
1

C
ounsell · N

úñez (E
ds.)

Softw
are Engineering

and Form
al M

ethods

LNCS
8368

Steve Counsell
Manuel Núñez (Eds.)

 123

LN
CS

 8
36

8

SEFM 2013 Collocated Workshops:
BEAT2, WS-FMDS, FM-RAIL-Bok, MoKMaSD, and OpenCert
Madrid, Spain, September 23–24, 2013
Revised Selected Papers

Software Engineering
and Formal Methods

SEFM
2013

Collocated
Workshops

Lecture Notes in Computer Science 8368

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

For further volumes:
http://www.springer.com/series/7408

http://www.springer.com/series/7408

Steve Counsell • Manuel Núñez (Eds.)

Software Engineering
and Formal Methods

SEFM 2013 Collocated Workshops:
BEAT2, WS-FMDS, FM-RAIL-Bok,
MoKMaSD, and OpenCert
Madrid, Spain, September 23–24, 2013
Revised Selected Papers

123

Editors
Steve Counsell
Brunel University
Uxbridge, Middlesex
UK

Manuel Núñez
Universidad Complutense de Madrid
Madrid
Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-319-05031-7 ISBN 978-3-319-05032-4 (eBook)
DOI 10.1007/978-3-319-05032-4
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014932689

LNCS Sublibrary: SL2 – Programming and Software Engineering

� Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains selected papers of the workshops collocated with the 11th
International Conference on Software Engineering and Formal Methods, SEFM 2013.
These workshops were held in Madrid, Spain, during September 24–25, 2013. Each of
the workshops had a different slant on the topic of formal methods in software
engineering, but each made a significant contribution toward advancement of the
respective areas. The depth and range of papers illustrate this.

The aim of the Second International Workshop on Behavioral Types Workshop
(BEAT 2) was to pursue research topics in the use of behavioral type theory as the
basis for new foundations, programming languages, and software development
methods for communication-intensive distributed systems.

The aim of the Third Workshop on Formal Methods in the Development of Soft-
ware (WS-FMDS) was to bring together scientists and practitioners active in the area
of formal methods and interested in exchanging their experiences in the industrial
usage of these methods.

In many engineering-based application areas such as in the railway domain, formal
methods have reached a level of maturity that already enables the compilation of a so-
called body of knowledge. The purpose of the Workshop on a Formal Methods Body
of Knowledge for Railway Control and Safety Systems (FM-RAIL-BOK) was to bring
together practitioners and researchers in this area and to that end.

The Second International Symposium on Modelling and Knowledge Management
for Sustainable Development (MoKMaSD) brought together researchers and practi-
tioner from academia, industry, government, and non-government organizations to
present research results and exchange experience, ideas, and solutions for modelling
and analyzing complex systems. In particular in areas including economy, gover-
nance, health, biology, ecology, climate, and poverty reduction.

The aim of the 7th International Workshop on Foundations and Techniques for
Open Source Software Certification (OpenCert) was to bring together researchers
from academia and industry interested in the quality assessment of OSS projects, as
well as the metrics, procedures, and tools used in OSS communities and for the
measurement and assessment of OSS quality.

For each of the workshops at SEFM 2013, we thank the organizers for developing a
vibrant and interesting set of papers and resulting talks. We also thank the paper
contributors to these workshops and those who attended them.

January 2014 Steve Counsell
Manuel Núñez

Beat 2 Organizers’ Message

BEAT 2 (full title: Second International Workshop on Behavioural Types), affiliated
to SEFM, followed on from the BEAT 2013 workshop, which was affiliated to POPL
2013, and an invitational meeting that took place in Lisbon in April 2011.

Behavioral type systems go beyond data type systems in order to specify,
characterize, and reason about dynamic aspects of program execution. Behavioral
types encompass: session types; contracts (for example, in service oriented systems);
typestate; types for analysis of termination, deadlock-freedom, liveness, race-freedom
and related properties; intersection types applied to behavioral properties; and other
topics. Behavioral types can form a basis for both static analysis and dynamic
monitoring. Recent years have seen a rapid increase in research on behavioral types,
driven partly by the need to formalize and codify communication structures as
computing moves from the dataprocessing era to the communication era, and partly by
the realization that type-theoretic techniques can provide insight into the fine structure
of computation.

The aim of BEAT 2 was to bring together researchers in all aspects of behavioral
type theory and its applications, in order to share results, consolidate the community,
and discover opportunities for new collaborations and future directions. The workshop
was organized under the auspices of COST Action IC1201: Behavioural Types for
Reliable Large-Scale Software Systems (BETTY), and the Program Committee for the
workshop was formed by taking a representative from each country participating in
BETTY.

Papers were submitted in two categories: original research papers, and presenta-
tions of papers already published elsewhere. There was also an invited lecture from
Dr. Achim Brucker of SAP, whose participation was funded by COST Action IC1201
and by the workshop registration fees. The workshop program was completed by
several talks offered by members of BETTY and by participants in the workshop. The
list of talks that do not have a corresponding paper in this proceedings volume is as
follows:

– Globally Governed Session Semantics
Dimitrios Kouzapas and Nobuko Yoshida

– Types for Resources in Psi-Calculi
Hans Hüttel

– Static Deadlock Resolution in the Pi Calculus
Marco Giunti and António Ravara

– Multiparty Compatibility in Communicating Automata: Characterisation and
Synthesis of Global Session Types
Pierre-Malo Deniélou and Nobuko Yoshida

– Typing Actors Using Behavioural Types
Adrian Francalanza and Joseph Masini

– Linear Types in Programming Languages: Progress and Prospects
Simon Gay

– Behaviour Inference for Deadlock Checking
Violet Ka I Pun, Martin Steffen and Volker Stoltz

– Specification and Verification of Protocols for MPI Programs
Eduardo R. B. Marques, Francisco Martins, Vasco T. Vasconcelos, Nicholas Ng,
Nuno Dias Martins, César Santos and Nobuko Yoshida

– Distributed Governance with Scribble: Tutorial and Demonstration
Raymond Hu, Rumyana Neykova, Nicholas Ng and Nobuko Yoshida

Finally, I would like to thank the Program Committee members for their hard work,
and the SEFM workshop chair and local organizers for their help.

Simon Gay

Program Committee

Karthikeyan Bhargavan Inria Paris-Rocquencourt, France
Gabriel Ciobanu Romanian Academy, ICS, Ias�i, Romania
Ricardo Colomo Palacios Universidad Carlos III de Madrid, Spain
Ugo de’Liguoro University of Turin, Italy
Adrian Francalanza University of Malta, Malta
Tihana Galinac Grbac University of Rijeka, Croatia
Simon Gay University of Glasgow, UK
Vaidas Giedrimas Šiauliai University, Lithuania
Thomas Hildebrandt IT University of Copenhagen, Denmark
Einar Broch Johnsen University of Oslo, Norway
Georgia Kapitsaki University of Cyprus, Cyprus
Vasileios Koutavas Trinity College Dublin, Ireland
Aleksandra Mileva Goce Delčev University of Štip, Macedonia
Samir Omanović University of Sarajevo, Bosnia and Herzegovina
Jovanka Pantović University of Novi Sad, Serbia
Nikolaos Sismanis Aristotle University of Thessaloniki, Greece
Peter Thiemann University of Freiburg, Germany
Vasco Vasconcelos University of Lisbon, Portugal
Björn Victor Uppsala University, Sweden
Paweł T. Wojciechowski Poznań University of Technology, Poland
Peter Wong SDL Fredhopper, The Netherlands

VIII Beat 2 Organizers’ Message

WS-FMDS Organizers’ Message

The Third International Workshop on Formal Methods in the Development of
Software, WS-FMDS 2013, was held in Madrid, Spain, on September 24, 2013. The
purpose of WS-FMDS is to bring together scientists and practitioners who are active
in the area of formal methods and interested in exchanging their experiences in the
industrial usage of these methods. This workshop also strives to promote research and
development for the improvement of theoretical aspects of formal methods and tools
focused on practical usability for industrial applications.

After a careful reviewing process in which every paper was reviewed by at least
three WS-FMDS PC members and additional reviewers, the Program Committee
accepted five regular papers. The program of WS-FMDS 2013 was enriched by the
keynote of Alexey Gotman, on ‘‘Abstraction for Weakly Consistent Systems’’.

Several people contributed to the success of WS-FMDS 2013. We are grateful to
the general chair of the 11th International Conference on Software Engineering and
Formal Methods SEFM 2013, Professor Manuel Núñez, for his support and help. We
also would like to thank the Program Committee members as well as the additional
reviewers for their work on selecting the papers. The process of reviewing and
selecting papers was significantly simplified through using Easy-Chair.

We would like to thank the attendants of the workshop and hope that they found the
program useful, interesting, and challenging.

Carlos Gregorio-Rodríguez
Fernando L. Pelayo

Program Committee

Rui Abreu University of Porto, Portugal
Mario Bravetti University of Bologna, Italy
Haitao Dan Brunel University, UK
Carlos Gregorio-Rodríguez Universidad Complutense de Madrid, Spain
Raluca Lefticaru University of Bucharest, Romania
Luis Llana Universidad Complutense de Madrid, Spain
Jasen Markovski Eindhoven University of Technology, The Netherlands
Fernando L. Pelayo Universidad de Castilla - La Mancha, Spain
Pascal Poizat University of Evry Val d’Essonne, France
Franz Wotawa Graz University of Technology, Austria
Fatiha Zadi University of Paris-Sud, France

FM-RAIL-BOK Organizers’ Message

Formal methods in software science and software engineering have existed at least as
long as the term ‘‘software engineering’’ (NATO Science Conference, Garmisch,
1968) itself. Its various methods and techniques include algebraic specification,
process-algebraic modelling and verification, Petri nets, fuzzy logics, etc. Especially
in railway control and safety systems, formal methods have reached a considerable
level of maturity. For example, the B-method has been used successfully to verify the
most relevant parts of a model of the Paris Metro underground railway system. Thus,
it appears timely to begin the compilation of a so-called body of knowledge (BoK)
dedicated to this specific area.

The FM-RAIL-BOK WORKSHOP 2013 (Towards a Formal Methods Body of
Knowledge for Railway Control and Safety Systems), held on September 23, 2013 in
Madrid, http://ssfmgroup.wordpress.com, was a first successful step toward this aim.
This international workshop was affiliated to SEFM 2013, the 11th International
Conference on Software Engineering and Formal Methods, Madrid. Workshop pro-
ceedings, which include all papers presented at the FM-RAIL-BOK WORKSHOP, are
available online at the workshop site.

Here, we compile selected, revised papers of this workshop. Not necessarily
presenting new scientific results, these papers compile case-based ‘‘best practice’’
knowledge in the spirit of classic engineering handbooks. All workshop authors were
invited to submit extended versions of their original papers. This gave them the
opportunity to react to feedback and discussions at the workshop. In total, we received
eight contributed papers, out of which six were selected for inclusion in this volume,
based on a thorough reviewing process.

In addition, we include an extended abstract by Tom Maibaum, who reflects upon
the topic of ‘‘BoKs and Engineering Knowledge.’’ Alessandro Fantechi extended his
keynote ‘‘Twenty-Five Years of Formal Methods and Railways: What Next?’’ to a
contributed, fully reviewed paper.

As FM-RAIL-BOK co-chairs we would like to thank all authors who submitted
their papers to this compilation, the workshop participants, our reviewers, Manuel
Núñez and Steve Counsell for the smooth cooperation with SEFM 2013, and Erwin R.
Catesbeiana (Jr.) for help with workshop organization on the fly.

Stefan Gruner
Anne E. Haxthausen

Tom Maibaum
Markus Roggenbach

http://ssfmgroup.wordpress.com

Program Committee

Martin Brennan British Rail Safety Standards Board, UK
Simon Chadwick Invensys Rail, UK
Meena Dasigi Network Rail, UK
Lars-Henrik Eriksson Uppsala University, Sweden
Alessandro Fantechi University of Florence, Italy
Stefan Gruner University of Pretoria, South Africa
Anne E. Haxthausen Technical University of Denmark, Denmark
Michaela Huhn Technical University of Clausthal, Germany
Tom Maibaum McMaster University, Canada
Kirsten Mark-Hansen Cowi A/S, Denmark
Hoang Nga Nguyen University of Swansea, UK
Jan Peleska University of Bremen, Germany
Markus Roggenbach Swansea University, Wales, UK
Holger Schlingloff Humboldt University of Berlin, Germany
Eckehard Schnieder Technical University of Braunschweig, Germany
Kenji Taguchi AIST, Japan
Helen Treharne University of Surrey, UK
Laurent Voisin Systerel, France
Kirsten Winter University of Queensland, Australia

XII FM-RAIL-BOK Organizers’ Message

MoKMaSD Organizers’ Message

The Second International Symposium on Modelling and Knowledge Management for
Sustainable Development, MoKMaSD 2013, was held in Madrid, Spain, on
September 24, 2013. The aim of the symposium was to bring together practitioners
and researchers from academia, industry, government, and non-government organi-
zations to present research results and exchange experience, ideas, and solutions for
modelling and analyzing complex systems and using knowledge management
strategies, technology, and systems in various domain areas, including economy,
governance, health, biology, ecology, climate and poverty reduction, that address
problems of sustainable development.

Papers submitted to MoKMaSD 2013 were carefully reviewed by the members of
the Program Committee, with the help of a few external experts. The program consisted
of seven presentations and an open discussion. Paloma Cáceres García de Marina
kindly accepted to open the program with a presentation on ‘‘A Transport Sharing
Platform to Improve the Sustainability.’’ Then, we had a presentation by Joris Hulstijn
on XBRL-driven business process improvement, followed by a presentation by Alain
Perez on sustainability idea management. Subsequently, we had four presentations on
modelling languages and tools for population dynamics and ecological systems by
Suryana Setiawan, Pasquale Bove, Mauricio Toro, and Pierluigi Penna.

Several people contributed to the success of MoKMaSD 2013. We are grateful to
Antonio Cerone, who invited us to chair this edition of the symposium and assisted us
in some organizational aspects of the event. We would like to thank the organizers of
SEFM 2013, and in particular General Chair Manuel Núñez and Workshops Chair
Steve Counsell. We would also like to thank the Program Committee and the
additional reviewers for their work on reviewing the papers. The process of reviewing
and selecting papers was significantly simplified through using EasyChair.

Paolo Milazzo
Adegboyega Ojo

Program Committee

Giulio Caravagna DISCo, University of Milano-Bicocca, Italy
Antonio Cerone UNU-IIST, United Nations University, UN/Macau SAR

China
Luis M. Camarinha-Matos Universidade Nova de Lisboa, Portugal
Ed Curry DERI, National University of Ireland, Ireland
Simone D’Alessandro University of Pisa, Italy
Rocco De Nicola IMT - Institutions Markets Technologies, Italy
Alexeis Garcia-Perez Coventry University, UK
Marijn Janssen Delft University of Technology, The Netherlands
Erik Johnston Arizona State University, USA

Hong-Gee Kim Seoul National University, Korea
Siu-Wai Leung University of Macau, Macau, SAR China
Paolo Milazzo University of Pisa, Italy
Alessandra Mileo DERI, National University of Ireland, Ireland
Gianluca Misuraca European Commission, JRC-IPTS, Spain
Giovanni Pardini University of Pisa, Italy
Adegboyega Ojo DERI, National University of Ireland, Ireland
Matteo Pedercini Millennium Institute, USA
Barbara Re University of Camerino, Italy
Pallab Saha National University of Singapore, Singapore
Marco Scotti COSBI, Italy
Siraj A. Shaikh Coventry University, UK
Carron Shankland University of Stirling, UK
Michael Sonnenschein University of Oldenburg, Germany
Efthimios Tambouris University of Macedonia, Greece
Massimo Tavoni FEEM - Fondazione Eni Enrico Mattei, Italy
Luca Tesei University of Camerino, Italy
Shaofa Yang Chinese Academy of Sciences, IOS, China

Additional Reviewers

Muhammad Intizar Ali, Harsha Kalutarage, Simone Tini.

XIV MoKMaSD Organizers’ Message

OpenCert Organizers’ Message

Over the past decade, the open source software (OSS) phenomenon has had a global
impact on the way software systems and software-based services are developed,
distributed, and deployed. Widely acknowledged benefits of OSS include reliability,
low development and maintenance costs, as well as rapid code turnover.

However, state-of-the-art OSS, by the very nature of its open, unconventional,
distributed development model, makes software quality assessment, let alone full
certification, particularly hard to achieve and raises important challenges both from
the technical/methodological and the managerial points of view. This makes the use of
OSS, and, in particular, its integration within complex industrial-strength applications,
with stringent security requirements, a risk but also an opportunity and a challenge for
rigorous methods in software analysis and engineering.

Moreover, OSS communities are, at heart, learning communities formed by people
that share the same values, passion, and interest for software development. From this
perspective, OSS is the product of a highly diverse, highly distributed collaboration
effort. Looking through the glass, the multifaceted aspects of these dynamically
evolving, loosely structured OSS communities require an expansion of the typical
certification process, beyond traditional frameworks and toward a multidisciplinary
approach that would take into account not only technical, but also social,
psychological, and educational aspects at individual and community level. Such a
certification process could potentially increase participation and enhance visibility.

In such a context, following the success of the six previous editions (collocated
with ETAPS 2007, in Braga, OSS 2008, at IFIP WCC, in Milan, ETAPS 2009 in
York, SEFM 2010 in Pisa, SEFM 2011 in Montevideo, and SEFM 2012 in
Thessaloniki), the 7th International Workshop on Foundations and Techniques for
Open Source Software Certification (OpenCert2013) was held in Madrid, Spain, on
September 23, 2013, and collocated with SEFM 2013. The aim of the workshop was
to bring together researchers from academia and industry who are broadly interested
in (a) the quality assessment of OSS projects and in (b) metrics, procedures, and tools
that could be useful in assessing and qualifying individual participation and
collaboration patterns in OSS communities.

This report includes a total of four regular papers, each of them reviewed by at least
two Program Committee members. It also features the abstract of the keynote given by
Jesus M. Gonzalez-Barahona from Universidad Rey Juan Carlos, Spain, on ‘‘Using
Software Analytics to Characterize FLOSS Projects and Communities.’’

Several people contributed to the success of OpenCert 2013. We would like to
express our gratitude to all members of the Program Committee for their efforts and
support. We also thank the OpenCert Steering Committee: Bernhard Aichernig,
Antonio Cerone, Martin Michlmayr, David von Oheimb, and José Nuno Oliveira as
well as the Organizing Committee formed by Luis Barbosa and Antonio Cerone. They
constantly provided their feedback for the sake of the workshop’s success.

We would also like to thank members of the SEFM 2013 Organizing Committee, in
particular Manuel Núñez (conference chair) and Steve Counsell (workshop chair),
who were really helpful on all occasions.

We thank all attendants to the workshop and hope that they found the program
compelling and relevant to their interests.

Pantelis M. Papadopoulos
Bruno Rossi

Steering Committee

Bernhard Aichernig Technical University of Graz, Austria
Antonio Cerone UNU-IIST, United Nations University, Macau SAR China
Martin Michlmayr University of Cambridge, UK
David von Oheimb Siemens Corporate Technology, Germany
José Nuno Oliveira Universidade do Minho, Portugal

Organizing Committee

Luis Barbosa University of Minho, Portugal
Antonio Cerone UNU-IIST, Macau SAR China

Program Committee

Bernhard Aichernig Technical University of Graz, Austria
Luis Barbosa University of Minho, Portugal
Jaap Boender Middlesex University London, UK
Peter Breuer Brunel University, UK
Andrea Capiluppi Imperial College London, UK
Antonio Cerone UNU-IIST, Macau SAR China
Stavros Demetriadis Aristotle University of Thessaloniki, Greece
Roberto Di Cosmo Université Paris Diderot / Inria, France
Yannis Dimitriadis University of Valladolid, Spain
Gabriella Dodero Free University of Bozen-Bolzano, Italy
George Eleftherakis CITY College, Greece
José Emilio Labra Gayo University of Oviedo, Spain
Fabrizio Fabbrini ISTI-CNR, Italy
João F. Ferreira Teesside University, UK
Jesus Arias Fisteus Carlos III University of Madrid, Spain
Imed Hammouda Tampere University of Technology, Finland
Maria João Frade University of Minho, Portugal
Andreas Karatsolis Carnegie Mellon University in Qatar, Qatar
Paddy Krishnan Oracle Labs, Australia
Thomas Lagkas CITY College, Greece

XVI OpenCert Organizers’ Message

Martin Michlmayr University of Cambridge, UK
Paolo Milazzo University of Pisa, Italy
José Miranda MULTICERT S.A., Portugal
John Noll Lero - the Irish Software Engineering Research Centre,

Ireland
David von Oheimb Siemens AG, Germany
José Nuno Oliveira University of Minho, Portugal
Pantelis M. Papadopoulos UNU-IIST, Macau SAR China
Alexander K. Petrenko ISP RAS, Russia
Simon Pickin Universidad Complutense de Madrid, Spain
Dirk Riehle University of Erlangen-Nürnberg, Germany
Bruno Rossi Free University of Bozen-Bolzano, Italy
Gregorio Robles King Juan Carlos University, Spain
Alejandro Sanchez Universidad Nacional de San Luis, Argentina
Siraj Shaikh Coventry University, UK
Ioannis Stamelos Aristotle University of Thessaloniki, Greece
Ralf Treinen Paris Diderot University, France
Tanja Vos Polytechnic University of Valencia, Spain
Tony Wasserman Carnegie Mellon Silicon Valley, USA

OpenCert Organizers’ Message XVII

Service Compositions: Curse or Blessing for Security?

Achim Brucker

Product Security Research Team, SAP AG, Germany

Keynote Speaker of BEAT 2

Building large systems by composing reusable services is not a new idea, it is at least
25 years old. Still, only recently the scenario of dynamic interchangeable services that
are consumed via public networks is becoming reality. Following the Software as a
Service (SaaS) paradigm, an increasing number of complex applications is offered as a
service that themselves can be used composed for building even larger and more
complex applications. This will lead to situations in which users are likely to
unknowingly consume services in a dynamic and ad hoc manner.

Leaving the rather static (and mostly on-premise) service composition scenarios of
the past 25 years behind us, dynamic service compositions have not only the potential
to transform the software industry from a business perspective, they also requires new
approaches for addressing the security and trustworthiness needs of users.

The EU FP7 project Aniketos develops new technology, methods, tools and
security services that support the design-time creation and run-time dynamic
behaviour of dynamic service compositions, addressing service developers, service
providers and service end users.

In this talk, we will motivate several security and trustworthiness requirements that
occur in dynamic service compositions and discuss the solutions developed within the
project Aniketos. Based on our experiences, we will discuss open research challenges
and potential opportunities for applying type systems.

Abstraction for Weakly Consistent Systems

Alexey Gotsman

Institute for Advanced Studies in Software Development Technologies
(IMDEA Software), Madrid, Spain

Keynote Speaker of WS-FMDS 2013

When constructing complex concurrent and distributed systems, abstraction is vital:
programmers should be able to reason about system components in terms of abstract
specifications that hide the implementation details. Nowadays such components often
provide only weak consistency guarantees about the data they manage: in shared-
memory systems because of the effects of relaxed memory models, and in distributed
systems because of the effects of replication. This makes existing notions of
component abstraction inapplicable.

In this talk I will describe our ongoing effort to specify consistency guarantees
provided by modern shared-memory and distributed systems in a uniform framework
and to propose notions of abstraction for components of such systems. I will illustrate
our results using the examples of the C/C?? memory model and eventually
consistent distributed systems. This is joint work with Mark Batty (University of
Cambridge), Sebastian Burckhardt (Microsoft Research), Mike Dodds (University of
York), Hongseok Yang (University of Oxford) and Marek Zawirski (UPMC).

Using Software Analytics
to Characterize FLOSS Projects and Communities

Jesus M. Gonzalez-Barahona

Universidad Rey Juan Carlos, Spain

Keynote Speaker of OpenCert 2013

FLOSS (free, libre, open source) software projects, and the development communities
that are built around them, may become really large, complex, and difficult to
understand. At the same time, the IT strategy of many organizations is increasingly
dependent on FLOSS components, and therefore in the corresponding projects and
development communities. Therefore, the analysis of those projects to inform
strategic and tactic decisions of those organizations is a matter of first necessity for
them. Fortunately, FLOSS projects provide plenty of details about their development
processes and actors, in the form of traces in their development repositories (source
code management systems, issue tracking systems, mailing lists, forums, etc.). Those
traces can be retrieved, analyzed and visualized to gain deep knowledge about how the
project is performing. Key parameters and indicators can be produced based on those
analysis that allow for the tracking of the evolution of the project, and its main trends.
The talk will discuss which kind of information is available in such repositories, which
kind of indicators can be obtained from it, and will show some real examples of how it
is being used to build development dashboards for real FLOSS projects.

Contents

BEAT 2

Towards Global and Local Types for Adaptation . 3
Mario Bravetti, Marco Carbone, Thomas Hildebrandt, Ivan Lanese,
Jacopo Mauro, Jorge A. Pérez, and Gianluigi Zavattaro

A Concurrent Programming Language with Refined Session Types 15
Juliana Franco and Vasco Thudichum Vasconcelos

Behavioural Types Inspired by Cellular Thresholds 29
Bogdan Aman and Gabriel Ciobanu

Ensuring Faultless Communication Behaviour in A Commercial Cloud. 44
Ross Horne and Timur Umarov

A Typing System for Privacy . 56
Dimitrios Kouzapas and Anna Philippou

Compliance and Testing Preorders Differ . 69
Giovanni Bernardi and Matthew Hennessy

Scalable Session Programming for Heterogeneous High-Performance
Systems . 82

Nicholas Ng, Nobuko Yoshida, and Wayne Luk

WS-FMDS 2013

A Supervisor Synthesis Tool for Finite Nondeterministic Automata
with Data. 101

Aleksandr Kirilov, Darko Martinovikj, Kristijan Mishevski,
Marija Petkovska, Zlatka Trajcheska, and Jasen Markovski

SMT-Constrained Symbolic Execution for Eclipse CDT/Codan 113
Andreas Ibing

IOCO as a Simulation . 125
Luis Llana and Rafael Martínez-Torres

Modeling and Simulating Interaction Protocols Using Nested Petri Nets 135
Mirtha Lina Fernández Venero and Flávio Soares Corrêa da Silva

PetriCode: A Tool for Template-Based Code Generation from CPN Models . . . 151
Kent Inge Fagerland Simonsen

http://dx.doi.org/10.1007/978-3-319-05032-4_1
http://dx.doi.org/10.1007/978-3-319-05032-4_2
http://dx.doi.org/10.1007/978-3-319-05032-4_3
http://dx.doi.org/10.1007/978-3-319-05032-4_4
http://dx.doi.org/10.1007/978-3-319-05032-4_5
http://dx.doi.org/10.1007/978-3-319-05032-4_6
http://dx.doi.org/10.1007/978-3-319-05032-4_7
http://dx.doi.org/10.1007/978-3-319-05032-4_7
http://dx.doi.org/10.1007/978-3-319-05032-4_8
http://dx.doi.org/10.1007/978-3-319-05032-4_8
http://dx.doi.org/10.1007/978-3-319-05032-4_9
http://dx.doi.org/10.1007/978-3-319-05032-4_10
http://dx.doi.org/10.1007/978-3-319-05032-4_11
http://dx.doi.org/10.1007/978-3-319-05032-4_12

FM-RAIL-BOK 2013

Twenty-Five Years of Formal Methods and Railways: What Next? 167
Alessandro Fantechi

What IS a BoK? Large – Extended Abstract – . 184
Tom Maibaum

Verification of Scheme Plans Using CSPjjB. 189
Philip James, Faron Moller, Hoang Nga Nguyen, Markus Roggenbach,
Steve Schneider, Helen Treharne, Matthew Trumble, and David Williams

Applied Bounded Model Checking for Interlocking System Designs. 205
Anne E. Haxthausen, Jan Peleska, and Ralf Pinger

Formal Implementation of Data Validation for Railway Safety-Related
Systems with OVADO . 221

Robert Abo and Laurent Voisin

Validation of Railway Interlocking Systems by Formal Verification,
A Case Study . 237

Andrea Bonacchi, Alessandro Fantechi, Stefano Bacherini,
Matteo Tempestini, and Leonardo Cipriani

Verification of Solid State Interlocking Programs . 253
Phillip James, Andy Lawrence, Faron Moller, Markus Roggenbach,
Monika Seisenberger, Anton Setzer, Karim Kanso, and Simon Chadwick

MoKMaSD 2013

Towards Knowledge Modeling for Sustainable Transport 271
Paloma Cáceres, Carlos E. Cuesta, José María Cavero, Belén Vela,
and Almudena Sierra-Alonso

XBRL-Driven Business Process Improvement: A Simulation Study
in the Accounting Domain . 288

Martin Kloos, Joris Hulstijn, Mamadou Seck, and Marijn Janssen

The Role of Linked Data and Semantic-Technologies
for Sustainability Idea Management . 306

Alain Perez, Felix Larrinaga, and Edward Curry

Stochastic Modelling of Seasonal Migration Using Rewriting Systems
with Spatiality . 313

Suryana Setiawan and Antonio Cerone

XXIV Contents

http://dx.doi.org/10.1007/978-3-319-05032-4_13
http://dx.doi.org/10.1007/978-3-319-05032-4_14
http://dx.doi.org/10.1007/978-3-319-05032-4_15
http://dx.doi.org/10.1007/978-3-319-05032-4_15
http://dx.doi.org/10.1007/978-3-319-05032-4_16
http://dx.doi.org/10.1007/978-3-319-05032-4_17
http://dx.doi.org/10.1007/978-3-319-05032-4_17
http://dx.doi.org/10.1007/978-3-319-05032-4_18
http://dx.doi.org/10.1007/978-3-319-05032-4_18
http://dx.doi.org/10.1007/978-3-319-05032-4_19
http://dx.doi.org/10.1007/978-3-319-05032-4_20
http://dx.doi.org/10.1007/978-3-319-05032-4_21
http://dx.doi.org/10.1007/978-3-319-05032-4_21
http://dx.doi.org/10.1007/978-3-319-05032-4_22
http://dx.doi.org/10.1007/978-3-319-05032-4_22
http://dx.doi.org/10.1007/978-3-319-05032-4_23
http://dx.doi.org/10.1007/978-3-319-05032-4_23

A Computational Formal Model of the Invasiveness of Eastern Species
in European Water Frog Populations . 329

Roberto Barbuti, Pasquale Bove, Andrea Maggiolo Schettini,
Paolo Milazzo, and Giovanni Pardini

Process Ordering in a Process Calculus for Spatially-Explicit
Ecological Models . 345

Anna Philippou and Mauricio Toro

DISPAS: An Agent-Based Tool for the Management of Fishing Effort 362
Pierluigi Penna, Nicola Paoletti, Giuseppe Scarcella, Luca Tesei,
Mauro Marini, and Emanuela Merelli

OpenCert 2013

Certifying Machine Code Safe from Hardware Aliasing: RISC
is Not Necessarily Risky . 371

Peter T. Breuer and Jonathan P. Bowen

Soundness and Completeness of the NRB Verification Logic. 389
Peter T. Breuer and Simon J. Pickin

Analysis of FLOSS Communities as Learning Contexts 405
Sara Fernandes, Antonio Cerone, and Luis Soares Barbosa

Small World Characteristics of FLOSS Distributions 417
Jaap Boender and Sara Fernandes

Author Index . 431

Contents XXV

http://dx.doi.org/10.1007/978-3-319-05032-4_24
http://dx.doi.org/10.1007/978-3-319-05032-4_24
http://dx.doi.org/10.1007/978-3-319-05032-4_25
http://dx.doi.org/10.1007/978-3-319-05032-4_25
http://dx.doi.org/10.1007/978-3-319-05032-4_26
http://dx.doi.org/10.1007/978-3-319-05032-4_27
http://dx.doi.org/10.1007/978-3-319-05032-4_27
http://dx.doi.org/10.1007/978-3-319-05032-4_28
http://dx.doi.org/10.1007/978-3-319-05032-4_29
http://dx.doi.org/10.1007/978-3-319-05032-4_30

BEAT 2

Towards Global and Local Types for Adaptation

Mario Bravetti1(B), Marco Carbone2, Thomas Hildebrandt2, Ivan Lanese1,
Jacopo Mauro1, Jorge A. Pérez3, and Gianluigi Zavattaro1

1 Lab. Focus, University of Bologna/INRIA, Bologna, Italy
{bravetti,jmauro}@cs.unibo.it

2 IT University of Copenhagen, Copenhagen, Denmark
3 CITI and Departamento de Informática, FCT - Universidade Nova de Lisboa,

Lisboa, Portugal

Abstract. Choreographies allow designers to specify the protocols fol-
lowed by participants of a distributed interaction. In this context, adap-
tation may be necessary to respond to external requests or to better
suit a changing environment (a self-update). Adapting the behavior of a
participant requires to update in a coordinated way possibly all the par-
ticipants interacting with him. We propose a language able to describe a
choreography together with its adaptation strategies, and we discuss the
main issues that have to be solved to enable adaptation on a participant
code dealing with many interleaved protocols.

1 Introduction

Modern complex distributed software systems face the great challenge of adapting
to varying contextual conditions, user requirements or execution environments.
Service-oriented Computing (SOC), and service-oriented architectures in gen-
eral, have been designed to support a specific form of adaptation: services can
be dynamically discovered and properly combined in order to achieve an overall
service composition that satisfies some specific desiderata that could be known
only at service composition time. Rather sophisticated theories have been defined
for checking and guaranteeing the correctness of these service assemblies (see,
e.g., the rich literature on choreography/orchestration languages [2,14], behav-
ioral contracts [6,7], and session types [4,5,12]). In this paper, we consider a more
fine-grained form of adaptation that can occur when the services have been already
combined but have not yet completed their task.This formof adaptationmay arise,
for instance, when the desiderata dynamically change or when some unexpected
external event occurs. In particular in the context of computer-supported case
management, e.g. for health-care or financial services, changes are the norm rather
than the exception. This has lead to an increasing interest both from academia
and industry in the development of technologies supporting dynamic changes in
choreographies and processes, collectively referred to as adaptive casemanagement
(ACM) [17,19] and being addressed in the recent proposal for a Case Management
Model and Notation (CMMN) from OMG [18]. For such technologies, it is crucial

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 3–14, 2014.
DOI: 10.1007/978-3-319-05032-4 1, c© Springer International Publishing Switzerland 2014

4 M. Bravetti et al.

that modifications occur in a consistent and coordinated manner in order to avoid
breaking the correctness of the overall service composition.

In this paper, we initiate the investigation of new models and theories for ser-
vice composition that properly take into account this form of adaptation. First of
all, we extend a previous language for the description of service choreographies [2]
with two operators: the first one allows for the specification of adaptable scopes
that can be dynamically modified, while the second may dynamically update
code in one of such scopes. This language is designed for the global description
of dynamically adaptable multi-party interaction protocols. As a second step
in the development of our theory, we define a service behavioral contract lan-
guage for the local description of the input-output communications. In order to
support adaptation, also in this case we enhance an existing service contract
language [2] with two new operators for adaptable scope declaration and code
update, respectively. The most challenging aspect to be taken into account is
the fact that, at the local level, peers should synchronize their local adaptations
in order to guarantee a consistent adaptation of their behavior. As mentioned
above, these two languages are expected to be used to describe multi-party pro-
tocols from global and local perspectives, respectively. The relationship between
the two languages is formalized in terms of a projection function which allows
us to obtain endpoint specifications from a given choreography.

The complete theory that we plan to develop will also consider a concrete
language for programming services; such a language will include update mech-
anisms like those provided by, for instance, the Jorba service orchestration lan-
guage [13]. The ultimate aim of our research is to define appropriate behavioral
typing techniques able to check whether the concretely programmed services
correctly implement the specified multi-party adaptable protocols. This will be
achieved by considering the global specification of the protocol, by projecting
such specification on the considered peer, and then by checking whether the
actual service correctly implements the projected behavior. In order to clarify
our objective, we discuss an example inspired by a health-care scenario [16].
Two adaptable protocols are described by using the proposed choreography lan-
guages: the first protocol describes the interaction between the doctor and the
laboratory agents, while the second involves a doctor, a nurse, and a patient. In
case of emergency, the doctor may speed up the used protocols by interrupting
running tests and avoiding the possibility that the nurse refuses to use a medi-
cine she does not trust —this possibility is normally allowed by the protocol.
Then, using a π-calculus-like language, we present the actual behavior of the
doctor and discuss the kinds of problems that we will have to address in order
to define appropriate behavioral type checking techniques.

Structure of the Paper. The next section introduces choreography and endpoint
languages with adaptation constructs, and the projection function that relates
global and local specifications. Then, in Sect. 3 we outline a concrete specifica-
tion language and discuss the health-care scenario. In Sect. 4 we present some
concluding remarks and briefly review related works.

Towards Global and Local Types for Adaptation 5

Disclaimer. This paper discusses ongoing work supported by the “Behavioural
Types for Reliable Large-Scale Software Systems” (BETTY) Cost Action. Our
main aim is to report about the current state of this research activity.

2 Choreography and Endpoint Languages for Adaptation

In the paper, we use the following sets: channels, ranged over by a, a∼, . . .;
scope names, ranged over by X,X ∼, . . .; and roles/participants, ranged over by
r, r1, r2, Also, we use T, T ∼, . . . to denote sets of roles.

2.1 Choreography Language

Syntax. We describe here the syntax of our choreography language. To this end,
we first define a set of so-called choreography terms. Then, by requiring some
well-formedness conditions on such terms, we obtain actual choreographies.

The syntax of choreography terms is as follows:

C ::= ar1→r2 (interaction) | C ; C (sequence)
| C | C (parallel) | C + C (choice)
| C∗ (star) | 1 (one)
| 0 (nil)
| X : T [C] (scope) | Xr{C} (update)

The basic element of a choreography term C is an interaction ar1→r2 , with the
intended meaning that participant r1 sends a message to participant r2 over
channel a. Two terms C1 and C2 can be composed in sequence (C1 ; C2), in
parallel (C1 | C2), and using nondeterministic choice (C1 + C2). Also, a chore-
ography term may be iterated zero or more times using the Kleene star ∗. The
empty choreography term, which just successfully terminates, is denoted by 1.
The deadlocked choreography term 0 is needed for the definition of the seman-
tics: we will assume that it is never used when writing a choreography (see
Definition 1).

The two last operators deal with adaptation. Adaptation is specified by defin-
ing a scope that delimits a choreography term that, at runtime, may be replaced
by a new choreography term, coming from either inside or outside the system.
Adaptations coming from outside may be decided by the user through some
adaptation interface, by some manager module, or by the environment. In con-
trast, adaptations coming from inside represent self-updates, decided by a part
of the system towards itself or towards another part of the system, usually as
a result of some interaction producing unexpected values. Adaptations from
outside and from inside are indeed quite similar, e.g., an update decided by
a manager module may be from inside if the manager behavior is part of the
choreography term, from outside if it is not. Construct X : T [C] defines a scope
named X currently executing choreography term C — the name is needed to
designate it as a target for a particular adaptation. Type T is the set of roles
(possibly) occurring in the scope. This is needed since a given update can be

6 M. Bravetti et al.

applied to a scope only if it specifies how all the involved roles are adapted.
Operator Xr{C} defines internal updates, i.e., updates offered by a participant
of the choreography term. Here r denotes the participant offering the update, X
is the name of the target scope, and C is the new choreography term.

Not all choreography terms generated by the syntax above are useful chore-
ographies. To formally define the choreography terms which actually represent
choreographies, we rely on some auxiliary definitions. The set of roles inside a
choreography term C, denoted roles(C), is defined inductively as follows:

roles(ar1→r2) = {r1, r2} roles(Xr{C}) = {r}
roles(X : T [C]) = T ∪ roles(C) roles(C∗) = roles(C)
roles(C1 ; C2) = roles(C1 | C2) = roles(C1 + C2) = roles(C1) ∪ roles(C2)

roles(1) = roles(0) = ∅
Notice that for Xr{C} we consider role r but not the roles in C. This is

because Xr{C} may correspond to an external update on some different chore-
ography term. We are now ready to define choreographies.

Definition 1. (Choreography). A choreography term C is a choreography if:

1. C does not contain occurrences of 0;
2. all names of scopes in C are pairwise distinct;
3. C is well-typed, i.e. for every scope X : T [C ∼] occurring in C:

– roles(C ∼) ⊆ T and
– every update prefix Xr{C ∼∼} occurring in C is such that roles(C ∼∼) ⊆ T .

We use type(X) to denote the type T associated to the unique scope X : T [C ∼].

Semantics. We now define the semantics of choreography terms via a labeled
transition system. As in the syntax, the most interesting part of the semantics
concerns update constructs. Recall that T is a set of roles. In the definition below,
we use C[C ∼/X] to denote the substitution that replaces all scopes X : T [C ∼∼]
with name X occurring in C (not inside update prefixes) with X : T [C ∼]. As
usual, transition C

α−→ C ∼ intuitively says that choreography term C may evolve
to C ∼ by performing an action represented by a label α. Our set of labels includes√

(termination), ar1→r2 (interaction), and Xr{C} (update).

Definition 2. The semantics of choreography terms is the smallest labeled tran-
sition system closed under the rules in Table 1.

We briefly comment on the rules in Table 1. Rules in the first four rows of
the table are standard (cf. [2]). Rule (One) defines termination for the empty
choreography term. Rule (Comm) executes an interaction, making it visible in
the label. While rule (Seq) allows the first component of a sequential composi-
tion to compute, rule (SeqTick) allows it to terminate, starting the execution of
the second component. Rule (Par) allows parallel components to interleave their
executions. Rule (ParTick) allows parallel components to synchronize their ter-
mination. Rule (Cho) selects a branch in a nondeterministic choice. Rule (Star)

Towards Global and Local Types for Adaptation 7

Table 1. Semantics of Choreography Terms

(One)
1

√
−→ 0

(Comm)
ar1→r2

ar1→r2−−−−−→ 1
(Seq)

C1

ar1→r2−−−−−→ C∧
1

C1; C2

ar1→r2−−−−−→ C∧
1; C2

(SeqTick)
C1

√
−→ C∧

1 C2
α−→ C∧

2

C1; C2
α−→ C∧

2

(Par)
C1

ar1→r2−−−−−→ C∧
1

C1 | C2

ar1→r2−−−−−→ C∧
1 | C2

(ParTick)
C1

√
−→ C∧

1 C2

√
−→ C∧

2

C1 | C2

√
−→ C∧

1 | C∧
2

(Cho)
C1

α−→ C∧
1

C1 + C2
α−→ C∧

1

(Star)
C

ar1→r2−−−−−→ C∧

C∗ ar1→r2−−−−−→ C∧; C∗
(StarTick)

C∗
√
−→ 0

(CommUpd)
Xr{C} Xr{C}−−−−→ 1

(SeqUpd)
C1

Xr{C}−−−−→ C∧
1

C1; C2
Xr{C}−−−−→ C∧

1; (C2[C/X])

(ParUpd)
C1

Xr{C}−−−−→ C∧
1

C1 | C2
Xr{C}−−−−→ C∧

1 | (C2[C/X])
(StarUpd)

C1
Xr{C}−−−−→ C∧

1

C∗
1

Xr{C}−−−−→ C∧
1; (C1[C/X])∗

(ScopeUpd)
C1

Xr{C}−−−−→ C∧
1

X : T [C1]
Xr{C}−−−−→ X : T [C]

(Scope)
C1

α−→ C∧
1 α ∗= Xr{C} for any r, C

X : T [C1]
α−→ X : T [C∧

1]

unfolds the Kleene star. Note that the unfolding may break uniqueness of scopes
with a given name—we will come back to this point later on. Rule (StarTick)
defines termination of a Kleene star.

The remaining rules in Table 1 deal with adaptation. Rule (CommUpd)
makes an internal adaptation available, moving the information to the label.
Adaptations propagate through sequence, parallel composition, and Kleene star
using rules (SeqUpd), (ParUpd), and (StarUpd), respectively. Note that,
while propagating, the update is applied to the continuation of the sequential
composition, to parallel terms, and to the body of Kleene star. Notably, the
update is applied to both enabled and non enabled occurrences of the desired
scope. Rule (ScopeUpd) allows a scope to update itself (provided that the
names coincide), while propagating the update to the rest of the choreography
term.Rule (Scope) allows a scope to compute.

We can now define the notion of closed traces that correspond to computa-
tions of stand-alone choreography terms.

Definition 3. (Traces). Given a choreography term C0 a trace is a (possibly
infinite) sequence C0

α1−→ C1
α2−→ C2

α3−→ · · · .
In order to model choreography terms that can be externally updated we need
to introduce the notion of open transitions.

Definition 4. (Open transitions). The choreography term C has an open

transition of the form C
X{C′′}−−−−−→ C[C ∼∼/X] if:

8 M. Bravetti et al.

– there is a choreography C0 with a trace C0
α−→ · · · α′

−→ C
′
0|C;

– C
′
0

Xr{C′′}−−−−−→ C
′′
0 where r ≡∈ roles(C) and X is the name of a scope in C.

We can now define the notion of open traces corresponding to computations
including also open transitions.

Definition 5. (Open Traces). Given a choreography term C0 an open trace
is a (possibly infinite) sequence C0

α1−→ C1
α2−→ C2

α3−→ · · · where every Ci
αi+1−−−→

Ci+1 is either a transition of the semantics in Table 1 or an open transition.

As we have said, in a choreography we assume scope names to be unique.
However, uniqueness is not preserved by transitions. Nevertheless a slightly
weaker property (arising from the fact that we consider Kleene star as the only
form of recursion) is indeed preserved, and it simplifies the implementation of
the adaptation mechanisms at the level of endpoints.

Proposition 1. Let C be a choreography and let C ∼ be a choreography term
reachable from C via zero or more transitions (possibly open). For every X, C ∼

contains at most one occurrence of a scope named X which is enabled (i.e., which
can compute).

An Example. Below we give an example of an adaptable choreography to
illustrate the features introduced above. The example is based on a health-care
workflow inspired by field study [16] carried out in previous work. The field study
was also considered as inspiration for recent work on session types for health-care
processes [11] and adaptable declarative case management processes [17], but the
combination of session types and adaptability has not been treated previously.

In the considered scenario, doctors, nurses and patients employ a distributed,
electronic health-care record system where each actor (including the patient) uses
a tablet pc/smartphone to coordinate the treatment. Below, iteration C+ stands
for C;C∗.

X : {D,N}[
(
(prescribeD→N)+;

(signD→N + XD{signD→N};upD→N); trustN→D

)+];
medicineN→P

where D,N,P denote participant doctors, nurses, and patients, respectively.
The doctor first records one or more prescriptions, which are sent to the nurse’s

tablet (prescribeD→N)+. When receiving a signature, signD→N , the nurse informs
the doctor if the prescription is trusted. If not trusted then the doctor must pre-
scribe a new medicine. If trusted, the nurse proceeds and gives the medicine to the
patient, which is recorded at the patient’s smartphone, medicineN→P . However,
instead of signing and waiting for the nurse to trust the medicine, in emergency
cases the doctor may update the protocol so that the possibility of not trusting the
prescription is removed: the nurse would have to give the medicine to the patient
right after receiving the signature. In the example, this is done by a self-update

Towards Global and Local Types for Adaptation 9

(XD{signD→N}) of the running scope. In other scenarios, this could have been
done by an entity not represented in the choreography, such as the hospital direc-
tor, thus resulting in an external update. The doctor notifies the protocol update
to the nurse using the upD→N interaction.

Now consider the further complication that the doctor may run a test pro-
tocol with a laboratory, after prescribing a medicine and before signing:

X ∼{D,L} : [orderTestD→L ; (resultsL→D + X ∼
D{1})]

We allow the test protocol also to be adaptable, since the doctor may decide
that there is an emergency while waiting for the results, and thus also having
to interrupt the test protocol. If the two protocols are performed in interleaving
by the same code, then the updates of the two protocols should be coordinated.
We illustrate this in Sect. 3 below.

2.2 Endpoint Language

Since choreographies are at the very high level of abstraction, defining a descrip-
tion of the same system nearer to an actual implementation is of interest. In par-
ticular, for each participant in a choreography (also called endpoint) we would
like to describe the actions it has to take in order to follow the choreography.
The syntax of endpoint processes is as follows:

P ::= ar (output) | ar (input)
| P ; P (sequence) | P | P (parallel)
| P + P (choice) | P ∗ (star)
| 1 (one) | 0 (zero)
| X[P]F (scope) | X(r1,...,rn){P1, . . . , Pn} (update)

where F is either A, denoting an active (running) scope, or ε, denoting a scope
still to be started (ε is omitted in the following).

As for choreographies, endpoint processes contain some standard operators
and some operators dealing with adaptation. Communication is performed by
ar, denoting an output on channel a towards participant r. Dually, ar denotes an
input from participant r on channel a. Intuitively, an output ar in role s and an
input as in role r should synchronize. Two endpoint processes P1 and P2 can be
composed in sequence (P1 ; P2), in parallel (P1 | P2), and using nondeterministic
choice (P1 + P2). Endpoint processes can be iterated using a Kleene star ∗. The
empty endpoint process is denoted by 1 and the deadlocked endpoint process is
denoted by 0.

Adaptation is applied to scopes. X[P]F denotes a scope named X execut-
ing process P . F is a flag distinguishing scopes whose execution has already
begun (A) from scopes which have not started yet (ε). The update operator
X(r1,...,rn){P1, . . . , Pn} provides an update for scope named X, involving roles
r1, . . . , rn. The new process for role ri is Pi.

10 M. Bravetti et al.

Endpoints are of the form [[P]]r, where r is the name of the endpoint and P its
process. Systems, denoted S, are obtained by composition of parallel endpoints:

S ::= [[P]]r (endpoint) | S||S (parallel system)

As for choreographies, not all systems are endpoint specifications. By a slight
abuse of notation we extend type(X) to endpoints associating a set of roles to
each scope name X. Endpoint specifications are defined as follows.

Definition 6. A system S is an endpoint specification if the following conditions
hold:

(i) no active scopes are present
(ii) endpoint names are unique
(iii) all roles r occurring in terms of the form ar, ar, or such that r ∈ type(X)

for some scope X are endpoints of S
(iv) a scope with name X con occur (outside updates) only in endpoints r ∈

type(X)
(v) every update has the form Xtype(X){P1, . . . , Pn}
(vi) outputs ar and inputs ar included in Xtype(X){P1, . . . , Pn} are such that

r ∈ type(X).

In this presentation, we do not formally define a semantics for endpoints: we
just point out that it should include labels corresponding to all the labels of the
semantics of choreography terms, plus some additional labels corresponding to
partial activities, such as an input. We also highlight the fact that all scopes
which correspond to the same choreography scope evolve together: their scope
start transitions (transforming a scope from inactive to active) are synchronized,
as well as their scope end transitions (removing it). The fact that choreographies
feature at most one scope with a given name is instrumental in ensuring this
property.

2.3 Projection

Since choreographies provide system descriptions at the high level of abstraction
and endpoint specifications provide more low level descriptions, a main issue is
to derive from a given choreography an endpoint specification executing it. This
is done using the notion of projection.

Definition 7. (Projection). The projection of a choreography C on a role r,
denoted by C �r, is defined by the clauses below

ar1→r2 �r =

⎧
⎪⎨

⎪⎩

ar2 ifr = r1

ar1 ifr = r2

1 otherwise

Xr′{C}�r =

⎝
X(r1,...,rn){C �r1 , . . . , C �rn

}with{r1, . . . , rn} = type(X) ifr = r∼

1 otherwise

X : T [C]�r =

⎝
X[C �r] ifr ∈ type(X)
1 otherwise

Towards Global and Local Types for Adaptation 11

and is an homomorphism on the other operators. The endpoint specification
resulting from a choreography C is obtained by composing in parallel roles [[C �r]]r,
where r ∈ roles(C).

As an example, the endpoint projection obtained from the prescribe chore-
ography introduced in Sect. 2.1 is [[PN]]N ||[[PD]]D||[[PP]]P where processes PN, PD,
and PP are as follows (we omit unnecessary 1 processes):

PN = X[((prescribeD)+ ; (signD + upD); trustD)+] ; medicineP

PD = X[((prescribeN)+ ; (signN + XD,N{signN , signD} ; upN); trustN)+]
PP = medicineN

One can see that the system S obtained by projecting a choreography is an
endpoint specification. Ideally, traces of the projected system should correspond
to the traces of the original choreography. Actually, we conjecture that this
occurs only for choreographies satisfying suitable connectedness conditions that
we plan to formalize extending those in [14]. This is not an actual restriction,
since choreographies that do not respect the conditions can be transformed into
choreographies that respect them [15].

Conjecture 1. Traces of projection of connected choreographies correspond to
traces of the original choreography.

We point out two main aspects of the correspondence. First, labels Xr{C}
of transitions of the choreography should be mapped to labels [X(r1, . . . , rn)
{P1, . . . , Pn}]r of the transitions of the endpoint specification, where type(X) =
{r1, . . . , rn} and P1 = C �r1 , . . . , Pn = C �rn

are obtained by projection from C.
Second, endpoint traces should not consider unmatched input and output labels.

3 Typing a Concrete Language

As demonstrated by our examples, choreography and endpoint terms provide a
useful language for expressing protocols with adaptation. In this section, we
investigate the idea of using such protocols as specifications for a program-
ming language with adaptation. We plan to follow the approach taken in mul-
tiparty session types [12], where choreographies (and endpoints) are interpreted
as behavioral types for typing sessions in a language modeled as a variant of the
π-calculus. In the sequel, we investigate the core points of such a language by
giving an implementation that uses the protocols specified in the examples of
the previous sections. In particular, we discuss what are the relevant aspects for
developing a type system for such a language, whose types are the choreographies
introduced in Sect. 2.1.

In both prescribe and test protocols, the doctor plays a key role since (s)he
initiates the workflow with prescriptions, decides when tests have to be requested,

12 M. Bravetti et al.

and decides when the protocols have to be interrupted due to an emergency.
A possible implementation of the doctor could be given by the following pro-
gram:

1. PD = pr(k); X[repeat {repeat {
2. k : prescribeN ∞epr⇑; test(k∼);
3. X ∼[k∼ : orderTestL∞eo⇑;
4. (k∼ : resultsL(x)+
5. X ∼

(D,L){X(D,N){k : signN ∞es⇑, k : signD(z)},1})]
6. } until ok(x);
7. (k : signN ∞es⇑ + X(D,N){k : signN ∞es⇑, k : signD(z)} ; k : upN ∞⇑);
8. k : trustN (t)} until trusted(t)]

In the code there are two kinds of communication operations, namely protocol
initiation operations, where a new protocol (or session) is initiated, and in-session
operations where protocol internal operations are implemented. The communi-
cation pr(k) is for initiating a protocol called pr and its semantics is to create a
fresh protocol identifier k that corresponds to a particular instance of protocol
pr. In-session communications are standard.

The novelty in the process above is in the scope X[. . .] and update X...{. . .},
which state respectively that the program can be adapted at any time in that
particular point, and that an adaptation is available. Interestingly enough, the
way the program PD uses the protocols needs care. If the doctor wants to adapt
to emergency while waiting for tests, both the test protocol and the prescription
protocol need to be adapted as shown in line 5. If the doctor adapts to emergency
after having received tests that are ok, then only the prescription protocol needs
to be adapted. One can see that session pr can be typed using the prescribe
endpoint specification and session test using the test endpoint specification. The
update of X in line 4 does not appear in the protocol test since it acts as an
external update for a different protocol.

4 Concluding Remarks and Related Work

Adaptation is a pressing issue in the design of service-oriented systems, which
are typically open and execute in highly dynamic environments. There is a rather
delicate tension between adaptation and the correctness requirements defined at
service composition time: we would like to adapt the system’s behavior whenever
necessary/possible, but we would also like adaptation actions to preserve overall
correctness.

In this paper, we have reported ongoing work on adaptation mechanisms for
service-oriented systems specified in terms of choreographies. By enhancing an
existing language for choreographies with constructs defining adaptation scopes
and dynamic code update, we obtained a simple, global model for distributed,
adaptable systems. We also defined an endpoint language for local descriptions,
and a projection mechanism for obtaining (low-level) endpoint specifications
from (high-level) choreographies.

Towards Global and Local Types for Adaptation 13

We now briefly comment on related works. The work in [9] is closely related,
and indeed was a source of inspiration for the current work. It develops a frame-
work for rule-based adaptation in a choreographic setting. Both choreographies
and endpoints are defined; their relation is formally defined via projection. The
main difference w.r.t. the work described here is our choice of expressing adap-
tation in terms of scopes and code update constructs, rather than using rules.
Also, we consider choreographies as types and we allow multiple protocols to
interleave inside code. These problems are not considered in [9].

Our work is also related to the recent work [8], which considers self-adaptive
systems monitored by different global descriptions. The description specifies also
when the used monitor should change, and the new monitor to be used is deter-
mined by an adaptation function. A main difference is that in their approach
the code does not change because processes should be able to implement all the
global descriptions since the very beginning.

Our approach bears some similarities with works on multiparty sessions [4,
12], and in particular with works dealing with exceptions in multiparty ses-
sions [3]. Our focus so far has been on formally relating global and local descrip-
tions of choreographies via projection and trace correspondence; investigating
correctness properties (e.g., communication safety) via typing in our setting is
part of ongoing work. We also note that exceptions and adaptation are similar
but conceptually different phenomena: while the former are typically related to
foreseen unexpected behaviors in (low-level) programs, adaptation appears as a
more general issue, for it should account for (unforeseen) interactions between
the system and its (varying) environment.

We have borrowed inspiration also from [17], in which adaptive case manage-
ment is investigated via Dynamic Condition Response (DCR) Graphs, a declar-
ative process model.

Finally, the adaptation constructs we have considered for choreographies and
endpoints draw inspiration from the adaptable processes defined in [1]. The appli-
cation of adaptable processes in session-typed models of structured communica-
tions (focusing on the case of binary sessions) has been studied in [10].

An immediate topic for future work is the full formalization of the concrete
language and its typing disciplines. Other avenues for future research include
the investigation of refinement theories with a testing-like approach, enabled by
having both systems and adaptation strategies modeled in the same language,
and the development of prototype implementations.

Acknowledgments. This work was partially supported by COST Action IC1201:
Behavioural Types for Reliable Large-Scale Software Systems (BETTY). Jorge A. Pérez
was partially supported by grants SFRH/BPD/84067/2012 and CITI of the Portuguese
Foundation for Science and Technology (FCT).

14 M. Bravetti et al.

References

1. Bravetti, M., Di Giusto, C., Pérez, J.A., Zavattaro, G.: Adaptable processes. Log-
ical Methods Comput. Sci. 8(4), 1–71 (2012)

2. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography confor-
mance and contract compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007.
LNCS, vol. 4829, pp. 34–50. Springer, Heidelberg (2007)

3. Capecchi, S., Giachino, E., Yoshida, N.: Global escape in multiparty sessions. In:
FSTTCS. LIPIcs, vol. 8, pp. 338–351. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2010)

4. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-
gramming for web services. ACM Trans. Program. Lang. Syst. 34(2), 8 (2012)

5. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: POPL, pp. 263–274. ACM (2013)

6. Carpineti, S., Laneve, C.: A basic contract language for web services. In: Sestoft,
P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 197–213. Springer, Heidelberg (2006)

7. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
In: POPL, pp. 261–272. ACM, New York (2008)

8. Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Self-adaptive monitors for multi-
party sessions. In: PDP (2014) (to appear)

9. Dalla Preda, M., Lanese, I., Mauro, J., Gabbrielli, M., Giallorenzo, S.: Safe run-
time adaptation of distributed applications, 2013. Submitted. Available at http://
www.cs.unibo.it/lanese/publications/fulltext/adaptchor2.pdf.gz

10. Di Giusto, C., Pérez, J.A.: Disciplined structured communications with consistent
runtime adaptation. In: SAC, pp. 1913–1918. ACM (2013)

11. Henriksen, A.S., Nielsen, L., Hildebrandt, T.T., Yoshida, N., Henglein, F.: Trust-
worthy pervasive healthcare services via multiparty session types. In: Weber, J.,
Perseil, I. (eds.) FHIES 2012. LNCS, vol. 7789, pp. 124–141. Springer, Heidelberg
(2013)

12. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL, pp. 273–284. ACM (2008)

13. Lanese, I., Bucchiarone, A., Montesi, F.: A framework for rule-dased dynamic
adaptation. In: Wirsing, M., Hofmann, M., Rauschmayer, A. (eds.) TGC 2010.
LNCS, vol. 6084, pp. 284–300. Springer, Heidelberg (2010)

14. Lanese, I., Guidi, C., Montesi, F., Zavattaro, G.: Bridging the gap between
interaction- and process-oriented choreographies. SEFM, pp. 323–332. IEEE Com-
puter Society, Washington, DC (2008)

15. Lanese, I., Montesi, F., Zavattaro, G.: Amending choreographies. In: WWV.
EPTCS, vol. 123, pp. 34–48. Open Publishing Association (2013)

16. Lyng, K.M., Hildebrandt, T., Mukkamala, R.R.: From paper based clinical prac-
tice guidelines to declarative workflow management. In: ProHealth, BPM 2008
Workshops, pp. 36–43 (2008)

17. Mukkamala, R.R., Hildebrandt, T., Slaats, T.: Towards trustworthy adaptive case
management with dynamic condition response graphs. In: EDOC, pp. 127–136.
IEEE (2013)

18. OMG. Case management model and notation 1.0 - beta 1, January 2013
19. Swenson, K.D.: Mastering the Unpredictable - How Adaptive Case Management

Will Revolutionize the Way That Knowledge Workers Get Things Done. Meghan-
Kiffer, Tampa (2010)

http://www.cs.unibo.it/lanese/publications/fulltext/adaptchor2.pdf.gz
http://www.cs.unibo.it/lanese/publications/fulltext/adaptchor2.pdf.gz

A Concurrent Programming Language
with Refined Session Types

Juliana Franco(B) and Vasco Thudichum Vasconcelos

LaSIGE, Faculdade De Ciências, Universidade De Lisboa, Lisboa, Portugal
jfranco@lasige.di.fc.ul.pt

Abstract. We present SePi, a concurrent programming language based
on the monadic pi-calculus, where interaction is governed by linearly
refined session types. On top of the core calculus and type system, and in
order to facilitate programming, we introduce a number of abbreviations
and derived constructs. This paper provides a brief introduction to the
language.

1 Introduction

Session types [12] are by now a well-established methodology for typed, message-
passing concurrent computations. By assigning session types to communication
channels, and by checking programs against session type systems, a number
of important program properties can be established, including the absence of
races in channel manipulation operations, and the guarantee that channels are
used as prescribed by their types. As a simple example, a type of the form
! string .! integer .end describes a channel end on which processes may first out-
put a string, then output an integer value, after which the channel provides no
further interaction. The process holding the other end of the channel must first
input a string, then an integer, as described by the complementary (or dual)
type, ?string .? integer .end. If the string denotes a credit card number and the
integer value the amount to be charged to the credit card, then we may fur-
ther refine the type by requiring that the capability to charge the credit card
has been offered, as in ?ccard: string .?amount:{x:integer|charge(ccard ,x)}.end. The
most common approach to handle refinement types is classical first-order logic
which is certainly sufficient for many purposes but cannot treat formulae as
resources. In particular it cannot guarantee that the credit card is charged with
the given amount only once.

SePi is an exercise in the design and implementation of a concurrent pro-
gramming language solely based on the message passing mechanism of the pi
calculus [16], where process interaction is governed by (linearly refined) ses-
sion types. SePi allows to explore the practical applicability of recent work on
session-based type systems [1,25], as well as to provide a tool where new pro-
gram idioms and type developments may be tested and eventually incorporated.
In this respect, SePi shares its goal with Pict [19] and TyCO [22].

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 15–28, 2014.
DOI: 10.1007/978-3-319-05032-4 2, c© Springer International Publishing Switzerland 2014

16 J. Franco and V. T. Vasconcelos

The SePi core language is the monadic synchronous pi-calculus [16] with repli-
cation rather than recursion [15], labelled choice [12], and with assume/assert
primitives [1]. On top of this core we provide a few derived constructs aiming at
facilitating code development. The current version of the language includes sup-
port for mutually recursive process definitions and type declarations, for polyadic
message passing and session initiation, a dualof operator on types, and an abbre-
viation for shared types. The type system of SePi is that of linearly refined
session types [1], the algorithmic rules for the refinement-free type language are
adapted from [25], and those for refinements are described in this paper.

SePi is currently implemented as an Eclipse plug-in, allowing code develop-
ment with the usual advantages of an IDE, such as syntax highlighting, syntactic
and semantic validation, code completion and refactoring. It further includes a
simple interpreter based on Turner’s abstract machine [21]. There is also a com-
mand line alternative, in the form of a jar file. Installation details and examples
can be found at http://gloss.di.fc.ul.pt/sepi.

The rest of this paper is structured as follows. The next Section reviews
related work. Section 3 briefly introduces SePi based on a running example.
Section 4 presents a few technical aspects of the language. Section 5 concludes
the paper, pointing possible future language extensions.

2 Related Work

This section briefly reviews programming language implementations either based
on the pi-calculus or that incorporate session types.

There are a few programming languages based on the pi-calculus, but none
incorporate session types. Pict [19] is a language in the ML-tradition, featur-
ing labelled records, higher-order polymorphism, recursive types and subtyping.
Similarly to the SePi approach, Pict builds on a tiny core (a variant of the
asynchronous pi-calculus [3,11]) by adding a few derived constructs. TyCO [23]
is another language based on a variant of the asynchronous pi-calculus, fea-
turing labelled messages (atomic select/output) and labelled receptors (atomic
branch/input) [22], predicative polymorphism and full type inference. In turn,
SePi is based on the monadic synchronous pi-calculus with labelled choice [12],
explicitly typed and equipped with refined session types [1]. Polymorphism and
subtyping are absent from the current version of SePi.

On the other hand, we find programming languages that feature session types
or variants of these, but are based on paradigms other than the pi-calculus. For
functional languages, we have those that take advantage of the rich system of
Haskell, monads in particular, and those based on ML. Neubauer and Thiemann
implemented session types on Haskell using explicit continuation passing [17].
Sackman and Eisenbach improve this work, augmenting the expressive power of
the language [20]. Given that session types are encoded, the Haskell code for
session-based programs can be daunting. SePi works directly with session types,
thus hopefully leading to readable programs. Bhargavan et al. [2] present a ML-
like language for specifying multiparty sessions [13] for cryptographic protocols,
with integrity and secrecy support.

http://gloss.di.fc.ul.pt/sepi

A Concurrent Programming Language with Refined Session Types 17

For object-oriented languages, Fähndrich et al. developed Sing# [6], a variant
of C# that supports message-based communication via shared-memory where
session types are used to describe communication patterns. Hu et al. introduced
SJ [14], an extension of Java with specific syntax for session types and struc-
tured communication operations. Based on a work by Gay et al. [7], Bica [4]
is an extension of the Java 5 compiler that checks conventional Java source
code against session type specifications for classes. Type specifications, included
in Java annotations, describe the order by which methods in classes should be
called, as well as the tests clients must perform on results from method calls. Fol-
lowing a similar approach, but using session types with lin/un annotations [25],
Mool [5] is a minimal object based language.

Finally, for imperative languages, Ng et al. developed Session C [18], a multi-
party session-based programming environment for the C programming language
and its runtime libraries [18]. Also using the theory of multiparty session types,
we have the Scribble framework presented by Honda et al. [10], that supports
bindings for several high-level languages such as ML, Java, Python, C# or C++,
and whose purpose is to provide a formal and intuitive language and tools to
specify communication protocols and their implementations. Neither of the works
discussed above feature any form of refinement types, linear or classical.

3 A Gentle Introduction to the SePi Language

This section introduces the SePi language, its syntax, type system and oper-
ational semantics. The presentation is intentionally informal. Technical details
can be found on the theoretical work the language builds upon, namely [25] for
the base language and [1] for refinements.

Our running example is based on the online petition service [24] and on
the online store [1]. An Online Donation Server manages donation campaigns.
Clients seeking to start a donation campaign for a given cause begin by setting
up a session with the server. The session is conducted on a channel on which the
campaign related data is provided. The same channel may then be disseminated
and used by different benefactors for the purpose of collecting the actual dona-
tions. Parties donating for some cause do so by providing a credit card number
and the amount to be charged to the card. The type system makes sure that the
exact amount specified by the donor is charged, and that the card is charged
exactly once.

SePi is about message passing on bi-directional synchronous channels. Each
channel is described by two end points. Processes may write on one end or
else read from the other end, at each particular location in a program. Chan-
nels are governed by types that describe the sequence of messages a channel
may carry. We start with input/output types. A type of the form ! integer .end

describes a channel end where processes may write an integer value, after which
the channel offers no further interaction. Similarly, a type ?integer .end describes
a channel end from which processes may read an integer value, after which the
channel offers no further interaction.

18 J. Franco and V. T. Vasconcelos

To create a channel of the above type one writes

new w r : ! i n t ege r . end

Such a declaration introduces two new program variables: w of type ! integer .end,
and r of type ?integer .end. A semantically equivalent declaration is new r w:

?integer .end . To write the integer value 2013 on the newly created channel,
one uses w!2013. To read from the channel and let program variable x denote
the value read, one writes r?x. For the purpose of printing integer values on the
console, SePi provides the primitive channels printInteger and printIntegerLn , and
similarly for the remaining base types: boolean and string . The Ln versions issue
a newline after printing the value. Code such as channel writing or reading can
be composed by prefixing via the dot notation. To read an integer value and
then to print it, one writes r?x. printInteger !x. To run two processes in parallel
one uses the vertical bar notation. Putting everything together one obtains our
first complete program, composed of a channel declaration and two processes
running in parallel while sharing the channel.

new w r : ! i n t ege r . end
w!2013 | r ? x . p r i n t I n t e g e r ! x

Running such a program would produce 2013 on the console, after which the
program terminates.

We now move on to choice types. The donation server allows clients to setup
donation campaigns piece-wise. The required information (title, description, due
date, etc.) may be introduced in any order, possibly more than once each. Once
satisfied, the client “presses the commit” button. A channel end that allows a
writer to select either the setDate option or the commit option is written as:

+{s e tDate : end , commit : end}
Conversely, a channel end that provides a menu composed of the two same choices
can be written as &{setDate:end, commit:end}. To select the setDate option on a +

channel end we write w select setDate. Conversely to branch on a & channel end
one may write case r of setDate → ... commit → Putting everything together
one obtains the following process.

new w r : +{s e tDate : end , commit : end}
w s e l e c t s e tDate |
case r of s e tDate → p r i n t S t r i n g ! ”Got se tDate ”

commit → p r i n t S t r i n g ! ”Got commit”

We have seen that types are composed by prefixing, using the dot notation:
! integer .end means write an integer and then go on as end. We can compose the
output and the select type we have seen above, so that the output of an integer
is required after the setDate choice is taken. We leave to the reader composing
the two programs above so that it interacts correctly on a channel whose client
end is of type +{setDate:!integer.end, commit:end}.

The problem with this type is that it does not reflect the idea of “uploading
the campaign information until satisfied, and then press the commit button”.
All a client can do is either set the date or else commit. What we would like to

A Concurrent Programming Language with Refined Session Types 19

say is that after the setDate choice is taken the whole menu is again available.
For this we require a recursive type of the form:

rec a .+{ s e tDate : ! i n t ege r . a , commit : end}
A client w may now upload the date two times before committing:

w s e l e c t s e tDate . w! 2012 .
w s e l e c t s e tDate . w! 2013 . w s e l e c t commit

The donation server, when governed by type etDate:?integer.a, commit:endrec a.&

s, needs to continuously offer the setDate and commit options. Such behaviour
cannot be achieved with a finite composition of the primitives we have seen so
far. We need some form unbounded behaviour, which SePi provides in the form a
def process. The setup process below is the part of the donation server responsible
for downloading the campaign information. To simplify the example, only the
due date is considered and even this information, x, is immediately discarded.
We will see that setup is a form of an input process that survives interaction,
thus justifying its invocation with the exact same syntax as message sending:
setup!r.

def s e tup r : rec a .&{ s e tDate : ? i n t ege r . a , commit : end} =
case r of s e tDate → r ? x . s e tup ! r

commit → . . .

Process definition, def, is the second form of declaration in SePi (the first is
new). There is yet a third kind of declaration (rather, an abbreviation): type.
Introducing the name Donation for the above recursive type, one may write:

type Donat ion = +{s e tDate : ! i n t ege r . Donation , commit : end}
thus foregoing the explicit use of the rec type constructor. Type, process and
channel declarations may be mutually recursive. Keywords type, def, and new

introduce a series of equations that are elaborated by the compiler, as described
in Sect. 4.

There is a further handy abbreviation. Session types tend to be quite long;
if a channel’s end point is of type rec a.+{setDate:!integer .a, commit:end}, the
other end is of type rec a.&{setDate:?integer.a, commit:end}. In this case we say
that one type is dual to the other, a notion central to session types. Given
that we abbreviated the first type to Donation, the second can be abbreviated to
dualof Donation. Putting every together we obtain the following process.

type Donat ion = +{s e tDate : ! i n t ege r . Donation , commit : . . . }
def s e tup r : dua lo f Donat ion =

case r of s e tDate → r ? x . s e tup ! r
commit → . . .

new w r : Donat ion // the dona t i on channe l
w s e l e c t s e tDate . w! 2012 . w s e l e c t s e tDate . w! 2013 .

w s e l e c t commit | // a c l i e n t
s e tup ! r // a s e r v e r

20 J. Franco and V. T. Vasconcelos

Continuing with the example, after setup comes the promotion phase. Here
the donation channel is used to collect donations from benefactors. Benefactors
donate to a cause by providing a credit card number and the amount to be
charged to the card. So we rewrite the donation type to:

type Donat ion = +{s e tDate : ! i n t ege r . Donation , commit : Promotion }
type Cred i tCa rd = s t r i n g

How does type Promotion look like? If we make it !CreditCard .! integer .end, then
the server accepts a single donation. Clearly undesirable. If we choose rec a .!

CreditCard .! integer .a, then we accept an infinite number of donations. And this
is undesirable for two reasons: (a) regrettably, no campaign will ever receive
an infinite number of donations, and (b) all these donations would have to be
issued from the same thread (a process without parallel composition), one after
the other. The first problem can be easily circumvented with a rec-choice com-
bination, as in type Donation. The root of the second problem lies in the fact
that types are linear by default, meaning that each channel end can be known,
at any given point in the program, by exactly one thread. And this goes against
the idea of disseminating the channel in such a way that any party may individ-
ually donate, by just knowing the channel. We need a means to say that channel
ends can be shared by more than one process. Towards this end, we label each
prefix as either un or lin . Shared types are qualified with un (for unrestricted);
linear types with lin . It turns out that the lin qualifier is optional. For example,
! integer .end abbreviates lin ! integer .end.

The type system keeps track of how many threads know a channel end:
if lin then exactly one, if un then zero or more. Linear channels are exempt
from races: we do not want two threads competing to set up a donation cam-
paign. Shared channels are prone to races: we do want many (as many as possi-
ble) simultaneous benefactors carrying out their donations. Care must however
be exerted when using shared channels. Imagine that type Promotion looks like
rec a.un!CreditCard.un!integer .a, and that we have two donors trying to interact
with the server,

w! ”2345” .w!500 | w! ”1324” .w!2000 | r ? x . r ? y . . .

Further imagine that the first donor wins the race, and exchanges message
”2345”. We are left with a process of the form w!500 | w!”1324”.w!2000 | r?y ... ,
where the value transmitted on the next message exchange can be an integer
value (500) or a string (”1324”), a situation clearly undesirable. To circumvent
this situation we pass the two values in a single message, by making w of type
rec a.un!(CreditCard, integer) .a. This pattern, rec a.un!T.a, is so common that we
provide an abbreviation for it: ∗!T, and similarly for input. So here is the new
type for Promotion.

type Promotion = ∗ ! (Cred i tCard , i n t ege r)

Now a client can donate twice (in parallel); it may also pass the channel to
all its acquaintances so that they may donate and/or further disseminate the
channel. In the process below, notice the parallel composition operator enclosed
in braces when used within a process.

A Concurrent Programming Language with Refined Session Types 21

w s e l e c t s e tDate . w! 2014 . w s e l e c t commit . {
w! (”2345” , 500) | w! (”1324” , 2000) | acqua i n t ance !w

}
The ability to define types that “start” as linear (e.g. Donation) and end up as
unrestricted (Promotion) was introduced in [25].

So far our example is composed of one server and one client. What if we
require more than one client (the plausible scenario for an online system) or
more than one server (perhaps for load balancing)? If we add a second client, in
parallel with the above code for the server and the client, the program does not
compile anymore: there is a race between the two clients for the linear channel
end w. On the one hand we have seen that the donation channel must be linear;
on the other hand we want a donation server reading on a well-known, public, un,
channel. We start by installing the server on a channel end of type ∗?Donation,
and disseminate the client end of the channel (of type dualof ∗!Donation, that is
∗?Donation). Our main program with two clients looks as follows.

new c s : ∗? Donat ion // c r e a t e an On l i n e Donat ion channe l
d ona t i o nS e r v e r ! s | // send one end to the Donat ion S e r v e r
c l i e n t 1 ! c | c l i e n t 2 ! c // l e t the whole wor ld know the o th e r

To this pattern—create a channel, send one end to the server, keep the
other—we call session initiation. We found it so common that we introduced
an abbreviation for it. The above three lines of code can be replaced with the
following process.

dona t i o nS e r v e r ! (new c : ∗? Donat ion) . { c l i e n t 1 ! c | c l i e n t 2 ! c }
Now the first output introduces a binding (for program variable c), hence we can-
not use parallel composition anymore. Instead we use prefix. One of the advan-
tages of the session initiation abbreviation is that it spares the programmer from
coming up with two different identifiers; that for the server end becomes implicit.
Notice however that, in a session initiation process of the form x!(new y:T).P the
actual end point that is sent is of type dualof T.

We now concentrate on how the donation server charges credit cards. In
general, merchants cannot directly charge credit cards. As such our donation
server forwards the transaction details (the credit card number and amount to
be charged) to the credit card issuer (a bank, for example). Assume the following
definition for a bank: def bank (ccard: CreditCard, amount: integer). Well behaved
servers receive the data and forward it to the bank:

r ?(ccard , amount) . bank ! (ccard , amount)

Not so honest servers may try to charge a different amount (perhaps a hidden
tax),

r ?(ccard , amount) . bank ! (ccard , amount+10)

or to charge the right amount, but twice.

r ?(ccard , amount) .{ bank ! (ccard , amount) | bank ! (ccard , amount) }

22 J. Franco and V. T. Vasconcelos

While types cannot constitute a general panacea for fraudulent merchants,
the situation can be improved. The idea is that the bank is not interested in
arbitrary (ccard,amount) pairs but on pairs for which a charge (ccard,amount) capa-
bility has been granted. We then refine the type of the amount in the bank’s
signature. We are now interested on amounts x of type integer for which the
predicate charge (ccard,x) holds, that is, parameter amount becomes of type

{x : i n t ege r | cha rge (ccard , x) }
The capability of charging a given amount on a specific credit card is usually
granted by the benefactor, by assuming an instance of the charge predicate, as
in:

assume cha rge (”2345” , 500) | w! (”2345” , 500)

The bank, in turn, makes sure that the transaction details were granted by the
client, by asserting the same predicate:

def bank (cca rd : Cred i tCard ,
amount : {x : i n t ege r | cha rge (ccard , x) }) =

a s s e r t cha rge (ccard , amount) . . .

Assumptions and assertions have no operational significance on well-typed
programs. At the type system level, assumptions and assertions are treated lin-
early : for each asserted predicate there must be exactly one assumed, and con-
versely. In this way formulae are treated as resources: they are introduced in
the type system via assume processes, passed around in refinement types, and
consumed via assert processes. As such, the code for servers that try to charge
twice the right amount (see above) does not type check, for the bank’s “second”
assert is not matched by any assumption. The code for servers that try to charge a
different amount (see above) does not type check either. In this case the benefac-
tor’s assumption charge(”2345”, 500) would never be asserted, whereas the bank’s
assertion charge(”2345”, 510) would not have a corresponding assumption. Lin-
earity also means that code for banks that forget to assert charge(ccard , amount)

does not type check. We leave as an exercise writing a typeful server code
that charges an amount different from that stated (and assumed) by the bene-
factor (or that charges twice the right amount), by careful manipulation of
assume/assert in the server code.

Benefactors that wish to be charged twice, may issue two separate assump-
tions or join them on a single formulae, as in the code below.

assume cha rge (”2345” ,500) ∗ cha rge (”2345” ,500) |
w! (”2345” ,500) | w! (”2345” ,500)

Likewise, multiple assertions can be conjoined in one, via the tensor (∗) formula
constructor [9].

4 Technical Aspects of the Language

SePi is based on the synchronous monadic pi calculus (as in [25]) extended with
assert and assume primitives (inspired by [1]). On top of this core calculus we

A Concurrent Programming Language with Refined Session Types 23

added a few derived constructs. This section briefly describes the core language,
the derived constructs in the SePi language and the type checking system.

The core language includes syntactic categories for formulae A, types T, val-
ues v, expressions e, and processes P. Formulae in the current version of the lan-
guage are built from uninterpreted predicates (over values only), tensor (∗) and
unit. At the type level we have base types (integer, boolean, string , and end), pre-
fix types (namely, input q?x:T.U, output q!x:T.U, branching q&{l1:T1 ,..., ln :Tn}
and selection q+{l1:T1 ,..., ln :Tn}, where q is either lin or un), recursion (rec a.T

and a) and refinement types ({x:T|A}). Prefix types are labelled with an optional
identifier x that may be referred to in the continuation type (e.g., !x: integer .!{y:
integer |p(x,y)}.end).

Values in SePi are program variables (standing for channel ends), as well as
integer, boolean and string constants. At the level of expressions SePi includes
the familiar operators on integer and boolean values. For processes we have
channel creation (new x1 y1 :T1 ...new xn yn :Tn P), prefix processes (monadic input,
replicated x*?y.P or use-once x?y.P, monadic output x!e.P, selection x select l .P,
and branching processes case x of l1→P1 ... ln→Pn), conditional if e then P

else Q, n-ary parallel composition({P1 |...| Pn}), assume A and assert A.P. Mutu-
ally recursive channel creation new x1 y1 :T1 new x2 y2 :T2 allows for channel x1 to
occur in type T2, and for x2 to occur in type T1.

Derived constructs at the type level include support for polyadic message
passing (q!(y1 :T1 ,... yn :Tn).U and q?(y1 :T1 ,... yn :Tn).U), the star syntax for unre-
stricted types (∗?T, ∗!T, ∗&{l1 ,..., ln}, and ∗+{l1 ,..., ln}), and the dualof type
operator. Furthermore, the lin qualifier is optional.

Derived constructs at the process level include support for polyadic message
passing (x!(e1 ,..., en) .P and x?(y1 ,..., yn) .P) and for session initiation (x !(...,

new y:T ,...) .P). Furthermore the empty parallel composition is optional when
used in the continuation of a prefix process (x!e abbreviates x!e.{}).

Finally, there is one derived construct that mixes types and processes: mutu-
ally recursive declarations of the form D1 ...Dn P, where each declaration Di

is either a channel creation new x y:T, a process definition def x(y1 :T1 ,..., yn :

Tn) = P, or a type abbreviation type a = T.
We now discuss the derived constructors in SePi, starting with those related

to types. A type of the form ∗?T is expanded into rec b.un?T.b for b a fresh
type variable, and similarly for output, branching and selection. The dualof type
operator produces a new type where input ? is replaced by output !, branching &

is replaced by selection +, and conversely in both cases. All other type construc-
tors remain unchanged (except for rec). We use the co-inductive definition of
Gay and Hole [8], extended to refinement types in the natural way.

In order to simulate interference-free polyadic message passing on shared
(un) channels, we use a standard encoding for the send and receive operations
(cf. [16,25]). For example, the pair-type (ccard : CreditCard, amount: {x: integer |
charge(ccard ,x)}) in the signature of the bank definition (Sect. 3) is equivalent to
the refined linear session type

l i n ? c : C r ed i tCa rd . l i n ?{ x : i n t ege r | cha rge (c , x) } . end

24 J. Franco and V. T. Vasconcelos

where the prefix ?CreditCard is labelled with identifier c, so that it may be
referred to in the continuation, namely in the predicate charge(c,x) for the
amount to be charged. On the process side, the output process b!(”2345”,500).P

abbreviates

new r w : l i n ? c : C r ed i tCa rd . l i n ?{ x : i n t ege r | cha rge (c , x) } . end
b ! r .w! ”2345” .w! 5 0 0 .P

and the input process b?(x,y).P abbreviates

b? z . z ?x . z ?y .P

All process constructors in the core language were introduced in Sect. 3,
except for replication. A replicated input process behaves as an input process,
except that it survives message reception. We use ? for a linear input and *? for
a replicated input. For example:

new w r : ∗ ! i n t ege r
w!2013 | r ∗? x . p r i n t I n t e g e r ! x | w!2014

prints two integer values, while

new w r : ∗ ! i n t ege r
w!2013 | r ? x . p r i n t I n t e g e r ! x | w!2014

will print one only.
A process definition is expanded into a channel creation followed by a repli-

cated input process. Each declaration of the form def p x:T = P introduces
a new channel, as in new p p’: ∗!T where p’ is a fresh identifier, in the scope
of which, we add a replicated process of the form p’*?x.P, in parallel with the
rest of the program. Process definitions obviate in most cases the direct usage
of replicated input processes, hiding one of the channel ends (p’), thus simpli-
fying code development. They are also amenable to an optimisation in code
interpretation [21].

Session initiation is discussed in Sect. 3. In general, a process x !(..., new y

:T ,...) .P is expanded into a process of the form new z1 z2 :T x !(..., z2 ,...) .P’,
where variables z1 and z2 are fresh, and P’ is obtained from P by replacing (free)
occurrences of y by z1. This substitution is also applied to the arguments of the
output process to the right of the new. Fresh variables prevent the free variable
capture that would occur in process x!(new x:end) or y!(x,new x:end). Our expe-
rience shows that process definition and session initiation account for the vast
majority of channel creation, effectively dispensing the explicit declaration of
one channel end.

A sequence of declarations followed by a process is a SePi process. Declara-
tions may be mutually recursive. Below is an example that, when run, prints an
infinite sequence of alternating true/ false values. Notice the mutually recursive
process (p and q) and type (T and U) definitions. Further notice that type T

depends on process p, which depends on channel r, which depends on type T

again.

A Concurrent Programming Language with Refined Session Types 25

type T = ∗ ! (boolean ,{ y :U | a (y , p) })
type U = dua lo f T
def p b : boolean = { assume a (r , p) | w! (not b , r) . q ! () }
def q () = r ?(x , y) . a s s e r t a (y , p) . p r i n tBoo l e a n ! b . p ! x
new w r : T
p ! f a l s e | q ! ()

Declarations are elaborated in a few steps. In the first step, type names, chan-
nel names, and process names (which are after all channel names) are collected.
This information allows us to check type formation (essentially that types do not
contain free type and program variables). In the second pass, we check type for-
mation and solve the system of equations. Systems of type equations are guar-
anteed to be solvable due to the presence of recursive types in the syntax of the
language and to the fact that types are required to be contractive.1 We defer to
the next phase the elaboration of the dualof operator. For example, the solution to
the system of equations above is T = rec u.!(boolean ,{y:dualof u | a(y,p)}).u and
U = dualof T.2 The third step expands the occurrences of dualof (co-inductively, as
explained above) to obtain:

T = rec u . un ! (boolean ,
{y : rec v . un ?(boolean ,{ z : v | a (z , p) }) . u | a (y , p) }) . u

U = rec u . un ?(boolean ,
{y : rec v . un ?(boolean ,{ z : v | a (z , p) }) . u | a (y , p) }) . u

At this point all types are resolved. The fourth step adds to the typing context
entries for new channels (in new and def declarations) with the appropriate
types. Finally, the last pass checks the replicated processes obtained from process
definitions. Translating the example above into the core language yields the
process below.

new p p ’ : rec u . un ! boolean . u
new q q ’ : rec v . un ! () . v
new w r : T
p ’∗? b . { assume a (r , p) | w! (not b , r) . q ! () } | s
q ’ ∗ ? () . r ?(b , x) . a s s e r t a (x , p) . p r i n tBoo l e a n ! b . p ! b |
p ! f a l s e | q ! ()

The type system of the SePi language is decidable. The algorithmic rules
are those in [25], with minor adaptations in the rules for replicated input and
case processes. Algorithmic typing systems crucially rely on the decidability of
type equivalence. Type equivalence for the non-refined language is decidable [25].
Type equivalence for SePi is also decidable thanks to the extremely simple syn-
tax of formulae. In essence, we keep separated a typing context and a multiset
of predicates. An invariant of the type system states that context entries do
not contain refinement types at the top level. The type equivalence procedure
(basically, equality of regular infinite trees) may use (hence, remove) predicates
from the multiset, if required.
1 A type is contractive if it contains no sub-expression of the form rec a1 ... rec an .a1.
2 To keep types manageable we did not expand polyadic message passing.

26 J. Franco and V. T. Vasconcelos

The rules for assume and assert in [1] are not algorithmic. Nevertheless, algo-
rithmic rules are easy to obtain. Processes of the form assume A add A to the
formulae multiset after breaking the tensors and eliminating occurrences of unit;
processes of the form assert A try to remove the predicates in A from the multi-
set. Input processes of the form x?y.P eliminate the top-level refinements in the
type for y; the resulting type is added to the typing environment, the predicates
are added to the multiset. The remaining rules remain as in [25], except that
they now work with the new procedure for type equivalence.

5 Conclusion and Future Work

We presented SePi, a concurrent programming language based on the monadic
pi-calculus where communication between processes is governed by session types
and where linearly refinement types may be used to specify properties about
the values exchanged. In order to facilitate programming we added to SePi a
few derived constructs, such as output and input of multiple values, mutually
recursive process definitions and type declaration, session initiation, as well as
the dualof type operator.

Our early experience with the language unveiled a few further constructs
that may speed up code development, such as, a simple import clause allowing
the inclusion of code in a different source file, thus providing for limited sup-
port for API development. In order to keep the language simple, the current
version of SePi uses predicates over values only, thus preventing formulae con-
taining expressions, such as p(x+1). We plan to add expressions to predicates,
together with the appropriate theories (e.g., arithmetic), combining the current
type checking algorithm with an SMT solver. Finally, we acknowledge that the
current language of formulae is quite limited (essentially a multiset of uninter-
preted formulae). We are working on a system that provides for the persistent
availability of resources in a form of replicated (or exponential) resources. Poly-
morphism and subtyping may be incorporated in future versions of the language.
We are also interested in extending the type system so that it may guarantee
some form of progress for well typed processes.

Acknowledgements. This work was partially supported by project PTDC/EIA–
CCO/1175 13/2010 and by LaSIGE (PEst-OE/EEI/UI0408/2011). We are grateful
to Dimitris Mostrous, Hugo Vieira, and to anonymous referees for their feedback.

References

1. Baltazar, P., Mostrous, D., Vasconcelos, V.T.: Linearly refined session types. In:
2nd International Workshop on Linearity, vol. 101 of EPTCS, pp. 38–49 (2012)

2. Bhargavan, K., Corin, R., Deniélou, P.-M., Fournet, C., Leifer, J.J.: Cryptographic
protocol synthesis and verification for multiparty sessions. In: Computer Security
Foundations Symposium, pp. 124–140. IEEE (2009)

A Concurrent Programming Language with Refined Session Types 27

3. Boudol, G.: Asynchrony and the pi-calculus (note). Rapport de Recherche 1702,
INRIA, Sophia-Antipolis (1992)

4. Caldeira, A., Vasconcelos, V.T.: Bica. http://gloss.di.fc.ul.pt/bica
5. Campos, J., Vasconcelos, V.T.: Channels as objects in concurrent object-

oriented programming. In: 3rd International Workshop on Programming Lan-
guage Approaches to Concurrency and Communication-cEntric Software, vol. 69
of EPTCS, pp. 12–28 (2011)

6. Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G., Larus, J.R.,
Levi, S.: Language support for fast and reliable message-based communication in
singularity OS. Oper. Syst. Rev. 40(4), 177–190 (2006)

7. Gay, S., Vasconcelos, V.T., Ravara, A., Gesbert, N., Caldeira, A.Z.: Modular ses-
sion types for distributed object-oriented programming. In: Principles of Program-
ming Languages, pp. 299–312. ACM (2010)

8. Gay, S.J., Hole, M.J.: Subtyping for session types in the pi calculus. Acta Inf.
42(2/3), 191–225 (2005)

9. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
10. Honda, K., Mukhamedov, A., Brown, G., Chen, T.-C., Yoshida, N.: Scribbling

interactions with a formal foundation. In: Natarajan, R., Ojo, A. (eds.) ICDCIT
2011. LNCS, vol. 6536, pp. 55–75. Springer, Heidelberg (2011)

11. Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In:
America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg
(1991)

12. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

13. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Principles of Programming Languages, pp. 273–284. ACM (2008)

14. Hu, R., Yoshida, N., Honda, K.: Session-based distributed programming in Java. In:
Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 516–541. Springer, Heidelberg
(2008)

15. Milner, R.: Functions as processes. J. Math. Struct. Comput. Sci. 2(2), 119–141
(1992)

16. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, part I/II. Inf.
Comput. 100, 1–77 (1992)

17. Neubauer, M., Thiemann, P.: An implementation of session types. In: Jayaraman,
B. (ed.) PADL 2004. LNCS, vol. 3057, pp. 56–70. Springer, Heidelberg (2004)

18. Ng, N., Yoshida, N., Honda, K.: Multiparty session C: safe parallel programming
with message optimisation. In: Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS,
vol. 7304, pp. 202–218. Springer, Heidelberg (2012)

19. Pierce, B.C., Turner, D.N.: Pict: a programming language based on the pi-calculus.
In: Plotkin, G.D., Stirling, C.P., Tofte, M. (eds.) Proof, Language and Interaction:
Essays in Honour of Robin Milner, pp. 455–494. MIT Press, Massachusetts (2000)

20. Sackman, M., Eisenbach, S.: Session types in Haskell: updating message passing
for the 21st century. Technical report, Department of Computing, Imperial College
(2008)(2008)

21. Turner, D.N.: The polymorphic Pi-calculus: theory and implementation. Ph.D.
thesis, University of Edinburgh (1995)

22. Ng, N., Yoshida, N., Honda, K.: Multiparty session C: safe parallel programming
with message optimisation. In: Pareschi, R. (ed.) ECOOP 1994. LNCS, vol. 821,
pp. 202–218. Springer, Heidelberg (1994)

http://gloss.di.fc.ul.pt/bica

28 J. Franco and V. T. Vasconcelos

23. Vasconcelos, V.T.: TyCO gently. DI/FCUL TR 01–4, Faculty of Sciences, Depart-
ment of Informatics, University of Lisbon (2001)

24. Vasconcelos, V.T.: Sessions, from types to programming languages. Bull. Eur.
Assoc. Theor. Comput. Sci. 103, 53–73 (2011)

25. Vasconcelos, V.T.: Fundamentals of session types. Inf. Comput. 217, 52–70 (2012)

Behavioural Types Inspired
by Cellular Thresholds

Bogdan Aman and Gabriel Ciobanu(B)

Romanian Academy, Institute of Computer Science,
Blvd. Carol I no.8, 700506 Iaşi, Romania

baman@iit.tuiasi.ro, gabriel@info.uaic.ro

Abstract. The sodium-potassium exchange pump is a transmembrane
transport protein that establishes and maintains the appropriate internal
concentrations of sodium and potassium ions in cells. This exchange is an
important physiological process; it is critical in maintaining the osmotic
balance of the cell. Inspired by the functioning of this pump, we introduce
and study a threshold-based type system in a bio-inspired formalism.
Such a system can avoid errors in the definition of the formal model
used to model certain biologic processes. For this type system we prove
a subject reduction theorem.

1 Introduction

Cell membranes are crucial to the life of the cell. Defining the boundary of
the living cells, membranes have various functions, and participate in many
essential cell activities including barrier functions, transmembrane signalling
and intercellular recognition. The sodium-potassium exchange pump [12] is a
transmembrane transport protein in the plasma membrane that establishes and
maintains the appropriate internal ratio of sodium (Na+) and potassium ions
(K+) in cells. By using energy from the hydrolysis of ATP molecules, the pump
extrudes three Na+ ions, in exchange for two K+. This exchange is an impor-
tant physiological process, critical in maintaining the osmotic balance of the
cell, the resting membrane potential of most tissues and the excitability proper-
ties of muscle and nerve cells. Limitations on the values of the Na+/K+ ratio,
together with their significance are described in [11]. If this ratio is unbalanced,
it indicates physiological malfunctions within the cell: an unbalanced sodium-
potassium ratio is associated with heart, kidney, liver, and immune deficiency
diseases. The sodium-potassium ratio is also linked to adrenal gland function [8].
For example, the intracellular Na+/K+ ratios of the normal epithelial cells fall
in a rather narrow range defined by certain thresholds [13].

The description of the sodium-potassium exchange pump given in Table 1
is known as the Albers-Post model of the pump. The two ions species, Na+

and K+, are transported sequentially. The Na-K pump essentially exists in two
conformations, E1 and E2, which may be phosphorylated (EP

1 , EP
2) or dephos-

phorylated (E1, E2). These conformations correspond to mutually exclusive

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 29–43, 2014.
DOI: 10.1007/978-3-319-05032-4 3, c© Springer International Publishing Switzerland 2014

30 B. Aman and G. Ciobanu

Table 1. Albers-Post model

E1 + (Na+
in)3 � (Na+)3 · E1 (1)

((Na+)3 · E1) + ATP � ((Na+)3 · EP
1) + ADP (2)

(Na+)3 · EP
1 � (Na+)3 · EP

2 (3)
(Na+)3 · EP

2 � EP
2 + (Na+

out)
3 (4)

EP
2 + (K+

out)
2 � (K+)2 · EP

2 (5)
(K+)2 · EP

2 � ((K+)2 · E2) + Pi (6)
(K+)2 · E2 � (K+)2 · E1 (7)
(K+)2 · E1 � (K+

in)2 + E1 (8)

states in which the pump exposes ion binding sites alternatively on the intra-
cellular (E1) and extracellular (E2) sides of the membrane. Transitions between
these conformations mediate ion transport.
In Table 1 we use the following notations:

• B + D means that B and D are present together and could react;
• B · D means that B and D are bound to each other non-covalently;
• EP

2 indicates that E2 is covalently bound to the phosphoryl group P ;
• Pi is the inorganic phosphate group;
• (Na+)3 indicates three Na+ ions;
• since there is no explicit representation of the membrane containing the

Na+/K+ pump, we use additional notations to represent ions:
• Na+ (K+) indicates a Na+ (K+) ion placed inside the pump;
• Na+

in (K+
in) indicates a Na+ (K+) ion placed inside the cell;

• Na+
out (K+

out) indicates a Na+ (K+) ion placed outside the cell;
• � indicates that the process can be reversible.

Figure 1 presents a graphical representation of the conformations and the
functioning of the pump described in Table 1. Na+ ions are pictured as small
squares and K+ ions as small circle; for simplicity, neither ATP and ADP
molecules nor phospates are represented.

The traditional notion of types offers abstractions for data, objects and oper-
ations on them. The basic form of behavioural types articulates the ways in which
interactions are performed. In this paper we introduce behavioural types inspired
by cellular thresholds. We associate to each system a set of constraints that must
be satisfied in order to assure that the application of the rules to a well-formed
membrane system leads to a well-formed membrane system as well. We have a
two-stage approach to the description of biological behaviours: the first describes
reactions in an “untyped” setting, and the second rules out certain evolutions
by imposing thresholds. This allows one to treat separately different aspects of
modelling: which transitions are possible at all, and under which circumstances
they can take place.

Membrane systems represent a formalism inspired by biological systems [14].
They are used to model the sodium-potassium pump [3]. The model uses com-
partments defined by membranes, floating objects, proteins associated with the

Behavioural Types Inspired by Cellular Thresholds 31

(2)

((Na+)3 · EP
1) +ADP

(3)

(Na+)3 · EP
2

(4)

(K+
out)

2

EP
2 + (Na+out)

3

(1)

(K+
in)

2

E1 + (Na+in)
3

(7)

(K+)2 · E1

(5)

(K+)2 · EP
2

(6)

((K+)2 · E2) + Pi

(8)

(Na+)3 · E1 +ATP

Fig. 1. The sodium–potassium pump

internal and external surfaces of the membranes, and built-in proteins (the
pump) that transport the chemical substances. Evolution rules represent the
formal counterpart of chemical reactions, and are given in the form of rewriting
rules that operate on the objects, as well as on the compartmentalised structure.
A rule is applicable when all the objects appearing on its left hand side are
available in the region where the rule is placed. In this paper we use a formalism
inspired by such systems.

2 A Model of the Sodium-Potassium Pump

Given a finite set O of symbols, the set of all strings over O is denoted by O∼,
and the set of all non-empty strings over O is denoted by O+ = O∼\π, where π
is the empty string. A multiset over O [15] is a map u : O ∪ N, where u(a)
denotes the multiplicity of the symbol a ∅ O in the multiset u; |u| =

∑
a→O u(a)

denotes the total number of objects appearing in a multiset u. A multiset u is
included into a multiset v (denoted by u ⊆ v) if u(a) → v(a) for all a ∅ O. An
object a is included into a multiset u (denoted by a ∅ u) if u(a) > 0. For a ∅ O,
we write a instead of the multiset u if u(a) = 1 and u(b) = 0 for all b √= a. The
empty multiset is denoted by α, and α(a) = 0 for all a ∅ O. For two multisets u
and v, we define the sum uv by (uv)(a) = u(a) + v(a) for all a ∅ O, and the
difference u − v by (u − v)(a) = max{0, u(a) − v(a)} for all a ∅ O. More details
and operations over multisets can be found in [15].

32 B. Aman and G. Ciobanu

In what follows we work with terms ranged over by st, st1, . . ., that are built
by means of a membrane constructor [−]−, using a set O of objects. The syntax
of the terms st ∅ ST is given by

st:: = u | [st]v | st st,

where u denotes a (possibly empty) multiset of objects placed inside a mem-
brane, v a multiset of objects within or on the surface of a membrane, and st st
is the parallel composition of two terms. Since we work with multisets of terms,
we introduce a structural congruence relation following a standard approach
from process algebra. The defined structural congruence is the least congruence
relation on terms satisfying also the rule:

if v1 ≡ v2 and st1 ≡ st2 then [st1]v1 ≡ [st2]v2 .

A pattern is a term that may include variables. We denote by P the infinite set
of patterns P of the form:

P :: = st | [P X]v y | P P.

We distinguish between “simple variables” (ranged over by x, y, z) that may
occur only on the surface of membranes (i.e., they can be replaced only by
multisets of objects) and “term variables” (ranged over by X, Y , Z) that may
only occur inside regions (they can be replaced by arbitrary terms). Therefore,
we assume two disjoint sets: VO→ (set of simple variables) and VST → (set of term
variables). We denote by V = VO→ ∈VST → the set of all variables, and with ε any
variable in V .

An instantiation is a partial function σ : V ∪ ST ∼ that preserves the type
of all variables: simple variables (x ∅ VO→) and term variables (X ∅ VST →) are
mapped into objects (σ(x) ∅ O∼) and terms (σ(X) ∅ ST ∼), respectively. Given a
pattern P , the term obtained by replacing all occurrences of each variable ε ∅ V
with the term σ(ε) is denoted by Pσ. The set of all possible instantiations is
denoted by Σ, and the set of all variables appearing in P is denoted by V ar(P).

Formally, a rewriting rule r is a pair of patterns (P1, P2), denoted by P1 ∪ P2,
where P1 √= α (i.e., P1 is a non-empty pattern) and V ar(P2) ⊆ V ar(P1).
A rewriting rule P1 ∪ P2 states that a term P1σ can be transformed into the
term P2σ, for some instantiation function σ.

Example 1. A description of the pump using membrane systems is presented
in [3]. The authors model the sodium-potassium pump by using membrane sys-
tems with integral proteins. The inner and outer regions are characterised by
multisets over the alphabet O = {Na,K,ATP,ADP,P, Pi, E1, E2, EP

1 , EP
2 }.

The dephosphorylated conformations of the pump are denoted by the objects E1

and E2, while the phosphorylated conformations are denoted by the objects EP
1

and EP
2 . An important aspect of this system is given by the fact that an object P

undergoes a structural modification by passing from being an object placed inside
the membrane to being part of a membrane protein.

Behavioural Types Inspired by Cellular Thresholds 33

Let us consider a system [NanKmATP k]E1 Nar Kt given by the inner region
consisting of n symbols Na of sodium, m symbols K of potassium, and k sym-
bols ATP , together with the outer region consisting of r symbols Na and t
symbols K. The membrane between the inner and outer regions is presented as
a multiset containing initially only an object E1. The description of the pump is
given in Table 2, where the whole system is decomposed into a set of six rules.
The smaller number of rules with respect to Table 1 is due to the fact that we
combined the rules (3) with (4) and (6) with (7) of Table 1 into rules r3 and r5 of
Table 2. The first rule (rule r1) describes the conformation E1 binding three Na+

ions from the inner region of the cell to the pump which is in the membrane.
This stimulates ATP hydrolysis and the release of ADP inside the cell, form-
ing a phosphorylated enzyme intermediate EP

1 (rule r2). Extrusion of the three
Na+ ions from the pump outside the cell is completed by a conformation change
to EP

2 (rule r3). In this conformation, the pump has a high affinity with K+ ions:
two K+ ions outside the cell go to the pump in the membrane (rule r4). The
conformation is dephosphorylated and changes to E1 (rule r5). This is followed
by the release of the two K+ ions from the pump inside the cell (rule r6). After
this step, the pump is restored to its original configuration, and is capable to
react again with Na+ ions (rule r1).

The notion of context is used to complete the definition of a rewriting seman-
tics for our systems. This is done by enriching the syntax with a new object �
representing a hole. By definition, a context is represented as a single hole �.
The infinite set C of contexts (ranged over by C) is given by:

C :: = � | C st | [C]v.

Given C1, C2 ∅ C, C1[st] denotes the term obtained by replacing � with st
in C1, while C1[C2] denotes the context obtained by replacing � with C2 in C1.

Given a set R of rewriting rules, a reduction semantics of the system is given
by the least transition relation ∪ closed with respect to ≡ satisfying also the
rule:

P1 ∪ P2 ∅ R P1σ √≡ α σ ∅ Σ C ∅ C
C[P1σ] ∪ C[P2σ]

.

∪∼ denotes the reflexive and transitive closure of ∪.

Table 2. Rewriting rules for the Na-K pump

r1 : [Na3 X]E1Y → [X]E1 Na3Y
r2 : [ATP X]E1 Na3 → [ADP X]EP

1 Na3Y

r3 : [X]EP
1 Na3Y → [X]EP

2
Na3 Y

r4 : [X]EP
2

K2 Y → [X]EP
2 K2Y

r5 : [X]EP
2 K2Y → [Pi X]E1 K2Y

r6 : [X]E1 K2Y → [K2 X]E1Y

34 B. Aman and G. Ciobanu

Example 2 (cont.). Starting from the term

[Na8 K2 ATP 3]E1 Na3 K5

the system evolves by using twice all the rules of Table 2. In what follows we
illustrate how the rules are applied; after each configuration we add on the same
row which rule has been applied and the proper instantiations. When a set of
rules is applied, then we ignore the instantiations.

[Na8 K2 ATP 3]E1 Na3K5

→ [Na5K2ATP 3]E1Na3 Na3K5 [r1, X = Na5K2ATP 3, Y = Na3K5]
→ [Na5K2ATP 2ADP]EP

1 Na3Na3K5 [r2, X = Na5K2ATP 2, Y = Na3K5]

→ [Na5K2ATP 2ADP]EP
2

Na6K5 [r3, X = Na5K2ATP 2ADP , Y = Na3K5]

→ [Na5K2ATP 2ADP]EP
2 K2Na6K3 [r4, X = Na5K2ATP 2ADP , Y = Na3K2]

→ [PiNa5K2ATP 2ADP]E1K2Na6K3 [r5, X = Na5K2ATP 2ADP , Y = Na3K2]
→ [PiNa5K4ATP 2ADP]E1Na6K3 [r6, X = Na5K2ATP 2ADP , Y = Na3K2]
→√ [P 2

i Na2K6ATP ADP 2]E1Na9K [r1, r2, r3, r4, r5, r6]

Unfortunately, some constraints over certain ratios (e.g., Na+/K+, ATP/ADP)
described in [11] cannot be modelled using the above class of membrane systems.
From a physiological point of view, these ratios are important, as well as the lower
and upper bounds for the objects involved in the ion channel transport. For this
reason we introduce a type system (for the above defined formalism) that is able
to impose constraints on the pump evolution taking into consideration the ratios
between objects, and also certain thresholds.

3 Threshold-Based Type System Over Multisets

An important idea of type theory is to provide the possibility of distinguishing
between different classes of objects. Types are fundamental both in logic and
computer science, and have many applications. Recently it has been used in
biological formalisms in order to transfer the complexity of biological properties
from evolution rules to types. The syntax of types is simple, easy to understand
and use, and these aspects make types ideal for expressing general constraints.
The type system could be also used to decrease the number of rules in some
models by defining a limited number of generic rules as in [1].

The behaviour of typed terms can be controlled by a type system in order
to avoid unwanted evolutions. According to [11], the evolution of a healthy cell
ensures that the ratio between objects (e.g., Na+/K+) of a cell is kept between
certain values. We investigate how to extend a type system such that to describe
the change of evolution depending on the ratio between objects, and also specific
thresholds.

Behavioural Types Inspired by Cellular Thresholds 35

Let T be a finite set of basic types ranged over by t. We classify each object
in O with a unique element of T ; we use Γ to denote this classification. In
general, different objects a and b can have the same basic type t. When there
is no ambiguity, we denote the type associated with an object a by ta. For each
ordered pair of basic types (t1, t2), we assume the existence of two functions,
min : T × T ∪ (0,∞) ∈ {⇑} and max : T × T ∪ (0,∞) ∈ {⇑}. These functions
indicate the minimum and maximum ratio between the number of objects of
basic types t1 and t2 that can be present inside a membrane.

For example, by taking the constraints min(ta, tb) = 3 and max(ta, tb) = 5,
the number of objects of basic type ta is larger than the number of objects
of basic type tb with a coefficient between three and five. min(t1, t2) = ⇑ and
max(t1, t2) = ⇑ mean that these functions are undefined for the pair of types
(t1, t2). Biologically speaking, the ratio between the types t1 and t2 is either
unknown, or can be ignored.

We consider only local properties: the objects influence each other only if

• they are present inside the same membrane;
• they are integral on sibling membranes;
• one is present inside and the other is integral to the membrane;
• one is present outside and the other is integral to the membrane.

Definition 1 (Consistent Basic Types). A system using a set of basic types T
and the functions min and max is consistent if:

1. ∀t1, t2 ∅ T , min(t1, t2) √= ⇑ iff max(t1, t2) √= ⇑;
2. ∀t1, t2 ∅ T , min(t1, t2) √= ⇑ iff min(t2, t1) √= ⇑;
3. ∀t1, t2 ∅ T if min(t1, t2) √= ⇑, then min(t1, t2) → max(t1, t2);
4. ∀t1, t2 ∅ T if min(t1, t2) √= ⇑ and max(t2, t1) √= ⇑,

then min(t1, t2) · max(t2, t1) = 1.

The meaning of these constraints is explained below:

1. the minimum ratio between the number of objects of basic types t1 and t2 is
defined iff the corresponding maximum ratio is defined;

2. the minimum ratio between the number of objects of basic types t1 and t2 is
defined iff the minimum ratio between the number of objects of basic types t2
and t1 is defined;

3. the minimum ratio between the number of objects of basic types t1 and t2
must be lower than the maximum ratio between the number of objects of
basic types t1 and t2;

4. the maximum ratio between the number of objects of basic types t2 and t1
must be equal to the inverse of the minimum ratio between the number of
objects of types t1 and t2.

Example 3. The system using the following set of basic types

T = {ta, tb, tc}

36 B. Aman and G. Ciobanu

and min, max defined by

min(t1, t2) max(t1, t2)
t1\t2 ta tb tc
ta 0.4
tb 0.2
tc 3

t1\t2 ta tb tc
ta 5
tb 2.5
tc 6

is consistent because each pair of basic types respects the previous definition.

Definition 2 Quantitative types are triples (L,Pr, U) over the set T of basic
types, where:

• L (lower) is the set of minimum ratios between basic types;
• Pr (present) is the multiset of basic types of present objects (the objects present

at the top level of a pattern, i.e. in the outermost membrane);
• U (upper) is the set of maximum ratios between basic types.

The number of objects of type t appearing in a multiset Pr is denoted by Pr(t).
In order to define well-formed types, given a multiset M of types, the sets RPM

(ratios of present types in M), LM (lower bounds of present types in M) and UM

(upper bounds of present types in M) are required:

• RPM =

⎧

⎪

⊇ if|M | → 1
⎨

t,t′→M

⎩
t/t∗ :

Pr(t)
Pr(t∗)

| t √= t∗, P r(t∗) √= 0
⎝

otherwise

• LM =

⎞
⊇ if|M | → 1
⎨

t,t′→M {t/t∗ : min(t, t∗) | t √= t∗,min(t, t∗) √= ⇑} otherwise

• UM =

⎞
⊇ if|M | → 1
⎨

t,t′→M {t/t∗ : max(t, t∗) | t √= t∗,max(t, t∗) √= ⇑} otherwise

These sets contain labelled values in order to be able to refer to them when
needed: e.g., t/t∗ : Pr(t)

Pr(t∗)
denotes the fact that the ratio between the objects of

types t and t∗ that are present in Pr has the label t/t∗, and the value is Pr(t)
Pr(t∗)

.

Definition 3 (Well-Formed Types). A type (L,Pr, U) is well-formed if

L = LPr, U = UPr and L → RPPr → U.

The constraints of this definition can be read as follows:

• L = LPr contains the minimum ratio constraints for the present objects;
• U = UPr contains the maximum ratio constraints for the present objects;

Behavioural Types Inspired by Cellular Thresholds 37

• L → RPPr means that the ratio between present objects respects the minimum

ratio from L: if for all (t/t∗ : min(t, t∗)) ∅ L and (t/t∗ :
Pr(t)
Pr(t∗)

) ∅ RPPr, then

min(t, t∗) → Pr(t)
Pr(t∗)

;

• RPPr →U means that the ratio between present objects respects the maximum

ratio from U : if for all (t/t∗ :
Pr(t)
Pr(t∗)

)∅RPPr and (t/t∗ : max(t, t∗))∅U , then

Pr(t)
Pr(t∗)

→ max(t, t∗).

Remark 1. If the set T contains a large number of basic types, defining a type to
be well-formed only if L = LPr and U = UPr reduces the amount of information
encapsulated by a type. E.g., for |T | = 100, the number of entries in the min
table is equal to 10000.

Example 4 (cont.). Let us assume a set of basic types T = {tNa, tK}, a classifi-
cation Γ = {Na : tNa,K : tK} and the functions min, max defined as:

The term Na5 K2 is well-formed, while the term Na9 K is not, because the
ratio between tNa and tK equals 9, and so it exceeds the maximum 4 indicated
in max table.

From now on we work only with well-formed types. For instance, the two
well-formed types (L,Pr, U) and (L∗, P r∗, U ∗) of the following two definitions
are constructed by using specific ratio tables for min and max.

Definition 4 (Type Compatibility). Two well-formed types (LPr, P r, UPr)
and (LPr′ , P r∗, UPr′) are compatible, written (L,Pr, U) γη (LPr′ , P r∗, UPr′), if

LPr+Pr′ → RPPr+Pr′ → UPr+Pr′

A basis Δ assigning types to simple and term variables is defined by

Δ:: = ⊇ | Δ,x : (Lt, t, Ut) | Δ,X : (L,Pr, U).

A basis is well-formed if all types in the basis are well-formed.
A classification Γ maps each object in O to a unique element of the set T

of basic types. The judgements are of the form Δ P : (L,Pr, U) indicating
that a pattern P is well-typed having the type (L,Pr, U) relative to a typing
environment Δ.

38 B. Aman and G. Ciobanu

Table 3. Typing rules

α ∗ β : (∅, ∅, ∅) (TEps)
a : t ∈ α

α ∗ a : (Lt, t, Ut)
(TObj)

α, ρ : (L, Pr, U) ∗ ρ : (L, Pr, U) (TV ar)

α ∗ v : (L, Pr, U) α ∗ P → : (L→, P r→, U →) (L, Pr, U) �� (L→, P r→, U →)
α ∗ [P →]v : (L, Pr, U)

(TMem)

α ∗ P : (LPr, P r, UPr) α ∗ P → : (LPr′ , P r→, UPr′)
(LPr, P r, UPr) �� (LPr′ , P r→, UPr′)

α ∗ P P → : (LPr+Pr′ , P r + Pr→, UPr+Pr′)
(TPar)

Types are assigned to patterns and terms according to the typing rules of
Table 3. It is not difficult to verify that a derivation starting from well-formed
bases produces only well-formed bases and well-formed types.

The rules are rather trivial, except for the rules (TPar) and (TMem).
The type of a parallel composition given by the (TPar) rule is derived from
the types of the two sub-patterns; if two patterns P and P ∗ are compatible, then
the type of the obtained pattern P P ∗ is derived from the types (LPr, P r, UPr)
and (LPr′ , P r∗, UPr′) of the connected patterns where Pr + Pr∗ is the multiset
sum of the present types pr and Pr∗. The type of rule (TMem) is the type of
the multiset of integral proteins v (because a membrane makes the objects inside
it invisible to the outside). Since the objects on the membrane are influenced
by the ones inside it, the type of the multiset placed on the membrane and the
type of the pattern placed inside the membrane must be compatible in order to
obtain the overall type of the membrane.

We define a typed semantics, since we are interested in applying reduction
rules only to correct terms having well-formed types, and whose requirements
are satisfied. More formally, a term st is correct if ⊇ st : (L,Pr, U) for some
well-formed type (L,Pr, U). An instantiation σ agrees with a basis Δ (denoted
by σ ∅ ΣΔ) if ε : (L,Pr, U) ∅ Δ implies ⊇ σ(ε) : (L,Pr, U).

In order to apply the rules in a safe way, we introduce a restriction on rules
based on the context of application rather than on the type of patterns involved
in the rule. In this direction, we characterise contexts by the types of terms
that can fill their hole, and the rules by the types of terms produced by their
application.

Definition 5 (Typed Holes). Given a context C and a type (L,Pr, U) that
is well-formed, the type (L,Pr, U) fits the context C if for some well-formed
type (L∗, P r∗, U ∗) it can be shown that X : (L,Pr, U) C[X] : (L∗, P r∗, U ∗).

The above notion guarantees that we obtain a correct term filling a context
with a term whose type fits the context: note that there may be more than one
type (L,Pr, U) such that (L,Pr, U) fits the context C.

Behavioural Types Inspired by Cellular Thresholds 39

We can classify reduction rules according to the types that can be derived
for the right hand sides of the rules, since they influence the type of the obtained
term.

Definition 6 (Δ-(L,Pr, U) safe rules). A rewriting rule P1 ∪ P2 is Δ safe if
for some well-formed type (L,Pr, U) it can be shown that Δ P2 : (L,Pr, U).

To ensure correctness, each application of a rewriting rule must verify that
the type of the right hand side of the rule fits the context. Using Definitions 5
and 6, if it is applied a rule whose right hand side has type (L,Pr, U) and this
type fits the context, then a correct term is obtained.

Typed Semantics. Given a finite set R of rewriting rules (e.g., the one pre-
sented in Table 2), the typed semantics of a system is given by the least relation
⇒ closed with respect to ≡ and satisfying the following rule:

P1 ∪ P2 ∅ R is a Δ-(L,Pr, U) safe rule, P1σ √≡ α

σ ∅ ΣΔ C ∅ C and (L,Pr, U) fits C

C[P1σ] ⇒ C[P2σ]
(TSem)

4 Subject Reduction and Other Results

The type system presented in Table 3 satisfies weakening and other properties.

Proposition 1 (Weakening).

If Δ P : (L,Pr, U) and Δ ⊆ Δ∗, then Δ∗ P : (L,Pr, U).

Proposition 2. If Δ C[P] : (L,Pr, U), then

1. Δ P : (L∗, P r∗, U ∗) for some (L∗, P r∗, U ∗);
2. Δ,X : (L∗, P r∗, U ∗) C[X] : (L,Pr, U);
3. if P ∗ is such that Δ P ∗ : (L∗, P r∗, U ∗) (i.e., P ∗ has the same type as P),

then Δ C[P ∗] : (L,Pr, U).

The link between substitutions and well-formed bases guarantees type preser-
vation, as expressed in the following result.

Proposition 3. For all σ ∅ ΣΔ, ⊇ Pσ : (L,Pr, U) iff Δ P : (L,Pr, U).

Proof (⇐): By induction on the depth of derivation Δ P : (L,Pr, U), consid-
ering the last applied rule.

• If the rule is (TEps), it implies that ⊇ α : (⊇, ⊇, ⊇) holds since the empty
multiset is typable from the empty environment. Since α is a term, yields that
ασ = α, namely ⊇ ασ : (⊇, ⊇, ⊇).

• If the rule is (TObj), it implies that ⊇ a : (Lt, t, Ut) holds since any element
of Γ is typable from the empty environment. Since a is a term, yields that
aσ = a, namely ⊇ aσ : (Lt, t, Ut).

40 B. Aman and G. Ciobanu

• If the rule is (TV ar), it implies that ε : (L,Pr, U) ∅ Δ and Δ ε : (L,Pr, U).
Since σ ∅ ΣΔ, yields that ⊇ σ(ε) : (L,Pr, U).

