions. Moreover, CFD in its broadest sense incorporates many other disciplines, from
computational geometry to turbulence modeling.

The scientist or engineer often has a need for a quantitative knowledge of the flow
of a fluid, such as the velocity, pressure, density, or temperature of the fluid at various
locations in the flow domain, under a specific set of conditions. For the scientist, the
purpose may be to gain an understanding of a particular phenomenon, such as tur-
bulence or combustion. The engineer typically uses such information in the design
process. In general, there are three means by which a quantitative understanding of
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2 1 Introduction

the flow field of interest can be found: theory, experiment, and computation. Given
that analytical solutions are rarely available, one is often left with two alternatives,
experiment and CFD, each of which has its strengths and weaknesses. The primary
advantages of CFD are typically cost and speed. The primary advantage of experi-
ments is that they are in principle a true representation of reality. These generaliza-
tions are an oversimplification, since many CFD solutions can be time-consuming
and require an expensive computer, and some experiments contain significant arti-
facts. Nevertheless, these characteristics of computation and experiment underly the
decision process in choosing one or the other. In the aircraft industry, for example,
the relatively low cost of CFD has led to a substantial reduction in the wind-tunnel
testing performed when designing a new aircraft. However, final verification of the
performance of an aircraft normally involves both wind-tunnel and flight testing.

Computing the solution to a specific flowproblemusingCFD involves a number of
tasks, and for each task there exist numerous different approaches andmethodologies.
Despite this diversity, several common elements can be identified. Let us consider
the following four basic steps involved in developing a useful numerical solution of
a flow problem:

1. Problem and geometry specification
2. Mesh generation
3. Numerical solution of governing partial differential equations
4. Post-processing, assessment, and interpretation of results.

In order to discuss each of these tasks in more detail, we will consider a hypothetical
problem, that of computing the forces generated on a specified aircraft wing in flight.
In practice, one may be interested in knowing these forces for a wide range of flight
conditions, but for our purpose herewewill restrict our interest to one set of operating
conditions.

In order to specify the problem, the operating conditionsmust be precisely defined.
These include the speed of the aircraft, the orientation of the wing, and the state of
the fluid through which the wing is flying, i.e. its pressure, density, and temperature.
This information permits the calculation of key non-dimensional parameters such
as the Reynolds number, Mach number, and Knudsen number. In addition, before
embarking on a CFD adventure, one should have some qualitative idea of the answers
to the following questions: How soon is the solution needed? What level of accuracy
is needed in the forces? In other words, what level of error can be tolerated?

At this stage, based on the information described in the previous paragraph, several
decisions must be made that will determine the success or failure of the venture. The
following are examples of questions that must be asked: Is this a continuum flow?
Will the flow be laminar or turbulent? If the latter, what is known about the onset
of turbulence, the location of the transition from laminar to turbulent flow? Can
compressibility effects be neglected? The answers to questions like these are needed
to address the following critical question:
What governing equations will suffice to describe the expected flow phenomena to
the desired level of accuracy?
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For laminar flows, the correct answer is often the Navier-Stokes equations, as
long as the continuum hypothesis holds, which depends on the Knudsen number.
Nevertheless there are further questions to be answered:What is the equation of state
of the fluid? Is the fluid Newtonian? If not, how are the viscous stresses defined?
How does the viscosity vary with temperature? Are the expected flow phenomena
time dependent?

When the flow is turbulent, the situation is much more complicated. The Navier-
Stokes equations remain the appropriate governing equations. However, the physical
time and space scales associated with high Reynolds number turbulent flows, espe-
cially wall-bounded flows, are usually much smaller than the scales associated with
the geometry and flow speed. As a consequence, the numerical solution of such
turbulent flows is extremely demanding computationally. Therefore, a hierarchy of
approaches has been developed for tackling turbulent flow problems, ranging from
a complete resolution of all relevant scales (known as direct numerical simulation
or DNS [3]) to Reynolds averaging (or Favre averaging) in which the equations are
time averaged and the resulting so-called Reynolds stresses are modeled. The time-
averaged equations are known as the Reynolds-averaged Navier-Stokes (or RANS)
equations. Themodels used for theReynolds stresses are known as turbulence models
and can be a significant source of error. In between theDNSandRANSapproaches lie
intermediate, hybrid approaches such as large-eddy simulation (LES) [4] or detached-
eddy simulation (DES) [5]. These are intermediate in terms of both accuracy and
computing cost.

The purpose of the above discussion is to demonstrate that a deep understanding
of fluid dynamics is needed in order to properly formulate a problem for numerical
solution. Next, we should discuss geometry specification and mesh generation, but
before we can do that we need to define what we mean by a mesh, and we need at
least a qualitative understanding of the errors that occur in CFD computations.

The methods we will describe in this book rely on a mesh, or grid–we will use the
two terms interchangeably. Amesh is a collection of points that span the flow domain
and are connected in some manner. There are two perspectives from which one may
view the concept of a mesh. From a finite-difference perspective, the mesh supplies
the points at which the solution is approximated, and the connectivity identifies the
neighboring points to be used in constructing the finite-difference approximations.
From a finite-volume perspective, the purpose of the mesh is to divide the flow
domain into a large number of contiguous subdomains, or cells. Therefore, in two
dimensions, the lines connecting the grid nodes are the edges of polygonal cells. In
three dimensions, they are the edges of polyhedral cells.

The errors that occur in a computation of a fluid flow can be classified as numerical
errors or physical model errors. Unless a suitable mesh is chosen for a specific
application, numerical errors can be very large. They are typically reduced by adding
additional mesh points to the flow domain. We call this mesh refinement and we
describe the mesh with the added points as having an increased density. In principle,
mesh dependent numerical error can be reduced to an arbitrarily small level by
refining the mesh. With finite precision arithmetic, round-off error prevents the error
from being reduced below some lower bound. In practice, this lower bound is rarely
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approached due to the high computing costs associated with such a highly refined
mesh. This has two important implications. First, it means that a certain degree of
error is generally accepted. Thus it is important to have an understanding of this error
and a means of measuring and controlling it. Second, it means that the properties
of the mesh have a significant effect on the accuracy as well as the computational
expense of the solution. Consequently a good understanding of both the flow and
the algorithm is needed to generate an effective mesh. This motivates the idea of
solution-adaptive meshing, in which the mesh is determined automatically as part of
the solution process.

Numerical errors can be further subdivided into those that are dependent on the
refinement of the computational mesh and those that are not. An example of the
latter is the error arising as a result of performing an external flow computation on a
finite computational domain, which implies enforcing boundary conditions at a finite
distance from the body that theoretically should be applied an infinite distance from
the body. We will not discuss such errors further at this stage except to remind the
reader to be aware of them and to take the necessary steps to reduce them to appro-
priate levels. Another important type of error is round-off error, which results from
finite precision arithmetic. For example, when calculating the difference between
two numbers whose difference is many orders of magnitude smaller than either of
the numbers, many significant digits are lost. Round-off error has implications for
development and implementation of numerical algorithms. However, in practical
CFD computations, it is rarely the predominant source of error.

Physical model errors are associated with the various models underlying the gov-
erning equations. The largest source of physical model error is often the turbulence
model used together with the RANS equations, including the prediction of laminar-
turbulent transition. However, it is important to be aware of other possible sources of
physical model error, such as the perfect gas law and Sutherland’s law, especially if
they are used near the limits of their applicability. In comparisons with experiments,
incorrect specification of boundary conditions related to the incoming flow can also
be a source of error.

Physical model error is muchmore difficult to estimate and control than numerical
error. Physical models must be validated through comparison with reliable experi-
mental data. If the comparison is conducted properly, whichmeans that the numerical
errors are negligible compared to the physical model errors, the experimental errors
are small, and the computation is an accurate representationof the experiment in terms
of geometry, flow conditions, etc., then the physical model error for that particular
flow is known. Through a number of such comparisons, a quantitative understanding
of the physical model error for a range of flows is obtained. This can be used to
estimate the physical model error for a given computation of a flow that lies within
this range. If a model is applied outside the range of flows for which it has been
validated, then the physical model error is not known and may be very large.

We are now ready to return to the tasks required to solve our hypothetical problem,
computing the forces generated on an aircraft wing in flight. Having addressed all of
the questions described above and thereby chosen a set of governing equations, let us
say the compressible RANS equations, that will represent the physics of our problem
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with sufficient accuracy, we are ready to generate a mesh. Therefore, we must have a
suitable representation of the geometry. In the early days of CFD, the geometry was
often represented simply by a surface mesh. Even though a more complete geometry
representation may have existed, the mesh generator was provided with only the
locations of a finite number of points lying on the surface of the geometry. This
approach immediately becomes problematic when a more refined mesh is needed,
especially in the context of solution-adaptive meshing. In order to add additional
mesh points on the surface of the geometry, some sort of interpolation is needed. The
interpolation used, which is dependent on the original surface mesh, then becomes
the effective geometry representation. Different geometries can result from different
initial meshes and different interpolation techniques. It is far preferable to separate
the geometry representation from themesh generation process and to have a complete
and comprehensive geometry representation prior to generating the mesh.

The cost of a CFD computation (both processing time and memory) is dependent
on the properties of the mesh and generally increases with the total number of nodes
in the mesh. The accuracy of the computation is highly dependent on the properties
of the mesh and generally improves as the total number of nodes is increased. Thus
there is an inherent compromise between cost and accuracy, and it is important
that the mesh points be judiciously distributed in a manner that leads to an efficient
computation. Formany flows, there are regions in the flow domainwhere the solution
varies much more rapidly than in others. As a result, a uniform distribution of mesh
nodes is rarely an efficient strategy. Determining the appropriate mesh density and
an efficient placement of the mesh nodes requires an understanding of both the flow
solution and the algorithm. This creates a dilemma, since the flow solution is not
known prior to its computation. However, for many flows, qualitative features of the
flow field can be identified a priori. For example, for our computation of the flow
around a wing, since the Reynolds number is presumably large, we know that there
will exist thin boundary layers near the surface of the wing. In these regions the flow
velocity will change rapidly in the direction normal to the surface of the wing and
much less rapidly in the directions parallel to the surface. In order to resolve such
a flow field efficiently, the mesh should have a small spacing between mesh points
normal to thewing surface and a larger spacing in the other twodirections. Experience
gainedwith other similar flows can also be used to guide themesh generation process.
Finally, automated solution-adaptive meshing can alleviate much of the difficulty
associated with mesh generation.

The nature of the mesh has important implications for the solution algorithm and
vice versa; each approach has advantages and disadvantages. A key distinction is
between meshes that are fitted to the geometry and those that are not. Body-fitted
meshes simplify the treatment of boundaries, while meshes that are not body-fitted,
which are often Cartesian, can be easier to generate and can simplify the algorithm
away from the boundaries. Body-fitted meshes can be classified as structured or
unstructured; these terms are defined in Chap. 4. Different mesh types can also be
combined to exploit their individual advantages. The choice of a specific meshing
approach is a critical decision that depends on the geometric complexity and flow
physics involved in the problem at hand.

http://dx.doi.org/10.1007/978-3-319-05053-9_4
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Once a mesh has been generated, we are ready to solve the chosen governing
equations. There exist many algorithms with various different properties, and the
selection or development of an algorithm for a specific application depends on several
factors. This we hope to clarify in this book.

After the solution has been computed, post-processing is required. For example,
the forces on our wing must be calculated based on the computed flow solution.
It is important that the post-processing calculations be performed in a manner that
does not add significantly to the error. In addition, some form of error estimation
should be performed, including both numerical and physical model error. If we are to
make intelligent use of the calculated forces and moments, for example in the design
of an aircraft, it is vital that we have a good understanding of the potential errors
in those quantities. Moreover, it is worthwhile to investigate the computed flow
solution, usually through flow visualization. This step may reveal that some sort
of mundane error has occurred, such as an incorrect input, and, more importantly,
it can serve as a check on the initial assumptions made in defining the problem
and choosing the governing equations. Of course, a solution computed based on the
assumption that thefluid isNewtonianwill not provide evidence that it is actually non-
Newtonian. However, if the solution has unexpected features, these may challenge
some assumptions. If a flowfieldwas computed on the assumption of steady flow, and
a large region of flow separation is unexpectedly found, it may be worth recomputing
the flow in a time dependent manner. Similarly, examination of the flow solution may
reveal that the assumed location of laminar-turbulent transition is suspect or that the
mesh is inadequately refined in some regions of the domain.

Finally, there are typically various uncertainties in a computation. Some parame-
ters, such as the shape of the geometry, the angle to the flow, and some coefficients
related to the fluid properties, are often known only to within some tolerance. It can
be important to have a quantitative understanding of the sensitivity of important out-
puts of a computation, such as the forces generated by an aircraft wing, to variation
in these uncertain input parameters. If the uncertainty in the inputs can be bounded
or described in terms of a probability density function, this information can aid in
finding a bound on or a probability density function for the outputs.

The goal of the CFD user is to generate a solution that is useful, trustworthy, and
accurate; the goal of theCFDdeveloper is tomake this as likely as possible. The above
discussion is intended to demonstrate that a great deal of knowledge and expertise
is needed, of fluid dynamics as well as CFD, not only to develop algorithms and
models, but also to apply them successfully. The purpose of this book is to provide
the foundation needed to achieve the goals of both users and developers of CFD.

1.2 Overview and Roadmap

What are the foundations upon which the field of CFD is based? In other words, what
are the basic topics that anyone intending to make use of CFD should understand?
Our answer is as follows: finite-differencemethods, finite-volumemethods, aswell as
explicit and implicit time-marching methods. In addition, there are two further topics
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that have become key ingredients of modern CFD: multigrid and high-resolution
upwind schemes. These topics provide the foundations of CFD and are sufficiently
mature that it is reasonable to cover them in a basic course in CFD.

Most algorithms used to solve the Euler andNavier-Stokes equations deal with the
spatial and temporal aspects of the governing equations separately. Therefore, it is
tempting to present them separately, and that is how the presentation of fundamentals
proceeds inChap. 2.However, we choose instead to present two complete algorithms,
including both spatial and temporal discretization. One advantage of this approach
is that it permits the reader to begin programming earlier. Having learned a complete
algorithm in Chap. 4, the reader can immediately program it; this solidifies the
understanding of the concepts and provides an opportunity to investigate the behavior
of the algorithm. Moreover, we present the two specific algorithms in detail, rather
than covering a broader range of different algorithms. This in-depth treatment of
these two algorithms provides the reader with a strong basis for understanding other
methodologies.

The fundamentals of CFD are covered in Chap. 2. This chapter summarizes much
of the material in our previous book and can be omitted by those readers familiar
with that book. It introduces the basic concepts of finite-difference methods, the
semi-discrete approach, finite-volume methods, time-marching methods, stability
analysis, and numerical dissipation in the context of two simple model equations,
the linear convection equation and the diffusion equation. The approach is unified and
general and provides the background needed to understand the subsequent chapters.

TheEuler andNavier-Stokes equations are presentedwithout derivation inChap. 3
in a form suitable for numerical solution. They are given in both the partial differential
equation form solved by finite-difference methods and the integral form solved by
finite-volumemethods. In addition this chapter introduces the quasi-one-dimensional
Euler equations that form the basis of most of the programming assignments. This
chapter’s exercises require the development of the exact solutions to several one-
dimensional problems to be used as a benchmark for the numerical solutions to be
developed in the exercises of subsequent chapters.

Chapter 4 presents finite-differencemethods and the implicit approximate-factori-
zation algorithm. This classical algorithm forms the basis for many flow solvers,
including the widely used NASA codes OVERFLOW [6] and CFL3D [7]. In addi-
tion, the generalized curvilinear coordinate transformation, artificial dissipation, and
boundary conditions are covered. The exercises in this chapter provide an oppor-
tunity to write an implicit finite-difference solver and to apply it to some steady
and unsteady problems. Some expected solutions and convergence histories are pre-
sented, so the reader can be certain that the algorithm has been properly understood
and coded.

Chapter 5 presents a finite-volume method combined with explicit multi-stage
time marching and multigrid. This classical algorithm was pioneered by Antony
Jameson and his colleagues in various codes designated FLOxx [8–11] and is used
in the NASA code TLNS3D [12]. The combination of explicit multi-stage time-
marching and multigrid is particularly popular and is used in the NASA code
CART3D [13], for example. This chapter’s exercises involve codingmulti-stage time

http://dx.doi.org/10.1007/978-3-319-05053-9_2
http://dx.doi.org/10.1007/978-3-319-05053-9_4
http://dx.doi.org/10.1007/978-3-319-05053-9_2
http://dx.doi.org/10.1007/978-3-319-05053-9_3
http://dx.doi.org/10.1007/978-3-319-05053-9_4
http://dx.doi.org/10.1007/978-3-319-05053-9_5
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marching and multigrid. Again, the chapter includes plots of expected convergence
behaviour to provide the reader with a reference for comparison.

Finally, Chap. 6 provides an introduction to high-resolution upwind schemes.
These have been developed in order to improve the robustness and accuracy of numer-
ical methods for the Euler and Navier-Stokes equations bymaintaining some specific
physical properties of the solution. For example, if a quantity, such as pressure, is
physically required to be positive, then the introduction of a negative pressure as a
result of numerical errors could cause significant problems. Calculation of the speed
of sound for a perfect gas requires the square root of the pressure or temperature,
presupposing that the pressure and temperature are nonnegative. High-resolution
schemes are designed to prevent such unphysical occurrences, while maintaining
accuracy, and are particularly relevant to flows with shock waves. As a result of
their robustness, high-resolution upwind schemes have become quite prevalent in
CFD for compressible flows. This chapter presents Godunov’s method, which has
been influential in the development of high-resolution upwind schemes. The popular
approximate Riemann solver of Roe is also described. This leads into an introduction
to the principles underlying high-resolution schemes and the presentation of some
simple high-resolution upwind schemes with flux limiters. The exercise requires the
programming of such a scheme to solve a shock-tube problem.
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Chapter 2
Fundamentals

Before attempting to develop and apply numerical algorithms for the Euler and
Navier-Stokes equations it is worthwhile to learn as much as possible by studying
the behaviour of such methods when applied to simpler model equations. In this
chapter, we will do just that, using two model equations which are linear, scalar
partial differential equations (PDEs) that represent physical phenomena relevant
to fluid dynamics. This chapter provides a concise summary of our earlier book
Fundamentals of Fluid Dynamics [1], to which the reader is referred for further
details.

2.1 Model Equations

2.1.1 The Linear Convection Equation

The linear convection equation provides a simple model for convection and wave
propagation phenomena. It is given by

∂u

∂t
+ a

∂u

∂x
= 0, (2.1)

where u(x, t) is a scalar quantity propagating with speed a, a real constant which
may be positive or negative. In the absence of boundaries, for example on an infinite
domain, an initial waveform retains its shape as it propagates in the direction of
increasing x if a is positive and in the direction of decreasing x if a is negative. Despite
its simplicity, the linear convection equation provides a stiff test for a numerical
method, as it is difficult to preserve the initial waveform when it is propagated over
long distances.

The linear convection equation is a good model equation in the development
of numerical algorithms for the Euler equations, which include both convection
and wave propagation phenomena. The one-dimensional Euler equations can be

T. H. Pulliam and D. W. Zingg, Fundamental Algorithms in Computational 9
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diagonalized so that they can be written as three equations in the form of the linear
convection equation, although they of course remain nonlinear and coupled. The
quantities propagating are known as Riemann invariants, and the speeds at which
they propagate are the fluid velocity, the fluid velocity plus the speed of sound, and
the fluid velocity minus the speed of sound. If the fluid velocity is positive but less
than the speed of sound, i.e. the flow is subsonic, then the first two wave speeds will
be positive, and the third will be negative. When using the linear convection equation
as a model equation for the Euler equations, one must therefore ensure that wave
speeds of arbitrary sign are considered.

If one considers a finite domain, say 0 ≤ x ≤ 2π, then boundary conditions
are required. The most natural boundary conditions are inflow-outflow conditions,
which depend on the sign of a. If a is positive, then x = 0 is the inflow boundary,
and x = 2π is the outflow boundary. If a is negative, these roles are reversed. In both
cases, u(t) must be specified at the inflow boundary, but no boundary condition can
be specified at the outflow boundary.

An alternative specification of boundary conditions, known as periodic boundary
conditions, can be convenient for our purpose here. With periodic boundary con-
ditions, a waveform leaving one end of the domain reenters at the other end. The
domain can be visualized as a circle, and the waveform simply propagates repeatedly
around the circle. This essentially eliminates any boundary information from enter-
ing the solution, which is thus determined solely by the initial condition. The use
of periodic boundary conditions also permits numerical experiments with arbitrarily
long propagation distances, independent of the size of the domain. Each time the
initial waveform travels through the entire domain, it should return unaltered to the
initial condition.

2.1.2 The Diffusion Equation

Diffusion caused bymolecularmotion in a continuumfluid is another important phys-
ical phenomenon in fluid dynamics. A simple linear model equation for a diffusive
process is

∂u

∂t
= ν

∂2u

∂x2
, (2.2)

where ν is a positive real constant. For example, with u representing the temperature,
this parabolic PDE governs the diffusion of heat in one dimension. Boundary condi-
tions can be periodic, Dirichlet (specified u), Neumann (specified ∂u/∂x), or mixed
Dirichlet/Neumann. In studying numerical algorithms, it can be useful to introduce
a source term into the diffusion equation as follows:

∂u

∂t
= ν

[
∂2u

∂x2
− g(x)

]
. (2.3)
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In this case, the equation has a steady-state solution that satisfies

∂2u

∂x2
− g(x) = 0. (2.4)

2.2 Finite-Difference Methods

2.2.1 Basic Concepts: Taylor Series

We observe that the two model equations contain a number of derivative terms in
space and time. In a finite-difference method, a spatial derivative at a given point
in space is approximated using values of u at nearby points in space. Similarly, a
temporal derivative at a specific point in time is approximated using values of u at
different values of time. This is facilitated by a grid or mesh, as shown in Fig. 2.1,
where the values of x at the grid points are given by xj, and the values of t are given
by tn. Hence j is known as the spatial index and n as the temporal index. For the
present exposition, we will consider equispaced meshes, and hence

x = xj = jΔx (2.5)

t = tn = nΔt = nh, (2.6)

where Δx is the spacing in x, and Δt the spacing in t, as shown in Fig. 2.1. Note that
h = Δt throughout.

Let us consider a spatial derivative initially. Assuming that a function u(x, t) is
known only at discrete values of x, how can one accurately approximate partial
derivatives such as

∂u

∂x
or

∂2u

∂x2
? (2.7)

From the definition of a derivative, or a simple geometric argument related to the
tangent to a curve, one can easily postulate the following approximations for a first
derivative:

(
∂u

∂x

)
j
≈ uj+1 − uj

Δx
or

(
∂u

∂x

)
j
≈ uj − uj−1

Δx
, (2.8)

known respectively as a forward and a backward difference approximation. It is clear
that these can provide accurate approximations if Δx is sufficiently small and that a
suitable choice of Δx will depend on the properties of the function. A particularly
astute reader may even postulate the centered difference approximation given by
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Fig. 2.1 Space–time grid
arrangement

(
∂u

∂x

)
j
≈ uj+1 − uj−1

2Δx
, (2.9)

which can be justified by a geometric argument or by fitting a parabola to the three
points uj−1, uj, uj+1 and determining the first derivative of the parabola at xj. Find-
ing an approximation to a second derivative is only slightly less intuitive, as one
can apply a first-derivative approximation twice or determine the second derivative
of the unique parabola that goes through the three points to obtain the following
approximation to a second derivative:

(
∂2u

∂x2

)
j
≈ uj+1 − 2uj + uj−1

Δx2
. (2.10)

The above intuitive approach is limited, providing no information about the accu-
racy of these approximations. A deeper understanding of finite-difference approxi-
mations and a general approach to deriving them can be obtained using Taylor series.
Consider the following expansion of u(x + kΔx) = u(jΔx + kΔx) = uj+k about xj,
where we assume that all of the derivatives exist:

uj+k = uj + (kΔx)

(
∂u

∂x

)
j
+ 1

2
(kΔx)2

(
∂2u

∂x2

)
j
+ . . .

+ 1

n! (kΔx)n
(

∂nu

∂xn

)
j
+ . . . . (2.11)

For example, substituting k = ±1 into the above expression gives the Taylor series
expansions for uj±1:

uj±1 = uj ± (Δx)

(
∂u

∂x

)
j
+ 1

2
(Δx)2

(
∂2u

∂x2

)
j
± 1

6
(Δx)3

(
∂3u

∂x3

)
j

+ 1

24
(Δx)4

(
∂4u

∂x4

)
j
± . . . . (2.12)
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Subtracting uj from the Taylor series expansion for uj+1 and dividing by Δx gives

uj+1 − uj

Δx
=
(

∂u

∂x

)
j
+ 1

2
(Δx)

(
∂2u

∂x2

)
j
+ . . . . (2.13)

This shows that the forward difference approximation given in (2.8) is a reasonable

approximation for
(

∂u
∂x

)
j
as long as Δx is small relative to some pertinent length

scale. Moreover, in the limit as Δx → 0, the leading term in the error is proportional
to Δx. The order of accuracy of an approximation is given by the exponent of Δx
in the leading error term, i.e. the lowest exponent of Δx in the error. Hence the
finite-difference approximation given in (2.13) is a first-order approximation to a
first derivative. If the mesh spacing Δx is reduced by a factor of two, the leading
error term in a first-order approximation will also be reduced by a factor of two.

Similarly, subtracting the Taylor series expansion for uj−1 from that for uj+1 and
dividing by 2Δx gives

uj+1 − uj−1

2Δx
=
(

∂u

∂x

)
j
+ 1

6
Δx2

(
∂3u

∂x3

)
j
+ 1

120
Δx4

(
∂5u

∂x5

)
j

. . . . (2.14)

This shows that the centered difference approximation given in (2.9) is second-order
accurate. If the mesh spacing Δx is reduced by a factor of two, the leading error
term will be reduced by a factor of four. Hence, as Δx is reduced, the second-order
approximation rapidly becomes more accurate than the first-order approximation.
Using Taylor series expansions, one can demonstrate that the approximation to a
second derivative given in (2.10) is also second-order accurate.

Finite-difference formulas can be generalized to arbitrary derivatives and arbitrary
orders of accuracy. A Taylor table provides a convenient mechanism for deriving
finite-difference operators (see Lomax et al. [1]). In each case, the derivative at node
j is approximated using a linear combination of function values at node j and a
specified number of neighbouring nodes, and the Taylor table enables one to find the
coefficients that maximize the order of accuracy. For example, centered fourth-order
approximations to first and second derivatives are given by

(
∂u

∂x

)
j
= 1

12Δx
(uj−2 − 8uj−1 + 8uj+1 − uj+2) + O(Δx4) (2.15)

(
∂2u

∂x2

)
j
= 1

12Δx2
(−uj−2 + 16uj−1 − 30uj + 16uj+1 − uj+2)

+ O(Δx4). (2.16)

Noncentered schemes can also be useful. For example, the following is a second-
order backward-difference approximation to a first derivative using data from j − 2
to j:
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(
∂u

∂x

)
j
= 1

2Δx

(
uj−2 − 4uj−1 + 3uj

)+ O(Δx2). (2.17)

A biased third-order approximation to a first derivative using data from j −2 to j +1
is given by:

(
∂u

∂x

)
j
= 1

6Δx
(uj−2 − 6uj−1 + 3uj + 2uj+1) + O(Δx3). (2.18)

Finally, finite-difference schemes can be further generalized to include compact
or Padé schemes that define a linear combination of the derivatives at point j and
a specified number of its neighbours as a linear combination of function values at
node j and a (possibly different) specified number of neighbours. For example, the
operator

(
∂u

∂x

)
j−1

+ 4

(
∂u

∂x

)
j
+
(

∂u

∂x

)
j+1

= 3

Δx
(−uj−1 + uj+1) + O(Δx4). (2.19)

provides a fourth-order approximation to a first derivative. Compact schemes can
also be easily derived using a Taylor table.

2.2.2 The Modified Wavenumber

The leading error term provides a fairly limited understanding of the accuracy
of a finite-difference approximation. More detailed information can be obtained
through the modified wavenumber. We introduce this concept by deriving the modi-
fied wavenumber for a second-order centered difference approximation, given by

(δxu)j = uj+1 − uj−1

2Δx
. (2.20)

First, consider the exact first derivative of the function eiκx:

∂eiκx

∂x
= iκeiκx. (2.21)

Applying the operator given in (2.20) to uj = eiκxj , where xj = jΔx, we get

(δxu)j = eiκΔx(j+1) − eiκΔx(j−1)

2Δx

= (eiκΔx − e−iκΔx)eiκxj

2Δx
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Fig. 2.2 Modified wavenum-
ber for various schemes

= 1

2Δx
[(cosκΔx + i sin κΔx) − (cosκΔx − i sin κΔx)]eiκxj

= i
sin κΔx

Δx
eiκxj

= iκ∗eiκxj , (2.22)

where κ∗ is the modified wavenumber. The modified wavenumber is so named
because it appears where the wavenumber, κ, appears in the exact expression
(2.21). Thus the degree to which the modified wavenumber approximates the actual
wavenumber is a measure of the accuracy of the approximation.

For the second-order centered difference operator the modified wavenumber is
given by

κ∗ = sin κΔx

Δx
. (2.23)

Equation (2.23) is plotted in Fig. 2.2, along with similar relations for the stan-
dard fourth-order centered difference scheme and the fourth-order Padé scheme.
The expression for the modified wavenumber provides the accuracy with which a
given wavenumber component of the solution is resolved for the entire wavenumber
range available in a mesh of a given size, 0 ≤ κΔx ≤ π. The value of κΔx can be
related to the mesh resolution through the notion of points-per-wavelength, which
is the number of grid cells per wavelength (PPW ) with which a given wavenumber
component of the solution is resolved, through the relation PPW = 2π/κΔx. For
example, a value of κΔx equal to π/4 corresponds to 8 points-per-wavelength, and
Fig. 2.2 shows that κ∗ for a second-order centered difference scheme already differs
significantly from κ at this grid resolution. Hence a simulation performed with this
mesh density relative to the spectral content of the function will contain substantial
numerical error.

For centered difference approximations, the modified wavenumber is purely
real, but in the general case it can include an imaginary component as well. Any
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finite-difference operator can be split into an antisymmetric and a symmetric part.
For example, the operator given in (2.18) can be divided as follows:

(δxu)j = 1

6Δx
(uj−2 − 6uj−1 + 3uj + 2uj+1)

= 1

12Δx
[(uj−2 − 8uj−1 + 8uj+1 − uj+2)

+ (uj−2 − 4uj−1 + 6uj − 4uj+1 + uj+2)]. (2.24)

The antisymmetric component determines the real part of the modified wavenumber,
while the imaginary part stems from the symmetric component of the difference
operator. Centered difference schemes are antisymmetric; the symmetric component
is zero and hence so is the imaginary component of the modified wavenumber. In the
context of the linear convection equation, one can show that a numerical error in the
phase speed is associated with the real part of the modified wavenumber, while an
error in the amplitude of the solution is associated with the imaginary part. Thus the
antisymmetric portion of the spatial difference operator determines the error in speed
and the symmetric portion the error in amplitude.Note that centered schemes produce
no amplitude error. Since the numerical error in the phase speed is dependent on the
wavenumber, this introduces numerical dispersion, and hence phase speed error is
often referred to as dispersive error. Similarly, amplitude error is often referred to
as dissipative error.

2.3 The Semi-Discrete Approach

Based on the discussion in the previous section, one can see that it is possible to
replace both the spatial and temporal derivatives in a PDE by finite-difference expres-
sions and thereby reduce the PDE to a systemof algebraic equations that can be solved
by a computer. For various reasons it can be advantageous to consider the discretiza-
tion of space and time separately. We first discretize in space to reduce the PDE to a
system of ordinary differential equations (ODEs) in the general form

d�u
dt

= �F( �u, t), (2.25)

and then apply a time-marching method to reduce the system of ODEs to a system
of algebraic equations in order to solve them. This is referred to as the semi-discrete
approach, and the intermediate ODE form in which the spatial derivatives have been
discretized but the temporal derivatives have not is known as the semi-discrete form.
It is important to realize that some numerical algorithms for PDEs discretize time
and space simultaneously and consequently have no intermediate semi-discrete form.
However, many of the most widely used algorithms and all of those considered in
subsequent chapters involve a separate and distinct discretization in time and space.
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In the semi-discrete approach, one separates the spatial discretization step that
reduces the PDE to a system of ODEs from the time-marching step that numerically
solves the ODE system. By doing so, we can get a clear understanding of the impact
on accuracy and stability of the spatial discretization and the time-marching method
individually. This approach also enables us to take advantage of the theory asso-
ciated with numerical methods for ODEs. Before we can present the semi-discrete
ODE form for our model equations, we need an understanding of matrix difference
operators.

2.3.1 Matrix Difference Operators

Consider the relation

(δxxu)j = 1

Δx2
(
uj+1 − 2uj + uj−1

)
, (2.26)

which is a point difference approximation to a second derivative. Now let us derive
a matrix operator representation for the same approximation. Consider the mesh
spanning the domain 0 ≤ x ≤ π with four interior points and boundary points
labelled a and b shown below.

a 1 2 3 4 b
x = 0 − − − − π
j = 1 · · M

Mesh with four interior points. σx = π/(M + 1)

Now impose Dirichlet boundary conditions, u(0) = ua, u(π) = ub and use the
centered difference approximation given by (2.26) at every point in the mesh. We
arrive at the four equations:

(δxxu)1 = 1

Δx2
(ua − 2u1 + u2)

(δxxu)2 = 1

Δx2
(u1 − 2u2 + u3) (2.27)

(δxxu)3 = 1

Δx2
(u2 − 2u3 + u4)

(δxxu)4 = 1

Δx2
(u3 − 2u4 + ub).
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Introducing

�u =

⎡
⎢⎢⎣

u1
u2
u3
u4

⎤
⎥⎥⎦ ,

( �bc
)

= 1

Δx2

⎡
⎢⎢⎣

ua

0
0
ub

⎤
⎥⎥⎦ (2.28)

and

A = 1

Δx2

⎡
⎢⎢⎣

−2 1
1 −2 1

1 −2 1
1 −2

⎤
⎥⎥⎦, (2.29)

we can rewrite (2.27) as

δxx�u = A�u +
( �bc
)
. (2.30)

This example illustrates a matrix difference operator. Each line of a matrix dif-
ference operator is based on a point difference operator, but the point operators used
from line to line are not necessarily the same. For example, boundary conditions may
dictate that the lines at or near the bottom or top of the matrix be modified. In the
extreme case of the matrix difference operator representing a spectral method, none
of the lines is the same. The matrix operators representing the three-point central-
difference approximations for a first and second derivative with Dirichlet boundary
conditions on a four-point mesh are

δx = 1

2Δx

⎡
⎢⎢⎣

0 1
−1 0 1

−1 0 1
−1 0

⎤
⎥⎥⎦, δxx = 1

Δx2

⎡
⎢⎢⎣

−2 1
1 −2 1

1 −2 1
1 −2

⎤
⎥⎥⎦. (2.31)

Each of these matrix difference operators is a square matrix with elements that
are all zeros except for those along bands which are clustered around the central
diagonal. We call such a matrix a banded matrix and introduce the notation

B(M : a, b, c) =

⎡
⎢⎢⎢⎢⎢⎣

b c
a b c

. . .

a b c
a b

⎤
⎥⎥⎥⎥⎥⎦

1

...

M

, (2.32)

where the matrix dimensions are M × M. Use of M in the argument is optional,
and the illustration is given for a simple tridiagonal matrix although any number of
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Fig. 2.3 Eight points on a
circular mesh

bands is a possibility. A tridiagonal matrix without constants along the bands can
be expressed as B(�a, �b, �c). The arguments for a banded matrix are always odd in
number, and the central one always refers to the central diagonal.

If the boundary conditions are periodic, the form of the matrix operator changes.
Consider the eight-point periodic mesh spanning the domain 0 ≤ x ≤ 2π shown
below. This can either be presented on a linear mesh with repeated entries, or more
suggestively on a circular mesh as in Fig. 2.3. When the mesh is laid out on the
perimeter of a circle, it does not matter where the numbering starts, as long as it
“ends” at the point just preceding its starting location.

· · · 7 8 1 2 3 4 5 6 7 8 1 2 · · ·
x = − − 0 − − − − − − − 2π −
j = 0 1 · · · · · · M

Eight points on a linear periodic mesh. σx = 2π/M

Thematrix that represents differencing schemes for scalar equations on a periodic
mesh is referred to as a periodic matrix. A special subset of a periodic matrix is a
circulant matrix, formed when the elements along the various bands are constant.
Each row of a circulant matrix is shifted one element to the right of the one above it.
The special case of a tridiagonal circulant matrix is given by

Bp(M : a, b, c) =

⎡
⎢⎢⎢⎢⎢⎣

b c a
a b c

. . .

a b c
c a b

⎤
⎥⎥⎥⎥⎥⎦

1

...

M

. (2.33)

When the standard three-point central-differencing approximation for a first deriv-
ative (see (2.31)) is used with periodic boundary conditions, it takes the form
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(δx)p = 1

2Δx

⎡
⎢⎢⎣

0 1 −1
−1 0 1

−1 0 1
1 −1 0

⎤
⎥⎥⎦ = 1

2Δx
Bp(−1, 0, 1).

Notice that there is no boundary condition vector since this information is all interior
to the matrix itself.

2.3.2 Reduction of PDEs to ODEs

Now that we have the concept ofmatrix difference operators, we can proceed to apply
a spatial discretization to reduce PDEs to ODEs. First let us consider the model PDEs
for diffusion and periodic convection described in Sect. 2.1. In these simple cases,
we can approximate the space derivatives with difference operators and express the
resulting ODEs with a matrix formulation. This is a simple and natural formulation
when the ODEs are linear.
Model ODE for Diffusion. For example, using the three-point central-differencing
scheme to represent the second derivative in the scalar PDE governing diffusion leads
to the following ODE diffusion model:

d�u
dt

= ν

Δx2
B(1,−2, 1)�u + �(bc) (2.34)

with Dirichlet boundary conditions folded into the �(bc) vector.
Model ODE for Periodic Convection. For the linear convection equation with peri-
odic boundary conditions, the 3-point central-differencing approximation produces
the ODE model given by

d�u
dt

= − a

2Δx
Bp(−1, 0, 1)�u, (2.35)

where the boundary condition vector is absent because the flow is periodic.
Equations (2.34) and (2.35) are the model ODEs for diffusion and periodic con-

vection of a scalar in one dimension. They are linear with coefficient matrices which
are independent of x and t.
The Generic Matrix Form. The generic matrix form of a semi-discrete approxima-
tion is expressed by the equation

d�u
dt

= A�u − �f (t). (2.36)

Note that the elements in the matrix A depend upon both the PDE and the type of
differencing scheme chosen for the space terms. The vector �f (t) is usually determined
by the boundary conditions and possibly source terms. In general, even the Euler and
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Navier–Stokes equations can be expressed in the form of (2.36). In such cases the
equations are nonlinear, that is, the elements of A depend on the solution �u and are
usually derived by finding the Jacobian of a flux vector. Although the equations are
nonlinear, linear analysis leads to diagnostics that are surprisingly accurate when
used to evaluate many aspects of numerical methods as they apply to the Euler and
Navier–Stokes equations.

2.3.3 Exact Solutions of Linear ODEs

In order to advance (2.25) in time, the system of ODEs must be integrated using a
time-marchingmethod. In order to analyze time-marchingmethods,wewillmake use
of exact solutions of coupled systems of ODEs, which exist under certain conditions.
The ODEs represented by (2.25) are said to be linear if F is linearly dependent on u
(i.e. if ∂F/∂u = A, where A is independent of u). As we have already pointed out,
when the ODEs are linear they can be expressed in a matrix notation as (2.36) in
which the coefficient matrix, A, is independent of u. If A does depend explicitly on
t, the general solution cannot be written, whereas, if A does not depend explicitly on
t, the general solution to (2.36) can be written. This holds regardless of whether or
not the forcing function, �f , depends explicitly on t.

The exact solution of (2.36) can be written in terms of the eigenvalues and eigen-
vectors of A. This will lead us to a representative scalar equation for use in analyzing
time-marching methods. To demonstrate this, let us consider a set of coupled, non-
homogeneous, linear, first-order ODEs with constant coefficients which might have
been derived by space differencing a set of PDEs. Represent them by the equation

d�u
dt

= A�u − �f (t). (2.37)

Our assumption is that the M × M matrix A has a complete eigensystem1 and can
thus be transformed by the left and right eigenvector matrices, X−1 and X, to a
diagonal matrixΛ having diagonal elements which are the eigenvalues of A. Now let
us multiply (2.37) from the left by X−1 and insert the identity combination XX−1 = I
between A and �u. There results

X−1 d�u
dt

= X−1AX · X−1�u − X−1�f (t). (2.38)

SinceA is independent of both �u and t, the elements inX−1 andX are also independent
of both �u and t, and (2.38) can be modified to

1 This means that the eigenvectors of A are linearly independent and thus X−1AX = Λ, where X
contains the right eigenvectors of A as its columns, i.e. X = [�x1 , �x2 . . . , �xM

]
, and Λ is a diagonal

matrix whose elements are the eigenvalues of A.
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d

dt
X−1�u = ΛX−1�u − X−1�f (t).

Finally, by introducing the new variables �w and �g such that

�w = X−1�u, �g(t) = X−1�f (t), (2.39)

we reduce (2.37) to a new algebraic form

d �w
dt

= Λ �w − �g(t). (2.40)

The equations represented by (2.40) are no longer coupled. They can be written
line by line as a set of independent, single, first-order equations, thus

w∝
1 = λ1w1 − g1(t)

...

w∝
m = λmwm − gm(t) (2.41)

...

w∝
M = λMwM − gM(t).

For any given set of gm(t) each of these equations can be solved separately and then
recoupled, using the inverse of the relations given in (2.39):

�u(t) = X �w(t)

=
M∑

m=1

wm(t)�xm, (2.42)

where �xm is the mth column of X, i.e. the eigenvector corresponding to λm.
We next focus on the important subset of (2.36) when neither A nor �f has any

explicit dependence on t. In such a case, the gm in (2.40) and (2.41) are also time
invariant, and the solution to any line in (2.41) is

wm(t) = cme
λmt + 1

λm
gm,

where the cm are constants that depend on the initial conditions. Transforming back
to the u-system gives

�u(t) = X �w(t)

=
M∑

m=1

wm(t)�xm
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=
M∑

m=1

cme
λmt�xm +

M∑
m=1

1

λm
gm�xm

=
M∑

m=1

cme
λmt�xm + XΛ−1X−1�f

=
M∑

m=1

cme
λmt�xm

︸ ︷︷ ︸
transient

+ A−1�f︸ ︷︷ ︸
steady-state

.

(2.43)

Note that the steady-state solution is A−1�f , as might be expected.
The first group of terms on the right side of this equation is referred to classically

as the complementary solution or the solution of the homogeneous equations. The
second group is referred to classically as the particular solution or the particular
integral. In our application to fluid dynamics, it is more descriptive to refer to these
groups as the transient and steady-state solutions, respectively. An alternative, but
entirely equivalent, form of the solution is

�u(t) = c1e
λ1t �x1 + · · · + cme

λmt �xm + · · · + cMeλM t �xM + A−1�f . (2.44)

2.3.4 Eigenvalue Spectra for Model ODEs

It is instructive to consider the eigenvalue spectra of the ODEs formulated by central
differencing the model equations for diffusion (2.34) and periodic convection (2.35).
For themodel diffusion equation with Dirichlet boundary conditions, the eigenvalues
of A are:

λm = ν

Δx2

[
−2 + 2 cos

(
mπ

M + 1

)]

= −4ν

Δx2
sin2

(
mπ

2(M + 1)

)
, m = 1, 2, . . . , M. (2.45)

These eigenvalues are all real and negative, consistent with the physics of diffusion.
For periodic convection, one obtains

λm = −ia

Δx
sin

(
2mπ

M

)
, m = 0, 1, . . . , M − 1

= −iκ∗
ma, (2.46)
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where

κ∗
m = sin κmΔx

Δx
, m = 0, 1, . . . , M − 1 (2.47)

is the modified wavenumber, κm = m, and Δx = 2π/M. These eigenvalues are all
pure imaginary, reflecting the fact that the amplitude of a waveform neither grows
nor decays as it convects, a property that is preserved by centered differencing.

2.3.5 A Representative Equation for Studying Time-Marching
Methods

We seek to analyze the accuracy and stability of time-marching methods applied to
the systems of ODEs resulting from applying a spatial discretization to PDEs such
as the Navier-Stokes equations, which take the form:

d�u
dt

= �F(�u, t), (2.48)

To simplify matters, we consider the simpler model equations, which lead to ODE
forms such as (2.34) and (2.35) that have the generic form:

d�u
dt

= A�u − �f (t), (2.49)

where A is independent of u and t. To achieve a further simplification, we exploit
the fact that these equations can be decoupled and study time-marching methods as
applied to the following scalar ODE:

du

dt
= λu + aeμt, (2.50)

where λ, a, and μ are complex constants. The goal in our analysis is to study typical
behavior of general situations, not particular problems. In order to evaluate time-
marching methods, the parameters λ, a, and μmust be allowed to take the worst pos-
sible combination of values that might occur in the ODE eigensystem. For example,
if one is interested in a time-marching method for convection dominated problems,
then one should consider imaginary λs. The exact solution of the representative ODE
is (for μ �= λ)

u(t) = c eλt + aeμt

μ − λ
, (2.51)

where the constant c is determined from the initial condition.
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2.4 Finite-Volume Methods

2.4.1 Basic Concepts

We saw in Sect. 2.3 that a PDE can be reduced to a system ofODEs by discretizing the
spatial derivatives using finite-difference approximations. A finite-volume method is
an alternative spatial discretization that reduces the integral form of a conservation
law to a system of ODEs. Finite-volume methods have become popular in CFD as
a result, primarily, of two advantages. First, they ensure that the discretization is
conservative, i.e. mass, momentum, and energy are conserved in a discrete sense.
While this property can usually be obtained using a finite-difference formulation, it is
obtained naturally from a finite-volume formulation. Second, finite-volume methods
do not require a coordinate transformation in order to be applied on irregular meshes.
As a result, they can be applied on unstructured meshes consisting of arbitrary poly-
hedra in three dimensions or arbitrary polygons in two dimensions. This increased
flexibility can be advantageous in generating grids about complex geometries.

The PDE or divergence form of a conservation law can be written as

∂Q

∂t
+ ∇ · F = P, (2.52)

where Q is a vector containing the set of variables which are conserved, e.g. mass,
momentum, and energy, per unit volume, F is a set of vectors, or tensor, containing
the flux of Q per unit area per unit time, P is the rate of production of Q per unit
volume per unit time, and ∇ · F is the well-known divergence operator. The same
conservation law can be expressed in integral form as

d

dt

∫
V(t)

QdV +
∮

S(t)
n · FdS =

∫
V(t)

PdV . (2.53)

This equation is a statement of the conservation of the conserved quantities in a finite
region of spacewith volumeV(t) and surface area S(t). In two dimensions, the region
of space, or cell, is an area A(t) bounded by a closed contour C(t). The vector n is a
unit vector normal to the surface pointing outward.

