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Preface

This volume1 aims to collect new ideas presented in form of 4-pages papers dedi-
cated to mathematical and statistical methods in actuarial sciences and finance. The
cooperation between mathematicians and statisticians working in insurance and fi-
nance is a very fruitful field and provides interesting scientific products in theoretical
models and practical applications, as well as in the scientific discussion of problems
of national and international interest.

From the theoretical and applicative point of view, the topics covered in the book
are: actuarial models; alternative testing approaches; behavioural finance; cluster-
ing techniques; coherent and no-coherent risk measures; credit-scoring approaches;
data envelopment analysis; dynamic stochastic programming; financial contagion
models; financial ratios; intelligent financial trading systems; mixture normality
approaches; Monte Carlo-based methodologies; multi-criteria methods; nonlinear
parameter estimation techniques; nonlinear threshold models; particle swarm opti-
mization; performance measures; portfolio optimization; pricing methods for struc-
tured and non-structured derivatives; risk management; skewed distribution anal-
ysis; solvency analysis; stochastic actuarial valuation methods; variable selection
models; time series analysis tools.

In the light of the successful cooperation between the above two quantitative
approaches, the Editors of the volume organize the biennial conference on Mathe-
matical and Statistical Methods for Actuarial Sciences and Finance (MAF), born at
the University of Salerno in 2004 and just arrived at its 6th edition this year.

Cira Perna and Marilena SibilloSalerno
April 2014

1Published with the contribution of Dipartimento di Scienze Economiche e Statistiche, Università
degli Studi di Salerno.
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Can Personal Dependency Paths Help
to Estimate Life Expectancy Free
of Dependency?

Irene Albarrán, Pablo Alonso, Ana Arribas-Gil, and Aurea Grané

Abstract The aging of population is perhaps the most important problem that de-
veloped countries must face in the near future. In fact, one of the eight tackling
societal challenges of the European program Horizon 2020 is concerned with it.
Dependency can be seen as a consequence of the process of gradual aging. There-
fore, its prevalence on the population, its intensity and evolution over the course of
a person’s life have relevant economic, political and social implications. From data
base EDAD 2008 the authors constructed a pseudo panel that registers personal
evolution of the dependency scale according to the Spanish legislation and obtained
individual dependency curves. In this work, our aim is to estimate life expectancy
free of dependency using categorical data and the functional information contained
in these trajectories.

Keywords Dependency · Functional data · Life expectancy

1 Introduction

When talking about dependency two fundamental aspects must be considered.
Firstly, the definition itself. Resolution R(98) of the Council of Europe defines de-
pendency as “such state in which people, whom for reason connected to the lack or
loss of physical, mental or intellectual autonomy, require assistance and/or exten-
sive help in order to carry out common everyday actions”. Secondly, the assessment
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of dependency, which is usually solved using specific dependency rating scales that
take into account the disabilities suffered by the person jointly with their intensity.
In Spain, the definition of dependency is that included in article 2 of Act 39/2006,
of 14th December, on the Promotion, Personal Autonomy and care for Dependent
persons and its evaluation is ruled by the Royal Decree 504/2007. The Spanish de-
pendency rating scale goes from 0 to 100 points and it is categorized in four degrees
(non dependant, I-moderate, II-severe, III-major). To acknowledge the entitlement
to the benefits of the System a person must reach at least the moderate degree. Ac-
cording to the dependency rating scale value reached by an individual, the Spanish
legislation establishes a minimum level of protection, which is defined and finan-
cially guaranteed by the General State Administration.

EDAD 2008 is the most recent Survey about Disabilities, Personal Autonomy
and Dependency Situations conducted in Spain by the Spanish National Institute
of Statistics and it is the first Spanish survey that uses the internationally accepted
measures established by the International Classification of Functioning, Disability
and Health. Following the World Health Organization recommendations, the survey
is based on the concept of self perceived disability and, despite its drawbacks, the
main advantage is that it focuses the attention on the daily activities of the individ-
uals and the problems they may have while doing them, with no consideration of
medical matters. According to EDAD 2008, there are more than 4.1 million Spanish
people suffering at least one kind of disability. Although the global prevalence rate
is situated between 8.2 %–8.6 % with a 95 % of confidence, in the case of people
living at home, this rate is lower than that for people living in institutions (8.4 % and
17.7 %, respectively). Disability is related to two main factors: gender and age; until
45 years old, the male prevalence is statistically significant greater than the female
one. After that age, the relative incidence is greater for women. In general terms,
more than 57 % people with this problem are at least 65 years old, being most of
them women.

Using a pseudo panel constructed from EDAD 2008, the main aim of this work is
to estimate life expectancy free of dependency (LEFD), that is, the expected number
of years that a person can live free of this contingency.

2 Methodology

In [1] a pseudo panel that registers personal evolution of the dependency scale ac-
cording to the Spanish legislation was constructed. Using this pseudo panel these
authors obtained functional profiles from the dependent Spanish population finding
different behaviors in the evolution of dependency according to age and sex. These
functional profiles or trajectories reflect the individual evolution across time of the
dependency intensity (quantified by the dependency rating scale).

