
Modeling and Simulating Interaction Protocols
Using Nested Petri Nets

Mirtha Lina Fernández Venero(B) and Flávio Soares Corrêa da Silva

Department of Computer Science, University of São Paulo,
São Paulo 05508-090, Brazil
{mirtha,fcs}@ime.usp.br

Abstract. This paper is concerned with the problem of analyzing inter-
action protocols in a coordination platform called JamSession. We use
nested Petri nets to provide a formal model for simulating the protocols
and predicting conflicts on the system behavior.

1 Introduction

The notion of mobility has been increasingly used in areas such as communi-
cation protocols, multi-agent and intelligent systems, web and business applica-
tions, virtual environments, computers games, etc. This notion has introduced
the need of designing location-dependent and context-aware software compo-
nents whose complexity demands the unavoidable use of formal models (e.g.
process calculi, Petri nets, Markov chains and automata-based techniques) for
their development. In this article we use Petri nets (PNs) to provide a formal
framework for simulating the interaction protocols of a coordination platform
called JamSession. The platform was proposed in [3] for coordinating distrib-
uted, heterogeneous and mobile agents and resources. It uses a notion of loca-
tion similar to the one provided in Multilayered Multi-Agent Situated Systems [1],
where sites are related by pathways to form a directed graph. Agents inhabit
these sites and can move from site to site to look for specific resources to accom-
plish their goals. Services are modeled using predicates attached to locations.
Interaction protocols for coordinating agents are also linked to locations and are
built from basic logic constructions. The language is simple but other notions
such as norms and roles from Electronic Institutions [5] and the Lightweight
Coordination Calculus (LCC) [11] can be modeled as well.

JamSession was recently used for coordinating inter-organizational work-
flows [4]. In that work, it was shown how hierarchical protocols can be verified
using colored Petri nets (CPNs). This paper formalizes and extends that previ-
ous model for protocols involving recursive calls. Furthermore, we explain how
to specify the dynamic behavior of concurrent interactions. Our aim is to pro-
vide a formal ground for the construction of a visualization tool for JamSession
that supports the simulation and analysis of the agents movements. Here, we use

This work was supported by the São Paulo Research Foundation (FAPESP) under
the grant 2010/52505-0.

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 135–150, 2014.
DOI: 10.1007/978-3-319-05032-4 11, c© Springer International Publishing Switzerland 2014

136 M.L.F. Venero and F.S.C. da Silva

nested Petri nets (NPNs), a class of high-level Petri nets where tokens can also
be Petri nets [8]. As classical tokens, the net tokens can be added to or removed
from places, but they can also fire their transitions, synchronizing them with
other net tokens. The idea of using nets within nets has been effectively applied
to multi-agent systems and mobile agents [2,7,10]. To model mobility, locations
are encoded as places and the possible movements are encoded as transitions.
Mobile agents are modeled as net tokens which can be moved from one place to
another. Nevertheless, few methodologies have been proposed for modeling the
rules that coordinate a sequence of agents movements [2]. In JamSession, these
rules can be defined by means of interaction protocols. Therefore, in this article
we provide a systematic approach for translating a JamSession specification into
a NPN. For simplicity and due to the fact that in JamSession agents may be
just passive entities, we represent the environment (agents, locations and fea-
sible movements) as a color set and protocol calls as net tokens. However, the
method can be easily adapted for dealing with agents nets. We model the system
behavior as a Workflow Net [12] and define a property for its correctness which
can be used for the early detection of interactions in conflict.

The paper has the following structure. Section 2 summarizes JamSession
syntactical features and its computation rules. Section 3 presents an informal
description of the translation of JamSession protocols into NPNs. The formal
translation and the model for the dynamics of concurrent interactions are
described in Sects. 4, 5 respectively. We draw some conclusions in Sect. 6.

2 The JamSession Platform

The coordination mechanism of JamSession is based on a directed graph where
nodes represent locations that are inhabited by agents. The arcs of the graph
characterize the admissible movements that agents can perform across locations.
The agents provide services that are represented as first-order predicates. Each
predicate is associated to a pair [Agent, Location] and may also have Input and
Output parameters. An agent stays in a location until it receives an order to
move. Predicates and movements are combined in JamSession using interaction
protocols which are linked to locations. A JamSession specification is a tuple
J = 〈Loc, Path,Ag, V ar,D, Pred, Prot, φ, ψ〉 where

– Loc �= ∅ is a set of locations and Path ⊆ Loc × Loc is a set of directed arcs
between locations. The pair (Loc, Path) is called the graph of locations;

– Ag, V ar,D, Pred, Prot are non-empty sets of agents, variables, domain values,
predicate and protocol symbols respectively;

– φ : Pred × Ag × Loc → (TD → {⊥,	} × TD) characterizes the predicates
definitions. Hereafter, TC denotes the set of tuples over a set C;

– ψ : Prot×Loc → Σ ×TVar ×TVar characterizes the protocols definitions and
Σ is the language generated by the next rules, where pd ∈ Pred, pt ∈ Prot,
a ∈ Ag, l, l1, l2 ∈ Loc, V ∈ TVar and P ∈ TVar∪D

Disj := Disj ∨ Disj | Conj
Conj := Conj ∧ Conj | Entity

Entity := ⊥ | � | move(a, l1, l2) | [a, l]pd(P, V) | [l]pt(P, V)

Modeling and Simulating Interaction Protocols Using Nested Petri Nets 137

Given a predicate symbol pd, an agent a and a location l, the function
φ(pd, a, l) takes a list of domain values as input and returns a list of output
domain values and the result of the evaluation (⊥ or). Given a protocol sym-
bol pt and a location l, the protocol definition ψ(pt, l) = (F, Vi, Vo) is written as
[l] pt(Vi, Vo):: = F . The formula F has the structure of a disjunctive normal form
in which literals may be move orders and predicate or protocol calls. Some of
the variables occurring in F are considered as input (Vi) or output (Vo) variables
in the protocol definition. The conjunction denotes the sequential evaluation of
the atoms and the disjunction an alternative computation branch.

