
Soundness and Completeness
of the NRB Verification Logic

Peter T. Breuer1(B) and Simon J. Pickin2

1 Department of Computer Science, University of Birmingham, Birmingham, UK
Peter.T.Breuer@gmail.com

2 Facultad de Informática, Universidad Complutense de Madrid, Madrid, Spain
spickin@ucm.es

Abstract. A simple semantic model for the NRB logic of program veri-
fication is provided here, and the logic is shown to be sound and complete
with respect to it. That provides guarantees in support of the logic’s use
in the automated verification of large imperative code bases, such as the
Linux kernel source. ‘Soundness’ implies that no breaches of safety con-
ditions are missed, and ‘completeness’ implies that symbolic reasoning is
as powerful as model-checking here.

1 Introduction

NRB (‘normal, return, break’) program logic was first introduced in 2004 [5] as
the theory supporting an automated semantic analysis suite [4] targeting the C
code of the Linux kernel. The analyses performed with this kind of program logic
and automatic tools are typically much more approximate than that provided
by more interactive or heavyweight techniques such as theorem-proving and
model-checking [10], respectively, but NRB-based solutions have proved capable
of rapidly scanning millions of lines of C code and detecting deadlocks scattered
as rarely as one per million lines of code [9]. A rough synopsis of the logic is that
it is precise in terms of accurately following the often complex flow of control and
sequence of events in an imperative language, but not very accurate at following
data values. That is fine in the context of a target like C [1,12], where static
analysis cannot reasonably hope to follow all data values accurately because of
the profligate use of pointers in a typical program (a pointer may access any
part of memory, in principle, hence writing through a pointer might ‘magically’
change any value) and the NRB logic was designed to work around that problem
by focussing instead on information derived from sequences of events.

Modal operators in NRB designate the kind of exit from a code fragment, as
return, break, etc. The logic may be configured in detail to support different
abstractions in different analyses; detecting the freeing of a record in memory
while it may still be referenced requires an abstraction that counts the possible
reference holders, for example, not the value currently in the second field from the
right. The technique became known as ‘symbolic approximation’ [6,7] because
of the foundation in symbolic logic and because the analysis is guaranteed to be

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 389–404, 2014.
DOI: 10.1007/978-3-319-05032-4 28, c© Springer International Publishing Switzerland 2014

390 P.T. Breuer and S.J. Pickin

inaccurate but on the alarmist side (‘approximate from above’). In other words,
the analysis does not miss bugs, but does report false positives. In spite of a
few years’ pedigree behind it now, a foundational semantics for the logic has
only just been published [8] (as an Appendix to the main text, in which it is
shown that the verification computation can be distributed over a network of
volunteer solvers and how such a procedure may be used as the basis of an open
certification process). This article aims to provide a yet simpler semantics for the
logic and also a completeness result, with the aim of consolidating the technique’s
bona fides. It fulfils the moral obligation to provide theoretical guarantees for a
method that verifies code.

Interestingly, the main formal guarantee (‘never miss, always over-report’)
provided by NRB and symbolic approximation is said not to be desirable in the
commercial context by the very practical authors of the Coverity analysis tool
[3,11], which also has been used for static analysis of the Linux kernel and many
very large C code projects. Allegedly, in the commercial arena, understandability
of reports is crucial, not the guarantee that no bugs will be missed. The Coverity
authors say that commercial clients tend to dismiss any reports from Coverity
staff that they do not understand, turning a deaf ear to all explanations. The
reports produced by our tools have been filtered as part of the process [4] before
presentation to the client community, so that only the alarms that cannot be
dismissed by us as false positives are seen by them. When our process has been
organised as a distributed certification task, as reported in [8], then filtering
away false positives can be seen as one more ‘eyes-on’ task for the human part
of the anonymous network of volunteer certifiers.

The layout of this paper is as follows. In Sect. 2 a model of programs as sets
of ‘coloured’ transitions between states is set out, and the constructs of a generic
imperative language are expressed in those terms. It is shown that the constructs
obey certain algebraic laws, which soundly implement the established deduction
rules of NRB logic. Section 3 shows that the logic is complete, in that anything
that is true in the model introduced in Sect. 2 can be proved using the formal
rules of the NRB logic.

Since the model contains at least as many transitions as occur in reality,
‘soundness’ of the NRB logic means that it may construct false alarms for a
safety condition possibly being breached at some particular point in a program,
but it may not miss any real alarms. ‘Completeness’ means that the logic flags
no more false alarms than are already to be predicted from the model, so if the
model says that there ought to be no alarms at all, which implies there really are
no alarms, then the logic can prove that. Thus, it is not necessary to construct
and examine the complete graph of modelled state transitions (‘model checking’)
in order to be able to give a program a clean bill of health, because the logic
does that job, checking ‘symbolically’.

2 Semantic Model

This section sets out a semantic model for the full NRBG(E) logic (‘NRB’ for
short) shown in Table 1. The ‘NRBG’ part stands for ‘normal, return, break,

Soundness and Completeness of the NRB Verification Logic 391

Table 1. NRB deduction rules for triples of assertions and programs. Unless explicitly
noted, assumptions Glpl at left are passed down unaltered from top to bottom of each
rule. We let E1 stand for any of R, B, Gl, Ek; E2 any of R, Gl, Ek; E3 any of R. Gl′

for l′ �= l, Ek; E4 any of R. Gl, Ek′ for k′ �= k; [h] the body of the subroutine named h.