The basic idea of a finite-volume method is to satisfy the integral form of the
conservation law to some degree of approximation for each of many contiguous
control volumes that cover the domain of interest. Hence the function of the grid
is to tessellate the domain into contiguous control volumes, and the volume V in
(2.53) is that of a control volume whose shape is dependent on the nature of the
grid. Examining (2.53), we see that several approximations must be made. The flux
is required at the boundary of the control volume, which is a closed surface in
three dimensions and a closed contour in two dimensions. This flux must then be
integrated to find the net flux through the boundary. Similarly, the source term P
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must be integrated over the control volume. Next a time-marching method can be
applied to find the value of

∫
V

QdV (2.54)

at the next time step.
Let us consider each of these approximations in more detail. First, we note that

the average value of Q in a cell with volume V is

Q̄ ≡ 1

V

∫
V

QdV , (2.55)

and (2.53) can be written as

V
d

dt
Q̄ +

∮
S

n · FdS =
∫

V
PdV (2.56)

for a control volume that does not varywith time.Thus after applying a time-marching
method,we have updated values of the cell-averaged quantities Q̄. In order to evaluate
the fluxes, which are a function of Q, at the control-volume boundary, Q can be
represented within the cell by some piecewise approximation which produces the
correct value of Q̄. This is a form of interpolation often referred to as reconstruction.
Each cell will have a different piecewise approximation to Q. When these are used
to calculate F(Q), they will generally produce different approximations to the flux at
the boundary between two control volumes, that is, the flux will be discontinuous. A
nondissipative scheme analogous to centered differencing is obtained by taking the
average of these two fluxes. Another approach known as flux-difference splitting is
described in Sect. 2.5.

The basic elements of a finite-volume method are thus the following:

(1) Given the value of Q̄ for each control volume, construct an approximation
to Q(x, y, z) in each control volume. Using this approximation, find Q at the
control-volume boundary. Evaluate F(Q) at the boundary. Since there is a dis-
tinct approximation to Q(x, y, z) in each control volume, two distinct values of
the flux will generally be obtained at any point on the boundary between two
control volumes.

(2) Apply some strategy for resolving the discontinuity in the flux at the control-
volume boundary to produce a single value ofF(Q) at any point on the boundary.
This issue is discussed in Sect. 2.5.

(3) Integrate the flux to find the net flux through the control-volume boundary using
some sort of quadrature.

(4) Advance the solution in time using a time-marchingmethod to obtain new values
of Q̄.

The order of accuracy of the method is dependent on each of the approximations.



2.4 Finite-Volume Methods 27

In order to include diffusive fluxes, the following relation between ∇Q and Q is
sometimes used: ∫

V
∇QdV =

∮
S

nQdS (2.57)

or, in two dimensions, ∫
A

∇QdA =
∮

C
nQdl, (2.58)

where the unit vector n points outward from the surface or contour.

2.4.2 One-Dimensional Examples

We restrict our attention to a scalar dependent variable u and a scalar flux f , as in
the model equations. We consider an equispaced grid with spacing Δx. The nodes of
the grid are located at xj = jΔx as usual. Control volume j extends from xj − Δx/2
to xj + Δx/2, as shown in Fig. 2.4. This is referred to as a node centered scheme
in contrast to a cell-centered scheme, where the control volume would extend from
xj to xj+1. With respect to the discussion in this section, these two approaches are
identical. We will use the following notation:

xj−1/2 = xj − Δx/2, xj+1/2 = xj + Δx/2, (2.59)

uj±1/2 = u(xj±1/2), fj±1/2 = f (uj±1/2). (2.60)

With these definitions, the cell-average value becomes

ūj(t) ≡ 1

Δx

∫ xj+1/2

xj−1/2

u(x, t)dx, (2.61)

and the integral form becomes

d

dt
(Δxūj) + fj+1/2 − fj−1/2 =

∫ xj+1/2

xj−1/2

Pdx. (2.62)

The integral form of the linear convection equation is obtained with f = au and
P = 0, while the integral form of the diffusion equation is obtained with f =
−ν∇u = −ν∂u/∂x and P = 0.
A Second-Order Approximation to the Convection Equation. With a = 1, the
integral form of the linear convection equation becomes

Δx
dūj

dt
+ fj+1/2 − fj−1/2 = 0 (2.63)
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Fig. 2.4 Control volume in one dimension

with f = u. We choose a piecewise-constant approximation to u(x) in each cell such
that

u(x) = ūj xj−1/2 ≤ x ≤ xj+1/2. (2.64)

Evaluating this at j + 1/2 gives

f Lj+1/2 = f (uLj+1/2) = uLj+1/2 = ūj, (2.65)

where the L indicates that this approximation to fj+1/2 is obtained from the approx-
imation to u(x) in the cell to the left of xj+1/2, as shown in Fig. 2.4. The cell to the
right of xj+1/2, which is cell j + 1, gives

f Rj+1/2 = ūj+1. (2.66)

Similarly, cell j is the cell to the right of xj−1/2, giving

f Rj−1/2 = ūj (2.67)

and cell j − 1 is the cell to the left of xj−1/2, giving

f Lj−1/2 = ūj−1. (2.68)

We have now accomplished the first step from the list in Sect. 2.4.1; we have
defined the fluxes at the cell boundaries in terms of the cell-average data. In this
example, the discontinuity in the flux at the cell boundary is resolved by taking the
average of the fluxes on either side of the boundary. Thus

f̂j+1/2 = 1

2
(f Lj+1/2 + f Rj+1/2) = 1

2
(ūj + ūj+1) (2.69)

and

f̂j−1/2 = 1

2
(f Lj−1/2 + f Rj−1/2) = 1

2
(ūj−1 + ūj), (2.70)
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where f̂ denotes a numerical flux which is an approximation to the exact flux.
Substituting (2.69) and (2.70) into the integral form, (2.63), we obtain

Δx
dūj

dt
+ 1

2
(ūj + ūj+1) − 1

2
(ūj−1 + ūj)

= Δx
dūj

dt
+ 1

2
(ūj+1 − ūj−1) = 0. (2.71)

With periodic boundary conditions, this point operator produces the following semi-
discrete form:

d �̄u
dt

= − 1

2Δx
Bp(−1, 0, 1)�̄u (2.72)

This is identical to the expression obtained using second-order centered differences,
except it is written in terms of the cell average �̄u, rather than the nodal values, �u.
Hence our analysis and understanding of the eigensystem of the matrix Bp(−1, 0, 1)
is relevant to finite-volume methods as well as finite-difference methods. Since the
eigenvalues of Bp(−1, 0, 1) are pure imaginary, we can conclude that the use of the
average of the fluxes on either side of the cell boundary, as in (2.69) and (2.70), leads
to a nondissipative finite-volume method.
A Fourth-Order Approximation to the Convection Equation. A fourth-order spa-
tial discretization can be obtained by replacing the piecewise-constant approximation
in Sect. 2.4.2 with a piecewise-quadratic approximation as follows

u(ξ) = aξ2 + bξ + c, (2.73)

where ξ is again equal to x −xj. The three parameters a, b, and c are chosen to satisfy
the following constraints:

1

Δx

∫ −Δx/2

−3Δx/2
u(ξ)dξ = ūj−1

1

Δx

∫ Δx/2

−Δx/2
u(ξ)dξ = ūj

1

Δx

∫ 3Δx/2

Δx/2
u(ξ)dξ = ūj+1. (2.74)

These constraints lead to

a = ūj+1 − 2ūj + ūj−1

2Δx2

b = ūj+1 − ūj−1

2Δx
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c = −ūj−1 + 26ūj − ūj+1

24
. (2.75)

It is left as an exercise for the reader to show that this reconstruction leads to the
following form:

Δx
dūj

dt
+ 1

12
(−ūj+2 + 8ūj+1 − 8ūj−1 + ūj−2) = 0, (2.76)

which is analogous to a fourth-order centered finite-difference scheme.
A Second-Order Approximation to the Diffusion Equation. In this section, we
describe two approaches to deriving a finite-volume approximation to the diffusion
equation. Thefirst approach is simpler to extend tomultidimensions,while the second
approach is more suited to extension to higher-order accuracy.

With ν = 1, the integral form of the diffusion equation is

Δx
dūj

dt
+ fj+1/2 − fj−1/2 = 0 (2.77)

with f = −∇u = −∂u/∂x. Also, (2.58) becomes

∫ b

a

∂u

∂x
dx = u(b) − u(a). (2.78)

We can thus write the following expression for the average value of the gradient of
u over the interval xj ≤ x ≤ xj+1:

1

Δx

∫ xj+1

xj

∂u

∂x
dx = 1

Δx
(uj+1 − uj). (2.79)

The value of a continuous function at the center of a given interval is equal to the
average value of the function over the interval to second-order accuracy. Hence, to
second-order, we can write

f̂j+1/2 = −
(

∂u

∂x

)
j+1/2

= − 1

Δx
(ūj+1 − ūj). (2.80)

Similarly,

f̂j−1/2 = − 1

Δx
(ūj − ūj−1). (2.81)

Substituting these into the integral form (2.77), we obtain

Δx
dūj

dt
= 1

Δx
(ūj−1 − 2ūj + ūj+1) (2.82)
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or, with Dirichlet boundary conditions,

d �̄u
dt

= 1

Δx2
B(1,−2, 1)�̄u +

( �bc
)

. (2.83)

This provides a semi-discrete finite-volume approximation to the diffusion equation,
and we see that the properties of the matrix B(1,−2, 1) are relevant to the study of
finite-volume methods as well as finite-difference methods.

For our second approach, we use a piecewise-quadratic approximation as in Sect.
2.4.2. From (2.73) we have

∂u

∂x
= ∂u

∂ξ
= 2aξ + b (2.84)

with a and b given in (2.75). With f = −∂u/∂x, this gives

f Rj+1/2 = f Lj+1/2 = − 1

Δx
(ūj+1 − ūj) (2.85)

f Rj−1/2 = f Lj−1/2 = − 1

Δx
(ūj − ūj−1). (2.86)

Notice that there is no discontinuity in the flux at the cell boundary. This produces

dūj

dt
= 1

Δx2
(ūj−1 − 2ūj + ūj+1), (2.87)

which is identical to (2.82).

2.5 Numerical Dissipation and Upwind Schemes

For a given order of accuracy, centered difference schemes produce the lowest
coefficient of the leading truncation error term in comparison with one-sided and
biased schemes. Moreover, a centered difference approximation correctly mimics
the physics of convection and diffusion. In particular, a centered approximation to a
first derivative is nondissipative, i.e. the eigenvalues of the associatedmatrix operator
are pure imaginary. No aphysical numerical dissipation is introduced. Nevertheless,
in the numerical solution ofmany practical problems, a small well-controlled amount
of numerical dissipation is desirable and possibly even necessary for stability.

In a linear problem, there exist modes that are inaccurately resolved, as demon-
strated by themodifiedwavenumbers shown in Fig. 2.2. If thesemodes are introduced
into a simulation somehow, for example by the initial conditions, and there exists
no mechanism to damp them, then they will persist and potentially contaminate
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the solution. It is preferable to damp these under-resolved solution components. In
processes governed by nonlinear equations, such as the Navier–Stokes equations,
there can be a continual production of high-frequency components of the solution,
leading, for example, to the formation of shock waves. In a real physical problem,
the production of high frequencies is eventually limited by viscosity. However, in
practical simulations, the smallest length scales where the physical damping occurs
are often under resolved. Unless the relevant length scales are resolved, some form of
added numerical dissipation is required. Since the addition of numerical dissipation
is tantamoun to intentionally introducing nonphysical behavior, it must be carefully
controlled such that the error introduced is not excessive.

2.5.1 Numerical Dissipation in the Linear Convection Equation

One means of introducing numerical dissipation is through the use of one-sided
differencing in the inviscid flux terms. For example, consider the following point
operator for the spatial derivative term in the linear convection equation:

− a(δxu)j = −a

2Δx
[−(1 + β)uj−1 + 2βuj + (1 − β)uj+1]

= −a

2Δx
[(−uj−1 + uj+1) + β(−uj−1 + 2uj − uj+1)]. (2.88)

The second form shown divides the operator into an antisymmetric component
(−uj−1 + uj+1)/2Δx and a symmetric component β(−uj−1 + 2uj − uj+1)/2Δx.
The antisymmetric component is the second-order centered difference operator.With
β �= 0, the operator is only first-order accurate. A backward difference operator is
given by β = 1, and a forward difference operator is given by β = −1.

For periodic boundary conditions, the corresponding matrix operator is

−aδx = −a

2Δx
Bp(−1 − β, 2β, 1 − β).

The eigenvalues of this matrix are

λm = −a

Δx

{
β

[
1 − cos

(
2πm

M

)]
+ i sin

(
2πm

M

)⎧
, m = 0, 1, . . . , M − 1.

If a is positive, the forward difference operator (β = −1) produces �(λm) > 0,
the centered difference operator (β = 0) produces �(λm) = 0, and the backward
difference operator produces �(λm) < 0. Hence the forward difference operator is
inherently unstable, while the centered and backward operators are inherently stable.
If a is negative, the roles are reversed.
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In order to devise a spatial discretization that is stable independent of the sign of
a, we can rewrite the linear convection equation as

∂u

∂t
+ (a+ + a−)

∂u

∂x
= 0, a± = a ± |a|

2
. (2.89)

If a ≥ 0, then a+ = a ≥ 0 and a− = 0. Alternatively, if a ≤ 0, then a+ = 0 and
a− = a ≤ 0. Now we can safely use a backward difference approximation for the
a+ (≥ 0) term and a forward difference approximation for the a− (≤ 0) term. This is
the basic concept behind upwind methods, that is some decomposition or splitting of
the fluxes into terms which have positive and negative characteristic speeds so that
appropriate differencing schemes can be chosen for each.

The above approach can be written in a different, but entirely equivalent, manner.
From (2.88), we see that a stable discretization is obtained with β = 1 if a ≥ 0 and
with β = −1 if a ≤ 0. This is achieved by the following point operator:

− a(δxu)j = −1

2Δx
[a(−uj−1 + uj+1) + |a|(−uj−1 + 2uj − uj+1)]. (2.90)

Any symmetric component in the spatial operator introduces dissipation (or amplifi-
cation). Therefore, one could choose β = 1/2 in (2.88), for example, leading to the
following operator:

− a(δxu)j = −1

2Δx
[a(−uj−1 + uj+1) + 1

2
|a|(−uj−1 + 2uj − uj+1)]. (2.91)

The resulting spatial operator is not one-sided, but it is dissipative.
Similarly, biased schemes use more information on one side of the grid node than

the other. For example, a third-order backward-biased scheme is given by

(δxu)j = 1

6Δx
(uj−2 − 6uj−1 + 3uj + 2uj+1)

= 1

12Δx
[(uj−2 − 8uj−1 + 8uj+1 − uj+2)

+ (uj−2 − 4uj−1 + 6uj − 4uj+1 + uj+2)]. (2.92)

The antisymmetric component of this operator is the fourth-order centered differ-
ence operator. The symmetric component approximates Δx3uxxxx/12. Therefore,
this operator produces fourth-order accuracy in phase, with a third-order dissipative
term. Note that the antisymmetric portion of the first-derivative operator always has
an even order of accuracy, while the symmetric portion always has an odd order.
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2.5.2 Upwind Schemes

In Sect. 2.5.1, we saw that numerical dissipation can be introduced in the spatial dif-
ference operator by using one-sided difference schemes or,more generally, by adding
a symmetric component to the spatial operator.With this approach, the direction of the
one-sided operator (i.e. whether it is a forward or a backward difference) and the sign
of the symmetric component depend on the sign of the wave speed. When a hyper-
bolic system of equations is being solved, the wave speeds can be both positive and
negative. For example, the eigenvalues of the flux Jacobian for the one-dimensional
Euler equations are u, u + a, u − a, where u is the fluid velocity and a is the speed of
sound.When the flow is subsonic, these are ofmixed sign. In order to apply one-sided
differencing schemes to such systems, some form of splitting is required.
Flux-Vector Splitting. Consider a linear, constant-coefficient, hyperbolic system of
partial differential equations given by

∂u

∂t
+ ∂ f

∂x
= ∂u

∂t
+ A

∂u

∂x
= 0, (2.93)

where f = Au, and A is diagonalizable with real eigenvalues. This system can be
decoupled into characteristic equations of the form

∂wi

∂t
+ λi

∂wi

∂x
= 0, (2.94)

where the wave speeds, λi, are the eigenvalues of the Jacobian matrix, A, and the
wis are the characteristic variables. In order to apply a one-sided (or biased) spatial
differencing scheme, we need to apply a backward difference if the wave speed, λi,
is positive, and a forward difference if the wave speed is negative.

To accomplish this, we split the matrix of eigenvalues, Λ, into two components
such that

Λ = Λ+ + Λ−, (2.95)

where

Λ+ = Λ + |Λ|
2

, Λ− = Λ − |Λ|
2

. (2.96)

With these definitions, Λ+ contains the positive eigenvalues and Λ− contains the
negative eigenvalues. With the additional definitions2

A+ = XΛ+X−1, A− = XΛ−X−1, (2.97)

we can define the split flux vectors as

2 With these definitions,A+ has all nonnegative eigenvalues, andA− has all nonpositive eigenvalues.
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f + = A+u, f − = A−u. (2.98)

Noting that f = f + + f −, we can rewrite the original system in terms of the split flux
vectors as

∂u

∂t
+ ∂ f +

∂x
+ ∂ f −

∂x
= 0. (2.99)

The spatial terms have been split into two components according to the sign of the
wave speeds. A dissipative scheme is obtained by applying backward differencing

to the ∂ f +
∂x term and forward differencing to the ∂ f −

∂x term.
Flux-vector splitting [2, 3] can also beusedwith afinite-volumemethod.Referring

back to Sect. 2.4, recall that in a finite-volume method there exists a discontinuity in
the flux at a control-volume boundary. When we took the average of the two fluxes
at the interface, we obtained a nondissipative finite-volume discretization analogous
to centered differencing. In order to develop a dissipative scheme, we can instead
choose f + from the state to the left of the interface and f − from the right state. This
leads to the following upwind numerical flux:

f̂j+1/2 = (f +)L + (f −)R, (2.100)

which leads to a finite-volumemethod that is analogous to the flux-vector-split finite-
difference scheme described above.

Flux-Difference Splitting. With flux-difference splitting [4], the numerical flux is
given by

f̂j+1/2 = 1

2

(
f L + f R

)
+ 1

2
|A|
(

uL − uR
)
, (2.101)

where

|A| = X|Λ|X−1. (2.102)

It is straightforward to show that in the linear, constant-coefficient case this is entirely
equivalent to (2.100).

2.5.3 Artificial Dissipation

We have seen that numerical dissipation can be introduced by using one-sided dif-
ferencing schemes together with some form of flux splitting. We have also seen that
such dissipation can be introduced by adding a symmetric component to an antisym-
metric (dissipation-free) operator. Thus we can generalize the concept of upwinding
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to include any scheme in which the symmetric portion of the operator is treated in
such a manner as to be truly dissipative.

For example, consider the operator

δxf = δax f + δsx(|A|u), (2.103)

where δax and δsx are antisymmetric and symmetric difference operators, and |A|
is defined in (2.102). The second spatial term is known as artificial dissipation.
With appropriate choices of δax and δsx , this approach can be identical to the upwind
approach.

It is common to use the following operator for δsx

(
δsxu
)

j = ε

Δx
(uj−2 − 4uj−1 + 6uj − 4uj+1 + uj+2), (2.104)

where ε is a problem-dependent coefficient. This symmetric operator approximates
εΔx3uxxxx and thus introduces a third-order dissipative term. With an appropriate
value of ε, this often provides sufficient damping of high frequency modes without
greatly affecting the low frequency modes. A more complicated treatment of the
numerical dissipation is required near shock waves and other discontinuities; this
subject is dealt with in later chapters.

2.6 Time-Marching Methods for ODEs

2.6.1 Basic Concepts: Explicit and Implicit Methods

After discretizing the spatial derivatives in the governing PDEs (such as the Navier–
Stokes equations), we obtain a coupled system of nonlinear ODEs in the form

d�u
dt

= �F(�u, t). (2.105)

These can be integrated in time using a time-marching method to obtain a time-
accurate solution to an unsteady flow problem. For a steady flow problem, spatial
discretization leads to a coupled system of nonlinear algebraic equations in the form

�F(�u) = 0. (2.106)

As a result of the nonlinearity of these equations, some sort of iterative method is
required to obtain a solution. For example, one can consider the use of Newton’s
method, which is widely used for nonlinear algebraic equations. This produces an
iterative method in which a coupled system of linear algebraic equations must be
solved at each iteration. Alternatively, one can consider a time-dependent path to the
steady state and use a time-marching method to integrate the unsteady form of the
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equations until the solution is sufficiently close to the steady solution. The subject of
the present section, time-marching methods for ODEs, is thus relevant to both steady
and unsteady flow problems.When using a time-marchingmethod to compute steady
flows, the goal is simply to remove the transient portion of the solution as quickly
as possible; time-accuracy is not required. This motivates the study of stability and
stiffness, topics which are discussed in the next section.

Applicationof a time-marchingmethod to anODEproduces anordinarydifference
equation (OΔE). Simple OΔEs can be easily solved, so we can develop exact solu-
tions for the model OΔEs arising from the application of time-marching methods to
the model ODEs. Using these exact solutions, we can analyze and understand the
stability and accuracy properties of various time-marching methods.

Based on the discussion in Sect. 2.3, we will consider scalar ODEs given by

du

dt
= u∝ = F(u, t), (2.107)

bearing in mind that the analysis applies directly to the solution of systems of ODEs.
As in Sect. 2.2, we use the convention that the n subscript, or the (n) superscript,
always denotes a discrete timevalue, andh represents the time intervalΔt. Combining
this notation with (2.107) gives

u∝
n = Fn = F(un, tn), tn = nh.

Often we need a more sophisticated notation for intermediate time steps involving
intermediate solutions denoted by ũ, ū, etc. For these we use the notation

ũ∝
n+α = F̃n+α = F(ũn+α, tn + αh).

The methods we study are to be applied to linear or nonlinear ODEs, but the
methods themselves are formed by linear combinations of the dependent variable
and its derivative at various time intervals. They are represented conceptually by

un+1 = f
(
β1hu∝

n+1,β0hu∝
n,β−1u∝

n−1, . . . ,α0un,α−1un−1, . . .
)
. (2.108)

With an appropriate choice of the αs and βs, these methods can be constructed to
give a local Taylor series accuracy of any order. A method is said to be explicit if
β1 = 0 and implicit otherwise. An explicit method is one in which the new predicted
solution is only a function of known data, for example, u∝

n, u∝
n−1, un, and un−1 for

a method using two previous time levels, and therefore the time advance is simple.
For an implicit method, the new predicted solution is also a function of the time
derivative at the new time level, that is, u∝

n+1. As we shall see, for systems of ODEs
and nonlinear problems, implicit methods require more complicated strategies to
solve for un+1 than explicit methods.

Most time-marching methods in current use in CFD fall into one of three
categories: linear multistep methods, predictor–corrector methods, and Runge–
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Kutta methods. For the purpose of our analysis, we group predictor–corrector and
Runge–Kutta methods together under the heading multi–stage methods.

In a linear multistep method, the solution at the new time level is a linear combi-
nation of the solution and its derivative at various time levels. In other words, (2.108)
becomes

un+1 = β1hu∝
n+1 + β0hu∝

n,β−1u∝
n−1 + · · · + α0un + α−1un−1 + · · · (2.109)

Specific linear multistep methods are associated with specific choices of the αs and
βs. In order to establish the order of accuracy, one can perform a Taylor series
expansion of the right-hand side of (2.109) with particular values of the αs and βs
and compare it to the Taylor series expansion of un+1. The order of accuracy of the
method is the lowest exponent of h in the differenceminus one. Similarly, one can use
a Taylor table to derive a method by choosing which αs and βs will be permitted to
have nonzero values; the Taylor table facilitates the derivation of the α and β values
that maximize the order of accuracy. For example, the most basic time-marching
method, which we will call the explicit Euler method, is found with all αs and βs set
to zero with the exception of α0 and β0. In order to maximize the order of accuracy,
one must choose α0 = β0 = 1, which gives

un+1 = un + hu∝
n + O(h2). (2.110)

Since the leading error term is O(h2), this method is first order. This means that if
an ODE is solved with this method over a specific time interval using first a specific
value of h and then with h/2, the error in the solution at the end of the time interval
will be reduced by a factor of two.

Further examples of linearmultistepmethods commonly used inCFDapplications
are given below3:

Explicit Methods.

un+1 = un−1 + 2hu∝
n Leapfrog

un+1 = un + 1
2h
[
3u∝

n − u∝
n−1

]
AB2

un+1 = un + h
12

[
23u∝

n − 16u∝
n−1 + 5u∝

n−2

]
AB3

Implicit Methods.

un+1 = un + hu∝
n+1 Implicit Euler

un+1 = un + 1
2h
[
u∝

n + u∝
n+1

]
Trapezoidal (AM2)

un+1 = 1
3

[
4un − un−1 + 2hu∝

n+1

]
2nd-order Backward

un+1 = un + h
12

[
5u∝

n+1 + 8u∝
n − u∝

n−1

]
AM3

3 Where the notation AB2 refers to the 2nd-order Adams-Bashforth method and AM2 refers to the
second-order Adams-Moulton method, etc.
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Predictor–corrector methods constructed to time-march linear or nonlinear ODEs
are composed of sequences of linear multistep methods, each of which is referred to
as a family in the solution process. There may be many families in the sequence, and
usually the final family has a higher Taylor-series order of accuracy than the inter-
mediate ones. Their use is motivated by ease of application and increased efficiency.
In a simple two–stage predictor–corrector method, the solution is initially predicted
at the next time level or some intermediate time using a linear multistep method. It
is then corrected by applying another linear multistep method that involves applying
the derivative function F(u, t) at the predicted u and the appropriate value of t. For
example, the second-order predictor–corrector method we will call MacCormack’s
method4 can be written as

ũn+1 = un + hu∝
n

un+1 = 1

2
(un + ũn+1 + hũ∝

n+1). (2.111)

The predicted solution ũn+1 is obtained at tn+1 using the explicit Euler method, while
the correction is obtained using the implicit trapezoidal method (see examples above)
with u∝

n+1 replaced by ũ∝
n+1. The method is explicit, since ũn+1 is computed before

ũ∝
n+1 is needed. Note that in order to advance one time step, two evaluations of the
derivative function F(u, t) are required, F(un, tn) in the predictor and F(ũn+1, tn+1)

in the corrector. Since evaluating the derivative function is typically the greatest
computing expense in the application of a time-marching method, this means that
the cost per time step of MacCormack’s method is nominally twice that of a linear
multistep method, where only one derivative function evaluation is needed per time
step.5

Runge–Kutta methods are another important subset of multi-stage methods. The
most popular is the classical explicit fourth-order Runge–Kutta method, which can
be written in a notation consistent with the predictor–corrector example as

⎨un+1/2 = un + 1

2
hu∝

n

ũn+1/2 = un + 1

2
h⎨u∝

n+1/2

un+1 = un + hũ∝
n+1/2

un+1 = un + 1

6
h
⎩
u∝

n + 2
(⎨u∝

n+1/2 + ũ∝
n+1/2

)
+ u∝

n+1

]
. (2.112)

4 Here we discuss only MacCormack’s time-marching method. The method commonly referred to
as MacCormack’s method is a fully-discrete method [5].
5 If a linear multistep method requires, for example, F(un−1, tn−1), this can be calculated at a
previous time step and stored.
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This method requires four derivative function evaluations per time step. As described
below, the analysis and derivation of multi-stage methods is more involved than that
for linear multistep methods.

2.6.2 Converting Time-Marching Methods to OΔEs

In Sect. 2.3.5 we chose a representative scalar ODE for the study of time-marching
methods given by

du

dt
= λu + aeμt, (2.113)

where λ, a, and μ are complex constants. This equation has the following exact
solution (for μ �= λ):

u(t) = c eλt + aeμt

μ − λ
, (2.114)

where the constant c is determined from the initial condition.Of course, onewould not
normally apply a numerical method to solve an equation for which one can derive the
exact solution. Our purpose here is to analyze and evaluate time-marching methods,
and amodelODEwith a known solution plays an important role in this process.Using
the theory of OΔEs we can obtain a closed form solution for the numerical solution
obtained when a given time-marching method is used to solve the representative
ODE. Rather than having to conduct a series of numerical experiments in order to
understand the properties of a time-marching method, we can use this closed form
solution to obtain these properties as an explicit function of the parameters h, λ,
a, and μ. Hence, the theory of OΔEs provides a powerful tool for analyzing and
deriving time-marching methods.

For example, consider the application of the explicit Euler method (2.110) to the
representative ODE. Noting that tn = hn, one obtains

un+1 = un + h(λun + aeμhn)

= (1 + λh)un + haeμhn. (2.115)

This is a first-order inhomogenous OΔE that can be written in the general form

un+1 = σun + âbn, (2.116)

where σ, â, and b are, in general, complex parameters. The independent variable is
n rather than t, and, since the equations are linear and have constant coefficients, σ
is not a function of either n or u. The exact solution of (2.116) is (for b �= σ):
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un = c1σ
n + âbn

b − σ
, (2.117)

where c1 is a constant determined by the initial conditions. That (2.117) is a solution
to (2.116) can be easily verified by substitution, and the reader is encouraged to do so.

Applying the exact OΔE solution (2.117) to the OΔE obtained by applying the
explicit Eulermethod to the representativeODE (2.115), one obtains the exact numer-
ical solution:

un = c1(1 + λh)n + haeμhn

eμh − 1 − λh
. (2.118)

This can be compared directly with the exact ODE solution rewritten as

u(t) = c (eλh)n + aeμhn

μ − λ
. (2.119)

In particular, comparing the homogeneous solutions

c1(1 + λh)n ≈ c (eλh)n, (2.120)

where c1 = c, shows that σ = 1 + λh is an approximation to eλh. Given that the
Taylor series expansion of eλh about λh = 0 is

eλh = 1 + λh + 1

2
λ2h2 + · · · + 1

k!λ
khk + · · · , (2.121)

the error in the approximation is O(h2), consistent with the fact that the explicit
Euler method is a first-order method. With a little more algebra,6 one can readily
show that the particular solution in (2.118) is also a first-order approximation to the
exact particular solution.

Let us examine the homogeneous OΔE solution in more detail. Consider as an
example λ = −1. The exact ODE homogeneous solution is simply ce−t . The homo-
geneous solution for the explicit Euler OΔE is

un = c1(1 − h)n. (2.122)

For small h this is a good approximation, consistent with the fact that σ ≈ eλh.
However, for h = 1, the homogeneous solution becomes un = 0 after one step. This
is completely inaccurate but at least provides the correct homogeneous solution as
n → ∞. With h = 2, the solution oscillates between 1 and −1, and for h > 2,

6 One must expand both the exact ODE particular solution and the exact OΔE particular solution
in Taylor series and compare on a term by term basis starting with the lowest power of h.
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the solution grows without bound as n → ∞. Generalizing this to arbitrary λ, the
solution grows without bound if |σ| = |1 + λh| > 1.7

Next consider the application of the implicit Euler method

un+1 = un + hu∝
n+1 (2.123)

to the representative ODE. The resulting OΔE is

un+1 = 1

1 − λh
un + 1

1 − λh
heμhaeμhn. (2.124)

This can once again be compared to the form (2.116) to obtain the exactOΔE solution

un = c1

(
1

1 − λh

)n

+ aeμhn · heμh

(1 − λh)eμh − 1
. (2.125)

In this case σ = 1/(1− λh). Although again a first-order approximation to eλh, this
leads to quite different behaviour than σ = 1 + λh obtained for the explicit Euler
method. For example, with λ = −1 as in our previous example, the solution will not
become unbounded even as h → ∞.

This approach based on (2.116) and its solution (2.117) enables us to study one-
step linear multistep methods, which are linear multistep methods that use data only
at time levels n + 1 and n. For linear multistep methods of two steps or more and
multistage methods, a more general theory is needed. This is achieved by writing
the OΔE obtained by applying a time-marching method to the representative ODE
in the following operational form:

P(E)un = Q(E) · aeμhn. (2.126)

The terms P(E) and Q(E) are polynomials in E referred to as the characteristic poly-
nomial and the particular polynomial, respectively. The shift operator E is defined
formally by the relations

un+1 = Eun, un+k = Ekun

and also applies to exponents, thus

bα · bn = bn+α = Eα · bn,

where α can be any fraction or irrational number.

7 Recall that λ and hence σ are in general complex.
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The general solution of (2.126) can be expressed as

un =
K∑

k=1

ck(σk)
n + aeμhn · Q(eμh)

P(eμh)
, (2.127)

where σk are the K roots of the characteristic polynomial, P(σ) = 0. An important
subset of this solution occurs when μ = 0, representing a time-invariant particular
solution, or a steady state. In such a case

un =
K∑

k=1

ck(σk)
n + a · Q(1)

P(1)
. (2.128)

We shall illustrate the application of (2.126) and (2.127) with two examples, a two-
step multistep method and a multistage method, MacCormack’s predictor-corrector
method (2.111).

Consider first the leapfrog method, a second-order explicit two-step multistep
method given by8

un+1 = un−1 + 2hu∝
n. (2.129)

Applying it to the representative ODE gives

un+1 = un−1 + 2h(λun + aeμhn). (2.130)

After rearranging and introducing the shift operator (un+1 = Eun, un−1 = E−1un,)
we obtain

(E − 2λh − E−1)un = 2haeμhn, (2.131)

which is in the form (2.126) with

P(E) = E − 2λh − E−1, Q(E) = 2h. (2.132)

Setting P(σ) = 0 gives the relation

σ2 − 2λhσ − 1 = 0, (2.133)

which produces two σ roots:

σ1,2 = λh ±
√

λ2h2 + 1. (2.134)

8 The reader should observe the relationship between this time-marching method and the second-
order centered difference approximation to a first derivative.
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Thus the OΔE solution is

un = c1(λh +
√

λ2h2 + 1)n + c2(λh −
√

λ2h2 + 1)n

+aeμhn · 2h

eμh − 2λh − e−μh
. (2.135)

This OΔE solution has an important difference from that obtained for the explicit
and implicit Euler methods: two σ-roots. Only one of them approximates eλh. In this
case σ1 = λh + √

λ2h2 + 1 can be expanded in a Taylor series to show that it is
a second-order approximation to eλh. The root with this property is known as the
principal root, and the other root or roots are known as spurious roots. There are two
constants in the OΔE solution, but only one initial condition. This reflects the fact
that a method requiring data at time level n − 1 or earlier is not self starting. At the
first time step n = 0, un = u0 is known from the initial condition, but un−1 is not
known. Therefore, such methods are normally started using a self-starting method
for the first step or steps, as required, and this provides the second necessary constant.
If the method is started in this manner, the coefficients of the spurious roots will have
small (but not zero) magnitudes.

As our final example, we will derive the solution to the OΔE obtained by apply-
ing MacCormack’s explicit predictor–corrector method (2.111) to the representative
ODE. This methodology can be followed to analyze Runge-Kutta methods as well.9

Applying MacCormack’s method to the representative equation gives

ũn+1 − (1 + λh)un = aheμhn

− 1
2 (1 + λh)ũn+1 + un+1 − 1

2un = 1
2aheμh(n+1),

(2.136)

which is a coupled set of linear OΔEs with constant coefficients. The second line in
(2.136) is obtained by noting that

ũ∝
n+1 = F(ũn+1, tn + h)

= λũn+1 + aeμh(n+1). (2.137)

Introducing the shift operator E, we obtain

[
E −(1 + (eμh))

− 1
2 (1 + (eμh))E E − 1

2

] [
ũ
u

]
n

= h ·
[

1
1
2E

]
ũ. (2.138)

This system has a solution for both the intermediate family ũn and the final family
un. Since we are interested only in the final family, we can use Cramer’s rule to obtain
the operational form (2.126) as follows:

9 In fact, MacCormack’s method can be considered a second-order Runge-Kutta method.
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P(E) = det

⎡
⎣E −(1 + λh)

− 1
2 (1 + λh)E E − 1

2

⎤
⎦ = E

(
E − 1 − λh − 1

2
λ2h2

)

Q(E) = det

⎡
⎣E h

− 1
2 (1 + λh)E 1

2hE

⎤
⎦ = 1

2
hE(E + 1 + λh).

The σ-root is found from

P(σ) = σ

(
σ − 1 − λh − 1

2
λ2h2

)
= 0,

which has only one nontrivial root

σ = 1 + λh + 1

2
λ2h2. (2.139)

The complete solution can therefore be written

un = c1

(
1 + λh + 1

2
λ2h2

)n

+ aeμhn ·
1
2h
(
eμh + 1 + λh

)
eμh − 1 − λh − 1

2λ
2h2

. (2.140)

The σ-root is clearly a second-order approximation to eλh, and the particular solution
can also be shown to be a second-order approximation of the particular solution in
(2.114). This example provides a template that can be used for the derivation and
analysis of predictor–corrector and Runge-Kutta methods up to third order. Runge-
Kutta methods of order four and higher must be derived based on a nonlinear ODE.

Weare now in a position to generalizewhatwehave learned about theσ-roots asso-
ciated with a time-marching method. Recall that we intend to apply time-marching
methods to systems of ODEs generated by discretizing the spatial derivatives in a
PDE. For the linear, constant-coefficient systems of ODEs associated with our model
equations, which are in the form (2.36), the solution can be written in the form (2.44),
which we rewrite here as follows, noting that t = nh:

�u(t) = c1
(
eλ1h

)n �x1 + · · · + cm

(
eλmh

)n �xm + · · · + cM

(
eλM h

)n �xM + P.S., (2.141)

where the λm and �xm are the eigenvalues and eigenvectors of the A matrix in the
ODE system, and for the present we are not interested in the form of the particular
solution (P.S.).

Both the explicit Euler and MacCormack methods are one-root methods; they
produce one σ-root for each λ-root. If we use such a method to time march the
system of ODEs, the solution of the resulting OΔEs is
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�un = c1(σ1)
n �x1 + · · · + cm(σm)n �xm + · · · + cM(σM)n �xM + P.S., (2.142)

where the cm and the �xm in the two equations are identical, andσm is an approximation
to eλh that depends on the specific time-marching method. If the method produces
one or more spurious σ-roots for each λ, as in our example of the leapfrog method,
then the OΔE solution is

�un = c11(σ1)
n
1 �x1 + · · · + cm1(σm)n

1 �xm + · · · + cM1(σM)n
1 �xM + P.S.

+ c12(σ1)
n
2 �x1 + · · · + cm2(σm)n

2 �xm + · · · + cM2(σM)n
2 �xM

+ c13(σ1)
n
3 �x1 + · · · + cm3(σm)n

3 �xm + · · · + cM3(σM)n
3 �xM

+ etc., if there are more spurious roots. (2.143)

The σ-root that approximates eλmh is referred to as the principal σ-root, and desig-
nated (σm)1. Application of the same time-marchingmethod to all of the equations in
a coupled system of linear ODEs in the form of (2.36) always produces one principal
σ-root for every λ-root that satisfies the relation

σ = 1 + λh + 1

2
λ2h2 + · · · + 1

k!λ
khk + O

(
hk+1

)
, (2.144)

where k is the order of the time-marching method. This property can be stated
regardless of the details of the time-marching method, knowing only that its leading
error is O

(
hk+1

)
. Thus the principal root is an approximation to eλh up to O

(
hk
)
.

Spurious roots arise if a method uses data from time level n − 1 or earlier to
advance the solution from time level n to n + 1. Such roots originate entirely from
the numerical approximation of the time-marching method and have nothing to do
with the ODE being solved. However, generation of spurious roots does not, in
itself, make a method inferior. In fact, many very accurate methods in practical
use for integrating some forms of ODEs have spurious roots. Based on the starting
technique, the magnitudes of the coefficients of the spurious roots will be small but
nonzero. If the spurious roots themselves have amplitudes less than unity, they will
not grow and hencewill not contaminate the solution. Thuswhile spurious rootsmust
be considered in stability analysis, they play virtually no role in accuracy analysis.
Table 2.1 shows the λ–σ relations for various methods.

2.6.3 Implementation of Implicit Methods

Although the approach we have presented for analyzing time-marching methods
based on the representative ODE is a powerful means of understanding the behaviour
of time-marchingmethods, it obscures someaspects of the implementation of implicit
methods to systems of nonlinear ODEs. These are introduced here.
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Table 2.1 Some λ–σ relations

1. σ − 1 − λh = 0 Explicit Euler
2. σ2 − 2λhσ − 1 = 0 Leapfrog
3. σ2 − (1 + 3

2λh)σ + 1
2λh = 0 AB2

4. σ3 − (1 + 23
12λh)σ2 + 16

12λhσ − 5
12λh = 0 AB3

5. σ(1 − λh) − 1 = 0 Implicit Euler
6. σ(1 − 1

2λh) − (1 + 1
2λh) = 0 Trapezoidal

7. σ2(1 − 2
3λh) − 4

3σ + 1
3 = 0 2nd-order backward

8. σ2(1 − 5
12λh) − (1 + 8

12λh)σ + 1
12λh = 0 AM3

9. σ2 − (1 + 13
12λh + 15

24λ2h2)σ + 1
12λh(1 + 5

2λh) = 0 ABM3

10. σ3 − (1 + 2λh)σ2 + 3
2λhσ − 1

2λh = 0 Gazdag

11. σ − 1 − λh − 1
2λ2h2 = 0 RK2

12. σ − 1 − λh − 1
2λ2h2 − 1

6λ3h3 − 1
24λ4h4 = 0 RK4

13. σ2(1 − 1
3λh) − 4

3λhσ − (1 + 1
3λh) = 0 Milne 4th

Application to Systems of Equations. Consider the application of the implicit Euler
method to our generic system of equations given by

�u∝ = A�u − �f (t), (2.145)

where �u and �f are vectors, and we still assume that A is not a function of �u or t.
One obtains the following system of algebraic equations that must be solved at each
time step:

(I − hA)�un+1 − �un = −h�f (t + h) (2.146)

or

�un+1 = (I − hA)−1[�un − h�f (t + h)]. (2.147)

The inverse is not actually performed; rather we solve (2.146) as a linear system of
equations. For our one-dimensional examples, the system of equations which must
be solved is tridiagonal (e.g. for periodic convection, A = −aBp(−1, 0, 1)/2Δx),
and hence its solution is inexpensive, but in multiple dimensions the bandwidth can
be very large. In general, the cost per time step of an implicit method is thus larger
than that of an explicit method. The primary area of application of implicit methods
is in the solution of stiff ODEs; this is further discussed in Sect. 2.7.
Application to Nonlinear Equations. Now consider the general nonlinear scalar
ODE given by

du

dt
= F(u, t). (2.148)
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Application of the implicit Euler method gives

un+1 = un + hF(un+1, tn+1). (2.149)

This is a nonlinear difference equationwhich requires a nontrivialmethod to solve for
un+1. There are several different approaches one can take to solving this nonlinear
difference equation. An iterative method, such as Newton’s method, can be used.
Other alternatives include local linearization and dual time stepping.

In order to implement a local linearization, we expand F(u, t) about some refer-
ence point in time. Designate the reference value by tn and the corresponding value
of the dependent variable by un. A Taylor series expansion about these reference
quantities gives

F(u, t) = Fn +
(

∂F

∂u

)
(u − un) +

(
∂F

∂t

)
(t − tn) + O(h2). (2.150)

This represents a second-order, locally-linear approximation to F(u, t) that is valid
in the vicinity of the reference station tn and the corresponding un = u(tn). With this
we obtain the locally (in the neighborhood of tn) linear representation of (2.148),
namely

du

dt
=
(

∂F

∂u

)
n
u +

[
Fn −

(
∂F

∂u

)
n
un

]
+
(

∂F

∂t

)
n
(t − tn) + O(h2). (2.151)

As an example of how such an expansion can be used, consider the mechanics of
applying the trapezoidal method for the time integration of (2.148). The trapezoidal
method is given by

un+1 = un + 1

2
h(Fn+1 + Fn). (2.152)

Using (2.150) to evaluate Fn+1 = F(un+1, tn+1), one finds

un+1 = un + 1

2
h

[
Fn +

(
∂F

∂u

)
n
(un+1 − un) + h

(
∂F

∂t

)
n
+ O(h2) + Fn

]
. (2.153)

Note that theO(h2) termwithin the brackets (which is due to the local linearization) is
multiplied by h and therefore preserves the second-order accuracy of the trapezoidal
method.The local time linearization updated at the endof each time step and the trape-
zoidal time-marching method combine to make a second-order-accurate numerical
integration process. There are, of course, other second-order implicit time-marching
methods that can be used. The important point to be made here is that local lineariza-
tion updated at each time step has not reduced the order of accuracy of a second-order
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time-marching process. Extension to systems of equations is straightforward, with(
∂F
∂u

)
n
representing a Jacobian matrix.

A useful reordering of the terms in (2.153) results in the expression

[
1 − 1

2
h

(
∂F

∂u

)
n

]
Δun = hFn + 1

2
h2
(

∂F

∂t

)
n
, (2.154)

which is known as the delta form. In many fluidmechanics applications the nonlinear
function F is not an explicit function of t. In such cases the partial derivative of
F(u) with respect to t is zero, and (2.154) simplifies to the second-order-accurate
expression

[
1 − 1

2
h

(
∂F

∂u

)
n

]
Δun = hFn. (2.155)

Following the same steps with the implicit Euler method and again assuming that F
is not an explicit function of time, we arrive at the form

[
1 − h

(
∂F

∂u

)
n

]
Δun = hFn. (2.156)

We see that the only difference between the implementation of the trapezoidalmethod
and the implicit Euler method is the factor of 1/2 in the brackets of the left side of
(2.155) and (2.156). While a method of second-order accuracy or higher is preferred
for unsteady problems, the first-order implicit Euler method is an excellent choice
for steady problems.

Consider the limit h → ∞ of (2.156) obtained by dividing both sides by h and
setting 1/h = 0. There results

−
(

∂F

∂u

)
n
Δun = Fn (2.157)

or

un+1 = un −
[(

∂F

∂u

)
n

]−1

Fn. (2.158)

This is thewell-knownNewtonmethod for finding the roots of the nonlinear equation
F(u) = 0.

Finally, we illustrate the dual time-stepping approach by applying it to the trape-
zoidal method. The algebraic equation that must be solved at each time step is given
by (2.152). Hence un+1 is the solution to

G(u) = 0, (2.159)
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where

G(u) = −u + un + 1

2
h (F(u) + F(Un)) . (2.160)

While Newton’s method provides one option for solving such an equation, another
approach is to consider un+1 to be the steady solution of the following ODE:

du

dτ
= G(u), (2.161)

where τ is often referred to as pseudo time.One can use an appropriate time-marching
method to solve thisODE, and typically themethodwould be optimized for obtaining
steady solutions efficiently. Note thatΔτ can be selected for rapid convergence to the
steady solution of (2.161), while h determines the time accuracy of the trapezoidal
method. If an explicit time-marching method is used to solve (2.161) for a system
of equations, then one has an implementation of an implicit method that does not
require the solution of a linear system of algebraic equations at each time step.

2.7 Stability Analysis

Stability of numerical algorithms for the solution of PDEs is an important and com-
plex topic. Here we will simplify matters and consider only time-dependent ODEs
and OΔEs in which the coefficient matrices are independent of both u and t. We
will refer to such matrices as stationary. In the preceding sections, we developed the
representative forms of ODEs generated from the basic PDEs by the semi-discrete
approach, and then the OΔEs generated from the representative ODEs by application
of time-marching methods. These are represented by

d�u
dt

= A�u − �f (t) (2.162)

and

�un+1 = C�un − �gn, (2.163)

respectively. For a one-step method, the latter form is obtained by applying a time-
marching method to the generic ODE form in a fairly straightforward manner. For
example, the explicit Euler method leads to C = I + hA, and �gn = h�f (nh). Methods
involving two or more steps can always be written in the form of (2.163) by intro-
ducing new dependent variables. Note also that only methods in which the time and
space discretizations are treated separately can be written in an intermediate semi-
discrete form such as (2.162). The fully-discrete form, (2.163), and the associated
stability definitions and analysis are applicable to all methods.
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Our definitions of stability are based entirely on the behavior of the homogeneous
parts of (2.162) and (2.163). The stability of (2.162) depends entirely on the eigen-
system10 of A. The stability of (2.163) can often also be related to the eigensystem
of its matrix. However, in this case the situation is not quite so simple since, in our
applications to partial differential equations (especially hyperbolic ones), a stability
definition can depend on both the time and space differencing. Analysis of these
eigensystems has the important added advantage that it gives an estimate of the rate
at which a solution approaches a steady-state if a system is stable. We will consider
only systems with complete eigensystems; for a discussion of defective systems, see
Lomax et al. [1]. Note that a complete system can be arbitrarily close to a defective
one, in which case practical applications can make the properties of the latter appear
to dominate.

