
Towards Global and Local Types for Adaptation

Mario Bravetti1(B), Marco Carbone2, Thomas Hildebrandt2, Ivan Lanese1,
Jacopo Mauro1, Jorge A. Pérez3, and Gianluigi Zavattaro1

1 Lab. Focus, University of Bologna/INRIA, Bologna, Italy
{bravetti,jmauro}@cs.unibo.it

2 IT University of Copenhagen, Copenhagen, Denmark
3 CITI and Departamento de Informática, FCT - Universidade Nova de Lisboa,

Lisboa, Portugal

Abstract. Choreographies allow designers to specify the protocols fol-
lowed by participants of a distributed interaction. In this context, adap-
tation may be necessary to respond to external requests or to better
suit a changing environment (a self-update). Adapting the behavior of a
participant requires to update in a coordinated way possibly all the par-
ticipants interacting with him. We propose a language able to describe a
choreography together with its adaptation strategies, and we discuss the
main issues that have to be solved to enable adaptation on a participant
code dealing with many interleaved protocols.

1 Introduction

Modern complex distributed software systems face the great challenge of adapting
to varying contextual conditions, user requirements or execution environments.
Service-oriented Computing (SOC), and service-oriented architectures in gen-
eral, have been designed to support a specific form of adaptation: services can
be dynamically discovered and properly combined in order to achieve an overall
service composition that satisfies some specific desiderata that could be known
only at service composition time. Rather sophisticated theories have been defined
for checking and guaranteeing the correctness of these service assemblies (see,
e.g., the rich literature on choreography/orchestration languages [2,14], behav-
ioral contracts [6,7], and session types [4,5,12]). In this paper, we consider a more
fine-grained form of adaptation that can occur when the services have been already
combined but have not yet completed their task.This formof adaptationmay arise,
for instance, when the desiderata dynamically change or when some unexpected
external event occurs. In particular in the context of computer-supported case
management, e.g. for health-care or financial services, changes are the norm rather
than the exception. This has lead to an increasing interest both from academia
and industry in the development of technologies supporting dynamic changes in
choreographies and processes, collectively referred to as adaptive casemanagement
(ACM) [17,19] and being addressed in the recent proposal for a Case Management
Model and Notation (CMMN) from OMG [18]. For such technologies, it is crucial

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 3–14, 2014.
DOI: 10.1007/978-3-319-05032-4 1, c© Springer International Publishing Switzerland 2014

4 M. Bravetti et al.

that modifications occur in a consistent and coordinated manner in order to avoid
breaking the correctness of the overall service composition.

In this paper, we initiate the investigation of new models and theories for ser-
vice composition that properly take into account this form of adaptation. First of
all, we extend a previous language for the description of service choreographies [2]
with two operators: the first one allows for the specification of adaptable scopes
that can be dynamically modified, while the second may dynamically update
code in one of such scopes. This language is designed for the global description
of dynamically adaptable multi-party interaction protocols. As a second step
in the development of our theory, we define a service behavioral contract lan-
guage for the local description of the input-output communications. In order to
support adaptation, also in this case we enhance an existing service contract
language [2] with two new operators for adaptable scope declaration and code
update, respectively. The most challenging aspect to be taken into account is
the fact that, at the local level, peers should synchronize their local adaptations
in order to guarantee a consistent adaptation of their behavior. As mentioned
above, these two languages are expected to be used to describe multi-party pro-
tocols from global and local perspectives, respectively. The relationship between
the two languages is formalized in terms of a projection function which allows
us to obtain endpoint specifications from a given choreography.