In JamSession, several protocols may be executed in parallel. The concurrent
processes share the same configuration of the graph but they do not share vari-
ables. Besides, an agent can be used by just one predicate or move order at any
given time. Predicates calls and move orders are suspended until the involved
agent reaches the appropriate location. During the evaluation of a predicate, the
agent is locked at the location. A move order is executed as an atomic operation.

Example 1. We illustrate the functioning of Jam-
Session by means of two protocols (buyerP and
shopkeeperP) describing an interaction for a basic
shopping. The graph of locations is shown in the
right. The agent tokens askMsg , buyMsg , priceMsg
and soldMsg represent messages to be exchanged
between the protocols. The protocols correspond-
ing to the roles are shown below. We have used c, b
and sh to abbreviate the location names customer ,
buyer , shopkeeper respectively.

The buyerP protocol has a client B and an item X as input parameters and
no output variable. The input data is verified by means of an agent cust at c.
The updateAsk predicate stores the required data for the askMsg token and the
message is moved to the sh location. After that, the getPrice predicate waits
until priceMsg reaches the b location. When this occurs, the message priceMsg
is sent back to the sh. After checking that X is affordable, the buyMsg token
is updated and sent, and the getConf predicate waits for soldMsg . Once it is
received, it is sent back and the purchase is confirmed to the client using the
chkConf predicate. The behavior of shopkeeperP protocol is similar but it has a
recursive call at the end, in order to wait for another buyer.

[c] buyerP ((B, X), ())::=[cust, c] need((B, X), ()) ∧
[askMsg, b] updateAsk((B, X), ()) ∧ move(askMsg, b, sh) ∧
[priceMsg, b] getPrice((V), (P)) ∧ move(priceMsg, b, sh) ∧ [cust, b] afford((X, P), ()) ∧
[buyMsg, b] updateBuy((X, B), ()) ∧ move(buyMsg, b, sh) ∧
[soldMsg, b] getConf((), (C)) ∧ move(soldMsg, b, sh) ∧ [cust, c] chkConf((C), ()).

[sh]shopkeeperP ()::=[askMsg, sh] getAsk((), (X, B)) ∧ move(askMsg, sh, b) ∧
[priceMsg, sh] instock((X), (P)) ∧ move(priceMsg, sh, b) ∧
[buyMsg, sh] getBuy((), (X, B)) ∧ move(buyMsg, sh, b) ∧
[soldMsg, b] setConf((X, B, P), ()) ∧ move(soldMsg, sh, b) ∧
[soldMsg, sh] closeSale() ∧ [sh] shopkeeperP ().

138 M.L.F. Venero and F.S.C. da Silva

A state in the computation of a JamSession formula consists of a formula, the
distribution of agents over the graph (represented as a function st : Ag → Loc)
and a substitution θ holding the values of instantiated variables. The transition
relation between the states (→) is defined by the rules in Table 1. We write

F
st,θ,st′,θ′
−−−−−−→ F ′ instead of (F, st, θ) → (F ′, st′, θ′) to improve readability. The

notation st(a) ↑ l indicates that the state of the graph has changed by the
movement of a to l. Furthermore, we use θ ↑ v = d to denote a new substitution
obtained from θ where the variable v has been updated with the domain value
d. As usual, the application of a substitution θ to a formula F is written as Fθ.
The replacement of all occurrences of a variable x in F by the a value or variable
v is denoted as F [v/x]. These notations are extended to tuples of variables and
values in a straightforward way.

Table 1. JamSession computation rules

1) ⊥ ∨ F
st,θ,st,θ−−−−−→ Fθ 2) � ∨ F

st,θ,st,θ−−−−−→ �
3) ⊥ ∧ F

st,θ,st,θ−−−−−→ ⊥ 4) � ∧ F
st,θ,st,θ−−−−−→ Fθ

5) F1 � F2
st,θ,st,θ−−−−−→ F � F2 if � ∈ {∨, ∧}, F1

st,θ,st,θ−−−−−→ F

6) move(a, l1, l2)
st,θ,st,θ−−−−−→ ⊥ if st(a) = l1, (l1, l2) /∈ Path

7) move(a, l1, l2)
st,θ,st(a)↑l2,θ−−−−−−−−−→ � if st(a) = l1, (l1, l2) ∈ Path

8) [a, l] pd(P, V)
st,θ,st,θ↑V =O−−−−−−−−−→ b if st(a) = l, φ(pd, a, l)(Pθ) = (b, O)

9) [l] pt(P, V)
st,θ,st,θ−−−−−→ F1 if ψ(pt, L) = (F, Vi, Vo), F1 = F [Pθ/Vi][V/Vo]

The first three rows of Table 1 describe the rules for conjunction and dis-
junction. The left-hand side of these operators must be reduced to a truth value
before the right-hand side can be rewritten. This is enforced by the fifth rule.
The sixth rule states that a move order fails in case the agent inhabits a location
with no direct arc to the intended destination. On the contrary, a move order
holds (rule 7) if l1 is the current location of a and (l1, l2) is an arc of the graph.
If a has not reached l1, the move order is postponed until it can be evaluated.
Predicate calls have a similar behavior with respect to agents and locations. If a
is already situated at l, the function φ(pd, a, l) is evaluated for the input values,
the formula is reduced, and the output variables are updated. Finally, a protocol
call is unfolded by applying the function ψ to obtain its body definition. W.l.o.g
we assume that each time a fresh copy is obtained from ψ (i.e. with a fresh set
of variables). Furthermore, the input/output variables of the new formula are
replaced by the parameters of the call. The substitution θ is initially empty and
it is updated by the rules 6,7,8 and 10. It is applied to the remaining atoms of
the formula using rules 1 and 4. We write F →∗ F ′ if F reduces to F ′ in 0 or
more steps. We write F

st,stf−−−→ F ′ when no further step can be done from F ′.