The standard way to estimate life expectancy is to use Cox regression model to
obtain survival probabilities (see [4]). However, in our context, the event of interest
is not ‘survival’ itself, but ‘staying free of dependency at a given age’. We propose to
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use Cox regression model to obtain those probabilities and the estimation of LEFD is
then straightforward. However, it must be pointed out that EDAD 2008 only contains
records of alive people at 2008, hence the effect of death is ignored. That is, the
estimated staying free of dependency probability at a given age is in fact the staying
free of dependency probability at a given age given that a person is alive at that age.
Then marginal probabilities are obtained by multiplying these estimates by survival
probabilities given by mortality tables for the general population (in absence of
specific mortality tables for dependent population).

We consider quantitative and categorical variables, such as the dependency rating
scale value, sex and disabilities suffered. In fact, the dependency rating scale is of
functional type, since it contains the trajectory of the evolution of dependency from
30 years to the end of the considered interval. However, in order to include this
variable in the model with the other categorical variables, we will transform the
trajectories into quantitative variables, for example, considering their distance to
some given pattern. This pattern is obtained by means of functional tools, such as
time-warping and functional depths, in order to take into account the time variability
present in the dependency trajectories (see [2]).

3 Preliminary Results

To estimate LEFD we consider three different scenarios corresponding to the three
degrees of dependency given by the Spanish legislation (I-moderate, II-severe, III-
major). Indeed, for a non dependent person we calculate three different LEFDs,
which are the expected number of years that a person can live out of each one of
these dependency degrees.

In order to obtain a sample as homogeneous as possible, we include in the analy-
sis people that in 2008 were between 70 and 80 years old, with a dependency rating
scale value of 0 at the age of 30. As mentioned above, the variables included in the
model are sex, the dependency trajectory and several disabilities suffered. In partic-
ular, the considered disabilities are the ability to perform postural changes, personal
hygiene, relieve themselves, conduct normal activities of domestic life, maintain
interpersonal relationships. Regarding the dependency trajectory, we quantify it by
computing the L2-distance from each curve to the deepest one with respect to the
modified band depth (see [5]). In the time warping framework, that is, when a sam-
ple of curves exhibit high temporal variability (or horizontal shifting), which is the
case for dependency trajectories, the modified band deepest curve has been proven
to be a robust estimator of the underlying average pattern (see [3]). In order to cal-
culate the deepest curve of a sample all the curves must be defined in the same time
interval. Therefore, we partition the sample in groups of people of the same age (in
years) and sex obtaining 22 subsamples. In each one of these subsamples we calcu-
late the distance of each curve to the deepest one, yielding a numerical summary for
each one of the trajectories. See Fig. 1 for an example of the deepest curve in one of
the subsamples considered.
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Table 1 AICa for two fitted models. Model A: sex, disabilities suffered and dependency path as
explanatory variables; Model B: sex and disabilities suffered as explanatory variables

Dependency degree Model A Model B Relative difference

I-moderate 6753202 7020290 −4.0 %

II-severe 4029275 4175027 −3.6 %

III-major 1656159 1670890 −0.9 %

aAIC = 2k − 2 ln(L), where k is the number of parameters, and L is the maximized value of the
likelihood

Fig. 1 Dependency paths for
women aged 80 and deepest
curve of the sample in black

A possible way to assess whether the personal dependency curves help to esti-
mate LEFD is to consider two models (with and without the quantitative information
for the dependency paths) for each one of the three scenarios described above. In
Table 1 we compare them with the Akaike Information Criterion, where we can
see that the preferred model in all the scenarios is the one including the depen-
dency trajectories. These preliminary results lead us to conclude that the historical
personal information contained in the dependency path, and not only the current
dependency status of a person, is relevant to estimate his/her future dependency
situation.
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Evaluation of Volatility Forecasts in a VaR
Framework

Alessandra Amendola and Vincenzo Candila

Abstract Many methods can be considered to select which volatility model has a
better forecast accuracy. In this work a loss function approach in a Value at Risk
(VaR) framework is chosen. By using high-frequency data it is possible to achieve
a consistent estimate of the VaR bootstrapping the intraday increments of an asset.
The VaR estimate is used to find a threshold discriminating low from high loss
function values. The analysis concerns the high-frequency data of a stock listed on
the New York Stock Exchange.

Keywords Volatility · Value at Risk · Loss function · Bootstrap

1 Introduction

The evaluation of volatility forecasts produced by a set of competing models is gen-
erally carried out through a statistical (using a MSE, RMSE functions, for instance)
or an economic approach. The economic approach evaluates the volatility predic-
tions indirectly by using utility functions [3] or other risk measures like the Value
at Risk [4]. The evaluation of volatility predictions through the Value at Risk (VaR)
measures concerns some tests—like the Unconditional and Conditional Coverage
(CC) tests [2]—about the occurrence, called violation, that the portfolio’s loss is
greater than the VaR. Unfortunately these tests suffer from low statistical power, as
highlighted in [5].