The complete theory that we plan to develop will also consider a concrete
language for programming services; such a language will include update mech-
anisms like those provided by, for instance, the Jorba service orchestration lan-
guage [13]. The ultimate aim of our research is to define appropriate behavioral
typing techniques able to check whether the concretely programmed services
correctly implement the specified multi-party adaptable protocols. This will be
achieved by considering the global specification of the protocol, by projecting
such specification on the considered peer, and then by checking whether the
actual service correctly implements the projected behavior. In order to clarify
our objective, we discuss an example inspired by a health-care scenario [16].
Two adaptable protocols are described by using the proposed choreography lan-
guages: the first protocol describes the interaction between the doctor and the
laboratory agents, while the second involves a doctor, a nurse, and a patient. In
case of emergency, the doctor may speed up the used protocols by interrupting
running tests and avoiding the possibility that the nurse refuses to use a medi-
cine she does not trust —this possibility is normally allowed by the protocol.
Then, using a π-calculus-like language, we present the actual behavior of the
doctor and discuss the kinds of problems that we will have to address in order
to define appropriate behavioral type checking techniques.

Structure of the Paper. The next section introduces choreography and endpoint
languages with adaptation constructs, and the projection function that relates
global and local specifications. Then, in Sect. 3 we outline a concrete specifica-
tion language and discuss the health-care scenario. In Sect. 4 we present some
concluding remarks and briefly review related works.

Towards Global and Local Types for Adaptation 5

Disclaimer. This paper discusses ongoing work supported by the “Behavioural
Types for Reliable Large-Scale Software Systems” (BETTY) Cost Action. Our
main aim is to report about the current state of this research activity.

2 Choreography and Endpoint Languages for Adaptation

In the paper, we use the following sets: channels, ranged over by a, a′, . . .;
scope names, ranged over by X,X ′, . . .; and roles/participants, ranged over by
r, r1, r2, Also, we use T, T ′, . . . to denote sets of roles.

2.1 Choreography Language

Syntax. We describe here the syntax of our choreography language. To this end,
we first define a set of so-called choreography terms. Then, by requiring some
well-formedness conditions on such terms, we obtain actual choreographies.

The syntax of choreography terms is as follows:

C ::= ar1→r2 (interaction) | C ; C (sequence)
| C | C (parallel) | C + C (choice)
| C∗ (star) | 1 (one)
| 0 (nil)
| X : T [C] (scope) | Xr{C} (update)

The basic element of a choreography term C is an interaction ar1→r2 , with the
intended meaning that participant r1 sends a message to participant r2 over
channel a. Two terms C1 and C2 can be composed in sequence (C1 ; C2), in
parallel (C1 | C2), and using nondeterministic choice (C1 + C2). Also, a chore-
ography term may be iterated zero or more times using the Kleene star ∗. The
empty choreography term, which just successfully terminates, is denoted by 1.
The deadlocked choreography term 0 is needed for the definition of the seman-
tics: we will assume that it is never used when writing a choreography (see
Definition 1).

The two last operators deal with adaptation. Adaptation is specified by defin-
ing a scope that delimits a choreography term that, at runtime, may be replaced
by a new choreography term, coming from either inside or outside the system.
Adaptations coming from outside may be decided by the user through some
adaptation interface, by some manager module, or by the environment. In con-
trast, adaptations coming from inside represent self-updates, decided by a part
of the system towards itself or towards another part of the system, usually as
a result of some interaction producing unexpected values. Adaptations from
outside and from inside are indeed quite similar, e.g., an update decided by
a manager module may be from inside if the manager behavior is part of the
choreography term, from outside if it is not. Construct X : T [C] defines a scope
named X currently executing choreography term C — the name is needed to
designate it as a target for a particular adaptation. Type T is the set of roles
(possibly) occurring in the scope. This is needed since a given update can be

6 M. Bravetti et al.

applied to a scope only if it specifies how all the involved roles are adapted.
Operator Xr{C} defines internal updates, i.e., updates offered by a participant
of the choreography term. Here r denotes the participant offering the update, X
is the name of the target scope, and C is the new choreography term.

