
Context-Aware Dynamic Discovery
and Configuration of ‘Things’ in Smart
Environments

Charith Perera, Prem Prakash Jayaraman, Arkady Zaslavsky,
Peter Christen and Dimitrios Georgakopoulos

Abstract The Internet of Things (IoT) is a dynamic global information network
consisting of Internet-connected objects, such as RFIDs, sensors, actuators, as well
as other instruments and smart appliances that are becoming an integral component
of the future Internet. Currently, such Internet-connected objects or ‘things’ out-
number both people and computers connected to the Internet and their population
is expected to grow to 50 billion in the next 5–10 years. To be able to develop IoT
applications, such ‘things’ must become dynamically integrated into emerging infor-
mation networks supported by architecturally scalable and economically feasible
Internet service delivery models, such as cloud computing. Achieving such integra-
tion through discovery and configuration of ‘things’ is a challenging task. Towards
this end, we propose a Context-Aware Dynamic Discovery of Things (CADDOT)
model. We have developed a tool SmartLink, that is capable of discovering sen-
sors deployed in a particular location despite their heterogeneity. SmartLink helps to
establish the direct communication between sensor hardware and cloud-based IoT
middleware platforms. We address the challenge of heterogeneity using a plug in
architecture. Our prototype tool is developed on an Android platform. Further, we
employ the Global Sensor Network (GSN) as the IoT middleware for the proof of

C. Perera (B) · P. P. Jayaraman · A. Zaslavsky · D. Georgakopoulos
CSIRO Computational Informatics, Canberra, ACT 0200, Australia
e-mail: charith.perera@csiro.au; charith.perera@anu.edu.au

P. P. Jayaraman
e-mail: prem.jayaraman@csiro.au

A. Zaslavsky
e-mail: arkady.zaslavsky@csiro.au.au

D. Georgakopoulos
e-mail: dimitrios.georgakopoulos@csiro.au

C. Perera · P. Christen
Research School of Computer Science, The Australian National University,
Canberra, ACT 0200, Australia
e-mail: peter.christen@anu.edu.au

N. Bessis and C. Dobre (eds.), Big Data and Internet of Things: 215
A Roadmap for Smart Environments, Studies in Computational Intelligence 546,
DOI: 10.1007/978-3-319-05029-4_9, © Springer International Publishing Switzerland 2014

216 C. Perera et al.

concept validation. The significance of the proposed solution is validated using a
test-bed that comprises 52 Arduino-based Libelium sensors.

1 Introduction

The Internet of Things (IoT) [4] first received attention in the late 20th century.
The term was firstly coined by Kevin Ashton [3] in 1999. “The Internet of Things
allows people and things1 to be connected Anytime, Anyplace, with Anything and
Anyone, ideally using Any path/ network and Any service” [18]. As highlighted in
the above definition, connectivity among devices is a critical functionality that is
required to fulfil the vision of IoT. The following statistics highlight the magnitude
of the challenge we need to address. Due to the increasing popularity of mobile
devices over the past decade, it is estimated that there are about 1.5 billion Internet-
enabled PCs and over 1 billion Internet-enabled mobile devices today. The number
of ‘things’ connected to the Internet exceeded the number of people on earth in 2008
[23]. By 2020, there will be 50–100 billion devices connected to the Internet [45].
Similarly, according to BCC Research, the global market for sensors was around
$56.3 billion in 2010. In 2011, it was around $62.8 billion, and it is expected to
increase to $91.5 billion by 2016, at a compound annual growth rate (CAGR) of
7.8% [5].

The above statistics allow us to conclude that the growth rate of sensors being
deployed around us is increasing over time and will keep its pace over the coming
decade. Over the last few years, we have witnessed many IoT solutions making
their way into the market [40]. The IoT market has already been fragmented, with
many parties competing with a variety of different solutions. Broadly, these IoT
solutions can be divided into two segments: sensor hardware-based solutions [27]
and cloud-based software solutions [14, 17, 31]. Some products specifically address
one segment, while others address both. In this chapter, we propose a Context-Aware
Dynamic Discovery of Things (CADDOT) model in order to support the integration
of ‘things’ into cloud-based IoT solutions via dynamic discovery and configuration
by also addressing the challenge of heterogeneity. We reduce the complexity of the
‘things’ configuration process and make it more user friendly and easier to use. One
major objective is to support non-technical users by allowing them to configure smart
environments without technical assistance.

This chapter makes the following contributions. We propose a model, CADDOT,
that can be used to configure sensors autonomously without human intervention in
highly dynamic smart environments in the Internet of things paradigm.To support this
model, we developed a tool called SmartLink. SmartLink is enriched with context-
aware capabilities so it can detect sensors using different protocols such as TCP,UDP,

1 We use both terms, ‘objects’ and ‘things’ interchangeably to give the same meaning as they are
frequently used in IoT related documentation. Some other terms used by the research community
are ‘smart objects’, ‘devices’, ‘nodes’. Each ‘thing’ may have one or more sensors attached to it.

Context-Aware Dynamic Discovery and Configuration 217

Bluetooth and ZigBee. CADDOT is designed to deal with highly dynamic smart
environments where sensors are appearing and disappearing at a high frequency.
This chapter also presents the results of experimental evaluations performed using 52
sensorsmeasuring different types of phenomenon and using different communication
sequences.

We explain how our model can be used to enrich the existing solutions proposed
in the research field. The chapter is organized as follows. We present background
information and motivation in Sect. 2. In Sect. 3, we discuss the functional require-
ments of an ideal IoT configuration process. We discuss related work in Sect. 4. The
proposed CADDOT model is introduced in Sect. 5. The design decisions we made
are justified and compared with alternative options in Sect. 6. Implementation details
and evaluations are presented in Sects. 7 and 8 respectively. The lessons learnt are
discussed in Sect. 9. Open challenges are presented in Sect. 10 and we conclude the
chapter in Sect. 11 with indications for future work.

2 Background and Motivation

This section briefly highlights the background details of the challenge we address
in this chapter. Firstly, we explain the challenges in the smart environment from the
perspective of dynamic discovery and configuration of ‘things’. Secondly, we discuss
the concept of sensing as a service and its impact on the IoT. At the end, we present
the importance of the configuration of ‘things’ in the big data domain.

2.1 Smart Environment

A smart environment can be defined as “a physical world that is richly and invisibly
interwoven with sensors, actuators, displays, and computational elements, embedded
seamlessly in the everyday objects of our lives, and connected through a continu-
ous network” [46]. Smart environments may be embedded with a variety of smart
devices of different types including tags, sensors and controllers, and have different
form factors ranging from nano tomicro to macro sized. As also highlighted by Cook
and Das [13], device communication using middleware and wireless communication
is a significant part of forming a connected environment. Forming smart environ-
ments needs several activities to be performed, such as discovery (i.e. exploring and
finding devices at a given location), identification (i.e. retrieving information about
devices and recognizing them), connection establishment (i.e. initiating communi-
cation using a protocol that the device can understand), and configuration. Further,
users may combine sensors and services to configure smart environments where
actuators are automatically triggered based on conditions [25]. In smart home envi-
ronments, Radio Frequency for Consumer Electronics (RF4CE) has been used to

218 C. Perera et al.

perform atuomated configuration of consumer devices [43]. However, such tech-
niques cannot be used to configure low-level smart ‘things’.

2.2 Sensing as a Service

The sensing-as-a-service model [37] provides sensing capabilities as a service simi-
lar to other models such as infrastructure-as-a-service (IaaS), platform-as-a-service
(PaaS), and software-as-a-service (SaaS). Mobile devices are widely used to collect
data from inbuilt or external sensors [42].