� {p} P {Nq∨E1x} � {q} Q {Nr∨E1x}
� {p} P ; Q {Nr∨E1x}

� {p} P {Bq∨Np∨E2x}
� {p} do P {Nq∨E2x}

� {p} skip {N p} � {p} return {R p}

� {p} break {B p} p→pl Gl pl � {p} goto l {Gl p}

� {p} throw k {Ek p} � {q[e/x]} x=e {Nq}
� {q∧p} P {r}

� {p} q →P {r}
� {p} P {q} � {p} Q {q}

� {p} P � Q {q}

[Npl→q] Gl pl � {p} P {q}
Gl pl � {p} P :l {q}

Gl pl � {p} P {Glpl∨Nq∨E3x}
� {p} label l.P {Nq∨E3x}

� {p} [h] {Rr∨Ekxk}
Glpl � {p} call h {Nr∨Ekxk}

� {p} P {Nr∨Ekq∨E4x} � {q} Q {Nr∨Ekxk∨E4x}
� {p} try P catch(k) Q {Nr∨Ekxk∨E4x}

� {pi} P {q}
� {∨∨pi} P {q}

� {p} P {qi}
� {p} P {∧∧qi}

Gl pli � {p} P {q}
∨∨Gl pli � {p} P {q}

p′→p, q→q′, p′
l→pl|Glq

′→Glp
′
l

Gl pl � {p} P {q}
Gl p′

l
� {p′} P {q′}

goto’, and the ‘E’ part treats exceptions (catch/throw in Java, setjmp/longjmp
in C), aiming at a complete treatment of classical imperative languages. This
semantics simplifies a trace model presented in the Appendix to [8], substituting
traces there for state transitions here. The objective in laying out the model is
to allow the user of NRB logic to agree that it is talking about what he/she
understands a program does, computationally. So the model aims at simplicity
and comprehensibility. Agree with it, and one has confidence in what the logic
says a program may do.

A standard model of a program is as a relation of type P(S × S), expressing
possible changes in the program state as a ‘set of pairs’, consisting of initial and
final states of type S. We add a colour to this picture. The colour shows if the
program has run normally through to the end (colour ‘N’) or has terminated
early via a return (colour ‘R’), break (colour ‘B’), goto (colour ‘Gl’ for some
label l) or an exception (colour ‘Ek’ for some exception kind k). This documents
the control flow precisely. In our modified picture, a program is a set of ‘coloured
transitions’ of type

P(S × � × S)

where the colours � are a disjoint union

� = {N} � {R} � {B} � {Gl | l ∈ L} � {Ek | k ∈ K}

and L is the set of possible goto labels and K the set of possible exception kinds.
We write the transition from state s1 to state s2 of colour ι as s1

ι�→ s2.

392 P.T. Breuer and S.J. Pickin

Table 2. Models of simple statements.

The programs we usually consider are deterministic, in that only at most one
transition from each initial state s appears in the modelling relation, but they are
embedded in a more general context where an arbitrary number of transitions may
appear. Where the relation is not defined at all on some initial state s, we under-
stand that that initial state leads inevitably to the program getting hung in an
infinite loop, instead of terminating. The relations representing deterministic pro-
grams have a set of transitions from a given initial state s that is either of size zero
(‘hangs’) or one (‘terminates’). Only paths through the program that do not hang
are of interest to us, and what the NRB logic will say about a program at some
point is true only supposing control reaches that point, which it may never do.

Programs are put together in sequence with the second program accepting
as inputs only the states that the first program ends ‘normally’ with. Otherwise
the state with which the first program exited abnormally is the final outcome.
That is,

[[P ;Q]] = {s0
ι�→ s1 ∈ [[P]] | ι �= N}

∪ {s0 ι�→ s2 | s1
ι�→ s2 ∈ [[Q]], s0

N�→ s1 ∈ [[P]]}

This statement is not complete, however, because abnormal exits with a goto
from P may still re-enter in Q if the goto target is in Q, and proceed. We
postpone consideration of this eventuality by predicating the model with the sets
of states gl hypothesised as being fed in at the point l in the code. The model
with these sets gl as parameters takes account of the putative extra inputs at
the point labeled l:

Soundness and Completeness of the NRB Verification Logic 393

[[P ;Q]]g = {s0
ι�→ s1 ∈ [[P]]g | ι �= N}

∪ {s0 ι�→ s2 | s1
ι�→ s2 ∈ [[Q]]g, s0

N�→ s1 ∈ [[P]]g}
Later, we will tie things up by ensuring that the set of states bound to early exits
via a goto l in P are exactly the sets gl hypothesised here as entries at label l
in Q. The type of the interpretation expressed by the fancy square brackets is

−1 −2 : C→(L S)→ (S × � × S)

where g, the second argument/suffix, has the partial function type L �→ PS
and the first argument/bracket interior has type C , denoting a simple language
of imperative statements whose grammar is set out in Table 3. The models of
some of its very basic statements as members of P(S × � × S) are shown in
Table 2. We briefly discuss these and other constructs of the language.