Modeling and Simulating Interaction Protocols Using Nested Petri Nets 139

3 PN-Based Semantics for JamSession

In [4], it was shown how to model non-recursive protocols in JamSession using
hierarchical CPNs [6]. CPNs are PNs in which each place has a type (color set)
that describes the tokens it may store. The state of a CPN, called a marking,
is a function relating each place to the multiset of tokens that inhabit it. Tran-
sitions represent actions or events that may change the marking of the net. An
incoming (respectively outgoing) arc of a transition indicates that it may remove
(respectively add) tokens from the corresponding place. The number and color
of tokens to be removed or added is determined by the arc expressions which
may contain variables. A transition is enabled in a marking if there is a binding
of the variables which satisfies the expressions on the input arcs. In this case,
the transition may fire, consuming and producing the input and output tokens
respectively.

In this section we present an informal description of the translation of Jam-
Session protocols into colored and nested PNs. As in [4], three basic color sets
are used: Ag, AgTok = Ag × Loc and Bool = {⊥,	}. The state of the graph
of locations is represented by means of a special place of AgTok type, denoted
as SGL. In addition, the CPN associated to a JamSession formula has two spe-
cial places of Bool type: one with no incoming arc (source node) and the other
one with no outgoing arc (sink node). These places are denoted as In and Out
respectively. The CPNs corresponding to a move order and a predicate call have
a single transition relating In, Out and SGL (see Fig. 1 a and b). In case of a
predicate call, after firing tp, the content of SGL remains the same and a Bool
token is produced at Out. The latter is represented by a variable (x) that indi-
cates any token value belonging to the type. In the net corresponding to a move
order, the firing of tm produces a (possibly new) token at SGL and a Bool token
at Out. The color of these tokens depends on the existence of an arc between
the involved locations. To this end, we use the function s to represent adjacency
relation of the graph and the conditional operator (? :).

The structure of the net for either A∧B or A∨B is depicted in Fig. 1c. The
substitution transitions A and B represent the nets for the operands. The input
(respectively output) place of the substitution transition is fused with the input
(respectively output) place of the associated CPN. The output token of the CPN
for A enables an intermediary transition t� that controls the activation of the
CPN for B. For the CPN of the conjunction, the outgoing arcs of t� are labeled
by the expressions (1) x = 	?	 : ∅ and (2) x = ⊥?⊥ : ∅. Here, ∅ indicates that
no token should be added to the output place1. For the CPN of a disjunction,
the expressions are defined as (1) x = ⊥?	 : ∅ and (2) x = 	?	 : ∅. Note that
this is not the usual (non-deterministic) PN representation of an alternative.
This is because JamSession disjunction evaluates the right-hand side only if the
left-hand side was previously reduced to ⊥.

If the protocol definitions are not recursive, then a hierarchical CPN can be
used to represent a formula. However, a more powerful formalism is required
1 This arc inscription is allowed e.g. by CPN Tools.

http://www.cpntools.org/

140 M.L.F. Venero and F.S.C. da Silva

Fig. 1. PNs for JamSession constructions: a) [a, l] pd(P, V); b) move(a, l1, l2); c) A�B;
d) protocol definition and e) protocol call.

for protocols that are recursively defined. In this paper we use NPNs [9], an
extension of CPNs in which tokens can be also nets. These net tokens may be
added or removed as ordinary ones. In addition, they are allowed to change the
marking by firing their own internal transitions. More precisely, a NPN is formed
by several CPNs (SN,EN1, . . . , ENn), one of them called system net (SN) and
the rest element nets. Each ENi is considered as a type whose values are marked
nets of the form (ENi,M). The firing of a transition t, in SN or a marked net,
may be performed according to the classical PN rules. In addition, a net token
may synchronize the firing with another net token at the same place (horizontal
synchronization step) or with the parent net (vertical synchronization step). The
synchronization is performed by means of two disjoint sets of labels, respectively
Labh and Labv, which are attached to transitions. It is assumed that for each
label l ∈ Labv there is a complementary label l̄ ∈ Labv.

In our model, we associate an element net to each protocol definition. The net
(say EN pt) is built by adding two sink transitions at the Out place of the protocol
formula, as shown in Fig. 1d. These transitions represent the two possible results
of a protocol call and they are labeled for vertical synchronization. A protocol
call is modeled as depicted in Fig. 1e. After the In node, the net has a transition
which creates a net token of EN pt type (say nt) at an intermediary place (pc).
The initial marking of nt has a token 	 at the source place and the remaining
places are empty. The child net may perform several steps, corresponding to the
reduction sequence of the protocol call. Once nt reaches a final marking (i.e. a
Bool token at its Out place) the execution of the protocol call terminates and one
of the sink transitions gets enabled. The complementary transition at the parent
net will be also enabled by the binding z = nt. Hence, a vertical synchronization

Modeling and Simulating Interaction Protocols Using Nested Petri Nets 141

occurs, the transitions fire, nt is removed from pc and a Bool token is added at
the Out place of the parent net.

4 Formal Translation of Jamsession Protocols into NPNs

In the later we provide the formal translation of Jamsession protocols into NPNs.
To this end, firstly we adapt the definition of NPN from [9] for sharing some
places of the system net. Besides, we restrict ourselves to autonomous steps and
the vertical steps that remove the net tokens involved. As usual in CPNs, we
have a set of finite basic types and a set of basic constants belonging to these
types. The element nets represent types and constants. We assume that the arc
expressions are multisets over the constants and typed variables. However, we
will omit the braces for multisets of a single element.