If A and C are stationary, we can estimate their fundamental properties. For exam-
ple, in Sect. 2.3.4, we found from ourmodel ODEs for diffusion and periodic convec-
tion what could be expected for the eigenvalue spectra of practical physical problems
containing these phenomena. They are important enough to be summarized by the
following:

• For diffusion-dominated flows, the λ-eigenvalues tend to lie along the negative
real axis.

• For convection-dominated flows, the λ-eigenvalues tend to lie along the imaginary
axis.

2.7.1 Inherent Stability of ODEs

Here we state the standard stability criterion used for ordinary differential equations:

For a stationary matrix A, (2.162) is inherently stable if,

when �f is constant, �u remains bounded as t → ∞. (2.164)

Note that inherent stability depends only on the transient solution of the ODEs.
If a matrix has a complete eigensystem, all of its eigenvectors are linearly inde-

pendent, and the matrix can be diagonalized by a similarity transformation. In such
a case it follows at once from (2.141), for example, that the ODEs are inherently
stable if and only if

�(λm) ≤ 0 for all m. (2.165)

This states that, for inherent stability, all of the λ eigenvalues must lie on, or to the
left of, the imaginary axis in the complex λ plane. This criterion is satisfied for the
model ODEs representing both diffusion and periodic convection.

10 This is not the case if the coefficient matrix depends on t, even if it is linear.
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2.7.2 Numerical Stability of OΔEs

The OΔE companion to (2.164) is:

For a stationary matrix C, (2.163) is numerically stable if,

when �g is constant, �un remains bounded as n → ∞. (2.166)

We see that numerical stability depends only on the transient solution of the OΔEs.
This definition of stability is sometimes referred to as asymptotic or time stability.

Consider a set of OΔEs governed by a complete eigensystem. The stability
criterion, according to the condition set in (2.166), follows at once from a study
of (2.142) and its companion for multiple σ-roots, (2.143). Clearly, for such systems
a time-marching method is numerically stable if and only if

∣∣(σm)k

∣∣ ≤ 1 for all m and k. (2.167)

This condition states that, for numerical stability, all of the σ eigenvalues (both
principal and spurious, if there are any) must lie on or inside the unit circle in the
complex σ-plane.

The most important aspect of numerical stability occurs under conditions when:

• one has inherently stable, coupled systems with λ-eigenvalues having widely sep-
arated magnitudes,

or

• we seek only to find a steady-state solution using a path that includes the unwanted
transient.

In both of these cases there exist in the eigensystems relatively large values of
|λh| associated with eigenvectors that we wish to drive through the solution process
without any regard for their individual accuracy. This situation is themajormotivation
for the study of numerical stability and leads to the subject of stiffness discussed later
in this section.

2.7.3 Unconditional Stability, A-stable Methods

A numerical method is unconditionally stable if it is stable for all ODEs that are
inherently stable. A method with this property is said to be A-stable. It can be proved
that the order of an A-stable linear multistep method cannot exceed two, and, further-
more that of all 2nd-order A-stable methods, the trapezoidal method has the smallest
truncation error.
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2.7.4 Stability Contours in the Complex λh Plane.

A convenient way to present the stability properties of a time-marching method is to
plot the locus of the complex λh for which |σ| = 1, such that the resulting contour
goes through the point λh = 0. Here |σ| refers to the maximum absolute value of
any σ, principal or spurious, that is a root to the characteristic polynomial for a given
λh. It follows from Sect. 2.7.2 that on one side of this contour the numerical method
is stable, while on the other, it is unstable. We refer to it, therefore, as a stability
contour.

Consider, for example, the explicit Euler method, for which

σ = 1 + λh = 1 + λrh + iλih, (2.168)

where λr and λi denote the real and imaginary parts of λ. Setting |σ| = 1 leads to

(1 + λrh)2 + (λih)2 = 1, (2.169)

which is the equation of a unit circle in the complex λh plane centered at (−1, 0).
The explicit Euler method is stable for λh values on or inside this circle. This means
that it is unstable for the model periodic convection ODE and convection-dominated
problems in general. For the model diffusion ODE it is conditionally stable. The time
step must be chosen such that the eigenvalue of largest magnitude, which is given by

λ = ν

Δx2

[
−2 + 2 cos

(
Mπ

M + 1

)]
(2.170)

lies on or inside the unit circle. This gives

h ≤ Δx2

ν
⎩
1 − cos

(
Mπ

M+1

)] ≈ Δx2

2ν
, (2.171)

or

νh

Δx2
≤ 1

2
, (2.172)

where νh/Δx2 is often referred to as the Von Neumann number.
The stability contour of the explicit Eulermethod is typical of all stability contours

for explicit methods in the following two ways:

(1) The contour encloses a finite portion of the left-half complex λh-plane.
(2) The region of stability is inside the boundary, and therefore, it is conditional.
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Fig. 2.5 Stability contours for
explicit Runge–Kutta methods

Stability contours for explicit Runge-Kutta methods of orders one through four are
shown in Fig. 2.5.11 Notice that the contours of the third- and fourth-order Runge–
Kutta methods include a portion of the imaginary axis out to ±1.9i and ±2

√
2i,

respectively, and hence are suitable for convection-dominated problems.
The eigenvalues of the ODE system arising from the application of second-order

centered differencing to the periodic convection PDE are given in (2.46). The max-
imum magnitude is |a|/Δx, which leads to the following time step restriction when
this system is solved using the fourth-order Runge-Kutta method:

|a|h
Δx

≤ 2
√
2, (2.173)

where |a|h/Δx is known as the Courant or CFL number.
For the implicit Euler method, one can easily show that the stability contour is

a unit circle centered at (1, 0) with the unstable region being inside the circle. This
means that the method is numerically stable even when the ODEs that it is being
used to integrate are inherently unstable and is typical of many stability contours
for unconditionally stable implicit methods. For the trapezoidal method, the stability
boundary is the imaginary axis, so it is stable for λh lying on or to the left of this
axis. Hence its stability condition precisely mimics that of the ODE system.

11 The method labelled RK1 is the explicit Euler method.
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2.7.5 Fourier Stability Analysis

The most popular form of stability analysis for numerical schemes is the Fourier or
Von Neumann approach. This analysis is usually carried out on point operators, and
it does not depend on an intermediate stage of ODEs. Strictly speaking it applies
only to difference approximations of PDEs that produce OΔEs which are linear,
have no space or time varying coefficients, and have periodic boundary conditions.
In practical application it is often used as a guide for estimating the worthiness of a
method for more general problems. It serves as a fairly reliable necessary stability
condition, but it is by no means a sufficient one.

One takes data from a “typical” point in the flow field and uses this as constant
throughout time and space according to the assumptions given above. Then one
imposes a spatial harmonic as an initial value on the mesh and asks the question:
Will its amplitude grow or decay in time? The answer is determined by finding the
conditions under which

u(x, t) = eαt · eiκx (2.174)

is a solution to the difference equation, where κ is real and κΔx lies in the range
0 ≤ κΔx ≤ π. Since, for the general term,

u(n+Γ)
j+m = eα(t+ΓΔt) · eiκ(x+mΔx) = eαΓΔt · eiκmΔx · u(n)

j ,

the quantity u(n)
j is common to every term and can be factored out. In the remaining

expressions, we find the term eαΔt , which we represent by σ, thus

σ ≡ eαΔt .

Then, since eαt = (eαΔt
)n = σn, it is clear that:

For numerical stability |σ| ≤ 1 (2.175)

and the problem is to solve for the σs produced by any given method and, as a
necessary condition for stability, make sure that, in the worst possible combination
of parameters, (2.175) is satisfied.

The procedure can best be explained by an example. Consider the following fully-
discrete point operator for the model diffusion equation:

u(n+1)
j = u(n−1)

j + ν
2Δt

Δx2

(
u(n)

j+1 − 2u(n)
j + u(n)

j−1

)
, (2.176)

which is obtained by combining second-order centered differencingwith the leapfrog
method. Substitution of (2.174) into (2.176) gives the relation
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σ = σ−1 + ν
2Δt

Δx2

(
eiκΔx − 2 + e−iκΔx

)

or

σ2 +
[
4νΔt

Δx2
(1 − cosκΔx)

]
︸ ︷︷ ︸

2b

σ − 1 = 0. (2.177)

Thus (2.174) is a solution of (2.176) if σ is a root of (2.177). The two roots of (2.177)
are

σ1,2 = −b ±
√

b2 + 1,

fromwhich it is clear that one |σ| is always> 1.We find, therefore, that by the Fourier
stability test, this method is unstable for all ν, κ and Δt. The same conclusion can
be gleaned from a knowledge of the stability contour for the leapfrog method and
the eigenvalues of the diffusion ODE system. The leapfrog method is stable only for
pure imaginary eigenvalues with amplitude less than or equal to unity. The diffusion
ODE eigenvalues are strictly real and hence cannot be brought into the stable region
of the leapfrog method by any choice of h.

2.7.6 Stiffness of Systems of ODEs

The concept referred to as “stiffness” comes about from the numerical analysis of
mathematicalmodels constructed to simulate dynamic phenomena containingwidely
different time scales. The difference between the dynamic scales translates into a
difference in the magnitudes of the eigenvalues of the ODE system. The concept
of stiffness in CFD arises from the fact that we often do not need accurate time
resolution of eigenvectors associated with the large |λm| in the transient solution,
although these eigenvectors must remain coupled into the system to maintain the
accuracy of the spatial resolution. For example, recall the modified wavenumber for
a second-order centered difference approximation of a first derivative depicted in Fig.
2.2. For wavenumbers κΔx greater than unity the approximation is very inaccurate.
Therefore there is no reason to time-march the eigenvectors associated with these
wavenumbers with a high degree of accuracy. However, these components of the
solution must be time-marched in a stable manner so that they do not contaminate
the solution.

This situation is depicted graphically in Fig. 2.6 for the explicit Euler method. All
eigenvalues, whether they must be accurately time resolved or not, must lie within
the stable region of the time-marching method. In addition, those eigenvalues that
correspond to eigenvectors for which accurate time resolution is required must lie
within a region near the origin where the principal σ-root is a sufficiently accurate
approximation to eλh for the purposes of the specific simulation (labelled the accurate
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Fig. 2.6 Stable and accurate
regions for the explicit Euler
method

region). In the figure, the time step has been chosen so that time accuracy is given to
the eigenvectors associatedwith the eigenvalues lying in the small circle, and stability
without time accuracy is given to those associated with the eigenvalues lying outside
of the small circle but still inside the large circle.

We term the eigenvalues corresponding to eigenvectors for which time accuracy
is required the driving eigenvalues, and those for which only stability is required are
termed parasitic eigenvalues. Unfortunately, although time accuracy requirements
are dictated by the driving eigenvalues, numerical stability requirements are dictated
by the parasitic ones. If a time step h chosen on the basis of stability requirements is
sufficiently small that the driving eigenvalues fall within the accurate region, then the
time step choice is described as stability limited. Similarly, if a time step h chosen on
the basis of accuracy requirements is sufficiently small that the parasitic eigenvalues
fallwithin the stable region, then the time step choice is described as accuracy limited.

The stiffness of anODEsystem is related to the ratio of themagnitude of the largest
parasitic eigenvalue to that of the largest driving eigenvalue. If this ratio is large, the
system is stiff, and, if a conditionally stable time-marching method is used, the time
step selection will be severely constrained by stability requirements. In other words,
the time step necessary for stability is much smaller than that required for accuracy of
the driving eigenvalues, and the simulation can be inefficient, requiring many more
time steps than are actually needed for accurate resolution of the driving modes. In
such instances, unconditionally stable implicit methods become preferable, as the
time step can be selected solely on the basis of the accuracy requirements. Since
implicit methods typically require more computation per time step, the comparison
depends on the degree of stiffness of the problem.As the degree of stiffness increases,
the advantage tilts toward implicit methods, as the reduced number of time steps
begins to outweigh the increased cost per time step.
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Chapter 3
Governing Equations

The governing equations are presented in the PDE form solved numerically by finite-
difference methods as well as the integral form solved numerically by finite-volume
methods. In addition, the quasi-one-dimensional Euler equations and the shock-tube
problem are given, along with a means for obtaining their exact solutions. These
form the basis of the programming assignments in this and subsequent chapters.

3.1 The Euler and Navier-Stokes Equations

3.1.1 Partial Differential Equation Form

Flow of a continuum fluid is governed by a set of partial differential equations
collectively known as the Navier-Stokes equations.1 They can be written in various
different forms.We present the following form, known as conservative form, because
it is advantageous for numerical solution, as we shall see later, and restrict our interest
to two-dimensional Cartesian coordinates for simplicity of exposition. Extension to
three dimensions is straightforward. In two dimensions, there are four equations,
representing the conservation of mass, two components of momentum, and energy.
For an unsteady compressible flow, these can be written as follows:

∂Q

∂t
+ ∂E

∂x
+ ∂F

∂y
= ∂Ev

∂x
+ ∂Fv

∂y
, (3.1)

1 Formally, the Navier-Stokes equations are the equations arising from the conservation of momen-
tum; they do not include the equations describing conservation of mass and energy. We follow the
prevailing usage and term the whole set the Navier-Stokes equations.
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where

Q =




π
πu
πv
e


 , E =




πu
πu2 + p

πuv
u(e + p)


 , F =




πv
πuv

πv2 + p
v(e + p)


 , (3.2)

Ev =




0
νxx

νxy

f4


 , Fv =




0
νxy

νyy

g4


 . (3.3)

The variable Q represents the conservative dependent variables per unit volume,
including the density, π, the components of momentum per unit volume, πu and πv,
where u and v are the Cartesian velocity components, and the total energy per unit
volume, e. The total energy includes internal and kinetic energy and can be written as

e = π

(
δ + u2 + v2

2

)
, (3.4)

where δ is the internal energy per unit mass. The vectors E and F are known as
the inviscid flux vectors. They contain convective fluxes plus terms associated with
pressure. For some flow problems, other terms, such as gravitational forces, can be
important and should be included. In the momentum equations, the pressure terms
represent forces; in the energy equation they are associated with the work done
by the pressure forces. Although it is important to understand these equations as
conservation laws for mass, momentum, and energy, it is also instructive to recognize
that themomentum equations are an expression of the fact that in an inertial reference
frame, the time rate of change of momentum of a particle or collection of particles is
equal to the net force acting on the particle or collection of particles. In other words,
the momentum equations are a statement of Newton’s second law, force equals mass
times acceleration.

Wewill restrict our attention here to thermally and calorically perfect gases, giving
the relations

p = πRT (3.5)

and
δ = cvT , (3.6)

where p is the pressure, R is the specific gas constant, T is the temperature, and cv
is the specific heat capacity at constant volume. The equation of state enables the
pressure to be expressed in terms of the conservative flow variables as follows:

p = πRT (3.7)
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= πR

(
δ

cv

)
(3.8)

= (κ − 1)πδ (3.9)

= (κ − 1)
(

e − π

2
(u2 + v2)

)
(3.10)

= (κ − 1)

⎡
e − 1

2π

(
(πu)2 + (πv)2

)⎢
, (3.11)

where κ is the ratio of specific heats, cp/cv, cp is the specific heat capacity at constant
pressure, and we have used the relation

cv = R

κ − 1
. (3.12)

For a perfect gas, the speed of sound, a, satisfies the relations

a2 = κp

π
= κRT . (3.13)

Alternative equations of state must be used under conditions when the perfect gas
law does not apply, such as flows at very high temperatures.

The vectors Ev and Fv include terms associated with viscosity and heat conduc-
tion. We will consider Newtonian fluids here, but the reader is reminded that this
assumption is not universally applicable. For a Newtonian fluid, the viscous stresses
are given in two dimensions by

νxx = μ

(
4

3

∂u

∂x
− 2

3

∂v

∂y

)
,

νxy = μ

(
∂u

∂y
+ ∂v

∂x

)
,

νyy = μ

(
−2

3

∂u

∂x
+ 4

3

∂v

∂y

)
, (3.14)

where μ is the dynamic viscosity, which is typically a function of temperature, and
for air can often be determined using Sutherland’s law. The viscous terms appearing
in the momentum equations are forces. The terms f4 and g4 in the energy equation
represent the work done by the viscous forces as well as heat conduction.

Heat conduction is governed by Fourier’s law, which states that the local heat flux,
which is the rate of flow of heat per unit area per unit time, is directly proportional
to the local gradient of the temperature. The constant of proportionality, k, is known
as the thermal conductivity. Based on Fourier’s law, the heat conduction terms can
be written in two-dimensional Cartesian coordinates as

∂

∂x

(
k
∂T

∂x

)
+ ∂

∂y

(
k
∂T

∂y

)
. (3.15)
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It is convenient to introduce the Prandtl number, Pr, which is the ratio of kinematic
viscosity to thermal diffusivity. It is given by

Pr = μcp
k

. (3.16)

This dimensionless number depends on the properties of the fluid. For air, the Prandtl
number is close to 0.71 for a wide range of temperatures. For a perfect gas, the heat
conduction terms can thus be written as

∂

∂x

(
μ

Pr(κ − 1)

∂a2

∂x

)
+ ∂

∂y

(
μ

Pr(κ − 1)

∂a2

∂y

)
, (3.17)

where we have used the relation

cp = κR

κ − 1
. (3.18)

Hence we obtain the following expressions for the terms f4 and g4 in the energy
equation:

f4 = uνxx + vνxy + μ

Pr(κ − 1)

∂a2

∂x
,

g4 = uνxy + vνyy + μ

Pr(κ − 1)

∂a2

∂y
. (3.19)

It is often convenient to non-dimensionalize the equations. In order to do so, we
require a reference length, l, normally chosen as some characteristic physical length
scale in the problem, a reference density, π∞, often chosen for an external flow as the
density of the undisturbed fluid far from the body, and a reference velocity scale. It
is traditional in fluid dynamics to choose a velocity scale such as u∞, the velocity of
the body moving through the fluid. For our purpose here, it is more convenient to use
a∞, the speed of sound in the undisturbed air far from the body, since u∞ could be
zero for some flow problems, such as a helicopter in hover. The conditions far from
the body are often called free stream conditions. With these reference quantities, we
obtain the following non-dimensional quantities (indicated by the tilde):

⎣x = x

l
, ⎣y = y

l
, ⎣t = ta∞

l
,

⎣π = π

π∞
, ⎣u = u

a∞
, ⎣v = v

a∞
,

⎣e = e

π∞a2∞
, ⎣μ = μ

μ∞
. (3.20)



3.1 The Euler and Navier-Stokes Equations 63

Substituting these non-dimensional quantities into the Navier-Stokes equations,
dropping the tildes, and defining the Reynolds number as

Re = π∞la∞
μ∞

, (3.21)

we obtain the following non-dimensional form of the equations:

∂Q

∂t
+ ∂E

∂x
+ ∂F

∂y
= Re−1

(
∂Ev

∂x
+ ∂Fv

∂y

)
, (3.22)

where all terms are as previously defined except in terms of non-dimensional quan-
tities. It is important to note that this definition of the Reynolds number based on a∞
differs from the conventional definition based on u∞. The two are related by the free
stream Mach number, M∞ = u∞/a∞.

The Euler equations are obtained from the Navier-Stokes equations by neglecting
the terms associatedwith viscosity and heat conduction, i.e. settingEv andFv to zero.
Numerical solutions of the Euler equations can be useful if the effect of viscosity
and heat conduction on the quantities of interest is small. There are many other
simplified forms of the Navier-Stokes equations that can be useful for specific classes
of problems. It is important that their limitations be well understood.

We stated earlier that the above equations are in conservative form. There are two
aspects to this. The first is that we choose the conserved quantities, mass, momen-
tum, and energy, per unit volume as the dependent variables. It is also possible to
write a system of equations in terms of other variables, such as the primitive vari-
ables, density, velocity, and pressure, that is analytically equivalent but can lead
to different solutions when solved numerically. For example, for a perfect gas the
one-dimensional Euler equations can be written in terms of the primitive variables
R = [π, u, p]T as follows:

∂R

∂t
+ Ã

∂R

∂x
= 0 , (3.23)

where

Ã =

 u π 0
0 u π−1

0 κp u


 .

The second aspect is related to the products appearing in the fluxes. In the con-
servative form, the product rule of differentiation is not applied. A term such as

∂

∂x
(πu)

appearing in the mass conservation equation is not expanded as
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π
∂u

∂x
+ u

∂π

∂x
,

which is in non-conservative form. Again the two forms are analytically equivalent,
but under some circumstances, such as flows with nonstationary shock waves, an
algorithm that is not conservative can produce substantially inaccurate solutions.

Although we do not normally solve non-conservative forms of the equations,
they can be useful for analysis. For example, consider the one-dimensional Euler
equations in conservative form:

∂Q

∂t
+ ∂E

∂x
= 0, (3.24)

where

Q =

Q1

Q2
Q3


 =


 π

πu
e


 , E =


E1

E2
E3


 =


 πu

πu2 + p
u(e + p)


. (3.25)

If the solution is smooth, (3.24) can be rewritten in the following form:

∂Q

∂t
+ A

∂Q

∂x
= 0 , (3.26)

where

A = ∂E

∂Q
(3.27)

is known as the flux Jacobian. The flux Jacobian is derived by first writing the flux
vector in terms of the conservative variables

E =




Q2

(κ − 1)Q3 + 3−κ
2

Q2
2

Q1

κ Q3Q2
Q1

− κ−1
2

Q3
2

Q2
1



, (3.28)

which gives, for a perfect gas,

A = ∂Ei

∂Qj
=




0 1 0
κ−3
2

(
Q2
Q1

)2
(3 − κ)Q2

Q1
κ − 1

A31 A32 κ
(

Q2
Q1

)


, (3.29)
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where

A31 = (κ − 1)

(
Q2

Q1

)3
− κ

(
Q3

Q1

)(
Q2

Q1

)

A32 = κ

(
Q3

Q1

)
− 3(κ − 1)

2

(
Q2

Q1

)2
. (3.30)

This can be rewritten in terms of π, u, and e as

A =




0 1 0

κ−3
2 u2 (3 − κ)u κ − 1

A31 A32 κu


, (3.31)

where

A31 = (κ − 1)u3 − κ
ue

π

A32 = κ
e

π
− 3(κ − 1)

2
u2. (3.32)

The eigenvalues of the flux Jacobian A are u, u + a, u − a. Since these are all real,
and the eigenvectors of A are linearly independent, the system (3.26) is hyperbolic.
Hence some important properties of these equations can be obtained from charac-
teristic theory. First, the eigenvalues represent the characteristic speeds at which
information is propagated. The convection of the fluid propagates information at
speed u, while sound waves propagate information at speeds u + a and u − a. If the
flow is supersonic, i.e. |u| > a, then all of the eigenvalues have the same sign, and
information is propagated in one direction only. If the flow is subsonic, i.e. |u| < a,
then the eigenvalues are of mixed sign, and information is propagated in both direc-
tions. This is critical in the design of numerical methods and in the development
of boundary conditions. Riemann invariants can be found that are propagated at the
characteristic speeds, as long as the solution remains smooth. The entropy ln(p/πκ)

propagates at speed u, while the quantities u±2a/(κ −1) propagate at speeds u±a.
The flux Jacobian A in (3.26) is related to the matrix Ã in (3.23) by the following

similarity transform:
A = SÃS−1, (3.33)

where S = ∂Q/∂R. Hence the eigenvalues of the two matrices are identical, con-
sistent with the fact that (3.26) and (3.23) are different representations of the same
physical processes.
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3.1.2 Integral Form

The Navier-Stokes equations governing an unsteady compressible flow can also be
written in the following integral form in two-dimensional Cartesian coordinates:

d

dt

⎤⎤
V(t)

Qdxdy +
⎥

S(t)
(Edy − Fdx) = Re−1

⎥
S(t)

(Evdy − Fvdx) (3.34)

for an arbitrary control volume V(t) bounded by the surface S(t), with all variables
as defined and non-dimensionalized previously. This form is obtained from the more
general coordinate-free form

d

dt

⎤
V(t)

QdV +
⎥

S(t)
n̂ · FdS = 0, (3.35)

where n̂ is the unit vector normal to the surface pointing outwards, and F is the flux
tensor, including inviscid, viscous, and heat conduction terms. In two-dimensional
Cartesian coordinates, the flux tensor is given by

F = (E − Re−1Ev)î + (F − Re−1Fv)ĵ, (3.36)

where î and ĵ are unit vectors in the x and y directions, respectively. The contour in
(3.34) is traversed in a counter-clockwise direction; hence the area-weighted outward
normal can be written as

n̂dS = îdy − ĵdx. (3.37)

3.1.3 Physical Boundary Conditions

The physical boundary conditions that must be satisfied at a rigid body surface are
as follows. For an inviscid flow governed by the Euler equations, the flow must be
tangent to the surface; in other words, the velocity component normal to the surface
must be zero:

(uî + vĵ) · n̂ = 0 . (3.38)

For viscous flows governed by the Navier-Stokes equations, the no-slip condition
must be satisfied at the surface: all components of velocity must be zero. In addition,
for viscous flows, it is normally assumed that the surface is either held at a fixed
temperature or is adiabatic. In the latter case, the gradient of the temperature in a
direction normal to the surface is zero at the surface:

∇T · n̂ = 0. (3.39)
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Other physical boundary conditions can vary from problem to problem. For exter-
nal flow problems, there is often a requirement that as the distance from the body
approaches infinity, the flow must approach its undisturbed state. This condition is
usually applied at a boundary some finite distance from the body. Other problems
may involve specified incoming flows.

3.2 The Reynolds-Averaged Navier-Stokes Equations

When the Navier-Stokes equations are time-averaged over a time interval that is long
in comparisonwith the turbulent time scales but short in comparison to other physical
time scales, apparent stresses known as Reynolds stresses as well as additional heat
flux terms appear. It is the function of a turbulence model, which typically involves
the solution of one or more partial differential equations, to furnish these additional
terms and thereby to provide closure to the system. For the remainder of this book,
all algorithms will be presented in the context of the Euler and Navier-Stokes equa-
tions rather than the Reynolds-averaged Navier-Stokes (RANS) equations, although
these algorithms are routinely used for the RANS equations. In order to apply these
algorithms to theRANSequations, theReynolds stressesmust be added to theNavier-
Stokes equations in the form given by the particular turbulence model selected, and
the solution algorithmmust be applied to any partial differential equations associated
with the turbulence model.

3.3 The Quasi-One-Dimensional Euler Equations
and the Shock-Tube Problem

The quasi-one-dimensional Euler equations and the shock-tube problem are used
throughout this book as examples and in the programming assignments. The quasi-
one-dimensional Euler equations govern the inviscid flow in a quasi-one-dimensional
channel with varying cross-sectional area per unit depth S(x) and can be written as
follows [1]:

∂(πS)

∂t
+ ∂(πuS)

∂x
= 0, (3.40)

∂(πuS)

∂t
+ ∂[(πu2 + p)S]

∂x
= p

dS

dx
, (3.41)

∂(eS)

∂t
+ ∂[u(e + p)S]

∂x
= 0, (3.42)
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where the variables t, x, π, u, p, and e have the same definitions as in Sect. 3.1.
These are typically solved for a steady flow in a channel with prescribed boundary
conditions.

The shock-tube problem is an initial-value problem. Viscosity is again neglected,
and the above equations are solved with S(x) = 1. The initial conditions are such
that there are two initial fluid states separated by a diaphragm at t = 0. These are
typically quiescent with different pressures and densities. Using x0 to represent the
location of the diaphragm and subscripts L and R to indicate the fluid states to the
left and right of the diaphragm, the initial conditions can be written as

u = 0, p = pL, π = πL, x < x0 (3.43)

u = 0, p = pR, π = πR, x ≥ x0 . (3.44)

When the diaphragm is removed instantaneously, a flow is initiated in the direction
from high pressure to low. For the example given later in the section, where pR < pL ,
a contact discontinuity separating the original two states propagates to the right, an
expansion wave propagates to the left, and a shock wave propagates to the right at
a speed higher than that of the contact surface. We assume that the process is termi-
nated before any of these waves reach the ends of the shock tube. Hence boundary
conditions are not required.

3.3.1 Exact Solution: Quasi-One-Dimensional Channel Flow

We present the equations needed to write a computer program to determine the exact
solution for a quasi-one-dimensional channel flow as a reference solution for com-
parison with numerical solutions. The relevant theory and explanation can be found
in most good gasdynamics textbooks (see Shapiro [1] for example). A problem is
defined by specifying the channel area variation, S(x), the total pressure and temper-
ature at the inlet, p01 and T01, the critical area, S∗, an indication of whether the initial
Mach number is subsonic or supersonic, and a shock location, xshock, if applicable.
The solution is calculated by marching from inlet to outlet. At a given x location,
both S and S∗ are known, so the local Mach number, M = u/a, can be calculated
from the following nonlinear equation using an iterative technique:

S

S∗ = 1

M

⎡
2

κ + 1

(
1 + κ − 1

2
M2
)⎢ κ+1

2(κ−1)

. (3.45)

A subsonic or supersonic initial Mach number guess should be used, depending on
the problem specification. The temperature and pressure can then be determined from
the isentropic relations:
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T = T01

1 + κ−1
2 M2

(3.46)

p = p01

(
1 + κ − 1

2
M2
)−

(
κ

κ−1

)
. (3.47)

Other variables, such as density, velocity, and sound speed, can be calculated using
the perfect gas relations and the definition of the Mach number. Once the specified
location of the shock is reached, if applicable, the Rankine-Hugoniot relations are
used to find the conditions downstream of the shock:

T0R = T0L (3.48)

M2
R = 2 + (κ − 1)M2

L

2κM2
L − (κ − 1)

(3.49)

pR

pL
= 2κM2

L − (κ − 1)

κ + 1
(3.50)

p0R

p0L
=
⎦[(κ + 1)/2]M2

L/{1 + [(κ − 1)/2]M2
L}) κ

κ−1

{[2κ/(κ + 1)]M2
L − (κ − 1)/(κ + 1)} 1

κ−1

. (3.51)

The density and sound speed downstream of the shock can then be found using the
perfect gas relations. The value of S∗ must also be recalculated to correspond to
conditions downstream of the shock from:

S∗
R = S∗

L
π∗

La∗
L

π∗
Ra∗

R
, (3.52)

where

π01 = p01
RT01

πR
0 = pR

0

RT01

a01 =
√

κp01
π01

aR
0 =

√
κpR

0

πR
0

π∗
La∗

L = π01a01

(
2

κ + 1

) κ+1
2(κ−1)

π∗
Ra∗

R = πR
0aR

0

(
2

κ + 1

) κ+1
2(κ−1)

.
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Fig. 3.1 Exact solution for
the subsonic channel flow
problem. a Pressure (in Pa).
b Mach number
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The solution downstream of the shock can then be calculated using (3.45) with these
new values of S∗ and p0.

We will consider two examples from Hirsch [2]. In both cases, S(x) is given by

S(x) =
{
1 + 1.5

⎦
1 − x

5

)2 0 ≤ x ≤ 5

1 + 0.5
⎦
1 − x

5

)2 5 ≤ x ≤ 10
(3.53)

where S(x) and x are in meters. In both cases, the fluid is air, which is considered to
be a perfect gas with R = 287 N ·m · kg−1 ·K−1, and κ = 1.4, the total temperature
is T0 = 300 K, and the total pressure at the inlet is p01 = 100 kPa. For the first case,
the flow is subsonic throughout the channel, with S∗ = 0.8. The pressure and Mach
number for this case are plotted in Fig. 3.1. For the second case, the flow is transonic,
with subsonic flow at the inlet, a shock at x = 7, and S∗ = 1. The pressure and Mach
number for this case are plotted in Fig. 3.2.
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Fig. 3.2 Exact solution for
the transonic channel flow
problem. a Pressure (in Pa).
b Mach number
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3.3.2 Exact Solution: Shock-Tube Problem

As in the previous section, we present without explanation the equations needed
to solve a shock-tube problem. See Hirsch [2] for more details. We assume initial
conditions as described earlier in Sect. 3.3, which lead to a solutionwith an expansion
wave traveling to the left, a contact surface moving to the right at speed V , and a
shock wave moving to the right at a speed C, where C > V . We thus define the
following states: The state to the left of the head of the expansion fan is denoted by
the subscript L; it is the original quiescent state to the left of the diaphragm. The
state within the expansion wave, where the variables vary continuously, is denoted
by the subscript 5. The constant state between the tail of the expansion fan and the
contact surface is denoted by the subscript 3. The constant state between the contact
surface and the shock wave is denoted by the subscript 2. Finally, the quiescent state
to the right of the shock, which is the original state to the right of the diaphragm, is
denoted by the subscript R.
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The normal shock relations must hold across the shock. Following Hirsch [2], we
define the pressure ratio across the shock as P = p2/pR. Across the contact surface,
pressure and velocity are continuous. The flow in the expansion wave is isentropic,
and characteristic theory can be applied. After some algebra, the following implicit
equation is found which must be solved for P:

√
2

κ(κ − 1)

P − 1√
1 + λP

= 2

κ − 1

aL

aR

[
1 −

(
pR

pL
P

) κ−1
2κ
]
, (3.54)

where

λ = κ + 1

κ − 1
,

and pL , pR, aL , and aR are the pressures and sound speeds associated with the initial
states. Recall that the sound speeds can be determined from the specified pressures
and densities using (3.13). Once the above equation has been solved by an iterative
method for nonlinear algebraic equations, such as Newton’s method, the pressure to
the left of the shock, p2, is known. The density to the left of the shock can be found
from

π2

πR
= 1 + λP

λ + P
. (3.55)

Since the pressure is continuous across the contact surface, we know that p3 = p2.
The propagation speed of the contact surface can then be found from

V = 2

κ − 1
aL

[
1 −

(
p3
pL

) κ−1
2κ
]
. (3.56)

The fluid velocity on either side of the contact surface must be equal to V, which
gives u3 = u2 = V . To complete the state to the left of the contact surface, the
density can be found by exploiting the fact that the flow in the expansion wave is
isentropic, and hence the entropy to the left of the contact surface is equal to that of
the original quiescent left state, giving

π3 = πL

(
p3
pL

) 1
κ

. (3.57)

The speed at which the shock wave propagates is given by

C = (P − 1)a2R
κu2

. (3.58)
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The head of the expansion wave travels to the left at speed aL . Therefore, for
x ≤ x0−aLt, the fluid state is defined by the original state to the left of the diaphragm.
The tail of the expansion wave moves to the left at a speed given by aL −V(κ +1)/2.
Thus the state between the tail of the expansion wave and the contact surface (state
3) is the solution for x0 + [V(κ + 1)/2− aL]t < x ≤ x0 + Vt. State 2 is the solution
for x0 + Vt < x ≤ x0 + Ct, and finally, for x > x0 + Ct, the solution is the original
state to the right of the diaphragm. To complete the solution, we require the state
within the expansion fan, that is for x0 − aLt < x ≤ x0 + [V(κ + 1)/2 − aL]t. It is
given by

u5 = 2

κ + 1

(
x − x0

t
+ aL

)

a5 = u5 − x − x0
t

p5 = pL

(
a5
aL

) 2κ
κ−1

π5 = κp5
a25

.

As an example, we consider the following shock-tube problem from Hirsch [2]:
pL = 105, πL = 1, pR = 104, and πR = 0.125, where the pressures are in Pa
and the densities in Kg/m3. The fluid is a perfect gas with κ = 1.4. Figure 3.3
displays the density and Mach number at t = 6.1 ms. Along with the steady channel
flow solutions shown in Figs. 3.1 and 3.2, this exact solution provides an excellent
reference for use in verifying numerical solutions.

3.4 Exercises

3.1 Write a computer program to determine the exact solution of the quasi-one-
dimensional Euler equations for the following subsonic problem. S(x) is given by

S(x) =
{
1 + 1.5

⎦
1 − x

5

)2 0 ≤ x ≤ 5

1 + 0.5
⎦
1 − x

5

)2 5 ≤ x ≤ 10
(3.59)

where S(x) and x are inmeters. The fluid is air, which is considered to be a perfect gas
with R = 287 N ·m · kg−1 ·K−1, and κ = 1.4, the total temperature is T0 = 300 K,
and the total pressure at the inlet is p01 = 100 kPa. The flow is subsonic throughout
the channel, with S∗ = 0.8. Compare your solution with that plotted in Fig. 3.1.
3.2Repeat Exercise 3.1 for a transonic flow in the same channel. The flow is subsonic
at the inlet, there is a shock at x = 7, and S∗ = 1. Compare your solution with that
plotted in Fig. 3.2.
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Fig. 3.3 Exact solution for
the shock-tube problem at
t = 6.1 ms. a Density (in
Kg/m3 ). b Mach number
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3.3Write a computer program to determine the exact solution for the following shock-
tube problem: pL = 105, πL = 1, pR = 104, and πR = 0.125, where the pressures are
in Pa and the densities in Kg/m3. The fluid is a perfect gas with κ = 1.4. Compare
your solution at t = 6.1 ms with that plotted in Fig. 3.3.
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Chapter 4
An Implicit Finite-Difference Algorithm

4.1 Introduction

A numerical solution algorithm for the Navier-Stokes equations converts the original
system of partial differential equations (PDEs) to a much larger system of algebraic
equations, which is then solved. Many such algorithms discretize space and time
independently, such that the PDEs are first reduced to ordinary differential equations
(ODEs) through the discretization of the spatial terms in the governing equations.
This semi-discrete ODE system is then converted to a system of ordinary difference
equations (OΔEs) through a time-marching method. This assumes that the PDE
system is time-dependent. If one is interested only in the steady solution of the
Navier-Stokes equations, then the time-derivative terms can be dropped, and there is
no intermediate ODE system. In this case, the spatial discretization directly reduces
the original nonlinear PDE system to a system of nonlinear algebraic equations.
Being nonlinear, this algebraic system cannot be solved directly and must be solved
using an iterative method. It can often be useful to retain the time-dependent terms
even if one is interested only in the steady solution, as a time-marching method
that follows a quasi-physical path to the steady solution can be an effective iterative
method.

Both the implicit algorithm presented in this chapter and the explicit algorithm
presented in the next chapter retain the time-derivative terms in the Navier-Stokes
equations even when solving for steady flows. Moreover, both algorithms involve
independent discretization of space and time, andhence an intermediate semi-discrete
ODE form. In principle, the spatial and temporal components of the algorithms could
be presented independently. However, in these two algorithms the two are quite
closely linked. In other words, the time-marching methods are particularly effective
with the specific spatial discretization used. Nonetheless, the reader should be aware
that it is of course possible and reasonable to develop an explicit finite-difference
algorithm or an implicit finite-volume algorithm.

T. H. Pulliam and D. W. Zingg, Fundamental Algorithms in Computational 75
Fluid Dynamics, Scientific Computation, DOI: 10.1007/978-3-319-05053-9_4,
© Springer International Publishing Switzerland 2014
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The key characteristics of the algorithm presented in this chapter are as follows:

• node-based data storage; the numerical solution for the state variables is associated
with the nodes of the grid

• second-order finite-difference spatial discretization; centered with added numeri-
cal dissipation; a simple shock-capturing device

• transformation to generalized curvilinear coordinates; applicable to structured
grids

• implicit time marching based on approximate factorization of the resulting matrix
operator

All of these termswill be explained in this chapter. Key contributions to this algorithm
were made by Beam and Warming [1], Steger [2], Warming and Beam [3], Pulliam
and Steger [4], Pulliam and Chaussee [5], and Pulliam [6].

The exercises at the end of the chapter provide an opportunity to write a com-
puter program to apply this algorithm to several one-dimensional problems. Neither
approximate factorization nor the coordinate transformation will enter into this pro-
gram, but the exercise will enable the reader to develop a greater understanding of
most other aspects of the algorithm.

4.1.1 Implicit Versus Explicit Time-Marching Methods

As discussed in Chap. 2, time-marching methods can be classified as implicit or
explicit, and the two types have significantly different properties with respect to
stability and cost. A simple characterization of implicit and explicit methods states
that implicit methods have a much higher computing cost per time step, but their
stability properties permit much larger time steps to be used. Depending on the
nature of the problem, specifically its stiffness, either method can be more efficient.
Implicit methods become relatively more efficient with increasing problem stiffness.

In computational fluid dynamics, stiffness has many sources, both physical and
numerical. Physical stiffness comes from varying scales and speeds associated with
different physical processes contained in the PDEs. For example, if the computation
includes chemical reactions that proceed at rates much higher than those associated
with the basic fluid dynamics, and time-accurate resolution of the chemical reactions
is not required, then this will lead to a stiff system. Figure 2.2 shows one way
in which numerical stiffness is introduced. There exist many modes in the system
at high wavenumbers that are completely inaccurate. Such modes are inherently
parasitic. This means that resolving them accurately in time will not improve the
accuracy of the solution, because the spatial discretization is not accurate for these
components of the solution. Thus these modes and their associated eigenvalues must
lie within the stable region of the time-marching method, but need not lie within its
region of accuracy (see Fig. 2.6). Furthermore, in many computations, very small
grid spacings are needed in some regions of the flow, such as boundary layers, while
much larger spacings are sufficient elsewhere. This too can cause stiffness, as the
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time taken for information to pass through a small cell is much shorter than that
taken to pass through a large cell, introducing widely different time scales from a
numerical point of view.Moreover, if gradients are much higher in one direction than
another, then it is efficient to use small grid spacings in the direction of large gradient
and larger spacings in the smaller gradient direction, leading to grid cells with high
aspect ratios. As the time taken for waves to traverse the cell in one direction is thus
much different from the other direction, multiple time scales and hence stiffness can
again be introduced.

One way to understand the choice between implicit and explicit methods is to
consider the limiting factor in the choice of the time step. Accuracy considerations
place one bound on the maximum allowable time step. In other words, the time step
must be small enough that the time accuracy of the solution is sufficient. Stability
considerations place another bound on the time step. If the accuracy bound is smaller
than the stability bound, then the time step is said to beaccuracy limited. If the stability
bound is smaller, then it is said to be stability limited. In a simulation where the time
step is accuracy limited, there is little point in using an implicit method, as the same
time step must be used in either case, so the extra cost per time step of an implicit
method is not worthwhile. Conversely, if the stability bound is much smaller than the
accuracy bound, then the explicit method will require a much smaller time step than
an unconditionally stable implicit method, and hence the latter can be more efficient.

In the context of the numerical solution ofODEs, it is straightforward to categorize
a method as explicit or implicit. In the context of PDEs, it is more accurate to classify
methods according to a spectrum ranging from fully explicit to fully implicit. At the
fully explicit end of the spectrum lies a method such as the explicit Euler method,
without any additional convergence acceleration techniques, such as multigrid or
implicit residual smoothing (which the reader will learn about in the next chapter).
A multi-stage method, such as an explicit Runge-Kutta method, is still officially
explicit, but generally has a larger stability bound at the expense of an increased
cost per time step and can therefore be considered to have moved slightly toward the
implicit end of the spectrum. Similarly, convergence acceleration techniques such
as implicit residual smoothing and multigrid move the resulting “explicit” algorithm
further in the implicit direction. This is typically associated with increased transfer of
information across the mesh during a time step, which is a characteristic of implicit
methods, an increased stability bound, and an increased cost per time step. At the
fully implicit end of the spectrum lies the implicit Euler methodwith a direct solution
of the linear problem at each time step. As this is usually infeasible and inefficient, for
reasons to be discussed in this chapter, the linear problem is usually solved inexactly
using an iterativemethod,whichmoves the algorithm slightly in the explicit direction.
Alternatively, the linear problem can be approximated in a manner that makes it
easier to solve, as in the approximate factorization algorithm that is the subject of
this chapter. This reduces the cost per time step but can also reduce the optimal time
step for convergence; in other words, it moves the algorithm somewhat further away
from the fully implicit end of the spectrum.

Both the extreme explicit and the extreme implicit ends of the spectrum lead
to inefficient algorithms for large problems. Therefore, all practical algorithms
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in use today for large-scale problems, including the algorithms described in this
and the following chapter, lie somewhere between these two extremes, with the
choice depending on the stiffness of the particular problem under consideration. It is
interesting to note that, although this chapter’s algorithm is nominally classified as
implicit, while next chapter’s algorithm is nominally classified as explicit, their cost
per time step is quite comparable.

4.2 Generalized Curvilinear Coordinate Transformation

Finite-difference formulas are most naturally implemented on rectilinear meshes,
as described in Chap. 2. On such meshes, the mesh lines are orthogonal, and it is
straightforward to align the mesh such that each mesh line is associated with a spe-
cific coordinate direction. The derivative in a given coordinate direction can then be
easily approximated based on finite differences along the corresponding mesh line.
On the other hand, implementation of boundary conditions is simplified if the mesh
is body-fitted, in other words the mesh conforms to the boundary of the geometry
under consideration. If the boundary is curved, as is the case for most geometries
of interest, this precludes the use of a mesh that is both rectilinear and body-fitted.
In the present algorithm, this issue is addressed by transforming the physical space
in which the mesh has curved, potentially non-orthogonal mesh lines into a com-
putational space in which the mesh is rectilinear through a generalized curvilinear
coordinate transformation. Such a transformation enables the straightforward appli-
cation of finite-difference formulas on a body-fitted mesh. Our exposition will be
in two dimensions, but extension to three dimensions should not present the reader
with any conceptual difficulties.

An example of a mesh about an airfoil is shown in Fig. 4.1, and the corresponding
curvilinear coordinate transformation is shown schematically in Fig. 4.2. In this case,
the body is an airfoil, and the flow domain is bounded by an outer boundary. In the
physical space defined by the Cartesian coordinates x, y, one set of mesh lines forms
a “C” and hence such a mesh is known as a “C-mesh.” The innermost “C” conforms
to the airfoil surface and awake cut alongwhich twomesh lines correspond to a single
line in physical space. The outermost “C” corresponds to the curved portion of the
outer boundary. This set of lines is defined to be the one along which the curvilinear
coordinate ∂ varies, and the curvilinear coordinate π is constant. The second set of
mesh lines is roughly orthogonal to the first and emanates from the body or the wake
cut toward the outer boundary. Along these lines, π varies, and ∂ is constant. The
coordinate transformation is chosen such that the mesh is mapped to a computational
space where the mesh lines are orthogonal, and the spacings Δ∂ and Δπ are unity in
both directions. Therefore, standard finite-difference formulas can be easily applied.
The computational space is a rectangle, where the bottom side includes the grid
line lying on the airfoil and the wake cut, the top is the curved portion of the outer
boundary, the left side is the portion of the back boundary below the wake cut, and
the right side is the portion of the back boundary above the wake cut. Although
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Fig. 4.1 A sample airfoil grid with a “C” topology showing only the region near the airfoil

Fig. 4.2 An example of a generalized curvilinear coordinate transformation for a C-mesh

meshes can be defined by an analytical transformation for simple geometries, they
are typically defined solely by the Cartesian coordinates of their nodes, and the
underlying transformation to computational space is not known explicitly.

It is important to note that the mesh topology shown in Figs. 4.1 and 4.2 is just one
possible topology. Another possibility, an “O” mesh, is shown in Fig. 4.3. The key
property of such meshes, known as structured meshes is that the nodes are aligned
along coordinate directions. This contrasts with unstructured meshes, which have no
such constraint. An interior node in a two-dimensional structured mesh must have
four neighbors (six in three dimensions), while a node in an unstructured mesh can
have an arbitrary number of neighbors. This characteristic of a structured mesh sim-
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Fig. 4.3 A sample airfoil grid
with an “O” topology showing
only the region near the airfoil
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plifies its storage. In two dimensions, a structured mesh is defined by a set of x and
y coordinates that are assigned indices j and k, where j corresponds to the index in
the ∂ direction, and k corresponds to the π direction. The four immediate neighbors
of node ( j, k) are the nodes with indices ( j + 1, k), ( j − 1, k), ( j, k + 1), ( j, k − 1);
the connectivity is implied by the indices. For more complex geometries, it can
be impossible to define a mesh such that a single, simply connected, rectangular
computational space exists. For such cases, block-structured meshes can be defined
such that multiple rectangular computational domains are produced by the transfor-
mation. These domains can be interfaced in a number of different ways, including
overlapping and abutting blocks.

