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Abstract. For many Cloud providers, the backbone of their system is a
Cloud coordinator that exposes a portfolio of services to users. The goal
of this work is to ensure that a Cloud coordinator interacts correctly with
services and users according to a specification of their communication
behaviour. To accomplish this goal, we employ session types to analyse
the global and local communication patterns. A session type provides
an appropriate level of abstraction for specifying message exchange pat-
terns between participants. This work confirms the feasibility of apply-
ing session types to protocols used by a commercial Cloud provider. The
protocols are developed in SessionJ, an extension of Java implementing
session-based programming. We also highlight that the same techniques
can be applied when Java is not the development environment by type
checking runtime monitors, as in Scribble. Finally, we suggest how our
methodology can be used to ensure the correctness of protocols for Cloud
brokers, that integrate services exposed by multiple Cloud coordinators,
each of whom must correctly cooperate with the Cloud broker.
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1 Introduction

Cloud providers typically offer a portfolio of services, where access and billing
for all services are integrated in a single distributed system. The integration of
services is done by a Cloud coordinator or controller [1–3] that exposes services
to users. Services are made available on demand to anyone with a credit card,
eliminating the up front commitment of users [4]. Furthermore, there is a drive
for services to be integrated, not only within a Cloud, but also between multiple
Cloud providers.

For a Cloud coordinator that integrates heterogeneous services with a single
point of access and billing strategy, protocols can become complex. Thus we
require an appropriate level of abstraction to specify and implement such pro-
tocols. Further to the complexity, the protocols are a critical component of the
business strategy of a Cloud provider. Failure of the protocols could result in
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divergent behaviour that jeopardises services, potentially leading to loss of cus-
tomers and legal disputes. These risks can be limited by using techniques that
statically prove that protocols are correct and dynamically check that protocols
are not violated at runtime.

It is challenging to manage service interactions that go beyond simple
sequences of requests and responses and involve large numbers of participants.
One technique for managing protocols between multiple services is to specify
the protocol using a choreography. A choreography specifies a global view of the
interactions between participating services. However, by itself, a choreography
does not determine how the global view can be executed.

The challenge of controlling interactions of participants motivated The WS-
CDL working group to identify critical issues [5]. One issue is the need for tools
to validate conformance of participants to a choreography specification, to ensure
that participants cooperate according to the choreography. Another issue is the
static design time verification of choreographies to analyse safety properties such
as the absence of deadlock or livelock in a system.

The aforementioned challenges can be tackled by adopting a solid founda-
tional model, such as session types [6,7]. Successful approaches related to session
types include: SessionJ [8,9], Session C [10] and Scribble [11] due to the team
lead by Honda and Yoshida; Sing# [12] that extends Spec# with choreographies;
and UBF(B) [13] for Erlang.

In this paper, we present a case study where the interaction of process that
integrate services in a commercial Cloud provider1 are controlled using session
types. Session types ensure communication safety by verifying that session imple-
mentations of each participant (the customers, services and Cloud coordinator),
conform to the specified protocols. In our case study, we use SessionJ, an exten-
sion of Java supporting sessions, to specify protocols used by the Cloud coordina-
tor that involve branching, iterative behaviour and higher order communication.

In Sect. 2 we describe a methodology for designing protocols in SessionJ. In
Sect. 3, we introduce and refine a protocol used by a Cloud coordinator which is
implemented using SessionJ. Finally, in Sect. 4, we suggest that session types can
be used in the design of reliable Intercloud protocols, following the techniques
employed in this work.

2 Methodology for Verifying Protocols in SessionJ

We chose SessionJ for the core of our application, since Java was already used for
several services. SessionJ has a concise syntax that tightly extends Java socket
programming. Furthermore, the overhead of runtime monitoring in SessionJ is
low [8,9].

We briefly outline a methodology for using SessionJ to correctly implement
protocols. Firstly, the global protocol is specified using a global calculus simi-
lar to sequence diagrams. Secondly, the global calculus is projected to sessions
1 V3na Cloud Platform. AlmaCloud Ltd., Kazakhstan. http://v3na.com

http://v3na.com
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types, which specify the protocol for each participant. Thirdly, the session is
implemented using operations on session sockets. The correctness of the global
protocol can be verified by proving that the implementation of each session con-
forms to the corresponding session type.