It envisions that sensor descriptions and capabilities are posted on the Internet so
the interested consumer can get access to the corresponding sensors by paying a fee
[37]. The sensing as a service model is expected to drive the IoT from the business
point of view by creating a whole new set of opportunities and values. It has been
predicted that individuals as well as, private and public organizations will deploy
sensors to achieve their primary objectives [8, 37]. Additionally, they will share
their sensors with others so a collectively value-added solution can be built around
them. Such sensor deployments and data collection allows the creation of real-time
solutions to address tough challenges in Smart Cities [29, 37]. In order to support
sensor deployments, easy-to-use ‘things’ discovery and configuration tools need to
be developed. Such a set of tools will stimulate the growth of sensor deployments in
the IoT. They will help the non-technical community to become involved in building
smart environments efficiently and effectively.

2.3 Big Data Challenge

Big Data [6] mainly comprises six categories of data, as illustrated in Fig. 1a trans-
action data, scientific data, sensor data, social media data, enterprise data, and public
data. The sensor data category is expected to be generated by the growing number of
sensors deployed in different domains, as illustrated in Fig. 1. The data streams com-
ing from ‘things’ will challenge the traditional approaches to data management and
contribute to the emerging paradigm of big data. Collecting sensor data on a massive
scale, which creates big data, requires easy-to-use sensor discovery and configuration
tools that help to integrate the ‘things’ into cloud-based IoT middleware platforms.
Big data has been identified as a secondary phase of the IoT, where new sensors are
cropping up and organizations are now starting to analyse data, that in some cases,
they have been collecting for years.

This work is also motivated by our previous work which focused on utilising
mobile phones and similar capacity devices to collect sensor data. In DAM4GSN
[38], we proposed an application that can be used to collect data from sensors built
into mobile phones. Later, we proposed MoSHub [33] that allows a variety of dif-
ferent external sensors to be connected to a mobile phone using an extensible plu-

Context-Aware Dynamic Discovery and Configuration 219

Fig. 1 a Big data comprises six categories of data b Data generated from the IoT will grow
exponentially as the number of connected nodes increases. Estimated numbers of connected nodes
based on different sectors are presented in millions [28]

gin architecture. MoSHub also configures the cloud middleware accordingly. Later
in MOSDEN [34], we developed a complete middleware for resource-constrained
mobile devices. MOSDEN is capable of collecting data from both internal and exter-
nal sensors. It can also apply SQL-based fusing on data streams in real time. As we
mentioned earlier, in order to collect data from sensors, first we need to discover
and configure the sensors in such a way that the cloud can communicate with them.
In our previous efforts, discovery and configuration steps were performed manually.
In this chapter, we propose an approach that can be used to discover and configure
sensors autonomously.

3 Functional Requirements

The ‘things’ configuration process detects, identifies, and configures sensor hardware
and cloud-based IoT platforms in such a way that software platforms can retrieve
data from sensors when required. In this section, we identify the importance, major
challenges, and factors that need to be considered during a configuration process.
The process of sensor configuration in IoT is important for two main reasons. Firstly,
it establishes the connectivity between sensor hardware and software systems wich
makes it possible to retrieve data from the deployed sensor. Secondly, it allows
us to optimize the sensing and data communication by considering several factors
as discussed below. Let us discuss the following research problem: Why is sensor
configuration challenging in the IoT environment?. The major factors that make
sensor configuration challenging are (1) the number of sensors, (2) heterogeneity,
(3) scheduling, sampling rate, communication frequency, (4) data acquisition, (5)
dynamicity, and (6) context [36].

220 C. Perera et al.

Table 1 Heterogeneity in term of Wireless Communication Technology

ZigBee GPRS-GSM WiFi Bluetooth

Standard 802.15.4 802.11b 802.15.1
System resources 4–32KB 16MB+ 1MB+ 250KM+
Batterylife (days) 100–1,000+ 1–7 0.5–5 1–7
Network size (nodes) 264 1 32 7
Bandwidth (KB/s) 20–250 64–128+ 11,000 720
Transmissionrange (m) 1–100+ 1,000 1–100 1–10+
Success metrics Reliability,

power, cost
Reach, quality Flexibility, speed Convenience, cost

Fig. 2 Heterogeneity in term of sensing/measurement capabilities of sensor nodes

1. Number of Sensors: When the number of sensors that need to be configured
is limited, we can use manual or semi-autonomous techniques. However, when the
numbers grow rapidly towards millions and billions, as illustrated in Fig. 1b, such
methods become extremely inefficient, expensive, labour-intensive, and in most sit-
uations impossible. Therefore, large numbers have made sensor configuration chal-
lenging. An ideal sensor configuration approach should be able to configure sensors
autonomously as well as within a very short time period.

2. Heterogeneity: This factor can be interpreted in different perspectives. (1)
Heterogeneity in terms of the communication technologies used by the sensors, as
presented in Table 1. (2) Heterogeneity in terms of measurement capabilities, as pre-
sented in Fig. 2 (e.g. temperature, humidity, motion, pressure). (3) The types of data
(e.g. numerical (small in size), audio, video (large in size)) generated by the sensors
are also heterogeneous. (4) The communication sequences and security mechanisms
used by different sensors are also heterogeneous (e.g. exact messages/commands and
the sequence that needs to be followed to successfully communicate with a given
sensor). As illustrated in Fig. 3, some sensors may need only a few command passes
and others may require more. Further, the messages/commands understood by each
sensor may also vary. These differences make the sensor configuration process chal-
lenging. An ideal sensor configuration approach that is designed for the IoT paradigm
should be able to handle such heterogeneity. It should also be scalable and should
provide support for new sensors as they come to the market.

3. Scheduling, Sampling Rate, and Network Communication: The sampling
rate defines the frequency with which sensors need to generate data (i.e. sense the

Context-Aware Dynamic Discovery and Configuration 221

Fig. 3 Heterogeneity in term of communication and message/command passing sequences. Some
sensors may need only a few message/command passes and others may require more. The mes-
sages/commands understood by each sensor may also vary

phenomenon) (e.g. sense temperature every 10s). Deciding the ideal (e.g. balance
between user requirement and energy consumption) sampling rate can be a very
complex task andhas a strong relationshipwith (6) Context (see below). The schedule
defines the timetable for sensing and data transmission (e.g. sense the temperature
only between 8am and 5pm on weekdays). Network communication defines the
frequency of data transmission (e.g. send data to the cloud-based IoT platform every
60s). Designing efficient sampling and scheduling strategies and configuring the
sensors accordingly is challenging. Specifically, standards need to be developed in
order to define schedules that can be used across different types of sensor devices.

4. Data Acquisition: Such methods can be divided into two categories: based on
responsibility and based on frequency [36]. There are two methods that can be used
to acquire data from a sensor based on responsibility as illustrated in Fig. 4: push
(e.g. the cloud requests data from a sensor and the sensor responds with data) and pull
(e.g. the sensor pushes data to the cloud without continuous explicit cloud requests).
Further, based on frequency, there are two data acquisition methods: instant (e.g.
send data to the cloud when a predefined event occurs) and interval (e.g. send data to
the cloud periodically). Pros, cons, and applicabilities of these different approaches
are discussed in [36]. Using the appropriate data acquisitionmethod based on context
information is essential to ensure efficiency.

5. Dynamicity: This means the frequency of changing positions/appearing/disap-
pearing of the sensors at a given location. IoT envisions that most of the objects
we use in everyday lives will have sensors attached to them in the future. Ideally,
we need to connect and configure these sensors to software platforms in order to
analyse the data they generate and so understand the environment better. We have
observed several domains and broadly identified different levels of dynamicity based
on mobility.2 Sensors that move/appear/disappear at a higher frequency (e.g. RFID

2 It is important to note that the same object can be classified at different levels depending on the
context. Further, there is no clear definition to classify objects into different levels of dynamicity.
However, our categorization allows us to understand the differences in dynamicity.

222 C. Perera et al.

Fig. 4 Data can be retrieved from a sensor using both push (right side) and pull (left side) com-
munication methods. Each method has its own advantages and disadvantages which make them
suitable for different situations

and other low-level, low-quality, less reliable, cheap sensors that will be attached
to consumables such as stationery, food packaging, etc.) can be classified as highly
dynamic. Sensors embedded and fitted into permanent structures (such as buildings
and air conditioning systems) can be classified as less dynamic. An ideal sensor
configuration platform should be able to efficiently and continuously discover and
re-configure sensors in order to cope with high dynamicity (Fig. 4).