The aim of this work is to investigate the opportunity to use the loss functions in
a VaR framework in order to evaluate the volatility predictions of a set of competing
models. Following [1], bootstrapping the intraday increments of a generic asset al-
lows to have a consistent estimate of any characteristics of that asset’s daily return.
Hence the VaR measure is obtained as a quantile of the estimated distribution of
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the daily return. Then the performances of seven volatility models belonging to the
family of the GARCH models are compared through two loss functions, of which
one is a new proposed one.

The work is organized as follows. Section 2 presents the bootstrap method used
to estimate the daily VaR measure. In Sect. 3 the two loss functions in a VaR frame-
work are illustrated. Data description and the results of the volatility evaluation are
in Sect. 4. Section 5 concludes.

2 Bootstrapping the Intraday Increments

Let χt,N = {qt,1, . . . , qt,N } be a sequence of N intraday increments for a generic
day t and a generic asset, such that qt,n = log(Pt,n) − log(Pt,n−1), with Pt,n de-
noting the observed intraday price. The open-to-close daily return rt,N is given by
rt,N =∑N

n=2 qt,n. Because of the dependence in the sequence χt,N , the Stationary
Bootstrap (SB) of [7] is used. In the SB, for each day t , B re-sampled intraday se-
quences are calculated, each of lengthN . A re-sampled intraday sequence is formed
by N sampled blocks, whose average block length relies on the dependence exhib-
ited within χt,N . As [1], we use the procedure described in [6] in order to estimate
the average block length. Once the bootstrapped sequence is obtained, the resulting
summation represents a re-sampled daily return, independent of the original one, but
generated by the same distribution, as {N,B} → ∞. Hence any moment or quantile
of the original return can be now estimated by means of this B i.i.d. sequence. We
focus on V̂aRt , a consistent estimate of the 5 % VaR for the day t .

3 Loss Function in a VaR Framework

A loss function (LF) compares rt,N to the VaR measure. In this work we consider
two loss functions, illustrated in Table 1. The first LF due to [5] is called Magni-
tude loss function (MLF). The second is the new proposed Asymmetric loss func-
tion (ALF), that penalizes more the models with an actual number of violations (α̂)
greater than the expected one (α0). For the ALF, P is the penalizing quantity that
overpenalizes the model if α̂ > α0. The average of the LS is called numerical score
(NS) and it is denoted by NSM and NSA for the MLF and the ALF, respectively.
Once the consistent estimate of the VaR has been obtained, it is possible to find
a threshold that discriminates between low from high NS. The procedure is again
based on the block bootstrap. The threshold is an empirical quantile of the distri-
bution of the NS, when V̂aR is used. If a NS of a volatility model lies above the
threshold, that model is considered rejected.
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Table 1 Loss functions

Magnitude loss function (MLF) Asymmetric loss function (ALF)

LossM,t =
{

1 + (rt − VaRt )2 if rt ≤ VaRt

0 if rt > VaRt
LossA,t =

{
1 + P · (rt − VaRt )2 if rt ≤ VaRt

0 if rt > VaRt

NSM = T −1∑T
t=1 LossM,t NSA = T −1∑T

t=1 LossA,t

Table 2 Competing models

M1 M2 M3 M4 M5 M6 M7

Methoda G(1,1) G(1,1) G(1,1) RM GJR(1,1) GJR(1,1) GJR(1,1)

zt ∼b N(0,1) t (v) sk − t (v, ξ) – N(0,1) t (v) sk − t (v, ξ)

aG(1,1) stands for GARCH(1,1), RM for Riskmetrics
bt (v) and sk − t (v, ξ) represent t and skewed-t distributions of the innovation vector zt , such that
rt = ztht

4 Empirical Analysis

The empirical analysis concerns the evaluation of the volatility predictions for a set
of competing models, illustrated in Table 2.

The dataset1 consists of the Capital One Financial Corporation one-minute trade
prices. Once forecasted the conditional standard deviation, denoted by ĥt,m, with
m= 1, . . . ,7, we evaluate the performance looking at the MSE2 and the exceedance
of the threshold. The results of the comparison are showed in Table 3.3

If we only look at the MSE (statistical approach), the best model is M6, even
though it exhibits more violations than expected, i.e. almost 6 % against the 5 %.
Rows 3–4 show the performances of the models when the MLF is used. M7 is
rejected because its NS lies above the threshold. Row 4 represents the ratio between
the NS of each model and the NS when V̂aR is used. The closer the ratio is to one, the
better that model is. And the MLF awards M3. Unfortunately, there are too many
models below the threshold. The situation becomes clearer if the ALF is used, as
showed in rows 5–6. For the proposed LF, all the GJR models have NS above the
threshold. The choice shrinks to models 1–4 and looking at the ratio (row 6), also
the ALF awards M3. Finally, we argue that for the period considered and our mixed