Not all choreography terms generated by the syntax above are useful chore-
ographies. To formally define the choreography terms which actually represent
choreographies, we rely on some auxiliary definitions. The set of roles inside a
choreography term C, denoted roles(C), is defined inductively as follows:

roles(ar1→r2) = {r1, r2} roles(Xr{C}) = {r}
roles(X : T [C]) = T ∪ roles(C) roles(C∗) = roles(C)
roles(C1 ; C2) = roles(C1 | C2) = roles(C1 + C2) = roles(C1) ∪ roles(C2)

roles(1) = roles(0) = ∅
Notice that for Xr{C} we consider role r but not the roles in C. This is

because Xr{C} may correspond to an external update on some different chore-
ography term. We are now ready to define choreographies.

Definition 1. (Choreography). A choreography term C is a choreography if:

1. C does not contain occurrences of 0;
2. all names of scopes in C are pairwise distinct;
3. C is well-typed, i.e. for every scope X : T [C ′] occurring in C:

– roles(C ′) ⊆ T and
– every update prefix Xr{C ′′} occurring in C is such that roles(C ′′) ⊆ T .

We use type(X) to denote the type T associated to the unique scope X : T [C ′].

Semantics. We now define the semantics of choreography terms via a labeled
transition system. As in the syntax, the most interesting part of the semantics
concerns update constructs. Recall that T is a set of roles. In the definition below,
we use C[C ′/X] to denote the substitution that replaces all scopes X : T [C ′′]
with name X occurring in C (not inside update prefixes) with X : T [C ′]. As
usual, transition C

α−→ C ′ intuitively says that choreography term C may evolve
to C ′ by performing an action represented by a label α. Our set of labels includes√

(termination), ar1→r2 (interaction), and Xr{C} (update).

Definition 2. The semantics of choreography terms is the smallest labeled tran-
sition system closed under the rules in Table 1.

We briefly comment on the rules in Table 1. Rules in the first four rows of
the table are standard (cf. [2]). Rule (One) defines termination for the empty
choreography term. Rule (Comm) executes an interaction, making it visible in
the label. While rule (Seq) allows the first component of a sequential composi-
tion to compute, rule (SeqTick) allows it to terminate, starting the execution of
the second component. Rule (Par) allows parallel components to interleave their
executions. Rule (ParTick) allows parallel components to synchronize their ter-
mination. Rule (Cho) selects a branch in a nondeterministic choice. Rule (Star)

Towards Global and Local Types for Adaptation 7

Table 1. Semantics of Choreography Terms

(One)
1

√
−→ 0

(Comm)
ar1→r2

ar1→r2−−−−−→ 1
(Seq)

C1

ar1→r2−−−−−→ C′
1

C1; C2

ar1→r2−−−−−→ C′
1; C2

(SeqTick)
C1

√
−→ C′

1 C2
α−→ C′

2

C1; C2
α−→ C′

2

(Par)
C1

ar1→r2−−−−−→ C′
1

C1 | C2

ar1→r2−−−−−→ C′
1 | C2

(ParTick)
C1

√
−→ C′

1 C2

√
−→ C′

2

C1 | C2

√
−→ C′

1 | C′
2

(Cho)
C1

α−→ C′
1

C1 + C2
α−→ C′

1

(Star)
C

ar1→r2−−−−−→ C′

C∗ ar1→r2−−−−−→ C′; C∗
(StarTick)

C∗
√
−→ 0

(CommUpd)
Xr{C} Xr{C}−−−−→ 1

(SeqUpd)
C1

Xr{C}−−−−→ C′
1

C1; C2
Xr{C}−−−−→ C′

1; (C2[C/X])

(ParUpd)
C1

Xr{C}−−−−→ C′
1

C1 | C2
Xr{C}−−−−→ C′

1 | (C2[C/X])
(StarUpd)

C1
Xr{C}−−−−→ C′

1

C∗
1

Xr{C}−−−−→ C′
1; (C1[C/X])∗

(ScopeUpd)
C1

Xr{C}−−−−→ C′
1

X : T [C1]
Xr{C}−−−−→ X : T [C]

(Scope)
C1

α−→ C′
1 α �= Xr{C} for any r, C

X : T [C1]
α−→ X : T [C′

1]

unfolds the Kleene star. Note that the unfolding may break uniqueness of scopes
with a given name—we will come back to this point later on. Rule (StarTick)
defines termination of a Kleene star.