6. Context: Context information plays a critical role in sensor configuration in the
IoT. The objective of collecting sensor data is to understand the environment better
by fusing and reasoning them. In order to accomplish this task, sensor data needs
to be collected in a timely and location-sensitive manner. Each sensor needs to be
configured by considering context information. Let us consider a scenario related to
smart agriculture to understand why context matters in sensor configuration. Severe
frosts and heat events can have a devastating effect on crops. Flowering time is
critical for cereal crops and a frost event could damage the flowering mechanism of
the plant. However, the ideal sampling rate could vary depending on both the season
of the year and the time of day. For example, a higher sampling rate is necessary
during the winter and the night. In contrast, lower sampling would be sufficient during
summer and daytime. On the other hand, some reasoning approaches may require
multiple sensor data readings. For example, a frost event can be detected by fusing air
temperature, soil temperature, and humidity data. However, if the air temperature
sensor stops sensing due to a malfunction, there is no value in sensing humidity,
because frost events cannot be detected without temperature. In such circumstances,
configuring the humidity sensor to sleep is ideal until the temperature sensor is
replaced and starts sensing again. Such intelligent (re-)configuration can save energy
by eliminating ineffectual sensing and network communication.

4 Related Work

In this section, we review some of the state-of-the-art solutions developed by the
research community, as well as commercial business entities. Our review covers both
mature and immature solutions proposed by start-up initiatives as well as large-scale

Context-Aware Dynamic Discovery and Configuration 223

projects. Our proposed CADDOT model as well as the SmartLink tool help to over-
come some of the weaknesses in the existing solutions.

There are commercial solutions available in the market that have been devel-
oped by start-up IoT companies [40] and the research divisions of leading corpo-
rations. These solutions are either still under development or have completed only
limited deployments in specialized environments (e.g. demos). We discuss some
of the selected solutions based on their popularity. Ninja Blocks (ninjablocks.com),
Smart-Things (smartthings.com), and Twine (supermechanical.com) are commercial
products that aim at building smart environments [40]. They use their own standards
and protocols (open or closed) to communicate between their own software systems
and sensor hardware components. The hardware sensors they use in their solutions
can only be discovered by their own software systems. In contrast, our pluggable
architecture can accommodate virtually any sensor. Further, our proposed model
can facilitate different domains (e.g. indoor, outdoor) using different communication
protocols and sequences.

In addition, the CADDOTmodel can facilitate very high dynamicity andmobility.
HomeOS [15] is a home automation operating system that simplifies the process of
connecting devices together. Similar to our plugin architecture, HomeOS is based
on applications and drivers which are expected to be distributed via an on-line store
called HomeStore in the future. However, HomeOS does not perform additional con-
figuration tasks (e.g. scheduling, sampling rate, communication frequency) depend-
ing on the user requirements and context information. Further, our objective is to
develop a model that can accommodate a wider range of domains by providing mul-
tiple alternative mechanisms, as discussed in Sect. 6. Hu et al. [21] have proposed
a sensor configuration mechanism that uses the information store in TEDS [22] and
SensorML [7] specifications. Due to the unavailability and unpopularity of TEDS
among sensor manufacturers, we simulate TEDS using standard communication
message formats, as explained in Sect. 6.

Actinium [26] is a RESTful runtime container that provides Web-like scripting
for low-end devices through a cloud. It encapsulates a given sensor device using a
container that handles the communication between the sensor device and the soft-
ware system by offering a set of standard interfaces for sensor configuration and
life-cycle management. The Constrained Application Protocol (CoAP), a software
protocol intended to be used in very simple electronics devices that allows them
to communicate interactively over the Internet, has been used for communication.
Pereira et al. [32] have also used CoAP and it provides a request/response inter-
action model between application end-points. It also supports built-in discovery of
services and resources. However, for discovery to work, both the client (e.g. a sen-
sor) and the server (e.g. the IoT platform) should support CoAP. However, most of
the sensor manufacturers do not provide native support for such protocols. Dynamix
[9] is a plug-and-play context framework for Android. Dynamix automatically dis-
covers, downloads, and installs the plugins needed for a given context sensing task.
Dynamix is a stand-alone application and it tries to understand new environments
using pluggable context discovery and reasoning mechanisms. Context discovery is
the main functionality in Dynamix. In contrast, our solution is focused on dynamic

224 C. Perera et al.

Fig. 5 Context-aware Dynamic Discovery of Things (CADDOT) model for configuration of things
in the IoT paradigm consists of eight phases

discovery and configuration of ‘things’ in order to support a sensing as a service
model in the IoT domain. We employ a pluggable architecture which is similar to the
approach used in Dynamix, in order to increase the scalability and rapid extension
development by third party developers. The Electronic Product Code (EPC) [16] is
designed as a universal identifier that provides a unique identity for every physical
object anywhere in the world. EPC is supported by the CADDOT model as one way
of identifying a given sensor. Sensor integration using IPv6 in building automation
systems is discussed in [24]. Compton et al. [12] have used a Device Profile for
Web Services3 (DPWS) to encapsulate both devices and services. DPWS defines
a minimal set of implementation constraints to enable secure web service messag-
ing, discovery, description, and eventing on resource-constrained devices. However,
discovery is only possible if both ends (client and server) are DPWS-enabled.

5 Overview of the CADDOT Model

Previously, we identified several major factors that need to be considered when
developing an ideal sensor configuration model for the IoT. This section presents a
detailed explanation of our proposed solution: Context-aware Dynamic Discovery
of Things (CADDOT). Figure 5 illustrates the main phases of the proposed model.

Phases in CADDOT model: The proposedmodel consists of eight phases: detect,
extract, identify, find, retrieve, register, reason, and configure. Some of the tasks
mentioned in the model are performed by the SmartLink tool and other tasks are
performed by the cloud middleware. Some tasks are performed collectively by both
SmartLink and the cloud.

3 http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01

http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01

Context-Aware Dynamic Discovery and Configuration 225

1. Detect: Sensors are configured to actively seek open wireless access points
(WiFi or Bluetooth) to which they can be connected without any authorization,
because in this phase sensors do not have any authentication details. Sensors will
receive the authentication details in phase phase 8). As a result, in this phase sen-
sors are unable to connect to an available secured network. The mobile device that
SmartLink is installed in becomes an open wireless access point (hotspot) so the
sensors can connect to it. However, it is important to note that there are different
application strategies that SmartLink can use to execute the CADDOT model, as
discussed in Sect. 6.

2. Extract: In this phase, SmartLink extracts information from the sensor detected
in the previous phase. Each sensor may be designed to respond to different message-
passing sequences, as illustrated in Fig. 3, depending on the sensor manufacturer and
the sensor program developer. Even though the sensors and the SmartLink may use
the same communication technology/protocol (e.g. TCP, UDP, Bluetooth), the exact
communication sequence can vary from one sensor to another. Therefore, it is hard to
find the specific message-passing sequence that each sensor follows. To address this
challenge, we propose that every sensor will respond to a common message during
the communication initiation process. Alternatively, CADDOT can support multiple
initiation messages (extraction mechanisms). However, such alternative approaches
will increase the time taken to extract a minimum set of information from a given
sensor due tomultiple communication attempts that need to be carried out until a sen-
sor successfully responds. For example, SmartLink broadcasts a message [WHO], as
illustrated in (C1) in Fig. 10, where the sensors are expected to respond by providing a
minimum amount of information about themselves, such as a sensor’s unique identi-
fication number, model number/name, and manufacturer. This is similar to the TEDS
mechanism discussed in [21]. It is important to note that we propose this [WHO]
constraint only for minimum information extraction. Once the sensor is identified,
subsequent communications and heterogeneity of message-passing sequences are
handled by matching plugins.