• If the rule is (TPar), it implies that P = P ∗ P ∗∗ with (L,Pr, U) = (LPr′+Pr′′ ,
Pr∗ + Pr∗∗, UPr′+Pr′′), Δ P ∗ : (LPr′ , P r∗, UPr′), Δ P ∗∗ : (LPr′′ , P r∗∗, UPr′′)
and (LPr′ , P r∗, UPr′) γη (LPr′′ , P r∗∗, UPr′′). By inductive hypothesis, it holds
that ⊇ P ∗σ : (LPr′ , P r∗, UPr′) and ⊇ P ∗∗σ : (LPr′′ , P r∗∗, UPr′′). Since
P ∗σ P ∗∗σ = (P ∗ P ∗∗)σ, by applying (TPar), yields ⊇ (P ∗ P ∗∗)σ : (L,Pr, U).

• If the rule is (TMem), it implies that P = [P ∗]v with Δ v : (L,Pr, U),
Δ P ∗ : (L∗, P r∗, U ∗) and (L,Pr, U) γη (L∗, P r∗, U ∗). By inductive hypothesis,
it holds that ⊇ vσ : (L,Pr, U) and P ∗σ : (L∗, P r∗, U ∗). Since [P ∗σ]vσ =
([P ∗]v)σ, by applying (TMem), we get ⊇ ([P ∗]v)σ : (L,Pr, U).

(⇒): By induction on the structure of P .

• If P = α it means that ⊇ ασ : (⊇, ⊇, ⊇), and since ⊇ ⊆ Δ and ασ = α, it implies
(by weakening) that Δ α : (⊇, ⊇, ⊇).

• If P = a it means that ⊇ aσ : (Lt, t, Ut), and since ⊇ ⊆ Δ and aσ = a, it
implies (by weakening) that Δ a : (Lt, t, Ut).

• If P = ε it means that ⊇ σ(ε) : (L,Pr, U), and from the fact that σ ∅ ΣΔ it
follows that ε : (L,Pr, U) ∅ Δ; by applying the rule (TV ar), it implies that
Δ ε : (L,Pr, U).

• For P = P ∗ P ∗∗, we have that (P ∗ P ∗∗)σ = P ∗σ P ∗∗σ and ⊇ (P ∗ P ∗∗)σ :
(L,Pr, U) implies that the last applied rule must be (TPar). Then the follow-
ing relations hold: (L,Pr, U) = (LPr′+Pr′′ , P r∗ + Pr∗∗, UPr′+Pr′′), (LPr′ , P r∗,
UPr′) γη (LPr′′ , P r∗∗, UPr′′), ⊇ P ∗σ : (LPr′ , P r∗, UPr′) and ⊇ P ∗∗σ :
(LPr′′ , P r∗∗, UPr′′). By inductive hypothesis on P and P ∗, it holds that Δ
P ∗ : (LPr′ , P r∗, UPr′) and Δ P ∗∗ : (LPr′′ , P r∗∗, UPr′′). By applying (TPar),
it follows that Δ P ∗ P ∗∗ : (L,Pr, U).

• For P = [P ∗]v, from ([P ∗]v)σ = [P ∗σ]vσ and ⊇ ([P ∗]v)σ : (L,Pr, U) results
that the last applied rule must be (TMem). Then, the following relations hold:
(L,Pr, U) γη (L∗, P r∗, U ∗), ⊇ vσ : (L,Pr, U) and ⊇ P ∗σ : (L∗, P r∗, U ∗). By
inductive hypothesis on P ∗ (and v), it holds that Δ v : (L,Pr, U) and
Δ P ∗ : (L∗, P r∗, U ∗). By applying (TMem), it follows that Δ ([P ∗]v) :
(L,Pr, U).

Starting from a correct term, all the terms obtained via Δ-(L,Pr, U) safe
rules are correct, and thus we can avoid conditions over P1 because they do
not influence the type of the obtained term. As expected, typed reduction pre-
serves correctness. The main result of the paper is given by the following subject
reduction theorem.

Theorem 1 (Subject Reduction). If ⊇ st : (L,Pr, U) and st ⇒ st∗, then
⊇ st∗ : (L∗, P r∗, U ∗) for a well-formed type (L∗, P r∗, U ∗).

Proof. The given typed semantics implies st = C[P1σ] and st∗ = C[P2σ], while
Definition 6 implies Δ P2 : (L,Pr, U). From Proposition 3 and σ ∅ ΣΔ

it follows that ⊇ P2σ : (L,Pr, U). Since (L,Pr, U) fits C (according to the

Behavioural Types Inspired by Cellular Thresholds 41

given typed semantics), it means that X : (L,Pr, U) C[X] : (L∗, P r∗, U ∗) for
some well-formed type (L∗, P r∗, U ∗). According to Proposition 3, it follows that
⊇ C[P2σ] : (L∗, P r∗, U ∗) for some well-formed type (L∗, P r∗, U ∗).

The next example illustrates the notions of context, instantiation,
Δ-(L,Pr, U) safe rules, (L,Pr, U) fits a context C and application of (TSem)
rules.

Example 5. Let us assume the consistent system formed from a set of basic
types T = {tNa, tK , tATP , tADP , tP , tE}, a classification Γ = {Na : tNa; K :
tK ; ATP : tATP ; ADP : tADP ; P, Pi : tP ; E1, E2, E

P
1 , EP

2 : tE}, and the
functions min and max given by

min(t1, t2) =

⎠⎧

⎠⎪

0.6 if t1 = tNa and t2 = tK

0.25 if t1 = tK and t2 = tNa

⇑ otherwise

max(t1, t2) =

⎠⎧

⎠⎪

4 if t1 = tNa and t2 = tK

5/3 if t1 = tK and t2 = tNa.

⇑ otherwise

Using all of the rules of Table 2, the well-formed term

[ATP 3 Na8 K2]E1Na9 K5

is rewritten in several steps, by using (TSem), in another well-formed term:

[ATP 3 Na8 K2]E1Na9 K5 ⇒∼ [ATP 2 ADP Pi Na5 K4]E1Na12 K3.

It is worth to note that for this term there is no rule in Table 2 that can be
selected in order to apply the (TSem) rule. For instance, consider the rule
r1 : [Na3 X]E1Y ∪ [X]E1 Na3Y , the context C = � Na12 K3 and
the instantiations σ(X) = ATP 2 ADP Pi Na2 K4, σ(Y) = α. Verifying the
hypotheses of the (TSem) rule, we have

• rule r1 is a Δ-(L,Pr, U) safe rule, where (L,Pr, U) = (Lt3NatE1
, t3NatE1 ,

Ut3NatE1
) is the type of [X]E1 Na3Y = [ATP ADP 2 Pi Na2 K4]E1 Na3 ;

• [ATP 2 ADP Pi Na5 K4]E1 √≡ α,
• but the type (Lt3NatE1

, t3NatE1 , Ut3NatE1
) of [ATP ADP 2 Pi Na2 K4]E1 Na3

does not fit the context C = � Na12 K3; this happens since the term
C[[ATPADP 2 Pi Na2 K4]E1 Na3]=[ATPADP 2 Pi Na2 K4]E1 Na3Na12 K3

has the type (Lt15NatE1 t3K
, t15NatE1t

3
K , Ut15NatE1 t3K

) that is not well-formed (the
ratio between tNa and tK is (12 + 3)/3 = 5 which is greater than 4).

Similar reasonings hold for all the rules from Table 2, thus the evolution stops.

42 B. Aman and G. Ciobanu

5 Conclusion

Recent years have seen an increase in research on behavioural types, driven partly
by the need to formalise and codify communication structures. Behavioural type
systems go beyond data type systems in order to specify, characterise and rea-
son about certain dynamic aspects of execution. Behavioural types encompass
session types [9], multiparty session types [10] and other functional types for com-
munications in distributed systems. Here we present a related view inspired by
cellular biology, and introduce quantitative types based on ratio thresholds able
to control the behaviour of some systems. The inspiration comes from sodium-
potassium pump, which extrudes sodium ions in exchange for potassium ions.
Such an exchange takes place only if the ratios of the elements are between
certain thresholds (lower and upper bounds). To properly cope with such con-
straints, we introduce a threshold-based type system. We associate to each sys-
tem a set of constraints, and relate them to the ratios between elements. If the
constraints are satisfied, we prove that if a system is well-typed and an evolution
rule is applied, then the obtained system is also well-typed.

The proposed typed semantics completely excludes the fact that sometimes
biological constraints can be broken leading to a disease or even to the death of
the biological system. However, the typed semantics can be modified in order to
allow transitions that lead to terms that are not typable. In this case the type
system should signal that some undesired event has been reached. In this way,
it can be checked if a term breaks some biological property, or if the system has
some unwanted behaviour.

We previously modelled the sodium-potassium pump using untyped mem-
brane systems [3] and typed symport/antiport membrane systems [1]. The
novelty of [1] is that it introduces types for the symport/antiport membrane
systems, defining typing rules which control the passage of objects through the
membranes. The sodium-potassium pump was also described by using the π-
calculus [7]. The exchange pump was described step by step, and then software
verification tools were applied [6]. This means that it would be possible to ver-
ify automatically some properties of the described systems, and so to use the
verification software tools as a substitute for expensive lab experiments. A sim-
ilar development for systems described by using membrane systems would be a
useful achievement.

A formalism that is somewhat related to the systems considered in this paper
is the calculus of looping sequences (CLS), a formalism based on term rewriting.
An essential difference is that our formalism uses multisets to describe objects
within or on membranes, while CLS terms use (looping) sequences. There are
various type systems for CLS [2,4,5]. Our work is related to [4], where a type
systems defined for the calculus of looping sequences is based on the number of
elements (and not on the ratios between elements). The quantitative type system
for CLS preserves some biological properties depending on the minimum and
the maximum number of elements of some type; the author uses the number of
elements in a system, a fact that is not so relevant in biology, where concentration
and ratios are typical.

Behavioural Types Inspired by Cellular Thresholds 43

Acknowledgements. Many thanks to the reviewers for their useful comments. The
work was supported by a grant of the Romanian National Authority for Scientific
Research, project number PN-II-ID-PCE-2011-3-0919.

References

1. Aman, B., Ciobanu, G.: Typed membrane systems. In: Păun, G., Pérez-Jiménez,
M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol.
5957, pp. 169–181. Springer, Heidelberg (2010)

2. Aman, B., Dezani-Ciancaglini, M., Troina, A.: Type disciplines for analysing bio-
logically relevant properties. Electron. Notes Theor. Comput. Sci. 227, 97–111
(2009)

3. Besozzi, D., Ciobanu, G.: A P system description of the sodium-potassium pump.
In: Mauri, G., Păun, G., Jesús Pérez-J́ımenez, M., Rozenberg, G., Salomaa, A.
(eds.) WMC 2004. LNCS, vol. 3365, pp. 210–223. Springer, Heidelberg (2005)

4. Bioglio, L.: Enumerated type semantics for the calculus of looping sequences.
RAIRO - Theor. Inform. Appl. 45, 35–58 (2011)

5. Bioglio, L., Dezani-Ciancaglini, M., Giannini, P., Troina, A.: Typed stochastic
semantics for the calculus of looping sequences. Theoret. Comput. Sci. 431, 165–
180 (2012)

6. Ciobanu, G.: Software verification of the biomolecular systems. In: Modelling in
Molecular Biology, Natural Computing Series, pp. 40–59. Springer, Heidelberg
(2004)

7. Ciobanu, G., Ciubotariu, V., Tanasă, B.: A Pi-Calculus model of the Na/K pump.
Genome Inf. 13, 469–472 (2002). Universal Academy Press

8. Guyton, A., Hall, J.: Textbook of Medical Physiology, 12th edn. Elsevier (2010)
9. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline

for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

10. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types, In:
Proceedings POPL, pp. 273–284. ACM Press, New York (2008)

11. Kennedy, B.G., Lunn, G., Hoffman, J.F.: Effects of altering the ATP/ADP ratio
on pump-mediated Na/K and Na/Na exchanges in resealed human red blood cell
ghosts. J. Gen. Physiol. 87, 47–72 (1986)

12. Lingrel, J.B., Kuntzweiler, T.: Na+, K+-ATPase. J. Biol. Chem. 269, 19659–19662
(1994)

13. Zs.-Nagy, I., Lustyik, G., Zs.-Nagy, V., Zarandi, B., Bertoni-Freddari, C.: Intracel-
lular N+/K+ ratios in human cancer cells as revealed by energy dispersive X-ray
microanalysis. J. Cell Biol. 90, 769–777 (1981)

14. Păun, G., Rozenberg, G., Salomaa, G. (eds.): Handbook of Membrane Computing.
Oxford University Press, Oxford (2010)

15. Salomaa, A.: Formal Languages. Academic Press, Edinburgh (1973)

Ensuring Faultless Communication Behaviour
in A Commercial Cloud

Ross Horne1,2(B) and Timur Umarov2

1 Romanian Academy, Institute of Computer Science,
Blvd. Carol I, No. 8, 700505 Iaşi, Romania

2 Faculty of Information Technology, Kazakh-British Technical University,
Tole Bi 59, Almaty, Kazakhstan

ross.horne@gmail.com, t.umarov@kbtu.kz

Abstract. For many Cloud providers, the backbone of their system is a
Cloud coordinator that exposes a portfolio of services to users. The goal
of this work is to ensure that a Cloud coordinator interacts correctly with
services and users according to a specification of their communication
behaviour. To accomplish this goal, we employ session types to analyse
the global and local communication patterns. A session type provides
an appropriate level of abstraction for specifying message exchange pat-
terns between participants. This work confirms the feasibility of apply-
ing session types to protocols used by a commercial Cloud provider. The
protocols are developed in SessionJ, an extension of Java implementing
session-based programming. We also highlight that the same techniques
can be applied when Java is not the development environment by type
checking runtime monitors, as in Scribble. Finally, we suggest how our
methodology can be used to ensure the correctness of protocols for Cloud
brokers, that integrate services exposed by multiple Cloud coordinators,
each of whom must correctly cooperate with the Cloud broker.

Keywords: Session types · Runtime monitors · Cloud · Intercloud

1 Introduction

Cloud providers typically offer a portfolio of services, where access and billing
for all services are integrated in a single distributed system. The integration of
services is done by a Cloud coordinator or controller [1–3] that exposes services
to users. Services are made available on demand to anyone with a credit card,
eliminating the up front commitment of users [4]. Furthermore, there is a drive
for services to be integrated, not only within a Cloud, but also between multiple
Cloud providers.

For a Cloud coordinator that integrates heterogeneous services with a single
point of access and billing strategy, protocols can become complex. Thus we
require an appropriate level of abstraction to specify and implement such pro-
tocols. Further to the complexity, the protocols are a critical component of the
business strategy of a Cloud provider. Failure of the protocols could result in

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 44–55, 2014.
DOI: 10.1007/978-3-319-05032-4 4, c© Springer International Publishing Switzerland 2014

Ensuring Faultless Communication Behaviour in A Commercial Cloud 45

divergent behaviour that jeopardises services, potentially leading to loss of cus-
tomers and legal disputes. These risks can be limited by using techniques that
statically prove that protocols are correct and dynamically check that protocols
are not violated at runtime.

It is challenging to manage service interactions that go beyond simple
sequences of requests and responses and involve large numbers of participants.
One technique for managing protocols between multiple services is to specify
the protocol using a choreography. A choreography specifies a global view of the
interactions between participating services. However, by itself, a choreography
does not determine how the global view can be executed.

The challenge of controlling interactions of participants motivated The WS-
CDL working group to identify critical issues [5]. One issue is the need for tools
to validate conformance of participants to a choreography specification, to ensure
that participants cooperate according to the choreography. Another issue is the
static design time verification of choreographies to analyse safety properties such
as the absence of deadlock or livelock in a system.

The aforementioned challenges can be tackled by adopting a solid founda-
tional model, such as session types [6,7]. Successful approaches related to session
types include: SessionJ [8,9], Session C [10] and Scribble [11] due to the team
lead by Honda and Yoshida; Sing# [12] that extends Spec# with choreographies;
and UBF(B) [13] for Erlang.

In this paper, we present a case study where the interaction of process that
integrate services in a commercial Cloud provider1 are controlled using session
types. Session types ensure communication safety by verifying that session imple-
mentations of each participant (the customers, services and Cloud coordinator),
conform to the specified protocols. In our case study, we use SessionJ, an exten-
sion of Java supporting sessions, to specify protocols used by the Cloud coordina-
tor that involve branching, iterative behaviour and higher order communication.

In Sect. 2 we describe a methodology for designing protocols in SessionJ. In
Sect. 3, we introduce and refine a protocol used by a Cloud coordinator which is
implemented using SessionJ. Finally, in Sect. 4, we suggest that session types can
be used in the design of reliable Intercloud protocols, following the techniques
employed in this work.

2 Methodology for Verifying Protocols in SessionJ

We chose SessionJ for the core of our application, since Java was already used for
several services. SessionJ has a concise syntax that tightly extends Java socket
programming. Furthermore, the overhead of runtime monitoring in SessionJ is
low [8,9].

We briefly outline a methodology for using SessionJ to correctly implement
protocols. Firstly, the global protocol is specified using a global calculus simi-
lar to sequence diagrams. Secondly, the global calculus is projected to sessions
1 V3na Cloud Platform. AlmaCloud Ltd., Kazakhstan. http://v3na.com

http://v3na.com

46 R. Horne and T. Umarov

types, which specify the protocol for each participant. Thirdly, the session is
implemented using operations on session sockets. The correctness of the global
protocol can be verified by proving that the implementation of each session con-
forms to the corresponding session type.

Protocol Specification. The body of a protocol is defined as a session type, accord-
ing to the grammar in Fig. 1. The session type specifies the actions that the
participant in a session should perform. The constructs in Fig. 1 can describe a
diverse range of complex interactions, including message passing, branching and
iteration. Each session type construct has its dual construct, because a typical
requirement is that two parties implement compatible protocols such that the
specification of one party is dual to another party.

Higher Order Communication. SessionJ allows message types to themselves be
session types. This is called higher-order communication and is supported by
using subtyping [14]. Consider the dual constructs !∪?(int)∅ and ?(?(int)). These
types specify sessions that expect to respectively send and receive a session of
type ?(int). Higher order communication is often referred to as session delegation.
Figure 2 shows a basic delegation scenario.

In Fig. 2, the left diagram represents the session configuration before the
delegation is performed: the user is engaged in a session s of type !∪int∅ with
the Cloud, while the Cloud is also involved in a session s′ with a service of
type !∪?(int)∅. So, instead of accepting the integer from the user, the Cloud
delegates its role in session s to the service. The diagram on the right of Fig. 2

L1, L2 label

p protocol name

M ::= Datatype | T message

S ::= p {T} protocol

T ::= T . T sequencing
| begin session initiation
| !〈M〉 message send
| ?(M) message receive
| !{L1 : T1, . . . , Ln : Tn} branching send
| ?{L1 : T1, . . . , Ln : Tn} branching receive
| ![T]* iterative send
| ?[T]* iterative receive
| @p protocol reference

Fig. 1. SessionJ protocol specification using session types (T).

Fig. 2. Session delegation.

Ensuring Faultless Communication Behaviour in A Commercial Cloud 47

represents the session configuration after the delegation has been performed: the
user now directly interacts with the service for the session s. The delegation
action corresponds to a higher-order send type for the session s′ between the
Cloud and the service.

Protocol Implementation and Runtime Monitors. Session sockets represent the
participants of a session. Each socket implements the session code according to
the specified session type, using a vocabulary of session operations. The session
is implemented within a session-try scope, which allows the implementation to
respond to exceptions thrown by a runtime monitor.

The runtime monitor dynamically checks the types of messages received, since
in a distributed system it is difficult to guarantee that other participants always
send a message of the type specified. The runtime also detects the failure of any
participant to enact its role in the session. Upon failure, a meaningful exception
is raised that can be used to elegantly recover or close a failed session. At the
scales which Cloud providers operate, unavoidable node failures are expected to
frequently occur. For example, during a MapReduce job over a cluster of 130
nodes, it is expected that one node will fail [15]. Thus runtime monitors that
raise meaningful exceptions when protocols diverge from the behaviour specified
by the session type can help improve fault tolerance.

We argue that, for Cloud providers, the performance overhead due to run-
time monitors is low compared to the potential cost of problems avoided. In
Cloud computing, it is perfectly acceptable to slow down transactions to guar-
antee correctness. For example, in Google Spanner [16,17] transactions observe
a commit wait that deliberately slows down transactions by a few milliseconds
to guarantee globally meaningful commit timestamps.

3 Case Study: Protocols for a Cloud Coordinator

Our case study is a commercial Cloud provider, V3na, that provides integrated
Software as a Service solutions for businesses. V3na provides a central access
point to a portfolio of services, including document storage, document flow,
and customer relations management. For comparison, market leading Cloud
providers, such as Amazon or Rackspace, offer a portfolio of compute, stor-
age and networking services that are exposed to users on demand. The central
component in V3na is a Cloud coordinator that is responsible for exposing and
integrating services that a user subscribes to, while managing user accounts and
billing.

A typical scenario is when a user requires the document storage service. The
user will first subscribe for the service either by registering to be billed or by
entering a trial period. When the user has been successfully authenticated by
the Cloud coordinator, requests to the API of the document store are delegated,

48 R. Horne and T. Umarov

by the Cloud coordinator, to the relevant document server for a renewable lease
period. After delegation, the user interacts directly with the API of the document
store until the session ends.

A major challenge was to automate the process of service integration as
a reliable service. In particular, V3na implements protocols that address the
following problems that can be addressed using sessions types:

– A customer can connect to a service for a trial period;
– A customer can connect to all services subscribed to through a single entry

point;
– A subscription may be extended or frozen;
– Invoices and payment for use of services can be managed.

In this section we illustrate a naive first implementation and a more scalable
refinement of a protocol that implements the first scenario above.

3.1 First Attempt: Forwarding and Branching

We specify a first attempt of a simple protocol for connecting to a service. The
protocol is informally specified as follows:

1. The user begins a session with Cloud coordinator and sends the request “con-
nect to service” as a JSON message.

2. The Cloud coordinator selects either:
(a) FAIL, if the user has no active session (not signed in).
(b) OK, if the user has logged in and the request is validated.

3. If OK is selected, then, instead of responding immediately to the user, the
Cloud initiates a new session with the relevant service. In the new session, the
Cloud forwards the JSON message from the user to the service and receives
a response from the service. The session between the Cloud and the service
closes successfully.

4. Finally, the original session resumes and the Cloud forwards the response
from the service to the user. From the perspective of the user it appears that
the Cloud coordinator responded directly.

Protocol 1.1: User

protocol p_uv {
begin.
!<JSONMsg>.
?{

OK: ?(JSONMsg),
FAIL:

}
}

Protocol 1.2: Cloud

protocol p_vu {
begin.?(JSONMsg).!{
OK: !<JSONMsg>,
FAIL:

}
}
protocol p_vs {
begin.!<JSONMsg>.

?(JSONMsg)
}

Protocol 1.3: Service

protocol p_sv {
begin.
?(JSONMsg).!<JSONMsg>

}

Fig. 3. Protocol specifications for forwarding protocol.

Ensuring Faultless Communication Behaviour in A Commercial Cloud 49

In Fig. 3, we provide the protocol specifications for each participant — the
user, Cloud coordinator and service. The protocols between the user and the
Cloud and between the Cloud and the service are dual, i.e. the specification
of interaction from one perspective is opposite to the other perspective. Ses-
sionJ employs outbranch and inbranch operations to implement the branching
behaviour. The outbranch operation is an internal choice, since the sender has
control over the message sent. The inbranch operation is an external choice,
since the receiver does not have control of the message received.

There is a fatal problem with the above protocol, from the perspective of a
Cloud provider. The Cloud coordinator is involved in servicing all requests to
services. As the number of services and users increases, the load on the Cloud
coordinator will increase. Soon, the Cloud coordinator will be unable to serve
requests. The most basic economic advantage of Cloud computing, called elas-
ticity [4], is that services can scale up and down to fulfil the demands of users.
The above protocol cannot deliver elasticity.

3.2 Refined Protocol: Session Delegation and Iteration

We present a refined protocol that demonstrates iteration and session delegation.
To avoid the Cloud coordinator becoming a bottleneck, the Cloud coordinator
should delegate sessions to a service as soon as the user is authenticated for the
service.

Figure 4 depicts two related sessions s and s′. Session s begins with interac-
tions between the user and the Cloud coordinator. However, after authentication,
s′ delegates the rest of session s from the Cloud coordinator to the service. Ses-
sion s is completed by exchanging messages between the user and the service
directly. We informally describe the global protocol in more detail:

1. The user begins a request session (session s in Fig. 4) with the Cloud coordi-
nator.

2. The user logs in by providing the Cloud with a user name and password.

Fig. 4. Sequence diagram of interactions for delegationprotocol.

50 R. Horne and T. Umarov

3. The Cloud coordinator receives the user credentials and verifies them. If the
user is not authenticated and still has tries go back to step 2, otherwise
continue.

4. If the user is not allowed to access the Cloud, the DENY branch is chosen
and the session terminates. Otherwise, the ACCESS-branch is chosen and the
session continues.

5. On the ACCESS branch, the user sends the connection request in a JSON
message to the Cloud coordinator. The Cloud creates a new session with the
service (session s′ in Fig. 4). The new session delegates the remaining session
with the user to the service, and also forwards relevant user request details
to the service. Session s′ is then terminated.

6. The service continues session s, but now interactions are between the user
and the service. The service either responds to the user with OK or FAIL. In
either case, the user receives the response directly from the service in a JSON
message. Finally, session s is terminated.

In Fig. 5, the user appears to interact with the Cloud coordinator. The iter-
ative login, and first connection message is a direct interaction between the user
and the Cloud coordinator. However, instead of the Cloud coordinator respond-
ing to the connection request, the session in Fig. 6 is triggered.

The session in Fig. 6 delegates the part of the session where the
response OK or FAIL is selected by the service. This delegation is
enabled by a higher order session type, where a socket of session type
!{OK : !∪JSONMessage∅ , FAIL : !∪JSONMessage∅} is sent from the Cloud coordi-
nator in protocol p vs and received by the service in protocol p sv. Following the
delegation, a JSON message is sent from the Cloud coordinator to the service,
which forwards on the relevant details of the user request.

Once the delegation has taken place, the service is able to complete the session
that was begun by the Cloud coordinator. The service can negotiate directly
with the user and either choose the OK branch or the FAIL branch, followed by
sending the appropriate JSON message. For more complex scenarios, this simple
choice between an OK and a FAIL message could be replaced by a more complex
session between the user and the service.

Protocol 2.1: User

protocol p_uv {
begin.?[!<String>.!<String>]*.
?{
ACCESS: !<JSONMsg>.

?{
OK: ?(JSONMsg),
FAIL: ?(JSONMsg)

},
DENY: ?(String)

}
}

Protocol 2.2: Cloud

protocol p_vu {
begin.
![?(String).?(String)]*. // login
!{

ACCESS: ?(JSONMsg).
!{

OK: !<JSONMsg>,
FAIL: !<JSONMsg>

},
DENY: !<String>

}
}

Fig. 5. User-Cloud interaction protocol specifications for delegation protocol.

Ensuring Faultless Communication Behaviour in A Commercial Cloud 51

Protocol 2.3: Cloud

protocol p_vs {
begin.
!<!{

OK: !<JSONMsg>,
FAIL: !<JSONMsg>

}>.
!<JSONMsg>

}

Protocol 2.4: Service

protocol p_sv {
begin.
?(!{

OK: !<JSONMsg>,
FAIL: !<JSONMsg>

}).
?(JSONMsg)

}

Fig. 6. Cloud-Service interaction protocol specifications for delegation protocol.

The protocol presented in this section is scalable. The Cloud coordinator
is only involved in authenticating users for access to services. The amount of
data exchanged during authentication is tiny compared to the amount of data
exchanged by a service such as a document store.

3.3 Delegation Elsewhere: Payment for Services

Delegation is powerful elsewhere in the Cloud provider. At the end of each month,
a user pays for the services used. The user may have multiple payment options.
The two session types in Fig. 7 represent two different payment protocols. In the
first protocol, the user pays with a credit card. In the second protocol, the user
pays using a wallet, which is automatically recharged.

The user enters a session with the Cloud coordinator where, after authenti-
cating, the payment option is selected then the payment is made. The session
provided by the Cloud coordinator is presented on the left in Fig. 8.

However, the Cloud coordinator does not service either payment. One of
the two delegation protocols on the right of Fig. 8 is invoked. The handling of
the payment is delegated to either a bank or the wallet service within the Cloud
provider. As in the previous example, delegation is performed by passing a higher
order session type.

protocol p_payment {
!<Goods>.?{

VISA_MASTER: ?(CardDetails),
TRANSFER: ?(TransferDetails)

}.!{
PAID: !<String>,
DECLINED: !<String>,
FAILED: !<String>

}
}

protocol p_wallet {
!<String>.?(Integer).?(Integer).!{

PAYMENT_INACTIVE: !<OSMPMessage>,
USER_NOT_FOUND: !<OSMPMessage>,
OK: !<OSMPMessage>

}
}

Fig. 7. Server side protocols for processing payments.

52 R. Horne and T. Umarov

protocol p_vu {
begin.![
?(String).?(String)

]*.!{
ACCESS: ?{

PAYMENT: @p_payment,
WALLET: @p_wallet

},
DENY: !<String>

}
}

protocol p_vp {
begin.!<String>.!<@p_payment>

}

protocol p_vw {
begin.!<String>.!<@p_wallet>

}

Fig. 8. Delegating to chosen payment service.

4 Future Work: Runtime Monitors and Intercloud
Protocols

4.1 Language Independent Runtime Monitors

A limitation with the work presented is that services in a Cloud provider are
not implemented exclusively in Java, or any other single language. The initial
design of V3na was conducted using session types in SessionJ according to the
methodology presented. However, as the start up company scales up to take
on more clients, the development team is diversifying. The team now operates
mainly in the Python based Django framework.

Session types can still be used by Python developers. Scribble [11] offers an
alternative to SessionJ, where language independent runtime monitors [18] are
statically checked according to session types. The runtime monitors dynamically
check that low level communication patterns are within the space of behaviours
specified by a session type. Scribble has already been used to monitor Python
code in related work [19,20]. We argue that the approach offered by Scribble has
a more promising future than SessionJ, since distributed systems are typically
heterogeneous.

4.2 Session Types for Intercloud Protocols

For Cloud users, there are considerable benefits when applications can be hosted
on more than one Cloud provider [4,21,22]. Users can build applications based on
services provided by multiple Cloud providers. Furthermore, if data is replicated
across multiple Cloud providers, customers can avoid becoming locked in to
one provider. Thus customers are less exposed to risks such as fluctuations in
prices and quality of service at a single provider. If a Cloud provider goes out
of business, then customers entirely dependent on that Cloud provider also risk
going out of business.

Several visions have been proposed for Intercloud protocols [1,23,24]. The
main components debated for an Intercloud architecture are a Cloud coordi-
nator, for exposing services, and a Cloud broker for mediating between Cloud
coordinators. In this work, we have touched on some aspects of Cloud coordina-
tors. The Cloud broker is a mediator that sits between the user and the Cloud

Ensuring Faultless Communication Behaviour in A Commercial Cloud 53

coordinators for several Cloud providers. Another component debated is a Cloud
exchange, which acts as a market place for services exposed by Cloud providers.

Based on our experience in this work, we suggest that session types are
appropriate for specifying and correctly implementing protocols between Cloud
coordinators and Cloud brokers. Like the delegation protocols between the Cloud
coordinator and services, a Cloud broker will delegate communications to the
Cloud coordinator as early as possible in the session. The protocols between
Cloud brokers and Cloud coordinators are a critical component of the business
model of a Cloud broker; hence, we argue that the overhead of deploying type
checked runtime monitors is small compared to the potential risk posed by faults
in protocols.

5 Conclusion

This case study addresses the question of whether session types have a role in
Cloud computing. Competitive Cloud providers are looking for ways to better
manage risks on behalf of their customers. We argue that session types are one
contribution that can help manage the risk posed by divergent critical compo-
nents. In particular, we demonstrate that session types can be used to design,
implement and verify protocols behind a Cloud coordinator that exposes services
on demand to users.

Session type implementations such as SessionJ, as used in the work, and
Scribble, as proposed for future work, involve some runtime monitoring. The
runtime monitoring ensures that protocols stay within the space of behaviours
permitted by a session type. We argue that the performance cost of dynamic
runtime monitoring is small compared the risk managed. Divergent protocols
can corrupt systems, while node failures are unavoidable at scale. Monitors can
avoid divergence and help respond to node failures.

We found that session types provide an appropriate level of abstraction for
quickly designing critical protocols. Session type implementations are accessible
to programmers without background in formal semantics, including our indus-
trial partners AlmaCloud Ltd. The level of abstraction provided by the SessionJ
language, enabled effortless translation of business scenarios into verified imple-
mentations of protocols. We were able to refine our protocol from a simple for-
warding protocol (Sect. 3.1) to a scalable delegation protocol (Sect. 3.2), due to
support for higher-order message passing. The benefits of delegation are further
highlighted by payment and wallet recharging transactions (Sect. 3.3).

We suggest that the methodology presented can be applied to emerging Inter-
cloud protocols. In particular, protocols between Cloud brokers and Cloud coor-
dinators delegate sessions similarly to protocols between Cloud coordinators and
services. Furthermore, it is in the interest of Cloud brokers to minimise their
exposure to risk due to divergent protocols or node failures. One approach to
managing this risk is by using session types.

54 R. Horne and T. Umarov

Acknowledgements. We thank the anonymous reviewers for their clear and con-
structive comments. We are particularly grateful to Ramesh Kini for his support for
this project.

References

1. Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: utility-oriented federation of
cloud computing environments for scaling of application services. In: Hsu, C.-H.,
Yang, L.T., Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010, Part I. LNCS, vol. 6081,
pp. 13–31. Springer, Heidelberg (2010)

2. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L.,
Zagorodnov, D.: The Eucalyptus open-source Cloud-Computing system. In: Cap-
pello, F., Wang, C.L., Buyya, R. (eds.) CCGRID, pp. 124–131. IEEE Computer
Society (2009)

3. Sotomayor, B., Montero, R.S., Llorente, I.M., Foster, I.T.: Virtual infrastructure
management in private and hybrid clouds. IEEE Internet Comput. 13(5), 14–22
(2009)

4. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commun.
ACM 53(4), 50–58 (2010)

5. Barros, A., Dumas, M., Oaks, P.: A critical overview of the Web services choreog-
raphy description language. BPTrends Newslett. 3, 1–24 (2005)

6. Carbone, M., Honda, K., Yoshida, N., Milner, R., Brown, G., Ross-Talbot, S.: A
theoretical basis of communication-centred concurrent programming. In: WS-CDL
working report, W3C (2006)

7. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-
gramming for web services. ACM Trans. Program. Lang. Syst. 34(2), 8 (2012)

8. Hu, R., Yoshida, N., Honda, K.: Session-Based distributed programming in java. In:
Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 516–541. Springer, Heidelberg
(2008)

9. Hu, R., Kouzapas, D., Pernet, O., Yoshida, N., Honda, K.: Type-safe eventful
sessions in Java. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 329–
353. Springer, Heidelberg (2010)

10. Ng, N., Yoshida, N., Honda, K.: Multiparty session C: safe parallel programming
with message optimisation. In: Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS,
vol. 7304, pp. 202–218. Springer, Heidelberg (2012)

11. Honda, K., Mukhamedov, A., Brown, G., Chen, T.-C., Yoshida, N.: Scribbling
interactions with a formal foundation. In: Natarajan, R., Ojo, A. (eds.) ICDCIT
2011. LNCS, vol. 6536, pp. 55–75. Springer, Heidelberg (2011)

12. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. ACM SIG-
PLAN Notices 47(1), 191–202 (2012)

13. Armstrong, J.: Getting Erlang to talk to the outside world. In: Proceedings of the
2002 ACM SIGPLAN Workshop on Erlang, pp. 64–72. ACM (2002)

14. Simon Gay, M.H.: Subtyping for session types in the pi calculus. J. Acta Inf. 42(2–
3), 191–225 (2005)

15. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

Ensuring Faultless Communication Behaviour in A Commercial Cloud 55

16. Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J., Ghemawat,
S., Gubarev, A., Heiser, C., Hochschild, P., et al.: Spanner: Google’s globally-
distributed database. In: Proceedings of the 10th USENIX Conference on Operat-
ing Systems Design and Implementation, pp. 251–264. USENIX Association (2012)

17. Ciobanu, G., Horne, R.: Non-interleaving operational semantics for geographically
replicated databases. In: 15th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing. IEEE (2013, in press)

18. Bocchi, L., Chen, T.-C., Demangeon, R., Honda, K., Yoshida, N.: Monitoring net-
works through multiparty session types. In: Beyer, D., Boreale, M. (eds.) FORTE
2013 and FMOODS 2013. LNCS, vol. 7892, pp. 50–65. Springer, Heidelberg (2013)

19. Neykova, R.: Session types go dynamic or how to verify your Python conversations.
In: PLACES’13, Rome, Italy, 23 March, pp. 34–39 (2013)

20. Hu, R., Neykova, R., Yoshida, N., Demangeon, R., Honda, K.: Practical interrupt-
ible conversations. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174,
pp. 130–148. Springer, Heidelberg (2013)

21. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging it platforms: vision, hype, and reality for delivering computing as
the 5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009)

22. Bernstein, D., Ludvigson, E., Sankar, K., Diamond, S., Morrow, M.: Blueprint
for the Intercloud - protocols and formats for cloud computing interoperability.
In: Perry, M., Sasaki, H., Ehmann, M., Bellot, G.O., Dini, O. (eds.) ICIW, pp.
328–336. IEEE Computer Society (2009)

23. Cavalcante, E., Lopes, F., Batista, T.V., Cacho, N., Delicato, F.C., Pires, P.F.:
Cloud integrator: building value-added services on the cloud. In: NCCA, pp. 135–
142 (2011)

24. Pawluk, P., Simmons, B., Smit, M., Litoiu, M., Mankovski, S.: Introducing
STRATOS: a cloud broker service. In: Chang, R. (ed.) IEEE CLOUD, pp. 891–898.
IEEE (2012)

A Typing System for Privacy

Dimitrios Kouzapas1(B) and Anna Philippou2

1 Department of Computing, Imperial College London, London, UK
dk208@doc.ic.ac.uk

2 Department of Computer Science, University of Cyprus, Nicosia, Cyprus
annap@cs.ucy.ac.cy

Abstract. In this paper we report on work-in-progress towards defining
a formal framework for studying privacy. Our framework is based on the
π-calculus with groups [1] accompanied by a type system for capturing
privacy-related notions. The typing system we propose combines a num-
ber of concepts from the literature: it includes the use of groups to enable
reasoning about information collection, it builds on read/write capabili-
ties to control information processing, and it employs type linearity to
restrict information dissemination. We illustrate the use of our typing
system via simple examples.

1 Introduction

The notion of privacy does not have a single solid definition. It is generally viewed
as a collection of related rights as opposed to a single concept and attempts
towards its formalization have been intertwined with philosophy, legal systems,
and society in general. The ongoing advances of network and information tech-
nology introduce new concerns on the matter of privacy. The formation of large
databases that aggregate sensitive information of citizens, the exchange of infor-
mation through e-commerce as well as the rise of social networks, impose new
challenges for protecting individuals from violation of their right to privacy as
well as for providing solid foundations for understanding privacy a term.

A study of the diverse types of privacy, their interplay with technology, and
the need for formal methodologies for understanding and protecting privacy is
discussed in [7], where the authors base their arguments on the taxonomy of
privacy rights by Solove [6]. According to [6], the possible privacy violations
within a system can be categorized into four groups: invasions, information col-
lection, information processing, and information dissemination. These violations
are typically expressed within a model consisting of three entities: the data sub-
ject about whom a data holder has information and the environment, the data
holder being responsible to protect the information of the data subject against
unauthorized adversaries in the environment.

The motivation for this work stems from the need to provide a formal frame-
work (or a set of different formal frameworks) for reasoning about privacy-related
concepts, as discussed above. Such a framework would provide solid foundations

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 56–68, 2014.
DOI: 10.1007/978-3-319-05032-4 5, c© Springer International Publishing Switzerland 2014

A Typing System for Privacy 57

for understanding the notion privacy and it would allow to rigorously model
and study privacy-related situations. Our interest for formal privacy is primarily
focused on the processes of information collection, information processing, and
information dissemination and how these can be controlled in order to guarantee
the preservation of privacy within a system.

1.1 Privacy and the π-Calculus

The approach we follow in this paper attempts to give a correspondence between
the requirements of the last paragraph and the theory and meta-theory of the
π-calculus [4]. The π-calculus is a formal model of concurrent computation that
uses message-passing communication as the primitive computational function.
A rich theory of operational, behavioural and type system semantics of the π-
calculus is used as a tool for the specification and the study of concurrent sys-
tems. Our aim is to use the π-calculus machinery to describe notions of privacy.
Specifically, we are interested in the development of a meta-theory, via a typing
system, for the π-calculus that can enforce properties of privacy, as discussed
above.

The semantics for the Gπ-calculus, a π-calculus that disallows the leakage
of information (secrets) is presented in [1]. That work proposes the group type
along with a simple typing system that is used to restrict the scope of a name’s
existence, i.e., a name cannot exist outside its group scope. We find the semantics
of the Gπ-calculus convenient to achieve the privacy properties regarding the
information collection category. A data holder can use the group type to disallow
unauthorized adversaries from collecting information about a data subject.

Consider for example the processes:

DBadmin = a∪c∅.0
Nurse = a(x).b∪x∅.0
Doctor = b(x).x(y).x∪data∅.0

The database administrator process DBadmin sends a reference c to a patient’s
data to a doctor process Doctor using a nurse process Nurse as a delegate. Chan-
nel c is sent to the nurse via channel a and is then forwarded to the doctor
via channel b by the nurse. The doctor then uses c to read and write data on
the patient’s records. The composition of the above processes under the fresh
hospital group Hosp, and an appropriate typing of c, enforces that no external
adversary will be able to collect the information exchanged in the above sce-
nario, namely c: name c, belonging to group Hosp, is not possible to be leaked
outside the defined context because (1) groups are not values and cannot be
communicated and (2) the group Hosp is only known by the three processes (see
[1] for the details).

(α Hosp)(((αc : Hosp[])DBadmin) | Nurse | Doctor)
Let us now move on to the concept of information processing and re-consider

the example above with the additional requirement that the nurse should not

58 D. Kouzapas and A. Philippou

be able to read or write on the patient’s record in contrast to the doctor who is
allowed both of these capabilities. To address this issue we turn to the input/out-
put typing system for the π-calculus of Pierce and Sangiorgi, [5]. Therein, the
input/output subtyping is used to control the input and output capabilities on
names and it is a prime candidate for achieving privacy with respect to the
requirement in question: A type system that controls read and write capabili-
ties1 can be used by a data holder to control how the information about a data
subject can be processed. Thus, in the case of our example, the requirements
may be fulfilled by extending the specification with a read/write typing system
as follows:

Tdata = Hosp[MedicalData]−

Tc = Hosp[Tdata]rw

Ta = Hosp[Hosp[Tdata]−]rw

Tb = Hosp[Hosp[Tdata]rw]rw

where names a, b and c are of types Ta, Tb and Tc, respectively. The medical data
are a basic type with no capability of read and write. Channel c can be used for
reading and writing medical data. Channel a is used to pass information to the
nurse without giving permission to the nurse to process the received information,
while channel b provides read and write capabilities to the doctor. Nonetheless,
the above system suffers from the following problem. Although the nurse acquires
restricted capabilities for channel c via channel a, it is still possible for a nurse
process to exercise its read capability on b and, thus, acquire read and write
capability on the c channel. To avoid this problem, the system may be redefined
as follows:

DBadmin = (αb : Tb) tonurse∪b∅.todoc∪b∅.a∪c∅.0
Nurse = tonurse(z).a(x).z∪x∅.0
Doctor = todoc(z).z(x).x(y).x∪data∅.0

where channel todoc has typeHosp[Tb]rw but channel tonurse has typeHosp[T ∼
b]

rw,
where T ∼

b = Hosp[Hosp[Tdata]rw]w. In other words, the nurse is not assigned read
capabilities on channel b.

Note that the above typing is not completely sound: for instance the nurse
process is expected to pass on to the doctor process more capabilities than those
it acquires via channel a. Nevertheless in our theory we use a more complex type
structure able to solve this problem.

Regarding the information dissemination category of privacy violations, we
propose to handle information as a linear resource. Linear resources are resources
that can be used for some specific number of times. A typing system for linearity
was originally proposed in [3]. A linear typing system can be used by the data
holder to control the number of times an information can be disseminated. In our
1 The terminology for read and write capabilities is equivalent with input and output
terminology.

A Typing System for Privacy 59

example, we require from the nurse the capability of sending the reference of the
patient only once, while we require from the doctor not to share the information
with anyone else:

Tdata = Hosp[MedicalData]−→

Tc = Hosp[Tdata]rw→

Ta = Hosp[Hosp[Tdata]−1]rw0

Tb = Hosp[Hosp[Tdata]rw0]rw0

T ∼
b = Hosp[Hosp[Tdata]rw0]w0

The ⊆ annotation on the types above defines a shared (or unlimited) resource.
Such resources are the patient’s data and the reference to the patient’s data.
Channels a and b communicate values that can be disseminated one and zero
times respectively. (Again there is a soundness problem solved by a more complex
typing structure.) Furthermore channels a and b cannot be sent to other entities.

A central aspect of our theory is the distinction between the basic enti-
ties. The operational semantics of the π-calculus focuses on the communication
between processes that are composed in parallel. Although a process can be
thought of as a computational entity, it is difficult to distinguish at the opera-
tional level which processes constitute a logical entity. In our approach, we do
not require any operational distinction between entities, since this would com-
promise the above basic intuition for the π-calculus, but we do require the logical
distinction between the different entities that compose a system.

Finally, we note that our typing system employs a combination of i/o types
and linear types, which are low-level π-calculus types, to express restrictions on
system behavior. We point out that the expressivity of such ordinary π-calculus
types has been studied in the literature and, for instance, in [2] the authors in
fact prove that linear and variant types can be used to encode session types.

2 The Calculus

Our study of privacy is based on the π-calculus with groups proposed by Cardelli
et al. [1]. In this section we briefly overview the syntax and reduction semantics
of the calculus.

Beginning with the syntax, this is standard π-calculus syntax with the addi-
tion of the group restriction construct, (α G)P , and the requirement for typing
on bound names (the definition of types is in Sect. 3).

P ::= x(y:T).P | x∪z∅.P | (α G)P | (α a:T)P | P1 | P2 | !P | 0

Free names fn(P), bound names bn(P), free variables fv(P), and bound
variables bv(P) are defined in the standard way for π-calculus processes. We
extend this notion to the sets of free groups in a process P and a type T which
we denote as fg(P) and fg(T), respectively.

60 D. Kouzapas and A. Philippou

We now turn to defining the reduction semantics of the calculus. This employs
the notion of structural congruence which allows the structural rearrangement
of a process so that the reduction rules can be performed. Structural congruence
is the least congruence relation, written →, that satisfies the rules:

P |0 → P (ν a:T)P1 | P2 → (ν a : T)(P1 | P2) if a /∗ fn(P2)
P1 | P2 → P2 | P1 (ν a:T1)(ν b:T2)P → (ν b:T2)(ν a:T1)P
(P1 | P2) | P3 → P1 | (P2 | P3) (ν G)P1 | P2 → (ν G)(P1 | P2) if G /∗ fg(P2)
!P → P | !P (ν G1)(ν G2)P → (ν G2)(ν G1)P

(ν G1)(ν a:T)P → (ν a:T)(ν G1)P if G /∗ fg(T)

We may now present the reduction relation P −√ Q which consists of the stan-
dard π-calculus reduction relation extended with a new rule for group creation.

a∅b∈.P1 | a(x : T).P2 −↔ P1 | P2{b/x}
P1 −↔ P2 implies P1 | P3 −↔ P2 | P3

P1 −↔ P2 implies (ν G)P1 −↔ (ν G)P2

P1 −↔ P2 implies (ν a : T)P1 −↔ (ν a : T)P2

P1 → P √
1, P

√
1 −↔ P √

2, P
√
2 → P2 implies P1 −↔ P2

3 Types and Typing System

In this section we define a typing system for the calculus which builds upon the
typing of [1]. The typing system includes: (i) the notion of groups of [1], (ii)
the read/write capabilities of [5] extended with the empty capability, and (iii) a
notion of linearity on the dissemination of names. The type structure is used for
static control over the permissions and the disseminations on names in a process.

For each channel, its type specifies (1) the group it belongs to, (2) the type of
values that can be exchanged on the channel, (3) the ways in which the channel
may be used in input/output positions (permissions p below) and (4) the number
of times it may be disseminated (linearity ε below):

T ::= G[]pλ | G[T]pλ

p ::= − | r | w | rw

ε ::= ⊆ | i where i ≡ 0

For example, a channel of type T = G[]r 2 is a channel belonging to group G
that does not communicate any names, can be used in input position and twice

A Typing System for Privacy 61

in object position. Similarly, a name of type G∼[T]rw→ is a channel of group G∼

that can be used in input and output position for exchanging names of type T
and can be sent as the object of a communication for an arbitrary number of
times.

Subtyping. Our typing system makes use of a subtyping relation which, in turn
is, based on two pre-orders, one for permissions p, denoted as ∈p, and one for
linearities ε, denoted as ∈λ:

∃p: rw ∃p w rw ∃p r rw, r, w ∃p −
∃λ: ∪ ∃λ i for all i i ∃λ j if i ≥ j

The preorder for permissions is as expected with the empty capability being
the greatest element. For linearities, fewer permissions are included in larger
permissions and ⊆ is the least element.

Let Type be the set of all types T . The subtyping relation, written ∞ as an
infix notation, may be defined coinductively as the largest fixed point (Fω(Type×
Type)) of the monotone function:

F : (Type × Type) −√ (Type × Type)

where

F (R) = {(G[]−0, G[]−0)}
⇑ {(G[T1]pλ1 , G[T2]−λ2)) | (T1, T2) ∀ R, (T2, T1) ∀ R, ε1 ∈λ ε2}
⇑ {(G[T1]pλ1 , G[T2]rλ2) | (T1, T2) ∀ R, p ∈p r, ε1 ∈λ ε2}
⇑ {(G[T1]pλ1 , G[T2]wλ2) | (T2, T1) ∀ R, p ∈p w, ε1 ∈λ ε2}
⇑ {(G[T1]rwλ1 , G[T2]rwλ2) | (T1, T2), (T2, T1) ∀ R, ε1 ∈λ ε2}

The first pair in the construction of F says that the least base type is
reflexive. The next four cases define subtyping based on the preorders defined
for permissions and linearities. According to the second case, the empty per-
mission is associated with an invariant subtyping relation because the empty
permission disallows for a name to be used for reading and/or writing. The read
permission follows covariant subtyping, the write permission follows
contravariant subtyping, while the read/write permission follows invariant sub-
typing. Note that linearities are required to respect the relation ε1 ∈ ε2 for
subtyping in all cases. For example, according to the subtyping relation, the
following hold: G1[G2[]rw5]rw→ ∞ G1[G2[]w3]r3, G1[G2[]−3]rw→ ∞ G1[G2[]w3]w0, and
G1[G2[]w5]rw→ ∞ G1[G2[]w5]−1.

62 D. Kouzapas and A. Philippou

Typing Judgements. We now turn to the typing system of our calculus. This
assigns an extended notion of a type on names which is constructed as follows:

T = (T1, T2)

In a pair T we record the current capabilities of a name, captured by T1, and its
future capabilities after its dissemination, captured by T2.

Based on these extended types, the environment on which type checking is
carried out in our calculus consists of the components Π and Γ. These declare the
names (free and bound) and groups in scope during type checking. We define
Γ-environments by Γ ::= ⊇ | Γ · x : T | Γ · G. The domain of an environment
Γ, dom(Γ), is considered to contain all names and groups recorded in Γ. We
assume that any name and group in dom(Γ) occurs exactly once in Γ. Then, a Π-
environment is defined by Π ::= ⊇ | Π ·x : T, where dom(Π) contains all variables
in Π, each of which must exist in Π exactly once.

We define three typing judgements: Γ x σ T , Π x σ T , and Π,Γ P . The
first two typing judgement say that under the typing environment Γ, respectively
Π, variable x has type T . The third typing judgement stipulates that process
P is well typed under the environments Π,Γ, where Γ records the groups and
the types of the free names of P and Π the types of all bound names x that are
created via a (αx) construct within P . We require that these bound names are
uniquely named within P and, if needed, we employ Σ conversion to achieve this.
In essence, this restriction requires for all freshly-created names to be recorded a-
priori within the typing environment. If an unrecorded name is encountered, then
the typing system will lead to failure as is implemented by the typing system.
It turns out that recording this information on bound names of a process is
necessary in order to control the internal processing of names that carry sensitive
data.

Typing System. We now move on to the rules of our typing system. First, we
present two auxiliary functions. To begin with we define the linearity addition
operator ⇒ where ε1 ⇒ ε2 = ⊆, if ε1 = ⊆ or ε2 = ⊆, and ε1 ⇒ ε2 = ε1 + ε2,
otherwise. We may now lift this notion to the level of typing environments via
operator ⇐ which composes its arguments by concatenating their declarations
with the exception of the common domain where linearities are added up via ⇒:

Γ1 ⇐ Γ2 = Γ1\Γ2 · Γ2\Γ1

· {x : G[T]pλ1∗λ2 | x : G[T]pλ1 ∀ Γ1, x : G[T]pλ2 ∀ Γ2}

At this point we make the implicit assumption that Γ1 and Γ2 are compatible
in the sense that the declared types of common names may differ only in the
linearity component.

A Typing System for Privacy 63

We are ready now define the typing system:

(Name)

x ∨∈ dom(Γ · Γ√)
fg(T) ⊆ dom(Γ · Γ√)

Γ · x : T · Γ√ � x � T
(SubN)

Γ � x � (T √
1, T √

2), T
√
1 ≤ T1, T √

2 ≤ T2

Γ � x � (T1, T2)

(In)

Π, Γ · y : (T1, T2) � P

Γ � x � (G[T1]r0, G[T2]r0)

Π, Γ � x(y : T1).P
(Out)

Π, Γ · y : (Gy [T1]−λ, T2) � P

Γ � x � (Gx[T2]w0, Gx[T2]w0)

Π, Γ · y : (Gy [T1]
−(λ→1), T2) � x〈y〉.P

(ResG)
Π, Γ · G � P

Π, Γ � (ν G)P
(ResN)

Π, Γ · x : (T, T √) � P

Π · x : (T, T √), Γ � (ν x : T)P

(Par)
Π1, Γ1 � P1 Π2, Γ2 � P2

Π1 	 Π2, Γ1 	 Γ2 � P1 | P2

(Rep)

Π, Γ � P

∀x ∈ fn(P) if Γ � x � (G[T1]pλ1 , G[T2]pλ2)

then λ1 ∈ {0, ∗}
Π, Γ �!P

(Nil) Π, Γ � 0 (SubP)
Π, Γ · x : (T √

1, T √
2) � P T √

1 ≤ T1, T √
2 ≤ T2

Π, Γ · x : (T1, T2) � P

Rule (Name) is used to type names. Note that in name typing we require
that all group names of the type are present in the typing environment. Rule
(SubN) defines a subsumption based on subtyping for channels. Rule (In) types
the input prefixed process. We first require that the input subject has at least
permission for reading. Then, the type y is included in the type environment Γ
with a type that matches the type of the input channel x. This is to ensure that
the input object will be used as specified. The rule for the output prefix (Out)
checks that the output subject has write permissions. Furthermore, x should be
a channel that can communicate names up-to type T2, the maximum type by
which y can be disseminated. Then, the continuation of the process P , should
be typed according to the original type of y and with its linearity reduced by
one. Finally, the output object should have at least the empty permission.

In rule (ResG) we record a newly-created name in Γ. For name restriction
(ResN) specifies that a process type checks only if the restricted name is recorded
in environment Π. In this way is is possible to control the internal behavior of a
process, in order to avoid possible privacy violations. Parallel composition uses
the ⇐ operator to compose typing environments, since we want to add up the
linearity usage of each name. For the replication operator, axiom (Rep) we require
that free names of P have either linearity zero (i.e. they are not sent by P) or
infinite linearity (i.e. they can be sent as many times as needed). The inactive
process can be typed under any typing environment (axiom (Nil)). Finally we
have a subsumption rule, (SubP) that uses subtyping to control the permissions
on processes.

Type Soundness. We prove that the typing system is sound through a subject
reduction theorem. Before we proceed with the subject reduction theorem we
state the basic auxiliary lemmas.

64 D. Kouzapas and A. Philippou

Lemma 1 (Weakening).

1. If Γ x σ T and y /∀ dom(Γ) then Γ · y : T∼ x σ T.
2. If Π,Γ P and y /∀ dom(Γ) then Π,Γ · y : T P .

Lemma 2 (Strengthening).

1. If Γ · y : T∼ x σ T, y �= x, then Γ x σ T.
2. If Π,Γ · y : T P and y /∀ fn(P) then Π,Γ P .

Lemma 3 (Substitution). If Π,Γ·x : T P and Γ yσT then Π,Γ P{y/x}
Lemma 4 (Subject Congruence). If Π,Γ P1 and P1 → P2 then Π,Γ P2.

We are now ready to state the Subject Reduction theorem.

Theorem 1 (Subject Reduction). Let Π,Γ P and P −√ P ∼ then Π,Γ
P ∼.

Proof. The proof is by induction on the reduction structure of P .
Basic Step:

P = a∪b∅.P1 | a(x).P2 −√ P1 | P2{b/x} and Π,Γ P . From the typing
system we get that

Γ = Γ1 ⇐ Γ2 (1)
Π1,Γ1 a∪b∅.P1 (2)
Π2,Γ2 a(x).P2 (3)

From the typing system we get that Π1,Γ1 P1 for (2) and Π2,Γ2 · x : T P2

for (3). We apply the substitution lemma (Lemma 3) to get that Π2,Γ2 · b : T
P2{b/x}. We can now conclude that Π,Γ P1 | P2{b/x}.
Induction Step:

Case: Parallel Composition. Let P1 | P2 −√ P ∼
1 | P2 with Π,Γ P1 | P2.

From the induction hypothesis we know that Π1,Γ1 P1 and Π1,Γ1 P ∼
1.

From these two results and the parallel composition typing we can conclude
that Π1 ⇐ Π2,Γ1 ⇐ Γ2 P1 | P2 and Π1 ⇐ Π2,Γ1 ⇐ Γ2 P ∼

1 | P2 as required.

Case: Group Restriction. Let (α G)P −√ (α G)P ∼ with Π,Γ (α G)P . From
the induction hypothesis we know that Π,Γ · G P and Π,Γ · G P ∼. If we
apply the name restriction rule on the last result we get Π,Γ (α G)P ∼.

Case: Name Restriction. Let (α a : T)P −√ (α a : T)P ∼ with Π · a : T,Γ P .
From the induction hypothesis we know that Π,Γ·a : T P and Π,Γ·a : T P ∼.
If we apply the name restriction rule on the last result we get Π ·a : T,Γ (α a :
T)P ∼.

Case: Structural Congruence Closure. We use the subject congruence lemma
(Lemma 4).

Let P = P1, P1 −√ P2, P2
∼= P ∼ with Π,Γ P . We apply subject congruence

on P to get Π,Γ P1. Then we apply the induction hypothesis and subject
congruence once more to get the required result. ��

A Typing System for Privacy 65

4 Examples

In this section we show simple use cases that apply the theory developed. We
also show how we tackle different problems that might arise.

4.1 Patient Privacy

Our first example revisits our example from the introduction and completes
the associated type system. Recall the scenario where a database administrator
(process DBadmin) sends a reference to the medical data of a patient to a doctor
(process Doctor) using a nurse (process Nurse) as a delegate.

DBadmin = (αb : Tb) tonurse∪b∅.todoc∪b∅.a∪c∅.0
Nurse = tonurse(z).a(x).z∪x∅.0
Doctor = todoc(z).z(x).x(y).x∪data∅.0

The processes are composed together inside the hospital (Hosp) group.

Hospital = (α Hosp)(((αc : Tc)DBadmin) | Nurse | Doctor)
Our prime interest is to avoid leakage of the data during their dissemination to
the doctor. This means that the nurse should not have access to the patient’s
data. On the other hand the doctor should be able to read and update medical
data, but not be able to send the data to anyone else. We can control the above
permissions using the following typing.

We define the types

Tdata = Hosp[]−→

Tc = Hosp[Tdata]rw→

Ta = Hosp[Hosp[Tdata]−1]rw0

T∼
a = Hosp[Tc]rw0

Tb = Hosp[Hosp[Tdata]rw0]rw2

Tn
b = Hosp[Hosp[Tdata]rw0]w0

Td
b = Hosp[Hosp[Tdata]rw0]r0

Ttd = Hosp[Tn
b]rw0

Ttn = Hosp[Td
b]

rw0

to construct:
D = (Tdata,Tdata)
C = (Tc,Tc)
A = (Ta,T∼

a)
B = (Tb,Tb)

TD = (Ttd,Ttd)
TN = (Ttn,Ttn).

We can show that:

b : B · c : C, tonurse : TN · todoc : TD · a : A · data : D Hospital

66 D. Kouzapas and A. Philippou

Now, let us consider the case where the nurse sends channel c on a private
channel in an attempt to gain access on the patient’s medical data:

Nurse2 = tonurse(z).a(x).(α e : Tb)(e∪x∅.0 | e(y).y(w).0)

In this case, in order for the resulting system to type-check, the type of name
e would be recorded in the environment Π, as in

e : B · b : B · c : C, tonurse : TN · todoc : TD · a : A · data : D

 (α Hosp)(((αc : Tc)DBadmin) | Nurse2 | Doctor)

This implies that, if we allow the creation of e, there is possibility of violation
in a well-typed process. To avoid this, the administrator of the system should
observe all names created and included in Π and, in this specific case, disallow
the creation of e. In future work we intend to address this point by providing
typing policies that capture this type of problems and to refine our type system
to disallow such privacy violations, possibly by controlling the process of name
creation.

4.2 Social Network Privacy

Social networks allow users to share information within social groups. In the
example that follows we define a type system to control the privacy requirements
of participating users. In particular, we consider the problem where a user can
make a piece of information public (e.g. a picture), but require that only specific
people (his friends) can see it (and do nothing else with it).

The example considers a user who makes public the address, paddr, of a pri-
vate object, pic, and wishes only the friend Friend to be able to read pic through
the public address paddr. To achieve this the user makes available through the
typing of name public only the object capability for paddr. However, by sepa-
rately providing the friend with name a, it is possible to extend the capabilities
of paddr to the read capability. In this way, channel a acts as a key for Friend to
unlock this private information. Assuming that notAFriend does not gain access
to a name of type Ta, as in the process below, he will never be able to obtain
read capability on channel paddr.

User = (νa : Ta)(tofriend∅a∈.(νpaddr : Tpaddr)(!public∅paddr∈.0 | !paddr∅pic∈.0))
notAFriend = public(z).0

Friend = tofriend(x).public(y).(x∅y∈.0 | x(z).z(w).0)

The processes are composed together inside the SN group.

SocialNetwork = (α SN)(User | notAFriend | Friend)

A Typing System for Privacy 67

To achieve this, we define the types

Tpic = SN[]−→

Tpaddr = SN[Tpic]rw→

T∼
paddr = SN[Tpic]−1

Ta = SN[Tpaddr]rw→

Ttofriend = SN[Ta]rw0

Tpublic = SN[Tpaddr]rw0

T∼
public = SN[T∼

paddr]
rw0

which are combined into the following tuples

PIC = (Tpic,Tpic)
A = (Ta,Ta)

PA = (Tpaddr,Tpaddr)
TF = (T∼

tofriend,Ttofriend)
PB = (T∼

public,Tpublic)

We can show that:

a : A · paddr : PA, tofriend : TF · public : PB · pic : PIC SocialNetwork

whereas for notAFriend∼ = public(z).z(w).0 and

SocialNetwork∼ = (α SN)(User | notAFriend∼ | Friend)

the following judgment fails.

a : A · paddr : PA, tofriend : TF · public : PB · pic : PIC SocialNetwork∼

5 Conclusions

In this paper we have presented a formal framework based on the π-calculus with
groups for studying privacy. Our framework is accompanied by a type system for
capturing privacy-related notions: it includes the use of groups to enable reason-
ing about information collection, it builds on read/write capabilities to control
information processing, and it employs type linearity to restrict information dis-
semination. We illustrate the use of our typing system via simple examples.

In future work we would like to provide a safety criterion for our framework
by developing a policy language for defining privacy policies associated to process
calculus descriptions and subsequently to refine our type system so that it can
check the satisfaction/violation of these policies. Furthermore, we would like to
study the relation of our type system to other typing systems in the literature.

68 D. Kouzapas and A. Philippou

References

1. Cardelli, L., Ghelli, G., Gordon, A.D.: Secrecy and group creation. Inf. Comput.
196(2), 127–155 (2005)

2. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. In: Proceedings of
PPDP’12, pp. 139–150. ACM, New York (2012)

3. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. ACM
Trans. Program. Lang. Syst. 21(5), 914–947 (1999)

4. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts I and II.
Inf. Comput. 100(1), 1–77 (1992)

5. Pierce, B.C., Sangiorgi, D.: Typing and subtyping for mobile processes. Math.
Struct. Comput. Sci. 6(5), 409–453 (1996)

6. Solove, D.J.: A taxonomy of privacy. Univ. PA Law Rev. 154(3), 477–560 (2006)
7. Tschantz, M.C., Wing, J.M.: Formal methods for privacy. In: Cavalcanti, A., Dams,

D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 1–15. Springer, Heidelberg (2009)

Compliance and Testing Preorders Differ

Giovanni Bernardi(B) and Matthew Hennessy

School of Computer Science, Trinity College, University of Dublin, Dublin 2, Ireland
bernargi@tcd.ie

Abstract. Contracts play an essential role in the Service Oriented Com-
puting, for which they need to be equipped with a sub-contract relation.
We compare two possible formulations, one based on compliance and the
other on the testing theory of De Nicola and Hennessy. We show that
if the language of contracts is sufficiently expressive then the resulting
sub-contract relations are incomparable.

However if we put natural restrictions on the contract language then
the sub-contract relations coincide, at least when applied to servers. But
when formulated for clients they remain incomparable, for many rea-
sonable contract languages. Finally we give one example of a contract
language for which the client-based sub-contract relations coincide.

1 Introduction

Contracts play a central role in the orchestration and development of web ser-
vices, [CCLP06,LP07]. Existing services are advertised for use by third parties,
which may combine these existing services to construct, and in turn advertise for
further use, new services. The behavioural specification of advertised services is
given via contracts, high-level descriptions of expected behaviour, which should
come equipped with a sub-contract relation. Intuitively ct1∪crt ct2 means that
a third party requiring a service to provide contract ct1 may use one which
already provides ct2, so in this sense ct2 is better than ct1. The purpose of
this short technical note is to compare and contrast two different approaches to
defining this sub-contract relation.

The first method, [LP07,CGP09,Pad10], is based on a notion of compliance
between two contracts, where one contract notionally formalises the behaviour
offered by a server p, and the other one the behaviour offered by a client r. Con-
tracts are interpreted as abstract processes, written in process algebras similar to
CCS or CSP, [Mil89,Hoa85]. However, as pointed out by [Bd10,BH12] they can
also be viewed as session types [THK94,GH05]. Intuitively p and r are in compli-
ance, written r ∅ p, if when viewed as abstract processes they can continuously
interact, and if this interaction ever stops then the client is in a happy state;
the formal definition is co-inductive and is given in Definition 2.4. This leads
to a natural comparison between server-oriented contracts: p1 ∪cpl

svr p2 if every
client which complies with p1 also complies with p2. As suggested in [Bd10],

Research supported by SFI project SFI 06 IN.1 1898.

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 69–81, 2014.
DOI: 10.1007/978-3-319-05032-4 6, c© Springer International Publishing Switzerland 2014

70 G. Bernardi and M. Hennessy

client-oriented contracts can also be compared, but in terms of the servers with
which they comply, r1 ∪cpl

clt r2.
It has been pointed out by various authors [LP07,CGP09,Pad09,Pad10] that

the server contract preorder, ∪cpl
svr, bears a striking resemblance to the well-

known must-testing preorders from [DH84]. For example, the axioms for the
strong sub-contract relation in [Pad09, Table 1], are essentially the same for the
testing preorder in [Hen85, Fig. 3.6]; and the behavioural characterisations of
the sub-contract relation use ready sets, which were already in the behavioural
characterisation of the must-testing preorder [DH84]. In this approach clients are
viewed as tests for servers and servers are compared by their ability to guarantee
that tests are satisfied. This is formalised as an inductive relation between tests
and servers. Intuitively p must r if whenever the two abstract processes p, r are
executed in parallel the test r is guaranteed to reach a happy state. This in turn
leads to a second pair of sub-contract relations, which we denote by p1�∼

tst

svr
p2

and r1�∼
tst

clt
r2 respectively.

In this paper we contrast these two different approaches to the notion of sub-
contract by comparing the relations ∪cpl

α and �
∼

tst

α
, for both servers and clients.

This study is of interest because the testing-based preorders have been thor-
oughly studied. In particular �

∼
tst

svr
has a behavioural characterisation, an axioma-

tisation (for finite terms) [DH84,Hen85], a logical characterisation [CH10], and
an algorithm to decide it (on finite state LTSs) [CH93]; moreover the client
preorder �

∼
tst

clt
has recently been investigated in [Ber13].

The outcome of the comparison depends on the expressive power of the lan-
guage used to express contracts. We examine three different possibilities. The
first is when there is no restriction on the contract language. We essentially
allow any description of behaviour from the process calculus CCS; this includes
infinite state and potentially divergent contracts. In this case the preorders are
incomparable; see Sect. 3.1.

In the second case we restrict the contract language to what we call CCSweb;
this only allows finite-state contracts, which can never give rise to divergent
behaviour; this language includes all the contract languages used in the standard
literature, such as [LP07,Bd10,Pad09] and the concrete one of [CGP09]. In this
setting the two server-contract preorders coincide:

p1 ∪cpl
svr p2 if and only if p1�∼

tst

svr
p2

However the client-contract preorders remain incomparable. This is discussed
in Sect. 3.2.

It turns out that the difference in the formulation of the compliance relation
between contracts and that based on must-testing, one co-inductive and the
other inductive, has significant implications on the client-preorders, regardless
of the expressivity of the contract language. This is explained via examples in
Sect. 3.3. In particular it is difficult to think of a reasonable contract language in
which they coincide. We provide one example, also in Sect. 3.3, which essentially

Compliance and Testing Preorders Differ 71

coincides with the finite session behaviours of [Bd10]; one can think of these as
first-order session types [THK94]. But, as we will see, introducing recursion into
this contract language will once more enable us to differentiate between the two
client-preorders.

The remainder of the paper is structured as follows. In the next section,
Sect. 2, we provide formal definitions for the concepts introduced informally
above, together with a description of the abstract language CCS, which is used
as a general description language for contracts. Then the three different scenar-
ios are discussed in turn in Sect. 3. Finally we discuss the related literature in
Sect. 4.

2 LTS and Behavioural Preorders

A labelled transition system, LTS, consists of a triple ⊆P, −→, Actσ � √ where P
is a set of processes and −→ ≡ P × Actσ � × P is a transition relation between
processes decorated with labels drawn from the set Actσ �. We let λ range over
Actσ �, and μ range over Actσ . We use the infix notation p

λ−→ q in place
of (p, λ, q) ∈−→. Let CCS be the set of terms defined by the grammar

p, q, r ::= 1 | A | μ.p |
∑

i→I
pi

where μ ∈ Actσ , I is a countable index sets, and A,B,C, . . . range over a set
of definitional constants each of which has an associated definition A

def= pA.
We use 0 to denote the empty external sum

∑
i→∗ pi and p1 + p2 for the binary

sum
∑

i→{ 1,2 } pi. Note that we have omitted the parallel operator ||, as contracts,
and their associated session types [Bd10,BH12], are normally expressed purely
in terms of prefixing and choices.

The operational semantics of the language is given by the LTS generated
by the relations p

λ−→ q determined by the rules given in Fig. 1. The happy or
successful states mentioned in the Introduction are considered to be those CCS
terms satisfying p

�−→.
We use standard notation for operations in LTSs. For example Actασ �, ranged

over by t, denotes the set of finite sequences of actions from the set Actσ �,
and for any t ∈ Actασ � we let p

t−→ q be the obvious generalisation of the
single transition relations to sequences. For an infinite sequence u ∈ Act∞σ � of
the form λ0λ1 . . . we write p

u−→ to mean that there is an infinite sequence of
actions p

λ0−→ po
λ1−→ p1 These action relations are lifted to the weak case

in the standard manner, giving rise to p
s=∞ q for s ∈ Actα� and p

u=∞ for
u ∈ Act∞. We write =∞ in place of ε=∞, where ε denotes the empty string.
Finally a process diverges, written p ⇑, if there is an infinite sequence of actions
p

σ−→ p1
σ−→ . . .

σ−→ pk
σ−→ Otherwise it is said to converge, written p ∀ .

To model the interactions that take place between the server and the client
contracts, we introduce a binary composition of contracts, r || p, whose opera-
tional semantics is in Fig. 2.

72 G. Bernardi and M. Hennessy

Definition 2.1. [Compliance]
Let F∩ : P(CCS2) −→ P(CCS2) be the rule functional defined so that (r, p) ∈
F∩(R) whenever the following conditions are true:

(a) if p ⇑ then r
�−→

(b) if r || p
σ

⊇−→ then r
�−→

(c) if r || p
σ−→ r′ || p′ then r′ R p′

If X ≡ F∩(X), then we say that X is a co-inductive compliance relation. The
monotonicity of F∩ and the Knaster-Tarski theorem ensure that there exists
the greatest solution of the equation X = F∩(X); we call this solution the
compliance relation, and we denote it ∅. That is ∅ = νX.F∩(X). If r ∅ p we
say that the client r complies with the server p. �

Thanks to its co-inductivenature, the compliance admits everlasting computa-
tions, even if the client side never reaches a happy state. This is a typical feature
of the compliance relation.

Example 2.2. Let C
def= τ.α.C and S

def= α.S. Even if C can not reach a happy
state, it complies with S, for { (C, S), (α.C, S) } is a co-inductive compliance.
This set enjoys the properties required by Definition 2.1: Point (a) is trivially
true for S converges, point (b) is true because C || S

σ−→ and α.C || S
σ−→. A

routine check shows that also point (c) is true. �

Another property of ∅ is that it is preserved by the interactions of contracts.

1
�−→ 0

[a-Ok]
μ.p

μ−→ p
[a-Pre]

p
λ−→ p′

p + q
λ−→ p′

[r-Ext-l]
q

λ−→ q′

p + q
λ−→ q′

[r-Ext-r]

p
λ−→ p′

A
λ−→ p′ A

def= p; [r-Const]

Fig. 1. The operational semantics of CCS

q
λ−→ q′

q || p
λ−→ q′ || p

[p-Left]
p

λ−→ p′

q || p
λ−→ q || p′

[p-Right]

q
α−→ q′ p

α−→ p′

q || p
τ−→ q′ || p′ [p-Synch]

Fig. 2. The operational semantics of contract composition

Compliance and Testing Preorders Differ 73

Lemma 2.3. If r ∅ p and r || p
σ−→⊥

r′ || p′ then r′ ∅ p′.

Proof. It follows from induction on the number of reduction steps in σ−→⊥
, and

point (c) of Definition 2.1. �

Definition 2.4. [Compliance preorders]
In an arbitrary LTS we write

(1) p1 ∪cpl
svr p2 if for every r, r ∅ p1 implies r ∅ p2

(2) r1 ∪cpl
clt r2 if for every p, r1 ∅ p implies r2 ∅ p �

Note that our compliance relation is slightly different than that of [LP07]; we
require that a client that complies with a divergent server report success imme-
diately, whereas in [LP07] the client may report success in the future, and cannot
engage in any interaction. This does not affect the resulting sub-contract rela-
tions on the language of contracts discussed in [CGP09,Pad10].

We also briefly recall the notion of must-testing from [DH84]. A computation
consists of series of τ actions of the form

r || p = r0 || p0
σ−→ r1 || p1

σ−→ . . .
σ−→ rk || pk

σ−→ . . . (1)

It is maximal if it is infinite, or whenever rn || pn is the last state then rn ||
pn

σ

⊇−→. A computation may be viewed as two processes p, r, one a server and
the other a client, co-operating to achieve individual goals. We say that (1) is
client-successful if there exists some k ≥ 0 such that rk

�−→.

Definition 2.5. [Testing preorders]
In an arbitrary LTS we write p must r if every maximal computation of r || p
is client-successful. Then

(1) p1�∼
tst

svr
p2 if for every r, p1 must r implies p2 must r

(2) r1�∼
tst

clt
r2 if for every p, p must r1 implies p must r2 �

Before comparing the testing and the compliance preorders, we highlight the
differences between ∅ and must . We use standard examples [LP07,Ber13]. The
discussion on the preorders will mirror the differences shown in these examples.

Example 2.6. [Meaning of livelocks]
In this example we prove that r ∅ p does not imply p must r. Recall the
contracts C and S from Example 2.2. In that example we have seen that since
{(C, S), (α.C, S)} is a co-inductive compliance, C ∅ S.

The fact that S ⊇must C is true because C does not perform �, and so no
computation of C || S is client-successful. �

The previous example shows that while the compliance admits livelocks where
clients do not report success, the must testing does not. The testing relation
requires clients to reach a successful state in every (maximal) computation.

74 G. Bernardi and M. Hennessy

Example 2.7. [Meaning �]
In this example we prove that p must r does not imply r ∅ p. Let r = 1 + τ. 0.
For every p, p must r because r

�−→, so all the computations of r || p are client-
successful. For every p, the proof that r ⊇∅ p relies on the following computation,

r || p
σ−→ 0 || p

σ−→ . . .

Since 0 ⊇∅ p, Lemma 2.3 implies that r ⊇∅ p. �

In the must testing, the behaviour of a client that has reported success is com-
pletely disregarded; that is p must r and r || p

σ−→ r′ || p′ does not imply
p′ must r′. For the compliance it is the contrary, as we have seen in Lemma 2.3.

3 Examples

We have three sub-sections, each examining one of the scenarios for contracts
alluded to in the Introduction.

3.1 General Contracts

Here we assume that contracts may be any term in the language CCS defined
above. First we show that the server-contract preorders are incomparable.

Example 3.1. [Infinite traces and servers]
Here we prove that p ∪cpl

svr q but p ⊇ �
∼

tst

svr
q where these terms are depicted

in Fig. 3.
The symbol pk denotes a process which performs a sequence of k α actions

and then becomes 0; so the process p performs every finite sequence of αs. In
contrast, the process q performs also an infinite sequence of αs.

To prove that p ∪cpl
svr q, we have to show that r ∅ p then r ∅ q. It suffices to

prove that the following relation is a co-inductivecompliance,

R = { (r′, q) | r ∅ p, r
βk

=∞ r′, for some k ∈ N and r ∈ CCS }

We have to show that if r′ R q then the pair (r′, q) satisfies the conditions given
in Definition 2.1.

Pick a pair (r′, q) in the relation R. By construction of R and of q, we know

that r
βk

=∞ r′ for some k ∈ N and some r such that r ∅ p.
Condition (a) is trivially true, because q converges. We discuss condition

(b) and (c). Suppose that r′ || q
σ

⊇−→; this implies that r′ σ

⊇−→. By construction

p
βk

=∞ 0, so we infer r || p =∞ r′ || 0
σ

⊇−→. Now r ∅ p and Lemma 2.3 imply that
r′ ∅ 0; Definition 2.1 ensures that r′ �−→.

Suppose that r′ || q
σ−→ r′′ || q′; we prove that r′′ R q′. The argument is a

case analysis on the rule used to infer the reduction. In every case q = q′. If rule

Compliance and Testing Preorders Differ 75

p

p2p1p0 p3 . . .

α
α

α
α

α

q

α

T 1 0α
τ �

Fig. 3. While p →cpl
svr q, the test T witnesses that p ∗�∅tst

svr
q (see Example 3.1)

p1τ p2 0
α

r 0

�

α

Fig. 4. While p1
�∅tst

svr
p2, the client r lets us prove that p1 ∗→cpl

svr p2 (see Example 3.2)

[p-Left] was applied then r′ σ−→ r′′; as r
βk

=∞ r′′ the definition of R implies that

r′′ R q′. Rule [p-Right] cannot have been applied, for q
σ

⊇−→. If rule [p-Synch]
was applied, then the reduction is due to an interaction. As q engages only in α,

it follows r
βk+1

=∞ r′′. The definition of R implies that r′′ R q′.
We have proven that the relation R is a co-inductivecompliance, so p ∪cpl

svr q.
Now we prove that p ⊇ �

∼
tst

svr
q; we define a test that is passed by p and not by

q. Let T
def= τ. 1 +α.T . The LTS of T is depicted in Fig. 3. Every computation of

T || p is finite and successful, so p must T . However when q is run as a server
interacting with T , there is the possibility of an indefinite synchronisation on α,
which is not a successful computation; q ⊇must T . �

Example 3.2. [Convergence of servers]
In this example we prove that p1�∼

tst

svr
p2 but p1 ⊇∪cpl

svr p2, where p1 = τ∞ and

p2 = α. 0. The LTS of these processes is in Fig. 4.
We prove that p1�∼

tst

svr
p2. First note that p1 ⇑, so if p1 must r, then r

�−→;

this is because of the infinite computation due only to the divergence of p1. It
follows that if p1 must r then p2 must r.

Now we define a client that lets us prove p1 ⊇∪cpl
svr p2. Let r = 1 +α. 0. To

prove that r ∅ p1 Definition 2.1 requires us to show a co-inductive compliance
that contains the pair (r, p1). The following relation {(r, p1)} will do, because
the only state ever reached by r || p1 is itself. We have to prove that r ⊇∅ p2.

Consider the computation r || p2 =∞ 0 || 0
σ

⊇−→. Since 0
�

⊇−→, Definition 2.1
ensures that 0 ⊇∅ 0. An application of Lemma 2.3 leads to r ⊇∅ p2. �

76 G. Bernardi and M. Hennessy

Let us now consider the client preorders in this setting of general contracts.
The fact that �

∼
tst

clt
⊇≡ ∪cpl

clt will follow from Example 3.5. One final example is

needed to show the converse.

Example 3.3. [Infinite traces and clients]
Here we prove that ∪cpl

clt ⊇≡ �
∼

tst

clt
. Let us define r as the process p of Example 3.1,

but with a � transition after each finite sequence of αs. Recall also the process
T of Example 3.1. To see why r ∪cpl

clt T , it is enough to check that the relation

R= { (T, p′) | r ∅ p, p
βk

=∞ p′ for some k ∈ N and p ∈ CCS }
⇒ { (1, p) | p ∈ CCS }

is a co-inductivecompliance. To prove this, an argument similar to the one of
Example 3.1 will do.

Now we show that r ⊇ �
∼

tst

clt
T ; to see why, consider the server S

def= α.S. All

the maximal computations of r || S are client-successful, so S must r; while
T || S performs an infinite computation with no client-successful states. �

The two essential differences in how servers are treated by the compliance
relation and the testing relation are crystallised Example 3.1 and Example 3.2.
In the former we see that a server may fail a test because of the presence of an
infinite sequence of actions, although this does not impede the test, or client,
from complying with the server. In the latter we see that divergent computations
affect the preorders differently. The relation �

∼
tst

svr
is sensitive to the divergence

of servers: any server that diverges is a least element of �
∼

tst

svr
. So if p1�∼

tst

svr
p2 and

p1 diverges, the traces that p2 performs need not be matched by the traces of p1.
This is not the case if p1 ∪cpl

svr p2; the traces of p2 have to be matched suitably
by the traces of p1, regardless of the divergence of p1.

3.2 Contracts for Web-Services

There are natural constraints on the contract language which avoid the phe-
nomena described above. We say that a process p converges strongly if for every
s ∈ Actα, p

s=∞ p′ implies p′ ∀ . Then let CCSweb denote the subset of processes
in CCS which both strongly converge and are finite-state. Note that Konigs
Lemma ensures that for every p ∈ CCSweb, p can perform an infinite sequence
of actions u whenever it can perform all finite subsequences of u. Thus neither
Example 3.1 nor Example 3.2 can be formulated in CCSweb. Nevertheless it is
still a very expressive contract language. It encompasses (via an interpretation)
first-order session types [Bd10,BH12], and, up to syntactic differences, the LTSs
of contracts for web-services used in [LP07,CGP09,Pad10] are contained in the
LTS ⊆ CCSweb, −→, Actσ � √.

Theorem 3.4. In CCSweb, p1�∼
tst

svr
p2 if and only if p1 ∪cpl

svr p2.

Compliance and Testing Preorders Differ 77

C r r′ S

τ

α

τ

β

α

Fig. 5. In any LTS that contains C and r, and where α ∗= β, S witnesses that C ∗→cpl
clt r2.

However C �∅clt
r (see Example 3.5)

Proof. See Proposition 5.1.21 of [Ber13]. The proof relies on the behavioural
characterisation of the two preorders, which is the same relation �svr. Roughly
speaking, p1 �svr p2 if and only if for every trace s ∈ Actα, the potential
deadlocks of p2 after s are matched the potential deadlocks1 of p1 after s. These
properties characterise both �

∼
tst

svr
and ∪cpl

svr, that is �
∼

tst

svr
= �svr and ∪cpl

svr =

�svr. The theorem follows from these equalities. �

However even in CCSweb the client sub-contract preorders remain different. In
Examples 3.5 and 3.6 below we prove that the client preorders are not compara-
ble; Theorem 3.4 is false for the client preorders. and Also the converse (negative)
inequality is true; we prove it in Example 3.6 below.

Example 3.5. [Client preorders and livelocks]
In this example we prove that in CCSweb, �

∼
tst

clt
⊇≡ ∪cpl

clt. Suppose that for two

actions α, β we have α ⊇= β, recall the processes C, S of Example 2.6. Their LTS
are depicted in Fig. 5 along with the LTS of a process r.

We prove that C�
∼

tst

clt
r and that C ⊇∪cpl

clt r. The inequality C�
∼

tst

clt
r is trivially

true, because C does not perform �, so p ⊇must C for every C.
To show that C ⊇∪cpl

clt r we have to exhibit a server with which C complies,
while r does not. This server is S. In Example 2.2 we have already proven that

C ∅ S. On the other hand, since α cannot interact with β, we have r′ || S
σ

⊇−→.

As r′ �
⊇−→, Definition 2.1 and Lemma 2.3 ensure that r ⊇∅ S. �

3.3 Finite Session Behaviours

Underlying Example 3.5 is the treatment of livelocks. These are catastrophic for
the testing based preorder, but can be accommodated by the compliance based
one. However, there is another completely independent reason for which the two
client preorders are different. Both are sensitive to the presence of the � action,
but in different ways.

In the examples below, Examples 3.6 and 3.7, we prove that because of
this difference, even for finite clients, with no recursion, the client preorders are
incomparable. These examples show that any test which immediately performs
1 More precisely, the acceptance sets.

78 G. Bernardi and M. Hennessy

r 0

�

τ 10 r1

r2 γ. 1

α�

β

� γ

(a) (b)

Fig. 6. Clients that let us prove that the client preorders are not comparable even in
the finite fragment of CCSweb (see Examples 3.6 and 3.7)

� is a top element in the testing based preorder, even if it subsequently evolves
to a state in which � is no longer possible. On the other hand for the compliance
relation the action � matters only in the stuck states of the client; its presence
in all other states is immaterial.

Example 3.6. [1 and internal moves]
Here we prove that ∪cpl

clt ⊇≡ �
∼

tst

clt
even for finite clients (without recursion).

Recall the client r of Example 2.7; its LTS is depicted in column (a) of Fig. 6.
On the one hand, r ∪cpl

clt 0. This is true because for every p, r || p
σ−→ 0 || p;

thus r ∅ p and Lemma 2.3 imply that 0 ∅ p. On the other hand r ⊇ �
∼

tst

clt
0, because

0 must r (as r
�−→). However 0 ⊇must 0. �

Example 3.7. [1 and interactions]
Here we show that �

∼
tst

clt
⊇≡ ∪cpl

clt. Let r1 = α. 1 and r2 = 1 +β.γ. 1; their LTS is

in column (b) of Fig. 6.
Regardless of the server p we have p must r2 because r2

�−→. It follows
trivially that r1�∼

tst

clt
r2. However, r1 ⊇∪cpl

clt r2; a typical server which distinguishes

the two clients is p = α. 0 +β. 0. The proof that r1 ∅ p amounts to checking that
the relation { (r1, p), (1, 0) } is a co-inductivecompliance. The fact that r2 ⊇∅ p

is due to Lemma 2.3 and the computation r2 || p
σ−→ γ. 1 || 0

σ

⊇−→. �

A further restriction of CCSweb provides a language in which this difference
in the treatment of � does not materialise. Let SBf be the language given by
the following grammar,

p, q, r ::= 1 |
∑

i→I
αi.pi |

∑

i→I
τ.αi.pi

where α ∈ Act , I is a finite non-emptyset, and the actions αis are pairwise
distinct. This language gives rise to the LTS ⊆ SBf , −→, Actσ � √ in the usual
manner. The language SBf is essentially the finite part of the session behaviours
of [Bd10], which we can think of as the first-order part of the session types used
in [GH05].

Compliance and Testing Preorders Differ 79

Here the language is finite so as to avoid duplicating Example 3.5. But the
finiteness of the language implies also that the computations are finite. This is
sufficient to show that a client and a server in compliance are related by the
must testing as well.

Lemma 3.8. If SBf if r ∅ p then p must r.

Proof. Suppose that r ∅ p. We have to show that all the maximal computations
of r || p are successful. Fix such a computation. Since r and p are finite, the

computation must have a terminal state, say r′ || p′ σ

⊇−→. The hypothesis r ∅ p
and the reductions r || p =∞ r′ || p′ imply that r′ ∅ p′. As this state is stable,
the definition of compliance ensures that r′ �−→; thus the maximal computation
we picked is successful. �

Thanks to the restrictive syntax of SBf , the converse of Lemma 3.8 is also
true. This is due to two reasons. One is a general property of must borne out
by Lemma 3.10. The other reason is the next lemma, which explains why the
different treatment of � does not materialse in SBf .

Lemma 3.9. In SBf , if p
�−→ then p = 1.

Proof. In principle p
�−→ may be proven by using one of the rules [a-Ok], [r-

Ext-L], and [r-Ext-R]. But the last two rules can be used only on external
sums, and in SBf these sums do not engage in �. It follows that p

�−→ must be
due to rule [a-Ok], hence p = 1. �

The previous lemma is not true for CCS. For instance the client r of Example
(2.7) performs the action �, but r ⊇= 1.

Lemma 3.10. In CCS if p must r, r || p
σ−→ r′ || p′ and r′ �

⊇−→ then p′ must p′.

Proof. (Outline) To prove the result it suffices to add to every maximal com-
putation of r′ || p′ the suffix r || p

σ−→ r′ || p′, and then use the hypothesis

p must r and r
�

⊇−→. �

Lemma 3.11. In SBf , if p must r then r ∅ p.

Proof. We show that the next relation is a co-inductive compliance,

R= { (r, p) | p must r }

Pick a pair r R p. Suppose r || p
σ

⊇−→. Then the definition of must ensures that
r

�−→. Suppose that r || p
σ−→ r′ || p′. If r

�−→ then Lemma 3.9 lets us prove

that r′ �−→. In turn this ensures that p′ must r′. If r
�

⊇−→, then Lemma 3.10
implies that p′ must r′. �

80 G. Bernardi and M. Hennessy

Theorem 3.12. In SBf ,

(1) p1�∼
tst

svr
p2 if and only if p1 ∪cpl

svr p2

(2) r1�∼
tst

clt
r2 if and only if r1 ∪cpl

clt r2

Proof. This is a direct consequence of Lemmas 3.11 and 3.8.

4 Conclusion

In this paper we have shown the differences between the sub-contract preorders
[CGP09,Pad10,Ber13] and the testing preorders [DH84,BH13]. Another study
of sub-contract relations is [BMPR10], There different compliances are used; two
similar to ∅, and a fair one.

The sub-contract relation was first proposed in [CCLP06], and further devel-
oped in [LP07,CGP09,Pad10]. For instance, the latter papers show how to adapt
the behaviour of contracts by applying filters, or orchestrators; thereby defin-
ing weak sub-contracts, whose elements can be forced (by filtering) into the
sub-contract. Reference [CGP09] also shows an encoding of WS-BPEL activi-
ties into the language of contracts. A result similar to Theorem 3.4 was already
established in [LP07], and it has been referenced by , [Pad09,Pad10, Proposition
2.7], and [CGP09, pag. 13]. The sub-contract for clients was proposed first in
[Bd10], and it is instrumental in modelling the subtyping for first-order session
types [GH05]. The preorder that models the subtyping coincides with a combi-
nation of the client sub-contract and a server one. This model was proven sound
in [Bd10], fully-abstract in [BH12], and extended to higher-order session types
in [Ber13].

References

[Bd10] Barbanera, F., de’Liguoro, U.: Two notions of sub-behaviour for session-
based client/server systems. In: Kutsia, T., Schreiner, W., Fernández, M.
(eds.) PPDP, pp. 155–164. ACM (2010)

[Ber13] Bernardi, G.: Behavioural equivalences for web services. Ph.D. thesis, Trin-
ity College Dublin. https://www.scss.tcd.ie/∼bernargi (2013)

[BH12] Bernardi, G., Hennessy, M.: Modelling session types using contracts. In:
Ossowski, S., Lecca, P. (eds.) SAC, pp. 1941–1946. ACM (2012)

[BH13] Bernardi, G., Hennessy, M.: Mutually testing processes (extended
abstract). In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS,
vol. 8052, pp. 61–75. Springer, Heidelberg (2013)

[BMPR10] Bugliesi, M., Macedonio, D., Pino, L., Rossi, S.: Compliance preorders for
web services. In: Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194,
pp. 76–91. Springer, Heidelberg (2010)

[CCLP06] Carpineti, S., Castagna, G., Laneve, C., Padovani, L.: A formal account
of contracts for web services. In: Bravetti, M., Núñez, M., Zavattaro, G.
(eds.) WS-FM 2006. LNCS, vol. 4184, pp. 148–162. Springer, Heidelberg
(2006)

https://www.scss.tcd.ie/~bernargi

Compliance and Testing Preorders Differ 81

[CGP09] Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web ser-
vices. ACM Trans. Program. Lang. Syst. 31(5), 1–61 (2009). (Supersedes
the article in POPL ’08)

[CH93] Cleaveland, R., Hennessy, M.: Testing equivalence as a bisimulation equiv-
alence. Formal Asp. Comput. 5(1), 1–20 (1993)

[CH10] Cerone, A., Hennessy, M.: Process behaviour: Formulae vs. tests (extended
abstract). In: Fröschle, S.B., Valencia, F.D. (eds) EXPRESS’10. EPTCS,
vol. 41, pp. 31–45 (2010)

[DH84] De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoret.
Comput. Sci. 34, 83–133 (1984)

[GH05] Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta
Inf. 42(2–3), 191–225 (2005)

[Hen85] Hennessy, M.: Algebraic Theory of Processes. MIT Press, Cambridge
(1985)

[Hoa85] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Hard-
cover (1985)

[LP07] Laneve, C., Padovani, L.: The must preorder revisited. In: Caires, L.,
Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 212–225.
Springer, Heidelberg (2007)

[Mil89] Milner, R.: Communication and Concurrency. PHI Series in Computer
Science. Prentice Hall, Upper Saddle River (1989)

[Pad09] Padovani, L.: Contract-based discovery and adaptation of web services. In:
Bernardo, M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS, vol.
5569, pp. 213–260. Springer, Heidelberg (2009)

[Pad10] Padovani, L.: Contract-based discovery of web services modulo simple
orchestrators. Theor. Comput. Sci. 411(37), 3328–3347 (2010)

[THK94] Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its
typing system. In: Halatsis, C., Philokyprou, G., Maritsas, D., Theodoridis,
S. (eds.) PARLE 1994. LNCS, vol. 817. Springer, Heidelberg (1994)

Scalable Session Programming for

Heterogeneous High-Performance Systems

Nicholas Ng(B), Nobuko Yoshida, and Wayne Luk

Imperial College London, London, UK
{nickng,n.yoshida,w.luk}@imperial.ac.uk

Abstract. This paper introduces a programming framework based on
the theory of session types for safe and scalable parallel designs.
Session-based languages can offer a clear and tractable framework to
describe communications between parallel components and guarantee
communication-safety and deadlock-freedom by compile-time type check-
ing and parallel MPI code generation. Many representative communica-
tion topologies such as ring or scatter-gather can be programmed and
verified in session-based programming languages. We use a case study
involving N-body simulation, dense and sparse matrix multiplication to
illustrate the session-based programming style. Finally, we outline a pro-
posal to integrate session programming with heterogeneous systems for
efficient and communication-safe parallel applications by a combination
of code generation and type checking.

1 Introduction

Software programs that utilises parallelism to increase performance is no longer
an exclusive feature of high performance applications. Modern day hardware,
from multicore processor in smartphones to multicore multi-graphics card gam-
ing systems, all take advantage of parallelism to improve performance. Message-
passing is a scalable programming model for parallel programming, where the
user has to make communication between components explicit using the basic
primitives of message send and receive.

However, writing correct parallel programs is far from straightforward –
blindly parallelising components with data dependencies might leave the overall
program in an inconsistent state; arbitrary interleaving of parallel executions
combined with complex flow control can easily lead to unexpected behaviour,
such as blocked access to resources in a circular chain (i.e. deadlock) or mis-
matched send-receive pairs. These unsafe communications are a source of non-
termination or incorrect execution of a program. Thus tracking and avoiding
communication errors of parallel programs is as important as ensuring their
functional correctness.

This work focuses on a programming framework which can automatically
ensure deadlock-freedom and communication-safety i.e. matching communica-
tion pairs, for message-passing parallel programs based on the theory of session

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 82–98, 2014.
DOI: 10.1007/978-3-319-05032-4 7, c© Springer International Publishing Switzerland 2014

Scalable Session Programming for Heterogeneous High-Performance Systems 83

types [6,7]. Towards the end of this paper, we discuss how this session-based
programming framework can fit in heterogeneous computing environments with
reconfigurable acceleration hardware such as Field Programmable Gate Arrays
(FPGAs).

To illustrate how session types can track communication mismatches, con-
sider the parallel program in Fig. 1 that exchanges two values between two
processes.

Process 0 Process 1

Recv char

Send 42

Recv char

Send 42

t=0

t=1

Fig. 1. Mismatched communication.

In this notation, the arrow points from the sender of the message to the intended
receiver. Both Process0 and Process1 start by waiting to receive a value from
the other processes, hence we have a typical deadlock situation.

Process 0 Process 1

Send 42

Recv char

Recv char

Send 42

t=0

t=1

Fig. 2. Communication order swapped.

A simple solution is to swap the order of the receive and send commands for
one of the processes, for example, Process 0, shown in Fig. 2.

However, the above program still has mismatched communication pairs and
causing type error. Parallel programming usually involves debugging and resolv-
ing these communication problems, which is often a tedious task.

Using the session programming methodology, we can not only statically check
that the above programs are incorrect, but can also encourage programmers to
write safe designs from the beginning, guided by the information of types. Session
types [6,7] have been actively studied as a high-level abstraction of structured
communication-based programming, which are able to accurately and intelligi-
bly represent and capture complex interaction patterns between communicating
parties.

The two examples above have session types shown in Figs. 3 and 4
respectively.

In the session types above, Send int stands for output with type int and
Recv int stands for input with type int. The session types are used to check
that the communications between Process 0 and Process 1 are incompatible
(i.e. incorrect) because one process must have a dual type of the other.

84 N. Ng et al.

Process 0: Recv char; Send int
Process 1: Recv char; Send int

Fig. 3. Session types for original exam-
ple.

Process 0: Send int; Recv char
Process 1: Recv char; Send int

Fig. 4. Session types for swapped
example.

On the other hand, the following program is correct, having neither deadlock
nor type errors, since it has a mutually dual session types shown on the right
hand side:

Process 0 Process 1

Send ’a’

Recv int

Recv char

Send 42

t=0

t=1

Process 0: Send char; Recv int
Process 1: Recv char; Send int

In the session types theory, Recv type is dual to Send type, hence the type
of Process 0 is dual of the type of Process 1.

The above compatibility checking is simple and straightforward in the case
of two parties. We can extend this idea to multiparty processes (i.e. more than
two processes) based on multiparty session type theory [7]. Type-checking for
parallel programs with multiparty processes is done statically and is efficient,
with a polynomial-time bound with respect to the size of the program.

Below we list the contributions of this paper.

– Novel programming languages for communications in parallel designs and two
session-based approaches to guarantee communication-safety and deadlock
freedom (Sect. 2)

– Implementations of advanced communication topologies for parallel computer
clusters by session types (Sect. 3)

– Case studies including N-body simulation, dense and sparse matrix multipli-
cation to illustrate session programming for parallel computers (Sect. 4)

2 Session-Based Language Design

2.1 Overview

As a language independent framework for communication-based programming,
session types can be applied to different programming languages and environ-
ments. Previous work on Session Java (SJ) [8,14] integrated sessions into the
object-oriented programming paradigm as an extension of the Java language, and
was applied to parallel programming [14]. Session types have also been imple-
mented in different languages such as OCaml, Haskell, F#, Scala and Python.
This section explains session types and their applications, focussing on an imple-
mentation of sessions in the C language (Session C) as a parallel programming
framework. Amongst all these different incarnations of session types, the key
idea remains unchanged. A session-based system provides (1) a set of predefined

Scalable Session Programming for Heterogeneous High-Performance Systems 85

primitives or interfaces for session communication and (2) a session typing sys-
tem which can verify, at compile time, that each program conforms to its session
type. Once the programs are type checked, they run correctly without deadlock
nor communication errors.

2.2 Multiparty Session Programming

Session C [12,21] implements a generalised session type theory, multiparty session
types (MPST) [7]. The MPST theory extends the original binary session types
[6] by describing communications across multiple participants in the form of
global protocols. Our development uses a Java-like protocol description language
Scribble [5,16] for describing the multiparty session types. Figure 5 explains two
design flows of Session C programming. In the type checking approach, the pro-
grammer writes a global protocol starting from the keyword protocol and the
protocol name. In the first box of Fig. 5, the protocol named as P contains one
communication with a value typed by int from participant A to participant B.
For Session C implementation, the programmer uses the endpoint protocol gen-
erated by the projection algorithm in Scribble. For example, the above global
protocol is projected to A to obtain int to B (as in the second box) and to B to
obtain int from A. Each endpoint protocol gives a template for developing safe
code for each participant and as a basis for static verification. Since we started
from a correct global protocol, if endpoint programs (in the third box) con-
form to the induced endpoint protocols, it automatically ensures deadlock-free,
well-matched interactions. This endpoint projection approach is particularly use-
ful when many participants are communicating under complex communication
topologies. Due to space limitation, this paper omits the full definition of global
protocols, and will explain our framework and examples using only endpoint
protocols introduced in the next subsection.

2.3 Protocols for Session Communications

The endpoint protocols include types for basic message-passing and for cap-
turing control flow patterns. We use the endpoint protocol description derived
from Scribble to algorithmically specify high-level communication of distributed
parallel programs as a library of network communications. A protocol abstracts
away the contents but keeps the high level structures of communications as a
series of type primitives.

The syntax of Scribble is described in details in [5,16], and can be categorised
to three types of operations: message-passing, choice and iteration.

Message Passing. It represents that messages (or data) being communicated
from one process to another; in the language it is denoted by the statements
datatype to P1 or datatype from P0 which stands for sending/receiving data of
datatype to the participant identified by P0/P1 respectively. Notice that the pro-
tocol does not specify the value being sent/received, but instead designate the

86 N. Ng et al.

Define global protocol in Scribble
global protocol P
{ int from A to B; }

Project into endpoint protocol
local protocol P at A
{ int to B; }

Generate MPI code
int main()
{ /*insert computation code here*/
MPI_Send(buf, cnt, RANK_B, MPI_INT, ...);

}

Implement program
int main()
{ calc(buf, cnt);
MPI_Send(buf, cnt, RANK_B, MPI_INT, ...);

}

Implement program in Session C
int main()
{ calc(buf, cnt);
send_int(B, buf); }

Static type checking
Check implementation conforms with
endpoint protocol at compile time

Code generation approach
Type checking approach

Fig. 5. Session C design flows.

datatype (which could be primitive types such as int or composite types), indi-
cating its nature as a high-level abstraction of communication.

Choice. It allows a communication to exhibit different behavioural flows in a
program. We denote a choice by a pair of primitives, choice from and choice to,
meaning a distributed choice receiver and choice maker, respectively. A choice
maker first decides a branch to take, identified by its label, and executes its
associated block of statements. The chosen label is sent to the choice receiver,
which looks up the label in its choices and execute the its associated block of
statements. This ensures the two processes are synchronised in terms of the
choice taken.

Iteration. It can represent repetitive communication patterns. We represent
recursion by the rec primitive (short for recursion), followed by the block of
statements to be repeated, enclosed by braces. The operation does not require
communication as it is a local recursion. However two communicating processes
have to ensure both of their endpoint protocols contains recursion, otherwise
their protocols will not be compatible.

2.4 Session C

We present two approaches to session programming in C, using the Session C
framework. The first approach is by type checking of user written code, using a
simple session programming API we provided. The second approach is by MPI
code generation from protocols.

Scalable Session Programming for Heterogeneous High-Performance Systems 87

Type Checking Approach In the type checking approach, a user implements
a parallel program using the simple API provided by the library, following com-
munication protocols stipulated in Scribble. Once a program is complete, the
type checker verifies that the program code matches that of the endpoint proto-
col description in Scribble to ensure that the program is safe. The core runtime
API corresponds the endpoint protocol as described below.

Message Passing Primitives in Session C are written as send_datatype

(participant, data) for message send, which is datatype to participant in the
protocol, and recv_datatype (participant, &data) for message receive
(datatype from participant in the protocol).

Choice in Session C is a combination of ordinary C control-flow syntax and ses-
sion primitives. For a choice maker, each if-then or if-else block in a session-typed
choice starts with outbranch(participant, branchLabel) to mark the beginning
of a choice. inbranch(participant, &branchLabel) is a choice receiver, used as
the argument of a switch-case statement, and each case-block is distinguished
by the branchLabel corresponding to a choice in the choice from block in the
protocol.

Iteration in Session C corresponds to while loops in C. As no communication is
required, the implementation simply repeats a block of code consisting of above
session primitives in a rec recursion block.

Code Generation Approach In the code generation approach, given a Scrib-
ble protocol, we generate an MPI parallel program skeleton. The program skele-
ton contains all the MPI code needed, the user inserts code that performs
computation on the input data (e.g. for scientific calculation) between the MPI
primitives, completing the program.

This approach is part of a larger extension of the Scribble language to
support parameterised session types [2]. The extension, Parameterised Scrib-
ble, or Pabble [11], uses indices to parameterise participants. Participants can
be defined and accessed in an array-like notation, in order to denote logical
groupings of related participants. For example, a parallel algorithm that
uses many parallel workers, can define a group of participants using
role participant[1..N], and a pipeline of message passing is written in Pabble as
datatype from participant[i:1..N-1] to participant[i+1]. Pabble protocols can
be written once, and a protocol with different number of participants can be
instantiated by changing the value of N . MPI code generated from Pabble pro-
tocols can also take advantage of this feature and will be scalable over different
number of processes.

These two approaches to session programming complement each other and
cover different use cases: critical applications can use the type checking approach
to ensure that the written program is communication and type safe; whereas

88 N. Ng et al.

scalable and parametric applications can use the MPI code generation capability
to create communication safe and type safe parallel programs.

3 Advanced Communication Topologies for Clusters

This section shows how session endpoint protocols introduced in Sect. 2.3 can be
used to specify advanced, complex communications for clusters. Consider a het-
erogeneous cluster with multiple kinds of acceleration hardware, such as GPUs or
FPGAs, as Processing Elements (PEs). To allow a safe and high performance col-
laborative computation on the cluster, we can describe communications between
PEs by our communication primitives. The PEs can be abstracted as small com-
putation functions with a basic interface for data input and result output, hence
we can easily describe high-level understanding of the program by the session
types.

We list some widely used structured communication patterns that form the
backbones of implementations of parallel algorithms. These patterns were chosen
because they exemplify representative communication patterns used in clusters.
Computation can interleave between statements if no conflict in the data depen-
dencies exists. The implementation follows the theory of the optimisation for
session types developed in [10], maximising overlapped messaging.

Node0≤i≤n−1: rec LOOP { // Repeat shifting ring
datatype to Node[i+1]; // Next
datatype from Node[i-1]; // Prev

LOOP }

Noden: rec LOOP { // Repeat shifting ring
datatype from Node[N-1]; // Prev
datatype to Node[0]; // Initial

LOOP }

Fig. 6. Endpoint protocols of Ring.

Node2

Noden−1

3
Node1

2

Node0

1

Noden
5

4

Fig. 7. n-node ring pipeline.

Ring Topology. pology, as depicted in Fig. 7, processes or PEs are arranged in a
pipeline, where the end of the node of the pipeline is connected to the initial node.
Each of the connections of the nodes is represented by an individual endpoint
session. We use N-body simulation as an example for ring topology. Note that
the communication patterns between the middle n− 1 Nodes are identical. The
endpoint protocol is shown in Fig. 6.

Map-Reduce Pattern. Map-reduce is a common scatter-gather pattern used
to parallelise tasks that can be easily partitioned with few dependencies between
the partitioned computations. The endpoint protocol and the topology is shown
in Figs. 8 and 9 respectively. It combines the map pattern which partitions and
distributes data to parallel workers by a Master coordination node, and the

Scalable Session Programming for Heterogeneous High-Performance Systems 89

reduce pattern which collects and combines completed results from all parallel
workers. At the end of a map-reduce, the Master coordination node will have a
copy of the final results combined into a single datum. All Workers in a map-
reduce topology share a simple communication pattern, where they only interact
with the Master coordination node. The Master node will have a communica-
tion pattern containing all known Workers. The MPI operation MPI_Alltoall is a
communication-only instance of the map-reduce pattern for all of the nodes, and
only applies memory concatenation to the collected set of data. Our endpoint
types can represent this topology with more fine-grained primitives so that we
can obtain performance gain by communication-computation overlap. Although
collective operations are more efficient in cases where the implementations take
advantage of the underlying architectures, fine-grained primitives can more read-
ily allow partial data-structures to be distributed, without the need to create new
copies of data or calculating offsets (as in MPI_Alltoallv) for transmission.

Master : rec LOOP {
// Map phase
datatype to Worker[0], Worker[1];
// Reduce phase
datatype from Worker[0], Worker[1];

LOOP }

Worker0≤i≤n : rec LOOP {
datatype from Master; // Map phase
datatype to Master; // Reduce phase

LOOP }

Fig. 8. Endpoint protocols of Map-
reduce.

.

.

.
Master Master

Workern

Worker0

Fig. 9. Map-reduce pattern.

4 Case Studies

This section presents case studies of using Scribble protocols in parallel program-
ming. All of these examples are representative patterns from common parallel
patterns known as Dwarfs [1]. The Dwarf evaluation metric was proposed as
a collection of high-level, core parallel communication patterns from important
scientific and engineering methods. Each of these patterns is called a Dwarf,
which represents one category of patterns and covers a broad range of concrete
algorithm implementations. Dwarfs are used to evaluate our session-based proto-
col language and our programming methodology because they are not language
or optimisation specific, being able to express the Dwarfs confirms that our app-
roach is general enough to be extended to more practical use cases.

We have chosen N-body simulation, an example of particle methods dwarf,
dense matrix-vector multiplication, a dense linear algebra dwarf, and sparse
matrix-vector multiplication, a sparse linear algebra dwarf, to show how Scribble
and MPI can be used together for parallel programming from either of our two
session-based approaches.

90 N. Ng et al.

4.1 N-Body Simulation

We implemented a 2-dimension N-body simulation using a ring topology. Each
Worker is initially assigned to a partition of the input data. In every round of
the ring propagation, each Worker receives a set of partitioned input from a
neighbour, and pipelines the input data received from the previous round to the
other neighbour. This propagation continues until the set of particles have been
received by all Workers once. The algorithm will then perform one step of global
update to calculate the new positions of the particles after one time step of the
simulation.

Listing 1 is the protocol specification of the Worker participant of our N-
body simulation implementation, and Listing 2 is the automatically generated
endpoint version, both written in the syntax of parameterised Scribble.

1 global protocol Nbody(role Worker[0..N] {
2 rec RING {
3 // Workers 0 to N: Worker[i] -> [i+1]
4 int from Worker[i:1..N-1] to Worker[i+1];
5
6 // Data from Worker[N] -> [0]
7 int from Worker[N] to Worker[0];
8
9 continue RING;

10 }
11 }

Listing 1. Protocol of N-body simulation.

1 local protocol Nbody at Worker[0..N] {
2 rec RING {
3 // Workers 0 to N: Worker[i] -> [i+1]
4 if Worker[i:1..N] int from Worker[i-1];
5 if Worker[i:0..N-1] int to Worker[i+1];
6 // Data from Worker[N] -> r[0]
7 if Worker[0] int from Worker[N];
8 if Worker[N] int to Worker[0];
9 continue RING;

10 }
11 }

Listing 2. Worker endpoint of N-body
protocol.

The block rec RING {} means recursion, and represents the repeating ring
propagation in the algorithm. The line if Worker[i:1..N] int from Worker[i-1]

stands for receiving a message from my previous neighbour Worker[i-1] with a
message of type int, given that the current participant is one of Worker[1], ...,
or Worker[N]. The protocol generates MPI code equivalent to Listing 3.
1 while (i++<N) {
2 if (1<=rank && rank<=N) MPI_Recv(rbuf, count, rank-1, MPI_INT, ..);
3 // (Sub-compute) Send received data to FPGA to process ..
4 if (0<=rank && rank<=N-1) MPI_Send(sbuf, count, rank+1, MPI_INT, ..);
5 if (rank==0) MPI_Recv(rbuf, count, N, MPI_INT, ..);
6 // (Sub-compute) Send received data to FPGA to process ..
7 if (rank==N) MPI_Send(sbuf, count, 0, MPI_INT, ..); }
8 // Perform global update after round

Listing 3. MPI implementation of Worker endpoint.

In MPI, all processes share the same source code and compiled program
file, and they are only distinguished at runtime by their assigned process id.
The process id is stored in the rank variable, and is available throughout the
program to calculate participants addresses. In the above MPI code, MPI_Send

and MPI_Recv are the primitives in the MPI library to send and receive data, and
all the lines are guarded by a rank check. The variables sbuf and rbuf stand for
send buffer and receive buffer respectively, and count is the number of elements
to send/receive (i.e. array size); MPI_INT is an MPI defined macro to indicate the
data being sent/received is of type int.

Scalable Session Programming for Heterogeneous High-Performance Systems 91

The ring topology above is a simple yet powerful topology to distribute data
between multiple participants in small chunks. This allows more sub-computation
and will potentially allow more overlapping between communication and
computation.

A Scribble protocol contains the interaction patterns (i.e. the session typing)
for a set of participants. It contains sufficient information to generate the MPI
code shown above.

4.2 Dense Matrix-Vector Multiplication

Dense matrix-vector multiplication takes a M ×N matrix and multiply it by a
N dimensional vector to get a N dimensional vector result. The multiplication
can be parallelised by partitioning the input matrix to N segments by row-wise
block striping shown in Fig. 10 and distributed to N processes. Each process gets
a copy of the vector, and each elements in the vector can be calculated by the
processes in parallel.

Listing 4 shows a protocol for our dense matrix-vector multiplication. The
Worker[0] is the coordinator which distributes the partitions to each Workers.
The primitive foreach (i:1..N) is a foreach-loop, which iterates from 1 to N

using the index variable i. Inside the foreach, Worker[1..N] sends the offset and
length of the partitions to each Worker (Line 4 and 5)respectively, followed by
the actual matrix elements (Line 6).Vector B, which is of size N , is broadcasted
to all processes by the coordinator on Line 9. Finally, the results of each Workers
are gathered by the coordinator and combined to get the result of the matrix
multiplication (Line 14).

1 global protocol DenseMatVec(role Worker[0..N]){
2 // Scatter Matrix A
3 foreach (i:1..N) {
4 LBound(int) from Worker[0] to Worker[i];
5 UBound(int) from Worker[0] to Worker[i];
6 Data(double) from Worker[0] to Worker[i];
7 }
8 // Scatter Vector B
9 (double) from Worker[0] to Worker[1..N];

10 // --- Perform calculation ---
11 // Gather data
12 (double) from Worker[1..N] to Worker[0];
13 }

Listing 4. Global protocol of dense matrix-
vector multiplication.

A1 Worker[1]

A2 Worker[2]

...

AN−1 Worker[N-1]

AN Worker[N]

× B =

C1

C2

...

CN−1

CN

Fig. 10. Partitioning of input
matrix.

92 N. Ng et al.

An MPI implementation following above protocol has the code structure
shown below. In the initial phase of the calculation, the coordinator, the process
of rank 0 (Line 5–17), uses a for loop to iterate through the worker process ids
(processes with ranks above 0, up to the total number of processes size) and
calculates the lbound and ubound for each of the participants, where lbound is
the first row of the partition, and ubound is the last. The partition is then sent
to the corresponding Worker[i]. Other Worker processes receive the values and
store locally.

This is followed by a broadcast on Line 25 using an MPI_Bcast with root
Worker[0] for the workers to receive the input vector. A partial result, C, is then
calculated on each worker, and the result collected by the coordinator using
MPI_Gather. MPI_Gather collects the partial results, then combines them in the
Result N dimensional array.

The implementation show how our session protocol descriptions can also cor-
respond to collective operations, such as (double)from Worker[0] to Worker[1..N]

and MPI_Bcast, or (double)from Worker[1..N] to Worker[0] and MPI_Gather.
1 double A[A_ROWS][A_COLS]; // Matrix A
2 double B[B_COLS]; // Vector B
3 double C[B_COLS]; // Partial result
4 ...
5 if (rank == 0) {
6 for (i = 1; i < size; i++) { // Calculate then send to each Worker
7 // Calculate LowerBound and UpperBound for each Worker
8 lbound = (i - 1) * partition_size;
9 ubound = lbound + partion_size;

10
11 MPI_Send(&lbound, 1, MPI_INT, Worker[i], LBound, ...);
12 MPI_Send(&ubound, 1, MPI_INT, Worker[i], UBound, ...);
13
14 // Send partition of matrix A
15 MPI_Send(&A[lbound][0], (ubound-lbound) * A_COLS, MPI_DOUBLE, Worker[i], Data, ...);
16 }
17 } else if (rank > 0) { // Workers, receiving work
18 MPI_Recv(&lbound, 1, MPI_INT, Worker[0], LBound, ...);
19 MPI_Recv(&ubound, 1, MPI_INT, Worker[0], UBound, ...);
20
21 MPI_Recv(&A[lbound][0], (ubound-lbound) * A_COLS, MPI_DOUBLE, Worker[0], Data, ...);
22 }
23
24 // All Workers receive the vector B
25 MPI_Bcast(&B, B_ROWS, MPI_DOUBLE, Worker[0], ...);
26 ...
27 // Calculate matrix multiplication
28 mat_vec_mul(A, B, lbound, ubound, C);
29 ...
30 // ... Gather results to Worker[0] ...
31 MPI_Gather(C, 1, MPI_DOUBLE, Result, 1, MPI_DOUBLE, Worker[0], ...);
32

Listing 5. MPI implementation of dense matrix-vector multiplication.

4.3 Sparse Matrix-Vector Multiplication

Finally we show an implementation of a direct sparse matrix-vector multiplica-
tion. Sparse matrices are often used for data representation that are too large to

Scalable Session Programming for Heterogeneous High-Performance Systems 93

fit in memory as an array, but the content is sparse and can be efficiently com-
pressed to a more compact format. Our implementation uses a M × N sparse
matrix input stored in a compressed sparse row (CSR) format, where the data
are represented by three arrays.

– vals: a contiguous array containing all values of the sparse matrix in a left-
to-right, top-to-bottom order. This compact storage of the matrix skips all
empty (or zero) cells in the matrix and only contains cells with a value.

– row ptr: an array containing indices for the vals array, each element contains
the accumulated total of elements in each row. For example, [1, 3, 4, 8]
means that row 0 has 1 element, row 1 has 2 elements, row 2 has 1 element
and row 3 has 4 elements. This array has the same size as the total number
of rows.

– col ind: the column indices for each of the values in vals. This array has the
same size of vals.

The three arrays combined is sufficient to represent a sparse matrix, or a
partition of the sparse matrix.

The protocol to perform a sparse matrix-vector multiplication is shown in
listing 6. In the protocol, the partitioned matrix rows in CSR format are sent
to each worker as separate row, col and values arrays (Line 3,4 and 5). The N
dimensional vector is then sent to all workers. The results of the calculation by
each Workers are sent back to Worker[0] (Line 8).
1 global protocol SparseMatVec(role PE[0..N]) {
2 /* Distribute data */
3 (int) from W[0] to W[1..N]; // row_ptr
4 (int) from W[0] to W[1..N]; // col_ind
5 (double) from W[0] to W[1..N]; // vals
6 (double) from W[0] to W[1..N]; // vector
7 /* Output vector */
8 (double) from W[1..N] to W[0];
9 }

Listing 6. Global protocol of sparse matrix-vector multiplication.

A corresponding implementation for the above protocol may look like the
MPI code below:
1 MPI_Comm_size(MPI_COMM_WORLD, &size);
2 int nr_of_rows=MATRIX_ROWS/size;
3 ...
4 MPI_Scatter(row_ptr, nr_of_rows, MPI_INT,..);
5 ...
6 // calculate number of indices for each process
7 ...
8 MPI_Scatterv(col_ind, nr_of_elems, MPI_INT, ...);
9 MPI_Scatterv(vals, nr_of_elems, MPI_DOUBLE, ...);

10 ...
11 MPI_Bcast(vector, MATRIX_ROWS, MPI_DOUBLE, Worker[0], ...); // Distribute vector
12 ...
13 // Calculate matrix multiplication
14 mat_vec_mul(row_ptr, col_ind, vals, vector, C);
15 ...
16 MPI_Gather(C, 1, MPI_DOUBLE, Result, 1, MPI_DOUBLE, Worker[0], ...);

Listing 7. MPI implementation of sparse matrix-vector multiplication.