1The data have been obtained from Tick Data, which is a provider of historical intraday market
data. The sample period starts on April 8, 1997 and ends on December 31, 2003 (1695 trading
days).
2The MSE is computed considering the distance between each ĥt,m and the realized volatility,
obtained summing the intraday returns at 5 minutes frequency and then it is multiplied by 1000.
3For brevity, we omit the results of the CC test because the null hypothesis—correct number of
violations and independence—has been always rejected.
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Table 3 Forecasts comparison

M1 M2 M3 M4 M5 M6 M7

MSE 0.1523 0.1464 0.1484 0.1411 0.1346 0.1299 0.1351

α̂a 0.0457 0.0533 0.0526 0.0484 0.0567 0.0595 0.0630

NSM < TRM b Yes Yes Yes Yes Yes Yes No

NSM/NSM c 0.8697 1.0145 1.0013 0.9224 1.0802 1.1329 1.1986

NSA < TRA Yes Yes Yes Yes No No No

NSA/NSA 0.8724 1.0197 1.0061 0.9258 1.0865 1.1409 1.2083

aα̂m is the frequency of violations, for each model m
bNSM < TR is Yes if the numerical score of a model lies below the threshold
cNSM/NS is the ratio between the numerical score of a model and the numerical score obtained
with V̂aR

approach M3, a GARCH(1,1) model with zt ∼ sk − t (v, ξ), is the best volatility
model.

5 Conclusions

The evaluation of volatility forecasts by means of statistical or economic approaches
may lead to ambiguous conclusions. We aimed to investigate the opportunity to
use the loss function in a VaR framework. To do this, a consistent estimate of the
VaR measures has been provided by using the stationary bootstrap. Then these VaR
measures have been used to find the threshold discriminating low from high loss
function values. The analysis has been conducted with two loss functions, of which
one is new. It has emerged that this method helps the model selection in situations
in which the traditional approaches do not clearly determine the best model.
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Optimal Cut-Off Points for Multiple Causes
of Business Failure Models

Alessandra Amendola and Marialuisa Restaino

Abstract In studies involving bankruptcy prediction models, since the attention is
focused on the classification of firms into groups according to their financial status
and the prediction of the status for new firms, optimal cutoff points have to be cho-
sen. Some methods have been developed for two-group classification. Until now,
there are few references on how to determine optimal thresholds when the groups
are more than two. Here, a method based on the optimization of both correct classi-
fication rate and expected cost misclassification (ECM) is proposed for determining
optimal cutoff points when there are multiple causes of business failure. The pro-
posed procedure has been tested on a real data set.

Keywords Optimal cut-off points · ECM · k× k confusion table · Business failure

1 Introduction

Over the last decades the research studies on financial distress are essentially con-
cerned with three aspects: the choice of the best model for identifying the failure
process; the selection of the best set of covariates for classifying firms according to
their status and their contribution to the performance of the model; and the evalu-
ation of models’ prediction power and ability. In this paper our attention has been
focused on the third aspect.

The bankruptcy prediction typically involves the classification of firms in a group
according to their financial status (bankruptcy, liquidation, merge, and so on). There-
fore the accuracy of the classification can be evaluated by means of different mea-
sures, such as the correct classification rate, Type I error (or FP rate) and Type II
error (or FN rate) [5, 6]. In order to compute these measures, as a prediction model
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Table 1 Confusion Matrix for three groups

Actual Class Class 0 Class 1 Class 2

Predicted class Class 0 TP(0) E(0|1) E(0|2) C0
a

Class 1 E(1|0) TP(1) E(1|2) C1
a

Class 2 E(2|0) E(2|1) TP(2) C2
a

T0
b T1

b T2
b T0 + T1 + T2

a(C0,C1,C2) are the units that are predicted to be in class 0, 1, 2, respectively.
b(T0, T1, T2) are the units for which the actual class is 0, 1, 2, respectively.

attributes a score to each firm in the data set, it is essential to determine optimal cut-
off points, used for discriminating firms according to their status and for classifying
firms into groups/classes.

For the binary data, some methods have been used, such as the minimization of
the total number of misclassifications, the intersection of the distributions of the two
groups, the minimization of the Type I error, and so on. The question is still open
when the classes are more than two, because in this case more than one optimal
cut-off point is needed.

The aim of this paper is to select optimal cut-off points when there are more than
two groups and compute the accuracy measures, for evaluating the classification and
prediction ability of a model.

2 Accuracy Measures and Optimal Cut-Offs

For evaluating the performance of an algorithm and/or a classifier and the quality
of classification, different measures can be computed from a confusion matrix (also
known as classification table) which records correctly and incorrectly cases for each
class. The binary classification matrix can be extended to a multiple case when the
groups are more than two. Since it becomes larger and larger at increasing the num-
ber of classes, the case of three groups has been considered for sake of simplicity.

Based on the Table 1, some accuracy measures can be computed, such as:

1. Accuracy: Acc = TP(0)+TP(1)+TP(2)
T0+T1+T2

;

2. FP rate (Type I error): FPrate = E(0|1)+E(0|2)
T1+T2

;

3. FN rate (Type II error): FNrate = E(1|0)+E(2|0)
T0

.