Protocol Specification. The body of a protocol is defined as a session type, accord-
ing to the grammar in Fig. 1. The session type specifies the actions that the
participant in a session should perform. The constructs in Fig. 1 can describe a
diverse range of complex interactions, including message passing, branching and
iteration. Each session type construct has its dual construct, because a typical
requirement is that two parties implement compatible protocols such that the
specification of one party is dual to another party.

Higher Order Communication. SessionJ allows message types to themselves be
session types. This is called higher-order communication and is supported by
using subtyping [14]. Consider the dual constructs !〈?(int)〉 and ?(?(int)). These
types specify sessions that expect to respectively send and receive a session of
type ?(int). Higher order communication is often referred to as session delegation.
Figure 2 shows a basic delegation scenario.

In Fig. 2, the left diagram represents the session configuration before the
delegation is performed: the user is engaged in a session s of type !〈int〉 with
the Cloud, while the Cloud is also involved in a session s′ with a service of
type !〈?(int)〉. So, instead of accepting the integer from the user, the Cloud
delegates its role in session s to the service. The diagram on the right of Fig. 2

L1, L2 label

p protocol name

M ::=Datatype | T message

S ::= p {T} protocol

T ::= T . T sequencing
| begin session initiation
| !〈M〉 message send
| ?(M) message receive
| !{L1 : T1, . . . , Ln : Tn} branching send
| ?{L1 : T1, . . . , Ln : Tn} branching receive
| ![T ]* iterative send
| ?[T ]* iterative receive
| @p protocol reference

Fig. 1. SessionJ protocol specification using session types (T ).

Fig. 2. Session delegation.
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represents the session configuration after the delegation has been performed: the
user now directly interacts with the service for the session s. The delegation
action corresponds to a higher-order send type for the session s′ between the
Cloud and the service.

Protocol Implementation and Runtime Monitors. Session sockets represent the
participants of a session. Each socket implements the session code according to
the specified session type, using a vocabulary of session operations. The session
is implemented within a session-try scope, which allows the implementation to
respond to exceptions thrown by a runtime monitor.

The runtime monitor dynamically checks the types of messages received, since
in a distributed system it is difficult to guarantee that other participants always
send a message of the type specified. The runtime also detects the failure of any
participant to enact its role in the session. Upon failure, a meaningful exception
is raised that can be used to elegantly recover or close a failed session. At the
scales which Cloud providers operate, unavoidable node failures are expected to
frequently occur. For example, during a MapReduce job over a cluster of 130
nodes, it is expected that one node will fail [15]. Thus runtime monitors that
raise meaningful exceptions when protocols diverge from the behaviour specified
by the session type can help improve fault tolerance.

We argue that, for Cloud providers, the performance overhead due to run-
time monitors is low compared to the potential cost of problems avoided. In
Cloud computing, it is perfectly acceptable to slow down transactions to guar-
antee correctness. For example, in Google Spanner [16,17] transactions observe
a commit wait that deliberately slows down transactions by a few milliseconds
to guarantee globally meaningful commit timestamps.

3 Case Study: Protocols for a Cloud Coordinator

Our case study is a commercial Cloud provider, V3na, that provides integrated
Software as a Service solutions for businesses. V3na provides a central access
point to a portfolio of services, including document storage, document flow,
and customer relations management. For comparison, market leading Cloud
providers, such as Amazon or Rackspace, offer a portfolio of compute, stor-
age and networking services that are exposed to users on demand. The central
component in V3na is a Cloud coordinator that is responsible for exposing and
integrating services that a user subscribes to, while managing user accounts and
billing.

A typical scenario is when a user requires the document storage service. The
user will first subscribe for the service either by registering to be billed or by
entering a trial period. When the user has been successfully authenticated by
the Cloud coordinator, requests to the API of the document store are delegated,
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by the Cloud coordinator, to the relevant document server for a renewable lease
period. After delegation, the user interacts directly with the API of the document
store until the session ends.