94 N. Ng et al.

Each process starts by calculating the expected number of rows it will be
owner of, and we assume that the number of rows for each process is the same
and the total number of rows can divide exactly by the total number of processes.
Next we use MPI_Scatter to distribute segments of the row_ptr array to each
worker process, which sends segments of a given input memory to other processes
based on their rank and the segment position in the memory (Line 4).

nr_of_elems is an array containing the number of elements to be sent to each
worker. Since in a sparse matrix the number of elements in each row is not fixed,
the nr_of_elements array contains the number of matrix elements each worker
receives. The indices of the array correspond to the rank of the workers and
the column index col_ind is distributed to each worker process by MPI_Scatterv

(Line 8), a variant of the MPI_Scatter, where the v stands for variable size as
opposed to fixed size in MPI_Scatter. Similarly, the actual matrix element values
are distributed to all workers by a call to MPI_Scatterv on Line 9, using the same
nr_of_elems to specify the number of elements for each worker.

Once the workers have received the matrix partitions, the coordinator dis-
tributes the N dimension vector by MPI_Bcast to all workers to perform the
matrix-vector calculation for the rows of the sparse matrix each processor has.

Finally, as in the dense matrix-vector multiplication example, the results are
collected by the root worker Worker[0] using a MPI_Gather. In this implementa-
tion, we use exclusively collective operations to distribute and collect results as
it is more efficient with the CSR data format. Notice that the protocol does not
distinguish between different modes of MPI_Scatter, in particular, the Scribble
statement (int) Worker[0] to Worker[1..N]; corresponds to both MPI_Scatter

and MPI_Scatterv. Hence a single protocol statement can map to multiple imple-
mentations, and without external information about the implementation, a code
generation tool cannot choose a suitable implementation, and this use case is
more suitable for our type checking approach.

5 Related Work and Conclusion

ISP [3,20] and the distributed DAMPI [19] are formal dynamic verifiers which
apply model-checking techniques to standard MPI C source code to detect dead-
locks using a test harness. The tool exploits independence between thread actions
to reduce the state space of possible thread interleavings of an execution, and
checks for potentially violating situations. TASS [3,17] is another suite of tools
for formal verification of MPI-based parallel programs by model-checking. It
constructs an abstract model of a given MPI program and uses symbolic execu-
tion to evaluate the model, which is checked for a number of safety properties
including potential deadlocks and functional equivalences.

Compared to the test-based and model-checking approaches which may not
be able to cover all possible states of the model, the session type-based approach
does not depend on external testing or extraction of models from program code
for safety. It encourages designing communication-correct programs from the
start, especially given the high level communication structure which session types
captures.

Scalable Session Programming for Heterogeneous High-Performance Systems 95

Recent works [4,9] used annotated MPI code and a software verifier to check
the annotated MPI code for compliance against session types. Their bottom-
up approach focusses on accurately representing MPI primitives and datatypes,
whereas Session C treats them as high level abstractions, ignoring details such
as send/receive data payload size.

There are a lot of challenges of verifying real-world MPI source code. MPI
is a standardised and platform independent message-passing API, the ubiqui-
tous nature in supercomputing makes it a convenient abstraction layer between
software and underlying hardware. In cases such as [15], it was used as a pro-
gramming model for FPGAs. Hence its specification is intentionally vague, in
order to allow different implementations to take advantage of any platform-
specific optimisations. For example, there are a number of message transport
modes such as the more commonly used MPI_Send/MPI_Recv (standard mode) or
MPI_Isend/MPI_Irecv (immediate/non-blocking). The modes do not correspond
directly to standard synchronous or asynchronous communication modes as one
would expect. The different communication modes in MPI have subtle differences
in their semantics. Care must be taken when making assumptions and correspon-
dences with high-level Scribble protocols. In addition to standard point-to-point
communication primitives, MPI also includes a huge number of primitives such
as collective operators, topology construction and process management. A com-
plete session type checking framework will be able to consider these additional
information to extract the session types from the source code. Combining the
flexibility of the host language (C) and the large number of MPI primitives makes
our approach more challenging compared to model checking based approaches.
This is because MPI model checkers work by observing the behaviours of the pro-
grams, which the same behaviour can be implemented in many different ways;
whereas our type based approach requires us to understand the consequences
of each primitive because we construct a type model without executing the
program.

Furthermore, to apply our approach on low-level host languages, it is impor-
tant to define a concise and simple correspondence between a Scribble and Pab-
ble protocol to practical implementation, but offer enough flexibility to cope
with conventional programs. This correspondence is important to both type
checking and code generation: for type checking, the ability to support differ-
ent programming styles would enable the type checker to check more existing
code, and for code generation, the generated code will have a more natural style.
For example, MPI uses process IDs (or ranks) to identify processes, and it is
valid to perform numeric operations on the ranks to efficiently calculate target
processes. A more concrete example is instead of conventional conditional state-
ments, MPI_Send(buf, cnt, MPI_INT, rank may be used and the process ID, rank,
is being used as a boolean to perform a choice, thus a straightforward analysis
of rank usages would not be sufficient. These are valid programs that exploit the
C language features and will require much more extensive analysis.

This paper is an extension of our previous works on Session C [12,13]. In both
of the works, parametric protocols and MPI code generation were not explored,

96 N. Ng et al.

this work is a short insight into the benefits of using parametric protocols and
potentials of integrating with specialised accelerators, as the framework was
evaluated on [18], a heterogeneous cluster with FPGAs.

6 Future Work

Integration with Heterogeneous Workflow. Immediate future works
includes refining our MPI code generation tool to better integrate with APIs
of specialised hardware. This includes streamlining the data received/sent from
MPI directly into input/output buffers of acceleration hardware. Tighter inte-
gration between MPI and acceleration hardware will achieve better overall per-
formance of the heterogeneous system.

Type-Directed Optimisations. Extending our type checker to support infer-
ring parameterised MPST from MPI code is a prerequisite for type-directed opti-
misations. Once parameterised MPST can be extract from MPI code, Session C
framework can then extend the support of asynchronous message optimisation
[10] described in Session C framework [12] to expressive parameterised protocols.
The theoretical and engineering challenges of this future work will be keeping
type checking process decidable and representing most, if not all, of the common
MPI primitives in Scribble.

Assertion and Error Recovery. We propose the use of runtime assertions for
session-based programming in the Session C framework. Assertions are proper-
ties that are expected to hold during runtime, and they can complement static
type checking. Error recovery is also a topic of interest, as large scale high per-
formance parallel applications often need to gracefully handle unexpected errors
such as hardware failures. Type-based approach to error handling and recovery
will be explored as part of ongoing research on Scribble.

Adapting to Other Programming Models. Our session-based approach is
based on the message passing communication model, which can be used for coor-
dination between heterogeneous nodes. Heterogeneous accelerators all use differ-
ent programming and communication models, for example, General Purpose
computing on GPU (GPGPU) uses a streaming model, and some reconfigurable
hardware uses data-flow programming model. Adapting the high-level Scribble
and Pabble language to these models will enable session types to be a common
language to describe communication behaviour for parallel applications. We are
aiming to achieve this by generalising our code generation to generate different
target code.

Acknowledgement. The research leading to these results has received funding from
EPSRC EP/F003757/01, EP/G015635/01 and the European Union Seventh Frame-
work Programme under grant agreement number 257906, 287804 and 318521. The
support by the HiPEAC NoE, the Maxeler University Program, and Xilinx is grate-
fully acknowledged.

Scalable Session Programming for Heterogeneous High-Performance Systems 97

References

1. Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J.,
Morgan, N., Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view
of the parallel computing landscape. Commun. ACM 52(10), 56–67 (2009)

2. Deniélou, P.M., Yoshida, N., Bejleri, A., Hu, R.: Parameterised multiparty session
types. LMCS 8(4), 1–47 (2012)

3. Gopalakrishnan, G., Kirby, R.M., Siegel, S., Thakur, R., Gropp, W., Lusk, E., De
Supinski, B.R., Schulz, M., Bronevetsky, G.: Formal analysis of mpi-based parallel
programs. CACM 54(12), 82–91 (2011)

4. Honda, K., Marques, E.R.B., Martins, F., Ng, N., Vasconcelos, V.T., Yoshida,
N.: Verification of MPI programs using session types. In: Träff, J.L., Benkner,
S., Dongarra, J.J. (eds.) EuroMPI 2012. LNCS, vol. 7490, pp. 291–293. Springer,
Heidelberg (2012)

5. Honda, K., Mukhamedov, A., Brown, G., Chen, T.-C., Yoshida, N.: Scribbling
interactions with a formal foundation. In: Natarajan, R., Ojo, A. (eds.) ICDCIT
2011. LNCS, vol. 6536, pp. 55–75. Springer, Heidelberg (2011)

6. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, p. 122. Springer, Heidelberg (1998)

7. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL’08. vol. 5201, p. 273 (2008)

8. Hu, R., Yoshida, N., Honda, K.: Session-based distributed programming in java. In:
Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 516–541. Springer, Heidelberg
(2008)

9. Marques, E., Martins, F., Vasconcelos, V., Ng, N., Martins, N.: Towards deductive
verification of MPI programs against session types. In: Proc. PLACES 2013 EPTCS
137, pp. 103–113 (2013)

10. Mostrous, D., Yoshida, N., Honda, K.: Global principal typing in partially commu-
tative asynchronous sessions. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502,
pp. 316–332. Springer, Heidelberg (2009)

11. Ng, N., Yoshida, N.: Pabble: Parameterised scribble for parallel programming. In:
PDP 2014 (2014) (to appear)

12. Ng, N., Yoshida, N., Honda, K.: Multiparty session C: safe parallel programming
with message optimisation. In: Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS,
vol. 7304, pp. 202–218. Springer, Heidelberg (2012)

13. Ng, N., Yoshida, N., Niu, X.Y., Tsoi, K.H., Luk, W.: Session types: towards safe
and fast reconfigurable programming. SIGARCH Comput. Archit. News 40(5),
22–27 (2012)

14. Ng, N., Yoshida, N., Pernet, O., Hu, R., Kryftis, Y.: Safe parallel programming
with session java. In: De Meuter, W., Roman, G.-C. (eds.) COORDINATION 2011.
LNCS, vol. 6721, pp. 110–126. Springer, Heidelberg (2011)

15. Saldaña, M., Patel, A., Madill, C., Nunes, D., Wang, D., Chow, P., Wittig, R.,
Styles, H., Putnam, A.: MPI as a programming model for high-performance recon-
figurable computers. ACM TRETS 3(4), 1–29 (2010)

16. Scribble homepage, http://www.jboss.org/scribble
17. Siegel, S.F., Zirkel, T.K.: Automatic formal verification of MPI-based parallel pro-

grams. In: PPoPP’11, p. 309. ACM Press (2011)
18. Tsoi, K.H., Luk, W.: Axel: A Heterogeneous Cluster with FPGAs and GPUs. In:

FPGA’10, pp. 115–124. ACM (2010)

http://www.jboss.org/scribble

98 N. Ng et al.

19. Vo, A., Aananthakrishnan, S., Gopalakrishnan, G., de Supinski, B.R., Schulz, M.,
Bronevetsky, G.: A Scalable and Distributed Dynamic Formal Verifier for MPI
Programs. In: SC’10, pp. 1-10. IEEE (2010)

20. Vo, A., Vakkalanka, S., DeLisi, M., Gopalakrishnan, G., Kirby, R.M., Thakur, R.:
Formal verification of practical MPI programs. In: PPoPP’09, pp. 261-270 (2009)

21. Session C homepage, http://www.doc.ic.ac.uk/∼cn06/sessionc/

http://www.doc.ic.ac.uk/~cn06/sessionc/

WS-FMDS 2013

A Supervisor Synthesis Tool for Finite
Nondeterministic Automata with Data

Aleksandar Kirilov1, Darko Martinovikj1, Kristijan Mishevski1,
Marija Petkovska1, Zlatka Trajcheska1, and Jasen Markovski1,2(B)

1 University Ss. Cyril and Methodius, PB 393, 1000 Skopje, Republic of Macedonia
2 Eindhoven University of Technology, PB 513,

5600 MB Eindhoven, The Netherlands
j.markovski@tue.nl

Abstract. Supervisory control theory deals with automated synthesis
of models of supervisory controllers based on the models of the unsuper-
vised systems and the control requirements. The models of the supervi-
sory controllers are referred to as supervisors. We present a supervisor
synthesis tool for finite nondeterministic automata with data-based con-
trol requirements. The tool implements a process-theoretic approach to
supervisory control theory, which employs the behavioral preorder par-
tial bisimulation to characterize the notion of a supervisor. To illustrate
the tool, we remodel an industrial case study dealing with coordination
of maintenance procedures of a printing process of a high-tech printer.

1 Introduction

Development of control software with high quality has become a major bottle-
neck in design and production of high-tech systems [9]. Traditional techniques
that employ (re)coding-testing loops struggle to satisfactorily cope with this chal-
lenge due to ever-increasing system complexity and frequent design changes in
the (informal) control requirements, which results in a large amount of expensive
iterations. These issues gave rise to supervisory control theory of discrete-event
systems [4,16], which studies automated synthesis of models of supervisory con-
trol software that ensure safe and nonblocking coordination of discrete-event
behavior of the concurrent components of the system.

Supervisory controllers observe the discrete-event behavior of the system, typ-
ically given by sensory information, as depicted in Fig. 1(a). Based upon the made
observations, the controllers decide upon activities that are allowed to be carried
out safely, avoiding potentially dangerous or otherwise undesired situations, and
send back control signals to the hardware actuators. We work under the standard
assumption that the supervisory controller timely reacts on system input and we
model this supervisory control feedback loop as a pair of synchronizing processes [4,
16]. We refer to the model of the uncontrolled system as plant, whereas the model
of the supervisory controller is referred to as supervisor. The supervisory control

Supported by Dutch NWO project ProThOS, no. 600.065.120.11N124.

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 101–112, 2014.
DOI: 10.1007/978-3-319-05032-4 8, c© Springer International Publishing Switzerland 2014

102 A. Kirilov et al.

Plant Supervisor

Observable behavior

Control signals

Plant Supervisor

Observable events

Allowed controllable
events

Plant
Supervisor

Observable states/data

Allowed controllable
events

(a) (b) (c)

Observer

Fig. 1. (a) Generic supervisory control loop; (b) Loop with event-based observations;
(c) Loop with an observer and state- or data-based observations

loop in which the system is coupled with the controller is modeled by the synchro-
nization of the plant and the supervisor, resulting in the supervised plant, which
specifies the behavior of the controlled system.

The activities of the system are traditionally modeled by means of discrete
events. The supervisor is synthesized as a process that synchronizes with the
plant, employing the synchronization to enable or disable available events in the
plant [4]. Traditionally, the events are split into controllable and uncontrollable
events, where the former usually model interaction with the actuators and the
latter model user and environment interaction or observation of sensory infor-
mation. Consequently, the supervisor is allowed to disable controllable events,
but it cannot disable any available uncontrollable events, which is an impor-
tant structural restriction [16]. In addition, the supervised plant must satisfy a
set of control requirements that model the allowed behavior of the system by
restrictions, typically given as safety properties.

Based on the type of observations, we distinguish between control loops with
event-based control requirements or state- or data-based control requirements,
which depend on the type of available observations from the system. The former
situation is depicted in Fig. 1(b), where the allowed behavior is typically specified
in terms of allowed languages. Some synthesis tools that allow this type of spec-
ifications are TCT [6], UMDES [4], or Supremica [1]. In the latter situation, the
supervision relies on state- or data-based observations, that are usually supplied
by an auxiliary process to the plant, known as an observer, which provides the
supervisor with observation information of interest. An example of a state-based
tool is NBC [10], whereas Supremica [1] also admits data-based control require-
ments in a restricted structural form. There also exist synthesis tools that admit
temporal logic specifications, like extensions of the model checker NuSMV [19],
but they usually suffer from high computational complexity.

Our contribution is a supervisor synthesis tool with data-based requirements
for finite nondeterministic automata with data. Admittedly, the synthesis tool
Supremica supports this model, but the control requirements must be specified
as automata as well, which leads to certain structural restrictions. We specify
the control requirements with respect to the data, independent of the structure
of the plant. In addition, we employ a different type of controllability condition:
Supremica relies on state-controllability [15], whereas we employ the behavioral
relation termed partial bisimulation. It has been shown that partial bisimulation
is a coarser notion of controllability that exhibits desirable algebraic properties,

A Supervisor Synthesis Tool for Finite Nondeterministic Automata 103

unlike state controllability that is not a preorder relation [12]. Extensions of
supervisory control theory with data have a two-fold gain. They allow for a
more concise specification due to parametrization of the systems [5,15] and they
provide for a greater expressiveness and modeling convenience [7,18].

In the remainder of this paper, we define the model and the corresponding
notion of controllability that relies on the partial bisimulation preorder. Then,
we discuss the synthesis algorithm and the extraction of a supervisory controller.
We illustrate the synthesis tool by revisiting an industrial case study that deals
with coordination of maintenance procedures of a printing process of an Océ
prototype printer [14]. Due to confidentiality issues, we can only present an
obfuscated part of the case study. The goal of the case study is to synthesize a
supervisory coordinator that ensures that quality of printing is uncompromised
by timely performing maintenance procedures, while interrupting ongoing print
jobs as little as possible.

2 Finite Automata with Variables

We model the unsupervised system by means of finite nondeterministic automata
with data. For a complete process-theoretic treatment to supervisory control the-
ory, we refer to [2,3,11] for event-, state-, and data-based supervision, respec-
tively. We introduce some preliminary notation.

The set of finite data variables is denoted by V, where given a variable X ∪ V,
its finite domain is denoted by dom(X). We keep track of the data assignments
by employing a function π ∪ α(V), where α(V) = V ∅ dom(V). Standard
arithmetical expressions, like addition + or subtraction −, over a set of vari-
ables V ⊆ V are denoted by E(V) and they can be evaluated by a function
evarδ : E(V) ∅ dom(V). For the sake of clarity and compactness, we do consider
invalid expressions that evaluate outside the variable domain. We note that such
inconsistent processes can be treated by a straightforward extension of the app-
roach of [3]. We denote Boolean expressions over the set of variables V → V
by B(V). The atomic propositions are formed by comparison predicates over
variables induced by {<,=, >} together with the logical constants false F and
true T. To form the Boolean expression, we employ the standard set of logical
operators {¬,√,≡,∈} denoting logical negation, conjunction, disjunction, and
implication. The Boolean expressions are evaluated with respect to a valuation
function evblδ : B(V) ∅ {F,T} that depends on the current data assignments.
The set of actions is denoted by A.

We define a finite nondeterministic automaton with data as a tuple
G = (S,A, V, ∞−∅, ε, σ, (s0, π0)), where

– S is a finite set of states;
– A → A is a finite set of event labels;
– V → V is a finite set of variables;
– ∞−∅ ⊆ S × A × S is a labeled transition relation;

104 A. Kirilov et al.

– ε : ∞−∅ ∅ B(V) are transition guards;
– σ : (∞−∅ × V) Σ E(V) is a partial variable updating function; and
– (s0, π0) is the initial state s0 ∪ S and initial data assignment π0 ∪ α.

We employ infix notation and we write s
a∞−∅ s∼ for (s, a, s∼) ∪ ∞−∅.

The dynamics of the finite automaton with variables G is induced by the
instantiated labeled transition system −∅ → S × α(V) × A × S × α(V) that
depends on the valuation of the transition guards with respect to the current data
assignments. Its semantics is given by the instantiated labeled transition system
T(G), which is defined by the tuple T(G) = (S × α(V), A,−∅, (s0, π0)), where
the set of states is coupled with the valuation of the data variables, the initial
state is induced by the initial state s0 of the automaton with the initial data
assignment π0, and the dynamics of the instantiated labeled transition relation
is captured by operational rule (1), where (s, π) denotes the state s ∪ S in the
data assignment environment given by π:

s
a∞−∅ s∼, evblδ(ε(s, a, s∼)) = T,

for all X ∪ V : π∼(X) =
{

evarδ(σ((s, a, s∼),X)), if ((s, a, s∼),X) ∪ dom(σ)
π(X), otherwise

(s, π) a−∅ (s∼, π∼)
.

(1)
Rule (1) states that labeled transitions are instantiated when such transition is
defined in the automaton, the guard of that transition evaluates to true, whereas
the variables are updated according to the variable updating function. We note
that if the set of variables V of the automaton G is empty, i.e., V = ⇑, then ∞−∅
and −∅ coincide, provided that the (then trivial) transition guards are set to be
true, and G reduces to a standard automaton. By t−∅→, we denote the multistep
labeled transition relation for t ∪ A→. We define it inductively as (s, π) ε−∅→ (s, π)
for the empty trace Γ, and (s, π) ta−∅→ (s∼, π∼) if there exists (s∼∼, π∼∼) ∪ S × α(V)
such that (s, π) t−∅→ (s∼∼, π∼∼) with t ∪ A→ and (s∼∼, π∼∼) a−∅ (s∼, π∼) with a ∪ A.

To model the behavior of the supervised system, we need to define a syn-
chronous composition of two finite nondeterministic automata with variables. In
general, this composition cannot be consistently defined due to conflicts induced
by the partial assignment functions σ. For example, if two automata synchronize
on transitions that update the same variable to two different values, then this
synchronization leads to a conflict as the data assignment cannot be consistently
executed [18]. Again, for the sake of clarity, we do not consider these conflicting
situations, which are easily detectable as none of the conditions for the synchro-
nization from below apply. Moreover, the synchronization of the plant and the
supervisor is always well-defined as the supervisor does not update any shared
variables with the plant, so these conflicting situations are not of importance in
the setting of this paper.

By f |D we denote the restriction of the function f to the domain dom(f)∀D.
By f [g] = f |dom(f)\dom(g)⊇g we denote the replacement of the function f by g on

A Supervisor Synthesis Tool for Finite Nondeterministic Automata 105

their common domain. Given two automata G1 = (S1, A1, V1, ∞−∅1, ε1, σ1, (s01,
π01)) and G2 = (S2, A2, V2, ∞−∅2, ε2, σ2, (s02, π02)) such that π01|dom(δ02) =
π02|dom(δ01), we define their synchronous composition as G1 ‖ G2 = (S1×S2, A1⊇
A2, V1 ⊇ V2, ∞−∅, ε, σ, ((s01, s02), π0)), where π0 = π01[π02] = π02[π01], ∞−∅, ε, and
σ are defined by Eqs. (2)–(4) as follows.

(s1, s2)
a∞−∅

⎧

⎪

(s∼
1, s2), if s1

a∞−∅1 s∼
1, a ∪ A1 \ A2

(s1, s∼
2), if s2

a∞−∅2 s∼
2, a ∪ A2 \ A1

(s∼
1, s

∼
2), if s1

a∞−∅1 s∼
1, s2

a∞−∅2 s∼
2, a ∪ A1 ∀ A2

(2)

ε((s1, s2), a, (s∼
1, s

∼
2)) =

⎨⎨⎨⎧

⎨⎨⎨⎪

ε1(s1, a, s∼
1), if s1

a∞−∅1 s∼
1, a ∪ A1 \ A2

ε2(s2, a, s∼
2), if s2

a∞−∅2 s∼
2, a ∪ A2 \ A1

ε1(s1, a, s∼
1) √

ε2(s2, a, s∼
2)

, if s1
a∞−∅1 s∼

1, s2
a∞−∅2 s∼

2, a ∪ A1 ∀ A2

(3)

σ(((s1, s2), a, (s∼
1, s

∼
2)),X) =

⎨⎨⎧

⎨⎨⎪

σ1((s1, a, s∼
1),X), if ((s1, a, s∼

1),X) ∪ dom(σ1), ((s2, a, s∼
2),X) ⇒∪ dom(σ2)

σ2((s2, a, s∼
2),X), if ((s2, a, s∼

2),X) ∪ dom(σ2), ((s1, a, s∼
1),X) ⇒∪ dom(σ1)

σ1((s1, a, s∼
1),X), if

((s1, a, s∼
1),X) ∪ dom(σ1), ((s2, a, s∼

2),X) ∪ dom(σ2),
σ1((s1, a, s∼

1),X) = σ2((s2, a, s∼
2),X)

(4)
Unlike [18] that defines the synchronous parallel composition in terms of

the instantiated labeled transition systems, we define the synchronous parallel
composition directly in terms of automata. We note that both definition are
compatible [12], i.e., they induce the same labeled transition systems.

To capture the notion of controllability, we employ the behavioral relation
termed partial bisimulation, originally proposed in [17] as a suitable relation
to capture controllability of deterministic discrete-event systems. The notion
was lifted in [2] to a process theory for supervisory control of nondeterministic
discrete-event systems. Here, we provide a variant for finite nondeterministic
automata with data.

Partial bisimulation is parameterized by a so-called bisimulation action set
B → A. Intuitively, this relation states that all transitions of the first automaton
should be simulated by the second automaton, whereas the transitions with
labels in the bisimulation action set should be bisimulated in the sense of [8].
In the supervisory control setting, the bisimulation action set comprises the
uncontrollable actions that must always be enabled both in the original and
the supervised plant, whereas controllable events are only simulated as they are
possibly restricted by the supervisor.

Let T1 = (Q1, A1,−∅1, s01) and T2 = (Q2, A2,−∅2, s02) be two transition
systems. We say that a relation R → Q1 × Q2 is a partial bisimulation with
respect to a bisimulation action set B → A2, if for all (q1, q2) ∪ R, it holds that:

106 A. Kirilov et al.

1. if q1
a−∅ q∼

1 for a ∪ A1 and q∼
1 ∪ Q1, then there exists q∼

2 ∪ Q2 such that
q2

a−∅ q∼
2 and (q∼

1, q
∼
2) ∪ R;

2. if q2
b−∅q∼

2 for b ∪ B and q∼
2 ∪ Q2, then there exists q∼

1 ∪ Q1 such that q1
a−∅q∼

1

and (q∼
1, q

∼
2) ∪ R;

If R is a partial bisimulation relation such that (q01, q02) ∪ R, then T1 is partially
bisimilar to T2 with respect to B and we write T1 ⇐B T2. If T2 ⇐B T1 holds as
well, we write T1 =B T2.

We note that due to the first condition, it must hold that A1 → A2, whereas
due to the second condition, it holds that B → A1 as well. It can be shown
that partial bisimilarity is a preorder [2]. Moreover, following the guidelines
of [17], it can be shown that ⇐B is a partial bisimulation relation with respect
to B. Thus, we obtain standard results for the partial bisimulation preorder and
equivalence, similarly as for simulation preorder and equivalence [8]. Moreover,
the partial bisimulation preorder is a precongruence with respect to the most
prominent process operations [2]. Finally, we note that T1 =A1∗A2 T2 amounts
to bisimulation, whereas T1 ⇐∞ T2 reduces to simulation preorder and T1 =∞ T2

reduces to simulation equivalence [2].

3 Supervisor Synthesis

As discussed above, we split the action set A to set of controllable C and uncon-
trollable U actions such that C ∀ U = ⇑ and C ⊇ U = A. The plant is typically
modeled by a set of synchronizing components, ultimately resulting in automa-
ton P = (SP , AP , VP , ∞−∅P , εP , σP , (s0P , π0)). We note that we assume that the
parallel composition of the components is well-defined and that there are no
restrictions regarding nondeterministic behavior inside the plant.

We require, however, that the supervisor is a deterministic process that sends
unambiguous feedback to the plant. Moreover, the supervisor cannot alter the
internal state of the plant as it only observes its discrete-event behavior, i.e., it
does not comprise any variable assignments [11]. In the setting of this paper, the
supervisor relies on data observations from the plant to make supervision deci-
sions in the vein of [11,15]. Its behavior is given as an deterministic automaton
S = (SS , AS , VS , ∞−∅S , εS , ⇑, (s0S , π0)), where VS → VP , and the labeled transi-
tion function ∞−∅S is such that if s

a∞−∅S s∼ and s
a∞−∅S s∼∼, then s∼ = s∼∼ for every

s, s∼, s∼∼ ∪ SS and a ∪ AS . The supervisor does not necessarily synchronize on
all events from the plant, i.e., in general AS → AP , implying that the events in
the set AP \ AS are unconditionally enabled. As the supervisor does not update
any variables, i.e., σS = ⇑, there arise no conflicts in Eq. (4) for the update func-
tion of the synchronization, and the synchronous composition P ‖ S is always
well-defined.

The composition P ‖ S models the supervised plant, i.e., the behavior of
the controlled system as given by the supervisory feedback loop of Fig. 1(c). To
state that the supervisor has no control over the uncontrollable actions, i.e.,
all available uncontrollable actions in the reachable states should be enabled,

A Supervisor Synthesis Tool for Finite Nondeterministic Automata 107

we employ the partial bisimulation preorder. We express this controllability con-
dition by requesting that the transition system of the supervised plant is partially
bisimulated by the transition system of the original plant with respect to the
uncontrollable events, i.e.,

T(P ‖ S) ⇐U T(P). (5)

It can be shown that for deterministic processes, relation (5) reduces to the
original notion of controllability of [12,16,17].

The set of control requirements R comprises control requirements with the
following form R:

R ::= γ | a−∅ ∈ γ,

where γ ∪ B and a ∪ A. A given instantiated state (s, π) satisfies a requirement
R ∪ R, notation (s, π) |= R, if the following is satisfied:

– (s, π) |= γ if and only if evblδ(γ) = T; and
– (s, π) |= a−∅ ∈ γ if and only if for all (s, π) ∪ S × α such that (s, π) a−∅ it

holds that (s, π) |= γ.

The first form of control requirements enforces an invariant on the data assign-
ments that must hold for all states of the instantiated transition system T(P ‖
S), whereas the second form restricts the possible occurrences of events, i.e.,
outgoing events are conditioned by the data assignments.

In addition to conforming to the control requirements, we also require that
the supervisor is nonblocking, i.e., it prevents deadlock and livelock behavior in
the system. Deadlock behavior occurs in states where no outgoing transitions
are possible, whereas livelocks occur when the system remains in a set of states
in which it cannot successfully execute its tasks, nor leave this set of states. We
model successful termination by marking certain states as final, referred to as
marked states in the literature [4,16], denoted by M → S for a given state set S.
The supervisor must assure that a marked state is reachable from all reachable
states in the supervised plant.

The synthesis algorithm is an adaptation of the synthesis algorithms
of [4,15,16], which employ backtracking from the marked states in order to
ensure nonblocking behavior, whereas controllability is ensured by eliminating
all blocking states and their predecessors that are reachable by (inverse) uncon-
trollable transitions. To this end, we define the notion of an inverse uncon-
trollable reach. Given an instantiated state (s, π), we inductively define its
reverse uncontrollable reach UR(s, π) as follows. Initially, UR(s, π) = {(s, π)}.
For every state (s∼, π∼) such that (s∼, π∼) a−∅ (s, π) for some a ∪ U, we put
UR(s, π) = UR(s, π) ⊇ UR(s∼, π∼) ⊇ {(s∼, π∼)}. Note that given a state (s, π), all
incoming transitions to its uncontrollable reach UR(s, π) from states outside
UR(s, π) are labeled by controllable actions.

We summarize the synthesis algorithm of the maximal supervised behavior
in Alg. 1. Line 1 instantiates the labeled transition system. Lines 2–10 eliminate
the states or transitions that do not conform to the control requirements. When

108 A. Kirilov et al.

Alg. 1: An algorithm for computing a maximal supervised behavior for a
given finite automaton with data G = (S,A, V, ∞−∅, ε, σ, (s0, π0)), a set of
final states M → S, and a set of control requirements R

Compute the instantiated labeled transition system T(G) = (Q, A, −→, (s0, δ0),1

Q = S × Δ(V);
for φ ∗ R and (s, δ) ∗ (S × Δ(V)) do2

if (s, δ) ∅|= φ then3

Eliminate UR(s, δ) from T(G), Q = Q \ UR(s, δ);4

for
a−→ ∈ φ ∗ R and (s, δ) ∗ (S × Δ(V)) do5

if (s, δ) ∅|= a−→ ∈ φ then6

if a ∗ U then7

Eliminate UR(s, δ) from T(G), Q = Q \ UR(s, δ);8

else9

Eliminate all transitions (s, δ)
a−→ ;10

repeat11

B = ↔;12

for (s, δ) ∗ Q do13

if ∅ ∃ t ∗ A√ and (s→, δ→) ∗ Q such that s→ ∗ M and (s, δ)
t−→√ (s→, δ→) then14

B = B ∪ {(s, δ)};15

for (s, δ) ∗ B do16

Eliminate UR(s, δ) from T(G), Q = Q \ UR(s, δ);17

until B = ↔;18

a state is eliminated, then its complete inverse uncontrollable reach must be
eliminated from the labeled transition system. The elimination of these states,
actually requires that controllable transitions are disabled by the supervisor.
Lines 2–4 only consider the data-based invariants, whereas lines 5–10 take care
of restrictions of labeled transitions. We note that if the transition is controllable,
then it can be safely disabled, whereas if it is uncontrollable, then the whole state
with its inverse uncontrollable reach must be eliminated.

Once the control requirements are applied, we iteratively ensure nonblocking-
ness by eliminating states that cannot reach marked states in lines 13–17 and
checking if by eliminating their inverse uncontrollable reach, we have made some
other states blocking, given as the end condition of the repeat loop B = ⇑, where
B is the set that holds the blocking states. The end result of Alg. 1 is the maxi-
mal restriction of the instantiated labeled transition system of the plant that con-
forms to the control requirements. By comparison with the original system, we
compute the supervisor as a function sup: π ∅ 2(A∩C) in the vein of [15]. The
correctness of the algorithm with respect to our notion of controllability is by
construction as the uncontrollable reach is preserved for every state in the super-
vised plant. This directly implies partial bisimulation with respect to the uncon-
trollable events on the controllable restriction of the plant. As an adaptation of the

A Supervisor Synthesis Tool for Finite Nondeterministic Automata 109

synthesis algorithms of [4,15,16], our algorithm has a comparable polynomial
worst-case complexity in the number of transitions of the system.

We note that the internal representation of the instantiated labeled transition
system can be optimized by employing binary decision diagrams see, e.g., [15].
We decided to keep the state space explicit as a preparation for future work,
where we intend to employ parallel algorithms for supervisor synthesis that will
harness the computing power of modern multicore processors. To implement the
synthesis tool, which is available from [13], we employed Java and the supporting
software package JFLAP, see http://www.jflap.org/, that enables libraries for
manipulation of formal languages and automata.

4 Supervisory Coordination of Maintenance Procedures

We illustrate the modeling process on a case study involving coordination of
maintenance procedures of a printing process of a high-end Océ printer of [14].
We abstractly depict a printing process function in Fig. 2, where the control
architecture of the printer is given to the left. Once a user initiates a print job,
the job is forwarded to the printer controller that coordinates different parts of
the printer. Here, we coordinate the function responsible for the printing process,
which applies the toner image onto the toner transfuse belt and fuses it onto
the paper sheet. This function coordinates the power mode of the printer with
the maintenance procedures. Namely, the printer executes print jobs in run mode
of operation. However, to maintain high printing quality, several maintenance
operations have to be carried out, e.g., coarse toner particles removal operation
that ensures high quality prints. However, to perform a maintenance operation,
the printing process needs to switch to standby mode of operation. Moreover,
maintenance operations are scheduled based on the amount of prints since the
last performed maintenance. There are two types of deadlines: soft deadlines,
which denote that a maintenance operation can be scheduled, and hard deadlines,
which denote that the maintenance must be scheduled. Maintenance procedures
with expired soft deadlines can be postponed if there is an ongoing print job,
but hard deadlines must be respected not to compromise print quality.

A printing process function comprising one maintenance operation in depicted
in Fig. 2. The supervisory control problem is to synthesis a model of the Sta-
tus Procedure, which is responsible for coordinating the other procedures given
input from the controllers. The plant that models the printing process func-
tion is given in Fig. 2. Uncontrollable events are underscored, whereas variable
updates are placed below transitions labels. Initial states have incoming arrows,
whereas marked states are gray. The plant is formed by the synchronization
of the automata in Fig. 2. Current Power Mode sets the power mode to run
or standby using Stb2Run and Run2Stb, respectively, and sends back feedback
by employing InRun and InStb, respectively. Maintenance Operation either
carries out a maintenance operation, started by OpStart or it is idle. The confir-
mation is sent back by the event OpFin, which synchronizes with Maintenance
Scheduling and Page Counter. Page Counter announces when soft or hard dead-
lines are reached using SoftDln and HardDln, respectively. The page counter

http://www.jflap.org/

110 A. Kirilov et al.

Printing Process Function CurrentPowerMode

Managers

Functions

Maintenance
Operation Page CounterCurrent Power

Mode

Devices

Status Procedure / Coordinator

Target Power Mode

New print job

Maintenance Scheduling

Power mode
changes

Operation
Start

Operation finished

Execute
operation

Schedule
Operation

Soft & hard
deadline

Target power mode Maint. Operation Maint. Scheduling

Page Counter

_SoftDln

PC = 1

_OpFin

PC = 0
PC = 0

_OpFin

_HardDln

PC = 2

_OpFin

PC = 0

Fig. 2. Printing process function and plant

is reset, triggered by the synchronization on OpFin, each time the maintenance
is finished. The controller Target Power Mode sends signals regarding incom-
ing print jobs to Status Procedure by NewJob, which should set the printing
process to run mode for printing and standby mode for maintenance and power
saving. When the print job is finished, the signal NoJob is sent. Maintenance
Scheduling receives a request for maintenance with respect to expiration of Page
Counter from Status Procedure, by the signal SchOper and forwards it to the
manager. The manager confirms the scheduling with the other functions and
sends a response back to the Status Procedure, using ExOper. It also receives
feedback from Maintenance Operation that the maintenance is finished in order
to reset the scheduling, again triggered by OpFin.

The coordination is performed according to the following requirements:

1. Maintenance operations can be performed only when Printing Process Func-
tion is in standby;

A Supervisor Synthesis Tool for Finite Nondeterministic Automata 111

2. Maintenance operations can be scheduled only if soft deadline has been
reached and there are no print jobs in progress, or a hard deadline is passed;

3. Only scheduled maintenance operations can be started;
4. The power mode of the printing process must follow the power mode dictated

by the managers, unless overridden by a pending maintenance operation.

For a detailed account of the model-based systems engineering process and spec-
ification and formalization of the control requirements, we refer to [14].

1. To model this requirement, we consider the states from Current Power
Mode and Maintenance Operation, identified by CPM = 1 and MO = 2, respec-
tively. We require that it must always hold

MO = 2 ∈ CPM = 1. (6)

2. The states identified by PC = 1 and PC = 2 indicate when soft and hard
deadline is reached, respectively. State with TPM = 1 of Target Power Mode
states that there is a print job in progress. The event SchOper is responsible for
scheduling maintenance procedures. We specify the requirement as follows:

SchOper−∅ ∈ (PC = 2 √ ¬TPM = 2) ≡ PC = 3 . (7)

3. The maintenance operation can be started when the maintenance schedul-
ing is completed, which is modeled as:

OpStart−∅ ∈ MS = 3. (8)

4. The last condition is modeled by two separate requirements for switching
from Run to Standby mode, and vice versa. We can change from run to standby
mode if this is required by the manager, i.e., identified by TPM = 2, and there is
no need to start a maintenance operation, identified by MS ⇒= 3. The transitions
labeled by Stb2Run are enabled as follows:

Stb2Run−∅ ∈ TPM = 2 √ ¬MS = 3. (9)

In the other direction, we have:

Run2Stb−∅ ∈ TPM = 1 ≡ MS = 3. (10)

Employing the control requirements of Eqs. (6)–(10), we synthesize a super-
visor equivalent to the one of [14].

5 Concluding Remarks

We presented a tool for supervisor synthesis based on a process-theoretic app-
roach to supervisory control for finite nondeterministic automata with data. The
approach relies on the partial bisimulation preorder to capture controllability of
nondeterministic discrete-event systems. To illustrate the modeling process, we
revisited an industrial case study dealing with supervisory coordination mainte-
nance procedures of a high-tech printer.

112 A. Kirilov et al.

References

1. Akesson, K., Fabian, M., Flordal, H., Malik, R.: Supremica - an integrated envi-
ronment for verification, synthesis and simulation of discrete event systems. In:
Proceedings of WODES 2006. pp. 384–385. IEEE (2006)

2. Baeten, J.C.M., van Beek, D.A., Luttik, B., Markovski, J., Rooda, J.E.: A process-
theoretic approach to supervisory control theory. In: Proceedings of ACC 2011, pp.
4496–4501. IEEE (2011)

3. Baeten, J., van Beek, D., van Hulst, A., Markovski, J.: A process algebra for
supervisory coordination. In: Proceedings of PACO 2011. EPTCS, vol. 60, pp.
36–55. Open Publishing Association (2011)

4. Cassandras, C., Lafortune, S.: Introduction to discrete event systems. Kluwer Aca-
demic, Dordrecht (2004)

5. Chen, Y.L., Lin, F.: Modeling of discrete event systems using finite state machines
with parameters. In: Proceedings of CCA 2000, pp. 941–946 (2000)

6. Feng, L., Wonham, W.M.: TCT: a computation tool for supervisory control syn-
thesis. In: Proceedings of WODES 2006, pp. 388–389. IEEE (2006)

7. Gaudin, B., Deussen, P.: Supervisory control on concurrent discrete event systems
with variables. In: Proceedings of ACC 2007, pp. 4274–4279 (2007)

8. van Glabbeek, R.J.: The linear time – branching time spectrum I. In: Bergstra,
J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 3–99. Else-
vier, Amsterdam (2001)

9. Leveson, N.: The challenge of building process-control software. IEEE Softw. 7(6),
55–62 (1990)

10. Ma, C., Wonham, W.M.: Nonblocking Supervisory Control of State Tree Struc-
tures. LNCIS, vol. 317. Springer, Heidelberg (2005)

11. Markovski, J.: Communicating processes with data for supervisory coordination.
In: Proceedings of FOCLASA 2012. EPTCS, vol. 91, pp. 97–111. Open Publishing
Association (2012)

12. Markovski, J.: Controllability for nondeterministic finite automata with variables.
In: Proceedings of ICSOFT 2013. CCIS, Springer (2013) (To appear)

13. Markovski, J.: Supervisor synthesis tool and demo models. http://sites.google.
com/site/jasenmarkovski (2013)

14. Markovski, J., Jacobs, K.G.M., van Beek, D.A., Somers, L.J.A.M., Rooda, J.E.:
Coordination of resources using generalized state-based requirements. In: Proceed-
ings of WODES 2010. pp. 300–305. IFAC (2010)

15. Miremadi, S., Akesson, K., Lennartson, B.: Extraction and representation of a
supervisor using guards in extended finite automata. In: Proceedings of WODES
2008, pp. 193–199. IEEE (2008)

16. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete-event
processes. SIAM J. Control Opt. 25(1), 206–230 (1987)

17. Rutten, J.J.M.M.: Coalgebra, concurrency, and control. In: Boel, R., Stremersch,
G. (eds.) Proceedings of WODES 2000, pp. 31–38. Kluwer, Dotretch (2000)

18. Skoldstam, M., Akesson, K., Fabian, M.: Modeling of discrete event systems using
finite automata with variables. In: Proceedings of CDC 2007, pp. 3387–3392. IEEE
(2007)

19. Ziller, R., Schneider, K.: Combining supervisor synthesis and model checking. ACM
Trans. Embed. Comput. Syst. 4(2), 331–362 (2005)

http://sites.google.com/site/jasenmarkovski
http://sites.google.com/site/jasenmarkovski

SMT-Constrained Symbolic Execution
for Eclipse CDT/Codan

Andreas Ibing(B)

TU München, Chair for IT Security, Arcisstr. 21, 80333 München, Germany
ibing@sec.in.tum.de

Abstract. This paper presents a symbolic execution plug-in extension
for Eclipse CDT/Codan, which serves to reason about satisfiable paths
of C programs. Programs are translated into the SMT-LIB sublogic of
arrays, uninterpreted functions and nonlinear integer and real arithmetic
(AUFNIRA), and path satisfiability is automatically examined with an
SMT solver. The presented plug-in can serve as a basis for path-sensitive
static bug detection with bounded or unrestricted context, where the
presence of bugs is decided with the solver. An interface provides notifi-
cations and context information for checker classes. With a buffer bound
checker the symbolic execution plug-in is shown capable of accurately
detecting bugs with currently 36 of the 39 C flow variants of the NSA’s
Juliet test suite for static analyzers.

1 Introduction

Software weaknesses cause high follow-up cost both for developers and users. The
C language is on the one hand widely used, with currently rank 2 in the TIOBE
index of programming language popularity (March 2013). On the other hand C
is especially prone to certain weaknesses [1], and the estimatated average defect
density for C code in the software industry is according to [2] about 1 defect
per 1000 lines of code. Software vulnerabilities are registered if detected and
reported, and classified according to the common weakness enumeration (CWE,
[3]). The detection of weaknesses is difficult, because unlike in their ‘baseline’
version, the weaknesses in programs occur in conjunction with any control and
data flow variants the language offers, and accurate detection needs to consider
enough context depth.

Static detection on the source code level is an attractive approach, and meth-
ods with different context consideration exist [4]. They offer a trade-off between
complexity and detection (in)accuracy. An overview of methods on the more
complex and accurate side is given in [5]. Symbolic execution was first described
in [6]. The reasoning about symbolic values uses a constraint solver [7,8] as back-
end. While previously SAT solvers were predominant, more recent tools rather
rely on Satisfiability Modulo Theories (SMT) solvers [8,9]. SMT solvers offer a
more convenient word-level interface and can decide many problems faster. A
standardized interface is defined by the SMT-LIB [10]. A path-sensitive checker

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 113–124, 2014.
DOI: 10.1007/978-3-319-05032-4 9, c© Springer International Publishing Switzerland 2014

114 A. Ibing

for C with a SAT solver backend is described in [11]. Reference [12] uses a linear
integer arithmetic solver, while [13–15] use an SMT backend with the SMT-LIB
sublogic of arrays, uninterpreted functions and bit-vectors (QF AUFBV).

Comparisons of static analysis tools for C are given in [16,17]. Checkers are
compared by the number of false negative and false positive detections on a test
suite and the needed detection times. While several other test suites like e.g. [18]
have been used, the most comprehensive one is currently the NSA’s Juliet test
suite for C/C++ [19]. It covers over 100 CWEs with about 1500 ‘baseline’ bugs.
The ‘baseline’ bugs are combined with 47 data/control flow variants (of which 8
are only relevant for C++), resulting in about 57000 test cases. Each test case
contains ‘good’ as well as ‘bad’ functions to provide enough possibilities for false
positive detections. The maximum context depth spanned by a flow variant is
five functions in five different source files.

In order to detect weaknesses as early as possible, the integration of bug
checkers into the development environment is desirable. The Eclipse IDE is of
special interest because it is open source, widely used and designed for exten-
sibility. References [13,20] provide plug-ins for Eclipse, which start the tools as
external processes and parse their output, [21] comes with its own GUI. The tools
mentioned above are in most cases written in languages other than Java (e.g.
[11,21] are written in O’Caml), and rely on yet other external tools for their
analysis ([11,21] analyse CIL [15,22] analyses LLVM [23] intermediate code).
These properties don’t fit well to Eclipse’s architecture and complicate both
installation and updating (Eclipse features its own update management). Eclipse
CDT on the other hand includes the code analysis framework Codan [24] since
version 7.0 as optional feature. Codan currently does not support path-sensitive
analyses.

This paper presents a plug-in extension of Eclipse CDT/Codan for sym-
bolic execution, which is implemented as symbolic tree-based interpretation on
abstract syntax trees (AST) generated by the CDT parser. The remainder is
organized as follows: Sect. 2 describes the functionality of the plug-in, Sect. 3
describes its design. The path sensitivity is evaluated in Sect. 4 with a few test
cases from the Juliet test suite, and a discussion is given in Sect. 5.

2 Functionality

2.1 Unrestricted Context Depth

The symbolic execution supports interprocedurally path-sensitive analyses with
a call string approach [4,25]. The path sensitivity is based on per-function con-
trol flow graphs (no inlining), and a function’s call context is represented by
a program path leading to its call. The symbolic execution can be run either
without restriction, which on the negative side includes the possibility of non-
termination (for endless loops). Or it can be run with a context bound for e.g.
the number of loop iterations (which in general incurs accuracy degradation).

SMT-Constrained Symbolic Execution for Eclipse CDT/Codan 115

2.2 Separation of Path Generation and Symbolic Interpretation

With the reasoning that path generation is fast while symbolic interpretation
is slow, and with the intention to support different code coverage criteria, the
generation of program paths for analysis is separated from the symbolic interpre-
tation. A program path can be represented as the sequence of decision branches it
contains. An unsatisfiable decision branch is detected during symbolic interpre-
tation and reported, to avoid generation of further unsatisfiable path extensions.
Satisfiable program paths can be enumerated by backtracking.

2.3 Automatic Slicing

Only the logic equations which are relevant for a certain verification condition
are passed to the solver, which keeps the equation systems for satisfiability checks
small. This corresponds to automatic slicing [26] over the control flow (for sepa-
rate analysis of different program paths) and over the data flow (for verification
conditions on a program path). Tracking the data flow on one path during sym-
bolic interpretation is straightforward. Logic formulas are assigned to (symbolic)
variables, and in case of consecutive assignments to one variable the different for-
mulas may be needed to correctly generate the equation system for a verification
condition. Therefore different variable versions are generated, i.e. single assign-
ments on a program path. Dependencies of variables are also tracked. This allows
for garbage collection (removal of dead variable versions) and slicing by resolving
dependencies.

2.4 Context Sharing for Different Checkers

Symbolic path interpretation is separated from any specific checkers to allow
them to share the contexts, i.e. to perform all checks with one enumeration of
satisfiable paths. An interface allows checkers to register for notifications (trig-
gers) and to query context equations. When triggered, a checker queries the
symbolic interpreter to resolve dependencies of the variables at the trigger loca-
tion into the relevant equation system slice and adds the verification condition
formula for a satisfiability query.

2.5 Logic Representation

In order to use a high-level logic that is automatically decidable, the SMTLIB
sublogic of arrays, uninterpreted functions and nonlinear integer and real arith-
metic (AUFNIRA) has been chosen. Pointers are internally handled by the inter-
preter as symbolic pointers with a target and a symbolic integer as offset formula.
They are output as logic formula only when dereferenced. Composites (structs
and in case of C++ also classes) are also not translated, but rather treated like
scopes. Symbolic variables are created for their fields.

116 A. Ibing

Fig. 1. Class diagram with an overview of the main classes.

3 Design

3.1 Main Classes

An overview of the main classes is given in Fig. 1. They are:

– SymbolicExecutionEngine: can be run by the Codan framework on a project,
controls the cycle of path generation and symbolic interpretation, and reports
results back to Codan.

– PathGenerator: generates the next path to check as a list of control flow graph
(CFG) nodes, and supports backtracking and changing decision branches.

– Interpreter: handles the translation into logic on a per CFG node basis, which
usually corresponds to a statement-wise translation; provides a symbolic pro-
gram state to checkers.

– SMTSolver: allows queries with logic equation systems according to the
SMTLIB.

– PathValidator: is triggered for branch nodes, forms branch satisfiability
queries and reports unsatisfiable branches.

– BoundsChecker: one example checker which triggers on memory access with
(symbolic) pointers, forms bounds violation satisfiability queries and reports
buffer overflows, underflows etc.

These classes are described in more detail in the following subsections.

3.2 Eclipse Extension

The SymbolicExecutionEngine implements Codan’s IChecker interface and plugs
in at the extension point org.eclipse.cdt.codan.core.checkers. Configuration can
be done through the Codan property pages. While the available Codan checkers

SMT-Constrained Symbolic Execution for Eclipse CDT/Codan 117

Function 1

void simplified_memcpy_17_bad() {
for(int j=0; j<1; j++) {

charvoid cv_struct;
cv_struct.y = (void *)SRC_STR;
/* FLAW: Use the sizeof(cv_struct) which will overwrite the pointer y */
memcpy(cv_struct.x, SRC_STR, sizeof(cv_struct));

}
}

Fig. 2. CFG (left) for Function 1, and part of the AST referred to by one plain node
(right).

are normally configured to be ‘run as you type’ or ‘run with build’, the symbolic
execution engine is only run ‘on demand’ e.g. with a GUI command or as JUnit
plug-in tests, due to the higher complexity and larger runtime of path-sensitive
analysis. A further distinction is that the symbolic execution runs only on com-
plete projects instead of smaller units. Detected errors are reported through Codan
to the marker framework. The plug-in uses the CDT parser(s) to generate abstract
syntax trees (AST) for translation units, and uses the CDT index (persisted doc-
ument object model) for certain lookups. The plug-in further uses Codan’s Con-
trolFlowGraphBuilder to generate CFGs for parts of an AST which are rooted in

118 A. Ibing

a function definition. CFG and AST are illustrated in the object diagram Fig. 2,
which corresponds to the example C function shown in Function 1.

3.3 Path Generation

The PathGenerator supports path enumeration through backtracking, so that
the next path can be generated from its predecessor. A program path is a
sequence of CFG nodes, and can be represented as the decision branches con-
tained in the path. Of special interest for path generation and backtracking are
function calls and decision nodes.

Function calls are interesting because CFGs are generated per function. Function
calls are either project-internal, in which case the path continues with the start
node of the called function’s CFG. Or the call is external (e.g. to a function
from the standard library), in which case a symbolic model of the function may
be provided through the Environment class (compare Fig. 1). After a function’s
exit node the path continues with the calling node (statement interpretation as
described in Sect. 3.4 then proceeds with the function call’s return value). For
multiple function calls within one statement the PathGenerator provides a stack
of open calls.

Decision nodes are caused by if/else or switch statements or by loops (for or while
statements), and they have several branch nodes as children. Branch sequences
are enumerated using a state machine per decision, where a decision is given
by a call context and a decision node (i.e. the same decision node object in a
CFG belongs to a different decision when reached in a different call context).
The decision state machine for loop decisions is illustrated in Fig. 3. In a forward
direction path extension always the smallest branch number is chosen, and loops
are not entered. This is indicated by the ‘next’ branch in Fig. 3.

Backtracking and backrolling. When a branch is reported as unsatisfiable, the
path is first rolled back to this unsatisfiable branch (any later decisions are
removed). Then one decision needs to be changed to obtain a new start path
for further extension. In an iteration the respective last decision is changed if
possible (‘backtrack-next’ in Fig. 3), otherwise removed. For a decision related
to an if/else or switch statement the ‘backtrack-next’ branch is simply the next
higher branch number if existent. For loop decisions it is referred to Fig. 3.

3.4 Translation and Symbolic Interpretation

The symbolic interpreter follows the tree-based interpreter pattern [27]. It tracks
symbols with a memory system with global and function scopes (compare Fig. 1).
A program path for interpretation comes as a CFG node sequence with references
to the corresponding C statements as AST subtrees (compare Fig. 2).

Symbolic variables are objects which are resolved using their AST name or
index name. For an assignment a new version is created which has a logic equa-
tion (single assignments). For each version the direct dependencies are tracked,
i.e. other symbolic variable versions which are part of the equation.

SMT-Constrained Symbolic Execution for Eclipse CDT/Codan 119

Fig. 3. Decision state machine for loop decisions. ‘next’ gives the next branch for path
extension, and ‘backtrack-next’ for backtracking.

Interpretation proceeds CFG node by CFG node, which basically means
statement-wise processing. The Interpreter therefore uses a StatementProces-
sor class, which extends CDT’s ASTVisitor (Fig. 1). The translation works by
bottom up traversal of a statement’s AST part with the leave() functions from
the visitor pattern. Information can be passed upwards as attributes. One pos-
sible attribute is a symbolic variable which has been generated as intermedi-
ate result. Translation has to consider type promotion depending on operators.
Boolean variables for example are represented as integers in C, while in SMT
logics boolean and integer are different sorts. Symbolic variables are implicitly
generated not only as intermediate results, but also as symbolic input from the
environment. An example are calls to the standard library (rand(), fgets() etc.).

In some cases the translation proceeds not strictly statement-wise with track-
ing and resolving of symbolic variables. One such case are function call expres-
sions, where call parameters and return value have to be evaluated (i.e. entering
the function) before proceeding with that statement’s evaluation. Another case
are path decisions (CFG decision nodes and branch nodes), for which symbolic
boolean variables are generated. The formula for a ‘default’ branch in a switch
statement for example includes the labels from all ‘case’ branches as context
(siblings in the CFG).

3.5 Path Validation

The PathValidator class is triggered for branch nodes. It uses the same inter-
face as checkers do (Fig. 1). It queries the equation system slice for all path
decisions up to the current branch, with resolution of variable dependencies. It
then adds the satisfiability check. If the solver answers with ‘unsatisfiable’, the

120 A. Ibing

PathValidator throws a PathUnsatException, which is caught by the Symbol-
icExecutionEngine (which reports the unsatisfiable path to the PathGenerator,
and symbolic execution proceeds with the next path).

3.6 Checking for Common Weaknesses

Any number of checkers can be added and share the symbolic execution contexts.
The Codan extension point supports addition of new problems and problem
detail views. Detected problems are reported to the marker framework with
their Id, file name, line number and problem description. Currently only a buffer
overflow checker has been written as path-sensitive checker.

Buffer Overflow Checks: The bounds checker is notified for memory accesses,
with a symbolic pointer variable which includes a symbolic target variable and
an offset formula. The checker queries the slice of equations on which the memory
access depends, and adds two satisfiability checks. The first one checks if an
access with offset smaller than the lower bound (zero) is satisfiable. The second
one checks for an access with offset larger than the upper bound. If the solver
answers ‘satisfiable’ to one of the queries, the problem is reported. In principle
CWEs 121-127 are detectable, which includes stack-based buffer overflow (121),
heap-based buffer overflow (122), buffer underwrite (124), over-read (126) and
under-read (127).

3.7 SMT Solving

The common Eclipse distributions come with a SAT solver plug-in [28], but
an SMT solver plug-in is unfortunately not (yet) available. Therefore the SMT
solver described in [29] (version 5.2.3) is used as a temporary replacement. It is
wrapped by the SMTSolver class and started as external process.

4 Evaluation

This section evaluates to which extent the symbolic execution implementation
can follow C language constructs for control and data flow. For this purpose test
cases from the Juliet test suite [19] are used. Its test cases are combinations of
‘baseline’ bugs with different flow variants. The 39 flow variants for C are listed
in Table 1. The flow numbering is not consecutive, and not all ‘baseline’ bugs can
be combined with all flow variants. The maximum context depth is five functions
in five source files (flow 54).

The path sensitivity is tested with the bounds checker, by evaluating false
negative and false positive detections. Juliet test cases for a few stack-based
buffer overflows with the different flow variants are imported as JUnit plug-in
tests, and run with the Eclipse GUI. The tests assert that the correct number
of problem markers is set at the correct positions and measure the runtime.

The tests are run in Eclipse 4.2 on a Core 2 Quad CPU Q9550, on 64-bit
Linux kernel 3.2.0. The runtimes for correct detection are shown in Fig. 4 for two

SMT-Constrained Symbolic Execution for Eclipse CDT/Codan 121

Table 1. The 39 flow variants for C from [19] (the numbering is not consecutive to
allow for later insertions).

Flow nr. Flow variant

1 Baseline Simplest form of the flaw
2 if(1) and if(0)
3 if(5==5) and if(5!=5)
4 if(static const t) and if(static const f)
5 if(static t) and if(static f)
6 if(static const five==5) and if(static const five!=5)
7 if(static five==5) and if(static five!=5)
8 if(static returns t()) and if(static returns f())
9 if(global const t) and if(global const f)
10 if(global t) and if(global f)
11 if(global returns t()) and if(global returns f())
12 if(global returns t or f())
13 if(global const five==5) and if(global const five!=5)
14 if(global five==5) and if(global five!=5)
15 switch(6) and switch(7)
16 while(1) and while(0)
17 for loops
18 goto statements
19 Dead code after a return
21 Flow controlled by value of a static global variable. All functions contained in one

file.
22 Flow controlled by value of a global variable. Sink functions are in a separate file

from sources.
31 Data flow using a copy of data within the same function
32 Data flow using two pointers to the same value within the same function
34 Use of a union containing two methods of accessing the same data (within the same

function)
41 Data passed as an argument from one function to another in the same source file
42 Data returned from one function to another in the same source file
44 Data passed as an argument from one function to a function in the same source file

called via a function pointer
45 Data passed as a static global variable from one function to another in the same

source file
51 Data passed as an argument from one function to another in different source files
52 Data passed as an argument from one function to another to another in three different

source files
53 Data passed as an argument from one function through two others to a fourth; all

four functions are in different source files
54 Data passed as an argument from one function through three others to a fifth; all

five functions are in different source files
61 Data returned from one function to another in different source files
63 Pointer to data passed from one function to another in different source files
64 void pointer to data passed from one function to another in different source files
65 Data passed as an argument from one function to a function in a different source file

called via a function pointer
66 Data passed in an array from one function to another in different source files
67 Data passed in a struct from one function to another in different source files
68 Data passed as a global variable in the class from one function to another in different

source files

122 A. Ibing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

19
21
22

31
32

41
42
44
45

51
52
53
54

61
63
64
65
67
68

0

10

20

30

40

50

60

70

80

CWE121_Stack_Based_Buffer_Overflow__char_type_overrun_memcpy

CWE121_Stack_Based_Buffer_Overflow__CWE129_fgets

Flow variant

r
u
n
t
i
m

[
s
]

Fig. 4. Runtimes for two ‘baseline’ bugs with different flow variants, as JUnit plug-in
tests with Eclipse GUI.

‘baseline’ bugs with the flow variants. The symbolic execution implementation
currently supports accurate detection with 36 of the 39 flows. Flow 34 results
in a false negative, because the translation does not (yet) support unions. Flow
18 results in a false negative, because the goto statements cause an exception
during CFG construction. Flow 66 causes a false positive because the current
solver version gives a wrong satisfiability answer for the corresponding mixture
of array logic and arithmetic. Another property of the solver is that it currently
supports division only with constant arguments. For the investigated test cases
this limitation did not cause inaccuracies, because the translation could use
symbolic constant propagation for dividend and divisor (implemented with a
solver query and the ‘get-value’ command). The runtime measurements show
a strong dependence on the presence of loops with high satisfiable iteration
numbers.

5 Discussion

This paper presented a symbolic execution extension for Eclipse CDT/Codan,
which might serve as a basis for path-sensitive detection of common weaknesses
with unrestricted or bounded context. The plug-in has been shown to support
detection of buffer overflows with about 90 % of the C flow variants of the Juliet
test suite. The percentage of the currently detectable ‘baseline’ buffer overflows
on the other hand is yet unsatisfying, because only a small part of the standard
library functions is interpreted. The test programs were tiny, the “biggest” one
consisted only of about 54000 AST nodes (sum over six .c files, AST nodes in
headers were not counted). While the usage of array logic offers no advantage
for the current functionality, it might be beneficial for a future checker for user

SMT-Constrained Symbolic Execution for Eclipse CDT/Codan 123

assertions, potentially with a smooth transition to verification of functionality.
Future work includes the symbolic interpretation of larger parts of the standard
library, a more coherent solver integration, evaluation of scaling behaviour to
bigger programs, and the development of checkers for further common weak-
nesses.

Acknowledgement. This work has been partially funded by the German Ministry
for Education and Research (BMBF) under grant 01IS13020.

References

1. Seacord, R.: The CERT C secure coding standard. Addison-Wesley, Reading (2009)
2. Coverity Scan: 2011 open source integrity report (2011). www.coverity.com/

library/pdf/coverity-scan-2011-open-source-integrity-report.pdf
3. Martin, R., Barnum, S., Christey, S.: Being explicit about security weaknesses. In:

Blackhat DC (2007)
4. Khedker, U., Sanyal, A., Karkare, B.: Data Flow Analysis. CRC Press, Boca Raton

(2009)
5. Jhala, R., Majundar, R.: Software model checking. J. ACM Comput. Surv. 41(4),

21–74 (2009)
6. King, J.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394

(1976)
7. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
8. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge

University Press, Cambridge (2009)
9. Armando, A., Mantovani, J., Platania, L.: Bounded model checking of software

using SMT solvers instead of SAT solvers. Int. J. Softw. Tools Technol. Transf.
11(1), 69–83 (2009)

10. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard Version 2.0.
(Dec. 2010) online http://goedel.cs.uiowa.edu/smtlib/papers/smt-lib-reference-v2.
0-r10.12.21.pdf

11. Xie, Y., Aiken, A.: Scalable error detection using Boolean satisfiability. In: Princi-
ples of Programming Languages (POPL) (2005)

12. Xie, Y., Chou, A., Engler, D.: Archer: Using symbolic, path-sensitive analysis to
detect memory access errors. In: SIGSOFT Softw. Eng. Notes. pp. 327–336 (2003)

13. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

14. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded model checking
for embedded ANSI-C software. In: The International Conference on Automated
Software Engineering (2009)

15. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: USENIX Symposium on
Operating Systems Design and Implementation (2008)

16. Emanuelsson, P., Nilsson, U.: A comparative study of industrial static analysis
tools. In: Electronic Notes in Computer Science (ENTCS). Number 217, pp. 5–21
(2008)

www.coverity.com/library/pdf/coverity-scan-2011-open-source-integrity-report.pdf
www.coverity.com/library/pdf/coverity-scan-2011-open-source-integrity-report.pdf
http://goedel.cs.uiowa.edu/smtlib/papers/smt-lib-reference-v2.0-r10.12.21.pdf
http://goedel.cs.uiowa.edu/smtlib/papers/smt-lib-reference-v2.0-r10.12.21.pdf

124 A. Ibing

17. Chatzieleftheriou, G., Katsaros, P.: Test-driving static analysis tools in search of
C code vulnerabilities. In: IEEE Computer Software and Application Conference
Workshops (COMPSACW), pp. 96–103 (2011)

18. Ku, K., Hart, T., Chechik, M., Lie, D.: A buffer overflow benchmark for software
model checkers. In: IEEE/ACM International Conference on Automated Software
Engineering (2007)

19. United States National Security Agency, Center for Assured Software: Juliet Test
Suite v1.1 for C/C++ (Dec. 2011). http://samate.nist.gov/SRD/testCases/suites/
Juliet Test Suite v1.1 for C Cpp.zip

20. Duprat, S., Velten, M.: FCDT: Using Eclipse CDT + FRAMA-C for advanced
C static analysis in industrial context. In: Eclipse Day Toulouse (2012). http://
gforge.enseeiht.fr/projects/fcdt/

21. L. Correnson et al.: FRAMA-C User Manual, release oxygen-20120901. CEA LIST
(2012). http://frama-c.com/download/frama-c-user-manual.pdf

22. Necula, G., McPeak, S., Rahul, S., Weimer, W.: CIL: Intermediate language and
tools for analysis and transformation of C programs. In: International Confer-
ence Compiler Construction, pp. 213–228 (2002). http://dl.acm.org/citation.cfm?
id=647478.727796

23. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program analy-
sis and transformation. In: International Symposium Code Generation and Opti-
mization (2004)

24. Laskavaia, A.: Codan- C/C++ static analysis framework for CDT. In: EclipseCon.
(2011)

25. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Muchnik, S., Jones, N. (eds.) Program Flow Analysis: Theory and Applications,
pp. 189–233. Prentice-Hall, Englewood Cliffs (1981)

26. Tip, F.: A survey of program slicing techniques. J. Program. Lang. 3(3), 121–189
(1995)

27. Parr, T.: Language Implementation Patterns. Pragmatic Bookshelf, Raleigh (2010)
28. LeBerre, D.: The SAT4J library, release 2.2, system description. J. Satisfiability

Boolean Model. Comput. (JSAT) 7, 59–64 (2010)
29. Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5 SMT

solver. In: TACAS (2013)

http://samate.nist.gov/SRD/testCases/suites/Juliet_Test_Suite_v1.1_for_C_Cpp.zip
http://samate.nist.gov/SRD/testCases/suites/Juliet_Test_Suite_v1.1_for_C_Cpp.zip
http://gforge.enseeiht.fr/projects/fcdt/
http://gforge.enseeiht.fr/projects/fcdt/
http://frama-c.com/download/frama-c-user-manual.pdf
http://dl.acm.org/citation.cfm?id=647478.727796
http://dl.acm.org/citation.cfm?id=647478.727796

IOCO as a Simulation

Luis Llana and Rafael Mart́ınez-Torres(B)

Departamento Sistemas Informáticos y Computación, Universidad Complutense de
Madrid, Madrid, Spain

llana@ucm.es, rmartine@fdi.ucm.es

Abstract. Since ioco (input output conformance) is a linear semantics,
it cannot distinguish the local execution context in a system. We have
defined iocos (input output conformance simulation): an ioco inspired
semantics defined with simulation techniques. In this way iocos is able
to capture the natural non-determinism of reactive systems. The origi-
nal definition ioco deals only with input-enabled implementations while
iocos have been defined in a more general context where input-enabled
implementations are not required. In this paper we prove that ioco and
iocos coincide in the natural domain of ioco, i.e., when implementations
are input-enabled.

Keywords: Model based testing · Input output conformance · Simula-
tion · Formal methods

1 Introduction and Related Work

Model Based Testing (MBT) [2,7–9] is an active research area where the main
goal is the study of correctness of a given system with respect to a set of require-
ments. The main component of MBT theory is a formal implementation relation
for which a procedure to generate tests from a given specification is provided.
The procedure is expected to be sound and complete.

For every concrete case study and industrial application, selecting a suit-
able conformance relation is a decision that may depend on many factors: The
costs of implementation, security considerations, performance, context of appli-
cation, etc. It would be desirable to have a theory with the capacity to express
conformance at different levels.

The research we present in this paper is a small step in that direction. Instead
of the classic approach based on linear semantics, we have used a conformance
relation based on simulation semantics. The reason for this decision is that some
recent research on process theory has shown [3,4] that the group of simulation
semantics forms the backbone on a spectrum of semantics from which a hierarchy
of layers of linear semantics can be derived in a systematic way.

Research partially supported by the Spanish MEC projects TIN2009–14312-C02-01
and TIN2012–36812-C02-01.

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 125–134, 2014.
DOI: 10.1007/978-3-319-05032-4 10, c© Springer International Publishing Switzerland 2014

126 L. Llana and R. Mart́ınez-Torres

In recent years ioco [8] has emerged as one of the most important MBT theo-
ries. Summing up, an implementation is considered sound with respect to a spec-
ification when the outputs produced by the former are among those prescribed
by the latter after any interaction allowed by the specification. As expected, a
complete testing framework is presented, including a test generating algorithm
and the proof of its completeness.

Nevertheless, the implementation under testing (IUT) must fulfill an impor-
tant requirement: It must be input-enabled, that is, it must react to any possible
action demanded by the environment. Although this assumption maybe natural
in some contexts is not so in others. For instance, in a vending machine, a slot,
for a credit card or parking ticket, can only be enabled if a card is not inserted;
as with of graphical interfaces which do not need to consider any possible event
on a window, they just code the response for the interesting events, etc.

Let us focus on Fig. 1: the specification gives the implementation relative
freedom to serve either a soda or a snack after the client inserts a coin. However,
as the implementation does not always react to coin insertion, it is discarded as a
valid implementation, even when the specification does not prescribe any thing in
this respect. Though simple, this example highlight a weakness in ioco rationale,
namely, that implementations are forced to react to any possible action by the
environment. It also prevents ioco relation from having a desirable property: as
implementation and specification lie in different domains, ioco is not a transitive
relation, so it can be difficult to use ioco as a refinement implementation relation.

In a previous paper [6], we decided to drop this hypothesis and in order to
extend the analysis within a more general framework. However, in many cases
adopting such an approach has immediate consequences: we fall in the area of
linear semantics, where implementation relation cannot distinguish the local
execution context. Therefore we propose iocosas an implementation relation in
the spirit of ioco. This new relation is based on simulation techniques, so it
overcomes that fault, and it also enriches iocos in more subtle aspects. As a
result, we obtained a refinement for ioco in the general case.

The iocos relation has a related testing framework. This testing framework is
inspired by the one defined by Abramsky [1]. The main difference with respect to
the original framework of Abramsky is the distinction between input and output
actions: while the former are given by the environment, the latter are generated

Implementation Specification

snack !

coin?

snack ! soda!

coin?

Fig. 1. Non input-enabled implementation

IOCO as a Simulation 127

by the system. In this way the iocos relation can be seen as a link between the
framework defined by Tretmans and the theory defined by Abramsky.

The main goal of this paper is to measure how far the iocos relation is from the
original ioco relation. As we have already mentioned the iocos relation is stronger
than the ioco relation. So in this paper we study which are the conditions make
ioco as strong as iocos. These conditions will be the input-enabled requirement for
the implementations. It is not because the ioco relation gains in expressiveness,
but because of the reduction in the space of possible implementations.

The rest of the paper is organized as follow: First, in Sect. 2, we collect widely
known concepts as well as other interesting theorems necessary for our purpose
whose detailed proof can be found in other sources. Next, in Sect. 3 we will
show some examples that differentiate ioco and iocos, we will also show how
these differences disappear if the implementations are input-enabled. In Sect. 4
we present the main result of the paper stating that ioco is indistinguishable
from iocos in the case of input-enabled implementations. Finally in Sect. 5, we
present the conclusions of the paper and we outline some future research lines.

2 Preliminaries

A common formalism used in MBT to represent not only the models but also
the implementations and even the tests are labelled transition systems. In order
to deal with input-output behaviours we are going to consider two disjoint finite
sets of actions: inputs I and outputs O. Output actions are those initiated by the
system, they will be annotated with an exclamation mark, a!, b!, x!, y! ∪ O. Input
actions are initiated by the environment and will be annotated with a question
mark, a?, b?, x?, y? ∪ I. In many cases we want to name actions in a general
sense, inputs and outputs indistinctly. We will consider the set L = I ∅ O and
we will omit the exclamation or question marks when naming generic actions,
a, b, x, y ∪ L.

A state with no output actions cannot autonomously proceed, such a state
is called quiescent. Quiescence is an essential component of the ioco theory. For
the sake of simplicity and without lost of generality (see for instance [8], p. 12),
we directly introduce the event of quiescence as a special action denoted by π!
into the definition of our models.

Definition 1. A labelled transition system with inputs and outputs is a 4-tuple
(S, I,O, T) such that

– S is a set of states or behaviours.
– I and O are disjoint sets of input and output actions respectively. We define

L = I ∅ O and consider a new symbol π! ⊆∪ L for quiescence. We will consider
also the sets Lλ = L ∅ {π!} and Oλ = O ∅ {π!}.

– T → S × Lλ × S. As usual we write p
a−√q instead of (p, a, q) ∪ T and p

a−√,
for a ∪ Lλ, if there exists q ∪ S such that p

a−√q. Analogously, we will write

p
a

−√/, for a ∪ Lλ, if there is no q such that p
a−√q.

128 L. Llana and R. Mart́ınez-Torres

In order to allow only coherent quiescent systems the set of transitions T
should also satisfy:
• if p

λ!−√p∼ then p = p∼. A quiescent transition is always reflexive.

• if p
o!

−√/ for any o! ∪ O, then p
λ!−√p. A state with no outputs is quiescent.

• if there is o! ∪ O such that p
o!−√, then p

λ!

−√/. A quiescent state performs no
output actions.

– We say that system is input-enabled if at any s ∪ S for every a? ∪ I we have
s

a?−√. ≡∈
For the sake of simplicity, we will denote the set of labelled transition systems

with inputs and outputs just as LTS . In general we use p, q, p∼, q∼ . . . for states
or behaviours, but also i, i∼, s and s∼ when we want to emphasise the concrete
role of a behaviours as implementations or specifications.

Without losing generality, we will consider implementations and specifica-
tions, or, more in general, behaviours under study, as states of the same LTS1.
This modification simplifies the coinductive definition we are going to present
and the reasoning behind the proof.

Traces play an important role in gathering basic information for behaviours.
A trace is a finite sequence of symbols of Lλ. We will normally use the symbol
α to denote traces, that is, α ∪ L→

λ . The empty trace is denoted by ε and we
juxtapose, α1α2, to indicate concatenation of traces. The transition relation of
labelled transition systems can naturally be extended using traces instead of
single actions.

Definition 2. Let (S, I,O, T) ∪ LTS , p, q ∪ S and α ∪ L→
λ . We inductively

define p
α−√q as follows:

– p
τ−√p

– p
aα−√q for a ∪ Lλ, α ∪ L→

λ and p∼ ∪ S such that p
a−√p∼ and p∼ α−√q. ≡∈

Next we introduce some definitions and notation that will be frequently used
throughout the paper.

Definition 3. Let (S, I,O, T) ∪ LTS , and p ∪ S, S∼ → S, and α ∪ L→
λ , we

define:
1. init(p) = {a | a ∪ Lλ, p

a−√}, the set of initial actions of p.
2. traces(p) = {α | α ∪ L→

λ , p
α−√}, the set of traces from p.

3. p after α = {p∼ | p∼ ∪ S, p
α−√p∼}, the set of reachable states from p after the

execution of trace α.
4. outs(p) = {x | x ∪ Oλ, p

x−√}, the set of outputs of a state p or the quiescent
symbol π!.

5. outs(S∼) =
⋃

p∗S′ outs(p), the set of outputs of a set of states S∼.

6. ins(p) = {x? | x? ∪ I, p
x?−√}, the set of inputs of a state p. ≡∈

1 If we had two different LTSs, one for a specification and one for the implementation,
we could always consider a larger LTS that is the disjoint union of the original LTSs.

IOCO as a Simulation 129

Definition 4. Let (S, I,O, T) ∪ LTS , the relation ioco → S × S is defined as
follows: i ioco s ∞def ⇑α ∪ traces(s) : outs(i after α) → outs(s after α) ≡∈

The ioco relation we use keeps the spirit of the original in [8], but while the
original imposed implementations to be input enabled, our definition has been
extended to the more general domain of input-output labelled transition sys-
tems. Also, the original definition used suspension traces while we can consider
just traces because the quiescence symbol has already been introduced in the
description of the behaviours.

Now we can give the formal definition of iocos. Since it is a simulation relation,
it cannot be defined directly. So first we give the notion of an iocos-relation. Then
the iocos relation would be the union of all iocos-relations.

Definition 5. Let (S, I,O, T) ∪ LTS , we say that a relation R → S × S is a
iocos-relation iff for any (p, q) ∪ R the following conditions hold

1. ins(q) → ins(p)
2. For all a? ∪ ins(q) such that p

a?−√p∼ there exists q∼ ∪ S such that q
a?−√q∼ and

(p∼, q∼) ∪ R.2

3. For all x ∪ outs(p) such that p
x−√p∼ there exists q∼ ∪ S such that q

x−√q∼ and
(p∼, q∼) ∪ R.

We define the input-output conformance simulation as

iocos =
⋃

{R | R → S × S, R is a iocos -relation}

and we write p iocos q instead of (p, q) ∪ iocos. ≡∈
Intuitively, the definition above highlights the fact that any action by imple-

mentation must be within the limits considered by specification. As a vestige
from ioco rationale, in some contexts this is referred to as final semantics. Tak-
ing advantage of simulation techniques, we enrich ioco by forcing to implement at
least one of the input-action leaded behaviour, thus avoiding tricky implementa-
tions, as the empty one. Inclusion of π! as an special output symbol (quiescence)
has a special meaning: a system is allowed to remain silent just in case speci-
fication does. To conclude this Section we recall a result proved in [6]: iocos is
stronger than ioco.

Theorem 1. Let (S, I,O, T) ∪ LTS ; then iocos → ioco. That is, for any p, q ∪
S, if p iocos q then p ioco q. ≡∈

3 ioco vs. iocos Through Examples

In this section we will show the similarities differences between ioco and iocos. In
order to simplify the reading of the examples, we are going to mark the quiescent
states as , these kind of nodes are shorthands for δ.

2 Let us note that the Condition 2 does not imply Condition 1.

130 L. Llana and R. Mart́ınez-Torres

x!

a?

b?

x!

x!
y!

a?

z!

a?

b?

x! y!

i1 s1

Fig. 2. ioco vs. iocos: i1 iocos s1.

a? x!

b?

x! y!

a?

x!

c?

x! y!

a?

x!

c?

i2 s2

Fig. 3. ioco vs. iocos: i2 iocos s2.

Let us begin explaining the similarities between ioco and iocos. The examples
in Figs. 2 and 3 are paradigmatic cases where ioco and iocos coincide (despite
the fact the implementations are input-enabled or not). The example in Fig. 2
indicates that the specification establishes a limit on the output actions that the
implementation can execute. In this case, the implementation only responds with
x! after the execution of the input action a?, while the specification indicates
that it could respond with x!, y! or z!. On the contrary, the example in Fig. 3
shows that the implementation does not limit the set of input actions that an
implementation must perform. In other words, the implementation is free to react
to more inputs than the specification indicates. In this case, the implementation
can react to the input action b? which is not prescribed by the specification.

The main differences between ioco and iocos is their behavior in the presence
of non-determinism and their behavior with respect to input actions. The first
difference is presented in Fig. 4. In the implementation (left tree) there is a
non-deterministic choice between the two branches so, after producing output
x! we are not sure about what input actions (c? or b?) are available. While
the specification indicates that both (b? and c?) input actions must be enabled.
In Fig. 5 there is an example showing the different behavior of ioco and iocos
with respect to the input actions. In this example, the specification establishes
that the implementation must react (and how to react) to input b?. Instead, the
implementation does not react to the input b?.

IOCO as a Simulation 131

b?

x!

a?

c?

x!

a?

b? c?

x!

a?

i3 s3

Fig. 4. ioco vs. iocos: i3 /ioco s3

x! y!

a?

x! y!

a?

z!

b?

i4 s4

Fig. 5. ioco vs. iocos: i4 /iocos s4

From this point we are going to consider the case where the implementations
must be input-enabled. At first glance, the transition from general labelled tran-
sition systems to input-enabledness ones may seem trivial. In fact, a systematic
procedure - called angelic completion is described at [8]. It basically consists of
completing the given transition system by looping every state with a missing
entry. Under a certain categorical perspective, we could look at it as the most
conservative solution to the problem of finding out how an input-enabled system
differs from a given one. However, by proceeding in this way, there is no guar-
antee that the previous relation still holds: systems previously stated to be ioco
may no longer be related after the completion. In the following examples we are
going to denote the angelic completion with a star: for ordinary states and
for quiescent states. So, considering the set of inputs {a?, b?, c?}, the graphs in
Fig. 6 represent the same system.

The angelic completion of the implementations of Figs. 4 and 5, they are in
Fig. 7. i∼1 is the angelic completion of i1 and i∼2 is the angelic completion of i2.
In this figure we have made explicit the angelic completion in one critical state
in i∼1 and i∼2. Let us recall that i1 /iocos s1 is just because the state we have made
the angelic completion explicit in i1 does not have the action b? available. But
in i∼1 the action b? is now available and we can easily prove that i∼1 iocos s1. In
this case it is as if the non-determinism at the top of the tree has disappeared

132 L. Llana and R. Mart́ınez-Torres

a? x!

b?, c?

a?, b?, c? a?, b?, c?

a? x!

Fig. 6. Angelic completion shortcut

b?

x!

a?

c?

x!

a?

a?, b?

x! y!

a?

b?

i′1 i′2

Fig. 7. Angelic completion of Figs. 4 and 5.

because the angelic completion makes the input action b? available in that state.
The angelic completion transforms i1 into i∼1 such that i∼1 iocos s1.

The case of i2 and i∼2 is just the opposite. In this case i∼2 has a new trace
that corresponds to the execution of b? at the top of the system, and we obtain
outs(i∼2 after b?) = {π!} while outs(s2 after b?) = {z!} and then i∼2 /ioco s2. Let us
note that outs(i2 after b?) = ∅ and i2 ioco s2.

4 IOCO as a Simulation

In the previous section we have seen that the input-enabled condition is very
strong indeed. The differences between ioco and iocos vanish. In Figs. 4 and 5
we have presented two examples where i1 ioco s1 and i2 ioco s2 but i1 /iocos s1
and i2 /iocos s2. When making the angelic completion of the implementations
we obtained two systems i∼1 and i∼2 that are related to the corresponding spec-
ifications in a different way. In the first case we obtain i∼1 iocos s1 while in the
second i∼2 /ioco s2. But what could be surprising is that in both cases ioco and
iocos coincide. This result is generalized in the following theorem stating that
ioco and iocos coincide when the implementation (the left side of the relation)
is input enabled.

Theorem 2. Let i be an input-enabled LTS and s ∪ LTS such that i ioco s,
then i iocos s.

IOCO as a Simulation 133

Proof. In order to prove that i iocos s, we have to find R a iocos-relation that
(i, s) ∪ R. Let us consider the following:

R = {(p1, p2) | ∀α ∪ traces(s) : p1 ∪ i after α, p2 ∪ s after α, }
It is clear that (i, s) ∪ R by taking the empty trace ε ∪ traces(s). So let us
consider (p1, p2) ∪ R and let us to check that R meets the requirements from
Definition 5. First of all let us note that there is a trace α ∪ traces(s) such that
p1 ∪ i after α and p2 ∪ s after α because (p1, p2) ∪ R.

– ins(p1) ⊇ ins(p2). Since i is input enabled we obtain: ins(p1) = I ⊇ ins(p2)
– Now let us consider a? ∪ ins(p2) (i.e., there exists p∼

2 such that p2
a?−√p∼

2) and
p1

a?−√p∼
1. Under these conditions we obtain αa? ∪ traces(s), p∼

2 ∪ s after αa?
and p∼

1 ∪ i after αa?. So (p∼
1, p

∼
2) ∪ R because of the construction of R.

– Now let us consider x! ∪ Oλ such that p1
x!−√p∼

1. Then x! ∪ outs(p1) =
outs(iafterα) . As iiocos and α ∪ traces(s), then outs(iafterα) → outs(safterα).
So x! ∪ outs(s after α) = outs(p2), that is, there exists p∼

2 such that p2
x!−√p∼

2.
From this we obtain that αx! ∪ traces(s). Then p∼

1 ∪ i after αx and p∼
2 ∪

i after αx, so (p∼
1, p

∼
2) ∪ R by the construction of R. ≡∈

From Theorem 1 and Theorem 2 we obtain the simulation characterization
of ioco: when an implementation is input enabled, then ioco can be defined as
simulation.

Corollary 1. Let i be an input-enabled LTS and s ∪ LTS then i ioco s iff
i iocos s. ≡∈

5 Conclusions and Future Work

In this paper we have studied the relation between ioco [8] and iocos [6]. We
had already proved [6] that in the general case iocos is a refinement of ioco. In
this paper we have investigated the context where ioco was originally defined:
input-enabled implementations. Through some examples we have shown that
this condition is quite strong. The behavior of both ioco and iocos change dra-
matically. In fact, we have proved that in this case both relations coincide. This
fact has important implications for both implementation relations. On the one
hand, it confirms that iocos is a natural extension of ioco when considering non
input-enabled implementations. On the other hand, it opens the broad field of
simulation to the ioco relation.

Regarding the iocos relation, there are still well known issues in MBT that
we need to address in our proposal. We are specially interested in test selection
and on-the-fly, or on-line, testing [10] which does not need to generate a priori
test suites, but instead try to check dynamically the implementation under test.

It is well known that simulations can be efficiently implemented [5,11]. This
fact can be very interesting to both ioco and iocos. In order to find an efficient
implementation of iocos, it should be enough to reduce its current definition to
the context of a generic simulation as defined in [5,11].

134 L. Llana and R. Mart́ınez-Torres

References

1. Abramsky, S.: Observational equivalence as a testing equivalence. Theoret. Com-
put. Sci. 53(3), 225–241 (1987)

2. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Softw. Eng. 4(3), 178–187 (1978)

3. de Frutos-Escrig, D., Gregorio-Rodŕıguez, C., Palomino, M.: On the unification of
process semantics: equational semantics. Electron. Notes Theoret. Comput. Sci.
249, 243–267 (2009)

4. de Frutos-Escrig, D., Gregorio-Rodŕıguez, C.: (Bi)simulations up-to characterise
process semantics. Inf. Comput. 207(2), 146–170 (2009)

5. Gentilini, R., Piazza, C., Policriti, A.: From bisimulation to simulation: coarsest
partition problems. J. Autom. Reasoning 31(1), 73–103 (2003)

6. Gregorio-Rodŕıguez, C., Llana, L., Mart́ınez-Torres, R.: Input-output conformance
simulation (iocos) for model based testing. In: Beyer, D., Boreale, M. (eds.) FORTE
2013 and FMOODS 2013. LNCS, vol. 7892, pp. 114–129. Springer, Heidelberg
(2013)

7. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence.
Softw. - Concepts Tools 17(3), 103–120 (1996)

8. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp. 1–38.
Springer, Heidelberg (2008)

9. Tretmans, J., Ed Brinksma, H.: Torx: automated model-based testing. In: Hart-
man, A., Dussa-Ziegler, K. (eds.) First European Conference on Model-Driven
Software Engineering, pp. 31–43, Dec 2003

10. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verif. Reliab. 22(5), 297–312 (2012)

11. van Glabbeek, R.J., Ploeger, B.: Correcting a space-efficient simulation algorithm.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 517–529. Springer,
Heidelberg (2008)

Modeling and Simulating Interaction Protocols
Using Nested Petri Nets

Mirtha Lina Fernández Venero(B) and Flávio Soares Corrêa da Silva

Department of Computer Science, University of São Paulo,
São Paulo 05508-090, Brazil
{mirtha,fcs}@ime.usp.br

Abstract. This paper is concerned with the problem of analyzing inter-
action protocols in a coordination platform called JamSession. We use
nested Petri nets to provide a formal model for simulating the protocols
and predicting conflicts on the system behavior.

1 Introduction

The notion of mobility has been increasingly used in areas such as communi-
cation protocols, multi-agent and intelligent systems, web and business applica-
tions, virtual environments, computers games, etc. This notion has introduced
the need of designing location-dependent and context-aware software compo-
nents whose complexity demands the unavoidable use of formal models (e.g.
process calculi, Petri nets, Markov chains and automata-based techniques) for
their development. In this article we use Petri nets (PNs) to provide a formal
framework for simulating the interaction protocols of a coordination platform
called JamSession. The platform was proposed in [3] for coordinating distrib-
uted, heterogeneous and mobile agents and resources. It uses a notion of loca-
tion similar to the one provided in Multilayered Multi-Agent Situated Systems [1],
where sites are related by pathways to form a directed graph. Agents inhabit
these sites and can move from site to site to look for specific resources to accom-
plish their goals. Services are modeled using predicates attached to locations.
Interaction protocols for coordinating agents are also linked to locations and are
built from basic logic constructions. The language is simple but other notions
such as norms and roles from Electronic Institutions [5] and the Lightweight
Coordination Calculus (LCC) [11] can be modeled as well.

JamSession was recently used for coordinating inter-organizational work-
flows [4]. In that work, it was shown how hierarchical protocols can be verified
using colored Petri nets (CPNs). This paper formalizes and extends that previ-
ous model for protocols involving recursive calls. Furthermore, we explain how
to specify the dynamic behavior of concurrent interactions. Our aim is to pro-
vide a formal ground for the construction of a visualization tool for JamSession
that supports the simulation and analysis of the agents movements. Here, we use

This work was supported by the São Paulo Research Foundation (FAPESP) under
the grant 2010/52505-0.

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 135–150, 2014.
DOI: 10.1007/978-3-319-05032-4 11, c© Springer International Publishing Switzerland 2014

136 M.L.F. Venero and F.S.C. da Silva

nested Petri nets (NPNs), a class of high-level Petri nets where tokens can also
be Petri nets [8]. As classical tokens, the net tokens can be added to or removed
from places, but they can also fire their transitions, synchronizing them with
other net tokens. The idea of using nets within nets has been effectively applied
to multi-agent systems and mobile agents [2,7,10]. To model mobility, locations
are encoded as places and the possible movements are encoded as transitions.
Mobile agents are modeled as net tokens which can be moved from one place to
another. Nevertheless, few methodologies have been proposed for modeling the
rules that coordinate a sequence of agents movements [2]. In JamSession, these
rules can be defined by means of interaction protocols. Therefore, in this article
we provide a systematic approach for translating a JamSession specification into
a NPN. For simplicity and due to the fact that in JamSession agents may be
just passive entities, we represent the environment (agents, locations and fea-
sible movements) as a color set and protocol calls as net tokens. However, the
method can be easily adapted for dealing with agents nets. We model the system
behavior as a Workflow Net [12] and define a property for its correctness which
can be used for the early detection of interactions in conflict.

The paper has the following structure. Section 2 summarizes JamSession
syntactical features and its computation rules. Section 3 presents an informal
description of the translation of JamSession protocols into NPNs. The formal
translation and the model for the dynamics of concurrent interactions are
described in Sects. 4, 5 respectively. We draw some conclusions in Sect. 6.

2 The JamSession Platform

The coordination mechanism of JamSession is based on a directed graph where
nodes represent locations that are inhabited by agents. The arcs of the graph
characterize the admissible movements that agents can perform across locations.
The agents provide services that are represented as first-order predicates. Each
predicate is associated to a pair [Agent, Location] and may also have Input and
Output parameters. An agent stays in a location until it receives an order to
move. Predicates and movements are combined in JamSession using interaction
protocols which are linked to locations. A JamSession specification is a tuple
J = ∪Loc, Path,Ag, V ar,D, Pred, Prot, φ, ψ∅ where

– Loc ⊆= → is a set of locations and Path √ Loc × Loc is a set of directed arcs
between locations. The pair (Loc, Path) is called the graph of locations;

– Ag, V ar,D, Pred, Prot are non-empty sets of agents, variables, domain values,
predicate and protocol symbols respectively;

– φ : Pred × Ag × Loc ≡ (TD ≡ {∈,∞} × TD) characterizes the predicates
definitions. Hereafter, TC denotes the set of tuples over a set C;

– ψ : Prot×Loc ≡ Σ ×TVar ×TVar characterizes the protocols definitions and
Σ is the language generated by the next rules, where pd ⇑ Pred, pt ⇑ Prot,
a ⇑ Ag, l, l1, l2 ⇑ Loc, V ⇑ TVar and P ⇑ TVar∼D

Disj := Disj → Disj | Conj
Conj := Conj ∗ Conj | Entity

Entity := ∅ | ∈ | move(a, l1, l2) | [a, l]pd(P, V) | [l]pt(P, V)

Modeling and Simulating Interaction Protocols Using Nested Petri Nets 137

Given a predicate symbol pd, an agent a and a location l, the function
φ(pd, a, l) takes a list of domain values as input and returns a list of output
domain values and the result of the evaluation (∈ or ∞). Given a protocol sym-
bol pt and a location l, the protocol definition ψ(pt, l) = (F, Vi, Vo) is written as
[l] pt(Vi, Vo):: = F . The formula F has the structure of a disjunctive normal form
in which literals may be move orders and predicate or protocol calls. Some of
the variables occurring in F are considered as input (Vi) or output (Vo) variables
in the protocol definition. The conjunction denotes the sequential evaluation of
the atoms and the disjunction an alternative computation branch.

In JamSession, several protocols may be executed in parallel. The concurrent
processes share the same configuration of the graph but they do not share vari-
ables. Besides, an agent can be used by just one predicate or move order at any
given time. Predicates calls and move orders are suspended until the involved
agent reaches the appropriate location. During the evaluation of a predicate, the
agent is locked at the location. A move order is executed as an atomic operation.

Example 1. We illustrate the functioning of Jam-
Session by means of two protocols (buyerP and
shopkeeperP) describing an interaction for a basic
shopping. The graph of locations is shown in the
right. The agent tokens askMsg , buyMsg , priceMsg
and soldMsg represent messages to be exchanged
between the protocols. The protocols correspond-
ing to the roles are shown below. We have used c, b
and sh to abbreviate the location names customer ,
buyer , shopkeeper respectively.

The buyerP protocol has a client B and an item X as input parameters and
no output variable. The input data is verified by means of an agent cust at c.
The updateAsk predicate stores the required data for the askMsg token and the
message is moved to the sh location. After that, the getPrice predicate waits
until priceMsg reaches the b location. When this occurs, the message priceMsg
is sent back to the sh. After checking that X is affordable, the buyMsg token
is updated and sent, and the getConf predicate waits for soldMsg . Once it is
received, it is sent back and the purchase is confirmed to the client using the
chkConf predicate. The behavior of shopkeeperP protocol is similar but it has a
recursive call at the end, in order to wait for another buyer.

[c] buyerP ((B, X), ())::=[cust, c] need((B, X), ()) →
[askMsg, b] updateAsk((B, X), ()) → move(askMsg, b, sh) →
[priceMsg, b] getPrice((V), (P)) → move(priceMsg, b, sh) → [cust, b] afford((X, P), ()) →
[buyMsg, b] updateBuy((X, B), ()) → move(buyMsg, b, sh) →
[soldMsg, b] getConf((), (C)) → move(soldMsg, b, sh) → [cust, c] chkConf((C), ()).

[sh]shopkeeperP ()::=[askMsg, sh] getAsk((), (X, B)) → move(askMsg, sh, b) →
[priceMsg, sh] instock((X), (P)) → move(priceMsg, sh, b) →
[buyMsg, sh] getBuy((), (X, B)) → move(buyMsg, sh, b) →
[soldMsg, b] setConf((X, B, P), ()) → move(soldMsg, sh, b) →
[soldMsg, sh] closeSale() → [sh] shopkeeperP ().

138 M.L.F. Venero and F.S.C. da Silva

A state in the computation of a JamSession formula consists of a formula, the
distribution of agents over the graph (represented as a function st : Ag ≡ Loc)
and a substitution θ holding the values of instantiated variables. The transition
relation between the states (≡) is defined by the rules in Table 1. We write

F
st,θ,st′,θ′
−−−−−−≡ F ∗ instead of (F, st, θ) ≡ (F ∗, st∗, θ∗) to improve readability. The

notation st(a) ∀ l indicates that the state of the graph has changed by the
movement of a to l. Furthermore, we use θ ∀ v = d to denote a new substitution
obtained from θ where the variable v has been updated with the domain value
d. As usual, the application of a substitution θ to a formula F is written as Fθ.
The replacement of all occurrences of a variable x in F by the a value or variable
v is denoted as F [v/x]. These notations are extended to tuples of variables and
values in a straightforward way.

Table 1. JamSession computation rules

1) ∅ → F
st,θ,st,θ−−−−−↔ Fθ 2) ∈ → F

st,θ,st,θ−−−−−↔ ∈
3) ∅ ∗ F

st,θ,st,θ−−−−−↔ ∅ 4) ∈ ∗ F
st,θ,st,θ−−−−−↔ Fθ

5) F1 ∃ F2
st,θ,st,θ−−−−−↔ F ∃ F2 if ∃ ∪ {→, ∗}, F1

st,θ,st,θ−−−−−↔ F

6) move(a, l1, l2)
st,θ,st,θ−−−−−↔ ∅ if st(a) = l1, (l1, l2) /∪ Path

7) move(a, l1, l2)
st,θ,st(a)↑l2,θ−−−−−−−−−↔ ∈ if st(a) = l1, (l1, l2) ∪ Path

8) [a, l] pd(P, V)
st,θ,st,θ↑V =O−−−−−−−−−↔ b if st(a) = l, φ(pd, a, l)(Pθ) = (b, O)

9) [l] pt(P, V)
st,θ,st,θ−−−−−↔ F1 if ψ(pt, L) = (F, Vi, Vo), F1 = F [Pθ/Vi][V/Vo]

The first three rows of Table 1 describe the rules for conjunction and dis-
junction. The left-hand side of these operators must be reduced to a truth value
before the right-hand side can be rewritten. This is enforced by the fifth rule.
The sixth rule states that a move order fails in case the agent inhabits a location
with no direct arc to the intended destination. On the contrary, a move order
holds (rule 7) if l1 is the current location of a and (l1, l2) is an arc of the graph.
If a has not reached l1, the move order is postponed until it can be evaluated.
Predicate calls have a similar behavior with respect to agents and locations. If a
is already situated at l, the function φ(pd, a, l) is evaluated for the input values,
the formula is reduced, and the output variables are updated. Finally, a protocol
call is unfolded by applying the function ψ to obtain its body definition. W.l.o.g
we assume that each time a fresh copy is obtained from ψ (i.e. with a fresh set
of variables). Furthermore, the input/output variables of the new formula are
replaced by the parameters of the call. The substitution θ is initially empty and
it is updated by the rules 6,7,8 and 10. It is applied to the remaining atoms of
the formula using rules 1 and 4. We write F ≡∞ F ∗ if F reduces to F ∗ in 0 or
more steps. We write F

st,stf−−−≡ F ∗ when no further step can be done from F ∗.

Modeling and Simulating Interaction Protocols Using Nested Petri Nets 139

3 PN-Based Semantics for JamSession

In [4], it was shown how to model non-recursive protocols in JamSession using
hierarchical CPNs [6]. CPNs are PNs in which each place has a type (color set)
that describes the tokens it may store. The state of a CPN, called a marking,
is a function relating each place to the multiset of tokens that inhabit it. Tran-
sitions represent actions or events that may change the marking of the net. An
incoming (respectively outgoing) arc of a transition indicates that it may remove
(respectively add) tokens from the corresponding place. The number and color
of tokens to be removed or added is determined by the arc expressions which
may contain variables. A transition is enabled in a marking if there is a binding
of the variables which satisfies the expressions on the input arcs. In this case,
the transition may fire, consuming and producing the input and output tokens
respectively.

In this section we present an informal description of the translation of Jam-
Session protocols into colored and nested PNs. As in [4], three basic color sets
are used: Ag, AgTok = Ag × Loc and Bool = {∈,∞}. The state of the graph
of locations is represented by means of a special place of AgTok type, denoted
as SGL. In addition, the CPN associated to a JamSession formula has two spe-
cial places of Bool type: one with no incoming arc (source node) and the other
one with no outgoing arc (sink node). These places are denoted as In and Out
respectively. The CPNs corresponding to a move order and a predicate call have
a single transition relating In, Out and SGL (see Fig. 1 a and b). In case of a
predicate call, after firing tp, the content of SGL remains the same and a Bool
token is produced at Out. The latter is represented by a variable (x) that indi-
cates any token value belonging to the type. In the net corresponding to a move
order, the firing of tm produces a (possibly new) token at SGL and a Bool token
at Out. The color of these tokens depends on the existence of an arc between
the involved locations. To this end, we use the function s to represent adjacency
relation of the graph and the conditional operator (? :).

The structure of the net for either A⊇B or A∨B is depicted in Fig. 1c. The
substitution transitions A and B represent the nets for the operands. The input
(respectively output) place of the substitution transition is fused with the input
(respectively output) place of the associated CPN. The output token of the CPN
for A enables an intermediary transition t∩ that controls the activation of the
CPN for B. For the CPN of the conjunction, the outgoing arcs of t∩ are labeled
by the expressions (1) x = ∞?∞ : → and (2) x = ∈?∈ : →. Here, → indicates that
no token should be added to the output place1. For the CPN of a disjunction,
the expressions are defined as (1) x = ∈?∞ : → and (2) x = ∞?∞ : →. Note that
this is not the usual (non-deterministic) PN representation of an alternative.
This is because JamSession disjunction evaluates the right-hand side only if the
left-hand side was previously reduced to ∈.

If the protocol definitions are not recursive, then a hierarchical CPN can be
used to represent a formula. However, a more powerful formalism is required
1 This arc inscription is allowed e.g. by CPN Tools.

http://www.cpntools.org/

140 M.L.F. Venero and F.S.C. da Silva

Fig. 1. PNs for JamSession constructions: a) [a, l] pd(P, V); b) move(a, l1, l2); c) A∃B;
d) protocol definition and e) protocol call.

for protocols that are recursively defined. In this paper we use NPNs [9], an
extension of CPNs in which tokens can be also nets. These net tokens may be
added or removed as ordinary ones. In addition, they are allowed to change the
marking by firing their own internal transitions. More precisely, a NPN is formed
by several CPNs (SN,EN1, . . . , ENn), one of them called system net (SN) and
the rest element nets. Each ENi is considered as a type whose values are marked
nets of the form (ENi,M). The firing of a transition t, in SN or a marked net,
may be performed according to the classical PN rules. In addition, a net token
may synchronize the firing with another net token at the same place (horizontal
synchronization step) or with the parent net (vertical synchronization step). The
synchronization is performed by means of two disjoint sets of labels, respectively
Labh and Labv, which are attached to transitions. It is assumed that for each
label l ⇑ Labv there is a complementary label l̄ ⇑ Labv.

In our model, we associate an element net to each protocol definition. The net
(say EN pt) is built by adding two sink transitions at the Out place of the protocol
formula, as shown in Fig. 1d. These transitions represent the two possible results
of a protocol call and they are labeled for vertical synchronization. A protocol
call is modeled as depicted in Fig. 1e. After the In node, the net has a transition
which creates a net token of EN pt type (say nt) at an intermediary place (pc).
The initial marking of nt has a token ∞ at the source place and the remaining
places are empty. The child net may perform several steps, corresponding to the
reduction sequence of the protocol call. Once nt reaches a final marking (i.e. a
Bool token at its Out place) the execution of the protocol call terminates and one
of the sink transitions gets enabled. The complementary transition at the parent
net will be also enabled by the binding z = nt. Hence, a vertical synchronization

Modeling and Simulating Interaction Protocols Using Nested Petri Nets 141

occurs, the transitions fire, nt is removed from pc and a Bool token is added at
the Out place of the parent net.

4 Formal Translation of Jamsession Protocols into NPNs

In the later we provide the formal translation of Jamsession protocols into NPNs.
To this end, firstly we adapt the definition of NPN from [9] for sharing some
places of the system net. Besides, we restrict ourselves to autonomous steps and
the vertical steps that remove the net tokens involved. As usual in CPNs, we
have a set of finite basic types and a set of basic constants belonging to these
types. The element nets represent types and constants. We assume that the arc
expressions are multisets over the constants and typed variables. However, we
will omit the braces for multisets of a single element.

Definition 1. A NPN is a tuple N = (Σ,Ps, L, (EN0, EN1, . . . , ENn)) s.t. Σ
is a finite set of non-empty basic types, Ps is a finite set of shared places and L
is a set of labels s.t. for each l ⇑ L, there is a complementary label l̄ ⇑ L s.t. ¯̄l = l
and for all l1, l2 ⇑ Labv, l1 ⊆= l2 implies l̄1 ⊆= l̄2. Furthermore, for all i = 0 . . . n,
ENi = (P,C, I, T, Λ,A,W) (called net component) is a colored Petri Net where

– P is a finite set of places s.t. Ps ⇒ P if i = 0 and P ⇐ Ps = → if i > 0,
– C : P ≡ Σ ∪ {{EN1}, . . . , {ENn}} is a type function s.t. for all p ⇑ Ps,

C(p) ⇑ Σ,
– I is the initial function defined from P into closed expressions over Σ,
– T is a finite set of transitions s.t. P ⇐ T = →,
– Λ is a partial function from T to L,
– A √ ((Ps ∪ P) × T) ∪ (T × (Ps ∪ P)) is a set of arcs,
– W is an arc expression function defined from A to expressions s.t.

• there are no net constants in input arc expressions;
• every variable has at most one occurrence in each input arc expression;
• given two arcs (p1, t) and (p2, t), V ar(W (p1, t)) ⇐ V ar(W (p2, t)) = →;
• for each net variable x ⇑ V ar(W (t, q)) there should be one input arc of t
s.t. x ⇑ V ar(W (p, t)); and

• if Λ(t) is defined and x ⇑ V ar(W (p, t)) ⇐ V ar(W (t, q)) then C(x) ⇑ Σ.

The net components share a set of places of basic types belonging to EN0.
The remaining places and transitions of the net components are pairwise disjoint.
A marking of an element net is inductively defined as follows.

– A marking of ENi over N , 1 ∼ i ∼ n, is a function M , mapping each place p
in ENi to a finite multiset over Σ. The pair (ENi,M) is called a marked net
component or a net token of ENi.

– Let Σ̄ be a set of marked net components. Then a function M , mapping each
place in a net component ENi to a finite multiset over Σ̄ ∪Σ, is also marking
of ENi over N .

142 M.L.F. Venero and F.S.C. da Silva

Let Σ̄ denote the set of net tokens of NPN N . A marking of N is a function
M , mapping each place in the net component EN0 to a finite multiset over Σ̄∪Σ.
Any marking must respect the type definition of the place. Hence, for all p ⇑ P ,
if C(p) ⇑ Σ, then M(p) is a multiset over C(p); otherwise M(p) is a multiset
of net tokens of C(p). The initial marking of any net component is the marking
obtained from the initialization expressions. The constant ENi represents the
marked net (ENi, Ii). The initial marking of N is denoted as I0. By definition,
all places with net type are initially empty.

Given a transition t in a net component ENi, we write W (t) for the set
{W (a)|a = (p, t) ⇑ A}. A binding for t is a function b assigning to each variable
v ⇑ W (t) a value from Σ̄ ∪ Σ (of the corresponding type). It is extended in a
straightforward way to set of expressions. A transition t may fire in a marking
M if it is enabled w.r.t. a binding b, i.e. for all a = (p, t) ⇑ A, b(W (a)) √ M(p).
If so, after the firing, it is obtained a new marking M ∗ s.t. for any place p,
M ∗(p) = (M(p) − b(W (p, t))) ∪ b(W (t, p)). This is denoted as M [t∅M ∗. The set
{b(x) /⇑ Σ | x ⇑ W (p, t)} are the net tokens involved in the firing of t.

An autonomous step is the firing of an unlabeled transition in SN or in a
net token, according to the above rule. A vertical step is the firing of a transi-
tion t, labeled as l = Λ(t) and the firing of a transition labeled as l̄ in all net
tokens involved in the firing of t. Due to the restrictions on the arc expressions,
any vertical step removes the involved net tokens. We say that M ∗ is directly
reachable from M , denoted as M [∅M ∗, if there is an autonomous or vertical step
s.t. M [t∅M ∗. A marking M is called dead if there is no directly reachable mark-
ing from it. It is called reachable if there is a sequence of zero or more steps
I0[∅M1[∅ . . . [∅Mk s.t. Mk = M . This is denoted as I0[∗∅M . A NPN terminates if
there is no infinite sequence of steps starting from I0.

The next definition provides the formal translation of a JamSession formula
F into a NPN. As we mentioned in the previous section, the element nets are
obtained from the protocols definitions and the system net is the net associated to
F . Case I.1.a of the definition deals with the translation of ∞ and ∈. Cases I.1.b,
I.1.c, I.2, I.3 and II correspond to the nets in Fig. 1a, b, c, d and e respectively.
The initial marking of SN has a token ∞ at the source and the SGL place with
the initial state of the graph of locations.

Definition 2. Let J = ∪Loc, Path,Ag, V ar, D, Pred, φ, Prot, ψ∅ be a JamSes-
sion specification, F be a JamSession formula and st an initial configuration
of the graph. The NPN associated to J and F is N = ({Bool, Ag,AgTok},
{SGL}, {λ�, λ̄�, λ⊥, λ̄⊥}, (ENF , ENpt1 , . . . , ENptk)) where

I- ENF = ({SGL} ∪ P,C, I, T, Λ,A,W) is s.t. C(SGL) = AgTok, I(SGL) is
the multiset obtained from st and
1. If F ⇑ {∞,∈} or F = move(a, l1, l2) or F = [a, l] pd(. . .) then P =

{In,Out}, C(In) = C(Out) = Bool, I(In) = ∞ and Λ = →. Besides,
a. If F ⇑ {∞,∈} then T = {tF }, A = {a1 = (In, tF), a2 = (tF , Out)},

W (a1) = ∞ and W (a2) = F .

Modeling and Simulating Interaction Protocols Using Nested Petri Nets 143

b. If F = [a, l] pd(. . .) then T = {tp}, A = {a1 = (In, tp), a2 =
(tp, Out), a3 = (SGL, tp), a4 = (tp, SGL)}, W (a1) = ∞, W (a2) = x
is a Bool variable, W (a3) = W (a4) = (a, l).

c. If F = move(a, l1, l2) then T = {tm}, A = {a1 = (In, tm), a2 =
(tm, Out), a3 = (SGL, tm), a4 = (tm, SGL)}, W (a1) = ∞, W (a2) =
s(l1, l2)?∞ : ∈, W (a3) = (a, l1) and W (a4) = (a, s(l1, l2)?l2 : l1).

2. If F = F1 � F2 with � ⇑ {∨,⊇}, let N1 and N2 the nets constructed for
F1 and F2. Then P = P1 ∪ P2, C = C1 ∪ C2, I = I1, T = T1 ∪ T2 ∪ {t∩},
Λ = Λ1 ∪ Λ2, A = A1 ∪ A2 ∪ {a1 = (Out1, t∩), a2 = (t∩, In2), a3 =
(t∩, Out2)} and W = W1 ∪ W2 ∪ {W (a1) = x} ∪ W∩. If F = F1 ⊇ F2,
then W∩ = {W (a2) = x = ∞?∞ : →,W (a3) = x = ∈?∈ : →}; otherwise
F = F1 ∨ F2 and W∩ = {W (a2) = x = ∈?∞ : →,W (a3) = x = ∞?∞ : →}.

3. If F = [l] pt(. . .) then P = {In,Out, pc}, C(pc) = {ENpt}, T =
{tc, t�, t⊥}, Λ(t�) = λ̄�, Λ(t⊥) = λ̄⊥, A = {a1 = (In, tc), a2 = (tc, pc),
a3 = (pc, t�), a4 = (pc, t⊥), a5 = (t�, Out), a6 = (t⊥, Out)}, W (a1) = ∞,
W (a2) = ENpt, W (a3) = W (a4) = z is a variable of ENpt type,
W (a5) = ∞ and W (a6) = ∈.

II- There is one component net ENpti for each protocol definition ψ(pt, l) =
(F1, Vi, Vo). The net ENpt = (P,C, I, T, Λ,A,W) is constructed from the
net N1 = (P1, C1, I1, T1, Λ1, A1,W1) corresponding to F1. This way, we have
P = P1 − {SGL}, C = C1 − {C1(SGL)}, I = I1, T = T1 ∪ {tr�, tr⊥},
Λ = Λ1 ∪ {Λ(tr�) = λ�, Λ(tr⊥) = λ⊥}, A = A1 ∪ {a1 = (Out, tr�), a2 =
(Out, tr⊥)} and W = W1 ∪ {W (a1) = ∞,W (a2) = ∈}.
In Appendix A, Proposition 1, we prove that this translation preserves the

semantics of Table 1, i.e, any reduction sequence of F can be simulated by a firing
sequence of N . If the computation of F is finite the firing sequence is also finite
and ends with the same state of the graph. If F leads to an infinite execution
then the net has also an infinite firing sequence. Furthermore, if we label each
reduction step and each autonomous step of the net with the involved operation
([a, l]pd,move(a, l1, l2),∨,⊇, [l]pt), then we can show that the resulting sequences
of labels are the same. The translation models all possible reduction sequences of
the formula, abstracting away from input/output parameters and even the initial
configuration of the graph. Therefore, the behavior of the net may include firing
sequences corresponding to infeasible execution sequences. But these sequences
may become feasible when F becomes part of an interaction or some predicate
definition changes.

5 The Dynamic Behavior of Concurrent Protocols

Workflow definitions provide an effective method for specifying the execution
flow of a set of tasks. They can be modeled by PNs where the tasks are repre-
sented by transitions and the places represent causal dependencies. These nets
are called Workflow Nets (WF-nets) [12] and they have a unique source place i
and a unique sink place o. Furthermore, every other place or transition is on a

144 M.L.F. Venero and F.S.C. da Silva

path from i to o. The initial and final markings of the net have a single token at
i and o resp and are denoted in the same way.

The dynamic behavior of a JamSession interaction can be specified by means
of a NPN where the system net models the execution flow of a set of concurrent
formulas. The net SN can be obtained from a WF-net (say WN) by replacing
each transition corresponding to a task (say T) with the JamSession net associ-
ated to a formula (say NF). Let In and Out be the source and the sink of NF
respectively. Then, the next rules can be used for the replacement of T by NF :

1. Add transitions it and ot and arcs (it, In) and (Out, ot) labeled as ∞ and z
respectively, where z is aBool variable.

2. Replace each arc (p, T) or (T, p) by (p, it) or (ot, p) respectively.

As an alternative, the formula may be defined as an element net instead of
embedding it in the WF-net. In this case the rules are:

1. Add a sink transition t to NF with a label for vertical synchronization, e.g. λ.
Furthermore, add an arc (Out, t) with a Bool variable as the label and define
the resulting net as an element net, say ENF .

2. Add a place pF of ENF type to the WF-net and two transitions it and ot s.t.
ot is labeled as λ̄. Furthermore, add the arcs (it, pF) and (pF, ot) labeled as
ENF and z respectively, where z is a variable of ENF type.

3. Replace each arc (p, T) or (T, p) by (p, it) or (ot, p) respectively.

In both cases, the last rule must preserve the arc labels. The latter replace-
ment is more suitable for interactions that require the parallel composition of
multiple instances of the same formula. In such a case, the expression of the arcs
(it, pF) and (pF, ot) should be defined with a number of constants and variables
according to number of required instances.

Example 2. The interaction of Example 1 can
be modeled using the WF-net for the paral-
lel composition of two tasks (shown on the
right). In Fig. 2, the tasks have been replaced
(using the two approaches above) by the nets
corresponding to each protocol call. The net
tokens are represented as black dots with an arrow pointing to the marked net.
The starts stand for a net of a predicate call or a move order.

A workflow is correct if its WF-net is sound [12]. Three conditions are
required to satisfy this property. First, from the initial marking, it is always
possible to reach the final state. Second, the final marking is the only marking
reachable with a token at o. Finally, every task must be performed for at least
one execution of the workflow. We use this property to define the correctness
of a JamSession interaction. Note that the net resulting from the above rules is
also a WF-net and preserves all the nodes from WN . Therefore, we may assume
that any marking of WN is also a marking of N (the remaining places of SN are
empty, except SGL). In a sound interaction there should be no conflict in the
use of agents, i.e, if the evaluation of a predicate or mover order is required then

Modeling and Simulating Interaction Protocols Using Nested Petri Nets 145

Fig. 2. A system net for the JamSession interaction of Example 1

it will be eventually completed. Furthermore, the interaction should terminate
by reducing all formulas along a workflow path to a truth value. The soundness
of WN ensures that if there exists a dead state other than o, then it is due to a
transition in the net of a formula, in particular a predicate or move transition.

Definition 3. Let SF = {F1, . . . , Fn} be a set of formulas over a JamSession
specification J . Let WN be a sound WF-net over the tasks T1, . . . , Tn where for
all 1 ∼ i ∼ n, Ti is associated to Fi. Furthermore, let N be the NPN obtained
from J , SF and WN . The interaction N is sound for an initial marking I0 if
and only if N terminates and for any marking M , I0[∗∅M implies M [∗∅o.

The NPNs in which the vertical synchronization consumes the child nets
are called NPNs with autonomous elements. For these nets, a finite coverability
tree can be effectively constructed [9]. The leaves of this tree allow to decide
termination and investigate properties of infinite sequences and dead markings.
The nets defined in Sect. 4 are NPNs with autonomous elements in which the net
tokens may share a set of basic places belonging to SN . This extension has little
influence on the construction of the coverability tree. Therefore, the soundness
property for a JamSession interaction can be decided by inspecting the leaves of
this tree. See Appendix A, Proposition 2 for further details.

6 Conclusions

The NPN approach provided a suitable framework for modeling and simulating
the interaction protocols in JamSession. The translation presented in this work

146 M.L.F. Venero and F.S.C. da Silva

is well-suited for automation and can be extended to other constructions. For
simplicity, we encoded agents and locations as colored tokens. However, the place
SGL can be unfolded into several places corresponding to locations and the
agents behavior can be represented as element nets. The model is easily adapted
to allow predicates dealing with several agents that may be synchronized to
perform a common task. The environment (e.g. the topology of the graph and
its initial configuration) and the protocols can be modified without affecting the
system structure. Therefore, we believe it can be helpful for analyzing multi-
agent interactions involving recursion, e.g. in related initiatives such as LCC.
The main disadvantage of this approach is the lack of automated tools for NPNs.
Nevertheless, model checking tools can help in verifying termination, reachability
and the soundness property defined in this paper. Preliminary results on this
direction can be found in [13].

Acknowledgments. The authors are grateful to the anonymous reviewers for their
comments on an earlier version of this paper.

A Proofs

In this section we prove that, given a JamSession formula F and an initial config-
uration of the graph, the NPN obtained from Definition 2 has a firing sequence
that simulates the reduction sequence of F (Proposition 1). Furthermore, we
show that the soundness property defined for a JamSession interaction is decid-
able (Proposition 2). In the later we say that a marking Mf of a NPN associated
to a JamSession formula is final if there is a single token c at the sink place and
all other places, but SGL, are empty. This is denoted as M c

f . We will assume
that a marking may contain empty places not belonging to the net.

Lemma 1. Let J be a JamSession specification, F be a JamSession formula, st
an initial configuration of the graph of locations and N be the NPN associated
to J and F . If F

st,stf−−−≡ c with c ⇑ Bool then there is Mf s.t. I0[∗∅M c
f and

M c
f (SGL) = stf .

Proof. The property trivially holds if F ⇑ {∞,∈}: the only transition in net
(tF) is enabled in I0 and, after it fires, the final marking MF

f is obtained. Hence,
we have I0[tF ∅M c

f with F = c and I0(SGL) = M c
f (SGL) = st = stf . If F =

move(a, l1, l2) then F
st,stf−−−−≡ c either by rule 6 or 7. In both cases we have

st(a) = l1 and, by definition of N , I0 has a token (a, l1) at SGL. Since I0(In) =
∞, the transition tm is enabled and an autonomous step occurs. After that, the
In place is empty, the Out place has a token which coincides with c and SGL
is updated according to the rule applied. Hence, I0[tm∅M c

f and M c
f (SGL) = stf

holds. When F = [a, l] pd(. . .) then F
st,stf−−−−≡ c by rule 8 and hence st(a) = l.

Therefore, (a, l) ⇑ I0(SGL), the transition tp is enabled and an autonomous
step occurs. After that, the In place is empty, SGL remains unchanged and the

Modeling and Simulating Interaction Protocols Using Nested Petri Nets 147

Out place has a token c using the binding x = c. Thus, we have I0[tp∅M c
f and

I0(SGL) = M c
f (SGL) = st = stf .

