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Abstract The amount of available data has exploded significantly in the past years,
due to the fast growing number of services and users producing vast amounts of
data. The Internet of Things (IoT) has given rise to new types of data, emerging
for instance from the collection of sensor data and the control of actuators. The
explosion of devices that have automated and perhaps improved the lives of all of us
has generated a huge mass of information that will continue to grow exponentially.
For this reason the need to store, manage, and treat the ever increasing amounts of
data that comes via the Internet of Things has become urgent. In this context, Big
Data becomes immensely important, making possible to turn into this amount of data
in information, knowledge, and, ultimately, wisdom. The aim of this chapter is to
provide an original solution that uses Big Data technologies for redesigning an IoT
context aware application for the exploitation of pervasive environment addressing
problems and discussing the important aspects of the selected solution. The chapter
also provides a survey of Big Data technical and technological solutions to manage
the amounts of data that comes via the Internet of Things.

1 Introduction

The amount of available data has exploded significantly in the past years, due to
the fast growing number of services and users producing vast amounts of data. The
Internet of Things (IoT) has given rise to new types of data, emerging for instance
from the collection of sensor data and the control of actuators. The explosion of
devices that have automated and perhaps improved the lives of all of us has generated
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a huge mass of information that will continue to grow exponentially. For this reason
the need to store, manage, and treat the ever increasing amounts of data that comes
via the Internet of Things has become urgent. In this context, Big Data becomes
immensely important,making possible to turn into this amount of data in information,
knowledge, and, ultimately, wisdom. An interesting view of what are the Big Data
has been exposed to Gartner that defines Big Data as “high volume, velocity and/or
variety information assets that demand cost-effective, innovative forms of infor-
mation processing that enable enhanced insight, decision making, and process
automation” [1]. In fact the huge size is not the only property of Big Data. Only
if the information has the characteristics of Volume,Velocity and/or Variety we can
talk about Big Data [2] as shown in Fig. 1. Volume refers to the fact that we are
dealing with ever-growing data expanding beyond terabytes into petabytes, and even
exabytes (1 million TB). Variety refers to the fact that Big Data is characterized
by data that often come from heterogeneous sources such as machines, sensors and
unrefined ones, making themanagement muchmore complex. Finally, the third char-
acteristic, that is velocity that, according to Gartner [3], “means both how fast data
is being produced and how fast the data must be processed to meet demand”. In
fact in a very short time the data can become obsolete. Dealing effectively with Big
Data “requires to perform analytics against the volume and variety of data while it is
still in motion, not just after” [2]. IBM [4] proposes the inclusion of veracity as the
fourth Big Data attribute to emphasize the importance of addressing and managing
the uncertainty of some types of data. Striving for high data quality is an important
Big Data requirement and challenge, but even the best data cleansingmethods cannot
remove the inherent unpredictability of some data, like the weather, the economy,
or a customer’s actual future buying decisions. The need to acknowledge and plan
for uncertainty is a dimension of Big Data that has been introduced as executives
seek to better understand the uncertain world around them. Big Data are so complex
and large that it is really difficult and sometime impossible, to process and analyze
them using traditional approaches. In fact traditional relational database manage-
ment systems (RDBMS) can not handle Big Data sets in a cost effective and timely
manner. These technologies may not be enabled to extract, from large data set, rich
information that can be exploited across of a broad range of topics such as market
segmentation, user behavior profiling, trend prediction, events detection, etc and in
many fields like public health, economic development and economic forecasting.
Besides Big Data have a low information per byte, and, therefore, given the vast
amount of data, the potential for great insight is quite high only if it is possible
analyze the whole dataset [2]. In fact data is the raw material that is processed into
information. Individual data by itself is not very useful, but volumes of it can iden-
tify trends and patterns. This and other sources of information come together to form
knowledge. In the simplest sense, knowledge is information of which someone is
aware. Wisdom is then born from knowledge plus experience [5]. So, the challenge
is to find a way to transform raw data into valuable information. To capture value
from Big Data, it is necessary an innovation in technologies and techniques that will
help individuals and/organizations to integrate, analyze, visualize different types of
data at different spatial and temporal scales. The aim of this chapter is to provide
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Fig. 1 Big data
characteristics

an original solution that uses Big Data technologies for redesigning an IoT context
aware application for the exploitation of pervasive environment addressing prob-
lems and discussing the important aspects of the selected solution. The chapter also
provides a survey of Big Data technical and technological solutions to manage the
amounts of data that comes via the Internet of Things. The paper is organized as
follows: in Sect. 2 a survey of technical and technological solutions related to Big
Data is presented, Sects. 4 and 5 describe an example of application context that is
suitable for the utilization Big Data solution. Sect. 6 briefly describes the proposed
solution; conclusions are drawn in Sect. 7.

2 NoSQL

The term NoSQL (meaning ‘not only SQL’) is used to describe a large class of
databases which do not have properties of traditional relational databases and which
are generally not queried with SQL (structured query language). NoSQL data stores
are designed to scale well horizontally and run on commodity hardware. Also, the
‘one size fit’s it all’ [6] notion does not work for all scenarios and it is a better to
build systems based on the nature of the application and its work/data load [7].

NoSQL data stores come up with following key features [8]:

• the ability to horizontally scale simple operation throughput over many servers,
• the ability to replicate and to distribute (partition) data over many servers,
• a simple call level interface or protocol (in contrast to a SQL binding),
• a weaker concurrency model than the ACID transactions of most relational (SQL)
database systems,

• efficient use of distributed indexes and RAM for data storage, and
• the ability to dynamically add new attributes to data records.

Most of the NoSQL databases, has as the main objective, the achievement of scal-
ability and higher performance. To provide this they do not guarantee all ACID
properties, but use the a relaxed set of properties named BASE:

• Basically available: Allowance for parts of a system to fail
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• Soft state: An object may have multiple simultaneous values
• Eventually consistent: Consistency achieved over time.