A major challenge was to automate the process of service integration as
a reliable service. In particular, V3na implements protocols that address the
following problems that can be addressed using sessions types:

– A customer can connect to a service for a trial period;
– A customer can connect to all services subscribed to through a single entry

point;
– A subscription may be extended or frozen;
– Invoices and payment for use of services can be managed.

In this section we illustrate a naive first implementation and a more scalable
refinement of a protocol that implements the first scenario above.

3.1 First Attempt: Forwarding and Branching

We specify a first attempt of a simple protocol for connecting to a service. The
protocol is informally specified as follows:

1. The user begins a session with Cloud coordinator and sends the request “con-
nect to service” as a JSON message.

2. The Cloud coordinator selects either:
(a) FAIL, if the user has no active session (not signed in).
(b) OK, if the user has logged in and the request is validated.

3. If OK is selected, then, instead of responding immediately to the user, the
Cloud initiates a new session with the relevant service. In the new session, the
Cloud forwards the JSON message from the user to the service and receives
a response from the service. The session between the Cloud and the service
closes successfully.

4. Finally, the original session resumes and the Cloud forwards the response
from the service to the user. From the perspective of the user it appears that
the Cloud coordinator responded directly.

Protocol 1.1: User

protocol p_uv {
begin.
!<JSONMsg>.
?{

OK: ?(JSONMsg),
FAIL:

}
}

Protocol 1.2: Cloud

protocol p_vu {
begin.?(JSONMsg).!{
OK: !<JSONMsg>,
FAIL:

}
}
protocol p_vs {
begin.!<JSONMsg>.

?(JSONMsg)
}

Protocol 1.3: Service

protocol p_sv {
begin.
?(JSONMsg).!<JSONMsg>

}

Fig. 3. Protocol specifications for forwarding protocol.
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In Fig. 3, we provide the protocol specifications for each participant — the
user, Cloud coordinator and service. The protocols between the user and the
Cloud and between the Cloud and the service are dual, i.e. the specification
of interaction from one perspective is opposite to the other perspective. Ses-
sionJ employs outbranch and inbranch operations to implement the branching
behaviour. The outbranch operation is an internal choice, since the sender has
control over the message sent. The inbranch operation is an external choice,
since the receiver does not have control of the message received.

There is a fatal problem with the above protocol, from the perspective of a
Cloud provider. The Cloud coordinator is involved in servicing all requests to
services. As the number of services and users increases, the load on the Cloud
coordinator will increase. Soon, the Cloud coordinator will be unable to serve
requests. The most basic economic advantage of Cloud computing, called elas-
ticity [4], is that services can scale up and down to fulfil the demands of users.
The above protocol cannot deliver elasticity.

3.2 Refined Protocol: Session Delegation and Iteration

We present a refined protocol that demonstrates iteration and session delegation.
To avoid the Cloud coordinator becoming a bottleneck, the Cloud coordinator
should delegate sessions to a service as soon as the user is authenticated for the
service.

Figure 4 depicts two related sessions s and s′. Session s begins with interac-
tions between the user and the Cloud coordinator. However, after authentication,
s′ delegates the rest of session s from the Cloud coordinator to the service. Ses-
sion s is completed by exchanging messages between the user and the service
directly. We informally describe the global protocol in more detail:

1. The user begins a request session (session s in Fig. 4) with the Cloud coordi-
nator.

2. The user logs in by providing the Cloud with a user name and password.

Fig. 4. Sequence diagram of interactions for delegationprotocol.
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3. The Cloud coordinator receives the user credentials and verifies them. If the
user is not authenticated and still has tries go back to step 2, otherwise
continue.

4. If the user is not allowed to access the Cloud, the DENY branch is chosen
and the session terminates. Otherwise, the ACCESS-branch is chosen and the
session continues.

5. On the ACCESS branch, the user sends the connection request in a JSON
message to the Cloud coordinator. The Cloud creates a new session with the
service (session s′ in Fig. 4). The new session delegates the remaining session
with the user to the service, and also forwards relevant user request details
to the service. Session s′ is then terminated.