A real imperative programming language such as C can be mapped onto C –
in principle exactly, but in practice rather approximately with respect to data
values. A conventional if(b) P else Q statement in C is written as the choice
between two guarded statements b → P � ¬b → Q in the abstract language C ; the
conventional while(b) P loop in C is expressed as do{¬b → break � b → P},
using the forever-loop of C . A sequence P ; l : Q in C with a label l in the
middle should strictly be expressed as P : l;Q in C , but we regard P ; l : Q as
syntactic sugar for that, so it is still permissible to write P ; l : Q in C . As a very
special syntactic sweetener, we permit l : Q too, even when there is no preceding
statement P , regarding it as an abbreviation for skip : l;Q.

Curly brackets may be used to group code statements in C , and parentheses
may be used to group expressions. The variables are globals and are not formally
declared. The terms of C are piecewise linear integer forms in integer variables,
so the boolean expressions are piecewise comparisons between linear forms.

Table 3. Grammar of the abstract imperative language C , where integer variables
x ∈ X, term expressions e ∈ E , boolean expressions b ∈ B, labels l ∈ L, exceptions
k ∈ K, statements c ∈ C , integer constants n ∈ Z, infix binary relations r ∈ R,
subroutine names h ∈ H. Note that labels (the targets of gotos) are declared with
‘label’ and a label cannot be the first thing in a code sequence; it must follow some
statement. Instead of if, C has guarded statements b → P and explicit choice P � Q,
for code fragments P , Q. The choice construct is only used in practice in the expansion
of if and while statements, so all its real uses are deterministic (have at most one
transition from each initial state), although it itself is not.

C :: skip | return | break | goto l | c;c | x=e | b→c | c � c | do c | c : l | label l.c | call h
| try c catch(k) c | throw k

E :: n | x | n ∗ e | e+ e | b ? e : e

B :: � | ⊥ | e r e | b ∨ b | b ∧ b | ¬b | ∃x.b
R :: < | > | ≤ | ≥ | = | �=

394 P.T. Breuer and S.J. Pickin

Table 4. The conventional evaluation of integer and boolean terms of C , for variables
x ∈ X, integer constants κ ∈ Z, using s x for the (integer) value of the variable named
x in a state s. The form b[n/x] means ‘expression b with integer n substituted for all
unbound occurrences of x’.

Example 1. A valid integer term is ‘5x + 4y + 3’, and a boolean expression is
‘5x + 4y + 3 < z − 4 ∧ y ≤ x’.

In consequence another valid integer term, taking the value of the first on
the range defined by the second, and 0 otherwise, is ‘(5x + 4y + 3 < z − 4 ∧ y ≤
x) ? 5x + 4y + 3:0’.

The limited set of terms in C makes it practically impossible to map standard
imperative language assignments as simple as ‘x = x ∗ y’ or ‘x = x | y’ (the
bitwise or) succinctly. In principle, those could be expressed exactly point by
point using conditional expressions (with at most 232 disjuncts), but it is usual
to model all those cases by means of an abstraction away from the values taken
to attributes that can be represented more elegantly using piecewise linear terms
The abstraction may be to how many times the variable has been read since last
written, for example, which maps ‘x = x ∗ y’ to ‘x = x + 1; y = y + 1; x = 0’.

Formally, terms have a conventional evaluation as integers and booleans that
is shown (for completeness!) in Table 4. The reader may note the notation s x
for the evaluation of the variable named x in state s, giving its integer value as
result. We say that state s satisfies boolean term b ∈ B, written s |= b, whenever
[[b]]s holds.

The label construct of C declares a label l ∈ L that may subsequently be
used as the target in gotos. The component P of the construct is the body of
code in which the label is in scope. A label may not be mentioned except in
the scope of its declaration. The same label may not be declared again in the
scope of the first declaration. The semantics of labels and gotos will be further
explained below.

The only way of exiting the C do loop construct normally is via break in
the body P of the loop. An abnormal exit other than break from the body P
terminates the whole loop abnormally. Terminating the body P normally evokes
one more turn round the loop. So conventional while and for loops in C are
mapped in C to a do loop with a guarded break statement inside, at the head
of the body. The precise models for this and every construct of C as a set of
coloured transitions are enumerated in Table 5.

Soundness and Completeness of the NRB Verification Logic 395

Table 5. Model of programs of language C , given as hypothesis the sets of states gl
for l ∈ L observable at goto l statements. A recursive reference means ‘the least set
satisfying the condition’. For h ∈ H, the subroutine named h has code [h]. The state s
altered by the assignment of n to variable x is written s[x
→ n].

Among the list in Table 5, the semantics of label declarations in particular
requires explanation because labels are more explicitly controlled in C than in
standard imperative languages. Declaring a label l makes it invisible from the
outside of the block (while enabling it to be used inside), working just the same
way as a local variable declaration does in a standard imperative programming
language. A declaration removes from the model of a labelled statement the
dependence on the hypothetical set gl of the states attained at goto l statements.
All the instances of goto l statements are inside the block with the declaration
at its head, so we can take a look to see what totality of states really do accrue
at goto l statements; they are recognisable in the model because they are the
outcomes of the transitions that are marked with Gl. Equating the set of such
states with the hypothesis gl gives the (least) fixpoint g∗

l required in the label l
model.