For the remaining cases, we use induction on the length of the sequence

F
st,stf−−−≡ c. If F = F1 ⊇ F2, then by rules 3–5, we have that F1

st,st1f−−−≡ c1
with c1 ⇑ {∞,∈}. Note that I0 can be considered as an initial marking for the
net obtained from F1, say N1. By induction, there is a final marking Mf,1 s.t.
I0[∗∅M c1

f,1 and M c
f (SGL) = st1f . This marking for N1 also enables the transition

t→ which, after firing, removes c1 from Out1. If c1 = ∈ then F
st,st1f−−−≡ c1 using

rule 3 and t→ adds c1 = c to Out2 which is also the sink place of N . Hence, we
have I0[∗∅M c1

f,1[t→∅M c
f and M c

f (SGL) = st1f = stf . On the contrary, if c1 = ∞
then F ≡∞ ∞ ⊇ F2

st1f ,θ,st1f ,θ−−−−−−−≡ F2θ by rule 4. Besides, c1 is added at In2 by t→,
leading to a marking M ∗. The net N2 for F2 coincides with net for F2θ (say N ∗

2)
and M ∗ is an initial marking for N ∗

2. Using induction, we have that if F2θ ≡! c
then there M ∗[∗∅M c

f and M c
f (SGL) = stf . Since M c

f is also a final marking for
N , we obtain I0[∗∅M c1

f,1[t→∅M ∗[∗∅M c
f . The proof is analogous in case F = F1∨F2.

When F = [l] pt(. . .) we have F
st,θ,st,θ−−−−−≡ F1 by rule 9. Let N1 be the net

associated to F1. By the induction hypothesis, if F1
st,stf−−−≡ c then there is Mf,1

s.t. I1 = M11[∅M21[∗∅Mk1 = M c
f,1 and M c

f,1(SGL) = stf . Note that, in N ,
the transition tc is enabled and we have the autonomous step I0[tc∅M1 where
M1(In) = M1(Out) = → and M1(pc) = (ENpt, Ipt). By Definition 2, the ele-
ment net ENpt has the same structure as N1, except for SGL and the two
sink transitions at the end. Hence, the marking Ipt ∪ I0(SGL) coincides with
I1. Furthermore, for every marking Mi1 in the sequence I1[∗∅M c

f,1 we obtain a
marking Mi in N by defining Mi(In) = Mi(Out) = →, Mi(SGL) = Mi1(SGL)
and Mi(pc) = (ENpt,Mi1 − Mi1(SGL)) with 1 ∼ i ∼ k. Thus, we obtain a
sequence M1[∅M2[∗∅Mk of autonomous steps in N . The marking Mk enables the
transition trc in the net token at pc. At the same time, the transition tc in N
gets enabled. Therefore, by a vertical step, the net token is removed from pc and
a token c is added at Out reaching desired final marking. All in all, we obtain
the sequence I0[∅M1[∗∅Mk[∅M c

f s.t. M c
f (SGL) = stf . ��

Lemma 2. Let J be a JamSession specification, F be a JamSession formula, st
an initial configuration of the graph of locations and N be the NPN associated

to J and F . If F
st,st′
−−−≡ F ∗ with F ∗ /⇑ Bool then there is a dead marking M s.t.

I0[∗∅M , M(SGL) = st∗ and M(Out) = →.
Proof. If F = F ∗ then either F = move(a, l1, l2) or F = [a, l] pd(. . .) none of the
rules can be applied. This is due to the fact that st(a) ⊆= l1 and hence in the
initial marking I0, there is no token (a, l1) at SGL. Therefore, the only transition
in net is not enabled, the initial marking is dead and we obtained I0[∗∅I0 = M ,
M(Out) = → and M(SGL) = st = st∗.

We proceed using induction on the length of the sequence F
st,st′
−−−≡ F ∗ and

the size of the formula. If F = F1 � F2 with � ⇑ {∨,⊇} then we have the next

148 M.L.F. Venero and F.S.C. da Silva

two cases. Let N1 and N2 be the nets obtained from F1 and F2 respectively. If
F1

st,st1−−−≡ F ∗
1 with F ∗

1 /⇑ Bool then F ∗ = F ∗
1 �F2 and st1 = st∗. Using induction we

have that, for N1 there is a dead marking M ∗
1 s.t. I0[∗∅M ∗

1 and M ∗
1(SGL) = st1.

Since Out1 (the sink place of N1) is empty, the transition t∩ is not enabled and

the marking is also dead for N . Otherwise, F1
st,st1−−−≡ c and F ≡∞ c�F2

st1,θ,st1,θ−−−−−−≡
F2θ

st1 ,st′
−−−−≡ F ∗. Then, by Lemma 1, I0[∗∅M c

f,1 for N1. The same firing sequence
can be considered for N leading to the firing of the transition t∩. The marking
obtained is an initial marking for N2 (which coincides with the net for F2θ).
Let denote this marking as I1. Now, using induction, we have that I1[∗∅M , M
is dead, M(SGL) = st∗ and M(Out2) = →. The required result holds since
I0[∗∅M�

f,1[t∩∅I1[∗∅M and M is also a dead for N .

Finally, if F = [l] pt(. . .) we have F
st,θ,st,θ−−−−−≡ F1 by rule 9. By the induction

hypothesis, the net N1 corresponding to F1 has a firing sequence s.t. I1[∗∅M1,
M1 is a dead marking, I1(SGL) = st, M1(SGL) = st∗ and the sink place of
N1 is empty. For the net N we have I0[tc∅M ∗ where M ∗(In) = M ∗(Out) = →
and M ∗(pc) = (ENpt, Ipt). Since ENpt has the same set of places as N1 except
for SGL, the sequence I1[∗∅M1 can be considered as the inner sequence of the
net token at pc. Hence, we obtain a sequence I0[∗∅M ∗[∗∅M of autonomous steps
in N s.t. M(SGL) = st∗. However, since M1 is dead and the Out place of the
net token is empty, the transitions for vertical synchronization will never fire.
Therefore M is also dead in N . ��
Proposition 1. Let J be a JamSession specification, F ⇑ Σ be a JamSession
formula, st an initial configuration of the graph of locations and N be the NPN
associated to J and F . Then, there is a firing sequence of N simulating the
reduction sequence of F .

Proof. When the reduction sequence of F is finite, the result follows from Lem-
mas 1 and 2. It remains to show that, if there is an infinite sequence of reductions
starting from F and st then there is also an infinite firing sequence with N .
Note that, all rules of Table 1 reduce the size of the formula w.r.t the num-
ber of operations and entities, but the last one. Hence, if there is an infi-
nite reduction sequence from F , there is also an infinite reduction sequence
from a protocol call which is a subterm of F . Therefore, we may assume that
F = F1 � [l]pt(...) � F2 ≡∞ [l]pt(...) � F2 and [l]pt(...) leads to an infinite reduc-
tion sequence. Since F1 ≡! c, we use Lemma 1 to obtain a firing sequence of
N till the creation of the net token corresponding to [l]pt(...). Using induction
on the marking structure we obtain an infinite firing sequence corresponding to
the reduction sequence of [l]pt(...). From that firing sequence, we construct an
infinite sequence of autonomous steps for N which completes the proof. ��
Proposition 2. Soundness is decidable for JamSession interactions.

Proof. The coverability tree for a NPN with autonomous elements is constructed
in [9] as follows. The nodes of the tree are labeled with markings of N . The root
of the tree is labeled as I0 and any internal node labeled by M has a child

Modeling and Simulating Interaction Protocols Using Nested Petri Nets 149

node labeled M ∗ for each M ∗ s.t. M [∅M ∗. The leaves of the tree are classified as
final (dead markings), covering (markings leading to infinite cycles) and iterative
(markings leading to infinite recursion). A node labeled as M ∗ is called covering
if it has an ancestor labeled as M s.t. M � M ∗, where � is a quasi-ordering based
on the tree structure of the markings. A node labeled as M ∗ is called iterative if
it has an ancestor labeled as M s.t. both markings are obtained from the firing
of a transition t that generates the same net token, and the last token is nested
in the first one. The net is terminating if all leaves are final.

The extension introduced in Definition 1 does not affect the tree structure of
the markings. This is due to the fact that the shared places belong to SN and
no net token is created for this net component. Therefore, for these nets, the
quasi-ordering � and the covering nodes can be defined as in [9]. Nevertheless,
a further condition is required in order to ensure that an iterative node leads to
an infinite recursive sequence. Since the transition t may have shared places as
input, we should also demand that M ∗ covers the marking of the shared places
in M , i.e. M(Ps) � M ∗(Ps). This relation can be effectively computed for places
of basic type (or even for multi-level nets). Therefore, the coverability tree is
finite. In order to decide the soundness of Definition 3 it is enough to check that
all leaves of the tree are labeled by markings with a single token at o and the
remaining places empty, except SGL. These markings are dead because o is a
sink and there is no transition in N having SGL as the only input place. ��

References

1. Bandini, S., Manzoni, S., Vizzari, G.: Multi-agent approach to localization prob-
lems: the case of multilayered multi-agent situated system. Web Intell. Agent. Syst.
2(3), 155–166 (2004)

2. Chang, L., He, X., Shatz, S.M.: A methodology for modeling multi-agent systems
using nested Petri nets. Int. J. Softw. Eng. Knowl. Eng. 22(7), 891–925 (2012)

3. Corrêa da Silva, F.S.: Knowledge-based interaction protocols for intelligent inter-
active environments. Knowl. Inf. Syst. 30, 1–24 (2012)

4. Corrêa da Silva, F.S., Venero, M.L.F., David, D.M., Saleemb, M., Chung, P.W.H.:
Interaction protocols for cross-organisational workflows. Knowl. Based Syst. 37,
121–136 (2013)

5. Esteva, M., Rodŕıguez-Aguilar, J.A., Sierra, C., Garcia, P., Arcos, J.L.: On the
formal specification of electronic institutions. In: Sierra, C., Dignum, F.P.M. (eds.)
AgentLink 2000. LNCS (LNAI), vol. 1991, pp. 126–147. Springer, Heidelberg (2001)

6. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Springer, Heidelberg (1992)

7. Köhler, M., Moldt, D., Rölke, H.: Modelling mobility and mobile agents using nets
within nets. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol.
2679, pp. 121–139. Springer, Heidelberg (2003)

8. Lomazova, I.A., Schnoebelen, P.: Some decidability results for nested Petri Nets.
In: Bjorner, D., Broy, M., Zamulin, A.V. (eds.) PSI 1999. LNCS, vol. 1755, pp.
208–220. Springer, Heidelberg (2000)

9. Lomazova, I.A.: Recursive nested Petri nets: analysis of semantic properties and
expessibility. Program. Comput. Softw. 27(4), 183–193 (2001)

150 M.L.F. Venero and F.S.C. da Silva

10. Lomazova, I.A.: Modeling dynamic objects in distributed systems with nested Petri
nets. Fundam. Informaticae 51(1–2), 121–133 (2002)

11. Robertson, D.: Multi-agent coordination as distributed logic programming. In:
Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 416–430.
Springer, Heidelberg (2004)

12. van der Aalst, W.M.P.: Interorganizational workflows: an approach based on mes-
sage sequence charts and Petri nets. Syst. Anal. Model. Simul. 34(3), 335–367
(1999)

13. Fernández Venero, M.L., Corrêa da Silva, F.S.: On the use of SPIN for studying
the behavior of nested Petri Nets. In: Iyoda, J., de Moura, L. (eds.) SBMF 2013.
LNCS, vol. 8195, pp. 83–98. Springer, Heidelberg (2013)

PetriCode: A Tool for Template-Based Code
Generation from CPN Models

Kent Inge Fagerland Simonsen1,2(B)

1 Department of Computing, Bergen University College, Bergen, Norway
2 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

kifs@hib.no, kisi@imm.dtu.dk

Abstract. Code generation is an important part of model driven
methodologies. In this paper, we present PetriCode, a software tool for
generating protocol software from a subclass of Coloured Petri Nets
(CPNs). The CPN subclass is comprised of hierarchical CPN models
describing a protocol system at different levels of abstraction. The ele-
ments of the models are annotated with code generation pragmatics
enabling PetriCode to use a template-based approach to generate code
while keeping the models uncluttered from implementation artefacts.
PetriCode is the realization of our code generation approach which has
been described in previous works.

Keywords: Model-driven development · Implementation of platforms
and tools · Formal methods for software engineering · Coloured Petri
Nets

1 Introduction

Coloured Petri Nets (CPNs) [5] is a graphical modelling language combining
Petri Nets and the programming language Standard ML. CPNs have been widely
used for modelling and validation of concurrent systems. CPN Tools [6] provides
tool support for construction, simulation and analysis of CPN models but does
not provide tool support for automatic code generation from CPN models. The
contribution of this paper is to present PetriCode which complements CPN Tools
by providing tool support for automatic code generation from CPN models.
PetriCode implements the approach presented in [19].

In contrast to previous works [16,18,19], this paper focuses on the technical
software realization of our approach whereas earlier work has focused on the con-
ceptual and theoretical aspects of our modelling and code generation methods.
The intended use of PetriCode is to generate software for network protocols in a
flexible way based on annotated and descriptive protocol CPN models [18] and
for different target languages and platforms.

PetriCode takes a template-based approach to code generation based on CPN
models annotated with pragmatics. Pragmatics are syntactic annotations on
CPN model elements that are used to direct the code generation procedure.

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 151–163, 2014.
DOI: 10.1007/978-3-319-05032-4 12, c© Springer International Publishing Switzerland 2014

152 K.I.F. Simonsen

Pragmatics are associated with code templates that are invoked for code gener-
ation. Our code generation approach [19] consists of three main steps. The first
step is to parse the CPN model and automatically derive additional pragmatics
for the CPN model. The derived pragmatics are used to provide the code gen-
erator with additional information of what is represented by the various CPN
structures. The second step is to construct an Abstract Template Tree (ATT)
which is used as an intermediary structure for code generation. The ATT pro-
vides a platform independent data structure that simplifies the final step of the
code generation. The third and final step is the actual code generation where
the ATT, using a series of visitors and templates, is transformed into code by
invoking the templates associated with pragmatics.

The rest of this paper is organized as follows. Section 2 shows, by an exam-
ple, how PetriCode can be used to generate code for a simple framing protocol.
Section 3 provides an overview of the software architecture and design of Petri-
Code. Section 4 describes the pragmatics module which is responsible for parsing
and deriving pragmatics. Section 5 describes the ATT module which is respon-
sible for generating the ATTs. Section 6 describes the code generation module
which is responsible for generating code based on ATTs and templates. Section 7
contains a discussion of related work. Concluding remarks and future work are
presented in Sect. 8.

We assume that the reader is familiar with the basic concepts of Petri Nets
(places, transitions, enabling and occurrence/firing). Due to space limitations
we only provide a high-level introduction to CPNs. The reader is referred to [5]
for a detailed introduction to CPNs.

Details on how to download and operate PetriCode are available at the Petri-
Code project website [15]. Due to space limitations we cannot present all details
of PetriCode in this paper. For a more detailed presentation, we refer the reader
to the technical report [17].

2 Example Model and Usage

In order to present the workings of PetriCode, we use a simple framing proto-
col as a running example. The protocol is described in detail in the technical
report [19]. The model is divided into three hierarchical layers: the protocol sys-
tem, principal, and service layers. The protocol system layer, depicted in Fig. 1,
shows the principal agents of the protocol system as well as the connections
between them. In the example, those are the Sender, Receiver and the Chan-
nel connecting them. In Fig. 1, the substitution transitions Sender and Receiver
(rectangles with double-lined borders) are both annotated with a ∪∪principal∅∅
pragmatic. This conveys to the code generator that the sub-modules represented
by each of these substitution transitions represent principal agents of the sys-
tem. The third substitution transition in the protocol system module, Channel, is
annotated with the pragmatic ∪∪channel∅∅ specifying that the underlying module
defines the channel. The ∪∪channel∅∅ pragmatic, in addition, has some attributes
describing the service provided by the channel. In the rest of this paper, we focus

PetriCode: A Tool for Template-Based Code Generation from CPN Models 153

Fig. 1. The protocol system level

Fig. 2. Example of a principal level module: The Sender module

on the Sender principal of the protocol. Figure 2 shows the principal level of the
sender which is the sub-module of the substitution transition Sender in Fig. 1.
The principal level contains the services provided by each principal as well as
life cycle variables which control when the various services can be called and
places which hold global data for the principal. The Open and Close services
(represented by substitution transitions with a ∪∪service∅∅ pragmatic) opens and,
respectively, closes the channel to the Receiver while the Send service sends a
message over the channel. To illustrate the models of the services, we provide
details on the Send service. The Send service, shown in Fig. 3(left), contains the
sending part of the protocol. The Send service divides a message into smaller
fragments called frames. Each frame is sent together with a bit (flag) that is set
if the current frame is the last frame of the message, and unset otherwise. In the
model, the message, which is a parameter to the Send service, is broken up into
frames by the transition Partition. Then the fragments are sent one by one in a
loop (from the Start place to the PacketSent place) until all the fragments have
been sent. The ∪∪service∅∅ pragmatic is used on transition Send (top) to indicate
the entry point of the service. At the bottom of Fig. 3, the pragmatic ∪∪return∅∅
on the Completed transition indicates the termination of the service.

Usage Example. In order to generate code from the CPN model, PetriCode is
invoked with appropriate arguments. An example of such an invocation is shown
in Listing 1. The first step of the program is to parse the model and automat-
ically add derived pragmatics. It is also possible, as part of the command-line
arguments, to give further pragmatics and rules for deriving them as will be

154 K.I.F. Simonsen

Fig. 3. The Sender Send module (left) and generated code (right)

discussed in Sect. 4. The second step is to generate the ATT which is discussed
further in Sect. 5. The third and final phase is the code generation where the -o
option provides the output directory where the generated code is placed and the
-b option takes a binding descriptor file as an argument. The binding descriptor
file provides a set of bindings of pragmatics to code generation templates for the
specific platform under consideration. These bindings (known as template bind-
ings) are described in further detail in Sect. 6. In this case binding descriptors
for the Groovy platform are used. One thing that is not visible in the listing is
a reference to pragmatics descriptors which describes the available pragmatics.
This is because a core set of pragmatics, which contains most of the pragmatics
used in this particular example, are defined in the tool and available by default.

PetriCode: A Tool for Template-Based Code Generation from CPN Models 155

Listing 1. Command to run PetriCode for the simple framing protocol example.

petriCode -o . -b ./groovy.bindings ./FramingProtocol.cpn

After running the command shown in Listing 1, two files will be generated in
the output directory. Each of these files contain a single Groovy class, one for the
Sender principal and one for the Receiver principal. For the Sender class there
will be exactly three methods, one for each of the services that the principal
provides (see Fig. 2). The generated code for the Send service is shown in Fig. 3
(right).

3 Architecture and Design of PetriCode

PetriCode is divided into three functional modules corresponding to the three
main steps in our code generation approach. These are the Pragmatics, ATT,
and Code generation modules.

When designing and implementing PetriCode, there was a number of key
requirements that needed to be addressed and which affected the choice of soft-
ware technologies used for the implementation. An important feature of Petri-
Code is the ability to read, parse and write CPN models stored in the format of
CPN Tools [6] which is one of the most widely used tools for construction and
analysis of high-level Petri Nets. The Java library Access/CPN [21] provides
this capability for the Java platform. Therefore, in order to use Access/CPN
it is necessary to choose a platform with good integration with Java. Further-
more, in order to accommodate pragmatics it is required to be able to refine the
meta-model underlying Access/CPN without introducing a complicated trans-
lation layer. Another important requirement was to easily be able to create
Domain Specific Languages (DSLs) for defining pragmatics descriptors and tem-
plate bindings. The Groovy programming language [3], which runs on the Java
Virtual Machine, was chosen since it has a seamless integration with all Java
libraries including Access/CPN. Groovy also has a simple mechanism (not avail-
able to Java) to manipulate classes at runtime and also has good support for
many types of DSLs. Finally, Groovy has additional useful features such as a
command-line interface options builder and a powerful template engine that can
be used for code generation purposes.

Overall Architecture. Figure 4 provides an architectural overview of PetriCode.
PetriCode is controlled by its main class PetriCode which makes up the Command
Line Interface of the application. PetriCode parses the command-line arguments
and calls the modules shown directly below the Command Line Interface in Fig. 4
as appropriate. PetriCode uses the CliBuilder included in Groovy to parse com-
mand line arguments. All the modules depend on Access/CPN for reading and
manipulating CPN models. As explained above, PetriCode is implemented using
the Groovy language and builds upon the Groovy and Java platforms. All mod-
ules are dependent on the data model for Pragmatics. The ATT and Generation
modules also share a data model for ATTs.

156 K.I.F. Simonsen

Fig. 4. PetriCode architecture Fig. 5. Data model for the Pragmatics module

4 Pragmatics Module

The Pragmatics module has three main responsibilities: reading and parsing CPN
models, parsing pragmatics descriptors, and computing derived pragmatics for
CPN models. The pragmatics derivation process is driven by a DSL which is used
to parse the pragmatics descriptor files containing information about the prag-
matics used in a model. A class diagram showing the meta-model for pragmatics
is provided in Fig. 5. In the diagram, pragmatics are separated via two cate-
gorizations. One categorization is whether the pragmatic is explicit or derived,
where explicit pragmatics must be added to the CPN model by the modeller, and
derived pragmatics are computed automatically based on structural patterns.
This categorization is represented in Fig. 5 by the Derived class. The second
categorization is whether the pragmatic is supplied by the user (a custom prag-
matic) or is part of the built-in core pragmatics of PetriCode. This is represented
by the CustomPragmatics class.

The pragmatics description language is a builder language that describes
the available pragmatics. Listing 2 gives an example of a pragmatic descriptor
for an explicit pragmatic (∪∪principal∅∅) and a derived pragmatic (∪∪endLoop∅∅).
A core set of pragmatics is provided by PetriCode while others can be provided
by the user using the pragmatics description language. The language consists of
descriptors that each describe a pragmatic. Each descriptor consists of a name
(which is the name of the pragmatic) followed by a pair of parenthesis. Inside the
parenthesis, the parameters of the pragmatics definition are given in the form of
key-value pairs. The possible parameters for a pragmatics descriptor are origin

PetriCode: A Tool for Template-Based Code Generation from CPN Models 157

and derivationRules. The origin parameter indicates whether the prag-
matic is explicitly given by the modeller or should be automatically derived. The
origin field of ∪∪Principal∅∅ indicates that this is an explicit pragmatic meaning
that it will not be generated automatically. The derivationRules parame-
ter gives structural patterns that is used to find the elements of a CPN model
where a derived pragmatic should be added. In addition, both ∪∪Principal∅∅ and
∪∪endLoop∅∅ have some constraints on where they may reside in the model which
is supplied via the constraints field.

Listing 2. Examples of the core pragmatics for PetriCode.

principal(origin: ’explicit’, constraints: [levels: ’protocol’,
connectedTypes: ’SubstitutionTransition’])

endLoop(origin: ’derived’, derviationRules:
[’new PNPattern(pragmatics: [\’Id\’],
minOutEdges: 2, backLinks: 1)’],

constraints: [levels: ’service’, connectedTypes:’Place’])

Pragmatics Derivation. The method for deriving pragmatics is based on travers-
ing each service module and checking each node (i.e., place or transition) against
structural patterns described by the pragmatic descriptors. The last pragmatic
descriptor in Listing 2 is the ∪∪endLoop∅∅ pragmatic. ∪∪endLoop∅∅ is a derived
pragmatic with a structural pattern on the field derivationRules. An important
concept for pragmatics derivation and indeed the entire code generation app-
roach is the control flow path. The control flow path consists of all the nodes
annotated with the ∪∪Id∅∅ pragmatic where the first node would be the node of
a service annotated with ∪∪service∅∅ pragmatic and the last is annotated with
∪∪return∅∅ (see Fig. 3). Each of the ∪∪Id∅∅, ∪∪service∅∅ and ∪∪return∅∅ pragmatics
are explicit and must be added by the modeller. For derived pragmatics, a list of
patterns are supplied. Each pattern, will be matched against each node on the
control-flow path. If a pattern matches, the corresponding pragmatic is added
to the node.

5 ATT Construction Module

The ATT module is responsible for generating ATTs and the main classes that
make up the ATTs are shown in Fig. 6. An ATT is an internal temporary data
structure of PetriCode. Its purpose is to simplify the code generation process
and make it more flexible by organizing so-called control flow blocks at the
service modules in an ordered tree. When this tree has been constructed, code
generation is performed by traversing the tree. The tree is built up according
to the hierarchical structure of the considered subclass of CPN models down to
the service level. At the service level, the control flow structure of the service is
reflected in the structure of the ATT.

The ATT generation is done by the ATTFactory class which produces an
instance of the class AbstractTemplateTree. The AbstractTemplateTree has as its

158 K.I.F. Simonsen

Fig. 6. Classes of the ATT

descendants instances of the classes Atomic, Conditional, Loop, Principal and Ser-
vice corresponding to the different kinds of control flow blocks. The Principal and
Service classes each have a link going to the Instance class of the Access/CPN
model which represents substitution transitions. The Block class has two outgo-
ing associations with Place nodes from Access/CPN. The Atomic block has an
association with transitions.

An ATT is implemented as an ordered tree. Each non-leaf element in the
tree has a list of children. The root element of an ATT is an instance of the
AbstractTemplateTree class. Each child of the root element is expected to be of
the class Principal. The Principal class has as its children the services of the
principal. The Service class represents a service, its children are the control flow
blocks of the service according to the block structure introduced in [19].

The ATT of the Sender side of the example in Sect. 2 is shown in Fig. 7.
The tree has a single root representing the entire protocol system. At the next
level, the principals are represented. For brevity, only the principal Sender of
the protocol is shown. The children of the principal nodes are the services, and
their children represent the control flow block structure of the services. Looking
specifically at the Send service of the Sender principal, we see that the service has
three direct descendants. These descendants represent the loop in the service and

PetriCode: A Tool for Template-Based Code Generation from CPN Models 159

Fig. 7. Example ATT

one atomic block on each side of the loop. The first of the nodes is the partition
atomic block which contains the partition pragmatic which is where the message
sent by the framing protocol is divided into smaller fragments. The second node
is the loop, and the final node is the atomic block after the loop which does not
have any pragmatics and as such does not produce any code.

6 Code Generation Module

The generation module is responsible for generating code from ATTs. In order
to generate code from CPNs annotated with pragmatics, the pragmatics must
be connected to code generation templates. This is done using the Binding class
which is connected to Pragmatics (see Fig. 5). The bindings are produced by
another DSL which parses user provided template bindings and returns an object
structure for the template bindings. The code generation phase can be divided
into two separate sub-phases. The first sub-phase is the code generation for each
element in the ATT. A visitor visits each element in the ATT in no particular
order. The second sub-phase in the code generation phase is to stitch together the
generated code for each ATT node. This is done by a depth-first traversal of the
ATT. For each node, when all the sub-nodes have been visited, the %%yield%%
tag in the code generated for the node is replaced by the concatenation of the
text field of all the immediate descendants of the node. When this has been done

160 K.I.F. Simonsen

for each principal in the protocol, the code generation is complete and the code
is written to the output directory.

Template bindings. In order to select the proper code template for each prag-
matic, the user supplies PetriCode with template bindings. These bindings are
supplied using a DSL. The DSL allows the user to specify the template and other
necessary information about a template and how it should be applied.

Listing 3 shows two examples of template bindings. The first binding is a
binding for the ∪∪Principal∅∅ pragmatic, which is used on the Sender and Receiver
substitution transitions in Fig. 1. This is a container, which means that the gen-
erator should add the code generated to the principals children in the ATT to it.
The other fields are pragmatic (which names the pragmatic) and template
(which contains the file-name of the template). The second template binding
binds ∪∪endLoop∅∅, which is placed on the Completed place (see Fig. 3) after prag-
matics derivation. In addition, it is possible to add the field parameterStrategy
to template bindings. This field determines how the parameters of the template
should be constructed.

Listing 3. Two examples of template bindings.

classTemplate(pragmatic: ’Principal’,
template: ’./groovy/mainClass.tmpl’, isContainer: true)

endLoop(pragmatic: ’endLoop’,
template: ’./groovy/endLoop.tmpl’)

7 Related Work

Many tools exist for generating software from models. Most of the tools, however,
support only the generation of static parts of the code and, partly, standard
behaviour [7]. This does less than it could to help create robust software since
the non-trivial parts are still written manually. However, some tools allow for
generating more than structural parts of software. In the discussion on related
work below, we consider only tools and approaches that do full code generation
where no manual coding is necessary.

Process-Partitioned CPNs (PP-CPNs) [9] have been used to automatically
generate code for several purposes including protocol software. PP-CPNs are a
restricted sub-class of CPNs. Code is generated from PP-CPNs by first trans-
lating the PP-CPN into a control flow graph (CFG), then translating the CFG
into an abstract syntax tree for an intermediate language. The CFG is translated
into another intermediary representation which is dependent on the target plat-
form, and from this representation code is generated. In [9], PP-CPNs are used
to model and obtain an implementation for the DYMO routing protocol using
the Erlang programming language and platform. Both PP-CPNs and our mod-
elling language are subclasses of CPNs. However, where we rely on pragmatics
to control code generations, PP-CPNs rely on restricted colour sets and CPN
structure to allow the generator to deduce the needed information. Our approach

PetriCode: A Tool for Template-Based Code Generation from CPN Models 161

also models the environment of the services while PP-CPNs are geared to mod-
elling only the intents of the services. This allows us to represent the protocol
at higher levels of abstraction on the protocol and principal levels as well as on
the service level. It also allows us to define how the services should be called in
a structured way by third-party software.

There are several tools for modelling and generating protocol software based
on the Specification and Description Language (SDL) [2,4]. SDL is created for
the purpose of modelling protocols, and is extensively used in the telecommuni-
cations industry. The IBM Rational SDL Suite (previously Tau SDL Suite and
SDT) is among the most well known proprietary tools for SDL. The Rational
SDL Suite supports code generation for SDL models to C and C++ code and
also supports verification through model checking. Another SDL tool is Jade [14]
that supports editing and analysis/verification of SDL models. Code generation
for JADE is still in development. SDL Integrated Tool Environment (SITE) sup-
ports editing of SDL models and code generation to Java and C++ code. SITE
also supports some analysis of SDL models. SDL is a graphical language based on
Finite State Machines (FSMs). This allows verification of protocols using model
checking techniques. Compared to our approach, SDL is not as easily extensible
as our approach.

Renew [12] is a tool that allows creation and execution of object-oriented
Petri Nets. Renew supports several modelling formalisms based on various forms
of Petri Nets. Renew supports Reference nets which can be annotated with
Java code and can be executed using a built-in simulator engine. The simulator
can execute the nets incorporating the Java annotations in a headless mode so
that no visualization will occur. This means that the simulations can be used
as stand-alone programs. The simulation approach is in contrast to our code
generation approach where code is generated and can be inspected and compiled
as computer programs created with traditional programming languages.

The Unified Modelling Language, and in particular state charts and sequence
diagrams, has been used to model and generate code for protocols in several
approaches [1,10,11,13,20]. Several tools exists for UML which support analy-
sis and code generation in various ways. Since our approach is based on CPNs,
verification is directly supported using CPN Tools [8]. This may be more chal-
lenging with UML-based approaches. Also, our pragmatics- and template-based
approach allows us to give the user a great deal of flexibility by supporting the
definition of custom pragmatics and templates.

8 Conclusions and Future Work

In this paper we have described a tool that can generate code from CPNs anno-
tated with pragmatics. We have shown how this tool works by using the example
of a simple communication protocol. The goal of our tool is to be able to generate
code that is complete in the sense that no further coding should be required to
use the services our code provides. Another important goal has been to generate
code that is readable and analysable for human programmers.

162 K.I.F. Simonsen

The input of the tool is an instance of a specific class of CPN models. A main
goal of the tool, and of our approach in general, is that these models should be
descriptive in the sense that they can be used to convey the operation of the
modelled protocol at several levels of abstraction.

In the future, we will use the tool to evaluate our approach using a larger and
more realistic examples, and expand the range of available templates to other
languages and platforms. Another future work item we are currently working on
is to make our approach more flexible by allowing the users to easily add custom
pragmatic patterns and placement conditions. Finally, we aim at integrating
PetriCode with other popular software development tools such as Eclipse and
IntelliJ IDEA.

References

1. Alanen, M., Lilius, J., Porres, I., Truscan, D.: On Modeling Techniques for Support-
ing Model Driven Development of Protocol Processing Applications, pp. 305–328.
Springer, Heidelberg (2005)

2. Babich, F., Deotto, L.: Formal methods for specification and analysis of commu-
nication protocols. IEEE Commun. Surv. Tutor. 4(1), 2–20 (2002)

3. Groovy. Project Web Site. http://groovy.codehaus.org
4. ITU-T. Recommendation Z.100 (11/99) Specification and Description Language

(SDL) (1999)
5. Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of

Concurrent Systems. Springer, Heidelberg (2009)
6. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for

modelling and validation of concurrent systems. Int. J. Softw. Tools Technol.
Transf. 9(3–4), 213–254 (2007)

7. Kindler, E.: Model-based software engineering: the challenges of modelling behav-
iour. In: Proceedings of BM-FA ’10, pp. 4:1–4:8. ACM Electronic Libraries (2010)

8. Kristensen, L.M., Simonsen, K.I.F.: Applications of coloured Petri Nets for func-
tional validation of protocol designs. In: Jensen, K., van der Aalst, W.M.P., Balbo,
G., Koutny, M., Wolf, K. (eds.) ToPNoC VII. LNCS, vol. 7480, pp. 56–115.
Springer, Heidelberg (2013)

9. Kristensen, L.M., Westergaard, M.: Automatic structure-based code generation
from Coloured Petri Nets: a proof of concept. In: Kowalewski, S., Roveri, M. (eds.)
FMICS 2010. LNCS, vol. 6371, pp. 215–230. Springer, Heidelberg (2010)

10. Kroiss, C., Koch, N., Knapp, A.: UWE4JSF: a model-driven generation approach
for web applications. In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.) ICWE 2009.
LNCS, vol. 5648, pp. 493–496. Springer, Heidelberg (2009)

11. Kukkala, P., Helminen, V., Hannikainen, M., Hamalainen, T.D.: UML 2.0 imple-
mentation of an embedded WLAN protocol. In: Proceedings of PIMRC ’04, vol. 2,
pp. 1158–1162 (2004)

12. Kummer, O., Wienberg, F., Duvigneau, M., Schumacher, J., Köhler, M., Moldt,
D., Rölke, H., Valk, R.: An extensible editor and simulation engine for Petri Nets:
renew. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp.
484–493. Springer, Heidelberg (2004)

13. Parssinen, J., von Knorring, N., Heinonen, J., Turunen, M.: UML for protocol
engineering-extensions and experiences. In: Proceedings of TOOLS ’00, pp. 82–93
(2000)

http://groovy.codehaus.org

PetriCode: A Tool for Template-Based Code Generation from CPN Models 163

14. Pereira, C.L., da Silva, D.C., Jr., Duarte, R.G., Fernandes, A.O., Canaan, L.H.,
Coelho, C.J.N., Ambrosio, L.L.: Jade: an embedded systems specification, code
generation and optimization tool. In: Proceedings of SBCCI ’00, pp. 263–268 (2000)

15. PetriCode. Project Web Site. http://kentis.github.io/petriCode/
16. Simonsen, K.I.F.: On the use of pragmatics for model-based development of proto-

col software. In: Proceedings of PNSE ’11, vol. 723 of CEUR Workshop Proceed-
ings, pp. 179–190. www.CEUR-WS.org (2011)

17. Simonsen, K.I.F.: PetriCode: a tool for template-based code generation from CPN
models. Technical Report DTU Compute-Technical Reports-2013-11, PetriCode
(2013)

18. Simonsen, K.I.F., Kristensen, L.M.: Towards a CPN-based modelling approach for
reconciling verification and implementation of protocol models. In: Machado, R.J.,
Maciel, R.S.P., Rubin, J., Botterweck, G. (eds.) MOMPES 2012. LNCS, vol. 7706,
pp. 106–125. Springer, Heidelberg (2013)

19. Simonsen, K.I.F., Kristensen, L.M., Kindler, E.: Code generation for protocol soft-
ware from CPN models annotated with pragmatics. In: Proceedings of SBMF’13.
LNCS. Springer (2013, to appear)

20. Wehrmeister, M.A., Freitas, E.P., Pereira, C.E., Rammig, F.: Genertica: a tool for
code generation and aspects weaving. In: Proceedings of ISORC ’08, pp. 234–238.
IEEE Computer Society, Washington, DC (2008)

21. Westergaard, M., Kristensen, L.M.: The access/CPN framework: a tool for inter-
acting with the CPN tools simulator. In: Franceschinis, G., Wolf, K. (eds.) PETRI
NETS 2009. LNCS, vol. 5606, pp. 313–322. Springer, Heidelberg (2009)

http://kentis.github.io/petriCode/
www.CEUR-WS.org

FM-RAIL-BOK 2013

Twenty-Five Years of Formal Methods and
Railways: What Next?

Alessandro Fantechi(B)

DINFO - University of Florence, Via S. Marta 3, Firenze, Italy
fantechi@dsi.unifi.it

Abstract. Since more than 25 years, railway signalling is the subject of
successful industrial application of formal methods in the development
and verification of its computerized equipment.
However the evolution of the technology of railways signalling systems
in this long term has had a strong influence on the way formal methods
can be applied in their design and implementation. At the same time
important advances had been also achieved in the formal methods area.
The scope of the formal methods discipline has enlarged from the method-
ological provably correct software construction of the beginnings to the
analysis and modelling of increasingly complex systems, always on the
edge of the ever improving capacity of the analysis tools, thanks to
the technological advances in formal verification of both qualitative and
quantitative properties of such complex systems.
The thesis we will put forward in this paper is that the complexity of
future railway systems of systems can be addressed with advantage only
by a higher degree of distribution of functions on local interoperable
computers - communicating by means of standard protocols - and by
adopting a multi-level formal modelling suitable to support the verifi-
cation at different abstraction levels, and at different life-cycle times, of
the safe interaction among the distributed functions.

1 Introduction

Despite the quite long story of successful application of formal methods in the
railway domain, it cannot be yet said that a single mature technology has
emerged. The evolution of the technology of railways signaling systems in this
long term has had a strong influence on the way formal methods can be applied
in their design and implementation, and at the same time important advances
had been also achieved in the formal methods area.

The evolution of railways signalling systems has seen railways moving from a
protected market based on national railway companies and national manufactur-
ers to an open market based on international standards for interoperability, in
which systems of systems are providing more and more complex automated oper-
ation, but maintaining, and even strengthening, demanding safety standards.

The scope of the formal methods discipline has enlarged from the method-
ological provably correct software construction of the beginnings to the analysis

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 167–183, 2014.
DOI: 10.1007/978-3-319-05032-4 13, c© Springer International Publishing Switzerland 2014

168 A. Fantechi

and modelling of increasingly complex systems, always on the edge of the ever
improving capacity of the analysis tools, thanks to the technological advances
in formal verification of both qualitative and quantitative properties of such
complex systems.

In spite of these advances, the verification of complex railway signalling sys-
tems is still a main challenge and an important percentage of the cost in the
development of these systems. We can maybe speak of a “grand challenge”, that
is, where progress with regards to this challenge would contribute to advance
the whole field of verification of complex computer-based systems.

The thesis we will put forward in this talk is that the complexity of future
railway systems of systems can be addressed with advantage only by a higher
degree of distribution of functions on local interoperable computers - communi-
cating by means of standard protocols - and by adopting a multi-level formal
modelling suitable to support the verification at different abstraction levels, and
at different life-cycle times, of the safe interaction among the distributed func-
tions. A vision that can make railway applications closer to the emerging field
of the so called cyber-physical systems, made of collaborating computational ele-
ments controlling physical entities, that will pervade the human activities in the
future.

The paper is organized as follows: after recalling the first applications of
formal methods to railway signalling equipments in Sect. 2, we briefly intro-
duce model checking and direct code verification in Sects. 3 and 4 respectively.
Section 5 discusses the Model Based development approach, also in connection
with the CENELEC safety guidelines. Section 6 discusses a series of challenges
put forward by the evolution of the domain. Section 7 discusses the possibility,
offered by recent advance in the quantitative evaluation technology, to model
and evaluate dependability issues as well. Section 8 concludes the paper.

2 Early Applications of Formal Methods to Railway
Signalling

In its more general definition, the term formal methods encompasses all nota-
tions having a precise mathematical semantics, together with their associated
analysis and development methods, that allow to describe and reason about the
behaviour and functionality of a system in a formal manner, with the aim to
produce an implementation of the system that is provably free from defects –
although actually the aim of a complete proof can be only partially achieved, for
example because correctness of the actually executed code requires the proof of
correctness of the compiler as well, which is not normally available.

A general but comprehensive definition is given by the safety standard Def
Stan 00–55 [47], where a formal method is said to be composed of the following
three ingredients: “a software specification and production method that com-
prises:

– a collection of mathematical notations addressing the specification, design
and development phases;

Twenty-Five Years of Formal Methods and Railways: What Next? 169

– a well-founded logical inference system in which formal verification proofs
and other properties can be formulated;

– a methodological framework within which software can be developed from
the specification to the implementation in a formally verifiable manner.”

Railway signalling has been traditionally considered as one of the most fruit-
ful areas of intervention for formal methods [23]. Already since the end of the
eighties, a series of railway signalling products have benefited from the appli-
cation of the B formal method [1] in the design process. This method targets
software development from specification through refinement, down to implemen-
tation and automatic code generation, with formal verification at each refinement
step: writing and refining a specification produces a series of proof obligations
that need to be discharged by formal proofs. The B method is accompanied by
support tools, which include tools for the derivation of proof obligations, theo-
rem provers, and code generation tools. Hence it fits perfectly the definition of
formal method that we have cited above.

The SACEM system for the control of a line of Paris RER [16] is the first
acclaimed industrial application of B. Since then, B has been adopted for many
later designs of similar systems by Matra (now part of Siemens). One of the
most striking application has been the Paris automatic metro line 14: the report
on the verification activities in [6], tells that indeed several errors were found
and corrected during proof activities conducted at the specification and refine-
ment stages. By contrast, no further bugs were detected by the various testing
activities at system level that followed the code generation and integration.

The success of B has had a major impact in the sector of railway signalling by
influencing the definition of the EN50128 guidelines [20], issued by the European
Committee for Electrotechnical Standardization (CENELEC). These guidelines
address the development of Software for Railway Control and Protection Sys-
tems, and constitute the main reference for railway signalling equipment man-
ufacturers in Europe, with their use spreading to the other continents and to
other sectors of the railway (and other safety-related) industry. The EN50128
document is part of a group of documents regarding the safety of railway control
and protection systems, in which the key concept of Safety Integrity Level (SIL)
is defined, a number ranging from 0 to 4, where 4 indicates a high criticality, 0
gives no safety concern. The SIL is actually a property of the system, related
to the damage a failure of the system can produce, and is usually apportioned
to subsystems and functions at system level in the preliminary risk assessment
process. Also software functions are associated a level (Software SIL); assign-
ing different SILs to different components helps to concentrate the efforts (and
therefore the production costs) on the critical components. The EN50128 guide-
lines however dictate neither a precise development methodology for software,
nor any particular programming technique, but classify a wide range of com-
monly adopted techniques in terms of a rating with respect to the established
SIL of the component. Formal methods are rated as highly recommended for the
software requirements specification and software design of systems/components
with the higher levels of SIL. Formal proof is also highly recommended as a

170 A. Fantechi

verification activity. The norm however does not dictate any process in which
formal methods take a role, but just gives a list of the most common formal
methods at the time of writing. Moreover, other combinations of highly recom-
mended techniques, not including formal methods can be chosen: for example,
testing combined to full traceability to requirements is a compliant, commonly
used, approach to software verification of highest SIL software components.

Anyway, we can see that B-based methods have not so spread in railway
software development, as one could have expected by their impressing record of
successful applications in the domain. Indeed, methods like B end up to require
a substantial change to the traditional software development life cycle already
adopted in an industrial setting. The related investment cost is often perceived as
not justified in the light of the forecast benefits, and their adoption is not welcome
both to managers, and to development teams more skilled in programming than
in theorem proving. On the other hand, accompanying the traditional life cycle
with formal specification and verification techniques has often proved to have
less impact and has gained a better acceptance by managers and development
teams pushed by the need to show compliance to CENELEC norms, sometimes
as a tradeoff with respect to the promise of a full formal proof of correctness
achievable with a method that encompasses the whole development, like B.

The SACEM and similar systems are examples of ATP/ATC (Automatic
Train Protection/Control) systems that guarantee safe speed and braking control
for trains, along the line, where the main safety criterion is to guarantee that
two trains travelling at speed in the same direction stay a safe distance apart.

The basic concept in ATP/ATC is the braking curve: safety is guaranteed if
the speed is always below the line, should the speed be above the line, emergency
braking is enforced. These systems, which accommodate both train distancing
and protection of singular points of the line, are constituted by on-board compo-
nents that receive information from wayside components. In the early computer-
based systems of this kind, this communication is rather simple and occurs at
specific points of the line. As a consequence, the safety enforcing algorithms were
not excessively complex and were directly amenable to formal specification.

The other main class of signalling systems, that of interlocking, exhibits
instead complex logic relations and event-based behaviour that were not con-
veniently encoded in assertion-centric formalisms as the plain B method (and
indeed this class has prompted evolutions of B itself).

3 Railway Signalling Equipments - The Model Checking
Advent

Model checking [14] has raised the interest of many railway signalling industries,
being the most lightweight from the process point of view, and being rather
promising in terms of efficiency.

Interlocking systems have immediately called for a direct application of model
checking, since their safety properties are quite directly expressed in temporal

Twenty-Five Years of Formal Methods and Railways: What Next? 171

logic, and their specifications by means of control tables can be directly formal-
ized. An interlocking is the safety critical system that controls the movement of
the trains in a station and between adjacent stations. The interlocking monitors
the status of the objects in the railway yard and allows or denies the routing
of the trains in accordance with safety and operational rules. In most computer
based interlocking systems the instantiation of such rules on a station topology is
stored in a control table, that is iteratively read and executed by an appropriate
interpretation engine.

However, due to the high number of boolean variables involved, automatic
verification by model checking of sufficiently large stations typically incurs in
combinatorial state space explosion problem. The first applications of model
checking have therefore attacked portions of an interlocking system [7,29], but
even recent works [27,48] show that routine verification of interlocking designs
for large stations is still a challenge. SAT-based Bounded Model Checking [8] is
currently the most promising option and is used in industrial solutions.

We leave the discussion of this particular application domain and the related
extensive bibliographic references to the companion papers [9,32,39,40].

We can observe that model checking is used in this context as a side verifi-
cation and validation activity inside a more traditional, and domain dependent,
development cycle: a completely formal development cycle along the definition of
formal methods given above is not respected, but the approach concentrates on
the formal verification of the most sensitive and complex kernel of such systems.

On the basis of such extensive usage in this domain, Model checking has
indeed gained a mention in the 2011 revision of the EN50128 guidelines [21], as
one of the recommended formal methods.

4 Code Formal Verification

The cited guidelines [21] recognize that most of the industrial application of
model checking regards hardware design verification. Direct application of model
checking to software code verification is considered to be still a challenge, because
the correspondence between a piece of code and a finite state model on which
temporal logic formulae can be proved is not immediate: in many cases software
has, at least theoretically, an infinite number of states, or at best, the state space
is just huge. This discipline, commonly named software model checking [41], has
in the last years developed to gain a spread application in several industrial
domains; some software model checkers, such as CBMC [12], hide the formality to
the user by providing built-in default properties to be proven: absence of division
by zero, safe usage of pointers, safe array bounds, etc. On this ground, such tools
are in competition with tools based on Abstract Interpretation, that we discuss
next. It is likely that software model checking will in the next years gain a growing
industrial acceptance also in the railway domain, due to its ability to prove the
absence of typical software bugs, not only for proving safety properties, but also
to guarantee correct behaviour of non safety related software. An interesting
application of CBMC to automatic test generation in the railway domain is
reported in [3].

172 A. Fantechi

Another technique for code formal verification is the assertion-based formal
proof: the code is annotated at various locations with assertions that predicate
over variables’values. The assertions are used as pre- and post- conditions to
various operations in the code. The proof consists of showing that the execution
of the included program fragment when preconditions hold, implies that post-
conditions hold when the fragment terminates.

Assertion-based formal proof, referred as highly recommended in the 2011
revision of the EN50128 guidelines [21], finds its most prominent industrial appli-
cation within the SPARK subset of the Ada language and associated proof tools,
which in the railway sector is considered inside the OpenETCS initiative [43].

Abstract interpretation is based on the theoretical framework developed by
Patrick and Radhia Cusot in the seventies [15]. However, due to the absence of
effective analyses techniques and to the lack of sufficient computer power, only
after twenty years software tools have been developed to support it so that applica-
tions of the technology at industrial level could take place. The focus of the appli-
cation of the technology is mainly on the analysis of source code for runtime error
detection, which means detecting variables overflow/underflow, division by zero,
dereferencing of non-initialized pointers, out-of-bound array access.

Since the correctness of the source is not in general decidable at the program
level, the tools implementing abstract interpretation work on a conservative and
sound approximation of the variable values in terms of intervals, and consider
the state space of the program at this level of abstraction. The problem boils
down to solve a system of equations that represent an over-approximate version
of the program state space. Finding errors at this higher level of abstraction
does not imply that the bug also holds in the real program. The presence of false
positives after the analysis is actually the drawback of abstract interpretation,
that hampers the possibility of fully automating the process. Uncertain failure
states (i.e., statements for which the tool cannot decide whether there will be an
error or not) have normally to be checked manually and several approaches have
been put into practice to automatically reduce these false alarms. The process
developed at General Electric Transportation Systems [28] for the verification of
railway signalling software includes abstract interpretation analysis, employing
the Polyspace tool [17] and handles false positives through a step of abstraction
refinement.

Abstract interpretation is not explicitly listed among recommended tech-
niques in CENELEC 50128, although static analysis is, and most sophisticated
static analysis tools include abstract interpretation. It is not often referred as
a formal methods either, although it provides the three ingredients of a formal
method of the Def Stan 00–55 definition. In our opinion, this technique is one way
the decades of research on formal methods have infiltrated industrial embedded
software development.

5 Model Based Design and the CENELEC Guidelines

The adoption of modelling technologies into the different phases of development
of software products is constantly growing within industry. Designing model

Twenty-Five Years of Formal Methods and Railways: What Next? 173

abstractions before getting into hand-crafted code helps highlighting concepts
that can hardly be focused otherwise, enabling greater control over the system
under development.

Indeed, the 2011 revision of EN50128 recognizes the usefulness of modelling
at several stages of the development cycle. EN50128 lists recommended tech-
niques in a series of tables that follow the different stages of the software devel-
opment cycle. In the 2011 version we see that there are two techniques that are
cross-cutting over the main development phases, namely Formal Methods and
Modelling. Indeed, both can be adopted as a paradigm to shape the complete
software development cycle. The example of the B method is a good representa-
tive of the former, although the list of formalisms cited in the standard include
other assertional techniques, such as Z and VDM, process algebras, algebraic
specification, temporal logic and model checking.

About modelling, the norm lists a series of techniques that include formally
based ones, such as Finite State Machines, Statecharts and Petri Nets. In the
norm, the term modelling refers mainly to the description of some aspects of
a system in support for its development and verification, but a recent trend
in industry, and in particular in the industry of embedded systems, has seen
modelling as a way of defining a model-based development cycle. This is partic-
ularly true in the case of embedded safety-critical applications industry which
has been the first in line to adopt so called Model Based Development or Model
Based Design (MBD), that employs modelling and simulation platforms like
Simulink/Stateflow (toolboxes of Matlab from Mathworks) [46] or the SCADE
Suite (from Esterel Technologies) [45] for lower-level design, to support the devel-
opment of embedded applications. The adoption of automatic code generation,
or automatic test cases generation, is also growingly followed in software pro-
duction for safety critical systems. A typical notation for modelling the discrete
behaviour of a system is that of Statecharts, hierarchical extended finite state
machines: introduced by Harel [30], they have specialized in various dialects,
supported by formal specification environments: among the most adopted com-
mercial environments we can find the mentioned Stateflow and SCADE. UML
State Diagrams as well are essentially Statecharts, and are supported by several
free and commercial tools.

One example from the railway signalling domain is the model based devel-
opment cycle defined by General Electric Transportation Systems (GETS), The
company employed modelling first for the development of prototypes [4] and
afterwards for requirements formalization and automatic code generation [24].
The production process for Automatic Train Protection (ATP) Systems has been
based on modelling by means of Simulink/Stateflow descriptions. Extensive sim-
ulation of Stateflow diagrams with scenarios taken from the field was conducted,
aiming at 100 % structural coverage of the diagrams’states. After automatic code
generation from the diagrams, back-to-back model/code testing is conducted
automatically with the same simulation scenario. Back-to-back testing has the
main aim of confirming that the code generator has not introduced flaws in the
code [26].

174 A. Fantechi

The kind of testing described above is one of the techniques that are encom-
passed by so called Model Based Testing (MBT). Another common MBT tech-
nique is Automatic Test Generation (ATG) in which test cases are automatically
generated from the model in order to guarantee an extensive coverage of the sys-
tem functionalities as described by the model.

The SCADE suite as well has been widely adopted in the railway field: its
usage is reported by several companies. The activities that are supported by the
suite are essentially the same as for Stateflow, but one point in favour of SCADE
is that the suite includes a C Code Generator certified according the EN50128
guidelines. This allows to eliminate from the development process those steps
that in the previous example were aimed at guaranteeing safety of the code
generator.

Model Based Design is often not numbered among formal methods, essen-
tially for one of two main reasons (or for both): the first is that some modelling
frameworks are not based on a formal semantics, and they allow designers to
write non precise or non completely defined models (that is, the mathemati-
cal notations ingredient is missing); the second reason is that in many cases no
formal proof technique is given to demonstrate that the code is a correct con-
cretization of the abstract specifications (that is, the inference system ingredient
is missing). This is not always the rule, and indeed models can be made precise
by using semantically sound description formalisms. Formal verification of mod-
els can be conducted with the aid of model checking techniques, as it happens
for the two main tool frameworks mentioned above, that both include Design
Verifier, a SAT based model checker, especially when one wants to verify that
given safety properties are satisfied.

Hence, having a formally based modelling formalism in which system func-
tions are described and proved to satisfy given properties, with automatic code
generation, by means of a certified code generator, is another way the three ingre-
dients of formal description, formal proof and software production, are assembled
in a full formal method [25].

6 New Challenges

Railway signalling is a rapidly evolving domain, with different evolution driving
forces, such as:

– the quest for more performant equipment in order to increase the capacity of
lines;

– the need of decreasing operational costs;
– the European interoperability regulations;
– the evolution of the railway market;
– the technology improvements, which include contrasting supporting features,

such as increasing computing power, which allows more functions to be con-
centrated in one platform, and more performant (wireless) communication,
which favours distribution of functionalities over several distributed comput-
ing units.

Twenty-Five Years of Formal Methods and Railways: What Next? 175

In the following sections we briefly discuss these different evolution lines, from
the point of view of the application of formal methods.

6.1 Evolution of ATP Systems: ETCS and CBTC

One major innovation in ATP systems is the shift from Fixed block to Moving
block. In the Fixed block a line is topologically segmented into blocks, and appro-
priate sensors tell whether a block is free or not. The occupancy of the leading
train includes the whole block which the train is located on; the following train
is allowed to move only up to the last unoccupied block’s border. In the Moving
block, the train position and its braking curve is continuously calculated by the
trains, and then communicated via radio to the wayside equipment, which estab-
lish protected areas for each train, each one called Limit of Movement Authority
(LMA), or simply Movement authority (MA), up to the nearest obstacle (tail of
the train in front).

The ERTMS/ETCS (European Rail traffic Management Systems / Euro-
pean Train Control System) [18] has been proposed to become the single train
control system for the future transeuropean railway network. The project plans
to gradually install the ERTMS/ETCS equipment side by side to the tradi-
tional national equipment, also exploiting the three successive ERTMS/ETCS
levels, with increasing degree of information flowing from way-side to on-board
equipment. In level 2 and 3, GSM-R (GSM radio communication specific to the
railway industry) is adopted to continuously transfer information to the train on
the status of the line ahead. Moving block is adopted in level 3, of which anyway
no implementation currently exist yet.

ERTMS/ETCS makes use of standardized components (European Vital Com-
puter on board, Radio Block Center, Eurobalise,. . .) and protocols (Euroradio),
produced by a consortium of the main European signalling manufacturers. Spec-
ifications issued by ERTMS/ETCS are structured as a natural language require-
ment document, including tables, state diagrams and sequence charts to add
some formality.

Several formal modelling and verification studies have been conducted regard-
ing ETCS protocols and components; the most systematic approach to the for-
malization of ETCS natural language requirements has been the EuRailCheck
project by the European Railway Agency [11] where UML diagrams augmented
with constraints in a Controlled Natural Language have been exploited to pro-
duce formalized requirement fragments. Automated validation analysis of such
fragments has then been possible by means of a customization of the NuSMV
model-checker. The OpenETCS project [31] is now working at providing a full,
open formal specification of ETCS protocols and components.

In the case of ETCS, the attention of the formal methods community has
shifted from the consolidated train control logic (the braking curve principle),
to the safety and real-time performance of radio-based control, which is going to
be the sole mean by which the conditions of the track ahead are communicated
to the train, since even signals will no more be present on the line [19].

176 A. Fantechi

In the domain of metro signalling equipments, An emerging standard is
CBTC (Communication-Based Train Control) [44], where the train’s exact posi-
tion (which is not a trivial issue to determine), is continuously communicated to
the Radio Block Center (RBC) via GSM-R, which in its turn continuously com-
municates the LMA to the following train. So CBTC can provide a continuous
automatic train protection as well as improved performance, system availability
and operational flexibility. CBTC is mostly installed in (automatic) metro lines,
and includes not only ATP functions, but other higher level functions as well,
such as ATO (Automatic Train Operation), ATS (Automatic Train Supervision),
and interlocking. As opposed to the interoperability-oriented ETCS systems,
CBTC is standardized at a very high level of abstraction: international stan-
dards only define systems functions and subsystems at a very high level [37].
Every CBTC vendor has its own solutions: the trend is to provide turnkey, pro-
prietary and closed systems, facilitated by the fact that metros are closed envi-
ronments. This may produce vendor lock-in phenomena, especially with respect
to long-term maintenance.

CBTC can be classified as a Systems of Systems (SoS), that is, large-scale
systems composed from the combination of several, often pre-existing, commu-
nicating systems to provide some functionality that cannot be provided by a
single system. The research on SoS engineering needs to address the challenges
posed by the increasing complexity of the requirements mapped to the complex-
ity of the underlying constituent systems, in particular for what concerns formal
verification of overall safety properties.

6.2 Integrating ATC/ATP and Interlocking Systems

The interface between ATC/ATP systems, which span over a full length line,
and Interlocking Systems, which are mostly concentrated within a station, is
subject to several solutions and studies. A common choice at this regard is to
define a proper interface between the two separate systems. The INESS project
has addressed the formal definition of the interface of ERTMS with interlocking
systems [35].

An approach that exploits a tighter integration is to define a chain of distrib-
uted ATP components that act both as a sensor (axle counter) for occupancy
of a section and as control over occupancy of next section to achieve fixed block
distancing. Interlocking functions on (small) stations insisting on some section
are included in the interested component.

An opposite trend is to concentrate in a multistation interlocking many func-
tions, either ATP on a line, interlocking for the interested stations and ATS, in
one centralized computer or network of computers.

We want also mention the formal verification process adopted by Ansaldo
STS, that include Software model checking [13], applied to the ERTMS/ETCS
RBC system that control train separation on a section of line that includes
points (such as in a forking junction), and hence include interlocking functions
on a small number of entities.

Twenty-Five Years of Formal Methods and Railways: What Next? 177

6.3 The Evolution of the Market

At the dawn of formal methods introduction in the railway signalling arena the
market was a protected one, based on national railway companies and national
manufacturers. Nowadays, the market is open and the national manufacturers
have been merged in large multi-national companies.

However, most experiences in formal method applications to even complex
systems have been carried on till now by a single manufacturer, or single railway
operator on single systems.

New challenges are provided by the quest for interoperability. For what
concerns interoperability of trains across national borders, a full solution by
ERTMS/ETCS is still far from sight. Currently, and for many years from now
on, an interoperable train travelling over Europe should be able to switch from
ETCS lev. 2 to many national systems, until a complete deployment of ETCS
is accomplished on all lines that maybe of interest for the market of train trans-
port (a complete deployment that, for economic reasons, it is quite unlikely in
the next future for secondary lines). In principle, it could be cheaper to equip
trains with Multistandard systems that adopt well-defined (that is, formalized)
transition procedures.

On the other hand, the partial ETCS implementation can raise the risk of
new, virtual, barriers to interoperability, As an example, Italy requires all trains
running on the national main network to be equipped by SCMT, essentially an
ETCS Level 1 ATP. The cost of such equipment has represent an obstacle to
trains from other countries to enter Italy; in particular, this is one of the reasons
why at the time of writing there is no through passenger railway service between
Italy and Slovenia, although the Slovenian infrastructure is fully compatible with
the Italian one, for what concerns electric traction power (3kV DC), for historical
reasons, and through Intercity trains were running till few years ago.

Interoperability of trains has stressed the standardization of board to ground
communication: trains equipped with on-board systems produced by different
vendors do travel on infrastructures equipped by different vendors: this is the
main target of the standard definition of ETCS. Still, national variants (intro-
duced for special needs) exist that may impede full interoperability across nation
borders; moreover, the standard leaves implementation freedom to some other
aspects. For example, the (ground-based, fixed) RBC to RBC communication is
less strictly standardized: in Italy, the Milano-Bologna and the Bologna-Firenze
high speed lines are equipped with ETCS level 2 by different manufacturers.
In Bologna, the two lines were connected till recently through the old station,
equipped with traditional signalling. Since June 2013, a new through under-
ground station directly connects the two lines; a specific interface, implemented
on a dedicated computer, between the last and first RBCs of the two lines,
produced by different vendors, was needed to let them communicate.

Lowering costs and closing the standardization gaps are the objective of the
openETCS initiative [31], which aims to create a new open standard for formal
functional requirement specifications and open proof for ETCS systems.

178 A. Fantechi

Vendor lock-in phenomena can be raised also in the case of interlocking sys-
tems, for what concerns certification aspects: the configuration and verification
process is expensive, monolithic and not easily repeatable. Moreover, certifica-
tion has to be repeated for every deployed system, since the track layout changes
from station to station. Hence, in case of modifications to the layout, reconfig-
uring the system on a new layout may be very expensive also for small layout
changes. The configuration and verification process itself is often proprietary,
and therefore an infrastructure company can become locked to the vendor for
any modification of the track layout.

6.4 The Evolution of Interlocking Systems

As already said, formal verification of IXL control tables has been studied since
years, SAT-based Bounded Model Checking verification currently being the most
promising direction. However, control tables are a legacy of the relay-based
equipments.

Formal methods, and software design disciplines in general, have inspired a
different approach to interlocking design: in the Geographic approach [5] the
interlocking logic is made up by composition of small elements (or objects, if
the object oriented paradigm is chosen) that take care each of the control of
a physical element (point, track circuit, signal), connected by means of prede-
fined composition rules, mimicking the topology of the specific layout. Several
interlocking equipments are now developed following this paradigm, that has
been followed in the INESS project [35] to provide a full formal UML-based
specification.

Pushing further the concept, with the aim to study alternative paradigms for
the formal verification of interlocking systems, in [22] a distributed architecture
is envisaged: elements of the geographic approach configured as a set of dis-
tributed communicating processes: each process controls a given layout element.
The route is instead a global notion: a route has to be established by proper
cooperation of the distributed elements. The communication among processes
follows the physical layout of the station/yard and a route is established by the
status of the elements that lie along the route.

Indeed, [33] already made the case for distributing interlocking functions:
the concept of [22] can in principle be pushed to the design of a new kind of
distributed railway interlocking system. The logic of the interlocking will be fine-
grained and distributed on processors deployed at each sensor/actuator, along
the track layout, and communicating with the adjacent controllers by means of
safe, possibly wireless, communication. This is in contrast to the current systems
with centralized logics. Distributed computing elements would autonomously
collaborate in order to initialize, configure, monitor and reconfigure - for fault
tolerance or in case of modifications to the layout -, without a centralized logic,
but still guaranteeing the absolute safety of the train transit through the track
layout. There are a number of motivations that can push the technological bar
towards distribution for interlockings, such as:

Twenty-Five Years of Formal Methods and Railways: What Next? 179

– Easy deployment and maintenance
– Plug-and-play reconfiguration
– Copper-free communication if wireless links are adopted
– Simpler interface with ERTMS/ETCS or ATP/ATC equipments
– Vendor lock-in avoidance by means of an open interlocking protocol stack

A so fine-grained distributed interlocking, including configuration and recon-
figuration, is not something that is currently in practice nor in the foreseeable
future (5–10 years) of the railway industry, but the general trend to distribute
intelligence in scattered locations will probably push in this direction. Formal
verification that safety guarantees are enforced will play an essential role; this
verification will be the basis of the definition of certified plug-in components: if
such components are assembled according to a track layout and respecting the
interlocking protocol, the entire system safety is guaranteed, hence sparing on
costly recertification processes. The future standardisation of the interlocking
protocol will aid independence of certification with respect to the interlocking
rules of a particular country.

7 Beyond Safety

In the discussion above, we have mostly focused on the ability of formal methods
to prove that a given system is safe. However, liveness properties are often of
interest as well: at the level of the internal working of an equipment, proving that
a particular system is live or responsive is often achieved by testing in the railway
industry, not recurring to formal proof, since the higher costs of formal proof
are reserved to the safety-related issues, according to safety guidelines. Formal
methods can be a more cost effective way to guarantee liveness as well (INESS
recommends, for example, livelock and deadlock absence verification [36]).

At the system level, we observe that, as a general principle, railway safety is
in the end achieved at the cost of availability: halting trains is the basic form
of safety enforcement. As the number of controlling elements increase, safety
mechanisms that simply tend to halt trains at any single element failure could
easily lower availability, capacity and QoS.

Quantitative modelling at a high abstraction level of the working of the sys-
tem and of anticipated fault scenario, can be adopted for availability or capacity
evaluation. Many works in the railway research literature focused on capacity
analysis with the objective of optimizing the use of railway infrastructure, espe-
cially in consideration of the growth of the entire transport sector in consequence
of globalization of the economy and the increasing integration of the interna-
tional economies; an overview of several techniques and methodologies can be
found, e.g., in [2,10,42]. They range from analytical methods, mainly based on
mathematical formulae or algebraic expressions, to more complex optimization
solutions, e.g. based on heuristics to obtain optimal saturated timetables, to
simulation methods. Model-based analysis has been widely applied in the last
two decades to assess performance and dependability indicators in the railway

180 A. Fantechi

domain, exploiting a Markov-chain based modelling, or Petri-net based formal-
ism. The potential of probabilistic model checking in an area still dominated by
simulation-based engines has to be evaluated.

Anyway, quantitative analysis is carried on at a higher level of abstraction,
namely at the system level, with respect to formal verification of safety, that
act on the logic inside a subsystem or on the communication between subsys-
tems. The key is hence to adopt a multi-level modelling approach to address
the complexity of a railway system. The ongoing SafeCap project [34] develops
modelling techniques and tools for improving railway capacity [38] while ensuring
that safety standards are maintained with a multi-level modelling approach.

8 Conclusions

Formal Methods are used for industrial railway signalling applications. The evo-
lution of systems require companies to adopt automatic verification tools to
attack their complexity, which makes verification by testing only unfeasible,
especially for high SIL systems. The evolution of formal methods and formal
verification tools themselves opens new possibilities to tackle the complexity of
these systems, not only for safety certification, but also for other dependabil-
ity issues. Formal modelling can even act as a facilitator for railway signalling
innovations.

In the discussion above, we can envisage two main research directions that
will need to be pursued in the next year, namely i) multi-level modelling to cope
with the increasing complexity of systems and of their dependability require-
ments and ii) formal description and verification of complex distributed systems
of systems. These two directions are not actually orthogonal, but can be seen as
two facets of the same vision: only extensive formal description and verification
tools will have the potential to master the exponentially growing complexity of
railway control applications of the future.

References

1. Abrial, J.R.: The B-Book. Cambridge University Press, New York (1996)
2. Abril, M., Barber, F., Ingolotti, L., Salido, M.A., Tormos, P., Lova, A.: An assess-

ment of railway capacity. Transp. Res. Part E-Logist. Transp. Rev. 44, 774–806
(2008)

3. Angeletti, D., Giunchiglia, E., Narizzano, M., Puddu, A., Sabina, S.: Using
bounded model checking for coverage analysis of safety-critical software in an indus-
trial setting. J. Autom. Reason. 45, 397–414 (2010)

4. Bacherini, S., Fantechi, A., Tempestini, M., Zingoni, ò: A story about formal
methods adoption by a railway signaling manufacturer. In: Misra, J., Nipkow, T.,
Sekerinski, E. (eds.) FM 2006. LNCS, pp. 179–189. Springer, Heidelberg (2006)

5. Banci, M., Fantechi, A.: Instantiating generic charts for railway interlocking sys-
tems. In: Tenth International Workshop on Formal Methods for Industrial Critical
Systems (FMICS 2005), Lisbon, 5–6, September 2005

Twenty-Five Years of Formal Methods and Railways: What Next? 181

6. Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: a successful application
of B in a large project. In: Wing, J.M., Woodcock, J. (eds.) FM 1999. LNCS, vol.
1708, pp. 369–387. Springer, Heidelberg (1999)

7. Bernardeschi, C., Fantechi, A., Gnesi, S., Larosa, S., Mongardi, G., Romano, D.: A
formal verification environment for railway signaling system design. Formal Meth-
ods Syst. Des. 12(2), 139–161 (1998)

8. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

9. Bonacchi, A., Fantechi, A., Bacherini, S., Tempestini, M., Cipriani, L.: Validation
of railway interlocking systems by formal verification, a case study. In: Counsell,
S., Núñez, M. (eds.) SEFM 2013 Workshops. LNCS, vol. 8368, pp. XX–XY (2013)

10. Burdett, R., Kozan, E.: Techniques for absolute capacity determination in railways.
Transp. Res. Part B: Methodol. 40, 616–632 (2006)

11. Cavada, R., Cimatti, A., Mariotti, A., Mattarei, C., Micheli, A., Mover, S., Pensal-
lorto, M., Roveri, M., Susi, A., Tonetta, S.: EuRailCheck: tool support for require-
ments validation. In: ASE 2009, Auckland, New Zealand, 16–20, November 2009

12. CBMC. http://www.cprover.org/cbmc/
13. Cimatti, A., Corvino, R., Lazzaro, A., Narasamdya, I., Rizzo, T., Roveri, M., San-

seviero, A., Tchaltsev, A.: Formal verification and validation of ERTMS industrial
railway train spacing system. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012.
LNCS, vol. 7358, pp. 378–393. Springer, Heidelberg (2012)

14. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

15. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceed-
ings of 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’77, pp. 238–252. ACM, New York (1977)

16. DaSilva, C., Dehbonei, B., Mejia, F.: Formal specification in the development of
industrial applications: subway speed control system. In: Proceedings 5th IFIP
Conference on Formal Description Techniques for Distributed Systems and Com-
munication Protocols (FORTE’92), Perros-Guirec, North-Holland, pp. 199–213
(1993)

17. Deutsch, A.: Static verification of dynamic properties. Polyspace, White Paper
(2004)

18. http://www.ertms.net
19. Esposito, R., Lazzaro, A., Marmo, P., Sanseviero, A.: Formal verification of ERTMS

Euroradio safety critical protocol. In: 4th Symposium on Formal Methods for Rail-
way Operation and Control Systems (FORMS’03). L’Harmattan, Budapest, Hon-
grie (2003)

20. European Committee for Electrotechnical Standardization: EN50128, Railway
Applications - Software for Railway Control and Protection Systems. CENELEC,
Brussels (1997)

21. European Committee for Electrotechnical Standardization: EN50128, Railway
Applications - Communication, Signalling and Processing Systems - Software for
Railway Control and Protection Systems. CENELEC, Brussels (2011)

22. Fantechi, A.: Distributing the challenge of model checking interlocking control
tables. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, vol. 7610,
pp. 276–289. Springer, Heidelberg (2012)

http://www.cprover.org/cbmc/
http://www.ertms.net

182 A. Fantechi

23. Fantechi, A., Fokkink, W., Morzenti, A.: Some trends in formal methods appli-
cations to railway signaling. In: Gnesi, S., Margaria, T. (eds.) Formal Methods
for Industrial Critical Systems: A Survey of Applications. IEEE Computer Society
Press, Los Alamitos, pp. 63–84 (2013)

24. Ferrari, A., Fantechi, A., Bacherini, S., Zingoni, N.: Modeling guidelines for code
generation in the railway signaling context. In: Proceedings of 1st Nasa Formal
Methods Symposium, pp. 166–170 (2009)

25. Ferrari, A., Fantechi, A., Gnesi, S., Magnani, G.: Model-based development and
formal methods in the railway industry. IEEE Softw. 30(3), 28–34 (2013)

26. Ferrari, A., Grasso, D., Magnani, G., Fantechi, A., Tempestini, M.: The Metro Rio
case study. Sci. Comput. Program. 78(7), 828–842 (2013)

27. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking
control tables. In: Proceedings of the 8th FORMS/FORMAT Symposium, pp. 98–
107 (2010)

28. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A., Tempestini, M.: Adoption of
model-based testing and abstract interpretation by a railway signalling manufac-
turer. IJERTCS 2(2), 42–61 (2011)

29. Groote, J.F., van Vlijmen, S., Koorn, J.: The safety guaranteeing system at station
Hoorn-Kersenboogerd. In: Logic Group Preprint Series 121. Utrecht University
(1995)

30. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8, 231–274 (1987)

31. Hase, K.R.: Open proof for railway safety software - a potential way-out of ven-
dor lock-in advancing to standardization, transparency, and software security. In:
Proceedings of the 8th FORMS/FORMAT Symposium, pp. 4–37 (2010)

32. Haxthausen, A.E., Peleska, J., Pinger, R.: Applied bounded model checking for
interlocking system designs. In: Counsell, S., Núñez, M. (eds.) SEFM 2013 Work-
shops. LNCS, vol. 8368, pp. XX–YY (2013)

33. Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed
railway control system. IEEE Trans. Softw. Eng. 26(8), 687–701 (2000)

34. Iliasov, A., Romanovsky, A.: SafeCap domain language for reasoning about safety
and capacity. Newcastle University, Computing Science, Technical Report Series,
CS-TR-1352 (2012)

35. FP7 Project INESS - Deliverable D.1.5 Report on translation of requirements from
text to UML (2009)

36. FP7 Project INESS - Deliverable D.4.1 Documented strategy for Verification and
Validation, Report (2009)

37. Institute of Electrical and Electronics Engineers: IEEE Standard for Communi-
cations Based Train Control (CBTC) Performance and Functional Requirements.
IEEE Std 1474.1-2004

38. Isobe, Y., Moller, F., Nguyen, H.N., Roggenbach, M.: Safety and line capacity
in railways - an approach in timed CSP. In: Derrick, J., Gnesi, S., Latella, D.,
Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 54–68. Springer, Heidelberg
(2012)

39. James, P., Lawrence, A., Moller, F., Roggenbach, M., Seisenberger, M., Setzer,
A., Kanso, K., Chadwick, S.: Verification of solid state interlocking programs. In:
Counsell, S., Núñez, M. (eds.) SEFM 2013 Workshops. LNCS, vol. 8368, pp. XX–
YY (2013)

Twenty-Five Years of Formal Methods and Railways: What Next? 183

40. James, P., Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne,
H., Trumble, M., Williams, D.: Verification of Scheme Plans using CSP||B. In:
Counsell, S., Núñez, M. (eds.) SEFM 2013 Workshops. LNCS, vol. 8368, pp. XX–
YY (2013)

41. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4),
21:1–21:54 (2009)

42. Kontaxi, E., Ricci, S.: Railway capacity analysis; methodological framework and
harmonization perspectives. In: Proceedings of the 12th World Conference on
Transportation Research, Lisboa, July 2010

43. Mentre, D.: Evaluation model of ETCS using GNATprove, openETCS Technical
Report June 2013

44. Pascoe, R.D., Eichorn, T.N.: What is Communication-Based Train Control? IEEE
Vehicular Technology Magazine (2009)

45. Sauvage, S., Bouali, A.: Development approaches in software development. In: Pro-
ceedings of ERTS, Toulouse (2006)

46. Simulink. http://www.mathworks.com/products/simulink/
47. UK Ministry of Defence: Def Stan 00–55: Requirements for Safety Related Software

in Defence Equipment, August 1997
48. Winter, K., Johnston, W., Robinson, P., Strooper, P., van den Berg, L.: Tool

support for checking railway interlocking designs. In: Proceedings of the 10th Aus-
tralian workshop on Safety critical systems and software, pp. 101–107 (2006)

http://www.mathworks.com/products/simulink/

What IS a BoK? Large
– Extended Abstract –

Tom Maibaum(B)

McMaster Centre for Software Certification, McMaster University, 1280 Main St W,
Hamilton, ON L8S 4K1, Canada

tom@maibaum.org

1 Main Points

Software engineering is different from traditional engineering disciplines in cer-
tain crucial ways. But software engineering is an engineering discipline. However,
software engineering fails to meet the requirements of an engineering discipline,
as commonly conceived by conventional engineers. Software Engineering Books
of Knowledge (BoKs) fail spectacularly in organising engineering knowledge as
understood in classical engineering disciplines.

“The SWEBOK Guide:

– characterizes the contents of the software engineering discipline
– promotes a consistent view of software engineering worldwide
– clarifies software engineering’s place with respect to other disciplines
– provides a foundation for training materials and curriculum development,

and
– provides a basis for certification and licensing of software engineers.”

We will “show” below that this is nothing like classical engineering knowledge
and, in particular, like the so called cookbooks well known in engineering.

2 What is Engineering?

So, what characterises classical engineering disciplines? The following books have
been immensely helpful in understanding engineering:

– GFC Rogers, The Nature of Engineering, The Macmillan Press Ltd, 1983
– WG Vincenti, What Engineers Know and How They Know It, The Johns

Hopkins University Press, 1990

We have also been inspired by various papers of Michael Jackson [Jac10]. That
software engineering is an engineering discipline is a simple consequence of the
fact that: “engineering refers to the practice of organising the design and con-
struction of any artifice which transforms the physical world around us to meet
some recognised need” [Rog83]. Vincenti [Vin90] argues that engineering is dif-
ferent, in epistemological terms and, consequently, as praxis, from science or even
applied science: “In this view, technology, though it may apply science, is not the

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 184–188, 2014.
DOI: 10.1007/978-3-319-05032-4 14, c© Springer International Publishing Switzerland 2014

What IS a BoK? Large – Extended Abstract – 185

same as or entirely applied science”. Rogers argues the same view on the basis of
what he calls the teleological distinction concerning the aims of science and tech-
nology: “In its effort to explain phenomena, a scientific investigation can wonder
at will as unforeseen results . . . The essence of technological investigations is
that they are directed towards serving the process of designing and constructing
particular things whose purpose has been clearly defined.” “We have seen that
in one sense science progresses by virtue of discovering circumstances in which
a hitherto acceptable hypothesis is falsified, and that scientists actively pursue
this situation. Because of the catastrophic consequences of engineering failures -
whether it be human catastrophy [sic] for the customer or economic catastrophy
[sic] for the firm - engineers and technologists must try to avoid falsification of
their theories. Their aim is to undertake sufficient research on a laboratory scale
to extend the theories so that they cover the foreseeable changes in the vari-
ables called for by a new conception. The scientist seeks revolutionary change
- for which he may receive a Nobel Prize. The engineer too seeks revolutionary
conceptions by which he can make his name, but he knows his ideas will not be
taken up unless they can be realised using a level of technology not far removed
from the existing level” [Rog83].

So, science is different from engineering. We can ask what the praxis of engi-
neering is. Vincenti [Vin90] defines engineering activities in terms of design,
production and operation of artefacts. Of these, design and operation are highly
pertinent to software engineering. In the context of discussing the focus of engi-
neers activities, he then talks about normal design as comprising “the improve-
ment of the accepted tradition or its application under new or more stringent
conditions”. He goes on to say: “The engineer engaged in such design knows
at the outset how the device in question works, what are its customary fea-
tures, and that, if properly designed along such lines, it has good likelihood of
accomplishing the desired task.” Jackson discusses this concept of normal design,
although he does not use this phrase himself: “An engineering handbook is not
a compendium of fundamental principles; but it does contain a corpus of rules
and procedures by which it has been found that these principles can be most
easily and effectively applied to the particular design tasks established in the
field. The outline design is already given, determined by the established needs
and products.” “In this context, design innovation is exceptional. Only once in
a thousand car designs does the designer depart from the accepted structures by
an innovation like front-wheel drive or a transversely positioned engine. True,
when a radical innovation proves successful it becomes a standard design choice
for later engineers. But these design choices are then made at a higher level
than that of the working engineer: the product characteristics they imply soon
become well understood, and their selection becomes as much a matter of mar-
keting as of design technology. Unsuccessful innovations - like the rotary internal
combustion engine - never become established as possible design choices.” “The
methods of value are micro-methods, closely tailored to the tasks of developing
particular well-understood parts of particular well-understood products.”

186 T. Maibaum

Another important aspect of engineering design is the organising principle of
hierarchical design: “Design, apart from being normal or radical, is also multi-
level and hierarchical. Interesting levels of design exist, depending on the nature
of the immediate design task, the identity of some component of the device, or
the engineering discipline required” [Vin90]. It is quite clear from the engineer-
ing literature that engineering normally involves the use of multiple technologies.
The observation that software engineering requires knowledge of other domains
and that its teaching should be application oriented is not as perspicacious as
its proponents would have us believe. This is part of the essence of engineering,
whatever the discipline. An implied but not explicitly stated view of engineering
design is that engineers normally design devices as opposed to systems, in the
sense of Vincenti. A device, in this sense, is an entity whose design principles
are well defined, well structured and subject to normal design principles. (See
also Michael Polanyis operational principle of a device [Pol58]). A system, in
this sense, is an entity that lacks some important characteristics making normal
design possible. “Systems are assemblies of devices brought together for a collec-
tive purpose.” Examples of the former given by Vincenti are airplanes, electric
generators, turret lathes; examples of the latter are airlines, electric-power sys-
tems and automobile factories. The software engineering equivalent of devices
may include compilers, relational databases, PABXs, etc. Software engineering
examples of systems may include air traffic control systems, automotive soft-
ware, the internet, etc. It would appear that systems become devices when their
design attains the status of being normal. That is, the level of creativity required
in their design becomes one of systematic choice, based on well defined analy-
sis, in the context of standard definitions and criteria developed and agreed by
engineers.

3 Engineering Knowledge

Is the knowledge used by software engineers different in character from that
used by conventional engineers? The latter is underpinned by mathematics and
some physical science(s), providing models of the physical universe in terms of
which artefacts must be understood. What about software engineering? I would
claim that logic (in its widest sense) fulfills these roles, although from different
perspectives in computer science and software engineering. Software engineering
is distinguished from conventional engineering because the artefacts constructed
by the former are conceptual, while those built by the latter are physical. For the
latter, the “real world” is a fixed constraint, whereas it is not clear that there are
the same limitations on the “computational world”. There is an existing track
record of working with concepts and abstractions in mathematics and logic,
particularly philosophical logic.

What distinguishes software engineering is the day to day invention of theo-
ries (descriptions) by engineers and the problems of size and structure induced
by the nature of the artefacts. Can we successfully apply the analogy between
conventional engineering and its use of mathematical techniques and scientific

What IS a BoK? Large – Extended Abstract – 187

analyses, on the one hand, and software engineering and its use of ideas from
the relevant mathematics and logic based analyses, on the other?

An example that may be used in this context is program construction. The
well understood underlying mathematics was developed over 25 years (in the
sequential case), starting in the 1960s. Thus, we might have expected the SE
equivalent of the engineering CAD tool to appear at the end of this time. Instead,
we have CASE tools with no relation to the underlying mathematics, or formal
methods, which offer a relaxation of the exhaustiveness requirement of the scien-
tific/theoretical viewpoint. There is no equivalent of the conventional engineering
disciplines available in industrial software engineering settings.

4 Categories of Engineering Knowledge

Software engineering is distinct in character from conventional disciplines of
engineering. However, it has enough in common with them to look for the same
categories of knowledge [Vin90]:

1. Fundamental design concepts
2. Criteria and specifications
3. Theoretical tools
4. Quantitative data
5. Practical considerations
6. Design instrumentalities

Fundamental design concepts include the operational principle of their device.
According to Polanyi, this means knowing for a device “how its characteristic
parts . . . fulfill their special functions in combining to an overall operation which
achieves the purpose” [Pol58]. A second principle taken for granted is the nor-
mal configuration for the device, i.e., the commonly accepted arrangement of
the constituent parts of the device. These two principles (and possibly others)
provide a framework within which normal design takes place. Criteria and spec-
ifications allow the engineer using a device with a given operational principle
and normal configuration to “translate general, qualitative goals couched in[to]
concrete technical terms”. That the development of such criteria may be prob-
lematic is clear. However, the development and acceptance of such criteria is an
inherent part of the development of engineering disciplines.

Engineers require theoretical tools to underpin their work, including intellec-
tual concepts for thinking about design, as well as mathematical methods and
theories for making design calculations. Both conceptual tools and mathematical
tools may be devised specifically for use by the engineer and be of no particular
value to a scientist/mathematician. “. . . the most useful context for the preci-
sion and reliability that formality can offer is in sharply focused micro-methods,
supporting specialised small-scale tasks of analysis and detailed design” [Jac10].
Engineers also use quantitative data as well as tabulations of functions in mathe-
matical models. (A good example in software engineering of this thoroughness in
providing data useful for design is the work of Knuth on sorting and searching.)

188 T. Maibaum

There are also practical considerations in engineering. These are not usu-
ally subject to systematisation in the sense of the categories above, but reflect
pragmatic concerns. For example, a designer will use various trade-offs which
are the result of general knowledge about the device, its use, its context, its
cost, etc. Design instrumentalities include “the procedures, ways of thinking,
and judgmental skills by which it [design] is done” [Vin90]. This is clearly what
the Capability Maturity model has in mind when it refers to well defined and
repeatable processes in software engineering.

According to Vincenti, as noted above, the day to day activities of engineers
consist of normal design, as comprising “the improvement of the accepted tra-
dition or its application under new or more stringent conditions”. This is the
combination of discipline and a little bit of creativity encapsulated in engineer-
ing cookbooks! He goes on to say: “The engineer engaged in such design knows
at the outset how the device in question works, what are its customary fea-
tures, and that, if properly designed along such lines, it has a good likelihood of
accomplishing the desired task.”

5 In Summary

“An engineering handbook is not a compendium of fundamental principles; but
it does contain a corpus of rules and procedures by which it has been found that
these principles can be most easily and effectively applied to the particular design
tasks established in the field. The outline design is already given, determined by
the established needs and products” [Jac10].

Systems become devices when their design attains the status of being normal,
i.e., the level of creativity required in their design becomes one of systematic
choice, based on well defined analyses, in the context of standard definitions and
criteria developed and agreed by the relevant engineers ([Vin90], definition of
normal design). This is exactly what engineering BoKs should be about!

References

[Jac10] Jackson, M.: The operational principle and problem frames. In: Roscoe Bill,
A.W., Jones, C.B., Wood, K.R. (eds.) Reflections on the Work of CAR Hoare,
pp. 143–165. Springer, London (2010)

[Pol58] Polanyi, M.: Personal Knowledge: Towards a Post-critical Philosophy. Rout-
ledge & Kegan Paul, London (1958). Reprinted by University of Chicago Press
(1974)

[Rog83] Rogers, G.F.C.: The Nature of Engineering: A Philosophy of Technology.
Macmillan Press, London (1983)

[Vin90] Vincenti, W.G.: What Engineers Know and How They Know It: Analyti-
cal Studies from Aeronautical History. The Johns Hopkins University Press,
Baltimore (1990)

Verification of Scheme Plans Using CSP||B

Philip James1, Faron Moller1, Hoang Nga Nguyen3(B), Markus Roggenbach1,
Steve Schneider2, Helen Treharne2, Matthew Trumble2, and David Williams4

1 Swansea University, Swansea, UK
2 University of Surrey, Surrey, UK

3 University of Nottingham, Nottingham, UK
Hoang.Nguyen@nottingham.ac.uk

4 VU University Amsterdam, Amsterdam, The Netherlands

Abstract. The paper presents a tool-supported approach to graphically
editing scheme plans and their safety verification. The graphical tool is
based on a Domain Specific Language which is used as the basis for
transformation to a CSP→B formal model of a scheme plan. The models
produced utilise a variety of abstraction techniques that make the analy-
sis of large scale plans feasible. The techniques are applicable to other
modelling languages besides CSP→B. We use the ProB tool to ensure the
safety properties of collision, derailment and run-through freedom.

1 Introduction

In a series of papers [1–7] we have been developing a new modelling approach for
railway interlockings. This work has been carried out in conjunction with railway
engineers drawn from our industrial partner. By involving the railway engineers
from Siemens Rail Automation, we benefit twofold: they provide realistic case
studies, and they guide the modelling approach, ensuring that it is natural to
the working engineer.

We base our approach on CSP||B [8], which combines event-based with
state-based modelling. This reflects the double nature of railway systems, which
involves events such as train movements and – in the interlocking – state based
reasoning. The formal models are by design close to the domain models. To the
domain expert, this provides traceability and ease of understanding. The valid-
ity of this claim was demonstrated in particular in [3] where a non-trivial case
study – a complex double junction – was provided, a formal model of which was
understandable and usable by our industrial partners.

In the UK, the development of interlockings follows prescribed processes from
Railway Authorities such as the Governance for Railway Investment Projects
(GRIP) process from Network Rail. In this process, the development of an inter-
locking consists of five phases where the first four phases are responsible for
defining a track plan and determining routes to be used while, in the last phase,
a contractor such as Siemens Rail Automation participates and is responsible
for designing a control table for the track plan, implementing the interlocking

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 189–204, 2014.
DOI: 10.1007/978-3-319-05032-4 15, c© Springer International Publishing Switzerland 2014

190 P. James et al.

and choosing appropriate track equipment. To this end, our paper offers a work
flow which enables safety to be validated in each of these phases.

In [4,5] we addressed how to effectively and efficiently verify safety properties
within our CSP||B models. The properties of interest are collision, derailment
and run-through freedom. To this end we developed a set of abstraction tech-
niques for railway verification that allow the transformation of complex CSP||B
models into less involved ones; we proved that these transformations are sound;
and we demonstrated that they allow one to verify a variety of railway systems
via model checking. The first set of abstractions reduces the number of trains
that need to be considered in order to prove safety for an unbounded number of
trains. Their correctness proof involves slicing of event traces. Essentially, these
abstractions provide us with finite state models. The second set of abstractions
simplifies the underlying track topology. Here, the correctness proof utilizes event
abstraction specific to our application domain similar to the ones suggested by
Winter in [9]. These abstractions make model checking faster.

Still present in our approach from the aforementioned papers was the need
to write the formal models by hand. In [6] we described our OnTrack toolset1,
an open tool environment allowing graphical descriptions to be captured and
supported by formal verification. This enables an engineer to visually represent
the tracks and signals etc., within a railway network.

In this paper we continue the dissemination of our modelling approach which
now also incorporates multi-directional tracks. We demonstrate that when chan-
ges are made to the models they are systematic and traceable; again this addition
will be incorporated within our OnTrack tools.

The paper is organised as follows. In Sect. 2 we introduce our modelling
language CSP||B so that we have the basis for discussing our workflow and
provide examples. In Sect. 3 we introduce concepts in railway systems. In Sect. 4
we describe the workflow for our CSP||B modelling approach and summarise
where the different abstraction techniques fit into the workflow. In Sect. 5 we
introduce the modelling concepts of multi-directional travel and provide two
illustrative examples. The application of our approach is presented in Sect. 6 via
verification of our example scenarios. In Sect. 7 we put our work in the context
of related approaches and finally conclude with future plans for the approach.

2 Background to CSP||B
The CSP||B approach [8] allows us to specify communicating systems using a
combination of the B-Method [10] and the process algebra CSP (Communicating
Sequential Processes) [11]. The overall specification of a combined communicat-
ing system comprises two separate specifications: one given by a number of CSP
process descriptions and the other by a collection of B machines. Our aim when
using B and CSP is to factor out as much of the “data-rich” aspects of a system
as possible into B machines. The B machines in our CSP||B approach are classi-
cal B machines, which are components containing state and operations on that
1 OnTrack available for download from http://www.csp-b.org.

http://www.csp-b.org

Verification of Scheme Plans Using CSP||B 191

state. The CSP||B theory [8] allows us to combine a number of CSP processes
Ps in parallel with machines Ms to produce Ps ∪ Ms which is the parallel com-
bination of all the controllers and all the underlying machines. Such a parallel
composition is meaningful because a B machine is itself interpretable as a CSP
process whose event-traces are the possible execution sequences of its operations.
The invoking of an operation of a B machine outside its precondition within such
a trace is defined as divergence [12]. Therefore, our notion of consistency is that
a combined communicating system Ps ∪ Ms is divergence-free. We do not con-
sider deadlock-freedom in this paper as it is concerned with liveness, and the
focus of the paper is on safety.

A B machine clause declares a machine and gives it a name. The variables
of a B machine define its state. The invariant of a B machine gives the type
of the variables, and more generally it also contains any other constraints on
the allowable machine states. There is an initialisation which determines the
initial state of the machine. The machine consists of a collection of operations
that query and modify the state. Besides this kind of machine we also define
static B machines that provide only sets, constants and properties that do not
change during the execution of the system.

The language we use to describe the CSP processes for B machines is as
follows:

P ::= e?x!y ∅ P (x) | P1�P2 | P1 ⊆ P2 |
if b then P1 else P2 end | N(exp) |
P1 ∪ P2 | P1 A||B P2 | P1|||P2

The process e?x!y ∅ P (x) defines a channel communication where x repre-
sents all data variables on a channel, and y represents values being passed along
a channel. Channel e is referred to as a machine channel as there is a corre-
sponding operation in the controlled B machine with the signature x →− e(y).
Therefore the input of the operation y corresponds to the output from the CSP,
and the output x of the operation to the CSP input. Here we have simplified
the communication to have one output and one input but in general there can
be any number of inputs and outputs. The other CSP operators have the usual
CSP semantics.

In this paper we omit a detail discussion of the semantic models used for
reasoning of CSP||B models. In [5] we discuss that the traces models is enough
to deal with the safety properties of railway interlockings.

3 Railway Systems

Together with railway engineers we developed a common view on the information
flow in railways. In physical terms a railway consists of, at least, four different
components as illustrated in Fig. 1:

– The Controller selects and releases routes for trains.
– The Interlocking serves as a safety mechanism with regards to the Controller

and, in addition, controls and monitors the Track equipment.

192 P. James et al.

– The Track equipment consists of elements such as signals, points, and track
circuits. Signals can show the different aspects to indicate when trains can
proceed; points can be in normal position (leading trains straight ahead)
or in reverse position (leading trains to a different line) and track circuits
detect if there is a train on a track.

– Finally, Trains have a driver who determines their behaviour.

Fig. 1. Information flow.

For the purposes of modelling, we simplify the signals in railway systems to
have only two aspects. We also make a further assumption that track equipment
reacts instantly and is free of defects.

The information flow shown in Fig. 1 is as follows: the controller sends a
request message to the interlocking to which the interlocking responds; the
interlocking sends signalling information to the track equipment and receives
information from track sensors on whether a track element is occupied. The
interlocking and the trains interact indirectly via the track equipment only. The
interlocking serves as the system’s clock: in a cycle the status of all the track
sensors are read then the interlocking reacts to all of them with one change of
state. Routes cannot be in conflict since requests to select and release routes are
sequentialised. In our modelling we will abstract away from modelling the track
equipment explicitly.

Each railway system is provided from the railway industry as a scheme plan
which consists of a track plan (describing the topological relation between ele-
ments of the track equipment such as which tracks are connected and where
signals are), a control table (determining how the interlocking of the railway
system sets signals, moves points and lock points where, for each signal, there
is one or more rows describing the condition under which the signal can show

Verification of Scheme Plans Using CSP||B 193

proceed) and a number of release tables (specifying when locks on points can
be released). More details about control tables and release tables can be found
in [3]. To this end, our task is to provide models which faithfully capture the
behaviour associated with these railways systems.

Fig. 2. CSP||B architecture.

In this setting, we consider three safety properties:

1. collision freedom excludes two trains occupying the same track;
2. run-through freedom says that whenever a train enters a point, the point is

set to cater for this;
3. no-derailment says that whenever a train occupies a point, the point does

not move.

Our modelling approach of railway systems in CSP||B, presented in [3], is
restated in Fig. 2. The centralised control logic is represented in the Interlocking
machine, whereas the train behaviour is controlled by CSP processes defined in
the CTRL script. These process and machine synchronise on common events. In
the next sections we illustrate some aspects of the CSP processes and machines
via examples2 and focus on how multi-directional travel of trains on tracks is
modelled.

4 Workflow

In this section, we present the workflow that we employ in our methodology
in order to verify safety properties of railway systems. Figure 3 demonstrates
the essential steps of the workflow which makes use of two tools: OnTrack [6]
and the ProB model checker [13]. Here, OnTrack is implemented in a typical
EMF/GMF/Epsilon3 architecture [14,15] where a graphical editor realised in
GMF is the front-end for the user.
2 Examples available for download from http://www.csp-b.org.
3 EMF and GMF stand for Eclipse Modeling Framework and Graphical Modeling

Project, respectively.

http://www.csp-b.org

194 P. James et al.

Fig. 3. CSP||B modelling and verification workflow.

In this workflow, a user initially draws a Track Plan using the graphical
front-end in the OnTrack tool. Figure 4 shows the OnTrack editor that consists
of a drawing canvas and a palette. Graphical elements from the palette can be
positioned onto the drawing canvas.

Fig. 4. A screenshot of “OnTrack” modelling a track plan.

Then the first transformation, Generate Tables leads to a Scheme Plan, which
is a track plan and its associated control and release tables. Track plans and
scheme plans are models formulated relative to a modified version of the DSL
developed by Bjørner [16]. The concepts of such a DSL can be easily captured
within an ECORE meta-model which underlies our toolset. A small excerpt of
topological concepts within our meta-model is given in Fig. 5. In this DSL, a
Railway Diagram is built from Units, Connectors and Signals. Units come in
two forms: Linear representing straight tracks, or Point representing a splitting
track. All Unit(s) are attached together via Connector(s). Finally, Signals can
be placed on Linear units and at Connectors. To this end, the implementation
of the GMF front-end for this meta-model involves selecting the concepts of

Verification of Scheme Plans Using CSP||B 195

Fig. 5. Static concepts from Bjørner’s DSL.

the meta-model that should become graphical constructs within the editor and
assigning graphical images to them.

A scheme plan is the basis for subsequent workflows that support its ver-
ification. Scheme plans can be captured as formal specifications. The simplest
transformation, indicated by the Transformation dashed arrow, is to produce one
Formal specification that is a faithful representation of the scheme plan. This
transformation is a mapping from the railway DSL meta-model to the CSP||B
meta-model and its subsequent representation as CSP||B script files that can be
inputted into ProB. This automated transformation makes use of the finitisa-
tion theory in order to be able to perform bounded model checking of the formal
specification [4,7]. The finitisation theory allows us to reduce the problem of
verifying of scheme plans for safety (i.e., freedom from collision, derailment, and
run-through) for any number of trains to that of a two-train scenario.

Nonetheless, even when examining a reduced number of trains the formal
specifications of realistic examples will inevitably contain too many states for
safety analysis. Thus, our methodology enables us to carry out two forms of
abstraction on a scheme plan:

(1) Covering Abstraction supports the decomposition of a scheme plan
with a set of smaller sub-scheme plans. Any particular track in a scheme plan
has a ‘zone of influence’: the other tracks which need to be considered to see
what will happens on that track (e.g., when routes including it are enabled,
when trains are approaching it, etc.). In particular, we only need to look at the
zone of influence in order to see if a collision is possible on that track. To analyse
if a collision, derailment or run-through is possible on that track, it is enough
just to analyse the behaviour of trains within the zone of influence. We can do
this for all the tracks, in each case just analysing for collisions, derailment or
run-through within its zone of influence. This is called a covering. In general each
zone of influence is much smaller than the overall track plan, so the analyses will
be much quicker, and in practice can be done efficiently.

(2) Topological Abstraction supports the collapsing of tracks of a scheme
plan to minimise the number of superfluous tracks in a plan, i.e., ones which
do not impact on safety. Thus, for a particular track plan we take a sequence
of tracks, and think of them as one single track. We do this for a number of
sequences of tracks along the way. It is a topological abstraction if we can match

196 P. James et al.

moves around the original track plan with moves around the smaller one, so
changes such as routes being enabled, points being released, trains being on
particular routes, points being set, trains being at lights must still match for
this collapsing to be a topological abstraction. If this is true then it means that
we can analyse the behaviour of trains on the smaller scheme plan (which is
easier because there are fewer positions to consider) and the results that we get
will still be true for the original larger scheme plan.

We have proved the soundness of these abstractions in [4,7]. In our method-
ology we first apply covering abstraction to generate sub-scheme plans and then
apply topological abstraction to each of them. Using these abstractions we follow
the Abstraction vertical workflow from the scheme plan to produce one or more
Minimised abstract sub-scheme plan(s). One or more such plans may be produced
because as we shall see in our examples, in Sect. 5, it may not always be possible
to perform covering, and in which case the only abstraction that may yield a
reduction in the number of tracks in the plan will be topological abstraction.
Applying these abstractions is done at the DSL level and is independent of the
formalism being used to represent the abstract CSP||B specification. Currently,
the covering abstraction is not fully automated but is ongoing development work
within the OnTrack tool.

Following abstraction (top left box on the diagram) the Transformation work-
flow, described earlier, can be applied to the minimised abstract sub-scheme
plans to produce corresponding sub-formal specifications. All of the transforma-
tions that are performed by the OnTrack tool are validated via manual review.
The verification of all of these sub-formal specifications implies the safety of the
formal specification, as illustrated by the Implies arrow workflow; this result has
been formally proved [4,7].

Once OnTrack produces the sub-formal specifications they are all system-
atically verified using the ProB model checker to ensure that the models are
collision- and derailment-free and contain no run-throughs. Successful checks
verify that the safety properties hold for the particular scheme-plan. The work-
flow has the potential for round-trip engineering where the counter examples
produced from unsuccessful model checking are automatically fed back into the
OnTrack tool. This has not, as yet, been incorporated into the tool but it would
provide an improved tool-supported workflow; this is illustrated using the dotted
Review and Correct arrow on the workflow.

5 Modelling of Multi-Directional Examples of CSP||B
Railway Models

In this section we provide details of the extension to our modelling approach in
CSP||B which allows for multi-directional railway systems.

5.1 Tunnel Example

Consider the track plan in Fig. 6 where tracks AB, AC and AD are bi-directional
tracks. For route R1 associated with signal S1 their direction is left to right,

Verification of Scheme Plans Using CSP||B 197

Fig. 6. Track plan for the tunnel example.

whereas for route R2 associated with signal S2 their direction is right to left. The
CSP process that controls the movement of trains is TRAIN CTRL. Figure 7
illustrates the fragment of it controlling the movement of a train from a track
that is neither an exit one or one which has a signal on it. The move event
is parameterised with the train identifier t and its current position p. This
event is a synchronisation with a move B operation which returns its new posi-
tion newp. Therefore, moving from track AC to AD corresponds to the event
move.t.AC.AD for a particular train t.

1 TRAIN CTRL(t , pos) = . . .
2 � pos /∗ EXIT ∅ pos /∗ SIGNALHOMES &
3 move!t .pos?newp ∈ TRAIN CTRL(t ,newp)
4 � . . .

Fig. 7. Fragment of the CSP control process for trains.

Note, there is no information in the CSP event that corresponds to the direc-
tion of travel. All this information is contained in the Topology machine and used
in the move operation within the Interlocking machine. In the Topology machine
there are three relations which define the direction of tracks. For example, the
relation direction shown in Fig. 8 shows that the model needs to contain details
of the way tracks are connected together, and this is explicitly done via the
notion of identified connectors — the glue between tracks and points.

1 direction ∗ TRACK ↔ CONNECTOR ∃ CONNECTOR ∅
2 direction = {. . . ,
3 AA ∪∈ (C1,C2), . . . , /* uni-directional tracks */
4 AC ∪∈ (C3,C4),AC ∪∈ (C4,C3), . . . /* bi-directional tracks */ }

Fig. 8. Fragment of the direction relation from Topology.

As we saw above the notion of a train’s position in the CSP was captured
using two parameters (t, pos). In the invariant of the Interlocking machine a

198 P. James et al.

similarly named function pos also includes information about the connectors, as
shown in Fig. 9. In its initialisation pos := √ since there are no trains on the
tracks. The move operation updates the track and connectors related to train t
in pos each time the train moves. (In earlier papers, e.g., [3], pos was simply a
partial function between trains and tracks and direction was not required.)

1 pos ∗ TRAIN ∪ ∈ALLTRACK∃
2 (ALLCONNECTOR ∃ ALLCONNECTOR)

Fig. 9. pos function from Interlocking.

In addition to B operations which define the behaviour of movement, granting
and releasing of route requests the OnTrack tool automatically produces B oper-
ations to support the verification of safety properties. Three B operations are
produced, collision, derailment and run-through. Collision is encoded as follows:

1 collision =
2 SELECT
3 ≥t1, t2 ∗ TRAIN ∅ t1
= t2∅
4 t1 ∗ dom(pos) ∅ t2 ∗ dom(pos)
5 (dom(pos(t1)) − (EXIT ≤ ENTRY)) ∩
6 (dom(pos(t2)) − (EXIT ≤ ENTRY)) = ∅
7 THEN skip
8 END;

Here collision is detected when two different trains t1 and t2 occupy the same
track segment (different from the EXIT and ENTRY tracks). The collision
condition will be enabled when the two trains are at the same position.

Collision freedom can then be established by model checking the validity of
the following CTL formula:

AG(not(e(collision)))

This formula is false if collision is enabled. In the CTL variant of ProB AG,
stands for “on all paths it is globally true that”, and e(a) stands for “event a is
enabled”.

5.2 Buffer Example

Our next example is also multi-directional as shown in Fig. 10. Interestingly,
track BC has three directions, i.e., {BC}πdirection = {(C12, C11), (C11, C12),
(C7, C12)}, where C7 is the connector between tracks AC and BC, C11 is
between BB and BC, and C12 is between BC and BD, respectively.

Verification of Scheme Plans Using CSP||B 199

Fig. 10. Track plan for the buffer example.

It also serves to illustrate how additional complexity can easily be traced
within a formal specification. We model the behaviour of buffers, i.e., tracks
where trains can turn around; in our example the buffers are AA and BA. Two
routes are associated with signal S1, i.e., route R1A is associated with AE, AD,
AC, AB and AA and R1B is associated with AE, AD, BD, BC, BB and BA.
Thus, when a train is on route R1A and is on track AA it can change direction
and then follow route R2 which is associated with signal S2. Similarly, for route
R3 associated with signal S3.

This additional behaviour requires three additions to the CSP processes and
B machines:

– The additional definition of BUFFER = {AA,BA} in the Context machine
and similarly in the CSP types.

– A new changeDirection operation as shown in Fig. 11. The purpose of this
operation is to simply modify the direction of the connectors for the par-
ticular buffer track on which the train t currently resides. Hence, chang-
ing the direction of train t on track AA means changing the maplet (t ≡∅
AA, (C1, C0)) to (t ≡∅ AA, (C0, C1)) within the pos function. This means
that we can leave the move operation unchanged.

– Within the CSP, rather than disturb the existing processes, we define a new
process, BUFFERP (b, t) in Fig. 12 which defines that after a train moves

1 changeDirection(t , currp) =
2 PRE t ∗ TRAIN ∅ t ∗ dom(pos)∅
3 {currp} = dom({pos(t)}) ∅ currp ∗ BUFFER
4 THEN
5 movedPoints := {} ||
6 LET(track , d) BE (track , d) = pos(t) IN
7 LET(d1, d2) BE (d1, d2) = d IN
8 pos(t) := (track , (d2, d1))
9 END

10 END
11 END;

Fig. 11. changeDirection method from Interlocking.

200 P. James et al.

1 BUFFERP (b, t) = move!t?p!b ∈ changeDirection.t .b
2 ∈ move.t .b?newp ∈ BUFFERP (b, t)

Fig. 12. BUFFERP process in CTRL.

onto the buffer track b it must change direction before it can move off it. In
the model there will be a separate buffer process for each buffer and they are
independent of each other. These new processes are combined to reformulate
the overall CSP processes contained in the CTRL script.

6 Experimental Results

In this section, we present the experiment results when verifying safety proper-
ties of the tunnel and buffer examples presented in the previous section. These
experiments are carried out by following the verification workflow defined in
Sect. 4.

In order to verify the tunnel example, an engineer first uses the OnTrack tool
to draw the track plan as depicted on Fig. 6. Then the safety properties of the
example can be verified by loading the formal specification produced by OnTrack
into the ProB tool and performing this check. Here, a total of 1,516 distinct
states were examined in order to determine that no collision was possible. Our
methodology currently requires us to do this loading by hand but automating
this as a batch process for all the safety properties could easily be done.

Similarly, verification of the buffer example can be carried out by using the
OnTrack tool to draw the track plan as depicted on Fig. 10. The state space
of the formal specification produced by OnTrack required by ProB to model
check the safety properties for the formal specification of the Buffer example
was 18,510 states, significantly more than in the tunnel example. In Sect. 4 we
noted that it may not always be feasible to model check a complex scenario but
our methodology supports the systematic generation of all the sub-scheme plans
for a particular scheme plan. The track plan for one of the sub-scheme plans of
the buffer example is shown in Fig. 13. It illustrates the plan for the track AC
constructed using the covering abstraction. The highlights from this plan are as
follows:

Fig. 13. Sub-track plan for track AC of the buffer example

Verification of Scheme Plans Using CSP||B 201

– The point BC in the overall buffer example can now be considered as an
exit track and after which we do not need to consider the behaviour of
subsequent linear tracks and points. The reason being is that all that needs
to be captured is what happens to the state when a train moves off the point
AC and that this can be represented using a simple linear track rather than
a point.

– The point BD is similarly converted to an exit track.
– The current version of our covering technique has not considered the impact

of buffers on the abstraction of the scheme plans. Therefore, we must include
them in the zone of influence. Therefore, both tracks AA and AB retain their
bi-directional properties in the sub-scheme plan. We shall of course examine
in future work whether such tracks can be further reduced.

– Notice also that we need not consider the path along Entry, AE, AD, BD,
BC, BB, BA because it does not belong to the zone of influence as it does
not contain the track AC, but of course Entry, AE and AD are included
because they are on the normal route R1A and BD is included for the above
reason.

Running the formal specification of the sub-scheme plan for AC through
ProB gives a state space of 3,995 compared to 18,510 states for the full specifi-
cation. We have also verified that the three important safety properties hold for
this sub-scheme plan. Methodologically, we would then be required to run all the
sub-scheme plans through ProB and by appealing to our theoretical results we
would conclude that the overall buffer example from Fig. 10 preserves the safety
properties.

7 Related Work

The railway interlocking problem has long been studied by the Formal Methods
community, and our work builds upon prior approaches to the modelling and
verification of railways. Prominent studies from the B community include [17,
18] whilst [19,20] are classical contributions from process algebra and [21] uses
techniques from Algebraic Specification. On a lower abstraction layer, [22–25]
verify the safety of interlocking programs with logical approaches.

Our modelling is most related to Winter’s uni-directional approach in CSP
[26] and Abrial’s bi-directional modelling in Event-B [27], which however excludes
that trains can turn around at end stations. Winter [26] presents a generic, event-
based railway model in CSP as well as generic formulations of two safety prop-
erties: CollisionFreedom and NoMovingPoints. Overall, this results in a generic
architecture and a natural representation of two safety properties. Traceability,
however, is limited. There are relations in the model which are derived from
the control table. For example, the driving rule “trains stop at a red signal”
is distributed over different parts of the model: it is a consequence of the fact
that (1) the event “move to the first track protected by a signal” belongs to
a specific synchronziation set and (2) a red signal does not offer this event.
Purely event-based modelling leads to such decentralized control. Consequently,

202 P. James et al.

the model has no interlocking cycle. Chapter17 of the book by Abrial [27] gives
an excellent detailed description and analysis of the railway domain, deriving
a total of 39 different requirements. The modelling approach is generic, even
though no concrete model is proven to be correct. Traceability in a tower of
specifications can be complex for various reasons. For instance, a requirement
can be the consequence of invariants from different levels. The relation between
intended properties and the model remains an informal one. This is in contrast
to other approaches (including Winter’s and our own) which directly represent
the intended property in the formal world and then prove that the modelled
property is a mathematical consequence of the formal model. Furthermore, the
approach is monolithic: behaviour is not attached to different entities to which
they relate.

To put our work into context we must first clarify that railway verification
falls into two categories: the verification of railway designs prior to their imple-
mentation and the verification of the implementation descriptions themselves.
Our work is in the first area. A comparison using different model checkers in the
analysis of control tables has been conducted by Ferrari et al. [28] and falls into
the first category. Winter in a recent paper [29] considers different optimising
strategies for model checking using NuSMV and demonstrates the efficiency of
their approach on very large models. These analyses also fall into the first cat-
egory but the models are flat in structure compared to our models as they are
defined in terms of boolean equations and do not focus on providing behavioural
models. The analysis of interlocking tables (cf. control tables) by Haxthausen [30]
also falls into the first category and is supported by automated tools that gen-
erate the models. Cimatti et al. [25] also have had considerable success using
NuSMV but their analysis is focussed on the implementation descriptions.

8 Conclusion

In this paper we provided an overview of our methodology that uses the OnTrack
tool to provide a graphical front-end for the automatic generation of formal spec-
ifications. The formal specifications are then separately model checked using the
ProB tool. We described the architecture of a CSP||B formal specification of
a scheme plan giving details of the new aspects that allow the modelling of
multi-directional travel. We appreciate the absolute necessity to include these
aspects in our CSP||B formal specifications and recognise that the majority of
the related work includes such detail, for example [30]. Our aim by demon-
strating its inclusion incrementally was to show the robustness of the CSP||B
architecture and the ease by which new modelling aspects can be included. Sim-
ilarly, additional development of the OnTrack tool-support can also be achieved
incrementally. We are currently completing the implementation of the covering
abstractions and the integration of the output from ProB model checking with
OnTrack in order to provide round-trip engineering to the graphical editor. This
will mean that the engineer is not required to manipulate the formal specifica-
tions when safety properties are violated. Instead, the engineer will be able to

Verification of Scheme Plans Using CSP||B 203

change a graphical scheme plan, re-generate the formal specifications and re-run
the model checking in order to verify that the amended scheme plan preserves
safety (i.e., freedom from collision derailment and run-through).

Heitmeyer in [31] discusses the importance of complete abstractions. Our
abstractions are sound. It is future theoretical work to investigate if completeness
can be established. Furthermore, we also would like to extend our methodology
so that capacity and safety of large-scale railway systems can be studied simul-
taneously. One way to obtain this goal is to combine our modelling approach
with others which take capacity into account such as presented in [32].

Acknowlegements. Thanks to S. Chadwick and D. Taylor from the company Siemens
Rail Automation for their support and encouraging feedback.

References

1. Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.: Combining
event-based and state-based modelling for railway verification. Technical report
CS-12-02, University of Surrey (2012)

2. Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.: Using
ProB and CSP||B for railway modelling. In: Proceedings of IFM 2012 and ABZ
2012 Posters and Tool Demos Session, pp. 31–35 (2012)

3. Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.: Railway
modelling in CSP||B: The double junction case study. Electron. Commun. EASST
53 (2012)

4. Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.: Defining
and model checking abstractions of complex railway models using CSP||B. In:
Biere, A., Nahir, A., Vos, T. (eds.) HVC 2013. LNCS, vol. 7857, pp. 193–208.
Springer, Heidelberg (2013)

5. James, P., Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.:
On modelling and verifying railway interlockings: tracking train lengths. Technical
report CS-13-03, University of Surrey (2013)

6. James, P., Trumble, M., Treharne, H., Roggenbach, M., Schneider, S.: OnTrack: an
open tooling environment for railway verification. In: Brat, G., Rungta, N., Venet,
A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 435–440. Springer, Heidelberg (2013)

7. James, P., Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.:
Techniques for modelling and verifying railway interlockings. STTT (to appear)

8. Schneider, S., Treharne, H.: CSP theorems for communicating B machines. Formal
Asp. Comput. 17(4), 390–422 (2005)

9. Winter, K., Robinson, N.: Modelling large railway interlockings and model checking
small ones. In: Proceedings of the 26th Australasian Computer Science Conference,
pp. 309–316. Australian Computer Society, Inc. (2003)

10. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

12. Morgan, C.: Of wp and CSP. In: Beauty is our business: a birthday salute to E.
W. Dijkstra, pp. 319–326 (1990)

204 P. James et al.

13. ProB: The ProB animator and model checker (ProB 1.3.6-final). http://www.stups.
uni-duesseldorf.de/ProB. Accessed 1 May 2013

14. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit. Addison-Wesley Professional, Upper Saddle River (2009)

15. Kolovos, D., Rose, L., Paige, R., Garćıa-Domı́nguez, A.: The Epsilon Book. The
Eclipse Foundation (2012)

16. Bjørner, D.: Formal software techniques for railway systems. In: CTS 2000 (2000)
17. Leuschel, M., Falampin, J., Fritz, F., Plagge, D.: Automated property verification

for large scale B models with ProB. Formal Asp. Comput. 23(6), 683–709 (2011)
18. Sabatier, D., Burdy, L., Requet, A., Guéry, J.: Formal proofs for the NYCT line 7

(flushing) modernization project. In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid,
S., Leuschel, M., Reeves, S., Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp.
369–372. Springer, Heidelberg (2012)

19. Simpson, A., Woodcock, J., Davies, J.: The mechanical verification of solid-state
interlocking geographic data. In: Formal Methods Pacific 97. Springer, Heidelberg
(1997)

20. Morley, M.J.: Safety in railway signalling data: a behavioural analysis. In: 6th
International Workshop on HOLTPA, pp. 464–474. Springer, Heidelberg (1993)

21. Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed
railway control system. IEEE Trans. Softw. Eng. 26(8), 687–701 (2000)

22. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking
control tables. In: FORMS/FORMAT 2010, pp. 107–115 (2011)

23. Kanso, K., Moller, F., Setzer, A.: Automated verification of signalling principles
in railway interlockings. ENTCS 250, 19–31 (2009)

24. James, P., Roggenbach, M.: Automatically verifying railway interlockings using
SAT-based model checking. Electr. Commun. EASST 35 (2010)

25. Cimatti, A., Corvino, R., Lazzaro, A., Narasamdya, I., Rizzo, T., Roveri, M., San-
seviero, A., Tchaltsev, A.: Formal verification and validation of ERTMS industrial
railway train spacing system. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012.
LNCS, vol. 7358, pp. 378–393. Springer, Heidelberg (2012)

26. Winter, K.: Model checking railway interlocking systems. Aust. Comput. Sci., Com-
mun. 24(1), 303–310 (2002)

27. Abrial, J.R.: Modeling in Event-B. Cambridge University Press, Cambridge (2010)
28. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking

control tables. In: FORMS/FORMAT, pp. 107–115 (2010)
29. Winter, K.: Optimising ordering strategies for symbolic model checking of railway

interlockings. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, vol.
7610, pp. 246–260. Springer, Heidelberg (2012)

30. Haxthausen, A.E.: Automated generation of safety requirements from railway inter-
locking tables. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, vol.
7610, pp. 261–275. Springer, Heidelberg (2012)

31. Heitmeyer, C.L., Kirby, J., Labaw, B.G., Archer, M., Bharadwaj, R.: Using abstrac-
tion and model checking to detect safety violations in requirements specifications.
IEEE Trans. Softw. Eng. 24(11), 927–948 (1998)

32. Isobe, Y., Moller, F., Nguyen, H.N., Roggenbach, M.: Safety and line capacity
in railways - an approach in timed CSP. In: Derrick, J., Gnesi, S., Latella, D.,
Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 54–68. Springer, Heidelberg
(2012)

http://www.stups.uni-duesseldorf.de/ProB
http://www.stups.uni-duesseldorf.de/ProB

Applied Bounded Model Checking
for Interlocking System Designs

Anne E. Haxthausen1(B), Jan Peleska2, and Ralf Pinger3

1 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
aeha@dtu.dk

2 Department of Mathematics and Computer Science, Universität Bremen,
Bremen, Germany

jp@informatik.uni-bremen.de
3 Siemens AG, Braunschweig, Germany

Ralf.pinger@siemens.com

Abstract. In this paper the verification and validation of interlocking
systems is investigated. Reviewing both geographical and route-related
interlocking, the verification objectives can be structured from a perspec-
tive of computer science into (1) verification of static semantics, and (2)
verification of behavioural (operational) semantics. The former checks
that the plant model – that is, the software components reflecting the
physical components of the interlocking system – has been set up in an
adequate way. The latter investigates trains moving through the network,
with the objective to uncover potential safety violations. From a formal
methods perspective, these verification objectives can be approached by
theorem proving, global, or bounded model checking. This paper explains
the techniques for application of bounded model checking techniques, and
discusses their advantages in comparison to the alternative approaches.

Keywords: Railways · Interlocking systems · Formal methods · Verifi-
cation · Bounded model checking · Temporal logic

1 Introduction

Formal methods have been applied for years in the railway domain and reached
a level that enables the compilation of the body of knowledge in the form of an
engineering handbook (in the style of [1]), recording case-based “best practices”.
To this end, this paper contributes knowledge concerning verification and valida-
tion (V&V) of interlocking system designs. First we outline the state-of-the-art
of V&V tasks and formal methods for performing them. Then techniques for
applying one of these methods (bounded model checking) are explained in more
detail.