Definition 1. A NPN is a tuple N = (Σ,Ps, L, (EN0, EN1, . . . , ENn)) s.t. Σ
is a finite set of non-empty basic types, Ps is a finite set of shared places and L
is a set of labels s.t. for each l ∈ L, there is a complementary label l̄ ∈ L s.t. ¯̄l = l
and for all l1, l2 ∈ Labv, l1 �= l2 implies l̄1 �= l̄2. Furthermore, for all i = 0 . . . n,
ENi = (P,C, I, T, Λ,A,W) (called net component) is a colored Petri Net where

– P is a finite set of places s.t. Ps ⊂ P if i = 0 and P ∩ Ps = ∅ if i > 0,
– C : P → Σ ∪ {{EN1}, . . . , {ENn}} is a type function s.t. for all p ∈ Ps,

C(p) ∈ Σ,
– I is the initial function defined from P into closed expressions over Σ,
– T is a finite set of transitions s.t. P ∩ T = ∅,
– Λ is a partial function from T to L,
– A ⊆ ((Ps ∪ P) × T) ∪ (T × (Ps ∪ P)) is a set of arcs,
– W is an arc expression function defined from A to expressions s.t.

• there are no net constants in input arc expressions;
• every variable has at most one occurrence in each input arc expression;
• given two arcs (p1, t) and (p2, t), V ar(W (p1, t)) ∩ V ar(W (p2, t)) = ∅;
• for each net variable x ∈ V ar(W (t, q)) there should be one input arc of t
s.t. x ∈ V ar(W (p, t)); and

• if Λ(t) is defined and x ∈ V ar(W (p, t)) ∩ V ar(W (t, q)) then C(x) ∈ Σ.

The net components share a set of places of basic types belonging to EN0.
The remaining places and transitions of the net components are pairwise disjoint.
A marking of an element net is inductively defined as follows.

– A marking of ENi over N , 1 ≤ i ≤ n, is a function M , mapping each place p
in ENi to a finite multiset over Σ. The pair (ENi,M) is called a marked net
component or a net token of ENi.

– Let Σ̄ be a set of marked net components. Then a function M , mapping each
place in a net component ENi to a finite multiset over Σ̄ ∪Σ, is also marking
of ENi over N .

142 M.L.F. Venero and F.S.C. da Silva

Let Σ̄ denote the set of net tokens of NPN N . A marking of N is a function
M , mapping each place in the net component EN0 to a finite multiset over Σ̄∪Σ.
Any marking must respect the type definition of the place. Hence, for all p ∈ P ,
if C(p) ∈ Σ, then M(p) is a multiset over C(p); otherwise M(p) is a multiset
of net tokens of C(p). The initial marking of any net component is the marking
obtained from the initialization expressions. The constant ENi represents the
marked net (ENi, Ii). The initial marking of N is denoted as I0. By definition,
all places with net type are initially empty.

Given a transition t in a net component ENi, we write W (t) for the set
{W (a)|a = (p, t) ∈ A}. A binding for t is a function b assigning to each variable
v ∈ W (t) a value from Σ̄ ∪ Σ (of the corresponding type). It is extended in a
straightforward way to set of expressions. A transition t may fire in a marking
M if it is enabled w.r.t. a binding b, i.e. for all a = (p, t) ∈ A, b(W (a)) ⊆ M(p).
If so, after the firing, it is obtained a new marking M ′ s.t. for any place p,
M ′(p) = (M(p) − b(W (p, t))) ∪ b(W (t, p)). This is denoted as M [t〉M ′. The set
{b(x) /∈ Σ | x ∈ W (p, t)} are the net tokens involved in the firing of t.

An autonomous step is the firing of an unlabeled transition in SN or in a
net token, according to the above rule. A vertical step is the firing of a transi-
tion t, labeled as l = Λ(t) and the firing of a transition labeled as l̄ in all net
tokens involved in the firing of t. Due to the restrictions on the arc expressions,
any vertical step removes the involved net tokens. We say that M ′ is directly
reachable from M , denoted as M [〉M ′, if there is an autonomous or vertical step
s.t. M [t〉M ′. A marking M is called dead if there is no directly reachable mark-
ing from it. It is called reachable if there is a sequence of zero or more steps
I0[〉M1[〉 . . . [〉Mk s.t. Mk = M . This is denoted as I0[∗〉M . A NPN terminates if
there is no infinite sequence of steps starting from I0.

The next definition provides the formal translation of a JamSession formula
F into a NPN. As we mentioned in the previous section, the element nets are
obtained from the protocols definitions and the system net is the net associated to
F . Case I.1.a of the definition deals with the translation of 	 and ⊥. Cases I.1.b,
I.1.c, I.2, I.3 and II correspond to the nets in Fig. 1a, b, c, d and e respectively.
The initial marking of SN has a token 	 at the source and the SGL place with
the initial state of the graph of locations.

Definition 2. Let J = 〈Loc, Path,Ag, V ar, D, Pred, φ, Prot, ψ〉 be a JamSes-
sion specification, F be a JamSession formula and st an initial configuration
of the graph. The NPN associated to J and F is N = ({Bool, Ag,AgTok},
{SGL}, {λ�, λ̄�, λ⊥, λ̄⊥}, (ENF , ENpt1 , . . . , ENptk)) where

I- ENF = ({SGL} ∪ P,C, I, T, Λ,A,W) is s.t. C(SGL) = AgTok, I(SGL) is
the multiset obtained from st and
1. If F ∈ {	,⊥} or F = move(a, l1, l2) or F = [a, l] pd(. . .) then P =

{In,Out}, C(In) = C(Out) = Bool, I(In) = 	 and Λ = ∅. Besides,
a. If F ∈ {	,⊥} then T = {tF }, A = {a1 = (In, tF), a2 = (tF , Out)},

W (a1) = 	 and W (a2) = F .