The hypothetical sets gl of states that obtain at goto l statements are used
at the point where the label l appears within the scope of the declaration. We

396 P.T. Breuer and S.J. Pickin

say that any of the states in gl may be an outcome of passing through the
label l, because it may have been brought in by a goto l statement. That is an
overestimate; in reality, if the state just before the label is s1, then at most those
states s2 in gl that are reachable at a goto l from an initial program state s0
that also leads to s1 (either s1 first or s2 first) may obtain after the label l, and
that may be considerably fewer s2 than we calculate in g∗

l . Here is a visualisation
of such a situation; the curly arrows denote a trace:

{s1} l : {s1, s2}�{s0} �

{s2} goto l

If the initial precondition on the code admits more than one initial state s0 then
the model may admit more states s2 after the label l than occur in reality when
s1 precedes l, because the model does not take into account the dependence of
s2 on s1 through s0. It is enough for the model that s2 proceeds from some
s0 and s1 proceeds from some (possibly different) s0 satisfying the same initial
condition. In mitigation, gotos are sparsely distributed in real codes and we
have not found the effect pejorative.

Example 2. Consider the code R and suppose the input is restricted to a unique
state s:

label A,B.

P
︷ ︸︸ ︷

skip; goto A; B: return; A
︸ ︷︷ ︸

Q

: goto B

with labels A, B in scope in body P , and the marked fragment Q. The single
transitions made in the code P and the corresponding statement sequences are:

s
N�→ s

GA�→ s # skip; goto A;

s
N�→ s

N�→ s
GB�→ s # skip; goto A;A : goto B

s
N�→ s

N�→ s
N�→ s

R�→ s # skip; goto A;A : goto B;B : return

with observed states gA = {s}, gB = {s} at the labels A and B respectively.
The goto B statement is not in the fragment Q so there is no way of knowing

about the set of states at goto B while examining Q. Without that input, the
traces of Q are

s
N�→ s

GA�→ s # skip; goto A

s
N�→ s

N�→ s # skip; goto A;A :

There are no possible entries at B originating from within Q itself. That is, the
model [[Q]]g of Q as a set of transitions assuming gB = { }, meaning there are no

entries from outside, is [[Q]]g = {s
N�→ s, s

GA�→ s}.
When we hypothesise gB = {s} for Q, then Q has more traces:

s
N�→ s

N�→ s
N�→ s

R�→ s # skip; goto A;A : goto B;B : return

Soundness and Completeness of the NRB Verification Logic 397

Table 6. Extending the language B of propositions to modal operators N, R, B, Gl,
Ek for l ∈ L, k ∈ K. An evaluation on transitions is given for b ∈ B, b∗ ∈ B∗.

Table 7. Laws of the modal operators N, R, B, Gl, Ek with M, M1, M2 ∈
{N,R,B,Gl,Ek | l ∈ L, k ∈ K} and M1 �= M2.

corresponding to these entries at B from the rest of the code proceeding to the
return in Q, and [[Q]]g = {s

N�→ s, s
GA�→ s, s

R�→ s}. In the context of the whole
code P , that is the model for Q as a set of initial to final state transitions.

Example 3. Staying with the code of Example 2, the set {s
GA�→ s, s

GB�→ s, s
R�→ s}

is the model [[P]]g of P starting at state s with assumptions gA, gB of Example
2, and the sets gA, gB are observed at the labels A, B in the code under these
assumptions. Thus {A �→ gA, B �→ gB} is the fixpoint g∗ of the label declaration
rule in Table 5.

That rule says to next remove transitions ending at goto As and Bs from
visibility in the model of the declaration block, because they can go nowhere else,
leaving only [[R]]{ } = {s

R�→ s} as the set-of-transitions model of the whole block of
code, which corresponds to the sequence skip;goto A;A : goto B;B : return.

We extend the propositional language to B∗ which includes the modal operators
N, R, B, Gl, Ek for l ∈ L, k ∈ K, as shown in Table 6, which defines a model
of B∗ on transitions. The predicate Np informally should be read as picking
out from the set of all coloured state transitions ‘those normal-coloured transi-
tions that produce a state satisfying p’, and similarly for the other operators.
The modal operators satisfy the algebraic laws given in Table 7. Additionally,
however, for non-modal p ∈ B,

p = Np ∨ Rp ∨ Bp ∨ ∨∨ Glp ∨∨Ekp (1)

398 P.T. Breuer and S.J. Pickin

because each transition must be some colour, and those are all the colours.
The decomposition works in the general case too:

Proposition 1. Every p ∈ B∗ can be (uniquely) expressed as

p = NpN ∨ RpR ∨ BpB ∨ ∨∨ GlpGl
∨∨EkpEk

for some pN, pR, etc that are free of modal operators.