In order to estimate these measures, in presence of two groups, one cut-off point
is needed, while for the three classes two cut-off points have to be chosen: one
for distinguishing between class 0 and class 1 and one for distinguishing between
class 1 and class 2. Starting from the equation available for the binary data, the
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Fig. 1 Range of risk scores for each event and the grey zones

minimization of the Expected Cost of Misclassifications (ECM) for the three groups
is given by:

ECM = P0C1,2|0
n0

N0
+ P1C0,2|1

n1

N1
+ P2C0,1|2

n2

N2
(1)

where (P0,P1,P2) are the prior probabilities of group 0, 1 and 2, respectively;
(n0, n1, n2) are the number of units misclassified for the group 0, 1 and 2, respec-
tively; (N0,N1,N2) are the sample sizes for the three groups; C1,2|0 is the cost of
misclassifying an observation belonging to group 0 into groups 1 or 2; C0,2|1 is the
cost of misclassifying an observation belonging to group 1 into groups 0 or 2; C0,1|2
is the cost of misclassifying an observation belonging to group 2 into groups 0 or 1.

3 Empirical Results

The financial data set considered here, drawn from Amadeus database of Bureau
van Dijk, consists of building Italian firms that left the market between 2004 and
2010 for two main causes: bankruptcy and liquidation. The reference group is given
by active firms. Starting from the financial statements of each firm included in the
sample for a total of 38,028 balance sheets, we compute nv = 16 potential predic-
tors, chosen among the most relevant in financial distress literature [2, 4]. Finally,
the sample is divided into two parts: in-sample set, for evaluating the classification
ability of a model, and out-of-sample, in order to estimate the prediction capability.

The model considered in the paper is the competing risks model, an extension
of the mortality model for survival data. It is based on one transient state (alive
state) and a certain number of absorbing states, corresponding to market exit from
different causes. Thus, all transitions are from the state alive (for details, see [3]).

Since our aim is to determine threshold points which discriminate between the
three groups (active, bankruptcy, liquidation), first of all we looked at the minimum
and maximum of the risk score for each event and we noted that there are two grey
zones in sense of [1] (Fig. 1). In order to classify the firms into three groups, we have
to choose two cut-off points, according to two criteria: the accuracy is maximized
and the FN rate is minimized; the ECM is minimized.

For this purpose, we divided the two grey zones into several subintervals, and for
each one, the three measures (accuracy, FN rate and ECM) are computed. Looking
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Fig. 2 The chosen cut-off points of risk scores

Table 2 Accuracy measures for the chosen cut-off points

Cut-off Grey
Zone1

Cut-off Grey
Zone2

Accuracy FN rate ECM Accuracy FN rate ECM

In-sample Out-of-sample

2.06 3.13 0.98782 0.00000 0.00052 0.99893 0.00000 0.00000

at the results,1 we noted that the accuracy is increased at approaching the maximum
of the both zones. Then, fixed the value of the second zone, the FN rate is always
zero except when the maximum of the first grey area is reached. This result is stable
independently of the values of the other zone. Finally, again fixed the values of the
second range, and looking at the values of ECM, we observed that it is decreased
at approaching the maximum of the first area. Now, by varying the values of the
second zone, the ECM is increased when the maximum is reached.

Therefore the cut-off points that respect all the criteria are: 2.05 for the first grey
zone and 3.13 for the second one (Fig. 2).

After choosing the two thresholds, we computed the accuracy measures for in-
sample and out-of-sample (Table 2) and it can be observed that the performance of
the model is good in terms of both classification ability and prediction capability.

In summary, in this paper we proposed some criteria for identifying optimal cut-
off points in presence of three groups and we compared the performance of these
methods. This approach can be easily extended to the case of k groups.
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Maximum Empirical Likelihood Inference
for Outliers in Autoregressive Time Series

Roberto Baragona, Francesco Battaglia, and Domenico Cucina

Abstract Outliers in time series are usually distinguished in additive, innovation,
and transient and permanent change. An approach based on empirical likelihood is
presented for estimating outliers of the four types in a linear autoregressive time
series. Theoretical results are illustrated along with hints for future research.

Keywords Additive and innovation outlier · Level change · Confidence intervals

1 Introduction

Classification of outliers in time series in the four groups of additive (AO), inno-
vation (IO), transient (TC) and permanent (LC) level change has been introduced
by [9].

Let y = (y1, y2, . . . , yn)
′ be the observed time series and

yt = ct + zt (1)

the basic outlier model, where ct is a deterministic function that represents outliers,
and zt is the unobserved outlier free time series. Let zt follow an autoregressive
process Φ(B)zt = εt where Φ(B) = 1 − φ1B − φ2B

2 · · · − φpB
p is the autore-

gressive polynomial and {εt } is a sequence of independent identically distributed
random variables with mean zero and finite variance. An AO at time q is defined
by letting in (1) ct = ωI [t = q] where I [.] is the indicator function. An IO at time
q is obtained by letting ct =Φ(B)−1ωI [t = q]. Level changes are defined, the LC
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by assuming in (1) ct = 1
1−BωI [t = q], the TC by letting ct = 1

1−δB ωI [t = q] for
some δ ∈ (0,1).