Modeling and Simulating Interaction Protocols Using Nested Petri Nets 143

b. If F = [a, l] pd(. . .) then T = {tp}, A = {a1 = (In, tp), a2 =
(tp, Out), a3 = (SGL, tp), a4 = (tp, SGL)}, W (a1) = 	, W (a2) = x
is a Bool variable, W (a3) = W (a4) = (a, l).

c. If F = move(a, l1, l2) then T = {tm}, A = {a1 = (In, tm), a2 =
(tm, Out), a3 = (SGL, tm), a4 = (tm, SGL)}, W (a1) = 	, W (a2) =
s(l1, l2)?	 : ⊥, W (a3) = (a, l1) and W (a4) = (a, s(l1, l2)?l2 : l1).

2. If F = F1 � F2 with � ∈ {∨,∧}, let N1 and N2 the nets constructed for
F1 and F2. Then P = P1 ∪ P2, C = C1 ∪ C2, I = I1, T = T1 ∪ T2 ∪ {t�},
Λ = Λ1 ∪ Λ2, A = A1 ∪ A2 ∪ {a1 = (Out1, t�), a2 = (t�, In2), a3 =
(t�, Out2)} and W = W1 ∪ W2 ∪ {W (a1) = x} ∪ W�. If F = F1 ∧ F2,
then W� = {W (a2) = x = 	?	 : ∅,W (a3) = x = ⊥?⊥ : ∅}; otherwise
F = F1 ∨ F2 and W� = {W (a2) = x = ⊥?	 : ∅,W (a3) = x = 	?	 : ∅}.

3. If F = [l] pt(. . .) then P = {In,Out, pc}, C(pc) = {ENpt}, T =
{tc, t�, t⊥}, Λ(t�) = λ̄�, Λ(t⊥) = λ̄⊥, A = {a1 = (In, tc), a2 = (tc, pc),
a3 = (pc, t�), a4 = (pc, t⊥), a5 = (t�, Out), a6 = (t⊥, Out)}, W (a1) = 	,
W (a2) = ENpt, W (a3) = W (a4) = z is a variable of ENpt type,
W (a5) = 	 and W (a6) = ⊥.

II- There is one component net ENpti for each protocol definition ψ(pt, l) =
(F1, Vi, Vo). The net ENpt = (P,C, I, T, Λ,A,W) is constructed from the
net N1 = (P1, C1, I1, T1, Λ1, A1,W1) corresponding to F1. This way, we have
P = P1 − {SGL}, C = C1 − {C1(SGL)}, I = I1, T = T1 ∪ {tr�, tr⊥},
Λ = Λ1 ∪ {Λ(tr�) = λ�, Λ(tr⊥) = λ⊥}, A = A1 ∪ {a1 = (Out, tr�), a2 =
(Out, tr⊥)} and W = W1 ∪ {W (a1) = 	,W (a2) = ⊥}.
In Appendix A, Proposition 1, we prove that this translation preserves the

semantics of Table 1, i.e, any reduction sequence of F can be simulated by a firing
sequence of N . If the computation of F is finite the firing sequence is also finite
and ends with the same state of the graph. If F leads to an infinite execution
then the net has also an infinite firing sequence. Furthermore, if we label each
reduction step and each autonomous step of the net with the involved operation
([a, l]pd,move(a, l1, l2),∨,∧, [l]pt), then we can show that the resulting sequences
of labels are the same. The translation models all possible reduction sequences of
the formula, abstracting away from input/output parameters and even the initial
configuration of the graph. Therefore, the behavior of the net may include firing
sequences corresponding to infeasible execution sequences. But these sequences
may become feasible when F becomes part of an interaction or some predicate
definition changes.

5 The Dynamic Behavior of Concurrent Protocols

Workflow definitions provide an effective method for specifying the execution
flow of a set of tasks. They can be modeled by PNs where the tasks are repre-
sented by transitions and the places represent causal dependencies. These nets
are called Workflow Nets (WF-nets) [12] and they have a unique source place i
and a unique sink place o. Furthermore, every other place or transition is on a

144 M.L.F. Venero and F.S.C. da Silva

path from i to o. The initial and final markings of the net have a single token at
i and o resp and are denoted in the same way.

The dynamic behavior of a JamSession interaction can be specified by means
of a NPN where the system net models the execution flow of a set of concurrent
formulas. The net SN can be obtained from a WF-net (say WN) by replacing
each transition corresponding to a task (say T) with the JamSession net associ-
ated to a formula (say NF). Let In and Out be the source and the sink of NF
respectively. Then, the next rules can be used for the replacement of T by NF :

1. Add transitions it and ot and arcs (it, In) and (Out, ot) labeled as 	 and z
respectively, where z is aBool variable.

2. Replace each arc (p, T) or (T, p) by (p, it) or (ot, p) respectively.

As an alternative, the formula may be defined as an element net instead of
embedding it in the WF-net. In this case the rules are:

1. Add a sink transition t to NF with a label for vertical synchronization, e.g. λ.
Furthermore, add an arc (Out, t) with a Bool variable as the label and define
the resulting net as an element net, say ENF .

2. Add a place pF of ENF type to the WF-net and two transitions it and ot s.t.
ot is labeled as λ̄. Furthermore, add the arcs (it, pF) and (pF, ot) labeled as
ENF and z respectively, where z is a variable of ENF type.

3. Replace each arc (p, T) or (T, p) by (p, it) or (ot, p) respectively.

In both cases, the last rule must preserve the arc labels. The latter replace-
ment is more suitable for interactions that require the parallel composition of
multiple instances of the same formula. In such a case, the expression of the arcs
(it, pF) and (pF, ot) should be defined with a number of constants and variables
according to number of required instances.

