
A Supervisor Synthesis Tool for Finite
Nondeterministic Automata with Data

Aleksandar Kirilov1, Darko Martinovikj1, Kristijan Mishevski1,
Marija Petkovska1, Zlatka Trajcheska1, and Jasen Markovski1,2(B)

1 University Ss. Cyril and Methodius, PB 393, 1000 Skopje, Republic of Macedonia
2 Eindhoven University of Technology, PB 513,

5600 MB Eindhoven, The Netherlands
j.markovski@tue.nl

Abstract. Supervisory control theory deals with automated synthesis
of models of supervisory controllers based on the models of the unsuper-
vised systems and the control requirements. The models of the supervi-
sory controllers are referred to as supervisors. We present a supervisor
synthesis tool for finite nondeterministic automata with data-based con-
trol requirements. The tool implements a process-theoretic approach to
supervisory control theory, which employs the behavioral preorder par-
tial bisimulation to characterize the notion of a supervisor. To illustrate
the tool, we remodel an industrial case study dealing with coordination
of maintenance procedures of a printing process of a high-tech printer.

1 Introduction

Development of control software with high quality has become a major bottle-
neck in design and production of high-tech systems [9]. Traditional techniques
that employ (re)coding-testing loops struggle to satisfactorily cope with this chal-
lenge due to ever-increasing system complexity and frequent design changes in
the (informal) control requirements, which results in a large amount of expensive
iterations. These issues gave rise to supervisory control theory of discrete-event
systems [4,16], which studies automated synthesis of models of supervisory con-
trol software that ensure safe and nonblocking coordination of discrete-event
behavior of the concurrent components of the system.

Supervisory controllers observe the discrete-event behavior of the system, typ-
ically given by sensory information, as depicted in Fig. 1(a). Based upon the made
observations, the controllers decide upon activities that are allowed to be carried
out safely, avoiding potentially dangerous or otherwise undesired situations, and
send back control signals to the hardware actuators. We work under the standard
assumption that the supervisory controller timely reacts on system input and we
model this supervisory control feedback loop as a pair of synchronizing processes [4,
16]. We refer to the model of the uncontrolled system as plant, whereas the model
of the supervisory controller is referred to as supervisor. The supervisory control

Supported by Dutch NWO project ProThOS, no. 600.065.120.11N124.

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 101–112, 2014.
DOI: 10.1007/978-3-319-05032-4 8, c© Springer International Publishing Switzerland 2014



102 A. Kirilov et al.

Plant Supervisor

Observable behavior

Control signals

Plant Supervisor

Observable events

Allowed controllable 
events

Plant
Supervisor

Observable states/data

Allowed controllable 
events

(a) (b) (c)

Observer

Fig. 1. (a) Generic supervisory control loop; (b) Loop with event-based observations;
(c) Loop with an observer and state- or data-based observations

loop in which the system is coupled with the controller is modeled by the synchro-
nization of the plant and the supervisor, resulting in the supervised plant, which
specifies the behavior of the controlled system.

The activities of the system are traditionally modeled by means of discrete
events. The supervisor is synthesized as a process that synchronizes with the
plant, employing the synchronization to enable or disable available events in the
plant [4]. Traditionally, the events are split into controllable and uncontrollable
events, where the former usually model interaction with the actuators and the
latter model user and environment interaction or observation of sensory infor-
mation. Consequently, the supervisor is allowed to disable controllable events,
but it cannot disable any available uncontrollable events, which is an impor-
tant structural restriction [16]. In addition, the supervised plant must satisfy a
set of control requirements that model the allowed behavior of the system by
restrictions, typically given as safety properties.

Based on the type of observations, we distinguish between control loops with
event-based control requirements or state- or data-based control requirements,
which depend on the type of available observations from the system. The former
situation is depicted in Fig. 1(b), where the allowed behavior is typically specified
in terms of allowed languages. Some synthesis tools that allow this type of spec-
ifications are TCT [6], UMDES [4], or Supremica [1]. In the latter situation, the
supervision relies on state- or data-based observations, that are usually supplied
by an auxiliary process to the plant, known as an observer, which provides the
supervisor with observation information of interest. An example of a state-based
tool is NBC [10], whereas Supremica [1] also admits data-based control require-
ments in a restricted structural form. There also exist synthesis tools that admit
temporal logic specifications, like extensions of the model checker NuSMV [19],
but they usually suffer from high computational complexity.