Proof. Equation (1) gives the result for p ∈ B. The rest is by structural induction
on p, using Table 7 and boolean algebra. Uniqueness follows because NpN =
Np′

N, for example, applying N to two possible decompositions, and applying the
orthogonality and idempotence laws; apply the definition of N in the model in
Table 6 to deduce pN = p′

N for non-modal predicates pN, p′
N. Similarly for B,

R, Gl, Ek. �

So modal formulae p ∈ B∗ may be viewed as tuples (pN, pR, pB, pGl
, pEk

) of non-
modal formulae from B for labels l ∈ L, exception kinds k ∈ K. That means
that Np∨Rq, for example, is simply a convenient notation for writing down two
assertions at once: one that asserts p of the final states of the transitions that
end ‘normally’, and one that asserts q on the final states of the transitions that
end in a ‘return flow’. The meaning of Np ∨ Rq is the union of the set of the
normal transitions with final state that satisfy p plus the set of the transitions
that end in a ‘return flow’ and whose final states satisfy q. We can now give
meaning to a notation that looks like (and is intended to signify) a Hoare triple
with an explicit context of certain ‘goto assumptions’:

Definition 1. Let gl = [[pl]] be the set of states satisfying pl ∈ B, labels l ∈ L.
Then ‘Gl pl � {p} a {q}’, for non-modal p, pl ∈ B, P ∈ C and q ∈ B∗, means:

[[Gl pl � {p} P {q}]] = [[{p} P {q}]]g

= ∀s0
ι�→ s1 ∈ [[P]]g. [[p]]s0 ⇒ [[q]](s0

ι�→ s1)

That is read as ‘the triple {p} P {q} holds under assumptions pl at goto l
when every transition of P that starts at a state satisfying p also satisfies q’.
The explicit Gentzen-style assumptions pl are free of modal operators. What is
meant by the notation is that those states that may be attainable as the program
traces pass through goto statements are assumed to be restricted to those that
satisfy pl.

The Gl pl assumptions may be separated by commas, as Gl1 pl1 ,Gl2 pl2 , . . . ,
with l1 �= l2, etc. Or they may be written as a disjunction Gl1 pl1 ∨Gl2 pl2 ∨ . . .
because the information in this modal formula is only the mapping l1 �→ pl1 ,
l2 �→ pl2 , etc. If the same l appears twice among the disjuncts Gl pl, then we
understand that the union of the two pl is intended.

Now we can prove the validity of laws about triples drawn from what Defin-
ition 1 says. The first laws are strengthening and weakening results on pre- and
postconditions:

Soundness and Completeness of the NRB Verification Logic 399

Proposition 2. The following algebraic relations hold:

[[{⊥} P {q}]]g ⇐⇒ � (2)
[[{p} P {�}]]g ⇐⇒ � (3)

[[{p1 ∨ p2} P {q}]]g ⇐⇒ [[{p1} P {q}]]g ∧ [[{p2} P {q}]]g (4)
[[{p} P {q1 ∧ q2}]]g ⇐⇒ [[{p} P {q1}]]g ∧ [[{p} P {q2}]]g (5)

(p1→p2) ∧ [[{p2} P {q}]]g =⇒ [[{p1} P {q}]]g (6)
(q1→q2) ∧ [[{p} P {q1}]]g =⇒ [[{p} P {q2}]]g (7)

[[{p} P {q}]]g′ =⇒ [[{p} P {q}]]g (8)

for p, p1, p2 ∈ B, q, q1, q2 ∈ B∗, P ∈ C , and gl ⊆ g′
l ∈ PS.

Proof. (2–5) follow on applying Definition 1. (6–7) follow from (4–5) on consid-
ering the cases p1 ∨ p2 = p2 and q1 ∧ q2 = q1. The reason for (8) is that g′

l is a
bigger set than gl, so [[P]]g′ is a bigger set of transitions than [[P]]g and thus the
universal quantifier in Definition 1 produces a smaller (less true) truth value. �

Theorem 1 (Soundness). The following algebraic inequalities hold, for E1 any
of R, B, Gl, Ek; E2 any of R, Gl, Ek; E3 any of R, B, Gl′ for l′ �= l, Ek; E4

any of R, B, Gl, Ek′ for k′ �= k; [h] the code of the subroutine called h:

[[{p}P {Nq ∨ E1x}]]g
∧ [[{q}Q {Nr ∨ E1x}]]g

}
=⇒ [[{p}P ;Q {Nr ∨ E1x}]]g (9)

[[{p}P {Bq ∨ Np ∨ E2x}]]g =⇒ [[{p}do P {Nq ∨ E2x}]]g (10)
� =⇒ [[{p} skip {N p}]]g (11)
� =⇒ [[{p} return {R p}]]g (12)
� =⇒ [[{p}break {B p}]]g (13)
� =⇒ [[{p}goto l {Gl p}]]g (14)
� =⇒ [[{p} throw k {Ek p}]]g (15)

[[{b ∧ p}P {q}]]g =⇒ [[{p} b→P {q}]]g (16)
[[{p}P {q}]]g ∧ [[{p}Q {q}]]g =⇒ [[{p}P �Q {q}]]g (17)

� =⇒ [[{q[e/x]} x=e {Nq}]]g (18)

[[{p} P {q}]]g ∧ gl ⊆ {s1 | s0 N�→ s1 ∈ [[q]]} =⇒ [[{p} P : l {q}]]g (19)
[[{p} P {Glpl ∨ Nq ∨ E3x}]]g∪{l�→pl} =⇒ [[{p} label l.P {Nq ∨ E3x}]]g (20)

[[{p} [h] {Rr ∨ Ekxk}]]{ } =⇒ [[{p} call h {Nr ∨ Ekxk}]]g (21)
[[{p} P {Nr ∨ Ekq ∨ E4x}]]g