The usual steps of outlier treatment are a detection step, where candidate outliers
are located, a test step where the null hypothesis of no outliers is checked against
the alternative that the located observation is an outlying one, and a step for estimat-
ing the outlier size, in view of using such estimate for time series adjustment and
correction. Common approaches refer for instance to the likelihood ratio test ([9]),
methods based on influence ([7]), genetic algorithms ([1]).

Empirical likelihood (EL) methods ([6]) allow maximum likelihood hypothesis
testing in the framework of a distribution free model specification for outliers. Orig-
inally derived for building confidence intervals for the mean of a random sample
without assumptions on the form of the probability distribution, the EL methods
have been extended to linear models and time series (e.g. [3, 4]), and recently to
breaks in regression models ([2]).

The maximum EL ratio test is generally used in applications when inference on a
firm theoretical ground is needed but there is not enough information for assuming
a family of probability distributions that may fit well the data. In the same view
the maximum EL framework is suggested here for outlier size inference without
assumptions on some underlying probability distribution.

The rest of the paper is organized as follows. Section 2 introduces the EL meth-
ods, Sect. 3 shows their applications for inference about outliers in time series, in
Sect. 4 conclusions are drawn.

2 Empirical Likelihood Methods

Let (x1, x2, . . . , xn) denote an observed random sample from the random variable x
with E(x)= μ and finite variance. That sample may be thought of as drawn from a
discrete probability distribution concentrated only at the values x1, x2, . . . , xn with
probabilities pi (pi > 0,

∑
pi = 1), called the empirical distribution.

In this case the probability of getting exactly that sample would be p1p2 . . . pn.
The mean of that distribution is μ =∑i pixi , therefore the possible discrete dis-
tributions generating the observed sample, given μ, are the set {(p1,p2, . . . , pn) :
pi > 0,

∑
pi = 1,

∑
pi(xi −μ)= 0} and the largest probability to get the observed

sample is

EL(μ)= max
p1,...,pn

{
n∏

i=1

pi : pi > 0,
n∑

i=1

pi = 1,
n∑

i=1

pi(xi −μ)= 0

}

. (2)

This is called the EL profile for μ. The maximum is reached for μ = x̄ =∑xi/n

and equals n−n, corresponding to pi = 1/n, i = 1, . . . , n. Thus, x̄ is the maximum
EL estimator (MELE) of μ.

This approach may be generalized by using the estimating equations (e.g. [6, 8])
to replace the constraint E(x − μ)= 0 in Eq. (2). Let θ = (θ1, . . . , θp)

′ denote the
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parameter vector to be estimated using the observed data x = (x1, x2, . . . , xn)
′. The

relationship between the parameters θ and the data may be summarized by p esti-
mating functions gk(x, θ) chosen so that the p estimating equations E{gk(x, θ)} =
0, k = 1, . . . , p determine θ uniquely. The maximized EL ratio (ELR) profile is ob-
tained by dividing (2) by its unconstrained maximum n−n and replacing xi −μ with
{g1(xi, θ), . . . , gp(xi, θ)}.

Let �(θ) = −2 log{ELR(θ)} be the maximized empirical log likelihood ratio
profile and assume that θ is the true parameter value, i.e. the unique solution of
E{gk(x, θ)} = 0, k = 1,2, . . . , p. Then it may be shown ([5, 8]) that under some
regularity conditions, as n→ ∞, �(θ) converges in distribution to a χ2

p .

3 Empirical Likelihood for Outlier Estimation

Let the outlier be located at time q and be ω its size. Then Eq. (1) may be rewritten
as

yt =
p∑

j=1

(yt−j − ct−jω)φj + ctω+ εt . (3)

The parameter vector is θ = (φ1, . . . , φp,ω)
′ and its length is p + 1. The con-

sideration of ω as an additional parameter makes model (3) a non linear time series
model of the form yt = f (xt , θ)+ εt , where xt = (yt−1, yt−2, . . . , yt−p).

A MELE may be obtained along the guidelines outlined in Sect. 2. The estimating
equations may be taken equal the p + 1 derivatives with respect to the parameters
of the residual sum of squares

∑
t [yt − f (xt , θ)]2:

gk(xt , θ)= (ct−kω− yt−k)εt (θ), k = 1, . . . , p,

gp+1(xt , θ)=
(

p∑

j=1

ct−jφj − ct

)

εt (θ)

where εt (θ) = yt − ctω −∑p

j=1(yt−j − ct−jω)φj . Let θ̂ = (φ̂1, . . . , φ̂p, ω̂)
′. The

MELE estimate is defined as

θ̂ = arg max
θ

{

max
p1,...,pn

(
n∏

i=1

pi : pi > 0,
n∑

i=1

pi = 1,
n∑

i=1

pi
(
gk(xi, θ)