Our contribution is a supervisor synthesis tool with data-based requirements
for finite nondeterministic automata with data. Admittedly, the synthesis tool
Supremica supports this model, but the control requirements must be specified
as automata as well, which leads to certain structural restrictions. We specify
the control requirements with respect to the data, independent of the structure
of the plant. In addition, we employ a different type of controllability condition:
Supremica relies on state-controllability [15], whereas we employ the behavioral
relation termed partial bisimulation. It has been shown that partial bisimulation
is a coarser notion of controllability that exhibits desirable algebraic properties,



A Supervisor Synthesis Tool for Finite Nondeterministic Automata 103

unlike state controllability that is not a preorder relation [12]. Extensions of
supervisory control theory with data have a two-fold gain. They allow for a
more concise specification due to parametrization of the systems [5,15] and they
provide for a greater expressiveness and modeling convenience [7,18].

In the remainder of this paper, we define the model and the corresponding
notion of controllability that relies on the partial bisimulation preorder. Then,
we discuss the synthesis algorithm and the extraction of a supervisory controller.
We illustrate the synthesis tool by revisiting an industrial case study that deals
with coordination of maintenance procedures of a printing process of an Océ
prototype printer [14]. Due to confidentiality issues, we can only present an
obfuscated part of the case study. The goal of the case study is to synthesize a
supervisory coordinator that ensures that quality of printing is uncompromised
by timely performing maintenance procedures, while interrupting ongoing print
jobs as little as possible.

2 Finite Automata with Variables

We model the unsupervised system by means of finite nondeterministic automata
with data. For a complete process-theoretic treatment to supervisory control the-
ory, we refer to [2,3,11] for event-, state-, and data-based supervision, respec-
tively. We introduce some preliminary notation.

The set of finite data variables is denoted by V, where given a variable X ∈ V,
its finite domain is denoted by dom(X). We keep track of the data assignments
by employing a function δ ∈ Δ(V ), where Δ(V ) = V → dom(V ). Standard
arithmetical expressions, like addition + or subtraction −, over a set of vari-
ables V ⊂ V are denoted by E(V ) and they can be evaluated by a function
evarδ : E(V ) → dom(V ). For the sake of clarity and compactness, we do consider
invalid expressions that evaluate outside the variable domain. We note that such
inconsistent processes can be treated by a straightforward extension of the app-
roach of [3]. We denote Boolean expressions over the set of variables V ⊆ V
by B(V ). The atomic propositions are formed by comparison predicates over
variables induced by {<,=, >} together with the logical constants false F and
true T. To form the Boolean expression, we employ the standard set of logical
operators {¬,∧,∨,⇒} denoting logical negation, conjunction, disjunction, and
implication. The Boolean expressions are evaluated with respect to a valuation
function evblδ : B(V ) → {F,T} that depends on the current data assignments.
The set of actions is denoted by A.

We define a finite nondeterministic automaton with data as a tuple
G = (S,A, V, 	−→, γ, υ, (s0, δ0)), where

– S is a finite set of states;
– A ⊆ A is a finite set of event labels;
– V ⊆ V is a finite set of variables;
– 	−→ ⊂ S × A × S is a labeled transition relation;



104 A. Kirilov et al.

– γ : 	−→ → B(V ) are transition guards;
– υ : (	−→ × V ) ⇀ E(V ) is a partial variable updating function; and
– (s0, δ0) is the initial state s0 ∈ S and initial data assignment δ0 ∈ Δ.

We employ infix notation and we write s
a	−→ s′ for (s, a, s′) ∈ 	−→.