Because the data does not have to be 100 percent consistent all the time, applications
can scale out to a much greater extent. By relaxing the consistency requirement,
for example, NoSQL databases can have multiple copies of the same data spread
across many servers or partitions in many locations. The data is instead eventually
consistentwhen the servers are able to communicatewith one another and catch up on
any updates one may havemissed [9]. Proponents of NoSQL often cite Eric Brewer’s
CAP theorem [10], formalized in [11], which basically states that is impossible for
a distributed computing system to simultaneously provide all three of the following
guarantees: Consistency, Availability and Partition Tolerance (from these properties
the CAP acronym has been derived). Where:

• Consistency: all nodes see the same data at the same time
• Availability: a guarantee that every request receives a response about whether it
was successful or failed

• Partition Tolerance: the system continues to operate despite arbitrary message loss
or failure of part of the system that create a netwrok partition

Only two of the CAP properties can be ensured at the same time. Therefore, only
CA systems (consistent and highly available, but not partition-tolerant), CP systems
(consistent and partition tolerant, but not highly available), and AP systems (highly
available and partition tolerant, but not consistent) are possible and for many people
CA and CP are equivalent because loosing in Partitioning Tolerance means a lost
of Availability when a partition takes place. So, the trade-offs are complex and the
NoSQLdatabases, acting as distributed systems,must choose between either support:
AP or CP.

Common concepts in NoSQL databases are [12]:

• Sharding, also referred to as horizontal scaling or horizontal partitioning. It is a
partitioning mechanism in which records are stored on different servers according
to some keys. Data is partitioned in such a way that records, that are typically
accessd/updated together, reside on the same node. Data shards may also be repli-
cated for reasons of reliability and load-balancing and it may be either allowed
to write to a dedicated replica only or to all replicas maintaining a partition of
the data. To allow such a sharding scenario there has to be a mapping between
data partitions (shards) and storage nodes that are responsible for these shards.
This mapping can be static or dynamic, determined by a client application, by
some dedicated ‘mapping-service-component’ or by some network infrastructure
between the client application and the storage nodes. The downside of sharding
scenarios is that joins between data shards are not possible, so that the client appli-
cation or proxy layer inside or outside the database has to issue several requests
and postprocess (e. g. filter, aggregate) results instead.

• Consistent hashing [13]. The idea behind consistent hashing is to use the same
hash function, used to generate fixed-length output data that acts as a shortened
reference to the original data, for both the object hashing and the node hashing.
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This is advantageous to both objects and machines. The machines will get an
interval of the hash function range and the neighboring machines can take over
portions of the interval of their adjacent nodes if they leave and can assign parts of
their interval if some newmember node joins and gets mapped to a nearby interval.
Another advantage of consistent hashing is that clients can easily determine the
nodes to be contacted to perform read or write operations.

• MapReduce [14] is a programming model and an associated implementation by
Google for processing and generating large data sets. Users specify a map function
that processes a keyvalue pair to generate a set of intermediate keyvalue pairs, and a
reduce function that merges all intermediate values associated with the same inter-
mediate key. MapReduce is typically used to do distributed computing on clusters
of computers. When applied to databases, MapReduce processes a set of keys by
submitting the process logic (map- and reduce-function code) to the storage nodes
which locally apply the map function to keys that should be processed and that
are in their set. The intermediate results can be consistently hashed just as regular
data and processed by the following nodes in clockwise direction, which apply the
reduce function to the intermediate results and produce the final results. It should
be noted that due to the consistent hashing of the intermediate results there is no
coordinator needed to direct the processing nodes to find the intermediate results.
A popular open source implementation is Apache Hadoop [15], a framework that
allows for the distributed processing of large data sets across clusters of computers
using simple programmingmodels. It is designed to scale up from single servers to
thousands ofmachines, each offering local computation and storage and to execute
queries and other batch read operations against massive datasets that can be tens
or hundreds of terabytes and even petabytes in size. A commercial closed source
model is Dryad [16]. Originated by Microsoft Research, Dryad, DryadLINQ and
the Distributed Storage Catalog (DSC) are currently available as community tech-
nology previews. DryadLINQ allows programmers to use Microsoft technolo-
gies such as Microsoft .NET and LINQ to express their algorithms. Dryad is a
general purpose runtime for execution of data parallel applications allowing the
execution of the algorithms across large quantities of unstructured data distributed
across clusters of commodity computers. DSC is a storage system that provides the
bottom layer to the stack. It ties together a large number of commodity machines to
store very large (i.e., Bing-level) quantities of data. These are commercial versions
of the same technology used by the Bing search engine for large, unstructured data
analysis.

• Versioning of Datasets in Distributed Scenarios. If Datasets are distributed among
nodes, they can be read and altered on each node and no strict consistency is
ensured by distributed transaction protocols. Questions arise on how concurrent
modifications and versions are processed and to which values a dataset will even-
tually converge to. There are several options to handle these issues and, the most
used are Multiversion Concurrency Control (MVCC), whose aim is to avoid the
problem of writers blocking readers and viceversa, by making use of multiple
versions of data, and vector clocks, an algorithm for generating a partial ordering
of events in a distributed system and detecting causality violations.
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However, NoSQL databases are not the solution to every problem of data
management [17]. In fact, they completely miss a common query language like
SQL in RDBMS. SQL is based on Relational Algebra that ensures completeness of
the query language and that offers many optimization techniques to support query
execution. It represents one of the main reasons why the RDBMS systems have
acquired increasing importance. A developer can move from one database system to
another with reduced effort at least for basic operations. Another lack of NoSQLs is
the extreme heterogeneity of the existing solutions for what concerns the organiza-
tion of the data model, the query model and the data access recommended patterns.
This forces the developer to handle manually low-level data management issues like
indexing, query optimizing data structures, relations between objects, and so on. This
results in a higher complexity of NoSQL compared to RDBMS solutions for what
concerns programmability and management of the data store.