Example 2. The interaction of Example 1 can
be modeled using the WF-net for the paral-
lel composition of two tasks (shown on the
right). In Fig. 2, the tasks have been replaced
(using the two approaches above) by the nets
corresponding to each protocol call. The net
tokens are represented as black dots with an arrow pointing to the marked net.
The starts stand for a net of a predicate call or a move order.

A workflow is correct if its WF-net is sound [12]. Three conditions are
required to satisfy this property. First, from the initial marking, it is always
possible to reach the final state. Second, the final marking is the only marking
reachable with a token at o. Finally, every task must be performed for at least
one execution of the workflow. We use this property to define the correctness
of a JamSession interaction. Note that the net resulting from the above rules is
also a WF-net and preserves all the nodes from WN . Therefore, we may assume
that any marking of WN is also a marking of N (the remaining places of SN are
empty, except SGL). In a sound interaction there should be no conflict in the
use of agents, i.e, if the evaluation of a predicate or mover order is required then

Modeling and Simulating Interaction Protocols Using Nested Petri Nets 145

Fig. 2. A system net for the JamSession interaction of Example 1

it will be eventually completed. Furthermore, the interaction should terminate
by reducing all formulas along a workflow path to a truth value. The soundness
of WN ensures that if there exists a dead state other than o, then it is due to a
transition in the net of a formula, in particular a predicate or move transition.

Definition 3. Let SF = {F1, . . . , Fn} be a set of formulas over a JamSession
specification J . Let WN be a sound WF-net over the tasks T1, . . . , Tn where for
all 1 ≤ i ≤ n, Ti is associated to Fi. Furthermore, let N be the NPN obtained
from J , SF and WN . The interaction N is sound for an initial marking I0 if
and only if N terminates and for any marking M , I0[∗〉M implies M [∗〉o.

The NPNs in which the vertical synchronization consumes the child nets
are called NPNs with autonomous elements. For these nets, a finite coverability
tree can be effectively constructed [9]. The leaves of this tree allow to decide
termination and investigate properties of infinite sequences and dead markings.
The nets defined in Sect. 4 are NPNs with autonomous elements in which the net
tokens may share a set of basic places belonging to SN . This extension has little
influence on the construction of the coverability tree. Therefore, the soundness
property for a JamSession interaction can be decided by inspecting the leaves of
this tree. See Appendix A, Proposition 2 for further details.

6 Conclusions

The NPN approach provided a suitable framework for modeling and simulating
the interaction protocols in JamSession. The translation presented in this work

146 M.L.F. Venero and F.S.C. da Silva

is well-suited for automation and can be extended to other constructions. For
simplicity, we encoded agents and locations as colored tokens. However, the place
SGL can be unfolded into several places corresponding to locations and the
agents behavior can be represented as element nets. The model is easily adapted
to allow predicates dealing with several agents that may be synchronized to
perform a common task. The environment (e.g. the topology of the graph and
its initial configuration) and the protocols can be modified without affecting the
system structure. Therefore, we believe it can be helpful for analyzing multi-
agent interactions involving recursion, e.g. in related initiatives such as LCC.
The main disadvantage of this approach is the lack of automated tools for NPNs.
Nevertheless, model checking tools can help in verifying termination, reachability
and the soundness property defined in this paper. Preliminary results on this
direction can be found in [13].

Acknowledgments. The authors are grateful to the anonymous reviewers for their
comments on an earlier version of this paper.

A Proofs

In this section we prove that, given a JamSession formula F and an initial config-
uration of the graph, the NPN obtained from Definition 2 has a firing sequence
that simulates the reduction sequence of F (Proposition 1). Furthermore, we
show that the soundness property defined for a JamSession interaction is decid-
able (Proposition 2). In the later we say that a marking Mf of a NPN associated
to a JamSession formula is final if there is a single token c at the sink place and
all other places, but SGL, are empty. This is denoted as M c

f . We will assume
that a marking may contain empty places not belonging to the net.

Lemma 1. Let J be a JamSession specification, F be a JamSession formula, st
an initial configuration of the graph of locations and N be the NPN associated
to J and F . If F

st,stf−−−→ c with c ∈ Bool then there is Mf s.t. I0[∗〉M c
f and

M c
f (SGL) = stf .

Proof. The property trivially holds if F ∈ {	,⊥}: the only transition in net
(tF) is enabled in I0 and, after it fires, the final marking MF

f is obtained. Hence,
we have I0[tF 〉M c

f with F = c and I0(SGL) = M c
f (SGL) = st = stf . If F =

move(a, l1, l2) then F
st,stf−−−−→ c either by rule 6 or 7. In both cases we have

st(a) = l1 and, by definition of N , I0 has a token (a, l1) at SGL. Since I0(In) =
	, the transition tm is enabled and an autonomous step occurs. After that, the
In place is empty, the Out place has a token which coincides with c and SGL
is updated according to the rule applied. Hence, I0[tm〉M c

f and M c
f (SGL) = stf

holds. When F = [a, l] pd(. . .) then F
st,stf−−−−→ c by rule 8 and hence st(a) = l.

Therefore, (a, l) ∈ I0(SGL), the transition tp is enabled and an autonomous
step occurs. After that, the In place is empty, SGL remains unchanged and the

Modeling and Simulating Interaction Protocols Using Nested Petri Nets 147

Out place has a token c using the binding x = c. Thus, we have I0[tp〉M c
f and

I0(SGL) = M c
f (SGL) = st = stf .

