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Abstract

The main purpose of the present study is to evaluate the model validation stage of a routine

landslide susceptibility mapping. For the purpose, model validation is assessed in three

stages; (1) during model data production, (2) during model construction, and (3) during the

production of model consequences; landslide susceptibility maps. As the results of these

evaluations, it is revealed that training and testing data sets should be separated considering

an appropriate separation ratio which is about 80 % and 20 % of the presence (1) data after

completion of inventory studies. Correct classification percentages, error matrices, and the

Kappa index are suggested to be considered for the training data sets during model

construction. Additionally, again the correct classification percentage and the Root Mean

Square Error (RMSE) should be considered during this stage for the testing data sets as

well. In order to evaluate the spatial performance of the produced landslide susceptibility

maps, the use of the Receiver Operating Characteristic (ROC) curves and the Area Under

Curve (AUC) statistics is recommended. In the present study, the maximum Kappa index

(k) value was calculated to be 0.459 for both the random sampling 1 (Rnd1) in the model 1

and for the random sampling 2 (Rnd2) in the model 2 during the model construction stage.

The AUC values were calculated for these random samplings to be 0.781 and 0.790

respectively during the production of the model consequence stage in the study.
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Introduction

The model validation stage constitutes one of the most

important issues in natural hazard modelling studies

(Begueria 2006). Obviously, it could be considered that

validation of landslide susceptibility models as well as the

maps should also be the most critical topic in landslide

susceptibility researches. Although the model validation

assessment has a very important role in modelling, many

studies in literature do not give necessary importance to

model validation, they just allow to be evaluated some

basic validation statistics to assess the performance of the

models. In landslide susceptibility mapping studies, the per-

formance of the models are checked using different valida-

tion statistics by different researchers and that contributes to

differences in terms of performance evaluation and the

comparisons of the models according to these performances.

The main purpose of this study is to represent a procedure for

the assessment of the performance of landslide susceptibility

mapping. The study proposes a flow chart which evaluates

the current validation indices of the models in three stages:
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i) the model data production stage, ii) model construction

stage and iii) the production of model consequences stage.

For the purpose, the landslide susceptibility analyses

performed by Dagdelenler (2013) in eastern part of Gallipoli

Peninsula (Canakkale, Turkey) were evaluated.

Model Validation

As mentioned, the performance evaluations of the models

were performed in three stages given in the flow chart in

Fig. 1. These stages are described in detail below.

During Model Data Production

During the landslide susceptibility analyses performed by

Dagdelenler (2013), a total of 10 variables (7 continuous and

3 categorical) were used as independent variables and also

presence (1) and non-presence (0) data of mapped landslides

was used as the dependent variable. 20 % of the presence

(1) data was separated as testing and 80 % of the presence

(1) data was separated as training data sets for the models

(Nefeslioglu et al. 2011, 2012; Oh and Pradhan 2011; San

2014). This process was carried out three times the models

data sets Rnd1, Rnd2 and Rnd3 selected at random were

obtained. For each random set, 80 % of the presence (1) data

was separated and the training sets were generated by

separating also 80 % of non-presence (0) data which equal

to 80 % of presence (1) data in number. As it could be clearly

realized, this stage constitutes the preparedness for further

performance evaluations.

During Model Construction

The landslide susceptibility analyses were performed by

applying the logistic regression technique by Dagdelenler

(2013). As the results of the logistic regression analyses

using training data sets, correct classification percentages

(%), error matrices and validation statistics and Kappa

index (k) values derived from the error matrices were deter-

mined. Correct classification percentages (%) calculated as

the results of logistic regression analyses for the models

were found to be acceptable and quite similar. They vary

between 78 and 79 %.

Fig. 1 Procedure for the

assessment of the performance of

landslide susceptibility mapping

414 G. Dagdelenler et al.



An error matrix shows the number of correctly estimated

observations for positive and negative cases. In the error

matrix in Table 1, the observed and predicted presence (1)

and non-presence (0) data sets are represented by a letter (a,

b, c, and d). Validation statistics (Table 2) and Kappa index

(k) values derived from the error matrices of the models are

calculated according to formulations of the validation statis-

tics derived from the error matrix (Begueria 2006). The

formula of the Kappa index (k) derived from error matrices

was seen in (1,2, and 3). According to the Kappa index

classification chart proposed by Landis and Koch (1977),

Kappa index value for each model indicates that the model

compatibility powers were moderately good.

P ¼ aþ d

N
ð1Þ

Pe ¼ aþ bð Þ aþ cð Þ þ cþ dð Þ d þ bð Þ
N2

ð2Þ

k ¼ P� Pe

1� Pe
ð3Þ

Where,

P ¼ The proportion of observations in agreement; Pe ¼
The proportion in agreement due to chance; k ¼ Kappa

index.