)= 0

)}

and therefore coincides with the least squares estimate. Since �(θ)→ χ2
p+1 in dis-

tribution when θ is the true value, confidence regions for the parameter θ may be
obtained as:

{
θ : �(θ) < χ2

p+1,1−α
}

where χ2
p+1,1−α is the (1 − α) quantile of the chi square distribution with p + 1

degrees of freedom. Confidence intervals for the outlier size may also be obtained
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based on Corollary 5 of [8]. Let ω be the true value of the outlier size, and denote
by φ̃(ω) the MELE of the autoregressive parameters given ω (simply obtained from∑

t gk(xt , φ1, . . . , φp,ω)= 0, k = 1, . . . , p for ω fixed); then �(φ̃(ω),ω) converges
to a χ2

1 distribution. It suggests the following confidence interval for ω:

{
ω : �(φ̃(ω),ω)< χ2

1,1−α
}
.

4 Conclusions

Empirical likelihood methods provide a convenient framework for developing con-
fidence regions for outliers in time series. Likewise, tests for the presence of outliers
in time series may be built. Specification of a probability distribution for the data is
not needed but hypothesis testing develops along the same guidelines as for para-
metric likelihood. However, care is needed because not all values of the constants
{ct } ensure conditions for convergence of �(θ) to a chi square distribution. Future re-
search may be concerned with extension to other outlier types, patches and variance
change for instance, and to a wider class of models such as general autoregressive
moving average models and non linear autoregressive models.
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The Role of Fund Size and Returns to Scale
in the Performance of Mutual Funds

Antonella Basso and Stefania Funari

Abstract In this contribution we investigate the effects of the size of mutual funds
on their performance by using a Data Envelopment Analysis (DEA) approach. We
discuss the role of fund size in the performance evaluation and wonder whether it
is appropriate to include size information among the input/output variables of the
DEA models. Moreover, we analyze the nature of returns to scale in mutual fund
performance and investigate whether returns to scale are constant, increasing or
decreasing in a set of European mutual funds.

Keywords Mutual fund performance evaluation · DEA · Size · Returns to scale

1 Introduction

This contribution addresses two issues that can be of interest when we evaluate the
performance of mutual funds using a Data Envelopment Analysis (DEA) methodol-
ogy, a nonparametric approach to efficiency analysis that in the last years have been
increasingly used also to evaluate the performance of mutual funds.

First of all, we tackle the problem of investigating the effects of the size of mutual
funds on their performance. This issue is particularly relevant in the case of variable
returns to scale (VRS) models, but it has been considered only in a small number
of papers in the DEA literature (see for instance [3, 4]). First, we discuss the role
of fund size in the performance evaluation and wonder whether it is appropriate
to include size information among the input/output variables of the DEA models.
The question of the utility of including size in the performance evaluation arises
especially when the analysis is focused on the point of view of financial investors.
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Indeed, investors would like to maximize the financial results without being exposed
to high risk levels, and may not care much about fund size.

A second issue concerns the nature of returns to scale in mutual fund perfor-
mance. By considering a set of European mutual funds, we investigate whether re-
turns to scale are constant, increasing or decreasing. The measure of fund efficiency
is computed by using a suitable DEA model that has been recently proposed in the
literature to assess fund performance ([2]); this model allows to take into considera-
tion the main elements of an investment in mutual funds and is applicable also when
the technology exhibits variable returns to scale (VRS).

In the empirical analysis we investigate the presence of economies or disec-
onomies of scale and investigate if size causes any significant effects on fund per-
formance.

2 What About Fund Size?

From the point of view of a financial investor, two funds with identical features in
terms of mean return, risk level, initial and exit fees can be considered as equivalent:
if the values of these variables are identical, the two funds are perceived as equiv-
alent by investors. This does not depend on the fund size in terms of total market
value. Of course, if the aim were to evaluate the skill of fund managers, the changes
in the size of the funds might well be relevant.

On the other hand, if we include size among the input variables, two funds with
identical values of mean return, risk level and initial and exit fees but different size
could have different performance scores. In this regard, let us consider the instance
illustrated in Table 1, in which funds 11th to 20th have the same values of mean
return, risk level, initial and exit fees and ethical level as funds 11–20, but they have
three times the size.

Hence, from the investors’ point of view, fund 1 is judged equivalent to fund 11,
fund 2 is judged equivalent to fund 12, and so on.