∧ [[{q} Q {Nr ∨ Ekxk ∨ E4x}]]g

}
=⇒ [[{p} try P catch(k) Q {Nr ∨ Ekxk ∨ E4x}]]g

(22)

Proof By evaluation, given Definition 1 and the semantics from Table 5. �

400 P.T. Breuer and S.J. Pickin

The reason why the theorem is titled ‘Soundness’ is that its inequalities can
be read as the NRB logic deduction rules set out in Table 1, via Definition 1.
The fixpoint requirement of the model at the label construct is expressed in the
‘arrival from a goto at a label’ law (19), where it is stated that if the hypothesised
states gl at a goto l statement are covered by the states q immediately after
code block P and preceding label l, then q holds after the label l too. However,
there is no need for any such predication when the gl are exactly the fixpoint of
the map

gl �→ {s1 | s0
Gl�→ s1 ∈ [[P]]g}

because that is what the fixpoint condition says. Thus, while the model in Table 5
satisfies Eqs. (9–22), it satisfies more than they require – some of the hypotheses
in the equations could be dropped and the model would still satisfy them. But
the NRB logic rules in Table 1 are validated by the model and thus are sound.

3 Completeness

In proving completeness of the NRB logic, we will be guided by the proof of
partial completeness for Hoare’s logic in K. R. Apt’s survey paper [2]. We will
need, for every (possibly modal) postcondition q ∈ B∗ and every construct R of
C , a non-modal formula p ∈ B that is weakest in B such that if p holds of a
state s, and s

ι�→ s′ is in the model of R given in Table 5, then q holds of s
ι�→ s′.

This p is written wp(R, q), the ‘weakest precondition on R for q’. We construct
it via structural induction on C at the same time as we deduce completeness, so
there is an element of chicken versus egg about the proof, and we will not labour
that point.

We will also suppose that we can prove any tautology of B and B∗, so
‘completeness of NRB’ will be relative to that lower-level completeness.

Notice that there is always a set p ∈ PS satisfying the ‘weakest precondition’
characterisation above. It is {s ∈ S | s

ι�→ s′ ∈ [[R]]g ⇒ s
ι�→ s′ ∈ [[q]]}, and it

is called the weakest semantic precondition on R for q. So we sometimes refer
to wp(R, q) as the ‘weakest syntactic precondition’ on R for q, when we wish
to emphasise the distinction. The question is whether or not there is a formula
in B that exactly expresses this set. If there is, then the system is said to be
expressive, and that formula is the weakest (syntactic) precondition on R for
q, wp(R, q). Notice also that a weakest (syntactic) precondition wp(R, q) must
encompass the semantic weakest precondition; that is because if there were a
state s in the latter and not in the former, then we could form the disjunction
wp(R, q) ∨ (x1 = sx1 ∧ . . . xn = sxn) where the xi are the variables of s, and
this would also be a precondition on R for q, hence x1 = sx1 ∧ . . . xn = sxn →
wp(R, q) must be true, as the latter is supposedly the weakest precondition,
and so s satisfies wp(R, q) in contradiction to the assumption that s is not in
wp(R, q). For orientation, then, the reader should note that ‘there is a weakest
(syntactic) precondition in B’ means there is a unique strongest formula in B
covering the weakest semantic precondition.

Soundness and Completeness of the NRB Verification Logic 401

We will lay out the proof of completeness inline here, in order to avoid exces-
sively overbearing formality, and at the end we will draw the formal conclusion.

A completeness proof is always a proof by cases on each construct of inter-
est. It has the form ‘suppose that foo is true, then we can prove it like this’,
where foo runs through all the constructs we are interested in. We start with
assertions about the sequence construction P ;Q. We will look at this in par-
ticular detail, noting where and how the weakest precondition formula plays a
role, and skip that detail for most other cases. Thus we start with foo equal to
Gl gl � {p} P ;Q {q} for some assumptions gl ∈ B, but we do not need to take
the assumptions gl into account in this case.

Case P ;Q. Consider a sequence of two statements P ;Q for which {p} P ;Q {q}
holds in the model set out by Definition 1 and Table 5. That is, suppose that ini-
tially the state s satisfies predicate p and that there is a progression from s to
some final state s′ through P ;Q. Then s

ι�→ s′ is in [[P ;Q]]g and s
ι�→ s′ satisfies

q. We will consider two subcases, the first where P terminates normally from s,
and the second where P terminates abnormally from s. A third possibility, that
P does not terminate at all, is ruled out because a final state s′ is reached.

Consider the first subcase. According to Table 5, that means that P started in
state s0 = s and finished normally in some state s1 and Q ran on from state s1 to
finish normally in state s2 = s′. Let r stand for the weakest precondition wp(Q,q)
that guarantees termination of Q with q holding. By definition, {r} Q {q}, is true
and s1 satisfies r (if not, then r ∨ (x1 = sx1 ∧ x2 = sx2 ∧ . . .) would be a weaker
precondition for q than r, which is impossible). So {p} P {Nr} is true in this
case.