For the remaining cases, we use induction on the length of the sequence

F
st,stf−−−→ c. If F = F1 ∧ F2, then by rules 3–5, we have that F1

st,st1f−−−→ c1
with c1 ∈ {	,⊥}. Note that I0 can be considered as an initial marking for the
net obtained from F1, say N1. By induction, there is a final marking Mf,1 s.t.
I0[∗〉M c1

f,1 and M c
f (SGL) = st1f . This marking for N1 also enables the transition

t∧ which, after firing, removes c1 from Out1. If c1 = ⊥ then F
st,st1f−−−→ c1 using

rule 3 and t∧ adds c1 = c to Out2 which is also the sink place of N . Hence, we
have I0[∗〉M c1

f,1[t∧〉M c
f and M c

f (SGL) = st1f = stf . On the contrary, if c1 = 	
then F →∗ 	 ∧ F2

st1f ,θ,st1f ,θ−−−−−−−→ F2θ by rule 4. Besides, c1 is added at In2 by t∧,
leading to a marking M ′. The net N2 for F2 coincides with net for F2θ (say N ′

2)
and M ′ is an initial marking for N ′

2. Using induction, we have that if F2θ →! c
then there M ′[∗〉M c

f and M c
f (SGL) = stf . Since M c

f is also a final marking for
N , we obtain I0[∗〉M c1

f,1[t∧〉M ′[∗〉M c
f . The proof is analogous in case F = F1∨F2.

When F = [l] pt(. . .) we have F
st,θ,st,θ−−−−−→ F1 by rule 9. Let N1 be the net

associated to F1. By the induction hypothesis, if F1
st,stf−−−→ c then there is Mf,1

s.t. I1 = M11[〉M21[∗〉Mk1 = M c
f,1 and M c

f,1(SGL) = stf . Note that, in N ,
the transition tc is enabled and we have the autonomous step I0[tc〉M1 where
M1(In) = M1(Out) = ∅ and M1(pc) = (ENpt, Ipt). By Definition 2, the ele-
ment net ENpt has the same structure as N1, except for SGL and the two
sink transitions at the end. Hence, the marking Ipt ∪ I0(SGL) coincides with
I1. Furthermore, for every marking Mi1 in the sequence I1[∗〉M c

f,1 we obtain a
marking Mi in N by defining Mi(In) = Mi(Out) = ∅, Mi(SGL) = Mi1(SGL)
and Mi(pc) = (ENpt,Mi1 − Mi1(SGL)) with 1 ≤ i ≤ k. Thus, we obtain a
sequence M1[〉M2[∗〉Mk of autonomous steps in N . The marking Mk enables the
transition trc in the net token at pc. At the same time, the transition tc in N
gets enabled. Therefore, by a vertical step, the net token is removed from pc and
a token c is added at Out reaching desired final marking. All in all, we obtain
the sequence I0[〉M1[∗〉Mk[〉M c

f s.t. M c
f (SGL) = stf . ��

Lemma 2. Let J be a JamSession specification, F be a JamSession formula, st
an initial configuration of the graph of locations and N be the NPN associated

to J and F . If F
st,st′
−−−→ F ′ with F ′ /∈ Bool then there is a dead marking M s.t.

I0[∗〉M , M(SGL) = st′ and M(Out) = ∅.
Proof. If F = F ′ then either F = move(a, l1, l2) or F = [a, l] pd(. . .) none of the
rules can be applied. This is due to the fact that st(a) �= l1 and hence in the
initial marking I0, there is no token (a, l1) at SGL. Therefore, the only transition
in net is not enabled, the initial marking is dead and we obtained I0[∗〉I0 = M ,
M(Out) = ∅ and M(SGL) = st = st′.

We proceed using induction on the length of the sequence F
st,st′
−−−→ F ′ and

the size of the formula. If F = F1 � F2 with � ∈ {∨,∧} then we have the next

148 M.L.F. Venero and F.S.C. da Silva

two cases. Let N1 and N2 be the nets obtained from F1 and F2 respectively. If
F1

st,st1−−−→ F ′
1 with F ′

1 /∈ Bool then F ′ = F ′
1 �F2 and st1 = st′. Using induction we

have that, for N1 there is a dead marking M ′
1 s.t. I0[∗〉M ′

1 and M ′
1(SGL) = st1.

Since Out1 (the sink place of N1) is empty, the transition t� is not enabled and

the marking is also dead for N . Otherwise, F1
st,st1−−−→ c and F →∗ c�F2

st1,θ,st1,θ−−−−−−→
F2θ

st1 ,st′
−−−−→ F ′. Then, by Lemma 1, I0[∗〉M c

f,1 for N1. The same firing sequence
can be considered for N leading to the firing of the transition t�. The marking
obtained is an initial marking for N2 (which coincides with the net for F2θ).
Let denote this marking as I1. Now, using induction, we have that I1[∗〉M , M
is dead, M(SGL) = st′ and M(Out2) = ∅. The required result holds since
I0[∗〉M�

f,1[t�〉I1[∗〉M and M is also a dead for N .

Finally, if F = [l] pt(. . .) we have F
st,θ,st,θ−−−−−→ F1 by rule 9. By the induction

hypothesis, the net N1 corresponding to F1 has a firing sequence s.t. I1[∗〉M1,
M1 is a dead marking, I1(SGL) = st, M1(SGL) = st′ and the sink place of
N1 is empty. For the net N we have I0[tc〉M ′ where M ′(In) = M ′(Out) = ∅
and M ′(pc) = (ENpt, Ipt). Since ENpt has the same set of places as N1 except
for SGL, the sequence I1[∗〉M1 can be considered as the inner sequence of the
net token at pc. Hence, we obtain a sequence I0[∗〉M ′[∗〉M of autonomous steps
in N s.t. M(SGL) = st′. However, since M1 is dead and the Out place of the
net token is empty, the transitions for vertical synchronization will never fire.
Therefore M is also dead in N . ��
Proposition 1. Let J be a JamSession specification, F ∈ Σ be a JamSession
formula, st an initial configuration of the graph of locations and N be the NPN
associated to J and F . Then, there is a firing sequence of N simulating the
reduction sequence of F .