1.1 Interlocking V&V – State-of-the-art

Software controlling interlocking systems has to be verified on two levels. The
first level focuses on the correctness of configuration data specifying how the

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 205–220, 2014.
DOI: 10.1007/978-3-319-05032-4 16, c© Springer International Publishing Switzerland 2014

206 A.E. Haxthausen et al.

topology of the railway network controlled by the interlocking system is reflected
by re-usable software objects, their interfaces, and their instantiation data. Cor-
rectness of the configuration data ensures that the software has adequate control
over the electro-mechanical components of the physical interlocking system. In
terms of computer science, physical railway network layout may be regarded
as formal models conforming to some graph grammar. The associated software
configurations are correct if they conform to a similar grammar where physical
language objects – e.g., a point – have been replaced by language objects repre-
senting software components – e.g., the software instance representing a point.
Apart from grammatical well-formedness, additional rules concerning proper
parameterisation of objects apply. All in all, checking the correctness of interlock-
ing configurations corresponds to checks of model syntax and static semantics.
The second verification level investigates the safety of trains passing through the
controlled network area. The verification objective is to prove the absence of haz-
ardous situations in the network, provided that all trains follow the restrictions
(signals, speed limitations) imposed by the interlocking system. Extending the
object attributes of the static software configuration by dynamic state informa-
tion – e.g., whether trains reside on track elements, or the switch state of a signal
or a point – the object configuration is turned into a model with both static and
behavioural semantics. The latter specifies the potential dynamic changes of the
interlocking system configuration – e.g., a train leaving one track segment and
entering another.

Interlocking systems are designed according to different paradigms
[21, Chapter 4]. Two of the most widely used ones are (a) geographical interlock-
ing systems and (b) route-based interlocking systems using interlocking tables.
For design type (a), routes through the railway network can be allocated dynam-
ically by indicating the starting and destination points of trains intending to tra-
verse the railway network portion controlled by the interlocking system under
consideration. In the original technology, electrical relay-based circuits were
applied, whose elements and interconnections where designed in one-to-one cor-
respondence with those of the physical track layout. The electric circuit design
ensured dynamic identification of free routes from starting point to destina-
tion, the locking of points and setting of signals along the route, as well as
on neighbouring track segments for the purpose of flank protection. In today’s
software-controlled electronic interlocking systems, instances of software compo-
nents “mimic” the elements of the electric circuit. Typically following the object-
oriented paradigm, different components are developed, each corresponding to a
specific type of physical track element, such as points, track sections associated
with signals, and others with axle counters or similar devices detecting trains
passing along the track. Similar to connections between electric circuit elements,
instances of these software components are connected by communication chan-
nels reflecting the track network. The messages passed along these channels carry
requests for route allocation, point switching and locking, signal settings, and
the associated responses acknowledging or rejecting these requests. The software
components are developed for re-use, so that novel interlocking software designs

Applied Bounded Model Checking for Interlocking System Designs 207

can be realised by means of configuration data, specifying which instances of
software components are required, their attribute values, and how their commu-
nication channels shall be connected. The geographical approach to interlocking
system design induces a separate verification and validation (V&V) step which
is called data validation. Its objective is to check whether the instantiation of
software components is complete, each component is equipped with the correct
attribute values, and whether the channel interconnections are adequate. The
data validation objectives are specified by means of rules, and the rules collection
is usually quite extensive (several hundred), so that manual data validation is a
cumbersome, costly, and error-prone task. Moreover, the addition of new rules
often required expensive extensions of manually programmed checking software.
Data validation investigates only the static semantics of the network of software
components. A second V&V step is required to check whether the design will
ensure the safety properties required, so that – at least under certain boundary
conditions stating that train engine drivers have to respect signals and speed
restrictions, as far as not automatically enforced by the underlying technology
– trains moving concurrently through the railway network are protected against
derailing and collisions.

Route-based interlocking (system type (b)) is less flexible than geographical
interlocking, since it fixes all train routes through the railway network a priori,
using route tables specifying the sequences of track segments to be allocated
for each route. This loss of flexibility is compensated by the advantage that
configuration data is considerably simpler. The route table is complemented by
interlocking tables specifying the point positions and signal states to be enforced
when allocating routes. The interlocking tables fix these positions both for the
track elements which are part of the actual route, and the elements which are
outside the route, but contribute to its safety by guaranteeing flank protection.
Finally, a route conflict table identifies the routes which may never be simultane-
ously allocated, due to utilisation of common track elements [17]. Route-related
interlocking offers simpler means for data validation, since the control software
does not need to be based on communicating software instances related to each
track element. Instead, a control algorithm monitors a dynamic plant model
(each track element with its free/occupied status, and the locked/unlocked states
of points). Route allocation decisions can made by means of these element states
and their compatibility with the interlocking table restrictions. Data validation is
only concerned with choosing the proper software components (e.g., the correct
types of signals and points), and their consistency with the physical network.
V&V of the dynamic behaviour now has the objective to verify both the cor-
rectness of the control algorithm and the correctness of the interlocking tables.
Even in presence of a completely correct algorithm, a safety violation may occur
if these tables are not adequately specified; e.g., if a conflict between two routes
has not been properly documented in the tables. As a consequence, the data
validation activities concerning static semantics of the software components is
simpler and less critical than in the case of geographical interlocking systems,
but only V&V of the dynamic behaviour can verify the crucial safety properties
of the interlocking tables.

208 A.E. Haxthausen et al.

1.2 State-of-the-art Formal Methods for Interlocking V&V

The European CENELEC standards applicable for the development of software
in railway control systems require the application of formal specification and
design models and formalised, justified V&V activities to be performed for soft-
ware of the highest criticality, as applicable for interlocking systems [9]. The
objective of such formalizations is to ensure that potential safety breaches caused
by invalid configuration data or erroneous control algorithms can be identified
in a systematic way. If formal methods application can also be “mechanised” by
means of suitable tools, it contributes to the efficiency of V&V for interlocking
system designs in a considerable way. As of today, three methods are applied
for formal interlocking V&V: formal verification by theorem proving, by global
model checking, or by bounded model checking (BMC). Each of these meth-
ods depends on the existence of models describing the static semantics of the
interlocking systems, and their dynamic behaviour in combination with trains
traversing the railway network.

While – just like theorem proving – global model checking may result in com-
plete correctness proofs of data correctness and safety properties, experience (see
for instance [12]) has shown that complex interlocking systems cannot be veri-
fied by means of global model checking, since this would lead to state explosions
for all but the simplest interlocking systems. In contrast to this, bounded model
checking investigates model properties in the vicinity of a given state only, and
can therefore be applied to models of considerable size. In this contribution
we describe first how BMC is applied to data validation. This is performed by
checking the compliance of the data with correctness rules that may be expressed
formally by some temporal logic. Next, for the verification of safety properties,
BMC can be combined with inductive reasoning, and again, this results in a
global proof of the desired safety properties. The bounded model checking tech-
niques to be applied are sufficiently mature today to be applied in an industrial
context.

1.3 BMC as Best Practice for Interlocking V&V

The bounded model checking solution to data validation is explained for geo-
graphical interlocking systems, since there the requirements for this validation
are far more complex than for route-related interlocking. We describe how the
software components instantiated according to the given configuration data can
be formalised by means of a Kripke Structure whose state space is given by
the software component instances, where the transition relation is induced by
the communication channels connecting neighbouring objects, and the labelling
function specifies the attributes associated with each instance. It is explained
how typical pattern of data validation rules can be expressed by means of Lin-
ear Temporal Logic (LTL) including existential quantification of specific variable
values. A trace of states fulfilling such a formula identifies a witness for a vio-
lation of the validation rule. Application of LTL model checking allows for easy

Applied Bounded Model Checking for Interlocking System Designs 209

extendability of the rule base, by simply adding new LTL formulae represent-
ing violations of the new rules. No further software extensions are required, as
long as a sufficiently powerful bounded model checker for LTL exists. We further
describe how the BMC approach can be rightfully applied, because each data
validation rule only applies to a finite trace through the Kripke structure (while
LTL property checking in general refers to infinite computations). A bounded
LTL property checking algorithm is sketched which can be efficiently applied for
performing the data validation activities.

In [16] we have described a formal, model-driven method for efficient develop-
ment and verification of product lines of re-configurable route-related interlock-
ing systems. This method is based on many years of research of which the most
recent publications include [14,15] and [17]. According to this method the devel-
opment and verification of an interlocking system should be made in a number of
steps including the following ones: (1) Specify application-specific parameters in
a domain-specific railway language, and (2) from the domain-specific specifica-
tion, generate a formal, behavioural model of the interlocking system and formal
specification of the required safety properties. This generation should be fully
automated by tools developed for the purpose. For this setting we describe how
BMC may be applied in combination with inductive reasoning, in order to verify
global safety properties of the interlocking system software and configuration
data generated from these models. This combination of BMC and induction is
well-established today in many domains, and it is known to scale up for complex
“real-world” applications.

1.4 Related Work

An overview of trends in formal methods applications to railway signalling can be
found in [5,11]. Many other research groups have been using model-checking for
the verification of interlocking systems. In [12] a systematic study of applicability
bounds of the symbolic model-checker NuSMV and the explicit model checker
SPIN showed that these popular model checkers could only verify small rail-
way yards. Several domain-specific techniques to push the applicability bounds
for model checking interlocking systems have been suggested. Here we will just
mention some of the most recent ones. In [25] Winter pushes the applicabil-
ity bounds of symbolic model checking (NUSMV) by optimizing the ordering
strategies for variables and transitions using domain knowledge about the track
layout. Fantechi suggests in [10] to exploit a distributed modelling of geograph-
ical interlocking systems and break the verification task into smaller tasks that
can be distributed to multiple processors such that they can be verified in paral-
lel. In [20], it is suggested to reduce the state space using abstraction techniques
reducing the number of track sections and the number of trains.

For the alternative approach to interlocking V&V based on theorem proving,
the B-Method and its variants, such as Event-B, seem to be the formal methods
most strongly favoured for railway control applications in Europe. The formal
verification of behavioural properties is described, and the methods’ applicabil-
ity on an industrial scale has been established, for example, in [2]. In [6,18],

210 A.E. Haxthausen et al.

the application of Event-B to data validation is described. Further verification
approaches using theorem proving have been based on the RAISE method, as
described in [13].

An introduction into LTL can be found in [7]. The existential quantifica-
tion operator for LTL, which plays a crucial role in our concept of automated
data validation, has been originally introduced in [19]. Its adaptation to finite
trace semantics has been performed by the authors. The original semantics and
algorithms for verifying LTL formulae against finite trace segments have been
devised in [3,4]. On these finite segments only a subclass of LTL formulae can be
verified, this class has been identified in [24]. Fairness properties, for example,
which can be expressed in the complete LTL with infinite computations as mod-
els, are not part of this class. Our data validation properties, however, as well
as the safety properties to be fulfilled by the behavioural interlocking system
semantics, are all part of the so-called Safety LTL subset which is expressible on
finite trace segments.

1.5 Paper Overview

Sections 2 and 3 describe our methods for data validation and for verifying
system safety, respectively. In Sect. 4, the presented methods are discussed.

2 Data Validation

2.1 Kripke Structure Encodings of Static Plant Model

As sketched above, the software controlling geographical interlocking systems
consists of instances communicating over channels, each instance representing a
physical track element in the plant model. A subset of these channels – called
primary channels in the following – reflect the physical interconnection between
neighbouring track elements which are part of possible routes, to be dynamically
allocated when a request for traversal from some starting point to a destination
is given (Fig. 1). Other channels – called secondary channels – connect certain
elements s1 to others s2, such that s1 and s2 are never neighbouring elements
on a route, but s2 may offer flank protection to s1, when some route including
s1 should be allocated. Since geographical interlocking is based on request and
response messages, each channel for sending request messages from some instance
s1 connected to an instance s2 is associated with a “response channel” from s2
to s1. Primary channels are subsequently denoted by variable symbols a, b, c, d,
while secondary channels are denoted by e, f, g, h.

All software instances are associated with a unique id. Depending on the
track element type they are representing in the plant model, software instances
carry an element type t. Depending on the type, a list of further attributes
a1, . . . , ak may be defined for each software instance. By using a default value 0
for attributes that are not used for a certain component type, each element can
be associated with the same complete list of attributes, where the ones which are

Applied Bounded Model Checking for Interlocking System Designs 211

1

2

3

11

21

12

22

32

3

2

1

32

22

12

21

11

1

2

13

23

24

13

23

24

a a

c

b

a

b a

b

a

b

a

e

a

b

b b

a

a

a

a

b

b

d

Fig. 1. Physical layout, associated software instances and channel connections.

not applicable are set to 0. Each valuation of a channel variable contains either
a default value 0, meaning “no connection on this channel”, or the instance
identification id > 0 of the destination instance of the channel.

We will now formalise the static design of geographical interlocking sys-
tems as a Kripke Structure K = (S, S0, R, L,AP), with state space S, set of
initial states S0 ∪ S, transition relation R ∪ S × S and labelling function
L : S ∅ 2AP , where AP is a set of atomic propositions and 2AP denotes its
power set [7]. To this end, define a set V of variable names as introduced above,
V = {id, t, a, b, c, d, e, f, g, h, a1, . . . , ak}. The state space S consists of one val-
uation function s : V ∅ N0 for each software component. Each function maps
the variables to integers identifying the associated software component (id is
mapped to its unique id, t to its type, etc.). The set of initial states S0 is
defined to be the set of all states S. This allows us to start data validations
at arbitrary track elements. The transition relation R defines each instance s2
reachable from some instance s1 via any of the channels a, . . . , h to be a possible
post-state of s1.

R = {(s1, s2) | s1(v) = s2(id) ⊆ v → {a, . . . , h}} (1)

The set of atomic propositions AP is defined as the collection of all propo-
sitions stating equality of some attribute v → V to one of its possible values,
AP = {v = ξ | v → V ⊆ ξ → N0}. The labelling function L maps each state s to
the set L(s) of propositions which hold true in s, that is, √s → S : L(s) = {v =
s(v) | v → V }.

Now the violation of any data validation rule may be defined as a LTL for-
mula specifying witnesses of such an unwanted sequence of neighbouring ele-
ments. This will be illustrated in the following by a collection of validation
examples.

212 A.E. Haxthausen et al.

2.2 LTL Syntax

The LTL formulae specifying witnesses for rule violations use symbols from V
as free variables. The atomic propositions involved may consist of arithmetic
expressions and comparison operators =, <,>,≡,∈, ∞=. The valid LTL formulae
are constructed according to the following rules.

– Every atomic proposition is a LTL formula.
– If ϕ,ψ are LTL formulae, then1 ¬ϕ, φ ⊆ ψ, φ ⇑ ψ, (∀b : ϕ), Fϕ, Gϕ, Xϕ,

(ϕUψ) are LTL formulae. It is assumed that bound variable symbol b is not
contained in V .

2.3 Bounded Trace Semantics forLTL

The semantic rules for evaluating LTL formulae on finite trace segments si . . . sk
are specified using notation ⊇ϕ〉ki . The recursive rules for evaluating the truth
value of ⊇ϕ〉ki can be directly transformed into an algorithm unrolling ⊇ϕ〉ki into a
proposition no longer involving any temporal operators (F,G,X,U), but refer-
ring to variable valuations in states si, si+1, . . . , sk and Boolean operators ¬,⊆,⇑
only. Observe that we omit the semantics for G here, because our witnesses vio-
lating data rules are always represented by finite trace segments si.si+1 . . . sk
without loops, whereas Gϕ only holds true if the trace segment has a lasso
shape, where previous state on the segment is re-visited, thereby creating a
cycle. The BMC semantics of G is discussed in detail in [3,4].

The remaining transformation rules applicable for data validation are (sym-
bols p denote atomic propositions)

⊇ϕ〉ki = false if i > k (2)

⊇p〉ki iff p[si(v)/v | v → var(p)] (3)

⊇¬ϕ〉ki iff neg ⊇ϕ〉ki (4)

⊇ϕ ⊆ ψ〉ki iff ⊇ϕ〉ki ⊆ ⊇ψ〉ki (5)

⊇ϕ ⇑ ψ〉ki iff ⊇ϕ〉ki ⇑ ⊇ψ〉ki (6)

⊇(∀b : ϕ)〉ki iff ⊇ϕ〉ki ⊆
k−1∧

j=i

(sj(b) = sj+1(b)) (7)

⊇ϕUψ〉ki iff ⊇ψ〉ki ⇑ (⊇ϕ〉ki ⊆ ⊇ϕ[b∼/b | b → bound(ϕ)]Uψ〉ki+1) (8)

⊇Xϕ〉ki iff ⊇ϕ〉ki+1 (9)

⊇Fϕ〉ki iff
k∨

j=i

⊇ϕ〉kj (10)

In this specification of semantic transformations, Eq. (2) describes a termination
condition: if i > k, the formula is evaluated on an empty trace segment, and this
1 We do not need to consider the weak until operator W, or the release operator R.

Applied Bounded Model Checking for Interlocking System Designs 213

is false by definition. Equation (3) associates truth value true with an atomic
proposition if it evaluates to true after having replaced all variables v by their
actual value si(v) in the initial state si of the trace segment under consideration.
In Eq. (7) it is shown how a formula using existential quantification with bound
variable b is transformed into a proposition. Note that b occurs free in right-hand
side formula, and extends domain of sj , sj+1, . . . , sk by b. The conjunction over
terms sj(b) = sj+1(b) specifies that, once the value of b has been fixed for some
state sj , the same value has to be used in all states along the trace segment. The
recursive definition of the until operator in Eq. (8) requires to use fresh bound
variable symbols in each transformation step of the formula. This is illustrated
in Example 1.

Example 1. Consider the BMC evaluation of property (∀b : y = b ⊆ X(y =
b + 1))U(x > 10) on trace segment s0.s1.s2, that is ⊇(∀b : y = b ⊆ X(y =
b + 1))U(x > 10)〉20. Applying the rules above, this is unrolled to

⊇(∀b : y = b ⊆ X(y = b + 1))U(x > 10)〉20 ⇒
⊇(x > 10)〉20 ⇑
(⊇(∀b : y = b ⊆ X(y = b + 1))〉20 ⊆
⊇(∀b∼ : y = b∼ ⊆ X(y = b∼ + 1))U(x > 10)〉21) ⇒
(s0(x) > 10) ⇑
(⊇(y = b) ⊆ X(y = b + 1))〉20 ⊆⎧1

j=0 (sj(b) = sj+1(b)) ⊆
⊇(∀b∼ : y = b∼ ⊆ X(y = b∼ + 1))U(x > 10)〉21) ⇒
(s0(x) > 10) ⇑
((s0(y) = s0(b)) ⊆ (s1(y) = s1(b) + 1)) ⊆⎧1

j=0 (sj(b) = sj+1(b)) ⊆
((s1(x) > 10) ⇑
(s1(y) = s1(b∼) ⊆ s2(y) = s2(b∼) + 1) ⊆ (s1(b∼) = s2(b∼)) ⊆
⊇(∀b∼∼ : y = b∼∼ ⊆ X(y = b∼∼ + 1))U(x > 10)〉22) ⇒
(s0(x) > 10) ⇑
((s0(y) = s0(b)) ⊆ (s1(y) = s1(b) + 1)) ⊆⎧1

j=0 (sj(b) = sj+1(b)) ⊆
((s1(x) > 10) ⇑
((s1(y) = s1(b∼)) ⊆ (s2(y) = s2(b∼) + 1) ⊆ (s1(b∼) = s2(b∼)) ⊆
((s2(x) > 10) ⇑ ((s2(y) = s2(b∼∼)) ⊆ false)))

2.4 Data Validation by Bounded Model Checking

Bounded model checking in general is concerned with the solution of so-called
bounded model checking instances, that is, constraints of the form

J(s0) ⊆
k∧

i=1

R(si−1, si) ⊆ G(s0, . . . , sk) (11)

For solving these constraints, SMT solvers are used. When applied in the context
of BMC, J(s0) is a proposition specifying the starting state from where a witness

214 A.E. Haxthausen et al.

should be found within a bounded number of steps k. For the purpose of data
validation, J(s0) admits any track element – respectively, its software instance
– s0 as a starting point, since all validation rules have to be applied to track
segments starting at any element s0 in the interlocking system area. Therefore
J(s0) can be expressed by

J(s0) ⇒
∨

s→S

⎪
∧

v→V

s0(v) = s(v)

⎨

(12)

This initial condition states that any initial valuation2 of variables v → V must
coincide with any of the software instances s → S representing track elements.

Proposition G(s0, . . . , sk) specifies the unwanted property of the trace seg-
ment of length k to be found, that is, a sequence of track element-related software
instances s0, . . . , sk violating some validation rule ¬G. As described in Sect. 2.5,
such an unwanted property G to be uncovered will be specified in LTL. There-
fore bounded LTL model checkers parse the original LTL formulae and apply
the transformation rules specified in formulae (2–10), in order to produce an
equivalent propositional formula G, as illustrated in Example 1 above.

The conjuncts R(si−1, si) enforce that only solutions of G(s0, . . . , sk) are
considered that correspond to trace segments whose elements are related by the
transition relation. For our purpose of data validation this means, that each pair
(si−1, si) of a solution trace s0, . . . , sk is connected by some primary or secondary
channel a, . . . , h. Therefore the conjunction is expressed by (see Eq. (13))

k∧

i=1

R(si−1, si) ⇒
k∧

i=1

⎩

⎝
∨

c→{a,...,h}
si−1(c) = si(id)

⎞

⎠ (13)

Summarising, data validation for geographical interlocking requires to solve
BMC instances of the form

∨

s→S

⎪
∧

v→V

s0(v) = s(v)

⎨

⊆
k∧

i=1

⎩

⎝
∨

c→{a,...,h}
si−1(c) = si(id)

⎞

⎠ ⊆ Trans(φ) (14)

where φ specifies a violation of some validation rule in LTL, and Trans(φ) denotes
the transformation of LTL formulae into propositional formulae according to the
rules specified in formulae (2–10).

If the bounded model checker is able to calculate a witness, that is, a solution
of Formula (14) within k steps, an error has been found, so the bounded model
checker is a valuable tool for bug finding. If, however, no witness can be found
2 Recall from Sect. 2.1 that V contains the variable symbols for element identifica-

tion (id), element type (t), channels connecting to neighbouring elements (a, . . . , h),
and additional type-specific attributes (a1, . . . , ak). For some v ∈ V , notation s0(v)
denotes the value of variable v to be determined by the SMT solver for the initial
state s0.

Applied Bounded Model Checking for Interlocking System Designs 215

within k steps, it remains to be determined whether some witness might be
found if k is increased. This question has been answered for the general case of
arbitrary Kripke Structures and LTL formulae in [3,4]. If k corresponds to the
so-called diameter of the Kripke Structure under consideration, and no solution
could be found for this k, bounded model checking provides a global proof of
non-existence for such a witness. While the diameter is often too large to be
applied for BMC in practice, it is of feasible size in the case of data validation,
because it roughly corresponds to the maximal length of track segments from
some element to the boundary of the interlocking system area.

2.5 Applications

We will now describe several examples illustrating the expressiveness of LTL for
the verification of data validation rules.

Example 2. The simplest validation rules state that instances representing ele-
ments of a certain type t = τ must have certain attributes with values in a specific
range, such as ai → [x0, x1]. A violation of this property is readily expressed by
LTL formula F(t = τ ⊆ (ai < x0 ⇑ x1 < ai)).

Example 3. The following rule checks the correctness of channel connections. “If
there exists a channel from s1 to s2, there must exist a channel in the reversed
direction”. A violation of this rule can be specified in natural language as “There
exists an instance s1 which is not the auxiliary initial state, so that s1 is connected
to some instance s2, but all channels emanating from s2 lead to instances different
from s1”. In LTL this is expressed as

F(∀i : id = i ⊆ id > 0 ⊆ X(a ∞= i ⊆ b ∞= i ⊆ . . . ⊆ h ∞= i))

A witness for such a rule violation reaches an element s with positive id (so
it does not equal s0) and at least one of its reachable neighbours (which, by
definition of R, are only reachable if there is a connecting channel from s to this
neighbour) has no channel with destination s.

Example 4. The following rule pattern frequently occurs when checking config-
uration data with respect to software component instances representing illegal
sequences of track elements along a route. “Following a track element of type τ1
along its a-channel, and only regarding primary channel connections, an element
of type τ2 must occur, before an element of type τ3 is found”. The violation of
this rule is specified by “Find a track element of type τ1 and follow it along its
a-channel, so that only elements of type t ∞= τ2 may be found along its primary
channel directions, until an element of type τ3 is encountered”.

F(t = τ1 ⊆ ∀x : (a = x ⊆ X(id = x ⊆ ((t ∞= τ2 ⊆
∀y : ((a = y ⇑ b = y ⇑ c = y ⇑ d = y) ⊆ X(id = y)))

U(t = τ3)))))

216 A.E. Haxthausen et al.

Kripke structure Mstatic sw design

Informal data rules LTL assertions
for rule violations

φ

BMC checker
rules violated or not

Fig. 2. Tool support for data validation work flow.

2.6 Tool Support

In principle, data validation by means of LTL can be performed with any LTL
model checker that is able to encode the Kripke Structure representing the sta-
tic semantics of the geographical interlocking system as described in Sect. 2.1.
A reference implementation has been performed by the authors using the model-
based testing and bounded model checking tool RT-Tester, described in more
detail in [22]. RT-Tester performs automated test data generation or calculation
of BMC witnesses by solving constraints of the form specified in Eq. (11), with
the help of the SONOLAR SMT solver described in [23].

Figure 2 shows the data validation work flow and indicates the interaction
between tool components.

– The static software design of the geographical interlocking system is repre-
sented by encodings s → S of software instances corresponding to track ele-
ments. In the reference implementation described here, this is encoded in
XML.

– A parser front-end of RT-Tester developed for this XML encoding reads
the design and transforms it into the internal model representation of the
tool. This is an abstract syntax tree data structure that allows for syntac-
tic representation of a wide variety of formalisms, such as UML/SysML,
Matlab/Simulink, process algebras, and the proprietary interlocking system
format described here.

– RT-Tester allows for utilisation of different transition relation generators, asso-
ciated with the semantics of each supported modelling formalism. One of these
generators creates the initial state condition and transition relation for the
Kripke Structure introduced in Sect. 2.1, according to Eqs. (12) and (13).

– The data validation rules are transformed by experts into LTL formulae φ
representing rule violation.

– The LTL parser of RT-Tester reads the formulae, and they are transformed
by the tool into propositional formulae.

– The diameter k of the track network is determined.
– The SMT solver tries to find a solution for the BMC instance shown in

Eq. (14). If a solution can be found, a violation of rule ¬φ has been uncov-
ered. If no solution can be found, it has been proven that this rule is nowhere
violated, because k is the diameter of the network.

Applied Bounded Model Checking for Interlocking System Designs 217

3 Verification of System Safety

This section describes our method for formally verifying safety of an interlocking
system.

3.1 Formalization of the Verification Task

According to our method, the input of this verification step should consist of:
(1) a formal, state-based, behavioural model M of the interlocking system and
its physical environment and (2) safety conditions Φ expressed as a conjunction
of propositions over the state variables in M. The verification goal is then to
verify that the safety conditions Φ hold for any reachable state in M.

As will be explained below, a model checker tool should be used for auto-
mated verification of such a goal. Therefore, the model M and the formula Φ
should be expressed in the input language of the chosen model checker.

3.2 Verification Strategy

There is an established approach to apply bounded model checking in combina-
tion with inductive reasoning, in order to prove global system properties; this
approach is called k-induction. For proving that safety condition Φ holds for all
reachable states of M, this method proceeds as follows.

1. First prove that Φ ⊆ Ψ holds for the k > 0 first execution cycles after initiali-
sation, i.e. Φ ⊆ Ψ holds for k > 0 successive3 states σ0, . . . , σk−1 of which σ0

is the initial state of M.
2. Next prove the following for an arbitrary execution sequence of k+1 successive

states σt, . . . , σt+k of which the first σt is an arbitrary state (reachable or not
from the initial state σ0): if Φ ⊆ Ψ holds in the k first states σt, . . . , σt+k−1,
then Φ ⊆ Ψ must also hold for the k + 1st state σt+k.

Here Ψ is an auxiliary property that holds for reachable states. (Note that Ψ is
simultaneously proven by the given induction principle.) The proofs of the base
case and the induction step should be performed by a bounded model checker
tool. An example of such a tool is described in [8]. This tool treats the two
proof obligations by exploring corresponding propositional satisfiable problems
and solving these by a SAT solver. Note that the induction steps argue over an
execution sequence of k+1 states of which the first state, σt, may be unreachable,
although it would have been sufficient only to consider sequences for which σt

is reachable. For sequences starting at an unreachable state, the induction step
may fail and the property checker produces a false negative. To avoid this, the
desired property Φ is strengthened with auxiliary property Ψ that is false for
those unreachable states, σt, for which the induction step would otherwise fail.
3 Two states σi and σi+1 are successive, if there is a transition from σi to σi+1 accord-

ing to M.

218 A.E. Haxthausen et al.

S22

G24.2

W118

W100

TRAMWAY MAIN ROUTES:
 1: S20−G21 (NORTH−SOUTH)
 3: S21−G23 (SOUTH−NORTH)

ROUTE 4: S21−G25

ROUTE 5: S22−G23

ROUTE 2:
S20−G25

ROUTE 6:
S22−G21

ROUTE 3
S21−G23

G22.1

G22.0

G22.3

G25.0 G25.1

G23.1

G23.0

G21.1

G21.0

S20

S21

G24.0G24.1

G24.3

G22.2

S20−G21
ROUTE 1:

G20.0

G20.1

G20.2 G20.3

W102

TRAM MAINTENANCE SITE

Fig. 3. A tramway network.

3.3 Case Study

A reference publication for this verification technique has been published in [8].
It describes a real-world route-related tramway control system. For the network
in Fig. 3, the model of the tramway control system was verified to be safe, using
k-induction. The safety conditions Φ was a conjunction of 15 conditions ensuring
no collisions and no derailments of trams, and the auxiliary condition Ψ was a
conjunction of conditions expressing state relations needed as assumptions in
the induction step, in order to rule out unreachable states that would have given
rise to false negatives otherwise. It turned out that a value of k = 3 sufficed to
carry out the induction. The proofs of the base case and the induction step were
performed by a bounded model checker, which used 392 s to perform the proofs.
For more details about the case study, see e.g. [8,17].

4 Conclusion

In this paper the application of bounded model checking for verification and
validation of interlocking systems has been described. In contrast to global model
checking which usually leads to state space explosions when applied to complex
interlocking systems, bounded model checking allows for application in large and
complex interlocking system layouts. It has been shown how the technique can be
applied on two levels. First, in the form of LTL property checking, for the purpose
of configuration data validation. Next, in combination with inductive reasoning,
for the purpose of verifying safety properties for the dynamic behaviour of trains
traversing the track network. Tool applications and measurements show that
both application scenarios scale up for application in an industrial context.

Applied Bounded Model Checking for Interlocking System Designs 219

Acknowledgments. The first author has been supported by the RobustRailS project
funded by the Danish Council for Strategic Research. The second and third authors
have been supported by the openETCS project funded by the European ITEA2
organisation.

References

1. Guide to the software engineering body of knowledge. Technical report, IEEE Com-
puter Society (2004). http://www.computer.org/portal/web/swebok/htmlformat

2. Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: a successful application
of B in a large project. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999.
LNCS, vol. 1708, pp. 369–387. Springer, Heidelberg (1999)

3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

4. Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V.: Linear encodings
of bounded LTL model checking. Log. Meth. Comput. Sci. 2(5), 1–64 (2006)

5. Bjørner, D.: New results and current trends in formal techniques for the develop-
ment of software for transportation systems. In: Proceedings of the Symposium
on Formal Methods for Railway Operation and Control Systems (FORMS’2003).
L’Harmattan Hongrie, Budapest, 15–16 May 2003

6. Clabaut, M., Metayer, C., Morand, E.: 4B–2 formal data validation - formal tech-
niques applied to verification of data properties. In: Embedded Real Time Software
and Systems ERTS (2010)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (1999)

8. Drechsler, R., Große, D.: System level validation using formal techniques. IEE
Proc. - Comput. Digit. Tech. 152(3), 393–406 (2005)

9. European Committee for Electrotechnical Standardization: EN 50128:2011 - Rail-
way Applications - Communications, Signalling and Processing Systems - Software
for Railway Control and Protection Systems. CENELEC, Brussels (2011)

10. Fantechi, A.: Distributing the challenge of model checking interlocking control
tables. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, vol. 7610,
pp. 276–289. Springer, Heidelberg (2012)

11. Fantechi, A., Fokkink, W.J., Morzenti, A.: Some trends in formal methods appli-
cations to railway signaling. In: Formal Methods for Industrial Critical Systems,
pp. 61–84. Wiley, Hoboken (2012)

12. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking con-
trol tables. In: Schnieder, E., Tarnai, G. (eds.) Proceedings of Formal Methods for
Automation and Safety in Railway and Automotive Systems (FORMS/FORMAT
2010). Springer, Braunschweig (2011)

13. Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed
railway control system. IEEE Trans. Softw. Eng. 26(8), 687–701 (2000)

14. Haxthausen, A.E.: Towards a framework for modelling and verification of relay
interlocking systems. In: Calinescu, R., Jackson, E. (eds.) Monterey Workshop
2010. LNCS, vol. 6662, pp. 176–192. Springer, Heidelberg (2011)

15. Haxthausen, A.E.: Automated generation of safety requirements from railway inter-
locking tables. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, vol.
7610, pp. 261–275. Springer, Heidelberg (2012)

http://www.computer.org/portal/web/swebok/htmlformat

220 A.E. Haxthausen et al.

16. Haxthausen, A.E., Peleska, J.: Efficient development and verification of safe railway
control software. In: Railways: Types, Design and Safety Issues, pp. 127–148. Nova
Science Publishers Inc, New York (2013)

17. Haxthausen, A.E., Peleska, J., Kinder, S.: A formal approach for the construction
and verification of railway control systems. Formal Aspects Comput. 23(2), 191–
219 (2011)

18. Lecomte, T., Burdy, L., Leuschel, M.: Formally checking large data sets in the
railways. CoRR, abs/1210.6815 (2012)

19. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.
Springer, New York (1992)

20. Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.: Defining
and model checking abstractions of complex railway models using CSP||B. In:
Biere, A., Nahir, A., Vos, T. (eds.) HVC. LNCS, pp. 193–208. Springer, Heidelberg
(2013)

21. Pachl, J.: Railway Operation and Control. VTD Rail Publishing, Mountlake Ter-
race (2002)

22. Peleska, J: Industrial-strength model-based testing - state of the art and current
challenges. In: Petrenko, A.K., Schlingloff, H. (eds.) Proceedings Eighth Workshop
on Model-Based Testing, Rome, 17 March 2013. Electronic Proceedings in Theo-
retical Computer Science, vol. 111, pp. 3–28. Open Publishing Association (2013)

23. Peleska, J., Vorobev, E., Lapschies, F.: Automated test case generation with SMT-
solving and abstract interpretation. In: Bobaru, M., Havelund, K., Holzmann, G.J.,
Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 298–312. Springer, Heidelberg
(2011)

24. Sistla, A.P.: Liveness and fairness in temporal logic. Form. Aspects Comput. 6(5),
495–512 (1994)

25. Winter, K.: Optimising ordering strategies for symbolic model checking of railway
interlockings. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, vol.
7610, pp. 246–260. Springer, Heidelberg (2012)

Formal Implementation of Data Validation for
Railway Safety-Related Systems with OVADO

Robert Abo and Laurent Voisin(B)

Systerel, Les Portes de l’Arbois - Bâtiment A, 1090 rue Descartes,
13857 Aix-en-Provence Cedex 3, France

{robert.abo,laurent.voisin}@systerel.fr
http://www.systerel.fr

Abstract. This paper describes the process of data validation for rail-
way safety-critical computer-based systems formally implemented by
Systerel as supplier of railway industry’s companies. More precisely, it
describes the validation of data against the requirements it has to meet
to ensure systems safety. International standards, especially CENELEC
EN 50128, recommend the use of formal methods for designing the most
critical safety-related systems. We use the OVADO formal tool to per-
form data validation. For that, we model data requirements by using
the specification language of the B method, namely the B language,
before using OVADO that automatically checks that data meet require-
ments. This tool integrates two independent components that must give
the same results when they are applied on the same data, according to
the principle of redundancy. An example of data validation for a CBTC
system is also given.

Keywords: Railway systems · CBTC · Data validation · B language ·
Ovado

1 Introduction

Saying that present-day railway systems implement computer-based compo-
nents, moreover as most industrial systems (objects of our everyday life, cars,
planes, plants, nuclear power stations, weapons, etc.), is obvious, almost a com-
monplace, as computer-science controls our modern industries. But it is not trite
to note that some of them implement a safety function, so that their malfunction
or failure may have dramatic consequences on them and their users. This is the
reason why their development requires a lot of rigor and discipline, leading to
its own branch of computing known as safeware [1]. Otherwise, each electrical
and/or electronic system is characterized by a Safety Integrity Level (SIL) which,
as defined in IEC 61508 standard [2], denotes the risks involved in the system
application by using a scale of 1 (the lowest risks) to 4 (the highest ones). Failures
of SIL 3 or SIL 4 systems, aka safety-critical systems, may cause environmental
harms, severe damages or the destruction of expensive pieces of equipment and
human casualties.

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 221–236, 2014.
DOI: 10.1007/978-3-319-05032-4 17, c© Springer International Publishing Switzerland 2014

http://www.systerel.fr

222 R. Abo and L. Voisin

Standards. In Europe, the development of railway systems is governed by the
legislation in force in a specific country and by international CENELEC1 stan-
dards, which define objectives in terms of safety and security and the methods
to reach them. These standards, which are all variations of IEC 61508 [2], are:
EN 50126 [3] (for the methods to implement to demonstrate RAMS2 of applica-
tions), EN 50128 [4] (dedicated to the safety of software components3), and EN
50129 [5] (devoted to the safety of hardware components). They are completed
by EN 50159 dedicated to safety-related communications in closed (part 1) and
in open transmission systems (part 2) [6].

CBTCs. Among the safety-related railway systems, we find Communication-
Based Train Controls (CBTCs), on which we focus in this paper, i.e. railway
signalling systems that use telecommunications between trains and trackside
equipment [7]. They aim at safely managing trains on an entire line, while absorb-
ing the passenger traffic in particular during peak hours. There may be some
differences depending on the technologies implemented by the different suppli-
ers. But, basically, a railway signalling system has a pyramidal structure made
of five layers as illustrated in Fig. 1. And, of course, like most of the systems
with a layered structure, each sub-layer uses the services provided by the layer
which is located just below it, in order to provide services to that located just
above it by using specific interfaces.

Train detection

Interlocking (IXL)

ATC
(ATP, ATO, MAS)

Trackside equipment

ATS

Fig. 1. The pyramidal structure of a railway signalling system

At the base of the structure, the first layer is composed of the trackside equip-
ments (i.e. rails, balises, points, signals, etc.). Just above, we find the pieces of
equipment in charge of detecting a train on the track, i.e. track circuits mainly.
The first of the higher layers consists of Interlocking (IXL) which is in charge

1 This is the European Committee for Electrotechnical Standardization, which is
responsible for European standardization in the area of electrical engineering.

2 RAMS stands for Reliability, Availability, Maintainability and Safety.
3 This standard defines the notion of Software SIL inherited from that of IEC 61508
with a first level, SSIL 0, which denotes a non-safety-related software component.

Formal Implementation of Data Validation 223

of safely establishing and monitoring the train routes without any risks of colli-
sions, catching up, and other traffic conflicts, for example with cars at crossings.
Interlocking is SIL 4. The layer above is the Automatic Train Control (ATC)
whose purpose is running a train while protecting it from dangerous situations.
For that, it is composed of Automatic Train Protection (ATP) in charge of super-
vizing the train speed (ATP is SIL 4), and Automatic Train Operation (ATO)
which automatically drives the train. A Maintenance Aid System (MAS) com-
plements this layer. Finally, the Automatic Train Supervision (ATS) heads up
the whole structure, and allows operators to remotely control railway traffic on
an entire line.

The Crucial Role of Data. Besides, many railway safety-related systems, includ-
ing CBTCs, are wholly or partially composed of generic software elements,
which are adapted to a particular application by means of application algo-
rithms and/or configuration data ([4], Sect. 8). This static data describes the
geographical arrangement of equipment and capability of the rail infrastructure
and, therefore, it never changes, contrarily to dynamic data, which describes the
current state of equipment along the track. Each software component of a CBTC,
in particular the most critical ones, loads at runtime static data to perform its
aim. This is why static configuration data plays a crucial role in ensuring the
safe operations of trains: if it is wrong, the safety-related components perform
their functions by using wrong data as input, and thus fail, even if they are
well designed and programmed and the electronic boards where they are stored
are well manufactured. Therefore data needs to be validated in the same way
as safety-related hardware and software components. This is usually done in
the earliest stages of a CBTC’s life cycle by a dedicated team. In addition, for
safety-critical software components including IXL and ATP, EN 50128 standard
“highly recommends” the use of formal methods for their development process.
This recommendation has influenced the data validation process introduced in
the following sections.

Systerel. This paper describes this process as it is done by Systerel. It does not
address another important task generally performed by prime contractors as
part of data validation, which is that static data used by safety-related systems
really correspond to the used physical railway. The core business of Systerel, a
medium-sized enterprise both located in Aix-en-Provence, Lyon, Toulouse and
Paris in France, is the development of safety-critical embedded systems for rail
transportation, aeronautics, space industry, energy, etc. It provides an expertise
in the use of formal methods throughout the development cycle of a system, i.e.
its design, its development and its validation4.

Organization of the Paper. This paper is organized as follows. Section 1 intro-
duces data validation in the railway sector. Section 2 outlines its basics. Section 3
is entirely dedicated to the OVADO data validation tool used by Systerel in order
4 For further information, please visit http://www.systerel.fr.

http://www.systerel.fr

224 R. Abo and L. Voisin

to conduct its projects. Section 4 presents a real example of data validation of a
CBTC. Finally, Sect. 5 concludes this article.

2 Background

In the introduction, we have highlighted the necessity of validating data as a
process of the design of a CBTC. But, what do we exactly mean by “validating
data”? In this section, we define data validation before describing a process that
implements it independently of any CBTC.

2.1 Definition

Usually, when we validate hardware and software components, we check that they
meet their requirements by testing them or by proving it using formal methods.
Similarly, we define data validation as the process consisting in ensuring that
data used by a safety-critical computer-based system conforms to a collection of
requirements which define its usefulness, correctness and completeness for this
system.

In other words, data validation consists in checking that data meets the
requirements defined for this system. Generally, due to its high cost, this valida-
tion concerns the safety-related requirements only.

2.2 A Semiautomatic Process Based on the B Method

Methodology. In the railway sector, data validation has been done entirely man-
ually for a long time, leading to a tricky, fastidious, error-prone and long-term
activity. For example, the authors note in [8], that it took more than six months
to check that one hundred thousand data items were in accordance with two
hundred properties representing requirements. Great R&D efforts have induced
the design of industrial practical tools that now allow the semiautomatisation of
data validation. This process is not fully automatic because, while the validation
is automatically performed by a tool, the requirements still need to be manually
modeled and these models need to be checked by dedicated engineers. Never-
theless, semiautomatisation has undoubtedly increased the speed and level of
confidence of data validation [8]. As mentioned in Sect. 4.4, let us note now that
the way of modelling requirements has got a great influence on the performance
of the tool.

B Language. On the other hand, known as a success story in software engineer-
ing for the railway sector, the B method is a formal method designed in the
nineties by Jean-Raymond Abrial [9]. Let us briefly recall that software develop-
ment with B consists in successively refining the models of a specification until
obtaining an implementation which is automatically translated into source code.
Each refinement step consists in introducing details in abstract models, and then
in proving the consistency and compliancy of refined models with the abstract

Formal Implementation of Data Validation 225

ones they refine. More recently designed, Event-B enlarges the scope of the B
method with the purpose of studying and specifying whole systems, not only its
software components [10]. We use a subset of the specification language of the B
method, namely the B language5, to model data requirements specified in nat-
ural language. The choice of the B language is explained by the implementation
of B in software engineering for railways, its ease of use (although models are not
always easy to write), and also its ease of learning. Let us note that a data vali-
dation process relying on Event-B has been also developed [11]. The B method
and OVADO were chosen because they are part of the expertise and know-how
of Systerel. Other formal languages and tools exist: for example, let us quote
SCADE based on the synchronous language Lustre6. This is another approach
of formal data validation which is not described in this paper. Ontologies for
railway systems constitute a promising R&D axis [12,13].

2.3 An Iterative Process

Principle. The principle of data validation is illustrated in Fig. 2.

Fig. 2. Principle of data validation

Firstly, high-level data requirements are modelled as predicates of set-theory
and first order logic that use data sets. These predicates are expressed using
the B language. Secondly, a tool automatically evaluates their truthfulness (true
or false). In these conditions, data falls into two categories: on the one hand,
the correct data that meet the requirements and for which predicates are true,
and on the other hand the incorrect data that do not meet them and for which
predicates are false. For the latter, an analysis is performed to determine the
origin of the non-conformity before restarting the process from its beginning.
5 A useful summary of the syntax of the B language can be found at http://www.
stups.uni-duesseldorf.de/ProB/index.php5/Summary of B Syntax.

6 Further information about Lustre or model checking is available at http://
www-verimag.imag.fr/Synchrone,30?lang=en.

http://www.stups.uni-duesseldorf.de/ProB/index.php5/Summary_of_B_Syntax.
http://www.stups.uni-duesseldorf.de/ProB/index.php5/Summary_of_B_Syntax.
http://www-verimag.imag.fr/Synchrone,30?lang=en.
http://www-verimag.imag.fr/Synchrone,30?lang=en.

226 R. Abo and L. Voisin

Fig. 3. Validation of the models

In effect, this is an iterative process in the sense that it is repeated after correc-
tions are made until all data are compliant with the requirements. The origin of
an error may be: the value of data itself; the requirements in natural language
that have not been updated; or the model! Because, they can be wrong too and
wrong models may validate faulty data!

Indeed, data validation is a great source of errors7 especially when require-
ments are difficult to model8. We must highlight wrong data by really ensuring
that data marked as correct is really correct. This is why the models of require-
ments need themselves to be validated prior to being able to validate data.
Validating the models of data requirement aims at ensuring that wrong data are
detected.

Models Validation. Therefore, the principle of data validation as illustrated in
Fig. 2 has to be refined. Modelling requirements is a five-stage process as illus-
trated in Fig. 3.

Stage #1 corresponds to the specification of a requirement in a natural lan-
guage (English, French, etc.) by system engineers. Stage #2 corresponds to its
translation into a formal model. Several properties can be provided to cover a
single requirement of the informal specification, with the purpose of simplifying
the model. In order to reduce the risk of errors previously mentioned, each model
is proofread by a reviewer who is different from the specifier who has written it,
as required by EN 50128 Sects. 5 and 6 (stage #3). Then, the proofread model is
tested by using a set of deliberately wrong data (stage #4). Again, as required by
EN 50128, the tester is different from the designer who wrote the model. More-
over, he (or she) performs black-box testing, i.e. he (or she) can only access the
specification in natural language of the requirement, not the model under test.
7 Cuiusvis hominis est errare, nullius nisi insipientis in errore perseverare i.e. “Any
man can make mistakes: nobody but a fool will persist in error (Cicero, Philippicae
XII, ii, 5)”.

8 Let us quote an encountered real example of an indivisible requirement described in
nineteen pages of a document. Its model has five hundred lines of predicates written
in the B language.

Formal Implementation of Data Validation 227

If an error is discovered, the model is corrected and the whole validation cycle
restarts (return to stage #2). Finally, when no error is found anymore, the model
is approved and thus can be used to validate data (stage #5).

Proofreading consists in tracking down what we could call “over-specification”
errors (i.e. the model specifies more things than the informal specification), and
“under-specification” errors (i.e. the model specifies less things than the informal
specification)9. These kinds of errors are usually due to a lack of understanding
of the requirements, repetitions, oversights, non-updated models after changes,
sometimes minor, of the informal specification and so on.s Let us add that the
designer is not compelled to follow the proofreader’s comments by justifying his
(her) choice.

Verifying the models aims at checking that they translate well into the B
language a requirement in natural language, and that the specifier does not
make any foolish mistakes. But, tests are also performed to track tautologies
i.e. predicates which are always true, whatever data is. For example, A, B and C
being some predicates, ((A ∪ B) ∅ C) ⊆ (A ∅ (B ∅ C)) is a tautology. This kind
of error is difficult to highlight by proofreading. Only one test is carried out
for each property: we aims at checking out that the property can be false at
least once, and we do not perform a total coverage as it is done for unit tests
of safety-critical systems [2,4]. If it is impossible that a property becomes false
with wrong data, then it is a tautology and it must be corrected.

When completed, stages 2 to 4 produce some deliverables: the proofreading
report, which summarizes the proofreads of all models; the test report, which
aims at doing the same thing for the tests of models; and, of course, the doc-
umentation of the models which summarizes the models with their description
and justification in natural language, and also a traceability matrix in order to
show that all the informal requirements are covered by at least one property
written in the B language.

Finally, to increase confidence in the results, data validation is done by using
two independent tools that must draw the same conclusion of data compliancy
when they are used to validate the same data. For data validation done at Sys-
terel, these tools, PredicateB and ProB, are integrated in the OVADO platform
which is the subject of the next section.

Let us note that other data validation tool exist, such as Alstom’s DTVT
[8] not presented in this paper. Doing a comparison between the existing data
validation tools of the market is quite difficult, almost impossible, due to the
lack of information published by industrials. That is the reason why this paper
does not include any paragraph on this subject.
9 A systematic proofreading method is described in chapter 17, “Rigorous Review”, of
the book by Shaoyin Liu, “Formal Engineering for Industrial Software Development
using the SOFL Method” [14].

228 R. Abo and L. Voisin

2.4 A New Kind of Job

To conclude this section, we would like to stress that data validation process
as previously introduced, has lead to a new specialized job in engineering: the
“data validator”.

He (or she) is in charge of modelling data requirements specified in natural
language by using the choosen formalism, and then analyzing the non-conformity
cases of data. This job differs from the system engineer who identifies and specify
the requirements in natural language, and also who helps to check formal prop-
erties. It also differs from the computer scientist in charge of designing tools
implementing by data validation. All are a necessity for the design of safety-
related systems.

3 The OVADO Tool

3.1 Overview

The RATP10 initiated the development of OVADO11, a formal tool in order to
validate static data of the Paris’s metro line 13 that was being automated.

This tool parses datasets (XML, Excel, text-based, or binary formats), loads
properties and checks compliancy of data with respect to the loaded properties.
The development of OVADO is now subcontracted to Systerel. It is composed
of two different tools that form the basis of two independent data validation
workflows:

– The PredicateB predicate evaluator is in charge of checking the truthfulness
of predicates modeling data requirements in the B language as explained in
Sect. 2); and

– ProB12 [15], is an animator and model checker for the B Method. It can
be used to check a specification for a range of errors. The constraint-solving
capabilities of ProB can also be used for model finding, deadlock checking and
test-case generation. ProB is currently developed by Michael Leuschel’s team
at the University of Düsseldorf in Germany, while its commercial support is
provided by Formal Mind. Data and the models of requirements are converted
into B models that are fed to the tool to validate data. This tool has been used
with success on several projects (Roissy-Charles de Gaulle airport shuttle,
Paris line 1, Barcelona line 9, Algiers line 1, etc.).

Data validation with OVADO is organized as follows. Data and formal prop-
erties of data requirements are fed into the tool. Properties are modelled as
10 The Régie Autonome des Transports Parisiens is the firm in charge of the public

transports in Paris, France.
11 This acronym stands for Outil de VAlidation de DOnnées which means “Data Vali-

dation Tool” in French.
12 The ProB website is http://www.stups.uni-duesseldorf.de/ProB/

http://www.stups.uni-duesseldorf.de/ProB/

Formal Implementation of Data Validation 229

Fig. 4. Architecture of OVADO

predicates in the B language. The conformance of the input data with the input
requirements is independently validated by the two validation workflows of the
tool. Each of them produces a validation report for each analysed property. The
results of two reports relating to the same property must be equal. If not, the
model or one of the tool is likely wrong and must be corrected. Let us add that
OVADO has been applied with suceess to data validation of Paris lines 1, 3, 5,
13, and also Lyon’s line B, etc.

3.2 Architecture

As shown in Fig. 4, OVADO is a generic platform combining PredicateB and ProB,
and can be completed by specific project plugins, such as the adaptation of OVADO
for the acquisition of data described in a customer-specific format. Thus OVADO
is able to be tailored to specific projects of industrials. OVADO can be used on a
computer equiped with Microsoft Windows or Linux, and Java 6.

3.3 User Interface

The user interface of OVADO is illustrated in Fig. 5 that shows the three main
parts needed to write the models, perform data validation and analyse the
results. Their organization within Eclipse depends entirely on how an engineer
wants to organize his workspace. As shown in the figure:

– Part 1 displays the project tree.
– Part 2 shows different tabs where a designer can specify definitions and prop-

erties as explained in Sect. 4.2.

230 R. Abo and L. Voisin

Fig. 5. The user interface of OVADO based on Eclipse

– Finally, Part 3 shows the “project properties” tab that lists all the specific
properties of a system.

By right-clicking on one of them, it is possible to launch its validation on the
fly. A tab named “evaluation progress” shows the progress of the evaluation of
a property. An example of the implementation of OVADO for validating data of
a CBTC is detailed in the next section.

4 Applying OVADO

This section describes a project conducted by Systerel to validate the static data
of a metro line. All names have been changed to respect the confidentiality of
information.

4.1 Data

Datasets and models are structured in XML (eXtensible Markup Language)
files. Each requirement is modeled by one or more properties. The decompo-
sition of requirements in one or more properties is left to the discretion of a
designer.

Formal Implementation of Data Validation 231

4.2 Models

In order to understand the model of this section, let us recall that a useful
summary of the syntax of the B language can be found at http://www.stups.
uni-duesseldorf.de/ProB/index.php5/Summary of B Syntax.

Interface Constants. The first step of the modelling activities consists in inter-
facing data with B constants used in the models. The following types can be
defined to link the elements of datasets with constants of the properties written
in the B language:

– carrier sets and their subsets;
– scalar data (mostly integers and character strings);
– relations between a scalar type and another scalar type;
– functions from a scalar type to another scalar type; and
– functions from a scalar type to functions of the previous type.

Each of them has a name, a predicate that specifies it (except for carrier
sets) and a value, or a set of values, which is the result of a XPath request, or
several XPath requests in case of relations and functions, applied on the XML
file defining real data as presented in Sect. 4.1.

– Carrier sets define the different objects of the datasets used by a CBTC
corresponding to the trackside equipment, the train detection equipment but
also the organisation of the line according to a one-dimensional Cartesian
coordinate system, such as balises, signals, points, track circuits, blocks, etc.
A block is an elementary portion of a railroad track, which has two extremi-
ties. Its origin extremity is at abscissa 0, while the abscissa of its destination
extremity corresponds to its length. We also define four types of zones i.e.
collections of blocks corresponding to four carrier sets: oriented (t zoneori),
non-oriented (t zonenori), with two oriented extremities (t zone2extrori)
and, finally, with two non-oriented extremities (t zone2extr). Oriented zones
have singularities i.e. oriented extremities, while non-oriented zones have only
extremities.

– Scalar sets define constant numbers of the system such as abscissae, distances,
speeds, temporary speed limits, delays, etc.

– Relations and functions specify links between these objects such as the length
of a block, the block where a particular object is located, its abscissa in
millimeters on the block (an integer), the block which follows the current one
in a particular direction, etc.

Definitions. In order to simplify the expression of properties, several libraries
of definitions are defined prior to the modelling of properties themselves. These
definitions are quite different from the macros one can define in a definitions

http://www.stups.uni-duesseldorf.de/ProB/index.php5/Summary_of_B_Syntax
http://www.stups.uni-duesseldorf.de/ProB/index.php5/Summary_of_B_Syntax

232 R. Abo and L. Voisin

clause of a classical B machine. In the B method, our definitions would rather be
declared as abstract constants. A definition has a unique name, a description
in natural language and an expression in the B language. They ease writing and
understanding of properties, and checking them when proofreading.

For the project under consideration, a library of useful definitions was used to
model graph functions. In effect, a railway network is represented by an oriented
graph. Thus, the following r zone2extr extr relation gives the extremities of a
zone with two extremities:

dom({zone, extr, numabsextr |
zone →√ numabsextr :
t zone2extr π (f TabZones2Extr NumAbsExtr1

≡ f TabZones2Extr NumAbsExtr2) ∪
extr →√ numabsextr :
t extremite π f TabExtremities NumAbsolu})

And, for each extremity, the f extr segdirabs function gives the triplet
formed by its block, its direction and its abscissa on its block:

ran({extr, seg, dir, abs, res |
xtr →√ seg : f extr seg ∪
extr →√ dir : f extr dir ∪
extr →√ abs : f extr abs ∪
res = extr →√ (seg →√ dir →√ abs)})

In the same manner, the r zone2extrori singu relation gives the singular-
ities of a zone with two oriented extremities:

dom({zone, sing, numabssing |
zone →√ numabssing :
t zone2extrori π (f TabZones2ExtrOri NumAbsSing1

≡ f TabZones2ExtrOri NumAbsSing2) ∪
sing →√ numabssing :
t singularite π f TabSingu NumAbsolu})

And, the f singu segdirabs function gives, for each singularity, the triplet
formed by its block, its direction and its abscissa on its block:

ran({singu, seg, dir, abs, res |
singu →√ seg : f singu seg ∪
singu →√ dir : f singu dir ∪
singu →√ abs : f singu abs ∪
res = singu →√ (seg →√ dir →√ abs)})

The following r zonenori extr relation gives the extremities of a non-oriented
zone. The absolute number of an “extremity” (numabsextr) is different from −1,

Formal Implementation of Data Validation 233

which denotes a non-representative element of the f TabExtremities NumAbsolu
function:

ran({zone, extr, numabsextr, ind, res |
zone →√ ind →√ numabsextr :
(t zonenori × INTEGER) π f TabZonesNOri NumAbsExtremites ∪
numabsextr/ = −1 ∪
extr →√ numabsextr :
t extremite π f TabExtremities NumAbsolu ∪

res = zone →√ extr})

The following r zoneori singu relation gives the singularities associated with
a particular oriented zone:

ran({zone, singu, numabssingu, index, res |
zone →√ index →√ numabssingu :

(t zoneori × INTEGER) π f TabZonesOri ListSingZone ∪
numabssingu/ = −1 ∪
singu →√ numabssingu :

t singularite π f TabSingu NumAbsolu ∪
res = zone →√ singu})

Properties. Each property has a name, a tag recalling the requirement it refers
to, a description in natural language and a formal description in the B language.
The requirement tags are used for the sake of traceability, in order to ensure that
all requirements that must be modelled have been effectively modelled. Models
should not be too complex to be easily proofread. In particular, definitions should
be intensively used.

Let us consider the informal requirement “each zone must be connected”.
It means that for each zone, all blocks describing it (a zone is a collection of
blocks) should be connected, meaning that from one of these blocks it should
be possible to reach any other block by connection. With the previous interface
constants and definitions, except the definition of the f zone connexe which is
not given in this paper, the model of this requirement is specified as follows:

∈(typezone, r zone extr, zone, extrs).(
typezone : 0..3 ∪
r zone extr =

{ 0 →√ (r zone2extr extr; f extr segdirabs)
, 1 →√ (r zone2extrori singu; f singu segdirabs)
, 2 →√ (r zonenori extr; f extr segdirabs)
, 3 →√ (r zoneori singu; f singu segdirabs)
}(typezone) ∪

zone : dom(r zone extr) ∪
extrs = r zone extr[{zone}]
∅
f zone connexe(extrs) = TRUE)

234 R. Abo and L. Voisin

Table 1. Results of data validation with PredicateB (a component of OVADO)

Component (and quantity Number Number of Validation time in minutes
(of it in the system) of properties lines in B for a component (and total)

#1 (13) 39 2050 <1 (<10)
#2 (4) 28 1177 <1 (<4)
#3 (4) 369 19613 180 (720 i.e. 12 h)
#4 (1) 62 2741 < 1
#5 (34) 159 12400 15 (510 i.e. 8.5 h)
#6 (1) 26 1641 6

The automatic treatment performed by OVADO has demonstrated us that
initial data sets did not meet this requirement: four oriented zones were not con-
nected, i.e. there was no communication channel between them. Data sets were
therefore corrected by the team in charge of the definition of data before being
successfully validated, in particular against this requirement, by the validation
team.

4.3 Final Results

We have modelled the data requirements for six components of a CBTC both
carborne and trackside. Table 1 summarizes the results obtained with PredicateB
only. To preserve confidentiality, the component names have been changed. The
last column represents the validation time for a component and, in parenthesis,
the total obtained by adding all the validation time of all components of the
same kind.

4.4 Influence of Models on Performance

Figure 6 shows two model patterns that look quite similar.

→ (x, y, z) ·
(
x ∗ 0 .. 100 ∅
y ∗ 0 .. 100 ∅
z ∗ 0 .. 100 ∅
z = f(x ∈↔ y)
∃
Predicate

)

(a)

→ (x, y, z) ·
(
x ∗ 0 .. 100 ∅
y ∗ 0 .. 100 ∅
z = f(x ∈↔ y) ∅
z ∗ 0 .. 100
∃
Predicate

)

(b)

Fig. 6. The design of models influences performance of OVADO

Formal Implementation of Data Validation 235

But, in fact, if we specify the model shown in Fig. 6a, OVADO checks the
rule z = f(x →√ y) ∅ Predicate for each triplet (x, y, z) verifying x ∞ [0..100]
and y ∞ [0..100] and z ∞ [0..100]. That is to say that OVADO creates one mil-
lion triplets before checking that this rule is right, or wrong, for each of them.
On the contrary, when we specify the model shown in Fig. 6b, OVADO checks
the rule z : 0..100 ∅ Predicate for each triplet (x, y, z) verifying x ∞ [0..100]
and y ∞ [0..100] and z = f(x →√ y). That is to say that OVADO only creates
ten thousand triplets and only performs ten thousand checks. Thus, model 6b
is much more efficient in terms of performance than model 6a while being prac-
tically the same. This is also true for properties that use existantial quantifiers
and/or sets defined by comprehension.

This simple example shows that modelers must keep in mind and apply some
simple rules of model design in order to perform data validation: validating data
is a necessity, but it must not be done in any way but in an efficient manner
in terms of validation time and memory usage, i.e. in terms of performance of
OVADO.

5 Conclusion

In this paper we have described the process for validating data used for safety-
related railway systems. This process, which relies on the B method, presents
several benefits: using formal methods is recommanded by international stan-
dards, the B language is quite easy to learn and to use, it is well suited for mod-
elling requirements of CBTCs, large datasets can be used while the validation
time is reasonable. On the contrary, let us face it is ill-suited for proving perfor-
mance requirements and, unfortunately, applied mainly in the railway industry
at the moment, while nothing prevents users from using it for other applications
that CBTCs.

Acknowledgment. The authors would like to thank their teammates involved in data
validation both based in Aix-en-Provence and Paris. This paper summarizes their work.
Their gratitude is also addressed to Mr. François Bustany, President of Systerel, for
allowing the writing of this paper.

References

1. Leveson, N.G.: Safeware - System Safety and Computers: A Guide to Preventing
Accidents and Losses Caused by Technology. Addison-Wesley, Reading (1995)

2. International Electrotechnical Commission (IEC): Functional safety of electri-
cal/electronic/programmable electronic safety-related systems (IEC 61508)

3. European Committee for Electrotechnical Standardization (CENELEC): Railway
applications - The specification and demonstration of Reliability, Availability,
Maintainability and Safety (RAMS) (EN 50126)

4. European Committee for Electrotechnical Standardization (CENELEC): Railway
applications - Communication, signalling and processing systems - Software for
railway control and protection systems (EN 50128)

236 R. Abo and L. Voisin

5. European Committee for Electrotechnical Standardization (CENELEC): Railway
applications - Communication, signalling and processing systems - Safety related
electronic systems for signalling (EN 50129)

6. European Committee for Electrotechnical Standardization (CENELEC): Railway
applications - Communication, signalling and processing systems - Safety-related
communication in transmission systems (EN 50159)

7. Institute of Electrical and Electronics Engineers (IEEE): IEEE Standard Method
for CBTC Performance and Functional Requirements (IEEE Std 1474.1-2004)

8. Lecomte, T., Burdy, L., Leuschel, M.: Formally checking large data sets in the
railways. CoRR abs/1210.6815 (2012)

9. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

10. Abrial, J.R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press, Cambridge (2010)

11. Badeau, F., Doche-Petit, M.: Formal data validation with Event-B. The Computing
Research Repository (CoRR) abs/1210.7039 (2012)

12. Lodemann, M., Luttenberger, N.: Ontology-based railway infrastructure verifica-
tion - planning benefits. In: KMIS, pp. 176–181 (2010)

13. Hoinaru, O., Mariano, G., Gransart, C.: An ontology for complex railway systems;
application to the ERTMS/ETCS system. DTU Compute-Technical Report-2013
Towards a Formal Methods Body of Knowledge for Railway Control and Safety
Systems (FM-RAIL-BOK Workshop), pp. 7–13 (2013)

14. Liu, S.: Formal Engineering for Industrial Software Development using the SOFL
Method. Springer, Heidelberg (2004)

15. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

Validation of Railway Interlocking Systems
by Formal Verification, A Case Study

Andrea Bonacchi1(B), Alessandro Fantechi1, Stefano Bacherini2,
Matteo Tempestini2, and Leonardo Cipriani2

1 Università di Firenze, Dipartimento di Ingegneria dell’Informazione, Florence, Italy
{a.bonacchi, alessandro.fantechi}@unifi.it

2 General Electric Transportation Systems, Florence, Italy
{stefano.bacherini, matteo.tempestini, leonardo.cipriani}@ge.com

Abstract. Notwithstanding the large amount of attempts to formally
verify them, railway interlocking systems still represent a challenging
problem for automatic verification. Interlocking systems controlling suf-
ficiently large stations, due to their inherent complexity related to the
high number of variables involved, are not readily amenable to automatic
verification, typically incurring in state space explosion problems. The
study described in this paper aims at evaluating and experimenting the
industrial application of verification by model checking for this class of
systems. The choices made at the beginning of the study, also on the
basis of specific requirements from the industrial partner, are presented,
together with the advancement status of the project and the plans for
its completion.

1 Introduction

In the railway signalling domain, an interlocking is the safety critical system that
controls the movement of the trains in a station and between adjacent stations.
The interlocking monitors the status of the objects in the railway yard and
allows or denies the routing of the trains in accordance with the railway safety
and operational regulations that are generic for the region or country where the
interlocking is located. The instantiation of these rules on a station topology is
stored in the part of the system named control table. Control tables of modern
computerized interlockings are implemented by means of iteratively executed
software controls over the status of the yard objects.

One of the most common way to describe the interlocking rules given by con-
trol tables is through boolean equations or, equivalently, ladder diagrams which
are interpreted either by a PLC or by a proper evaluation engine over a standard
processor. A first concern in the history of computerized interlockings has been
the automatic generation of such boolean equation sets starting from generic
signalling principles and from the topology of the layout of the station [14].

On the other hand, the certification activities for an interlocking include
the verification that the implemented control tables actually satisfy safety rules.

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 237–252, 2014.
DOI: 10.1007/978-3-319-05032-4 18, c© Springer International Publishing Switzerland 2014

238 A. Bonacchi et al.

Verification of correctness of control tables has been a prolific domain for for-
mal methods practitioners, and the literature counts the application of several
techniques to the problem, namely the Vienna Development Method (VDM)
[16], property proving [7,13], Colored Petri Nets (CPN) [24] and model checking
[23,25]. This last technique in particular has raised the interest of many railway
signalling industries, being the most lightweight from the process point of view,
and being rather promising in terms of efficiency.

However, due to the high number of boolean variables involved, automatic
verification of sufficiently large stations typically incurs in combinatorial state
space explosion problem.

The first applications of model checking have therefore attacked portions of
an interlocking system [4,15]; but even recent works [12,26] show that routine
verification of interlocking designs for large stations is still out of reach for sym-
bolic model checker NuSMV [9] and explicit model checker SPIN [19], although
specific optimizations can help [26]. As we argument later, SAT-based model
checking appear to be more promising at this respect.

We want however to notice that control tables may have two main roles (not
always both present) in the development of these systems: either as specifications
of the interlocking rules [18], often issued by a railway infrastructure company,
or as implementations, when they come encoded in some (typically proprietary)
executable language. Hence also verification may address different problems,
such as the consistency of the former, or the correctness of the latter w.r.t. the
former, or the check of safety properties on the latter. In the study presented
in this paper, we address the last mentioned verification problem. Anyway, a
typical issue of any of these verification tasks is the choice of how to express
control tables in a language suitable for the verification tool adopted.

Indeed, commercial solutions exist for the production of interlocking soft-
ware, such as Prover Technology’s (Ilock), that includes formal proof of safety
conditions as well, by means of a SAT solving engine. Industrial acceptance of
such “black-box” solutions is however sometimes hindered by the fear of vendor
lock-in phenomena and by the loss of control over the production process.

In the Safety and Validation Laboratory (S&V Lab) of General Electric
Transportation System (GETS), with the final aim of reducing the costs of
verifying the safety requirements of the produced interlocking systems, a fea-
sibility study has been started, conducted in collaboration with the Ph.D School
of Information Engineering of the University of Florence, on the verification of
legacy control tables that control a portion of a railway yard.

Indeed, the S&V Lab is acting (according to CENELEC 50128 standard
[1]) as an independent verifier of the interlocking systems produced by other
branches of the company, with little insight of the followed process, and focusing
on the final product. Actually, the only information available on the implemented
control tables can be extracted from the binary files, that are written in the target
using a proprietary format, by means of libraries, that we will refer from now on
as legacy libraries, provided by the interlocking developers.

In a previous exploratory work [12] the control tables were modelled as finite
state machines and safety properties were proved by means of NuSMV. In this

Validation of Railway Interlocking Systems by Formal Verification 239

case, the choice of the tool and hence of the modelling language was taken
instead according to specific constraints posed by the S&V Lab of GETS: in
order to smoothly adopt this verification technique inside the internal production
process, it was required that the verification tool is a commercial tool, already
known within the company. Moreover, the difficulties encountered in dealing with
medium and large size interlocking systems by means of BDD-based verification
pointed to the alternative of adopting a SAT-based model checker, in order to
exploit at best the native boolean coding coming from the control tables [20].
The conjunction of these constraints has favoured the choice of Matlab Design
Verifier [2], which is based on a SAT solver, using boolean functions with logical
gates as the language in which to translate the legacy control tables.

The commercial constraints posed by the company are due to a precise indus-
trial policy, that is, minimizing additional investment, minimizing dependency
from external suppliers, especially if not yet already known, while internally
mastering the overall verification process.

This paper describes the current advancement of the feasibility study con-
centrating on the modelling phase [6]. First we introduce the reader to the CEN-
ELEC 50128 standard and to Model Checking techniques. In Sect. 4 we describe
the ladder logic, that is, the industrial standard graphical language to repre-
sent boolean functions involved in control tables. In Sect. 5 we introduce the
modelling process and in particular the algorithm LLD Parser that allows the
control tables to be translated into boolean functions that will be implemented in
a Simulink model. The algorithm has been used to extract the Simulink models
fo several stations. Model checking has been experimented on such models, and
the results of one of them that are shown in Sect. 6 confirm the initial intuition
about using SAT-based verification tools.

2 CENELEC Standard

CENELEC 50128 is the standard that specifies the procedures and the technical
requirements for the development of programmable electronic devices to be used
in railway control and signalling protection. This standard is part of a family, and
it refers only to the software components and to their interaction with the whole
system. The basic concept of the standard is the SIL (Safety Integrity Level).
Integrity levels range is defined from 0 to 4, where 0 is the lowest level, which
refers to software with no effects on the safety of system and on the people; 4 is
the maximum level: a failure in the software has effects on the safety of system,
resulting in possible loss of human life [1].

The CENELEC 50128 however dictate neither a precise development method-
ology for software, nor any particular programming technique, but classifies a
wide range of commonly adopted techniques in terms of a rating with respect to
the established SIL of a component.

Formal methods are rated as highly recommended for the software require-
ments specification and software design of systems with the higher levels of
SIL. Formal proof is also highly recommended as a verification activity. The

240 A. Bonacchi et al.

standard however does not dictate any process in which formal methods take a
role, but just gives a list of the most common formal and semiformal methods.
Moreover, other combinations of highly recommended techniques, not including
formal methods can be chosen.

3 Model Checking

A formal verification technique that has recently acquired popularity also in
industrial applications is Model Checking [11] an automated technique that,
given a finite-state model of a system and a property stated in some appro-
priate logical formalism (temporal logic), checks the validity of this property on
the model.

Formal verification by means of model checking consists in verifying that a
Kripke structure M , modelling the behaviour of a system, satisfies a temporal
logic formula φ, expressing a desired property for M . A model checking basic
algorithm labels each state of M with the subformulae of φ that hold in that
state, starting with the ones having length 0, that is with atomic propositions,
then with those of length 1, where a logic operator is used to connect atomic
propositions, then to increasing length subformulae. This algorithm requires a
navigation of the state space, and can be optimized to achieve a linear complexity
with respect to the number of states of M . When a formula is found not to be
satisfied, the subformulae labelling the states can then be used to provide a
counterexample, that is, an execution path that leads to the violation of the
property, thus helping the debugging of the model.

The basic model checking algorithm, that explores the entire state space, is
affected by the so called exponential state space explosion, since the state space
can have a size exponential in the number of independent variables of the system.

Many techniques have been developed to attack this problem: among them,
symbolic model checking, where the state space is encoded by means of boolean
functions, compactly represented by Binary Decision Diagrams (BDD) [8], is
able to reduce memory consumption in many cases. Other approaches try to
consider only a part of the state space that is sufficient to verify the formula,
such as local model checking and Bounded Model Checking (BMC): the latter
generates a counterexample of fixed length. The basis idea of the BMC is to
evaluate only the paths of fixed length k: to define the length k is necessary
to know the system and how it works to guarantee that the k-length chosen
represents a good candidate to solve the verification problem.

BMC has shown itself as particularly efficient since the problem of checking
a formula over a finite depth computation tree can be encoded as a satisfiability
problem, and hence efficiently solved by current SAT-solvers [5].

4 Ladder Logic Diagrams

In Relay Interlocking Systems (RIS), still operating in several sites, the logical
rules of the control tables were implemented by means of physical relay connec-
tions. With Computer Interlocking Systems (CIS), in application since 30 years,

Validation of Railway Interlocking Systems by Formal Verification 241

the control table becomes a set of software equations that are executed by the
interlocking. Since the signaling regulations of the various countries were already
defined in graphical form for the RIS, and also in order to facilitate the repre-
sentation of control tables by signaling engineers, the design of CISs has usually
adopted traditional graphical representations such as Ladder Logic Diagrams
(LLD) [21] and relay diagrams [17]. These graphical schemata, usually called
principle schemata, are instantiated on a station topology to build the control
table, that is then translated into a program for the interlocking.

Correctness of control tables depends also on their model of execution by the
interlocking software. In building CISs, the manufacturers adopt the principle of
as safe as the relay based equipment [24], and often the implemented model of
execution is very close to the hardware behaviour.

Ladder Logic is a graphical language which can represent a set of boolean
equations and the execution order (control cycle) of them can be detailed as the
following equation system:

y1 = f1(xi11 , xi12 , . . . xi1k1
);

y2 = f2(xi21 , xi22 , . . . xi2k2
);

. . .
yn = fn(xin1 , xin2 , . . . xinkn

);

where yi are either output or latch variables, and xijk are either input or latch
variables; each fi is the function that computes the next value of each variable
yi and is applied to a different set of input or state variables.

Ladder Logic represents the working of relay-based control systems. For this
reason the variables on the right expression of the equation are also named
contacts, while the variables in the left hand are named coils. Variables can be
distinguished in:

– Input variables: the value is assigned by sensor readings or operator com-
mands. These variables are defined in the expressions ei and cannot be used
as coil.

– Output variables: can be only coils and their value is determined by means of
the assignments of the diagram and is delivered to actuators.

– Latch variables: the value is calculated by means of the assignments, but is
used only for internal computation of the values of other variables. A latch
variable is used as coil in an assignment and is an input variable in other
assignments.

With these three kinds of variables, a Ladder Logic Diagram describes a state
machine whose memory is represented by the latch variables and the evolution
is described by the assignment set. An execution of this state machine, named
control cycle, involves:

1. Reading input variables; the values of these variables are assumed to be con-
stant for the entire duration of the control cycle.

242 A. Bonacchi et al.

2. Computation of the current values for the output variables and for the latch
variables starting from the values of the input variables and the values of the
latch variables at the previous control cycle.

3. Transmission of the values of the output variables.

In this way, the equations can be seen as interpreted by a reasoner engine.
The reasoner engine is the same for every plant; the control table is coded
as data, actually boolean equations, for the reasoner. Behind this choice is the
minimization of certification efforts: the reasoner is certified once for all, the data
are considered “easier” to certify if they can be related in some way to the stan-
dard principle schemata adopted by railway engineers in the era of relay-based
interlockings. For this reason, this approach is also referred as “data-driven”.

In order to give a metric to the dimension of the problem in terms of para-
meters of the control tables, [12] defines the size of a control table as the couple
(m, n), where m is the maximum number of inter-dependent equations involved,
that means equations that, taken in pairs, have at least one variable in common,
and n is the number of inputs of the control table. Another used metric is just
the size of the layout, given as the number of physical entities that constitute
the layout (points, track circuits, signals, . . .) and the number of routes that are
established on the layout.

An example of a single row of a Ladder Logic Diagram is reported in Fig. 1,
expressing the boolean equation:

y = x ∪ (w ∅ ¬z)

In this graphical language, if x is a boolean variable, an expression e can be
defined in inductive way by means of following syntax:

– −−] [−− represents an un-negated variable.
– −−]/ [−− represents a negated variable.
– − − () represents a coil.

Fig. 1. Example of ladder logic diagram

In general, a Ladder Logic Diagram expresses a set of boolean equations that
can be written:

x̃ = f(x̃, ỹ)

where x̃, ỹ are boolean variable vectors representing respectively state/output
variables and input variables: these equations are cyclically executed. Let us call

Validation of Railway Interlocking Systems by Formal Verification 243

x̃i, ỹi the vectors of values taken by such variables in successive executions. From
the equations we can define F (x̃i, x̃i+1, ỹi) as a boolean function that is true iff
x̃i+1 = f(x̃i, ỹi), representing one execution of the equations. Let be Init(x̃) a
predicate which is true for the initial vector value of state and output variables.
If P (x̃) is a predicate telling that a desired (safety) property is verified by the
vector x̃, then the following expression:

Φ(k) = Init(x̃0) ∪
k−1∧

i=0

F (x̃i, x̃i+1, ỹi) ∪
k∨

i=0

⊆ P (x̃i)

is a boolean formula that tells that P is not true for the state/output vector for
some of the first k execution cycles. According to the BMC principles [5], using
a SAT-solver to find a satisfying assignment to the boolean variables ends up
either in unsatisfiability, which means that the property is satisfied by the first
k execution cycles, or in an assignment that can be used as a counterexample
for P , in particular showing a k-long sequence of input vectors that cause the
safety problem with P .

In the next section we focus on the representation in a format suitable for
Design Verifier of the legacy control tables that are loaded, in the form of LLDs,
in the analysed interlocking systems.

5 Model Extraction

The first activity in the feasibility study has therefore addressed the definition
of a process that allows a model of a station to be obtained from the analysed
implementation in three steps:

1. Import Station Data: all data about a station (equations, timers, inter-
faces, . . .) are imported in Matlab by means of the legacy libraries that read
the binary files loaded on the interlocking system.

2. Model Station Data: the equations and the links between them are mod-
elled in a Simulink model by means of the LLD-Parser.

3. Model Properties: safety properties are modelled with reference to the
station model and are proved by means of Design Verifier.

Before to talk of the entire process of model extraction we describe briefly the
Simulink environment, the core of our framework.

5.1 Simulink Enviroment

Simulink is a data flow graphical programming language tool for modeling, simu-
lating and analyzing multidomain dynamic system, developed by MathWorks [3].
Its primary interface is a graphical block diagramming tool and a customizable
set of block libraries. It offers tight integration with the rest of the MATLAB
environment and can either drive MATLAB or be scripted from it. Simulink

244 A. Bonacchi et al.

is widely used in control theory and digital signal processing for multidomain
simulation and Model Based Design.

A number of MathWorks and third-party products hardware and software
design are available for use with Simulink. For example, Stateflow extends
Simulink with a design environment for developing state machines and flow
charts.

Simulink can automatically generate C source code for real-time implemen-
tation of systems. As the efficiency and flexibility of the code improves, this is
becoming more widely adopted for production in addition to being a popular
tool for embedded system design work because of its flexibility and capacity for
quick iteration.

Simulink Verification and Validation enables systematic verification and val-
idation of models through modeling style checking, requirements traceability
and model coverage analysis. Simulink Design Verifier uses SAT-based model
checking to identify design errors like integer overflow, division by zero and dead
logic, and generates test case scenarios for model checking within the Simulink
environment.

5.2 Importing Data Station

As discussed in Sect. 4 the boolean equations of an interlocking are represented in
a ladder logic diagram (Fig. 1), which is encoded in a proprietary binary format
for the diagram interpreter engine.

In order to extract this information from the binary code, we use those pro-
prietary interpretation routines that we have called “legacy libraries”. These
libraries allow each boolean equation to be read as a matrix Mn×k. The matrix
is just a one to one representation of the ladder diagram with numeric codes.
The code values in the matrix can be either positive, representing variables,
or negative, representing either a connector or the polarity of a variable (see
Table 1).

Table 1. Symbol translation

Symbol Value Symbol Value

→ -1 −−] [−− -10
∗ -2 −−]/ [−− -20
∅ -3 −−() -30
∈ -4 Blank space -40
↔ -5 Horizontal line -50
∃ -6 Vertical line -70
+ -7

Validation of Railway Interlocking Systems by Formal Verification 245

The LLD in Fig. 1 is for example encoded by the following matrix M :
⎧

⎪
⎪
⎨

−40 100 −40 200 −40 500
−50 −10 −4 −20 −4 −30
−40 −40 −70 300 −70 −40
−40 −40 −1 −10 −2 −40

⎩

⎝
⎝
⎞

The values 100, 200, 300 and 500 are respectively associated to the variables x,
z, w and y.

5.3 LLD Parser

The extracted matrix needs to be interpreted in order to define the boolean
function it implements, expressed in a format suitable for Design Verifier. Three
alternative ways to describe these functions are possible in Matlab, that is,
using boolean gates in a Simulink diagram, using truth tables, or, by taking
into account the typical cyclic execution of the equations as well, using a State-
flow state machine. Some preliminary experiments have suggested that the latter
choice was employing the less direct correspondence with the boolean equations,
and hence less prone to be efficiently handled by Design Verifier. We have for
the moment chosen the first alternative, leaving a more accurate efficiency com-
parison as a future work.

We have hence designed an algorithm that translates the matrix into Simulink
boolean and/or/not gates.

If we focus on the graphical format of LLD, we recognize one or more con-
nectors which belong to the following set:

C = {→ √ ≡ ∈ ∞ ⇑ +}

Considering specific pairs of connectors, in the set C, it is possible to define
a connection relation (CR) between them, which defines a particular conjunc-
tion/disjunction between the variables in a LLD:

CR = {(→, √), (≡, √), (→,≡)}

The connection relation is the basis to provide semantics to a LLD. By means
of this relation we can classify LLDs in a few Families of Equations (FoE).

A FoE is a set of Ladder Logic Diagrams that share some common graph-
ical features. Definition of the families is done on the basis of the order of the
connectors that are found during a depth first search fo the graph. For example,
the diagram in Fig. 2 represents the boolean equation:

y1 = x1 ∪ ¬x2 ∪ ((x3 ∪ ¬x4) ∅ (x5 ∪ ¬x6 ∪ x7) ∅ (y1 ∪ x8))

and belongs to the same FoE of the diagram in Fig. 1 because in both equa-
tions and operators are found first followed by inner or operators; the difference

246 A. Bonacchi et al.

Fig. 2. Example of ladder logic diagram

between this two members of the family is that in the second equation, the or
gate has three inputs (three and gates), while the first equation has two variables
in input.

We need to find these patterns (pairs) to model the equations by means of
logical gates. In fact, the LLD Parser (reported in Algorithm 1) visits four times
the matrix M ; the first time it discovers all the input/output variables (positive
values in the odd rows of M), then it reads the even rows of M , which contain
the polarity of the variables (that is if they are asserted and/or negated in the
equation).

Finally, if there is at least a logic or, that is, the value corresponding to the
symbol ∈ is present in the equation matrix M (line 3), the LLD Parser looks
for the FoE to which the matrix M belongs and then runs a Depth First Search
(DFS) on the connectors that are in the equation; otherwise this means that all
the variables in the equation are in logic and (line 15).

Algorithm 1 LLD Parser
Require: M equation matrix
Ensure: Model of the equation
1: var ∪ GetVariables(M)
2: syntax ∪ GetVariablePolarity(M,var)
3: if ∈ ≥ M then
4: family ∪ GetFoE(M)
5: switch (family)
6: case 1:
7: DFS1(M, var, syntax)
8: case 2:
9: DFS2(M, var, syntax)

...
10: case N:
11: DFSN (M, var, syntax)
12: default:
13: end switch
14: else
15: LogicAnd(var)
16: end if

Validation of Railway Interlocking Systems by Formal Verification 247

The Algorithm 2 is the DFS for the LLDs reported in Figs. 1, 2 and the
subrelations defined are: CR1 = {→, √}, CR2 = {∞,⇑} and CR3 = {∈,∈}.

Sorting connectors (lines 2-3): the connectors in the matrix (CM) are sorted
from the deepest (greatest row and column in M) to the shallowest (CMO).

Main Loop (lines 4–16): from the set CMO a connectors pair (c1, c2) is
extracted and if the pair belongs to a connection subrelation the variables are
linked accordingly. In particular:

Create a new or gate (lines 5–10): if (c1, c2) belongs to CR1 an or gate is
created and the variables varpattern between the connectors (c1, c2) are connected
(w.r.t. them syntax), possibly through an and gate, to the new or gate; this
construction is done by the function LinkVariables. At last, the variables in
varpattern are deleted from the set var which contains all not yet connected
variables.

Link other variables (lines 11–15): the case in which (c1, c2) belongs to CR2

or CR3 is similar to the previous cases, but no new or gate is built and the
varpattern variables are connected to the most recently created or gate by the
function LinkVariables. Create final and gate (lines 17–19): if there are still
variables in the set var (see the example of variable x for the LLD in Fig. 1 and
variables x1, x2 in Fig. 2), they are linked with the most recently created or gate
to a final and gate; otherwise the most recently created or gate is the final gate.
The question of the correctness of the proposed traslation has been addressed by
running the same test suites on the original target and on the model, obtaining
the same results apart from some timing issues.

Algorithm 2 Depth First Search
Require: M equation matrix, var set of variables, syntax syntax of variables
Ensure: Build correctly the equation model
1: numOrGate ∪ 0
2: CM ∪ C ≥ M
3: CMO ∪ Order(CM)
4: for all (c1, c2) ≥ CMO do
5: if (c1, c2) ≥ CR1 then
6: numOrGate ∪ numOrGate + 1
7: varpattern ∪ var ≥ (c1, c2)
8: LinkV ariables(varpattern,M, syntax)
9: var ∪ DeleteV ariables(varpattern, var)

10: end if
11: if (c1, c2) ≥ CR2||(c1, c2) ≥ CR3 then
12: varpattern ∪ var ≥ (c1, c2)
13: LinkV ariables(varpattern,M, syntax)
14: var ∪ DeleteV ariables(varpattern, var)
15: end if
16: end for
17: if var ≥ varpattern then
18: CreateAndFinal(var, numOrGate)
19: end if

248 A. Bonacchi et al.

Fig. 3. LLDs translated in logic equations

After the parsing of the matrix M the output of the equation can: (1) activate
a timer, (2) be input to the same equation. In the first case a timer is modelled
and the output of the equation is linked to the timer, in the second case a delay
block is created. The Simulink diagrams with boolean gates for the two equations
depicted in this paper are reported in Fig. 3.

All the equations are then linked between them by means of the latch vari-
ables, or by timers when needed; in this way the model of a station is completed
(see left part of Fig. 5). The model has as input and output the input/output
variables of the equations.

6 Verification with Design Verifier

The algorithm proposed in the previous section has been used by the S&V Lab-
oratory to extract the Simulink model of several production station equipments.
We show in the following the verification performed on a network of four Com-
puter Interlocking Subsystems: (CIS1, CIS2, CIS3, CIS4) that controls a small
railway station.

The network has 2625 equations, 717 inputs and 915 outputs; each equation
can have from one input to a maximum of 25 inputs. The number of equations,
inputs and outputs, apportioned to single CISs is reported in Table 2.

An example of property P that has been defined is the following:
Under the preconditions:

1. The input from a track circuit A gives it as unoccupied.
2. A predefined time period (e.g. 2 s) has elapsed.

Table 2. Data of single CIS

CIS Number of equations Number of inputs Number of outputs

CIS1 77 44 52
CIS2 1608 370 522
CIS3 430 151 157
CIS4 511 152 184

Validation of Railway Interlocking Systems by Formal Verification 249

3. The input from the adjacent track circuit B, in accordance with the driving
direction, is occupied.

the modelled state of A passes from occupied to unoccupied.
The property P can be written, using a real-time version of LTL logic

[22] as:
(p1 ∪ G[2,2]p3) ∀ p4

where p4 is the event “the state of A passed from occupied to unoccupied”, p1
the event “the input of track circuit A is unoccupied”, p3 is “the input of B is
occupied” and G[2,2] represents that after 2 s my model verifies the condition p3
is true.

The verification with Design Verifier requires the property P to be expressed as
a Simulink “observer”. The property P above is modelled in Simulink by the dia-
gram in Fig. 4. To prove the property P a small number of input/output variables
was used (see Fig. 5); indeed the property is relative to CIS3 but, the behaviour of
this system, depends from the interaction with the other CISs and for this reason
it has been necessary to prove the property on the entire station model.

Fig. 4. Property P

Fig. 5. Prove property

250 A. Bonacchi et al.

Table 3. Times

Phase Time (s)

Import data 60,334
Model station 2506,271
Prove property 2,000
Total 2568,605

Design Verifier has generated a counterexample; that is an input variables
assignment that does not satisfy the property P . Each input variable in the coun-
terexample assumes the values: true (1), false (0) or don’t care (-). Due to the
high complexity of the interlocking logic, interpretation of the counterexample
is not immediate, and requires the help of signalling engineers, who are able to
distinguish real counterexamples from unfeasible combinations of inputs. At the
current stage of the project, this particular activity has not yet been started. The
run experiments were rather aimed at testing the capability of Design Verifier
to deal with models of this size.

The entire process of importing data from the binaries, modelling the station
and proving the property P (with a generation of a counterexample) has been run
on an AMD Athlon(tm) II X2 B24 3GHz, 4GB of RAM machine with Windows
7, 32 bits, operating system. In Table 3, we report the times (in seconds) of the
three phases.

7 Conclusion

In this paper we have reported a solution to extract a model from the implemen-
tation of an interlocking system and to prove the correctness of safety properties
P on the model.

We have implemented an algorithm that: (1) reads the station data by the
binary files, that is loaded on the target, by means of legacy library; (2) parses
the boolean equations, that are written in ladder logic, and generates a model
which contains the equations and the station interfaces towards the adjacent
stations.

To model the boolean equations we have defined the semantic of the ladder
logic. The algorithm runs a depth first search in the ladder logic diagram to find
out the connection patterns and by means of these patterns the algorithm builds
the equation model. Finally all equation models are linked between them and
the station model is created.

We have shown the application of the algorithm on an interlocking system of
2625 equations, 717 input and 915 output interfaces that controls a portion of
a railway station, obtaining the station modelling in less than one hour; finally
the verification of safety properties has been addressed by means of Design Ver-
ifier, raising the problem of the interpretation of counterexamples obtained by
verification, which may require the help of signalling engineers, to distinguish
real counterexamples from unfeasible combinations of inputs. In order to rule

Validation of Railway Interlocking Systems by Formal Verification 251

out such unfeasible counterexamples, we are studying to shape our verification
process according to the CEGAR (CounterExample Guided Abstraction Refine-
ment) paradigm [10], in order to provide an automated method adoptable in an
industrial context.

The current experiments are focused on providing verification results on a set
of production interlocking cases of different sizes. We will then address a deeper
analysis of these results, focusing in particular on the optimization of the model
to better exploit the underlying SAT solver of Design Verifier. At this regard,
the possible alternative choices (state machine, truth tables) for modelling the
control tables will be compared w.r.t. the verification performance of the tool.

Moreover, we shall investigate the application of other verification tools, such
as NuSMV, to the extracted data, in order to compare results and performance
issues. This activity, although a change of the verification engine in the defined
verification process is not planned by the company, will help to consolidate it,
and will provide interesting compared data about the application of formal ver-
ification tools on industrial production case studies.

References

1. European Committee for Electrotechnical Standardization, CENELEC EN50128,
Railway applications-Communication signalling and processing system software for
railway control and protection systems

2. Simulink R©: Design Verifier R2012b. MathWorks (2012)
3. Simulink R©: User Guide R2012b. MathWorks (2012)
4. Bernardeschi, C., Fantechi, A., Gnesi, S., Larosa, S., Mongardi, G., Romano, D.: A

formal verification environment for railway signaling system design. Formal Meth-
ods Syst. Des. 12, 139–161 (1998)

5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

6. Bonacchi, A.: Formal safety proof: a real case study in a railway interlocking sys-
tem. In: ISSTA, pp. 378–381. ACM (2013)

7. Borälv, A.: Case study: formal verification of a computerized railway interlocking.
Formal Asp. Comput. 10, 338–360 (1998)

8. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

9. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an OpenSource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

10. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

11. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

12. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking
control tables. In: FORMS/FORMAT, pp. 98–107 (2010)

252 A. Bonacchi et al.

13. Fokkink, W., Hollingshead, P.: Verification of interlockings: from control tables to
ladder logic diagrams. In: FMICS’98, pp. 171–185 (1998)

14. Fringuelli, B., Lamma, E., Mello, P., Santocchia, G.: Knowledge-based technology
for controlling railway stations. IEEE Expert: Intell. Syst. Appl. 7, 45–52 (1992)

15. Groote, J.F., van Vlijmen, S., Koorn, J.: The Safety Guaranteeing System at Sta-
tion Hoorn-Kersenboogerd. In: Logic Group Preprint Series 121. Utrecht University
(1995)

16. Hansen, K.M.: Formalising railway interlocking systems. In: Proceedings of the
2nd FMERail, Workshop (1998)

17. Haxthausen, A.E.: Developing a domain model for relay circuits. Int. J. Softw. Inf.
3(2–3), 241–272 (2009)

18. Haxthausen, A.E., Le Bliguet, M., Kjær, A.A.: Modelling and verification of relay
interlocking systems. In: Choppy, C., Sokolsky, O. (eds.) Monterey Workshop 2008.
LNCS, vol. 6028, pp. 141–153. Springer, Heidelberg (2010)

19. Holzmann, G.: Spin Model Checker, The Primer and Reference Manual. Addison-
Wesley Professional, Reading (2003)

20. James, P., Roggenbach, M.: Automatically verifying railway interlockings using
SAT-based model checking. In: AVOCS, pp. 141–153 (2010)

21. Kanso, K., Moller, F., Setzer, A.: Automated verification of signalling principles in
railway interlocking systems. Electron. Notes Theor. Comput. Sci. 250(2), 19–31
(2009)

22. Kristoffersen, K.J., Pedersen, C., Andersen, H.R.: Runtime verification of timed
LTL using disjunctive normalized equation systems. Electr. Notes Theor. Comput.
Sci. 89(2), 210–225 (2003)

23. Mirabadi, A., Yazdi, M.: Automatic generation and verification of railway inter-
locking control tables using FSM and NuSMV. Transport Prob.: Int. Sci. J. 4,
103–110 (2009)

24. Vanit-Anunchai, S.: Modelling railway interlocking tables using coloured petri nets.
In: Clarke, D., Agha, G. (eds.) COORDINATION 2010. LNCS, vol. 6116, pp. 137–
151. Springer, Heidelberg (2010)

25. Winter, K., Johnston, W., Robinson, P., Strooper, P., van den Berg, L.: Tool
support for checking railway interlocking designs. In: Proceedings of the 10th Aus-
tralian Workshop on Safety Critical Systems and Software, pp. 101–107 (2006)

26. Winter, K., Robinson, N.J.: Modelling large railway interlockings and model
checking small ones. In: Twenty-Sixth Australasian Computer Science Conference
(ACSC2003), Adelaide, South Australia, pp. 309–316 (2003)

Verification of Solid State Interlocking Programs

Phillip James1, Andy Lawrence1, Faron Moller1, Markus Roggenbach1(B),
Monika Seisenberger1, Anton Setzer1, Karim Kanso2, and Simon Chadwick3

1 Swansea Railway Verification Group, Swansea University, Wales, UK
csmarkus@swan.ac.uk

2 Critical Software Technologies, Southampton, England, UK
3 Invensys Rail, Chippenham, England, UK

Abstract. We report on the inclusion of a formal method into an indus-
trial design process. Concretely, we suggest carrying out a verification
step in railway interlocking design between programming the interlock-
ing and testing this program. Safety still relies on testing, but the bur-
den of guaranteeing completeness and correctness of the validation is
in this way greatly reduced. We present a complete methodology for
carrying out this verification step in the case of ladder logic programs
and give results for real world railway interlockings. As this verification
step reduces costs for testing, Invensys Rail is working to include such a
verification step into their design process of solid state interlockings.

1 Introduction

Solid state interlockings represent one of many safety measures implemented in
railways. In Vincenti’s terminology [27], interlockings are normal designs: railway
engineers have a clear understanding of their workings and customary features,
and it is standard practice to design them and to bring them into operation.

The formal method we propose is a verification step between programming
the interlocking using ladder logic [11] and testing of this program. The method
we suggest is first to automatically translate the program as well as its desired
properties and then to apply standard model checking approaches and tools to
the resulting model checking problem.

Our work has been inspired by [7,8]. Reference [8] gives a detailed descrip-
tion of model checking railway interlockings and highlights the use of program
slicing. Reference [7] presents an approach to translate ladder logic programs
into propositional logic and formulates model checking for sliced ladder logic
programs. Alternative approaches include [28] who apply timed automata and
UPPAAL or [9] who present a development framework for ladder logic, including
verification by port-level simulation. Ladder logic programs for programmable
logic controllers in general have been verified using the symbolic model checker
SMV [23]. Another type of interlocking program developed in so called “Safety
Logic” has been verified using the SPIN model checker [3]. In [10], Haxthausen
extracts a transition system (a SAL model) from circuit diagrams which are

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 253–268, 2014.
DOI: 10.1007/978-3-319-05032-4 19, c© Springer International Publishing Switzerland 2014

254 P. James et al.

reminiscent of ladder logic programs. Reference [15] verifies interlockings by
interactive theorem proving, reducing the gap between verification of safety and
safety in the real world.

This paper’s contribution is, besides giving a precise formalisation of the
translation from ladder logic into a model checking problem, to put known ver-
ification approaches into the context of a concrete engineering problem and, by
providing a prototypical implementation, demonstrate that they work.

We first define interlockings and describe their design exemplified by the
GRIP process and the realisation of GRIP’s Detailed Design phase at Invensys
Rail. We then detail our formal method, i.e., the verification step, and com-
pile different technologies upon which the verification can be based. Finally, we
present comparative results in terms of an industrial case study. This paper
summarises results published in [15–18,20].

2 Designing Solid State Interlockings

In railway systems, solid state interlockings provide a safety layer between the
controller and the track. In order to move a train, the controller issues a request
to set a route. The interlocking uses rules and track information to determine
whether it is safe to permit this request: if so, the interlocking will change the
state of the track (move points, set signals, etc.) and inform the controller that
the request was granted; otherwise the interlocking will not change the track
state. In this sense, an interlocking is like a Programmable Logic Controller
(PLC). The standard IEC 61131 [11] identifies programming languages for such
controllers, including the visual language ladder logic discussed below.

Interlockings applications are developed according to processes prescribed by
Railway Authorities, such as Network Rail’s Governance for Railway Investment
Projects (GRIP) process. The first four GRIP phases define the track plan and
routes of the railway to be constructed, while phase five – the detailed design
– is contracted to a signalling company such as Invensys which chooses appro-
priate track equipment, adds control tables to the track plan, and implements
the solid state interlocking. It is for part of this phase, namely for the correct
implementation of a control table in a solid state interlocking, that our paper
offers support in terms of a formal method.

Signalling handbooks (e.g. [21]) describe how to design control tables for
the routes of a track plan. Technical data sheets provide information of how to
control the selected hardware such as points, signals and track circuits. It is a
complex programming task to implement the control tables for the selected hard-
ware elements. For a larger railway station, the resulting program can involve
thousands of tightly coupled variables, so thorough testing for safety is a must.
To this end, programs are run on a rig which simulates the physical railway,
and it can take any number of iterations of testing and debugging for a program
to pass all prescribed tests. This testing cycle is cost intensive, as it is hardly
automated due to its interactive nature and concerns about the safety integrity
of any automated testing environment: the tester has to run the program through

Verification of Solid State Interlocking Programs 255

various scenarios developing over time. Furthermore, debugging is time consum-
ing as there is little support for producing counter examples.

It is at this point that the formal method described below is able to reduce
costs in the design process. Rather than testing an interlocking program, we
automatically transform the program and the safety property that the test shall
establish into a model checking problem. Tool support then allows to automat-
ically check if the property is fulfilled. In case it is not, a counter example is
produced, possibly in the form of a trace of controller requests and train move-
ments. This allows the programmer to obtain intelligible feedback. This process
is fast and far less involved than testing the program. For these reasons, based
on our research, Invensys Rail is working to include such a verification step into
their design process of solid state interlockings.

3 From Ladder Logic to Model Checking

We first introduce the programming language ladder logic, show how ladder logic
programs can be represented in propositional logic, and give them a semantics
in terms of transition systems. We then discuss how typical safety properties
from the railway domain expressed in first order logic can be specialised to
propositional logic. These two steps result in a model checking problem: is the
specialisation of a safety property satisfied w.r.t. the labelled transition system
gained from the ladder logic program? We discuss how to apply standard model
checking approaches to this question and address the problem of false positives.

3.1 Ladder Logic

Ladder logic gets its name from its graphical “ladder”-like form (see Fig. 1) remi-
niscent of relay circuits. Each rung of the ladder computes the current value of an
output. A ladder logic program is executed top-to-bottom, and an interlocking
executes such a program indefinitely.

A ladder logic rung consists of the following entities. Coils represent boolean
values that are stored for later use as output variables from the program. A coil
is always the right most entity of the rung and its value is computed by executing
the rung from left to right. Contacts are the boolean inputs of a rung, with open
and closed contacts representing the values of un-negated and negated variables,
respectively. The value of a coil is calculated when a rung fires, making use of
the current set of inputs – input variables, previous output variables, and out-
put variables already computed for this cycle – following the given connections.
A horizontal connection between contacts represents logical conjunction and a
vertical connection represents logical disjunction. For example:

C

(a) A coil

X

Y

(b) Disjunction with
closed contacts

X Y

(c) Conjunction with an
open and a closed contact

256 P. James et al.

req crossing crossing

pressed req req

pressed crossing tlag

req

pressed crossing tlbg

req

crossing tlar

crossing tlbr

crossing plag

crossing plbg

crossing plar

crossing plbr

Fig. 1. The ladder logic program for the pelican crossing

As a running example we model a Pelican crossing, consisting of: two buttons
at each side of a road, allowing pedestrians to make a request to cross; and four
sets of lights (2 pedestrian lights, pla and plb, and 2 traffic lights, tla and tlb)
controlling the flow of pedestrians and traffic. This is modelled by a boolean
input variable pressed and 8 variables plar, plag, plbr, plbg, tlar, tlag, tlbr, tlbg,
modelling the aspect of the light, ’r’ for ’red’, ’g’ for ’green’. We also have two
internal variables: req represents whether one of the pedestrian buttons has
been pressed in a previous iteration of the program and whether there is already
a request to cross; and crossing models the fact that a pedestrian is allowed
to cross the road. Figure 1 presents a ladder logic program for such a Pelican
crossing. The execution model for a ladder logic program is an infinite repetition
of the sense-think-act cycle common in the design of embedded systems. Sense:
all inputs are read; think : the program is executed; act : the outputs are all
written. It thus makes sense to speak about consecutive execution cycles; and
we discuss program execution for the current cycle, depending on the values of
the input and the internal variables at the end of the previous cycle. We explain
our use of ladder logic by considering the example program in Fig. 1.

Verification of Solid State Interlocking Programs 257

– If the state variable “crossing” becomes true in Rung 1, then as a consequence,
at the end of the cycle the pedestrian lights will be green and the traffic lights
will be red (by Rungs 3-10).

– For “crossing” to become true, a request “req” to cross must have been made
and in the previous cycle pedestrians could not cross (see Rung 1).

– The state variable “req” is true if and only if at (the beginning of) the previ-
ous cycle the button was pressed and at (the end of) the previous cycle the
pedestrian lights were red i.e. “req” was previously false (see Rung 2)

– Rungs 5 and 6 control the setting of the red light for the traffic depending
on on the state variable “crossing”. Rungs 6-9 control the pedestrian lights
depending on the state variable “crossing”.

– Rungs 3 and 4 deliberately use a complicated encoding in order to demon-
strate later the difference between model checking approaches. However, they
still encode the correct behaviour: namely, setting the green light for traffic
exclusively to setting the green light for pedestrians.

3.2 From Ladder Logic to Propositional Logic

From an abstract perspective, ladder logic diagrams represent propositional for-
mulae. However, the process of obtaining these requires special care. In [14] we
detail of how to use the Tseitin Transformation [26] in order to prevent a blow-
up in formula size regarding nested disjunctions. This avoids bad performance
when translating formulae into CNF, which is the usual input format of SAT
solvers, the verification technology we intend to use.

The Tseitin Transformation traverses the formula from left to right, build-
ing up sub-formulae, each of which consisting of a conjunction or disjunction.
The efficient use of sub-formulae requires the introduction of auxiliary variables.
Figure 2 shows an example and locations where variables are introduced. Here, a
new variable is introduced for each step in the computation: After every contact
x a new variable xi is introduced (where i is fresh for x), and for each vertical
connection (disjunction) a new variable ∪j is introduced (where j is fresh). The
rung is then broken at each of the intermediate variables, resulting in a simpli-
fied ladder. Each rung in the simplified ladder consists of only conjunction or
disjunction and at most one negation. By following the above procedure, applied
to the ladder in Fig. 2, the below assignments and formulae are obtained:

a b f

f e

c ∪1

∪2

a1

f1

c1

b1

e1

Fig. 2. Tracing back from coil f : Without auxiliary variables, the nested disjunction
results in the large formula f ′ ↔ (¬b ∧ (a ∨ ¬f ′ ∨ c)) ∨ (e ∧ (a ∨ ¬f ′ ∨ c)).

258 P. James et al.

a1 := a

f1 := ¬f
c1 := c

∨1 := a1 ∨ f1 ∨ c1

b1 := ∨1 ∧ ¬b
e1 := ∨1 ∧ e

∨2 := b1 ∨ e1

f := ∨2

(a) Assignments of Fig. 2.

(a′
1 ↔ a)

∧ (f ′
1 ↔ ¬f)

∧ (c′
1 ↔ c)

∧ (∨′
1 ↔ a′

1 ∨ f ′
1 ∨ c′

1)

∧ (b′
1 ↔ ∨′

1 ∧ ¬b)

∧ (e′
1 ↔ ∨′

1 ∧ e)

∧ (∨′
2 ↔ b′

1 ∨ e′
1)

∧ (f ′ ↔ ∨′
2)

(b) Translation of Fig. 2.

The ladder logic of the Pelican logic Fig. 1 translates (for readability without
the optimisation) into the conjunction of these formulae:

crossing∼ ∅ req ⊆ ¬ crossing,
req∼ ∅ pressed ⊆ ¬ req,
tlag∼ ∅ (¬ pressed ∪ req∼) ⊆ ¬ crossing∼,
tlbg∼ ∅ (¬ pressed ∪ req∼) ⊆ ¬ crossing∼,
tlar∼ ∅ crossing∼, tlbr∼ ∅ crossing∼,
plag∼ ∅ crossing∼, plbg∼ ∅ crossing∼,
plar∼ ∅ ¬ crossing∼, plbr∼ ∅ ¬ crossing∼

3.3 Ladder Logic Formulæ and Their Semantics

A ladder logic program is constructed in terms of disjoint finite sets I and C of
input and output variables, where internal variables are subsumed in C. In our
example in Fig. 1, we have I = {pressed} and C = {crossing, req, tlag, tlbg, tlar,
tlbr, plag, plbg, plar, plbr}. We define C ∼ = {c∼ | c → C} to be a set of new vari-
ables (intended to denote the output variables computed in the current cycle).
In addition, we need a function unprime : C ∼ √ C,unprime(c∼) = c.

Definition 1 (Ladder Logic Formulae). A ladder logic formula ψ is a propo-
sitional formula of the form

ψ ≡ (c∼
1 ∅ ψ1) ⊆ (c∼

2 ∅ ψ2) ⊆ · · · ⊆ (c∼
n ∅ ψn)

such that the following holds for all i, j → {1, . . . , n}:
– c∼

i → C ∼;
– i ∈= j √ c∼

i ∈= c∼
j; and

– Vars(ψi) ∞ I ⇑ {c∼
1, . . . , c

∼
i−1} ⇑ {ci, . . . , cn}.

Remark 1. Note that the output variable c∼
i of each rung ψi, may depend on

{ci, . . . , cn} from the previous cycle, but not on cj with j < i, due to the imper-
ative nature of the ladder logic implementation. Those values are overridden.

Remark 2. In the formulae extracted from a ladder logic program equivalences
(c∼

1 ∅ ψ1)⊆· · · can be replaced by (c∼
1 = ψ1)⊆· · · . Both formulae are equivalent.

Verification of Solid State Interlocking Programs 259

Definition 2 (Semantics of Ladder Logic Formulae). Let {0, 1} represent
the set of boolean values and let

ValI = {μI |μI : I √ {0, 1}} = {0, 1}I

ValC = {μC |μC : C √ {0, 1}} = {0, 1}C

be the sets of valuations for input and output variables. The semantics of a ladder
logic formula ψ is a function that takes the two current valuations and returns
a new valuation for output variables:

[ψ] : ValI × ValC √ ValC
[ψ](μI , μC) = μ∼

C

where

μ∼
C(ci) = [ψi](μI , (μC)�{ci,...,cn}, (μ∼

C ∀ unprime)�{c→
1,...,c→

i−1})
μ∼

C(c) = μC(c) if c /→ {c1, . . . , cn}
and [ψi](·, ·, ·) denotes the usual value of a formula under a valuation.

3.4 Labelled Transition Systems

We turn this into a transition system representing the ladder logic program.

Definition 3 (Labelled Transition System, Reachability). A Labelled Tran-
sition System (LTS) M is a four tuple (S, T,R, S0) where

– S is a finite set of states;
– T is a finite set of transition labels;
– R ∞ S × T × S is a labelled transition relation; and
– S0 ∞ S is the set of initial states.

We write s
t−√ s∼ for (s, t, s∼) → R. A state s is called reachable if

s0
t0−√ s1

t1−√ . . .
tn−1−−−√ sn = s,

for some states s0, . . . , sn → S, and labels t0, . . . , tn−1 → T where s0 → S0.

Definition 4 (Ladder Logic Labelled Transition System). We define the
labelled transition system LTS(ψ) for a ladder logic formula ψ to be the four
tuple (ValC ,ValI ,√,Val0) where

– μC
μI−√ μ∼

C iff [ψ](μI , μC) = μ∼
C

– Val0 = {μC |μC inital valuation}
Remark 3. The standard initial valuation in the railway domain sets all red
lights to 1, and all other variables to 0, i.e. this results in exactly one initial
state. A variant proceeds as follows: First, all output variables are set to 0 and
then all possible transitions are performed. Val0 is then defined as the set of
states obtained after this first transition. In the Pelican crossing example (see
Fig. 3 below) this would lead to two initial states rather than one. In both cases,
a formula Init characterises Val0.

260 P. James et al.

Crossing
= 0

Req = 0
· · ·

Crossing
= 1

Req = 0
· · ·

Crossing
= 0

Req = 1
· · ·

Crossing
= 1

Req = 1
· · ·

0

0, 1

1

0

0, 1

1

Fig. 3. Pelican crossing transition system

3.5 Producing Verification Conditions

In order to guarantee safety, companies such as Invensys ensure through testing
that interlockings fulfil certain properties. We formulate them as logical formulae,
and call the result safety conditions. These conditions are the main example
of verification conditions, which are formulae, for which we check using our
tools whether they hold in an interlocking system. In our setting verification
conditions are first-order formulae, with variables ranging over entities such as
points, signals, routes, track segments, while referring to predicates. An example
of a safety condition is the formula

⊇rt , rt ∼ → Route.⊇ts → Segment.(
rt ∈= rt ∼ ⊆ part of(ts, rt) ⊆ part of(ts, rt ∼)

)

−√ ¬(
routeset(rt) ⊆ routeset(rt ∼)

)

expressing the property: for all pairs of routes that share a track segment, at
most one of them can be set to proceed .

Note there are two kinds of predicates: State and Topology . State predicates
express the state of entities at a given time; e.g., routeset(rt26) expresses that
route rt26 has been set. These predicates will unfold into variables in the lad-
der logic program, so in the previous example the predicate would—depending
on the actual naming scheme—unfold to the variable rt26ru. Topology pred-
icates express meta information relating to the topology of the railway yard.
E.g. part of(ts54 , rt26) expresses that the track segment ts54 is part of route
rt26 . These predicates unfold to true or false, depending on whether the prop-
erty holds; thus, the previous example unfolds to true when ts54 is actually
part of rt26 , otherwise false.

Some topology predicates are atomic and stated explicitly as true or false for
given arguments. Other predicates can be computed in terms of these atomic
predicates. E.g., signal ms1 is a main signal guarding access to route rt , if there

Verification of Solid State Interlocking Programs 261

exists track segments ts1 and ts2 such that ts1 is before route rt , ts1 is connected
with ts2 , ts2 is part of the route rt , and ms1 is located directly between ts1
and ts2 . This can be expressed as follows:

route main signal(ms1 , rt) ∅ ∃ts1 , ts2 → Segment.
before(ts1 , rt) ⊆ connected(ts1 , ts2) ⊆ part of(ts2 , rt)

⊆ infrontof(ts1 ,ms1) ⊆ inrearof(ts2 ,ms1)

In [14,16] Kanso introduces a translation of such formulae to propositional
formulae which can then be verified using either SAT solving or model checking.
This approach takes the following steps:

1. We first express the topology using a Prolog program that determines the
truth of the topology predicates. The program consists of clauses such as

– mainsignal(ms1) – signifying that ms1 is a main signal, and
– infrontof(ts0a,ms1) – signifying that signal ms1 is in front of track seg-

ment ts0a.
The above predicate route main signal(ms1 , rt) is defined in Prolog as:
route main signal(ms1 , rt) :−

before(ts, rt), connected(ts, tss),
part of(tss, rt), infrontof(ts,ms1), inrearof(tss,ms1).

2. We then translate the formula into prenex form – i.e., a formula consisting of
a block of quantifiers followed by a quantifier free formula – using standard
techniques from logic.

3. Finally, we replace each occurrence of ⊇x→A.ϕ(x) by ϕ(a1) ⊆ · · · ⊆ ϕ(an) and
each occurrence of ∃x→A.ϕ(x) by ϕ(a1)∪· · ·∪ϕ(an), where a1, . . . , an are the
elements of set A in the topology. ϕ is now instantiated to closed instances.
Therefore the topological predicates evaluate to truth values that can then
easily be omitted from the formula. Safety formulae can usually be translated
into universally quantified formulae in prenex normal; the universally quanti-
fied formula is replaced by conjunctions, where most conjuncts reduce to false,
since topology predicates such as connected(ts1 , ts2) are false for most choices
of arguments. Finally state predicates are replaced by the Boolean variables
of the ladder logic. In the case of safety conditions we obtain a conjunction of
instantiations of ψ. Since safety conditions usually become conjunctions, the
validity of the conjuncts can be checked separately. This allows to identify
problems relating specific objects of the railway yard.

A typical verification condition for our Pelican crossing example would for instance
ensure that the traffic lights and the pedestrian lights are not green at the same
time:

ϕ ≡ (tlag ⊆ tlbg ⊆ ¬plag ⊆ ¬plbg) ∪ (¬tlag ⊆ ¬tlbg ⊆ plag ⊆ plbg)

262 P. James et al.

3.6 The Model Checking Problem

We want to speak about the properties of the system that ensure safety – the
so-called safety conditions – and then define what it means for a safety condition
to hold in a labelled transition system. The following definition is motivated by
the fact that safety conditions (tend to) describe properties which hold for two
consecutive cycles of the ladder logic program.

Definition 5 (Safety Condition for a Ladder Logic Program). Given a
ladder logic formula ψ over the variables in I ⇑ C, a verification condition is
a propositional formula formed from the variables in I ⇑ C ⇑ C ∼.

Having defined the model of our system and the type of properties we want
to speak about in that model, we must answer the following question: Given a
model of our system and a safety condition, how do we check that the safety
condition holds in that model. This motivates the following definition.

Definition 6 (Verification Problem for Ladder Logic Programs). We
define (and denote) the verification problem for a ladder logic formula ψ for a
verification condition φ as follows:

LTS(ψ) |= φ iff for all reachable transitions of the LTS – that is, triples
μC , μI , μ∼

C such that μC
μI−√ μ∼

C , and μC is reachable
in LTS(ψ) – we have [φ](μC , μI , μ

∼
C) = 1.

Note that in most cases, as in our Pelican crossing, the verification condition
φ only consists of variables in C, thus, the model checking problem simplifies
to considering individual states, i.e. whether [φ](μC) = 1 at all times. Figure 3
shows the labelled transition system for the Pelican crossing example. We have
included one unreachable state in which both required and crossing are true.

3.7 Model Checking Approaches

Target technology for the first three algorithms is SAT-solving; in the algorithms,
execution terminates after a “return” statement has been performed.

Bounded Model Checking (BMC). BMC, see, e.g., [5], restricts the depth
of the search space. Let the formulae ψInit

n , n ⇒ 1, be the unrolled transition
relations which encode n steps with ψ from an initial state of the transition
system. The following algorithm explores the transition system to a depth of up
to K steps (we assume that φ uses the variables concerning the last transition):

if ¬(Init √ φ) is satisfiable, return error state
n ⇐ 1
while n ≤ K do

if ¬(ψInit
n √ φ) is satisfiable, return error trace

n ⇐ n + 1
return “K-Safe”

Verification of Solid State Interlocking Programs 263

As BMC produces a counter example trace if the verification fails, it is espe-
cially interesting for debugging purposes.

Inductive Verification (IV). IV checks if an over approximation of the reach-
able state space is safe. In the following algorithm we assume that φ uses the
variables concerning the current transition and φ∼ those concerning the last tran-
sition:

if ¬(Init √ φ∼) is satisfiable, return error state
if ¬(ψ ⊆ φ √ φ∼) is satisfiable, return pair of error states
return “Safe”

The over approximation happens in the second line of the algorithm: here
one considers all safe transitions rather than the reachable ones. This idea makes
IV a very efficient approach involving at most two calls to a SAT solver [14,16].

Temporal Induction (TI). TI, see, e.g., [6], combines BMC and IV to allow
for both complete verification and counter example production. For n ⇒ 0, let
ψn be the unrolled transition relation encoding n steps with ψ; let LFn be a
formula encoding that all transitions of a sequence of n transitions are pairwise
different; and safen be a formula encoding that all these transitions fulfil the
verification condition. Define

Basen ≡ Init ⊆ ψn √ φ, and
Stepn ≡ ψn+1⊆LFn+1⊆safen √ φ, where φ uses the variables concerning
the last transition.

We then have the following procedure.

n ⇐ 0
while true do

if ¬Basen is satisfiable, return error trace
if ¬Stepn is unsatisfiable, return “Safe”
n ⇐ n + 1

St̊almarck’s Algorithm. This algorithm has been developed and patented by
St̊almarck [24]. It generally works well on industrial problems as – despite often
being of a considerable size – they typically have a simple underlying structure.

Optimisation via Slicing. Usually, the verification condition φ does not use
all variables of the ladder logic formula ψ. This opens up the possibility to slice ψ
with respect to φ, i.e., to compute a formula ψφ with ψ |= φ ∼ ψφ |= φ where ψφ

involves fewer variables and rungs than ψ. Reference [7,8] present an algorithm

264 P. James et al.

to compute ψφ, [12,13] give a correctness proof. Here is the sliced ladder logic
program of the Pelican crossing example for the condition (tlag∪ tlar)⊆¬(tlag⊆
tlar) ⊆ (tlbg ∪ tlbr) ⊆ ¬(tlbg ⊆ tlbr):

crossing∼ ∅ req ⊆ ¬crossing,

req∼ ∅ pressed ⊆ ¬req,

tlag∼ ∅ (¬ pressed∼ ∪ req∼) ⊆ ¬ crossing∼

tlbg∼ ∅ (¬ pressed∼ ∪ req∼) ⊆ ¬ crossing∼

tlar∼ ∅ crossing∼,
tlbr∼ ∅ crossing∼

Such slicing can be applied as a pre-processing step for all discussed approaches.

3.8 Excluding False Positives by Invariants

When verifying interlockings, often false positives are obtained. When discussing
such false positives arising from the models with railway experts, they often
state that in the physical system these situations do not occur because the
specific value combination of the false positive is impossible, i.e., the false positive
violates a system invariant. In [14] we identify two types of invariants.