3. Identify: SmartLink sends all the information extracted from the newly detected
sensor to the cloud. Cloud-based IoT middleware queries its data stores using the
extracted information and identifies the complete profile of the sensor. The descrip-
tions of the sensors are modelled in an ontology.4

4. Find: Once the cloud identifies the sensor uniquely, this information is used
to find a matching plugin (also called drivers) which knows how to communicate
with a compatible sensor at full capacity. The IoT middleware pushes the plugin to
SmartLink where it is installed.5

5. Retrieve: Now, SmartLink knows how to communicate with the detected
sensor at full capacity with the help of the newly downloaded plugin. Next,
SmartLink retrieves the complete set of information that the sensor can provide

4 This is an extended version of an SSN ontology (www.w3.org/2005/Incubator/ssn/ssnx/ssn). The
detailed description of our extended ontology is out of the scope of this chapter.
5 In practice, the IoT middleware sends a request to the application store (e.g. Google Play). The
application store pushes the plugin to the SmartLink autonomously via the Internet.

www.w3.org/2005/Incubator/ssn/ssnx/ssn

226 C. Perera et al.

(e.g. configuration details such as schedules, sampling rates, data structures/types
generated by the sensor, etc.). Further, SmartLink may communicate with other
available sources (e.g. databases, web services) to retrieve additional information
related to the sensor.

6. Register: Once all the information about a given sensor has been collected,
registration takes place in the cloud. The sensor descriptions are modelled according
to the semantic sensor network ontology (SSNO) [12]. This allows semantic querying
and reasoning at a later stage to perform operations such as sensor search [35]. Some
of the performance evaluation related to the SSN ontology and semantic querying is
presented in [39].

7. Reason: This phase plays a significant role in the sensor configuration process.
It designs an efficient sensing strategy. Reasoning takes place in a distributedmanner.
The cloud IoT middleware retrieves data from a large number of sensors and iden-
tifies their availabilities and capabilities. Further, it considers context information
in order to design an optimized strategy. Context-aware reasoning is performed by
IoT middleware on the cloud. However, the technical details related to this reasoning
process are out of the scope of this chapter. At the end of this phase, a comprehensive
plan (i.e. sensing schedule) for each individual sensor is designed.

8. Configure: Sensors as well as cloud-based IoT software systems are configured
based on the strategy designed in the previous phase. Schedules, communication
frequency, and sampling rates that are custom-designed for each sensor are pushed
into the individual sensors. The connections between sensors and the cloud-based IoT
software system are established through direct wireless communication or through
intermediate devices such as MOSDEN [34] so the cloud can retrieve data from
sensors. The configuration details (e.g. IP address, port, authentication) required to
accomplish the above task are also provided to the sensor.

6 Design Decisions and Applications

We made a number of design decisions during the development of the CADDOT
model. These decisions address the challenges we highlighted in earlier sections.

Security Concerns and Application Strategies: There are different ways to
employ our proposed model CADDOT as well as the tool SmartLink in real world
deployments. Figure 6 illustrates two different application strategies. It is important
to note that neither our model nor the software tool is limited to a specific device
or platform. In this paper, we conduct the experimentations on an Android-based
mobile phone, as detailed in Sect. 7. In strategy (a), a Raspberry Pi (raspberrypi.org)
is acting as the SmartLink tool. This strategy is mostly suitable for smart home and
office environments where WiFi is available. Raspberry Pi continuously performs
the discovery and configuration process, as explained in Sect. 5. Finally, Raspberry
Pi provides the authentication details to the sensor which is connected to the secure
home/office WiFi network. The sensor is expected to send data to the processing
server (local or on cloud) directly over the secured WiFi network. In this strategy,

Context-Aware Dynamic Discovery and Configuration 227

Fig. 6 Application strategies of CADDOT model and SmartLink tool. a usage of static SmartLink
b usage of mobile SmartLink

SmartLink is in static mode. Therefore, several SmartLink installed Raspberry Pi
devices may be required to cover a building. However, this strategy can handle a
high level of dynamicity.

The strategy (b) is more suitable for situations where WiFi is not available or
less dynamic. Smart agriculture can be considered as an example. In this scenario,
sensors are deployed over a large geographical area (e.g. Phenonet [11]). Mobile
robots6 (tractors or similar vehicles) with a SmartLink tool attached to them can
be used to discover and configure sensors. SmartLink can then help to establish
the communication between sensors and sinks. The permanent sinks used in the
agricultural fields are usually low-level sinks (such as Messhablium [27]). Such
sinks cannot perform sensor discovery or configuration in comparison to SmartLink.
Such sinks are designed to collect data from sensors and upload to the cloud via 3G.

Many more different strategies can be built by incorporating the different charac-
teristics pointed out in the above two strategies. This shows the extensibility of our
solution. For example, Raspberry Pi, which we suggested for use as a SmartLink in
strategy (a), can be replaced by corporate mobile phones. So, without bothering the
owner, corporate mobile phones can silently perform the work of a SmartLink.

System Architecture: The CADDOT model consists of three main components:
sensors, amobile device (i.e.SmartLink), and the cloudmiddleware.All three compo-
nents need towork collectively in order to perform sensor discovery and configuration
successfully. Figure 7 illustrates the interactions between the three components. The
phases we explained earlier relating to the CADDOT model in Fig. 5 can be seen in
Fig. 7 as well. As we mentioned before, SmartLink is based on a plugin architecture.
The core SmartLink application cannot directly communicate with a given sensor. A
plugin needs to act as a mediator between the sensor and the SmartLink core appli-
cation, as illustrated in Fig. 7. The task of the mediator is to translate the commands
back and forth. This means that in order to configure a specific sensor, the SmartLink
core application needs to employ a plugin that is compatible with both the SmartLink
application itself and the given sensor. We discuss this matter in the programming
perspective later in this section.

Sensor-level Program Design: One of the most important components in the
CADDOTmodel is the sensor. Sensors can be programmed in different ways. In this

6 In small agricultural fields, farmers themselves can carry the SmartLink over the field.

228 C. Perera et al.

Fig. 7 System architecture of the CADDOT model which consists of three main components:
sensors, SmartLink tool, and the cloud middleware. Interactions are numbered in order

Fig. 8 A simple sensor-level program design (SPD) that sends and transmits data to the cloud. It
does not support dynamic discovery and configuration

chapter, we propose a program design that supports all the functional requirements
identified in Sect. 3. The program we propose may not be the only way to support
these requirements. Further, we do not intend to restrict developers to one single
sensor-level program design. Instead, our objective is to demonstrate one successful
way to program a sensor in such a way that it allows sensors to be re-configured
at runtime (i.e. after deployment) depending on the requirements that arise later.
Developers are encouraged to explore more efficient program designs. However, in
order to allow SmartLink to communicate with a sensor which runs different program
designs, developers need to develop a plugin that performs the command translations.
We explain the translation process using both sensor-level program code as well as
plugin code later in this section. First, we illustrate the simplest sensor-level program
that can be designed to perform the task of sensing and transmitting data to the cloud
in Fig. 8.We refer to this program design as SPD (Simple ProgramDesign) hereafter.
The basic structure of a sensor-level program is explained in [27].

Context-Aware Dynamic Discovery and Configuration 229

The main problem in this program design is that there is no way to configure (i.e.
sampling rate, communication frequency, data acquisition method) the sensor after
deployment other than by re-programming (e.g. Over the Air Programming). How-
ever, such re-programming approaches are complex, labour-intensive and time con-
suming. In Fig. 9, we designed a sensor-level program that supports a comprehensive
set of configuration functionalities.We refer to this design asCPD (Configurable Pro-
gram Design) hereafter. In order to standardize the communication, we also defined
a number of command formats. However, these messaging formats do not need to be
followed by the developers as long as they share common standardised command for-
mats between their own sensor-level programand the corresponding plugin.Different
command formats used to accomplish different tasks in our approach are illustrated
in Fig. 10. In comparison to SPD, CPD provides more configuration functionalities.
With the help of the command formats illustrated in Fig. 10, SmartLink can configure
a given sensor at any time.