The remaining rules in Table 1 deal with adaptation. Rule (CommUpd)
makes an internal adaptation available, moving the information to the label.
Adaptations propagate through sequence, parallel composition, and Kleene star
using rules (SeqUpd), (ParUpd), and (StarUpd), respectively. Note that,
while propagating, the update is applied to the continuation of the sequential
composition, to parallel terms, and to the body of Kleene star. Notably, the
update is applied to both enabled and non enabled occurrences of the desired
scope. Rule (ScopeUpd) allows a scope to update itself (provided that the
names coincide), while propagating the update to the rest of the choreography
term.Rule (Scope) allows a scope to compute.

We can now define the notion of closed traces that correspond to computa-
tions of stand-alone choreography terms.

Definition 3. (Traces). Given a choreography term C0 a trace is a (possibly
infinite) sequence C0

α1−→ C1
α2−→ C2

α3−→ · · · .
In order to model choreography terms that can be externally updated we need
to introduce the notion of open transitions.

Definition 4. (Open transitions). The choreography term C has an open

transition of the form C
X{C′′}−−−−−→ C[C ′′/X] if:

8 M. Bravetti et al.

– there is a choreography C0 with a trace C0
α−→ · · · α′

−→ C
′
0|C;

– C
′
0

Xr{C′′}−−−−−→ C
′′
0 where r �∈ roles(C) and X is the name of a scope in C.

We can now define the notion of open traces corresponding to computations
including also open transitions.

Definition 5. (Open Traces). Given a choreography term C0 an open trace
is a (possibly infinite) sequence C0

α1−→ C1
α2−→ C2

α3−→ · · · where every Ci
αi+1−−−→

Ci+1 is either a transition of the semantics in Table 1 or an open transition.

As we have said, in a choreography we assume scope names to be unique.
However, uniqueness is not preserved by transitions. Nevertheless a slightly
weaker property (arising from the fact that we consider Kleene star as the only
form of recursion) is indeed preserved, and it simplifies the implementation of
the adaptation mechanisms at the level of endpoints.

Proposition 1. Let C be a choreography and let C ′ be a choreography term
reachable from C via zero or more transitions (possibly open). For every X, C ′

contains at most one occurrence of a scope named X which is enabled (i.e., which
can compute).

An Example. Below we give an example of an adaptable choreography to
illustrate the features introduced above. The example is based on a health-care
workflow inspired by field study [16] carried out in previous work. The field study
was also considered as inspiration for recent work on session types for health-care
processes [11] and adaptable declarative case management processes [17], but the
combination of session types and adaptability has not been treated previously.

In the considered scenario, doctors, nurses and patients employ a distributed,
electronic health-care record system where each actor (including the patient) uses
a tablet pc/smartphone to coordinate the treatment. Below, iteration C+ stands
for C;C∗.

X : {D,N}[
(
(prescribeD→N)+;

(signD→N + XD{signD→N};upD→N); trustN→D

)+];
medicineN→P

where D,N,P denote participant doctors, nurses, and patients, respectively.
The doctor first records one or more prescriptions, which are sent to the nurse’s

tablet (prescribeD→N)+. When receiving a signature, signD→N , the nurse informs
the doctor if the prescription is trusted. If not trusted then the doctor must pre-
scribe a new medicine. If trusted, the nurse proceeds and gives the medicine to the
patient, which is recorded at the patient’s smartphone, medicineN→P . However,
instead of signing and waiting for the nurse to trust the medicine, in emergency
cases the doctor may update the protocol so that the possibility of not trusting the
prescription is removed: the nurse would have to give the medicine to the patient
right after receiving the signature. In the example, this is done by a self-update

Towards Global and Local Types for Adaptation 9

(XD{signD→N}) of the running scope. In other scenarios, this could have been
done by an entity not represented in the choreography, such as the hospital direc-
tor, thus resulting in an external update. The doctor notifies the protocol update
to the nurse using the upD→N interaction.