Physical invariants are due to the fact that certain combinations of input
variables are physically impossible. A typical example of this is a three way
switch, modelled by 3 variables where each variable i indicates whether the
switch is in position i or not. Physically it is impossible that such switch is in
two positions simultaneously. This insight can be added to the system model as
an invariant. However, in the real system it might happen that wet leaves fall on
the three way switch and connect two of its contacts. This now puts the physical
controller into a state that in the model was excluded by the physical invariant.
Here, one has to decide if the system design and therefore its verification shall
cater for such situations or not, i.e., physical invariants need to be carefully
considered and validated by domain experts.

Mathematical invariants. In the case of IV, unreachable states may hinder
verification through causing false positives. In this case one can identify invari-
ants that hold in all reachable states. An example of such an invariant would be
the equivalence tlar ∅ tlbr, which holds for the program given in Fig. 1.

3.9 Graphical Representation

In order to investigate counter examples a graphical representation of the error
states was given. For our prototype, Kanso [14,16] develops a latex document,
which contains a scheme plan with signals, sets of points and routes, together
with tables listing the state of all variables in question. The state of signals (red
or green) and points and of all tables listed is determined by macros. It is now
easy to compute from an error state a document setting these macros to the
values in this state, and therefore present an easy to view document.

Verification of Solid State Interlocking Programs 265

4 Technology & Case Studies

4.1 SAT Solving with Open Software

An initial—successful—feasibility study was conducted using the open-source
OKLibrary as underlying SAT solving framework to automate IV in order to
establish safety properties. To this end, we used the Dimacs format as a target
language. Note that this requires a representation in CNF.

Extending this implementation, we produced a framework of automatic trans-
lations of the formulae ψ, written in Haskell (about 8000 lines of code), and φ,
written in Java (about 1000 lines of code), into the formulae required for the
algorithms BMC, IV, and TI. As target format we chose TPTP [25], which is the
input language of the Paradox tool [4]. Internally, the open source tool Paradox
is based on the SAT solver Minisat [22], which is open source as well. Using Para-
dox has the advantage that the tool takes care of the translation into Dimacs
format. The framework also includes a Haskell implementation of slicing (about
500 lines of code).

Using this framework, experiments on our Pelican crossing example with the
above verification condition showed: with BMC the program is K safe for all
K ⇒ 0 we tried; with IV, we obtain a pair of error states; TI gives the result
“Safe”. This example demonstrates that though IV is sound, it is not complete.

4.2 The SCADE Suite as an Industrial Tool

For comparison, we applied a tool widely used in industry, where however no con-
trol over the method applied is available. In SCADE (Safety Critical Applications
Development Environment) [1] programs are verified using the SCADE language
and Prover Technology based on Stalmarck’s algorithm. The program to trans-
late ladder logic programs into SCADE is based on the framework described
above, it has a length of approximately 8000 lines of Haskell code [19].

The SCADE language is based on the synchronous dataflow language Lustre
[2]. The flows which constitute a Lustre program are infinite sequences of values
which describe how a variable changes over time. Flows are combined together to
form nodes which can be seen as the Lustre equivalent of a function or procedure.
There are two main temporal operations which can be applied to flows:

– The unary operator pre allows one to consider the previous value of a flow.
– The binary operator -> allows one to express an initial value using the first

operand and all subsequent values are computed using the second operand.

The following is the result of the automatic translation of the pelican crossing
ladder logic to SCADE .

node PelicanLadderLogic1(pressed: bool) returns (req, crossing,

tlag, tlar, tlbg, tlbr, plag,

plar, plbg, plbr: bool)

266 P. James et al.

let crossing = false -> pre req and (not (pre crossing));

req = false -> (not pre req) and pressed;

tlag = false -> ((not pressed) or req) and (not crossing);

tlbg = false -> ((not pressed) or req) and (not crossing);

tlar = true -> crossing;

tlbr = true -> crossing;

plag = false -> crossing;

plbg = false -> crossing;

plar = true -> not crossing;

plbr = true -> not crossing;

tel

4.3 Industrial Case Study

Using the approaches described above we automatically translated real world
railway interlockings and safety properties into the Dimacs format (for IV),
the TPTP language (for BMC, IV, and TI) and the SCADE language. The
verification results gained have been positive. For every safety condition the
tools have either given a successful verification, or a counter example (trace).
All results have been obtained within the region of seconds.

In the following we report on the verification of a small, but real world
interlocking which actually is in use on the London Underground. The ladder
logic program consists of approximately six hundred variables and three hundred
and fifty rungs. Concerning typical verification conditions, slicing reduces the
number of rungs down to 60 rungs, i.e., the program size is reduced by a factor
of 5. All experiments reported have been carried out on a computer with the
operating system Ubuntu 9.04, 64-bit edition, an Intel Q9650, Quad core CPU
with 3GHz, and a System Memory of 8GB DDR2 RAM.

Evaluation with an Open Source Tool. The first condition encodes that
if a point has been moved, it must have been free before. Here, the verification
actually fails. IV yields a pair of states within 0.75 s, while BMC produces an
error trace of length 3 in 0.81 s, TI produces the same trace. The rail engineers
were able to exclude this counter example as a false positive. By adding justifiable
invariants we could exclude this false positive. The second condition excludes
that the program gives an inconsistent command, namely, that a point shall be
set to normal and to reverse at the same time. IV proves this property in 0.71s;
BMC yields K-safety for up to 1000 steps, after which we ran out of memory;
BMC on the slided program is possible up to 2000 steps; TI does not terminate,
neither for the original nor for the sliced version. Our experience is that IV can
deal with real world examples. Slicing yields an impressive reduction of the size
of the ladder logic program. It is beneficial when producing counter examples
with BMC as it reduces the runtime and also helps with error localisation.

Verifying the Industrial Case Study Using SCADE . All above safety con-
ditions take times less than 1 s [19]. We attempted the verification of 109 safety

Verification of Solid State Interlocking Programs 267

conditions out of these 54 were valid and 55 produced counter examples. The
latter are false positives and were eliminated by adding invariants as described
above. The total time for the verification and production of counter examples
for all of these safety conditions was under 10 s. This may be in part due to
some support for multi-core processors allowing the SCADE suite to dispatch
multiple verification tasks efficiently. Generally, in the process of removing false
positives approximately one hundred invariants were added. Overall, this shows
that SCADE is a viable option for the verification of railway interlockings.

5 Conclusion

The overall result is that the verification step described works out: the required
translations can be automated, the current tools scale up to real world problems,
the gained benefits are convincing enough for the company Invensys to change
its practice. Concerning proof technology, it is a matter of taste / philosophy /
further constraints if one prefers open software or commercial products.

Acknowledgments. Our thanks go to Ulrich Berger for advice on the semantics of
ladder logic formulae.

References

1. Abdulla, P.A., Deneux, J., St̊almarck, G., Ågren, H., Åkerlund, O.: Designing safe,
reliable systems using scade. In: Margaria, T., Steffen, B. (eds.) ISoLA 2004. LNCS,
vol. 4313, pp. 115–129. Springer, Heidelberg (2006)

2. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: LUSTRE: a declarative language
for real-time programming. In: Proceedings of POPL’87, pp. 178–188 (1987)

3. Cimatti, A., Giunchiglia, F., Mongardi, G., Romano, D.: Formal verification of a
railway interlocking system using model checking. FACS 10(4), 361–380 (1998).
Springer

4. Claessen, K., Sorensson, N.: New techniques that improve mace-style finite model
finding. In: Proceedings of CADE’03 Workshop: Model Computation (2003)

5. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfia-
bility solving. Formal Meth. Syst. Des. 19(1), 7–34 (2001). Kluwer

6. Een, N., Sörensson, N.: Temporal induction by incremental SAT solving. ENTCS
89(4), 543–560 (2003)

7. Fokkink, W., Hollingshead, P.: Verification of interlockings: from control tables to
ladder logic diagrams. In: Proceedings of FMICS’98, pp. 171–185 (1998)

8. Groote, J., Koorn, J., Van Vlijmen, S.: The safety guaranteeing system at station
Hoorn-Kersenboogerd. In: Proceedings of Compass’95, pp. 57–68 (1995)

9. Han, K., Park, J.: Object-oriented ladder logic development framework based on
the unified modeling language. In: Lee, R., Hu, G., Miao, H. (eds.) Computer and
Information Science 2009. SCI, vol. 208, pp. 33–45. Springer, Heidelberg (2009)

10. Haxthausen, A.: Automated generation of formal safety conditions from railway
interlocking tables. STTT. Springer (to appear)

11. IEC 61131–3 edition 2.0 2003–01. International standard. Programmable con-
trollers. Part 3: Programming languages (January 2003)

268 P. James et al.

12. James, P.: SAT-based model checking and its applications to train control software.
MRes Thesis, Swansea University (2010)

13. James, P., Roggenbach, M.: Automatically verifying railway interlockings using
SAT-based model checking. In: Proceedings of AVoCS’10. Electronic Communica-
tions of EASST 35 (2010)

14. Kanso, K.: Formal verification of ladder logic. MRes Thesis, Swansea University
(2009)

15. Kanso, K.: Agda as a platform for the development of verified railway interlocking
systems. Ph.D Thesis, Swansea University (2012)

16. Kanso, K., Moller, F., Setzer, A.: Automated verification of signalling principles
in railway interlocking systems. ENTCS 250, 19–31 (2009)

17. Kanso, K., Setzer, A.: Specifying railway interlocking systems. In: Proceedings of
AVoCS’09, pp. 233–236 (2009)

18. Kanso, K., Setzer, A.: Integrating automated and interactive theorem proving in
type theory. In: Proceedings of AVoCS’10 (2010)

19. Lawrence, A.: Verification of railway interlockings in SCADE. MRes Thesis,
Swansea University (2011)

20. Lawrence, A., Seisenberger, M.: Verification of railway interlockings in SCADE.
In: Proceedings of AVoCS’10 (2010)

21. Leach, M. (ed.): Railway Control Systems: A Sequel to Railway Signalling. A & C
Black, London (1991)

22. Minisat. http://minisat.se
23. Rausch, M., Krogh, B.: Formal verification of PLC programs. In: Proceedings of

the American Control Conference. IEEE (1998)
24. St̊almarck, G.: System for determining propositional logic theorems by applying

values and rules to triplets that are generated from boolean formula. US patent:
5,276,897 (1994)

25. The TPTP problem library for automated theorem proving. http://www.cs.miami.
edu/tptp/

26. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Ina
Structures in Constructive Mathematics and Mathematical Logic, Steklov Mathe-
matical Institute (1968)

27. Vincenti, W.G.: What Engineers Know and How They Know It. The Johns Hopkins
University Press, Baltimore (1990)

28. Zoubek, B., Roussel, J.-M., Kwiatkowska, M.: Towards automatic verification of
ladder logic programs. In: Proceedings of CESA’03. Springer (2003)

http://minisat.se
http://www.cs.miami.edu/tptp/
http://www.cs.miami.edu/tptp/

MoKMaSD 2013

Towards Knowledge Modeling
for Sustainable Transport

Paloma Cáceres(B), Carlos E. Cuesta, José Maŕıa Cavero, Belén Vela,
and Almudena Sierra-Alonso

VorTIC3 Research Group, Rey Juan Carlos University, C/Tulipán, s/n,
28933 Móstoles, Madrid, Spain

{paloma.caceres,carlos.cuesta,josemaria.cavero,
belen.vela,almudena.sierra}@urjc.es

Abstract. The paradigm shift from the current energy consumption
model towards a sustainable model requires to develop new behaviors and
strategies. This is particularly relevant in domains like the public trans-
port. Many providers are currently offering services to assist passengers
to plan their routes. However, these approaches are often restricted to
some specific area or transport medium. We suggest using a Linked Data
perspective, which makes simpler to combine data from different sources,
as well as extending and managing them. Moreover, it makes possible to
enrich the basic model to the extent of developing a knowledge model,
able to use semantic techniques to unfold even better strategies. In this
paper we present a proposal in the transport domain, which refines a
basic model into a Transmodel specification and later adds more infor-
mation according to the IFOPT model. This defines a knowledge model,
which can be used to develop sustainable transport strategies.

Keywords: Sustainable development · Knowledge management · Seman-
tic web · Transmodel · IFOPT · RDF

1 Introduction

Sustainable development makes reference to a mode of human development in
which the use of resources aims to meet human needs while ensuring the sus-
tainability of natural systems and the environment, so that these needs can be
met not only in the present, but also for generations to come [1].

In this context, transport represents a significant proportion of global energy
consumption. Sustainable mobility essentially emerges from the disadvantages
caused by the current transport model, in which the central element is the pri-
vate car. These include pollution and its effects on health and the environment,
inefficient use of resources, traffic congestion, etc. These disadvantages have trig-
gered different efforts to search for alternatives, trying to overcome the limita-
tions of this model. In many cases, energy consumption can be significantly

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 271–287, 2014.
DOI: 10.1007/978-3-319-05032-4 20, c© Springer International Publishing Switzerland 2014

272 P. Cáceres et al.

reduced by an efficient use of transport media. In this way, there are many
reasons to promote the use of public transport as environmental and economic
arguments [2].

It is important, not only choosing the right path within the transport net-
work, but also being to share a vehicle (including private vehicles) with others.
There are several initiatives assisting people in sharing transport, the most pop-
ular being carpooling : more than one person sharing a car. However, no existing
solution combines private transport sharing with the use of public transport,
which would make it more flexible.

Having this in mind, we aim to apply information technologies to the task
of improving citizen mobility – considering the case of citizens, both in usual or
specific trips, and trying to optimize their intended routes by using any available
means of transport: both public transport and the rational sharing of private
transport. We have designed an IT platform, called CoMobility [3], to assist
in intermodal transport sharing, integrating the use of carpooling with public
transport, as well as other private transport media. To be accessible anytime and
anywhere, we have taken into account mobile computing. Mobile systems are
not only useful in their ability to provide pervasive access to computing systems
(i.e. enabling computer access anywhere), but they also provide the inputs of a
mobile and dynamic environment into a computational system; it is now possible
to perform computations that, until recently, were simply impossible. A classic
example is geolocation: it is now easy to provide the physical location of a user,
and to use these data for a variety of purposes.

It is provided on the Internet “as a service”, where both public transport
information and data provided by users themselves are stored and accessed “in
the cloud”. The cloud approach is necessary as scalability is one of the most
important requirements of this kind of wide-range service architecture. The
platform also needs to access a great amount of data, which is also stored in
the cloud – both the private data of carpoolers, and the public data accessed
in a linked open data approach. Users are able to access their information in
several formats, particularly in mobile devices (currently, Android devices) and
web applications. Through these devices, they are able to plan their paths in
the transport network, moving from a shared car to the underground, and from
there to a bus line; and at the same time receiving an estimation of the sav-
ing of both money and energy. For this purpose, our CoMobility platform has
“customized” analytics on savings and energy consumption, to make individuals
aware of the benefits of this new way of travelling. These data are obtained from
energy-aware institutions.

This work focuses on how to incorporate new knowledge into open data about
transport, provided by its original sources. The format of public data within the
open data initiatives prevents non-experts from using them directly, and thus it
requires additional semantics, as provided by “Linked Open Data” [4,5]. In this
way, our proposal in this paper focuses on modeling the knowledge of transport
public data for sustainable transport. To do that, it is necessary: first, analyzing
the original data formats and identifying the data semantics; second, matching

Towards Knowledge Modeling for Sustainable Transport 273

these data with the vocabulary of the transport metamodels Transmodel [6] and
IFOPT [7], and adding the relevant information; and finally, representing them
as linked open data.

The paper is structured as follows: in Sect. 2, we briefly introduce the resource
description framework (RDF). Section 3 outlines the public transport data
providers (in this case, the public bus company of Madrid) and the transport
specification standards Transmodel and IFOPT. Section 4 describes our specific
proposal about a knowledge management architecture for Public Transport; in
Sect. 5 we provide an example based on our proposal; and finally, the main con-
clusions are shown in Sect. 6.

2 A Brief Introduction to RDF

The Resource Description Framework (RDF) [8] provides an extremely simple
data model in which entities (also called resources) are described in the form of
triples (subject, predicate, object). For instance, consider a meteorology system
consisting on several sensors, and a given sensor identified as Sensor 4UT; its
description could comprise the following triples:

(Sensor_4UT, rdf:type, om-owl:System)

(Sensor_4UT, om-owl:parameter, weather:_AirTemperature)

(Sensor_4UT, om-owl:parameter, weather:_RelativeHumidity)

(Sensor_4UT, om-owl:parameter, weather:_WindDirection)

(Sensor_4UT, om-owl:parameter, weather:_WindSpeed)

The first triple states that Sensor 4UT is a particular class of system (hence the
object om-owl:System), and the remaining four triples say that Sensor 4UT reports
measurements about air temperature, relative humidity and wind direction and
speed.

An RDF dataset can be seen as a graph of knowledge in which entities and
values are linked via labeled edges. These labels (the predicates in the triples)
own the semantics of the relation, hence it is highly recommendable to use stan-
dard vocabularies or to formalize new ones as needed. Figure 1 represents the
previous RDF excerpt as a labeled graph in which the nodes (and edges between
them) depict the mentioned triples, modeling a weather observation about the
wind speed.

RDF has been gaining momentum since its inception thanks to its adoption
in diverse fields, such as bioinformatics, social networks, or geographical data.
The Linked Open Data project plays a crucial role in the RDF evolution [4]. It
leverages the Web infrastructure to encourage the publication of such semantic
data [7], providing global identity to resources using HTTP URIs. Moreover,
integration between data sources is done at the most basic level of triples, that
is, to connect two data sources can be as easy as making connection between
those resources.

This philosophy pushes the traditional document-centric perspective of the
Web to a data-centric view, emerging a huge interconnected cloud of data-to-
data hyperlinks: the Web of Data. Latest statistics pointed out that more than

274 P. Cáceres et al.

Fig. 1. Example of a RDF graph modeling weather data

31 billion triples were published and more than 500 million links established
cross-relations between datasets. Although each piece of information could be
particularly small (the so-called Big Data’s long tail), the integration within a
subpart of this Web of Data can also be seen as an example of Big Semantic
Data.

It is worth noting that RFID labels, Web processes (crawlers, search engines,
recommender systems), smartphones and sensors are potential sources of RDF
data, such as in our previous use cases. These are the main players in the so-
called Internet of Things, in which the Linked Data philosophy can be applied
naturally by simply assigning URIs to the real-world things producing RDF data
about them via Web. As a result, the activity of all involved devices is recorded
and linked between them, enabling large projects (such as the emergent notion
of smart-cities) to be successfully implemented.

3 Using Knowledge Modeling for Sustainable Transport

This work is focused on modeling public transport data in Linked Open Data
(LOD). In this way, our work aims to study the source of the public transport
data and the existing standard models related to public transport, to analyze
them and to enrich this information adding semantic knowledge of the public
transport data. The final data will be published in RDF.

3.1 A Modeling Approach to Public Transport

In this paper, we work with the public transport data of the public bus network
in Madrid as open data source. EMT Madrid [9] is the public bus company of

Towards Knowledge Modeling for Sustainable Transport 275

Madrid, and follows an open data initiative with regard to its information. It
provides the specification of the geographical services public platform, which
includes these three parts: a customer-oriented SOA architecture [10], a public
information services infrastructure architecture –described in a detailed way–,
and the description of their information services. These services can be accessed
by different kinds of devices.

EMT Madrid allows accessing its platform by means of the explicit authen-
tication of users. This method is implemented in each Web Service. Moreover,
it provides a specific set of output information about the bus line and the bus
stop, as a set of fixed schemas into the services structure:

◦ With regard to the bus line, EMT Madrid offers a piece of basic information
which can be shown on any device screen: Number of bus line, first/last bus
stop and last/first bus stop (depending on the direction followed by the bus),
type of the day in which the bus operates (to indicate working day, holiday and
Saturday), direction, start and finish time of the bus line (in that direction),
maximum and minimum frequency of the bus line (in that direction).

◦ With regard to the bus stop, EMT Madrid also offers a piece of basic informa-
tion which can be shown on any screen, including those from mobile devices:
code, name, postal address, geographical coordinates.

We have studied the standard transport models Transmodel [6] and IFOPT
[7], to match the existing open data about the bus public network of EMT
Madrid with them. Transmodel is an European Reference Data Model for Public
Transport Information which provides a model of public transport concepts and
data structures that can be useful to build information systems related to the
different types of public transport. It includes information about real time data,
journey planning, timetables, operational management, routes, etc. The present
version (V5.0) uses an Entity-Relationship modeling approach and covers the
following domains:

◦ Tactical Planning,
◦ Personnel Disposition,
◦ Operations Monitoring and Control,
◦ Passenger Information,
◦ Fare Collection and
◦ Management Information/Statistics

Transmodel establishes a consistent terminology for describing public trans-
port concepts, providing definitive equivalents for use in the National Languages
of each participant nation. Where public transport (PT) related words in ver-
nacular use may span a number of different concepts and lead to differences of
interpretation, it establishes a more precise technical terminology for unambigu-
ous use by PT information system developers. For example the terms “trip”,
“journey”, “service”, are overlapping concepts that in Transmodel are used only
in some more specific usages.

276 P. Cáceres et al.

Sometimes, we need more descriptive information about the objects related
to public access to Public Transport than the offered by Transmodel. Let’s see
an example: a Transmodel Connection Link represents the possibility of inter-
change between two Scheduled Stop Points used by different journeys, without
necessarily having a precise indication of place. In contrast, a Path Link (from
the IFOPT metamodel) represents a different information layer: a Stop Path
Link and an Access Path Link represent the possibility of navigation between
specific located nodes of a Stop Place. A Transmodel Access Link is the
physical (spatial) possibility for a passenger to access or leave the PT system:
the walking movement of a passenger from a place (origin of the trip) to a stop
point (the origin of the PT trip); the walking movement of a passenger from a
stop point (the destination of the PT trip) to a place (destination of the trip.

For this reason, we have studied the IFOPT metamodel. It defines a model
and identification principles for the main fixed objects related to public access
to Public Transport (e.g. stop points, stop areas, stations, connection links,
entrances, etc.). The IFOPT Standard builds on the TransModel Standard to
define four related submodels:

• Stop Place Model : Describes the detailed structure of a Stop Place (that is
station, airport, etc.) including physical points of access to vehicles and the
paths between the points, including mobility hazards.

• Point of Interest Model : Describes the structure of a Point of Interest
including physical points of access, i.e. Entrances.

• Gazetteer Topographical Model : Provides a topographical representation of the
settlements (cities, towns, villages etc.) between which people travel. It is used
to associate Stop and Station elements with the appropriate topographic names
and concepts to support the functions of journey planning, stop finding, etc.

• Administrative Model : Provides an organizational model for assigning respon-
sibility to create and maintain data as a collaborative process involving
distributed stakeholders. Includes namespace management to manage the
decentralised issuing of unique identifiers.

Our study focuses on the Stop Places model of IFOPT.

3.2 IFOPT: Modeling Stop Places

What type of information can be better modeled using IFOPT instead of using
Transmodel? In the previous subsection, we introduced an example of related
information between both metamodels and their differences. Now, we will show
the differences graphically, explaining them in depth.

In Fig. 2, we show a route from a starting point (numbered as 1) to a destina-
tion (numbered as 6). This route is composed by three pedestrian subroutes (1-2,
3-4 and 5-6) and two PT subroutes (2-3 and 4-5). The pedestrian subroutes 1-2
and 5-6 are identified as Access Links (paths to access to PT) in Transmodel.
The pedestrian subroute 3-4 is a Transmodel Connection Link (to connect
different PT routes).

Towards Knowledge Modeling for Sustainable Transport 277

Fig. 2. Transmodel access and connection links

Fig. 3. Differences between transmodel and IFOPT elements

IFOPT is more specific describing fixed objects. It models Stop Places,
Access Path Links and Stop Path Links. Stop Places are related with
a place where users can get on public transport. A Stop Place includes an
Access Space which provides the entrance to the place. The place could also
be a Point of Interest, for example. Stop Path Links represent the path
between stops of public transport, within a Stop Place. Access Path Links
represent the path to access to an Access Space from another Access Space.

Figure 3 shows Points of Interest (numbered as 1 and 6), Stop Places
(labelled as A and B), Access Path Links and Stop Path Links, which
are represented as arrows. Each Stop Place and Point of Interest has
an Access Place which represents the entrance to these places. We want to
emphasize that the Stop Place B also includes an Access Space which could
represent the space where users could change the journey or the public transport.
We can also see in the figure that a Transmodel Access Link is less descriptive

278 P. Cáceres et al.

than an Access Path Link, which represents the path through an Access
Place. IFOPT’s Stop Path LINKs represent specific paths from/to an Access
Space to/from a public transport stop, including transfers within Stop Places.

4 A Knowledge Management Architecture for Public
Transport

4.1 Context: The CoMobility Project

The CoMobility Project [3] defines a multimodal architecture based on linked
open data for a sustainable mobility. Its main goals are improving the citizen
mobility, optimizing their trips combining both public transport and sharing
private transport (i.e. car sharing or carpooling), providing accessible trips when
necessary and saving energy and reducing the pollution (Fig. reff.comobility).

We have developing a systematic approach to (i) accessing open, integrated
and semantically annotated transportation data and street maps, (ii) combining
them with private data, and (iii) supplying mechanisms to allow the actors to
share and search these data. Therefore, its conceptual architecture provides the
means to perform the following tasks: First, the platform can identify, select,
extract and integrate data from different and heterogeneous sources, stemming
from the transportation, geographical and energy domains. Second, data from
public institutions is obtained automatically in the form of open data. Third,
these data are annotated as linked data, and a set of heuristics generate links
between data items from different sources without human intervention. Fourth,
these data are integrated with private data provided by users themselves. And

Fig. 4. The CoMobility Project

Towards Knowledge Modeling for Sustainable Transport 279

finally, CoMobility provides intuitive and customized data analytics and visu-
alization, allowing individuals to become aware of the environmental impact of
their transport choices. Next figure shows a general idea about the project.

Project CoMobility is supported by the Spanish Economy and Competi-
tiveness Ministry and some companies have expressed their interest in their
results. The most representative are: the public bus company from Madrid (EMT
Madrid), the Public Regional Consortium of Transports of Madrid (CRTM) [11],
the Chair of EcoTransport, Technology and Mobility of the Rey Juan Carlos
University [12] and the Spanish National Society of Blind People (ONCE) [13].

4.2 Knowledge Management Architecture

In this paper we briefly describe the knowledge management architecture that
supports the bus public transport data from EMT Madrid as linked data in RDF.
To carry out this process we need: first, to provide the required mechanism to
parse the XML [14] information from the source and to obtain the necessary
data about the network transport (i.e. bus lines and bus stops); second, to mach
these data with the IFOPT model; and finally, to publish them as RDF resources.
Next subsections show the requirements of the architecture which supports this
process.

4.3 Data Architecture for the Original Data

EMT Madrid provides an open data platform of its urban bus network, supported
by a technological infrastructure which exports them as a Service-Oriented Archi-
tecture (SOA) to any requesting consumer (any consumer that requires it).
In this way, the data can be accessed using Web services, which answer to
the request by returning some specific XML files. EMT Madrid offers a set
of open web services which clients can invoke according to their information
needs: bus routes, pedestrian routes, bus stops, transfers, etc. The figure below
shows the concrete architecture that support this kind of information interchange
(Fig. reff.emt).

Each web service returns a different XML file which contains the information
about the requested data by the client. It is then necessary to parse and translate
the XML information into a readable information to the client. Figure 6 shows
an XML example of a bus line. To preserve the confidentiality, we have hidden
some data from the original information, or changed the specific formatting, in
the following examples.

The code shows a generic description about the bus line 174 and its headers.
First, the labels <BusLine> . . . </BusLine> indicate that the information is about
a bus line. The bus line number is 174: <IdBusLine>174</IdBusLine> and the first
and last stops are Plaza de Castilla and Sanchinarro Este: that is, <BusLineHeadA>
PLAZA DE CASTILLA </BusLineHeadA>, and then <BusLineHeadB> SANCHINARRO ESTE

</BusLineHeadB>, respectively.
Figure 7 shows an XML example of a bus stop. The code shows the bus line

number to which the bus stop belongs: <IdBusLine>174</IdBusLine>. Then,

280 P. Cáceres et al.

the bus stop number, <Node>5611</Node>; the distance from the first (initial)
stop, <Distance> 456 </Distance>; and the distance from the previous stop
<DistancePrev> 147 </DistancePrev>; and then the bus stop name,
<BusStopName> INTERCAMBIADOR PZA. DE CASTILLA </BusStopName>. Finally, it also
specifies the geographical coordinates, i.e. latitude <GeoCoorX>40,4695235553361

</GeoCoorX> and longitude <GeoCoorY>-3,68778542580241</GeoCoorY>.

4.4 Superposing Data Architectures

We need to identify which data from the source are corresponded with the struc-
tured of IFOPT. As mentioned before, IFOPT defines a model and identification
principles for the main fixed objects related to public access to Public Trans-
port (e.g. stop points, stop areas, stations, connection links, entrances, etc.).
In this paper, we only work with the Stop Place Model, because it describes
the detailed structure of a Stop Place (that is station, airport, etc.) including
physical points of access to vehicles and the paths between the points, including
mobility hazards.

As we will see in the next section (by developing an example), we actually
need not to define a set of different models to later combine them – instead
of that, we have information (models) from several sources which can be easily
combined using specific join points. We begin with a simple model (i.e. bus

Fig. 5. SOA-based EMT infrastructure

<BusLine>
<IdBusLine>174</IdBusLine>
<BusLineHeadA>PLAZA DE CASTILLA</BusLineHeadA>
<BusLineHeadB>SANCHINARRO ESTE</BusLineHeadB>

</BusLine>

Fig. 6. Example of a XML-based bus line description

Towards Knowledge Modeling for Sustainable Transport 281

<BusStop>
<IdBusLine>174</IdLine>
<Order>1</Order>
<Node>5611</Node>
<Distance>456</Distance>
<DistancePrev>147</DistancePrev>
<BusStopName>INTERCAMBIADOR PZA.DE CASTILLA</BusStopName>
<GeoCoorX>40,4695235553361</GeoCoorX>
<GeoCoorY>-3,68778542580241</GeoCoorY>

</BusStop>

Fig. 7. Example of a XML-based bus stop description

lines), where the fixed points are described as simple bus stops; and we enrich
this model, step by step, adding the information provided by the different model,
until these simple stops are transformed into complex structured Stop Places.

5 Exporting the Transport Model as Linked Data

As already noted, we simply enrich the original model. The process can be
described as the stepwise refinement of the original dataset provided by our orig-
inal sources (EMT Madrid), simply provided as or translated to Linked Data
(RDF) format, and then enriched with additional semantic information – in the
first stage, identifying relevant sections according to the key concepts in Trans-
model; then in a second stage, attaching additional information as described by
the IFOPT model.

5.1 Representing the Original Information

First, consider the original source structure as provided by EMT Madrid,
described in RDF terms. As already noted, as EMT Madrid is a bus service,
it provides information in terms of bus lines, bus stops, etc. This can be simply
described as Linked Data, essentially by represented the provided information
as a graph, and thus reordering some elements in the structure as required.

The most important notion in the Bus model is still that of route, i.e. the
path which must be followed by a passenger to reach his destination from some
starting point. However, for the sake of simplicity, in the remainder of this exam-
ple we will focus in a small part of the model – specifically, the one which refers
to bus stops (and hence to bus lines, and to related pedestrian walks).

The first notion that we need to define is that of a bus line, which describes
the first intuitive concept as provided by EMT Madrid. In RDF terms, a bus
line is described as a resource in a certain URI, with a number of triples defining
a number of attributes (line identifier, origin name, destination name), and also
a number of relationships or connections (prominently, to the bus stops locating
the start and the end of the line). Figure 8 depicts this structure in the usual
graphical form, for EMT Madrid line 174.

282 P. Cáceres et al.

Of course, both the predicates defining attributes (att:x) and those defining
connections (conn:x) are already defined in RDF terms. Both abbreviations are
defined as alias for longer URIs – for instance, the prefix att in the Figure is the
short form for http://vortic3.com/rdf/attributes#.

Connection definitions show that bus lines need to refer to bus stops to locate
their heads – and even more, any stops within the line. Therefore, bus stops define
the obvious connection between lines. Indeed, bus stops can be considered as a
key notion in the Bus model, and they provide a starting point to traverse the
whole graph of bus lines – i.e. the triplestore.

In RDF terms a bus stop is again described as a resource, with certain
attributes (name of the stop, e.g. the direction; spatial coordinates, etc.), and
also a number of relationships (prominently, the crossing with bus lines, i.e. the
set of lines which stop at this bus stop). This is depicted in the first part of
Fig. 9, which shows part of the dataset describing the stop at “Intercambiador
Plaza de Castilla”.

Of course a stop is able to simultaneously participate in several bus lines – this
is the case of the aforementioned “Intercambiador” (i.e. a transport hub). To be
able to capture this, the auxiliary resource known as node (or crossing) is defined.
A node describes the role of a certain bus stop in a certain line. For instance,
the second half of Fig. 9 describes the node 1000A4, which represents the role of
the bus stop at “Intercambiador Plaza de Castilla” in the already mentioned bus
line 174 (see Fig. 8). Hence the attributes of the node describe the name of the
stop, its position in the bus line (it is the first stop), its distance to the previous
stop, etc. The node has also relationships, prominently the connection linking it
to the corresponding bus line. As depicted in the lower part of the Figure, bus
lines have separate definitions when they are considered in the opposite direction

Fig. 8. RDF example for the bus line 174: bus line

Towards Knowledge Modeling for Sustainable Transport 283

Fig. 9. RDF example for the bus line 174: bus stops and nodes

– and hence, if the same stop participates in this reverse line, the connection is
described as a different node (that is, node 1000Ax in the Figure).

5.2 Exploring Connections in the Network

As already noted, we are particularly interested in the concept of transfer. Within
the Bus model (and therefore in the bus lines domain) a transfer refers just
to a change of bus line – the passenger steps off a certain bus line, and gets
into another one. In this model, the number of transfers equals the number of
changes – i.e. the number of bus lines in the route equals the number of transfers
plus one.

In the initial conception, a transfer can happen when a certain stop crosses
two lines, i.e. when it has at least two nodes. That is the simplest transfer: the
passenger just leaves the first line, and in the same stop, he takes a different
bus line. However, things are often more complicated – the passenger is able to
walk to a different stop in the nearby, to do a different transfer as described in
Figs. 2, 3. This notion of a pedestrian walk implies a different connection between
two bus stops, and can be also modeled as a RDF resource, which starts in (i.e.
connects to) one stop, covers a distance and (optionally) an average duration
(attributes) and ends in (again, connects to) another stop.

284 P. Cáceres et al.

So far we have used information from the Bus model as provided (and trans-
lated) by EMT Madrid. However, once we are out of the bus for a pedestrian
walk, we can generalize the situation: if the passenger is able to walk or to take
the bus, he can also use the subway – i.e. we might consider not only transfers
between bus lines, but also movements between different PT providers.

5.3 Adding Transmodel Concepts

To generalize this, we just need to get beyond the Bus model, to go to a model
when any kind of PT can be used; for this purpose, we are able to use the
Transmodel definition to refer to any kind of transport, as already indicated in
Sect. 3.1. Therefore the existing bus definitions are substituted by their equiv-
alent (and more general) version in Transmodel. Instead of bus stops we have
Stop Points, which could refer to any sort of stop, including Metro or train
stations as well as bus stops. The definition of a pedestrian walk in Transmodel
terms is summarized as described in Fig. 2. We consider all stop points from a
certain origin to a certain destination, and pedestrian walks are captured either
as Access Links (i.e. the way we access a certain stop point) or as Connection
Links (i.e. a non-fixed path between two stop points). The notion of transfer
corresponds to an interchange in Transmodel. In summary, the original data in
the Bus model fulfills the requirements from a Transmodel specification, hence
it can be immediately translated to these terms – and this means that it can be
safely extended to include information about other PT media.

Therefore, the original structure is easily translated to a Transmodel speci-
fication, including all its data without any modification. Now these data can be
easily extended to include e.g. the stop point which describes a Metro station,
and hence we can use the connection link between this station and any other stop
point to describe how to move from the bus to the subway – or vice versa. The
notion of transfer between buses is now generalized to any kind of connection
between PT media.

Note that the model is not required to be complete: we can have the full
definition of bus lines and stops as provided by EMT Madrid, but we can add
only a few Metro stations at the beginning – the connection links would be used
wherever they are present, but the semantic model is perfectly able to work
in the presence of partial information. That is, we need not to have the full
definition of the Metro network to describe a partial combination.

5.4 Introducing the IFOPT Basic Model

However, this is not enough: as already indicated (Sect. 3.1, up to the comparison
in Fig. 3), there are many details and attributes, related to different PT media
which cannot be adequately described as Transmodel stop points. The Trans-
model definition does not provide enough information to be able to handle the
most complex reasoning related to simple bus transfers – even more for generic
interchanges. Therefore we need to extend this information – hence the need

Towards Knowledge Modeling for Sustainable Transport 285

for refinement, and the use of the IFOPT model, the standard which comple-
ments Transmodel providing information about fixed points. In particular, the
notion of stop point is generalized to the concept of Stop Place, as already
noted before (note also that even in Fig. 9, we have already modeled the bus
stop actually as a stop place).

As already indicated (see again the comparison in Fig. 3) the notion of stop
place is more general than a stop point, as it can also include generic Points
of Interest. The concept of access link is refined into a more structured
Access Space, and connection links are considered either “internal” (Stop
Path Links) or “external” (Access Path Links). Therefore, we can still repre-
sent, using the same structure, a bus transfer – i.e. two stop places and the access
path link between them; but we are also able to describe how the passenger moves
into a communication hub. For instance, the same stop place already described
in Fig. 9 (“Intercambiador Plaza de Castilla”) includes several bus stops (such
as the connection to line 174, described as a node in the same Figure), but also
a Metro station. This is part of the same stop place, but refers to a different
quay, which would have its own access spaces. Therefore, the transfer between
bus 174 and Metro line 10 at Plaza de Castilla can described here as a stop path
link, as the passenger needs not to go out of the stop place to change the PT
media.

5.5 Using Linked Data Information

Obvioulsy, all these notions are described as RDF resources. Bus stops are
defined as stop places, as they already were. Metro lines are described simi-
larly to bus lines, according to Transmodel definitions. Stop places are refined
into quays (generalizing nodes); and instead of having “bus transfers” (which
were not described in RDF terms), we actually have access path links between
access spaces, and stop path links between the quays in the same stop place. All
these elements are directly modeled as RDF resources with their own attributes,
and these links take the form of connections between these resources.

Using the rich semantic model as provided by IFOPT, we are able to model all
kinds of situations within this context. Specifically, we are particularly interested
in aspects related to sustainable transport or to accessibility of disabled people.
For instance, with regard to the first, IFOPT provides the concept of CheckPoint
as a component of the stop place; attributes related to this checkpoint include
estimates about the duration of the delays it might cause (CheckPointDelay),
and the possibility of Congestion. With regard to the second, it is even more
apparent, as according to IFOPT, any stop place element can include a valida-
tion related to its potential AccesibilityLimitation; which is described in turn
as a resource with such attributes as WheelchairAccess or VisualSignsAvailable.
Therefore, now we are not just able to tell if there is an access path link from
stop place A to stop place B; but also if this path can be safely used by blind or
disabled people.

286 P. Cáceres et al.

6 Conclusions

This paper exposes two main arguments. First, that it is both simple and con-
venient to either design or translate the information from different sources –in
our case, from the transport domain– to be managed as Linked Data. The gen-
erality and flexibility of the RDF format makes possible to express data from
almost any source, and to easily translate to it information from varied origins
– in the presented example, our data was originally provided as XML files and
private services; and in both cases it is simple to encapsulate it as RDF triples.
The generic nature of this format makes easy to integrate the information from
many sources.

The second thesis is that it is possible to elaborate the information step by
step, in a refinement process, starting with the most basic (“raw”) data and
to enrich these data adding information from semantically rich models – in our
context, first the Transmodel specification for transport media, and then the
IFOPT model to describe fixed points. The open nature of the Linked Data
approach makes possible to perform this stepwise refinement in a seamless way,
adding RDF triples without the need to modify the existing ones. The result is
a semantically rich model, describing all available knowledge about PT media
and the related places, which allows for a sophisticated form of reasoning. The
ultimate purpose of our system –to find optimal routes in the PT network– is
fulfilled to the extent of being able to optimize these routes considering not only
traversability, but also sustainability and accessibility.

Acknowledgements. This work has been supported by the project CoMobility
(TIN2012-31104), funded by the Spanish Ministry of Economy and Competitiveness;
and it has also been supported by the Chair of Ecotransport, Technology and Mobility
(http://www.catedraetm.es/) at Rey Juan Carlos University.

References

1. Sustainable development - Wikipedia. http://en.wikipedia.org/wiki/Sustainable
development (2013). Accessed 21 Nov 2013

2. Essortment Home Page. Advantages of Using Public Transportation. http://
www.essortment.com/advantages-using-public-transportation-19689.html (2012).
Accessed 22 June 2012

3. Cuesta, C.E., Cáceres, P., Vela, B., Cavero, J.M.: CoMobility: a mobile platform
for transport sharing. ERCIM News 93 (2013)

4. Linked Open Data. http://linkeddata.org/
5. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space.

Morgan & Claypool, Seattle (2011)
6. Transmodel: European Reference Data Model for Public Transport. http://www.

transmodel.org/index.html (2001)
7. Identification of Fixed Objects in Public Transport (IFOPT). http://www.dft.gov.

uk/naptan/ifopt/ (2013)
8. Klyne, G., Carroll, J.: Resource Description Framework (RDF): Concepts and

Abstract Syntax. W3C Recommendation. http://www.w3.org/RDF/ (2004)

http://www.catedraetm.es/
http://en.wikipedia.org/wiki/Sustainable_development
http://en.wikipedia.org/wiki/Sustainable_development
http://www.essortment.com/advantages-using-public-transportation-19689.html
http://www.essortment.com/advantages-using-public-transportation-19689.html
http://linkeddata.org/
http://www.transmodel.org/index.html
http://www.transmodel.org/index.html
http://www.dft.gov.uk/naptan/ifopt/
http://www.dft.gov.uk/naptan/ifopt/
http://www.w3.org/RDF/

Towards Knowledge Modeling for Sustainable Transport 287

9. EMT Madrid Home Page. http://www.emtmadrid.es/ (2012)
10. Service Oriented Architecture (SOA) - W3C Web Open Standards. http://www.

w3.org/2008/11/dd-soa.html (2008)
11. Public Regional Consortium of Transports of Madrid Home Page. http://www.

ctm-madrid.es/ (2013)
12. Chair of EcoTransport, Technology and Mobility of the Rey Juan Carlos University.

http://www.catedraetm.es/
13. Spanish National Society of Blind People. http://www.once.es/ (2013)
14. eXtensible Markup Language (XML) - W3C. http://www.w3.org/XML/ (2013)

http://www.emtmadrid.es/
http://www.w3.org/2008/11/dd-soa.html
http://www.w3.org/2008/11/dd-soa.html
http://www.ctm-madrid.es/
http://www.ctm-madrid.es/
http://www.catedraetm.es/
http://www.once.es/
http://www.w3.org/XML/

XBRL-Driven Business Process Improvement:
A Simulation Study in the Accounting Domain

Martin Kloos1, Joris Hulstijn2(B), Mamadou Seck3, and Marijn Janssen2

1 Q-TC, Rotterdam, The Netherlands
2 Faculty of Technology, Policy and Management, Delft University of Technology,

Delft, The Netherlands
3 Old Dominion University, Virginia, USA

emkloos@gmail.com,

{j.hulstijn,m.f.w.h.a.Janssen}@tudelft.nl, mseck@odu.edu

Abstract. The eXtensible Business Reporting Language (XBRL) has
been developed to standardize financial reporting. It could also improve
internal business processes. Yet there is no scientific research to substan-
tiate this claim. In this paper we use discrete-event simulation to deter-
mine the impact of XBRL on internal business processes. Simulation
models of the existing and possible new situation are developed in a case
study within the accounting domain. The redesigned processes are vali-
dated in a workshop. XBRL allows the merging of accounting and fiscal
reporting processes resulting in a reduction of the duplication of activ-
ities and higher information quality. In particular, it is demonstrated
that information quality, efficiency and lead-time can be improved by
adoption of XBRL. In addition to technology-standardization on XBRL,
data-standardization is a necessary precondition for realizing benefits.

Keywords: XBRL · Standardization · Accounting · Simulation

1 Introduction

Information Technology is recognized as an enabler for process improvement
[3,6]. The eXtensible Business Reporting Language (XBRL) is a technology
aimed at creating a standard representation format for exchanging financial
information [28]. XBRL is an XML-based standard for internal and external
reporting, including financial, statistical, taxation, and inspection reports. XBRL
is a freely available international standard that enables gathering and dissemina-
tion of business information [9]. XBRL provides a standardized way to describe
system-to-system information exchange. XBRL therefore enables a high level of
semantic and syntactic interoperability [5].

Use of XBRL is claimed to lead to benefits like greater efficiency and improved
accuracy and reliability in financial reporting [8]. However there is little empirical
evidence that XBRL is indeed creating added value [1] and what the conditions
are for accomplishing these benefits. Time savings, reduced effort, improved

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 288–305, 2014.
DOI: 10.1007/978-3-319-05032-4 21, c© Springer International Publishing Switzerland 2014

XBRL-Driven Business Process Improvement 289

communication are mentioned frequently as possible benefits, but hardly any
research to validate these claims could be recognized [25].

In the Netherlands, adoption of XBRL is embedded in the Standard
Business Reporting program (SBR), which provides users with a unified mean-
ing of financial concepts, such as income or revenue, made available in a tax-
onomy maintained by the Dutch government (http://www.sbr-nl.nl/english/).
Although XBRL is originally developed for financial reporting to regulators it
also offers opportunities for standardizing the internal business processes. Yet
the actual adoption and usage of the standard is limited and many accounting
firms are unsure how to adapt XBRL and specifically how to best apply XBRL
in their own internal business processes to reap the benefits.

In this paper we report on a study of a simulation-based process improve-
ment project at a medium-sized accounting firm in the Netherlands. A so called
‘built-in’ XBRL adoption strategy is modelled and simulated (see Sect. 2). In
particular, we focus on the internal business processes for (i) compiling and
submitting the annual financial statements of a client and (ii) preparing the
tax returns for corporate income tax of a client. Both processes are affected by
the adoption of XBRL. We conducted the following research activities. First
we modelled the business processes in Business Process Model and Notation
(BPMN) and analysed the existing software application landscape. We decided
on definitions for measuring performance in this domain, such as duration and
quality of outcomes. We then simulated the current processes in a discrete event
simulation tool (ARENA). Based on literature, we identified opportunities for
process improvement driven by XBRL and also simulated these expected process
improvements. The outcomes of the modelling and simulation exercise were val-
idated in a workshop with experts and end users.

The remainder of the paper is structured as follows. We start by explaining
XBRL (Sect. 2) and by characterizing the accounting domain (Sect. 3). There-
after we present the case background and simulation study (Sect. 4), followed by
the relevant process improvements (Sect. 5) and the simulated studies (Sect. 6).
The paper ends with a discussion and suggestions for future research (Sect. 7).

2 XBRL

The Extensible Business Reporting Language (XBRL) provides a foundation for
the exchange of reports and data [9]. XBRL consists of four major
components: XML standard, XBRL taxonomy, instance documents and XBRL
specification. The actual data is represented in an instance document. Using
link-bases, meaning is provided to this data by means of meta-data tags that
refer to definitions from an official XBRL taxonomy. XBRL taxonomies for the
accounting domain can have three categories: general-purpose financial report-
ing taxonomies (XBRL-FR), special purpose regulatory reporting taxonomies,
and the general ledger taxonomy (XBRL-GL) [4]. XBRL is report oriented, but
it enables to drill down to individual information items [17]. As XBRL is XML-
based, instance documents are both human and machine-readable, and transfer-
able between different software platforms. This means that once data has been

http://www.sbr-nl.nl/english/

290 M. Kloos et al.

collected and labelled with meaningful XBRL-tags, it can be re-used for differ-
ent reporting purposes. In the context of the SBR programme, this philosophy is
called ‘store once, report many’ [5]. Official extensions to the basic Netherlands
Taxonomy (NT) exist for accounting, for various fiscal reports, and for statisti-
cal reporting. These extensions are maintained by experts. A related application
concerns credit applications by banks. Recently, there are developments to stan-
dardize meta-data concerning assurance over XBRL instances [16].

The working assumption is that XBRL adoption would produce efficiency
gains [1,9,28]. Why? In principle, XBRL and SBR taxonomies can lower the
costs of compliance, improve efficiency and improve information quality for the
following reasons: (i) at the individual firm level, standardization and improved
interoperability between software packages reduce the need to re-enter informa-
tion, reduce processing time (remove superfluous controls), improve the audit-
trail and improve information quality [5,25], (ii) for a community of users,
this may lead to increased comparability, transparency and accuracy of report-
ing, improved systems flexibility and inter-operability, and ultimately improved
market efficiency [5,25].

primary
process

recording
information
processing

reporting

embedded
bolt-on

regulator

built-in

Fig. 1. Scope of XBRL adoption strategies: bolt-on, built-in and embedded [13]

These benefits are only potential. The way in which XBRL is utilized has
an large impact on the benefits that can ultimately be achieved. Three different
XBRL adoption strategies can be distinguished [13–15], illustrated in Fig. 1.

1. The bolt-on strategy only uses XBRL at the very end of the information
processing chain. XBRL is not used within the client organization, but only
for reporting to external regulators. One could argue that this will already
produce some of the community benefits listed under (ii) above, but the
process improvement impact on individual organizations is small: only the
final PDF documents are being replaced by XBRL.

2. The built-in strategy integrates XBRL into the financial application land-
scape of both the client organization and its financial service providers, like
accountants and tax consultants. This strategy requires adaptations to the
software. Therefore it does involve a significant investment by clients and
especially by the intermediaries. However, in the long run, this strategy is
expected to reap most benefits.

3. The embedded strategy is most radical. Here XBRL is used for standardizing
the way transactions are recorded in the primary process by the client, for
instance into the general ledger. The version of XBRL that would allow such
recording at the source is therefore called XBRL-GL. This makes it possible to

XBRL-Driven Business Process Improvement 291

trace and verify transactions at the level of individual information items. We
do see a purpose for this strategy, in particular in situations where assurance is
required over specific limited subsets of data, such as credit reports for banks
[16]. However, in the general case this vision would require a redesign of the
core of ERP systems and financial software packages. This poses huge risks
to the continuity and reliability of financial reporting. Currently, financial
software vendors are reluctant to enter this market. They have often built
their business models around a proprietary data representation standard.

3 Accounting Domain

In the following paragraphs we characterize the accounting domain by means of
general observations: O1, O2, etc. These observations will be used in Sect. 3 to
evaluate the feasibility of possible process improvements.

Accounting is the process of recording financial information about a business
entity, analysing that information, and reporting the results to stakeholders, such
as management, shareholders, creditors, and regulators [20]. Accountants must
provide some form of assurance that the reported financial information is cor-
rect, complete and timely. The activities of an accountant are therefore subject
to intensive regulation and professional standards. This means that the people in
accounting firms are traditionally more focused on information quality and com-
pliance, rather than on operational efficiency (O1). Please note that in our case
study, we looked at the process for compilation of financial statements, for rela-
tively small clients, which strictly speaking does not involve assurance. Therefore
it is not as heavily regulated as the official accounting processes. However, like
all processes, also these are subject to professional standards of conduct.

Many process improvement techniques have been pioneered in manufactur-
ing [27]. An important difference between manufacturing and accounting, is the
intangibility of services compared to the tangibility of products. Intangible prod-
ucts are known to be people intensive in production and delivery [21]. This makes
for large lead times and explains the importance of planning and control (O2).

Intangible products typically are information intensive [22]: they require
large amounts of data. Accounting is no exception. Moreover, decisions require
knowledge and professional expertise, for example about business risks in differ-
ent sectors, or about financial standards and regulations. Therefore specialized
and trained professionals must execute the business processes. Accounting is a
knowledge-intensive domain (O3).

We also find a high degree of customization to clients (O3), a characteristic
that is specific to all services [30]. Accounting firms tend to serve a large variety
of clients, each demanding different solutions for the financial issues they face.
Fahy et al. [12] state “although there are reasonably homogeneous participants
in the financial information supply chain, the clients demand a high degree of
data customization” (p. 128). Because of client specificity, much time and effort
is required for professionals to understand a new client. The dominant business

292 M. Kloos et al.

model for accounting, is based on billable hours. So the time needed to under-
stand a client is paid for by themselves. For these reasons, clients will not easily
switch accountants.

Accounting firms can be characterized as a professional bureaucracy [24].
They typically have a decentralized structure. Usually, there is a head office
with staff departments, such as an IT department and a professional standards
office. The real power resides with individual departments, headed by a managing
partner. Innovations are dependent on support from the managing partners; they
need to be convinced. XBRL adoption requires IT adaptations and standard-
ization of processes, which may trigger resistance. The decentralized structure,
often grown during a series of mergers and acquisitions, has also resulted in a
highly complex application landscape (O5). Adoption of XBRL, especially in the
beginning of the information processing chain (built-in or embedded strategy),
is likely to reduce the complexity of the application landscape.

Given the specialized nature of their tasks, employees rarely collaborate
across department boundaries, even when that would be beneficial to the client.
As we argued above, being a standardization effort XBRL is supposed to improve
information sharing (O6), both internally between separate departments (e.g.
between tax and accounting) and externally with regulators and government
agencies.

4 Case

A medium sized accounting firm in the Netherlands, hereafter called BCD, was
studied. The firm deals mostly with small and medium sized enterprises as
clients. Like most accounting firms, the organizational structure of BCD reflects
the most important activities: assurance, tax advisory, and various consultancy
services. Although there is a centralized head office with support staff, individ-
ual departments are free to choose how to conduct their business. Traditionally
assurance and tax advisory are separated.

The case study focuses on improvements to two processes performed for
clients: the process for compiling and submitting the annual financial state-
ments (FS), and the process for preparing the tax returns for corporate income
tax (TR). Both processes are affected by the adoption of XBRL. The Standard
Business Reporting (SBR) program of the Dutch Government provides an offi-
cial taxonomy containing the meanings of financial concepts. In particular, the
taxonomy has harmonized the fiscal and accounting perspectives on concepts like
income or revenue. According to the Harmonization Act of 2008, small entities
are allowed to compile their annual financial statement based on fiscal grounds
(Dutch: Wet Samenval). Large parts of the TR process can therefore be based
on results of the FS process. This opportunity triggered BCD to start a project
to re-design their internal processes and application landscape around XBRL.
Our research was done in the context of this project. For more background see
also [19].

Data about the processes was collected by interviews with our informants, by
document reviews, and by data obtained from the central ‘hour registration files’

XBRL-Driven Business Process Improvement 293

A
cc

ou
nt

in
g

Fi
rm

A
cc

ou
nt

an
cy

D

ep
ar

tm
en

t

2. Compile
& Assess

Trial
Balance

Client

4. Revise &
Submit Financial

Statements

0. Prepare
Book-

keeping

Chamber
of

Commerce

1. Accept &
Prepare

Engagement

7. Get Client
Approval

8. Submit
 Tax Return

5. Create
 Tax Return

6. Review
Concept Tax

Return

Fi
sc

al

D
ep

ar
tm

en
t

Tax Office

3. Create &
Verify

Concept
Financial

Statements
FS

TR

Fig. 2. Simplified process overview for compilation of annual financial statements (FS),
and preparation of tax returns for corporate income tax (TR)

of BCD, where all billable and non-billable hours for employees are recorded. Our
informants are members of the XBRL project management team, located within
the centralized staff department. The validation workshop was carried out with
experts and end users from various sub-departments and offices.

A simplified BPMN model of the FS and TR processes is shown in Fig. 2.
A more detailed overview can be found in [19]. Interaction with the client and
external stakeholders (chamber of commerce for filing annual financial state-
ments, tax office for tax returns) is shown at the top. The accountancy depart-
ment handles the FS process (upper swim lane) and tax specialists handle the
TR process (lower swim lane).

Suppose a client has entered into an engagement with an accounting firm.
In principal, a client performs its own bookkeeping, with some assistance by the
accountant (task 0). The administration is transferred to the accounting firm,
who must decide whether the quality is good enough to accept it, and prepare the
activities involved in the engagement (task 1). The next step is the compilation
of a trial balance on the basis of the data being provided and an assessment
of the accuracy of the data (task 2). Each of these steps requires consultation
with the client, indicated by dashed lines. In task 3 the accounting firm then
creates a concept financial statement, and verifies it by consulting the client.
Based on these checks the concept statement is revised, finalized by the client
and submitted to the Chamber of Commerce (task 4). That concludes the FS
process. Similar steps are followed for the TR process: task 5 creates a concept
tax return, which is being reviewed (task 6) and approved by the client (task 7),
after which the tax return is submitted to the tax office (task 8).

Next an overview was made of the software application landscape and how
the different process steps are supported. The result is schematically shown in
Fig. 3. Numbers refer to the steps in Fig. 2. The BPMN and software applica-
tion landscape models were validated with our informants. As you can see, the

294 M. Kloos et al.

Accountview

administration

File Storage
client

dossiers

Unit4 FAKT400

CaseWare
report

generator

SDU/SBO Tax
Administration

rebmahC
of Commerce

0. online
administration

sources

0. journal entries
regarding wages

1. client number
and client records

1. journal entries

3. corrections
to journal entries

3. corrections

0. other sources
of administration

3. corrections

statements

0. other sources
of administration 6. tax

return

5. trial
balance

Client

2. trial
balance

2. trial
balance

Fig. 3. Schematic software application landscape supporting the FS and TR processes

application landscape does contain redundancies. Some functionality is offered
by several applications.

On the basis of the process model a simulation model was made of the FS
process. A screen shot of the animation of the simulation model is shown in
Fig. 4. The simulation model is more detailed than the process in Fig. 2. The
different phases of the process are indicated as columns: planning and prepa-
ration, execution, verifying concept, client validation and approval, finalizing.
Below you can see the subtasks for the different roles: accountants (yellow), dis-
tinguishing the assistant accountant, the engagement leader and the responsible
accountant, client (green), secretary (orange), fiscal experts (dark orange), dis-
tinguishing responsible and assistant fiscal experts. Note that activities related
to the client often involve waiting.

The structure of the simulation model was validated beforehand with process
experts. The simulation model was tested by feeding it realistic input data and
comparing the outcomes with actual data. In general, simulation studies depend
on the quality of input data. It turned out that the accounting firm’s hour reg-
istration that served as input data, was much less reliable than was initially
believed. For instance, there are differences in the way separate departments
record data, and therefore data turned out to be incomparable. Some categories
of activities are not separately recorded. For instance, time spend on corrections
was not recorded separately, so we could not quantitatively assess the impact of
process improvements on quality. We could however make a qualitative assess-
ment, as we expect that the number of corrections was reduced.

XBRL-Driven Business Process Improvement 295

Fig. 4. Screenshot of the animation of the simulation model, to give an impression
(Colour figure online)

How should can the effect of the proposed interventions be measured? Con-
cerning input into the process, the most important resource is human labour,
measured in hours spent by employees. Through their salaries, this is directly
related to the costs. The organizational role of the employee is also noted. This
information was obtained from the centralized hour registration. A natural unit
of work is a client dossier. Information itself is not modelled as a separate resource
in this type of process-based simulation.

Concerning output we decided that lead-time (in days), and customer satis-
faction (on a 1 – 5 scale) are the most important variables. In addition, we also
considered measures of quality, as this is essential in the accounting domain.
However, it is hard to find a good measure of information quality. One could
say that quality is inversely proportional to the number of errors per dossier.
But what counts as an error in this case? Errors are professionally unacceptable:
work must comply with accounting standards and procedures. We decided to
approximate output quality by the number of additional corrections that were
needed to complete a dossier. Compare [11] who use corrections to approxi-
mate deficiencies in internal control. Unfortunately, time spent on corrections
and adjustments is not separately recorded in the hour registration. Therefore
this quality variable turned out to be intractable.

We studied the empirical data collected from the hour registrations to find
trends and correlations before starting the simulation studies.

296 M. Kloos et al.

An important variable is client complexity, as a more complex client structure
due to subsidiaries, mergers and acquisitions usually takes longer to process. On
the basis of the data, it turned out that the number of subsidiaries (i.e. number
of dossiers per client) and number of general ledger accounts (GLA) can be used
as approximation of client complexity. These predict the amount of work. Linear
regression produced the following formula, with 50% explained variance and
Sig. < 0, 01.

Hours = 51 + 28 *NumberofDossiers + 4, 9 *Average GLA.

We also looked at the role of the case manager (Principle 4d below). The opposed
suggestion is to ‘empower’ employees by giving them more responsibility (Princi-
ple 5c). We compared offices with and without a relatively large involvement of a
case manager. No significant difference was found. We did find that offices with
large involvement of a case manager used less assistant accountants per case,
either because the case manager works more productively, or because the work
is better managed. Since the case manager earns more, there is no difference in
the use of resources.

5 Process Improvements

There has been a lot of research on process improvements. We mention Business
Process Reengineering, e.g. [18], which suggests radical changes, often based on
new business models or on clever use of IT. There are also continuous improve-
ments schemes like Lean [7], which tries to identify and reduce ‘wastage’, those
activities that do not add value for the customer, Six Sigma, e.g. [2], which tries
to improve predictability of the process, and the Theory of Constraints, e.g. [10],
which tries to remove or reduce the impact of bottlenecks. These approaches have
been widely discussed in the literature. Therefore we take an existing overview
by Reijers and Mansar [27], who have formulated best practices specifically for
improving administrative processes.

The principles in Table 1 are mostly based on the best practices of Reijers
and Mansar [27] and are also clustered according to the categorization they use.
We did not use practices in their category ‘Products’, as the accounting domain
is based on services. We didn’t use their category ‘External Environment’ either,
because that is about trusted third parties and outsourcing, which do not apply
here.

In our case study, we identified those process improvement principles which
made sense in the accounting domain, and which are facilitated or related to the
possibilities offered by the adoption of XBRL. In particular, we looked at the
characteristics of the accounting domain studied in Sect. 2. We use the follow-
ing notation: a ‘+’ in Table 1 means that the principle applies because of the
specified domain characteristic, and a ‘–’ that the principle is disqualified by
the characteristic. Thereafter the usefulness of the principles was evaluated by
actually applying them to the BPMN process models.

XBRL-Driven Business Process Improvement 297

Table 1. Impact of domain characteristics on recommended process improvements,
based on [27]

Clusters Improvement principles Q
u
a
li
ty

a
n
d

co
m

p
li
a
n
ce

(O
1
)

P
la

n
n
in

g
a
n

co
n
tr

o
l
(O

2
)

K
n
o
w

le
d
g
e

in
te

n
si

v
e

(O
3
)

C
u
st

o
m

iz
a
ti

o
n

(0
4
)

A
p
p
li
ca

ti
o
n

la
n
d
sc

a
p
e

(O
5
)

In
fo

rm
a
ti

o
n

sh
a
ri

n
g

(O
6
)

1. Customers a. Control relocation: move control to the customer + + + +
b. Contact reduction: reduce the number of points

of contact with customer
+

c. Integration: integrate system and processes with
customer systems and processes

+ + – + +

2. Operation view a. Task elimination: eliminate unnecessary tasks
(‘wastage’)

– + +

b. Triage: divide a general task into two or more
alternative tasks, or combine several alternative
tasks into a more general task

– – – +

c. Task composition: combine small tasks into
larger composite tasks and divide large tasks into
workable smaller tasks

– – – +

3. Behavioural view a. Parallelism: execute independent tasks in paral-
lel, if possible

– + +

b. Exception: optimize business processes for the
normal flow and fork-off exceptions to specialists

+ +

4. Organization:
structure

a. Order assignment: let workers perform as many
steps as possible for a single order

+ +

b. Customer teams: assign specific persons or teams
to specific customers

+ +

c. Numerical Involvement: minimise the number of
departments, groups and persons involved

– + + +

d. Case manager: make one person (case manager)
responsible for handling each type of order

+ + + +

5. Organization:
population

a. Specialist generalist (tasks): distinguish special-
ists and generalists for specific tasks

– –

b. Specialist generalist (domains): distinguish spe-
cialists and generalists for customer domains

+ +

c. Empower: give people more decision rights and
reduce middle management

– – + +

6. Information a. Control addition: check completeness and cor-
rectness of input before processing, and check
output before it is sent to customers

+ – – + +

b. Buffering (batch): instead of immediately asking
for information, buffer requests

+

7. Technology a. Task automation: replace manual tasks by auto-
mated tasks

+ – – + +

b. Integrated technology: avoid constraints in the
process by using integrated technology

+ + +

298 M. Kloos et al.

Cluster 1. Customers. The first improvement principles refer to the customer.
Re-allocation of controls to the customer may improve data quality. Data quality
drives many other improvements [26]. When potential errors are caught early in
the process, this will reduce repeated correction efforts later. In particular, we
tested the principle to only start working on a dossier when it is known that all
data is present. Incomplete dossiers lead to additional work, collecting, asking
and verifying the missing data. Further benefits are expected from reducing the
number of interactions with the client, and in general by better integration with
the client’s processes and systems. Note that XBRL standards make such systems
integration relatively more feasible, as it facilitates software interoperability.

Cluster 2. Operation view. These principles refer to the design of the business
process. Redundant tasks may be eliminated. In the Lean philosophy, tasks that
do not directly add value for the customer are called ‘wastage’ [7]. Typical cases
of wastage in this case are the numerous quality controls. Triage refers to the
practice of identifying tasks into a specific categories, which must be handled in
a specific way, e.g. by specialists. Composition refers to the practice of clustering
tasks into larger units which need not be handled by a specific resource (person).
The merging of FS and TR processes is an instance of composition.

Cluster 3. Behavioural view. The following principles are about choices made
during execution of a business process. When possible, tasks should be executed
in parallel. Because of the harmonization of fiscal and accounting concepts, some
of the FR and TR processes can now be executed in parallel, on the basis of the
same financial data (‘store once, report many’). Task 4 can for example be done
in parallel to task 5, 6 and 7, which are independent. The Exception principle
refers to the practice of optimizing a business process for the most common flow,
and fork off exceptions that require special treatment. This does make sense in
the accounting domain, because of the large client variability, although it is hard
to find a flow which is common to a majority of cases. In fact, deciding on these
exceptions is part of the task of the case manager (see below).

Cluster 4. Organization: structure. These principles affect the way the work is
being organized. Order assignment means that a case is preferably allocated to a
single person, who has already worked on the same case before. This is common
practice in accounting. Eventually, this practice leads to specialized customer
teams. This corresponds to Observation 4. Numerical involvement seeks to min-
imize the number of departments, groups or persons involved in a single business
process in order to reduce coordination overhead. However, accountants value
segregation of duties to ensure quality control. According to this principle, no
single person may both execute and approve a major decision. A case manager is
appointed to manage all tasks related to a specific engagement. The converse idea
of removing case managers to stimulate self-steering teams, is also tested in the
simulation. We expect it will not lead to improvements, because case managers
also have much experience about the content of the various engagements.

Cluster 5. Organization: population. This cluster is about resource alloca-
tion. An important principle is to distinguish specialists and generalists and only
assign specific tasks to specialists. This frees up (expensive) specialist resources

XBRL-Driven Business Process Improvement 299

and also reduces waiting for a specific resource. In the case study we see a move
towards generalists, especially now that FR and TR are harmonized. There is no
longer a need for specific fiscal or accounting expertise. However, it does make
sense to specialize in specific customer domains (e.g. healthcare; construction;
financial services; manufacturing, etc.). In fact this is already the case, as is
reflected by the names of the departments and the existence of customer teams.
Empower refers to the practice of giving employees more decision rights and
the ability to organize their own work. This should reduce the need for mid-
dle management, which strictly speaking does not add value. However, in the
accounting domain, the partner (responsible accountant) must supervise quality
of the work (Observation 1). We expect the partner to be a bottleneck. That
would suggest planning the process to optimize their utilization, for instance, by
adding a planner.

Cluster 6. Information. Control addition tries to improve information quality,
by verifying outgoing materials to reduce potential complaints, and by checking
the completeness and correctness of incoming materials, before processing. This
makes a lot of sense as incomplete or sloppy client evidence is a well-known
source of delays in the accounting domain. BCD does in fact try to convince
clients to take responsibility for the quality of data, partly by price incentives.
Clients who have a reliable bookkeeping system that can be easily interfaced
with BCDs systems pay reduced fees. In this case, buffering means that instead
of always requesting information from clients when needed (by telephone) it
is better to cluster such requests and handle them all in one go. This reduces
fragmentation of efforts and thereby also improves information quality.

Cluster 7. Technology. Task automation clearly makes sense for the data col-
lection and processing steps, as manual errors can be avoided, especially since
most data is already available electronically. Integrated technology is required to
improve interoperability. Witness the overlaps between functionalities of appli-
cations in Fig. 2. This is one of the expected benefits of XBRL standardization.

6 Simulation Studies and Evaluation

The principles in Table 1 are generic. They must be translated into specific
adjustments to the processes underlying Fig. 2. Each of these adjustments corre-
sponds to a kind of hypothesis to be tested. However, some adaptations depend
on each other; they cannot be tested independently. Therefore it makes sense
to cluster these adaptations in the simulation experiments. Many adjustments
could not be meaningfully implemented in the simulation model, for various rea-
sons: lack of data, limitations of the software or of the analyst. Of the list of
35 adjustments proposed by Kloos [19], we will now discuss those that could be
implemented and tested.

– As-Is: The situation as sketched in Fig. 2, before merging FS and TR.
– VII: Assign the most specialized resources (available) to the corresponding

tasks.

300 M. Kloos et al.

Table 2. Lead time changes as a result of simulation experiments; resources are kept
constant

Variable As-Is VII, IVa XI I V, XIX IX XXI

Lead time 52,5 58,1 10,8% 58,3 11,1 54,3 3,5% 41,5 −20, 9% 72,6 38,4% 47,8 −8, 9%

concept FS

Lead time 63,0 70,5 11,8% 70, 12,1% 71,4 13,2% 55,3 −12, 3% 80,9 28,4% 58,6 −7, 1%

FS

Lead time 64,8 58,2 −10, 3% 75,5 16,4% 82,6 27,4% 62,0 −4, 4% 82,4 27,01% 64,1 −1, 2%

both

Lead time 3,9 6,6 69,3% 3,6 −7, 9% 4,0 3,4% 3,9 −0, 1% 3,8 −0, 98% 4,1 5,0%

concept TR

IVa: Combine discussing with the client for the concept tax return with dis-
cussing the concept financial statements. These adjustments are already part
of the running improvement project, which is why they are combined in the
experiments.

– XI: Let the review of the tax position by the tax specialist be either performed
by someone of the accountancy department or eliminate this review.

– I: Relocate checking completeness and accuracy of input data towards the
customer.

– V: Prevent having to request additional or missing data.
XIX: Always perform an intensive check on the input data.

– IX: Combine various planning and preparation tasks into one composite task.
– XXI: Collect input data from the customer on a more frequent basis.

First, the adapted processes were implemented and a series of simulation
experiments were executed to test the influence of the adaptations on the only
two performance measures that were tractable: lead-time and use of resources.

Second, we invited an expert panel consisting of 7 employees with differ-
ent function levels (assistant accountant, case manager, responsible accountant)
from different disciplines (tax and fiscal). Participants filled in an individual
questionnaire. After that, we showed the process model and the simulation
model, and discussed the expected influence of recommended process improve-
ments on the performance indicators. According to the panel the expected ben-
efits from the principles could be confirmed [19].

The simulation experiments display observable effects. These outcomes were
later confirmed by the experts in the individual questionnaires and discussion
session.

– Decrease in lead time: by having less process steps, less corrections, more par-
allel execution, less specialists and therefore less waiting time, the total lead
time decreases. In particular the integration of FS and TR (VII, IVa) decreases
total lead-time by 10 % (approximately 6 days). However, it increases the lead-
time of FS. The decrease in total lead-time is less than originally expected
by business experts. However, currently there is a large waiting time between
the two processes, which was not modelled in the simulation. This explains
the expectation gap.

XBRL-Driven Business Process Improvement 301

The simulation model also shows a decrease in lead-time, when processing
only starts after the required information is known to be complete. A 20 %
decrease in the time needed before sending a concept version to the client is
found for improvements V and XIX, and a decrease of 12 % for the time to
complete a financial statement. For improvement XXI, collecting data more
frequently, these reductions are respectively 9 % and 7 %.

– Improved efficiency : by avoiding data re-entry, reduction of control activities,
and better deployment of people (mixed specialist teams; case manager) more
work can be done with the same resources, while also maintaining the same
quality level.

However, the simulation model lacks some predictive capability. For
improvement XI (remove the separate tax review) we found an increase in
lead-time of 11 %, while this is not logical. For improvement IX (combine tasks
within the planning and preparation phase) an increase of 30–40 % (20 days)
was found. Therefore, the simulation model is falsified regarding the effects
of elimination (or combination) of tasks; apparently this changes the struc-
ture of the simulation model to such an extent that it leads to significantly
different results.

In addition, there are a number of XBRL-related benefits that could not be
quantitatively studied or simulated, but they could be qualitatively confirmed
by the expert panel.

– Improved data quality : as data is not re-entered any more, and data definitions
have been standardized, data quality is improved, which is itself a driver for
other process benefits (less corrections; less customer contacts).

– Improved assurance: due to an increase of the data quality, the assurance level
of the services might be improved too, although this depends on the business
model. This is crucial in the domain (Observation 1)

– Customer satisfaction: although this is not easy to measure, experts expect
that customer satisfaction will increase due to the overall higher quality of
services (faster response times; less effort; less corrections). They thought that
on the short term the use of XBRL could create an important competitive
advantage.

– Agility : XBRL standardization enables reuse of data and aids configurability
of systems. This makes it easier to create new business processes and adapt
existing processes to new regulations.

– Maintainability : in the long run, the reduced complexity of the application
landscape will make the software cheaper and easier to maintain.

In the expert validation session, we asked participants to cluster sets of related
process improvements, resulting in four relatively independent categories that are
meaningful for both experts and users. In the following description, the tasks
refer to Fig. 2; individual numbers refer to the principles of Reijers and Mansar
in Table 1.

– Category 1. Rely on the customer (task 0 and 1): improve data quality of
the dossiers being provided by the client, by using XBRL-based software and

302 M. Kloos et al.

improved software interoperability (7b), and by making the client responsible
for the quality of the bookkeeping, possibly by price incentives (1).

– Category 2. Merge the FR and TR process (task 4 and 5, 6, 7), as much as
possible, using the opportunities of XBRL standardization and SBR harmo-
nization (2b,c). This leads to less dependencies, better utilization of resources,
more parallel execution and less specialists to wait for (3a)(5ab).

– Category 3. Remove quality controls (2a), especially for smaller clients, by
giving assistant accountants more responsibility (5b) and by building rec-
onciliation checks into the software (task 3, 4, 6, 7a). XBRL makes these
automated controls easier to set up and maintain.

– Category 4. Simplify the application landscape. Use only a few multi-purpose
software applications instead of many traditional single-purpose applications,
in order to reduce the complexity of the application landscape (Fig. 3) and
avoid re-keying of crucial data (7b).

These alterations will have a large impact. Category 1 and 2 affect the way the
accounting firm makes money from its services. Category 1 could involve a reduc-
tion in fees for customers with a reliable bookkeeping. Category 2 means that
compilation services and tax advice are no longer offered as separate services.
Likely the efficiency gains will be relatively more visible in a business model
based on subscription, where the customer pays a fixed fee, than in the current
business model based on billable hours. After all, efficiency gains reduce the
number of billable hours. However, there was consensus among the experts that
customers of accountancy firms are increasingly critical and demand more value
for money, partly due to the credit crisis. They are no longer willing to pay for
re-keying the information they provide electronically. Future research can look
into the effect of business models on process improvements.

7 Related Research and Research Limitations

Alles et al. [1] provide an overview of research about XBRL adoption. They note
that till now, most XBRL research has been technology-driven, and that proper
empirical validation has been lacking. In particular, they call for a better analysis
of the nature and benefits of XBRL adoption, and for field-based studies.

Concerning principles for process improvement, there has been a lot of
research. Increasingly this also extends to the domain of administrative services
[7,27], of which accounting services are only a part. Accounting is somewhat
special in the sense that it concerns a highly regulated domain. Therefore, tradi-
tionally accountants have focused on compliance and information quality, rather
than operational efficiency. In further research, it would be interesting to com-
pare our findings with process improvements for other legal professions, such as
notaries and lawyers. Note however that the mortgage industry, which is also
about financial services, did in fact make a huge transition as the result of the
adoption of inter-organizational systems and standards [23].

Not all simulation experiments were successful. Some adjustments concerning
the elimination or combination of tasks show counter intuitive results. Moreover,

XBRL-Driven Business Process Improvement 303

the research is limited in scope. We studied a single case, which concerns a
medium sized accounting firm and two internal processes targeting SMEs, so we
can only draw limited conclusions. In particular, in future research we would like
to look at larger accounting firms and we would like to investigate the auditing
processes themselves, to find more empirical evidence of internal benefits of
XBRL related to assurance, beyond interoperability and reporting functionality.

8 Conclusions

XBRL is a representation standard for information exchange, which is hailed for
bringing many benefits. Yet there is little empirical evidence that XBRL creates
these benefits and how they can be accomplished. In this paper we analysed
the possibilities and implications of XBRL for improving the internal business
processes of an accounting firm by simulating the effects of improvements. The
XBRL-based improvements can be clustered into four main improvement cate-
gories: 1. Rely on the customer, 2. Merging the financial reporting and the tax
reporting streams of the process, made possible by the semantic harmonisation
of the financial and fiscal concepts, 3. Reducing unnecessary controls, and 4. Sim-
plifying the complex application landscape. The benefit originates mostly from
not having to re-enter information and from the standardization effects. XBRL
shows precisely which data fields are mapped onto each other. This results in
higher data quality, integrated processes, and efficiency. A decrease in lead-time
was directly observable in the simulation studies.

In addition, benefits mentioned by the experts include improved data qual-
ity, improved assurance, increased customer satisfaction, increased agility and
maintainability. The standardization of information exchange is a necessarily
pre-condition for obtaining many of these advantages. The XBRL standard itself
creates technological interoperability; this will facilitate a simplified application
landscape. The data standardization of the SBR program creates semantic inter-
operability: shared meanings of financial concepts. The latter facilitates advan-
tages like reduction of the number of manual controls and faster lead-time. An
example is the harmonization of the fiscal and accounting concepts of income.
Therefore, teams can be merged and resources are better allocated as there no
need to wait for either fiscal or accounting specialists.

In this case study a built-in strategy towards XBRL adoption was followed,
resulting in the before mentioned benefits. A more radical approach is the embed-
ded strategy, which might result in more long-term benefits related to standard-
ization and improved data quality. However, because the embedded strategy
would require a redesign of the core of financial packages, with clear implica-
tions for the reliability of financial reporting, this approach is much more risky.
We recommend more research in the different XBRL adoption strategies and
the benefits that can be accomplished. In a sense, the XBRL standard with the
taxonomies, their users and the various governance structures, can best be seen
as a kind of information infrastructure, compare [29]. An infrastructure enables
all kinds of improvement, but it requires users to apply it. Such an infrastruc-
ture may also provide opportunities for offering new services. Therefore more

304 M. Kloos et al.

research is needed to test new business models for the accounting domain, based
on improved interoperability and standardization, rather than billable hours.

References

1. Alles, M., Debreceny, R.: The evolution and future of XBRL research. Int. J.
Account. Inf. Syst. 13(2), 83–90 (2012)

2. Antony, J., Antony, F., Kumar, M., Cho, B.: Six sigma in service organisations:
benefits, challenges and difficulties, common myths, empirical observations and
success factors. Int. J. Qual. Reliab. Manag. 24, 294–311 (2007)

3. Attaran, M.: Exploring the relationship between information technology and busi-
ness process re-engineering. Inf. Manag. 41, 585–596 (2004)

4. Baldwin, A., Brown, C., Trinkle, B.: XBRL: an impacts framework and research
challenge. J. Emerg. Technol. Acc. 3, 97–116 (2006)

5. Bharosa, N., Janssen, M., van Wijk, R., de Winne, N., van der Voort, H., Hul-
stijn, J., Tan, Y.H.: Tapping into existing information flows: the transformation to
compliance by design in business-to-government information exchange. Gov. Inf.
Q. 30(1), S9–S18 (2013)

6. Blasini, J., Leist, S.: Success factors in process performance management. Bus.
Process Manag. J. 19(3), 477–495 (2013)

7. Bonaccorsi, A., Carmignani, G., Zammori, F.: Service value stream management
(SVSM): developing lean thinking in the service industry. J. Serv. Sci. Manag.
4(4), 428–429 (2011)

8. Burnett, R.D., Friedman, M., Murthy, U.: Financial reports: Why you need XBRL.
J. Corp. Account. Finance 17(5), 33–40 (2006)

9. Debreceny, R., Felden, C., Ochocki, B., Piechocki, M.: XBRL for Interactive Data:
Engineering the Information Value Chain. Springer, Berlin (2009)

10. Dettmer, H.: Goldratts Theory of Constraints: A Systems Approach to Continuous
Improvement. ASQC Quality Press, Milwaukee (1997)

11. Doyle, J., Ge, W., McVay, S.: Determinants of weaknesses in internal control over
financial reporting. J. Account. Econ. 44, 193–223 (2007)

12. Fahy, M., Feller, J., Finnegan, P., Murphy, C.: Co-operatively re-engineering a
financial services information supply chain: a case study. Can. J. Adm. Sci. 26(2),
125–135 (2009)

13. Garbellotto, G.: XBRL implementation strategies: the bold-on approach, the built-
in approach, the deeply embedded approach. Strateg. Finance 90(11) (2009)

14. Garbellotto, G.: XBRL implementation strategies: the bold-on approach, the built-
in approach, the deeply embedded approach. Strateg. Finance 91(2), 56–57 (2009)

15. Garbellotto, G.: XBRL implementation strategies: the bold-on approach, the built-
in approach, the deeply embedded approach. Strateg. Finance 91(5), 56–61 (2009)

16. Geijtenbeek, W., Lucassen, H.: Dutch approach to SBR assurance. In: Cohen, E.
(ed.) Proceedings of the 25th XBRL International Conference, Yokohama, Japan,
p. ASSR1. XBRL International (2012)

17. Grey, G.: XBRL: potential opportunities and issues for internal auditors. Technical
report, The Institute of Internal Auditors Research Foundations (IIARF) (2005)

18. Hammer, M.: Reengineering work: Dont automate, obliterate. Harv. Bus. Rev.
68(4), 104–112 (1990)

19. Kloos, M.: Business process management in an accounting firm. Msc, Delft Uni-
versity of Technology (2012)

XBRL-Driven Business Process Improvement 305

20. Knechel, W., Salterio, S., Ballou, B.: Auditing: Assurance and Risk, 3rd edn. Thom-
son Learning, Cincinatti (2007)

21. Levitt, T.: Marketing intangible products and product intangibles. Harvard Bus.
Rev. 59(3), 94–102 (1981)

22. Loebbecke, C.: Electronic trading in on-line delivered content. In: Proceedings of
the 32nd Hawaii International Conference on Systems Sciences, vol. 5, pp. 5009-
(1999)

23. Markus, M.L., Steinfield, C.W., Wigand, R.T., Minton, G.: Industry-wide is stan-
dardization as collective action: the case of the us residential mortgage industry.
MIS Q. 30(1), 439–465 (2006)

24. Mintzberg, H.: Structure in Fives: Designing Effective Organizations. Prentice Hall
Business Publishing, New Jersey (1983)

25. Müller-Wickop, N., Schultz, M., Nüttgens, M.: XBRL: impacts, issues and future
research directions. In: Rabhi, F.A., Gomber, P. (eds.) FinanceCom 2012. LNBIP,
vol. 135, pp. 112–130. Springer, Heidelberg (2013)

26. Orr, K.: Data quality and systems theory. Commun. ACM 41(2), 66–71 (1988)
27. Reijers, H., Mansar, S.L.: Best practices in business process redesign: an overview

and qualitative evaluation of successful redesign heuristics. Omega: Int. J. Manag.
Sci. 33(4), 283–306 (2005)

28. Roohani, S., Xianming, Z., Capozzoli, E.A., Lamberton, B.: Analysis of XBRL
literature: a decade of progress and puzzle. Int. J. Digit. Account. Res. 10, 131–
147 (2010)

29. Steinfield, C., Markus, M.L., Wigand, R.T.: Through a glass clearly: standards,
architecture, and process transparency in global supply chains. J. Manag. Inf.
Syst. 28(2), 75–107 (2011)

30. Tyagi, R.K.: Measurement in service businesses: challenges and future directions.
In: Demirkan, H., Spohrer, J.C., Krishna, V. (eds.) Service Systems Implemen-
tation. Service Science: Research and Innovations in the Service Economy, pp.
237–251. Springer, Heidelberg (2011)

The Role of Linked Data
and Semantic-Technologies

for Sustainability Idea Management

Alain Perez1(B), Felix Larrinaga1, and Edward Curry2

1 Mondragon Unibertsitatea, Arrasate-Mondragon, Gipuzkoa, Spain
{aperez,flarrinaga}@mondragon.edu

2 Digital Enterprise Research Institute, National University of Ireland,
Galway, Ireland

ed.curry@deri.org

Abstract. Idea Management Systems (IMS) manage the innovation
life-cycle from the moment of invention until ideas are implemented in
the market. During the life-cycle the IMS supports collaboration, allows
idea enrichment with comments, contextual data, or connected to other
relevant ideas. Semantic technologies can improve the knowledge man-
agement capabilities of IMSs allowing relevant information to be easily
linked to ideas.

Many Enterprises concerned with sustainability encourage employee’s
participation as a means to boost creative innovation within their Sus-
tainability Initiatives. However little work has examined the role of an
IMS within Sustainability. In this paper we analyse the impact of a
semantic-enabled IMS within a sustainability innovation process. In par-
ticular, how ideas can be enriched with contextual Linked Open Data
(LOD), especially Life-Cycle Assessment (LCA) data, to improve the
understanding, implication and value of the idea from the sustainability
perspective.

Keywords: Idea management systems · Semantic web · Linked data ·
Sustainability · Life-cycle assessment

1 Introduction

Sustainability is the responsible management of resources encompassing the
triple bottom line of environmental, economic, and social dimensions. Many
organisations are starting to make serious commitments towards incorporat-
ing sustainability into their own organizational logics [1] to maximise profits in
an environmentally and socially responsible manner. Sustainability is not only
about Corporate Social Responsibility, Sustainability is an important business
issue, affecting new products and services, compliance, cost reduction opportu-
nities, the organization’s reputation, and revenue generation often derived from
technological innovation [2]. Porter recognises the role sustainability can play as

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 306–312, 2014.
DOI: 10.1007/978-3-319-05032-4 22, c© Springer International Publishing Switzerland 2014

The Role of Linked Data and Semantic-Technologies 307

part of an organization’s Competitive Strategy with the concept of “innovation
offsets” where companies can “not only lower the net costs of meeting environ-
mental regulations, but can lead to absolute advantages” over competitors [3].

Sustainability requires information on the use, flows and destinies of energy,
water, and materials including waste, along with monetary information on
environment-related costs, earnings, and savings. This type of information is
critical if we are to understand the causal relationships between the various
actions that can be taken, and their impact on sustainable performance.

Innovation is key to articulate knowledge management by means of effective
processes and methodologies. The phase of the innovation process where idea
management is developed is one of the most critical stages [4]. IMSs support
this stage providing the necessary tools to collect, enrich, store, present and
select ideas. IMS manage ideas through their life-cycle from the time of creation
until they are selected for implementation. During this life-cycle it is crucial
to gather as much relevant information as possible in order to collect quality-
relevant ideas. Users can enrich ideas with opinions, other ideas and additional
content. This task can be cumbersome and its automation is fundamental.

This paper aims to define how sustainability in enterprises can benefit from
IMS. The hypothesis is that more precise relations among ideas and richer
content can be automatically achieved if Semantic Web and Linked Data
technologies are employed in IMS, linking sustainability ideas with data from
different data sources. Managing innovation for sustainability needs to address
some major challenges; the emergence of radical new technologies and markets,
constant shift in the regulatory conditions, the involvement or participation of
many agents, the large volume of ideas for screening and evaluation, and in
particular the need to acquire, assimilate and exploit new knowledge [5].

An increasing number of organizations worldwide have adopted innovation
contests not only for innovation purposes, but also for other reasons such as
promoting sustainability [6]. A proof to this can be seen in the annual reports and
sites of several energy providers and enterprises. In some of these experiences IMS
have proven beneficial. IMS provide the workflow tools necessary to launch and
manage innovation contest or waves, a common platform where different agents
can collaborate, a repository where ideas are gathered and tools for editing,
commenting or voting upon ideas. IMSs also encourage collaboration among
people and enterprises.

One of the biggest problems in IMS is the difficulty of enriching these ideas.
It is a manual and time consuming task that includes the searching and gather-
ing of additional knowledge in different sources. Most of the time ideas are not
linked with other data the enterprises may have in their systems or data available
outside the company [7]. This causes disinformation and generates duplicates or
poor quality ideas. A system that links generated ideas to stored data auto-
matically may be an improvement. Semantic Web and Linked Data technologies
propose a set of good practices to publish and link structured data in the Web.

308 A. Perez et al.

Fig. 1. IMS architecture

Many datasets and repositories are already available adopting this philosophy
enabling machines in the ‘understanding’ of the data they store.

2 The Role of Knowledge Management and Idea
Management in Sustainability

2.1 Reference Architecture

IMS are software platforms or applications that provide repositories and tools
to gather, search for, edit, comment, and vote upon ideas. They accommodate
different idea contests or campaigns and stakeholders; idea operators, experts,
decision makers and administrators. Dependencies between ideas from different
campaigns must be addressed. Figure 1 shows a standard IMS architecture.

IMS must provide workflows to manage the interactions between the differ-
ent innovation process stages: Idea generation, analysis, enrichment, selection,
development and implementation.

2.2 Linked Data and Linked Open Data (LOD)

Emerging from research into the Semantic Web, Linked Data proposes an app-
roach for information interoperability based on creation of a global information
space. Linked data leverages the existing open protocols and standards of the
World Wide Web architecture for sharing structured data on the web. Linked
data technology uses web standards in conjunction with four basic principles for
exposing, sharing and connecting data. These principles are:

1. Use URIs as names for things.
2. Use HTTP URIs so that people can look up those names.
3. When someone looks up a URI, provide useful information using the

standards.
4. Including links to other URIs so that people can discover more things.

The Role of Linked Data and Semantic-Technologies 309

Linked Data is facilitating the publishing of large amounts of structured
data on the web. The resulting Web of Data can be considered as a web scale
data space supported by Semantic Web technologies. The Linked Open Data
represents a large number of interlinked datasets that are being actively used by
industry, government and scientific communities.

2.3 Sustainability IMS and Semantic Web/Linked Data

A common problem with IMS is idea assessment due to data overflow, noisy
data, bursty nature of idea contests and difficult in rating innovation [8]. This
translates into difficulties such as the detection of similar or duplicated ideas.
Several studies propose the application of Semantic Web technologies on the
innovation process and more specifically for IMSs to overcome these issues [9,10].
The GI2MO ontology, for instance, is a project that tries to improve current Idea
Management Systems by offering an ontology that models the innovation process.
The ontology lays foundations for knowledge management based on interlinking
of enterprise systems and web assets to increase information awareness and help
in innovation assessment [11]. Although GI2MO ontology provides coverage for
most of the properties included in IMS, it lacks of explicitly capturing the con-
textual knowledge for the idea.

To boost interoperability among heterogeneous systems, some IMS platforms
present ideas in RDF format and work as SPARQL endpoints so third parties
can place idea or innovation process related queries [12]. In the reference archi-
tecture Sustainability datasets will be interlinked to IMS as external knowledge
to enhance IMS content.

3 Examples of Ontologies for Use Cases

This section describes 3 different sustainability use cases that can benefit from
the linking of ideas with external information. The first use case aims to enrich
ideas for energy reduction. The second one addresses products life cycle and how
data can be linked. The last use case shows how similar ideas can be identified
helping administrators management tasks.

Energy Reduction: Imagine a user involved in an idea contest oriented to
sustainability that proposes a new idea (graphically on Fig. 2): I would change
the incandescent bulb in desk #333 for a LED bulb in order to save energy.

The system could identify the concepts incandescent bulb in desktop
#333 and LED bulb find on the data space (external to the IMS) information
about the bulb in that desktop and led bulbs and show it in a widget or block
next to the idea. If the system is able to identify the domain of the idea and
annotate it semantically, the idea can be linked to data stored in a data space [13]
(results on grey and blue widgets in Fig. 2) or searched on some data sources [14].
That way, the user would create an idea with automatically added information.
If someone reads the idea will know if it is worth the effort of changing it or not.
The reader could comment on the idea and discuss about it.

310 A. Perez et al.

Life-cycle Assessment: This use case links IMSs with LCA data stored in
a data space. Imagine a user concerned about the Greenhouse Gas emissions
(GHG emissions) discovers that new laptops are going to be bought. He could
write the following idea (graphically in Fig. 2):If we buy 13-Inch MacBook Air
laptops instead of 13-Inch MacBook Pro, we can reduce the amount of GHG
emissions in the manufacture of our devices.

If we can identify that the idea talks about 2 different laptops and their GHG
emissions, we could link the idea with that data and show the amount of GHG
emissions each laptop has and the savings of the idea.

In order to link the data we have to annotate it semantically, for example
using The Resource Description Framework (RDF). In RDF, the statement LCA
Idea mentions MacBook Air is expressed in triple format as:

(Subject - LCA Idea) ⇒ (Predicate - mentions)⇒(Object - MacBook Air)

Using this semantic annotations some links can be found between different
data in the system. That data can be found in the IMS or in some internal and
external data spaces. Below, on Fig. 3, a graphical representation of those links
can be seen.

Taking the LCA use case as an example, we can see the different links the
data have (Fig. 3). Using these links we can extract some data and see what is
the actual impact of the idea. For example, we can see how much greenhouse gas
each mentioned laptop emits to the atmosphere on their manufacturing process.

Fig. 2. Energy reduction and LCA ideas (automatically added data widgets)

Fig. 3. Data links example

The Role of Linked Data and Semantic-Technologies 311

Similar Ideas Recognition: We can imagine an enterprise that has an innova-
tion process for new idea gathering. Sometimes ideas can be repeated in the same
or past waves. Having a system that identifies similarities can help innovation
administrators in identifying relations or knowing the reason of rejection.

For instance in a previous wave the idea of changing an incandescent bulb
for a led one was rejected because the led bulb was too expensive. If someone
generates a similar idea it can be linked to the previous one, and see the reasons
for the previous rejection. If now the led bulbs are cheaper, that idea may be
interesting.

In order to perform that task the identification of main concepts of the idea
is needed. If the system can find similarities in those main concepts, the ideas
should be linked. The idea with mentioned concepts can be compared with the
other ones and similar ideas can be identified and presented to the users.

4 Potential Benefits

Firstly, IMS ideas would be enriched automatically with relevant data provided
by LOD/SW repositories. Sustainability impact will be included among that
content. This could help users and administrators to see how important an idea
could be. Secondly, the tools should help users in order to understand the context
of the ideas. With additional data and related information users could under-
stand some issues that the idea itself does not explain explicitly. And finally, the
tools are expected to help administrator to perform their task faster and in an
easier way. On one hand showing them the relations of the ideas can help them
identifying in what are the users concerned and see if there are repeated ideas.
On the other hand, measuring their possible impact could help them recognizing
the most important ideas and select the best ones, helping even more if there is
a big amount of data.

5 Summary and Future Challenges

The main innovation strives in the application of semantic web and LOD tech-
nologies to interlink Sustainability repositories with IMS in such a way that
ideas are enriched with relevant content. SW technologies are also proposed in
the detection of similar ideas. Some use cases have been defined describing the
advantages semantic annotations and linked data might bring. Moreover, some
possible benefits for users and system administrators have been outlined. Link-
ing ideas with related data can be a powerful approach, but it can be a difficult
task for the user. A future challenge can be identifying the data automatically
in order to help users linking the idea. The system could make some recommen-
dations based on what the user has written. Identifying the domain of the idea
can be helpful too if additional information is wanted to be added. Knowing the
domain of the idea can help recognizing specific data sources where more data
can be found and linked. Finally, some case studies should be implemented in
order to obtain results that validate the hypothesis of this paper.

312 A. Perez et al.

References

1. Curry, E., Guyon, B., Sheridan, C., Donnellan, B.: Developing a sustainable IT
capability: lessons from Intel’s journey. MIS Q. Executive 11(2), 61–74 (2012)

2. Watson, R.T., Lind, M., Haraldson, S.: The Emergence of sustainability as the new
dominant logic: implications for information systems. In: International Conference
on Information Systems, ICIS 2012 (2012)

3. Porter, M.E., Linde, C.V.D.: Toward a new conception of the environment-
competitiveness relationship. J. Econ. Perspect. (JSTOR) 9(4), 97–118 (1995)

4. Errasti, N., Santos, I., Lizarralde, O.: Social Software in Support of Collaborative
Innovation. In: Erima (2010)

5. Seebode, D., Jeanrenaud, S., Bessant, J.: Managing innovation for sustainability.
R&D Manag. 42(3), 195–206 (2012)

6. Adamczyk, S., Bullinger, A.C., Mslein, K.M.: Innovation contests: a review, clas-
sification and outlook. Creativity Innov. Manag. 21(4), 335–360 (2012)

7. Curry, E., Hasan, S., ul Hassan, U., Herstand, M., O’Riain, S.: An entity-centric
approach to green information systems. In: Proceedings of the 19th European Con-
ference on Information Systems (ECIS 2011) Helsinki (2011)

8. Westerski, A.: Semantic technologies in idea management systems: a model for
interoperability, linking and filtering. Ph.D. thesis (2013)

9. Riedl, C., May, N., Finzen, J., Stathel, S., Kaufman, V., Krcmar, H.: An idea
ontology for innovation management. Int. J. Seman. Web Inform. Syst. 5(4), 1–18
(2009)

10. Lorenzo, L., Lizarralde, O., Santos, I., Passant, A.: Structuring e-brainstorming to
better support innovation processes (2011)

11. Westerski, A., Iglesias, C.A., Rico, F.T.: A model for integration and interlinking
of idea management systems. In: 4th International Conference on Metadata and
Semantic Research, MTSR 2010, 20–22 October 2010, pp. 183. Springer, Alcala de
Henares, Spain (2010)

12. Perez, A., Larrinaga, F., Lizarralde, O., Santos, I.: INNOWEB: gathering the con-
text information of innovation processes with a collaborative social network plat-
form. In: International Conference on Concurrent Enterprising (ICE) (2013)

13. Curry, E., Hasan, S., O’Riain, S.: Enterprise energy management using a linked
dataspace for energy intelligence. In: The Second IFIP Conference on Sustainable
Internet and ICT for Sustainability (SustainIT 2012). IEEE, Pisa,Italy (2012)

14. Curry, E., O’Donnell, J., Corry, E., Hasan, S., Keane, M., O’Riain, S.: Linking
building data in the cloud: integrating cross-domain building data using linked
data. Adv. Eng. Inform. 27(2), 206–219 (2013)

Stochastic Modelling of Seasonal Migration
Using Rewriting Systems with Spatiality

Suryana Setiawan1,2(B) and Antonio Cerone2(B)

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
setiawan@di.unipi.it

2 UNU-IIST — International Institute for Software Technology, United Nations
University, Macau SAR, China

ceroneantonio@gmail.com, setiawan@iist.unu.edu

Abstract. Seasonal migration is the long-distance movement of a large
number of animals belonging to one or more species that occurs on a
seasonal basis. It is an important phenomenon that often has a major
impact on one or more ecosystem(s). It is not fully understood how
this population dynamics phenomenon emerges from the behaviours and
interactions of a large number of animals. We propose an approach to
the modelling of seasonal migration in which dynamics is stochastically
modelled using rewriting systems, and spatiality is approximated by a
grid of cells. We apply our approach to the migration of a wildebeest
species in the Serengeti National Park, Tanzania. Our model relies on
the observations that wildebeest migration is driven by the search for
grazing areas and water resources, and animals tend to follow move-
ments of other animals. Moreover, we assume the existence of dynamic
guiding paths. These paths could either be representations of the individ-
ual or communal memory of wildebeests, or physical tracks marking the
land. Movement is modelled by rewritings between adjacent cells, driven
by the conditions in the origin and destination cells. As conditions we
consider number of animals, grass availability, and dynamic paths. Paths
are initialised with the patterns of movements observed in reality, but
dynamically change depending on variation of movement caused by other
conditions. This methodology has been implemented in a simulator that
visualises grass availability as well as population movement.

1 Introduction

Computer scientists have taken inspiration from natural processes to build new
computing paradigms/formalisms. Their motivation is either for solving general
computing problems or helping natural scientists in modelling and analysing
natural phenomena [1,3,10,13,15,17–19,21,22]. In our work a formalism is being
developed, the Grid Systems [2]. It is intended for modelling the dynamics of
populations and their interactions with ecosystems. This formalism has taken
inspiration from several existing formalisms, especially Cellular Automata [1]
and Membrane P Systems [4–6,16,18].

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 313–328, 2014.
DOI: 10.1007/978-3-319-05032-4 23, c© Springer International Publishing Switzerland 2014

314 S. Setiawan and A. Cerone

In our previous work [2] the syntax and the semantics of the Gird Systems
is elaborated and our approach for modelling the population growth of Aedes
albopictus sp using the formalism is presented. In the model population dynamics
were affected by external events: temperature fluctuation and rainfall. Behaviour
was also modelled to vary spatially. The model was analysed by using a simulator
that was developed based on the semantics of the Grid Systems and results were
compared to real data.

In this paper a new feature for expressing the dynamic movement of the popu-
lation around its habitat is introduced. This feature is expected to enable further
analysis of the movement patterns, resulting from the changes in the ecosystem.
To examine this feature the migration of wildebeests in Serengeti National Park,
Tanzania, was used as our case study. The migration is massive since it involves
about 1.2 million wildebeests together with hundreds of thousands of zebras,
gazelles, impalas, and other herbivores. The route typically ranges about 1400
km from Ngorongoro crater in the south to Grumeti reserve in the west, then
to Masai Mara reserve in the north and finally back to Ngorongoro, covering an
area over 30,000 km2. The main variables affecting the movement of the wilde-
beest are grass availability and the dynamic pathways that are formed by geo-
graphical boundaries (rivers and hills) and the communal memorisation of the
route.

In the following sections the Grid Systems, and links, the new feature, will
be discussed. They will be followed by the case study, its model, its simulation
results and a short discussion of the results.

2 Grid Systems

Grid Systems are a formalism for modelling the dynamics of ecosystems [2]. They
consist of biotic and abiotic components defined as the objects of the system.

2.1 Reaction Rules

The behaviour of the system is defined by reaction rules that rewrite a given
multiset of objects into a new multiset of objects. In reaction rule

α ∪ β

multiset α represents the objects that are consumed, called reactants, and mul-
tiset β represents the objects that are produced, called products. Some objects,
called promoters, may be required for the reaction to occur although they are
not consumed when the reaction occurs; other objects, called inhibitors, may
instead inhibit the reaction.

Reaction rule includes promoters ψ and inhibitors χ:

α ∪ β [ψ | χ]

Stochastic Modelling of Seasonal Migration 315

2.1.1 Reaction Rate and Duration
The frequency with which a reaction occurs is specified by a rate c as follows.

α
c−∪ β [ψ | χ].

In this case the duration of the reaction is implicitly given by 1/c. This sup-
ports the high-level modelling of natural processes whose duration is inversely
proportional to the frequency of their termination. For example, at population
level life expectancy is inversely proportional to natural death rate.

When modelling at lower-level, for instance at individual level, there may be
short duration processes that overlap longer duration processes and cause their
early termination. For example, death due to predation concludes a very fast
predation process that causes the early termination of the life of an individual. In
this case the duration of the predation process is independent of its frequency. It
is therefore necessary to explicitly specify duration d of such processes as follows.

α
c−∪
d

β [ψ | χ].

2.1.2 Object States
Once a reaction starts, reactants can no longer be used by any other reactions but
can still act as promoters or inhibitors of other reactions. Therefore, a reactant
cannot be removed until the reaction is completed; instead it changes its state
from “available” to “committed” when the reaction starts.

2.2 Principles in Conducting the Reactions

The Grid System evolves through reactions. During the reactions the system
obeys three principles that are also typical in nature: parallelism, stochasticity
and spatiality.

2.2.1 Maximal Parallelism
Reactions must be applied immediately and maximally whenever the required
reactants are available and the conditions related to the promoters and the
inhibitors are satisfied. Reactions must also be performed in a parallel (simulta-
neous) manner.

2.2.2 Stochasticity
In Grid Systems distinct rules may require the same reactants at the same time.
This non-determinism is resolved stochastically based on the propensity of each
rule using Gillespie’s SSA [9].

Stochasticity is also manifested by varying the duration of the reactions.
The duration is exponentially distributed with mean 1/c when duration d is not
specified. Otherwise, the duration is exponentially distributed with mean d. To

316 S. Setiawan and A. Cerone

specify a rule having this stochastic property, mark M is placed after c for the
former case,

α
c,M−−∪ β [ψ | χ]

or after d for the later case, as written as

α
c−−−∪

d,M
β [ψ | χ]

2.2.3 Spatiality
Grid Systems also consider the spatial dynamics of the objects that are distrib-
uted in the space. For instance, their behaviours (rules or parameters) might vary
in different locations. A Grid system divides the space discretely into cells. Each
cell is “associated” with a set of rules. Also, they define those rules which can
only take the objects in the cell as the reactants. However, the objects from some
other cells could be referenced as promoters or inhibitors in a reaction in that
cell and the products can be placed in other cells. This referencing to other cells
can be defined by any of two methods: relative addressing or absolute address-
ing. Relative addressing specifies the referenced cell’s address as the column-row
distance from the cell which the rule is associated with. Absolute addressing
specifies the referenced cell’s address as the referenced cell’s actual row-column
numbers. The address of object a in a cell will be expressed as the subscript
to a. To differentiate their notations the absolute ones are placed within squared
brackets “[., .]” as in a[3,4], and relative ones within curved brackets “(., .)”, as
in a(−1,1).

Grid Systems provide a method to address objects located in the “environ-
ment”, by subscripting respective objects with “[E]”, as in a[E]. As to the cells
the rules can be associated with the environment.

2.3 Formal Definition of Grid Systems

Definition 1. A Grid System G(N,M,Σ,R,A,C(0)) is defined as follows:

– G is the grid name;
– N and M are two integers indicating that G has N ×M cells, also called local

membranes;
– Σ is the alphabet of object types;
– R is a set of transition rules;
– A is the set of associations of the rules with the membranes, i.e.

A = {(ρ, γ) | ρ ∅ R, γ ∅ {Gi,j |0 ⊆ i < N, 0 ⊆ j < M} → {GE}};

where
- Gi,j, with 0 ⊆ i < N and 0 ⊆ j < M , denotes the cell in position (i, j);
- GE is the global membrane surrounding the cells;

– C(0) is the initial configuration of the grid.

Stochastic Modelling of Seasonal Migration 317

Definition 2. A transition rule ρ : α
c−∪
d

β [ψ | χ] is defined as follows:

– ρ is the unique identifier of the rule;
– α is a non-empty multiset of reactants;
– β is a multiset of products;
– ψ is a multiset of promoters;
– χ is a multiset of inhibitors;
– c ∅ R

+ is the rate with which the rule may be applied to perform a reaction,
d ∅ R

+ is the duration of the reaction. When d is not specified, the duration
will take 1/c. When either c or d is marked by a ‘M’, it indicates that the
duration time is an exponentially distributed random variable with parameter
1/d (or with parameter c, when d is not specified).

3 Links

Living species have been given by nature the ability to sense and to follow the
pathways for movements. Namely, wood ants can memorize snapshot views and
landmarks [8], salmon fishes can sense geomagnetic fields [14], and sperm cells
can sense chemotaxes to locate the ovum [12]. The pathways are either given
by nature (as for salmon and sperm), created by themselves dynamically (as
by ant), or a combination of both. Therefore, the model of the pathways might
be more complex than just random walks (Brownian motion) as for chemical
particles.

Pardini in his thesis reports the use of Spatial P Systems to imitate the
movement of schooling fishes [16] which is based on the Boid flock model. This
model determines the movement direction of each individual fish by a weighted-
averaging computation from other fishes’ directions inside its viewing space. Such
heavy computations are originally intended for computer graphics animation
rather than for biological simulation [20].

By using the basic definition of the Grid Systems movement may need to be
expressed as a large number of rules. Instead, an extended definition of objects,
termed ‘links’, is introduced which enables the pathways being modelled to
function as pointers.

3.1 Basic Idea

A link is defined as a ‘special object’ that carries pointers, information which
provides the address of a destination cell. The pointers can be used by rules
in referring the objects in another cell. This is a third addressing method in
addition to the relative addressing and the absolute addressing. Being used as
an addressing method, different pointers carried by a link introduce another
form of non-determinism into the system. In order to resolve this further non-
determinism decision will be made stochastically based on the weighing of each
pointer. Weights are real numbers between 0 and 1.0, and the total weights in
the same cell is 1.0. Like objects, the number of links in a cell can be increased
or decreased by applying its related rule.

318 S. Setiawan and A. Cerone

3.2 Formal Definition of Links

3.2.1 Links as Special Objects
Let G be a Grid System whose object set is Σ. Moreover, P is the set of links
and P √ Σ. An object p is a link, if p carries one pointer η or more. The notation
p : η indicates that link p is carrying pointer η. When p carries more than one
pointers in a cell, the pointers are weighted by w1, w2, . . . , wk respectively, with
0 ⊆ wi ⊆ 1.0 and Σwi = 1.0.

3.2.2 Addressing by the Links
Pointer η can be expressed as either (dr, dc) or [r, c]. When p is the link existing
in cell Gr0,c0 , pointer [r1, c1] carried by p points to the cell Gr1,c1 , and pointer
(dr, dc) carried by p points to the cell Gr0+dr,c0+dc. Also, regarding link p in
Gr0,c0 , pointer [r1, c1] equals pointer (dr, dc) if and only if r0 + dr = r1, and,
c0 + dc = c1.

Given that p : η, specifying ap indicates object a in the cell pointed by η. For
instance, if in G5,6 there exists link p : (2,−1) (a link with only one pointer),
a rule containing am

p indicates that the number of a objects is m and they are
located in G7,5.

If link p has pointers η1, η2, . . . , ηk whose weights are w1, w2, . . . , wk respec-
tively with rule r specifies object A subscripted by link p as Ap, then in applying
r, ηi will be chosen randomly weighted by wi.

3.2.3 Rules for Changing the Weights
If in a cell link pn has k distinct pointers labelled η1, η2, . . . , ηk, and weighings
w1, w2, . . . , wk respectively, then,

– adding pm : ηi into that cell changes its overall weighing:
w∼

j = nwj

(n+m) , for ηi ≡= ηj , or

w∼
j = (nwj+m)

(n+m) , for ηi = ηj , or
w∼

i = m
(n+m) , for ηi /∅ {η1, η2, . . . , ηk} and k > 0, or

w∼
i = 1, for k = 0.

– adding pm (without a pointer) into that cell will not affect the weights as they
behave as ordinary objects.

– removing pm : ηi, from that cell, where m ⊆ nwi, changes its overall weighing:
w∼

j = nwj

(n−m) , for ηi ≡= ηj , or

w∼
j = (nwj−m)

(n−m) , for ηi = ηj .
– removing pm (without a pointer) will not affect the weighing, as they behave

as ordinary objects, except in the case of m = n, all pointers will be removed.
– When a rule performs both adding and removing, adding will be done before

removing to maintain the weighing properly.

3.3 Links as Objects in the Rules

Let pn be a link p having quantity n in the cell and r be a rule applied to that
cell. When link p appears in r without a pointer, as in pm, it will be handled as

Stochastic Modelling of Seasonal Migration 319

an ordinary object. On the other hand, when it appears in a rule with a pointer
ηi, as in pm : ηi, it will be handled according to its role in the rule.

– As reactants, the rule can be applied when mwi ⊆ n and the changes will
follow Sect. 3.2.3.

– As promoters, the rule can be applied when mwi ⊆ n.
– As inhibitors, the rule can not be applied when mwi ∈ n.
– As products, the rule will be applied and the number of link p will change

accordingly and the changes will follow Sect. 3.2.3.

4 Experimental Works on Seasonal Migration

Many hypotheses have been proposed to describe the migration phenomenon.
Boone et al. report that at least 16 explanations have been given for the cause or
timing of the migration in Serengeti [7]. Furthermore, they have observed that
the main reason driving the direction of the wildebeest migration is the search for
a grazing rather than following the rainfall. By using evolutionary programming
they approximated a proportion of 75 % to 25 % for the above reasons. By using
dynamic model fitting, Holdo et al. report a different result, namely, an opposing
rainfall and fertility gradient as the main reason for the migration [11]. They go
on to conclude that the rainfall affects the availability of the grass. However,
the conclusions of both studies focussed on grass availability and except in the
latter, rainfall also played an additional role as the external factor affecting grass
availability. The route of migration is likely related by the topographics of the
area as shown in Fig. 1.

4.1 Pathways of Migration

In our work, the migration is modelled as the result of the animals finding a place
for grazing and following existing pathways. The pathways are formed by their
memorisation of the animals’ previous movement and the initial pathways given
from the beginning. The movement to the nearby area to locate grass is simply

(a) Migration pattern (b) Topography of the
land

Fig. 1. Serengeti National Park

320 S. Setiawan and A. Cerone

performed after the quantity of the grass in the current area is reduced by their
consumption. When there is insufficient grass or if there is a strong pathway,
the animals move to follow the pathway. To protect themselves from predators
they tend to group and therefore, they avoid to be alone in a quiet location.
On the other hand, they avoid crowded locations to maximise their chances to
access the grass. On each movement they leave more marks (augmenting the
pathway) which others will follow. Grass root will continue to produce blades
of grass until the quantity reaches the maximum that can be produced in that
area. The strength of a pathway will decay according to a decay factor in each
interval of time due to being destroyed by natural events or being forgotten by
the animals.

4.2 Life Cycle

Ideally, there should be at least three dimensions for their state space in animal
life cycle: age, health, and physical periods. For this experiment, we simplified
them to be one dimension with 10 stages of strength/wellness from A0, A1, . . . ,
A9. In every different stage animals will have its own behaviour parameters:
death rates, feeding rates, birth rates. Pregnancy is limited only on stages A6 to
A9. New born baby will be at A0. They will upgrade to one higher stage except
at stage A9 when they gain food. Reversely, lacking the food will degrade to one
lower stage except at the most left stage. The death rate will be higher to lower
stages and the birth rate will be higher to higher stage. Their feeding rate will
peak in A6 and A7. After giving birth they drop their condition 3 stages.

4.3 Objects

– Wildebeests: The animals of each stage will be represented as objects A0, A1,
. . . , and A9, movable animals, or B0, B1, . . . , and B9, in-digestion animals.
As grass is being consumed, A∞S⇑ will immediately become B∞S⇑, then revert
back to A with higher stage, A∞S + 1⇑, after digestion is complete. This dif-
ferentiation is intended to avoid other rule applicability being affected by the
grass which is already being consumed.

– Grass: Grass will be represented as a root R in a cell and its quantity produced
in a cell as a number of G. To create a delayed effect, that forces the animal to
move, the root will produce H first then becomes G after the delay. Moreover,
R can still continuously produce H.

– Counters: To ease some rules in considering the number of animals in some
cells, object counter C whose number represents the number of animals in the
same cell. One C is created when a birth rule is applied. In the death rule, A
will become Ax first avoiding object C as a reactant followed by the rule that
removes a pair of Ax and C. Moreover, the number of C changes due to the
movement. Such a mechanism is performed by creating Ax in its origin and
creating C in its destination.

– Pathways: A pathway is represented by object path which is a link. It will
decay geometrically of a certain rate as the time passes. Links are refreshed

Stochastic Modelling of Seasonal Migration 321

by the animal movements that create objects path in the cell. The number of
objects path created by the movements varies depending on each movement’s
importance.

– Boundary objects: To limit the movement within an area, in each boundary
cell a dummy object Z will be placed. Each movement rule will consider this
object as the inhibitor in the destination cell.

4.4 Regions

A region is defined as a set of cells identifying an area. Associating a region with
a rule implies associating its cells with the rule. Serengeti and its surrounding
area are defined as a 50×50 grid of cells divided into MovingSpace region and
Boundary region. MovingSpace is the grazing area. It is further divided into
seven regions whose grass characteristics are different: Ngoro2, West, Center,
East, Mara, Northwest, and Centerwest. They are characterized by the grass
growth duration and the maximum grass quantity that can be produced by the
land. Initloc is the region where the animals are initially placed. The regions
are shown in Fig. 2.

Initloc

MovingSpace

Boundary

(a) Boundary and MovingSpace are
complementary; Initloc is a subset of
Movingspace where wildebeests were
initially located in the simulation.

Mara
NorthWest

CenterWest

West

Center

East
Ngoro2

(b) The regions are defined as the
subsets of MovingSpace whose differ-
ent chararteristics of their vegetation
(grass).

Fig. 2. Regions defined over the cells.

4.5 Reaction Rules

Firstly the rules were written and their parameters and initial objects were
just roughly given. After running several combinations some adjustments were
made. Insignificant rules were removed, whereas the ones representing important
behaviours were modified by increasing their rates or lengthening/shortening
their durations. Death/birth rates were also adjusted to approximate reasonable
actual death/birth rates. The initial pathways were as little as possible to pre-
vent animals from being trapped at the corners. Grass’ growth parameters were

322 S. Setiawan and A. Cerone

Table 1. Constants table for rules of life cycle

Stages 〈S〉 0 1 2 3 4 5 6 7 8 9

Upstages ug〈S〉 A1 A2 A3 A4 A5 A6 A7 A8 A9 A9
Downstages dg〈S〉 A0 A0 A1 A2 A3 A4 A5 A6 A7 A8
Birthstages bs〈S〉 - - - - - - A3 A4 A6 A7
Birth rates br〈S〉 - - - - - - 0.0017 0.0033 0.005 0.008
Death rates (nat.) dn〈S〉 0.05 0.035 0.021 0.015 0.011 0.008 0.006 0.004 0.003 0.002
Death rates (prey) dp〈S〉 0.5 0.35 0.21 0.15 0.11 0.07 0.005 0.003 0.03 0.015
Feeding rates fr〈S〉 1 2 4 6 8 10 15 20 16 0.1

Table 2. Constants table for grass growth

Region 〈R〉 Ngorongoro West Center East Mara Northwest Centerwest

Max p. cell mg〈R〉 100 100 30 100 100 100 20

Duration est. gr〈S〉 1 1 15 1 1 1 15

set to assure right direction of migration. Ideally the time frame should be set
up before defining parameters. However, the definition of “one year” was even-
tually justified based on the result instead. Then the migration cycle time length
resulted from the simulation was taken as “one year” and finally the parameters
were re-adjusted based on it. This method was repeatedly worked through many
simulation runs until a reasonable behaviour was produced. The rules and para-
meters shown below illustrate one example that resulted in a stable migration
cycles.

In specifying the rules the following constants are listed in Tables 1 and 2.
Also, the rules refer to the following assignments.
stages = {0, 1, 2, .., 9}, directions = {1, 2, .., 8}, declev = {1, .., 10}, Mnp = 5,
Mng = 5, and {(dr∞x⇑, dc∞x⇑)|x = 1..8} = {(−1,−1), (−1, 0), (−1, 1), (0,−1),
(0, 1), (1,−1), (1, 0), (1, 1)}.

Consuming the grass, A becomes B,

∀∞S⇑ ∅ stages. Feeding∞S⇑ : G A∞S⇑ fr→S∗−−−−∪
1/4,M

B∞S⇑
if Feeding∞S⇑ ∅ assoc(MovingSpace).

Food digesting is needed to create delay after the grass is removed and well-
ness level increases one level except at A9,
∀∞S⇑ ∅ stages. Digesting∞S⇑ : B∞S⇑ 1,M−−∪ ug∞S⇑
if Digesting∞S⇑ ∅ assoc(MovingSpace).

Being unable to feed because of grass shortage, wellness level decreases one
stage except at A0,

∀∞S⇑ ∅ stages. Starving∞S⇑ : A∞S⇑ 1/2,M−−−−∪ dg∞S⇑ [λ | GMng/2]
if Starving∞S⇑ ∅ assoc(MovingSpace)

Stochastic Modelling of Seasonal Migration 323

Time needed to balance the death propensities,
∀∞S⇑ ∅ stages. Resting∞S⇑ : A∞S⇑ 1−−−−∪

1/2,M
A∞S⇑

if Resting∞S⇑ ∅ assoc(MovingSpace).

Giving birth only at stages A6, A7, A8, A9 with different birth rates; after
delivering a baby (at state A0) its wellness level decreases three levels,

∀∞S⇑ ∅ stages. Birth∞S⇑ : A∞S⇑ br→S∗−−−∪
5,M

bs∞S⇑ A0 C

if Birth∞S⇑ ∅ assoc(MovingSpace).

Mortality because of natural factors; more healthy having lower death rate,

∀∞S⇑ ∅ stages. DeathNat∞S⇑ : A∞S⇑ dn→S∗−−−−∪
0.5,M

Ax [CMnp | λ]

if DeathNat∞S⇑ ∅ assoc(MovingSpace).

Mortality because of predators and natural causes due to grazing in a quiet
place; the rate is higher than the normal,

∀∞S⇑ ∅ stages. DeathPred∞S⇑ : A∞S⇑ dp→S∗−−−−∪
0.1,M

Ax [λ | CMnp]

if DeathPred∞S⇑ ∅ assoc(MovingSpace).

Decreasing counter C after being mortality,
DecCount : Ax C

∞−∪ λ
if DecCount ∅ assoc(MovingSpace).

