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Abstract The use of a BEKK (Baba-Engle-Kraft-Kroner) model is proposed to es-
timate the volatility of a set of financial historical series with a view to the selection
of a stock portfolio. An individual element on the diagonal of the volatility matrix
is estimated by applying the model to the series of log returns both of the share i to
which it refers and of the market index. An extra-diagonal element is instead esti-
mated by using in the model the covariances between the series of log returns of the
two shares i and j to which the element of the volatility matrix corresponds.

The procedure proposed for the estimation of volatility was applied to the series
of monthly stock log returns of 150 shares of major value traded on the Italian
market between 1 January 1975 and 31 August 2011 and the Markowitz portfolio is
simulated.
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1 Introduction

The problem that arises in the selection of a stock portfolio generally regards esti-
mating the volatility of log returns, which means estimating a variance-covariance
matrix [1]. The problems to be addressed in defining a portfolio are, however, of
a different nature. First it is necessary to take the entire set of shares and identify
the subset from which those to be included in the portfolio are selected on the basis
of ranking. Then the volatility matrix, and hence the investment risk, is estimated.
Finally, the portfolio is defined according to the information obtained in the first
two phases. The first problem is addressed in this work by proposing a selection
criterion based on the differences between the log intrinsic value of the shares and
the log returns. The volatility matrix of the shares selected is then estimated through
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combined use of the Cointegrated Vector Autoregressive (CVAR) model [2, 5, 7]
and the Baba-Engle-Kraft-Kroner (BEKK) model [3]. Once the volatility matrix
has been estimated by solving a problem of quadratic optimization, it is possible to
establish the proportions in which each of the shares selected is to be purchased, i.e.
to select a portfolio.

2 Selection of Shares and Estimation of the Volatility Matrix

The need to select a (possibly large) subset of n shares for inclusion in the portfolio
on the basis of their log returns stems from the fact that the entire set of shares
available on the market is so large that it would be impossible to define a portfolio
a through simultaneous study of all their log returns. It therefore makes sense to
concentrate on the subset of the “best” shares, defined here as those with the greatest
difference between log intrinsic value and log returns. The number n of shares to
be selected is established through application of a criterion (efficient frontier) that
identifies the combination of shares offering the returns with minimum risk for every
fixed n but with the composition varying in terms of the quantity of each share to be
purchased. The first problem to be addressed in the selection of shares is therefore
the calculation of the difference between the log intrinsic value of the share and its
log return. It should be pointed out, however, that this is in any case a problem of
prediction, as the point of interest is the future value of the difference between the
two magnitudes considered. This makes it possible to decide which share to select at
the moment of investment. It is therefore necessary to estimate a model that makes
this prediction possible. A CVAR(p) model is adopted in order to estimate both the
log intrinsic value of the share and its log return. The starting point is the K = 150
series, regarding the log returns Rk,t on the shares, and the average log return of the
market RM,t , t = tk, . . . , T , k = 1, . . . ,K . For each series, the CVAR(p) model is
considered for the random vector yt = [y1,t , y2,t ]′ = [Rk,t ,RM,t ]′ as

�yt = ηt + Πyt−1 + A1�yt−1 + · · · + Ap−1�yt−p+1 + ut (1)

where � indicates the usual difference operator, ηt = η0 + η1 · t , Ai is the 2 × 2
matrix, Π is the matrix of parameters containing information on the cointegration
of the series [5], i = 1, . . . , p − 1, η0, η1,Ai,Π are the unknown coefficients and
ut = [u1,t , u2,t ]′ is the vector of errors such that ut ∼ N(0,Σu). It should be noted
that the CVAR(p) model is chosen to estimate the unknown coefficients of Eq. (1)
because it makes it possible to consider the possible presence of integration or coin-
tegration between the two components of the random vector yt . Note also that when
the series present neither cointegration nor integration, Eq. (1) is not informative and
it becomes necessary to estimate a Vector Autoregressive (VAR) model. The same
procedure is also adopted to estimate the model for log intrinsic value, where use
is made not only of the historical series of log intrinsic value for the period under
examination, but also of the average log intrinsic value of the sector of economic
activity to which the share belongs. Once the two magnitudes have been estimated
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for every share i, all the differences that present positive values of differences and
log return at the same time are also estimated. With the number n of shares to be
selected set initially at 10, the volatility matrix is estimated element by element. In
particular, a two-step procedure is adopted to estimate the variance of the log return
of share i (element i on the main diagonal of the matrix). First, a CVAR(p) model is
estimated in which the historical series considered are the log return of the share i

itself and the log return of the market index [7]. Second, if the ARCH test [5] carried
out on the residuals of the CVAR model estimated in step 1 indicates the presence
of heteroscedasticity, a BEKK model is applied to the same residuals, which makes
it possible to interpret the temporal dynamics of the variances of the log return of
share i [3]. In order to estimate the extra-diagonal elements of the volatility matrix
(covariances between the log returns of two shares i and j ), the same procedure
is used with the difference that the CVAR model is applied to the series of the log
returns of the two shares. Here too, if the ARCH test indicates the presence of het-
eroscedasticity, a BEKK model is estimated. It should be noted that it is possible to
demonstrate that the two-step procedure converges asymptotically on the simulta-
neous estimation of the elements of the matrix [5]. Moreover, since the estimation
of the entire matrix of volatility is obtained asymptotically as a composition of con-
sistent and increasingly efficient estimates [5], it presents the same characteristics.
The size n of the portfolio is increased by means of an iterative procedure until all
the “best” shares are included in the portfolio.

3 Results and Conclusions

The model put forward was applied to the 150 shares of highest value on the Ital-
ian stock market. The maximum number of shares in the portfolio proved to be 25.
Figure 1 top left shows the volatility and the log return obtained by solving the
Markowitz optimization problem for variation of the expected return Rp,T +1 and
the dimension n of the portfolio (n = 10,11, . . . , nmax). The portfolio risk tends
to decrease as n increases [6]. Figure 1 top right shows the efficient frontiers (de-
fined by the part of every curve continuing upward from X) obtained by solving
the Markowitz optimization problem for variation of the expected return Rp,T +1
and the dimension n of the portfolio (n = 10,11, . . . , nmax). The optimal risk from
a risk-averse standpoint corresponds to n = 25, i.e. to the point on the curve fur-
thest to the left in Fig. 1 to right, indicated with the symbol F. The portfolio thus
identified presents an average monthly return of 0.00993, a standard monthly devi-
ation of 0.0630 and a Sharpe index value of 0.15771. Figure 1 bottom presents the
estimates of the elements of the volatility matrix and shows that the risk is mostly
due to the variances of the shares, to which the highest peaks correspond. It is evi-
dent, however, that the values of variance and covariance are comparable for some
subsets of shares. This suggests that it could prove useful, in order to reduce com-
putational complexity, to take covariance into consideration only for specific sub-
groups of shares and variance alone for the others. It therefore becomes necessary
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Fig. 1 Top Left: n evolution. Top Right: Portfolio frontiers simulation. Bottom: Volatility estima-
tion

to develop a criterion, based for example on the Granger principle of causality or
on analysis of cross-correlation [4], in order to identify the groups of shares to be
addressed in a different way.
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