Now consider the second subcase, when the final state s1 reached from s = s0
through P obtains via an abnormal flow out of P . The transition s0

ι�→ s1 satisfies
q, but necesarily an abnormal ‘error’ component of q as the flow out of p is
abnormal, so {p} P {Rq ∨ Bq ∨ . . . }, as Rq ∨ Bq ∨ . . . is the error component
of q by Proposition 1.

Those are the only cases, so {p} P {Nr∨Rq∨Bq∨. . . } is true. By induction,
it is the case that there are deductions � {p} P {Nr ∨ Rq ∨ Bq ∨ . . . } and
� {r} Q {q} in the NRB system. But the following rule

{p} P {Nr ∨ Rq ∨ Bq ∨ . . . } {r} Q {q}
{p} P ;Q {q ∨ Rq ∨ Bq ∨ . . . }

is a derived rule of NRB logic. It is a specialised form of the general NRB rule of
sequence, availing of the ‘mixed’ error colour E = (R∨B∨. . .). Since (q∨Eq) → q,
putting these deductions together, and using weakening, we have a deduction of
the truth of the assertions {p} P ;Q {q}.

That concludes the consideration of the case P ;Q. The existence of a formula
expressing a weakest precondition is what really drives the proof above along,
and in lieu of pursuing the proof through all the other construct cases, we note
the important weakest precondition formulae below:

– The weakest precondition for sequence is wp(a; b, q)=wp(a, Eq ∨Nwp(b, q))
above.

402 P.T. Breuer and S.J. Pickin

– The weakest precondition for assignment is wp(x = e,Nq) = q[e/x] for q
without modal components. In general wp(x = e, q) = Nq[e/x].

– The weakest precondition for a return statement is wp(return, q) = Rq.
– The weakest precondition for a break statement is wp(break, q) = Bq. Etc.
– The weakest precondition wp(do P,Nq) for a do loop that ends ‘normally’

is wp(P,Bq) ∨ wp(P,Nwp(P,Bq)) ∨ wp(P,Nwp(P,Nwp(P,Bq))) ∨
That is, we might break from P with q, or run through P normally to
the precondition for breaking from P with q next, etc. Write wp(P,Bq) as
p and write wp(P,Nr) ∧ ¬p as ψ(r), Then wp(do P,Nq) can be written
p ∨ ψ(p) ∨ ψ(p ∨ ψ(p)) ∨ . . . , which is the strongest solution to π = ψ(π) no
stronger than p. This is the weakest precondition for p after while(¬p) P in
classical Hoare logic. It is an existentially quantified statement, stating that
an initial state s gives rise to exactly some n passes through P before the
condition p becomes true for the first time. It can classically be expressed as
a formula of first-order logic and it is the weakest precondition for Nq after
do P here.
The preconditions for Eq for each ‘abnormal’ coloured ending E of the loop
do P are similarly expressible in B, and the precondition for q is the disjunc-
tion of each of the preconditions for Nq, Rq, Bq, etc.

– The weakest precondition for a guarded statement wp(p → P, q) is p →
wp(P, q), as in Hoare logic; and the weakest precondition for a disjunction
wp(P � Q, q) is wp(P, q) ∧ wp(Q, q), as in Hoare logic. However, in practice
we only use the deterministic combination p → P � ¬p → Q for which the
weakest precondition is (p → wp(P, q)) ∧ (¬p → wp(Q, q)), i.e. p ∧ wp(P, q) ∨
¬p ∧ wp(Q, q).

To deal with labels properly, we have to extend some of these notions and nota-
tions to take account of the assumptions Glgl that an assertion Glgl � {p} P {q}
is made against. The weakest precondition p on P for q is then p = wpg(P, q),
with the gl as extra parameters. The weakest precondition for a label use
wpg(P : l, q) is then wpg(P, q), provided that gl → q, since the states gl attained
by goto l statements throughout the code are available after the label, as well
as those obtained through P . The weakest precondition in the general situation
where it is not necessarily the case that gl → q holds is wpg(P, q ∧ (gl → q)),
which is wpg(P, q).

Now we can continue the completeness proof through the statements of the
form P : l (a labelled statement) and label l.P (a label declaration).

Case Labelled Statement. If [[{p} P : l {q}]]g holds, then (a) every state s = s0
satisfying p leads through P with s0

ι�→ s1 satisfying q, and also (b) q contains all
the transitions s0

N�→ s1 where s1 satisfies gl. By (a), s satisfies wpg(P, q) and
(b) Ngl → q holds. Since s is arbitrary in p, so p → wpg(P, q) holds and by
induction, � Glgl � {p} P {q}. Then, by the ‘frm’ rule of NRB (Table 1), we
may deduce � Glgl � {p} P : l {q}.

Case Label Declaration. The weakest precondition for a declaration wpg

(label l.P, q) is simply p = wpg′(P, q), where the assumptions after the

Soundness and Completeness of the NRB Verification Logic 403

declaration are g′ = g ∪ {l �→ gl} and gl is such that Glgl � {p} P {q}. In
other words, p and gl are simultaneously chosen to make the assertion hold, p
maximal and gl the least fixpoint describing the states at goto l statements in
the code P , given that the initial state satisfies p and assumptions Glgl hold. The
gly are the statements that after exactly some n ∈ N more traversals through P
via goto l, the trace from state s will avoid another goto l for the first time and
exit P normally or via an abnormal exit that is not a goto l.