6. The service continues session s, but now interactions are between the user
and the service. The service either responds to the user with OK or FAIL. In
either case, the user receives the response directly from the service in a JSON
message. Finally, session s is terminated.

In Fig. 5, the user appears to interact with the Cloud coordinator. The iter-
ative login, and first connection message is a direct interaction between the user
and the Cloud coordinator. However, instead of the Cloud coordinator respond-
ing to the connection request, the session in Fig. 6 is triggered.

The session in Fig. 6 delegates the part of the session where the
response OK or FAIL is selected by the service. This delegation is
enabled by a higher order session type, where a socket of session type
!{OK : !〈JSONMessage〉 , FAIL : !〈JSONMessage〉} is sent from the Cloud coordi-
nator in protocol p vs and received by the service in protocol p sv. Following the
delegation, a JSON message is sent from the Cloud coordinator to the service,
which forwards on the relevant details of the user request.

Once the delegation has taken place, the service is able to complete the session
that was begun by the Cloud coordinator. The service can negotiate directly
with the user and either choose the OK branch or the FAIL branch, followed by
sending the appropriate JSON message. For more complex scenarios, this simple
choice between an OK and a FAIL message could be replaced by a more complex
session between the user and the service.

Protocol 2.1: User

protocol p_uv {
begin.?[!<String>.!<String> ]*.
?{
ACCESS: !<JSONMsg>.

?{
OK: ?(JSONMsg),
FAIL: ?(JSONMsg)

},
DENY: ?(String)

}
}

Protocol 2.2: Cloud

protocol p_vu {
begin.
![ ?(String).?(String) ]*. // login
!{

ACCESS: ?(JSONMsg).
!{

OK: !<JSONMsg>,
FAIL: !<JSONMsg>

},
DENY: !<String>

}
}

Fig. 5. User-Cloud interaction protocol specifications for delegation protocol.
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Protocol 2.3: Cloud

protocol p_vs {
begin.
!<!{

OK: !<JSONMsg>,
FAIL: !<JSONMsg>

}>.
!<JSONMsg>

}

Protocol 2.4: Service

protocol p_sv {
begin.
?(!{

OK: !<JSONMsg>,
FAIL: !<JSONMsg>

}).
?(JSONMsg)

}

Fig. 6. Cloud-Service interaction protocol specifications for delegation protocol.

The protocol presented in this section is scalable. The Cloud coordinator
is only involved in authenticating users for access to services. The amount of
data exchanged during authentication is tiny compared to the amount of data
exchanged by a service such as a document store.

3.3 Delegation Elsewhere: Payment for Services

Delegation is powerful elsewhere in the Cloud provider. At the end of each month,
a user pays for the services used. The user may have multiple payment options.
The two session types in Fig. 7 represent two different payment protocols. In the
first protocol, the user pays with a credit card. In the second protocol, the user
pays using a wallet, which is automatically recharged.

The user enters a session with the Cloud coordinator where, after authenti-
cating, the payment option is selected then the payment is made. The session
provided by the Cloud coordinator is presented on the left in Fig. 8.

However, the Cloud coordinator does not service either payment. One of
the two delegation protocols on the right of Fig. 8 is invoked. The handling of
the payment is delegated to either a bank or the wallet service within the Cloud
provider. As in the previous example, delegation is performed by passing a higher
order session type.

protocol p_payment {
!<Goods>.?{

VISA_MASTER: ?(CardDetails),
TRANSFER: ?(TransferDetails)

}.!{
PAID: !<String>,
DECLINED: !<String>,
FAILED: !<String>

}
}

protocol p_wallet {
!<String>.?(Integer).?(Integer).!{

PAYMENT_INACTIVE: !<OSMPMessage>,
USER_NOT_FOUND: !<OSMPMessage>,
OK: !<OSMPMessage>

}
}

Fig. 7. Server side protocols for processing payments.
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protocol p_vu {
begin.![
?(String).?(String)

]*.!{
ACCESS: ?{

PAYMENT: @p_payment,
WALLET: @p_wallet

},
DENY: !<String>

}
}

protocol p_vp {
begin.!<String>.!<@p_payment>

}

protocol p_vw {
begin.!<String>.!<@p_wallet>

}

Fig. 8. Delegating to chosen payment service.