In order to make use of finite-difference formulas defined in computational space,
the governing equations must be transformed such that derivatives with respect to
the Cartesian coordinates x and y are replaced by derivatives with respect to compu-
tational coordinates ∂ and π. The coordinate transformation introduced here follows
the development of Viviand [7] and Vinokur [8]. The Navier-Stokes equations can
be transformed from Cartesian coordinates to generalized curvilinear coordinates
where

ν = t

∂ = ∂(x, y, t)

π = π(x, y, t). (4.1)

If the grid does not deform over time, then ∂ = ∂(x, y) and π = π(x, y). Typically
there will be a one to one correspondence between a physical point in space and a
computational point, except for regions where there are singularities or cuts due to
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the topology, such as the wake cut in the C-mesh example above. In those cases it
may be necessary to map one physical point to more than one computational point.

The present coordinate transformation differs from some in that only the inde-
pendent variables are transformed. The dependent variables remain defined in the
Cartesian space, e.g. in terms of the Cartesian velocity components u and v. Chain-
rule expansions are used to represent the derivatives in Cartesian space, δt , δx , and
δy of (3.1), in terms of the curvilinear derivatives, as follows:

δ

δx
= δ∂

δx

δ

δ∂
+ δπ

δx

δ

δπ

δ

δy
= δ∂

δy

δ

δ∂
+ δπ

δy

δ

δπ
(4.2)

δ

δt
= δ

δν
+ δ∂

δt

δ

δ∂
+ δπ

δt

δ

δπ
.

Introducing the notation

δx ≤ δ

δx
and ∂x ≤ δ∂

δx
, (4.3)

these can be written in matrix form as

 δt

δx

δy


 =


 1 ∂t πt

0 ∂x πx

0 ∂y πy




δν

δ∂

δπ


 . (4.4)

Applying these chain-rule expansions to theNavier-Stokes equations (3.1), we obtain

δν Q + ∂tδ∂ Q + πtδπ Q + ∂xδ∂ E + πxδπ E + ∂yδ∂ F + πyδπ F

= Re−1 (∂xδ∂ Ev + πxδπ Ev + ∂yδ∂ Fv + πyδπ Fv
)
. (4.5)

4.2.1 Metric Relations

In (4.5), derivatives with respect to t, x , and y have been replaced by deriv-
atives with respect to ν , ∂, and π. Since the computational space is rectilinear
and equally spaced, the latter can be easily approximated using finite-difference
expressions—these will be presented in a subsequent section. The coefficients in-
troduced (∂t , ∂x , ∂y, πt , πx , πy) are known as grid metrics. Since in most cases the
transformation from physical space to computational space is not known analyti-
cally, the metrics must be determined numerically. That is, we usually are provided
with just the x, y coordinates of the grid points and must numerically generate the

http://dx.doi.org/10.1007/978-3-319-05053-9_3
http://dx.doi.org/10.1007/978-3-319-05053-9_3
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metrics (∂t , ∂x , ∂y, πt , πx , πy) using finite differences. This introduces a difficulty in
that these are derivatives with respect to the original Cartesian coordinates.

In order to address this, consider the inverse of the transformation given in (4.1):

t = ν

x = x(∂, π, ν ) (4.6)

y = y(∂, π, ν ).

Reversing the role of the independent variables in the chain rule formulas (4.3), we
have,

δν = δt + xν δx + yν δy, δ∂ = x∂δx + y∂δy, δπ = xπδx + yπδy, (4.7)

which can be written in matrix form as

δν

δ∂

δπ


 =


 1 xν yν

0 x∂ y∂

0 xπ yπ




 δt

δx

δy


 . (4.8)

Comparing (4.4) and (4.8), it is immediately clear that


 1 ∂t πt

0 ∂x πx

0 ∂y πy


 =


 1 xν yν

0 x∂ y∂

0 xπ yπ




−1

(4.9)

= J


 (x∂ yπ − y∂xπ) (−xν yπ + yν xπ) (xν y∂ − yν x∂)

0 yπ −y∂

0 −xπ x∂


, (4.10)

where J = (x∂ yπ − xπ y∂)
−1 is defined as the metric Jacobian. This yields the

following metric relations:

∂t = J (−xν yπ + yν xπ), ∂x = J yπ, ∂y = −J xπ

πt = J (xν y∂ − yν x∂), πx = −J y∂, πy = J x∂ . (4.11)

Using these relations, the metrics (∂t , ∂x , ∂y, πt , πx , πy) can be determined from
(xν , x∂, xπ, yν , y∂, yπ), where the latter are easily found using finite differences,
since they are derivatives in computational space. Finite-difference formulas for
these terms will be presented later in this chapter.
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4.2.2 Invariants of the Transformation

At this pointwe notice that the transformed equations (4.5) are in aweak conservation
law form. That is, even though none of the flow variables (or functions of the flow
variables) occur as coefficients in the differential equations, the metrics, which are
spatially varying, lie outside of the derivative operators. There is some argument
in the literature which advocates the use of the so called “chain rule form,” since
it should still have good shock capturing properties and in some ways is a simpler
form. Here, though, we shall restrict ourselves to the strong conservation law form
which will be derived below.

To simplify our derivation, we will consider the inviscid terms only. This reduces
(4.5) to

δν Q + ∂tδ∂ Q + πtδπ Q + ∂xδ∂ E + πxδπ E + ∂yδ∂ F + πyδπ F = 0. (4.12)

To produce the strong conservation law form we first multiply (4.12) by J−1 and
apply the product rule to all terms. For example, the fourth term on the left-hand side
can be expanded as

(
∂x

J

)
δ∂ E = δ∂

(
∂x

J
E

)
− Eδ∂

(
∂x

J

)
. (4.13)

Each term can thus be rewritten as the difference between a term in the form we are
looking for, with no coefficient outside the derivative operator, and a second term
that is the product of a function of Q and a derivative of a quantity that is strictly a
function of the grid. Collecting all the terms into two groups, with Term1 representing
the first group of terms and Term2 the second, we obtain

Term1 + Term2 = 0,

where

Term1 = δν (Q/J ) + δ∂[(∂t Q + ∂x E + ∂y F)/J ] + δπ[(πt Q + πx E + πy F)/J ]
Term2 = −Q[δν (J−1) + δ∂(∂t/J ) + δπ(πt/J )] (4.14)

−E[δ∂(∂x/J ) + δπ(πx/J )] − F[δ∂(∂y/J ) + δπ(πy/J )].

The expressions from Term2,

δν (J−1) + δ∂(∂t/J ) + δπ(πt/J )

δ∂(∂x/J ) + δπ(πx/J )

δ∂(∂y/J ) + δπ(πy/J ), (4.15)



84 4 An Implicit Finite-Difference Algorithm

are defined as invariants of the transformation. Substituting themetric relations (4.11)
into the invariant expressions gives

δν (x∂ yπ − y∂xπ) + δ∂(−xν yπ + yν xπ) + δπ(xν y∂ − yν x∂)

δ∂(yπ) + δπ(−y∂) (4.16)

δ∂(−xπ) + δπ(x∂). (4.17)

Analytically, differentiation is commutative, and the above terms sum to zero. This
eliminates Term2 of (4.15), and the resulting equations are in strong conservation
law form.

There is an important issue associated with these invariants. It is not true in
general that finite-difference approximations are commutative. Consequently, when
numerical differencing is applied to these equations (as developed in the Sect. 4.4),
the finite-difference formulas used to evaluate the spatial derivatives of the fluxes
and the finite-difference formulas used to calculate the metrics do not necessarily
satisfy the commutative law. Second-order central differences commute, but mixed
second-order and fourth-order formulas do not. This is further discussed in Sect.
4.4.1.

4.2.3 Navier-Stokes Equations in Generalized Curvilinear
Coordinates

The Navier-Stokes equations written in strong conservation law form are

δν Q̂ + δ∂ Ê + δπ F̂ = Re−1[δ∂ Êv + δπ F̂v], (4.18)

with

Q̂ = J−1




κ
κu
κv

e


⎡⎡ , Ê = J−1




κU
κuU + ∂x p
κvU + ∂y p

U (e + p) − ∂t p


⎡⎡ , F̂ = J−1




κV
κuV + πx p
κvV + πy p

V (e + p) − πt p


⎡⎡ ,

where

U = ∂t + ∂x u + ∂yv, V = πt + πx u + πyv (4.19)

are known as the contravariant velocity components—see Sect. 4.2.4 for more de-
tails. The viscous flux terms are Êv = J−1(∂x Ev + ∂y Fv) and F̂v = J−1(πx Ev +
πy Fv).The viscous stress and heat conduction terms must also be transformed using
the chain rule such that they are written in terms of ∂ and π derivatives, giving
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νxx = μ(4(∂x u∂ + πx uπ) − 2(∂yv∂ + πyvπ))/3

νxy = μ(∂yu∂ + πyuπ + ∂xv∂ + πxvπ)

νyy = μ(−2(∂x u∂ + πx uπ) + 4(∂yv∂ + πyvπ))/3

f4 = uνxx + vνxy + μPr−1(λ − 1)−1(∂xδ∂a2 + πxδπa2)

g4 = uνxy + vνyy + μPr−1(λ − 1)−1(∂yδ∂a2 + πyδπa2). (4.20)

The above discussion of metric invariants suggests a useful test for a finite-
difference formulation. A minimum requirement of any finite-difference formula-
tion is that a steady uniform flow be a valid solution of the discrete equations. If the
chain-rule form (4.5) is evaluated for a steady uniform flow defined by

κ = 1,

u = M≈,

v = 0,

e = 1

λ(λ − 1)
+ 1

2
M2≈, (4.21)

it is clearly satisfied, since all terms must equal zero given that the solution has
no spatial or temporal variation. We would also like this steady uniform flow to
satisfy (4.18) after the various derivatives have been replaced by finite-difference
approximations. If the discrete form of (4.18) is not satisfied by a steady uniform
flow, this can reveal a multitude of possible errors, including possibly a choice of
difference operators for which the metric invariants are not zero.

4.2.4 Covariant and Contravariant Components in Curvilinear
Coordinates

In Sect. 4.2.3 we introduced the contravariant velocity components associated with
the curvilinear coordinate system. Since we will continue to work with Cartesian
velocity components, a detailed knowledge of covariant and contravariant compo-
nents is not necessary to understand the rest of the algorithm description. However,
we will later need, for example, expressions for velocity components tangential and
normal to a boundary in terms of the Cartesian components, so it is helpful to have
a sufficient understanding to be able to derive such expressions.

We will assume a steady mesh in two dimensions, so we have x(∂, π), y(∂, π) and
the inverse transformation ∂(x, y), π(x, y). First, define the vector

r = xî + y ĵ . (4.22)

In curvilinear coordinates, two sets of basis vectors can be defined. The covariant
basis vectors are tangent to the ∂ and π axes and are not required to be orthogonal.
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They are given by

b1 = δr

δ∂
, b2 = δr

δπ
. (4.23)

It can be more convenient to scale these such that they are unit vectors, giving

ê1 =
δr
δ∂⎢⎢⎢ δr
δ∂

⎢⎢⎢ , ê2 =
δr
δπ⎢⎢⎢ δr
δπ

⎢⎢⎢ . (4.24)

Note that these vectors are defined locally. The contravariant basis vectors are normal
to the π and ∂ axes and are defined by

B1 = →∂, B2 = →π, (4.25)

where → is the gradient operator. The contravariant basis vectors can also be scaled
such that their length is unity:

Ê1 = →∂

|→∂| , Ê2 = →π

|→π| . (4.26)

With these bases, an arbitrary vector A can be defined in the following ways:

A = A1ê1 + A2ê2 = a1 Ê1 + a2 Ê2

= C1b1 + C2b2 = c1B1 + c2B2. (4.27)

Here C1 and C2 are the contravariant components of A, i.e. C1 = B1 · A and
C2 = B2 · A, and c1 and c2 are the covariant components of A, i.e. c1 = b1 · A and
c2 = b2 · A. Note that Bi · b j = ξi j , where ξi j is the Kronecker delta.

For example, let A represent the velocity vector uî + v ĵ . From (4.25) we have

B1 = ∂x î + ∂y ĵ, B2 = πx î + πy ĵ . (4.28)

Therefore, we obtain for the contravariant components of velocity

C1 = B1 · A = ∂x u + ∂yv, C2 = B2 · A = πx u + πyv, (4.29)

consistent with the definitions of U and V in (4.19) when the coordinate transfor-
mation is time invariant.

In the application of boundary conditions, one often needs expressions for the
velocity components normal and tangential to the boundary in terms of the Cartesian
velocity components. In this case, we must work with unit basis vectors to preserve
the magnitude of the velocity. We assume that the boundary is a grid line of constant
π, such as the airfoil surface in Figs. 4.1 and 4.2, but the result is easily generalized
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to other boundaries. Recall that ê1 is tangent to the ∂ axis, and Ê2 is normal to the π
axis. Therefore, we can write

uî + v ĵ = Vt ê1 + Vn Ê2, (4.30)

where Vt and Vn are the tangential and normal velocity components, respectively.
The two unit vectors are given by

ê1 = x∂ î + y∂ ĵ⎣
x2∂ + y2∂

= πy î − πx ĵ⎣
π2x + π2y

Ê2 = πx î + πy ĵ⎣
π2x + π2y

, (4.31)

where the metric relations are used to obtain the second expression for ê1. Noting
that

ê1 · Ê2 = 0, ê1 · ê1 = Ê2 · Ê2 = 1, (4.32)

we find the following expressions for the tangential and normal velocity components:

Vt = ê1 · (uî + v ĵ) = πyu − πxv⎣
π2x + π2y

Vn = Ê2 · (uî + v ĵ) = πx u + πyv⎣
π2x + π2y

. (4.33)

These are the velocity components tangential and normal to a grid line of constant π
at a specific point in space.

As a second example, consider the derivative of pressure in a direction normal
to a surface which again corresponds to a grid line of constant π. The gradient of
pressure can be expressed in terms of the basis vectors ê1 and Ê2 as follows:

→ p = δ p

δx
î + δ p

δy
ĵ = δ p

δt
ê1 + δ p

δn
Ê2, (4.34)

where here t refers to the tangential coordinate. The normal derivative can be isolated
by taking the dot product with Ê2 (which is identical to n̂):

δ p

δn
= Ê2 · → p = πx

δ p
δx + πy

δ p
δy⎣

π2x + π2y

. (4.35)
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The chain rule gives

δ p

δx
= πx

δ p

δπ
+ ∂x

δ p

δ∂
,

δ p

δy
= πy

δ p

δπ
+ ∂y

δ p

δ∂
, (4.36)

from which we obtain the final expression for the normal derivative:

δ p

δn
= (πx∂x + πy∂y)

δ p
δ∂ + (π2x + π2y)

δ p
δπ⎣

π2x + π2y

. (4.37)

4.3 Thin-Layer Approximation

We introduce the thin-layer approximation [9] here only to simplify the treatment
of the viscous terms in the exposition of the algorithm. It is not of fundamental
importance and is applicable only if the following criteria are satisfied:

• The Reynolds number is high; the geometry is streamlined and at a modest angle
of incidence with respect to the flow direction. Consequently, boundary layers
remain attached or mildly separated, and both boundary layers and wakes are thin
relative to the characteristic dimension of the geometry.

• The mesh is body fitted, and mesh lines are at least close to orthogonal to the
surface, as depicted in Fig. 4.4. Moreover, lines of constant π are reasonably well
aligned with wakes. As a result of this last constraint, a C-mesh is a better choice
than an O-mesh when the thin-layer approximation is used.

Under these conditions, boundary-layer theory shows that streamwise gradients
of viscous and turbulent stresses are small compared to normal gradients in bound-
ary layers and wakes, and viscous and turbulent stresses are negligible outside of
boundary layers and wakes. Therefore, mesh resolution requirements typically dic-
tate a smaller mesh spacing in the direction normal to the surface in boundary lay-
ers, leading to meshes with cells having high aspect ratios near the surface, as in
Fig. 4.4. Moreover, streamwise gradients of viscous and turbulent stresses can often
be neglected with little impact on solution accuracy, leading to the thin-layer Navier-
Stokes equations. It is important to recognize that although the rationale for the
thin-layer Navier-Stokes equations is closely related to that for the boundary-layer
equations, unlike the latter, the thin-layer Navier-Stokes equations retain all inviscid
terms in full. Hence they are applicable both within boundary layers and wakes and
outside these regions, where the flow is effectively inviscid.

We will assume that mesh lines along which π varies are nearly normal to the
surface, as shown in Fig. 4.4. Applying the thin-layer approximation to (4.18) then
involves neglecting the term δ∂ Êv as well as all derivatives with respect to ∂ in F̂v ,
leading to
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Fig. 4.4 Mesh near body
surface

δν Q̂ + δ∂ Ê + δπ F̂ = Re−1δπ Ŝ, (4.38)

where

Ŝ = J−1




0
πx m1 + πym2
πx m2 + πym3

πx (um1 + vm2 + m4) + πy(um2 + vm3 + m5)


⎡⎡ , (4.39)

with

m1 = μ(4πx uπ − 2πyvπ)/3

m2 = μ(πyuπ + πxvπ)

m3 = μ(−2πx uπ + 4πyvπ)/3

m4 = μPr−1(λ − 1)−1πxδπ(a
2)

m5 = μPr−1(λ − 1)−1πyδπ(a
2). (4.40)

Although the thin-layer approximation was quite popular in the early days of
CFD, it is important for the reader to understand that the algorithms presented here
do not depend on this approximation and are applicable to the full Navier-Stokes
equations. We proceed with the thin-layer approximation only because it simplifies
our presentation of the algorithms while retaining their key features.

4.4 Spatial Differencing

We will now present an algorithm for the numerical solution of the transformed
Navier Stokes equations (4.18), which in turn will provide a solution to the original
equations in Cartesian coordinates (3.1). The algorithm will follow the semi-discrete
approach described in Chap. 2 in which the spatial derivatives are approximated first
to produce a system of ODEs.

Whether we are interested in a steady solution or a time-accurate solution to an
unsteady problem, the first step is to take the continuous differential operators δ∂

and δπ and approximate them with finite-difference operators on a discrete mesh.
This is facilitated by the use of the generalized curvilinear coordinate transformation

http://dx.doi.org/10.1007/978-3-319-05053-9_3
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described in Sect. 4.2. A structured mesh is defined by a set of coordinate pairs
x( j, k), y( j, k), where j and k are integer indices. If one defines ∂ ≤ j and π ≤ k,
then the grid spacing in the computational space is unity in both directions, that is

Δ∂ = 1, Δπ = 1. (4.41)

Since the mesh is rectilinear and uniform in computational space, one can apply
finite-difference formulas in a straightforward manner. We will use subscripts to
indicate the coordinates of a flow variable in computational space, i.e.

Q j,k := Q( jΔ∂, kΔπ). (4.42)

We can use second-order centered difference operators for the inviscid flux deriva-
tives δ∂ Ê and δπ F̂ as follows:

ξ∂ Ê j,k = Ê j+1,k − Ê j−1,k

2Δ∂
, ξπ F̂j,k = F̂j,k+1 − F̂j,k−1

2Δπ
.

(4.43)

Similarly, second-order centered differences can be used for the metric terms, such
as

(
x∂

)
j,k = x j+1,k − x j−1,k

2Δ∂
. (4.44)

Since Δ∂ = Δπ = 1 as a result of the transformation to computational space, we
omit these terms for the remainder of this presentation.

For the viscous derivatives, the terms take the form

δπ

(
β j,kδπβ j,k

)
, (4.45)

whereβ j,k represents a spatially varying coefficient, such as a grid metric or the fluid
viscosity, and β j,k is a velocity component or the square of the sound speed. Such
a term can be approximated by differencing δπβ j,k using a second-order centered
difference at each node,multiplying by the spatially varying coefficient, and applying
the centered first-derivative approximation again. However, this leads to a five-point
stencil involving values from k −2 to k +2 in the evaluation of (4.45). In the interest
of retaining a compact three-point form, the term δπβ j,k can instead be evaluated
at intermediate locations k − 1

2 and k + 1
2 using the following centered difference

formulas:
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(
δβ

δπ

)
k+1/2

= β j,k+1 − β j,k

(
δβ

δπ

)
k−1/2

= β j,k − β j,k−1. (4.46)

To second-order accuracy, the values of the spatially varying coefficient at the inter-
mediate nodes can be found by averaging as follows:

β j,k+1/2 = 1

2

(
β j,k + β j,k+1

)

β j,k−1/2 = 1

2

(
β j,k−1 + β j,k

)
. (4.47)

A compact three-point finite-difference approximation to (4.45) can be obtained by
applying a centered difference approximation at j, k using the intermediate points
j, k + 1

2 and j, k − 1
2 , as follows:

(
β j,k+1 + β j,k

)
2

(
β j,k+1 − β j,k

)−
(
β j,k + β j,k−1

)
2

(
β j,k − β j,k−1

)
. (4.48)

We will consider only second-order schemes in this chapter, but higher-order op-
erators, as described in Sect. 2.2, can offer improved efficiency in certain contexts. If
higher-order differencing operators are used, the metric terms should also be evalu-
ated using the same first-derivative operator, boundary schemes of appropriate order1

should be used, and the accuracy of other approximations in the algorithm, such as
numerical integration to obtain forces, should also be raised to a consistent order.

At this point it is reasonable to ask whether the second-order centered difference
formula remains second order on a nonuniform mesh when a curvilinear coordinate
transformation is used. To address this question, consider a nonuniform mesh in one
dimension, for which the coordinate transformation gives for a first derivative

δ f

δx
= ∂x

δ f

δ∂
= 1

x∂

δ f

δ∂
. (4.49)

Application of second-order centered difference formulas to both δ f/δ∂ and x∂ at
node j gives

(ξx f ) j = f j+1 − f j−1

x j+1 − x j−1
. (4.50)

1 The order of a boundary scheme can often be one less than that of the interior scheme, and the
global accuracy of the interior operator is still achieved (see Gustafsson [10]). The stability of
boundary schemes for higher-order methods is also an important consideration but is beyond the
scope of this book.

http://dx.doi.org/10.1007/978-3-319-05053-9_2
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Denoting the mesh spacing immediately to the right of node j as

Δx+ = x j+1 − x j , (4.51)

and that to the left as

Δx− = x j − x j−1, (4.52)

a Taylor series expansion of the derivative operator gives the following error term:

1

2

(
δ2 f

δx2

)
j
(Δx+ − Δx−) + 1

6

(
δ3 f

δx3

)
j

⎤
Δx3+ + Δx3−
Δx+ + Δx−

⎥
+ · · · . (4.53)

The second term is clearly second order, but, at first glance, the first term appears to
be first order. However, it is important to recall that the notion of the order of accuracy
relates to the behavior of the error when a smooth mesh is refined uniformly.

For our present example,we can define amesh function x(∂) = g(∂/M) = g(∂D),
where M is the number of cells in the one-dimensional mesh, and D = 1/M is a
nominal mesh spacing parameter. For example, if the number of nodes M is doubled,
then D is halved. With this mesh function, Taylor series expansions for Δx+ and
Δx− give

Δx+ = x j+1 − x j = Dg∗
j + 1

2
D2g∗∗

j + 1

6
d3g∗∗∗

j + · · · (4.54)

and

Δx− = x j − x j−1 = Dg∗
j − 1

2
D2g∗∗

j + 1

6
d3g∗∗∗

j − · · · . (4.55)

Taking the difference gives

Δx+ − Δx− = D2g∗∗
j + · · · = O(D2), (4.56)

and we see that the error term remains second order, even on a nonuniform mesh. It
is important to note that the error (4.53) contains a term proportional to δ2 f/δx2, so,
although it is second order, this approximation is not exact for a quadratic function,
as is the case on a uniform mesh, where Δx+ −Δx− is zero. One can easily define a
finite-difference scheme on a nonuniformmesh that is exact for a quadratic function,
but this approach extends to multiple dimensions in a straightforward manner only
if the mesh is rectangular.

In order tomake the abovediscussionmore concrete, consider the one-dimensional
mesh function

x(∂) = e∂/M − 1

e − 1
. (4.57)
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This function produces a uniform stretching ratio given by

Δx+
Δx−

= e1/M − 1

1 − e−1/M
. (4.58)

With M = 10, the stretching ratio is roughly 1.105; if M is increased to 100, the
stretching ratio is reduced to roughly 1.010. With each increase in M , not only
does the mesh spacing decrease in proportion to 1/M , but the stretching ratio also
decreases. Consequently, the difference Δx+ − Δx− is of order (1/M)2. If mesh
refinement is performed such that the stretching ratio is constant, this is not a suitable
refinement and the second-order behaviour of the difference operator (4.50) will not
be observed .

4.4.1 Metric Differencing and Invariants

The second-order centered difference formulas used in two dimensions naturally
produce consistent metric invariants, but in three dimensions some additional mea-
sures must be taken to ensure this property. Examining one of these terms in two
dimensions, δ∂(yπ)+δπ(−y∂), using second-order centered differences both to form
the metric terms and to approximate the flux derivatives, we obtain

ξ∂ξπ y j,k − ξπξ∂ y j,k = ξ∂(y j,k+1 − y j,k−1)/2 − ξπ(y j+1,k − y j−1,k)/2

= [y j+1,k+1 − y j−1,k+1 − y j+1,k−1 + y j−1,k−1]/4
−[y j+1,k+1 − y j+1,k−1 − y j−1,k+1 + y j−1,k−1]/4

= 0, (4.59)

as desired.
In three dimensions, there are several different ways to ensure that these terms

are zero. For example, consider the metric ∂x , which is given by2

∂x = J (yπzα − yα zπ), (4.60)

where z and α are the third coordinate directions in Cartesian and computational
space, respectively. One approach is to form ∂x through the following formula:

∂x = J
⎦
(μαξπ y)(μπξα z) − (μπξα y)(μαξπz)

]
, (4.61)

where ξ is the second-order centered difference operator, and μ is an averaging
operator defined, for example, by μπx j,k,l = (x j,k+1,l + x j,k−1,l)/2, where l is the

2 See Sect. 4.7.1
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index in the α direction. If all of the metric terms are calculated in this manner, then
the metric invariants will be satisfied.

An alternative approach in three dimensions that extends to higher order involves
writing the expression for ∂x as [11]:

∂x = J ((yπz)α − (yα z)π), (4.62)

which is analytically equivalent to (4.60). Analogous expressions can be written for
the other metrics of the transformation. If consistent centered difference formulas
are used for both the derivatives in such expressions for the metric terms as well as
the flux derivatives, e.g. ξ∂ Ê , then the metric invariants will be zero (within the limits
of round-off error).

In (4.59) we saw that second-order centered differencing of both the metric re-
lations and the flux derivatives leads to satisfaction of the invariant relations in two
dimensions. However, consider the case of centered differencing to form the metrics
combined with first-order one-sided backward differencing for the fluxes. We obtain

→∂ξπ y − →πξ∂ y = [y j,k+1 − y j−1,k+1 − y j,k−1 + y j−1,k−1]/2
+[−y j+1,k + y j+1,k−1 + y j−1,k − y j−1,k−1]/2 �= 0.

(4.63)

The error associated with not satisfying the invariant relations is a truncation error
that corresponds to the order of the lowest-order-accurate operator used or higher.

4.4.2 Artificial Dissipation

The concept of numerical dissipation was introduced in Sect. 2.5. Numerical dissi-
pation can be added to a spatial discretization for three distinct purposes:

• to eliminate high-frequency modes that are not resolved and can contaminate the
solution;

• to enhance stability and convergence to steady state;
• to prevent oscillations at discontinuities, such as shock waves.

The idea is to achieve these three purposes by introducing a level of numerical
dissipation that does not significantly increase the overall numerical error.

In linear problems, such as the linear convection equation, the frequencies or
wavenumbers present in the solution are dictated by the initial and boundary condi-
tions. In the numerical solution of such equations, the componentswithwavenumbers
that are not well resolved (see Fig. 2.2) are essentially spurious. They will not be
handled accurately by the numerical scheme in terms of either convection or diffu-
sion. Therefore, it can be worthwhile to remove them through numerical dissipation
or filtering.

http://dx.doi.org/10.1007/978-3-319-05053-9_2
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In solutions of the Euler and Navier-Stokes equations, nonlinear interactions
occur between waves as a result of the nonlinearity in the convection terms of the
momentum equations. If scale is represented by wavelength or frequency, it can be
shown that two waves interact as products to form a wave of higher frequency (the
sum of the original two) and one of lower frequency (the difference). In a physical
system, this can lead to turbulence and the formation of shock waves. As a result of
viscosity, there is a limit to the smallest length scales that arise. Numerically, if all
scales are well resolved, for example in a well-resolved direct numerical simulation
of a turbulent flow or a well-resolved simulation of a laminar flow, then numerical
dissipation is not needed. However, in most flow computations, these smallest scales
are typically not resolved. As a result, the true physical mechanism that puts an upper
bound on the frequencies present in the solution is not accurately represented in the
numerical solution. The lower frequencies do not cause a problem, but the continual
cascading into higher and higher frequencies can lead to instabilities. These can be
addressed through numerical dissipation. Even in linear problems, instabilities can
arise from numerical implementation of boundary conditions and other approxima-
tions that might cause some eigenvalues of the semi-discrete operator matrix to lie
slightly in the right half-plane. Numerical dissipation can address such instabilities
as well and speed up convergence to a steady state.

The Euler equations support discontinuities such as shock waves, slip lines, and
contact surfaces. Across these discontinuities, the differential form of the PDEs does
not apply, so the appropriate jump conditions must be determined from the integral
form. In essence, shock waves are a limiting case of the frequency cascade described
in the previous paragraph. The Euler equations contain no mechanism to limit the
minimum length scale, so a shock wave is a true discontinuity in an inviscid flow. In
a real viscous flow, shock waves have a finite thickness, but it is so small that it is
rarely practical to resolve a shock, and in any case it is not clear that the continuum
hypothesis would be applicable within a shockwave. Therefore, although theNavier-
Stokes equations do not support discontinuities, the issue of the numerical treatment
of shock waves is present even in computations of viscous flows. Without a careful
treatment, oscillations will occur at and near shock waves and other discontinuities.

Historically, the numerical treatment of shock waves has been divided into two
approaches, shock fitting and shock capturing. In shock fitting, one must know the
location of the shock and apply the jump conditions across it. While this is an inher-
ently elegant approach, in practice it is very difficult to track the precise location of
shock waves. As a result, shock capturing, in which the shock wave is smoothed out
by numerical dissipation and the flow is treated as if it were continuous, has become
the predominant approach.

A substantial amount of research has gone into the development of numerical
methods for capturing shocks. We will cover such methods in more detail in Chap. 6.
For our purpose here it suffices to say that in order to prevent oscillations, first-
order numerical dissipation is needed in the vicinity of discontinuities. However,
use of first-order numerical dissipation throughout the flow domain would lead to
very large numerical errors, or, alternatively, the need for a very fine mesh to reduce
numerical errors to the desired levels. Consequently, the numerical dissipation added
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to a spatial discretization of the Euler or Navier-Stokes equations generally consists
of the following three components:

• a high-order component for smooth regions of the flow field,
• a first-order component for shock capturing,
• a means of sensing shocks and other discontinuities so that the appropriate dissi-
pation operator can be selected in different regions of the flow field.

Before continuing, the reader may wish to review Sect. 2.5, which introduced
the basic concepts underlying numerical dissipation. The dissipation is associated
with the symmetric part of the difference operator and can be added either explicitly
through artificial dissipation or through one-sided or upwind schemes that inherently
include a symmetric component. In this chapter and the next we will concentrate on
centered schemes with added artificial dissipation, while Chap. 6 discusses upwind
schemes in more detail. The close relationship between the two approaches is clear
from Sect. 2.5.

4.4.3 A Nonlinear Artificial Dissipation Scheme

Recalling Sect. 2.5, numerical dissipation can be added to a centered differencing
scheme by adding a symmetric component to the difference operator approximat-
ing the first derivatives in the inviscid flux terms. For a constant-coefficient, linear
hyperbolic system of equations in the form

δu

δt
+ δ f

δx
= δu

δt
+ A

δu

δx
= 0, (4.64)

where f = Au, the dissipation can be added in the following manner:

ξx f = ξax f + ξsx (|A|u), (4.65)

where ξax and ξsx are antisymmetric and symmetric difference operators, X is the
matrix of right eigenvectors of A, Λ is a diagonal matrix containing the eigenvalues
of A, and |A| = X |Λ|X−1. The antisymmetric operator is simply the centered
difference scheme, and the symmetric operator introduces the dissipation.

An antisymmetric or centered difference operator for a first derivative has an
even order of accuracy, while the symmetric term has an odd order of accuracy. For
smooth regions of the flow, the symmetric operator should be at least third order,
since a first-order term is generally too dissipative and will add too much numerical
error. With second-order centered differences, a third-order dissipation term is thus
a good choice for regions where the flow variables behave smoothly, i.e. away from
discontinuities.

Consequently, the following symmetric operator is often used together with
second-order centered differences:

http://dx.doi.org/10.1007/978-3-319-05053-9_2
http://dx.doi.org/10.1007/978-3-319-05053-9_2
http://dx.doi.org/10.1007/978-3-319-05053-9_2
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(
ξsx u
)

j = σ4

Δx
(u j−2 − 4u j−1 + 6u j − 4u j+1 + u j+2) ∝ σ4Δx3

δ4u

δx4
, (4.66)

where σ4 is a user defined constant. This operator is sufficient to damp unwanted
high-frequency modes and provide stability while generally adding an error that is
smaller than the second-order error associated with the centered difference scheme.
However, it is not sufficient to prevent oscillations at discontinuities. For this purpose,
the following first-order symmetric operator is typically used:

(
ξsx u
)

j = σ2

Δx
(−u j−1 + 2u j − u j+1) ∝ −σ2Δx

δ2u

δx2
. (4.67)

The artificial dissipation scheme used in the implicit finite-difference algorithm
of this chapter combines the above two operators using a pressure sensor to detect
shockwaves [6, 12]. This approach is intended for flowswith shockwaves, where the
pressure is discontinuous; it will not sense a discontinuity such as a contact surface
across which the pressure is continuous. Before presenting the operator, we note that

→Δ→Δu j = u j−2 − 4u j−1 + 6u j − 4u j+1 + u j+2 (4.68)

and

→Δu j = u j−1 − 2u j + u j+1, (4.69)

where →u j = u j − u j−1 and Δu j = u j+1 − u j are undivided differences.
Before moving to the two-dimensional equations in curvilinear coordinates, let

us first consider the one-dimensional Euler equations (3.24):

δQ

δt
+ δE

δx
= 0, (4.70)

where E = AQ as a result of the homogeneous property of the Euler equations (see
[13],AppendixC).Anatural application of (4.65) and (4.66) gives a fourth-difference
dissipative term in the following form:

D j = →Δ→Δ|A j |Q j . (4.71)

In the constant-coefficient, linear case, |A| is constant, but that is no longer true in
the nonlinear case, and hence its position in the above equation can have a significant
effect. For example, the choice

D j = |A j |→Δ→ΔQ j (4.72)

is not conservative. The preferred choice, motivated by analogy to flux-difference
splitting, is

http://dx.doi.org/10.1007/978-3-319-05053-9_3


98 4 An Implicit Finite-Difference Algorithm

D j = →|A j+1/2|Δ→ΔQ j , (4.73)

where A j+1/2 is some sort of average, such as a simple average or a Roe average
(see Sect. 6.3).

Now consider the strong conservation law form of the Navier-Stokes equations
in generalized curvilinear coordinates (4.18) with the spatial derivatives replaced by
second-order centered differences, as in (4.43), and all of the spatial terms moved to
the right-hand side:

δν Q̂ = −ξ∂ Ê − ξπ F̂ + Re−1[ξ∂ Êv + ξπ F̂v], (4.74)

where the compact three-point form (4.48) is assumed for the viscous derivatives.
Let us restrict our interest for now to the inviscid term in the ∂ direction, giving

δν Q̂ = −ξ∂ Ê . (4.75)

This can be written in the conservation form

δν Q̂ = −( f j+1/2 − f j−1/2), (4.76)

where

f j+1/2 = 1

2
(Ê j + Ê j+1). (4.77)

Thus the discrete form applied to the conservation law form of the equation pre-
serves the conservative property of the original PDE. It is important that the artificial
dissipation scheme maintain this property.

We now introduce an artificial dissipation term (D∂) j,k in the ∂ direction into
(4.75) as follows:

(δν Q̂) j,k = −(ξ∂ Ê) j,k + (D∂) j,k, (4.78)

where

(D∂) j,k = →∂

(
σ(2)| Â|J−1

)
j+1/2,k

Δ∂ Q j,k

−→∂

(
σ(4)| Â|J−1

)
j+1/2,k

Δ∂→∂Δ∂ Q j,k . (4.79)

Analogous terms are used in the π direction. There are many aspects to this expres-
sion; these will be explained one at a time. The first term on the right-hand side is
the second-difference term, which is first order, that is needed near shock waves.
The second term is the fourth-difference term, which is third order, that is used in
smooth regions of the flow field. Their relative contributions are controlled by the
two coefficients σ(2) and σ(4), which are defined below. Next, Â is the flux Jacobian

http://dx.doi.org/10.1007/978-3-319-05053-9_6
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in the ∂ direction defined as follows:

Â = δ Ê

δ Q̂
. (4.80)

This is given in Sect. 4.5.
Notice that the dissipation operates on Q, not Q̂; J−1 is moved together with | Â|.

This ensures that no dissipation is generated for a uniform flow. On a nonuniform
mesh, Q̂ is not constant in space, even if Q is constant, as a result of the spatial
variation of J−1. Consequently, nonzero dissipation would arise in a uniform flow
if the dissipation were to operate on Q̂.

The location of the terms σ(2)| Â|J−1 and σ(4)| Â|J−1 is consistent with (4.73).
These can be evaluated through simple averages, e.g.

(
σ(2)| Â|J−1

)
j+1/2,k

= 1

2

[(
σ(2)| Â|J−1

)
j,k

+
(
σ(2)| Â|J−1

)
j+1,k

]
(4.81)

(
σ(4)| Â|J−1

)
j+1/2,k

= 1

2

[(
σ(4)| Â|J−1

)
j,k

+
(
σ(4)| Â|J−1

)
j+1,k

]
, (4.82)

or a Roe average can be used for Â j+1/2,k .
The contribution of the second-difference term is controlled by a pressure sensor

that detects shock waves [6, 12]. It is defined as follows:

σ
(2)
j,k = τ2 max(Υ j+1,k, Υ j,k, Υ j−1,k)

Υ j,k =
⎢⎢⎢⎢ p j+1,k − 2p j,k + p j−1,k

p j+1,k + 2p j,k + p j−1,k

⎢⎢⎢⎢
σ(4)

j,k = max(0,τ4 − σ(2)
j,k), (4.83)

where typical values of the constants are τ2 = 1/2 and τ4 = 1/50. The switch is
based on a normalized undivided second difference of pressure, which is much larger
at shockwaves than in smooth regions. The logic turns off the fourth-difference dissi-
pation when the second-difference coefficient is large. The max function spreads out
the contribution of the second-difference dissipation to ensure that it is not switched
off in the interior of the shock.

Consistent with (4.76), the dissipative term can be written as

(D∂) j,k = (d∂) j+1/2,k − (d∂) j−1/2,k, (4.84)
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where

(d∂) j+1/2,k =
(
σ(2)| Â|J−1

)
j+1/2,k

Δ∂ Q j,k

−
(
σ(4)| Â|J−1

)
j+1/2,k

Δ∂→∂Δ∂ Q j,k . (4.85)

This ensures that the dissipation is conservative.
In order to reduce the cost of the dissipation model, one can replace the matrix

| Â| with the spectral radius of Â, which is its largest eigenvalue by absolute value.
The spectral radius of Â is given by

σ = |U | + a
⎣

∂2x + ∂2y . (4.86)

The spectral radius of B̂ is used for the π dissipation term. This approach, known as
scalar artificial dissipation, leads to an inexpensive artificial dissipation scheme that
is robust but can be excessively dissipative in certain contexts.

The astute reader may be wondering where theΔx terms in (4.66) and (4.67) have
gone. These are implicit in Â and the spectral radius σ through the metric terms ∂x

and ∂y , which scale with the inverse of the mesh spacing. This ensures that the two
dissipation operators in (4.79) are first order and third order as desired.

Let us consider the fourth-difference dissipation term in more detail. Temporarily
ignoring the coefficient term, we have

(D(4)
∂ ) j,k = −→∂Δ∂→∂Δ∂ Q j,k

= −Q j−2,k + 4Q j−1,k − 6Q j,k + 4Q j+1,k − Q j+2. (4.87)

This operator involves values of Q from j − 2, k to j + 2, k, i.e. a five-point stencil,
in contrast to the finite-difference approximations to the inviscid and viscous flux
derivatives, which involve data from j − 1 to j + 1 only, i.e. a three-point stencil.
As we shall see in Sect. 4.5, this has significant implications for an implicit time-
marching method. Here we are concerned with its implications near the boundaries
of the grid. Boundary conditions are discussed later in this chapter. For now we will
assume that the values of Q at the boundary are known, so the governing equations
are not solved at the boundary. At the first interior node, the three-point operators for
the inviscid and viscous fluxes as well as the second-difference dissipation can be
applied without modification. However, the five-point operator cannot be applied, as
either Q j−2,k or Q j+2,k is unavailable, depending on the boundary.

In developing a boundary scheme for the fourth-difference dissipation operator,
one must ensure that the resulting scheme is conservative, dissipative, stable, and
sufficiently accurate globally. First, we will consider conservation. The operator in
(4.87) can be rewritten as

(D(4)
∂ ) j,k = (d(4)

∂ ) j+1/2,k − (d(4)
∂ ) j−1/2,k, (4.88)
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where

(d(4)
∂ ) j+1/2,k = Q j−1,k − 3Q j,k + 3Q j+1,k − Q j+2,k . (4.89)

Without loss of generality,wewill consider a boundary located at j = 0. The operator
at j = 1 must be modified because the node j − 2 does not exist. Since the operator
at j = 2 is not modified, conservation dictates that the term (d(4)

∂ ) j+1/2,k at j = 1
cannot be modified. In any case, this term does not involve Q j−2,k , so it need not be

modified. There are several different ways to proceed; one is to define (d(4)
∂ ) j−1/2,k

at node j = 1 as

(d(4)
∂ ) j−1/2,k = −Q j−1,k + 2Q j,k − Q j+1,k . (4.90)

This leads to the following operator for the node at j = 1:

(D(4)
∂ ) j,k = (Q j−1,k − 3Q j,k + 3Q j+1,k − Q j+2,k)

−(−Q j−1,k + 2Q j,k − Q j+1,k)

= 2Q j−1,k − 5Q j,k + 4Q j+1,k − Q j+2,k . (4.91)

Similar formulas are used at other boundaries. This approach has been shown to
be dissipative and stable [14] and is therefore popular, although other options are
also used. This boundary operator is first-order accurate locally and consistent with
second-order global accuracy. If the interior scheme has an order of accuracy greater
than two, then a higher order boundary operator should be used for the fourth-
difference dissipation. Similarly, if better than third-order global accuracy is desired,
then an artificial dissipation scheme of higher order is needed.

We conclude this section with a brief discussion of the application of this artifi-
cial dissipation scheme to the quasi-one-dimensional Euler equations, which are the
subject of the exercises at the end of this chapter. The problems are to be solved on
a uniform grid using the scalar artificial dissipation scheme. The spectral radius of
the one-dimensional flux Jacobian matrix is

σ = |u| + a. (4.92)

Since the mesh is uniform, no coordinate transformation is needed. The dissipation
terms thus become

D j = 1

Δx
→
(
σ(2)(|u| + a)

)
j+1/2

ΔQ j

− 1

Δx
→
(
σ(4)(|u| + a)

)
j+1/2

Δ→ΔQ j , (4.93)

where → and Δ denote undivided differences. Note in particular the 1/Δx scaling.
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4.5 Implicit Time Marching and the Approximate
Factorization Algorithm

After application of the above spatial discretization to (4.18), we obtain the following
semi-discrete equation at each interior node in the mesh:

δν Q̂ = −ξ∂ Ê + D∂ − ξπ F̂ + Dπ + Re−1[ξ∂ Êv + ξπ F̂v], (4.94)

where ξ represents the spatial difference operator, in this case second-order centered
differences, and D∂ and Dπ the artificial dissipation terms, e.g. (4.79). Collecting
these into a single equation, we obtain the following coupled system of nonlinear
ODEs:

dQ̂
dt

= R(Q̂), (4.95)

where Q̂ is a column matrix containing Q̂ j,k at each node of the mesh, R is a column
matrix containing R j,k at each node, where

R(Q̂) = −ξ∂ Ê + D∂ − ξπ F̂ + Dπ + Re−1[ξ∂ Êv + ξπ F̂v], (4.96)

and we have replaced ν with t . In order to obtain a time-accurate solution for an
unsteady flow problem, this system of ODEs must be solved using a time-marching
method.Alternatively, if the flowunder consideration is steady, one seeks the solution
to the following coupled system of nonlinear algebraic equations:

R(Q̂) = 0. (4.97)

In the steady case, R(Q̂) is referred to as the residual vector, or simply the residual.
As a result of the nonlinear nature of the residual vector, this system cannot be solved
directly: an iterative method is required.

For the numerical solution of a large system of nonlinear algebraic equations such
as (4.97), it is natural to consider the Newton method, which produces the following
linear system:

AnΔQ̂n = −R(Q̂n), (4.98)

where

An = δR

δQ̂
(4.99)

is the Jacobian evaluated at state Q̂n , and ΔQ̂ = Q̂n+1 − Q̂n . This linear system
must be solved iteratively until a converged solution is obtained that satisfies (4.97).
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The degree towhich a given iterate Q̂n is a solution to (4.97) can bemeasured through
the norm of R(Q̂). In finite precision arithmetic, it is typically not possible to reduce
the norm of the residual below machine zero, so a solution for which this norm is on
the order of machine zero can be considered fully converged. However, with single
precision arithmetic, this level of convergence may not be sufficient.

Application of the Newton method to the large systems of nonlinear algebraic
equations arising from the spatial discretization of the Euler or Navier-Stokes equa-
tions in multiple dimensions leads to two principal challenges. First, the Newton
method converges only from an iterate that is within a finite region of convergence
near the solution. Typically, the initial guess for Q̂ lies outside this region, and some
sort of globalization technique is needed to ensure that the Newton method will
converge for an arbitrary initial iterate. A uniform flow is often used as the initial
iterate. Second, the linear system of equations (4.98) that must be solved is in gen-
eral large and sparse. Direct solution of such systems based on a lower-upper (LU )
factorization can require a large amount of memory relative to the original sparse
system and a number of floating point operations that scales poorly as the system
size increases. Hence direct solution is only effective for linear systems below a
certain size, although the system size for which direct solution of the system is a
feasible approach increases with each new generation of computer hardware. The
high cost of direct solution of this linear system for problems of practical interest
motivates inexact Newton methods in which the linear system (4.98) is instead solved
iteratively to some tolerance at each iteration. Sequences of tolerances can be found
that maintain the quadratic convergence property of the Newton method within the
radius of convergence, provided the residual function meets certain conditions.