3 NoSQL Classification

According to [8] NoSQL Data Models can be classified in:

• Key-value data stores (KVS). They store values associated with an index (key).
KVS systems typically provide replication, versioning, locking, transactions, sort-
ing, and/or other features. The client API offers simple operations including puts,
gets, deletes, and key lookups. Notable examples include: Amazon DynamoDB,
Project Voldemort, Memcached, Redis and RIAK

• Document data stores (DDS). DDS typically store more complex data than KVS,
allowing for nested values and dynamic attribute definitions at runtime. Unlike
KVS, DDS generally support secondary indexes and multiple types of docu-
ments (objects) per database, as well as nested documents or lists. Notable exam-
ples include Amazon SimpleDB, CouchDB, MembaseCouchbase, MongoDB and
RavenDB

• Extensible record data stores (ERDS). ERDS store extensible records, where
default attributes (and their families) can be defined in a schema, but new attributes
can be added per record. ERDS can partition extensible records both horizontally
(per-row) or vertically (per-column) across a datastore, as well as simultaneously
using both partitioning approaches. Notable examples include Google BigTable,
HBase, Hypertable and Cassandra

Another important category is constituted by Graph data stores. They [18] are based
on graph theory and use graph structures with nodes, edges, and properties to rep-
resent and store data. Key-Value, Document based and Extensible record categories
aim at the entities decoupling to facilitate the data partitioning and have less overhead
on read and write operations, whereas Graph-based take the modeling the relations
like principal objective. Therefore techniques to enhancing schema with a Graph-
based database may not be the same as used with Key-Value and others. The graph
data model fits better to model domain problems that can be represented by graph
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as ontologies, relationship, maps etc. Particular query languages allow querying the
data bases by using classical graph operators as neighbor, path, distance etc. Unlike
the NoSQL systems we presented, these systems generally provide ACID transac-
tions. Different Graph Store products exist in themarket today. Some provide custom
API’s and Query Languages and many support the W3C’s RDF standard. Notable
examples include neo4j, AllegroGraph and InfiniteGraph.

Amazon Dynamo [19] is a key-value distributed storage system that is developed
and used by Amazon. Dynamo is used to manage the state of services that have
very high reliability requirements and need tight control over the tradeoffs between
availability, consistency, cost-effectiveness and performance. Dynamo is a struc-
tured overlay based on consistent hashing with maximum one-hop request routing.
Dynamo uses a synthesis of well known techniques to achieve scalability and avail-
ability: Data is partitioned and replicated using consistent hashing, and consistency is
facilitated by object versioning [20]. The consistency among replicas during updates
ismaintained by a quorum-like technique and a decentralized replica synchronization
protocol. Dynamo employs a gossip based distributed failure detection and member-
ship protocol. Dynamo is a completely decentralized system with minimal need for
manual administration. Storage nodes can be added and removed from Dynamo
without requiring any manual partitioning or redistribution.

Project Voldemort [21] is an open source distributed key-value data store used
by LinkedIn for high-scalability storage. It represents an open source implemen-
tation of the basic parts of Dynamo’s distributed key-value storage system. Like
Dynamo, Voldemort uses consistent hashing for data partitioning and supports vir-
tual nodes. Data is automatically replicated overmultiple servers and is automatically
partitioned so each server contains only a subset of the total data. Server failure is
handled transparently. Pluggable serialization is supported to allow for rich keys
and values including lists and tuples with named fields, as well as to integrate with
common serialization frameworks like Protocol Buffers, Thrift, Avro and Java Seri-
alization. Data items are versioned to maximize data integrity in failure scenarios
without compromising availability of the system and each node is independent of
other nodes with no central point of failure or coordination. It also supports pluggable
data placement strategies to support geographically separated datacenters. Voldemort
single node performance is at the range of 10–20k operations per second depend-
ing on the machines, the network, the disk system, and the data replication factor.
Voldemort provides eventually consistency, just like Amazon Dynamo [22].

Memcached [23] is a free and open source, high-performance, distributed mem-
ory object caching system, generic in nature, but intended for use in speeding up
dynamic web applications by alleviating database load.Memcached is an in-memory
key-value store for small chunks of arbitrary data (strings, objects) from results of
database calls, API calls, or page rendering.Keys are hashed and ash table span across
an arbitrary number of servers. Its API is available for most popular languages.

Redis [24] Redis is an open source, BSD licensed, advanced key-value store. It
is often referred to as a data structure server since keys can contain strings, hashes,
lists, sets and sorted sets. It is possible to run atomic operations on these types, like
appending to a string; incrementing the value in a hash; pushing to a list; computing
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set intersection, union and difference; or getting the member with highest ranking in
a sorted set. In order to achieve better performance, Redis works with an in-memory
dataset and it is possible to persist it either by dumping the dataset to disk every once
in a while, or by appending each command to a log. Redis in particular does not offer
fault-tolerance and as data is held in memory it will be lost if a server crashes.

RIAK [25] is another open source distributed key-value data store, developed
by Basho Technologies, that provides tunable consistency. Consistency is tuned by
specifying how many replicas must respond for a successful read/write operation
and can be specified per-operation. It provides a decentralized key-value store that
supports standardGet, Put andDelete operations.Riak is a distributed, highly scalable
and fault-tolerant store with map/reduce, HTTP, JSON and REST queries. RIAK
relies on consistent hashing for data partitioning and vector clocks for versioning,
like Dynamo and Voldemort. Riak also includes a MapReduce mechanism for non-
key-based querying. MapReduce jobs can be submitted through the RIAK’s HTTP
API or the protobufs API. To this end, the client makes a request to RIAK node
which becomes the coordinating node for the MapReduce job.

Amazon SimpleDB [26] is a proprietary document data store offered as a ser-
vice in Amazon’s AWS cloud portfolio. Amazon SimpleDB automatically man-
ages infrastructure provisioning, hardware and softwaremaintenance, replication and
indexing of data items, and performance tuning. Amazon SimpleDB automatically
creates multiple geographically distributed copies of each data item you store. This
provides high availability and durability in the unlikely event that one replica fails,
Amazon SimpleDB can failover to another replica in the system. Amazon SimpleDB
supports two read consistency options: eventually consistent reads and consistent
reads. The eventual consistency option (default) maximizes the read performance
(in terms of low latency and high throughput). However, an eventually consistent
read might not reflect the results of a recently completed write. Consistency across
all copies of data is usually reached within a second; repeating a read after a short
time should return the updated data. So in addition to eventual consistency, Amazon
SimpleDB also gives to the user the flexibility and control to request a consistent
read if the application requires it. A consistent read returns a result that reflects all
writes that received a successful response prior to the read. Unlike with key-value
datastores, SimpleDB supports more than one grouping in one database: documents
are put into domains, which support multiple indexes. SimpleDB data model is com-
prised of domains, items, attributes and values. Domains are collections of items that
are described by attribute-value pairs. SimpleDB constrains individual domains to
grow up to 10 GB each, and currently has a limit of 100 active domains.