Each command comprises several different segments, as depicted in Fig. 10. The
first segment denotes whether the command is related to configuration or a data
request. In our approach, [CON] denotes configuration and [DAR] denotes a data
request. The CPD is designed to forward the command appropriately through IF-
ELSE branches. The CPD accepts five different types of commands under the [CON]
branch. Commands are classified based on the second segment. The following list
summarises these commands. The first segment of every command contains only
three letters whichmakes it easy to process. The commands can be sent using frames7

or plain strings.

• C1: This command has only one segment. This segment always contains three
letters [WHO]. This command is sent by SmartLink to a sensor. To support CAD-
DOT, every sensor should be able to handle commandC1. Then the sensor needs to
respondwithmessageM1. This is the only constraint that the sensor-level program
developers are required to adhere to.

• M1: This message is sent by the sensor to SmartLink in response to C1. M1
contains information that helps to identify the sensor in key-value pair format.
The information contained in this message is sent to the cloud IoT platform,
as explained in phase (4) in the CADDOT model illustrated in Fig. 5. Detailed
explanation of this message is out of the scope of this chapter.

• C2: This command consists of two segments. The first segment [DAR] denotes
that this is a data request. The second segment [PL] denotes that the command is
a pull request which the sensor is expected to respond to with sensors data once.

• C3: This command consists of five segments. The first segment [DAR] denotes that
this is a data request. The second segment [PS] denotes that the sensor is expected
to push data according to the information provided in the rest of the segments. The
third segment specifies the sample rate and the fourth segment specifies the data
communication frequency rate. The final segment specifies the duration for which
the sensor needs to push data to the cloud.

7 http://www.libelium.com/uploads/2013/02/data_frame_guide.pdf

http://www.libelium.com/uploads/2013/02/data_frame_guide.pdf

230 C. Perera et al.

Fig. 9 A configurable sensor-level program design (CPD) that supports dynamic discovery and
configuration after deployment at runtime

Context-Aware Dynamic Discovery and Configuration 231

Fig. 10 Command formats used to perform sensor configuration

• C4: This command consists of two segments. The first segment [DAR] denotes
that this is a data request. The second segment [PS] denotes that the sensor is
expected to perform sensing and data transmitting tasks according to a sensing
schedule specified in the sensing schedule file. It is expected to push data to the
cloud.

• C5: This command consists of three segments. The first segment [CON] denotes
that this is a configuration command. The second segment [SMP] denotes that
this command configures the sampling rate. The third segment holds the actual
sampling rate value that the sensor needs to sense in the future.

• C6: This command consists of three segments. The first segment [CON] denotes
that this is a configuration command. The second segment [DCF] denotes that
this command configures the data communication frequency. The third segment
holds the actual data communication frequency rate value that the sensor needs to
transmit data to the cloud in the future.

• C7: This command consists of five segments. The first segment [CON] denotes
that this is a configuration command. The second segment [SCH] denotes that this
command configures the sensing schedule. The rest of the segments contain infor-
mation that is essential (i.e. FTP server path, user name, password) to download a
sensing schedule file from an FTP server, as depicted in Fig. 10.

• C8: This command consists of seven segments. The first segment [CON] denotes
that this is a configuration command. The second segment [NET] denotes that this
command configures the network settings. The rest of the segments contain the
information that is essential to connect to a secure network (i.e. access point name,
authentication key, IP address, remote port) so the sensor can directly communicate
with the cloud IoT platform.

• C9: This command stops the sensor completely and pushes it back to a state where
the sensor listens for the next command.

• C10: This command consists of two segments. The first segment [CON] denotes
that this is a configuration command. The second segment [CPR] denotes that the
sensor is expected to reply with the complete sensor profile.

232 C. Perera et al.

Fig. 11 IPlugin written in Android Interface Definition Language (AIDL) that governs the plugin
structure. It defines the essential methods that need to be implemented in the plugin class

Scalable and Extensible Architecture: As we mentioned earlier, the reason for
employing a plugin architecture is to support scalability and extensibility. Plugins
that are compatible with SmartLink can be developed by anyone as long as they
follow the basic design principles and techniques explained below. Such a plugin
architecture allows us to engage with developer communities and support a variety
of different sensors through community-based development. We expect to release
our software as free and open source software in the future. We provide the main
SmartLink application as well as the standard interfaces which developers can use
to start to develop their own plugins to support different sensors. We provide sample
plugin source code where developers only need to add their code according to the
guidelines provided. The plugin architecture will enable more number of sensors to
be supported by SmartLink over time. Applications stores (e.g. Google Play) built
around theAndroid ecosystem provide an easyway to share and distribute plugins for
SmartLink. The pluggable architecture dramatically reduces the sensor configuration
time.

Let us explain how third party developers can develop plugins in such a way that
their plugins are compatible with SmartLink so that SmartLink can use the plugins to
configure sensors at runtime when necessary. In plugin development, there are three
main components that need to be considered: (1) the plugin interface written in the
Android Interface Definition Language (AIDL), (2) the plugin class written in Java,
and (3) the plugin definition in the AndroidManifest file. Figure 11 shows the plugin
interface written in AIDL. IPlugin is an interface defined in AIDL. Plugin developers
should not make any changes in this file. Instead they can use this file to understand
how the SmartLink plugin architecture works. IPlugin is similar to a Java interface.
It defines all the methods that need to be implemented by all the plugin classes.

Figure 12 presents the basic structure of a SmartLink plugin. Each plugin is defined
as anAndroid service. SmartLink plugin developers need to implement fivemethods:
setSamplingRate(int rate), setCommunicationFrequency(int frequency), setSched-
ule(in Map ftpSettings), setNetworkSettings(in Map netSettings) and getSensorPro-
file(). The methods are briefly explained below.

• setSamplingRate(int rate): This method needs to send a command specifying the
required sampling rate. For example, in our approach, we defined such a command,
C5, in Fig. 10.

Context-Aware Dynamic Discovery and Configuration 233

Fig. 12 SmartLink plugin is an Android service. This is the basic structure of a SmartLink plugin.
The body of each method needs to be added by the developer based on the sensor-level program
design

• setCommunicationFrequency(int frequency): This method needs to send a com-
mand specifying the required communication frequency. For example, in our
approach, we defined such a command as C6 in Fig. 10.

• setSchedule(in Map ftpSettings): Thismethod needs to send a command specifying
details (e.g. user-name, password, FTP path) that are required to connect to an FTP
server and download the schedule. For example, in our approach, we defined such
a command as, C7, in Fig. 10.

• setNetworkSettings(in Map netSettings): This method sends a command speci-
fying the details that are required to connect to a secure network so that direct
communication between the sensor and the cloud IoT platform can be established.
For example, in our approach, we defined such a command, C8, in Fig. 10.

• getSensorProfile(): This method sends a command to the sensor by asking for
profile information. The sensor is expected to reply by providing information such
as the data structure it produces, measurement units, and so on. Details of the
sensor profiling are out of the scope of this chapter.

Figure 13 shows how the plugins need to be defined in theAndroidManifest so that
the SmartLink application can automatically query and identify them. The Android
plugin must have an intent filter which has action name au.csiro.smartlink.intent.
action.PICKPLUGIN. Developers can provide any category name.

Support and Utilize Existing Solutions: Our model utilizes a few existing solu-
tions. We employed Global Sensor Network [1] as the cloud IoT middleware. In
CADDOT, GSN performs phases 3, 4, and 7. GSN is a widely used platform in the
sensor data processing domain and is used in several European projects, including

234 C. Perera et al.

Fig. 13 Code snippet of the plugin’s AndroidManifest file

OpenIoT [31]. MOSDEN [34] is middleware that collects sensor data. MOSDEN is
ideal for the application strategies we discussed in Sect. 6 (Fig. 6) for use in con-
junction with SmartLink. SmartLink only performs the configuration. Sensor data
collection needs to be performed by either cloud IoT middleware or solutions like
MOSDEN. The proposed CADDOT model as well as the SmartLink tool comple-
ment the other solutions proposed by us as well as other researchers. Together, these
solutions enable smooth data flow from sensors to the cloud autonomously.