The dynamics of the finite automaton with variables G is induced by the
instantiated labeled transition system −→ ⊆ S × Δ(V ) × A × S × Δ(V ) that
depends on the valuation of the transition guards with respect to the current data
assignments. Its semantics is given by the instantiated labeled transition system
T(G), which is defined by the tuple T(G) = (S × Δ(V ), A,−→, (s0, δ0)), where
the set of states is coupled with the valuation of the data variables, the initial
state is induced by the initial state s0 of the automaton with the initial data
assignment δ0, and the dynamics of the instantiated labeled transition relation
is captured by operational rule (1), where (s, δ) denotes the state s ∈ S in the
data assignment environment given by δ:

s
a	−→ s′, evblδ(γ(s, a, s′)) = T,

for all X ∈ V : δ′(X) =
{

evarδ(υ((s, a, s′),X)), if ((s, a, s′),X) ∈ dom(υ)
δ(X), otherwise

(s, δ) a−→ (s′, δ′)
.

(1)
Rule (1) states that labeled transitions are instantiated when such transition is
defined in the automaton, the guard of that transition evaluates to true, whereas
the variables are updated according to the variable updating function. We note
that if the set of variables V of the automaton G is empty, i.e., V = ∅, then 	−→
and −→ coincide, provided that the (then trivial) transition guards are set to be
true, and G reduces to a standard automaton. By t−→∗, we denote the multistep
labeled transition relation for t ∈ A∗. We define it inductively as (s, δ) ε−→∗ (s, δ)
for the empty trace ε, and (s, δ) ta−→∗ (s′, δ′) if there exists (s′′, δ′′) ∈ S × Δ(V )
such that (s, δ) t−→∗ (s′′, δ′′) with t ∈ A∗ and (s′′, δ′′) a−→ (s′, δ′) with a ∈ A.

To model the behavior of the supervised system, we need to define a syn-
chronous composition of two finite nondeterministic automata with variables. In
general, this composition cannot be consistently defined due to conflicts induced
by the partial assignment functions υ. For example, if two automata synchronize
on transitions that update the same variable to two different values, then this
synchronization leads to a conflict as the data assignment cannot be consistently
executed [18]. Again, for the sake of clarity, we do not consider these conflicting
situations, which are easily detectable as none of the conditions for the synchro-
nization from below apply. Moreover, the synchronization of the plant and the
supervisor is always well-defined as the supervisor does not update any shared
variables with the plant, so these conflicting situations are not of importance in
the setting of this paper.

By f |D we denote the restriction of the function f to the domain dom(f)∩D.
By f [g] = f |dom(f)\dom(g)∪g we denote the replacement of the function f by g on



A Supervisor Synthesis Tool for Finite Nondeterministic Automata 105

their common domain. Given two automata G1 = (S1, A1, V1, 	−→1, γ1, υ1, (s01,
δ01)) and G2 = (S2, A2, V2, 	−→2, γ2, υ2, (s02, δ02)) such that δ01|dom(δ02) =
δ02|dom(δ01), we define their synchronous composition as G1 ‖ G2 = (S1×S2, A1∪
A2, V1 ∪ V2, 	−→, γ, υ, ((s01, s02), δ0)), where δ0 = δ01[δ02] = δ02[δ01], 	−→, γ, and
υ are defined by Eqs. (2)–(4) as follows.

(s1, s2)
a	−→

⎧⎨
⎩

(s′
1, s2), if s1

a	−→1 s′
1, a ∈ A1 \ A2

(s1, s′
2), if s2

a	−→2 s′
2, a ∈ A2 \ A1

(s′
1, s

′
2), if s1

a	−→1 s′
1, s2

a	−→2 s′
2, a ∈ A1 ∩ A2

(2)

γ((s1, s2), a, (s′
1, s

′
2)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ1(s1, a, s′
1), if s1

a	−→1 s′
1, a ∈ A1 \ A2

γ2(s2, a, s′
2), if s2

a	−→2 s′
2, a ∈ A2 \ A1

γ1(s1, a, s′
1) ∧

γ2(s2, a, s′
2)

, if s1
a	−→1 s′

1, s2
a	−→2 s′

2, a ∈ A1 ∩ A2

(3)

υ(((s1, s2), a, (s′
1, s

′
2)),X) =⎧⎪⎪⎨

⎪⎪⎩

υ1((s1, a, s′
1),X), if ((s1, a, s′

1),X) ∈ dom(υ1), ((s2, a, s′
2),X) �∈ dom(υ2)

υ2((s2, a, s′
2),X), if ((s2, a, s′

2),X) ∈ dom(υ2), ((s1, a, s′
1),X) �∈ dom(υ1)

υ1((s1, a, s′
1),X), if

((s1, a, s′
1),X) ∈ dom(υ1), ((s2, a, s′

2),X) ∈ dom(υ2),
υ1((s1, a, s′

1),X) = υ2((s2, a, s′
2),X)

(4)
Unlike [18] that defines the synchronous parallel composition in terms of

the instantiated labeled transition systems, we define the synchronous parallel
composition directly in terms of automata. We note that both definition are
compatible [12], i.e., they induce the same labeled transition systems.