Apache CouchDB [27] is an open source database that focuses on ease of use and
on being “a database that completely embraces the web”. It stores JSON objects that
consist of named fields without predefined schema. Field values can be strings, num-
bers, or dates; but also ordered lists and associative arrays. CouchDB uses JavaScript
for MapReduce queries, and regular HTTP for an API and provides ACID semantics
at the document level, but eventual consistency otherwise. To support ACID on doc-
ument level, CouchDB implements a form of Multi-Version Concurrency Control
(MVCC) in order to avoid the need to lock the database file during writes. Conflicts
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are left to the application to resolve. CouchDB structure stores data into views and
each view is constructed by a JavaScript function that acts as the map phase in
MapReduce. CouchDB was designed with bi-directional replication (or synchro-
nization) and off-line operation in mind. Namely, CouchDB can replicate to devices
(like smart-phones) that can go offline and later sync back the device.

Couchbase [28], originally known as Membase, is an open source, distributed
document oriented data store that is optimized for interactive applications. These
applications must serve many concurrent users; creating, storing, retrieving, aggre-
gating, manipulating and presenting data. In support of these kinds of application
needs, Couchbase is designed to provide easy-to-scale key-value or document access
with low latency and high sustained throughput. It is designed to be clustered from
a single machine to very large scale deployments. Couchbase has initially grown
around memcached, by adding to it features like persistence, replication, high avail-
ability, live cluster reconfiguration, re-balancing,multi-tenancy and data partitioning.
Couchbase supports fast fail-over withmulti-model replication support for both peer-
to-peer replication and master-slave replication. Every Couchbase node is architec-
turally identical consisting of a data manager and cluster manager component. The
cluster manager supervises the configuration and behavior of all the servers in a
Couchbase cluster. It configures and supervises internode behavior like managing
replication streams and rebalancing operations. It also provides metric aggregation
and consensus functions for the cluster, and a RESTful cluster management API.
The cluster manager is built atop Erlang/OTP, a proven environment for building
and operating fault-tolerant distributed systems. The data manager is responsible for
storing and retrieving documents in response to data operations from applications.
Couchbase has only recently migrated from a key-value store to a document data
store, with version 2.0 bringing features like JSON document store, incremental
MapReduce and cross datacenter replication. Couchbase stores JSON objects with
no predefined schema.

MongoDB [29], is an open source document-oriented data storebase system.
MongoDB stores structured data as JSON-like documents with dynamic schemas.
MongoDB supports queries by field, range queries, regular expression searches.
Queries can return specific fields of documents and also include user-defined
JavaScript functions. Any field in a MongoDB document can be indexed and sec-
ondary indices are also available. MongoDB supports master-slave replication. A
master can perform reads and writes, whereas a slave copies data from the master
and cannot be used for writes. MongoDB scales horizontally using sharding and
can run over multiple servers, balancing the load and/or duplicating data to keep the
system up and running in case of hardware failure. MongoDB supplies a file system
function, called GridFS, taking advantage of load balancing and data replication fea-
tures over multiple machines for storing files. MapReduce can be used in MongoDB
for batch processing of data and aggregation operations.

RavenDB [30], is a transactional, open source Document Database written in
.NET, and offering a flexible data model designed to address requirements com-
ing from real-world systems. RavenDB allows you to build high-performance,
low-latency applications quickly and efficiently. Data in RavenDB is stored
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schema-less as JSON documents, and can be queried efficiently using Linq queries
from your .NET code or using RESTful API using other tools. Internally, RavenDB
makes use of indexes which are automatically created based on your usage, or created
explicitly by the consumer. RavenDB is built for web-scale, and offers replication
and sharding support out-of-the-box.

Big Table [31], Bigtable is a distributed storage system designed by Google for
managing structureddata that is designed to scale to a very large size: petabytes of data
across thousands of commodity servers. Google initially designed BigTable as dis-
tributed data storage solution for several applications (like Google Earth and Google
Finance), aiming at providing flexible, high-performance solution for different appli-
cation requirements. It is designed for storing items such as billions of URLs, with
many versions per page; over 100 TB of satellite image data; hundreds of millions
of users; and performing thousands of queries a second. Bigtable is designed with
semi-structured data storage in mind. It is a large map that is indexed by a row key,
column key, and a timestamp. Each value within the map is an array of bytes that
is interpreted by the application. Every read or write of data to a row is atomic,
regardless of how many different columns are read or written within that row.

Hbase [32] is a distributed, column-oriented, data storage system offering strict
consistency designed for data distributed over numerous nodes. It provides strongly
consistent reads and writes versus an eventually consistent data store. HBase is
largely inspired by Google’s BigTable and is designed to work well with Hadoop
which is an open source implementation of Google’s MapReduce framework. The
default distributed files system for Hadoop (HDFS) is designed for sequential reads
and writes of large files in a batch manner. This strategy disallows the system to
offer close to real-time access which requires efficient random accesses of the data.
HBase is an additional layer on top of HDFS that efficiently supports random reads—
and in general access—on the data, using a sparse multi-dimensional sorted map.
HBase does not support a structured query language like SQL. HBase applications
are written in Java much like a typical MapReduce application. HBase does support
writing applications in Avro, REST, and Thrift.