7 Implementation and Experiment Testbed

We deployed the SmartLink application in a Google Nexus 4 mobile phone (Qual-
comm Snapdragon S4 Pro CPU and 2 GB RAM), which runs the Android platform
4.2.2 (Jelly Bean). We deployed 52 sensors on the third floor of the CSIT building
(#108) at the Australian National University. All sensors we employed in our exper-
iment are manufactured by Libelium [27]. The sensors we used sense a wide variety
of environmental phenomena, such as temperature, proximity and presence, stretch,
humidity and so on [27]. SmartLink supports sensor discovery and configuration
using both WiFi and Bluetooth. Other communication technologies such as ZigBee
and RFID are supported through Libelium Expansion Radio Boards [27]. In order
to simulate the heterogeneity of the sensors (in terms of communication sequence),
we programmed each sensor to behave and respond differently. As a result, each
sensor can only communicate with a plugin that supports the same communication
sequence.

8 Evaluation of the Prototype

In this section, we explain how we evaluate the proposed CADDOT model and
SmartLink tool using prototype implementations. We identified ten steps performed
in the dynamic discovery and sensor configuration process.Wemeasured the average
amount of time taken by each of these steps (average of 30 sensor configurations).
Figure 14 illustrates the results and the following steps are considered: Time taken

Context-Aware Dynamic Discovery and Configuration 235

Fig. 14 Time taken (y-axis) to discover and configure a sensor step-by-step (x-axis). The experi-
ments were conducted using three protocols: TCP, UDP, and Bluetooth

to (1) set up the sensor, (2) initiate connection between the sensor and SmartLink,
(3) initiate communication between sensor and SmartLink, (4) extract sensor identi-
fication information, (5) retrieve the complete profile of the sensor, (6) configure the
sampling rate, (7) configure the communication frequency, (8) configure the sensing
schedule, (9) configure the network and authentication details (so the sensor can
directly connect to the cloud), and (10) connect to the secure network using the
provided authentication details.

Results: According to the results, the actual configuration tasks take less than 1s.
There is a slight variation in completion time in configuration step (4)–(9). This is due
to storage access and differences in processing of configuration commands. Sensors
takes comparatively longer time to connect to a network as well as to discover and
connect to SmartLink. Especially, Bluetooth takes much longer to scan for devices in
a given environment before it discovers and connects to SmartLink. Configuration is
slightly faster when using TCP in comparison to UDP and Bluetooth. This is mainly
due to reliability. However, the time differences are negligible. FTP is used to retrieve
a scheduling file from a file server. This can take 15–25s depending on the network
availability, traffic, and file size. If a sensor cannot access a server via the Internet, a
file can be transferred from SmartLink to the sensor as typical commands. Sensors
generate the scheduling file using the data it receives from SmartLink. When using
WiFi, a sensor may takes up to 4.5 s to connect to a secure network (e.g. WPA2).
In contrast, sensors can connect to SmartLink’s open access point in less than 4s.
Despite the protocol we use, sensors take 5–15s to boot and setup themselves. The
setup stage consists of activities such as reading default configuration from files, and
switching necessary modules and components (communication modules, real-time
clock, SD card, sensor broads and so on).

236 C. Perera et al.

9 Discussion and Lessons Learned

In what follows, we discussmajor lessons we learned alongwith limitations. Accord-
ing to our results, it is evident that a single sensor can be configured in less than 12s
(i.e. assuming sensors are already booted, which takes an additional 5–15s depend-
ing on the communication protocol). This is a significant improvement over amanual
labour intensive sensor configuration approach. Additionally, SmartLink can engage
with number of sensor configuration processes at a given time in parallel. The pro-
posed CPD has not made any negative impact towards the sensing functionality
though it supports advance configuration capabilities. The IF-ELSE structure used
in CPDmakes sure that each request gets to the destination with minimum execution
of lines (e.g. ‘PL’ request passes through only two IF conditions). Such execution
reduced the impact on sensing tasks while configuration tasks are also supported
efficiently. Even though a detailed discussion on data acquisition methods is out of
scope, it is important to note that pull, temporary push, and schedule based push
add a significant amount of flexibility where each of the techniques is suitable to be
used in different circumstances [36]. The cloud server has the authority to decide
which method to be used based on the context information. This increases the effi-
ciency and application scenario where the sensors can be used in sustainable (i.e. in
term of energy) manner. Once the initial discovery and configuration of smart things
are done, further configuration can be done in more user friendly manner by using
techniques such as augmented reality [19].

10 Open Challenges

In this section, we briefly introduce some of the major open research challenges in
the domain that are closely related to this work. We identify four main challenges
that provide different research directions.

Sensing strategy optimization: We briefly highlighted the importance of opti-
mizing sensing schedules based on context information in Sect. 3. Sensing strategy
development encapsulates a broad set of actions such as deciding the sensing sched-
ule, sampling rate, and network communication frequency for each sensor. Such
a development process needs to consider two main factors: user requirements and
availability of sensors. In IoT, there is no single point of control or authority. As a
result, different parties are involved in sensor deployments. Such disorganized and
uncoordinated deployments can lead to redundant sensor deployment. In order to use
the sensor hardware in an optimized manner, sensing strategies need to be developed
by considering factors such as sensor capabilities, sensor redundancies (e.g. avail-
ability of multiple sensors that are capable of providing similar data), and energy
availability. Energy conservation is a key in sustainable IoT infrastructure because
the resources constrained nature of the sensors. We provided such an example in
Sect. 3 related to the agricultural domain. We believe that sensing as a service is a

Context-Aware Dynamic Discovery and Configuration 237

major business model that could drive IoT in the future. In such circumstances, col-
lecting data from all the available sensors has no value. Instead, sensor data should
be collected and processed only in response to consumer demand [37].

Context discovery: This is an important task where discovered information will
be used during a reasoning process (e.g.sensing strategy development). “Context
is any information that can be used to characterise the situation of an entity. An
entity is a person, place, or object that is considered relevant to the interaction
between a user and an application, including the user and applications themselves”
[2]. Further discussion on context information and its importance for the IoT is
surveyed in [36]. Context-based reasoning can be used to improve the efficiency of
the CADDOT model where a matching plugin can be discovered faster, especially
in situations where a perfect match cannot be found. For example, the location of a
given sensor,8 sensors nearby, details of the sensors configured recently, historic data
related to sensor availability in a given location, etc. can be fused and reasoned using
probabilistic techniques in order to find a matching plugin in an efficient manner.
After integrating sensors into cloud-based IoT, the next phase is collecting data from
the sensors. Annotating context information to retrieve sensor data plays a significant
role in querying and reasoning them in later stages. Especially, in the sensing as a
service model, sensor data consumers may demand such annotation so that they can
feed data easily into their own data processing applications for further reasoning and
visualization tasks. Some context information can be easily discovered at sensor-
level (e.g. battery level, location) and others can be discovered at the cloud-level by
fusing multiple raw data items (e.g. activity detection). Such context annotated data
help to perform more accurate fusing and reasoning at the cloud level [30].

Utilization of heterogeneous computational devices: Even though the IoT envi-
sions billions of ‘things’ to be connected to the Internet, it is not possible and prac-
tical to connect all of them to the Internet directly. This is mainly due to resource
constraints (e.g. network communication capabilities and energy limitations). Con-
necting directly to the Internet is expensive in terms of computation, bandwidth use,
and hardware costs. Enabling persistent Internet access is challenging and also has
a negative impact on miniaturization and energy consumption of the sensors. Due
to such difficulties, IoT solutions need to utilize different types of devices with dif-
ferent resource limitations and capabilities. In Fig. 15, we broadly categorise these
devices into six categories (also called levels or layers). Devices on the right side
may use low-energy short distance wireless communication protocols to transmit
the collected sensor data to the devices on the left. Devices on the left can use
long distance communication protocols to transmit the data to the cloud for further
processing. However, the more devices we use in smart environments, the more dif-
ficult it becomes to detect faults where an entire system could fail [44]. Providing
a unified middleware support across heterogeneity of devices with wider rage of
capabilities is an open challenge [10, 20].