Now consider the further complication that the doctor may run a test pro-
tocol with a laboratory, after prescribing a medicine and before signing:

X ′{D,L} : [orderTestD→L ; (resultsL→D + X ′
D{1})]

We allow the test protocol also to be adaptable, since the doctor may decide
that there is an emergency while waiting for the results, and thus also having
to interrupt the test protocol. If the two protocols are performed in interleaving
by the same code, then the updates of the two protocols should be coordinated.
We illustrate this in Sect. 3 below.

2.2 Endpoint Language

Since choreographies are at the very high level of abstraction, defining a descrip-
tion of the same system nearer to an actual implementation is of interest. In par-
ticular, for each participant in a choreography (also called endpoint) we would
like to describe the actions it has to take in order to follow the choreography.
The syntax of endpoint processes is as follows:

P ::= ar (output) | ar (input)
| P ; P (sequence) | P | P (parallel)
| P + P (choice) | P ∗ (star)
| 1 (one) | 0 (zero)
| X[P]F (scope) | X(r1,...,rn){P1, . . . , Pn} (update)

where F is either A, denoting an active (running) scope, or ε, denoting a scope
still to be started (ε is omitted in the following).

As for choreographies, endpoint processes contain some standard operators
and some operators dealing with adaptation. Communication is performed by
ar, denoting an output on channel a towards participant r. Dually, ar denotes an
input from participant r on channel a. Intuitively, an output ar in role s and an
input as in role r should synchronize. Two endpoint processes P1 and P2 can be
composed in sequence (P1 ; P2), in parallel (P1 | P2), and using nondeterministic
choice (P1 + P2). Endpoint processes can be iterated using a Kleene star ∗. The
empty endpoint process is denoted by 1 and the deadlocked endpoint process is
denoted by 0.

Adaptation is applied to scopes. X[P]F denotes a scope named X execut-
ing process P . F is a flag distinguishing scopes whose execution has already
begun (A) from scopes which have not started yet (ε). The update operator
X(r1,...,rn){P1, . . . , Pn} provides an update for scope named X, involving roles
r1, . . . , rn. The new process for role ri is Pi.

10 M. Bravetti et al.

Endpoints are of the form [[P]]r, where r is the name of the endpoint and P its
process. Systems, denoted S, are obtained by composition of parallel endpoints:

S ::= [[P]]r (endpoint) | S||S (parallel system)

As for choreographies, not all systems are endpoint specifications. By a slight
abuse of notation we extend type(X) to endpoints associating a set of roles to
each scope name X. Endpoint specifications are defined as follows.

Definition 6. A system S is an endpoint specification if the following conditions
hold:

(i) no active scopes are present
(ii) endpoint names are unique
(iii) all roles r occurring in terms of the form ar, ar, or such that r ∈ type(X)

for some scope X are endpoints of S
(iv) a scope with name X con occur (outside updates) only in endpoints r ∈

type(X)
(v) every update has the form Xtype(X){P1, . . . , Pn}
(vi) outputs ar and inputs ar included in Xtype(X){P1, . . . , Pn} are such that

r ∈ type(X).

In this presentation, we do not formally define a semantics for endpoints: we
just point out that it should include labels corresponding to all the labels of the
semantics of choreography terms, plus some additional labels corresponding to
partial activities, such as an input. We also highlight the fact that all scopes
which correspond to the same choreography scope evolve together: their scope
start transitions (transforming a scope from inactive to active) are synchronized,
as well as their scope end transitions (removing it). The fact that choreographies
feature at most one scope with a given name is instrumental in ensuring this
property.