To capture the notion of controllability, we employ the behavioral relation
termed partial bisimulation, originally proposed in [17] as a suitable relation
to capture controllability of deterministic discrete-event systems. The notion
was lifted in [2] to a process theory for supervisory control of nondeterministic
discrete-event systems. Here, we provide a variant for finite nondeterministic
automata with data.

Partial bisimulation is parameterized by a so-called bisimulation action set
B ⊆ A. Intuitively, this relation states that all transitions of the first automaton
should be simulated by the second automaton, whereas the transitions with
labels in the bisimulation action set should be bisimulated in the sense of [8].
In the supervisory control setting, the bisimulation action set comprises the
uncontrollable actions that must always be enabled both in the original and
the supervised plant, whereas controllable events are only simulated as they are
possibly restricted by the supervisor.

Let T1 = (Q1, A1,−→1, s01) and T2 = (Q2, A2,−→2, s02) be two transition
systems. We say that a relation R ⊆ Q1 × Q2 is a partial bisimulation with
respect to a bisimulation action set B ⊆ A2, if for all (q1, q2) ∈ R, it holds that:



106 A. Kirilov et al.

1. if q1
a−→ q′

1 for a ∈ A1 and q′
1 ∈ Q1, then there exists q′

2 ∈ Q2 such that
q2

a−→ q′
2 and (q′

1, q
′
2) ∈ R;

2. if q2
b−→q′

2 for b ∈ B and q′
2 ∈ Q2, then there exists q′

1 ∈ Q1 such that q1
a−→q′

1

and (q′
1, q

′
2) ∈ R;

If R is a partial bisimulation relation such that (q01, q02) ∈ R, then T1 is partially
bisimilar to T2 with respect to B and we write T1 ≤B T2. If T2 ≤B T1 holds as
well, we write T1 =B T2.

We note that due to the first condition, it must hold that A1 ⊆ A2, whereas
due to the second condition, it holds that B ⊆ A1 as well. It can be shown
that partial bisimilarity is a preorder [2]. Moreover, following the guidelines
of [17], it can be shown that ≤B is a partial bisimulation relation with respect
to B. Thus, we obtain standard results for the partial bisimulation preorder and
equivalence, similarly as for simulation preorder and equivalence [8]. Moreover,
the partial bisimulation preorder is a precongruence with respect to the most
prominent process operations [2]. Finally, we note that T1 =A1∪A2 T2 amounts
to bisimulation, whereas T1 ≤∅ T2 reduces to simulation preorder and T1 =∅ T2

reduces to simulation equivalence [2].

3 Supervisor Synthesis

As discussed above, we split the action set A to set of controllable C and uncon-
trollable U actions such that C ∩ U = ∅ and C ∪ U = A. The plant is typically
modeled by a set of synchronizing components, ultimately resulting in automa-
ton P = (SP , AP , VP , 	−→P , γP , υP , (s0P , δ0)). We note that we assume that the
parallel composition of the components is well-defined and that there are no
restrictions regarding nondeterministic behavior inside the plant.

We require, however, that the supervisor is a deterministic process that sends
unambiguous feedback to the plant. Moreover, the supervisor cannot alter the
internal state of the plant as it only observes its discrete-event behavior, i.e., it
does not comprise any variable assignments [11]. In the setting of this paper, the
supervisor relies on data observations from the plant to make supervision deci-
sions in the vein of [11,15]. Its behavior is given as an deterministic automaton
S = (SS , AS , VS , 	−→S , γS , ∅, (s0S , δ0)), where VS ⊆ VP , and the labeled transi-
tion function 	−→S is such that if s

a	−→S s′ and s
a	−→S s′′, then s′ = s′′ for every

s, s′, s′′ ∈ SS and a ∈ AS . The supervisor does not necessarily synchronize on
all events from the plant, i.e., in general AS ⊆ AP , implying that the events in
the set AP \ AS are unconditionally enabled. As the supervisor does not update
any variables, i.e., υS = ∅, there arise no conflicts in Eq. (4) for the update func-
tion of the synchronization, and the synchronous composition P ‖ S is always
well-defined.