Initial growth of grass; root R produces one unit of grass H until maximum
capacity that the land can produce is reached,
∀∞R⇑ ∅ regions. Grass∞R⇑ : R

1−−−−−∪
gr→R∗,M

R H [λ | Gmg→R∗]

if Grass∞R⇑ ∅ assoc(reg∞R⇑).
Grass growing to be available for future grazing,

GrassReady : H
1−−−∪

25,M
G λ

if GrassReady ∅ assoc(MovingSpace).

Movement along the path unless there is enough grass for grazing,
∀∞S⇑ ∅ stages. MoveByPath∞S⇑:

A∞S⇑ 10,M−−−∪ Ax A∞S⇑path Cpath path10 : path [λ | Zpath G7Mng]
if MoveByPath∞S⇑ ∅ assoc(MovingSpace).

Random movement to a place having a plenty of grass (3, 6, and 9 times
minimum quantity),
∀∞G⇑ ∅ {3, 6, 9},∀∞X⇑ ∅ directions,∀∞S⇑ ∅ stages. MoveToGrass∞G⇑∞X⇑∞S⇑:

A∞S⇑ mr→G∗−−−−∪
1/2,M

Ax A∞S⇑(dr→X∗,dc→X∗) C(dr→X∗,dc→X∗) pathpn→G∗ : (dr∞X⇑, dc∞X⇑)
[G

Mng.→G∗
(dr→X∗,dc→X∗) | GMng Z(dr→X∗,dc→X∗)]

if MoveToGrass∞G⇑∞X⇑∞S⇑ ∅ assoc(MovingSpace), and {mr∞x⇑|x = 3, 6, 9} =
{20, 25, 35}, and {pn∞x⇑|x = 3, 6, 9} = {10, 25, 50}.

324 S. Setiawan and A. Cerone

Table 3. Initial numbers of animals according to their levels

Level A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 Total

Number in a cell 10 10 15 25 30 50 60 75 50 25 350
Number in all cells 80 80 120 200 240 400 480 600 400 200 2800

Movement to a cell with a less dense grouping of animals due to overcrowding,
∀∞X⇑ ∅ directions,∀∞S⇑ ∅ stages. MoveToLessDens∞X⇑∞S⇑:

A∞S⇑ 4−−−−∪
1/2,M

A∞S⇑(dr→X∗,dc→X∗) C(dr→X∗,dc→X∗) Ax path7 : (dr∞X⇑, dc∞X⇑)
[C10Mnp CMnp

(dr→X∗,dc→X∗) | C5Mnp
(dr→X∗,dc→X∗) Z(dr→X∗,dc→X∗) path]

if MoveToLessDens∞X⇑∞S⇑ ∅ assoc(MovingSpace).

Movement to a cell with a more dense grouping of animals due to quietness,
∀∞X⇑ ∅ directions,∀∞S⇑ ∅ stages. MoveToMoreDense∞X⇑∞S⇑:

A∞S⇑ 8−−−−∪
1/2,M

A∞S⇑(dr→X∗,dc→X∗) C(dr→X∗,dc→X∗) Ax path7 : (dr∞X⇑, dc∞X⇑)
[C2Mnp

(dr→X∗,dc→X∗) | CMnp Z(dr→X∗,dc→X∗) C10Mnp
(dr→X∗,dc→X∗) path]

if MoveToMoreDense∞X⇑∞S⇑ ∅ assoc(MovingSpace).

Decaying of 10 % per an interval of time (7 time units),
∀∞P ⇑ ∅ declev. Decay∞P⇑:

path→P ∗ 1−−∪
7,M

path→P ∗−1 [λ | pathip→P ∗]

if Decay∞P ⇑ ∅ assoc(MovingSpace), and {ip∞x⇑|x = 1, .., 10} = {2, .., 9, 10, 0}.

4.6 Initial Configuration

4.6.1 Initial Population Size and Location
A total population of 2800 wildebeests is initially placed evenly in the cells of
Initloc region. They were distributed in proportion to their wellness/strength
stage, is shown in Table 3.

4.6.2 Grass and Grass Root
The numbers were set according to the figures from previous migration. Each
region has a different duration in producing grass available from grazing. Grass
growth is bounded to a maximum quantity per cell which is assumed as being
caused by the different condition of the soil and water in each region. The follow-
ing are the initial quantities of grass G per region: Ngorongoro 50 (50 %), West
40 (40 %), Northwest 20 (20 %), Mara 20 (20 %), East 2 (20 %), Center12
(40 %) and Centerwest 2 (10 %).

4.6.3 Initial Pathways
Initially some pathways were placed in some regions especially at the corners
(West, Mara and East, to avoid being isolated at the corners), at turning

Stochastic Modelling of Seasonal Migration 325

positions (East to the tail of Ngoro2), and in Center (to force them going
downward). Visually the initial pathways are shown in Fig. 4(a).

4.7 Results: Migration Movement

A simulation was run producing several stable cycles of migration. Figure 3 shows
each “month” in the second cycle. In the fourth cycle a small group of animals
was trapped in the tail part of Ngorongoro. They were mislead since the initial
pathways were already overwritten by the new pathways created later. As more
groups were being trapped, the size of the overall population was declined. By
increasing the decay interval from 7 time units to 20 (to sustain the paths) there
were no longer trapped groups until 7 cycles later.

The movement of frontiers were affected by the grass and movement of the
followers were affected by the pathways. As the followers moved forward they
become the next frontiers. Figure 4 shows the pathways in the beginning (t = 0)
and at about the end of second cycle (t = 17).

(a) 13rd month (b) 14th month (c) 15th month (d) 16th month

(e) 17th month (f) 18th month (g) 19th month (h) 20th month

(i) 21st month (j) 22nd month (k) 23th month (l) 24th month

Fig. 3. “Monthly” sequence of migration at the second cycle since being started.

326 S. Setiawan and A. Cerone

(a) t = 0 (b) t = 170

Fig. 4. Initial Pathways (at t = 0) and pathways at t = 17 (about the end of second
cycle).

There are some interesting observations from the experiments by changing
the rule parameters or adding/removing some other rules.

– When there was no initial pathway, animals were blocked by each other at the
corner creating isolated groups. They stayed there until the grass regrew or
they just died. Then, the population size declined faster. since in cells where
isolated groups were located there was no more grass.

– When the initial pathways were given in a small quantity, similar isolations
occurred after those initial pathways decayed. The population size also declined
faster.

– When the grass characteristics were made equal for all regions, the animals
divided into small groups moving without pattern in the area. Later some
groups blocked each others when they met from opposite directions. As a
result the overall population size declined.

– When the rate of rule MoveToPath was made exceeding the rate of rule Move-
ToGrass, migration sped up, the population spread along the migration route
and the average of their wellness dropped, thus increasing death rate.

– When initial grass quantities were made much smaller and the migration had
not been realized, the animals spread over the entire grid and the overall
population size quickly declined.

– When the rate of random movement was set higher the animals were evenly
spread throughout an area and there was no significant migration. Since
the death rate for isolated animal was high the population size immediately
declined.

4.8 Results: Migration Pathways

The pathways created during the migration (at the end of second cycle) are
shown in Fig. 4(b). They can be compared to the initial paths in Fig. 4(a). In
each cell the animals passed through pathways were created in almost every
direction. However, Fig. 4 shows only the pathway whose weight is greater than

Stochastic Modelling of Seasonal Migration 327

0.30. Figure 4(b) shows that most initial paths were still there. After the fourth
cycle most original pathways were overwritten by the new pathways.

5 Discussion

As described previously the model was simplified in some aspects compared to
the real situation. The state space for life-cycle could be more complex than
our ten-stage life cycle. The topology of the area was not fully represented. The
parameters were not based on real-world measurements. The external events
(rainfalls, temperature) and water availability which may affect the animal move-
ments were not included. The resulting migration pattern has not been compared
with actual migration patterns. However, this modelling effort was carried out
with an experimental purpose rather than as a theoretical work of its biological
domain. All parameters and behaviours expressed as the rules need to be further
validated by the biologists. The main motivation of working on this case was to
explore a new feature of the Grid Systems. As seen in the case its modelling
required only expressing the behaviours in terms of rules and parameters. A
working prototype simulator has been developed and used in our work. It was
developed based on the semantics of the Grid Systems.

6 Conclusion and Future Work

A new feature of the Grid Systems is introduced. The new feature is the ‘link’
which is a special object that can carry pointers. The pointers carried by the
links enable modelling the pathways for population movement in a more dynamic
way. To illustrate the use of links a case was modelled and the model run using a
simulator. The case study refers to a wildebeest population in Serengeti National
Park, which performs seasonal migrations around the park area. The simulation
of the model imitated the migration.

In our future work we aim at using real data for the same case or for others
having similar problem characteristics.

Acknowledgments. This work has been supported by Macao Science and Technology
Development Fund, File No. 07/2009/A3, in the context of the EAE project. Suryana
Setiawan is supported by a PhD scholarship under I-MHERE Project of the Faculty of
Computer Science, University of Indonesia (IBRD Loan No. 4789-IND & IDA Credit
No. 4077-IND, Ministry of Education and Culture, Republic of Indonesia).

References

1. Adamatzky, A.: Identification of Cellular Automata. Taylor and Francis, London
(1994)

2. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Cerone, A., Setiawan, S.: Mod-
elling population dynamics using grid systems. In: MoKMaSD 2012. LNCS, vol.
7991, pp. 172–189. Springer, Heidelberg (2014)

328 S. Setiawan and A. Cerone

3. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G., Rama, A.: A process
calculus for molecular interaction maps. In: Membrane Computing and Biologically
Inspired Process Calculi (MeCBIC), pp. 35–49 (2009)

4. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: Compositional semantics
and behavioral equivalences for p systems. Theor. Comput. Sci. 395(1), 77–100
(2008)

5. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: A p systems flat form
preserving step-by-step behaviour. Fundam. Inform. 87(1), 1–34 (2008)

6. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: An overview on oper-
ational semantics in membrane computing. Int. J. Found. Comput. Sci. 22(1),
119–131 (2011)

7. Boone, R.B., Thirgood, S.J., Hopcraft, J.G.C.: Serengeti wildebeest migratory pat-
terns modeled from rainfall and new vegetation growth. Ecology 87(8), 1987–1994
(2006)

8. Durier, V., Graham, P., Collett, T.S.: Snapshot memories and landmark guidance
in wood ants. Curr. Biol., Elsevier Science Ltd. 13, 1614–1618 (2003)

9. Gillespie, D.T.: A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)

10. Goss, P.J., Peccoud, J.: Quantitative modeling of stochastic system in molecular
biology by using Petri Nets. J. Bioinform. Comput. Biol. 95, 6750–6755 (1990)

11. Holdo, R.M., Holt, R.D., Fryxell, J.M.: Opposing rainfall and plant nutritional
gradients best explain the wildebeest migration in the Serengeti. Am. Nat. 173,
431–445 (2009)

12. Kaupp, U.B., Kashikar, N.D., Weyand, I.: Mechanism of sperm chemotaxis. Ann.
Rev. Physiol. 70, 93–117 (2008)

13. Kohn, K.W., Aladjem, M.I., Weinstein, J.N., Pommier, Y.: Molecule interaction
maps of bioregularity networks: a general rubric for systems biology. Mol. Biol.
Cell 17, 1–13 (2005)

14. Lohmann, K.J., Putman, N.F., Lohmann, C.M.F.: Geomagnetic imprinting: a uni-
fying hypothesis of long-distance natal homing in salmon and sea turtles. Proc.
Nat. Acad. Sci. 105(49), 19096–19101 (2008)

15. Milazzo, P.: Qualitative and quantitative formal modeling of biological systems.
Ph.D thesis, Università di Pisa (2007)

16. Pardini, G.: Formal modelling and simulation of biological systems with spatiality.
Ph.D thesis, Università di Pisa (2011)

17. Priami, C., Regev, A., Silverman, W., Shapiro, E.Y.: Application of a stochastic
name-passing calculus to representation and simulation a molecular processes. Inf.
Process. Lett. 80, 25–31 (2001)

18. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (2000)
19. Regev, A., Silverman, W., Shapiro, E.Y.: Representation and simulation of bio-

chemical processes using the π-calculus process algebra. In: Proceeding of the
Pacific Symposium on Biocomputing, pp. 459–470 (2001)

20. Reynolds, C.W.: Flocks, herds, and schools: a distributed behavioral model. Com-
put. Graph. 21(4), 25–34 (1987)

21. Rojas, R.: Neural Networks - A Systematic Introduction. Springer, Berlin (1996)
22. Rozenberg, G., Bck, T., Kok, J.: Handbook of Natural Computing. Springer, Hei-

delberg (2012)

A Computational Formal Model
of the Invasiveness of Eastern Species
in European Water Frog Populations

Roberto Barbuti, Pasquale Bove, Andrea Maggiolo Schettini,
Paolo Milazzo(B), and Giovanni Pardini

Dipartimento di Informatica, Università di Pisa,
Largo B. Pontecorvo 3, 56127 Pisa, Italy

{barbuti,bovepas,maggiolo,milazzo,pardinig}@di.unipi.it

Abstract. European water frog populations are mainly composed by
two species: Pelophylax lessonae (pool frog) and Pelophylax esculentus
(edible frog). These populations are called L-E complexes. Edible frogs
are a hybrid form between P. lessonae and Pelophylax ridibundus (east-
ern lake frog) and they reproduce in a particular way, called hybrido-
genesis. These frog populations have been studied in the contexts of
evolution and speciation. In order to have stability of L-E complexes
(namely self-maintainance of the population structure) some conditions
are necessary. We present a computational formal model of European
water frog population based on a variant of P systems in which evo-
lution rules are applied in a probabilistic maximally parallel manner.
Probabilities of application of rules will be computed on the basis of
parameters to be associated with each rule. By means of our model we
show how the stabilization of L-E complexes can be obtained. In partic-
ular, we show how the introduction of translocated eastern lake frogs in
such complexes can lead to the collapse of the populations. The study of
conditions for population stability and of possible threats to endangered
species is of particular importance for the maintenance of biodiversity,
which is an aspect of sustainable development.

1 Introduction

Lake frog (Pelophylax ridibundus Pallas, 1771) and pool frog (Pelophylax
lessonae Camerano, 1882) can mate producing the hybrid edible frog (Pelophy-
lax esculentus Linneus, 1758). The edible frog can coexist with one or both of
the parental species giving rise to mixed populations. Usually the genotypes of
P. ridibundus, P. lessonae and P. esculentus are indicated by RR, LL, and
LR, respectively. In Europe there are mainly mixed populations containing
P. lessonae and P. esculentus, called L-E systems. Hybrids in these popula-
tions reproduce in a particular way, called hybridogenesis [6]. Hybridogenesis
consists in a particular gametogenetic process in which the hybrids exclude one
of their parental genomes premeiotically, and transmit the other one, clonally,
to eggs and sperm. This particular way of reproduction requires that hybrids

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 329–344, 2014.
DOI: 10.1007/978-3-319-05032-4 24, c© Springer International Publishing Switzerland 2014

330 R. Barbuti et al.

Table 1. Reproductive pattern of water frogs

live sympatrically with the parental species the genome of which is eliminated.
In this way hybrids in a L-E system eliminate the L genome thus producing
P. esculentus when mating with P. lessonae, and generating P. ridibundus when
mating with other hybrids. Usually P. ridibundus generated in L-E complexes
are inviable due to deleterious mutations accumulated in the clonally transmit-
ted R genome [10,21,24]. Because of inviability of P. esculentus × P. esculentus
offspring, edible frog populations cannot survive alone, but they must act as a
sexual parasite of one of the parental species. In L-E complexes the reproductive
pattern is the one in Table 1 where the subscribed Y indicates the male sexual
chromosome.

Note that the Y chromosome, determining the sex of frog males, can occur
only in the L genome, due to primary hybridization which involved, for size con-
straints, P. lessonae males and P. ridibundus females. Table 1 shows that only
one of the three possible matings resulting in viable offspring produce LL geno-
types. This would give an advantage to edible frogs which could outnumber P.
lessonae and eventually eliminate them. This situation would result in an extinc-
tion also of P. esculentus which cannot survive without the parental species.
In addition to their relative abundance which can be promoted by the above
reproductive pattern, edible frogs show, by heterosis, a greater fitness than the
parental species [2,12,23]. The sum of relative abundance and heterosis should
out-compete P. lessonae in L-E complexes. The widespread distribution of L-E
complexes reveals the existence of mechanisms which contribute to the stability
of such complexes, namely to the ability of such populations to self-maintain
their structure. Among such mechanisms sexual selection seems to be one of the
most important: P. esculentus females prefer P. lessonae males with respect to
males of their own species [1,5,9,19,20]. Many mathematical and computational
models were devoted to the study of the influence of sexual selection in the evo-
lution of populations, the models in [11,22] show how female preference is able
to stabilize L-E complexes by counterbalancing both heterosis and reproductive
advantage of edible frogs.

In this paper we are interested in modelling and simulating the dynamics of
L-E complexes. The study of conditions for population stability and of possible
threats to endangered species is of particular importance for the maintainace of
biodiversity, which is an aspect of sustainable development.

A Computational Formal Model 331

P systems are a model of computation that has recently found new applica-
tions as a notation for the modelling of biological systems. We define a minimal
variant of P systems that allows the dynamics of such L-E complexes to be for-
mally described. Although defined with a specific example in mind, our variant
of P systems will include features that allow it to be used to describe many other
kinds of populations. We choose to adopt a formal notation based on P systems
for the modelling of L-E complexes rather than directly implementing a compu-
tational model by using a general purpose programming language. This allows
us to unambiguously define and describe the model. Moreover, in general the
use of formal modelling notations for the construction of population models can
enable the application of formal analysis tools (such as model checkers and static
analysis tools) for the verification of properties of the populations of interest.

We analyze, by means of a P systems model, two aspects of L-E complexes.
The first one is why L-E complexes generate almost all inviable P. ridibundus
offspring. The second one is how female preference can contribute to stabilize the
complexes. Finally, we show that the introduction of P. ridibundus can destabi-
lize L-E populations. This is a real problem, as pointed out by Vorburger and
Reyer in [25]. Their hypothesis is confirmed by our model.

2 A Variant of P Systems for Population Modelling

P systems (also known as membrane systems) are a bio-inspired model of com-
putation proposed by G. Pǎun in [15] in the context of Natural Computing.
P systems were originally aimed at investigating the computing capabilities of
cells as new unconventional computing architectures. The motivation for such
studies was that the extremely high (virtually unbounded) degree of parallelism
in biochemical phenomena occurring within cells could have allowed the solution
of computationally hard problems in short times. Many theoretical results have
been achieved on P systems by considering many different variants of such a
formalism (see [14,16] for an overview).

The formalism of P systems falls in the category of rewriting systems, in
which a structure with given characteristics evolves by means of application of
some rewriting rules. In the case of P systems, the structure is inspired by the
internal structure of cells, namely it consists of a hierarchy of membranes. Each
membrane is identified by a unique label and in each membrane there can be
a multieset of objects (representing molecules) that change over time by the
application of rewriting rules (called evolution rules and representing chemical
reactions). Each evolution rule consists of two multisets of objects (representing
reactants and products of the described chemical reaction). A rule in a membrane
can be applied only to objects in the same membrane. Some objects produced
by the rule remain in the same membrane, others are sent out of the membrane,
others are sent into the inner membranes (assumed to exist) which are identified
by their labels.

Evolution rules in P systems are (usually) applied with maximal parallelism,
namely at each step of evolution different rules can be applied at the same time

332 R. Barbuti et al.

Fig. 1. An example of P system

(on different objects), the same rule can be applied more than once, and it cannot
happen that a rule is not applied when the objects needed for its triggering are
available (i.e. not used by any other rule). An example of P system is shown in
Fig. 1, where membranes are depicted as boxes, objects as letters and evolution
rules have the form u ∪ v, where u is a multiset of objects (reactants) and v
is a multiset of object with target indication (products). Note that the target
indication of products that remain in the same membrane is omitted.

In the last few years P systems found new applications as notations for the
modelling of biological systems. In particular, quantitative extensions of P sys-
tems have been proposed that allow biochemical pathways to be suitably described
and simulated [3,13,17,18]. In addition, variants of P systems have been applied
to the modelling and simulation of populations and ecosystems [7,8].

The variant of P systems we define in this paper includes a minimal set of
features necessary to model populations. We consider flat P systems [4], namely
P systems consisting of a single membrane, since a membrane structure is not
useful for our purposes. On the other hand, the key ingredients that we consider
are (i) evolution rules with functional rates, (ii) probabilistic maximal paral-
lelism and (iii) rule promoters. The aim of this new variant of P systems is
to make modelling of populations easier, by avoiding in the modelling formal-
ism unnecessary functionalities that are present in other similar variants of P
systems.

In population models, evolution rules are used to describe events such as
reproduction, death, growth, and so on. In general there may be several rules
describing one of these events and involving the same individual. For instance,
the same female individual may be involved in one of different reproduction rules,
one rule for each possible kind of male it can mate with. Some of these rules may
be more likely to be applied than others since the events they describe are more
likely than others. (For instance, some females may have a sexual preference
for some specific kinds of males.) Associating rates with rules allows the latters
to be chosen in a probabilistic way, where probabilities are proportional to the

A Computational Formal Model 333

rates. Moreover, by allowing rates to be functions, rather than constant values,
we have that the probability of applying a rule can depend on the current state
of the system (for instance on the size of the population, or on the number of
individuals of a specific kind).

Although a form of probabilistic choice for evolution rules has to be consid-
ered, maximal parallelism is still useful since it avoids starvation of individuals.
Indeed, populations often evolve by stages (e.g. reproduction, selection, etc...)
in which (almost) all of the individuals are involved. By combining maximal
parallelism with probabilistic choice of reactions we allow the whole population
to evolve in a coherent way and, at the same time, each individual to follow its
own fate.

Finally, since in each stage of evolution of a population different kinds of
event may happen, we need a way to enable different sets of rules depending on
the current stage. For instance, during a reproduction stage only reproduction
rules should be enabled, whereas during a selection stage only death/survival
rules should be enabled. In order to obtain this result we exploit rule promoters,
that can be used to enable/disable a set of rules by simply including/removing
an object from the state of the system.

We are now ready to define the variant of P systems we use for population
modelling. We call it Minimal Probabilistic P systems (MPP systems).

Definition 1 (MPP system). A Minimal Probabilistic P system is a tuple
∅V,w0, R⊆ where:

– V is a possibily infinite alphabet of objects, with V ∼ denoting the universe of
all multisets having V as support.

– w0 → V ∼ is a multiset describing the initial state of the system
– R is a finite set of evolution rules having the form

u
f−∪ v |p

where u, v, p → V ∼ are multisets (often denoted without brackets) of reactants,
products and promoters, respectively, and f : V ∼ √∪ R→0 is a rate function.

A state (or configuration) of a MPP system is a multiset of objects in V ∼. By
definition, the initial state is w0. We denote a generic state of the system as w.
Moreover, we denote with |w| the size (number of objects) of the multiset w,
and with |w|a the number of instances of object a contained in multiset w.

The evolution of a MPP system is given by a sequence of probabilistic maxi-
mally parallel steps. In each step a maximal multiset of evolution rule instances
is selected and applied as described by Algorithm1. Given w the current sys-
tem state, the algorithm copies w into x, and then iteratively selects and applies
applicable rules. At each iteration, one of the applicable rules (the set of which is
denoted R∗) is probabilistically chosen. The probability of each rule to be chosen
is proportional to the rate value obtained by applying its rate function to the
current state w. Once a rule is selected, its application consists in removing its
reactants from x and adding its products into y. The latter multiset will collect

334 R. Barbuti et al.

Algorithm 1. Probabilistic maximally parallel evolution step
function Step(w)

x = w
y = ∅
while there exists u

f−→ v |p in R s.t. u ⊆ x and p ⊆ w do

R′ = {u f−→ v |p∈ R | u ⊆ x and p ⊆ w}
choose u′ f ′

−→ v′ |p′ from R′ with a probability proportional to f ′(w)
x = x \ u′

y = y ∪ v′

end while
return x ∪ y

end function

all products of all applied rules. Such products are not immediately added to x
to avoid the application of a rule at the i-th iteration to consume objects pro-
duced by a rule applied in a previous iteration. Indeed, this iterative procedure
simulates a parallel application of rules in which the reactions are applied all at
the same time (their products are available only at the next parallel step). Once
objects in x are such that no further rule in R can be applied to them, the algo-
rithm stops iterating and returns the new state of the system x≡ y (where x are
the unused objects and y are the new products). Note that in order to determine
(in the guard of the loop and in the definition of R∗) whether a rule is applicable
reactants are checked to be contained in x (the remaining objects) while pro-
moters are checked to be present in w (the system state at the beginning of the
iteration).

Example 1. We consider a MPP system representing a reproductive event in a
sexual population with XY sex-determination system. In the initial population
there are females (f) and two types of males (m1,m2). Suppose that females
prefer m1 males with a preference value of 0.7, while they mate with m2 males
with a preference value of 0.3. We consider that the different traits of m1 and
m2 are coded on the Y sexual chromosome. Thus the males in the offspring
produced by m1 and m2 males are of kind m1 and m2, respectively. We consider
also that each mating generates a single juvenile. The actual matings, in addition
to female preferences depend on the availability of the two kinds of males.

The MPP system representing the described reproductive event is the triple
∅Vfm, w0fm, Rfm⊆. The alphabet Vfm is defined as follows:

Vfm = {f,m1,m2, f
j ,mj

1,m
j
2}

where the j superscript indicates juveniles.
The set of reproduction rules Rfm contains the following rules:

f m1

fm1−−∪ f m1 f j f m1

fm1−−∪ f m1 mj
1

f m2

fm2−−∪ f m1 f j f m2

fm2−−∪ f m1 mj
2

A Computational Formal Model 335

where fm1(w) = 0.7 · |w|m1 · 0.5 and fm2(w) = 0.3 · |w|m2 · 0.5. Note that the
result of fm1(w) is given by the preference of females for m1 males multiplied
by the number of m1 males in the population and the probabilty of producing a
male or a female (0.5). fm2(w) is analogous.

Given the following initial population:

w0fm = m1,m1,m1,m2,m2,m2, f, f, f, f, f, f, f, f

we obtain the following rates: fm1(w0fm) = 1.05 and fm2(w0fm) = 0.45. Note
that two females cannot find a partner for reproduction in this event because
there are not enough males.

3 Population Dynamics of L-E Complexes

In this section we study the dynamics of European water frog populations. In
particular, we show that female preferences and the inviability of P. ridibundus
offspring can stabilize L-E complexes. Moreover, we show how the introduction
of translocated P. ridibundus in stable L-E complexes can lead to the collapse
of the systems.

3.1 Deleterious Mutations and Female Preferences are Necessary
for the Stability of L-E Complexes

The MPP systems model. We model a L-E complex by means of a MPP sys-
tem ∅VLE , w0LE , RLE⊆ in which each individual of the population is represented
by an object in the state of the system. Hence, the alphabet VLE contains one
object for each possible genotype of an individual. We use different objects for
juveniles (immature individuals) and adults. Moreover, the alphabet includes
some control objects used to realize alternation of reproduction and selection
stages. As a consequence, we define VLE = VLEa ≡ VLEj ≡ Vctrl, where VLEa

represents adults, VLEj represents juveniles and Vctrl are control objects.
Since the R genome may contain a deleterious mutation or not, we use differ-

ent objects for representing P. esculentus and P. ridibundus individuals carrying
or not a mutation in their genotype. Thus, the alphabet representing adults is

VLEa = {LL , LyL , LR∼ , LyR∼ , LR∞ , LyR∞ , R∼R∞ , R∞R∞}

where y represents the Y chromosome, and ∈ and ∞ represent the presence and
the absence of a deleterious mutation, respectively. Note that according to the
reproductive pattern of L-E complexes in Table 1 males with RR genotypes
cannot be produced in a L-E complex. Moreover, note that object R∞R∼ is not
present in VLEa since the individual it represents is indistinguishable from the
one represented by R∼R∞, and hence we use only one object to represent it.

The alphabet representing juveniles is

VLEj = {LLj , LyL
j , LRj

∼ , LyR
j
∼ , LRj

∞ , LyR
j
∞ , R∼Rj

∼ , R∼Rj
∞ , R∞Rj

∞ }

336 R. Barbuti et al.

where j denotes that the individual is a juvenile, and the other notations are as
before. Note that R∼R

j
∼ is allowed although it represents non viable genotype

since in our model individuals with such a genotype will be allowed to be born,
but they will not be allowed to become adults.

Finally, the alphabet of control objects is

Vctrl = N ≡ {REPR , SEL }
where REPR and SEL represent reproduction and selection stages, respectively,
and natural numbers will be used as objects regulating the alternance of the two
considered stages.

The set of evolution rules RLE contains reproduction, selection and control
rules. Hence, we have RLE = RLEr ≡ RLEs ≡ Rctrl.

Reproduction rules RLEr are of the following form:

x y
fxy−−∪ x y z |REPR

where x → VLEa is any object representing a female and y → VLEa is any object
representing a male. Function fxy gives the rate of mating of females of type x
with males of type y by taking into account the sexual preferences of x females
and the quantities of individuals of types x and y. In particular, given a multiset
of object w (a system state), we have

fxy(w) = kmate(x, y) · |w|x · |w|y · 1/ko kind(x, y)

where kmate(x, y) is the preference of a female x for a male y, and ko kind(x, y)
is the number of possible offspring kinds that can be generated by the mating
of x with y. Remark that 1/ko kind(x, y) distributes the rate of the mating event
of x and y over the rules for this mating.

Finally, z → VLEj is an object representing the newborn, and it is related
with x and y as described in Table 1. For example, for x = LL and y = LyL
there are two rules, one with z = LyL

j and the other with z = LLj . On the
other hand, for x = LR∼ and y = LyR∞ there is one single rule with z = R∼R

j
∞.

As a consequence, ko kind(LL,LyL) = 2 whereas ko kind(LR∼, LyR∞) = 1. The
other combinations of x and y are analogous. The full list of reproduction rules
is in the pre-proceedings version of this paper.

As regards selection rules RLEs, they contain two rules for each individual of
the population describing its survival and its death during the selection stage,
respectively. The presence of these two rules for each type of individual together
with maximal parallelism ensure that during a selection stage each individual
will be faced with the two fates.

Survival and death rules are of the forms that follow. For each object x →
VLEa representing an adult individual we have:

x
gx−∪ x |SEL x

g′
x−∪ π |SEL

where π represent the empty multiset and gx and g∗
x give the probability of

survival and death, respectively, of an individual of type x. Function gx takes

A Computational Formal Model 337

into account the size of the population, the carrying capacity of the environment
and the fitness of the individual. More precisely, given w → V ∼ representing a
system state, parameter cc representing the carrying capacity of the environment
and parameter kfit(x) representing the fitness of individuals of type x, we have:

gx(w) =
1

1 + |w|
kfit(x)·cc

Function g∗
x is such that for all w → V ∼ it holds g∗

x(w) = 1 − gx(w).
For each object xj → (VLEj \{R∼R

j
∼}) representing a juvenile (but not R∼R

j
∼)

we have:

xj gxj−−∪ x |SEL xj
g′
xj−−∪ π |SEL

where x → VLE is the object representing the adult of the same type of xj , and
π, gxj and g∗

xj are as before. In the case of R∼R
j
∼ we consider only the death

rule, since such a kind of juvenile is considered too unfit to be able to grow up.
Hence, we have only

R∼Rj
∼

f1−∪ π |SEL

where for all w → V ∼ it holds f1(w) = 1.
Finally, as regards control rules Rctrl, they are responsible for the appearance

and disappearance of objects REPR and SEL in order to activate alternatively
reproduction and selection rules. For the sake of simplicity, we assume that the
offspring of each female in each reproduction stage are exactly n. We also assume
that each of the offspring is the result of a different mating (this is a very rough
simplification that however should not change significantly the global population
dynamics). Hence, the object REPR has to be present for n subsequent steps,
then it has to be replaced by SEL for one step, and these n + 1 steps should be
iterated forever. This result is obtained by ensuring that REPR is in the initial
state of the system and by using the following control rules:

1
f1−∪ 2 2

f1−∪ 3 · · · (n − 1)
f1−∪ n

n REPR
f1−∪ SEL SEL

f1−∪ 1 REPR

where, as before, for all w → V ∼ it holds f1(w) = 1.
The initial state w0LE of the MPP system will change in different simulations.

In general, it will contain the control objects 1 and REPR, and one object for
each individual present in the considered initial population.

Parameters. In order to perform simulations we consider the following initial
parameters (some of them will be changed later on).

– No sexual preference: for every female x and male y we have kmate(x, y) = 1.
– 10 % higher fitness for hybrids (heterosis effect), namely

kfit(x) =

{
0.55 if x → {LyR∼ LyR∞ LyRj

∼ LyRj
∞ }

0.5 if x → VLEa \ {LyRj
∼ LyRj

∞ } .

338 R. Barbuti et al.

– The carrying capacity cc is set to 400.
– The number of reproduction stages n is set to 3.

Results. We study the stability of L-E complexes by considering populations
without deleterious mutations in the R genome of P. esculentus. We performed
1000 simulations with initial populations composed by P. lessonae frogs and a
percentages of 10% of mutation-free edible frogs. The initial state of the system
is hence described by the multiset w0LE consisting of 90 instances of LL, 90 of
LyL, 10 of LR∞, 10 of LyR∞ and of the control objects 1 and REPR.

We observe that, in all the simulations, the population evolves towards a
mono-specific population of viable all-females P. ridibundus which eventually
collapses for the absence of males (recall that the Y chromosome can occur
only on the L genome). Figure 2 shows the outcome of a typical simulation. If
viable P. ridibundus females are produced, the reproductive pattern becomes the

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

RLRLLLLL

RRRR

Iteration

N
um

be
r o

f
in

di
vi

du
al

s

Fig. 2. Result of a simulation of a L-E complex without deleterious mutations.

Table 2. Reproductive pattern of water frogs without deleterious mutations.

A Computational Formal Model 339

one depicted in Table 2. Edible frogs are numerically advantaged from possible
mating between P. ridibundus females and P. lessonae males. It is clear from
the table that this reproductive pattern generates a numerical disadvantage for
pool frogs, the population of which decreases. The decrease in the P. lessonae
population has, as a consequence, a decrease of produced L gametes, which, in
turn, results in a bigger production of lake frogs. Thus the population of P.
ridibundus females grows and eventually they out-compete the other species.

Let us now consider an initial population with the same percentages of edible
frogs (10%), but in which all the P. esculentus individuals carry the deleterious
mutations on the R genome, that is P. ridibundus females are not viable and
they do not appear in the population. The initial state of the system is hence
described by the multiset w0LE consisting of 90 instances of LL, 90 of LyL, 10
of LR∞, 10 of LyR∼ and of the control objects 1 and REPR.

We performed 1000 simulations. We observe that also in this case the pop-
ulation collapses in all simulations. The cause of the collapse is due to the fact
that both the reproductive pattern of Table 1 and the greater fitness of edi-
ble frogs give an advantage to P. esculentus frogs forcing the complex towards a
mono-specific population. A population with P. esculantus alone cannot survive.
Figure 3 shows the outcome of a typical simulation in this case.

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

RLRLLLLL

Iteration

N
um

be
r o

f
in

di
vi

du
al

s

Fig. 3. Result of a simulation of a L-E complex with deleterious mutations.

Finally we introduce in the population a female preference towards LyL males
(observed experimentally in [1,9,20]). In particular, we set kmate(LL,LyL) = 6
and kmate(LR,LyL) = 2. Also in this case we performed 1000 simulations with
the same initial state as before.

340 R. Barbuti et al.

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

RLRLLLLL

Iteration

N
um

be
r o

f
in

di
vi

du
al

s

Fig. 4. Result of a simulation of a L-E complex with deleterious mutations and sexual
selection.

We observe that in all simulation the complex evolves towards a stable L-E
complex. Figure 4 shows the outcome of a typical simulation in this case.

Note that we do not show the outcome of simulations in a population with
female preferences but without deleterious mutations in the R genome. Actu-
ally, also in this case the population evolves towards a all-females P. ridibundus
population.

3.2 Invasion of Translocated P. Ridibundus

The main point that we study with our model is the consequence of the intro-
duction of P. ridibundus in stable L-E complexes. P. ridibundus can mate both
with P. esculentus, producing P. ridibundus, and with P. lessonae (primary
hybridization), producing P. esculentus.

The MPP Systems Model. In order to study the dynamics of a L-E complex
in which P.ridibundus can be introduced we need to extend our previous model
(defined in Sect. 3.1). Indeed, we need to include in the model objects and rules
describing the behaviour of P.ridibundus males.

Consequently, we define a MPP system ∅VLER, w0LER, RLER⊆ where VLER =
VLERa ≡ VLERj ≡ Vctrl and RLER = RLERr ≡ RLERs ≡ Rctrl, where, in turn, we
have:

– VLERa = {LL , LyL , LR∼ , LyR∼ , LR∞ , LyR∞ , R∼R∞ , Ry∼R∞ , Ry∞R∼ ,
R∞R∞ , Ry∞R∞}

A Computational Formal Model 341

– VLERj = {LLj , LyL
j , LRj

∼ , LyR
j
∼ , LRj

∞ , LyR
j
∞ , R∼R

j
∼ , Ry∼R

j
∼ , R∼R

j
∞ ,

Ry∼R
j
∞ , Ry∞R

j
∼ , R∞R

j
∞ , Ry∞R

j
∞}

– RLERr and RLERs extend RLEr and RLEs, respectively, with analogous rules
for P.ridibundus males

– Vctrl and Rctrl are as before

Note that, given the impossibility of mating between P. ridibundus male with
P. lessonae females (for size reasons), L∼Ry∞ individuals cannot be produced.
Note also that in reproduction rules involving P.ridibundus males with one muta-
tion, namely R∼Ry∞ we have to consider more possibilities for the genotype of
the offspring than in the previous cases. Indeed, by means of recombination a
male of this type can produce four kinds of gametes: R∼, R∞, Ry∼ and Ry∞.

The full list of reproduction rules is in the pre-proceedings version of this
paper.

Parameters. In order to perform simulations we consider the following initial
parameters (some of them will be changed later on) that we know, for the pre-
vious model, could lead to a stable L-E complex if deleterious mutations are
present.

– Sexual preference:

kmate(x, y) =

⎧⎧⎧⎪

⎧⎧⎧⎨

6 if x = LL and y = LyL

2 if x → {LR∼ , LR∞ } and y = LyL

0 if x = LL and y → {Ry∼R∞ , Ry∞R∼ , Ry∞R∞ }
1 otherwise

– 10 % higher fitness for hybrids (heterosis effect), namely

kfit(x) =

{
0.55 if x → {LyR∼ LyR∞ LyRj

∼ LyRj
∞ }

0.5 if x → VLEa \ {LyRj
∼ LyRj

∞ } .

– The carrying capacity cc is set to 400.
– The number of reproduction stages n is set to 3.

Results. We performed 1000 simulations with initial populations composed
by 80 % of P. lessonae frogs, 15 % of mutation-free edible frogs and 5 % of P.
ridibundus frogs. The initial state of the system is hence described by the multiset
w0LER consisting of 80 instances of LL, 80 of LyL, 15 of LR∼, 15 of LyR∼, 5 of
R∞R∞, 5 of Ry∞R∞, and of the control objects 1 and REPR.

The results in this case are of two kinds: 73 % of simulations result in a mono-
specific P. ridibundus population while 27 % of simulations result in a collapse of
the whole population. Figure 5 and 6 show typical population dynamics. Because
the introduce lake frogs are mutation-free and because they can mate with P.

342 R. Barbuti et al.

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

RLRLLLLL

RRRR

Iteration

N
um

be
r o

f
in

di
vi

du
al

s

Fig. 5. Simulation of invasion leading to replacement of the population by lake P.
ridibundus frogs.

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

RLRLLLLL

RRRR

Iteration

N
um

be
r o

f
in

di
vi

du
al

s

Fig. 6. Simulation of invasion leading to replacement of the population by lake P.
ridibundus frogs.

A Computational Formal Model 343

esculentus frogs, deleterious mutations are gradually purged. Thus, the popula-
tion evolves towards a mono-specific P. ridibundus system. In this situation, if
males are present, the P. ridibundus population can survive, otherwise it will
collapse. The survival of P. ridibundus males is threatened by female preferences
towards LL males and the advantage of P. esculentus for their heterosis. In all
cases, the initial L-E complex is destroyed, as predicted in [25].

4 Conclusions

In this paper we have faced the ecological problem of stability European water
frog populations. We have shown how female preferences and deleterious muta-
tions stabilize L-E complexes and also how the introduction of translocated P.
ridibundus frogs can destroy such complexes. For modelling this phenomena we
have used a variant of P systems and we have shown their suitability for describ-
ing real macroscopic ecological systems.

References

1. Abt, G., Reyer, H.U.: Mate choice and fitness in a hybrid frog: rana esculenta
females prefer Rana lessonae males over their own. Behav. Ecol. Sociobiol. 32(4),
221–228 (1993)

2. Anholt, B.R., Hotz, H., Guex, G.D., Semlitsch, R.D.: Overwinter survival of Rana
lessonae and its hemiclonal associate Rana esculenta. Ecology 84(2), 391–397
(2003)

3. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G., Tesei, L.: Spatial p
systems. Nat. Comput. 10(1), 3–16 (2011)

4. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: A p systems flat form
preserving step-by-step behaviour. Fundamenta Informaticae 87(1), 1–34 (2008)

5. Bergen, K., Semlitsch, R.D., Reyer, H.U.: Hybrid female matings are directly
related to the availability of rana lessonae and rana esculenta males in experi-
mental populations. Copeia 1997(2), 275–283 (1997)

6. Berger, L.: Systematics and hybridization in European green frogs of Rana escu-
lenta complex. J. Herpetol. 7(1), 1–10 (1973)

7. Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G.: Modelling metapopulations with
stochastic membrane systems. Biosystems 91(3), 499–514 (2008)

8. Cardona, M., Colomer, M.A., Margalida, A., Palau, A., Pérez-Hurtado, I., Pérez-
Jiménez, M.J., Sanuy, D.: A computational modeling for real ecosystems based on
p systems. Nat. Comput. 10(1), 39–53 (2011)

9. Engeler, B., Reyer, H.U.: Choosy females and indiscriminate males: mate choice in
mixed populations of sexual and hybridogenetic water frogs (Rana lessonae, Rana
esculenta). Behav. Ecol. 12(5), 600–606 (2001)

10. Guex, G.D., Hotz, H., Semlitsch, R.D.: Deleterious alleles and differential viability
in progeny of natural hemiclonal frogs. Evolution 56(5), 1036–1044 (2002)

11. Hellriegel, B., Reyer, H.U.: Factors influencing the composition of mixed popu-
lations of a hemiclonal hybrid and its sexual host. J. Evol. Biol. 13(6), 906–918
(2000)

344 R. Barbuti et al.

12. Hotz, H., Semlitsch, R.D., Gutmann, E., Guex, G.D., Beerli, P.: Spontaneous het-
erosis in larval life-history traits of hemiclonal frog hybrids. Proc. Nat. Acad. Sci.
96(5), 2171–2176 (1999)

13. Manca, V., Bianco, L.: Biological networks in metabolic p systems. BioSystems
91(3), 489–498 (2008)

14. Păun, G.: Membrane Computing: An Introduction. Natural Computing Series Nat-
ural Computing. Springer, Heidelberg (2002)

15. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)
16. Paun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-

puting. Oxford University Press Inc., Oxford (2010)
17. Pérez-Jiménez, M.J., Romero-Campero, F.J.: P systems, a new computational

modelling tool for systems biology. Trans. on Comput. Syst. Biol. VI. LNBI, vol.
4220, pp. 176–197. Springer, Heidelberg (2006)

18. Pescini, D., Besozzi, D., Mauri, G., Zandron, C.: Dynamical probabilistic p systems.
Int. J. Found. Comput. Sci. 17(01), 183–204 (2006)

19. Reyer, H., Frei, G., Som, C.: Cryptic female choice: frogs reduce clutch size when
amplexed by undesired males. Proc. R. Soc. Lond. B Biol. Sci. 266(1433), 2101–
2107 (1999)

20. Roesli, M., Reyer, H.U.: Male vocalization and female choice in the hybridogenetic
Rana lessonae/ Rana esculenta complex. Anim. Behav. 60(6), 745–755 (2000)

21. Semlitsch, R.D., Schmiedehausen, S., Hotz, H., Beerli, P.: Genetic compatibility
between sexual and clonal genomes in local populations of the hybridogenetic Rana
esculenta complex. Evol. Ecol. 10(5), 531–543 (1996)

22. Som, C., Anholt, B.R., Reyer, H.U.: The effect of assortative mating on the coex-
istence of a hybridogenetic waterfrog and its sexual host. Am. Nat. 156(1), 34–46
(2000)

23. Tejedo, M., Semlitsch, R.D., Hotz, H.: Differential morphology and jumping perfor-
mance of newly metamorphosed frogs of the hybridogenetic Rana esculenta com-
plex. J. Herpetol. 34(2), 201–210 (2000)

24. Vorburger, C.: Fixation of deleterious mutations in clonal lineages: evidence from
hybridogenetic frogs. Evolution 55(11), 2319–2332 (2001)

25. Vorburger, C., Reyer, H.U.: A genetic mechanism of species replacement in euro-
pean waterfrogs? Conserv. Genet. 4(2), 141–155 (2003)

Process Ordering in a Process Calculus
for Spatially-Explicit Ecological Models

Anna Philippou and Mauricio Toro(B)

Department of Computer Science, University of Cyprus, Nicosia, Cyprus
{annap,mtoro}@cs.ucy.ac.cy

Abstract. In this paper we extend palps, a process calculus proposed
for the spatially-explicit individual-based modeling of ecological systems,
with the notion of a policy. A policy is an entity for specifying orderings
between the different activities within a system. It is defined externally
to a palps model as a partial order which prescribes the precedence order
between the activities of the individuals of which the model is comprised.
The motivation for introducing policies is twofold: one the one hand,
policies can help to reduce the state-space of a model; on the other hand,
they are useful for exploring the behavior of an ecosystem under different
assumptions on the ordering of events within the system. To take account
of policies, we refine the semantics of palps via a transition relation
which prunes away executions that do not respect the defined policy.
Furthermore, we propose a translation of palps into the probabilistic
model checker prism. We illustrate our framework by applying prism on
palps models with policies for conducting simulation and reachability
analysis.

1 Introduction

Population ecology is a sub-field of ecology that deals with the dynamics of
species populations and their interactions with the environment. Its main aim is
to understand how the population sizes of species change over time and space. It
has been of special interest to conservation scientists and practitioners who are
interested in predicting how species will respond to specific management schemes
and in guiding the selection of reservation sites and reintroduction efforts, e.g.
[12,21].

One of the main streams of today’s theoretical ecology is the individual-based
approach to modeling population dynamics. In this approach, the modeling unit
is that of a discrete individual and a system is considered as the composition
of individuals and their environment. Since individuals usually move from one
location to another, it is common in individual-based modeling to represent

This work was carried out during the tenure by the second author of an ERCIM
“Alain Bensoussan” Fellowship Programme. The research leading to these results
has received funding from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no 246016.

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 345–361, 2014.
DOI: 10.1007/978-3-319-05032-4 25, c© Springer International Publishing Switzerland 2014

346 A. Philippou and M. Toro

space explicitly. There are four distinct frameworks in which spatially-explicit
individual-based models can be defined [4] which differ on whether space and time
are treated discretely or continuously. The four resulting frameworks have been
widely studied in Population ecology and they are considered to complement as
opposed to compete with each other.

In this paper, we extend our previous work on a process-calculus framework
for the spatially-explicit modeling of ecological systems. Our process calculus,
palps, follows the individual-based modeling and, in particular, it falls in the
discrete-time, discrete-space class of Berec’s taxonomy [4]. The extension pre-
sented in this paper is related to the issue of process ordering. In particular,
simulations carried out by ecologists often impose an order on the events that
may take place within a model. For instance, if we consider mortality and repro-
duction within a single-species model, three cases exist: concurrent ordering,
reproduction preceding mortality and reproduction following mortality. In con-
current ordering, different individuals may reproduce and die simultaneously. For
reproduction preceding mortality, the population first reproduces, then all indi-
viduals, including new offspring, are exposed to death. For reproduction follow-
ing mortality, individuals are first exposed to death and, subsequently, surviving
individuals are able to reproduce. Ordering can have significant implications on
the simulation. Thus, alternatives must be carefully studied so that the order-
ing that best matches the observed behavior of the actual ecosystem can be
concluded (see e.g. [27]).

In order to capture process ordering in palps, we define the notion of a policy,
an entity that imposes an order on the various events that may take place within
a system. Formally, a policy π is defined as a partial order on the set of events
in the system where, by writing (α, ε) ∪ π, we specify that whenever there is
a choice between executing the activities α and ε, ε is chosen. As a result, a
policy is defined externally to a process description. This implies that one may
investigate the behavior of a system under different event orderings simply by
redefining the desired policy without redeveloping the system’s description. To
capture policies in the semantics of palps we extend its transition relation into
a prioritized transition relation which prunes away all transitions that do not
respect the defined policy.

Furthermore, we present a methodology for analyzing models of palps with
policies via the probabilistic model checker prism [1]. To achieve this, we define
a translation of palps with policies into the prism language and we prove its
correctness. We then apply our methodology on simple examples and we demon-
strate the types of analysis that can be performed on palps models via the prism
tool. By contrasting our results with our previous work of [24], we observe that
policies may achieve a significant reduction in the size of models and may thus
enable the analysis of larger systems.

Various formal frameworks have been proposed in the literature for modeling
biological and ecological systems. One strand is based, like palps, on process
calculi, and constitute extensions of calculi such as ccs [17], the σ-calculus [18]
and csp [13]. Examples include [6,9,15,26,29]. A different approach is that of

Process Ordering in a Process Calculus 347

P systems [25], conceived as a class of distributed and parallel computing inspired
by the compartmental structure and the functioning of living cells. P-systems
have been extended in various directions and they have been applied to a wide
range of applications including the field of ecology [5,7,20,22]. Finally, we men-
tion the calculus of looping sequences [3], and its spatial extension [2], synchro-
nous automata [11] and cellular automata [8]. Similarly to ecosystem modeling
carried out by Ecologists, these approaches differ in their treatment of time and
space and can be considered as supplements as opposed to rivals as each offers
a distinct view and different techniques for analyzing systems. In particular, the
discrete-time approach, also adopted in palps, has proved useful and appropri-
ate for studying predator-prey systems, epidemiology systems, and for studying
population dynamics in other types of ecological systems in frameworks such as
wsccs [14] and P-Systems [5,7].

Regarding the notion of policies employed in palps with policies, we point
out that they are essentially a type of priorities usually referred to in the process-
algebra literature as static priority relations (see e.g. [10]) and are similar to the
priorities defined for P-Systems. In comparison to related works, as far as we
know, palps with policies is the first spatially-explicit formalism for ecological
systems that includes the notion of priority and employs this notion to experi-
ment with different process orderings within process descriptions. Furthermore,
via the translation to the prism language our framework enables to carry out
more advanced analysis of ecological models than just simulation, which is the
main approach adopted in the related literature. Possible analysis techniques
are those supported by the prism tool and include model-checking, reachability
analysis as well as computing expected behavior.

Structure of the paper. The structure of the remainder of the paper is as follows.
In Sect. 2 we present the syntax and the semantics of palps with policies and we
illustrate the expressiveness of the calculus via a number of examples. In Sect. 3
we sketch a translation of palps into the Markov-decision-process component of
the prism language. We then apply our methodology on simple examples and we
explore the potential of the approach in Sect. 4. Section 5 concludes the paper.
For the full exposition of the prism translation and its correctness proof the
reader is referred to [23].

2 The Process Calculus

In this section, we extend our previous work on the process calculus palps with
the notion of a policy. A policy is an entity that accompanies the process descrip-
tion of a system and specifies precedence orders between the various activities
that may take place within the system. In this section we review the syntax and
semantics of palps, and we describe how policies are defined and how they affect
the semantics of the framework. We illustrate the calculus via simple examples.
For a more thorough presentation of palps and further examples the reader is
referred to [23,24].

348 A. Philippou and M. Toro

2.1 The Syntax

In palps, we consider a system as a set of individuals operating in space, each
belonging to a certain species and inhabiting a location. This location may be
associated with attributes which describe characteristics of the location and
can be used to define location-dependent behavior of individuals. Furthermore,
individuals who reside at the same location may communicate with each other
upon channels, e.g. for preying, or they may migrate to a new location. palps
models probabilistic events with the aid of a probabilistic operator and uses a
discrete treatment of time.

The syntax of palps is based on the following basic entities: (1) S is a set of
species ranged over by s, s∼. (2) Loc is a set of locations ranged over by Σ, Σ∼. The
habitat of a system is then implemented via a relation Nb, where (Σ, Σ∼) ∪ Nb
exactly when locations Σ and Σ∼ are neighbors. For convenience, we use Nb as
a function and write Nb(Σ) for the set of all neighbors of Σ. (3) Ch is a set of
channels ranged over by lower-case strings. (4) Γ is a set of attributes, ranged
over by γ, γ∼. We write γα for the value of attribute γ at location Σ. Attributes
may capture characteristics of a location e.g. its capacity or its temperature.

palps employs two sets of expressions: logical expressions, ranged over by e,
and arithmetic expressions, ranged over by w. They are constructed as follows

e ::= true| ¬e | e1 ∅ e2 | w ηΔ c

w ::= c | γ@Σσ | s@Σσ | op1(w) | op2(w1, w2)

where c is a real number, ηΔ∪ {=,⊆,→}, Σσ ∪ Loc√{myloc} and op1 and op2 are
the usual unary and binary arithmetic operations on real numbers. Expression
γ@Σσ denotes the value of attribute γ at location Σσ and expression s@Σσ denotes
the number of individuals of species s at location Σσ. In the case that Σσ = myloc,
then the expression refers to the value of Σ at the actual location of the individual
in which the expression appears and it is instantiated to this location when the
condition needs to be evaluated.

The syntax of palps is given at three levels: (1) the individual level ranged
over by P , (2) the species level ranged over by R, and (3) the system level ranged
over by S. Their syntax is defined via the following bnfs:

P ::= 0 |
∑

i→I

ηi.Pi | •
∑

i→I

pi:Pi | cond (e1 � P1, . . . , en � Pn) | C

R ::= !rep.P

S :: = 0 | P :≡s, Σ∈ | R:≡s∈ | S1 |S2 | S\L

where L ∞ Ch, I is an index set, pi ∪ (0, 1] with
∑

i→I pi = 1, C ranges over a

set of process constants C, each with an associated definition of the form C
def= P ,

and
η ::= a | a | go Σ | ⇑

.

Beginning with the individual level, P can be one of the following: Process
0 represents the inactive individual, that is, an individual who has ceased to

Process Ordering in a Process Calculus 349

exist. Process
∑

i→I ηi.Pi describes the non-deterministic choice between a set of
action-prefixed processes. We write η1.P1+η2.P2 to denote the binary form of this
operator. In turn, an activity η can be an input action on a channel a, written
simply as a, a complementary output action on a channel a, written as a, a
movement action with destination Σ, go Σ, or the time-passing action,

⇑
. Actions

of the form a, and a, a ∪ Ch, are used to model arbitrary activities performed
by an individual; for instance, eating, preying and reproduction. The tick action⇑

measures a tick on a global clock. These time steps are abstract in the sense
that they have no defined length and, in practice,

⇑
is used to separate the

rounds of an individual’s behavior. Process •∑i→Ipi:Pi represents the probabilistic
choice between processes Pi, i ∪ I. The process randomly selects an index i ∪
I with probability pi, and then evolves to Pi. We write pi:Pi ∀ p2:P2 for the
binary form of this operator. The conditional process cond (e1 �P1, . . . , en �Pn)
presents the conditional choice between a set of processes: it behaves as Pi, where
i is the smallest integer for which ei evaluates to true. Note that this choice
is deterministic. Finally, process constants provide a mechanism for including
recursion in the calculus.

Moving on to the species level, we employ the special species process R defined
as !rep.P . This is a replicated process which may always receive input through
channel rep and create new instances of process P , where P is a new individual
of species R.

Finally, population systems are built by composing in parallel located indi-
viduals and species. An individual is defined as P :≡s, Σ∈, where s and Σ are the
species and the location of the individual, respectively. A species is given by
R:≡s∈, where s is the name of the species. In a composition S1 | S2 the compo-
nents may proceed independently on their channel-based actions or synchronize
with one another while executing complementary actions, in the ccs style, and
they must synchronize on their

⇑
actions. Essentially, the intention is that, in

any given round of the lifetime of the individuals, all individuals perform their
available actions possibly synchronizing as necessary until they synchronize on
their next

⇑
action and proceed to their next round. Finally, S\L models the

restriction of the channels in set L within S. As a syntactic shortcut, we will
write P :≡s, Σ, n∈ for the parallel composition of n copies of process P :≡s, Σ∈.

2.2 The Unprioritized Semantics

The semantics of palps is defined in terms of a structural operational semantics
given at the level of configurations of the form (E,S), where E is an environment
and S is a population system. The environment E is an entity of the form
E ⊇ Loc × S × N, where each pair Σ and s is represented in E at most once
and where (Σ, s,m) ∪ E denotes the existence of m individuals of species s at
location Σ. The environment E plays a central role in evaluating expressions.

Initially, we define the unprioritized semantics of palps. This semantics is
then refined into the prioritized semantics which takes into account the notion of
policies in Sect. 2.3. The unprioritized semantics is given in terms of two transi-
tion relations: the non-deterministic relation −→n and the probabilistic relation

350 A. Philippou and M. Toro

−→p. A transition of the form (E,S) α−→n (E∼, S∼) means that a configura-
tion (E,S) may execute action α and become (E∼, S∼). A transition of the form
(E,S) w−→p (E∼, S∼) means that a configuration (E,S) may evolve into configu-
ration (E∼, S∼) with probability w. Action α appearing in the non-deterministic
relation may have one of the following forms:

– aα,s and aα,s denote the execution of actions a and a respectively at location
Σ by an individual of species s.

– τa,α,s denotes an internal action that has taken place on channel a, at location
Σ, and where the output on a was carried out by an individual of species s.
This action may arise when two complementary actions take place at the same
location Σ or when a move action take place from location Σ.

Due to the space limitations, the rules of the palps semantics are omitted.
The interested reader may refer to [23] for the details.

2.3 Policies and Prioritized Semantics

We are now ready to define the notion of a policy and refine the semantics
of palps accordingly. A policy π is a partial order on the set of palps non-
probabilistic actions. By writing (α, ε) ∪ π we imply that action ε has higher pri-
ority than α and whenever there is a choice between α and ε, ε should always be
selected. For example, the policy π = {(reproduceα,s,disperseα,s)|Σ ∪ Loc} spec-
ifies that, at each location, dispersal actions of species s should take place before
reproduction actions. On the other hand π = {(reproduceα1,s,disperseα1,s),
(disperseα2,s, reproduceα2,s)} specifies that, while dispersal should proceed repro-
duction at location Σ1, the opposite should hold at location Σ2.

To achieve this effect the semantics of palps need to be refined with the
use of a new non-deterministic transition system. This new transition relation
prunes away all process executions that do not respect the priority ordering
defined by the applied policy. Precisely, given a palps system S and a policy π
then, the semantics of the initial configuration (E,S) under the policy π is given
by −→p √ −→ε where the prioritized nondeterministic transition relation −→ε

is defined by the following rule:

(E,S) α−→n (E∼, S∼) and (E,S) ⇒ β−→n, (α, ε) ∪ π

(E,S) α−→ε (E∼, S∼)

2.4 Examples

Example 1. We consider a simplification of the model presented in [28] which
studies the reproduction of the parasitic Varroa mite. This mite usually attacks
honey bees and it has a pronounced impact on the beekeeping industry. In this
system, a set of individuals reside on an n × n lattice of resource sites and go
through phases of reproduction and dispersal. Specifically, the studied model
considers a population where individuals disperse in space while competing for

Process Ordering in a Process Calculus 351

a location site during their reproduction phase. They produce offspring only if
they have exclusive use of a location. After reproduction the offspring disperse
and continue indefinitely with the same behavior. In palps, we may model the
described species s as R

def= !rep.P0, where

P0
def= •

∑

α→Nb(myloc)

1
|Nb(myloc)| : go Σ.cond (s@myloc = 1 � P1; true � ⇑

.P0)

P1
def= rep.(p:

⇑
.P0 ∀ (1 − p):rep.

⇑
.P0)

We point out that the conditional construct allows us to determine the exclusive
use of a location by an individual. The special label myloc is used to denote the
actual location of an individual within a system definition. Furthermore, note
that P1 models the probabilistic production of one or two children of the species.
During the dispersal phase, an individual moves to a neighboring location which
is chosen equiprobably among the neighbors of its current location. A system that
contains two individuals at a location Σ and one at location Σ∼ can be modeled
as

System
def= (P0:≡Σ, s, 2∈|P0:≡Σ∼, s∈|(!rep.P0):≡s∈)\{rep}.

In order to refine the system so that during each cycle of the individuals’
lifetime all dispersals take place before the reproductions, we may employ the
policy {(τrep,α,s, τgo,α′,s)|Σ, Σ∼ ∪ Loc}. Then, according to the palps semantics,
possible executions of System have the form:

System
w−→p (go Σ1. . . . :≡Σ, s∈|go Σ2. . . . :≡Σ, s∈|go Σ3. . . . :≡Σ∼, s∈)\{rep}

τgo,�1,s−→ ε (cond (. . .):≡Σ1, s∈|go Σ2. . . . :≡Σ, s∈|go Σ3. . . . :≡Σ∼, s∈)\{rep}

for some probability w and locations Σ1, Σ2, Σ3, where no component will be able
to execute the rep action before all components finish executing their movement
actions.

Example 2. Let us now extend the previous example into a two-species system.
In particular, consider a competing species s∼ of the Varroa mite, such as the
pseudo-scorpion, which preys on s. To model this, we may define the process
R

def= !rep∼.Q0, where

Q0
def= cond (s@myloc → 1 � Q1, s@myloc < 1 � Q2)

Q1
def= prey.Q3 + rep∼.Q4

Q2
def= rep∼.

⇑
.Q5

Q3
def= rep∼.

⇑
.Q0

Q4
def= cond (s@myloc → 1 � prey.

⇑
.Q, s@myloc < 1 � ⇑

.Q5)

Q5
def= cond (s@myloc → 1 � prey.Q3, s@myloc < 1 � 0)

352 A. Philippou and M. Toro

An individual of species s∼ initially has a choice between preying or producing
an offspring. If it succeeds in locating a prey then it preys on it. If it fails then
it makes another attempt in the next cycle. If it fails again then it dies.

To implement the possibility of preying on the side of s, its definition must be
extended with complementary input actions on channel prey at the appropriate
places:

P0
def
= •
∑

�∈Nb(myloc)

1

|Nb(myloc)| : (go α.cond (s@myloc = 1 � P1; true � √
.P0) + prey.0)

P1
def
= rep.(p:

√
.P0 ⊕ (1 − p):rep.

√
.P0) + prey.0

In this model it is possible to define an ordering between the actions of a single
species, between the actions of two different species or even between actions on
which individuals of the two different species synchronize. For instance, to specify
that preying takes place in each round before individuals of species s disperse
and before individuals of species s∼ reproduce we would employ the policy

π = {(τgo,α,s, τprey,α,s′), (τrep′,α,s′ , τprey,α,s′)|Σ ∪ Loc}.

Furthermore, to additionally require that reproduction of species s precedes
reproduction of species s∼, we would write π √ {(τrep′,α,s′ , τrep,α,s)|Σ ∪ Loc}.

3 Translating PALPS into PRISM

In this section we turn to the problem of model checking palps models extended
with policies. As is the case of palps without policies, the operational semantics
of palps with policies gives rise to transition systems that can be easily trans-
lated to Markov decision processes (MDPs). As such, model checking approaches
that have been developed for MDPs can also be applied to palps models. prism
is one such tool developed for the analysis of probabilistic systems. Specifically,
it is a probabilistic model checker for Markov decision processes, discrete time
Markov chains, and continuous time Markov chains. For our study we are inter-
ested in the MDP support of the tool which offers model checking and simulation
capabilities of prism models.

In [24] we defined a translation of palps into the MDP subset of the prism
language and we explored the possibility of employing the probabilistic model
checker prism to perform analysis of the semantic models derived from palps
processes. In this paper, we refine the translation of [24] for taking policies into
account. In the remainder of this section, we will give a brief presentation of
the prism language, sketch an encoding of (a subset of) palps with policies into
prism and state its correctness.

3.1 The PRISM Language

The prism language is a simple, state-based language, based on guarded com-
mands. A prism model consists of a set of modules which can interact with each

Process Ordering in a Process Calculus 353

other on shared actions following the CSP-style of communication [1]. Each mod-
ule possesses a set of local variables which can be written by the module and
read by all modules. In addition, there are global variables which can be read
and written by all modules. The behavior of a module is described by a set of
guarded commands. When modeling Markov decision processes, these commands
take the form:

[act] guard p1 : u1 + ... + pm :um;

where act is an optional action label, guard is a predicate over the set of
variables, pi ∪ (0, 1] and ui are updates of the form:

(x∼
1 = ui,1) & ... & (x∼

k = ui,k)

where ui,j is a function over the variables. Intuitively, such an action is enabled
in global state s if s satisfies guard. If a command is enabled then it may be
executed in which case, with probability pi, the update ui is performed by setting
the value of each variable xj to ui,j(s) (where x∼

j denotes the new value of variable
xj).

A model is constructed as the parallel composition of a set of modules. The
semantics of a complete prism model is the parallel composition of all modules
using the standard csp parallel composition. This means that all the modules
synchronize over all their common actions (i.e., labels). For a transition arising
from synchronization between multiple processes, the associated probability is
obtained by multiplying those of each component transition. Whenever, there is a
choice of more than one commands, this choice is resolved non-deterministically.
We refer the reader to [1] for the full description and the semantics of the prism
language.

3.2 Encoding PALPS with Policies into the PRISM Language

As observed in [19], the main challenge of translating a ccs-like language (like
palps) into prism is to map binary ccs-style communication over channels to
prism’s multi-way (csp-style) communication. Our approach for dealing with
this challenge in [24], similarly to [19], was to introduce a distinct action for
each possible binary, channel-based communication which captures the channel
as well as the sender/receiver pair.

In palps with policies the translation becomes more complex because, at any
point, we need to select actions that are not preempted by other enabled actions.
For, suppose that a policy π specifies that (α, ε) ∪ π. This implies that, at any
point during computation, we must have information as to whether ε is enabled.
To implement this in prism, we employ a variable nβ which records the number
of εs enabled. To begin with, this variable must be appropriately initialized.
Subsequently, it is updated as computation proceeds: once a ε is executed then
nβ is decreased by 1 and when a new occurrence becomes enabled it is increased
by 1. Thus, if (α, ε) ∪ π, execution of action α in any module of a model should
have as a precondition that nβ = 0.

354 A. Philippou and M. Toro

To translate palps into the prism language, we translate each process into
a module. The execution flow of a process is captured with the use of a local
variable within the module whose value is updated in every command in such as
way that computation is guided through the states of the process. Then, each
possible construct of palps is modeled via a set of commands. For example, the
probabilistic summation is represented by encoding the probabilistic choices into
a prism guarded command. Non-deterministic choices are encoded by a set of
simultaneously enabled guarded commands that capture all non-deterministic
alternatives, whereas the conditional statement is modeled as a set of guarded
commands, where the guard of each command is determined by the expressions
of the conditional process.

Unfortunately, the replication operator cannot be directly encoded into prism
since the prism language does not support the dynamic creation of modules. To
overcome this problem, we consider a bounded-replication construct of the form
!mP in which we specify the maximum number of P ’s, m, that can be created
during computation.

In the remainder of this section we present the translation of a simple palps
model into prism considering the main ideas of the encoding. This model is an
instantiation of the model in Example 1. The full details of the translation can
be found in [23].

Example 3. Consider a habitat consisting of four patches {1, 2, 3, 4}, where Nb
is the symmetric closure of the set {(1, 2), (1, 3), (2, 4), (3, 4)}. Let s be a species
residing on this habitat defined according to the bounded replication R

def=
!mrep.P0 and where:

P0
def= •

∑

α→Nb(myloc)

1
2

: go Σ.cond (s@myloc = 1 � P1; true � ⇑
.P0)

P1
def= rep.(0.7:

⇑
.P0 ∀ 0.3:rep.

⇑
.P0)

Now, consider a system initially consisting of two individuals, at locations 1 and
2:

System
def= (P0:≡s, 1∈ | P0:≡s, 2∈ | R:≡s∈)\{rep}

Further, suppose that we would like to analyze the system under the policy
where dispersal precedes reproduction: {(τrep,α,s, τgo,α′,s)|Σ, Σ∼ ∪ Loc}.

In order to translate System under policy π in the prism language we first
need to encode global information relating to the system. This consists of four
global variables that record the initial populations of each of the locations and
a variable that records the number of enabled occurrences the higher-priority
actions referred to in the policy π, that is, of τgo,s,α. We also include a global
variable i that measures the inactivated individuals still available to be triggered.
Initially i = m. Finally, we make use of a global variable pact which takes values
from {0, 1} and expresses whether there is a probabilistic action enabled. It is
used to give precedence to probabilistic actions over nondeterministic actions as
required by the palps semantics. Initially, pact = 0.

Process Ordering in a Process Calculus 355

module P1

st1 : [1..12] init 1;
loc1: [1..4] init 1;

[prob] (st1=1) -> 0.5:(st1’=2)&(n_g’=n_g+1)&(pact’=0)
+ 0.5:(st1’=3)&(n_g’=n_g+1)&(pact’=0);

[] (pact=0)&(st1=2)&(loc=1) -> (loc’=2)&(s1’=s1-1)&(s2’=s2+1)
&(n_g’=n_g-1)&(st’=4);

[] (pact=0)&(st1=3)&(loc=1) -> (loc’=3)&(s1’=s1-1)&(s3’=s3+1)
&(n_g’=n_g-1)&(st’=4);

... // All possible locations are enumerated

[] (pact=0)&(st1=4)&(loc=1)&(s1=1) -> (st1=5);
[] (pact=0)&(st1=4)&(loc=1)&(s1!=1) -> (st1=10);
... // All possible locations are enumerated

[] (pact=0)&(st1=5)&(i>0)&(n_g=0) -> (s1’=s1+1)&(i’=i-1)&(st’=6);
[rep_1_3] (pact=0)&(st1=6) -> (st1’=7)&(pact’=1);
... // All activation possibilities are enumerated
[prob] (pact=0)&(st1=7) -> 0.7:(st1’=10)&(pact’=0)

+ 0.3:(st1’=8)&(pact’=0);
[] (pact=0)&(st1=8)&(i>0)&(n_g=0) -> (s1’=s1+1)&(i’=i-1)&(st’=9);
[rep_1_3] (pact=0)&(st1=9) -> (st1’=10);
... // All activation possibilities are enumerated

[tick] (st1=10) -> (st1’=11);
[] (st1=11) -> (pact’ = 1)&(st1’=12);
[tick’] (st1=12) -> (st’=11);

[prob] (pact=1)&(st!=1)&(st!=7) -> (pact’=0)
endmodule

Fig. 1. prism code for an active individual

global s1, s2: [0,m+2] init 1; global n_g: [0,m+2] init 0;

global s3, s4: [0,m+2] init 0; global pact: [0,1] init 0;

global i: int init m;

We continue to model the two individuals P0:≡s, 1∈ and P0:≡s, 2∈. Each indi-
vidual will be described by a module. In Fig. 1, we may see the translation of
individual P0:≡s, 1∈. Individual P0≡s, 2∈ is defined similarly.

In the translation of P0:≡s, 1∈, we observe that its location variable loc1 is set
to 1 and variable st1, recording its state, is set to 1, the initial state of the module.
Overall, the module has 12 different states. Furthermore, all non-probabilistic
actions have pact = 0 as a precondition.

From state 1 the module may non-deterministically decide on the location to
which the individual will disperse (horizontal or vertical dispersal) while variable

356 A. Philippou and M. Toro

ng is increased by one as the go action becomes enabled. This is implemented from
states 2 and 3 respectively where the number of individuals of the source and des-
tination locations are updated accordingly and the variable ng is decreased by one
as there is now one fewer movement action enabled. Then, in state 4 the module
determines if there exist more than one individuals in its current location. If yes,
then the state progresses to 10 where the individual will synchronize on the tick.
Otherwise, in state 5, assuming that there is no dispersal action available for exe-
cution (ng = 0) and there is still an inactive individual to be activated (i > 0),
variables i and sloc are updated and the flow of control is passed on to state 7
where a synchronization with an inactive module is performed. This process is
repeated in states 7–9 where a second offspring may be produced probabilistically.
Finally, we point out that the tick action is implemented via three actions in prism
(states 10–12): initially all modules are required to synchronize on the tick action,
then they all perform their necessary updates on variable pact since a probabilistic
action has become enabled and, finally, the modules are required to synchronize
again before they may start to execute their next time step.

Moving on to the encoding of R, as we have already discussed, we achieve this
via bounded replication which makes an assumption on the maximum number
of new individuals that can be created in a system. Given this assumption,
our model must be extended by an appropriate number of inactive individuals
awaiting for a trigger via a rep i j action. It then proceeds with the code of P0

just like an active individual.

Regarding the correctness of the proposed translation, we have proved the
existence of a weak bisimulation between a palps model and its prism transla-
tion by showing that a move of the palps model can be mimicked by its transla-
tion in a finite number of steps, and that this set of steps is performed atomically,
in the sense that no other action within the prism model may interfere with the
execution of the palps step. Similarly, any move of the prism translation can be
mimicked by the original palps system. This proof of correctness is presented
in [23].

4 A Case Study in PRISM

In this section, we apply our methodology for the simulation and model checking
of palps systems using the prism tool. We begin by considering the system in
Example 1, Sect. 2.4, which was also considered in [24] and can thus serve as
a benchmark for studying the effect of applying policies on systems and, in
particular, the degree by which policies reduce the state space of a prism model.
In our model we will assume a lattice of locations of size n×n (for n = 4, 9, 16).
Furthermore, we assume periodic boundaries conditions so that the opposite
sides of the grid are connected together and we instantiate p = 0.4.

The prism encoding of the system follows the translation methods presented
in Sect. 3. We performed some obvious optimizations in order to reduce the size
of our model. All the tests were performed on a G46VW Asus laptop with an

Process Ordering in a Process Calculus 357

Table 1. Performance of building probabilistic models in prism with and without
policies.

Case study Number of Number of Construction ram
size states transitions time (s) (GB)

No policy [24]
3 palps individuals 130397 404734 8 0.5
4 palps individuals 1830736 7312132 101 1.9
Policy β
3 palps individuals 27977 64282 3 0.3
4 palps individuals 148397 409342 10 0.7
Extended policy
3 palps individuals 20201 41602 3 0.3
4 palps individuals 128938 310393 9 0.6

Intel i5 2.50 GHz processor and 8 GB of ram. We ran the tests under Linux
Ubuntu 13.04 (Kernel 3.8.0 17), using prism 4.0.3 with the mtbdd engine for
model checking and ci method for simulation, and Java 7.

As a first experiment, we explored and compared the effect of applying poli-
cies on the state space of the system in question. Specifically, individuals in the
system may engage in two activities: reproduction and dispersal. Let us assume
an ordering of these two activities so that reproduction follows dispersal. This
gives rise to the policy π = {(τrep,α,s, τgo,α,s) | Σ ∪ Loc}. In Table 1, we summa-
rize the results we obtained. We may observe that applying policy π has resulted
in a reduction in the size of the states spaces by a factor of 10 (see cases No
policy and Policy π). A further reduction was achieved by further extending our
policy to enforce an order between the execution of actions among individuals.
Specifically, for each action (e.g., reproduction), the individuals executed the
action in an increasing order in terms of their module identifier. This extended
policy resulted in a further reduction of the state space by about 20 %.

As a second experiment, we attempted to determine the limits for simulating
palps models. We constructed prism models with various numbers of modules
of active and inactive individuals and we run them on prism. In Table 2, we
summarize the results. It turns out that for models with more than 5000 indi-
viduals simulation requires at least 12 h (which was the time limit we set for our
simulations).

Consequently, we redeveloped our model of the Varroa mite according to the
description presented in [28]. In contrast to Example 1, the new model features
mortality. Specifically, the new model has two parameters: b the offspring size
and p the probability to survive before breeding. Each mite begins its life by
being exposed to death and it survives with a probability p. In case of survival,
it disperses to a new location. If it has exclusive use of the location then it
produces an offspring of size b and it dies. If the location is shared with other
mites then all mites die without reproducing. As before, we model space as a
lattice with periodic boundary conditions and the probability of dispersal from
a location to any of its four neighbors equal to 1/4. As in the previous example,

358 A. Philippou and M. Toro

Table 2. Performance of simulating probabilistic systems in prism.

Individuals File size (MB) RAM (GB) Simulation time (s)

10 0.1 0.18 1
100 0.4 0.3 8
500 2.0 0.5 45
1000 4.2 1.0 300
1500 6.2 0.7 454
2000 8.2 0.9 820
5000 20.1 2.0 > 12 h
10000 44.1 3.4 > 12 h

in our system we employed the policy specifying that the process of dispersal
precedes reproduction. Formally, the behavior of a mite is defined as follows:

P
def= p:P1 + (1 − p):

⇑
.0

P1
def= •

∑

α→Nb(myloc)

1
4

: go Σ.cond (s@myloc = 1 � P2; true � ⇑
.0)

P2
def= repb.

⇑
.0 where repb def= rep...rep

︸ ︷︷ ︸
b times

For our experiments, we took advantage of the model checking capabilities
of prism and we checked properties by using the model-checking by simulation
option, referred to as confidence interval (ci) simulation method. The property
we experimented with is R =?[I = k]. This property is a reward-based property
that computes the average state instant reward at time k. We were interested
to study the expected size of the population. For this, we associate to each state
a reward representing this size. In our experiments, we varied the size of the
initial population (i), while the probability of surviving (p) and the offspring
size (b) were fixed to p = 0.9 and b = 3, and the lattice was of size 4 × 4. The
number of idle processes was fixed to n× b− i, which is sufficient to avoid dead-
locks. The results of the experiments, shown in Fig. 2, demonstrate a tendency
of convergence to a stable state and an independence of the initial population
for i > 8.

We also analyzed, for this model, the effect of the parameters b and p on the
evolution of the average total number of individuals through time, with an initial
population of 1 individual, as shown in Figs. 3, 4. The chosen values for p and
b were selected so that they are close to the estimates of the parameters of the
Varroa mite, namely, b = 3 and p = 0.9. Finally, we note that the results may also
be applicable to other species that follow the same, so-called scramble-contest,
behavior such as the bean bruchid that attacks several kind of beans.

Process Ordering in a Process Calculus 359

Fig. 2. Expected population size vs simulation time for different initial sizes of the
population.

Fig. 3. Expected population size vs simulation time for different offspring sizes, for
p = 0.9 and i = 1.

Fig. 4. Expected population size vs simulation time for different probabilities of sur-
vival, for b = 3 and i = 1.

5 Conclusions

In this paper we have extended the process calculus palps with the notion of
a policy. A policy is an entity that is defined externally to the process-calculus
description of an ecological system in order to impose an ordering between the
activities taking place within a system as required for the purposes of the analy-
sis. Furthermore, we have described a translation of palps with policies into the
prism language. This encoding can be employed for simulating and model check-
ing palps systems using the prism tool. We experimented with both of these

360 A. Philippou and M. Toro

capabilities and we have illustrated types of analysis that can be performed on
palps models. We have also contrasted our results with those obtained for the
same example in our previous work [24]. We have concluded that applying poli-
cies can significantly reduce the size of the model thus allowing to consider larger
models. For instance, in the example we considered, the state space of the model
was reduced by a factor of 10.

As future work, we intend to investigate further approaches for analysis of
MDPs that arise from the modeling of population systems. One such approach
involves the prism tool and concerns the production of prism input: we intend
to explore alternatives of producing such input possibly via constructing and
providing prism directly the Markov decision process associated with a palps
system. We expect that this will result in smaller state spaces than those aris-
ing via our palps-to-prism translation. Furthermore, we would like to explore
other directions for reducing the state-space of palps models e.g. by defining
an enhanced semantics of palps to enable a more succinct presentation of sys-
tems especially in terms of the multiplicity of individuals, as well as defining a
symbolic semantics which applies a symbolic treatment of environments.

Another direction that we are currently exploring is the application of our
methodology to new and complex case studies from the local habitat and the
exploration of properties such as extinction (e.g., the expected time until extinc-
tion), persistence (e.g., the long-term average of the number of sites occupied at
a given time) and spatial indices (e.g., the correlation among nearby locations
in space, patch shape analysis and the number of subpopulations in a spatially
dispersed metapopulation) similarly to [27].

Finally, an interesting future research direction would be extend the work
of [16] towards the development of mean-field analysis to represent the average
behavior of systems within a spatially-explicit framework.

References

1. Online PRISM documentation. http://www.prismmodelchecker.org/doc/
2. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G.: Spatial calculus of

looping sequences. Theoret. Comput. Sci. 412(43), 5976–6001 (2011)
3. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: A calculus of looping

sequences for modelling microbiological systems. Fund. Inf. 72(1–3), 21–35 (2006)
4. Berec, L.: Techniques of spatially-explicit individual-based models: construction,

simulation, and mean-field analysis. Ecol. Model. 150, 55–81 (2002)
5. Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G.: Modelling metapopulations with

stochastic membrane systems. BioSystems 91(3), 499–514 (2008)
6. Bioglio, L., Calcagno, C., Coppo, M., Damiani, F., Sciacca, E., Spinella, S., Troina,

A.: A Spatial Calculus of Wrapped Compartments. CoRR, abs/1108.3426 (2011)
7. Cardona, M., Colomer, M.A., Margalida, A., Palau, A., Pérez-Hurtado, I., Pérez-

Jiménez, M.J., Sanuy, D.: A computational modeling for real ecosystems based on
P systems. Nat. Comput. 10(1), 39–53 (2011)

8. Chen, Q., Ye, F., Li, W.: Cellular-automata-based ecological and ecohydraulics
modelling. J. Hydroinf. 11(3/4), 252–272 (2009)

http://www.prismmodelchecker.org/doc/

Process Ordering in a Process Calculus 361

9. Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis
of biological systems. Theoret. Comput. Sci. 410(33–34), 3065–3084 (2009)

10. Cleaveland, R., Lüttgen, G., Natarajan, V.: Priority in process algebras. Technical
report, Langley Research Center, NASA, USA (1999)

11. Drábik, P., Maggiolo-Schettini, A., Milazzo, P.: Modular verification of interactive
systems with an application to biology. Sci. Ann. Comp. Sci. 21(1), 39–72 (2011)

12. Gerber, L.R., VanBlaricom, G.R.: Implications of three viability models for the con-
servation status of the western population of Steller sea lions (Eumetopias jubatus).
Biol. Conserv. 102, 261–269 (2001)

13. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

14. McCaig, C., Fenton, A., Graham, A., Shankland, C., Norman, R.: Using process
algebra to develop predator–prey models of within-host parasite dynamics. J.
Theor. Biol. 329, 74–81 (2013)

15. McCaig, C., Norman, R., Shankland, C.: Process algebra models of population
dynamics. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.)
AB 2008. LNCS, vol. 5147, pp. 139–155. Springer, Heidelberg (2008)

16. McCaig, C., Norman, R., Shankland, C.: From individuals to populations: a mean
field semantics for process algebra. Theoret. Comput. Sci. 412(17), 1557–1580
(2011)

17. Milner, R.: A Calculus of Communicating Systems. Springer, Heidelberg (1980)
18. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts 1 and 2.

Inf. Comput. 100, 1–77 (1992)
19. Norman, G., Palamidessi, C., Parker, D., Wu, P.: Model checking probabilistic and

stochastic extensions of the ρ-calculus. IEEE Trans. Softw. Eng. 35(2), 209–223
(2009)

20. Pardini, G.: Formal modelling and simulation of biological systems with spatiality.
Ph.D thesis, University of Pisa (2011)

21. Pearson, R.G., Dawson, T.P.: Long-distance plant dispersal and habitat fragmenta-
tion: identifying conservation targets for spatial landscape planning under climate
change. Biol. Conserv. 123, 389–401 (2005)

22. Pescini, D., Besozzi, D., Mauri, G., Zandron, C.: Dynamical probabilistic P-
systems. J. Found. Comput. Sci. 17(1), 183–204 (2006)

23. Philippou, A., Toro, M.: Process ordering in a process calculus for spatially-explicit
ecological models. Technical report, Department of Computer Science, University
of Cyprus, 2013. http://www.cs.ucy.ac.cy/∼annap/pt-tr.pdf

24. Philippou, A., Toro, M., Antonaki, M.: Simulation and verification for a process
calculus for spatially-explicit ecological models. Sci. Ann. Comput. Sci. 23(1), 119–
167 (2013)

25. Păun, G.: Computing with membranes (P systems): an introduction. In: Rozen-
berg, G., Salomaa, A. (eds.) Current Trends in Theoretical Computer Science, pp.
845–866. World Scientific, Singapore (2001)

26. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: an
abstraction for biological compartments. Theoret. Comput. Sci. 325(1), 141–167
(2004)

27. Ruxton, G.D., Saravia, L.A.: The need for biological realism in the updating of
cellular automata models. Ecol. Model. 107, 105–112 (1998)

28. Sumpter, D.J.T., Broomhead, D.S.: Relating individual behaviour to population
dynamics. Proc. Roy. Soc. B: Biol. Sci. 268(1470), 925–932 (2001)

29. Tofts, C.: Processes with probabilities, priority and time. Formal Aspects Comput.
6, 536–564 (1994)

http://www.cs.ucy.ac.cy/~annap/pt-tr.pdf

DISPAS: An Agent-Based Tool
for the Management of Fishing Effort

Pierluigi Penna1,2(B), Nicola Paoletti1, Giuseppe Scarcella2, Luca Tesei1,
Mauro Marini2, and Emanuela Merelli1

1 School of Science and Technology, University of Camerino, Via del Bastione 1,
62032 Camerino, Italy

p.penna@an.ismar.cnr.it
2 Institute of Marine Sciences, National Research Council of Italy,

Largo Fiera della Pesca, 60125 Ancona, Italy

Abstract. We introduce DISPAS, Demersal fIsh Stock Probabilistic
Agent-based Simulator, with the aim of helping to investigate and under-
stand sustainability in the exploitation of fishery resources. The simula-
tor has capabilities for exploring different fishing scenarios, focusing on
the case study of the common sole (Solea solea) stock in the Northern
Adriatic Sea (Mediterranean Sea). In order to assess and predict the
availability of the fish stock under different fishing efforts, the simulator
allows the user to specify fishing mortality rates (F) on a monthly basis.
We present some preliminary results simulating different scenarios.

Keywords: Ecosystem science · Simulation of biological systems ·
Agent-based methodologies · Fish stock assessment · Common sole ·
Adriatic Sea

1 Introduction

The World Summit on Sustainable Development (WSSD) [1], held in August
2002, laid the foundation for a radical shift about how marine ecosystems and
fisheries are to be managed in the future. In particular WSSD agreed to restore
the worlds depleted fish stocks to levels that can produce the maximum sus-
tainable yield (MSY) on an urgent basis where possible no later than 2015.
After 10 years from the adoption of WSSD, Europe is still far from achieving
these objectives [2] especially in the Mediterranean area [3]. Most of the fish
stocks in European waters, 88 %, are estimated as being overfished and 30 % of
them are outside safe biological limits, which means they may not be able to
replenish [4]. To reach an healthy state of the resources it is important to know
their population dynamics, which is often difficult to estimate [5]. Thus, a big
effort of the scientific community has been directed towards the development
of modelling approaches and techniques (e.g. maximum likelihood methods and
Bayesian analysis) as new kinds of toolkit for understanding the dynamic of fish-
ery exploited marine resources [6]. Within this framework, the use of agent-based

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 362–367, 2014.
DOI: 10.1007/978-3-319-05032-4 26, c© Springer International Publishing Switzerland 2014

DISPAS: An Agent-Based Tool for the Management of Fishing Effort 363

techniques represents - as in the present study - a new powerful tool in order to
use the little pieces of information coming from scientific survey at sea in order
to assure faithful modelling, towards sustainable exploitation of the stocks.

In this work, the simulator is used for the assessment of the common sole stock
of the northern Adriatic Sea (Mediterranean sea). Only fishery-independent
data, coming from a specific scientific survey (SoleMon survey) [7], were used.
The case of Solea solea in the Northern Adriatic Sea is exemplary because the
management of fishery resources, despite the results of the studies, has been
defective. This is especially true for the young portion of the stock that continues
to be exploited at unsustainably high levels [8], particularly in juveniles aggrega-
tion areas and periods [9]. Using the simulator it will be possible to understand
the correct exploitation pressure on the stock. This can provide long-term high
yields and low risk of stock/fishery collapse and can ensure that the sole stock
is restored at least at levels that could produce the maximum sustainable yield.

2 Model of a Sole Behaviour

In [10] an automata-based formalism, extended probabilistic discrete timed
automata (EPDTA), was introduced with the aim of modelling the essential
behaviour of an individual of a fish population. An EPDTA is able to express
time passing in a discrete domain - using special clock variables - and to specify
constraints on the transitions from a state to another state of the individual.
Such constraints depend on the values of clock variables or of other variables.
Transitions can reset clocks and/or update the values of non-clock variables.
The target state of any transition is determined probabilistically using a discrete
probability distribution on the state space. We refer to [10] for the full definition
of the EPDTA model. In Fig. 1 the simplified model (without breeding) of the
sole behaviour is shown. The clock t measures absolute time, in months, since
the starting of the system. The clock x is used for updating the sole on a monthly
base. As common in their biological study, the sole population is partitioned in
six classes, characterised by ranges of length. From state “class i”, the invariant
x ≤ 1 combined with the transition guard x = 1 forces to go (with probability
1) to state “chkM i” while the age (in months) of the sole is increased by 1 and
the new length is calculated using the function fVB. This function uses the The
von Bertalanffy growth function [11] to estimate the length of the sole at its
age and at the particular time t. This permits to model a different growth rate
at different absolute times due to, for instance, abundance or scarcity of food.
In state “chkM i” (“chkF i”) the sole can die for natural causes with a certain
probability PrM(i, t) (can be fished with probability PrF(i, t), respectively). The
probabilities are inferred from real survey data and are distributed along the year
with different weights, in such a way that, for instance, a temporary protection
period of fishing can be modelled. If the sole does not die and is not fished, then
it enjoys another month of life in the same class (returns in state “class i”) or
in the next class (goes to state“class i + 1”) if, in the meantime, its length has
been increased to the next class range. In both cases the clock x is reset to zero
in order to let another month pass in state “class i” (or “class i + 1”).

364 P. Penna et al.

Fig. 1. Part of an EPDTA representing the behaviour of a sole in class i. The double
circled state is the initial one when i = 0. From state chkL i the automaton goes to the
next class i+ 1 if the length of the sole is sufficient to be considered in the new class.

3 From Model to Simulator

A population of virtual soles has been instructed, each with its individual behav-
iour, and they have been monitored along a (simulated) period of time of 10 years.
Following the MAS (Multi-Agent System) paradigm, an environment has been
created in which sole agents (about 500 in a simulated square kilometre) behave
accordingly to the EPDTA model in Sect. 2.

We employed Repast Simphony, Recursive Porous Agent Simulation Toolkit
[12], an agent-based modelling and simulation toolkit used in various application
fields like biological systems, ecology, animal population, food chains, economy
and financial markets. The initial configuration is stored in a file containing
initial population, growth index, length-weight relationship, death index, and so
on. Hence, the user can change the simulation parameters according to the target
fish survey-based real data. In Repast Simphony one can change the properties
of the scheduler. We used this feature for forcing all the agents to be updated
simultaneously at discrete time points corresponding to months.

Accordingly to the species real habit, every year in June (i.e. months 6, 18,
30 and so on, in the simulation) the new born are added. For the first 7 years
(2005–2011), which correspond to the period of the SoleMon survey, the number
of the new born to add come from survey data. After 2011 they are added by
randomly choosing a number taken from a normal distribution whose mean and
standard deviation are calculated form the new born of the last 3 years.

Table 1 shows the probability of natural death and of being fished, related
to fish length classes (0-5+). At each step (1 month) the probabilities PrM(i, t)
and PrF(i, t) are read from the configuration file. PrM(i, t) remains fixed for the
whole duration of the simulation while PrF(i, t) varies for each year.

In the first 7 years we derived PrM(i, t) and PrF(i, t) from surveys made
by marine biologists. Afterwards, we used the values of PrF(i, t) of the last
year available. Future scenarios can be created by modifying PrF(i, t) or other
parameters. At each step the total biomass is calculated as the total weight of live
agents. During the run it is possible to visualise, in real time, the charts about

DISPAS: An Agent-Based Tool for the Management of Fishing Effort 365

Table 1. PrM(i, t) and PrF(i, t), related to sole length classes (0-5+) derived by the
SoleMon scientific survey data.

Class PrM PrF
2005 2006 2007 2008 2009 2010 2011

0 0.041 0 0 0 0 0 0 0
1 0.024 0.122 0.121 0.131 0.100 0.171 0.084 0.115
2 0.020 0.115 0.114 0.155 0.087 0.093 0.144 0.117
3 0.017 0.152 0.153 0.178 0.080 0.195 0.280 0.182
4 0.017 0.129 0.129 0.158 0.080 0.159 0.177 0.139

5+ 0.027 0.129 0.129 0.158 0.080 0.159 0.177 0.139

the evolution of the population (divided by age class) and of total biomass, as
well as the 2D and 3D scenarios of the population. Furthermore, data are saved
into external files in order to be processed with external tools. In the following,
some results obtained using DISPAS are shown and commented.
Biomass trend. In Fig. 2, the red solid line shows the mean of total biomass
computed by 50 runs. Dotted lines represent maximum and minimum values,
while vertical bars show the confidence interval of 5 %. PrM(i, t), PrF(i, t) and
other parameters come from the SoleMon survey data. Note that the total bio-
mass tends to a mean level of almost 15,000 g over square kilometre.

Varying F. We fixed PrM(i, t) and other parameters according to the Sole-
Mon data. PrF(i, t) is set differently to create different scenarios: virgin stock
(PrF=0); PrF taken form SoleMon data; half of SoleMon PrF; and twice Sole-
Mon PrF. Results are shown again in Fig. 2. The blue line (scale is on right axis)
represents the biomass trend of the virgin stock, i.e. a sort of null model that
indicates the ideal population dynamics. Other trends clearly denote the impact
fishing on the total biomass (Fig. 3).
Varying F after the survey period (2005–2011). In this scenario we used
the same PrF(i, t) as before, but we applied them after the period of the SoleMon
scientific survey (2011).

4 Future Work

In order to validate our model, we plan to use SURBA (SURvey-Based Assess-
ments) [13], a well-established model in the context of marine biology. In partic-
ular, SURBA will be fed with the simulation outputs from DISPAS and we will
compare the results with the ones obtained feeding SURBA with real data from
SoleMon. Moreover, we plan to devise a technique for calculating the optimal
protection period of fishery in order to maximise the replenishing of the stock.
Finally, we plan also to define a scenario for calculating the recovery time after
overfishing, i.e. the time that the fish stock takes to reach again a sustainable
level after simulating a period of strong fishing effort.

366 P. Penna et al.

Fig. 2. Results of 50 simulations using SoleMon data (red), virgin stock (blue) and
different fishing scenarios (green and black) (Colour figure online).

Fig. 3. Prediction in different fishing scenarios after 2011 (84 step/month).

DISPAS: An Agent-Based Tool for the Management of Fishing Effort 367

References

1. United Nations: Plan of Implementation of the World Summit on Sustainable
Development (2002)

2. Froese, R., Proel, A.: Rebuilding fish stocks no later than 2015: will Europe meet
the deadline? Fish Fish. 11, 194–202 (2010)

3. Colloca, F., Cardinale, M., Maynou, F., Giannoulaki, M., Scarcella, G., Jenko, K.,
Bellido, J., Fiorentino, F.: Rebuilding Mediterranean fisheries: a new paradigm for
ecological sustainability. Fish Fish. 14, 84–109 (2013)

4. European Commission: Green Paper Reform of the Common Fisheries Policy
(2009)

5. Schnute, J.: Data uncertainty, model ambiguity, and model identification. Nat.
Resourc. Model. 2, 159–212 (1987)

6. Hilborn, R., Mangel, M.: The ecological detective: confronting models with data.
J. Marine Biol. Assoc. U.K. 77, 918–918 (1997)

7. Grati, F., Scarcella, G., Polidori, P., Domenichetti, F., Bolognini, L., Gramolini,
R., Vasapollo, C., Giovanardi, O., Raicevich, S., Celi, I., Vrgo, N., Isajlovic, I.,
Jeni, A., Mareta, B., Fabi, G.: Multi-annual investigation of the spatial distrib-
utions of juvenile and adult sole (Solea solea, L.) in the Adriatic Sea (Northern
Mediterranean). J. Sea Res. 84, 122–132 (2013)

8. Scarcella, G., Fabi, G., Grati, F., Polidori, P., Domenichetti, F., Bolognini, L.,
Punzo, E., Santelli, A., Strafella, P., Brunetti, B., Giovanardi, O., Raicevich, S.,
Celic, I., Bullo, M., Sabatini, L., Franceschini, G., Mion, M., Piras, C., Fortibuoni,
T., Vrgoc, N., Despalatovic, M., Cvitkovi, N., Pengal, P., Marceta, B.: Stock Assess-
ment form of Common Sole in GSA 17. Technical report, ICES Working Group on
Methods of Fish Stock Assessment (2012)

9. Scarcella, G., Grati, F., Raicevich, S., Russo, T., Gramolini, R., Scott, R., Polidori,
P., Domenichetti, F., Bolognini, L., Giovanardi, O., Celic, I., Sabatini, L., Vrgoc,
N., Isajlovic, I., Marceta, B., Fabi, G.: Common sole in the Northern Adriatic Sea:
possible spatial management scenarios to rebuild the stock. J. Sea Res. (submitted)

10. Buti, F., Corradini, F., Merelli, E., Paschini, E., Penna, P., Tesei, L.: An Individual-
based probabilistic model for fish stock simulation. Electron. Proc. Theor. Comp.
Sci. 33, 37–55 (2010). (Proceedings of AMCA-POP 2010)

11. von Bertalanffy, L.: A quantitative theory of organic growth (inquiries on growth
laws II). Hum. biol. 10(2), 181–213 (1938)

12. North, M., Collier, N., Ozik, J., Tatara, E., Altaweel, M., Macal, C., Bragen, M.,
Sydelko, P.: Complex adaptive systems modeling with repast simphony. Complex
Adapt. Syst. Model. 1(3), 1–26 (2013)

13. Needle, C.: Survey-Based Assessments with SURBA. Technical report, ICES Work-
ing Group on Methods of Fish Stock Assessment (2003)

OpenCert 2013

Certifying Machine Code Safe from Hardware
Aliasing: RISC is Not Necessarily Risky

Peter T. Breuer1(B) and Jonathan P. Bowen2

1 Department of Computer Science, University of Birmingham, Birmingham, UK
ptb@cs.bham.ac.uk

2 School of Computing, Telecommunications and Networks,
Birmingham City University, Birmingham, UK

jonathan.bowen@bcu.ac.uk

Abstract. Sometimes machine code turns out to be a better target for
verification than source code. RISC machine code is especially advan-
taged with respect to source code in this regard because it has only two
instructions that access memory. That architecture forms the basis here
for an inference system that can prove machine code safe against ‘hard-
ware aliasing’, an effect that occurs in embedded systems. There are
programming memes that ensure code is safe from hardware aliasing,
but we want to certify that a given machine code is provably safe.

1 Introduction

In a computer system, ‘software’ aliasing occurs when different logical addresses
simultaneously or sporadically reference the same physical location in memory.
We are all familiar with it and think nothing of it, because the same physical
memory is nowadays reused millisecond by millisecond for different user-space
processes with different addressing maps, and we expect the operating system
kernel to weave the necessary illusion of separation. The kernel programmer
has to be aware that different logical addresses from different or even the same
user-space process may alias the same physical location, but the application
programmer may proceed unawares.

We are interested in a converse situation, called ‘hardware’ aliasing, where
different physical locations in memory are sporadically bound to the same logical
address. If software aliasing is likened to one slave at the beck of two masters,
hardware aliasing is like identical twins slaved to one master who cannot tell
which is which. In this paper we will investigate the safety of machine code in
the light of hardware aliasing issues.

Aliasing has been studied before [10] and is the subject of some patents [8,11].
There appears to be no theoretical treatment published, although the subject
is broadly treated in most texts on computer architecture (see, for example,
Chap. 6 of [1]) and is common lore in operating systems kernel programming. The
‘hardware’ kind of aliasing arises particularly in embedded systems where the
arithmetic components of the processor are insufficient to fill all the address lines.

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 371–388, 2014.
DOI: 10.1007/978-3-319-05032-4 27, c© Springer International Publishing Switzerland 2014

372 P.T. Breuer and J.P. Bowen

Suppose, for example, that the memory has 64-bit addressing but the processor
only has 40-bit arithmetic. The extra lines might be grounded, or sent high, and
this varies from platform to platform. They may be connected to 64-bit address
registers in the processor, so their values change from moment to moment as
the register is filled. In that case, it is up to the software to set the ‘extra’ bits
reliably to zero, or one, or some consistent value, in order that computing an
address may yield a consistent result.

We first encountered the phenomenon in the context of the KPU [6,7], a
‘general purpose crypto-processor’, a processor that performs its computations
in encrypted form to provide security against observation and protection from
malware. Because real encryptions are one-many, the calculation for the address
1+1 will mean ‘2’ when decrypted, but may be different in value from another
encryption of 2. If the two are both used as addresses, then two different memory
cell contents are accessed and the result is chaotic. Data addresses are also
encrypted differently from program addresses [5].

The same effect occurs in the embedded system that has processor arithmetic
with fewer bits than there are address lines; add 1+1 in the processor and instead
of 2, 0xff01000000000002 may be returned. If those two aliases of the arithmetic
‘2’ are used as addresses, they access different memory cells. What is meant
both times to be ‘2’ accesses different locations according to criteria beyond the
programmer’s control.

There are programming memes that are successful in an aliasing environment:
if a pointer is needed again in a routine, it must be copied exactly and saved
for the next use; when an array or string element is accessed, the address must
always be calculated in exactly the same way. But whatever the programmer
says, the compiler may implement as it prefers and ultimately it is the machine
code that has to be checked in order to be sure that aliasing is not a risk at run-
time. Indeed, in an embedded environment it is usual to find the programmer
writing in assembler precisely in order to control the machine code emitted.
The Linux kernel consists of about 5% hand-written assembly code, for example
(but rarely in segments of more than 10–15 lines each). One of our long term
objectives is to be able to boot a Linux kernel on an embedded platform with
aliasing, the KPU in particular. That requires both modifying a compiler and
checking the hand-written machine-level code in the open source archive.

An inference system will be set out here that can guarantee a (RISC [2,9])
machine code program safe against hardware aliasing as described. The idea is to
map a stack machine onto the machine code. We will reason about what assem-
bly language instructions for the stack machine do computationally. Choosing
an inference rule to apply to a machine code instruction is equivalent to choos-
ing a stack machine assembly language [5] instruction to which it disassembles
[3,4]. The choice must be such that a resulting proof tree is well-formed, and
that acts as a guide. The stack machine is aliasing-proof when operated within
its intended parameters so verifying alias-safety means verifying that the stack
machine assembly language code obtained by disassembly of the RISC machine
code does not cause the stack machine to overstep certain bounds at run-time.

Certifying Machine Code Safe from Hardware 373

The RISC machine code we can check in this way is ipso facto restricted to
that which we can disassemble. At the moment, that means code that uses string
or string-like data structures and arrays which do not contain further pointers,
and which uses machine code ‘jump and link’ and ‘jump register’ instructions
only for subroutine call and return respectively, and in which subroutines make
their own local frame and do not access the caller’s frame (arguments are passed
to subroutines in registers). These restrictions are not fundamental, but in any
case there are no functional limitations implied by them; one call convention is
functionally as good as another and data structures may always be laid out flat,
as they are in a relational DB.

Mistakes in disassembly are possible: if a ‘jump register’ instruction, for
example, were in fact used to implement a computed goto and not a subroutine
return, it could still be treated as a subroutine return by the verification, which
would end prematurely, possibly missing an error further along and returning a
false negative. A mistaken return as just described would always fail verification
in our system, but other such situations are conceivable in principle. So a human
needs to check and certify that the proposed disassembly is not wrongheaded.
The practice is not difficult because, as noted above, hand-written machine code
at a professional standard consists of short, concise, commented segments. The
difficulty is that there is often a great deal of it to be checked and humans tire
easily. But our system reduces the burden to checking the disassembly proposed
by the system against the comments in the code.

This paper is structured as follows: after an illustration of programming
against aliasing in Sect. 2 and a discussion of disassembly in Sect. 3, code annota-
tion is introduced in Sects. 4, 5 and 6, with a worked example in Sect. 7. Section 8
argues that code annotation gives rise to the formal assurance that aliasing
cannot occur.

2 Programming Memes

We model aliasing as being introduced when memory addresses are calculated in
different ways. That model says that a memory address may be copied exactly
and used again without hazard, but if even 0 is added to it, then a different
alias of the address may result, and reads from the new alias do not return data
deposited at the old alias of the address. Arithmetically the aliases are equivalent
in the processor; they will test as equal but they are not identical, and using
them as addresses shows that up.

Table 1. Aliasing in function foo.

�
foo:

sp -= 32
.
sp += 32
return

foo:
gp = sp
sp -= 32
.
sp = gp
return

That is particularly a problem for
the way in which a compiler – or an
assembly language programmer – renders
machine code for the stack pointer move-
ment around a function call. Classically,
a subroutine starts by decrementing the
stack pointer to make room on the stack
for its local frame. Just before return, it
increments the stack pointer back to its

374 P.T. Breuer and J.P. Bowen

original value. The pseudo-code is shown on the left in Table 1. In an aliasing
context, the attempt at arithmetically restoring the pointer puts an alias of the
intended address in the sp register, and the caller may receive back a stack
pointer that no longer points to the data. The code on the right in Table 1 works
correctly; it takes an extra register (gp) and instruction, but the register con-
tent may be moved to the stack and restored before return, avoiding the loss of
the slot.

Table 2. Aliasing while accessing a string or array.

string �
array �

x = s[2]
s+= 2
x = *s

s++; s++
x = *s

Strings and arrays are
also problematic in an alias-
ing environment because
different calculations for the
address of the same element
cause aliasing. To avoid it,
the strategy we will follow is
that elements of ‘string-like’

structures will be accessed by incrementing the base address in constant steps
(see the pseudo-code at right in Table 2) and array elements will be accessed
via a unique offset from the array base address (see the pseudo-code at left in
Table 2). This technique ensures that there is only one calculation possible for
the address of each string element (it is ((s+1)+1)+0 in Table 2) or array ele-
ment (s+2 in Table 2), so aliasing cannot occur. The middle code in Table 2
gives address (s+2)+0 which matches exactly neither string nor array calcula-
tions. The decision over whether to treat a memory area like a string or an array
depends on the mode of access to be used.

sw r1 k(r2) M → = M ∼ {Rr2 + k →∗ Rr1}; R→ = R; p→ = p+4
lw r1 k(r2) M → = M ; R→ = R ∼ {r1 →∗ M(Rr2 + k)}; p→ = p+4
move r1 r2 M → = M ; R→ = R ∼ {r1 →∗ Rr2}; p→ = p+4
li r1 k M → = M ; R→ = R ∼ {r1 →∗ k}; p→ = p+4
addiu r1 r2 k M → = M ; R→ = R ∼ {r1 →∗ Rr2 + k}; p→ = p+4
addu r1 r2 r3 M → = M ; R→ = R ∼ {r1 →∗ Rr2 +Rr3}; p→ = p+4

nand r1 r2 r3 M → = M ; R→ = R ∼ {r1 →∗ Rr2 &Rr3}; p→ = p+4
beq r1 r2 k M → = M ; R→ = R; if (Rr1 =Rr2) p

→ = k else p→ = p+4
jal k M → = M ; R→ = R ∼ {ra →∗ p+4}; p→ = k
jr r M → = M ; R→ = R; p→ = Rr

Box 1. RISC machine code instructions and their underlying semantics.

Certifying Machine Code Safe from Hardware 375

3 Disassembly

K k = M(s + k) s = R sp, k ∞ 0

R r = Rr r ∩= sp, r ∈ {0, . . . 31}
H a = M a a < s

Box 2. Relation of processor to stack

machine.

Nothing in the machine code indi-
cates which register holds a sub-
routine return address, and that
affects which machine code instruc-
tions may be interpreted as a return
from a subroutine call. To deal
with this and similar issues in
an organised manner, we describe
rules of reasoning about programs
both in terms of the machine code
instruction to which they apply and
an assembly language instruction
for a more abstract stack machine
that the machine code instruction
may be disassembled to and which
we imagine the programmer is
targeting.

The core RISC machine code instructions are listed in Box 1, where their
semantics are given as state-to-state transformations on the three components
of a RISC processor: 32 32-bit registers R, memory M and a 32-bit program
counter p. The corresponding abstract stack machine is described in Box 2.
The stack pointer address s in the machine code processor notionally divides
memory M into two components: stack K above and heap H below. The stack
machine manipulates the stack directly via instructions that operate at the level
of stack operations, and they are implemented in the machine code processor via
instructions that act explicitly on the stack pointer. No stack pointer is available
in the abstract machine. Its registers R consist of the set R in the machine code
processor minus the register that contains the stack pointer, usually the sp
register. The program counter p is the same in the abstract stack machine as in
the machine code processor, because instructions correspond one-to-one between
programs for each machine. However, there is usually a choice of more than one
abstract stack machine instruction that each machine code instruction could
have been disassembled to, even though only one is chosen.

Table 3. Stack machine instructions: the n are small integers, the r are register names
or indices, and the a are relative or absolute addresses.

s ::= cspt r | cspf r | rspf r | push n // stack pointer movement
| get r n | put r n | . . . // stack access
| newx r a n | stepx r n | getx r n(r) | putx r n(r) | . . . // string operations
| newh r a n | lwfh r n(r) | swfh r n(r) | . . . // array operations
| gosub a | return | goto a | ifnz r a | . . . // control operations
| mov r r | addaiu r r n | . . . // arithmetic operations

376 P.T. Breuer and J.P. Bowen

Table 4. Machine code may be disassembled to one of several alternate assembly
language instructions for a stack machine.

move r1 r2

cspt r1
cspf r2
rspf r2
mov r1 r2

addiu r r n
push n
stepx r n
addaiu r r n

lw r1 n(r2)
get r1 n
lwfh r1 n(r2)
getx r1 n(r2)

sw r1 n(r2)
put r1 n
swfh r1 n(r2)
putx r1 n(r2)

lb r1 n(r2)
getb r1 n
lbfh r1 n(r2)
getbx r1 n(r2)

sb r1 n(r2)
putb r1 n
sbth r1 n(r2)
putbx r1 n(r2)

jal a gosub a

jr r return
j a goto a

li r a newx r a n
newh r a n

bnez r a ifnz r a

For example, several different stack machine instructions may all be thought
of as manipulating the hidden stack pointer, register sp in the machine code
processor, and they all are implemented as a move (‘copy’) machine code instruc-
tion. Thus the move instruction disassembles to one of several stack machine
instructions as follows:

1. The cspt r1 (‘copy stack pointer to’) instruction saves a copy of the stack
pointer in register r1. It corresponds to the move r1 sp machine code proces-
sor instruction.

2. The cspf r1 (‘copy stack pointer from’) instruction refreshes the stack pointer
from a copy in r1 that has the same value and was saved earlier (we will
not explore here the reasons why a compiler might issue such a ‘refresh’
instruction). It corresponds to the move sp r1 machine code instruction.

3. The rspf r1 (‘restore stack pointer from’) instruction returns the stack pointer
to a value that it held previously by copying an old saved value from r1. It
also corresponds to move sp r1.

A fourth disassembly of the machine code move instruction, to the stack machine
mov instruction, encompasses the case when the stack pointer is not involved
at all; it does a straight copy of a word from one register to another at the stack
machine level. The full set of stack machine instructions is listed in Table 3, and
their correspondence with RISC machine code instructions is shown in Table 4.

We will not work through all the instructions and disassembly options in
detail here, but note the important push n instruction in the stack machine,
which can be thought of as decrementing the hidden stack pointer by n, extend-
ing the stack downwards. It corresponds to the addiu sp sp m machine code

Certifying Machine Code Safe from Hardware 377

instruction, with m = −n. Also, the stack machine instructions put r1 n and
get r1 n access the stack for a word at offset n bytes, and they correspond to
the machine code sw r1 n(sp) and lw r1 n(sp) instructions, respectively.

The very same machine code instructions may also be interpreted as stack
machine instructions that manipulate not the stack but either a ‘string-like’
object or an array. Strings/arrays are read with getx/lwfh and written with
putx/swth. Table 4 shows that these are implemented by lw/sw in the machine
code processor, applied to a base register r2 ∪= sp. Stepping through a string is
done with the stepx instruction in the stack machine, which is implemented by
addiu in the machine code processor. Introducing the address of a string/array
in the stack machine needs newx/newh and those are both implemented by
the li (‘load immediate’) instruction in the machine code processor.

There are also ‘b’ (‘byte-sized’) versions of the get, lwfh, getx stack machine
instructions named getb, lbfh, getbx respectively. These are implemented by
lb in the machine code processor. For put, swth, putx we have byte versions
putb, sbth, putbx.

4 Introducing Annotations and Annotation Types

Table 5. Non-aliasing
subroutine machine code.

Consider the ‘good’ pseudo-code of Table 1 imple-
mented as machine code and shown in Table 5. How
do we show it is aliasing-safe? Our technique is to
annotate the code in a style akin to verification using
Hoare logic, but the annotation logic is based on the
stack machine abstraction of what the machine code
does. We begin with an annotation that says the sp
register is bound to a particular annotation type on
entry:

{ sp = c!0!4!8 }

The ‘c’ as base signifies a variable pointer value is in register sp. It is the stack
pointer value. The ‘!0!4!8’ means that that particular value has been used as the
base address for writes to memory at offsets 0, 4 and 8 bytes from it, respectively.

The first instruction in subroutine foo copies the stack pointer to register gp
and we infer that register gp also gets the ‘c’ annotation, using a Hoare-triple-
like notation:

{ sp⊥ = c!0!4!8 } move gp sp { sp⊥,gp = c!0!4!8 }

The stack pointer location (in the sp register) should always be indicated by an
asterisk.

378 P.T. Breuer and J.P. Bowen

The arithmetic done by the next instruction destroys the offset information.
It cannot yet be said that anything has been written at some offset from the new
address, which is 32 distant from the old only up to an arithmetic equivalence
in the processor:

{ sp⊥,gp = c!0!4!8 } addiu sp sp -32 {gp = c!0!4!8; sp⊥ = c }

Suppose the annotation on the gp register is still valid at the end of subroutine
foo, so the stack pointer register is finally refreshed by the move instruction
with the same annotation as at the start:

{ sp⊥ = c; gp = c!0!4!8; } move sp gp { sp⊥,gp = c!0!4!8 }

The return (jr ra) instruction does not change these annotations. So the calling
code has returned as stack pointer a value that is annotated as having had values
saved at offsets 0, 4, 8 from it, and the caller can rely on accessing data stored at
those offsets. That does not guarantee that the same value of the stack pointer
is returned to the caller, however. It will be shown below how this system of
annotations may be coaxed into providing stronger guarantees.

5 Types for Stack, String and Array Pointers

The annotation discussed above is not complete. The size in bytes of the local
stack frame needs to be recorded by following the ‘c’ with the frame size as
a superscript. Suppose that on entry there is a local stack frame of size 12
words, or 48 bytes. Then here is the same annotation with superscripts on,
written as a derivation in which the appropriate disassembly of each machine
code instruction is written to the right of the machine code as the ‘justification’
for the derivation:

{sp⊥ = c48!0!4!8}
move gp sp / cspt gp{sp⊥,gp = c48!0!4!8}
addiu sp sp -32/ push 32

{sp⊥ = c32
48

; gp = c48!0!4!8}
...

{sp⊥ = c32
48

; gp = c48!0!4!8}
move sp gp / rspf gp{sp⊥,gp = c48!0!4!8}

The push 32 abstract stack machine instruction makes a new local stack frame
of 8 words or 32 bytes. It does not increase the size of the current frame.
Accordingly, the 32 ‘pushes up’ the 48 in the annotation so that 3248 is
shown. This makes the size of the previous stack frame available to the annota-
tion logic.

Certifying Machine Code Safe from Hardware 379

a ::= r[*], . . . , (n), . . . = t; . . .
t ::= c[n

..
.

]!n! . . . | u[n]!n! . . .

Box 3. Syntax of annotations and types.

A different disassembly of addaiu
r r n is required when r contains a
string pointer, not the stack pointer,
which means that register r lacks the
asterisk in the annotation. The disas-
sembly as a step along a string is writ-
ten stepx r n, and requires n to be pos-
itive. In this case, the string pointer in
r will be annotated with the type

c1̈

meaning that it is a ‘calculatable’ value
that may be altered by adding 1 to it
repeatedly. The form c1̈ hints that a
string is regarded as a stack c1

..
.

that
starts ‘pre-charged’ with an indefinite
number of frames of 1 byte each, which
one may step up through by ‘popping
the stack’ one frame, and one byte, at a
time. So annotation types may be either
like c32

48
or c1̈ and these may be fol-

lowed by offsets !0!4!8! There is just
one more base form, described below,
completing the list in Box 3.

The RISC instruction lw r1 n(r2) is also disassembled differently according
to the annotated type in r2. As get r1 n it retrieves a value previously stored
at offset n in the stack, when n ∅ 0 and r2 is the stack pointer register. As
lwfh r1 n(r2) it retrieves an element in an array from the heap area. In that
case, r2 will be annotated

um

meaning an ‘unmodifiable’ pointer to an array of size m bytes, and m−4 ∅ n ∅ 0.
A third possibility is disassembly as retrieval from a string-like object in the heap,
when, as getx r1 n(r2), register r2 will have a ‘string-like’ annotation of the form
cm̈, meaning that it must be stepped through in increments of m bytes.

Similarly the RISC sw r1 n(r2) instruction can be disassembled as put r1 n
of a value at offset n to the stack, or swth r1 n(r2) to an array or putx r1 n(r2)
to a string, depending on the type bound to register r2. These register types
drive the disassembly.

6 Formal Logic

We can now write down formal rules for the logic of annotations introduced
informally in the ‘derivation’ laid out in the previous section. Readers who would
prefer to see a worked example first should jump directly to Sect. 7.

380 P.T. Breuer and J.P. Bowen

Table 6. Possible disassemblies of machine code instructions as constrained by the
stack pointer register location changes (SP←SP) or absence (×), and changes to the
stack content (‘delta’).

We start with a list of so-called ‘small-step’ program annotations justified by
individual stack machine instructions, each the disassembly of a machine code
instruction. The small-step rules relate the annotation before each machine code
instruction to the annotation after. Table 6 helps to reduce a priori the number
of possible disassemblies for each machine code instruction, but in principle
disassembly to stack machine code does not have to be done first, but can be left
till the last possible moment during the annotation process, as each disassembly
choice corresponds to the application of a different rule of inference about which
annotation comes next. If the corresponding inference rule may not be applied,
then that disassembly choice is impossible.

Here is how to read Table 7. Firstly, ‘offsets variables’ X , Y , etc., stand
in for sets of offset annotations ‘!k’. For example, the put gp 4 instruction is
expected to start with a prior annotation pattern sp⊥ = cf !X for the stack
pointer register. Secondly, the stack pointer register is indicated by an asterisk.
Thirdly, f in the table stands for some particular stack frame tower of integers;
it is not a variable, being always some constant in any particular instance. In
the case of the put gp 4 instruction, f must start with some particular number
at least 8 in size, in order to accommodate the 4-byte word written at offset
4 bytes within the local stack frame. Just ‘8’ on its own would do for f here.
Lastly, ‘type variables’ x , y , etc, where they appear, stand in for full types.

The table relates annotations before and after each instruction. So, in the
case of the put gp 4 instruction, if the prior annotation for the stack pointer
register is sp⊥ = cf !X , then the post annotation is sp⊥ = cf !4!X , meaning
that 4 is one of the offsets at which a write has been made. It may be that 4 is
also a member of the set denoted by X (which may contain other offsets too),
or it may be not in X . That is not decided by the formula, which merely says
that whatever other offsets there are in the annotation, ‘4’ is put there by this
instruction. At any rate, the annotation pattern for the put gp 4 instruction is:

{. . . ; sp⊥ = cf !X ; . . . } put gp 4 {. . . ; sp⊥ = cf !4!X ; . . . }

Certifying Machine Code Safe from Hardware 381

Table 7. ‘Small-step’ annotations on assembly instructions.