A natural way to address the problem that the initial iterate is likely outside
the region of convergence of the Newton method is to consider a time-dependent
path to steady state. Under certain conditions, the solution of the steady problem
(4.97) is also the steady solution of the ODE system (4.95), which can be found by
applying a time-marching method to (4.95) and advancing in time until a steady state
is reached. Time accuracy is not required; we simply wish to integrate in time from
some arbitrary initial state to the steady solution in a manner that will require the
smallest amount of computational work. The entire transient portion of the solution
can be considered parasitic, and hence the problem is stiff. This suggests the use
of an implicit time-marching method, and, given that we are not interested in time
resolution of the transient, there is no reason to seek better than first-order accuracy.
Therefore the implicit Euler method is the logical choice for steady problems. Its
relationship with the Newton method is discussed in Sect. 2.6.3.

For unsteadyflowproblemswhere time-accurate solutions are required, onewould
like at least second-order accuracy. Hence, the trapezoidal and second-order back-
ward methods (see Sect. 2.6), which are both unconditionally stable, are reasonable
choices. The second-order backward method has a larger region of stability than the
trapezoidal method, making it the more robust of the two. Moreover, the trapezoidal
method provides little damping of modes with eigenvalues with large negative real
parts, which is undesirable for stiff problems. Implicit Runge-Kutta methods, which
we will not discuss here, are another option for time-accurate solution of stiff ODEs.

http://dx.doi.org/10.1007/978-3-319-05053-9_2
http://dx.doi.org/10.1007/978-3-319-05053-9_2
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This brings us to the challenge of solving a large sparse linear system, which
is present whether one is solving steady or unsteady problems. Historically, due to
computer hardware limitations, direct solution techniques were not practical even
for relatively small problems. Even today they are not an efficient option for large-
scale three-dimensional problems. Inexact Newton methods have gained in popular-
ity since the introduction of efficient iterative techniques for nonsymmetric sparse
linear systems, such as the generailized minimal residual method (GMRES) [15].
However, these were not available until the mid-1980s, so the first implicit computa-
tions of three-dimensional flowswere performed using the nowclassical approximate
factorization algorithm, which is the subject of Sect. 4.5.4.

4.5.1 Implicit Time-Marching

Based on the above discussion, whether we are solving an unsteady problem or a
steady one, we seek to solve the coupled system of ODEs given by (4.95) using
an implicit time-marching method. We will consider the following two-parameter
family of time-marching methods [3]:

Q̂n+1 = θΔt

1 + ϕ

d

dt
Q̂n+1 + (1 − θ)Δt

1 + ϕ

d

dt
Q̂n + 1 + 2ϕ

1 + ϕ
Q̂n − ϕ

1 + ϕ
Q̂n−1

+O

[
(θ − 1

2
− ϕ)Δt2 + Δt3

]
, (4.100)

where Q̂n = Q̂(nΔt). This family of methods is a subset of two-step linear multistep
methods with the coefficient of

d

dt
Q̂n−1 (4.101)

set to zero. One member of the family is third-order accurate, but that method is
not of interest here, as it is not unconditionally stable. Our interest is in the first-
order implicit Euler method obtained with θ = 1 and ϕ = 0 for steady problems
and the second-order backward method obtained with θ = 1 and ϕ = 1/2 when
time-accuracy is required.

For this exposition we will restrict ourselves to the implicit Euler method, but all
of the subsequent development can easily be extended to any second-order scheme
formed from (4.100). Applying the implicit Euler method to the thin-layer form of
(4.95) results in the following expression at each node of the grid:

Q̂n+1 − Q̂n = h
(
−ξ∂ Ên+1 + Dn+1

∂ − ξπ F̂n+1 + Dn+1
π + Re−1ξπ Ŝn+1

)
,

(4.102)

with h = Δt .
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4.5.2 Local Time Linearization

We wish to solve (4.102) for Q̂n+1 given Q̂n . The flux vectors Ê , F̂ , and Ŝ, and the
artificial dissipation terms D∂ , and Dπ , are nonlinear functions of Q̂, and therefore
the right-hand side of (4.102) is nonlinear in Q̂n+1. Hence we proceed by locally
linearizing with respect to t .

The flux vectors are linearized in time about Q̂n by Taylor series such that

Ên+1 = Ên + ÂnΔQ̂n + O(h2)

F̂n+1 = F̂n + B̂nΔQ̂n + O(h2)

Re−1 Ŝn+1 = Re−1 ⎦Ŝn + M̂nΔQ̂n]+ O(h2), (4.103)

where Â = δ Ê/δ Q̂ , B̂ = δ F̂/δ Q̂ and M̂ = δ Ŝ/δ Q̂ are the flux Jacobians, and
ΔQ̂n is O(h). As discussed in Sect. 2.6.3, such a local time linearization will not
degrade the order of accuracy of time-marching methods of up to second order.

The inviscid flux Jacobian matrices Â and B̂ are given by




τt τx τy 0
−uθ + τxφ

2 τt + θ − (λ − 2)τx u τyu − (λ − 1)τxv (λ − 1)τx

−vθ + τyφ
2 τxv − (λ − 1)τyu τt + θ − (λ − 2)τyv (λ − 1)τy

θ[φ2 − a1] τx a1 − (λ − 1)uθ τya1 − (λ − 1)vθ λθ + τt


⎡⎡ ,

(4.104)

with a1 = λ(e/κ)−φ2, θ = τx u +τyv, φ2 = 1
2 (λ −1)(u2 +v2), and τ = ∂ or π for

Â or B̂, respectively. As an example, we will derive the first element in the second
row of Â, i.e.

â21 = δê2
δq̂1

, (4.105)

where

Q̂ =




q̂1
q̂2
q̂3
q̂4


⎡⎡ = J−1




κ
κu
κv

e


⎡⎡ , Ê =




ê1
ê2
ê3
ê4


⎡⎡ = J−1




κU
κuU + ∂x p
κvU + ∂y p

U (e + p) − ∂t p


⎡⎡ . (4.106)

In order to find â21, the first step is to write ê2 in terms of the elements of Q̂. One
obtains

http://dx.doi.org/10.1007/978-3-319-05053-9_2
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ê2 = J−1κuU + J−1∂x p

= J−1κu∂t + J−1κu2∂x + J−1κuv∂y

+J−1∂x (λ − 1)e − J−1∂x (λ − 1)
1

2
κu2 − J−1∂x (λ − 1)

1

2
κv2

= ∂t q̂2 + ∂x
q̂2
2

q̂1
+ ∂y

q̂2q̂3
q̂1

+ ∂x (λ − 1)q̂4 − ∂x (λ − 1)

2

q̂2
2

q̂1
− ∂x (λ − 1)

2

q̂2
3

q̂1
.

(4.107)

From this we find

â21 = δê2
δq̂1

= −∂x
q̂2
2

q̂2
1

− ∂y
q̂2q̂3
q̂2
1

+ ∂x (λ − 1)

2

q̂2
2

q̂2
1

+ ∂x (λ − 1)

2

q̂2
3

q̂2
1

= −∂x u2 − ∂yuv + ∂x (λ − 1)

2
u2 + ∂x (λ − 1)

2
v2

= −u(∂x u + ∂yv) + ∂x (λ − 1)

2
(u2 + v2), (4.108)

consistent with (4.104). The other terms in Â and B̂ are found in a similar manner.
The thin-layer viscous flux Jacobian is

M̂ = J−1




0 0 0 0
m21 β1δπ(κ

−1) β2δπ(κ
−1) 0

m31 β2δπ(κ
−1) β3δπ(κ

−1) 0
m41 m42 m43 m44


⎡⎡ J, (4.109)

where

m21 = −β1δπ(u/κ) − β2δπ(v/κ)

m31 = −β2δπ(u/κ) − β3δπ(v/κ)

m41 = β4δπ

[
−(e/κ2) + (u2 + v2)/κ

]

−β1δπ(u
2/κ) − 2β2δπ(uv/κ)

−β3δπ(v
2/κ)

m42 = −β4δπ(u/κ) − m21

m43 = −β4δπ(v/κ) − m31

m44 = β4δπ(κ
−1)

β1 = μ[(4/3)πx
2 + πy

2], β2 = (μ/3)πxπy

β3 = μ[πx
2 + (4/3)πy

2], β4 = λμPr−1(πx
2 + πy

2).
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Its derivation is made more complicated by virtue of the fact that Ŝ includes within it
derivatives of Q̂. Therefore the term M̂nΔQ̂n in (4.103) alsomust contain derivatives
ofΔQ̂n , so this term is not a simple matrix-vector product as is the case for the terms
ÂnΔQ̂n and B̂nΔQ̂n .

To clarify this, let us derive the second element in the second row of M̂ . We begin
by writing the second element of Ŝ in terms of Q̂ as follows:

ŝ2 = β1

J
uπ + β2

J
vπ

= β1

J

δ

δπ

(
q̂2
q̂1

)
+ β2

J

δ

δπ

(
q̂3
q̂1

)
, (4.110)

whereβ1 andβ2 are defined below (4.109). For this derivationwe retain the analytical
derivative from the original PDE rather than the finite-difference approximation,
which can be applied later. It is clear that the second term on the right-hand side in
(4.110), which does not involve q̂2, will not enter into the term m̂22 in M̂ . Hence we
define an operator f (q̂2) as follows:

f (q̂2) = β1

J

δ

δπ

(
q̂2
q̂1

)
, (4.111)

which is the first term in (4.110). We can then use a Fréchet derivative to find

δ f

δq̂2
Δq̂2 = lim

σ→0

f (q̂2 + σΔq̂2) − f (q̂2)

σ

= lim
σ→0

[
β1

J

δ

δπ

(
q̂2 + σΔq̂2

q̂1

)
− β1

J

δ

δπ

(
q̂2
q̂1

)]
/σ

= lim
σ→0

[
β1

J

δ

δπ

(
σΔq̂2

q̂1

)]
/σ

= β1

J

δ

δπ

(
Δq̂2
q̂1

)
. (4.112)

Thus we see that the product m̂22Δq̂2 is

m̂22Δq̂2 = J−1β1
δ

δπ

(
J

κ
Δq̂2

)
. (4.113)

This is identical to (4.109) and clarifies the precise meaning of that equation. The δπ

derivatives in M̂ operate on the product of the term shown in M̂ , e.g. κ−1 in m̂22, the
J term shown to the right of the matrix in (4.109), and the appropriate component
of ΔQ̂.

The nonlinear artificial dissipation terms D∂ and Dπ appearing in (4.102) must
also be locally linearized. As a result of the complexity of (4.79), for example,
an inexact linearization of these terms is often used, especially in the context of
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the approximate factorization algorithm. This is achieved by treating the coefficient
terms in the artificial dissipation, such as σ(4)| Â| in (4.79), as frozen at time level
n, making the linearization straightforward. This approximation is not made on the
right-hand side.

Substituting the local time linearizations of the nonlinear flux vectors in (4.103)
into (4.102) and grouping the ΔQ̂n terms on the left-hand side produces the delta
form of the algorithm:

⎦
I + hξ∂ Ân − hL∂ + hξπ B̂n − hLπ − Re−1h ξπ M̂

]
ΔQ̂n (4.114)

= −h
(
ξ∂ Ên − Dn

∂ + ξπ F̂n − Dn
π − Re−1ξπ Ŝn

)
,

where L∂ and Lπ result from the linearization of the artificial dissipation terms. The
right-hand side is simply h times the right-hand side of the thin-layer form of (4.94).
This results in an important property of the delta form. If a fully converged steady
solution of (4.114) is obtained, then it will be the correct steady solution of (4.94),
independent of the left-hand side of (4.114). This means that approximations made
to the left-hand side in order to reduce the computational work needed to converge
to steady state, i.e. to drive the norm of R(Q̂) to machine zero, will have no effect
on the converged solution.

The finite-difference operators on the left-hand side of (4.114) operate on the
product of the terms immediately to their right within the square brackets and the
ΔQ̂n outside the square brackets. For example, the ξ∂ term results in

1

2
h( Ân

j+1,kΔQ̂n
j+1,k − Ân

j−1,kΔQ̂n
j−1,k). (4.115)

The viscous contribution on the left-hand side includes both the ξπ term shown in
(4.114) and the finite-difference approximations of the partial derivativeswith respect
to π within the viscous flux Jacobian M̂ . These must be consistent with the compact
three-point operator used on the right-hand side given in (4.48). The ΔQ̂n terms are
of course unknown, and (4.114) represents a linear system of equations to be solved
at each iteration of the implicit Euler method. Excluding the I term, the terms within
the square brackets on the left-hand side of (4.114) are a linearization of the negative
discrete residual operator, i.e. the negative of the right-hand side. Consequently, if
the I term is omitted, we obtain the Newton method, consistent with the fact that the
Newton method is obtained from the time linearized implicit Euler method in the
limit as h goes to infinity (see Sect. 2.6.3).

4.5.3 Matrix Form of the Unfactored Algorithm

We refer to (4.114) as the unfactored algorithm. It produces a large banded system
of algebraic equations. We now examine the associated matrix. Let the number of
grid nodes in the ∂ direction be J and in the π direction K . Temporarily ignoring the

http://dx.doi.org/10.1007/978-3-319-05053-9_2
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viscous and artificial dissipation terms, the banded matrix is a (J · K ·4) × (J · K ·4)
square matrix of the form

[
I + hξ∂ Ân + hξπ B̂n

]
∇




I h Â/2 h B̂/2
−h Â/2 I h Â/2 h B̂/2

−h Â/2 I h Â/2 h B̂/2
−h Â/2 I h Â/2 h B̂/2

−h B̂/2 −h Â/2 I h Â/2 h B̂/2

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

−h B̂/2 −h Â/2 I h Â/2 h B̂/2
−h B̂/2 −h Â/2 I h Â/2 h B̂/2

−h B̂/2 −h Â/2 I h Â/2

.
.
.

.
.
.

.
.
.

.
.
.

−h B̂/2 −h Â/2 I h Â/2
−h B̂/2 −h Â/2 I


⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡

, (4.116)

where the variables have been ordered with j running first and then k. Each entry
is a 4 × 4 block. If we order the variables with k running first and then j , the roles
of Â and B̂ are reversed in the above matrix, i.e. the h B̂ terms produce a tridiagonal
form, while the h Â terms produce a much larger bandwidth. The thin-layer viscous
terms involve a three-point operator in the π direction, so they add to the diagonal
block and contribute to the h B̂ blocks shown in (4.116), but they do not alter the
overall structure of the matrix. Finally, the artificial dissipation terms involve a five-
point operator in each direction and thus further increase the matrix bandwidth. If
the scalar artificial dissipation model is used, the corresponding entries are in the
form σ I , where σ is a scalar, and I is the 4 × 4 identity matrix.

Although this matrix is sparse, it would be very expensive computationally to
solve the algebraic system directly through an LU factorization. For example, for
an accurate computation of a three-dimensional transonic flow past a wing, one can
easily require over tenmillionmesh nodes. The resulting linear system is a 50million
× 50 million matrix problem to be solved, and although one could take advantage of
its banded sparse structure, it would still be very costly in terms of both computational
work and memory. This motivates iterative and approximate solution strategies for
sparse linear systems, such as the approximate factorization algorithm described
next.

4.5.4 Approximate Factorization

One way to reduce the computational cost of the solution process is to introduce an
approximate factorization of the two-dimensional operator into two one-dimensional
operators. Ignoring the artificial dissipation for now, the left-hand side of (4.114) can
be written as
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[
I + hξ∂ Ân + hξπ B̂n − h Re−1ξπ M̂n

]
ΔQ̂n

= ⎦I + hξ∂ Ân] [I + hξπ B̂n − h Re−1ξπ M̂n
]

ΔQ̂n

−h2ξ∂ Ânξπ B̂n ΔQ̂n + h2Re−1ξ∂ Ânξπ M̂n ΔQ̂n . (4.117)

Noting thatΔQ̂n is O(h), the difference between the factored formand the unfactored
form is O(h3). Therefore, this difference can be neglected without reducing the time
accuracy below second order.

The resulting factored form of the algorithm is

⎦
I + hξ∂ Ân] ⎦I + hξπ B̂n − h Re−1ξπ M̂n

]
ΔQ̂n (4.118)

= −h
[
ξ∂ Ên + ξπ F̂n − Re−1ξπ Ŝn

]
.

We now have two matrices each of which is block tridiagonal if the appropriate
ordering of the variables is used. The structure of the block tridiagonal matrices is

[
I + hξ∂ Ân

]
∇




I h Â/2
−h Â/2 I h Â/2

−h Â/2 I h Â/2

.
.
.

.
.
.

.
.
.

−h Â/2 I h Â/2
−h Â/2 I h Â/2

−h Â/2 I h Â/2
−h Â/2 I


⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡⎡

.

The thin-layer viscous term M̂ is kept with the π factor. Since it is also based upon
a three-point stencil, it will not affect the tridiagonal structure.

The mechanics of the approximate factorization algorithm are as follows. First
solve the system

⎦
I + hξ∂ Ân]ΔQ̃ = −h

[
ξ∂ Ên + ξπ F̂n − Re−1ξπ Ŝn

]
(4.119)

for ΔQ̃, where ΔQ̃ is an intermediate variable. This requires K solutions of a
(J ·4)×(J ·4) system.With the variables ordered with j running first, followed by k,
this is a block tridiagonal system, which can be efficiently solved by a block lower-
upper (LU) decomposition. This step is equivalent to solving K one-dimensional
problems, one for each ∂ line in the mesh.

The next step is to permute, or reorder, ΔQ̃ such that k is running first, fol-
lowed by j . This reordering is only conceptual. In practice, this is handled through
programming using array indices. Then solve

[
I + hξπ B̂n − h Re−1ξπ M̂n

]
ΔQ̂n = ΔQ̃ (4.120)
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for ΔQ̂n . This requires J solutions of a (K · 4) × (K · 4) system. With the variables
ordered with k running first, followed by j , this is also a block tridiagonal system.
This step is equivalent to solving J one-dimensional problems, one for each π line in
the mesh. The resulting vector ΔQ̂n must be reordered back to the original database
with j running first, again only conceptually, and added to Q̂n to form Q̂n+1.

Since efficient specialized algorithms can be used to solve block tridiagonal sys-
tems, the factored form substantially reduces the computational work required for
one implicit time step. Moreover, as a result of the use of the delta form, we are as-
sured that the steady-state solution is unaffected by the factorization of the left-hand
side operator.What remains to be seen is the effect of the factorization on the number
of iterations needed to converge to the steady state. This we examine next.

For this purpose we will consider the following simple scalar model ODE:

du

dt
= ⎦ψx + ψy

]
u + a, (4.121)

where ψx , ψy , and a are complex constants, which has the exact solution

u(t) = ce(ψx +ψy)t − a

ψx + ψy
. (4.122)

Wewill assume that both ψx and ψy have negative real parts, so the ODE is inherently
stable and has a steady solution given by

lim
t→≈ u(t) = − a

ψx + ψy
. (4.123)

Following the approach of Sect. 2.6.2, application of the unfactored form of the
implicit Euler method leads to an OΔE that has the following solution:

un = cσn − a

ψx + ψy
, (4.124)

where

σ = 1

1 − h ψx − h ψy
.

This method is unconditionally stable and converges rapidly to the steady-state so-
lution for large h because the magnitude of the amplification factor |σ| → 0 as
h → ≈. As discussed, however, when applied to practical problems, the cost of this
method can be prohibitive.

In contrast, the approximate factorization presented in this chapter produces the
following OΔE when applied to (4.121):

(1 − h ψx )
(
1 − h ψy

)
(un+1 − un) = h

(
ψx un + ψyun + a

)
,

http://dx.doi.org/10.1007/978-3-319-05053-9_2
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which reduces to

(1 − h ψx )
(
1 − h ψy

)
un+1 =

(
1 + h2ψxψy

)
un + ha.

The solution of this OΔE is given by (4.124) with

σ = 1 + h2ψxψy

(1 − h ψx )
(
1 − h ψy

) . (4.125)

Although this method remains unconditionally stable and produces the exact steady-
state solution independent of h, it converges very slowly to the steady-state solution
for large values of h, since the magnitude of the amplification factor |σ| → 1 as
h → ≈. The factoring error has introduced an h2 term in the numerator of the
amplification factor that destroys the good convergence characteristics at large time
steps. In comparison with the unfactored method, the factored form will take more
iterations to converge, but each iteration will involve much less computational work.

Let us examine this in more detail. The amplification factor approaches unity as
h goes to zero, and, for the factored form, its magnitude also tends to unity as h goes
to infinity. The magnitude of the amplification factor thus has a minimum for some
value of h, and this is the optimum choice of h for rapid convergence to steady-
state. When solving a system of ODEs, there are many eigenvalues, and one cannot
choose the optimum value of h for each one. Instead, one seeks an h that balances
the magnitude of the amplification factor associated with the smallest eigenvalues
with that associated with the largest eigenvalues. Choosing a smaller h will increase
the amplification factor for the smallest eigenvalue, while a larger h will increase the
amplification factor for the largest eigenvalue. Hence this choice of h is optimal in
the sense that it minimizes the maximum amplification factor.

One can contrast this with the time step choice for an explicit time-marching
scheme applied to a steady problem. Such schemes are conditionally stable, so there
is firm upper bound on the time step. Optimal convergence to steady state is usually
achieved with a time step just slightly below this stability limit. In other words, h
must be chosen such that the largest eigenvalues lie in the stable region of the explicit
method, which is generally a smaller time step than would be optimal for the factored
implicit method. Therefore, the amplification factor for the smallest eigenvalues will
be larger than for the factored method, and a larger number of iterations will be
needed to reach a steady state. This must of course be weighed against the reduced
cost per time step of the explicit method. As the spread in the eigenvalues increases,
i.e. the problem becomes stiffer, the advantage tilts toward the implicit method. For
example, implicit methods are typically preferred for problems involving chemical
reactions or grid cells with very high aspect ratios as needed for the computation of
turbulent flows at high Reynolds numbers.

Now we return to the contribution of the linearization of the artificial dissipation
terms to the left-hand side of (4.114). The first operator, L∂ , operates solely in the ∂
direction, while the second, Lπ , operates solely in the π direction. Hence these oper-



4.5 Implicit Time Marching and the Approximate Factorization Algorithm 113

ators are amenable to approximate factorization with hL∂ added to the
⎦
I + hξ∂ Ân

]
factor and hLπ to the

⎦
I + hξπ B̂n − h Re−1ξπ M̂n

]
factor. Since the artificial dissipa-

tion operators involve a five-point stencil, the matrices become block pentadiagonal
rather than block tridiagonal.

4.5.5 Diagonal Form of the Implicit Algorithm

The approximate factorization algorithm based on solving block pentadiagonal fac-
tors is a viable and efficient algorithm. Nevertheless, the majority of the computa-
tional work resides in solving the block pentadiagonal systems, so it is worthwhile
to examine strategies to reduce this. One way to reduce the computational work is
to introduce a diagonalization of the blocks in the implicit operators, as developed
by Pulliam and Chaussee [5]. The eigensystems of the flux Jacobians Â and B̂ are
used in this construction. For now let us restrict ourselves to the Euler equations;
application to the Navier-Stokes equations is discussed later.

The flux Jacobians Â and B̂ each have real eigenvalues and a complete set of
eigenvectors. Therefore, the Jacobian matrices can be diagonalized as follows (see
Warming et al. [16]):

Λ∂ = T −1
∂ ÂT∂ and Λπ = T −1

π B̂Tπ, (4.126)

where Λ∂ and Λπ are diagonal matrices containing the eigenvalues of Â and B̂, T∂

is a matrix whose columns are the eigenvectors of Â, and Tπ is the corresponding
eigenvector matrix for B̂. These matrices are written out in the Appendix. We take
the factored algorithm in delta form (4.118), neglect the viscous terms, and replace
Â and B̂ with their respective eigensystem decompositions to obtain:

[
T∂ T −1

∂ + h ξ∂

(
T∂ Λ∂ T −1

∂

)] [
Tπ T −1

π + h ξπ

(
Tπ Λπ T −1

π

)]
ΔQ̂n

= − h
⎦
ξ∂ Ên + ξπ F̂n] = R̂n . (4.127)

Note that the identity matrix I has been replaced by T∂T −1
∂ and TπT −1

π in each factor,
respectively.

At this point, no approximations have been made, and with the exception of the
viscous terms, (4.118) and (4.127) are equivalent. A modified form of (4.127) can be
obtained by factoring the T∂ and Tπ eigenvectormatrices outside the spatial derivative
terms ξ∂ and ξπ . The eigenvector matrices are functions of ∂ and π, and therefore
this modification introduces an approximation on the left-hand side. The resulting
equations are

T∂

⎦
I + h ξ∂ Λ∂

]
N̂
⎦
I + h ξπ Λπ

]
T −1

π ΔQ̂n = R̂n, (4.128)

where N̂ = T −1
∂ Tπ (see Appendix).
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The approximationmade to the left-hand side of (4.127) reduces the time accuracy
to at best first order, and, moreover, gives time-accurate computations a nonconser-
vative feature that leads to errors in shock speeds and jump conditions. However,
the right-hand side is unmodified, so if the algorithm converges, it will converge
to the correct steady-state solution. The advantage of the diagonal form is that the
equations are decoupled as a result. Rather than a block tridiagonal system, we now
have four scalar tridiagonal systems plus some additional 4 × 4 matrix-vector mul-
tiplies, leading to a substantial reduction in computational work. The computational
work can be further decreased by exploiting the fact that the first two eigenvalues of
the system are identical (see Appendix). This allows us to combine the coefficient
calculations and part of the inversion work for the first two scalar operators.

The diagonal form reduces the computational work per time step and produces
the correct steady solution. The next step is to examine its effect on the number of
time steps needed to converge to steady state. Normally one would turn to linear
stability analysis to assess the stability limits and convergence rate of an algorithm.
However, linear analysis is of no use in analyzing the diagonal algorithm because the
assumption of linear analysis is that the Jacobians are constant.With this assumption,
the diagonalization introduces no approximation at all, so linear stability analysis
predicts the diagonal algorithm to have the sameunconditional stability as the original
block algorithm. Therefore one must resort to computational experiments in order
to investigate the impact of the diagonal form on the convergence properties of the
diagonal algorithm. Pulliam and Chaussee [5] have shown that the convergence and
stability limits of the diagonal algorithm are similar to those of the block form of the
algorithm. The reader will have the opportunity to perform similar experiments as
part of the exercises at the end of this chapter.

The steps involved in applying the diagonal form of the approximate factorization
algorithm are as follows:

1. Beginning with (4.128), premultiply R̂n by T −1
∂ to obtain the system

⎦
I + h ξ∂ Λ∂

]
N̂
⎦
I + h ξπ Λπ

]
T −1

π ΔQ̂n = T −1
∂ R̂n . (4.129)

2. With the variables ordered with j running first, solve the scalar trididagonal
system

⎦
I + h ξ∂ Λ∂

]
X1 = T −1

∂ R̂n (4.130)

for the temporary variable X1. This produces the following

N̂
⎦
I + h ξπ Λπ

]
T −1

π ΔQ̂n = X1. (4.131)

3. Premultiply by N̂−1 to obtain

⎦
I + h ξπ Λπ

]
T −1

π ΔQ̂n = N̂−1X1. (4.132)
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4. With the variables ordered with k running first, solve the scalar tridiagonal system

⎦
I + h ξπ Λπ

]
X2 = N̂−1X1 (4.133)

for X2, giving

T −1
π ΔQ̂n = X2. (4.134)

5. Premultiply X2 by Tπ to find ΔQ̂n .

The diagonal algorithm as presented above is only strictly valid for the Euler
equations. This is because we have neglected the implicit linearization of the viscous
flux Ŝn in the implicit operator for the π direction. The viscous flux Jacobian M̂n is
not simultaneously diagonalizable with the inviscid flux Jacobian B̂n and therefore
to include it in the diagonal form is not straightforward. For viscous flows one can
consider four options. One possibility is to use the diagonal form in the ∂ direction
only and the block algorithm in the π direction. This increases the computational
work substantially. Another option is to introduce a third factor to the implicit side
of Eq. 4.118 as follows:

[
I − h Re−1ξπ M̂n

]
. (4.135)

This again increases the computational work since we now have an added block
tridiagonal inversion. One could diagonalize this term, but it would nevertheless
increase the cost substantially. The third option is to throw caution to the wind and
actually neglect the viscous Jacobian, thereby gaining the increased efficiency of the
diagonal algorithm. This can have an adverse effect on stability and convergence.
The fourth option is to include a diagonal term on the implicit side that is a rough
approximation to the viscous Jacobian spectral radius. Estimates that have been used
successfully are

ψv(∂) = λPr−1μRe−1
(
∂2x + ∂2y

)
κ−1

ψv(π) = λPr−1μRe−1
(
π2x + π2y

)
κ−1, (4.136)

which are added to the appropriate operators in Eq. 4.128 with a differencing stencil
taken from Eq. 4.48. With these terms added, the diagonal algorithm is given as

T∂
⎦
I + h ξ∂ Λ∂ − h I ξ∂∂ψv(∂)

]
N̂
⎦
I + h ξπ Λπ − h I ξππψv(π)

]
T −1
π ΔQ̂n = R̂n .

(4.137)

The ∂ term is not added if the thin layer approximation is used.Although this approach
is not rigorous, given that the eigenvectors of the viscous Jacobians are distinct from
those of the inviscid Jacobians, it has proven to be effective in terms of both efficiency
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and reliability. It is thus the recommended approach for application of the diagonal
form to viscous flows.

Next we consider the contribution of the linearization of the artificial dissipation
terms, L∂ and Lπ in (4.114), in the context of the diagonal algorithm. Recall that the
operator associated with the fourth-difference dissipation leads to a pentadiagonal
matrix rather than a tridiagonal matrix, so the full block algorithm requires the solu-
tion of block pentadiagonal systems. If scalar dissipation is used, the contributions to
the left-hand side are in the form σ I , where σ is a scalar, so this is directly compatible
with the diagonal form. With matrix dissipation, the diagonalization is also straight-
forward, since Â and | Â| share the same eigenvectors, and so do B̂ and |B̂|. With the
linearization of the artificial dissipation included on the left-hand side, the diagonal
form requires the solution of scalar pentadiagonal rather than block pentadiagonal
systems, which results in a significant saving in computational work for the solution
of steady flows.

The diagonal algorithm is an efficient and robust algorithm. However, there are
some cases with specific properties for which it will not converge; in such cases,
the block pentadiagonal algorithm is more reliable. An intermediate block form in
which block tridiagonal systems are solved has also received considerable use. In
this intermediate approach, the contribution of the fourth-difference dissipation on
the left-hand side is approximated by a second-difference dissipation term with a
coefficient equal to twice the coefficient of the fourth-difference dissipation on the
right-hand side. It can be shown using linear theory that this approximation remains
unconditionally stable. Such an algorithm will typically converge much more slowly
than a full pentadiagonal linearization, but it has a lower cost per time step than the
block pentadiagonal algorithm and can be more robust than the scalar pentadiagonal
algorithm in some cases.

4.5.6 Convergence Acceleration for Steady Flow Computations

Local Time Stepping. As discussed in Sect. 4.5.4, the approximate factorization
leads to an amplification factor σ that approaches unity as the time step h tends to
infinity. Consequently, there is an optimum time step that minimizes the maximum
magnitude ofσ for the various eigenvalues associatedwith the Jacobian of the discrete
spatial operator and hence produces the fastest possible convergence to steady state.
For the inviscid flux terms, the eigenvalues of the Jacobian of the discrete residual
vector are proportional to the characteristic speeds, e.g. u, u + a, u − a in one
dimension, divided by a characteristic mesh spacing, e.g. Δx in one dimension. The
amplification factor σ is a function of the product of the eigenvalues and the time
step h. Hence the convergence rate is dependent on the Courant (or CFL) number,
given in one dimension by

Cn = (|u| + a)h

Δx
. (4.138)
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Here we have defined the Courant number based on the largest characteristic speed,
|u|+a, but waves propagating at the other characteristic speeds will have a different
effective Courant number.

Both the characteristic speeds and the mesh spacing can vary widely within a
mesh. With a constant h, the local Courant number associated with each mesh node
will thus also vary widely and will be suboptimal. When computing steady flows, we
have the freedom to vary the time step locally in space. This destroys time accuracy
but has no effect on the converged steady-state solution. Local time stepping can
have a substantial influence on the convergence rate of a factored algorithm. It can
be viewed as a way to condition the iteration matrix of the iterative methods defined
via (4.118) or (4.128), or it can be interpreted as an attempt to use a more uniform
(and hence closer to optimal) Courant number throughout the flow field. In any event,
local time stepping can be effective for grid spacings that vary from very fine to very
coarse—a situation usually encountered in simulations that contain a wide variety
of length scales.

As a rule, one wishes to adjust the local time step at each grid node in proportion
to the local grid spacing divided by the local characteristic speed of the flow, leading
to a constant Courant number. In multiple dimensions, the situation is not quite so
straightforward. For example, a cell with a high aspect ratio has two distinct grid
spacings. In two dimensions, an approximation to a constant Courant number is
achieved by the following formula for the local time step:

Δt = Δt ref

|U | + |V | + a
⎣

∂2x + ∂2y + π2x + π2y

, (4.139)

where Δt ref is defined by the user and must be chosen through experimentation to
provide fast convergence.

For highly stretched grids, the grid spacing can vary by over six orders of magni-
tude. The variation in the characteristic speeds is generallymoremoderate. Therefore,
the grid spacing is the more important parameter for maintaining a reasonably uni-
form Courant number, and a purely geometric variation of Δt can be effective. The
following geometric formula for the local time step produces fast convergence when
used with the approximately factored algorithm [2]:

Δt = Δt |ref
1 + ≡

J
. (4.140)

The term J−1 is closely related to the cell area. Therefore, this formula produces a
Δt that is roughly proportional to the square root of the cell area. The addition of
unity to the denominator prevents Δt from becoming too large at the largest grid
cells.

To illustrate the advantage of using a variable time step, Fig. 4.5 shows the im-
provement in convergence rate when a variable time step based on (4.140) is sub-
stituted for a constant time step in a NACA 0012 airfoil test case where the Euler
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Fig. 4.5 Ċonvergence improvement due to local time stepping

equations are solved at a Mach number of 0.8 and an angle of attack of 1.25 degrees.
The constant time step chosen is the largest stable constant time step. For this com-
parison all other parameters were held constant.

In the above discussion, we have considered only the local Courant number, which
is related to the inviscid fluxes. For an implicit algorithm, determination of the local
time step based on inviscid considerations is generally sufficient for high Reynolds
number flows, as these are convection dominated. For flows at lowReynolds numbers,
consideration also needs to be given to the local Von Neumann number (see Sect.
2.7.4). As we will see in Chap. 5, local time stepping is even more critical for explicit
methods.
Mesh Sequencing. The mesh density is based on accuracy considerations. A suf-
ficiently fine mesh must be used such that the numerical errors from the spatial
discretization lie below a desired threshold. The iterative methods given by (4.118)
or (4.128) require an initial solution to begin the process. Fewer iterations are needed
to converge to steady state if the initial solution is not too far from the converged
solution, which is of course unknown at the outset. It is common to initiate the it-
erations with a solution given by a uniform flow that satisfies some free-stream or
inflow boundary conditions. This provides a relatively poor initial guess that is much
different from the eventual steady solution. Therefore, one way to improve conver-
gence is to begin the iterations using a much coarser mesh than that dictated by the
accuracy requirements. On a coarse mesh, the iterations will converge with relatively
little computational work to a solution that provides a much improved initial guess
for the fine mesh iterations. The solution obtained after reducing the norm of the
residual on the coarse mesh by a few orders of magnitude can be interpolated onto

http://dx.doi.org/10.1007/978-3-319-05053-9_2
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Fig. 4.6 İmprovement in convergence of lift coefficient due to mesh sequencing

the finer mesh to provide the initial iterate for the iterations on the fine mesh. This
process can be repeated on a sequence of meshes, beginning with a very coarse mesh
and ending on the fine mesh dictated by accuracy requirements. The use of mesh
sequencing in this manner can also improve the robustness of a solver, as the coarse
meshes are effective at damping initial transients, when nonlinear effects are large.

Figure 4.6 shows an example of the improvement in convergence resulting from
mesh sequencing. For an inviscid flow over the NACA 0012 airfoil at aMach number
of 0.8 and an angle of attack of 1.25 degrees, a sequence of four C-meshes has been
used. The first mesh is 32 by 17, the second 63 by 33, the third 125 by 69, and the
final mesh has 249 by 98 nodes. Both cases were started with a free-stream initial
condition.

4.5.7 Dual Time Stepping for Unsteady Flow Computations

The implicit algorithm described above is suitable for time-accurate computations
of unsteady flows where the equations are integrated through time from some mean-
ingful initial condition. A sufficiently fine mesh is needed to ensure that spatial
discretization errors are small; in addition, the time step must be selected such that
the temporal discretization errors are also below the desired threshold. Generally
speaking, at least second-order temporal accuracy is desired. The local time lineariza-
tion and approximate factorization preserve the order of accuracy of a second-order
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implicit time-marching method, such as the second-order backward and trapezoidal
methods discussed earlier. Neither the diagonal form nor local time stepping should
be used for time-accurate computations of unsteady flows.

The second-order backwards time-marching method is given by

un+1 = 1

3
[4un − un−1 + 2hu∗

n+1]. (4.141)

Applying this method to the thin-layer form of (4.95) gives

Q̂n+1 = 4

3
Q̂n − 1

3
Q̂n−1

+2h

3

(
−ξ∂ Ên+1 + Dn+1

∂ − ξπ F̂n+1 + Dn+1
π + Re−1ξπ Ŝn+1

)
. (4.142)

After local time linearization and approximate factorization, a form analogous to
(4.118) is obtained:

[
I + 2h

3
ξ∂ Ân

] [
I + 2h

3
ξπ B̂n − 2h

3
Re−1ξπ M̂n

]
ΔQ̂n

= Q̂n − Q̂n−1 − 2h

3

[
ξ∂ Ên + ξπ F̂n − Re−1ξπ Ŝn

]
. (4.143)

The method given by (4.143) is the approximately factored form of the second-order
backward time-marching method. It is an efficient second-order implicit method
for time-accurate computations of unsteady flows. However, despite the fact that
the linearization and factorization errors do not diminish the order of accuracy of the
method, they increase the error incurred per time step. This is the motivation for the
dual time stepping approach, which eliminates linearization and factorization errors.

In order to demonstrate the dual time stepping approach, we begin by rearranging
(4.142) as follows

3Q̂n+1 − 4Q̂n + Q̂n−1

2h
+ R(Q̂n+1) = 0, (4.144)

where

R(Q̂n+1) =
[
ξ∂ Ên+1 − Dn+1

∂ + ξπ F̂n+1 − Dn+1
π − Re−1ξπ Ŝn+1

]
. (4.145)

This is a nonlinear algebraic equation that must be solved for Q̂n+1 at each time step.
To reflect this, we define Ru(Q̂) as

Ru(Q̂) = 3Q̂ − 4Q̂n + Q̂n−1

2h
+ R(Q̂), (4.146)
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so the nonlinear equation to be solved is simply

Ru(Q̂) = 0. (4.147)

One can readily observe the similarity between the nonlinear equation to be solved
at every iteration of the second-order backward time-marching method, Ru(Q̂) = 0,
and the equation to be solved for a steady flow, R(Q̂) = 0. Therefore, any method
developed for steady problems, such as inexact-Newton methods and implicit or
explicit time-marching methods that follow a time-dependent path to steady state,
can be used to solve (4.147).

In this chapter, our focus is on the approximate factorization algorithm, which
follows a time-dependent, though not necessarily time-accurate, path to the steady
solution. In order to enable application of this algorithm to the solution of (4.147),
we introduce a pseudo-time variable ν (not to be confused with the variable ν in the
generalized curvilinear coordinate transformation) to produce a system of ODEs as
follows:

dQ̂

dν
+ Ru(Q̂) = 0. (4.148)

In order to solve for the steady-state solution of this ODE, which is the solution to
(4.147), we can apply the approximately-factored implicit Euler method. We intro-
duce a pseudo-time index p such that Q̂ p = Q̂(pΔν ), where Δν = νp+1 − νp, to
obtain

[
I + Δν

b
ξ∂ Â p

] [
I + Δν

b
ξπ B̂ p − Δν

b
Re−1ξπ M̂ p

]
ΔQ̂ p (4.149)

= −Δν

b
Ru(Q̂ p),

where

b = 1 + 3Δν

2h
,

and we have divided by b before factoring. The converged solution obtained from
this iterative process provides Q̂n+1. The accuracy of the time-marching method is
dictated by the time step h, while the pseudo-time step Δν can be chosen for fast
convergence with no regard for time accuracy, since it has no effect on the converged
solution of (4.147). Similarly, for the pseudo-time iterations, the diagonal form and
local time stepping can be used to speed up convergence.

Dual time stepping is an example of an approachwhere an iterativemethod is used
to solve the nonlinear equation that arises at each time step of an implicit method.
This approach eliminates linearization and factorization errors and can also simplify
the implementation of boundary conditions. It is natural to use a fast steady solver
for the solution of this nonlinear equation along with any convergence acceleration
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techniques developed for steady flows. One may question the efficiency of an ap-
proach where the unsteady problem is in effect solved as a sequence of steady prob-
lems. However, it is important to note that the initial iterate for the pseudo-time
iterations is Q̂n , which is a much better estimate of Q̂n+1 then is usually available
for steady computations. Hence one can expect the number pseudo-time steps needed
to obtain a converged solution to (4.147) to be much less than the number of time
steps needed to obtain a converged solution to a steady flow problem.

4.6 Boundary Conditions

There are a number of different ways to implement boundary conditions. Before de-
scribing one particular approach,wewill introduce the important aspects of boundary
condition development that must be considered in selecting an approach, which are
as follows:

1. The physical definition of the flow problem must be properly represented. For
example, a viscous flow ordinarily requires a no-slip condition at solid surfaces.

2. The physical conditions must be expressed in mathematical form and must be
consistent with the mathematical description of the problem. For example, the
no-slip condition referred to above must be expressed in terms of the variables se-
lected. Moreover, this condition cannot be applied if inviscid governing equations
are chosen.

3. The boundary conditions expressed in mathematical form must be approximated
numerically.

4. Depending on the algorithm, the numerical scheme in the interior may require
more boundary information than the physics provides. Hence a means must be
developed for providing this additional boundary information.

5. The combination of the interior scheme with the boundary scheme must be
checked for stability and accuracy. In general, the two should have consistent
accuracy.

6. The boundary condition formulation must be assessed in terms of its impact on
the efficiency and generality of the solver.

With these considerations inmind, one can approach the development of boundary
conditions from several different directions. Moreover, there exist various different
boundary types, such as inflow/outflow boundaries, solid walls, symmetry bound-
aries, and periodic boundaries, one or more of which can be present in a specific flow
problem. In this chapter, we will cover an approach to the boundary conditions typ-
ically associated with computations of external flows. The basic principles covered
are easily extended to other boundary types.

With an implicit solver, one might expect implicit boundary conditions to be
a strict requirement. In order to obtain the benefits of an inexact-Newton method,
they are certainly recommended. For an approximately-factored solver, however, the
optimal time step is not so large that implicit boundary conditions are essential, and
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the use of explicit boundary conditions does not typically degrade the convergence
rate.

For external flows, one is faced with the problem that the boundary conditions are
defined at an infinite distance from the body. Although coordinate transformations
can be used to address this, it is much more common to introduce an artificial far-
field boundary in order to limit the size of the computational domain. This boundary
must be located a sufficient distance from the body that the error introduced does
not exceed the desired error threshold. At a far-field boundary, viscous effects are
typically negligible and the flow can be considered inviscid. Consequently, a charac-
teristic approach is taken to inflow and outflow boundary conditions at the far-field
boundary. Proper application of characteristic theory is essential in order to ensure
well-posedness. At a far-field boundary through which a wake is advecting or vis-
cous effects are not negligible, a different approach is used; this is discussed further
below.

4.6.1 Characteristic Approach

The concept of characteristic theory is most easily demonstrated with the linearized
one-dimensional Euler equations, where

δt Q + δx (AQ) = 0 (4.150)

represents the model equation. Since A is a constant-coefficient matrix, we can diag-
onalize (4.150) using the relation A = XΛA X−1, where X is the right eigenvector
matrix, and

ΛA =

u 0 0
0 u + a 0
0 0 u − a


 . (4.151)

Premultiplying by X−1 and inserting the product X X−1 after A, we obtain

δt

(
X−1Q

)
+ ΛAδx

(
X−1Q

)
= 0. (4.152)

Defining X−1Q = W , we now have a diagonal system. The equations have been
decoupled into three equations in the form of the linear convection equation with the
characteristic speeds u, u + a, and u − a. The associated characteristic variables,
or Riemann invariants, for this constant-coefficient linear system are defined by W .
One can also obtain these same characteristic speeds and the associated Riemann
invariants for the full nonlinear Euler equations without the assumption that A is a
constant coefficient matrix.
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Fig. 4.7 Ċharacteristics at
subsonic inflow and outflow
boundaries of a closed domain

With the diagonalized form of the equations, the boundary condition requirements
are clear. Consider first a subsonic flow. At the left boundary of a closed physical
domain, see Fig. 4.7, where 0 < u < a (for example, subsonic inflow for a channel
flow), the two characteristic speeds u, u + a are positive, while u − a is negative.
At inflow then, two pieces of information enter the domain along the two incoming
characteristics, and one piece leaves along the outgoing characteristic. At the outflow
boundary, one piece of information enters and two leave. Thus we can obtain a well-
posed problem by specifying the first two components of W , which are the two
incoming characteristic variables, at the inflow boundary and then handling the third
characteristic variable such that its value is not constrained, i.e. it is determined
by the interior flow. At the outflow boundary, we specify the third component of
W and determine the first two from the interior flow. If the flow is supersonic, all
characteristic speeds have the same sign. Hence one must specify all variables at
inflow and none at outflow.

It is not necessary to specify the characteristic variables; other flow quantities can
be used, as long as they lead to well-posed conditions. The major constraint is that
the correct number of boundary values corresponding to incoming characteristics
must be specified, regardless of the variables that are chosen. Some combinations
of variables lead to a well-posed problems, others do not. In the next section, we
describe a test to establish whether a given choice of variables is well posed.

4.6.2 Well-Posedness Test

A check on the well posedness of boundary conditions is given by Chakravarthy [17].
Let us consider one-dimensional flow with subsonic inflow and subsonic outflow.
Then two variables can be specified at inflow, associated with the first two eigenval-
ues, and one variable can be specified at outflow, associated with the third eigenvalue.
As an example, we test the following specified values: κ = κin, κu = (κu)in and
p = pout. These can be written as
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Bin(Q) =

q1

q2
0


 = Bin(Qin), (4.153)

Bout(Q) =

 0

0
(λ − 1)(q3 − 1

2q2
2/q1)


 = Bout(Qout), (4.154)

with q1 = κ, q2 = κu, q3 = e.
Forming the Jacobians Cin = δBin/δQ, and Cout = δBout/δQ we have

Cin =

 1 0 0
0 1 0
0 0 0


 , Cout =


 0 0 0

0 0 0
((λ − 1)/2) u2 −(λ − 1)u λ − 1


 . (4.155)

The left eigenvector matrix X−1 for the one-dimensional Euler equations is3




1 − u2
2 (λ − 1)a−2 (λ − 1)ua−2 −(λ − 1)a−2

β[(λ − 1) u2
2 − ua] β[a − (λ − 1)u] β(λ − 1)

β[(λ − 1) u2
2 + ua] −β[a + (λ − 1)u] β(λ − 1)


⎡ , (4.156)

with β = 1/(
≡
2κa).

The condition for well-posedness of these example boundary conditions is that

C
−1
in and C

−1
out exist, where

C in =

 1 0 0

0 1 0

β[(λ − 1) u2
2 + ua] −β[a + (λ − 1)u] β(λ − 1)


 , (4.157)

and

Cout =



1 − u2
2 (λ − 1)a−2 (λ − 1)ua−2 −(λ − 1)a−2

β[(λ − 1) u2
2 − ua] β[a − (λ − 1)u] β(λ − 1)

(λ − 1) u2
2 −(λ − 1)u λ − 1


⎡ . (4.158)

Thesematrices are formed by adjoining the eigenvectors associatedwith the outgoing
characteristics at the boundary in question to the Jacobian matrices of the boundary
conditions. The inverses of the above matrices will exist if their determinants are
nonzero. For the two boundaries, we have det(C in) = β(λ−1) �= 0, and det(Cout) =
β(λ−1)a �= 0. Therefore, this particular choice of boundary conditions iswell posed.
Other choices for specified boundary values can be similarly checked.