Hypertable [33] is a high performance, open source, massively scalable database
modeled after Bigtable, Google’s proprietary, massively scalable database. Its goal
is to set the open source standard for highly available, scalable, database systems.
Hypertable runs on top of a distributed file system such as the Apache Hadoop DFS,
GlusterFS, or the Kosmos File System (KFS). It is written almost entirely in C++.
Hypertable is similar to a relational database in that it represents data as tables of
information, with rows and columns, but the main differences are that row keys
are UTF-8 strings, there is no support for data types, values are treated as opaque
byte sequences. Regarding its data model it supports all abstractions available in
Bigtable; in contrast to Hbase column-families with an arbitrary numbers of distinct
columns are available in Hypertable. Tables are partitioned by ranges of row keys
(like in Bigtable) and the resulting partitions get replicated between servers. The data
representation and processing at runtime is also borrowed fromBigtable; updates are
done in memory and later flushed to disk. Hypertable has its own query language
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called HQL (Hypertable Query Language) and exposes a native C++ as well as a
Thrift API.

Cassandra [34] is a distributed data storage system developed by Facebook
which, similarly to BigTable, is designed for managing very large amounts of struc-
tured data spread out across many commodity servers, providing a key-value store
with tunable consistency. Cassandra lets the application developer dial in the appro-
priate level of consistency versus scalability or availability for each transaction. This
tunable consistency is a level of sophistication that other databases such as HBase
do not always offer. However, the extra sophistication comes with more of a learn-
ing curve for the developer [9]. The main goal of Cassandra is to provide a highly
available service with no single point of failure. The Cassandra API [35] consists of
three very simple methods (insert, get, delete) and it allows the user to manipulate
data using a distributed multi-dimensional map indexed by the key. The different
attributes (columns) of the data stored by Cassandra are grouped together into sets
(called “column families”). Cassandra exposes two kinds of such families: “simple
column families” and “super column families”, where the latter are a column family
within a column family. This allows a key to map to multiple values. Cassandra
also has an in-memory cache to speed access to the most important data on desig-
nated servers in the cluster. In terms of scalability, Cassandra achieves the highest
throughput for the maximum number of nodes in all experiments [36].

Neo4j [37], is an open source, robust (fully ACID) transactional property graph
database. Due to its graph data model, Neo4j is highly agile and blazing fast. For
connected data operations, Neo4j runs a thousand times faster than relational data-
bases. Nodes store data and edges represent relationships. The data model is called
property graph to indicate that edges could have properties. Neo4j provides a REST
interface or a Java API. The core engine of Neo4j supports the property graph model.
This model can easily be adapted to support the LinkedData RDF model, consist-
ing of Triples. Besides it is possible to add spatial indexes to already located data,
and perform spatial operations on the data like searching for data within specified
regions or within a specified distance of a point of interest. In addition classes are
provided to expose the data to geotools and thereby to geotools enabled applications
like geoserver and uDig.

AllegroGraph [38] is a modern, high-performance, persistent graph database.
AllegroGraph uses efficient memory utilization in combination with disk-based stor-
age, enabling it to scale to billions of quads while maintaining superior performance.
AllegroGraph supports SPARQL, RDFS++, and Prolog reasoning from numerous
client applications. AllegroGraph is a proprietary product of Franz Inc., which mar-
kets a number of Semantic Web products and claims Pfizer, Ford, Kodak, NASA and
the Department of Defense among its AllegroGraph customers.

InfiniteGraph [39] InfiniteGraph is a proprietary graph database currently avail-
able in both free and paid license versions produced by Objectivity, a company
that develops data technologies supporting large-scale, distributed data management,
object persistence and relationship analytics. Its goal is to create a graph database
with “virtually unlimited scalability”. InfiniteGraph is used in applications includ-
ing real-time and location-aware web and mobile advertising platforms, military
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Table 1 Data store comparison

Name Classification License Data storage

Dynamo KVS Proprietary Plug-in
Voldemort KVS Open source RAM
Memcached KVS Open source RAM
Redis KVS Open source RAM
RIAK KVS Open source Plug-in
SimpleDB DDS Proprietary S3 (simple storage service)
CouchDB DDS Open source Disk
Couchbase DDS Open source Disk
MongoDB DDS Open source Disk
RavenDB DDS Open source Disk
Google BigTable ERDS Proprietary GFS
HBase ERDS Open source Hadoop
Hypertable ERDS Open source Disk
Cassandra ERDS Open source Disk
Neo4J Graph Open source Disk
AllegroGraph Graph Proprietary Disk
InfiniteGraph Graph Proprietary Disk

operations planning and mission assurance, and advanced healthcare and patient
records management.

Table 1 provides a comparison of all the examples given in terms of Classifica-
tion, Licence and Storage System. Comparison based on several issues are available
at [40].

4 Context Awareness in Pervasive Environments

Pervasiveness of devices provides to application and services the possibility for using
peripherals and sensors as their own extensions to collect about the user and the envi-
ronment, but also to improve service delivery. In the last years, context awareness has
widely demonstrated its crucial role to achieve optimized management of resources,
systems, and services in many application domains, frommobile and pervasive com-
puting to dynamically adaptive service provisioning. Furthermore the explosion of
devices that have automated and perhaps improved the lives of all of us has generated
a huge mass of information that will continue to grow exponentially. In fact if we
take in consideration, that by 2020 there will be more than 30 billion devices con-
nected to the Internet, it is possible to understand how much data this devices could
produce if they are connected 24/7. Data can be collected from various sources such
as social networks, data warehouse, web applications, networked machines, virtual
machines, sensors over the network,mobile devices, etc. It is necessary to think about
how and where to store them. It is necessary a scalable, distributed storage systems,
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a set of flexible data models that allow for an easy interaction with programming
languages. The need to store, manage, and treat the ever increasing amounts of data
is becoming increasingly felt and contextualisation can be an attractive paradigm
to combine heterogeneous data streams to improve quality of a mining process or
classifier. Another issue concerns the integration of multiple data sources in an auto-
mated, scalable way to aggregate and store these heterogeneous and unbelievable
amounts of data to conduct deep analytics on the combined data set. The traditional
storage can represent a low cost solution to handle this kind of information. Also
the effort spent in redesigning and optimizing data warehouse for analysis requests
could result in poor performance. In fact current databases and management tools
are inadequate to handle complexity, scale, dynamism, heterogeneity, and growth of
such systems.