The composition P ‖ S models the supervised plant, i.e., the behavior of
the controlled system as given by the supervisory feedback loop of Fig. 1(c). To
state that the supervisor has no control over the uncontrollable actions, i.e.,
all available uncontrollable actions in the reachable states should be enabled,



A Supervisor Synthesis Tool for Finite Nondeterministic Automata 107

we employ the partial bisimulation preorder. We express this controllability con-
dition by requesting that the transition system of the supervised plant is partially
bisimulated by the transition system of the original plant with respect to the
uncontrollable events, i.e.,

T(P ‖ S) ≤U T(P ). (5)

It can be shown that for deterministic processes, relation (5) reduces to the
original notion of controllability of [12,16,17].

The set of control requirements R comprises control requirements with the
following form R:

R ::= φ | a−→ ⇒ φ,

where φ ∈ B and a ∈ A. A given instantiated state (s, δ) satisfies a requirement
R ∈ R, notation (s, δ) |= R, if the following is satisfied:

– (s, δ) |= φ if and only if evblδ(φ) = T; and
– (s, δ) |= a−→ ⇒ φ if and only if for all (s, δ) ∈ S × Δ such that (s, δ) a−→ it

holds that (s, δ) |= φ.

The first form of control requirements enforces an invariant on the data assign-
ments that must hold for all states of the instantiated transition system T(P ‖
S), whereas the second form restricts the possible occurrences of events, i.e.,
outgoing events are conditioned by the data assignments.

In addition to conforming to the control requirements, we also require that
the supervisor is nonblocking, i.e., it prevents deadlock and livelock behavior in
the system. Deadlock behavior occurs in states where no outgoing transitions
are possible, whereas livelocks occur when the system remains in a set of states
in which it cannot successfully execute its tasks, nor leave this set of states. We
model successful termination by marking certain states as final, referred to as
marked states in the literature [4,16], denoted by M ⊆ S for a given state set S.
The supervisor must assure that a marked state is reachable from all reachable
states in the supervised plant.

The synthesis algorithm is an adaptation of the synthesis algorithms
of [4,15,16], which employ backtracking from the marked states in order to
ensure nonblocking behavior, whereas controllability is ensured by eliminating
all blocking states and their predecessors that are reachable by (inverse) uncon-
trollable transitions. To this end, we define the notion of an inverse uncon-
trollable reach. Given an instantiated state (s, δ), we inductively define its
reverse uncontrollable reach UR(s, δ) as follows. Initially, UR(s, δ) = {(s, δ)}.
For every state (s′, δ′) such that (s′, δ′) a−→ (s, δ) for some a ∈ U, we put
UR(s, δ) = UR(s, δ) ∪ UR(s′, δ′) ∪ {(s′, δ′)}. Note that given a state (s, δ), all
incoming transitions to its uncontrollable reach UR(s, δ) from states outside
UR(s, δ) are labeled by controllable actions.

We summarize the synthesis algorithm of the maximal supervised behavior
in Alg. 1. Line 1 instantiates the labeled transition system. Lines 2–10 eliminate
the states or transitions that do not conform to the control requirements. When



108 A. Kirilov et al.

Alg. 1: An algorithm for computing a maximal supervised behavior for a
given finite automaton with data G = (S,A, V, 	−→, γ, υ, (s0, δ0)), a set of
final states M ⊆ S, and a set of control requirements R