If it is the case that [[{p} label l.P {q}]]g holds then every state s = s0
satisfying p leads through label l.P with s0

ι�→ s1 satisfying q. That means s0
ι�→ s1

leads through P , but it is not all that do; there are transitions with ι = Gl that
are not considered. The ‘missing’ transitions are precisely the Glgl where gl is
the appropriate least fixpoint for gl = {s1 | s0

Gl�→ s1 ∈ [[P]]g∪{l �→gl}, which is a
predicate expressing the idea that s1 at a goto l initiates some exactly n traversals
back through P again before exiting P for a first time other than via a goto l.
The predicate q cannot mention Gl since the label l is out of scope for it, but it
may permit some, all or no Gl-coloured transitions. The predicate q ∨ Glgl, on
the other hand, permits all the Gl-coloured transitions that exit P . transitions.
Thus adding Glgl to the assumptions means s0 traverses P via s0

ι�→ s1 satisfying
q ∨Glgl even though more transitions are admitted. Since s = s0 is arbitrary in
p, so p → wpg∪{l �→gl}(P, q ∨ Glgl) and by induction � Gl � {p} P {q ∨ Glgl},
and then one may deduce � {p} label l.P {q} by the ‘lbl’ rule. �

That concludes the text that would appear in a proof, but which we have
abridged and presented as a discussion here! We have covered the typical case
(P ;Q) and the unusual cases (P : l, label l.P). The proof-theoretic content of
the discussion is:

Theorem 2 (Completeness). The system of NRB logic in Table 1 is complete,
relative to the completeness of first-order logic.

Theorem 3 (Expressiveness). The weakest precondition wp(P, q) for q ∈ B∗,
P ∈ C in the interpretation set out in Definition 1 and Table 5 is expressible in
B.

The observation above is that there is a formula in B that expresses the semantic
weakest precondition exactly.

4 Summary

In this article, we have complemented previous work, which guaranteed programs
free of semantic defects, with guarantees directed at the symbolic logic used as
guarantor. Soundness of the logic is proved with respect to a simple transition-
based model of programs, and completeness of the logic with respect to the
model is proved.

That shows the logic is equivalent to the model, and reduces the question
of its fitness as a guarantor for a program to the fitness for that purpose of the
model of programs. The model always overestimates the number of transitions

404 P.T. Breuer and S.J. Pickin

that may occur, so when the logic is used to certify that there are no program
transitions that may violate a given safety condition, it may be believed.

Acknowledgments. Simon Pickin’s research has been partially supported by the
Spanish MEC project ESTuDIo (TIN2012-36812-C02-01).

References

1. American National Standards Institute. American national standard for informa-
tion systems - programming language C, ANSI X3.159-1989 (1989)

2. Apt, K.R.: Ten years of Hoare’s logic: a survey: part I. ACM Trans. Program.
Lang. Syst. 3(4), 431–483 (1981)

3. Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C.,
Kamsky, A., McPeak, S., Engler, D.: A few billion lines of code later: using static
analysis to find bugs in the real world. Commun. ACM 53(2), 66–75 (2010)

4. Breuer, P.T., Pickin, S.: Checking for deadlock, double-free and other abuses in the
Linux kernel source code. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A.,
Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3994, pp. 765–772. Springer, Heidelberg
(2006)

5. Breuer, P.T., Valls, M.: Static deadlock detection in the Linux kernel. In: Llamośı,
A., Strohmeier, A. (eds.) Ada-Europe 2004. LNCS, vol. 3063, pp. 52–64. Springer,
Heidelberg (2004)

6. Breuer, P.T., Pickin, S.: Symbolic approximation: an approach to verification in
the large. Innovations Syst. Softw. Eng. 2(3), 147–163 (2006)

7. Breuer, P.T., Pickin, S.: Verification in the large via symbolic approximation. In:
Proceedings of the 2nd International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation, 2006 (ISoLA 2006), pp. 408–415.
IEEE (2006)

8. Breuer, P.T., Pickin, S.: Open source verification in an anonymous volunteer net-
work. Sci. Comput. Program. (2013). doi:10.1016/j.scico.2013.08.010

9. Breuer, P.T., Pickin, S., Petrie, M.L.: Detecting deadlock, double-free and other
abuses in a million lines of Linux kernel source. In: Proceedings of the 30th Annual
Software Engineering Workshop 2006 (SEW’06), pp. 223–233. IEEE/NASA (2006)

10. Clarke, E., Emerson, E., Sistla, A.: Automatic verification of finite-state concur-
rent systems using temporal logic specifications. ACM Trans. Prog. Lang. Syst.
(TOPLAS) 8(2), 244–253 (1986)

11. Engler, D., Chelf, B., Chou, A., Hallem, S.: Checking system rules using system-
specific, programmer-written compiler extensions. In: Proceedings of the 4th Sym-
posium on Operating System Design and Implementation (OSDI 2000), pp. 1–16,
October 2000

12. International Standards Organisation. ISO/IEC 9899-1999, programming lan-
guages - C (1999)

http://dx.doi.org/10.1016/j.scico.2013.08.010

	Soundness and Completeness of the NRB Verification Logic
	1 Introduction
	2 Semantic Model
	3 Completeness
	4 Summary
	References