For these reasons context awareness in pervasive environments represent an
interesting application field of big data technologies. In fact, according to IBM [2]:

• Big Data solutions are ideal for analyzing not only raw structured data, but semi-
structured and unstructured data from a wide variety of sources.

• Big Data solutions are ideal when all, or most, of the data needs to be analyzed
versus a sample of the data; or a sampling of data is not nearly as effective as a
larger set of data from which to derive analysis.

• Big Data solutions are ideal for iterative and exploratory analysis when measures
on data are not predetermined.

Big data technologies can address the problems related to the collection of data
streams of higher velocity and higher variety. They allow for building an infrastruc-
ture that delivers low, predictable latency in both capturing data and in executing
short, simple queries; that is able to handle very high transaction volumes, often in
a distributed environment; and supports flexible, dynamic data structures [41]. With
such a high volume of information, it is relevant the possibility to organize data at
its original storage location, thus saving both time and money by not moving around
large volumes of data. The infrastructures required for organizing big data are able to
process and manipulate data in the original storage location. This capability provides
very high throughput (often in batch), which are necessary to deal with large data
processing steps and to handle a large variety of data formats, from unstructured to
structured [41]. The analysis may also be done in a distributed environment, where
some data will stay where it was originally stored and be transparently accessed for
required analytics such as statistical analysis and data mining, on a wider variety of
data types stored in diverse systems; scale to extreme data volumes; deliver faster
response times driven by changes in behavior; and automate decisions based on ana-
lytical models. Most importantly, the infrastructure must be able to integrate analysis
on the combination of big data and traditional enterprise data. New insight comes
not just from analyzing new data, but from analyzing it within the context of the old
to provide new perspectives on old problems [41]. Context-aware Big Data solutions
could focus only on relevant information by keeping high probability of hit for all
application-relevant events, with manifest advantages in terms of cost reduction and
complexity decrease [42].
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5 The M.A.R.A. Case Study

Exploitation of archaeological sites can be very difficult because of a lack of support-
ing infrastructures and because of the complex recognition and comprehension of
the relevant ruins, artworks and artifacts. The availability of personal devices can be
used to plan the visit and to support the tourist by suggesting him the itineraries, the
points of interest and by providing multimedia contents in the form of digital objects
which can semantically augment the perceived reality. In this context relevant issues
are the profiling of the user, the discovery and the delivery of the contents that can
improve the user’s satisfaction, new models of interactions with reality. The Second
University of Naples is engaged on a multidisciplinary project with both cultural and
a technological aims [43]. Three case studies have been chosen to test the approach
and the framework. The S. Angelo in Formis Basilica, in Campania, near S. Maria
CapuaVetere, the ancient town ofNorba and the amphitheater of Capua. In these sites
we cannot install complex infrastructures and they are difficult to understand without
a tourist guide. For the presented case studies we need to provide a technological
solution that does not need infrastructures for letting the software know the user
location and his feeling about the environment [44]. It means that Bluetooth, NFC,
GPS, electronic compass, camera, network connection and others technologies have
to be used, together or independently, to get information about the user perceptions
and to augment his exploitation of the archaeological site. In particular we will deal
with context aware recommender systems that are achieving widespread success in
nowadays in a lot of fields. The aim of those systems is making personalized rec-
ommendations during a live user interaction. A recommendation system learns from
user’s behavior and makes recommendation that can be interesting for users. The
key component of a context aware recommendation system is data, often extremely
diverse in format, frequency, amount and provenance. This heterogeneous data will
serve as the basis for recommendations obtaining using algorithms to find similari-
ties and affinities and to build suggestions for specific user profiles. One of the most
important application field of recommender systems is cultural heritage. Archae-
ological sites become pervasive environments if personal devices like tablets and
smart-phones are able to detect surrounding ruins, artifact and other kind of points of
interest by their on-board peripherals. In this context pervasiveness offers to software
applications the possibility to interact with the reality by the device, in order to per-
ceive the information surrounding the users, and to adapt their own behavior and the
environment itself. By modeling an archaeological site as a pervasive environment
we are able to improve its exploitation by the visitors. In a pervasive computing envi-
ronment, the intelligence of context-aware systems will be limited if the systems are
unable to represent and reason about context. In domains like tourism, the notion of
preferences varies among users and strongly depends on factors like users’ personal-
ities, parameters related to the context like location, time, season, weather and others
elements like user’s feedback, so it is necessary to provide users with many other
kinds of personalized experiences, based on data of many kinds. The growth of vis-
itors and interactive archaeological sites in recent years poses some key challenges
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for recommender systems. In fact it is necessary to introduce recommender sys-
tem technologies that can quickly produce high quality recommendations, even for
very large-scale problems, so that users can benefit of context awareness in services
exploitation and mobile services can became really useful and profitable. Besides, it
is necessary to address the problemof the variety of data from sensors, RFID, devices,
annotation tools, GIS (Geospatial, GPS), web. So the problem is both to capture data
quickly and to store them quickly in structured form. The structure of the data, then,
allows to identify a pattern based strategy for the extraction of consistent, compa-
rable and updated information. In Fig. 2 an high level representation of our general
case study is shown. We model the environment where the user is moving and to
reconstruct the perceptions of the user himself in order to get his particular vision
about what is surrounding him. A real representation of the environment is necessary
to identify landmarks and possibilities of intervention using pervasive actuators and
sensors whose input will be updated as the environment changes. The environment
has been modeled as a geo-referred map with itineraries, landmarks and point of
interest. The user can download the map of the area to be visited at home, before to
leave, or on site, if the network will be available. The map includes all the points of
interest that identify the relevant objects of that area and different cultural itineraries
which could be exploited on site. Also contents can be discovered and downloaded in
advance according to the device capabilities. Software on user’s mobile device and
remote services will assist the cultural visit by augmenting the reality by the user’s
personal device. A software agent executes on the user’s device to support services
exploitation. It percepts the surrounding environment using the on-board peripherals
and executes plans which are chosen by an ad-hoc reasoning to optimize the user’s
satisfaction. The knowledge of the environment acquired by the agent represents part
of its own beliefs. Another set of believes describes the user profile by recording and
evaluating hiher actions or explicitly asking feedbacks. Some examples are user’s
position, interest, nearby objects, landscape, etc. Of course the way of localization of
users and objects depends on the device technology, the available infrastructures and
the kind of environment. Indoor or outdoor localization can be implemented using
heterogeneous technologies, and often absolute localization can not be performed,
but it is only possible to detect nearby landmarks or objects [45]. These techniques
can result quite intensive in terms of computational requirements, and so the needed
resources can exploit a distributed infrastructure. Part of the computation will be per-
formed locally on the smartphone and expensive tasks will be off-loaded remotely.
Besides the limited energy and data storages of the user’s device can affect agent’s
capability. Remote services allows to the agent to move on remote more complex
reasoning on a wider knowledge base. In order to augment user’s knowledge and
capability to interact with the environment, services have to choose, according to
their context awareness; (1) what content and application it has to deliver; (2) when
it needs to present the content; (3) how this should be done.