2.3 Projection

Since choreographies provide system descriptions at the high level of abstraction
and endpoint specifications provide more low level descriptions, a main issue is
to derive from a given choreography an endpoint specification executing it. This
is done using the notion of projection.

Definition 7. (Projection). The projection of a choreography C on a role r,
denoted by C �r, is defined by the clauses below

ar1→r2 �r =

⎧
⎪⎨

⎪⎩

ar2 ifr = r1

ar1 ifr = r2

1 otherwise

Xr′{C}�r =

{
X(r1,...,rn){C �r1 , . . . , C �rn

}with{r1, . . . , rn} = type(X) ifr = r′

1 otherwise

X : T [C]�r =

{
X[C �r] ifr ∈ type(X)
1 otherwise

Towards Global and Local Types for Adaptation 11

and is an homomorphism on the other operators. The endpoint specification
resulting from a choreography C is obtained by composing in parallel roles [[C �r]]r,
where r ∈ roles(C).

As an example, the endpoint projection obtained from the prescribe chore-
ography introduced in Sect. 2.1 is [[PN]]N ||[[PD]]D||[[PP]]P where processes PN, PD,
and PP are as follows (we omit unnecessary 1 processes):

PN = X[((prescribeD)+ ; (signD + upD); trustD)+] ; medicineP

PD = X[((prescribeN)+ ; (signN + XD,N{signN , signD} ; upN); trustN)+]
PP = medicineN

One can see that the system S obtained by projecting a choreography is an
endpoint specification. Ideally, traces of the projected system should correspond
to the traces of the original choreography. Actually, we conjecture that this
occurs only for choreographies satisfying suitable connectedness conditions that
we plan to formalize extending those in [14]. This is not an actual restriction,
since choreographies that do not respect the conditions can be transformed into
choreographies that respect them [15].

Conjecture 1. Traces of projection of connected choreographies correspond to
traces of the original choreography.

We point out two main aspects of the correspondence. First, labels Xr{C}
of transitions of the choreography should be mapped to labels [X(r1, . . . , rn)
{P1, . . . , Pn}]r of the transitions of the endpoint specification, where type(X) =
{r1, . . . , rn} and P1 = C �r1 , . . . , Pn = C �rn

are obtained by projection from C.
Second, endpoint traces should not consider unmatched input and output labels.

3 Typing a Concrete Language

As demonstrated by our examples, choreography and endpoint terms provide a
useful language for expressing protocols with adaptation. In this section, we
investigate the idea of using such protocols as specifications for a program-
ming language with adaptation. We plan to follow the approach taken in mul-
tiparty session types [12], where choreographies (and endpoints) are interpreted
as behavioral types for typing sessions in a language modeled as a variant of the
π-calculus. In the sequel, we investigate the core points of such a language by
giving an implementation that uses the protocols specified in the examples of
the previous sections. In particular, we discuss what are the relevant aspects for
developing a type system for such a language, whose types are the choreographies
introduced in Sect. 2.1.

In both prescribe and test protocols, the doctor plays a key role since (s)he
initiates the workflow with prescriptions, decides when tests have to be requested,

12 M. Bravetti et al.

and decides when the protocols have to be interrupted due to an emergency.
A possible implementation of the doctor could be given by the following pro-
gram:

1. PD = pr(k); X[repeat {repeat {
2. k : prescribeN 〈epr〉; test(k′);
3. X ′[k′ : orderTestL〈eo〉;
4. (k′ : resultsL(x)+
5. X ′

(D,L){X(D,N){k : signN 〈es〉, k : signD(z)},1})]
6. } until ok(x);
7. (k : signN 〈es〉 + X(D,N){k : signN 〈es〉, k : signD(z)} ; k : upN 〈〉);
8. k : trustN (t)} until trusted(t)]

In the code there are two kinds of communication operations, namely protocol
initiation operations, where a new protocol (or session) is initiated, and in-session
operations where protocol internal operations are implemented. The communi-
cation pr(k) is for initiating a protocol called pr and its semantics is to create a
fresh protocol identifier k that corresponds to a particular instance of protocol
pr. In-session communications are standard.