Compute the instantiated labeled transition system T(G) = (Q, A, −→, (s0, δ0),1

Q = S × Δ(V );
for φ ∈ R and (s, δ) ∈ (S × Δ(V )) do2

if (s, δ) �|= φ then3

Eliminate UR(s, δ) from T(G), Q = Q \ UR(s, δ);4

for
a−→ ⇒ φ ∈ R and (s, δ) ∈ (S × Δ(V )) do5

if (s, δ) �|= a−→ ⇒ φ then6

if a ∈ U then7

Eliminate UR(s, δ) from T(G), Q = Q \ UR(s, δ);8

else9

Eliminate all transitions (s, δ)
a−→ ;10

repeat11

B = ∅;12

for (s, δ) ∈ Q do13

if � ∃ t ∈ A∗ and (s′, δ′) ∈ Q such that s′ ∈ M and (s, δ)
t−→∗ (s′, δ′) then14

B = B ∪ {(s, δ)};15

for (s, δ) ∈ B do16

Eliminate UR(s, δ) from T(G), Q = Q \ UR(s, δ);17

until B = ∅;18

a state is eliminated, then its complete inverse uncontrollable reach must be
eliminated from the labeled transition system. The elimination of these states,
actually requires that controllable transitions are disabled by the supervisor.
Lines 2–4 only consider the data-based invariants, whereas lines 5–10 take care
of restrictions of labeled transitions. We note that if the transition is controllable,
then it can be safely disabled, whereas if it is uncontrollable, then the whole state
with its inverse uncontrollable reach must be eliminated.

Once the control requirements are applied, we iteratively ensure nonblocking-
ness by eliminating states that cannot reach marked states in lines 13–17 and
checking if by eliminating their inverse uncontrollable reach, we have made some
other states blocking, given as the end condition of the repeat loop B = ∅, where
B is the set that holds the blocking states. The end result of Alg. 1 is the maxi-
mal restriction of the instantiated labeled transition system of the plant that con-
forms to the control requirements. By comparison with the original system, we
compute the supervisor as a function sup: δ → 2(A∩C) in the vein of [15]. The
correctness of the algorithm with respect to our notion of controllability is by
construction as the uncontrollable reach is preserved for every state in the super-
vised plant. This directly implies partial bisimulation with respect to the uncon-
trollable events on the controllable restriction of the plant. As an adaptation of the



A Supervisor Synthesis Tool for Finite Nondeterministic Automata 109

synthesis algorithms of [4,15,16], our algorithm has a comparable polynomial
worst-case complexity in the number of transitions of the system.

We note that the internal representation of the instantiated labeled transition
system can be optimized by employing binary decision diagrams see, e.g., [15].
We decided to keep the state space explicit as a preparation for future work,
where we intend to employ parallel algorithms for supervisor synthesis that will
harness the computing power of modern multicore processors. To implement the
synthesis tool, which is available from [13], we employed Java and the supporting
software package JFLAP, see http://www.jflap.org/, that enables libraries for
manipulation of formal languages and automata.

4 Supervisory Coordination of Maintenance Procedures

We illustrate the modeling process on a case study involving coordination of
maintenance procedures of a printing process of a high-end Océ printer of [14].
We abstractly depict a printing process function in Fig. 2, where the control
architecture of the printer is given to the left. Once a user initiates a print job,
the job is forwarded to the printer controller that coordinates different parts of
the printer. Here, we coordinate the function responsible for the printing process,
which applies the toner image onto the toner transfuse belt and fuses it onto
the paper sheet. This function coordinates the power mode of the printer with
the maintenance procedures. Namely, the printer executes print jobs in run mode
of operation. However, to maintain high printing quality, several maintenance
operations have to be carried out, e.g., coarse toner particles removal operation
that ensures high quality prints. However, to perform a maintenance operation,
the printing process needs to switch to standby mode of operation. Moreover,
maintenance operations are scheduled based on the amount of prints since the
last performed maintenance. There are two types of deadlines: soft deadlines,
which denote that a maintenance operation can be scheduled, and hard deadlines,
which denote that the maintenance must be scheduled. Maintenance procedures
with expired soft deadlines can be postponed if there is an ongoing print job,
but hard deadlines must be respected not to compromise print quality.