In Fig. 3 the architectural solution of the MARA framework is shown. The frame-
work is composed of different tools and applications [44]. Tools for experts in the
domain of the Cultural Heritage are used to augment the archaeological site with a set
ofmultimedia contents. They include amap editor, a semantic annotator and a content
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Fig. 2 Problem model

Fig. 3 Architecture and roles

manager. A set of context aware services are available for intelligent multimedia dis-
covery and delivery. A tourist guide supports the user in visiting an archaeological
site, detects and suggests points of interest, provides context awareness of remote
service, allows for the utilization of remote services and plays multimedia contents.
On the left side of Fig. 3, the user is using his device that hosts a light agent that is
able to perceive information from the field by pervasive sensors. The agent executes
autonomously and proactively in order to support the user’s activity within the envi-
ronment where he is moving. It discovers surrounding objects, it uses them to update
the representation of the user’s knowledge, reacts using the local knowledge to orga-
nize and propose the available contents and facilities by an interactive interface. If the
connection works the device can access remote services, which can access a wider
knowledge and have greater reasoning capabilities to look for additional contents and
applications. Experts of the application domain define the ontology for the specific
case study described in [46]. They use or design a map to represent the environment.
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They add POIs to the map to geo-refer multimedia contents and can link them to a
concept of the ontology. Furthermore they select relevant contents and annotate them
using concepts and individuals of the ontology. Remote applications implement con-
text aware services. They use personal devices to collect perceptions and for content
delivery. An ontology implements the representation of the global knowledge that
is necessary to share a common dictionary and to describe the relationships among
the entity eobjects, which are part of the model. In our model a common ontology
include all the general concepts, which are useful for a description of a pervasive
environment where mobile users are moving, using their devices and interacting
with available facilities and other users. The general ontology is complemented with
a domain ontology that is designed by an expert of the specific application field.
Concepts of the ontology are used on client side to describe a representation of the
reality as it is perceived by the user. On the back-end the ontology is used to annotate
digital resources like point of interests, contents, applications. It is also used to sup-
port reasoning. User’s behaviors, information from pervasive devices or from other
users, device properties, external events are heterogeneous data that are perceived by
the device and that are used to build a dynamic changing representation of the user
knowledge about the reality, within which he is moving. The applications are knowl-
edge driven. The user’s knowledge can be used by the application that is running on
the device to adapt its logic locally, an is updated remotely to improve the aware-
ness of services at server side. Application are events based. Events are triggers for
reactive activity by the agent. An event may update beliefs, trigger plans or modify
goals. Events may be generated externally and received by sensors or integrated sys-
tems. Additionally, events may be generated internally to trigger decoupled updates
or plans of activity. Events can be updates of the user’s knowledge or can be explicit
service requests raised by the user. At each invocations semantic queries, that depend
on the user’s knowledge, are built and processed to get the action to be performed and
the contents to be delivered. Results of the query are individuals of the ontology that
are described by semantic annotation. The user’s knowledge is composed of many
semantic concepts with static and dynamic properties. Semantic techniques are used
for intelligent content and application discovery and delivery. An ontology has been
designed to describe the sites of interest and to annotate the related media. A general
part includes the concepts which are common to all the class of applications that
can be modeled according to the proposed approach. Among the others the Time
class and his properties (CurrentTime, AvailableTime, ElapsedTime, Exploitation-
Time) allow to organize and assist the visit taking into account time information and
handling time constraints. Position class and its properties allow to localize the user
and objects around him. An application specific part of the ontology includes the
concepts that belong to the domain of the cultural heritage and additional classes and
individual which are proper of the case studies introduced in the previous section.
The ontology is used also for annotating the multimedia contents. To annotate texts,
images and any kind of contents we chose the AktiveMedia tool. In Fig. 4 a picture
of the Amphitheater of S. Maria Capua Vetere is annotate with the Column and the
Arc classes which are part of this kind of building. The perceptions are automatically
communicated by a client application for Android Device and recommendations are
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Fig. 4 The annotator

asincronously notified to the user by the tourist guide that periodically search for
the most relevant items. The output produced by the annotator is an RDF file with
concepts and properties of the AktiveMedia ontology and of the domain ontology.

5.1 Digital Repository and Semantic Discovery

The Fedora repository is used to store digital objects and supports their retrieval. Into
the Fedora repository a digital object is composed of a set of files which are:

• object metadata: used by the client application to understand how to deliver the
content;

• binary streams: which are images, video, text ... any kind of raw information to
be delivered;

• RDF annotation: that describe the semantic of the object according to the ontology;
• disseminations: filters to be eventually used for adapting the object according to
the target client.

We loaded the Aktive-Media ontology and the domain ontology into the Fedora
repository in order to exploit its embedded SPARQL engine that is used to select
the optimal set of individuals (i.e. contents). Multimedia contents are automatically
stored into the repository after the annotation phase. The RDF output is automatically
processed using an XSL transformation to make it compliant with the model used
by the Fedora repository. Each content can be linked position.