The novelty in the process above is in the scope X[. . .] and update X...{. . .},
which state respectively that the program can be adapted at any time in that
particular point, and that an adaptation is available. Interestingly enough, the
way the program PD uses the protocols needs care. If the doctor wants to adapt
to emergency while waiting for tests, both the test protocol and the prescription
protocol need to be adapted as shown in line 5. If the doctor adapts to emergency
after having received tests that are ok, then only the prescription protocol needs
to be adapted. One can see that session pr can be typed using the prescribe
endpoint specification and session test using the test endpoint specification. The
update of X in line 4 does not appear in the protocol test since it acts as an
external update for a different protocol.

4 Concluding Remarks and Related Work

Adaptation is a pressing issue in the design of service-oriented systems, which
are typically open and execute in highly dynamic environments. There is a rather
delicate tension between adaptation and the correctness requirements defined at
service composition time: we would like to adapt the system’s behavior whenever
necessary/possible, but we would also like adaptation actions to preserve overall
correctness.

In this paper, we have reported ongoing work on adaptation mechanisms for
service-oriented systems specified in terms of choreographies. By enhancing an
existing language for choreographies with constructs defining adaptation scopes
and dynamic code update, we obtained a simple, global model for distributed,
adaptable systems. We also defined an endpoint language for local descriptions,
and a projection mechanism for obtaining (low-level) endpoint specifications
from (high-level) choreographies.

Towards Global and Local Types for Adaptation 13

We now briefly comment on related works. The work in [9] is closely related,
and indeed was a source of inspiration for the current work. It develops a frame-
work for rule-based adaptation in a choreographic setting. Both choreographies
and endpoints are defined; their relation is formally defined via projection. The
main difference w.r.t. the work described here is our choice of expressing adap-
tation in terms of scopes and code update constructs, rather than using rules.
Also, we consider choreographies as types and we allow multiple protocols to
interleave inside code. These problems are not considered in [9].

Our work is also related to the recent work [8], which considers self-adaptive
systems monitored by different global descriptions. The description specifies also
when the used monitor should change, and the new monitor to be used is deter-
mined by an adaptation function. A main difference is that in their approach
the code does not change because processes should be able to implement all the
global descriptions since the very beginning.

Our approach bears some similarities with works on multiparty sessions [4,
12], and in particular with works dealing with exceptions in multiparty ses-
sions [3]. Our focus so far has been on formally relating global and local descrip-
tions of choreographies via projection and trace correspondence; investigating
correctness properties (e.g., communication safety) via typing in our setting is
part of ongoing work. We also note that exceptions and adaptation are similar
but conceptually different phenomena: while the former are typically related to
foreseen unexpected behaviors in (low-level) programs, adaptation appears as a
more general issue, for it should account for (unforeseen) interactions between
the system and its (varying) environment.

We have borrowed inspiration also from [17], in which adaptive case manage-
ment is investigated via Dynamic Condition Response (DCR) Graphs, a declar-
ative process model.

Finally, the adaptation constructs we have considered for choreographies and
endpoints draw inspiration from the adaptable processes defined in [1]. The appli-
cation of adaptable processes in session-typed models of structured communica-
tions (focusing on the case of binary sessions) has been studied in [10].

An immediate topic for future work is the full formalization of the concrete
language and its typing disciplines. Other avenues for future research include
the investigation of refinement theories with a testing-like approach, enabled by
having both systems and adaptation strategies modeled in the same language,
and the development of prototype implementations.

Acknowledgments. This work was partially supported by COST Action IC1201:
Behavioural Types for Reliable Large-Scale Software Systems (BETTY). Jorge A. Pérez
was partially supported by grants SFRH/BPD/84067/2012 and CITI of the Portuguese
Foundation for Science and Technology (FCT).