3 The rows of X−1 are the left eigenvectors of A.
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4.6.3 Boundary Conditions for External Flows

We shall outline below some of themore commonly used boundary conditions. These
will be presented in the context of a body-fitted C mesh, as depicted in Fig. 4.2, and
are easily generalized to other mesh topologies. The approach taken is to solve the
governing equations only at the interior nodes of the mesh. Therefore, all variables
must be given at the boundary by the numerical boundary conditions. Since the phys-
ical boundary conditions provide boundary values for only some of the variables, the
others must be determined by extrapolation from the interior flow solution. More-
over, the numerical boundary conditions can be implemented either explicitly or
implicitly. In an explicit treatment, the boundary values are held fixed during one
iteration of the approximate factorization algorithm. They are then updated based on
the new Q̂, and the process is repeated. For an implicit implementation, the numer-
ical boundary conditions must be linearized and the appropriate terms included in
the left-hand-side operator of the implicit algorithm.
Body Surfaces. At a body surface, tangency must be satisfied for inviscid flow and
the no-slip condition for viscous flow. In two-dimensions, body surfaces are usually
mapped to π = constant coordinates, as in Fig. 4.2. In this case, as shown in Sect.
4.2.4, the normal component of velocity is given in terms of the metrics of the
transformation by

Vn = πx u + πyv⎣
π2x + π2y

, (4.159)

and the tangential component by

Vt = πyu − πxv⎣
π2x + π2y

. (4.160)

For inviscid flows, flow tangency is satisfied by setting Vn = 0. The tangential
velocity Vt is obtained at the body surface through linear extrapolation along the
coordinate line approaching the surface, using the interior values of Q at the nodes
above the surface. It is preferable to extrapolate Cartesian velocity components and
then form the tangential velocity component based on the extrapolated values. The
Cartesian velocity components at the surface are found from the following relation
obtained by solving (4.159) and (4.160) for u and v:

(
u
v

)
= 1⎣

π2x + π2y

[
πy πx

−πx πy

] (
Vt

Vn

)
, (4.161)

with Vn set to zero, and Vt determined from the extrapolation. For a viscous flow,
the no-slip condition gives u = v = 0.
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For an inviscid flow, flow tangency is the only physical boundary condition. There-
fore only one variable can be specified, which is the normal velocity component, and
three more variables must be determined from the interior flow solution. The tan-
gential velocity component is extrapolated, as described above. In addition, pressure
and density, for example, can be extrapolated. For steady inviscid flows with uniform
upstream conditions, the total or stagnation enthalpy (H = (e + p)/κ) is constant,
at least in the exact solution. This requirement can be exploited to determine one
variable. For example, after u, v, and p are obtained at the surface, the density can
be found by requiring that the total enthalpy at the boundary be equal to the free-
stream total enthalpy. Once boundary values for u, v, p, and κ are determined, the
corresponding conservative variables are easily found using their definitions along
with the equation of state.

For viscous flows, there is an additional boundary condition related to heat trans-
fer that determines the temperature or its gradient normal to the surface. If the wall
remains at constant temperature, then this temperature must be specified. More com-
monly, an adiabatic condition is appropriate. In this case, there is no heat transfer to
or from the wall, giving

δT

δn
= 0, (4.162)

where n is the direction normal to the wall, and the derivative must be approximated
numerically using a one-sided difference formula. This condition provides the tem-
perature at the wall. The wall pressure can be determined by extrapolation from the
interior; the conservative variables can then be found from the values of u, v, T ,
and p.
Far-Field Boundaries. The far-field boundary must be located a sufficient distance
away from the body that its effect on the computed solution is negligible. This can be
determined by experimentation. The basic goal of the boundary conditions at the far-
field boundary is to permit disturbances to exit the domain with little or no reflection,
as such artificial reflections can pollute the solution in the interior of the domain. For
problems where accurate propagation of waves to and through the outer boundary is
critical, specialized non-reflecting boundary conditions have been developed (see for
example the discussion by Colonius and Lele [18]). For many flow problems, non-
reflecting boundary conditions based on the method of characteristics are sufficient;
these are described here.

Following the discussion in Sect. 4.6.1, the idea is to specify incoming Riemann
invariants and determine outgoing Riemann invariants from the interior solution by
extrapolation. For subsonic flows, we describe an extension to two dimensions based
on locally one-dimensional Riemann invariants. The relevant velocity component
is that normal to the outer boundary Vn . With n pointing outward from the flow
domain, a positive Vn defines an outflow boundary, while a negative Vn defines
an inflow boundary. As shown in the Appendix, the two-dimensional inviscid flux
Jacobians have three distinct eigenvalues, with the eigenvalue corresponding to the
convective speed repeated. From the one-dimensional theory, we have three Riemann
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invariants, so one more variable is needed in two dimensions that will be associated
with the repeated eigenvalue. The velocity component tangential to the boundary can
be used for this purpose. Therefore, we have the following characteristic speeds and
associated variables:

ψ1 = Vn − a, R1 = Vn − 2a/(λ − 1)

ψ2 = Vn + a, R2 = Vn + 2a/(λ − 1)

ψ3 = Vn, R3 = S = ln
p

κλ
(entropy)

ψ4 = Vn, R4 = Vt . (4.163)

For a subsonic inflow boundary, where Vn < 0, the characteristic speeds satisfy
the following:

ψ1 < 0, ψ2 > 0, ψ3 < 0, ψ4 < 0.

A negative characteristic speed corresponds to an incoming characteristic; hence the
associated variables must be specified based on free-stream values. The variables
associated with positive characteristic speeds must be determined from the interior
flow. In this case, R1, R3, and R4 must be specified, and R2 must be extrapolated
from the interior. Once these four variables are determined at the boundary, the four
conservative variables can be obtained.

For a subsonic outflow boundary, where Vn > 0, the eigenvalues satisfy the
following:

ψ1 < 0, ψ2 > 0, ψ3 > 0, ψ4 > 0.

Therefore, R1 must be set to its free-stream value, and R2, R3, and R4 must be
extrapolated from the interior.

For supersonic inflow boundaries, all flow variables are specified; for supersonic
outflow boundaries, all variables are extrapolated. For a subsonic boundary through
which a viscous wake is flowing, all variables are extrapolated (see [19] for a detailed
discussion). Special treatments may be needed at interfaces between blocks in multi-
block meshes or at wake cuts. See, for example, Osusky and Zingg [20].
Far-Field Circulation Correction. For computations of two-dimensional flows over
lifting bodies, the far-field circulation correction reduces the effect of the far-field
boundary location. This enables the distance to the far-field boundary to be reduced
without compromising accuracy.Far from a lifting airfoil in a subsonic free-stream,
the perturbation caused by the airfoil approaches that induced by a point vortex. This
can be exploited by adding the perturbation associated with a point vortex to the
free-stream values when applying the far-field boundary conditions.

Following Salas et al. [21], a compressible potential vortex solution is added as a
perturbation to the free-stream quantities at the far-field boundary. With the present
nondimensionalization, the free-stream velocity components are u≈ = M≈ cosβ
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and v≈ = M≈ sinβ, where M≈ is the free-stream Mach number, and β is the
angle of incidence of the flow relative to the x axis. The perturbed far-field boundary
velocities are defined as

uf = u≈ + βΓ sin(θ)

2πr
(
1 − M2≈ sin2(θ − β)

) (4.164)

and

vf = v≈ − βΓ cos(θ)

2πr
(
1 − M2≈ sin2(θ − β)

) , (4.165)

where the circulation Γ = 1
2 M≈lCl , l is the chord length,Cl is the coefficient of lift,

β is the angle of attack, β = √1 − M2≈, and r, θ are polar coordinates to the point
of application on the outer boundary relative to an origin at the quarter-chord point
on the airfoil center line. A corrected speed of sound is used that enforces constant
free-stream enthalpy at the boundary:

a2
f = (λ − 1)

(
H≈ − 1

2
(u2

f + v2f )

)
. (4.166)

Equations (4.164), (4.165) and (4.166) are used instead of free-stream values in
defining the specified quantities for the far-field characteristic boundary conditions.
The circulation Γ is determined by the solution and is not known at the outset; hence
it must be calculated and updated as the iterations progress. At convergence, the value
of Γ used in the far-field circulation correction is consistent with the lift coefficient
computed for the airfoil.

Figure 4.8 shows the coefficient of liftCl plotted against the inverse of the distance
to the outer boundary for an inviscid flow over the NACA0012 airfoil at M≈ = 0.63,
β = 2.0 degrees. The distance to the outer boundary varies from 5 to 200 chord
lengths, where outer mesh rings were eliminated from the largest mesh to produce
the smaller meshes.

4.7 Three-Dimensional Algorithm

The three-dimensional form of the implicit algorithm follows the same development
as the two-dimensional algorithm. The curvilinear coordinate transformation is car-
ried out in the same fashion. The block and diagonal algorithms take the same format.
Boundary conditions are analogous. In this section, we briefly outline the equations
in three dimensions.
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4.7.1 Flow Equations

The full three-dimensional Navier-Stokes equations in strong conservation law form
are reduced to the thin-layer form under the same restrictions and assumptions as in
two dimensions. The equations in generalized curvilinear coordinates are

δν Q̂ + δ∂ Ê + δπ F̂ + δα Ĝ = Re−1δα Ŝ, (4.167)

where

Q̂ = J−1




κ
κu
κv

κw

e


⎡⎡⎡⎡ , Ê = J−1




κU
κuU + ∂x p
κvU + ∂y p
κwU + ∂z p

U (e + p) − ∂t p


⎡⎡⎡⎡ ,

F̂ = J−1




κV
κuV + πx p
κvV + πy p
κwV + πz p

V (e + p) − πt p


⎡⎡⎡⎡ , Ĝ = J−1




κW
κuW + αx p
κvW + αy p
κwW + αz p

W (e + p) − αt p


⎡⎡⎡⎡ , (4.168)
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with

U = ∂t + ∂x u + ∂yv + ∂zw,

V = πt + πx u + πyv + πzw

W = αt + αx u + αyv + αzw, (4.169)

and

Ŝ = J−1




0
μm1uα + (μ/3)m2αx

μm1vα + (μ/3)m2αy

μm1wα + (μ/3)m2αz

μm1m3 + (μ/3)m2(αx u + αyv + αzw)


⎡⎡⎡⎡ . (4.170)

Here m1 = α2x + α2y + α2z , m2 = αx uα + αyvα + αzwα , and m3 = (u2 + v2 +
w2)α/2 + Pr−1(λ − 1)−1(a2)α . Pressure is again related to the conservative flow
variables, Q, by the equation of state:

p = (λ − 1)

(
e − 1

2
κ(u2 + v2 + w2)

)
. (4.171)

The metric terms are defined as

∂x = J (yπzα − yα zπ), πx = J (z∂ yα − y∂zα)

∂y = J (zπxα − zα xπ), πy = J (x∂zα − z∂xα)

∂z = J (xπ yα − yπxα), πz = J (y∂xα − x∂ yα)

αx = J (y∂zπ − z∂ yπ), ∂t = −xν ∂x − yν ∂y − zν ∂z

αy = J (z∂xπ − x∂zπ), πt = −xν πx − yν πy − zν πz

αz = J (x∂ yπ − y∂xπ), αt = −xν αx − yν αy − zν αz (4.172)

with

J−1 = x∂ yπzα + xα y∂zπ + xπ yα z∂ − x∂ yα zπ − xπ y∂zα − xα yπz∂ . (4.173)

4.7.2 Numerical Methods

The implicit approximate factorization algorithm applied to the three-dimensional
equations is

⎦
I + hξ∂ Ân] ⎦I + hξπ B̂n] [I + hξα Ĉn − h Re−1ξα M̂n

]
ΔQ̂n

= −h
(
ξ∂ Ên + ξπ F̂n + ξα Ĝn − Re−1ξα Ŝn

)
. (4.174)
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The three-dimensional inviscid flux Jacobians Â, B̂, Ĉ are defined in the Appendix
along with the viscous flux Jacobian M̂ . The spatial discretization, including the
artificial dissipation, extends directly to three dimensions. Calculation of the grid
metrics in three dimensions is discussed in Sect. 4.4.1. The diagonal algorithm in
three dimensions has the form

T∂

⎦
I + h ξ∂ Λ∂

]
N̂
⎦
I + h ξπ Λπ

]
P̂
⎦
I + h ξα Λα

]
T −1

α ΔQ̂n = R̂n (4.175)

with N̂ = T −1
∂ Tπ and P̂ = T −1

π Tα .
A linear constant-coefficient Fourier analysis for the three-dimensional model

wave equation shows unconditional instability for the three-dimensional factored
algorithm in the absence of numerical dissipation. This is due to the cross term
errors. In contrast to the case of two dimensions where the cross term errors just
affect the rapid convergence capability of the algorithm at large time steps, in three
dimensions they result in a weak instability. The method becomes stable when a
small amount of artificial dissipation is added to the spatial discretization.

4.8 One-Dimensional Examples

In order to demonstrate the performance of the algorithm presented in this chap-
ter, we present numerical results obtained for steady flows governed by the quasi-
one-dimensional Euler equations and an unsteady flow in a shock tube. The flow
conditions coincide with those associated with the exercises of Chap. 3 and the
present chapter. Hence the results presented in this section provide a useful reference
for the reader when developing the code associated with this chapter’s exercises.
These one-dimensional problems should not be used to assess the efficiency of the
algorithm, as their properties are simply too different from multi-dimensional prob-
lems. In particular, the implicit operator is tightly banded, which is not the case in
multidimensions.

Three problems are considered, a subsonic channel flow, a transonic channel flow,
and a shock tube. Flow conditions are as described in Sect. 3.3. The implicit algorithm
is implemented as described in this chapter, although the coordinate transformation,
the approximate factorization, and the viscous terms are not needed in this context.
Boundary conditions are handled explicitly based on prescribing or extrapolating
Riemann invariants. Zeroth-order extrapolation is used for outgoing Riemann in-
variants, i.e. the boundary value is set to the value at the first interior node. This is
not desirable but leads to fast convergence for the two steady problems and has no
impact on the shock-tube problem. Linear extrapolation is preferred and is needed to
obtain second-order accuracy. It can be implemented through some minor changes
to how the boundary values are handled (for example by choosing an updated bound-
ary value that is the average of the value calculated using linear extrapolation and
the previous value) or through an implicit treatment of the boundary conditions.

http://dx.doi.org/10.1007/978-3-319-05053-9_3
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Alternatively, convergence can be obtained with linear extrapolation through the use
of a low Courant number (e.g. Cn = 2). In multidimensional external flows, good
convergence can typically be obtained with linear extrapolation. Finally, in the im-
plementation of the diagonal form, the contribution of the source term to the left-hand
side operator is neglected.

The artificial dissipation coefficient values are τ2 = 0, τ4 = 0.02 for the subsonic
channel flow problem, τ2 = 0.5, τ4 = 0.02 for both the transonic channel flow
problem and the shock-tube problem. A nonzero value of τ2 can be used for the
subsonic problem but is not needed. The state at the inflow boundary is used as
the initial condition for the channel flow problems. For these problems, which are
steady, a local time step is calculated from (4.138) based on an input value of the
Courant number. For the shock-tube problem, a constant time step is used based on
an input Courant number and representative values of u and a. The values used are
u = 300m/s and a = 315m/s.

For the subsonic channel flow, Fig. 4.9 shows that the solution computed on a
meshwith 49 interior nodes lies very close to the exact solution. Some oscillations are
visible near the boundaries; these are associated with the zeroth-order extrapolation
of the outgoing Riemann invariants. With linear extrapolation these are not seen.
Results with 199 interior nodes are shown in Fig. 4.10; the oscillations are reduced.

One can compute the numerical error in density, for example, as

eκ =
√√√⎧ M⎨

j=1

(κ j − κexactj )2

M
, (4.176)

where M is the number of grid nodes, and κexact is the exact solution. The error
in density is plotted versus the grid spacing in Fig. 4.11. The numerical solution
was obtained with linear extrapolation of the outgoing Riemann invariants at the
boundaries and τ2 = 0. The slope of the log-log plot is very close to two, consistent
with second-order accuracy. This is a good test to verify a code.

Figures 4.12 and 4.13 display some convergence histories for the block form of
the implicit algorithm applied to the subsonic channel problem. The L2 norm of the
residual is plotted versus the number of iterations for various grid sizes and Courant
numbers. Figure 4.12 shows the dependence on the Courant number for a grid with
99 interior nodes, while Fig. 4.13 shows the dependence on the number of nodes in
the grid with Cn = 40.

The convergence of the diagonal form of the implicit algorithm is displayed in
Fig. 4.14. The convergence behaviour of the diagonal form is comparable to that of
the block form shown in Fig. 4.13. As a result, the savings associated with solving
scalar pentadiagonal systems rather than block pentadiagonal systems translate into
savings in computing time.

Results for the transonic channel flow problem are displayed in Figs. 4.15 through
4.17. The solutions again show good agreement with the exact solution, as shown
in Fig. 4.15. Note in particular the manner in which the shock is captured with the
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Fig. 4.9 Comparison of exact
(-) solution for the subsonic
channel flow problem with
the numerical (x) solution
computed on a grid with with
49 interior nodes
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solution at one grid node lyingmidway between the values upstream and downstream
of the shock. Figure 4.16 shows the residual convergence achieved with the block
form of the algorithm at a Courant number of 120. The diagonal form proves to be
unstable at a Courant number of 120 with a grid consisting of 99 interior nodes.
However, at a Courant number of 70 it converges in slightly fewer iterations than the
block form, as shown in Fig. 4.17.

Finally, Fig. 4.18 compares the numerical and exact solutions for the shock-tube
problem on a grid with 400 cells with a maximum Courant number of unity. With the
present numerical dissipation model, the shock wave and contact surface are spread
out over several cells. This is the motivation for the methods described in Chap. 6.
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Fig. 4.10 Comparison of
exact (-) solution for the
subsonic channel flow
problem with the numeri-
cal (x) solution computed on
a grid with 199 interior nodes
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4.9 Summary

The algorithm described in this chapter has the following key features:

• The discretization of the spatial derivatives is accomplished through second-order
centered difference operators applied in a uniform computational space. This is
facilitated by a curvilinear coordinate transformation that is defined implicitly
through a structured grid. This approach is restricted to structured or block-
structured grids. Numerical dissipation is added through a nonlinear artificial
dissipation scheme that combines a third-order dissipative term in smooth regions
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Fig. 4.11 Numerical error in density plotted versus grid spacing for the subsonic channel flow
problem computed with linear extrapolation of outgoing Riemann invariants and τ2 = 0
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Fig. 4.12 Residual convergence histories for the subsonic channel flow problem using the block
form of the implicit algorithm on a grid with 99 interior nodes with Cn = 40 (-), Cn = 20 ( - -),
and Cn = 10 (-·)

of the flowwith a first-order term near shock waves. A pressure-based term is used
as a shock sensor.

• After discretization in space, the original PDEs are converted to a large system
of ODEs. For computations of steady flows, the implicit Euler method is used to
follow a time dependent, though not time accurate, path to steady state. A local
time linearization is applied, and the implicit operator is approximately factored
in order to reduce the computational work required at each time step. With the
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Fig. 4.13 Residual con-
vergence histories for the
subsonic channel flow prob-
lem using the block form of
the implicit algorithm with
Cn = 40 on a grid with 49
interior nodes (-), 99 interior
nodes (- -), and 199 interior
nodes (-·)
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Fig. 4.14 Residual con-
vergence histories for the
subsonic channel flow prob-
lem using the diagonal form
of the implicit algorithm on
a grid with 99 interior nodes
with Cn = 40 (-), Cn = 20
(- -), and Cn = 10 (-·)
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approximately factored form, block pentadiagonal linear systems must be solved.
The approximate factorization has a detrimental effect on the convergence rate at
large time steps but greatly reduces the computational cost per time step in compar-
ison with a direct solution technique. The cost per time step can be further reduced
through the use of the diagonal form, which reduces the necessary inversions to
scalar pentadiagonal matrices. Convergence can be further accelerated through
local time stepping and mesh sequencing. For time-accurate computations of un-
steady flows, the block form of the approximate factorization algorithm can be
applied to the second-order backward or the trapezoidal implicit time-marching
methods. Alternatively, the dual time stepping approach can be used where the
steady form of the algorithm is used to solve the nonlinear problem arising at each
implicit time step.
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Fig. 4.15 Comparison of
exact (-) solution for the
transonic channel flow prob-
lem with the numerical (x)
solution computed on a grid
with with 99 interior nodes
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4.10 Exercises

For related discussion, see Sect. 4.8.

4.1 Write a computer program to apply the implicit finite-difference algorithm pre-
sented in this chapter to the quasi-one-dimensional Euler equations for the following
subsonic problem. S(x) is given by

S(x) =
⎩
1 + 1.5

(
1 − x

5

)2 0 ≤ x ≤ 5

1 + 0.5
(
1 − x

5

)2 5 ≤ x ≤ 10
(4.177)
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Fig. 4.16 Residual con-
vergence histories for the
transonic channel flow prob-
lem using the block form of
the implicit algorithm with
Cn = 120 on a grid with 49
interior nodes (-), 99 interior
nodes (- -), and 199 interior
nodes (-·)
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Fig. 4.17 Residual con-
vergence histories for the
transonic channel flow prob-
lem using the block form (-)
and the diagonal form (- -)
of the implicit algorithm with
Cn = 70 on a grid with 99
interior nodes
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where S(x) and x are in meters. The fluid is air, which is considered to be a perfect
gas with R = 287 Nm kg−1 K−1, and λ = 1.4, the total temperature is T0 = 300 K,
and the total pressure at the inlet is p01 = 100 kPa. The flow is subsonic throughout
the channel, with S≥ = 0.8. Use implicit Euler time marching with and without the
diagonal form. Use the nonlinear scalar artificial dissipation model. Compare your
solution with the exact solution computed in Exercise 3.1. Show the convergence
history for each case. Experiment with parameters, such as the Courant number and
the artificial dissipation coefficients, to examine their effect on convergence and
accuracy.
4.2Repeat Exercise 4.1 for a transonic flow in the same channel. The flow is subsonic
at the inlet, there is a shock at x = 7, and S≥ = 1. Compare your solution with that
calculated in Exercise 3.2.
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Fig. 4.18 Comparison of the exact solution (-) for the shock-tube problem at t = 6.1 ms with the
numerical solution (x) computed on a grid with 400 cells with a maximum Courant number of unity

4.3 Write a computer program to apply the implicit finite-difference algorithm pre-
sented in this chapter to the following shock-tube problem: pL = 105, κL = 1,
pR = 104, and κR = 0.125, where the pressures are in Pa and the densities in
kg/m3. The fluid is a perfect gas with λ = 1.4. Use both implicit Euler and second-
order backwards time marching with and without the diagonal form. Compare your
solution at t = 6.1 ms with that found in Exercise 3.3. Examine the effect of the time
step and the artificial dissipation parameters on the accuracy of the solution.
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Appendix: Flux Jacobian Eigensystems in Two
and Three Dimensions

The flux Jacobian matrices of Eq. 4.104 have real eigenvalues and a complete set of
eigenvectors. The similarity transforms are

Â = T∂Λ∂T −1
∂ and B̂ = TπΛπT −1

π . (4.178)

where

Λ∂ =




U
U

U + a
⎣

∂2x + ∂2y

U − a
⎣

∂2x + ∂2y


⎡⎡⎡⎡ (4.179)

Λπ =




V
V

V + a
⎣

π2x + π2y

V − a
⎣

π2x + π2y


⎡⎡⎡⎡ , (4.180)

with

Tτ =




1 0 β β
u τ̃yκ β(u + τ̃x a) β(u − τ̃x a)

v −τ̃xκ β(v + τ̃ya) β(v − τ̃ya)
φ2

(λ − 1) κ(̃τyu − τ̃xv) β
[

φ2+a2

(λ − 1) + aθ̃
]

β
[

φ2+a2

(λ − 1) − aθ̃
]


⎡⎡⎡ (4.181)

T −1
τ =




(1 − φ2/a2)

−(̃τyu − τ̃xv)/κ

β(φ2 − aθ̃)

β(φ2 + aθ̃)

(λ − 1)u/a2

τ̃y/κ
β [̃τx a − (λ − 1)u]

−β [̃τx a + (λ − 1)u]
(λ − 1)v/a2

−τ̃x/κ
β [̃τya − (λ − 1)v]

−β [̃τya + (λ − 1)v]

−(λ − 1)/a2

0
β(λ − 1)
β(λ − 1)


⎡⎡ ,(4.182)

and β = κ/(
≡
2a), β = 1/(

≡
2κa), θ̃ = τ̃x u + τ̃yv,φ = 1

2 (λ − 1)(u2 +
v2) and, for example, τ̃x = τx/

⎣
τ2

x + τ2
y .

Relations exist between T∂ and Tπ of the form
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N̂ = T −1
∂ Tπ, N̂−1 = T −1

π T∂, (4.183)

where

N̂ =



1 0 0 0
0 m1 −μm2 μm2

0 μm2 μ2(1 + m1) μ2(1 − m1)

0 −μm2 μ2(1 − m1) μ2(1 + m1)


⎡⎡ , (4.184)

and

N̂−1 =



1 0 0 0
0 m1 μm2 −μm2

0 −μm2 μ2(1 + m1) μ2(1 − m1)

0 μm2 μ2(1 − m1) μ2(1 + m1)


⎡⎡ , (4.185)

with m1 = (∂̃x π̃x + ∂̃y π̃y
)
, m2 = (∂̃x π̃y − ∂̃y π̃x

)
and μ = 1/

≡
2. It is interesting

to note that the matrix N̂ is only a function of the metrics and not the flow variables.
In three dimensions the Jacobian matrices Â, B̂, or Ĉ =



τt τx

τxφ
2 − uθ τt + θ − τx (λ − 2)u

τyφ
2 − vθ τxv − τy(λ − 1)u

τzφ
2 − wθ τxw − τz(λ − 1)u

−θ
(
λe/κ − 2φ2

)
τx
(
λe/κ − φ2

)− (λ − 1)uθ

τy τz 0
τyu − τx (λ − 1)v τzu − τx (λ − 1)w τx (λ − 1)

τt + θ − τy(λ − 2)v τzv − τy(λ − 1)w τy(λ − 1)
τyw − τz(λ − 1)v τt + θ − τz(λ − 2)w τz(λ − 1)

τy
(
λeκ−1 − φ2

)− (λ − 1)vθ τz
(
λeκ−1 − φ2

)− (λ − 1)wθ τt + λθ


⎡⎡⎡⎡ ,

(4.186)

where

θ = τx u + τyv + τzw

φ2 = (λ − 1)(
u2 + v2 + w2

2
), (4.187)

with τ = ∂ , π, or α for Â, B̂, or Ĉ , respectively.
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The viscous flux Jacobian is

M̂ = J−1




0 0 0 0 0
m21 β1δα(κ

−1) β2δα(κ
−1) β3δα(κ

−1) 0

m31 β2δα(κ
−1) β4δα(κ

−1) β5δα(κ
−1) 0

m41 β3δα(κ
−1) β5δα(κ

−1) β6δα(κ
−1) 0

m51 m52 m53 m54 β0δα(κ
−1)


⎡⎡⎡⎡⎡

J, (4.188)

where

m21 = −β1δα(u/κ) − β2δα(v/κ) − β3δα(w/κ)

m31 = −β2δα(u/κ) − β4δα(v/κ) − β5δα(w/κ)

m41 = −β3δα(u/κ) − β5δα(v/κ) − β6δα(w/κ)

m51 = β0δα

[
−(e/κ2) + (u2 + v2 + w2)/κ

]

−β1δα(u
2/κ) − β4δα(v

2/κ) − β6δα(w
2/κ)

−2β2δα(uv/κ) − 2β3δα(uw/κ) − 2β5δα(vw/κ)

m52 = −β0δα(u/κ) − m21, m53 = −β0δα(v/κ) − m31

m54 = −β0δα(w/κ) − m41, m44 = β4δα(κ
−1)

β0 = λμPr−1(αx
2 + αy

2 + αz
2), β1 = μ[(4/3)αx

2 + αy
2 + αz

2]
β2 = (μ/3)αxαy, β3 = (μ/3)αxαz, β4 = μ[αx

2 + (4/3)αy
2 + αz

2]
β5 = (μ/3)αyαz, β6 = μ[αx

2 + αy
2 + (4/3)αz

2]. (4.189)

The eigensystem decompositions of the three-dimensional Jacobians have the
form Â = T∂Λ∂T −1

∂ , B̂ = TπΛπT −1
π , and Ĉ = TαΛα T −1

α . The eigenvalues are

ψ1 = ψ2 = ψ3 = τt + τx u + τyv + τzw

ψ4 = ψ1 + τa, ψ5 = ψ1 − τa

τ =
⎣

τ2
x + τ2

y + τ2
z . (4.190)
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The matrix Tτ, representing the left eigenvectors, is

Tτ =




τ̃x τ̃y

τ̃x u τ̃yu − τ̃zκ

τ̃xv + τ̃zκ τ̃yu

τ̃xw + τ̃yκ τ̃yw + τ̃xκ⎦
τ̃xφ2/(λ − 1) + κ(τ̃zv − τ̃yw)

] ⎦
τ̃yφ

2/(λ − 1) + κ(τ̃x w − τ̃zu)
]

τ̃z β β

τ̃zu + τ̃yκ β(u + τ̃x a) β(u − τ̃x a)

τ̃zv − τ̃xκ β(v + τ̃ya) β(v − τ̃ya)

τ̃zw β(w + τ̃za) β(w − τ̃za)⎦
τ̃zφ

2/(λ − 1) + κ(τ̃yu − τ̃x v)
]

β
[
(φ2 + a2)/(λ − 1) + θ̃a

]
β
[
(φ2 + a2)/(λ − 1) + θ̃a

]


⎡⎡⎡⎡⎡⎡⎡

,

(4.191)

where

β = κ≡
2a

, τ̃x = τx

τ
, τ̃y = τy

τ
, τ̃z = τz

τ
, θ̃ = θ

τ
. (4.192)

The corresponding T −1
τ is

T −1
τ =




τ̃x (1 − φ2/a2) − (̃τzv − τ̃yw)/κ τ̃x (λ − 1)u/a2

τ̃y(1 − φ2/a2) − (̃τxw − τ̃zu)/κ τ̃y(λ − 1)u/a2 − τ̃z/κ
τ̃z(1 − φ2/a2) − (̃τyu − τ̃xv)/κ τ̃z(λ − 1)u/a2 + τ̃y/κ

β(φ2 − θ̃a) −β[(λ − 1)u − τ̃x a]
β(φ2 + θ̃a) −β[(λ − 1)u + τ̃x a]

τ̃x (λ − 1)v/a2 + τ̃z/κ τ̃x (λ − 1)w/a2 − τ̃y/κ −τ̃x (λ − 1)/a2

τ̃y(λ − 1)v/a2 τ̃y(λ − 1)w/a2 + τ̃x/κ −τ̃y(λ − 1)/a2

τ̃z(λ − 1)v/a2 − τ̃x/κ τ̃z(λ − 1)w/a2 −τ̃z(λ − 1)/a2

−β[(λ − 1)v − τ̃ya] −β[(λ − 1)w − τ̃za] β(λ − 1)
−β[(λ − 1)v + τ̃ya] −β[(λ − 1)w + τ̃za] β(λ − 1)


⎡⎡⎡⎡ ,

(4.193)

where

β = 1≡
2κa

. (4.194)
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Chapter 5
An Explicit Finite-Volume Algorithm
with Multigrid

5.1 Introduction

The salient features of the algorithm presented in this chapter are as follows (the
reader is urged to contrast thesewith the key characteristics of the algorithmpresented
in Chap. 4, which are listed in Sect. 4.1):

• cell-centered data storage; the numerical solution for the state variables is associ-
ated with the cells of the grid

• second-order finite-volume spatial discretization with added numerical dissipa-
tion; a simple shock-capturing device

• applicable to structured grids (see Sect. 4.2)
• explicit multi-stage time marching with implicit residual smoothing and multigrid

Key contributions to the development of this algorithm were made by Jameson et al.
[1], Baker et al. [2], Jameson and Baker [3], Jameson [4, 5], and Swanson and
Turkel [6, 7]. The reader is referred to Swanson and Turkel [7] for further analysis
and description of the algorithm.

The exercises at the end of this chapter again provide an opportunity to apply the
algorithm presented to several one-dimensional problems.

5.2 Spatial Discretization: Cell-Centered Finite-Volume
Method

The cell-centered approach contrasts with the node-centered approach described in
Chap. 4. The meshes described thus far are known as primary meshes. One can
also construct a dual mesh by joining the centroids of the cells associated with the
primary mesh. In the case of a two-dimensional structured mesh, the dual mesh also
consists of quadrilaterals and is qualitatively similar to the primary mesh. For more
general unstructured meshes this is not the case. For example, for a primary mesh
consisting of regular triangles the dual mesh consists of hexagons. A scheme that is
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cell centered on the primary mesh can be considered to be node centered on the dual
mesh. Hence, in the case of quadrilateral structured meshes, the cell-centered nature
has little impact on the spatial discretization in the interior, and both cell-centered
and node-centered finite-volume schemes are in common use on both structured and
unstructured meshes. The main differences between the two arise at boundaries and
in the construction of coarse meshes for multigrid. This will be discussed further
below.

A finite-volume method numerically solves the governing equations in integral
form, as presented in Sect. 3.1.2. In their most general coordinate-free form, conser-
vation laws can be written as

d

dt

∫
V (t)

QdV +
∮

S(t)
n̂ · FdS =

∫
V (t)

PdV, (5.1)

where P is a source term, and the other variables are defined in Chap. 3. If we restrict
our interest to two-dimensional problems without source terms and meshes that are
static with respect to time, we obtain

d

dt

∫
A

QdA +
∮

C
n̂ · Fdl = 0, (5.2)

where A is a control volume bounded by a contour C . Writing the flux tensor F in
Cartesian coordinates and separating inviscid and viscous fluxes gives

d

dt

∫
A

QdA +
∮

C
n̂ · (Eî + F ĵ)dl =

∮
C

n̂ · (Ev î + Fv ĵ)dl. (5.3)

Finally, writing the product of the outward normal and the length of the cell edge in
Cartesian coordinates as

n̂dl = dyî − dx ĵ (5.4)

gives the final form to be discretized using the finite volume method:

d

dt

∫
A

QdA +
∮

C
(Edy − Fdx) =

∮
C
(Evdy − Fvdx). (5.5)

The semi-discrete form of (5.5) is written as

A j,k
d

dt
Q j,k + LiQ j,k + LadQ j,k = LvQ j,k, (5.6)

where A j,k is the area of the cell,Li is the discrete approximation to the inviscid flux
integral, Lad is the artificial dissipation operator, Lv is the discrete approximation to
the viscous flux integral, and Q j,k denotes the conservative variables averaged over
cell j, k as follows:

http://dx.doi.org/10.1007/978-3-319-05053-9_3
http://dx.doi.org/10.1007/978-3-319-05053-9_3
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Q j,k = 1

A j,k

∫
A j,k

QdA. (5.7)

The terms LiQ, LvQ, and LadQ are described next.

5.2.1 Inviscid and Viscous Fluxes

The inviscid flux integral is approximated by summing over the four edges of the
cell as follows:

LiQ =
4∑

l=1

(Fi)l · sl , (5.8)

where

sl = (Δy)l î − (Δx)l ĵ . (5.9)

is the discrete analog of (5.4) for straight cell edges, and (Fi)l is an approximation
to the inviscid flux tensor at the cell edge. We use boldface to emphasize that sl is
a vector. The terms (Δx)l and (Δy)l must be defined such that the normal vector
points out of the cell. Since the cell edges are straight, the outward normal is con-
stant along each edge. The only exception might arise at the body surface; there the
approximation of the edge as straight is adequate for a second-order discretization,
but the curvature of the boundary must be taken into account if higher-order accuracy
is desired.

In Sect. 2.4.2, we saw that the combination of a piecewise constant reconstruction
with a simple average for resolving the discontinuity in fluxes at cell interfaces leads
to a second-order centered finite-volume scheme that is analogous to a second-order
centered finite-difference scheme on a uniform mesh. The same approach is taken
here. With the minus sign superscript defining quantities in the cell on one side of
the interface and the plus sign indicating the other side, the averaged flux on a given
cell edge is given by

(Fi)l = 1

2
(F−

i + F+
i ) = 1

2
(Q−v− + Q+v+)l + P̄l , (5.10)

where v = uî + v ĵ , and

P̄l = [ 0, 1

2
(p− + p+)l î,

1

2
(p− + p+)l ĵ,

1

2
(p−v− + p+v+)l ]T .

(5.11)

http://dx.doi.org/10.1007/978-3-319-05053-9_2
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This scheme is second order and nondissipative. Numerical dissipation must be
added, as described in Sect. 5.2.2.

For the viscous terms, we turn again to Sect. 2.4.2. In that section, a second-order
finite-volume scheme was derived for the diffusion equation using two different
approaches. The first approach is based on the use of a one-dimensional version of
(2.58), which is given by

∫
A

≤QdA =
∮

C
n̂Qdl. (5.12)

This approach is simple to extend to multidimensions but is restricted to second-
order accuracy. Given that we seek a second-order approximation, we will follow
this approach to obtain a discretization for the viscous flux terms.

The difficulty associated with the viscous fluxes is that they include velocity
gradients, and these cannot be obtained directly from the solution vector. In order
to obtain a suitable approximation to the velocity gradients at the cell edges, (5.12)
is applied to auxiliary cells that surround each edge of the cell in question. When
applied to the Cartesian velocity components, (5.12) gives the components of the
velocity gradient as follows:

∫
A≈

∂u

∂x
dA =

∮
C ≈

udy
∫

A≈
∂u

∂y
dA = −

∮
C ≈

udx, (5.13)

with analogous expressions for the components of the gradient of v, where the primes
are added to remind the reader that these expressions are used for auxiliary cells
surrounding the edges of the finite volume. A second-order approximation to the
integrals on the right-hand side of these expressions divided by the cell area pro-
vides an approximation to the average gradient in the cell. This then provides an
approximation, valid to second order, to the gradient along the edge contained in the
auxiliary cell.

A sample auxiliary cell is depicted in Fig. 5.1 [7]. The cell in question is cell j, k
defined by ABCD. The auxiliary cell A≈B≈C≈D≈ provides the approximation to the
velocity gradient on edge BC. In order to evaluate the integrals on the right-hand side
of (5.13), the midpoint rule is applied on each edge of cell A≈B≈C≈D≈. The velocity
at the midpoint of edge A≈B≈ is taken as the average of the velocities associated with
the four cells surrounding this edge. The same applies to edge C≈D≈. The velocity
at the midpoint of edge B≈C≈ is simply that associated with cell j, k + 1, while the
velocity on edge D≈A≈ is that associated with cell j, k. Once the velocity gradients are
approximated, all other quantities needed to form the viscous fluxes on the edges of
cell j, k, including the viscosity, are obtained by averaging the quantities associated
with the cells on either side of the edge in question.

An alternative auxiliary cell can be formed with the vertices being the end points
of the edge and the centroids of the cells on either side of the edge, sometimes called

http://dx.doi.org/10.1007/978-3-319-05053-9_2
http://dx.doi.org/10.1007/978-3-319-05053-9_2
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Fig. 5.1 Auxiliary cell
A≈B≈C≈D≈ for computing
viscous fluxes

Fig. 5.2 Alternative auxiliary
cell based on diamond path

a diamond path, as shown in Fig. 5.2. In this case, the trapezoidal rule is used for the
integration to calculate the velocity gradients.

Once the viscous flux tensor (Fv)l has been approximated at the cell edges, the
net flux is determined from

LvQ =
4∑

l=1

(Fv)l · sl . (5.14)

5.2.2 Artificial Dissipation

In analogy to the inviscid fluxes, we write the dissipation model in the following
form:
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LadQ =
4∑

l=1

Dl · sl , (5.15)

where Dl is the numerical dissipation tensor associated with each cell edge. We
exploit the fact that the algorithm is applied to structured meshes. Although there is
no coordinate transformation, there are effectively two coordinate directions π and ν
associated with each cell, as depicted in Fig. 5.1. Hence there are two opposing cell
edges along which ν varies but π does not, and there are two opposing cell edges
along which π varies but ν does not. For the two edges at constant π, the artificial
dissipation tensor is given by

D = −δ(2)(|Aî + B ĵ |)Δπ Q + δ(4)(|Aî + B ĵ |)Δπ≤πΔπ Q, (5.16)

where the superscripts (2) and (4) denote second- and fourth-difference dissipation,
respectively, the meaning of |Aî + B ĵ | is consistent with (2.103), A and B are the
Jacobians of the inviscid flux vectors E and F , and Δπ and ≤π represent undivided
differences in the π direction. For example, Δπ Q is the difference between the Q
values in the cells on either side of the edge. The coefficients δ(2) and δ(4) control
the relative contribution from the two terms, analogous to the artificial dissipation
scheme described in Chap. 4, and are defined below.

The reader should observe the similarity between (5.16) and (4.85). The artificial
dissipation scheme described in this section is a finite-volume analog to the scheme
presented in Sect. 4.4.3. Therefore it has the same basic properties. For example,
the second-difference term is first order and is used near shocks, while the fourth-
difference term is third order and is used in smooth regions of the flow.

Substituting the definition of sl given in (5.9), we obtain for the two edges with
constant π

Dl · sl = −δ
(2)
l (|AlΔyl − BlΔxl |)Δπ Q + δ

(4)
l (|AlΔyl − BlΔxl |)Δπ≤πΔπ Q.

(5.17)

The flux Jacobians are based on an average of the two states on either side of the
edge. The Roe average (Sect. 6.3) can be used. A scalar form is obtained as follows:

Dl · sl = −δ
(2)
l (κπ)lΔπ Q + δ

(4)
l (κπ)lΔπ≤πΔπ Q, (5.18)

where

κπ = |uΔy − vΔx | + a
√

Δy2 + Δx2 (5.19)

is the appropriate spectral radius for edges of constant π (see Warming et al. [8]).
The spectral radius term in the ν direction has the same form, but the values of Δx
and Δy are associated with edges of constant ν.

http://dx.doi.org/10.1007/978-3-319-05053-9_2
http://dx.doi.org/10.1007/978-3-319-05053-9_4
http://dx.doi.org/10.1007/978-3-319-05053-9_4
http://dx.doi.org/10.1007/978-3-319-05053-9_4
http://dx.doi.org/10.1007/978-3-319-05053-9_6
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The treatment of the pressure sensor is consistent with (4.83), giving for the edge
j + 1

2 , k:

δ(2)
l = λ2 max(Υ j+2,k, Υ j+1,k, Υ j,k, Υ j−1,k)

Υ j,k =
∣∣∣∣p j+1,k − 2p j,k + p j−1,k

p j+1,k + 2p j,k + p j−1,k

∣∣∣∣
δ
(4)
l = max(0,λ4 − δ

(2)
l ), (5.20)

where typical values of the constants are λ2 = 1/2 and λ4 = 1/32.
The artificial dissipation terms for the edges with constant ν are analogous. They

are obtained by replacing π with ν in (5.16) and (5.17).
As described, this artificial dissipation model parallels that used with the implicit

algorithm described in Chap. 4. When used with an explicit multigrid algorithm, it
is sometimes modified in the following manner [7]. The spectral radius associated
with the π direction given in (5.19) is multiplied by ξ(r), which is given by

ξ(rνπ) = 1 + r β
νπ, (5.21)

with

rνπ = κν

κπ
, (5.22)

where β is typically equal to 2/3. The spectral radius in the ν directionκν is multiplied
by ξ(r−1). This increases the amount of numerical dissipation, thus improving the
high-frequency damping properties of the scheme and leading to better convergence
rates with the multigrid method. This is particularly important in the case of high
aspect ratio cells, for example in high Reynolds number boundary layers. In such
cases, the ratio κν/κπ approximates the cell aspect ratio. With a cell aspect ratio of
1000, for example, ξ is on the order of 100, and the numerical dissipation in the
streamwise direction is greatly increased.

5.3 Iteration to Steady State

5.3.1 Multi-stage Time-Marching Method

The semi-discrete form (5.6) can be written as

d

dt
Q j,k = − 1

A j,k
LQ j,k, (5.23)

http://dx.doi.org/10.1007/978-3-319-05053-9_4
http://dx.doi.org/10.1007/978-3-319-05053-9_4
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where L = Li +Lad −Lv. Here we will concentrate on an explicit multi-stage time-
marchingmethodwhich canbeused for steadyflowsor to solve the nonlinear problem
arising at each time step in the dual-time-stepping approach to unsteady flows (see
Sect. 4.5.7). In both of these settings there is no benefit to higher-order accuracy in
time, and we will consider methods designed specifically for rapid convergence to
steady state when used in conjunction with the multigrid method.

The effectiveness of a time-marching method for convergence to a steady state
can be assessed in terms of the amplification factor (based on the σ eigenvalues in
the terminology of Chap. 2) arising from the κh eigenvalues resulting from a specific
spatial discretization. This is discussed further below, but we beginwith amore quali-
tative discussion.When iterations are performed from an arbitrary initial condition to
the steady-state solution, we can consider the difference between the initial condition
and the steady solution to be an error that must be removed. Since the time-marching
iterations represent a physical process, one can give a physical interpretation of the
path to steady state. The error is removed through two mechanisms associated with
the governing PDEs: (1) it convects out of the domain through the boundary, and
(2) it dissipates within the domain through both physical and numerical dissipation.
If one thinks of the error as being decomposed into modes, then low frequency error
modes will typically be eliminated through convection and high frequency modes
through dissipation.

A time-marching method with good convergence properties addresses these two
mechanisms in the following manner. In order to enable convection of the error
through the boundary, the method should be at least second-order accurate, so that
the physics of convection is accurately represented, andwhen combinedwith a partic-
ular spatial discretization, the maximum stable Courant number should be as large as
possible. Themethod should also provide damping of high frequencymodes, again in
combination with the spatial discretization. The latter property is particularly impor-
tant in the context of the multigrid method, which will be discussed in Sect. 5.3.3.
Finally, the computational cost per time step is also an important consideration.

Wewill begin by considering a time-marchingmethod for the spatially discretized
Euler equations, i.e. applied to the ODE system

d

dt
Q j,k = − 1

A j,k
(Li + Lad)Q j,k = −R(Q j,k). (5.24)

Consider a multi-stage time marching method in the following form

Q(0)
j,k = Q(n)

j,k

Q(m)
j,k = Q(0)

j,k − αmh R(Q(m−1)
j,k ), m = 1, . . . , q

Q(n+1)
j,k = Q(q)

j,k, (5.25)

where n is the time index, h = Δt , q is the number of stages, and the coefficients
αm, m = 1, . . . , q define the method. The reader should recognize that this is not a

http://dx.doi.org/10.1007/978-3-319-05053-9_4
http://dx.doi.org/10.1007/978-3-319-05053-9_2
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general form for explicit Runge-Kutta methods. For example, the classical fourth-
order method given in Sect. 2.6 cannot be written in this form. Nevertheless, this
form is equivalent to the more general form with respect to homogeneous ODEs and
thus enables the design of schemes with tailored convergence properties.

For the purpose of discussing the analysis of such methods we will concentrate
on five-stage methods, i.e. q = 5. Consider the homogeneous scalar ODE given by

du

dt
= κu, (5.26)

where κ represents an eigenvalue of the linearized semi-discrete system. When
applied to this ODE, the method given by (5.25) with q = 5 produces the solu-
tion

un = u0σ
n, (5.27)

where u0 is the initial condition, and σ is given by

σ = 1 + σ1κh + σ2(κh)2 + σ3(κh)3 + σ4(κh)4 + σ5(κh)5, (5.28)

with

σ1 = α5

σ2 = α5α4

σ3 = α5α4α3

σ4 = α5α4α3α2

σ5 = α5α4α3α2α1. (5.29)

Second-order accuracy is obtained by choosing α5 = 1 and α4 = 1/2, giving
σ1 = 1 and σ2 = 1/2. This leaves three free parameters that can be chosen from the
perspective of optimizing convergence to steady state.