A printing process function comprising one maintenance operation in depicted
in Fig. 2. The supervisory control problem is to synthesis a model of the Sta-
tus Procedure, which is responsible for coordinating the other procedures given
input from the controllers. The plant that models the printing process func-
tion is given in Fig. 2. Uncontrollable events are underscored, whereas variable
updates are placed below transitions labels. Initial states have incoming arrows,
whereas marked states are gray. The plant is formed by the synchronization
of the automata in Fig. 2. Current Power Mode sets the power mode to run
or standby using Stb2Run and Run2Stb, respectively, and sends back feedback
by employing InRun and InStb, respectively. Maintenance Operation either
carries out a maintenance operation, started by OpStart or it is idle. The confir-
mation is sent back by the event OpFin, which synchronizes with Maintenance
Scheduling and Page Counter. Page Counter announces when soft or hard dead-
lines are reached using SoftDln and HardDln, respectively. The page counter

http://www.jflap.org/


110 A. Kirilov et al.

Printing Process Function CurrentPowerMode

Managers

Functions

Maintenance
Operation Page CounterCurrent Power 

Mode

Devices

Status Procedure / Coordinator

Target Power Mode

New print job

Maintenance Scheduling

Power mode 
changes

Operation
Start

Operation finished

Execute 
operation

Schedule
Operation

Soft & hard 
deadline

Target power mode Maint. Operation Maint. Scheduling

Page Counter

_SoftDln

PC = 1

_OpFin

PC = 0
PC = 0

_OpFin

_HardDln

PC = 2

_OpFin

PC = 0

Fig. 2. Printing process function and plant

is reset, triggered by the synchronization on OpFin, each time the maintenance
is finished. The controller Target Power Mode sends signals regarding incom-
ing print jobs to Status Procedure by NewJob, which should set the printing
process to run mode for printing and standby mode for maintenance and power
saving. When the print job is finished, the signal NoJob is sent. Maintenance
Scheduling receives a request for maintenance with respect to expiration of Page
Counter from Status Procedure, by the signal SchOper and forwards it to the
manager. The manager confirms the scheduling with the other functions and
sends a response back to the Status Procedure, using ExOper. It also receives
feedback from Maintenance Operation that the maintenance is finished in order
to reset the scheduling, again triggered by OpFin.

The coordination is performed according to the following requirements:

1. Maintenance operations can be performed only when Printing Process Func-
tion is in standby;



A Supervisor Synthesis Tool for Finite Nondeterministic Automata 111

2. Maintenance operations can be scheduled only if soft deadline has been
reached and there are no print jobs in progress, or a hard deadline is passed;

3. Only scheduled maintenance operations can be started;
4. The power mode of the printing process must follow the power mode dictated

by the managers, unless overridden by a pending maintenance operation.

For a detailed account of the model-based systems engineering process and spec-
ification and formalization of the control requirements, we refer to [14].

1. To model this requirement, we consider the states from Current Power
Mode and Maintenance Operation, identified by CPM = 1 and MO = 2, respec-
tively. We require that it must always hold

MO = 2 ⇒ CPM = 1. (6)

2. The states identified by PC = 1 and PC = 2 indicate when soft and hard
deadline is reached, respectively. State with TPM = 1 of Target Power Mode
states that there is a print job in progress. The event SchOper is responsible for
scheduling maintenance procedures. We specify the requirement as follows:

SchOper−→ ⇒ (PC = 2 ∧ ¬TPM = 2 ) ∨ PC = 3 . (7)

3. The maintenance operation can be started when the maintenance schedul-
ing is completed, which is modeled as:

OpStart−→ ⇒ MS = 3. (8)

4. The last condition is modeled by two separate requirements for switching
from Run to Standby mode, and vice versa. We can change from run to standby
mode if this is required by the manager, i.e., identified by TPM = 2, and there is
no need to start a maintenance operation, identified by MS �= 3. The transitions
labeled by Stb2Run are enabled as follows:

Stb2Run−→ ⇒ TPM = 2 ∧ ¬MS = 3. (9)

In the other direction, we have:

Run2Stb−→ ⇒ TPM = 1 ∨ MS = 3. (10)

Employing the control requirements of Eqs. (6)–(10), we synthesize a super-
visor equivalent to the one of [14].