14 M. Bravetti et al.

References

1. Bravetti, M., Di Giusto, C., Pérez, J.A., Zavattaro, G.: Adaptable processes. Log-
ical Methods Comput. Sci. 8(4), 1–71 (2012)

2. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography confor-
mance and contract compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007.
LNCS, vol. 4829, pp. 34–50. Springer, Heidelberg (2007)

3. Capecchi, S., Giachino, E., Yoshida, N.: Global escape in multiparty sessions. In:
FSTTCS. LIPIcs, vol. 8, pp. 338–351. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2010)

4. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-
gramming for web services. ACM Trans. Program. Lang. Syst. 34(2), 8 (2012)

5. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: POPL, pp. 263–274. ACM (2013)

6. Carpineti, S., Laneve, C.: A basic contract language for web services. In: Sestoft,
P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 197–213. Springer, Heidelberg (2006)

7. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
In: POPL, pp. 261–272. ACM, New York (2008)

8. Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Self-adaptive monitors for multi-
party sessions. In: PDP (2014) (to appear)

9. Dalla Preda, M., Lanese, I., Mauro, J., Gabbrielli, M., Giallorenzo, S.: Safe run-
time adaptation of distributed applications, 2013. Submitted. Available at http://
www.cs.unibo.it/lanese/publications/fulltext/adaptchor2.pdf.gz

10. Di Giusto, C., Pérez, J.A.: Disciplined structured communications with consistent
runtime adaptation. In: SAC, pp. 1913–1918. ACM (2013)

11. Henriksen, A.S., Nielsen, L., Hildebrandt, T.T., Yoshida, N., Henglein, F.: Trust-
worthy pervasive healthcare services via multiparty session types. In: Weber, J.,
Perseil, I. (eds.) FHIES 2012. LNCS, vol. 7789, pp. 124–141. Springer, Heidelberg
(2013)

12. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL, pp. 273–284. ACM (2008)

13. Lanese, I., Bucchiarone, A., Montesi, F.: A framework for rule-dased dynamic
adaptation. In: Wirsing, M., Hofmann, M., Rauschmayer, A. (eds.) TGC 2010.
LNCS, vol. 6084, pp. 284–300. Springer, Heidelberg (2010)

14. Lanese, I., Guidi, C., Montesi, F., Zavattaro, G.: Bridging the gap between
interaction- and process-oriented choreographies. SEFM, pp. 323–332. IEEE Com-
puter Society, Washington, DC (2008)

15. Lanese, I., Montesi, F., Zavattaro, G.: Amending choreographies. In: WWV.
EPTCS, vol. 123, pp. 34–48. Open Publishing Association (2013)

16. Lyng, K.M., Hildebrandt, T., Mukkamala, R.R.: From paper based clinical prac-
tice guidelines to declarative workflow management. In: ProHealth, BPM 2008
Workshops, pp. 36–43 (2008)

17. Mukkamala, R.R., Hildebrandt, T., Slaats, T.: Towards trustworthy adaptive case
management with dynamic condition response graphs. In: EDOC, pp. 127–136.
IEEE (2013)

18. OMG. Case management model and notation 1.0 - beta 1, January 2013
19. Swenson, K.D.: Mastering the Unpredictable - How Adaptive Case Management

Will Revolutionize the Way That Knowledge Workers Get Things Done. Meghan-
Kiffer, Tampa (2010)

http://www.cs.unibo.it/lanese/publications/fulltext/adaptchor2.pdf.gz
http://www.cs.unibo.it/lanese/publications/fulltext/adaptchor2.pdf.gz

	Towards Global and Local Types for Adaptation
	1 Introduction
	2 Choreography and Endpoint Languages for Adaptation
	2.1 Choreography Language
	2.2 Endpoint Language
	2.3 Projection

	3 Typing a Concrete Language
	4 Concluding Remarks and Related Work
	References

