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Abstract

A natural landslide is mainly occurred by rainfall, snowmelt, earthquakes and construction

works. Especially, the role of rainfall or snowmelt in slope stability is very important

because it causes a decrease in shear strength by reducing the soil cohesion. If clay exists in

the weathered soil, the physical characteristics such as viscosity and permeability are

generally different from the condition without the clay. In this case, changes of permeabil-

ity or viscosity due to the rainfall or snowmelt are dependent on the content of clay in soil.

In order to calculate the variation in permeability according to the content of clay in soil,

many researchers have conducted laboratory experiments or in-situ tests in the field.

However, it is difficult to determine the property of the clay such as a viscosity because

of its poor crystalline property. In order to solve this problem and to calculate permeability

of clay under various dry densities, we used molecular dynamic (MD) simulation to

examine the viscosity of micro scale and homogenization analysis (HA) method to expand

micro material property to macro scale. In this research, we determined the permeability of

clay with various dry densities due to the rainfall or snowmelt conditions by using MD/HA

method.
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Molecular Structure of Kaolinite

Radioactive waste disposal facilities have been planned in

formations containing kaolinite, for example in the Opalinus

Clay of Switzerland, because of their low permeability and

resultant diffusion-dominant characteristics. For safely

isolating radioactive substances for a long time, it is essential

to fully understand the physical and chemical properties of

the host rock. For this purpose, authors here present a unified

procedure of molecular dynamics (MD) simulation and

homogenization analysis (HA) for water-saturated kaolinite

clay. This MD/HA procedure was originally developed for

analyzing seepage, diffusion and consolidation phenomena

of bentonite clay. In the current research, a series of MD

calculations were performed for kaolinite and kaolinite-

water systems, appropriate to a saturated deep geological

setting. Then, by using HA, the seepage behavior is deter-

mined for conditions of the spatial distribution of the water

viscosity associated with some configuration of clay

minerals. The seepage behavior is calculated for different

void ratios and dry densities.

Kaolinite is a 1:1 clay mineral; composed of alternating

silica tetrahedral and aluminum octahedral sheets. To

achieve charge balance, the apical oxygens of the silica

tetrahedra are incorporated into the octahedral sheet. In the

plane of atoms common to both sheets, two-thirds of the
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atoms are oxygens and are shared by both silicon and the

octahedral aluminum cations. The remaining atoms in this

plane comprise hydroxyl molecules (OH), located in such a

way that each sheet is directly below the base of a silica

tetrahedron. A diagrammatic sketch of the kaolinite structure

is shown in Fig. 1. The structural formula is Si4Al4O10

(OH)8, and the charge distribution is indicated in Fig. 2.

Mineral particles of the kaolinite subgroup consist of these

basic units, stacked in the c-direction. The bonding between

successive layers is by both van der Waals forces and hydro-

gen bonds. The extensive hydrogen bonding, in particular, is

sufficiently strong that there is no interlayer swelling.

Because of a slight difference of oxygen-to-oxygen distance

in the tetrahedral and octahedral layers there is some distor-

tion of the ideal tetrahedral network. As a result, kaolinite is

triclinic instead of monoclinic.

Homogenization Analysis for the Seepage

Seepage Problem by HA

A two-scale HA is introduced for a macro-domain Ω0 using

the coordinate system x0 and a micro-domain Ω1 using the

coordinate system x1. Both coordinates are related as x ¼
x0/ε by the scale factor ε.

To represent incompressible flow, the following Stokes

equation is introduced:
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where ρ is the density of water, Vε is the water velocity in the

fluid domainΩf, Pε is the pressure, fi is the body force, and η
is the water viscosity. Note that we consider a steady state,

and hence the convective term Vj∂Vi/∂xj of the left-hand

side (LHS) of (1) vanishes in the perturbation procedure, and

we can ignore the LHS terms from the beginning. The

superscript ε implies a variable which varies rapidly in the

microscale domain. The viscosity distribution calculated by

MD is shown in Fig. 3 for an isolated kaolinite layer.