5.2 Content Types

Different types of content models have been defined and simple examples have been
produced.
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• Multiple images whose transparency can be graduated by the user to compare
changes in different periods. In the same way real picture can be compared with
paintings. Old picture can be compared with what is seen by the camera.

• Part of the image acquired by the camera are recognized and linked to related
multimedia contents.

• Virtual reconstructions which are synchronized with the camera output or the
detected RFIDs.

• Text, audio, video and composite media.

A content descriptor is attached to every digital object. It is used by the device when
the content is being delivered. The descriptor defines the right player for that media,
configuration parameter and necessary input.

The semantic discovery service of MARA returns a set of digital objects related
to POIs in the pervasive environments. Each content is annotated by concepts from
the ontology and can be discovered by a SPARQL query to the content repository.
The result of the query is a set of N instances of digital objects whose relevance to
the user context is calculated as described in [47].

6 Moving to Big Data

Performance figures discussed in [48] demonstrate feasibility of the proposed solu-
tion implemented with a classical RDBMS. However a number of limitations have
been assumed. First of all the amount of data are limited to the proprietary knowl-
edge base with a limited number of archaeological sites. If we aim at handling all
the national cultural heritage or the world one volume of data will be not supported.
Besides the coverage of an increasing number of sites, eventually wider, will affect
the amount of geographical information and the number of connected mobile users.
Data continuously received from thousands of devices scattered in the environment
handling queries and providing perceptionwill augment volume, velocity and variety
of information. Finally the exploitation of the user feedback could be used to improve
the expertise of the system building a social network of visitors and enriching the
knowledge base with semantic annotation inferred by a social network of visitors
who become authors and editors themselves. The new vision of M.A.R.A. could not
be implemented without considering the Big Data requirements and solutions that
are ideal [2] to deal with raw data from a wide variety of sources that must be ana-
lyzed in toto. At this point we wonder understand what would be the best choice for
re-designing and developing the framework to satisfy the new requirements. Under-
standing what NoSQL data models and technology could be more effective among
the available alternatives needs further insides.

First of all maps, contents and users are represented by documents and pro-
files which are structured XML documents, but containing attributes like concepts,
keyvalue pairs, RDF triples, which can dynamically change.



86 A. Amato and S. Venticinque

In current implementation of the MARA knowledge base all this documents are
indexed and stored in a relational databases. Ontology, annotations,maps and profiles
are processed when they are uploaded and updated by new inserting new record or
updating the existing one. For this reason the adoption of a document data store
supporting the map reduce paradigm seems the most rational alternative. I would not
impact on the original design and supports the distribution of both the data and the
computational effort for indexation and retrieval. Also users and data locality could
be exploited to optimize performance. In fact points of interest and contents close
to the users will be eventually more relevant to the others. About the drawback of
such a choice, we have to consider that NOSQL DDS usually do not support ACID
transactions, than there is the lack of a SPARQL interface for reasoning and semantic
retrieval of relevant information, which is currently used by the MARA application
layer. Furthermore some technological solution limit the maximum allowed size for
a digital object. In fact MARA uses ontologies defined using RDFOWL that can be
naturally represented using a labeled, directed, multi-graph. RDF [49] extends the
linking structure of the Web to use URIs to name the relationship between things as
well as the two ends of the link (this is usually referred to as a “triple”). Using this
simplemodel, it allows structured and semi-structured data to bemixed, exposed, and
shared across different applications. This linking structure forms a directed, labeled
graph, where the edges represent the named link between two resources, represented
by the graph nodes. This graph view is the easiest possible mental model for RDF
and is often used in easy-to-understand visual explanations. To enables inferences
and as query language, is used SPARQL that is a subgraph pattern matching query
language. Besides, in MARA project we need to integrate multiple independent
schemas that evolve separately depending on the different conditions correlated to
the archaeological site. Semantic terms link instance data with other resources and
apps and linked resources enable interoperability between apps as shown in Fig. 5.
As an additional factor, it is necessary to bridge the structured and unstructured
worlds and to make queries that integrate across data. It is a complex task because
the different searches need to follow links between the data elements across schemas
to find relationships. Graph databases [18] may overcome these limitation of the as
they generally provide ACID transactions. Adoption of such solution will provide
custom API’s and Query Languages and many support the W3C’s RDF standard,
including a SPARQL engine. This model can easily integrated inMARA paltform as
it supports the LinkedData RDF model. Besides it is possible to add spatial indexes
to already located data, and perform spatial operations on the data like searching for
data within specified regions or within a specified distance of a point of interest. In
addition classes are provided to expose the data to geotools and thereby to geotools
enabled applications like geoservers. As shown in Fig. 6, the second choice requires
the re-desing of the knowledge base and of applications and tools for production,
collection and indexing of data. In fact the new knowledge base can be modeled as
a unique ontology dynamically augmented and updated with new information.
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Fig. 5 RDF utilization

Fig. 6 Graph database utilizzation

7 Conclusion

In this chapter we have presented a survey of technical and technological solu-
tions and analyzed critically the utilization of Big Data to redesign a context aware
application for the exploitation of pervasive environment addressing problems and
discussing the important aspects of the selected solution. The requirements of many
applications are changing and require the adoption of these technologies. NoSQL
databases ensure better performance than RDBMS systems in various use cases,
most notably those involving big data. But the choice of the one that best fits the
application requirements is a challenge for the programmers that decide to develop
a scalable application. There are many differences among the available products and
also among the level of maturation on them. From a solution point of view there
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needs to be a clear analysis of the application context. In particular we focused on
technologies that operate in pervasive environments, which can benefit from the huge
information available but need to be rethought to extract knowledge and improve the
context awareness in order to customize the services. We presented a case study
in the field of cultural heritage and its realization using technology standards such
as RDBMS systems. After that, we discussed the considerations to be made for
upgrading this framework, in particular on the choice of Big Data technologies con-
sidering its advantages and disadvantages compared to the effort of re-engineering.
Future works will address quantitative analysis of the approach using simulations
and benchmarking.
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