4 Future Work: Runtime Monitors and Intercloud
Protocols

4.1 Language Independent Runtime Monitors

A limitation with the work presented is that services in a Cloud provider are
not implemented exclusively in Java, or any other single language. The initial
design of V3na was conducted using session types in SessionJ according to the
methodology presented. However, as the start up company scales up to take
on more clients, the development team is diversifying. The team now operates
mainly in the Python based Django framework.

Session types can still be used by Python developers. Scribble [11] offers an
alternative to SessionJ, where language independent runtime monitors [18] are
statically checked according to session types. The runtime monitors dynamically
check that low level communication patterns are within the space of behaviours
specified by a session type. Scribble has already been used to monitor Python
code in related work [19,20]. We argue that the approach offered by Scribble has
a more promising future than SessionJ, since distributed systems are typically
heterogeneous.

4.2 Session Types for Intercloud Protocols

For Cloud users, there are considerable benefits when applications can be hosted
on more than one Cloud provider [4,21,22]. Users can build applications based on
services provided by multiple Cloud providers. Furthermore, if data is replicated
across multiple Cloud providers, customers can avoid becoming locked in to
one provider. Thus customers are less exposed to risks such as fluctuations in
prices and quality of service at a single provider. If a Cloud provider goes out
of business, then customers entirely dependent on that Cloud provider also risk
going out of business.

Several visions have been proposed for Intercloud protocols [1,23,24]. The
main components debated for an Intercloud architecture are a Cloud coordi-
nator, for exposing services, and a Cloud broker for mediating between Cloud
coordinators. In this work, we have touched on some aspects of Cloud coordina-
tors. The Cloud broker is a mediator that sits between the user and the Cloud
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coordinators for several Cloud providers. Another component debated is a Cloud
exchange, which acts as a market place for services exposed by Cloud providers.

Based on our experience in this work, we suggest that session types are
appropriate for specifying and correctly implementing protocols between Cloud
coordinators and Cloud brokers. Like the delegation protocols between the Cloud
coordinator and services, a Cloud broker will delegate communications to the
Cloud coordinator as early as possible in the session. The protocols between
Cloud brokers and Cloud coordinators are a critical component of the business
model of a Cloud broker; hence, we argue that the overhead of deploying type
checked runtime monitors is small compared to the potential risk posed by faults
in protocols.

5 Conclusion

This case study addresses the question of whether session types have a role in
Cloud computing. Competitive Cloud providers are looking for ways to better
manage risks on behalf of their customers. We argue that session types are one
contribution that can help manage the risk posed by divergent critical compo-
nents. In particular, we demonstrate that session types can be used to design,
implement and verify protocols behind a Cloud coordinator that exposes services
on demand to users.

Session type implementations such as SessionJ, as used in the work, and
Scribble, as proposed for future work, involve some runtime monitoring. The
runtime monitoring ensures that protocols stay within the space of behaviours
permitted by a session type. We argue that the performance cost of dynamic
runtime monitoring is small compared the risk managed. Divergent protocols
can corrupt systems, while node failures are unavoidable at scale. Monitors can
avoid divergence and help respond to node failures.

We found that session types provide an appropriate level of abstraction for
quickly designing critical protocols. Session type implementations are accessible
to programmers without background in formal semantics, including our indus-
trial partners AlmaCloud Ltd. The level of abstraction provided by the SessionJ
language, enabled effortless translation of business scenarios into verified imple-
mentations of protocols. We were able to refine our protocol from a simple for-
warding protocol (Sect. 3.1) to a scalable delegation protocol (Sect. 3.2), due to
support for higher-order message passing. The benefits of delegation are further
highlighted by payment and wallet recharging transactions (Sect. 3.3).

We suggest that the methodology presented can be applied to emerging Inter-
cloud protocols. In particular, protocols between Cloud brokers and Cloud coor-
dinators delegate sessions similarly to protocols between Cloud coordinators and
services. Furthermore, it is in the interest of Cloud brokers to minimise their
exposure to risk due to divergent protocols or node failures. One approach to
managing this risk is by using session types.
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