Proof. When the reduction sequence of F is finite, the result follows from Lem-
mas 1 and 2. It remains to show that, if there is an infinite sequence of reductions
starting from F and st then there is also an infinite firing sequence with N .
Note that, all rules of Table 1 reduce the size of the formula w.r.t the num-
ber of operations and entities, but the last one. Hence, if there is an infi-
nite reduction sequence from F , there is also an infinite reduction sequence
from a protocol call which is a subterm of F . Therefore, we may assume that
F = F1 � [l]pt(...) � F2 →∗ [l]pt(...) � F2 and [l]pt(...) leads to an infinite reduc-
tion sequence. Since F1 →! c, we use Lemma 1 to obtain a firing sequence of
N till the creation of the net token corresponding to [l]pt(...). Using induction
on the marking structure we obtain an infinite firing sequence corresponding to
the reduction sequence of [l]pt(...). From that firing sequence, we construct an
infinite sequence of autonomous steps for N which completes the proof. ��
Proposition 2. Soundness is decidable for JamSession interactions.

Proof. The coverability tree for a NPN with autonomous elements is constructed
in [9] as follows. The nodes of the tree are labeled with markings of N . The root
of the tree is labeled as I0 and any internal node labeled by M has a child

Modeling and Simulating Interaction Protocols Using Nested Petri Nets 149

node labeled M ′ for each M ′ s.t. M [〉M ′. The leaves of the tree are classified as
final (dead markings), covering (markings leading to infinite cycles) and iterative
(markings leading to infinite recursion). A node labeled as M ′ is called covering
if it has an ancestor labeled as M s.t. M � M ′, where � is a quasi-ordering based
on the tree structure of the markings. A node labeled as M ′ is called iterative if
it has an ancestor labeled as M s.t. both markings are obtained from the firing
of a transition t that generates the same net token, and the last token is nested
in the first one. The net is terminating if all leaves are final.

The extension introduced in Definition 1 does not affect the tree structure of
the markings. This is due to the fact that the shared places belong to SN and
no net token is created for this net component. Therefore, for these nets, the
quasi-ordering � and the covering nodes can be defined as in [9]. Nevertheless,
a further condition is required in order to ensure that an iterative node leads to
an infinite recursive sequence. Since the transition t may have shared places as
input, we should also demand that M ′ covers the marking of the shared places
in M , i.e. M(Ps) � M ′(Ps). This relation can be effectively computed for places
of basic type (or even for multi-level nets). Therefore, the coverability tree is
finite. In order to decide the soundness of Definition 3 it is enough to check that
all leaves of the tree are labeled by markings with a single token at o and the
remaining places empty, except SGL. These markings are dead because o is a
sink and there is no transition in N having SGL as the only input place. ��

References

1. Bandini, S., Manzoni, S., Vizzari, G.: Multi-agent approach to localization prob-
lems: the case of multilayered multi-agent situated system. Web Intell. Agent. Syst.
2(3), 155–166 (2004)

2. Chang, L., He, X., Shatz, S.M.: A methodology for modeling multi-agent systems
using nested Petri nets. Int. J. Softw. Eng. Knowl. Eng. 22(7), 891–925 (2012)

3. Corrêa da Silva, F.S.: Knowledge-based interaction protocols for intelligent inter-
active environments. Knowl. Inf. Syst. 30, 1–24 (2012)

4. Corrêa da Silva, F.S., Venero, M.L.F., David, D.M., Saleemb, M., Chung, P.W.H.:
Interaction protocols for cross-organisational workflows. Knowl. Based Syst. 37,
121–136 (2013)

5. Esteva, M., Rodŕıguez-Aguilar, J.A., Sierra, C., Garcia, P., Arcos, J.L.: On the
formal specification of electronic institutions. In: Sierra, C., Dignum, F.P.M. (eds.)
AgentLink 2000. LNCS (LNAI), vol. 1991, pp. 126–147. Springer, Heidelberg (2001)

6. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Springer, Heidelberg (1992)

7. Köhler, M., Moldt, D., Rölke, H.: Modelling mobility and mobile agents using nets
within nets. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol.
2679, pp. 121–139. Springer, Heidelberg (2003)

8. Lomazova, I.A., Schnoebelen, P.: Some decidability results for nested Petri Nets.
In: Bjorner, D., Broy, M., Zamulin, A.V. (eds.) PSI 1999. LNCS, vol. 1755, pp.
208–220. Springer, Heidelberg (2000)

9. Lomazova, I.A.: Recursive nested Petri nets: analysis of semantic properties and
expessibility. Program. Comput. Softw. 27(4), 183–193 (2001)

150 M.L.F. Venero and F.S.C. da Silva

10. Lomazova, I.A.: Modeling dynamic objects in distributed systems with nested Petri
nets. Fundam. Informaticae 51(1–2), 121–133 (2002)

11. Robertson, D.: Multi-agent coordination as distributed logic programming. In:
Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 416–430.
Springer, Heidelberg (2004)

12. van der Aalst, W.M.P.: Interorganizational workflows: an approach based on mes-
sage sequence charts and Petri nets. Syst. Anal. Model. Simul. 34(3), 335–367
(1999)

13. Fernández Venero, M.L., Corrêa da Silva, F.S.: On the use of SPIN for studying
the behavior of nested Petri Nets. In: Iyoda, J., de Moura, L. (eds.) SBMF 2013.
LNCS, vol. 8195, pp. 83–98. Springer, Heidelberg (2013)

	Modeling and Simulating Interaction Protocols Using Nested Petri Nets
	1 Introduction
	2 The JamSession Platform
	3 PN-Based Semantics for JamSession
	4 Formal Translation of Jamsession Protocols into NPNs
	5 The Dynamic Behavior of Concurrent Protocols
	6 Conclusions
	A Proofs
	References