The values σ3 = 1/6, σ4 = 1/24, and σ5 = 1/120 lead to a σ that approximates
eκh , which maximizes the order of accuracy of the method, at least for homogeneous
ODEs such as (5.26). This is obtained with α1 = 1/5, α2 = 1/4, and α3 = 1/3.
Figure5.3 shows contours of |σ| for this method plotted in the complex κh plane.
The method has a large region of stability that includes a portion of the imaginary
axis.

The convergence rates this method will produce depend upon the specific spatial
discretization and the time step. To examine this, consider the linear convection
equation

∂u

∂t
+ a

∂u

∂x
= 0, (5.30)

http://dx.doi.org/10.1007/978-3-319-05053-9_2
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Fig. 5.3 Contours of |σ| for
the five-stage time-marching
method with σ3 = 1/6,
σ4 = 1/24, and σ5 = 1/120.
Contours shown have |σ|
equal to 1, 0.8, 0.6, 0.4,
and 0.2
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with a > 0 and periodic boundary conditions. Apply second-order centered differ-
enceswith fourth-difference artificial dissipation to approximate the spatial derivative
term:

− aτxu = − a

Δx

[
u j+1 − u j−1

2
+ λ4(u j−2 − 4u j−1 + 6u j − 4u j+1 + u j+2)

]
.

(5.31)

Since the boundary conditions are periodic, Fourier analysis can be used to obtain
the κ eigenvalues of the resulting semi-discrete form. They are given by

κm = − a

Δx

{
i sin

(
2πm

M

)
+ 4λ4

[
1 − cos

(
2πm

M

)]2⎡
, m = 0 . . . M − 1,

(5.32)

where M corresponds to the number of nodes in the mesh. Multiplying by the time
step gives

κmh = −Cn

{
i sin

(
2πm

M

)
+ 4λ4

[
1 − cos

(
2πm

M

)]2⎡
, m = 0 . . . M − 1,

(5.33)

where Cn = ah/Δx is the Courant number.
The κh values given by (5.33) are plotted in Fig. 5.4 for M = 40, λ4 = 1/32,

and Cn = 2.5 together with the |σ| contours arising from the five-stage scheme
(5.25) with α1 = 1/5, α2 = 1/4, and α3 = 1/3. Figure5.5 plots |σ(κmh)| vs.
λΔx for 0 → λΔx → π, where λΔx = 2πm/M . This plot shows poor damping for
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Fig. 5.4 Plot of κh values
given by (5.33) for M = 40,
λ4 = 1/32, andCn = 2.5with
contours of |σ| for the five-
stage time-marching method
withα1 = 1/5,α2 = 1/4, and
α3 = 1/3. Contours shown
have |σ| equal to 1, 0.8, 0.6,
0.4, and 0.2
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Fig. 5.5 Plot of |σ| values vs.
λΔx for the spatial operator
given by (5.31) withCn = 2.5,
λ4 = 1/32, and the five-stage
time-marching method with
α1 = 1/5, α2 = 1/4, and
α3 = 1/3
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low wavenumbers and good damping at high wavenumbers. As we shall see later,
this provides a smoothing property suitable for use with the multigrid method. It
is important to recognize that this model problem includes only the mechanism of
damping within the domain. With periodic boundary conditions, the error cannot
convect out of the domain, so this mechanism is not represented. Therefore, the
Courant number is also an important quantity to be aware of. Although the effect
is not seen in the present analysis, a higher stable Courant number translates into a
larger time step, which enables the error to convect out through the outer boundary
of the domain in fewer time steps.

Through careful selection of the free parameters, α1, α2, and α3, a multi-stage
method can be designed for fast convergencewhen used in conjunctionwith a specific
spatial discretization. For example, consider the choice α1 = 1/4, α2 = 1/6, and
α3 = 3/8, which maximizes the stable region on the imaginary axis (see Van der
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Fig. 5.6 Plot of κh values
given by (5.33) for M = 40,
λ4 = 1/32, and Cn = 3 with
contours of |σ| for the five-
stage time-marching method
with α1 = 1/4, α2 = 1/6,
and α3 = 3/8
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Fig. 5.7 Plot of |σ| values vs.
λΔx for the spatial operator
given by (5.31) with Cn = 3,
λ4 = 1/32, and the five-stage
time-marching method with
α1 = 1/4, α2 = 1/6, and
α3 = 3/8 (solid line). The
dashed line shows the results
with Cn = 2.5 and α1 = 1/5,
α2 = 1/4, and α3 = 1/3
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Houwen [9]). The associated plots are shown in Figs. 5.6 and 5.7 with a Courant
number of 3. The improvement in damping properties is small, but the higher Courant
number enables the error to be propagated to the outer boundary more rapidly. This
particular choice of α coefficients is intended for use with a spatial discretization
that combines centered differencing (or an equivalent finite-volume method) with
artificial dissipation.One can also designmulti-stage schemes specifically for upwind
schemes.

Onemust be aware of the limitations of such scalar Fourier analysis in this context.
It provides a useful guide for the design of multi-stage schemes, but, since it does not
account for systems of PDEs, multidimensionality, or the effect of boundaries, the
performance of such schemes when applied to the Euler equations must be assessed
through more sophisticated theory or numerical experiment.
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Fig. 5.8 Plot of κh values
given by (5.33) for M = 40,
λ4 = 1/32, and Cn = 3 with
contours of |σ| for the five-
stage time-marching method
withα1 = 1/4,α2 = 1/6, and
α3 = 3/8 with the artificial
dissipation computed only on
stages 1, 3, and 5
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A further generalization of (5.25) can be introduced if the distinct components
of R(Q), for example LiQ and LadQ, are handled differently by the multi-stage
method. Consider a scheme where at stage m the residual term R(Q(m−1)

j,k ) in (5.25)
is replaced by

R(m−1) = 1

A

⎢
⎣LiQ

(m−1) +
m−1∑
p=0

θmpLadQ(p)

⎤
⎥ . (5.34)

The θmp coefficients can be chosen such that the artificial dissipation operator is
evaluated only at certain stages, thus reducing the computational effort per time step.
The following values lead to a method in which the artificial dissipation is evaluated
at the first, third, and fifth stages:

θ10 = 1

θ20 = 1, θ21 = 0

θ30 = 1 − Γ3, θ31 = 0, θ32 = Γ3 (5.35)

θ40 = 1 − Γ3, θ41 = 0, θ42 = Γ3, θ43 = 0

θ50 = (1 − Γ3)(1 − Γ5), θ51 = 0, θ52 = Γ3(1 − Γ5), θ53 = 0, θ54 = Γ5.

Note that the coefficients sum to unity at each stage. With Γ3 = 0.56 and Γ5 = 0.44,
the results shown in Figs. 5.8 and 5.9 are obtained for the linear convection equation.
This method retains the favourable damping properties of the previous method while
reducing the computational cost per time step, thereby reducing the overall cost to
achieve a converged solution.

The above multi-stage method is also appropriate for the numerical solution of
the Navier-Stokes equations. In this case, the residual includes the contribution from
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Fig. 5.9 Plot of |σ| values vs.
λΔx for the spatial operator
given by (5.31) with Cn = 3,
λ4 = 1/32, and the five-
stage time-marching method
with α1 = 1/4, α2 = 1/6,
and α3 = 3/8 with the
artificial dissipation computed
only on stages 1, 3, and 5
(solid line). The dashed line
shows the results with the
artificial dissipation computed
at every stage, and the dash-
dot line shows the results with
Cn = 2.5 and α1 = 1/5,
α2 = 1/4, and α3 = 1/3
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the viscous and heat conduction terms, Lv. The residual can be computed at each
stage as follows:

R(m−1) = 1

A

⎢
⎣LiQ

(m−1) − LvQ(0) +
m−1∑
p=0

θmpLadQ(p)

⎤
⎥ . (5.36)

The viscous terms are evaluated at the first stage only, thereby minimizing the addi-
tional cost per time step.

Local Time Stepping. Use of a local time step specific to each grid cell is important
to improve the convergence rate of an explicit algorithm for steady flows. In order to
understand why, consider first the use of a constant time step. For example, for the
one-dimensional Euler equations we have

Δt → Δx

|u| + a
(Cn)max, (5.37)

where |u| + a is the largest eigenvalue of the flux Jacobian, and (Cn)max is the
maximum Courant number for stability of the particular combination of spatial dis-
cretization and time-marching method, as determined by Fourier analysis, for exam-
ple (bearing in mind that Fourier analysis provides a necessary condition for stability
but not a sufficient one). The stability requirement resulting from the conditional sta-
bility associated with explicit schemes will dictate that the time step be determined
based on the grid cell with the smallest value ofΔx/(|u|+a). Typically the variation
in mesh spacing far exceeds the variation in the maximum wave speed; hence the
time step is often limited by the size of the smallest cells in the mesh. If the smallest
cells are several orders of magnitude smaller than the largest cells, then this time step
will be much smaller than the optimal time step for the larger cells.
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Wecanassign aphysicalmeaning to theCourant number. It is the distance travelled
by the fastest wave in one time step expressed in terms of the mesh spacing. For
example, with a Courant number of 3, the fastest wave travels a distance 3Δx in
one time step. However, if the time step is determined by a very small cell, then the
effective Courant number at a large cell is very small, and it will take many time
steps for a disturbance to propagate through the large cell.

On a mesh with a wide variation in mesh spacing, much faster convergence to
steady state can be achieved by using a time step at each cell that gives the desired
value of the Courant number for that cell. For example, in our one-dimensional
example the local time step is computed from

(Δt) j = (Δx) j

(|u| + a) j
Cn, (5.38)

where Cn is the desired (optimal) Courant number. The use of such a local time step
destroys time accuracy but has no impact on the converged steady solution.

For the one-dimensional Euler equations, the definition of the local time step
(5.38) is a relatively straightforward matter. Extension to multidimensions and to
the Navier-Stokes equations is not straightforward, and a number of approximations
are typically made. In order to present some of the issues, we will consider the
convection-diffusion equation as a model problem:

∂u

∂t
+ a

∂u

∂x
= ϕ

∂2u

∂x2
. (5.39)

With periodic boundary conditions and second-order centered-difference approxi-
mations to both the first and the second spatial derivatives on a mesh with M nodes,
the eigenvalues of the semi-discrete operator matrix are, from Fourier analysis:

κm = − a

Δx
i sin

(
2πm

M

)
− 4ϕ

Δx2
sin2

⎦πm

M

)
, m = 0, . . . , M − 1, (5.40)

where Δx = 2π/M . The imaginary part of the eigenvalue is associated with the
convective term, the real part with the diffusive term.

Let us consider the solution of this semi-discrete system using the five-stage time-
marching method described previously with α1 = 1/4, α2 = 1/6, and α3 = 3/8.
From Fig. 5.6 we see that this method is stable for imaginary eigenvalues up to 4 and
for negative real eigenvalues up to −2.59. We will attempt to define a local time step
based solely on this information about the time-marching method. Multiplying the
above eigenvalues by h gives

κmh = −Cni sin

(
2πm

M

)
− 4Vn sin

2
⎦πm

M

)
, m = 0, . . . , M − 1, (5.41)
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Fig. 5.10 Plot of κh values
given by (5.33) for M = 40,
λ4 = 1/32, and Cn = 3 with
contours of |σ| for the five-
stage time-marching method
withα1 = 1/4,α2 = 1/6, and
α3 = 3/8. Time step based on
minimum of hc and hd
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where Vn = ϕh/Δx2 is sometimes referred to as the von Neumann number. Based
on the above properties of the time-marching method, we require for stability:

Cn = ah

Δx
→ 4

Vn = ϕh

Δx2
→ 2.59

4
. (5.42)

Based on the first criterion, one can define a convective time step limit as

hc → 4Δx

a
, (5.43)

while the second criterion gives the diffusive time step limit as

hd → 2.59Δx2

4ϕ
. (5.44)

It is tempting, therefore, to choose the time step as the minimum of hc and hd, which
ensures that the imaginary part of all eigenvalues is less than 4 and the negative
real part is less than 2.5. However, consider an example with a = 1, ϕ = 0.01 and
M = 40. The resulting spectrum is displayed in Fig. 5.10 along with the |σ| contours
of the time-marching method. Some eigenvalues lie outside the stable region; hence
this time step definition is not adequate to ensure stability.

A more conservative time step definition is obtained from

1

h
= 1

hc
+ 1

hd
. (5.45)
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Fig. 5.11 Plot of κh values
given by (5.33) for M = 40,
λ4 = 1/32, and Cn = 3 with
contours of |σ| for the five-
stage time-marching method
withα1 = 1/4,α2 = 1/6, and
α3 = 3/8. Time step based on
(5.45)
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With this choice, the time step is less than the minimum of hc and hd. For the above
example, the κh values plotted in Fig. 5.11 are obtained. All of the eigenvalues lie
well within the stable region of the time-marching method.

Based on approximations such as this, various local time stepping strategies have
been developed for explicit multi-stage time-marching methods with the goal of
providing robust and rapid convergence. One such approach, which is based on
(5.45), is given by Swanson and Turkel [7] as follows:

h = NiA

κC + κD
, (5.46)

where

κC = κπ + κν

κD = (κD)π + (κD)ν + (κD)πν, (5.47)

with

(κD)π = θμ

ReφPr
A−1(x2ν + y2ν)

(κD)ν = θμ

ReφPr
A−1(x2π + y2π )

(κD)πν = μ

Reφ
A−1

[
−7

3
(yνyπ + xπxν) + 1

3

√
(x2ν + y2ν)(x2π + y2π )

]
. (5.48)

The quantity Ni is the stability bound on pure imaginary eigenvalues associated
with the time-marching method used. The assumption made is that the maximum
negative real eigenvalue is of a similar magnitude. The cell area is denoted by A,
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and the terms κπ and κν are defined as in (5.19). For the cell in question, κπ is
obtained by averaging the values obtained from the two edges of constant π, while
κν is obtained by averaging the values obtained from the two edges of constant ν. The
diffusive terms (κD)π , (κD)ν , and (κD)πν are approximations to the spectral radii of
the respective viscous flux Jacobians. The metric terms appearing in these terms are
also calculated based on undivided differences for the appropriate edges and then
averaging to get a value for the cell. For example, yν is obtained by averaging Δy
for opposing edges of constant π, and the other terms are obtained similarly.

Given the various approximations made in determining the local time step for
the Navier-Stokes equations in multidimensions, it is typical to include a factor
in the time step definition that is determined to be effective, i.e. both reliable and
efficient, through numerical experimentation. The use of a local time step enables fast
convergence of an explicit method on a mesh with a large variation in mesh spacing.
However, it does not address the slow convergence of explicit methods resulting from
grid cells with high aspect ratios.

5.3.2 Implicit Residual Smoothing

Implicit residual smoothing is a convergence acceleration technique that enables
a substantial increase in the Courant number, thus speeding up the propagation of
disturbances to the outer boundary. First we define a residual that incorporates the
local time step:

R̃(m−1)
j,k = (Δt) j,k

A j,k

⎢
⎣LiQ

(m−1)
j,k − LvQ(0)

j,k +
m−1∑
p=0

θmpLadQ(p)
j,k

⎤
⎥ . (5.49)

A smoothed residual R̄(m−1)
j,k is found from the following:

(1 − σπ≤πΔπ)(1 − σν≤νΔν)R̄(m−1)
j,k = R̃(m−1)

j,k (5.50)

and replaces the term h R(Q(m−1)
j,k ) in (5.25). As in Sect. 5.2.2, Δπ and ≤π represent

undivided differences in the π direction, and Δν and ≤ν are the corresponding oper-
ators in the ν direction. The smoothing coefficients σπ and σν are discussed below.
The operator in the π direction can be rewritten as

(1 − σπ≤πΔπ)R̄(m−1)
j,k =

[
−σπ R̄(m−1)

j−1,k + (1 + 2σπ)R̄(m−1)
j,k − σπ R̄(m−1)

j+1,k

]
.

(5.51)

The residuals of the individual equations, i.e. mass, x and y-momentum, and energy,
are smoothed separately. Hence in two dimensions implicit residual smoothing
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requires the solution of two scalar tridiagonal systems per stage of the multi-stage
time-stepping scheme. This adds considerably to the computational cost per time
step.

In order to understand and analyze implicit residual smoothing, we return to the
linear convection equation with periodic boundary conditions discretized using the
operator given in (5.31). In a one-dimensional scalar problem, the implicit residual
smoothing operator is given by

Bp(M : −σ, 1 + 2σ,−σ)R̄ = R, (5.52)

or

R̄ = [Bp(M : −σ, 1 + 2σ,−σ)]−1R, (5.53)

where we use the notation for the banded periodic matrix Bp(M : a, b, c) given in
(2.33). Hence we can obtain the eigenvalues of the system with implicit residual
smoothing by dividing those given in (5.33) by the eigenvalues of Bp(M : −σ, 1 +
2σ,−σ),1 leading to

κmh = −Cn
i sin

( 2πm
M

)+ 4λ4
[
1 − cos

( 2πm
M

)]2
1 + 4σ sin2

(
πm
M

) , m = 0 . . . M − 1.

(5.54)

For the problem studied previously, with M = 40, Cn = 3, and λ = 1/32
coupled with a smoothing coefficient of σ = 0.6, the eigenvalues κh are displayed
in Fig. 5.12. There are two primary observations to be made. First, the magnitude
of the eigenvalues has generally been reduced as a result of the implicit residual
smoothing. This means that a larger Courant number can be used while remaining
within the stability bounds of a given time-marchingmethod. Second, the eigenvalues
associated with small m, which are those at the origin and just above and below, are
affected the least by the residual smoothing. These eigenvalues correspond to well
resolved modes, i.e. low frequency modes, which are those that convect out through
the boundary. Hence the residual smoothing has little effect on the manner in which
these modes are propagated.

Figure5.13 shows these eigenvalues superimposed on the |σ| contours of the
five-stage method with dissipation evaluated on the first, third, and fifth stages. As a
result of the implicit residual smoothing, a Courant number of 7 can be used while
remaining in the stable region. Consequently, disturbances will propagate to the outer
boundary in fewer time steps than without residual smoothing (where the Courant
number is 3). Figure5.14 shows that the damping properties are similar to those
obtained without residual smoothing, so the primary benefit is the higher Courant
number. It is important to recognize that the use of implicit residual smoothing entails

1 as a result of the properties of circulant matrices

http://dx.doi.org/10.1007/978-3-319-05053-9_2
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Fig. 5.12 Plot of κh values
given by (5.33) for M = 40,
λ4 = 1/32, and Cn = 3 with-
out implicit residual smooth-
ing (x) and with implicit
residual smoothing (+) with
σ = 0.6
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Fig. 5.13 Plot of κh values
given by (5.33) for M = 40,
λ4 = 1/32, and Cn = 7 with
implicit residual smoothing
with σ = 0.6 and contours
of |σ| for the five-stage time-
marching method with α1 =
1/4, α2 = 1/6, and α3 = 3/8
with the artificial dissipation
computed only on stages 1, 3,
and 5
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a significant computational expense per time step that must be weighed against the
reduced number of time steps to steady state associated with the increased Courant
number.

The main purpose of implicit residual smoothing is to enable the use of a larger
time step, or Courant number. Typically the Courant number limit is increased by
a factor of two to three. This enables disturbances to propagate more rapidly to the
domain boundary without compromising damping properties, as shown in Fig. 5.14.
The maximum stable Courant number continues to increase as σ is increased. How-
ever, at some point this does not lead to faster convergence, and there is an optimum
value of σ. The reason is that the implicit residual smoothing eliminates time accu-
racy and therefore interfereswith the physics of convection and hence the propagation
of error to the outer boundary. In Fig. 5.12 we saw that the smaller eigenvalues are not
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Fig. 5.14 Plot of |σ| val-
ues vs. λΔx for the spatial
operator given by 5.31 with
Cn = 7 with implicit resid-
ual smoothing (σ = 0.6),
λ4 = 1/32, and the five-stage
time-marching method with
α1 = 1/4, α2 = 1/6, and
α3 = 3/8 with the artificial
dissipation computed only on
stages 1, 3, and 5 (solid line).
The dashed line shows the
results without implicit resid-
ual smoothing with Cn = 3
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greatly affected by the smoothing with σ = 0.6. As σ is increased, these eigenvalues
begin to deviate more from their values without implicit residual smoothing. Hence
there is a compromise between a large Courant number and accurate representation
of the convection process for low frequency modes.

Based on one- and two-dimensional stability analysis as well as numerical exper-
iments, Swanson and Turkel [7] developed the following formulas for σπ and σν:

σπ = max

{
1

4

[(
N

N∗
1

1 + ψrνπ

)2

− 1

]
, 0

⎡

σν = max

⎧⎨
⎩
1

4



(

N

N∗
1

1 + ψr−1
νπ

)2

− 1


 , 0

⎫⎬
⎭ . (5.55)

Here N∗ is the Courant number for the unsmoothed scheme, while N is the Courant
number for the smoothed scheme, so N/N∗ typically takes a value between 2 and
3. The ratio of inviscid spectral radii was defined in (5.22), and ψ is a user-defined
parameter generally between 0.125 and 0.25.

5.3.3 The Multigrid Method

The multigrid method systematically uses sets of coarser grids to accelerate the
convergence of iterative schemes. It can be applied to any iterative method that dis-
plays a smoothing property, i.e. it preferentially damps high-frequency error modes.
For explicit iterative methods, multigrid is critical to obtaining fast convergence to
steady-state for stiff problems.
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Multigrid theory is well developed for elliptic problems, such as the steady dif-
fusion equation. For such problems, there is a correlation between the eigenvalues
and the spatial frequencies of the associated eigenvectors. For example, for the dif-
fusion equation, the eigenvalues of the semi-discrete operator matrix resulting from
a second-order centered-difference discretization are all real and negative (see Sect.
2.3.4). The eigenvectors associated with the eigenvalues with small magnitudes have
low spatial frequencies, while those corresponding to eigenvalues with large magni-
tudes have high frequencies. Thismeans that in the exact solution of the semi-discrete
ODE system (see Sect. 2.3.3) the high frequency components in the transient solution
are rapidly damped, while the low frequency components are slowly damped. This
is a fundamental property of a diffusive system that is retained after discretizing in
space.

Given this correlation between eigenvalues with large magnitudes and high space
frequencies, it is a natural property of several iterative methods (such as the Gauss-
Seidel relaxation method) to reduce error components corresponding to high spatial
frequencies more effectively than those corresponding to low spatial frequencies.
Moreover, iterative methods can be specifically designed to have this property, such
as the Richardson method described in Lomax et al. [10]. The multigrid method
exploits this property by systematically using coarser grids to target the removal
of specific components of the error. For example, high frequency error components
are rapidly damped on the initial grid, whose density is determined by accuracy
considerations. Hence the error is smoothed on that mesh. The low frequency error
components can be represented on a coarser mesh on which some of them appear as
high frequencies, where the frequency is relative to the mesh spacing, and are thus
more rapidly damped.

To make this clearer, consider the range of wavenumbers that are representable
on a mesh with spacing Δx f , which are given by 0 → λΔx f → π. If the mesh
spacing is increased by a factor of two (Δxc = 2Δx f ), then the wavenumber range
π/2 → λΔx f → π on the original mesh cannot be represented on the coarse mesh.
However, the range of error modes with 0 → λΔx f → π/2 have their value of λΔx
doubled. Those error modes in the wavenumber range π/4 → λΔx f → π/2 on the
fine mesh, which are poorly damped compared to those in the high wavenumber
range, appear in the wavenumber range π/2 → λΔxc → π, which are well damped
on the coarse mesh. This can be repeated with successively coarser meshes until
the mesh is so coarse that the problem can be affordably solved directly rather than
iteratively, such that on that mesh all error modes are damped. This is essentially
how the multigrid method works for a linear diffusion problem. See Chap. 10 of [10]
for a more detailed description.

Here we are interested in the application of themultigridmethod to the discretized
Euler and Navier-Stokes equations, which introduces two important differences in
comparison to the diffusion equation. First, the Euler and Navier-Stokes equations
are nonlinear, which means that the full approximation storage approach in which
both the residual and the solutionmust be transferred from the fine to the coarsemesh
must be used. Second, in the diffusion problem with Dirichlet boundary conditions,
the only mechanism available to remove error modes is diffusion within the domain.

http://dx.doi.org/10.1007/978-3-319-05053-9_2
http://dx.doi.org/10.1007/978-3-319-05053-9_2
http://dx.doi.org/10.1007/978-3-319-05053-9_10
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When the Euler and Navier-Stokes equations are solved, error is also propagated
through the outer boundary of the domain. This mechanism is primarily associated
with low frequency error modes, for which the spatial discretization is relatively
accurate. Since such modes are typically poorly damped, this is an important mech-
anism for their removal. For example, referring to Figs. 5.9 and 5.14, we see that our
discretization of the linear convection equation, which includes artificial dissipation,
shows preferential damping of high frequencies, i.e. a smoothing property, with the
particular time-marching method used.

The analysis reflected in Figs. 5.9 and 5.14 does not include the mechanism of
error removal by convection through the boundary. In Sects. 5.3.1 and 5.3.2, we
accounted for this by designing schemes to permit as large a Courant number as
possible. The multigrid method also exploits this mechanism of error removal. The
low frequency error modes for which propagation through the boundary is important
are well represented on the coarser mesh. Since the mesh spacing is doubled on the
coarse mesh, maintaining a constant Courant number will lead to a doubling of the
time step, enabling disturbances to propagate to the outer boundary in roughly half as
many time steps. Therefore, when applied to the Euler and Navier-Stokes equations,
the multigrid method enhances the convergence rate both through accelerating the
damping of error modes within the domain and through accelerating the removal of
error through the outer boundary.

We now present the implementation of the multigrid method in conjunction
with the cell-centered finite-volume scheme and multi-stage time-marching method
described in this chapter. The system of ODEs resulting from the spatial discretiza-
tion is

d

dt
Q j,k = − 1

A j,k
LQ j,k = −R j,k . (5.56)

A sequence of grids can be created by successively removing every second grid line
in each coordinate direction from the finest grid. The coarse grid cell is then the
agglomeration of four fine grid cells sharing a common grid node. If the number
of fine grid cells in each coordinate direction is even, then all cells can be merged.
Typically sequences of three to five meshes are used. For a five-mesh sequence, the
finest mesh should have a number of cells in each direction that is a multiple of 16 in
order that the second coarsest mesh have an even number of cells in each direction.

We will now describe a two-grid process that can readily be extended to an arbi-
trary number of grids, since the process is recursive. We first complete one or more
iterations of the five-stage time-marching method with implicit residual smoothing
described previously to obtain Qh . This is followed by an additional computation
of the full residual based on the updated solution, including the convective, viscous,
and artificial dissipation contributions.

The next step is to transfer the residual and the solution from the fine to the coarse
mesh, a process known as restriction. Consider the residual first. The term LQ j,k is
the net flux out of cell j, k. In order to transfer the residual to the coarse mesh in a
conservative manner, the net flux out of the coarse grid cell should be equal to the
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net flux out of the four fine grid cells that were merged to form the coarse grid cell.
This is achieved simply by summing the flux of each of the four fine grid cells, since
internal fluxes will cancel, giving

I 2h
h Rh = 1

A2h

4∑
p=1

Ah Rh, (5.57)

where the subscripts h and 2h denote the fine and coarse grids, respectively, and I 2h
h

is the restriction operator.
Ananalogous conservative approach is taken to restrict the solution Q. The amount

of a conserved quantity, such as mass, momentum, or energy, in the coarse grid cell
should be equal to the sum of the amount of that conserved quantity in the constituent
fine grid cells. Since Q represents the conserved quantities per unit volume in a given
cell, it must be multiplied by the cell area to give the total amount of the conserved
quantity in the cell (noting that in two dimensions the conserved quantities are per
unit depth). Hence the formula for restricting the solution to the coarse mesh is

Q(0)
2h = I 2h

h Qh = 1

A2h

4∑
p=1

Ah Qh, (5.58)

where Q(0)
2h is the solution used to initiate the multi-stage method on the coarse mesh

(see (5.25)).
Now we are ready to solve a problem on the coarse mesh. It is important to

recognize that it is not our goal to find the solution to the governing equations on the
coarse mesh. The purpose of solving on the coarse mesh is to provide a correction
to the solution that will reduce the residual on the fine mesh. To this end, a forcing
term P2h is introduced into the ODE solved on the coarse mesh as follows [7]:

d

dt
Q2h = −[R2h(Q2h) + P2h], (5.59)

where R2h is the residual computed by applying the spatial discretization on the
coarse mesh. The forcing term is

P2h = I 2h
h Rh − R2h(Q(0)

2h ), (5.60)

which is the difference between the restricted residual and the coarse grid residual
computed based on the restricted solution. If we were to drive the coarse mesh
problem (5.59) to convergence, we would drive to zero

R2h(Q2h) + P2h = R2h(Q2h) − R2h(Q(0)
2h ) + I 2h

h Rh . (5.61)
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Thus we would obtain the change in the solution on the coarse mesh (Q2h − Q(0)
2h )

that produces a change in the coarse mesh residual (R2h(Q2h) − R2h(Q(0)
2h )) that

offsets the residual restricted from the fine mesh (I 2h
h Rh), which is the purpose of

the coarse grid correction.
Let us examine the forcing term in more detail. At the first stage of the multi-stage

method on the coarse mesh the residual is

− [R2h(Q(0)
2h ) + P2h] = −[R2h(Q(0)

2h ) + I 2h
h Rh − R2h(Q(0)

2h )] = −I 2h
h Rh,

(5.62)

which is simply the residual restricted from the fine mesh. This means that once the
solution on the fine mesh has converged, the coarse mesh calculation will produce
no correction, which is appropriate. This provides a useful test when debugging a
multigrid algorithm. One can compute the converged solution on the fine mesh using
the basic algorithm without multigrid and use this as the initial condition for the
multigrid algorithm. Quite a few possible errors can reveal themselves if the coarse
mesh correction is nonzero. For example, it is important to enforce the boundary
conditions on the coarse mesh before computing the term R2h(Q(0)

2h ) in the forcing
function P2h . Otherwise, when they are enforced during the first stage of the multi-
stage method, the value of R2h(Q(0)

2h ) will not cancel with the same term in P2h , and
a nonzero correction will be produced.

When the multi-stage method is applied to (5.59), the mth stage becomes

Q(m)
2h = Q(0)

2h − αmh[R(Q(m−1)
2h ) + P2h], (5.63)

where R(Q(m−1)
2h ) is computed as in (5.36). Note that P2h does not depend on m and

remains fixed during the stages. If the present coarse mesh is not the coarsest mesh in
the sequence, then one ormore iterations of themulti-stagemethod are performed and
the problem is transferred to the next coarser mesh after an additional computation of
the residual. The residual and solution are restricted using the operators in (5.57) and
(5.58), respectively.When continuing to a coarser mesh, the residual that is restricted
must include the forcing term, i.e. R2h(Q2h) + P2h .

Once the coarsest grid level is reached, the correction to the solution must be
transferred, or prolonged, back to the next finer grid. There is an important condition
that the transfer operators must satisfy in order to achieve mesh-size independent
rates of convergence of the multigrid algorithm, which can be written as [11]:

pR + pP + 2 > pPDE, (5.64)

where pR and pP are the highest degree polynomials interpolated exactly by the
restriction and prolongation operators, respectively, and pPDE is the order of the PDE.
For the restriction operator given in (5.57), pR = 0. Therefore, a prolongation based
on a piecewise constant interpolation (pP = 0) is adequate for theEuler equations, but
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Fig. 5.15 Bilinear prolonga-
tion operator for cell-centered
scheme in two dimensions

a piecewise linear interpolation (pP = 1) is needed for the Navier-Stokes equations,
for which pPDE = 2.

The prolongation operation for a cell-centered algorithm in two dimensions is
depicted in Fig. 5.15. With bilinear interpolation, the value of the correction ΔQ
in each fine mesh cell is calculated based on ΔQ in four coarse mesh cells. The
resulting prolongation operator is

I h
2hΔQ = 1

16
(9ΔQ1 + 3ΔQ2 + 3ΔQ3 + ΔQ4), (5.65)

where ΔQ1 is the value in the coarse mesh cell containing the fine mesh cell, ΔQ2
and ΔQ3 are the values in the coarse mesh cells that share an edge with the coarse
mesh cell containing the fine mesh cell, and ΔQ4 is the value in the coarse mesh cell
that shares only a vertex with the fine mesh cell.

The ΔQ to be prolonged to the fine mesh is the difference between Q2h after
completing the iteration or iterations on the coarse mesh and the original Q(0)

2h that
was restricted to the coarse mesh based on (5.58). Hence we obtain for the corrected
Qh on the fine mesh:

Q(corrected)
h = Qh + I h

2h(Q2h − Q(0)
2h ), (5.66)

where Qh is the value originally computed on the fine mesh (see (5.58)), and I h
2h is

the prolongation operator given in (5.65).
This basic two-grid framework provides the basis for many variations, known as

multigrid cycles, that depend on the number of grids in the sequence and the manner
in which they are visited. Figure5.16 displays two popular cycles, the V cycle and
the W cycle, based on four grids. Downward pointing arrows indicate restriction to
a coarser mesh, while upward pointing arrows indicate prolongation to a finer mesh.
There are trade-offs between the two cycles, and typically experimentation is needed
to determine which is more efficient and robust for a given problem class. In the W
cycle, relatively more computations are performed on the coarser grid levels; since
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Fig. 5.16 Four-grid V and W multigrid cycles

Fig. 5.17 Full multigrid with
four grids

these are inexpensive, the W cycle is often more efficient than the V cycle. Unlike
the classical approach to multigrid for linear problems, where the problem is solved
exactly on the coarsest mesh, in the present context one simply applies one or more
iterations of the multi-stage method on the coarsest mesh. Experiments show that
there is typically no benefit to converging further on the coarsest mesh. Similarly, it
is rare to see an overall benefit in terms of computational expense in going beyond
four or five grids. Within a given cycle, there are also several possible variants. For
example, one can apply the multi-stage scheme at each grid level when transferring
from the coarse grid levels back to the fine levels, or one can simply add the correction
and prolong the result to the next finer grid. Some authors apply an implicit smoothing
to the corrections. It is also common to apply various simplifications, such as a lower-
order spatial discretization, on the coarser grids. This reduces the computational
expense without affecting the converged solution.

Finally, the full multigrid method combines the concept of mesh sequencing pre-
sented in Sect. 4.5.6 with the multigrid method. Since a sequence of meshes exists
as well as a transfer operator from coarse to fine meshes, this is a natural approach.
The computation begins on the coarsest mesh in the sequence, on which a number
of multi-stage iterations are performed. The solution is transferred to the next finer
mesh, and a number of two-grid multigrid cycles are carried out. This solution is
transferred to the next finer grid, and a number of three-grid cycles are performed.
This process continues until the full cycle is reached, as depicted in Fig. 5.17.

http://dx.doi.org/10.1007/978-3-319-05053-9_4


174 5 An Explicit Finite-Volume Algorithm with Multigrid

5.4 One-Dimensional Examples

As in Chap. 4, we present examples of the application of the algorithm described in
this chapter to the quasi-one-dimensional Euler equations. These examples coincide
with the exercises listed at the end of the chapter, giving the reader a benchmark for
their results. In the context of a one-dimensional uniformmesh, the implementation of
the second-order finite-volumemethod described in this chapter is very similar to that
of the second-order finite-difference method of the previous chapter. Consequently,
wewill use the same spatial discretization as in Sect. 4.8, but coupledwith the explicit
multi-stage multigrid algorithm presented in this chapter. Our focus here is on steady
flows.

The spatial discretization used to illustrate the performance of the multi-stage
multigrid algorithm is node centered. Therefore, the grid transfer operators described
in this chapter cannot be used, andwe introduce suitable operators for a node-centered
scheme in one dimension. The coarse grid is formed by removing every other grid
node from the fine mesh. An odd number of nodes should be used to ensure that
the boundary nodes are preserved in the coarse mesh. For a sequence of p grids, the
finest mesh should have a number of interior nodes equal to some multiple of 2p−1

minus one.
The simplest restriction operator is simple injection, where the coarse grid node is

assigned the value at the correspondingfine grid node. In a linearweighted restriction,
the coarse grid node is assigned a value equal to one-half that at the corresponding
fine grid node plus one-quarter of that at each of the neighbours of the fine grid
node, which do not exist on the coarse grid. The reader should experiment with these
two approaches in order to examine their effect on multigrid convergence. After
restricting the solution to the coarse mesh, the boundary values should be reset to
satisfy the boundary conditions on the coarse mesh.

For prolongation, linear interpolation gives the following transfer operator. Each
fine grid node for which there is a corresponding coarse grid node is assigned the
value at that coarse grid node. For fine grid nodes that do not exist on the coarse
grid, they receive one-half of the value from each neighbouring coarse grid node.
After prolonging the correction to a finer mesh, the boundary values should be reset
to satisfy the boundary conditions on the fine mesh.

For the methods presented in this chapter and the previous one, the converged
steady solution is independent of the details of the iterative method such as the time
step. Since we apply the same spatial discretization as for the results presented in
Sect. 4.8, except for a different value of λ4, the solutions will be nearly identical to
those presented previously, as long as the residual is reduced sufficiently. Therefore,
we concentrate here only on convergence histories.

The example results presented here are based on the five-stage time-marching
method with α1 = 1/4, α2 = 1/6, and α3 = 3/8 and the artificial dissipation
computed only on stages 1, 3, and 5. Without residual smoothing, Cn = 3. Residual
smoothing is applied with σ = 0.6 andCn = 7. Themultigrid method is based on the
multi-stage method with implicit residual smoothing and the same parameter values.

http://dx.doi.org/10.1007/978-3-319-05053-9_4
http://dx.doi.org/10.1007/978-3-319-05053-9_4
http://dx.doi.org/10.1007/978-3-319-05053-9_4
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Fig. 5.18 Residual con-
vergence histories for the
subsonic channel flow prob-
lem with 103 interior nodes
using the explicit algorithm
with Cn = 3 (-), Cn = 7 and
implicit residual smoothing
with σ = 0.6 (- -), and a four-
level W multigrid cycle with
Cn = 7 and implicit residual
smoothing with σ = 0.6 (-.)
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Fig. 5.19 Residual con-
vergence histories for the
subsonic channel flow prob-
lem with 103 interior nodes
(-), 207 interior nodes (- -),
and 415 interior nodes (-.)
using the explicit algorithm
with a W multigrid cycle with
Cn = 7 and implicit residual
smoothing with σ = 0.6.
Four grid levels are used on
the coarsest mesh, five on the
intermediate mesh, and six on
the finest mesh
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The solution is restricted through simple injection, while linear weighted restriction
is used for the residual. For both W and V cycles, the time-marching method is not
applied after prolongation except on the finest mesh when the cycle is repeated. The
artificial dissipation coefficients are λ4 = 1/32 and λ2 = 0.5 in all cases.

Figure5.18 compares the convergence of the explicit algorithm on a single grid
without implicit residual smoothing, with implicit residual smoothing, and with a
four-level W multigrid cycle for the subsonic channel on a mesh with 103 interior
nodes. The norm of the residual of the conservation of mass equation is shown. With
themultigrid algorithm, the residual is reduced to below 10−12 in 93multigrid cycles.
Figure5.19 displays the performance of the multigrid algorithmW cycle for varying
numbers of grid nodes. Four grid levels are used with 103 interior nodes, five with
207 interior nodes, and six with 413 interior nodes. Thus the coarsest mesh, which
has 12 interior nodes, is the same in each case. With this approach, the number of
multigrid cycles needed for convergence is nearly independent of the mesh size, as
shown in the figure. Figure5.20 shows that the V cycle does not converge as quickly
for this case and requires more cycles as the mesh is refined.
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Fig. 5.20 Residual conver-
gence histories for the sub-
sonic channel flow problem
with 103 interior nodes (-),
207 interior nodes (- -), and
415 interior nodes (-.) using
the explicit algorithm with a V
multigrid cycle with Cn = 7
and implicit residual smooth-
ing with σ = 0.6. Four grid
levels are used on the coarsest
mesh, five on the intermediate
mesh, and six on the finest
mesh
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Fig. 5.21 Residual con-
vergence histories for the
transonic channel flow prob-
lem with 103 interior nodes
using the explicit algorithm
with Cn = 3 (-), Cn = 7 and
implicit residual smoothing
with σ = 0.6 (- -), and a four-
level W multigrid cycle with
Cn = 7 and implicit residual
smoothing with σ = 0.6 (-.)
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Figures5.21, 5.22, and 5.23 show the same comparisons for the transonic channel
problem. Although the number of iterations or multigrid cycles required for con-
vergence is much higher in this case, the trends are very similar. Implicit residual
smoothing improves the convergence rate by a factor close to two. Multigrid is very
effective in reducing the number of iterations needed, and the W cycle converges in
fewer cycles than the V cycle.

5.5 Summary

The algorithm described in this chapter has the following key features:

• Thediscretization of the spatial derivatives is accomplished through a second-order
cell-centered finite-volume method applied on a structured grid. This approach
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Fig. 5.22 Residual con-
vergence histories for the
transonic channel flow prob-
lem with 103 interior nodes
(-), 207 interior nodes (- -),
and 415 interior nodes (-.)
using the explicit algorithm
with a W multigrid cycle with
Cn = 7 and implicit residual
smoothing with σ = 0.6.
Four grid levels are used on
the coarsest mesh, five on the
intermediate mesh, and six on
the finest mesh
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Fig. 5.23 Residual conver-
gence histories for the tran-
sonic channel flow problem
with 103 interior nodes (-),
207 interior nodes (- -), and
415 interior nodes (-.) using
the explicit algorithm with a V
multigrid cycle with Cn = 7
and implicit residual smooth-
ing with σ = 0.6. Four grid
levels are used on the coarsest
mesh, five on the intermediate
mesh, and six on the finest
mesh
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can be extended to unstructured grids. Numerical dissipation is added through
a nonlinear artificial dissipation scheme that combines a third-order dissipative
term in smooth regions of the flow with a first-order term near shock waves. A
pressure-based term is used as a shock sensor.

• After discretization in space, the original PDEs are converted to a large system
of ODEs. For computations of steady flows, a five-stage explicit method is used
in which the artificial dissipation is computed only on stages one, three, and five,
and the viscous flux operator is applied only on the first stage. At each stage, the
residual is smoothed by application of a scalar tridiagonal implicit operator in
each coordinate direction. The multigrid method is applied in order to accelerate
convergence to steady state. For computations of unsteady flows, this algorithm
can be used within the context of an implicit dual-time-stepping approach.
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5.6 Exercises

For related discussion, see Sect. 5.4.

5.1 Write a computer program to apply the explicit multigrid algorithm presented in
this chapter to the quasi-one-dimensional Euler equations for the following subsonic
problem. S(x) is given by

S(x) =
{
1 + 1.5

(
1 − x

5

)2 0 → x → 5

1 + 0.5
(
1 − x

5

)2 5 → x → 10
(5.67)

where S(x) and x are inmeters. The fluid is air, which is considered to be a perfect gas
with R = 287 N ·m · kg−1 ·K−1, and θ = 1.4, the total temperature is T0 = 300 K,
and the total pressure at the inlet is p01 = 100 kPa. The flow is subsonic throughout
the channel, with S∗ = 0.8. Use the spatial discretization described in Chap. 4 with
the nonlinear scalar artificial dissipation model, since, on a uniform mesh in one
dimension, it is essentially the same as that presented in this chapter. Compare your
solution with the exact solution computed in Exercise 3.1. Show the convergence
history for each case. Experiment with parameters, such as the multigrid cycle (e.g.
W and V), the number of grid levels, the Courant number, and the implicit residual
smoothing coefficient, to examine their effect on convergence. Find optimal values
of the implicit residual smoothing coefficient and the Courant number for rapid and
reliable convergence.
5.2Repeat Exercise 5.1 for a transonic flow in the same channel. The flow is subsonic
at the inlet, there is a shock at x = 7, and S∗ = 1. Compare your solution with that
calculated in Exercise 3.2.
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Chapter 6
Introduction to High-Resolution Upwind
Schemes

6.1 Introduction

The algorithms described in the two preceding chapters have been used successfully
for the computation of many flow fields. However, in some contexts an additional
degree of robustness is required. There are many flow problems, especially those
involving complex physics, where positivity and monotonicity preservation is criti-
cal. For example, in a hypersonic flow, where the Mach number is much greater than
unity, strong shock waves arise. Even a small oscillation in the solution can lead to
negative pressures, densities, and temperatures, all of which are unphysical. In the
computation of the sound speed for a perfect gas, the square root of these quantities
is needed, which is not possible if the quantity is negative. Similarly, oscillations
in other regions where the solution is discontinuous or nearly so can also trigger
unphysical behavior. The algorithms described thus far were not designed specifi-
cally to preserve monotonicity and positivity. For example, the shock sensor (4.83) is
based on pressure only, so it cannot sense discontinuities where the pressure is con-
tinuous, such as contact surfaces. Moreover, such a sensor is not designed to ensure
positivity of a quantity such as turbulent kinetic energy in a turbulence model. High-
resolution upwind schemes were developed in order to address the need to maintain
positivity and monotonicity of specific quantities consistent with the physics. This
chapter provides only a brief introduction to these concepts. The reader is encouraged
to complete the exercise at the end of the chapter and to experiment with different
strategies. We begin with an introduction to Godunov’s method, which is based on
a different perspective than the approaches described thus far and has been an influ-
ential building block in the development of high-resolution upwind schemes.
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6.2 Godunov’s Method

In our earlier discussion of upwind schemes in Sect. 2.5.2, we introduced flux-vector
[1, 2] and flux-difference splitting [3]. Dating back to 1959, Godunov’s method [4]
provides an alternative approach to upwinding based on the solution of local Riemann
problems.

Consider the PDE form of a one-dimensional conservation law:

∂u

∂t
+ ∂ f

∂x
= 0, (6.1)

where u(x, t) is the conserved variable, and f (u) is the flux. The integral form in
space on a ≤ x ≤ b is:

d

dt

∫ b

a
u(x, t)dx = −{ f [u(b, t)] − f [u(a, t)]}. (6.2)

Integrating in time from tn to tn+1 gives

∫ b

a
u(x, tn+1)dx −

∫ b

a
u(x, tn)dx = −Δt{ f̄ [u(b, t)] − f̄ [u(a, t)]}, (6.3)

where f̄ [u(a, t)] is the average flux at x = a over the time interval Δt . Introducing
the cell average of the conserved variable, as in Sect. 2.4.1, we have

un
j = 1

Δx

∫ x j+1/2

x j−1/2

u(x, tn)dx, (6.4)

for a cell where x j−1/2 ≤ x ≤ x j+1/2 (see Fig. 2.4). Substituting the cell average
into (6.3) with a = x j−1/2 and b = x j+1/2, we obtain

un+1
j − un

j = − Δt

Δx
{ f̄ [u(x j+1/2, t)] − f̄ [u(x j−1/2, t)]}. (6.5)

This is an exact statement of the conservation law showing that the change in the
cell average of the conserved variable over the time interval Δt is dependent upon
the average flux at the cell boundaries over the time interval.