{ } newx r m {r =cm̈!X} // Set reg. r content
{r1=cf !Y ; r2=cm̈!X} putx r1 n(r2) {0r1=cf !Y ; r2=cm̈!n!X} // Store word to string

{r2=cm̈!n!X} getx r1 n(r2) {r1=c0; r2=cm̈!n!X} // Load word from string
{r=cm̈!X} stepx r m {r=cm̈!Y } // Step along string

{ } newh r m {r =um!X} // Set reg. r content
{r1=cf !Y ; r2=um!X} swth r1 n(r2) {r1=cf !Y ; r2=um!n!X} // Store word to array

{r2=um!n!X} lwfh r1 n(r2) {r1=c0; r2=um!n!X} // Load word from array
{r1=x ; r∗

2=cf !X } put r1 n {r1,(n)=x ; r∗
2=cf !n!X} // Store word to stack

{r∗
2=cf !n!X ; (n)=x} get r1 n {r1,(n)=x ; r∗

2=cf !n!X} // Load word from stack

{r∗=cf !X} push n {r∗=cnf } // New frame
{r∗

2=cf !X} cspt r1 {r1,r∗
2=cf !X} // Copy SP to reg. r1

{r∗
1=cf !Y ; r2=cf !X} cspf r2 {r∗

1 ,r2=cf !X} // Copy SP from reg. r2
{r∗

1=cnf
!Y ; r2=cf !X} rspf r2 {r∗

1 ,r2=cf !X} // Restore SP from reg. r2
{ } nop { } // No-op, do nothing

{r2=x} mov r1 r2 {r1,r2=x} // Copy from reg. r2
{r2=cf !X} addaiu r1 r2 n {r1=c0; r2=cf !X} // Arithmetic add

Notation. The X , Y , etc stand for a set of offsets !n1!n2! . . . , for literal natural
numbers n. The stack frame size (or ‘tower of stack frame sizes’) f is a literal natural
number (or finite sequence of natural numbers). The x , y , etc stand for any type
(something that can appear on the right of an equals sign)

and considering the effect on the gp register (which may be supposed to have the
type denoted by the formal type variable x initially) and the stack slot denoted
by ‘(4)’ gives

{gp = x ; sp⊥ = cf !X } put gp 4 {sp⊥ = cf !4!X ;gp,(4) = x}

because whatever the description x of the data in register gp before the instruc-
tion runs, since the data is transferred to stack slot ‘(4)’, the latter gains the
same description. Generalising the stack offset ‘4’ back to n, and generalising
registers gp and sp to r1 and r2 respectively, one obtains exactly the small-step
signature listed for instruction put r1 n. Registers whose annotations are not
mentioned in this signature have bindings that are unaffected by the instruction.

Small-step annotations {π} α {ε} for an instruction σ at address a with a
disassembly α generate a so-called ‘big step’ rule

T Σ {ε} a + 4 {Γ}
T Σ {π} a {Γ} [a | σ / α]

in which Γ is the final annotation at program end and T denotes a list of big-
step annotations {ε} a {Γ}, one for each instruction address a in the program
(note that, in consequence, branches within the program must get the same
annotation at convergence as there is only one annotation there). Thus the big-
step rule is an inference about what theory T contains. The rule above says that
if {ε} a + 4 {Γ} is in theory T , then so is {π} a {Γ}. The label justifies the

382 P.T. Breuer and J.P. Bowen

inference by the fact that instruction σ is at address a, and disassembly α has
been chosen for it.

The big-step rules aim to generate a ‘covering’ theory T for each program.
That is, an annotation before every (reachable) instruction, and thus an anno-
tation between every instruction. The rule above tells one how to extend by
one further instruction a theory that is growing from the back of the program
towards the front.

Where does theory construction start? It is with the big-step rule for the
final jr ra instruction that classically ends a subroutine. The action of this
instruction is to jump back to the ‘return address’ stored in the ra register (or
another designated register). The annotation for it says that there was a program
address (an ‘uncalculatable value’, u0) in the ra register before it ran (and it is
still there after), and requires no hypotheses:

T Σ {r=u0} a {r=u0} [a | jr r / return]

The ‘0’ superscript indicates that the address may not be used as a base for
offset memory accesses; that would access program instructions if it were allowed.
Calling code conventionally places the return address in the ra register prior to
each subroutine call.

There are just three more big-step rules, corresponding to each of the instruc-
tions that cause changes in the flow of control in a program. Jumps (uncondi-
tional branches) are handled by a rule that refers back to the target of the jump:

T Σ {π} b {Γ}
T Σ {π} a {Γ} [a | j b / goto b]

This rule propagates the annotation at the target b of the jump back to the
source a. At worst a guess at the fixpoint is needed.

The logic of branch instructions (conditional jumps) at a says that the out-
come of going down a branch to b or continuing at a + 4 must be the same.
But the instruction bnez r b (‘branch to address b if register r is nonzero, else
continue’) and variants first require the value in the register r to be tested, so it
is pre-marked with c (‘calculatable’):

T α {r=cf !X ; β} b {ρ} T α {r=cf !X ; β} a + 4 {ρ}
T α {r=cf !X ; β} a {ρ} [a | bnez r b / ifnz r b]

The case b < a (backward branch) requires a guess at a fixpoint as it does
for jump. The annotated incremental history f , likely none, of the value in the
tested register is irrelevant here, but it is maintained through the rule. The set of
offsets X already written to is also irrelevant here, but it is maintained through
the rule.

The RISC jal b machine code instruction implements standard imperative
programming language subroutine calls. It puts the address of the next instruc-
tion in the ra register (the ‘return address’) and jumps to the subroutine at
address b. The calling code will have saved the current return address on the

Certifying Machine Code Safe from Hardware 383

stack before the call. The callee code will return to the caller by jumping to the
address in the ra register with jr ra, and the calling code will then restore its
own return address from the stack.

Because of jal’s action in filling register ra with a program address, ra on
entry to the subroutine at b must already have a u0 annotation, indicating an
unmodifiable value that cannot even be used for memory access. And because
the same subroutine can be called from many different contexts, we need to
distinguish the annotations per call site and so we use a throwaway lettering
T ′ to denote those annotations that derive from the call of b from site a. The
general rule is:

T ′ Σ {ra=u0;ε} b {π} T Σ {π} a + 4 {Γ}
T Σ {ε} a {Γ} [a | jal b / gosub b]

The ‘0’ superscript means that memory accesses via the return address as base
address for lw/sw are not allowed; that would access the program instructions.
The stack pointer register has not been named, but it must be distinct from the
ra register.

We have found it useful to apply extra constraints at subroutine calls. We
require (i) that each subroutine return the stack to the same state it acquired it in
(this is not a universal convention), and (ii) that a subroutine make and unmake
all of its own local stack frame (again, not a universal convention). That helps
a Prolog implementation of the verification logic start from a definitely known
state at the end of each subroutine independent of the call context – namely,
that the local stack frame at subroutine end (and beginning) is size zero. These
constraints may be built into the jal rule as follows:

T ′ Σ {ra=u0; r⊥=c0!X , ε} b {r⊥=c0!Y ;π} T Σ {r⊥=cf !Y ;π} a+4 {Γ}
T Σ {r⊥=cf !X ;ε} a {Γ}

The requirement (i) is implemented by returning the stack pointer in the same
register (r⊥ with the same r on entry and return) and with no stack cells visible
in the local stack frame handed to the subroutine and handed back by the
subroutine (the two 0s). The requirement (ii) is implemented by setting the
local stack frame on entry to contain no stack, just the general purpose registers,
which forces the subroutine to make its own stack frame to work in. Other calling
conventions require other rule refinements.

As noted, the small-step and big-step rules can be read as a Prolog program
with variables the bold-faced offsets variables X , Y , etc, and type variables x ,
y , etc.

7 Example Annotation

Below is the annotation of the simple main routine of a Hello World program that
calls ‘printstr’ with the Hello World string address as argument, then calls ‘halt’.
The code was emitted by a standard compiler (gcc) and modified by hand to

384 P.T. Breuer and J.P. Bowen

be safe against aliasing, so some compiler ‘quirks’ are still visible. The compiler
likes to preserve the fp register content across subroutine calls, for example, even
though it is not used here.

The functionality is not at issue here, but, certainly, knowing what each
instruction does allows the annotation to be inferred by an annotator without
reference to rules and axioms. The li a0 instruction sets the a0 (‘0th argument’)
register, for example, so the only change in the annotation after the instruction
is to the a0 column. The annotator introduces the string type, c1̈, into the
annotation there, since the instruction sets a0 to the address of the Hello World
string. The annotator assumes that the stack pointer starts in the sp register
and that ‘main’ is called (likely from a set-up routine) with a return address in
the ra register. Changes are marked in grey:

{ } newx r m {r =cm̈!X}
{r1=cf !Y; r2=cm̈!X} putx r1 n(r2) {r1=cf !Y; r2=cm̈!n!X}

{r2=cm̈!n!X} getx r1 n(r2) {r1=c0; r2=cm̈!n!X}
{r=cm̈!X} stepx r m {r=cm̈!Y}

{ } newh r m {r =um!X}
{r1=cf !Y; r2=um!X} swth r1 n(r2) {r1=cf !Y; r2=um!n!X}

{r2=um!n!X} lwfh r1 n(r2) {r1=c0; r2=um!n!X}
{r1=x; r∗

2=cf !X} put r1 n {r1,(n)=x; r∗
2=cf !n!X}

{r∗
2=cf !n!X; (n)=x} get r1 n {r1,(n)=x; r∗

2=cf !n!X}
{r∗=cf !X} push n {r∗=cn

f }
{r∗

2=cf !X} cspt r1 {r1,r∗
2=cf !X}

{r∗
1=cf !Y; r2=cf !X} cspf r2 {r∗

1 ,r2=cf !X}
{r∗

1=cn
f

!Y; r2=cf !X} rspf r2 {r∗
1 ,r2=cf !X}

{ } nop { }
{r2=x} mov r1 r2 {r1,r2=x}

{r2=cf !X} addaiu r1 r2 n {r1=c0; r2=cf !X}

That the ‘!’ annotations are always less than the bottom element of the tower
on the stack pointer annotation means that no aliasing occurs. Reads are at an
offset already marked with a ‘!’, hence within the same range that writes are
constrained to.

The ‘halt’ subroutine does not use the stack pointer; its function is to write a
single byte to the hard-coded I/O-mapped address of a system peripheral. The
annotation for register v1 on output is the taint left by that write.

halt: # zero = c0; ra = u0

li v1 0xb0000x10 newh v1 ... 1 #v1 = u1; zero = c0; ra = u0

sb zero 0(v1) sbth v1 0(v1) #v1 = u1!0; zero = c0; ra = u0

jr ra return #v1 = u1!0; zero = c0; ra = u0

Certifying Machine Code Safe from Hardware 385

The zero register is conventionally kept filled with the zero word in RISC
architectures.

The printstr routine takes a string pointer as argument in register a0. A
requirement that registers v0, v1 have certain types on entry is an artifact of
annotation. Since ‘$B’ comes after writes to v0, v1, those two registers are bound
to types at that point. The forward jump (j) to ‘$B’ forces the same annotations
at the jump instruction as at the target. But, at the jump, no write to v0, v1
has yet taken place, so we are obliged to provide the types of v0, v1 at entry.
The table below is constructed using the same display convention as the table
for main.

sp∗ ra a0 fp gp v0 v1

c0 u0 x c1̈!0 c0

move gp sp c0 u0 x c0 c1̈!0 c0

addiu sp sp -32 c32
0

u0 x c0 c1̈!0 c0

sw ra 28(sp) c32
0
!28 u0 x c0 c1̈!0 c0 u0

sw fp 24(sp) c32
0
!24!28 u0 x c0 c1̈!0 c0 x u0

move fp sp c32
0
!24!28 u0 c32

0
!24!28 c0 c1̈!0 c0 x u0

sw gp 16(sp) c32
0
!16!24!28 u0 c32

0
!24!28 c0 c1̈!0 c0 c0 x u0

li a0 < > . . . c32
0
!16!24!28 u0 c1̈ c32

0
!24!28 c0 c1̈!0 c0 c0 x u0

jal < > . . . c32
0
!16!24!28 u0 c0 c32

0
!24!28 c0 c0 u1!0 c0 x u0

lw gp 16(sp) c32
0
!16!24!28 u0 c0 c32

0
!24!28 c0 c0 u1!0 c0 x u0

jal < > . . . c32
0
!16!24!28 u0 c0 c32

0
!24!28 c0 c0 u1!0 c0 x u0

nop

lw gp 16(sp) c32
0
!16!24!28 u0 c0 c32

0
!24!28 c0 c0 u1!0 c0 x u0

nop

lw ra 28(sp) c32
0
!16!24!28 u0 c0 c32

0
!24!28 c0 c0 u1!0 c0 x u0

lw fp 24(sp) c32
0
!16!24!28 u0 c0 x c0 c0 u1!0 c0 x u0

move sp gp c0 u0 c0 x c0 c0 u1!0 c0 x u0

jr ra c0 u0 c0 x c0 c0 u1!0 c0 x u0
〈 〉

The ‘printchar’ subroutine writes a character received in register a0 to the hard-
coded address of a printer device:

printchar: #a0 = c0; ra = u0

li v1 0xb0000000 newh v1 ... 1 #v1 = u1;a0 = c0; ra = u0

sb a0 0(v1) sbth a0 0(v1) #v1 = u1!0; a0 = c0; ra = u0

jr ra return #v1 = u1!0; a0 = c0; ra = u0

Like halt, it does not use the stack pointer.

8 How Does Annotation Ensure Aliasing Does not
Happen?

How to ensure memory aliasing does not happen is intuitively simple: make sure
that each address used can have been calculated in only one way. There are in

386 P.T. Breuer and J.P. Bowen

principle two constraints that can be enforced directly via annotation and which
will have this effect:

(i) Both stack reads and writes with get and put may be restricted to offsets
n that lie in the range permitted by the local stack frame size (look for
a stack pointer tower m..

.

on the annotation before the instruction, with
0 ⊆ n ⊆ m − 4);

(ii) stack reads with get may be restricted to offsets n at which writes with put
have already taken place (look for a !n mark on the annotation before the
instruction).

Similarly for strings and arrays. It is (i) that makes memory aliasing impossible,
but (ii) is also useful because it (a) reduces (i) to be required on writes alone,
and (b) prevents ‘read before write’ faults. Without (i), code could validly try to
access an element of the caller’s frame, and that would fail because of aliasing via
two distinct calculations for the same address, from caller’s and callee’s frames
respectively.

If these constraints are satisfied, we argue as follows that memory-aliasing
cannot occur. The base address used for access via the RISC lw or sw instruc-
tions is either:

1. The stack pointer (disassembly of the access instruction is to put, get, putb,
getb);

2. the base address of a string, incremented several times by the string increment
(the disassembly is to putx, getx, putbx, getbx);

3. the base address of an array (the disassembly is to swth, sbth, lwfh, lbfh).

and the offset in the instruction is in the first case less than the stack frame size,
in the second case less than the string increment, and in the third case less than
the array size.

Why are these and no other case possible? Firstly, if the program is anno-
tated, then every use of a base address for the underlying machine code lw and
sw instructions matches exactly one of these cases, because the annotation rules
have no other option.

Next we claim that the annotations on a program are sound. This is a tech-
nical claim that we cannot formally substantiate in the space here that says that
in an annotated program the annotations around each instruction reflect what
the instruction does computationally. The full statement requires a model of
each instruction’s semantics as a state-to-state transformation and a proof that
the big-step rules of Sect. 6 express those semantics. Given that, the three cases
above for the base address used in a lw and sw instruction may be characterized
thus:

1. It is the stack pointer, which is marked with an asterisk in the annotation and
typed with cf where the tower f consists of the sizes of current and calling
stack frames;

2. it is a string pointer, which is typed with cm̈ in the annotation and is equal
to the base address of the string plus a finite number of increments m;

Certifying Machine Code Safe from Hardware 387

3. it is an array pointer, which is typed with um in the annotation and is equal
to the base address of the array, which is of size m.

In each of those three cases, the offset used in the lw or sw instruction is only
permitted by the annotation to lie in the range 0 to m−4, where m is respectively
the current frame size, the string step size, and the array size. The first of
these cases implements condition (i), and the second and third implement the
equivalent condition for strings and arrays respectively. I.e., there is only one
calculation possible for each address used.

Similar arguments hold for byte-wise access via lb and sb. In addition, how-
ever, one must require that memory areas accessed via these instructions are
not also accessed via lw and sw, in order to avoid different calculations for the
addresses of the individual bytes in a word. The simplest way to ensure that is
to forbid use of lb and sb entirely, relying instead on lw and sw plus arithmetic
operations to extract the byte. The next simplest alternative is to allow lb and
sb only on strings with step size less than 4 and arrays of size less than 4, which
word-wise instructions are forbidden from accessing by the annotation rules.

9 Conclusion and Future Work

We have set out a method of annotation that can ensure that a RISC machine-
code program is safe against ‘hardware’ aliasing. We model aliasing as introduced
by the use of different arithmetic calculations for the same memory address, and
successful annotation guarantees that a unique calculation will be used at run-
time for the address of each execution stack, string or array element accessed
by the program. Annotation also means disassembling the machine code to a
slightly higher level assembly language, for a stack machine, and a human being
is required to certify that the disassembly matches the programmer’s intentions.

Note that one may add disassembly rules to the system that are (deliber-
ately) semantically wrong, with the aim of correcting the code. For example,
one may choose to (incorrectly) disassemble the RISC addiu sp sp 32 instruc-
tion to a stack machine pop instruction. The RISC instruction is not a correct
implementation of the higher level instruction in an aliasing context, although
it was likely intended to be. But one may then replace the original RISC code
with a correct implementation.

Also note that the equational annotations here may be generalised to quite
arbitrary first-order predicates. It also appears that our system of types may
be generalised to arrays of arrays and strings of strings, etc, which offers the
prospect of a static analysis technology that can follow pointers.

References

1. Barr, M.: Programming Embedded Systems in C and C++, 1st edn. O’Reilly &
Associates Inc, Sebastopol (1998)

2. Bowen, J.P.: Formal specification of the ProCoS/Safemos instruction set. Micoproc.
Microsys. 14(10), 637–643 (1990)

388 P.T. Breuer and J.P. Bowen

3. Bowen, J.P., Breuer, P.T.: Decompilation. In: van Zuylen, H. (ed.) The REDO
Compendium Reverse Engineering for Software Maintenance, Chap. 10, pp. 131–
138. Wiley, New York (1993)

4. Breuer, P.T., Bowen, J.P.: Decompilation: the enumeration of types and grammars.
ACM Trans. Program. Lang. Syst. 16(5), 1613–1647 (1994)

5. Breuer, P.T., Bowen, J.P.: Typed assembler for a RISC crypto-processor. In:
Barthe, G., Livshits, B., Scandariato, R. (eds.) ESSoS 2012. LNCS, vol. 7159,
pp. 22–29. Springer, Heidelberg (2012)

6. Breuer, P.T., Bowen, J.P.: A fully homomorphic crypto-processor design: correct-
ness of a secret computer. In: Jürjens, J., Livshits, B., Scandariato, R. (eds.) ESSoS
2013. LNCS, vol. 7781, pp. 123–138. Springer, Heidelberg (2013)

7. Breuer, P.T., Bowen, J.P.: Idea: towards a working fully homomorphic crypto-
processor: practice and the secret computer. In: Jörjens, J., Pressens, F., Bielova,
N. (eds.) ESSoS 2014. LNCS, vol. 8364, pp. 131–140. Springer, Switzerland (2014)

8. Fischer, F.H., Sindalovsky, V., Segan, S.A.: Memory aliasing method and appara-
tus, 20 August 2002. US Patent 6,438,672

9. Patterson, D.A.: Reduced instruction set computers. Commun. ACM 28(1), 8–21
(1985)

10. Sato, T.: Speculative resolution of ambiguous memory aliasing. In: Innovative
Architecture for Future Generation High-Performance Processors and Systems,
pp. 17–26. IEEE (1997)

11. Wing, M.J., Kelly, E.J.: Method and apparatus for aliasing memory data in an
advanced microprocessor, 20 July 1999. US Patent 5,926,832

Soundness and Completeness
of the NRB Verification Logic

Peter T. Breuer1(B) and Simon J. Pickin2

1 Department of Computer Science, University of Birmingham, Birmingham, UK
Peter.T.Breuer@gmail.com

2 Facultad de Informática, Universidad Complutense de Madrid, Madrid, Spain
spickin@ucm.es

Abstract. A simple semantic model for the NRB logic of program veri-
fication is provided here, and the logic is shown to be sound and complete
with respect to it. That provides guarantees in support of the logic’s use
in the automated verification of large imperative code bases, such as the
Linux kernel source. ‘Soundness’ implies that no breaches of safety con-
ditions are missed, and ‘completeness’ implies that symbolic reasoning is
as powerful as model-checking here.

1 Introduction

NRB (‘normal, return, break’) program logic was first introduced in 2004 [5] as
the theory supporting an automated semantic analysis suite [4] targeting the C
code of the Linux kernel. The analyses performed with this kind of program logic
and automatic tools are typically much more approximate than that provided
by more interactive or heavyweight techniques such as theorem-proving and
model-checking [10], respectively, but NRB-based solutions have proved capable
of rapidly scanning millions of lines of C code and detecting deadlocks scattered
as rarely as one per million lines of code [9]. A rough synopsis of the logic is that
it is precise in terms of accurately following the often complex flow of control and
sequence of events in an imperative language, but not very accurate at following
data values. That is fine in the context of a target like C [1,12], where static
analysis cannot reasonably hope to follow all data values accurately because of
the profligate use of pointers in a typical program (a pointer may access any
part of memory, in principle, hence writing through a pointer might ‘magically’
change any value) and the NRB logic was designed to work around that problem
by focussing instead on information derived from sequences of events.

Modal operators in NRB designate the kind of exit from a code fragment, as
return, break, etc. The logic may be configured in detail to support different
abstractions in different analyses; detecting the freeing of a record in memory
while it may still be referenced requires an abstraction that counts the possible
reference holders, for example, not the value currently in the second field from the
right. The technique became known as ‘symbolic approximation’ [6,7] because
of the foundation in symbolic logic and because the analysis is guaranteed to be

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 389–404, 2014.
DOI: 10.1007/978-3-319-05032-4 28, c© Springer International Publishing Switzerland 2014

390 P.T. Breuer and S.J. Pickin

inaccurate but on the alarmist side (‘approximate from above’). In other words,
the analysis does not miss bugs, but does report false positives. In spite of a
few years’ pedigree behind it now, a foundational semantics for the logic has
only just been published [8] (as an Appendix to the main text, in which it is
shown that the verification computation can be distributed over a network of
volunteer solvers and how such a procedure may be used as the basis of an open
certification process). This article aims to provide a yet simpler semantics for the
logic and also a completeness result, with the aim of consolidating the technique’s
bona fides. It fulfils the moral obligation to provide theoretical guarantees for a
method that verifies code.

Interestingly, the main formal guarantee (‘never miss, always over-report’)
provided by NRB and symbolic approximation is said not to be desirable in the
commercial context by the very practical authors of the Coverity analysis tool
[3,11], which also has been used for static analysis of the Linux kernel and many
very large C code projects. Allegedly, in the commercial arena, understandability
of reports is crucial, not the guarantee that no bugs will be missed. The Coverity
authors say that commercial clients tend to dismiss any reports from Coverity
staff that they do not understand, turning a deaf ear to all explanations. The
reports produced by our tools have been filtered as part of the process [4] before
presentation to the client community, so that only the alarms that cannot be
dismissed by us as false positives are seen by them. When our process has been
organised as a distributed certification task, as reported in [8], then filtering
away false positives can be seen as one more ‘eyes-on’ task for the human part
of the anonymous network of volunteer certifiers.

The layout of this paper is as follows. In Sect. 2 a model of programs as sets
of ‘coloured’ transitions between states is set out, and the constructs of a generic
imperative language are expressed in those terms. It is shown that the constructs
obey certain algebraic laws, which soundly implement the established deduction
rules of NRB logic. Section 3 shows that the logic is complete, in that anything
that is true in the model introduced in Sect. 2 can be proved using the formal
rules of the NRB logic.

Since the model contains at least as many transitions as occur in reality,
‘soundness’ of the NRB logic means that it may construct false alarms for a
safety condition possibly being breached at some particular point in a program,
but it may not miss any real alarms. ‘Completeness’ means that the logic flags
no more false alarms than are already to be predicted from the model, so if the
model says that there ought to be no alarms at all, which implies there really are
no alarms, then the logic can prove that. Thus, it is not necessary to construct
and examine the complete graph of modelled state transitions (‘model checking’)
in order to be able to give a program a clean bill of health, because the logic
does that job, checking ‘symbolically’.

2 Semantic Model

This section sets out a semantic model for the full NRBG(E) logic (‘NRB’ for
short) shown in Table 1. The ‘NRBG’ part stands for ‘normal, return, break,

Soundness and Completeness of the NRB Verification Logic 391

Table 1. NRB deduction rules for triples of assertions and programs. Unless explicitly
noted, assumptions Glpl at left are passed down unaltered from top to bottom of each
rule. We let E1 stand for any of R, B, Gl, Ek; E2 any of R, Gl, Ek; E3 any of R. Gl′

for l√ →= l, Ek; E4 any of R. Gl, Ek′ for k√ →= k; [h] the body of the subroutine named h.

� {p} P {Nq→E1x} � {q} Q {Nr→E1x}
� {p} P ; Q {Nr→E1x}

� {p} P {Bq→Np→E2x}
� {p} do P {Nq→E2x}

� {p} skip {N p} � {p} return {R p}

� {p} break {B p} p∗pl Gl pl � {p} goto l {Gl p}

� {p} throw k {Ek p} � {q[e/x]} x=e {Nq}
� {q∧p} P {r}

� {p} q ∗P {r}
� {p} P {q} � {p} Q {q}

� {p} P � Q {q}

[Npl∗q] Gl pl � {p} P {q}
Gl pl � {p} P :l {q}

Gl pl � {p} P {Glpl→Nq→E3x}
� {p} label l.P {Nq→E3x}

� {p} [h] {Rr→Ekxk}
Glpl � {p} call h {Nr→Ekxk}

� {p} P {Nr→Ekq→E4x} � {q} Q {Nr→Ekxk→E4x}
� {p} try P catch(k) Q {Nr→Ekxk→E4x}

� {pi} P {q}
� {→→pi} P {q}

� {p} P {qi}
� {p} P {∧∧qi}

Gl pli � {p} P {q}
→→Gl pli � {p} P {q}

p√∗p, q∗q√, p√
l∗pl|Glq

√∗Glp
√
l

Gl pl � {p} P {q}
Gl p′

l
� {p′} P {q′}

goto’, and the ‘E’ part treats exceptions (catch/throw in Java, setjmp/longjmp
in C), aiming at a complete treatment of classical imperative languages. This
semantics simplifies a trace model presented in the Appendix to [8], substituting
traces there for state transitions here. The objective in laying out the model is
to allow the user of NRB logic to agree that it is talking about what he/she
understands a program does, computationally. So the model aims at simplicity
and comprehensibility. Agree with it, and one has confidence in what the logic
says a program may do.

A standard model of a program is as a relation of type P(S × S), expressing
possible changes in the program state as a ‘set of pairs’, consisting of initial and
final states of type S. We add a colour to this picture. The colour shows if the
program has run normally through to the end (colour ‘N’) or has terminated
early via a return (colour ‘R’), break (colour ‘B’), goto (colour ‘Gl’ for some
label l) or an exception (colour ‘Ek’ for some exception kind k). This documents
the control flow precisely. In our modified picture, a program is a set of ‘coloured
transitions’ of type

P(S × π × S)

where the colours π are a disjoint union

π = {N} ∪ {R} ∪ {B} ∪ {Gl | l ∅ L} ∪ {Ek | k ∅ K}

and L is the set of possible goto labels and K the set of possible exception kinds.
We write the transition from state s1 to state s2 of colour α as s1

ι⊆→ s2.

392 P.T. Breuer and S.J. Pickin

Table 2. Models of simple statements.

The programs we usually consider are deterministic, in that only at most one
transition from each initial state s appears in the modelling relation, but they are
embedded in a more general context where an arbitrary number of transitions may
appear. Where the relation is not defined at all on some initial state s, we under-
stand that that initial state leads inevitably to the program getting hung in an
infinite loop, instead of terminating. The relations representing deterministic pro-
grams have a set of transitions from a given initial state s that is either of size zero
(‘hangs’) or one (‘terminates’). Only paths through the program that do not hang
are of interest to us, and what the NRB logic will say about a program at some
point is true only supposing control reaches that point, which it may never do.

Programs are put together in sequence with the second program accepting
as inputs only the states that the first program ends ‘normally’ with. Otherwise
the state with which the first program exited abnormally is the final outcome.
That is,

[[P ;Q]] = {s0
ι⊆→ s1 ∅ [[P]] | α √= N}

≡ {s0 ι⊆→ s2 | s1
ι⊆→ s2 ∅ [[Q]], s0

N⊆→ s1 ∅ [[P]]}

This statement is not complete, however, because abnormal exits with a goto
from P may still re-enter in Q if the goto target is in Q, and proceed. We
postpone consideration of this eventuality by predicating the model with the sets
of states gl hypothesised as being fed in at the point l in the code. The model
with these sets gl as parameters takes account of the putative extra inputs at
the point labeled l:

Soundness and Completeness of the NRB Verification Logic 393

[[P ;Q]]g = {s0
ι⊆→ s1 ∅ [[P]]g | α √= N}

≡ {s0 ι⊆→ s2 | s1
ι⊆→ s2 ∅ [[Q]]g, s0

N⊆→ s1 ∅ [[P]]g}
Later, we will tie things up by ensuring that the set of states bound to early exits
via a goto l in P are exactly the sets gl hypothesised here as entries at label l
in Q. The type of the interpretation expressed by the fancy square brackets is

−1 −2 : C→(L S)→ (S × α × S)

where g, the second argument/suffix, has the partial function type L ⊆→ PS
and the first argument/bracket interior has type C , denoting a simple language
of imperative statements whose grammar is set out in Table 3. The models of
some of its very basic statements as members of P(S × π × S) are shown in
Table 2. We briefly discuss these and other constructs of the language.

A real imperative programming language such as C can be mapped onto C –
in principle exactly, but in practice rather approximately with respect to data
values. A conventional if(b) P else Q statement in C is written as the choice
between two guarded statements b → P � ¬b → Q in the abstract language C ; the
conventional while(b) P loop in C is expressed as do{¬b → break � b → P},
using the forever-loop of C . A sequence P ; l : Q in C with a label l in the
middle should strictly be expressed as P : l;Q in C , but we regard P ; l : Q as
syntactic sugar for that, so it is still permissible to write P ; l : Q in C . As a very
special syntactic sweetener, we permit l : Q too, even when there is no preceding
statement P , regarding it as an abbreviation for skip : l;Q.

Curly brackets may be used to group code statements in C , and parentheses
may be used to group expressions. The variables are globals and are not formally
declared. The terms of C are piecewise linear integer forms in integer variables,
so the boolean expressions are piecewise comparisons between linear forms.

Table 3. Grammar of the abstract imperative language C , where integer variables
x ∅ X, term expressions e ∅ E , boolean expressions b ∅ B, labels l ∅ L, exceptions
k ∅ K, statements c ∅ C , integer constants n ∅ Z, infix binary relations r ∅ R,
subroutine names h ∅ H. Note that labels (the targets of gotos) are declared with
‘label’ and a label cannot be the first thing in a code sequence; it must follow some
statement. Instead of if, C has guarded statements b ∗ P and explicit choice P � Q,
for code fragments P , Q. The choice construct is only used in practice in the expansion
of if and while statements, so all its real uses are deterministic (have at most one
transition from each initial state), although it itself is not.

C :: skip | return | break | goto l | c;c | x=e | b∗c | c � c | do c | c : l | label l.c | call h
| try c catch(k) c | throw k

E :: n | x | n ∈ e | e+ e | b ? e : e

B :: ↔ | ∃ | e r e | b ∪ b | b ≥ b | ¬b | ∃x.b
R :: < | > | ≤ | ∩ | = | →=

394 P.T. Breuer and S.J. Pickin

Table 4. The conventional evaluation of integer and boolean terms of C , for variables
x ∅ X, integer constants κ ∅ Z, using s x for the (integer) value of the variable named
x in a state s. The form b[n/x] means ‘expression b with integer n substituted for all
unbound occurrences of x’.

Example 1. A valid integer term is ‘5x + 4y + 3’, and a boolean expression is
‘5x + 4y + 3 < z − 4 ∈ y ∞ x’.

In consequence another valid integer term, taking the value of the first on
the range defined by the second, and 0 otherwise, is ‘(5x + 4y + 3 < z − 4 ∈ y ∞
x) ? 5x + 4y + 3:0’.

The limited set of terms in C makes it practically impossible to map standard
imperative language assignments as simple as ‘x = x ⇑ y’ or ‘x = x | y’ (the
bitwise or) succinctly. In principle, those could be expressed exactly point by
point using conditional expressions (with at most 232 disjuncts), but it is usual
to model all those cases by means of an abstraction away from the values taken
to attributes that can be represented more elegantly using piecewise linear terms
The abstraction may be to how many times the variable has been read since last
written, for example, which maps ‘x = x ⇑ y’ to ‘x = x + 1; y = y + 1; x = 0’.

Formally, terms have a conventional evaluation as integers and booleans that
is shown (for completeness!) in Table 4. The reader may note the notation s x
for the evaluation of the variable named x in state s, giving its integer value as
result. We say that state s satisfies boolean term b ∅ B, written s |= b, whenever
[[b]]s holds.

The label construct of C declares a label l ∅ L that may subsequently be
used as the target in gotos. The component P of the construct is the body of
code in which the label is in scope. A label may not be mentioned except in
the scope of its declaration. The same label may not be declared again in the
scope of the first declaration. The semantics of labels and gotos will be further
explained below.

The only way of exiting the C do loop construct normally is via break in
the body P of the loop. An abnormal exit other than break from the body P
terminates the whole loop abnormally. Terminating the body P normally evokes
one more turn round the loop. So conventional while and for loops in C are
mapped in C to a do loop with a guarded break statement inside, at the head
of the body. The precise models for this and every construct of C as a set of
coloured transitions are enumerated in Table 5.

Soundness and Completeness of the NRB Verification Logic 395

Table 5. Model of programs of language C , given as hypothesis the sets of states gl
for l ∅ L observable at goto l statements. A recursive reference means ‘the least set
satisfying the condition’. For h ∅ H, the subroutine named h has code [h]. The state s
altered by the assignment of n to variable x is written s[x ∗ n].

Among the list in Table 5, the semantics of label declarations in particular
requires explanation because labels are more explicitly controlled in C than in
standard imperative languages. Declaring a label l makes it invisible from the
outside of the block (while enabling it to be used inside), working just the same
way as a local variable declaration does in a standard imperative programming
language. A declaration removes from the model of a labelled statement the
dependence on the hypothetical set gl of the states attained at goto l statements.
All the instances of goto l statements are inside the block with the declaration
at its head, so we can take a look to see what totality of states really do accrue
at goto l statements; they are recognisable in the model because they are the
outcomes of the transitions that are marked with Gl. Equating the set of such
states with the hypothesis gl gives the (least) fixpoint g∼

l required in the label l
model.

The hypothetical sets gl of states that obtain at goto l statements are used
at the point where the label l appears within the scope of the declaration. We

396 P.T. Breuer and S.J. Pickin

say that any of the states in gl may be an outcome of passing through the
label l, because it may have been brought in by a goto l statement. That is an
overestimate; in reality, if the state just before the label is s1, then at most those
states s2 in gl that are reachable at a goto l from an initial program state s0
that also leads to s1 (either s1 first or s2 first) may obtain after the label l, and
that may be considerably fewer s2 than we calculate in g∼

l . Here is a visualisation
of such a situation; the curly arrows denote a trace:

{s1} l : {s1, s2}�{s0} �

{s2} goto l

If the initial precondition on the code admits more than one initial state s0 then
the model may admit more states s2 after the label l than occur in reality when
s1 precedes l, because the model does not take into account the dependence of
s2 on s1 through s0. It is enough for the model that s2 proceeds from some
s0 and s1 proceeds from some (possibly different) s0 satisfying the same initial
condition. In mitigation, gotos are sparsely distributed in real codes and we
have not found the effect pejorative.

Example 2. Consider the code R and suppose the input is restricted to a unique
state s:

label A,B.

P
︷ ︸︸ ︷
skip; goto A; B: return; A
︸ ︷︷ ︸

Q

: goto B

with labels A, B in scope in body P , and the marked fragment Q. The single
transitions made in the code P and the corresponding statement sequences are:

s
N⊆→ s

GA⊆→ s # skip; goto A;

s
N⊆→ s

N⊆→ s
GB⊆→ s # skip; goto A;A : goto B

s
N⊆→ s

N⊆→ s
N⊆→ s

R⊆→ s # skip; goto A;A : goto B;B : return

with observed states gA = {s}, gB = {s} at the labels A and B respectively.
The goto B statement is not in the fragment Q so there is no way of knowing

about the set of states at goto B while examining Q. Without that input, the
traces of Q are

s
N⊆→ s

GA⊆→ s # skip; goto A

s
N⊆→ s

N⊆→ s # skip; goto A;A :

There are no possible entries at B originating from within Q itself. That is, the
model [[Q]]g of Q as a set of transitions assuming gB = { }, meaning there are no

entries from outside, is [[Q]]g = {s
N⊆→ s, s

GA⊆→ s}.
When we hypothesise gB = {s} for Q, then Q has more traces:

s
N⊆→ s

N⊆→ s
N⊆→ s

R⊆→ s # skip; goto A;A : goto B;B : return

Soundness and Completeness of the NRB Verification Logic 397

Table 6. Extending the language B of propositions to modal operators N, R, B, Gl,
Ek for l ∅ L, k ∅ K. An evaluation on transitions is given for b ∅ B, b∗ ∅ B∗.

Table 7. Laws of the modal operators N, R, B, Gl, Ek with M, M1, M2 ∅
{N,R,B,Gl,Ek | l ∅ L, k ∅ K} and M1 →= M2.

corresponding to these entries at B from the rest of the code proceeding to the
return in Q, and [[Q]]g = {s

N⊆→ s, s
GA⊆→ s, s

R⊆→ s}. In the context of the whole
code P , that is the model for Q as a set of initial to final state transitions.

Example 3. Staying with the code of Example 2, the set {s
GA⊆→ s, s

GB⊆→ s, s
R⊆→ s}

is the model [[P]]g of P starting at state s with assumptions gA, gB of Example
2, and the sets gA, gB are observed at the labels A, B in the code under these
assumptions. Thus {A ⊆→ gA, B ⊆→ gB} is the fixpoint g∼ of the label declaration
rule in Table 5.

That rule says to next remove transitions ending at goto As and Bs from
visibility in the model of the declaration block, because they can go nowhere else,
leaving only [[R]]{ } = {s

R⊆→ s} as the set-of-transitions model of the whole block of
code, which corresponds to the sequence skip;goto A;A : goto B;B : return.

We extend the propositional language to B∼ which includes the modal operators
N, R, B, Gl, Ek for l ∅ L, k ∅ K, as shown in Table 6, which defines a model
of B∼ on transitions. The predicate Np informally should be read as picking
out from the set of all coloured state transitions ‘those normal-coloured transi-
tions that produce a state satisfying p’, and similarly for the other operators.
The modal operators satisfy the algebraic laws given in Table 7. Additionally,
however, for non-modal p ∅ B,

p = Np ∀ Rp ∀ Bp ∀ ∀∀ Glp ∀∀Ekp (1)

398 P.T. Breuer and S.J. Pickin

because each transition must be some colour, and those are all the colours.
The decomposition works in the general case too:

Proposition 1. Every p ∅ B∼ can be (uniquely) expressed as

p = NpN ∀ RpR ∀ BpB ∀ ∀∀ GlpGl
∀∀EkpEk

for some pN, pR, etc that are free of modal operators.

Proof. Equation (1) gives the result for p ∅ B. The rest is by structural induction
on p, using Table 7 and boolean algebra. Uniqueness follows because NpN =
Np→

N, for example, applying N to two possible decompositions, and applying the
orthogonality and idempotence laws; apply the definition of N in the model in
Table 6 to deduce pN = p→

N for non-modal predicates pN, p→
N. Similarly for B,

R, Gl, Ek. �

So modal formulae p ∅ B∼ may be viewed as tuples (pN, pR, pB, pGl
, pEk

) of non-
modal formulae from B for labels l ∅ L, exception kinds k ∅ K. That means
that Np∀Rq, for example, is simply a convenient notation for writing down two
assertions at once: one that asserts p of the final states of the transitions that
end ‘normally’, and one that asserts q on the final states of the transitions that
end in a ‘return flow’. The meaning of Np ∀ Rq is the union of the set of the
normal transitions with final state that satisfy p plus the set of the transitions
that end in a ‘return flow’ and whose final states satisfy q. We can now give
meaning to a notation that looks like (and is intended to signify) a Hoare triple
with an explicit context of certain ‘goto assumptions’:

Definition 1. Let gl = [[pl]] be the set of states satisfying pl ∅ B, labels l ∅ L.
Then ‘Gl pl ε {p} a {q}’, for non-modal p, pl ∅ B, P ∅ C and q ∅ B∼, means:

[[Gl pl ε {p} P {q}]] = [[{p} P {q}]]g

= ⊇s0
ι⊆→ s1 ∅ [[P]]g. [[p]]s0 ⇒ [[q]](s0

ι⊆→ s1)

That is read as ‘the triple {p} P {q} holds under assumptions pl at goto l
when every transition of P that starts at a state satisfying p also satisfies q’.
The explicit Gentzen-style assumptions pl are free of modal operators. What is
meant by the notation is that those states that may be attainable as the program
traces pass through goto statements are assumed to be restricted to those that
satisfy pl.

The Gl pl assumptions may be separated by commas, as Gl1 pl1 ,Gl2 pl2 , . . . ,
with l1 √= l2, etc. Or they may be written as a disjunction Gl1 pl1 ∀Gl2 pl2 ∀ . . .
because the information in this modal formula is only the mapping l1 ⊆→ pl1 ,
l2 ⊆→ pl2 , etc. If the same l appears twice among the disjuncts Gl pl, then we
understand that the union of the two pl is intended.

Now we can prove the validity of laws about triples drawn from what Defin-
ition 1 says. The first laws are strengthening and weakening results on pre- and
postconditions:

Soundness and Completeness of the NRB Verification Logic 399

Proposition 2. The following algebraic relations hold:

[[{⇒} P {q}]]g ⇐⇒ � (2)
[[{p} P {�}]]g ⇐⇒ � (3)

[[{p1 ∀ p2} P {q}]]g ⇐⇒ [[{p1} P {q}]]g ∈ [[{p2} P {q}]]g (4)
[[{p} P {q1 ∈ q2}]]g ⇐⇒ [[{p} P {q1}]]g ∈ [[{p} P {q2}]]g (5)

(p1→p2) ∈ [[{p2} P {q}]]g =⇒ [[{p1} P {q}]]g (6)
(q1→q2) ∈ [[{p} P {q1}]]g =⇒ [[{p} P {q2}]]g (7)

[[{p} P {q}]]g′ =⇒ [[{p} P {q}]]g (8)

for p, p1, p2 ∅ B, q, q1, q2 ∅ B∼, P ∅ C , and gl ∼ g→
l ∅ PS.

Proof. (2–5) follow on applying Definition 1. (6–7) follow from (4–5) on consid-
ering the cases p1 ∀ p2 = p2 and q1 ∈ q2 = q1. The reason for (8) is that g→

l is a
bigger set than gl, so [[P]]g′ is a bigger set of transitions than [[P]]g and thus the
universal quantifier in Definition 1 produces a smaller (less true) truth value. �

Theorem 1 (Soundness). The following algebraic inequalities hold, for E1 any
of R, B, Gl, Ek; E2 any of R, Gl, Ek; E3 any of R, B, Gl′ for l→ √= l, Ek; E4

any of R, B, Gl, Ek′ for k→ √= k; [h] the code of the subroutine called h:

[[{p}P {Nq ∨ E1x}]]g
∈ [[{q}Q {Nr ∨ E1x}]]g

}
=⊆ [[{p}P ;Q {Nr ∨ E1x}]]g (9)

[[{p}P {Bq ∨ Np ∨ E2x}]]g =⊆ [[{p}do P {Nq ∨ E2x}]]g (10)
� =⊆ [[{p} skip {N p}]]g (11)
� =⊆ [[{p} return {R p}]]g (12)
� =⊆ [[{p}break {B p}]]g (13)
� =⊆ [[{p}goto l {Gl p}]]g (14)
� =⊆ [[{p} throw k {Ek p}]]g (15)

[[{b ∈ p}P {q}]]g =⊆ [[{p} b≤P {q}]]g (16)
[[{p}P {q}]]g ∈ [[{p}Q {q}]]g =⊆ [[{p}P �Q {q}]]g (17)

� =⊆ [[{q[e/x]} x=e {Nq}]]g (18)

[[{p} P {q}]]g ∈ gl ⊆ {s1 | s0 N�≤ s1 ∈ [[q]]} =⊆ [[{p} P : l {q}]]g (19)
[[{p} P {Glpl ∨ Nq ∨ E3x}]]g∪{l�∗pl} =⊆ [[{p} label l.P {Nq ∨ E3x}]]g (20)

[[{p} [h] {Rr ∨ Ekxk}]]{ } =⊆ [[{p} call h {Nr ∨ Ekxk}]]g (21)
[[{p} P {Nr ∨ Ekq ∨ E4x}]]g

∈ [[{q} Q {Nr ∨ Ekxk ∨ E4x}]]g

}
=⊆ [[{p} try P catch(k) Q {Nr ∨ Ekxk ∨ E4x}]]g

(22)

Proof By evaluation, given Definition 1 and the semantics from Table 5. �

400 P.T. Breuer and S.J. Pickin

The reason why the theorem is titled ‘Soundness’ is that its inequalities can
be read as the NRB logic deduction rules set out in Table 1, via Definition 1.
The fixpoint requirement of the model at the label construct is expressed in the
‘arrival from a goto at a label’ law (19), where it is stated that if the hypothesised
states gl at a goto l statement are covered by the states q immediately after
code block P and preceding label l, then q holds after the label l too. However,
there is no need for any such predication when the gl are exactly the fixpoint of
the map

gl ⊆→ {s1 | s0
Gl⊆→ s1 ∅ [[P]]g}

because that is what the fixpoint condition says. Thus, while the model in Table 5
satisfies Eqs. (9–22), it satisfies more than they require – some of the hypotheses
in the equations could be dropped and the model would still satisfy them. But
the NRB logic rules in Table 1 are validated by the model and thus are sound.

3 Completeness

In proving completeness of the NRB logic, we will be guided by the proof of
partial completeness for Hoare’s logic in K. R. Apt’s survey paper [2]. We will
need, for every (possibly modal) postcondition q ∅ B∼ and every construct R of
C , a non-modal formula p ∅ B that is weakest in B such that if p holds of a
state s, and s

ι⊆→ s→ is in the model of R given in Table 5, then q holds of s
ι⊆→ s→.

This p is written wp(R, q), the ‘weakest precondition on R for q’. We construct
it via structural induction on C at the same time as we deduce completeness, so
there is an element of chicken versus egg about the proof, and we will not labour
that point.

We will also suppose that we can prove any tautology of B and B∼, so
‘completeness of NRB’ will be relative to that lower-level completeness.

Notice that there is always a set p ∅ PS satisfying the ‘weakest precondition’
characterisation above. It is {s ∅ S | s

ι⊆→ s→ ∅ [[R]]g ⇒ s
ι⊆→ s→ ∅ [[q]]}, and it

is called the weakest semantic precondition on R for q. So we sometimes refer
to wp(R, q) as the ‘weakest syntactic precondition’ on R for q, when we wish
to emphasise the distinction. The question is whether or not there is a formula
in B that exactly expresses this set. If there is, then the system is said to be
expressive, and that formula is the weakest (syntactic) precondition on R for
q, wp(R, q). Notice also that a weakest (syntactic) precondition wp(R, q) must
encompass the semantic weakest precondition; that is because if there were a
state s in the latter and not in the former, then we could form the disjunction
wp(R, q) ∀ (x1 = sx1 ∈ . . . xn = sxn) where the xi are the variables of s, and
this would also be a precondition on R for q, hence x1 = sx1 ∈ . . . xn = sxn →
wp(R, q) must be true, as the latter is supposedly the weakest precondition,
and so s satisfies wp(R, q) in contradiction to the assumption that s is not in
wp(R, q). For orientation, then, the reader should note that ‘there is a weakest
(syntactic) precondition in B’ means there is a unique strongest formula in B
covering the weakest semantic precondition.

Soundness and Completeness of the NRB Verification Logic 401

We will lay out the proof of completeness inline here, in order to avoid exces-
sively overbearing formality, and at the end we will draw the formal conclusion.

A completeness proof is always a proof by cases on each construct of inter-
est. It has the form ‘suppose that foo is true, then we can prove it like this’,
where foo runs through all the constructs we are interested in. We start with
assertions about the sequence construction P ;Q. We will look at this in par-
ticular detail, noting where and how the weakest precondition formula plays a
role, and skip that detail for most other cases. Thus we start with foo equal to
Gl gl ε {p} P ;Q {q} for some assumptions gl ∅ B, but we do not need to take
the assumptions gl into account in this case.

Case P ;Q. Consider a sequence of two statements P ;Q for which {p} P ;Q {q}
holds in the model set out by Definition 1 and Table 5. That is, suppose that ini-
tially the state s satisfies predicate p and that there is a progression from s to
some final state s→ through P ;Q. Then s

ι⊆→ s→ is in [[P ;Q]]g and s
ι⊆→ s→ satisfies

q. We will consider two subcases, the first where P terminates normally from s,
and the second where P terminates abnormally from s. A third possibility, that
P does not terminate at all, is ruled out because a final state s→ is reached.

Consider the first subcase. According to Table 5, that means that P started in
state s0 = s and finished normally in some state s1 and Q ran on from state s1 to
finish normally in state s2 = s→. Let r stand for the weakest precondition wp(Q,q)
that guarantees termination of Q with q holding. By definition, {r} Q {q}, is true
and s1 satisfies r (if not, then r ∀ (x1 = sx1 ∈ x2 = sx2 ∈ . . .) would be a weaker
precondition for q than r, which is impossible). So {p} P {Nr} is true in this
case.

Now consider the second subcase, when the final state s1 reached from s = s0
through P obtains via an abnormal flow out of P . The transition s0

ι⊆→ s1 satisfies
q, but necesarily an abnormal ‘error’ component of q as the flow out of p is
abnormal, so {p} P {Rq ∀ Bq ∀ . . . }, as Rq ∀ Bq ∀ . . . is the error component
of q by Proposition 1.

Those are the only cases, so {p} P {Nr∀Rq∀Bq∀. . . } is true. By induction,
it is the case that there are deductions � {p} P {Nr ∀ Rq ∀ Bq ∀ . . . } and
� {r} Q {q} in the NRB system. But the following rule

{p} P {Nr ∀ Rq ∀ Bq ∀ . . . } {r} Q {q}
{p} P ;Q {q ∀ Rq ∀ Bq ∀ . . . }

is a derived rule of NRB logic. It is a specialised form of the general NRB rule of
sequence, availing of the ‘mixed’ error colour E = (R∀B∀. . .). Since (q∀Eq) → q,
putting these deductions together, and using weakening, we have a deduction of
the truth of the assertions {p} P ;Q {q}.

That concludes the consideration of the case P ;Q. The existence of a formula
expressing a weakest precondition is what really drives the proof above along,
and in lieu of pursuing the proof through all the other construct cases, we note
the important weakest precondition formulae below:

– The weakest precondition for sequence is wp(a; b, q)=wp(a, Eq ∀Nwp(b, q))
above.

402 P.T. Breuer and S.J. Pickin

– The weakest precondition for assignment is wp(x = e,Nq) = q[e/x] for q
without modal components. In general wp(x = e, q) = Nq[e/x].

– The weakest precondition for a return statement is wp(return, q) = Rq.
– The weakest precondition for a break statement is wp(break, q) = Bq. Etc.
– The weakest precondition wp(do P,Nq) for a do loop that ends ‘normally’

is wp(P,Bq) ∀ wp(P,Nwp(P,Bq)) ∀ wp(P,Nwp(P,Nwp(P,Bq))) ∀
That is, we might break from P with q, or run through P normally to
the precondition for breaking from P with q next, etc. Write wp(P,Bq) as
p and write wp(P,Nr) ∈ ¬p as σ(r), Then wp(do P,Nq) can be written
p ∀ σ(p) ∀ σ(p ∀ σ(p)) ∀ . . . , which is the strongest solution to Σ = σ(Σ) no
stronger than p. This is the weakest precondition for p after while(¬p) P in
classical Hoare logic. It is an existentially quantified statement, stating that
an initial state s gives rise to exactly some n passes through P before the
condition p becomes true for the first time. It can classically be expressed as
a formula of first-order logic and it is the weakest precondition for Nq after
do P here.
The preconditions for Eq for each ‘abnormal’ coloured ending E of the loop
do P are similarly expressible in B, and the precondition for q is the disjunc-
tion of each of the preconditions for Nq, Rq, Bq, etc.

– The weakest precondition for a guarded statement wp(p → P, q) is p →
wp(P, q), as in Hoare logic; and the weakest precondition for a disjunction
wp(P � Q, q) is wp(P, q) ∈ wp(Q, q), as in Hoare logic. However, in practice
we only use the deterministic combination p → P � ¬p → Q for which the
weakest precondition is (p → wp(P, q)) ∈ (¬p → wp(Q, q)), i.e. p ∈ wp(P, q) ∀
¬p ∈ wp(Q, q).

To deal with labels properly, we have to extend some of these notions and nota-
tions to take account of the assumptions Glgl that an assertion Glgl ε {p} P {q}
is made against. The weakest precondition p on P for q is then p = wpg(P, q),
with the gl as extra parameters. The weakest precondition for a label use
wpg(P : l, q) is then wpg(P, q), provided that gl → q, since the states gl attained
by goto l statements throughout the code are available after the label, as well
as those obtained through P . The weakest precondition in the general situation
where it is not necessarily the case that gl → q holds is wpg(P, q ∈ (gl → q)),
which is wpg(P, q).

Now we can continue the completeness proof through the statements of the
form P : l (a labelled statement) and label l.P (a label declaration).

Case Labelled Statement. If [[{p} P : l {q}]]g holds, then (a) every state s = s0
satisfying p leads through P with s0

ι⊆→ s1 satisfying q, and also (b) q contains all
the transitions s0

N⊆→ s1 where s1 satisfies gl. By (a), s satisfies wpg(P, q) and
(b) Ngl → q holds. Since s is arbitrary in p, so p → wpg(P, q) holds and by
induction, � Glgl ε {p} P {q}. Then, by the ‘frm’ rule of NRB (Table 1), we
may deduce � Glgl ε {p} P : l {q}.

Case Label Declaration. The weakest precondition for a declaration wpg

(label l.P, q) is simply p = wpg′(P, q), where the assumptions after the

Soundness and Completeness of the NRB Verification Logic 403

declaration are g→ = g ≡ {l ⊆→ gl} and gl is such that Glgl ε {p} P {q}. In
other words, p and gl are simultaneously chosen to make the assertion hold, p
maximal and gl the least fixpoint describing the states at goto l statements in
the code P , given that the initial state satisfies p and assumptions Glgl hold. The
gly are the statements that after exactly some n ∅ N more traversals through P
via goto l, the trace from state s will avoid another goto l for the first time and
exit P normally or via an abnormal exit that is not a goto l.

If it is the case that [[{p} label l.P {q}]]g holds then every state s = s0
satisfying p leads through label l.P with s0

ι⊆→ s1 satisfying q. That means s0
ι⊆→ s1

leads through P , but it is not all that do; there are transitions with α = Gl that
are not considered. The ‘missing’ transitions are precisely the Glgl where gl is
the appropriate least fixpoint for gl = {s1 | s0

Gl⊆→ s1 ∅ [[P]]g∗{l ∞∩gl}, which is a
predicate expressing the idea that s1 at a goto l initiates some exactly n traversals
back through P again before exiting P for a first time other than via a goto l.
The predicate q cannot mention Gl since the label l is out of scope for it, but it
may permit some, all or no Gl-coloured transitions. The predicate q ∀ Glgl, on
the other hand, permits all the Gl-coloured transitions that exit P . transitions.
Thus adding Glgl to the assumptions means s0 traverses P via s0

ι⊆→ s1 satisfying
q ∀Glgl even though more transitions are admitted. Since s = s0 is arbitrary in
p, so p → wpg∗{l ∞∩gl}(P, q ∀ Glgl) and by induction � Gl ε {p} P {q ∀ Glgl},
and then one may deduce � {p} label l.P {q} by the ‘lbl’ rule. �

That concludes the text that would appear in a proof, but which we have
abridged and presented as a discussion here! We have covered the typical case
(P ;Q) and the unusual cases (P : l, label l.P). The proof-theoretic content of
the discussion is:

Theorem 2 (Completeness). The system of NRB logic in Table 1 is complete,
relative to the completeness of first-order logic.

Theorem 3 (Expressiveness). The weakest precondition wp(P, q) for q ∅ B∼,
P ∅ C in the interpretation set out in Definition 1 and Table 5 is expressible in
B.

The observation above is that there is a formula in B that expresses the semantic
weakest precondition exactly.

4 Summary

In this article, we have complemented previous work, which guaranteed programs
free of semantic defects, with guarantees directed at the symbolic logic used as
guarantor. Soundness of the logic is proved with respect to a simple transition-
based model of programs, and completeness of the logic with respect to the
model is proved.

That shows the logic is equivalent to the model, and reduces the question
of its fitness as a guarantor for a program to the fitness for that purpose of the
model of programs. The model always overestimates the number of transitions

404 P.T. Breuer and S.J. Pickin

that may occur, so when the logic is used to certify that there are no program
transitions that may violate a given safety condition, it may be believed.

Acknowledgments. Simon Pickin’s research has been partially supported by the
Spanish MEC project ESTuDIo (TIN2012-36812-C02-01).

References

1. American National Standards Institute. American national standard for informa-
tion systems - programming language C, ANSI X3.159-1989 (1989)

2. Apt, K.R.: Ten years of Hoare’s logic: a survey: part I. ACM Trans. Program.
Lang. Syst. 3(4), 431–483 (1981)

3. Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C.,
Kamsky, A., McPeak, S., Engler, D.: A few billion lines of code later: using static
analysis to find bugs in the real world. Commun. ACM 53(2), 66–75 (2010)

4. Breuer, P.T., Pickin, S.: Checking for deadlock, double-free and other abuses in the
Linux kernel source code. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A.,
Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3994, pp. 765–772. Springer, Heidelberg
(2006)

5. Breuer, P.T., Valls, M.: Static deadlock detection in the Linux kernel. In: Llamośı,
A., Strohmeier, A. (eds.) Ada-Europe 2004. LNCS, vol. 3063, pp. 52–64. Springer,
Heidelberg (2004)

6. Breuer, P.T., Pickin, S.: Symbolic approximation: an approach to verification in
the large. Innovations Syst. Softw. Eng. 2(3), 147–163 (2006)

7. Breuer, P.T., Pickin, S.: Verification in the large via symbolic approximation. In:
Proceedings of the 2nd International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation, 2006 (ISoLA 2006), pp. 408–415.
IEEE (2006)

8. Breuer, P.T., Pickin, S.: Open source verification in an anonymous volunteer net-
work. Sci. Comput. Program. (2013). doi:10.1016/j.scico.2013.08.010

9. Breuer, P.T., Pickin, S., Petrie, M.L.: Detecting deadlock, double-free and other
abuses in a million lines of Linux kernel source. In: Proceedings of the 30th Annual
Software Engineering Workshop 2006 (SEW’06), pp. 223–233. IEEE/NASA (2006)

10. Clarke, E., Emerson, E., Sistla, A.: Automatic verification of finite-state concur-
rent systems using temporal logic specifications. ACM Trans. Prog. Lang. Syst.
(TOPLAS) 8(2), 244–253 (1986)

11. Engler, D., Chelf, B., Chou, A., Hallem, S.: Checking system rules using system-
specific, programmer-written compiler extensions. In: Proceedings of the 4th Sym-
posium on Operating System Design and Implementation (OSDI 2000), pp. 1–16,
October 2000

12. International Standards Organisation. ISO/IEC 9899-1999, programming lan-
guages - C (1999)

http://dx.doi.org/10.1016/j.scico.2013.08.010

Analysis of FLOSS Communities
as Learning Contexts

Sara Fernandes1,2(&), Antonio Cerone1, and Luis Soares Barbosa2

1 United Nations University – International Institute for Software Technology,
Macao SAR, China

{sara.fernandes,antonio}@iist.unu.edu
2 HASLab/INESC TEC, University of Minho, Braga, Portugal

lsb@di.uminho.pt

Abstract. It can be argued that participating in Free/Libre Open Source
Software (FLOSS) projects can have a positive effect in the contributor’s
learning process. The need to collaborate with other contributors and to con-
tribute to a project can motivate and implicitly foster learning. In order to
validate such statements, it is necessary to (1) study the interactions between
FLOSS projects’ participants, and (2) explore the didactical value of partici-
pating in FLOSS projects, designing an appropriate questionnaire asking
FLOSS contributors about their experience in FLOSS projects. In this paper,
we illustrate how this questionnaire was designed and disseminated. We con-
clude the paper with results from 27 FLOSS projects contributors, determining
that, not only they contribute and collaborate to the project and its community,
but also that FLOSS contributors see that this type of activity can be regarded
as a complement to formal education.

Keywords: FLOSS � Communities of practice � Learning awareness

1 Introduction

Within 15 years the Web has grown from a group work tool for scientists at CERN1

into a global information space with more than a billion users [1]. Currently, it is both
maintaining its roots as a read/write tool and also entering a new, more social and
participatory phase. In particular, it is becoming a participatory tool for people to learn
and share knowledge. These trends lead to the feeling that the Web is entering a
‘‘second phase’’ – a new and improved version, also defined as Web 2.0, which is
more than a set of new technologies and services. It is an enabler for participation and
interactions between users and used as an educative tool. However, there is a sig-
nificant debate over the alleged advantages and disadvantages of incorporating new
technologies into mainstream education; particularly, to foster competence develop-
ment of students [2]. To address such concerns, new pedagogical and information
design perspectives emerge and are closely coupled with Web 2.0 philosophy. Authors

1 Conseil Européen pour la Recherche Nucléaire (European Council for Nuclear Research).

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 405–416, 2014.
DOI: 10.1007/978-3-319-05032-4_29, � Springer International Publishing Switzerland 2014

like Chatti, Jarke and Frosch-Wilke [3], present the concept of social software as a
tool for augmenting human social and collaborative abilities; Downes [4], promotes
the creation of an individual learning network using simple social tools; Happ [5],
brings Web 2.0 into the mainstream advocating that is it more than technology and the
human-element; Sclater [6], presents the pros and cons of using social networking
systems such as Facebook in Learning Management Systems; or Wilson et al. [7] that
explores a new design pattern for personal learning environments.

These perspectives help to rethink the purpose of technology-enhanced learning
environments in education, to question the existing industry standards and to open the
way towards competence development of learners.

According to Stephen Downes [6], knowledge informs learning; the learning
outcomes inform community; and the community in turn creates knowledge. Looking
from a reverse perspective, knowledge builds community, while community defines
what is learned, and what is learned becomes knowledge. These three aspects –
community, learning and knowledge, essentially model the same phenomenon,
representations of communications and structures that are created by individuals
interacting and exchanging experiences (knowledge) within communities [8].

As an example of the learning process explained above, Free/Libre Open Source
Software (FLOSS) communities consist of heterogeneous groups of independent
volunteers, who interact among them driven by different motivations [9]. Software
developed by these communities is driven by collaborative, social modes of interac-
tion and knowledge exchange, providing an example of peer-production [10].

Our research work focuses on studying how contributors to FLOSS projects learn
and whether and how they recognize the learning process they experience through
their contributions. Within such research frame, Fernandes, S. et al. [11] reported an
initial experience using a stratified sampling, considering few FLOSS contributors
playing different roles and with different demographics – i.e. gender and age. This
paper extends such work by presenting results of a more extended sample with 27
respondents, committed to different activities, with diverse gender and age, but also
representing different countries and possessing different backgrounds. In particular,
the aim of this paper is to (1) study the interactions between FLOSS projects par-
ticipants, and (2) assess the didactical value of their communities. The main contri-
bution of the results presented here is bringing better understanding of how FLOSS
contributors interact and the didactical value of such activity. The rest of this paper is
structured as follows. Section 2 introduces some background and related work.
Section 3 presents the methodology and the description of the instrument used for data
collection. Section 4 presents results, while Sect. 5 the analysis of the results. Finally,
Sect. 6 presents some conclusions pointing to envisaged future work.

2 Background and Related Work

At the end of 2006 Time magazine’s Person of the Year was ‘‘You’’ [12]. On the cover
of the magazine, and underneath the title of the award, is a picture of a Personal
Computer (PC) with a mirror in the place of the screen, reflecting not only the face of
the user, but also the general feeling that 2006 was the year of the Web – a new

406 S. Fernandes et al.

improved, user-generated web. This award and recent trends have led to a feeling that
the Web is more and more a source of knowledge and that the activities performed
there can be seen as a mean to develop skills.

As an example of collaborative and participatory trends, we focus on FLOSS
projects. FLOSS projects are developed using the Web and it has been accepted that
the participation in such projects represent a potential positive impact on the con-
tributor’s learning processes. The FLOSS community itself provides a valuable,
though partial, source of information [10].

In fact, the use of FLOSS projects as learning tools have already gained significant
supporters in higher education institutions, and implemented in regular courses.
Brocco and Frapolli [13] report on the use of FLOSS projects in a computer science
class at the University of Fribourg. Lundell et al. [16] report their experience from a
practical assignment at the University of Skövde in Sweden. Papadopoulos et al. [14]
reports on the use of an instructional method that utilizes FLOSS projects as tools for
teaching software engineering at the Department of Informatics at the University of
Thessaloniki in Greece.

In our previous work, we presented preliminary results obtained by conducting a
stratified sampling for collecting data to study the learning process of contributors to a
FLOSS project [11]. This paper extends such work, focusing on the FLOSS com-
munity and its contributors. In [11], and as a way to analyze whether FLOSS has a
positive effect on contributors’ learning, we decided to run an online questionnaire
targeting few FLOSS contributors. The results, although with no statistical relevance,
served to pave the way to further broader investigations. This paper extends the
analysis mentioned above, after a re-design of the questionnaire and its dissemination
to a broader audience.

Our hypothesis remains the same: long-term participation in FLOSS projects can
have a positive effect in the contributor’s learning process. And our main goal with the
revised questionnaire continues to be to understand of how FLOSS projects contrib-
utors learn and whether and how contributors recognize the learning process them
experience.

3 Methodology

This section provides details about the data collection process; in particular, the
questionnaire construction and design, as well as the dissemination process.

3.1 Questionnaire Design

The questionnaire was structured into three main sections: Section A aims at col-
lecting respondents’ demographics; Section B aims at collecting data about the
respondent’s interaction with the project community, the motivations to start and
continue contributing to FLOSS project; and Section C surveys where the respondents
exploit the potential of FLOSS projects as learning environments. Each section
comprises different types of questions. The questionnaire was formulated using

Analysis of FLOSS Communities as Learning Contexts 407

open-ended and closed-ended questions. In the open-ended questions the possible
responses were not given, allowing the respondent to write down the answers in his/
her own words. In the closed-ended questions, possible answers were provided for the
respondent to tick the category that best describes his or her choice. In such questions,
the clause ‘‘Other/please explain’’ was included to accommodate any response not
listed. The use of these two forms of questions revert to the fact that close-ended
questions are extremely useful for eliciting factual information and open-ended
questions for seeking opinions, attitudes and perceptions.

In the closed-ended questions, we not only allowed multi-selection answers but
also provided three types of Likert Scale answers: (1) to analyze the respondent’s
perception, including values like Strongly disagree, Disagree, Not sure/Not applicable,
Agree, and Strongly agree; and (2) to analyze the frequency of certain respondent’s
behavior, including values like Ever, Once every year, Once a month, At least 3 times
per month, and More than 3 times per month; and (3) to assess the relevance that the
respondent assigns to a specific issue, including values like Not at all important, Not
too important, Not sure /Not applicable, Somewhat important, and Very important.

In particular, Section A refers to the respondent age, country, language, back-
ground and the different FLOSS projects he/she have been enrolled in.

Section B explores the respondent’s participation in a specific FLOSS project. In
this section the respondent presents a specific project, to which he/she has (or is)
contributing. The respondent is requested to describe how the participation started, the
drivers what drove him to starting such activity, his/her role in the project, and how
many hours he/she devotes to the project. The respondent has the opportunity to
describe the type of relationships he has with community members, how they share
information, or if they promote and have community meetings or events.

Section C aims at exploiting the potential of FLOSS projects as learning envi-
ronments. In this section, the respondent analyzes whether the fact of being in a
FLOSS community provides him with a learning opportunity, and if his background
(professional or academic) facilitates the learning process while participating in a
FLOSS project. We also explore who and what were the most important agents in his
learning process, if FLOSS projects can be regarded as learning communities, if
FLOSS can be seen as a possible alternative to formal education, and if FLOSS could
be seen as an interesting complement to formal education.

3.2 Questionnaire Construction and Dissemination Process

The aim of the questionnaire was to (1) study the interactions between FLOSS pro-
jects participants, and (2) assess the didactical value of their communities. By inter-
actions we mean the interactions between community members and the project, but
also what drives an individual to start participating in FLOSS projects.

The questionnaire was carried out online using Google Docs Survey2. Following
the same procedure as in [11], we tested the questionnaire, and performed a brief

2 https://docs.google.com/a/iist.unu.edu/spreadsheet/ccc?key=0Akke8MV3ZtZidFpxdDRncTI3ekdj
SlJzenFqNWVXNWc

408 S. Fernandes et al.

https://docs.google.com/a/iist.unu.edu/spreadsheet/ccc?key=0Akke8MV3ZtZidFpxdDRncTI3ekdjSlJzenFqNWVXNWc
https://docs.google.com/a/iist.unu.edu/spreadsheet/ccc?key=0Akke8MV3ZtZidFpxdDRncTI3ekdjSlJzenFqNWVXNWc

analysis, representing the first phase of activities. For the second phase, and before
launching the questionnaire to broader audience, we carried out a pilot test. First, the
questionnaire was re-introduced to the same FLOSS projects contributors of the first
phase. This pilot test lasted for two weeks in May 2013. With the received feedback,
the questionnaire was revised and improved. As part of the dissemination process, we
contacted several institutions from associations (Drupal Association, Associação
Portuguesa de Programadores Perl), and foundations (Perl Foundation) to companies
(Google, RedHat, Citrix, Linux, OpenSource.com) through their Websites, Facebook,
or Twitter pages.

Finally, the questionnaire was officially launched on 1 June 2013 and preliminary
results collected by 13 June 2013. After collecting this first data, the questionnaire will
remain available, in order to increase the sample of responses.

4 Results

Two weeks after the questionnaire was released, we were able to collect data from 27
respondents, from 16 different countries, including Portugal, United Kingdom, Ger-
many, India, France, Serbia, Finland, Netherlands, Belgium, Slovenia, USA, Macau
SAR China, Canada, Argentina, Israel, and Brazil. From the respondents, 24 are men
and 3 are women. Respondents have different academic levels. The majority has
postgraduate studies (41 %), followed by undergraduate studies (33 %). As far as their
professional activities are concerned, 29.6 % of the respondents are software devel-
opers, 18.5 % students – PhD and undergraduate, and 3.7 % are researchers. Con-
cerning the list of projects, all respondents except one indicated only one project. The
list of projects to which they contributed include: Perl, Perl Dancer, NetBSD, Gentoo
Linux, Ubuntu Studio, Drupal, Kalkun, The Xen Project, and Joogie. A respondent
who did not write any project name stated that he is involved in too many projects.

Results obtained in Section B are explained as follows. In Section A the
respondents provided a list of projects. When asked to select a specific FLOSS project,
85 % of the respondents presented different projects, although within a similar field of
activity. 48 % of the respondents work (or worked) on a project in the application
software area, whereas 37 % at the level of operating systems. Although 70 % of the
respondents participate in the correspondent project for more than 1 year, 19 %
indicate their participation in the project lasts for less than 6 months, as shown in
Fig. 1.

Fig. 1. Active participation in FLOSS projects

Analysis of FLOSS Communities as Learning Contexts 409

Although for 56 % of the respondents the challenge was what made them start
participating in FLOSS projects, 52 % answered that it was the idea that triggered
their participation, as depicted in Fig. 2.

The activities that one can perform in a FLOSS project are several and may go
from observer to developer, from user supporter to tester. Although 41 % of the
respondents stated that they started their participation as developers, it is important to
notice that 44 % of the respondents declared they started in other ways (a way not
included among the available responses), as depicted in Fig. 3.

Among others, the respondents said that they started in the selected project as
owner, or translator. Also, we determined that respondents started their participation
by having more than one role, such as, tester and developer, or as developer and
observer. Although respondents said they started with a certain role, it is interesting to
analyze that 70 % became active developers.

As far as the relationships are concerned, 33 % of the respondents state that they
are friends with other group members, 33 % do not know any community members
personally, 22 % declared that the relationship is professional, and 11 % have other
types of relationships with community members. Concerning how often they col-
laborate with other group members, 56 % said that more than 3 times per month, and
15 % say they collaborate at least 3 times per month.

The channels used to share information and allowing collaboration in the com-
munity are diverse. They span from Wikis to Forums, from Mailing Lists to Chats. As
far as the Wikis are concerned, 22 % said they use them more than 3 times per month,
whereas 22 % said they never used them. As far as the Forums are concerned, 48 %

Fig. 2. Motivation to start contributing

Fig. 3. Role at the beginning - As an…; and later - I am…

410 S. Fernandes et al.

said they never use this type of channel whereas 22 % said they use them more than 3
times per month. As far as the Mailing lists are concerned, 44 % of the respondents
use it whereas 22 % never use it. The channel with more usage is actually Chats where
63 % of the respondents said they use it more than 3 times per month. Overall, 96 %
of the respondents use some sort of communication channel, whereas 4 % don’t
communicate more than 3 times per month.

As far as meetings are concerned, 74 % of the respondents have online meetings
and 41 % have face-to-face meetings. Concerning the type of events each community
organize, 37 % said conferences, 26 % workshops, and 37 % do not organize any
types of events. Finally, 37 % of the respondents believe that their participation in the
projects can be improved, 26 % strongly believes in that fact, whereas only 3 %
disagree, as depicted in Fig. 4.

The results obtained in Section C include the following. Several areas where
FLOSS can provide expertise were included, such as testing, programming, code
reviewing, code analysis, writing documentation, or reading and writing
documentation.

As depicted in Fig. 5 respondents assessed their perception on the learning
opportunities provided by selected activities as follows: (1) testing - 59 % agree, (2)
programming - 70 % strongly agree, (3) code reviewing - 70 % strongly agree, (4)
writing documentation - 70 % strongly agree, (5) reading and understanding docu-
mentation - 41 % strongly agree. In addition, 89 % strongly disagree that participating
in a FLOSS project does not provide a learning opportunity, 7 % only disagrees and
4 % does not have an opinion about if participating in a FLOSS project can or not
provide a learning opportunity.

If, as seen before, participating in a FLOSS project can be considered as a learning
opportunity. It is also important to determine whether the background of the
respondent – academic or professional – is a factor to the success of such learning
experience. To this questions, 56 % of the respondents agreed that their background is
relevant for the success of their own learning process while participating in a FLOSS
project, whereas 22 % is not sure if it has an impact.

As far as the agents involved in their personal learning experience, 59 % of the
respondents agreed that themselves are very important in the learning process. 67 %
recognize that group members such as manager, senior members of the community or
others, are important agents. 56 % said that they are not sure if the end users are
important agents, where 26 % agrees that the end users are important agents in the
learning experience.

Fig. 4. Improvement through participation

Analysis of FLOSS Communities as Learning Contexts 411

FLOSS projects can be regarded as an opportunity to perform several activities
such as, attempting to understand shared code, programming, browsing and reading
notes, documenting code, sharing concerns, contributing to the community forums, or
reading formal publications such books, the answers. We have requested the
respondents to evaluate such activities; responses are depicted in Fig. 6.

Respondents assess their perception on the relevance of conducting selected
activities as follows: (1) attempting to understand shared code - 33 % as very
important and 19 % as important, (2) programming - 44 % as very important, (3)
browsing and reading documentation - only 37 % as somehow important, (4) docu-
menting code - 30 % as very important and 22 % as somehow important, (5) sharing
concerns, problems or solutions (using email, wikis, etc.) - 37 % as very important,

Fig. 5. FLOSS projects activities as learning opportunities

Fig. 6. Evaluation of different activities in FLOSS projects

412 S. Fernandes et al.

(6) contributing to community forums - 30 % as somehow important, and (7) reading
books or other formal publications - 33 % are not sure.

When asked who were the most important agents in the respondents’ learning
experience, 59 % of the respondents agree that themselves, and 41 % strongly agrees
with such fact. Also, 67 % agrees that other group members are the most important
agents in the respondents’ learning experience, while only 26 % strongly believe in
this fact. However, and although the software developed in FLOSS communities are
for general use, 56 % do not see the End Users as agents of learning.

To the question, ‘‘has your involvement as a contributor in a FLOSS project
changed the way you assess your own previous formal education’’, 37 % agree that it
changed whereas 26 % are not sure.

In a more generic perspective, 48 % of respondents agree that FLOSS projects
communities can be regarded as learning communities, 41 % strongly agree whereas
only 4 % disagree.

When questioned if FLOSS projects can be regarded as a possible alternative to
formal education, 33 % of the respondents do not agree. However, 59 % strongly
agree that it can be regarded as a complement to formal education. Results to this
question are depicted in Fig. 7.

5 Analysis

For analyzing the results, we focus on 5 main dimensions:

(1) What – determining the type of interactions present (internal and external);
(2) How – determining how the respondents start their interactions, the modality

they use to promote interactions, the impact of documentation available and the
tools they use to interact;

Fig. 7. Use of FLOSS projects in formal education

Analysis of FLOSS Communities as Learning Contexts 413

(3) When – focusing on the frequency of interactions and contributions;
(4) Why – assessing their motivation to start the contribution on a FLOSS project,

the impact of their background, the learning opportunities while participating in
a FLOSS projects and the benefits of such participation; and

(5) Who – evaluating what roles the respondent play in the community and its
learning agents.

The analysis for the above dimensions follows.

What - To determine the interactions within a FLOSS community, we first analyze
what type of interactions exist: either they are internal interactions - where the
respondent focuses on his personal experience with the community and the project –
or external, where the respondent presents how he promotes interaction with the
community and to end-users of the product developed, such as events and meetings.

We have seen that nearly half of the respondents are friends with other community
members. Nearly the remaining half simply does not know anybody in the commu-
nity. Also, we have seen that nearly half of the respondents organize some sort of
events. We believe that the high percentage of contributors that have a relationship, in
this case, a friendly relationship, may have an impact on external interactions. The
events organized, such as conferences and workshops, by default, promoting a direct
contact among them.

How - In the questionnaire we presented many of the possible roles available in a
FLOSS project. Interestingly, but not surprisingly, most of the respondents started
their participation as developers and they continue being developers. They have online
meetings and they use tools such as Wikis, Forums and Mailing lists to share infor-
mation. Despite the intense use of such tools the majority of the respondents prefer
chats to communicate. One of the main activities of the respondents is to develop
software. As we know this is a type of work that is performed by single individuals.
Such fact may indicate why contributors prefer chats to communicate. Besides chats,
also mailing lists are very important to FLOSS contributors. Mailing lists are used as
repositories by the community, as a way to share information, express concerns and
achievements. Mailing lists, Wikis and Forums act as available documentation and are
considered an asset for the project and the community.

When - From the results we determined that the majority of the respondents have been
working in the selected project for more than 6 months. In average the respondents
contribute to the project with more than 5 h per week, collaborating with other group
members more than 3 times per month.

Why - The respondent background and initial motivations may have an impact on
how committed he is to a project. It is interesting to see that most of the respondents
said that they start participating in FLOSS projects as a challenge. Interestingly, 2 of
the 3 women that replied to the questionnaire pointed that what made them start
participation in FLOSS projects was the idea. As we know, the outcome of a FLOSS
project is software. Not surprisingly the majority of the respondents have a back-
ground in computer science and are software developers.

414 S. Fernandes et al.

Who - The respondents’ background, academic or professional, may explain why they
started their participation as developers and they continue doing so. However, having
the same role does not mean they don’t acquire knew knowledge. When asked who
are the most important agents of their learning experience, the respondents indicate
themselves and the community. To them, not only the community can be regarded as a
way to improve the learning process but also participation in FLOSS projects can be
seen as a complement to formal education, where students can learn by doing, rep-
resenting a positive impact on the learner.

Summary – Addressing the two research questions formulated in the Introduction: (1)
study the interactions between FLOSS projects participants, and (2) assess the
didactical value of their communities, our analysis shows the following conclusions.

6 Conclusion and Future Work

The aim of this paper was to (1) study the interactions of FLOSS community mem-
bers, and (2) to assess the didactical value of such participation. As we were able to
analyze by our small sample of respondents, FLOSS projects participants collaborate
and cooperate between them. This let us with the certainty that there are interactions
in FLOSS community members, and they are driven by the same goal: to develop a
software project. It is important to verify that FLOSS community members, do not
believe that the participation in FLOSS projects can be an alternative to formal
education, for example, to replace formal courses in software engineering in higher
education institutions. However, they see that the ‘‘learning by doing’’ concept can be
applied in FLOSS projects and therefore is an attractive complement to formal edu-
cation, mainly in software engineering courses. As future work, we aim comparing the
data collected with a pilot project that uses FLOSS projects as assignments in Soft-
ware Engineering courses.

Acknowledgments. This work is funded partly by UNU-IIST and Macau Foundation in the
context of the PPAeL project. This work is funded by ERDF - European Regional Development
Fund through the COMPETE Programme (operational programme for competitiveness) and by
National Funds through the FCT - the Portuguese Foundation for Science and Technology,
within project FCOMP-01-0124-FEDER-010049.

References

1. Anderson, P.: What is Web 2.0? Ideas, technologies and implications for education. http://
www.jisc.ac.uk/media/documents/techwatch/tsw0701b.pdf (2007). Accessed 11 Nov 2012

2. Fountain, R.: Wiki pedagogy. Dossiers Pratiques. Profetic. http://www.profetic.org:16080/
dossiers/dossier_imprimer.php3?id_rubrique=110 (2005). Accessed 11 Nov 2012

3. Chatti, M.A., Jarke, M., Frosch-Wilke, D.: The future of e-learning: a shift to knowledge
networking and social software. Int. J. Knowl. Learn. 3(4/5), 404–420 (2007)

4. Downes, S.: Web 2.0 and your own learning and development. http://www.elearnspace.org/
blog/2007/06/19/web-20-and-your-own-learning-and-development/ (2007). Accessed 10
May 2013

Analysis of FLOSS Communities as Learning Contexts 415

http://www.jisc.ac.uk/media/documents/techwatch/tsw0701b.pdf
http://www.jisc.ac.uk/media/documents/techwatch/tsw0701b.pdf
http://www.profetic.org:16080/dossiers/dossier_imprimer.php3?id_rubrique=110
http://www.profetic.org:16080/dossiers/dossier_imprimer.php3?id_rubrique=110
http://www.elearnspace.org/blog/2007/06/19/web-20-and-your-own-learning-and-development/
http://www.elearnspace.org/blog/2007/06/19/web-20-and-your-own-learning-and-development/

5. Happ, S.: The changing world of e-learning. http://besser20.de/the-changing-
world-of-e-learning/44/ (2008). Accessed Dec 2012

6. Sclater, N.: Web 2.0, personal learning environments and the future of learning
management systems. Educause Res. Bull. (13 Boulder, CO: Educause Center for
Applied Research) (2008)

7. Wilson, S., Liber, P.O., Johnson, M., Beauvoir, P., Sharples, P.: Personal learning
environments: challenging the dominant design of educational systems. J. e-Learn. Knowl.
Soc. 3(2), 27–38 (2007)

8. Downes, S.: Knowledge, learning and community. http://www.downes.ca/post/57737
(2012). Accessed 10 Nov 2012

9. Fernandes, S., Cerone, A., Barbosa, L.S.: FLOSS communities as learning networks. Int.
J. Inf. Educ. Technol. 3(2), 278–281 (2013)

10. Cerone, A., Sowe, S.K.: Using free/libre open source software projects as learning tools. In:
OpenCert 2010, vol. 33 of ECEASST (2010)

11. Fernandes, S., Cerone, A., Barbosa, L.S.: A preliminary analysis of learning awareness in
FLOSS projects. In: International Symposium on Innovation and Sustainability in
Education (INSUEDU 2012). Springer, Thessaloniki (2012, in Press)

12. Times Magazine: http://www.time.com/time/covers/0,16641,20061225,00.html (2013).
Accessed 5 May 2013

13. Brocco, A., Frapolli, F.: Open Source in Higher Education: Case Study Computer Science
at the University of Fribourg (2011)

14. Papadopoulos, P.M., Stamelos, I.G., Meiszner, A.: Students’ perspectives on learning
software engineering with open source projects: lessons learnt after three years of program
operation. In: Proceedings of the Fourth International Conference on Computer Supported
Education (CSEDU 2012), pp. 313–322 (2012)

15. Magrassi, P.: Free and open-source software is not an emerging property but rather the
result of studied design. In: ICICKM10 (2010)

16. Lundell, B., Persson, A., Lings, B.: Learning through practical involvement in the FLOSS
ecosystem: experiences from a master assignment. In: Proceedings of the Third
International Conference on Open Source Systems 2007, pp. 289–294 (2007)

416 S. Fernandes et al.

http://besser20.de/the-changing-world-of-e-learning/44/
http://besser20.de/the-changing-world-of-e-learning/44/
http://www.downes.ca/post/57737
http://www.time.com/time/covers/0,16641,20061225,00.html

Small World Characteristics
of FLOSS Distributions

Jaap Boender1(B) and Sara Fernandes2

1 Foundations of Computing Group, Department of Computer Science School of
Science and Technology, Middlesex University, London, UK

J.Boender@mdx.ac.uk
2 UNU-IIST, Macao SAR, China
sara.fernandes@iist.uni.edu

Abstract. Over the years, Free/Libre Open Source Software (FLOSS)
distributions have become more and more complex and recent versions
contain tens of thousands of packages. This has made it impossible to
do quality control by hand. Instead, distribution editors must look to
automated methods to ensure the quality of their distributions.
In the present paper, we present some insights into the general struc-
ture of FLOSS distributions. We notably show that such distributions
have the characteristics of a small world network: there are only a few
important packages, and many less important packages. Identifying the
important packages can help editors focus their efforts on parts of the
distribution where errors will have important consequences.

1 Introduction

It has long been a standard method in computing science to divide complex
systems into components [10]. System processes are placed into separate compo-
nents so that all of the data and functions inside each component are semantically
related. Because of this principle, it is often said that components are modular
and cohesive.

The modularity of components allows for easy debugging and maintenance,
since components are small and generally focus on only one task. Cohesiveness
allows components to work together towards a greater goal.

Free/Libre Open Source Software (FLOSS) software distributions are very
good examples of component-based systems. They are very large (over 35 000
packages in the latest Debian release), heterogenous (they contain packages writ-
ten by different teams, in different languages, with different release schedules,
etc.).

Since FLOSS distributions are becoming more and more popular and com-
plex, the fact is that to assure quality by hand becomes an impossible task. This
forces the editors to search for automated methods in order to ensure the quality
of their distributions.

The aim of this paper is to present some insights into the general struc-
ture and characteristics of FLOSS distributions. Identifiying these can help dis-
tribution editors in concentrating their resources. For example, well-connected

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 417–429, 2014.
DOI: 10.1007/978-3-319-05032-4 30, c© Springer International Publishing Switzerland 2014

418 J. Boender and S. Fernandes

packages with errors will have a greater impact than packages that have few con-
nections. As another example, if there is a cluster of strongly connected packages,
it might be useful to assign maintenance of these packages to the same person
or team.

We have used the Debian and Mandriva distributions for our experiments.
Debian was chosen because it is a very large distribution (in number of packages).
Also, the semantics of its packaging system are well-defined, which makes it easier
to interpret results. Mandriva was chosen because it is one of the distributions
using the RPM system. The semantics of RPM are different from those of the
Debian packaging system, so it is possible to assess whether characteristics are
general for all FLOSS distributions or artefacts of a specific packaging system.

The rest of the paper is structured as follows. Section 2 introduces some back-
ground and related work. Section 3 presents the methodology. Section 4 presents
the results and its analysis. Finally, Sect. 5 presents some conclusions pointing
to envisaged future work.

2 Background and Definitions

FLOSS applications are often distributed in the form of packages, which are
bundles of related components necessary to compile or run an application. For
many FLOSS packages, the source code is freely available and reuse of the code
for derivative works is encouraged.

Because of this, resource reuse is considered to be a natural pillar: a package
is often dependent on resources in some other packages to function properly.
Package dependencies often span between project development teams, and since
there is no central control over which resources from other packages are needed
or in what way, the software system self-organizes in to a collection of discrete,
interconnected components.

The relationships between packages can be used to compute relevant quality
measures, for example in order to identify particularly fragile components [1,4].

In a distribution, there are two main types of relationships, with totally dif-
ferent significance: dependencies (where one package needs another to function
properly) and conflicts (where packages cannot function together). Also, syntac-
tically, dependencies are directional, while conflicts are not. And finally, there
are two different types of dependencies, conjunctive (the ’normal’ kind, which
can only be satisfied in one way) and disjunctive (where a dependency may be
satisfied by one out of a list of packages). For formal definitions of these concepts,
please refer to [7].

An example can be found in Fig. 1. If we want to install the package alpha,
we will need to install bravo (a conjunctive dependency) and charlie or delta
(a disjunctive dependency). Furthermore, delta is in conflict with foxtrot, so
it is not possible to install them both together. In this case, the disjunctive
dependency of echo on delta or foxtrot can be satisfied with either of these
packages, but not both. This is because of the conflict: there is no problem in
installing charlie and delta together.

Small World Characteristics of FLOSS Distributions 419

Fig. 1. Simple repository

If we look at a FLOSS distribution (which, after all, is nothing more than a
set of packages with their relationships) as a whole, we can also identify quality
measures. For this purpose, we will look at distributions as networks.

A network is an unweighted graph G = (V,E) where V denotes a vertex
set and E an edge set. Vertices represent discrete objects in a system, such as
social actors, economic agents, computer programs, Internet sites, or biological
producers and consumers. Edges represent interactions among these actors, such
as Internet sites linking to each other.

Many of these networks exhibit a property known as the small world property,
first described by Stanley Milgram in his famous paper about the ’six degrees of
separation’ concept [8]. A small world network is distinguished by the fact that
the number of hops needed to reach one vertex from another is relatively small,
at least compared to a random network.

This property has been observed in many products of human and biological
activity, including the graph of the Internet [5], the graph of the World Wide
Web [3] and other complex networks [2].

Formally, a network is deemed small-world if it satisfies two properties:

– The clustering coefficient, defined as the probability that two neighbours of
the same vertex are connected, is significantly higher than that of random
networks.

– On average, the shortest path length between two vertices is low (on the
same order as that of random networks).

A small world graph has a high clustering coefficient (at least with respect
to random networks), and also a low average shortest path length. Moreover,
in a small world network, these two properties result in a network that con-
sists of clusters, whose central vertices (or nodes) are highly connected, creating
hubs. These have many connections, whereas the other nodes can have very few
connections; thus, the degree distribution conforms to the well-known Pareto

420 J. Boender and S. Fernandes

principle, also known as the 80/20 law—a small number of nodes have a high
number of connections.

The application of the small world concept to FLOSS distributions is not
new; it has already been proven that FLOSS distributions have small world
characteristics [6,9].

However, in both papers, it is not clear which methodology has been used1.
As we shall see in the next section, this can have an important effect on results,
especially since in FLOSS distributions, not all edges are equivalent (dependen-
cies are radically different from conflicts, for example).

In [6], the numbers suggest that all package relations have been treated
equally, without regard for semantics or directionality.

In [9], small world characteristics are shown for both the graph of dependen-
cies and the graph of conflicts. This at least resolves the problem of semantics,
because dependencies and conflicts are treated separately.

The paper, though, contains a puzzling claim: it is stated that the small-world
method does not hold for packages with very few or very many dependencies (the
so-called ‘saturation effect’). This claim is puzzling in that the entire basis of
the small world phenomenon is the distinction between packages with few and
packages with many dependencies. As we shall see, this is especially important in
FLOSS distributions, as it gives us insights into the structure of the distribution.

In the next section, we present the methodology used in our measurements.

3 Methodology

In this section, we present the exact methods we have used to generate the
distribution graphs and the measurements we have executed on them. We shall
also discuss the different significance of these methods.

A distribution can be seen as a graph, where the packages are the vertices
and relationships (dependencies and conflicts) are the edges. However, as we
have seen before, not all edges are the same—the significance of a dependency
is diametrically opposite to that of a conflict, and treating these edges the same
can result in confusing results.

It thus becomes clear that, in order to draw any meaningful conclusions from
a distribution graph, it is important to know how this graph is generated. We
propose three methods, each with their own advantages and disadvantages.

Method 1 involves treating every edge equally, irrespective of their signifi-
cance. We conflate conjunctive dependencies, disjunctive dependencies, conflicts,
and any other relations between packages that are present. This gives us a distri-
bution graph where two packages are connected if and only if they are possibly
involved in some way in determining each other’s installability.

In general, this is an overapproximation, since not every package that is
mentioned as a dependency is actually used. The main advantage of this method
is that it is easy to compute.
1 Queries to the authors of these papers have gone unanswered.

Small World Characteristics of FLOSS Distributions 421

In method 2, we connect two packages p and q if there is a path in the
dependency graph from p to q. Another way of expressing the same concept is
that q must appear in the transitive closure of the dependencies of p. In this
way, a package p is connected to a package q if there is a possibility that q is
installed to satisfy some dependency of p.

This method still is an overapproximation, though less so than the first
method. It is not much more difficult to compute, though it no longer takes
conflicts into account. The main advantage here is that now transitive depen-
dencies are considered.

For method 3 we make use of strong dependencies [1], a concept that sub-
sumes both dependencies and conflicts. Informally, a package p strongly depends
on another package q if and only if it is impossible to install p without also
installing q.

Note that strong dependencies are a property of the entire distribution, not
just of the packages involved: whether p strongly depends on q depends on the
entire distribution, for every installation of p has to include q.

The advantage of using the strong dependency graph is that now we have
a unified graph, where every edge has the same meaning, but which still takes
both conflicts and dependencies into account. It is a slight underapproximation,
since conjunctive dependencies where none of the alternatives is obligatory, but
one will have to be installed nonetheless, do not end up as strong dependencies.

The main disadvantage is that the strong dependency graph is more difficult
to compute, since it involves doing installability checks, e.g. with a SAT solver.
However, it can still be done within reasonabletime (a few minutes for the latest
distributions).

We have used all of these three methods to generate distribution graphs and
measure their characteristics. In the next section we will present the results and
discuss their significance.

4 Results and Discussion

In this section we present the results of measurements on the graphs obtained by
the three different methods described above, for both the Debian and Mandriva
distributions. We also discuss the significance of these measurements and the
conclusions that can be drawn from them.

4.1 Debian

Let us start with the raw data for the latest Debian distribution (version 7) on
the standard AMD64 architecture. Using the three different methods, we have
generated distribution graphs and determined several key indices.

In this table, first we have the number of vertices (V) and edges (E) in the
graph. At first glance, it might seem surprising that the method 1 graph has
so few edges compared to the other two, especially since it uses every possible

422 J. Boender and S. Fernandes

Method V E CC APL Comp CpAvg LComp

1 35 982 85 190 0.38 3.43 2 251 15.98 33 558
2 35 982 2 386 389 0.26 0.91 2 229 16.15 33 582
3 35 982 1 588 322 0.28 0.91 2 280 15.78 33 537

distribution used: debian/amd64 7 stable

package relation, but this can be explained by the fact that the method 2 and 3
graphs are transitive.

Then there are the main small world indices, the clustering coefficient (CC)
and average shortest path length (APL). Both these characteristics show a small
world effect in all three graphs, though we must note that the average shortest
path length index is not indicative for graphs 2 and 3: these graphs being tran-
sitive, there is either no path between two vertices or a path of length 1. This
results in the average shortest path length being less than 1.

Note that even though the number of edges is vastly higher in graphs 2 and
3, the clustering coefficient is actually lower. This might seem strange (more
edges should result in more connection, hence a higher probability of vertices
being neighbours) but it is caused by the fact that these graphs are transitive:
the fact that vertices have a higher probability of being connected is balanced
out by the fact that vertices have more neighbours to begin with.

We also show the component structure of the graph; in this case we use
weakly connected components while ignoring direction. We show the number of
components (Comp), average component size (CpAvg) and the size of the largest
component (LComp). We can see from these measures that distributions consist
of one huge connected component, encompassing over 90 % of the distribuition,
with the rest of the distribution consisting of isolated or near-isolated packages.

In the rest of this section, we shall limit ourselves to a discussion of the strong
dependency graph (method 3), as it is the most interesting one from a semantic
perspective (every edge has an equal, well-defined meaning). All three graphs,
however, exhibit small world characteristics.

Another characteristic of small world networks, demonstrated in Fig. 2, is
that the distribution of degrees of their vertices follows a power law—as men-
tioned before, the Pareto principle. There should be few vertices with many
edges and many vertices with few edges.

We can see this in the figure: the degree distribution forms a straight line in
a double logarithmic plot.

In Fig. 3, we show the same plot, but now with in degrees and out degrees
separated. We can see from this that the distribution consists of three main types
of packages:

– Many packages with a small in degree and a small out degree;
– A few packages with a small in degree, but a large out degree;
– A few packages with a large in degree, but a small out degree.

Notably, there are no packages that have both a large in degree and a large
out degree.

Small World Characteristics of FLOSS Distributions 423

Fig. 2. Distribution of degrees in Debian stable (strong dependencies)

Examining these packages can shed some light on why this is the case. Here
is a table with on the left the 10 packages in Debian with the highest in degree,
and on the right the 10 packages with the highest out degree.

Highest in degrees Highest out degrees

Name In degree Out degree Name In degree Out degree
gcc-4.7-base 31 708 0 gnome-desktop-environment 0 945
libc-bin 31 707 2 gnome 1 944
multiarch-support 31 706 4 task-gnome-desktop 0 746
libgcc1 31 706 4 gnome-core-devel 0 710
libc6 31 706 4 gnome-core 3 677
zlib1g 25 514 5 kde-full 0 643
libselinux1 21 695 5 task-kde-desktop 0 560
liblzma5 21 201 5 ontv 0 493
libbz2-1.0 21 108 6 kde-standard 1 473
tar 20 681 5 kde-telepathy 0 382

We see that the packages on the left are mostly libraries and base packages
(libc, for example, or tar), and that on the right there are mostly high-level
packages (metapackages) such as KDE or GNOME.

Figure 4 shows this in a schematic way.

424 J. Boender and S. Fernandes

Fig. 3. In and out degrees in Debian stable (strong dependencies)

This data can be corroborated in a different way as well: in Debian, most
packages carry tags that identify things like their role, whether they are part of
a larger software suite, or the programming language they are implemented in.
If we look at the tags that occur more than once in the packages in the top 10
shown above, we get the following table:

High in degrees High out degrees

Tag Count Tag Count

implemented-in::c 7 role::metapackage 6
role::shared-lib 4 interface:x11 5
devel::packaging 2 uitoolkit::gtk 5
interface::commandline 2 suite::gnome 4
role::program 2 suite::kde 2
scope::utility 2
suite::gnu 2
use::storing 2
works-with::archive 2
works-with::file 2

It seems that packages with a high in degrees are often shared libraries and
implemented in C. Both of these characteristics point to system libraries.

Similarly, the packages with a high out degree are mostly metapackages, using
the X window system and part of the GNOME or KDE suites. This also confirms
the structure as shown in Fig. 4.

Small World Characteristics of FLOSS Distributions 425

Fig. 4. Schematic repository structure

4.2 Mandriva

Debian, of course, is not the only distribution available. We have also analysed
another distribution, Mandriva, which is based on RPM, a different but compa-
rable packaging system. Let us see if the conclusions drawn for Debian also hold
for Mandriva. First the raw data:

Method V E CC APL Comp CpAvg LComp

1 7 566 84 855 0.47 7.49 289 26.18 7 273
2 7 566 1 170 721 0.25 0.94 333 22.72 7 230
3 7 566 721 162 0.25 0.94 339 22.32 7 223

distribution used: mandriva/x86 64 2010.1 main

Allowing for the smaller size of the distribution, the values are roughly sim-
ilar. However, if we look at the first graph, we see that it has almost the same
number of edges as its Debian equivalent, for roughly a fifth of the packages.
This can be explained by a difference in semantics between the Debian package
format and RPM: RPM packages and dependencies are more fine-grained, which
makes for more edges in the graph2. We can also see this from the higher aver-
age shortest path length: there are on average more intermediate dependencies
between two packages than in Debian.

We also see that the clustering coefficient of Mandriva is higher than that of
Debian in the first graph, but slightly lower in the second and third. The higher
clustering coefficent in the first graph can be explained by the difference in
semantics mentioned above—there are simply much more dependencies, and the
balancing effect of transitive graphs is not present here. For the difference in the
second and third graphs, we will have to look at the actual degree distribution.
2 This might seem at odds with the fact that there are many less packages in Mandriva

than in Debian. The Debian distribution is, hoewever, very extensive and contains
many packages not present in Mandriva.

426 J. Boender and S. Fernandes

 1

 10

 100

 1000

 1 10 100 1000 10000

C
ou

nt

Degree

in degree
out degree

Fig. 5. Distribution of degrees in Mandriva 2010.1, strong dependencies

This degree distribution is shown in Fig. 5. We see that there is still a power
law distribution, but it is not as clear as for Debian.

In Fig. 6, we have the degree distribution with in and out degrees broken
down. This figure explains best why the clustering coefficient is lower: the figure
looks comparable with its Debian equivalent (Fig. 3), but there are several out-
lying packages with a high out degree.

This is due to a specificity in Mandriva packaging: there are several packages
that do not install files themselves, but are only there to fulfill a certain task, such
as installing the X window system. These are similar to the meta-packages men-
tioned above, but they can have dependencies that are not at all related to each
other. This explains both the lower clustering coefficient (dependencies of these
meta-packages may not depend on each other) and the outlying packages (these
will be like meta-packages in that they have a high out degree, but a low in degree).

Looking at the top 10 of high degree packages in Mandriva corroborates this:

Highest in degrees Highest out degrees

Name In degree Out degree Name In degree Out degree
dash-static 7 106 0 task-kde4-devel 0 824
glibc 7 105 1 kimono-devel 0 683
lib64termcap2 5 862 2 ruby-kde4-devel 0 682
bash 5 861 3 qyoto-devel 1 681
perl-base 5 274 2 ruby-qt4-devel 1 680
libgcc1 5 206 2 smoke4-devel 4 675
libstdcc++6 5 201 3 kdenetwork4-devel 0 655
lib64pcre0 4 946 4 kipi-plugins-devel 0 651
lib64lzma2 4 836 2 kdepim4-devel 0 645
xz 4 825 5 kdeplasma-addons-devel 0 630

Small World Characteristics of FLOSS Distributions 427

0 100 200 300 400 500 600 700 800 900

0
 1000

 2000
 3000

 4000
 5000

 6000
 7000

 8000
0

 50

 100

 150

 200

 250

 300

 350

C
ou

nt
mandriva, strong dependencies

Out degree

In degree

Fig. 6. In and out degrees in Mandriva 2010.1, strong dependencies

We see the same distribution structure: library packages on the left, with
high in degree andlow out degree, and metapackages (and tasks) on the right,
with high out degree and low in degree.

If we look at the list of task packages in Mandriva, they all have a low
in degree and a high out degree. task-kde4-devel is simply the most glaring
example; there are about 30 task packages in the entire Mandriva distribution,
but they all have an out degree of over 100, and an in degree of under 10.

All in all, Mandriva shows much the same structure as Debian, and if we
consider the task packages to be metapackages as well (which, in a sense, they
are), the structure of Mandriva conforms to Fig. 4 as well.

4.3 General

We can conclude that there are two kinds of vulnerable packages in a distribution:
the meta-packages that are vulnerable because they pull in a great amount of
other packages, each with its own possible bugs, and libraries that are vulnerable
because if they contain bugs, a large number of other packages will be influenced.

Identifying these packages in a distribution can help distribution editors focus
their efforts.

5 Conclusion and Future Work

In the previous sections, we have presented a clear and precise method for cre-
ating graphs of FLOSS distributions, using three different methods. The most

428 J. Boender and S. Fernandes

interesting of these three involves strong dependencies, where we create a single
graph that incorporates information from both dependencies and conflicts.

We have shown that these graphs have small world characteristics for both
Debian and Mandriva, and that packages can be divided into three distinct
groups: meta-packages (top-level packages with many dependencies), libraries
(base packages that many other packages depend on), and other packages.

Distribution editors can use these data to identify packages that are in need
of extra surveillance, or that must be treated with extra care during upgrades
or repairs.

Meta-packages have many dependencies, and therefore have a high proba-
bility of depending on a faulty package. This makes them excellent yardsticks
for measuring the health of an entire software suite, since they will easily be
influenced by errors in their dependencies.

On the other hand, library packages must be treated with care, since errors
in them can have huge effects on the rest of the distribution. Release policies
for these packages should therefore be more conservative than for less crucial
packages.

The fact that FLOSS distributions have small world characteristics, provided
that the methodology is clear, allows us interesting insights into the structure
of these distributions that, we hope, will be used to make distribution editors’
lives easier.

5.1 Future Work

We have so far used Debian and Mandriva for our tests. We do not expect huge
differences in the results for other distributions such as Ubuntu and OpenSUSE,
but it would be good to test these nonetheless—as we have seen from the dis-
cussion of the results for Mandriva, even small differences can be of interest.

It would also be interesting to have these tests run on a daily basis over
a distribution to see how the data changes. This could not only be interesting
for scientists who want to track changes to the structure of a distribution, but
also for distribution editors, who could then identify vulnerable packages daily.
They could also identify the effect of changes in dependencies on the distribution
structure.

Acknowledgments. This work is partially supported by the European Community’s
7th Framework Programme (FP7/2007-2013), grant agreement n◦214898, “Mancoosi”
project. Work developed at IRILL. This work is also supported by Macao Science and
Technology Development Fund (MSTDF), File No. 019/2011/A1.

References

1. Abate, P., Di Cosmo, R., Boender, J., Zacchiroli, S.: Strong dependencies between
software components. In: ESEM ’09: Proceedings of the 2009 3rd International
Symposium on Empirical Software Engineering and Measurement, pp. 89–99. IEEE
Computer Society, Washington, DC (2009)

Small World Characteristics of FLOSS Distributions 429

2. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod.
Phys. 74(1), 47–97 (2002)

3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks.
Science 286(5439), 509–512 (1999). http://www.sciencemag.org/cgi/content/
abstract/286/5439/509

4. Boender, J.: Efficient computation of dominance in component systems (short
paper). In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol.
7041, pp. 399–406. Springer, Heidelberg (2011)

5. Caldarelli, G., Marchetti, R., Pietronero, L.: The fractal properties of inter-
net. EPL (Europhysics Letters) 52(4), 386 (2000). http://stacks.iop.org/0295-
5075/52/i=4/a=386

6. LaBelle, N., Wallingford, E.: Inter-package dependency networks in open-source
software. CoRR cs.SE/0411096 (2004)

7. Mancinelli, F., Boender, J., Di Cosmo, R., Vouillon, J., Durak, B., Leroy, X.,
Treinen, R.: Managing the complexity of large free and open source package-bas
ed software distributions. In: ASE, pp. 199–208 (2006)

8. Milgram, S.: The small world problem. Psychol. Today 1(1), 60–67 (1967)
9. Nair, R., Nagarjuna, G., Ray, A.K.: Semantic structure and finite-size saturation

in scale-free dependency networks of free software. ArXiv e-prints (January 2009)
10. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd

edn. Addison Wesley Professional, Boston (2002)

Author Index

Abo, Robert 221
Aman, Bogdan 29

Bacherini, Stefano 237
Barbosa, Luis Soares 405
Barbuti, Roberto 329
Bernardi, Giovanni 69
Boender, Jaap 417
Bonacchi, Andrea 237
Bove, Pasquale 329
Bowen, Jonathan P. 371
Bravetti, Mario 3
Breuer, Peter T. 371, 389

Cáceres, Paloma 271
Carbone, Marco 3
Cavero, José María 271
Cerone, Antonio 313, 405
Chadwick, Simon 253
Ciobanu, Gabriel 29
Cipriani, Leonardo 237
Corrêa da Silva, Flávio Soares 135
Cuesta, Carlos E. 271
Curry, Edward 306

Fantechi, Alessandro 167, 237
Fernandes, Sara 405, 417
Fernández Venero, Mirtha Lina 135
Franco, Juliana 15

Haxthausen, Anne E. 205
Hennessy, Matthew 69
Hildebrandt, Thomas 3
Horne, Ross 44
Hulstijn, Joris 288

Ibing, Andreas 113

James, Philip 189, 253
Janssen, Marijn 288

Kanso, Karim 253
Kirilov, Aleksandar 101
Kloos, Martin 288
Kouzapas, Dimitrios 56

Lanese, Ivan 3
Larrinaga, Felix 306
Lawrence, Andy 253
Llana, Luis 125
Luk, Wayne 82

Maggiolo Schettini, Andrea 329
Maibaum, Tom 184
Marini, Mauro 362
Markovski, Jasen 101
Martinez-Torres, Rafael 125
Martinovikj, Darko 101
Mauro, Jacopo 3
Merelli, Emanuela 362
Milazzo, Paolo 329
Mishevski, Kristijan 101
Moller, Faron 189, 253

Ng, Nicholas 82
Nguyen, Hoang Nga 189

Paoletti, Nicola 362
Pardini, Giovanni 329
Peleska, Jan 205
Penna, Pierluigi 362
Perez, Alain 306
Pérez, Jorge A. 3
Petkovska, Marija 101

Philippou, Anna 56, 345
Pickin, Simon J. 389
Pinger, Ralf 205

Roggenbach, Markus 189, 253

Scarcella, Giuseppe 362
Schneider, Steve 189
Seck, Mamadou 288
Seisenberger, Monika 253
Setiawan, Suryana 313
Setzer, Anton 253
Sierra-Alonso, Almudena 271
Simonsen, Kent Inge Fagerland 151

Tempestini, Matteo 237
Tesei, Luca 362
Toro, Mauricio 345
Trajcheska, Zlatka 101
Treharne, Helen 189
Trumble, Matthew 189

Umarov, Timur 44

Vasconcelos, Vasco Thudichum 15
Vela, Belén 271
Voisin, Laurent 221

Williams, David 189

Yoshida, Nobuko 82

Zavattaro, Gianluigi 3

32 Author Index4

	Preface
	Beat 2 Organizers’ Message
	WS-FMDS Organizers’ Message
	FM-RAIL-BOK Organizers’ Message
	MoKMaSD Organizers’ Message
	OpenCert Organizers’ Message
	Service Compositions: Curse or Blessing for Security?
	Contents
	BEAT 2
	Towards Global and Local Types for Adaptation
	1 Introduction
	2 Choreography and Endpoint Languages for Adaptation
	2.1 Choreography Language
	2.2 Endpoint Language
	2.3 Projection

	3 Typing a Concrete Language
	4 Concluding Remarks and Related Work
	References

	A Concurrent Programming Language with Refined Session Types
	1 Introduction
	2 Related Work
	3 A Gentle Introduction to the SePi Language
	4 Technical Aspects of the Language
	5 Conclusion and Future Work
	References

	Behavioural Types Inspired by Cellular Thresholds
	1 Introduction
	2 A Model of the Sodium-Potassium Pump
	3 Threshold-Based Type System Over Multisets
	4 Subject Reduction and Other Results
	5 Conclusion
	References

	Ensuring Faultless Communication Behaviour in A Commercial Cloud
	1 Introduction
	2 Methodology for Verifying Protocols in SessionJ
	3 Case Study: Protocols for a Cloud Coordinator
	3.1 First Attempt: Forwarding and Branching
	3.2 Refined Protocol: Session Delegation and Iteration
	3.3 Delegation Elsewhere: Payment for Services

	4 Future Work: Runtime Monitors and Intercloud Protocols
	4.1 Language Independent Runtime Monitors
	4.2 Session Types for Intercloud Protocols

	5 Conclusion
	References

	A Typing System for Privacy
	1 Introduction
	1.1 Privacy and the -Calculus

	2 The Calculus
	3 Types and Typing System
	4 Examples
	4.1 Patient Privacy
	4.2 Social Network Privacy

	5 Conclusions
	References

	Compliance and Testing Preorders Differ
	1 Introduction
	2 LTS and Behavioural Preorders
	3 Examples
	3.1 General Contracts
	3.2 Contracts for Web-Services
	3.3 Finite Session Behaviours

	4 Conclusion
	References

	Scalable Session Programming for Heterogeneous High-Performance Systems
	1 Introduction
	2 Session-Based Language Design
	2.1 Overview
	2.2 Multiparty Session Programming
	2.3 Protocols for Session Communications
	2.4 Session C

	3 Advanced Communication Topologies for Clusters
	4 Case Studies
	4.1 N-Body Simulation
	4.2 Dense Matrix-Vector Multiplication
	4.3 Sparse Matrix-Vector Multiplication

	5 Related Work and Conclusion
	6 Future Work
	References

	WS-FMDS 2013
	A Supervisor Synthesis Tool for Finite Nondeterministic Automata with Data
	1 Introduction
	2 Finite Automata with Variables
	3 Supervisor Synthesis
	4 Supervisory Coordination of Maintenance Procedures
	5 Concluding Remarks
	References

	SMT-Constrained Symbolic Execution for Eclipse CDT/Codan
	1 Introduction
	2 Functionality
	2.1 Unrestricted Context Depth
	2.2 Separation of Path Generation and Symbolic Interpretation
	2.3 Automatic Slicing
	2.4 Context Sharing for Different Checkers
	2.5 Logic Representation

	3 Design
	3.1 Main Classes
	3.2 Eclipse Extension
	3.3 Path Generation
	3.4 Translation and Symbolic Interpretation
	3.5 Path Validation
	3.6 Checking for Common Weaknesses
	3.7 SMT Solving

	4 Evaluation
	5 Discussion
	References

	IOCO as a Simulation
	1 Introduction and Related Work
	2 Preliminaries
	3 ioco vs. iocos Through Examples
	4 IOCO as a Simulation
	5 Conclusions and Future Work
	References

	Modeling and Simulating Interaction Protocols Using Nested Petri Nets
	1 Introduction
	2 The JamSession Platform
	3 PN-Based Semantics for JamSession
	4 Formal Translation of Jamsession Protocols into NPNs
	5 The Dynamic Behavior of Concurrent Protocols
	6 Conclusions
	A Proofs
	References

	PetriCode: A Tool for Template-Based Code Generation from CPN Models
	1 Introduction
	2 Example Model and Usage
	3 Architecture and Design of PetriCode
	4 Pragmatics Module
	5 ATT Construction Module
	6 Code Generation Module
	7 Related Work
	8 Conclusions and Future Work
	References

	FM-RAIL-BOK 2013
	Twenty-Five Years of Formal Methods and Railways: What Next?
	1 Introduction
	2 Early Applications of Formal Methods to Railway Signalling
	3 Railway Signalling Equipments - The Model Checking Advent
	4 Code Formal Verification
	5 Model Based Design and the CENELEC Guidelines
	6 New Challenges
	6.1 Evolution of ATP Systems: ETCS and CBTC
	6.2 Integrating ATC/ATP and Interlocking Systems
	6.3 The Evolution of the Market
	6.4 The Evolution of Interlocking Systems

	7 Beyond Safety
	8 Conclusions
	References

	What IS a BoK? Large -- Extended Abstract --
	1 Main Points
	2 What is Engineering?
	3 Engineering Knowledge
	4 Categories of Engineering Knowledge
	5 In Summary
	References

	Verification of Scheme Plans Using CSP||B
	1 Introduction
	2 Background to CSP||B
	3 Railway Systems
	4 Workflow
	5 Modelling of Multi-Directional Examples of CSP||B Railway Models
	5.1 Tunnel Example
	5.2 Buffer Example

	6 Experimental Results
	7 Related Work
	8 Conclusion
	References

	Applied Bounded Model Checking for Interlocking System Designs
	1 Introduction
	1.1 Interlocking V&V -- State-of-the-art
	1.2 State-of-the-art Formal Methods for Interlocking V&V
	1.3 BMC as Best Practice for Interlocking V&V
	1.4 Related Work
	1.5 Paper Overview

	2 Data Validation
	2.1 Kripke Structure Encodings of Static Plant Model
	2.2 LTL Syntax
	2.3 Bounded Trace Semantics forLTL
	2.4 Data Validation by Bounded Model Checking
	2.5 Applications
	2.6 Tool Support

	3 Verification of System Safety
	3.1 Formalization of the Verification Task
	3.2 Verification Strategy
	3.3 Case Study

	4 Conclusion
	References

	Formal Implementation of Data Validation for Railway Safety-Related Systems with OVADO
	1 Introduction
	2 Background
	2.1 Definition
	2.2 A Semiautomatic Process Based on the B Method
	2.3 An Iterative Process
	2.4 A New Kind of Job

	3 The OVADO Tool
	3.1 Overview
	3.2 Architecture
	3.3 User Interface

	4 Applying OVADO
	4.1 Data
	4.2 Models
	4.3 Final Results
	4.4 Influence of Models on Performance

	5 Conclusion
	References

	Validation of Railway Interlocking Systems by Formal Verification, A Case Study
	1 Introduction
	2 CENELEC Standard
	3 Model Checking
	4 Ladder Logic Diagrams
	5 Model Extraction
	5.1 Simulink Enviroment
	5.2 Importing Data Station
	5.3 LLD Parser

	6 Verification with Design Verifier
	7 Conclusion
	References

	Verification of Solid State Interlocking Programs
	1 Introduction
	2 Designing Solid State Interlockings
	3 From Ladder Logic to Model Checking
	3.1 Ladder Logic
	3.2 From Ladder Logic to Propositional Logic
	3.3 Ladder Logic Formulæ and Their Semantics
	3.4 Labelled Transition Systems
	3.5 Producing Verification Conditions
	3.6 The Model Checking Problem
	3.7 Model Checking Approaches
	3.8 Excluding False Positives by Invariants
	3.9 Graphical Representation

	4 Technology & Case Studies
	4.1 SAT Solving with Open Software
	4.2 The SCADE Suite as an Industrial Tool
	4.3 Industrial Case Study

	5 Conclusion
	References

	MoKMaSD 2013
	Towards Knowledge Modeling for Sustainable Transport
	1 Introduction
	2 A Brief Introduction to RDF
	3 Using Knowledge Modeling for Sustainable Transport
	3.1 A Modeling Approach to Public Transport
	3.2 IFOPT: Modeling Stop Places

	4 A Knowledge Management Architecture for Public Transport
	4.1 Context: The CoMobility Project
	4.2 Knowledge Management Architecture
	4.3 Data Architecture for the Original Data
	4.4 Superposing Data Architectures

	5 Exporting the Transport Model as Linked Data
	5.1 Representing the Original Information
	5.2 Exploring Connections in the Network
	5.3 Adding Transmodel Concepts
	5.4 Introducing the IFOPT Basic Model
	5.5 Using Linked Data Information

	6 Conclusions
	References

	XBRL-Driven Business Process Improvement: A Simulation Study in the Accounting Domain
	1 Introduction
	2 XBRL
	3 Accounting Domain
	4 Case
	5 Process Improvements
	6 Simulation Studies and Evaluation
	7 Related Research and Research Limitations
	8 Conclusions
	References

	The Role of Linked Data and Semantic-Technologies for Sustainability Idea Management
	1 Introduction
	2 The Role of Knowledge Management and Idea Management in Sustainability
	2.1 Reference Architecture
	2.2 Linked Data and Linked Open Data (LOD)
	2.3 Sustainability IMS and Semantic Web/Linked Data

	3 Examples of Ontologies for Use Cases
	4 Potential Benefits
	5 Summary and Future Challenges
	References

	Stochastic Modelling of Seasonal Migration Using Rewriting Systems with Spatiality
	1 Introduction
	2 Grid Systems
	2.1 Reaction Rules
	2.2 Principles in Conducting the Reactions
	2.3 Formal Definition of Grid Systems

	3 Links
	3.1 Basic Idea
	3.2 Formal Definition of Links
	3.3 Links as Objects in the Rules

	4 Experimental Works on Seasonal Migration
	4.1 Pathways of Migration
	4.2 Life Cycle
	4.3 Objects
	4.4 Regions
	4.5 Reaction Rules
	4.6 Initial Configuration
	4.7 Results: Migration Movement
	4.8 Results: Migration Pathways

	5 Discussion
	6 Conclusion and Future Work
	References

	A Computational Formal Model of the Invasiveness of Eastern Species in European Water Frog Populations
	1 Introduction
	2 A Variant of P Systems for Population Modelling
	3 Population Dynamics of L-E Complexes
	3.1 Deleterious Mutations and Female Preferences are Necessary for the Stability of L-E Complexes
	3.2 Invasion of Translocated P. Ridibundus

	4 Conclusions
	References

	Process Ordering in a Process Calculus for Spatially-Explicit Ecological Models
	1 Introduction
	2 The Process Calculus
	2.1 The Syntax
	2.2 The Unprioritized Semantics
	2.3 Policies and Prioritized Semantics
	2.4 Examples

	3 Translating PALPS into PRISM
	3.1 The PRISM Language
	3.2 Encoding PALPS with Policies into the PRISM Language

	4 A Case Study in PRISM
	5 Conclusions
	References

	DISPAS: An Agent-Based Tool for the Management of Fishing Effort
	1 Introduction
	2 Model of a Sole Behaviour
	3 From Model to Simulator
	4 Future Work
	References

	OpenCert 2013
	Certifying Machine Code Safe from Hardware Aliasing: RISC is Not Necessarily Risky
	1 Introduction
	2 Programming Memes
	3 Disassembly
	4 Introducing Annotations and Annotation Types
	5 Types for Stack, String and Array Pointers
	6 Formal Logic
	7 Example Annotation
	8 How Does Annotation Ensure Aliasing Does not Happen?
	9 Conclusion and Future Work
	References

	Soundness and Completeness of the NRB Verification Logic
	1 Introduction
	2 Semantic Model
	3 Completeness
	4 Summary
	References

	Analysis of FLOSS Communities as Learning Contexts
	Abstract
	1 Introduction
	2 Background and Related Work
	3 Methodology
	3.1 Questionnaire Design
	3.2 Questionnaire Construction and Dissemination Process

	4 Results
	5 Analysis
	6 Conclusion and Future Work
	Acknowledgments
	References

	Small World Characteristics of FLOSS Distributions
	1 Introduction
	2 Background and Definitions
	3 Methodology
	4 Results and Discussion
	4.1 Debian
	4.2 Mandriva
	4.3 General

	5 Conclusion and Future Work
	5.1 Future Work

	References

	Author Index