5 Concluding Remarks

We presented a tool for supervisor synthesis based on a process-theoretic app-
roach to supervisory control for finite nondeterministic automata with data. The
approach relies on the partial bisimulation preorder to capture controllability of
nondeterministic discrete-event systems. To illustrate the modeling process, we
revisited an industrial case study dealing with supervisory coordination mainte-
nance procedures of a high-tech printer.



112 A. Kirilov et al.

References

1. Akesson, K., Fabian, M., Flordal, H., Malik, R.: Supremica - an integrated envi-
ronment for verification, synthesis and simulation of discrete event systems. In:
Proceedings of WODES 2006. pp. 384–385. IEEE (2006)

2. Baeten, J.C.M., van Beek, D.A., Luttik, B., Markovski, J., Rooda, J.E.: A process-
theoretic approach to supervisory control theory. In: Proceedings of ACC 2011, pp.
4496–4501. IEEE (2011)

3. Baeten, J., van Beek, D., van Hulst, A., Markovski, J.: A process algebra for
supervisory coordination. In: Proceedings of PACO 2011. EPTCS, vol. 60, pp.
36–55. Open Publishing Association (2011)

4. Cassandras, C., Lafortune, S.: Introduction to discrete event systems. Kluwer Aca-
demic, Dordrecht (2004)

5. Chen, Y.L., Lin, F.: Modeling of discrete event systems using finite state machines
with parameters. In: Proceedings of CCA 2000, pp. 941–946 (2000)

6. Feng, L., Wonham, W.M.: TCT: a computation tool for supervisory control syn-
thesis. In: Proceedings of WODES 2006, pp. 388–389. IEEE (2006)

7. Gaudin, B., Deussen, P.: Supervisory control on concurrent discrete event systems
with variables. In: Proceedings of ACC 2007, pp. 4274–4279 (2007)

8. van Glabbeek, R.J.: The linear time – branching time spectrum I. In: Bergstra,
J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 3–99. Else-
vier, Amsterdam (2001)

9. Leveson, N.: The challenge of building process-control software. IEEE Softw. 7(6),
55–62 (1990)

10. Ma, C., Wonham, W.M.: Nonblocking Supervisory Control of State Tree Struc-
tures. LNCIS, vol. 317. Springer, Heidelberg (2005)

11. Markovski, J.: Communicating processes with data for supervisory coordination.
In: Proceedings of FOCLASA 2012. EPTCS, vol. 91, pp. 97–111. Open Publishing
Association (2012)

12. Markovski, J.: Controllability for nondeterministic finite automata with variables.
In: Proceedings of ICSOFT 2013. CCIS, Springer (2013) (To appear)

13. Markovski, J.: Supervisor synthesis tool and demo models. http://sites.google.
com/site/jasenmarkovski (2013)

14. Markovski, J., Jacobs, K.G.M., van Beek, D.A., Somers, L.J.A.M., Rooda, J.E.:
Coordination of resources using generalized state-based requirements. In: Proceed-
ings of WODES 2010. pp. 300–305. IFAC (2010)

15. Miremadi, S., Akesson, K., Lennartson, B.: Extraction and representation of a
supervisor using guards in extended finite automata. In: Proceedings of WODES
2008, pp. 193–199. IEEE (2008)

16. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete-event
processes. SIAM J. Control Opt. 25(1), 206–230 (1987)

17. Rutten, J.J.M.M.: Coalgebra, concurrency, and control. In: Boel, R., Stremersch,
G. (eds.) Proceedings of WODES 2000, pp. 31–38. Kluwer, Dotretch (2000)

18. Skoldstam, M., Akesson, K., Fabian, M.: Modeling of discrete event systems using
finite automata with variables. In: Proceedings of CDC 2007, pp. 3387–3392. IEEE
(2007)

19. Ziller, R., Schneider, K.: Combining supervisor synthesis and model checking. ACM
Trans. Embed. Comput. Syst. 4(2), 331–362 (2005)

http://sites.google.com/site/jasenmarkovski
http://sites.google.com/site/jasenmarkovski

	A Supervisor Synthesis Tool for Finite Nondeterministic Automata with Data
	1 Introduction
	2 Finite Automata with Variables
	3 Supervisor Synthesis
	4 Supervisory Coordination of Maintenance Procedures
	5 Concluding Remarks
	References