8 Location can be represented inmanyways: GPS coordinate (e.g.−35.280325, 149.113166), name
of a building (e.g. CSIT building at ANU), name of a city (e.g. Canberra), part of a building (e.g.
living room), floor of a building (e.g. 2nd floor), specific part of a room (e.g. kitchen-top).

238 C. Perera et al.

Fig. 15 Categorization of IoT devices based on their computational capabilities. The devices
belonging to each category have different capabilities in terms of processing, memory, and commu-
nication. They are also different in price, with devices becoming more expensive towards the left.
The computational capabilities also increase towards the left

Security and privacy: In this work, we considered some degree of security as
briefly discussed in Sect. 6. However, research on security in the IoT is largely
unexplored. Security and privacy need to be provided at both sensor-level and cloud-
level. It is critical to develop a security model to protect the sensor configuration
process, considering questions such as (1) when to allow reconfiguration of a sensor,
(2) who has the authority to configure a sensor at a given time, (3) how to change
ownership of a sensor, (4) how to detect sensors with harmful programs installed
on them that may cause security threats to a network. Security and privacy concerns
related to the IoT are presented in [41]. Additionally, security challenges unique to
the sensing as a service model are discussed in [37].

11 Conclusions and Outlook

In this chapter,we addressed the challenge of integrating sensors into cloud-based IoT
platforms through context-aware dynamic discovery and configuration. Traditionally,
integration of ‘things’ to software solutions is considered a labour-intensive, expen-
sive and time-consuming task that needs to be carried out by technical experts. Such
challenges hinders the non-technical users from adopting IoT to build smart envi-
ronments. To address this problem, we presented the CADDOT model, an approach
that automates the sensor discovery and configuration process in smart environments
efficiently and effortlessly by handling key challenges such as a higher number of
sensors available, heterogeneity, on-demand sensing schedules, sampling rate, data
acquisition methods, and dynamicity. It also encourages non-technical users to adopt
IoT solutions with ease by promoting automatic discovery and configuration IoT
devices.

In this work, we supported and evaluated different types of communication tech-
nologies (i.e. WiFi and Bluetooth), application strategies, and sensor-level program
designs, each of which has their own strengths and weaknesses. We validate the
CADDOT model by deploying it in an office environment. As CADDOT required
minimum user involvement and technical expertise, it significantly reduces the time
and cost involved in sensor discovery and configuration. In the future, we expect to
address the open challenges discussed in Sect. 10. In addition, we expect to integrate

Context-Aware Dynamic Discovery and Configuration 239

our solution with other existing solutions such as MOSDEN [34] and OpenIoT [31].
The functionality provided by CADDOT can improve these solutions in a major way.

Acknowledgments Authors acknowledge support from SSN TCP, CSIRO, Australia and ICT
Project, which is co-funded by the European Commission under seventh framework program, con-
tract number FP7-ICT-2011-7-287305-OpenIoT. The Author(s) also acknowledge help and contri-
butions from The Australian National University.

References

1. Aberer, K., Hauswirth, M., Salehi, A.: Infrastructure for data processing in large-scale
interconnected sensor networks. In: International Conference on Mobile Data Management,
pp. 198–205, May 2007

2. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a better
understanding of context and context-awareness. In: Proceedings of the 1st International Sym-
posium on Handheld and Ubiquitous Computing, HUC ’99, pp. 304–307. Springer-Verlag,
London (1999)

3. Ashton, K.: That ‘internet of things’ thing in the real world, things matter more than ideas.
RFID J. http://www.rfidjournal.com/article/print/4986 (2009). Accessed 30 Jul 2012

4. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15),
2787–2805 (2010)

5. BCC Research. Sensors: technologies and global markets. Market forecasting, BCC Research.
http://www.bccresearch.com/report/sensors-technologies-markets-ias006d.html (2011). Acc-
essed 05 Jan 2012

6. Bizer, C., Boncz, P., Brodie, M.L., Erling, O.: The meaningful use of big data: four
perspectives—four challenges. SIGMOD Rec. 40(4), 56–60 (2012)

7. Botts, M., Robin, A.: Opengis sensor model language (sensorml) implementation specifica-
tion. Technical report. Open Geospatial Consortium Inc. https://portal.opengeospatial.org/
modules/admin/license_agreement.php?suppressHeaders=0&access_license_id=3&target=
http://portal.opengeospatial.org/files/%3fartifact_id=12606 (2007). Accessed 15 Dec 2011

8. Brush, A.B., Filippov, E., Huang, D., Jung, J., Mahajan, R., Martinez, F., Mazhar, K., Phan-
ishayee, A., Samuel, A., Scott, J., Singh, R.P.: Lab of things: a platform for conducting studies
with connected devices in multiple homes. In: Proceedings of the 2013 ACM Conference on
Pervasive and Ubiquitous Computing Adjunct Publication, UbiComp’13 Adjunct, pp. 35–38.
ACM, New York (2013)

9. Carlson, D., Schrader, A.: Dynamix: an open plug-and-play context framework for android.
In: Internet of Things (IOT), 2012 3rd International Conference on the, pp. 151–158. (2012)

10. Chaqfeh, M., Mohamed, N.: Challenges in middleware solutions for the internet of things. In:
Collaboration Technologies and Systems (CTS), 2012 International Conference on, pp. 21–26.
(2012)

11. Commonwealth Scientific and Industrial ResearchOrganisation (CSIRO), Australia. Phenonet:
Distributed sensor network for phenomics supported by high resolution plant phenomics centre,
csiro ict centre, and csiro sensor and sensor networks tcp. http://phenonet.com (2011).Accessed
20 Apr 2012

12. Compton,M., Barnaghi, P., Bermudez, L., Garcfa-Castro, R., Corcho, O., Cox, S., Graybeal, J.,
Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz, K., Kelsey, W.D., Phuoc, D.L.,
Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A., Page, K., Passant, A., Sheth, A., Taylor,
K.: The SSN ontology of the w3c semantic sensor network incubator group. Web Seman. Sci.,
Serv. Agents World Wide Web 17, 25–32 (2012)

13. Cook , D., Das, S.: Smart Environments: Technology, Protocols and Applications (Wiley Series
on Parallel and Distributed Computing). Wiley-Interscience, London (2004)

http://www.rfidjournal.com/article/print/4986
http://www.bccresearch.com/report/sensors-technologies-markets-ias006d.html
https://portal.opengeospatial.org/modules/admin/license_agreement.php?suppressHeaders=0&access_license_id=3&target=
https://portal.opengeospatial.org/modules/admin/license_agreement.php?suppressHeaders=0&access_license_id=3&target=
http://portal.opengeospatial.org/files/%3fartifact_id=12606
http://phenonet.com

240 C. Perera et al.

14. Cosm.: Cosm platform. https://cosm.com/ (2007) Accessed 05 Aug 2012
15. Dixon, C., Mahajan, R., Agarwal, S., Brush, A., Lee, B., Saroiu, S., Bahl, V.: An operating

system for the home, In: Symposium on Networked Systems Design and Implementation
(NSDI), USENIX, Apr 2012

16. EPCglobal.: Epc tag data standard version 1.5. Standard specification, EPCglobal. http://
www.gs1.org/gsmp/kc/epcglobal/tds/tds_1_5-standard-20100818.pdf (2010). Accessed 16
Aug 2011

17. GSN team: global sensor networks project. http://sourceforge.net/apps/trac/gsn/ (2011).
Accessed 16 Dec 2011

18. Guillemin, P., Friess, P.: Internet of things strategic research roadmap. Technical report. The
Cluster of European Research Projects. http://www.internet-of-things-research.eu/pdf/IoT_
Cluster_Strategic_Research_Agenda_2009.pdf (2009)