The first step in Godunov’s method is to reconstruct the solution in each cell
based on the cell-averaged solution. A piecewise-constant reconstruction is used, as
in Sect. 2.4.2, given by

u(x, tn) = un
j x j−1/2 ≤ x ≤ x j+1/2. (6.6)

The cell boundaries lie at x j−1/2 and x j+1/2. As in Sect. 2.4.2, there are two states at
each boundary, a left state and a right state, as a result of the reconstruction in each
cell. For example, at x j+1/2, we have

http://dx.doi.org/10.1007/978-3-319-05053-9_2
http://dx.doi.org/10.1007/978-3-319-05053-9_2
http://dx.doi.org/10.1007/978-3-319-05053-9_2
http://dx.doi.org/10.1007/978-3-319-05053-9_2
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uL
j+1/2 = ū j and uR

j+1/2 = ū j+1. (6.7)

In Sect. 2.4.2, we resolved this discontinuity by taking the average of the fluxes
on either side of the boundary, leading to a nondissipative finite-volume scheme
analogous to a centered difference scheme.

In Godunov’s method, the discontinuity in the solution is resolved through the
exact solution of the local Riemann problem. We define

u≈ ( x

t
, uL, uR

)
(6.8)

as the exact solution of the Riemann problem with initial condition

u = uL x < 0

u = uR x → 0. (6.9)

In the case of the Euler equations, this represents the solution to the one-dimensional
flowproblemarisingwhen a diaphragm separating two distinct fluid states is removed
at t = 0, i.e. a generalization of the shock-tube problem discussed in Sect. 3.3.2.
The solution is characterized by the fact that it is constant along rays emanating from
the origin of the x − t plane and consequently depends on x/t , rather than x and t
independently.

With the piecewise-constant reconstruction, the Riemann problem originating at
time level n and x j+1/2, i.e. the right boundary of the cell, has the left state un

j and

the right state un
j+1. Hence the Riemann problem can be written as

u(x, t) = u≈
(

x − x j+1/2

t − tn
, un

j , un
j+1

)
. (6.10)

Similarly, the Riemann problem originating at the left boundary of the cell is given
by

u(x, t) = u≈
(

x − x j−1/2

t − tn
, un

j−1, un
j

)
. (6.11)

In general, each Riemann problem will include both left and right moving waves.
The solution in cell j is determined by the left movingwaves from the Riemann prob-
lem with its origin at x j+1/2 and the right moving waves from the Riemann problem
with its origin at x j−1/2. These solutions are no longer valid once the Riemann prob-
lems interact, which occurs when the fastest left moving wave from the Riemann
problemwith origin at x j+1/2 meets the fastest right moving wave from the Riemann
problem with origin at x j−1/2. To ensure that the Riemann problems do not interact,
we limit the time step Δt according to

http://dx.doi.org/10.1007/978-3-319-05053-9_2
http://dx.doi.org/10.1007/978-3-319-05053-9_3


184 6 Introduction to High-Resolution Upwind Schemes

|amax|Δt <
Δx

2
, (6.12)

where amax is the highest wave speed in the system.
With this limit on Δt , the solution at tn+1 is determined by the Riemann problem

originating from x j−1/2 for x j−1/2 ≤ x ≤ x j . Similarly, the solution for x j ≤ x ≤
x j+1/2 is determined by the Riemann problem originating from x j+1/2. We are now
in a position to determine the cell average state variable in cell j at tn+1 as follows:

un+1
j = 1

Δx

∫ x j+1/2

x j−1/2

u(x, tn+1)dx = 1

Δx

[∫ x j

x j−1/2

u≈
(

x − x j−1/2

Δt
, un

j−1, un
j

)
dx

+
∫ x j+1/2

x j

u≈
(

x − x j+1/2

Δt
, un

j , un
j+1

)
dx

]
, (6.13)

where the first term on the right-hand side is associated with the Riemann problem
at the left boundary of the cell and the second term with the Riemann problem at the
right boundary of the cell.

As a simple example to clarify these concepts, consider the linear convection
equation:

∂u

∂t
+ a

∂u

∂x
= 0 (6.14)

with a > 0. With a known solution at t = tn given by un(x), in the absence of
boundaries the exact solution is

u(x, t) = un (x − a(t − tn)) , (6.15)

which represents the waveform at tn propagating to the right with speed a. This exact
solution provides the solution to the Riemann problem. In this case there are no left
moving waves, so the time step must satisfy

aΔt ≤ Δx (6.16)

in order to prevent interacting Riemann problems.
With a piecewise-constant reconstruction, the solution in cell j − 1 at tn is given

by

u(x, tn) = un
j−1, (6.17)

and that in cell j is

u(x, tn) = un
j . (6.18)
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After a time step Δt , the solution from cell j −1 has convected into cell j a distance
aΔt , so the value of u in cell j at tn+1 from x j−1/2 to x j−1/2 + aΔt is un

j−1. The

solution in the remainder of cell j at tn+1, from x j−1/2 + aΔt to x j+1/2 is un
j . By

analogy to (6.13), the cell average in cell j can thus be updated according to

un+1
j = 1

Δx

∫ x j+1/2

x j−1/2

u(x, tn+1)dx

= 1

Δx

[
aΔtun

j−1 + (Δx − aΔt)un
j

]

= un
j − aΔt

Δx
(un

j − un
j−1). (6.19)

This we can recognize immediately as first-order backward differencing in space
combinedwith the explicit Euler time-marchingmethod, and the time step restriction
(6.16) is consistent with the stability bound for this scheme.

This example sheds some light on Godunov’s method. Despite the use of an exact
solution, the resulting numericalmethod is first order in both time and space. Thefirst-
order explicit Euler method arises naturally from the determination of the solution at
tn+1 explicitly from the solution at tn . First-order accuracy in space is a consequence
of the piecewise-constant reconstruction. The key point is that Godunov’s method
has produced an upwind scheme. If we repeat the exercise with a < 0, then a
forward difference scheme results. Hence the use of an exact Riemann solution
by Godunov’s method naturally produces an upwind scheme; this result applies to
systems of equations as well.

Godunov’s method can be simplified by exploiting the fact that the solution to a
Riemann problem is constant along rays emanating from the origin of the problem in
the x − t plane. As a result, the Riemann problem originating at x = x j−1/2, t = tn
does not vary with time at x = x j−1/2. Similarly, the Riemann problem originating
at x = x j+1/2, t = tn does not vary with time at x = x j+1/2. Recall from (6.5) that
the change in the cell average of the conserved variable over the time interval Δt is
determined by the average flux at the cell boundaries over the time interval. Hence
we obtain

un+1
j = un

j − Δt

Δx

[
f (u≈(0, un

j , un
j+1)) − f (u≈(0, un

j−1, un
j ))
]
, (6.20)

where the flux function is evaluated at the state determined from theRiemann solution
at the value of x corresponding to the origin of the Riemann problem, and the average
in time is trivial because the state is constant over the time interval at each cell
boundary, i.e. at x j−1/2 and x j+1/2.

Based on the above, we define the numerical flux function f̂ for Godunov’s
method as
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f̂ j+1/2 = f (u≈(0, un
j , un

j+1)). (6.21)

The definition of f̂ j−1/2 is found simply by decrementing the spatial index by one,1

i.e.

f̂ j−1/2 = f (u≈(0, un
j−1, un

j )). (6.22)

With this definition of the Godunov numerical flux function we can write Godunov’s
method in the generic finite-volume form:

un+1
j = un

j − Δt

Δx
( f̂ j+1/2 − f̂ j−1/2). (6.23)

Moreover, returning to (6.2), we can write the generic semi-discrete form:

du j

dt
= − 1

Δx
( f̂ j+1/2 − f̂ j−1/2). (6.24)

For the example of the linear convection equation, but with a of arbitrary sign,
the Godunov numerical flux function is

f̂ j+1/2 = 1

2
(a + |a|)un

j + 1

2
(a − |a|)un

j+1. (6.25)

It is left as an exercise for the reader to show that this is entirely equivalent to (2.89)
and (2.90). As a nonlinear example, consider the Burgers equation:

∂u

∂t
+ 1

2

∂u2

∂x
= 0. (6.26)

In this case one can show that Godunov’s flux function is given by [5]2:

f̂ j+1/2 =

⎡⎡⎡⎡⎡⎢
⎡⎡⎡⎡⎡⎣

1
2u2

j+1 if u j , u j+1 are both ≤ 0
1
2u2

j if u j , u j+1 are both → 0
0 if u j ≤ 0 ≤ u j+1
1
2u2

j if u j > 0 → u j+1 and |u j | → |u j+1|
1
2u2

j+1 if u j → 0 > u j+1 and |u j | ≤ |u j+1|

. (6.27)

This numerical flux function is based on the exact Riemann solution to the scalar
conservation law and provides a useful reference for assessing approximate solutions
to the Riemann problem such as the one introduced in the next section.

1 This is a necessary property of a conservative scheme.
2 Henceforth we drop the bars denoting cell average quantities for convenience.

http://dx.doi.org/10.1007/978-3-319-05053-9_2
http://dx.doi.org/10.1007/978-3-319-05053-9_2
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6.3 Roe’s Approximate Riemann Solver

In the previous section we saw that, despite the use of an exact Riemann solution,
Godunov’smethod is first-order accurate in space as a result of the piecewise-constant
reconstruction. This motivates the idea of reducing the computational expense by
using an approximate Riemann solver to provide the desired upwinding. There are
several such approximate Riemann solvers for the Euler equations; the approach of
Roe [3] is particularly widely used.

In Roe’s approximate Riemann solver, the conservation law is locally linearized.
For example, consider the quasi-linear form of the Euler equations (3.26):

∂Q

∂t
+ A

∂Q

∂x
= 0, (6.28)

where the flux Jacobian A is a function of Q. If we linearize about some state Q̄ and
define Ā = A(Q̄), we can write the locally linearized form of the Euler equations as

∂Q

∂t
+ Ā

∂Q

∂x
= 0. (6.29)

Since Ā is independent of Q, the equations can be decoupled into three equations
in the form of the linear convection equation, as described in Sect. 4.6.1. The exact
solution to this linearized problem is readily obtained in terms of the eigensystem
of Ā.

Recall that for a Riemann problem, there are initially two states. Roe chose the
average state for the linearization such that it satisfies

f R − f L = A(Q̄)(Q R − QL), (6.30)

where f = AQ is the flux. This ensures satisfaction of the Rankine-Hugoniot rela-
tions at shock waves and full upwinding in supersonic flows, where all of the eigen-
values of the flux Jacobian have the same sign. For the Euler equations, the state that
satisfies this relation, known as the Roe-average state, is given by [3]:

π̄ =
⎤

πLπR

ū = (u
∗

π)L + (u
∗

π)R⎥
πL +⎥πR

(6.31)

H̄ = (H
∗

π)L + (H
∗

π)R⎥
πL +⎥πR

,

where H is the total enthalpy.
Next we will determine the numerical flux function for the Roe scheme with

a piecewise-constant reconstruction in each cell, which gives QL
j+1/2 = Q j and

http://dx.doi.org/10.1007/978-3-319-05053-9_3
http://dx.doi.org/10.1007/978-3-319-05053-9_4
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Q R
j+1/2 = Q j+1. As a result of the local linearization of the one-dimensional Euler

equations, they are decoupled into three equations in the form of the linear convection
equation as follows (see Sect. 4.6.1):

∂W

∂t
+ Λ

∂W

∂x
= 0, (6.32)

where W = X−1Q are the characteristic variables, X−1 has the left eigenvectors of Ā
as its rows, andΛ is a diagonalmatrix containing the eigenvalues of Ā, which is based
on the Roe-average state determined from the cell averages Q j and Q j+1 on either
side of the cell interface at x j+1/2. Applying (6.25) to each equation individually and
then recoupling by premultiplying by X gives

f̂ j+1/2 = X

⎦
1

2
(Λ + |Λ|)W j + 1

2
(Λ − |Λ|)W j+1

]

= X

⎦
1

2
(Λ + |Λ|)X−1Q j + 1

2
(Λ − |Λ|)X−1Q j+1

]

= 1

2
XΛX−1(Q j + Q j+1) + 1

2
X |Λ|X−1(Q j − Q j+1)

= 1

2
Ā(Q j + Q j+1) + 1

2
| Ā|(Q j − Q j+1)

= 1

2
( f j + f j+1) + 1

2
| Ā|(Q j − Q j+1), (6.33)

where X is the matrix of right eigenvectors of Ā, and |A| = X |Λ|X−1, consistent
with Sect. 2.5.2. The last step depends on the property of the Roe average given in
(6.30) as well as the fact that the Euler equations are homogeneous of order one [6]
and hence f (−Q) = − f (Q). Note the similarity to the flux-difference-split scheme
given in (2.101), which was derived for the linear, constant-coefficient case.

In the scalar case, the Roe numerical flux function becomes

f̂ j+1/2 = 1

2
( f j + f j+1) − 1

2
|ā j+1/2|(u j+1 − u j ), (6.34)

where

ā j+1/2 =
{

f j+1− f j
u j+1−u j

if u j+1 �= u j

a(u j ) if u j+1 = u j
, (6.35)

which is the Rankine-Hugoniot relation for the speed of propagation of a disconti-
nuity. For the Burgers equation ( f (u) = 1

2u2) one obtains

ā j+1/2 =
u2j+1
2 − u2j

2

u j+1 − u j
= 1

2
(u j + u j+1). (6.36)

http://dx.doi.org/10.1007/978-3-319-05053-9_4
http://dx.doi.org/10.1007/978-3-319-05053-9_2
http://dx.doi.org/10.1007/978-3-319-05053-9_2
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Substituting (6.36) into (6.34) gives the flux function for the Roe scheme applied
to the Burgers equation:

f̂ j+1/2 = 1

2
(
1

2
u2

j + 1

2
u2

j+1) − 1

2
|1
2
(u j + u j+1)|(u j+1 − u j ) (6.37)

=
{

1
2u2

j+1 if ā j+1/2 ≤ 0
1
2u2

j if ā j+1/2 > 0
. (6.38)

This differs from the numerical flux function of the Godunov scheme (6.27) only
when u j < 0 < u j+1; Godunov’s flux function is equal to zero for this case.
As a result, the Roe scheme permits expansion shocks, and a simple entropy fix is
commonly used to overcome this. For example, for the Euler equations, such a fix
can be obtained by replacing the eigenvalues ν = u + a and ν = u − a with

1

2

(
ν2

δ
+ δ

)
, (6.39)

if they are less than or equal to δ, where δ is a small parameter [7]. For values of
ν greater than δ, the values are not altered. This prevents these eigenvalues from
being zero at sonic points, where |u| = a, thereby preventing the development of
expansion shocks.

6.4 Higher-Order Reconstruction

The schemes discussed thus far in this chapter have been based on a piecewise-
constant reconstruction, which restricts their accuracy to first-order in space. The
numerical flux functions associated with the Godunov and Roe schemes with
piecewise-constant reconstruction can be written in the form

f̂ j+1/2 = f̂ (u j , u j+1). (6.40)

In order to enable second- and higher-order accuracy, we can generalize this to

f̂ j+1/2 = f̂ (uL
j+1/2, u R

j+1/2), (6.41)

where uL
j+1/2 and u R

j+1/2 are the left and right states at x j+1/2 determined from the
reconstruction. Togetherwith the semi-discrete form (6.24), this enables higher-order
accuracy in both space and time.

There existmany different approaches to reconstruction;wewill describe awidely
used approach here [5, 8].Given cell average data, reconstruction provides an approx-
imation to the behavior of the function within each cell. Piecewise-constant recon-
struction is the simplest form, and, as we have seen, restricts the resulting upwind
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scheme to first-order spatial accuracy. With a centered flux function one can obtain
a second-order scheme from a piecewise constant reconstruction, but the scheme
is nondissipative. With each increase in the degree of the polynomial used in the
reconstruction, the order of the upwind finite-volume scheme also increases. Hence
second-order accuracy can be obtained from a piecewise-linear reconstruction, third-
order from a piecewise-quadratic reconstruction, and so on. Here we describe one-
dimensional piecewise reconstructions up to quadratic that use data equivalently
from neighboring cells on either side of the cell in question.

In a piecewise-constant reconstruction, there is only one degree of freedom, and
that is determined by the cell average quantity. For a piecewise-linear reconstruction,
there is one additional degree of freedom, the slope. It is determined through a second-
order centered difference using the cell average data of the two neighboring cells.
For a piecewise quadratic reconstruction, there are three degrees of freedom. These
are determined by requiring the quadratic function to have the given average in the
cell in question as well as the two neighboring cells. This approach was presented in
Sect. 2.4.2 (see (2.73), (2.74), and (2.75)).

The following function includes these three reconstructions valid for cell j , i.e.
for x j−1/2 ≤ x ≤ x j+1/2:

u(x) = u j + κ

(
u j+1 − u j−1

2Δx

)
(x − x j )

+λ

(
u j+1 − 2u j + u j−1

2Δx2

)
[(x − x j )

2 − Δx2

12
],

(6.42)

where the overbars have been included to emphasize that these are cell averages
and will be dropped for the remainder of this section. The piecewise-constant recon-
struction is obtained with κ = λ = 0, piecewise-linear with κ = 1, λ = 0, and
piecewise-quadratic with κ = λ = 1. λ are sometimes used with κ = 1; these
produce second-order upwind schemes.

In order to determine a numerical flux at x j+1/2 from (6.41), we require uL
j+1/2

and u R
j+1/2. To find the left state at x j+1/2, one must substitute x = x j + Δx/2 into

(6.42). This gives

uL
j+1/2 = u j + 1

4
[(κ − λ/3)(u j − u j−1) + (κ + λ/3)(u j+1 − u j )]. (6.43)

The right state at x j+1/2 is determined from the piecewise reconstruction in cell
j + 1 by incrementing the indices appearing in (6.42) by one and substituting x =
x j+1 − Δx/2. We obtain

u R
j+1/2 = u j+1 + 1

4
[(κ + λ/3)(u j+1 − u j ) + (κ − λ/3)(u j+2 − u j+1)]. (6.44)

http://dx.doi.org/10.1007/978-3-319-05053-9_2
http://dx.doi.org/10.1007/978-3-319-05053-9_2
http://dx.doi.org/10.1007/978-3-319-05053-9_2
http://dx.doi.org/10.1007/978-3-319-05053-9_2
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The left and right states given by (6.43) and (6.44) can be substituted into (6.41) and
finally into the semi-discrete form (6.24) to which a time-marching method can be
applied to advance the solution in time.

In order to further understand these reconstructions, consider the linear convection
equation with positive a and an upwind flux function, f̂ j+1/2 = auL

j+1/2. We have
already seen in (6.19) that the piecewise-constant reconstruction leads to first-order
backward differencing in space in this case. With the piecewise-linear reconstruction
(κ = 1, λ = 0), we obtain

uL
j+1/2 = u j + 1

4
(u j+1 − u j−1). (6.45)

This leads to the following semi-discrete form:

(
du

dt

)
j
= − a

4Δx
(u j+1 + 3u j − 5u j−1 + u j−2). (6.46)

This spatial operator is second-order accurate. Finally, with the piecewise-quadratic
reconstruction (κ = λ = 1), the left state at x j+1/2 is

uL
j+1/2 = 1

6
(2u j+1 + 5u j − u j−1), (6.47)

and thus
(
du

dt

)
j
= − a

6Δx
(2u j+1 + 3u j − 6u j−1 + u j−2). (6.48)

This is a third-order upwind-biased operator in space [see 2.18].

6.5 Conservation Laws and Total Variation

Consider a scalar conservation law in one dimension:

∂u

∂t
+ ∂ f (u)

∂x
= 0. (6.49)

The exact solution is constant along characteristic lines given by

dx

dt
= a(u) = ∂ f

∂u
(6.50)

unless the characteristics intersect to form a shockwave. For an initial value problem,
i.e. no influence from boundaries, the total variation of a differentiable solution

http://dx.doi.org/10.1007/978-3-319-05053-9_2
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between any pairs of characteristics is conserved [9], where the total variation is
defined as

T V (u(x, t)) =
∫ ∝

−∝

∣∣∣∣∂u

∂x

∣∣∣∣ dx . (6.51)

In the presence of discontinuities, the total variation is nonincreasing in time, i.e.

T V (u(x, t0 + t)) ≤ T V (u(x, t0)), (6.52)

if the discontinuities satisfy an entropy inequality [9], where t0 is the initial time. As
a consequence of this, local maxima do not increase, local minima do not decrease,
and monotonic solutions remain monotonic, i.e. no new extrema are created.

Designing numerical schemes such that the numerical solution retains these prop-
erties of the exact solution brings the following benefits:

• Robustness: a nonincreasing total variation precludes the generation of spurious
oscillations and ensures that quantities such as density and pressure that are initially
positive will remain so.

• Stability: if local minima cannot decrease and local maxima cannot increase, then
the solution will remain bounded.

6.6 Monotone and Monotonicity-Preserving Schemes

Consider a conservative discretization of the conservation law written as

un+1
j = un

j − Δt

Δx
( f̂ j+1/2 − f̂ j−1/2)

= H(un
j−l , un

j−l+1, . . . , un
j+l), (6.53)

where

f̂ j+1/2 = f̂ (u j−l+1, . . . , u j+l), (6.54)

and l depends on the scheme. The discrete method is monotone if H is a monotone
increasing function of each of its arguments [10], i.e.

∂H

∂ui
(u−l , . . . , u+l) → 0 for all − l ≤ i ≤ l. (6.55)

This is a strong condition that ensures that the numerical solution has the monotonic-
ity properties described above. However, such schemes are limited to first-order
accuracy.
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As a first example, consider the scheme for the numerical solution of the linear
convection equation with positive a resulting from the combination of first-order
backward differencing in space and the explicit Euler time-marching method, which
is given by

un+1
j = Cnun

j−1 + (1 − Cn)u
n
j , (6.56)

where

Cn = aΔt

Δx
(6.57)

is the Courant number. The scheme is stable for 0 < Cn ≤ 1. Applying the condition
(6.55) gives

∂H

∂u j−1
= Cn,

∂H

∂u j
= 1 − Cn. (6.58)

These are both nonnegative for Courant numbers in the stable range; hence the
scheme is monotone in this range.

Next consider the Lax-Wendroff method given by [11]:

un+1
j = un

j − 1

2

ah

Δx
(un

j+1 − un
j−1)

+1

2

(
ah

Δx

)2
(un

j+1 − 2un
j + un

j−1). (6.59)

It can be written in the form of (6.53) as follows

un+1
j = Cn

2
(1 + Cn)u

n
j−1 + (1 − C2

n )u
n
j + Cn

2
(Cn − 1)un

j+1. (6.60)

This method is also stable for 0 < Cn ≤ 1. Although the coefficients of un
j−1 and un

j
are nonnegative in this range of Courant numbers, the coefficient of un

j+1 is negative
unless Cn = 1. Therefore the Lax-Wendroff method is not monotone. This is of
course unsurprising given that the Lax-Wendroff method is second order in time and
space.

The restriction of monotone schemes to first-order accuracy is excessively limit-
ing, and aweaker condition is needed. To this end,Harten [12] defined themonotonic-
ity preserving property. A scheme is monotonicity preserving if monotonicity of un

guarantees monotonicity of un+1, where a solution u is monotonic if

min(u j−1, u j+1) ≤ u j ≤ max(u j−1, u j+1) for all j. (6.61)
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Amonotonicity-preserving scheme is sufficient to ensure that the numerical solution
has the following properties:

• No new extrema are created.
• Local maxima are nonincreasing.
• Local minima are nondecreasing.

All monotone schemes are monotonicity preserving, but the converse is not true.
All linear monotonicity-preserving schemes are at most first-order accurate

[4, 12]. Consequently, to be of order higher than first, a monotonicity-preserving
scheme must be nonlinear. In a nonlinear scheme the coefficients of the scheme are
dependent upon the solution. For example, the schemes described in the preceding
chapters involving the use of a pressure sensor are nonlinear schemes, because the
amount of first-order numerical dissipation added is dependent on the pressure.

6.7 Total-Variation-Diminishing Conditions

In Sect. 6.5, we introduced the idea that the total variation is nonincreasing in the
exact solution to a scalar conservation law, where the total variation is defined in
(6.51). This suggests that a suitable design condition for a numerical scheme to be
monotonicity preserving is to require that it be total variation diminishing (or TVD).
For this purpose we define a discrete total variation as

T Vd(u) =
∝∑

−∝
|u j − u j−1|. (6.62)

All monotone schemes are TVD, and all TVD schemes are monotonicity preserving
[12]. Therefore, TVD schemes provide the properties we seek and are subject to the
constraint that to be of order higher than first, they must be nonlinear.

To write the TVD conditions, consider a conservative scheme in the following
semi-discrete form

du j

dt
= − 1

Δx
( f̂ j+1/2 − f̂ j−1/2). (6.63)

This can be rewritten in the form

du j

dt
= 1

Δx
[C−

j+1/2(u j+1 − u j ) − C+
j−1/2(u j − u j−1)]. (6.64)

It is important to recognize that any dependence on u j±2, u j±3, etc., is contained in
the C± coefficients—this will become clearer in our second example below.
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The TVD conditions are [12]:

C−
j+1/2 → 0 and C+

j−1/2 → 0. (6.65)

When the semi-discrete form is advanced in time with the explicit Euler time-
marching method, one obtains

un+1
j = un

j + Δt

Δx
[C−

j+1/2(u
n
j+1 − un

j ) − C+
j−1/2(u

n
j − un

j−1)]. (6.66)

For this fully-discrete form, an additional TVD condition is introduced [12]:

1 − Δt

Δx
(C−

j+1/2 + C+
j−1/2) → 0. (6.67)

Further conditions exist if higher than first-order accuracy in time is sought. For
example, strong-stability-preserving schemes have been developed for this purpose
[13].

As an example, consider the combination of first-order backward differencing in
space and the explicit Euler time-marching method applied to the linear convection
equation with positive a. We showed previously that this scheme is monotone for
Courant numbers in the stable range 0 < Cn ≤ 1. Writing this scheme in the form
of (6.66), we obtain

un+1
j = un

j − aΔt

Δx
(un

j − un
j−1)

= un
j + Δt

Δx
[0 · (u j+1 − u j ) − a(u j − u j−1)], (6.68)

giving C−
j+1/2 = 0 and C+

j−1/2 = a > 0. Hence the TVD conditions (6.65) are
satisfied, and (6.67) is satisfied for Courant numbers in the stable range, so the
scheme is TVD. This is consistent with the fact that all monotone schemes are TVD.

As a second example, consider the semi-discrete form arising from second-order
backward differencing the linear convection equation with positive a:

du j

dt
= − a

2Δx
(3u j − 4u j−1 + u j−2)

= 1

Δx

[
0 · (u j+1 − u j ) − a

2
(3(u j − u j−1) − (u j−1 − u j−2))

]

= 1

Δx

⎦
0 · (u j+1 − u j ) − a

2

(
3 − u j−1 − u j−2

u j − u j−1

)
(u j − u j−1)

]
. (6.69)

Hence

C−
j+1/2 = 0, C+

j−1/2 = a

2

(
3 − u j−1 − u j−2

u j − u j−1

)
. (6.70)
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The second TVD condition in (6.65) is violated when

u j−1 − u j−2

u j − u j−1
> 3, (6.71)

showing that this scheme is not TVD in general. Again this is not unexpected, as
this is a linear second-order scheme, and such schemes cannot be TVD. In the next
section, we will see that ratios of the form (6.71) are important in the development
of TVD schemes.

The second-order backwards difference operator gives an approximation to∂u/∂x
at node j based on the slope of the parabola passing through the three points
(x j−2, u j−2), (x j−1, u j−1), (x j , u j ). If u j > u j−1 > u j−2, i.e. u is monotonic,
this parabola is monotonic between x j−2 and x j if

u j−1 − u j−2

u j − u j−1
≤ 3 (6.72)

and is nonmonotonic if

u j−1 − u j−2

u j − u j−1
> 3. (6.73)

Hence the violation of the TVD condition coincides with the nonmonotonicity of the
interpolant.

6.8 Total-Variation-Diminishing Schemes with Limiters

The examples in the preceding section suggest an approach to the design of nonlinear
TVD schemes with better than first-order accuracy. We saw that first-order backward
differencing applied to the linear convection equation with positive a is TVD. When
combined with the explicit Euler time-marching method, this spatial discretization
will result in numerical solutions with the properties we seek, i.e. no new extrema,
nonincreasing maxima, and nondecreasing minima. Hence no spurious oscillations
will be introduced into the solution, even at discontinuities. The price paid is that
this is a first-order scheme, and the spatial discretization is extremely dissipative.
We also saw that second-order backward differencing is not TVD and hence can
introduce spurious oscillations. However, it violates the TVD conditions only when
the numerical solution has specific properties. This suggests that we can design a
nonlinear TVD scheme based on the first-order discretization plus a limited amount
of a second-order correction as dictated by the TVD conditions.

To illustrate this, we will begin with the second-order backward differencing
scheme discussed in the preceding section (6.69). This can be written as the sum
of a first-order scheme and a correction for second-order accuracy that is simply
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the difference between the second-order scheme and the first-order scheme. When
applied to the linear convection equation, the resulting semi-discrete form is

du j

dt
= − a

2Δx
(3u j − 4u j−1 + u j−2)

= − a

Δx
[(u j − u j−1) + 1

2
(u j − u j−1) − 1

2
(u j−1 − u j−2)︸ ︷︷ ︸

for second−order accuracy

]. (6.74)

This can also be written in conservation form (6.63) with

f̂ j+1/2 = a

2
(3u j − u j−1) (6.75)

and similarly split into a first-order term and a correction:

f̂ j+1/2 = a[u j + 1

2
(u j − u j−1)︸ ︷︷ ︸

for second−order

]. (6.76)

We introduce a limiter ξ to limit the correction as follows

f̂ j+1/2 = a[u j + 1

2
ξ j (u j − u j−1)]. (6.77)

If ξ = 1, the full second-order scheme is obtained; if ξ = 0, the scheme reverts to
first-order. Substituting into (6.74) gives

du j

dt
= − a

Δx
[(u j − u j−1) + 1

2
ξ j (u j − u j−1) − 1

2
ξ j−1(u j−1 − u j−2)]. (6.78)

From (6.71), the TVD condition for this scheme is dependent on the ratio

u j−1 − u j−2

u j − u j−1
. (6.79)

Hence the value of the limiter function ξ should depend on such ratios. For this
purpose, we define the ratio

r j = u j+1 − u j

u j − u j−1
(6.80)

and define

ξ j = ξ(r j ) → 0. (6.81)
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With these definitions we can rewrite (6.78) as

du j

dt
= − 1

Δx
a

⎦
1 + 1

2
ξ(r j ) − 1

2

ξ(r j−1)

r j−1

]
︸ ︷︷ ︸

C+
j−1/2

(u j − u j−1), (6.82)

noting that the ratio in (6.79) is 1/r j−1. Recalling from the TVD conditions in
Sect. 6.7 that C+

j−1/2 must be nonnegative, we have

ξ(r j−1)

r j−1
− ξ(r j ) ≤ 2. (6.83)

Given that ξ(r j ) → 0, the worst case is ξ(r j ) = 0, which gives the condition

ξ(r j−1) ≤ 2r j−1. (6.84)

This approach can be repeated for the linear convection equation with a negative
value of a and limited second-order forward differencing. One obtains the following
symmetry condition on ξ(r):

ξ

(
1

r

)
= ξ(r)

r
. (6.85)

Combining this condition with the above requirement that ξ(r) ≤ 2r gives

ξ(r) ≤ 2. (6.86)

Therefore, the requirements that a general limiter function ξ(r) should satisfy
include [14]:

ξ(r) → 0 for r → 0

ξ(r) = 0 for r ≤ 0

ξ(r) ≤ 2r

ξ (r) ≤ 2

ξ( 1r ) = ξ(r)
r , (6.87)

where the second requirement arises because a negative value of r indicates an
extremum. The value of r can be considered an indicator of the smoothness of the
function relative to the mesh spacing. For a differentiable function on a uniform
mesh, r approaches unity as the mesh is refined. Hence for second-order accuracy,
ξ(r) must satisfy

ξ(1) = 1. (6.88)
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Fig. 6.1 Diagram showing the second-order TVD region for limiters and severalwell-known limiter
functions

Finally, limiter functions lying in the shaded region in Fig. 6.1 lead to second-order
TVD schemes [14].

With this flexibility, many different limiter functions have been suggested; some
of these are shown in Fig. 6.1. The lower bound of the second-order TVD region is
described by the minmod limiter, which is given by

ξ =
{
min(r, 1) r > 0
0 r ≤ 0

. (6.89)

Similarly, the superbee limiter [15] lies on the upper bound of the second-order TVD
region. It can be written as

ξ(r) = max[0, min(2r, 1), min(r, 2)]. (6.90)

The superbee limiter is sometimes referred to as an overcompressive limiter, as
it can steepen gradients and introduce staircasing into a smooth solution. This is
associated with the fact that ξ(r) = 2 for r → 2. Another disadvantage of both of
these limiters is that they are not differentiable for some r → 0, which can adversely
affect convergence to steady state. In order to address this, the van Leer limiter was
introduced as follows [16]:

ξ(r) = r + |r |
1 + r

, (6.91)
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which is differentiable except at r = 0. The van Albada limiter [17] is also differen-
tiable except at r = 0:

ξ =
{

r2+r
1+r2

r > 0
0 r ≤ 0

. (6.92)

This limiter is less compressive than the van Leer limiter as it asymptotes to unity as
r approaches infinity, while the van Leer limiter asymptotes to ξ(r) = 2.

Next let us generalize (6.78) to a of arbitrary sign. In this case we can define split
fluxes as (see Sect. 2.5):

f + = 1

2
(a + |a|)u, f − = 1

2
(a − |a|)u. (6.93)

With second-order backward differencing for f + and second-order forward differ-
encing for f −, the following limited semi-discrete form is obtained:

du j

dt
= − 1

Δx
[( f +

j − f +
j−1) + 1

2
ξ(r j )( f +

j − f +
j−1) − 1

2
ξ(r j−1)( f +

j−1 − f +
j−2)]

− 1

Δx
[( f −

j+1 − f −
j ) + 1

2
ξ

(
1

r j

)
( f −

j+1 − f −
j ) − 1

2
ξ

(
1

r j+1

)
( f −

j+2 − f −
j+1)].

(6.94)

Finally, consider a limited form of the upwind scheme resulting from a piecewise-
linear reconstruction, again for the linear convection equation with positive a, as
described by (6.45). Writing the numerical flux as a first-order flux plus a limited
second-order correction gives

f̂ j+1/2 = auL
j+1/2 = au j + a

4
β(r j )(u j+1 − u j−1). (6.95)

We would like to find β(r) such that this is equivalent to (6.77). We obtain the
following:

f̂ j+1/2 = a[u j + 1

2
ξ(r j )(u j − u j−1)] (6.96)

= a

⎦
u j + 1

4
ξ(r j )

2(u j − u j−1)

(u j+1 − u j−1)
(u j+1 − u j−1)

]
(6.97)

= a

⎦
u j + 1

4
ξ(r j )

2

r j + 1
(u j+1 − u j−1)

]
. (6.98)

The two forms (6.95) and (6.96) are equivalent if [18]:

β(r) = 2

r + 1
ξ(r). (6.99)

http://dx.doi.org/10.1007/978-3-319-05053-9_2
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With β(r) defined by (6.99), and ξ(r) having the properties described previously,
(6.95) is a second-order TVD scheme. In fact it is identical to the scheme defined
by (6.77) but written in terms of a piecewise-linear reconstruction. It is easy to show
that if ξ(r) has the symmetry property ξ(1/r) = ξ(r)/r , then β(1/r) = β(r).

It can be instructive to write β(r) in terms of the undivided differences

Δ+ = u j+1 − u j , Δ− = u j − u j−1. (6.100)

For example, for r → 0, the minmod limiter can be written as

β j = 2

Δ+ + Δ−
min(Δ+,Δ−) (6.101)

and the van Leer limiter as

β j = 4Δ+Δ−
(Δ+ + Δ−)2

. (6.102)

When the limiters are written in this form, their symmetry is clearly evident. It is left
as an exercise to the reader to write the superbee and van Albada limiters in terms of
Δ+ and Δ−.

Furthermore, this form enables a clear understanding of the various limiters and
the conditionsξ(r) ≤ 2 andξ(r) ≤ 2r . For example, (6.101) shows that theminmod
limiter replaces the slope of the linear reconstruction in (6.95)

u j+1 − u j−1

2Δx
(6.103)

with the lesser in magnitude of

u j+1 − u j

Δx
and

u j − u j−1

Δx
. (6.104)

Similarly, the van Leer limiter replaces the slope of the linear reconstruction with

1

Δx

(
2Δ+Δ−

Δ+ + Δ−

)
. (6.105)

As r tends to infinity, i.e. Δ+ � Δ−, this approaches

2(u j − u j−1)

Δx
. (6.106)

Similarly, as r tends to zero, i.e. Δ− � Δ+, this approaches
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2(u j+1 − u j )

Δx
. (6.107)

Hence in the limit of large and small r the van Leer limiter produces a slope that
is twice that resulting from the minmod limiter. This is a direct consequence of the
asymptotic behavior of the corresponding ξ limiters as r tends to infinity, where the
minmodξ limiter is unity for r → 1 and the vanLeerξ limiter approaches 2 as r tends
to infinity. The superbee limiter actually steepens the slope of the reconstruction for
some values of r .

Considering the case where u is monotonic and u j−1 ≤ u j ≤ u j+1, in the limit
as r tends to zero, the slope

2(u j+1 − u j )

Δx
(6.108)

leads to

uL
j+1/2 = u j+1. (6.109)

Thus this is themaximumpermissible slope to ensure that uL
j+1/2 ≤ u j+1, as required

to preserve monotonicity. Similar arguments apply to u R
j−1/2 and to the case where

u is monotonically decreasing. Hence the conditions ξ(r) ≤ 2 and ξ(r) ≤ 2r are
directly related to the condition that uL

j+1/2 and u R
j−1/2 lie between u j−1 and u j+1

unless u j is an extremum.
The use of limiters to obtain second-order TVD schemes is a powerful and robust

approach. There are further issues to be considered, such as convergence difficulties
resulting from limiter chatter, systems of equations, multiple dimensions,3 irregular
and unstructured meshes, and higher-order time-marching methods that preserve
the TVD property; these are beyond the scope of the present book. Nevertheless,
the reader is now in a position to complete Exercise 6.1. The reader can program
the second-order flux-split upwind scheme (6.94), a finite-volume scheme based on
linear reconstruction (6.95) using the Roe flux function (6.33), or any other second-
order TVD scheme found in the literature. The reader is encouraged to experiment
with different limiters and other aspects of the algorithm to understand their impact on
monotonicity and accuracy. For example, one can reconstruct primitive, conservative,
or characteristic variables, and the reader can investigate the impact of this choice
on maintaining positivity of pressure and avoiding oscillations.

3 For example, Goodman and Leveque [19] showed that TVD schemes for scalar conservation laws
in two dimensions can be no better than first-order accurate.
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6.9 One-Dimensional Examples

As in Chaps. 4 and 5, examples are presented using some of the algorithms described
in this chapter. The effectiveness of high-resolution upwind schemes is best demon-
strated in the context of the shock-tube problem. The examples provided again coin-
cide with the exercise at the end of the chapter, but the exercise for this particular
chapter is more open-ended in that the reader is asked to program the limited second-
order TVD scheme of her or his choice. The algorithm demonstrated in the example
below is just one of many options.

We consider first a piecewise-constant reconstruction applied in conjunction with
the Roe flux function (6.33) and the entropy fix given in (6.39). As a result of the
piecewise-constant reconstruction, this spatial discretization is first-order accurate.
Time-marching is achieved through the explicit Euler method with a time step of
0.0025 ms. Figure 6.2 displays the numerical solution computed on a mesh with 400
cells in comparison with the exact solution at t = 6.1ms. As expected, the numerical
solution is free of unphysical oscillations. However, it also differs quite substantially
from the exact solution, in particular near the head of the expansionwave and through
the contact surface, which is spread over several cells.

Figure 6.3 displays the numerical solution obtained using the Roe flux function
together with a piecewise-linear reconstruction of the conservative variables. This
spatial discretization is second-order, and no limiting is applied. Hence the computed
solution is more accurate than the first-order solution in some places; however it
suffers from large unphysical oscillations and consequently deviates substantially
from the exact solution. The results displayed in Figs. 6.2 and 6.3 illustrate the
limitations of linear schemes in that one can preserve monotonicity of the solution
at the expense of accuracy using a first-order scheme or improve accuracy in smooth
regions of the flow field using a second-order scheme at the expense of unphysical
oscillations and large errors near discontinuities.

Figure 6.4 shows the analogous numerical solution computed using a limited
second-order TVD scheme. The slope of the linear reconstruction of the conservative
variables is limited using the Van Albada limiter (6.92) following (6.95) and (6.99).
The numerical solution is free of unphysical oscillations and is much more accurate
than either of the solutions displayed in Figs. 6.2 and 6.3. This solution can be
compared with that shown in Fig. 4.18 computed using the less sophisticated shock-
capturing approach presented inChap. 4, which is primarily intended for steady flows
(for which it performs very well, as shown in Fig. 4.15). The shock-tube solution
computed using the flux-limited scheme is visibly more accurate than that displayed
in Fig. 4.18.
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Fig. 6.2 Comparison of the exact solution (−) for the shock-tube problem at t = 6.1 ms with a
first-order numerical solution based on a piecewise-constant reconstruction (x) computed on a grid
with 400 cells with a time step of 0.0025ms. a Density (in kg/m3). b Match number

6.10 Summary

The key topics covered in this chapter include the following:

• Godunov’s method: This provides an elegant approach to upwinding for finite-
volume methods.

• Roe’s approximate Riemann solver and numerical flux function: This provides
an inexpensive approximation to Godunov’s scheme that satisfies the Rankine-
Hugoniot relations at shock waves and is widely used.

• Higher-order reconstruction: Piecewise-polynomial reconstruction enables the
development of upwind schemes with spatial orders of accuracy higher than one.
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Fig. 6.3 Comparison of the exact solution (−) for the shock-tube problem at t = 6.1 ms with a
second-order unlimited numerical solution based on a piecewise-linear reconstruction (x) computed
on a grid with 400 cells with a time step of 0.0025ms. a Density (in kg/m3). b Match number

• Total variation, monotone schemes, andmonotonicity preservation: These provide
conditions on numerical schemes such that the resulting numerical solutions have
the following important properties: no new extrema are created, local maxima do
not increase, and local minima do not decrease.

• Total-variation-diminishing schemeswith limiters:These schemes are both second-
order accurate andmonotonicity preserving.Hence they are very robust, producing
oscillation-free solutions that avoid robustness problems such as those associated
with negative values of pressure or density.
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Fig. 6.4 Comparison of the exact solution (−) for the shock-tube problem at t = 6.1 ms with a
limited second-order numerical solution (x) computed on a grid with 400 cells with a time step of
0.0025 ms. The Van Albada limiter is used. a Density (in kg/m3). b Match number

6.11 Exercise

For related discussion, see Sect.6.9.

6.1 Write a computer program to apply a limited second-order TVD scheme to the
following shock-tube problem: pL = 105, πL = 1, pR = 104, and πR = 0.125,
where the pressures are in Pa and the densities in Kg/m3. The fluid is a perfect gas
with γ = 1.4. Use the explicit Euler time marching method. Compare your solution
at t = 6.1 ms with that found in Exercise 3.3. Examine the effect of the time step
and other parameters on the monotonicity and accuracy of the solution. Compare
various limiter functions in terms of their effect on monotonicity and accuracy.
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W
W cycle, 172
Wave speeds, 34


	Preface
	Contents
	1 Introduction
	1.1 Background
	1.2 Overview and Roadmap
	References

	2 Fundamentals
	2.1 Model Equations
	2.1.1 The Linear Convection Equation
	2.1.2 The Diffusion Equation 

	2.2 Finite-Difference Methods 
	2.2.1 Basic Concepts: Taylor Series
	2.2.2 The Modified Wavenumber

	2.3 The Semi-Discrete Approach
	2.3.1 Matrix Difference Operators
	2.3.2 Reduction of PDEs to ODEs
	2.3.3 Exact Solutions of Linear ODEs
	2.3.4 Eigenvalue Spectra for Model ODEs
	2.3.5 A Representative Equation for Studying Time-Marching Methods

	2.4 Finite-Volume Methods
	2.4.1 Basic Concepts
	2.4.2 One-Dimensional Examples

	2.5 Numerical Dissipation and Upwind Schemes
	2.5.1 Numerical Dissipation in the Linear Convection Equation
	2.5.2 Upwind Schemes 
	2.5.3 Artificial Dissipation

	2.6 Time-Marching Methods for ODEs
	2.6.1 Basic Concepts: Explicit and Implicit Methods
	2.6.2 Converting Time-Marching Methods to OEs
	2.6.3 Implementation of Implicit Methods

	2.7 Stability Analysis
	2.7.1 Inherent Stability of ODEs
	2.7.2 Numerical Stability of OEs
	2.7.3 Unconditional Stability, A-stable Methods
	2.7.4 Stability Contours in the Complex λh Plane.
	2.7.5 Fourier Stability Analysis
	2.7.6 Stiffness of Systems of ODEs

	References

	3 Governing Equations
	3.1 The Euler and Navier-Stokes Equations
	3.1.1 Partial Differential Equation Form
	3.1.2 Integral Form
	3.1.3 Physical Boundary Conditions

	3.2 The Reynolds-Averaged Navier-Stokes Equations
	3.3 The Quasi-One-Dimensional Euler Equations  and the Shock-Tube Problem
	3.3.1 Exact Solution: Quasi-One-Dimensional Channel Flow
	3.3.2 Exact Solution: Shock-Tube Problem

	3.4 Exercises
	References

	4 An Implicit Finite-Difference Algorithm
	4.1 Introduction
	4.1.1 Implicit Versus Explicit Time-Marching Methods

	4.2 Generalized Curvilinear Coordinate Transformation
	4.2.1 Metric Relations
	4.2.2 Invariants of the Transformation
	4.2.3 Navier-Stokes Equations in Generalized Curvilinear Coordinates
	4.2.4 Covariant and Contravariant Components in Curvilinear Coordinates

	4.3 Thin-Layer Approximation
	4.4 Spatial Differencing
	4.4.1 Metric Differencing and Invariants
	4.4.2 Artificial Dissipation
	4.4.3 A Nonlinear Artificial Dissipation Scheme

	4.5 Implicit Time Marching and the Approximate  Factorization Algorithm
	4.5.1 Implicit Time-Marching
	4.5.2 Local Time Linearization 
	4.5.3 Matrix Form of the Unfactored Algorithm 
	4.5.4 Approximate Factorization 
	4.5.5 Diagonal Form of the Implicit Algorithm 
	4.5.6 Convergence Acceleration for Steady Flow Computations
	4.5.7 Dual Time Stepping for Unsteady Flow Computations

	4.6 Boundary Conditions
	4.6.1 Characteristic Approach
	4.6.2 Well-Posedness Test
	4.6.3 Boundary Conditions for External Flows

	4.7 Three-Dimensional Algorithm
	4.7.1 Flow Equations
	4.7.2 Numerical Methods 

	4.8 One-Dimensional Examples
	4.9 Summary
	4.10 Exercises
	References

	5 An Explicit Finite-Volume Algorithm  with Multigrid
	5.1 Introduction
	5.2 Spatial Discretization: Cell-Centered Finite-Volume  Method
	5.2.1 Inviscid and Viscous Fluxes
	5.2.2 Artificial Dissipation

	5.3 Iteration to Steady State
	5.3.1 Multi-stage Time-Marching Method
	5.3.2 Implicit Residual Smoothing
	5.3.3 The Multigrid Method

	5.4 One-Dimensional Examples
	5.5 Summary 
	5.6 Exercises
	References

	6 Introduction to High-Resolution Upwind Schemes
	6.1 Introduction
	6.2 Godunov's Method
	6.3 Roe's Approximate Riemann Solver
	6.4 Higher-Order Reconstruction
	6.5 Conservation Laws and Total Variation
	6.6 Monotone and Monotonicity-Preserving Schemes
	6.7 Total-Variation-Diminishing Conditions
	6.8 Total-Variation-Diminishing Schemes with Limiters
	6.9 One-Dimensional Examples
	6.10 Summary
	6.11 Exercise
	References

	 Index