Fig. 1 Diagrammatic sketch of the structure of kaolinite
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Fig. 2 Charge distribution in kaolinite

Fig. 3 Diffusivity and viscosity of water in the neighbourhood of a

silicate surface (a) band gibbsite surface (b)
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Naturally the velocity vanishes on the fluid-solid interface Γ:

V ε
i ¼ 0 on Γ ð3Þ

Now we introduce ‘two-scale domains‘for homogeniza-

tion analysis (Fig. 4); that is, the macro-domain Ω0 and

micro-domain Ω1. Coordinate systems that were set x0 in

Ω0 and x1 in Ω1 which are related by

x1 ¼ x0

ε
ð4Þ

Since the two-scale coordinates are employed, the differ-

entiation is changed to

∂
∂xi

¼ ∂

∂x0i
þ 1

ε

∂

∂x1i
ð5Þ

By using the parameter ε we introduce the following

perturbations:

V ε
i xð Þ ¼ ε2V0

i
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The perturbed terms of the right-hand sides (RHS) of (6)

are assumed to be periodic:

V α
i x0; x1ð Þ ¼ V α

i

�
x0, x1 þ X1

�
Pα x0; x1ð Þ ¼ Pα

�
x0, x1 þ X1
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where X1 is the size of a microscale unit cell.

Equations (5) and (6) were substituted into (1) and (2) to

get a set of perturbation equations. Due to the ε�1-term

resulting from (1) we understand that p0 is a function of

only the macro-coordinates x0. The ε0-term resulted from (1)

is given by
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The body force f usually works in the macro-domain Ω0

( f ¼ f(x0)), and the RHS terms of (8) are functions only of

x0. Thus we can introduce the separation of variables into

p1(x0, x1) and V0(x, x1) as
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These are substituted into (8), and we get the following

microscale incompressible Stokes’ equations:
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where v(x1) and pk(x1) are characteristic functions for veloc-
ity and pressure, respectively (δik is Kronecker’s delta). By
solving (10) under periodic conditions the characteristic

functions, which reflect a complex geometry of the micro-

scale domain, were obtained. Let us operate an integral

average of (9) in the micro-domain, producing Darcy’s law
as,
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where |Ω1| is the volume of the micro-domain Ω1 and

represents an averaging operation in the micro-domain. We

call Ki j the HA-permeability.

Equation (8) gives a mass conservation relationship

between the micro-domain and the macro-domain. When

averaging this in the micro-domain, the second term of

LHS vanishes due to the periodicity; then substituting

Darcy’s law (9) yields the macroscale incompressible

permeability equation:
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The water velocity and pressure are approximated as

V ε
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� � ’ ε2V0

i xo; x1
� �

, Pε xoð Þ ’ P0 xoð Þ ð13Þ

It should be remembered that, in HA, the distribution of

velocity and pressure are calculated in the micro-domain.

The procedure to solve the total HA-seepage problem is

Macroscale Problem
with periodic micro–structure Microscale Problem
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Fig. 4 Two-scale domains for homogenization analysis
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summarized as follows: first, we solve micro-scale equation

(10) and get Vk
i and Pk, then determine Darcy’s coefficient

Kij from (11). Next by solving macro-scale equation (12), we

get the macro-pressure and velocity fields. In classical

geomechanics, Darcy’s law is written as

V̂ �
i ¼ �K�

ij

∂ϕ

∂x0j
, ϕ ¼ p

ρg
þ ξ ð14Þ

Where ϕ is the total head, p/ρg is the pressure head, ξ is
the elevation head, and g is the gravity constant. K�

ij is called

C-permeability and is defined as

K�
ij ¼ ε2ρgKij ð15Þ

Conclusions

Macroscale and microscale models of the kaolinite-water

permeability system analyzed here are shown in Fig. 7.

The number of mineral layers in one stack is assumed to

be eight. It is known that one layer is connected to others

by hydrogen bond, and the separation distance is calcu-

lated as 0.8 nm by the MD simulation. The density of

solid part of the mineral is also calculated by MD as

2.56 g/cm3. A distribution of viscosity calculated by

MD is shown in Fig. 3. The distance between two stacks

is determined by the overall dry density of clay. We

assume that the kaolinite stacks are randomly distributed;

then the averaged permeability K* is estimated as

K* ¼ K11*/3. The relationships between the C-

permeability (K*), the void ratio (e) and the dry density

(ρd) are plotted in Figs. 5 and 6. These relations can curve
fit as

logK� ¼ 1� 10�9ρ�6:709
d

logK� ¼ 3� 10�10e2:775
ð16Þ

where the unit of K* is in m/s.

In this paper, a unified MD/HA method for analyzing

the seepage problem in kaolinite was presented. The

results obtained by this method are similar to the experi-

mental data, which supports the validity of the method

(Fig. 7).
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