19. Heun, V., Kasahara, S., Maes, P.: Smarter objects: using ar technology to program physical
objects and their interactions. In: CHI’13 Extended Abstracts on Human Factors in Computing
Systems, CHI EA’13, pp. 961–966. ACM, New York (2013)

20. Hong, Y.: A resource-oriented middleware framework for heterogeneous internet of things. In:
Cloud and Service Computing (CSC), 2012 International Conference on, pp. 12–16. (2012)

21. Hu, P., Indulska, J., Robinson, R.: An autonomic context management system for pervasive
computing. In: Pervasive Computing and Communications, 2008. PerCom 2008. Sixth Annual
IEEE International Conference on, pp. 213–223, Mar 2008

22. IEEE Instrumentation andMeasurement Society. IEEE standard for a smart transducer interface
for sensors and actuatorswireless communication protocols and transducer electronic data sheet
(teds) formats. IEEE Std 1451.5-2007, pp. C1-236. 5-2007

23. International Data Corporation (IDC) Corporate USA. Worldwide smart connected device
shipments. http://www.idc.com/getdoc.jsp?containerId=prUS23398412 (2012). Accessed 01
Aug 2012

24. Jung, M., Reinisch, C., Kastner, W.: Integrating building automation systems and ipv6 in the
internet of things. In: InnovativeMobile and Internet Services inUbiquitousComputing (IMIS),
2012 Sixth International Conference on, pp. 683–688. (2012)

25. Kiljander, J., Takalo-Mattila, J., Etelapera, M., Soininen, J.-P., Keinanen, K.: Enabling end-
users to configure smart environments. In: Applications and the Internet (SAINT), 2011
IEEE/IPSJ 11th International Symposium on, pp. 303–308. (2011)

26. Kovatsch, M., Lanter, M., Duquennoy, S.: Actinium: a restful runtime container for scriptable
internet of things applications. In: Internet of Things (IOT), 2012 3rd International Conference
on the, pp. 135–142. (2012)

27. Libelium Comunicaciones Distribuidas. libelium. http://www.libelium.com/ (2006). Accessed
28 Nov 2012

28. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.: Big data:
the next frontier for innovation, competition, and productivity. Technical report, McKinsey
Global Institute, 2011. http://www.mckinsey.com/Insights/MGI/Research/Technology_and_
Innovation/Big_data_The_next_frontier_for_innovation [Accessed on: 2012–06-08]

29. Naphade, M., Banavar, G., Harrison, C., Paraszczak, J., Morris, R.: Smarter cities and their
innovation challenges. Computer 44(6), 32–39 (2011)

30. Oh, Y., Han, J., Woo, W.: A context management architecture for large-scale smart environ-
ments. Commun. Mag. IEEE 48(3), 118–126 (2010)

31. OpenIoT Consortium. Open source solution for the internet of things into the cloud. http://
www.openiot.eu (2012). Accessed 08 Apr 2012

32. Pereira, P., Eliasson, J., Kyusakov, R., Delsing, J., Raayatinezhad, A., Johansson, M.: Enabling
cloud connectivity for mobile internet of things applications. In: Service Oriented System
Engineering (SOSE), 2013 IEEE 7th International Symposium on, pp. 518–526. (2013)

33. Perera, C., Jayaraman, P., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Dynamic configura-
tion of sensors using mobile sensor hub in internet of things paradigm. IEEE 8th International
Conference on Intelligent Sensors. Sensor Networks, and Information Processing (ISSNIP),
pp. 473–478. Melbourne, Australia, Apr 2013

https://cosm.com/
http://www.gs1.org/gsmp/kc/epcglobal/tds/tds_1_5-standard-20100818.pdf
http://www.gs1.org/gsmp/kc/epcglobal/tds/tds_1_5-standard-20100818.pdf
http://sourceforge.net/apps/trac/gsn/
http://www.internet-of-things-research.eu/pdf/IoT_Cluster_Strategic_Research_Agenda_2009.pdf
http://www.internet-of-things-research.eu/pdf/IoT_Cluster_Strategic_Research_Agenda_2009.pdf
http://www.idc.com/getdoc.jsp?containerId=prUS23398412
http://www.libelium.com/
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
http://www.openiot.eu
http://www.openiot.eu

Context-Aware Dynamic Discovery and Configuration 241

34. Perera, C., Jayaraman, P.P., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Mosden: an inter-
net of things middleware for resource constrained mobile devices. In: Proceedings of the 47th
Hawaii International Conference on System Sciences (HICSS). Hawaii, USA, Jan 2014

35. Perera, C., Zaslavsky, A., Christen, P., Compton, M., Georgakopoulos, D.: Context-aware
sensor search, selection and ranking model for internet of things middleware. In: IEEE 14th
International Conference on Mobile Data Management (MDM), Milan, Italy, June 2013

36. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware computing for the
internet of things: a survey. IEEE Commun. Surv. Tut. 16(1), 414–454 (2014). doi:10.1109/
SURV.2013.042313.00197

37. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Sensing as a service model for
smart cities supported by internet of things. Trans. Emerg. Telecommun. Technol. 25(0):81–93
(2014)

38. Perera, C., Zaslavsky, A., Christen, P., Salehi, A., Georgakopoulos, D.: Capturing sensor data
from mobile phones using global sensor network middleware. In: IEEE 23rd International
Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp. 24–29.
Sydney, Australia, Sept 2012

39. Perera, C., Zaslavsky, A., Liu, C.H., Compton, M., Christen, P., Georgakopoulos, D.: Sensor
search techniques for sensing as a service architecture for the internet of things. IEEE Sens. J.
14(2):406–420 (2014)

40. Postscapes.com. A showcase of the year’s best Internet of Things projects. http://postscapes.
com/awards/winners (2012). Accessed 10 Jan 2013

41. Roman, R., Najera, P., Lopez, J.: Securing the internet of things. Computer 44(9), 51–58 (2011)
42. Sheng, X., Tang, J., Xiao, X., Xue, G.: Sensing as a service: challenges, solutions and future

directions. Sens. J. IEEE 13(10), 3733–3741 (2013)
43. Shon, T., Park, Y.: Implementation of rf4ce-based wireless auto configuration architecture for

ubiquitous smart home. In: Complex, Intelligent and Software Intensive Systems (CISIS), 2010
International Conference on, pp. 779–783. (2010)

44. Son, J.-Y., Lee, J.-H., Kim, J.-Y., Park, J.-H., Lee, Y.-H.: Rafd: resource-aware fault diagnosis
system for home environment with smart devices. Consum. Electron. IEEETrans. 58(4), 1185–
1193 (2012)

45. Sundmaeker, H., Guillemin, P., Friess, P., Woelffle, S.: Vision and challenges for
realising the internet of things. Technical report, European Commission Information
Society and Media. http://www.internet-of-things-research.eu/pdf/IoT_Clusterbook_March_
2010.pdf (Mar 2010). Accessed 10 Oct 2011

46. Weiser, M., Gold, R., Brown, J.S.: The origins of ubiquitous computing research at parc in the
late 1980s. IBM Syst. J. 38(4), 693–696 (1999)

http://dx.doi.org/10.1109/SURV.2013.042313.00197
http://dx.doi.org/10.1109/SURV.2013.042313.00197
http://postscapes.com/awards/winners
http://postscapes.com/awards/winners
http://www.internet-of-things-research.eu/pdf/IoT_Clusterbook_March_2010.pdf
http://www.internet-of-things-research.eu/pdf/IoT_Clusterbook_March_2010.pdf

	9 Context-Aware Dynamic Discovery and Configuration of `Things' in Smart Environments
	1 Introduction
	2 Background and Motivation
	2.1 Smart Environment
	2.2 Sensing as a Service
	2.3 Big Data Challenge

	3 Functional Requirements
	4 Related Work
	5 Overview of the CADDOT Model
	6 Design Decisions and Applications
	7 Implementation and Experiment Testbed
	8 Evaluation of the Prototype
	9 Discussion and Lessons Learned
	10 Open Challenges
	11 Conclusions and Outlook
	References