RMSE performance index and correct classification per-

centage (%) values were calculated by using the testing data

sets. Validation indices were derived from the error matrix

and Kappa index values (threshold dependent) were

specified by using the training data sets. Correct classifica-

tion percentages for the first, second and third random sets of

the landslide body sampling model were calculated as

follows: 79.7 %, 80.5 % and 69.8 % respectively. The

correct classification percentages for the landslide suscepti-

bility models considered different buffer distances (d ¼ 25

m, d ¼ 50 m, d ¼ 75 m and d ¼ 100 m) in the seed cell

samplings (Dagdelenler 2013) vary between 76.6 and

88.5 %. The seed cells obtained by the seed cell sampling

strategy (Suzen and Doyuran 2004) are assumed to represent

the pre-failure conditions of the landslides for the topograph-

ical parameters in particular. The calculated RMSE values

for the Model 1 (landslide body samplings) are 0.398, 0.395

and 0.453 respectively and RMSE values vary between

0.334 and 0.422 for the Model 2 (seed cell samplings) at

different buffer distances (d ¼ 25 m, d ¼ 50 m, d ¼ 75 m,

d ¼ 100 m).

During the Production of Model Consequences

In the third stage of the performance evaluation procedure,

the resultant landslide susceptibility maps were analysed by

using the ROC curves and the area under ROC curves

(AUC). The ROC curve evaluation and the AUC are thresh-

old independent indices which are determined during the

production of model consequences. Area under ROC curve

value is used as a single threshold independent validation

statistics (Begueria 2006). The An AUC value which is close

to 1 means the performance of the model is good (Fawcett

2006). The ROC curves of the models were drawn and the

AUC values were determined (Table 3). According to the

results, the calculated AUC values for the models were

found to be close to 1 and were very close to each other

(Table 4). These results show that the performances of the

models are quite acceptable.

Table 1 The presentation of true positive

Observed

X1 (presence) X0 (non-

presence

Predicted X0
1 (presence) a b

X0
0 (non-presence) c d

a; false positive, b; false negative, c; and true negatives, d in an error

matrix

Table 2 The formulation of the validation statistics derived from the error matrix (Begueria 2006)

Validation statistics The formulation Description

Efficiency (a + d)/N Ratio of correctly classified observations

Incorrect classification rate (b + c)/N Rate of correct classified observations

Odds ratio (a + d)/(b + c) Ratio of correct and incorrect classification of cases

Positive predictive value a/(a + b) Rate of true positives of the total positive estimation values

Negative predictive value d/(c + d) Rate of true negatives of the total negative estimation values

Sensitivity a/(a + c) Correctly estimated positive cases ratio

Specificity d/(b + d) Correctly estimated negative cases ratio

False positive rate b/(b + d) False positives ratio of total negatives observations

False negative rate c/(a + c) False negatives ratio of total negative observations

Likelihood ratio Sensitivity/(1-specificity) The ratio between true positives and false negatives
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Results and Conclusions

The validation indices are evaluated in three stages such as

during model data production, model construction, and pro-

duction of model consequences. In addition, a generalized

flow chart for the performance evaluation of the landslide

susceptibility models is proposed. According to the flow

chart, it could be clearly realized that which validation

indices are calculated from which data set and in which

stage of the model. In recent huge landslide susceptibility

literature, there is vagueness about the validation of the

models constructed. This uncertainty starts from the model

data production and goes up to production of the model

consequences. The common way applied for validation is

the evaluation of the ROC curves for whole study area

(Ayalew and Yamagishi 2005; Mathew et al. 2007; Pradhan

2010). However, the performance evaluation of the model

construction stage is commonly ignored particularly in the

studies in which the bivariate statistics, artificial intelligence

and data mining techniques are applied (Saito et al. 2009;

Yilmaz 2009; Oh and Pradhan 2011; Akgun et al. 2012; Bui

and Pradhan 2012; Conforti et al. 2014). Obviously, in order

to apply this stage, a pre-processing stage including data

production for further evaluations is necessary. The perfor-

mance evaluation of the model construction stage was

suggested to be a separate routine step in model validation

for landslide susceptibility analyses in the proposed flow

chart. It is commonly desired from a landslide susceptibility

model to provide both high prediction capacity for the

constructed model and high generalization capacity for the

application results in whole study area (Can et al. 2005).

Assuming that if all probabilities are calculated to be 1 for

whole study area, in this case the spatial performance of the

model is found to be 100 %. However, the resultant landslide

susceptibility texture is irrational and it could be assumed

that there is no generalization capacity for the model for this

situation. The probabilities will also be calculated to be 1 for

whole areas without landslides so that the calculated AUC

values will also be low. In other words, the model prediction

capacity is maximum while the generalization capacity is

minimum. Hence, it could be clearly realized that the vali-

dation indices for the model construction and production

model consequences should be evaluated separately. There-

fore, it could be concluded that the proposed methodology in

this study enables controlling both prediction and generali-

zation capacities for any landslide susceptibility evaluations

appropriately.

According to the results obtained from the sample

analyses of the models given in this study, the validation

indices are quite close and this also shows that model pre-

dictive and generalization capacities could be evaluated to

be acceptable.
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