Let us consider the fund size Sj and the beta coefficient βj as inputs, and as out-
put the following measure of the fund profitability:MSj = Sj (1−cIj )(1+Rj )3(1−
cEj ) (the final value after three years, net of initial (cIj ) and exit (cEj ) fees, com-
puted on the fund size according to the annual rate of return Rj ). The last column of
table 1 shows the DEA score obtained with a BCC (named after Banker, Charnes,
and Cooper [1]) model exhibiting VRS. As can be seen, the DEA score of fund j is
not always the same as that of fund j + 10 (for example the score of fund 3 is not
the same as that of fund 13). This shows that the performance scores computed in
this way exhibit a bias. For this reason, even if in the DEA literature we can find a
few contributions that take size into account (see for example [5] and [6]), we deem
correct not to consider it and do not insert fund size among the inputs of the DEA
models.
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Table 1 Data of the instance on the effect of size on the fund performance

Fund β S cI cE R MS DEA score

Fund 1 1.60 5 0.050 0.00 0.06 5.657 1.000

Fund 2 2.00 12 0.040 0.00 0.08 14.512 1.000

Fund 3 1.20 34 0.030 0.01 0.04 36.727 0.978

Fund 4 0.80 20 0.030 0.00 −0.01 18.824 1.000

Fund 5 0.80 21 0.025 0.00 0.02 21.728 1.000

Fund 6 0.90 40 0.030 0.00 −0.08 30.213 0.711

Fund 7 0.92 22 0.000 0.03 −0.03 19.476 0.835

Fund 8 1.25 15 0.020 0.01 −0.01 14.121 0.871

Fund 9 1.10 5 0.025 0.00 −0.10 3.554 1.000

Fund 10 1.00 13 0.020 0.00 −0.04 11.272 0.877

Fund 11 1.60 15 0.050 0.00 0.06 16.972 0.974

Fund 12 2.00 36 0.040 0.00 0.08 43.536 1.000

Fund 13 1.20 102 0.030 0.01 0.04 110.181 1.000

Fund 14 0.80 60 0.030 0.00 −0.01 56.471 0.910

Fund 15 0.80 63 0.025 0.00 0.02 65.185 1.000

Fund 16 0.90 120 0.030 0.00 −0.08 90.639 1.000

Fund 17 0.92 66 0.000 0.03 −0.03 58.429 0.839

Fund 18 1.25 45 0.020 0.01 −0.01 42.362 0.855

Fund 19 1.10 15 0.025 0.00 −0.10 10.662 0.679

Fund 20 1.00 39 0.020 0.00 −0.04 33.815 0.807

3 What About Returns to Scale?

In order to study returns to scale, we apply the DEA-V model proposed in [2],
that considers the most significant variables for an investor with a well diversified
portfolio and can be used even in the presence of negative mean returns. This is an
output oriented BCC model with VRS and its dual version can be written as follows:

max z0 + εs+1 + εs−1 + εs−2 (1)

s.t. Moz0 −
n∑

j=1

Mjλj + s+1 = 0 (2)

n∑

j=1

Kjλj + s−1 =Ko (3)

n∑

j=1

βjλj + s−2 = βo (4)
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n∑

j=1

λj = 1 (5)

λj ≥ 0 j = 1,2, . . . , n (6)

s+1 , s
−
1 , s

−
2 ≥ 0 (7)

where Kj = 1/(1 − cIj ) is the capital invested in fund j , net of the initial fees,
Mj = (1 +Rj )

3(1 − cEj ) is the final value of the investment net of the exit fee; z0,
λj (j = 1,2, . . . , n), s+1 , s−1 , s−2 are the dual variables associated to the constraints
of the linear programming problem which is the primal of problem (1)–(7), ε is a
non-Archimedean constant and o denotes the fund which is being evaluated.

We use the same database of European mutual funds presented in [2] (279 funds
in the period June 2006–June 2009). Interestingly, the results indicate that half of
the efficient funds exhibits constant returns to scale, while for the funds with VRS
the returns to scale are increasing. Moreover, for the inefficient funds, if we consider
the projection on the efficient frontier, the returns to scale are constant in 47 % of
cases and increasing in 53 %.

4 Any Empirically Verifiable Effect of Size?

In order to see if there is an effect of fund size on performance, we have also tried
to investigate if there is a significant influence of the fund size on the DEA perfor-
mance score on the set of European funds analyzed in Sect. 3; to this aim we use a
method similar to the one used by [3]. The fund size is measured by the total market
value (expressed in millions of euro), and we compute the correlation coefficient
between the fund size and the DEA performance scores, as well as its statistical
significance. The performance scores are computed with model (1)–(7), while we
consider fund size as an external variable. This choice seems natural, since we have
seen in Sect. 2 that the direct inclusion of size among the variables of the model
may lead to distorted results when we adopt the point of view of investors. Notice
that also other contributions, such as [4], study the effects of scale on mutual funds
performance by considering the funds size as external-environmental variable, not
directly included in the DEA model.

The results of the investigation carried out indicate that the correlation coefficient
between the fund size and the DEA performance scores is low and is not statistically
different from 0 for all usual significance levels, so that there seems to be no signif-
icant correlation between size and performance. This conclusion is similar to that
reached in [3] and supports the choice of omitting the fund size in the DEA models.
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A Robustness Analysis of Least-Squares Monte
Carlo for R&D Real Options Valuation

Marta Biancardi and Giovanni Villani

Abstract In this paper we study the robustness of Least Squares Monte Carlo
(LSM) in valuing R&D investment opportunities. As it is well known, R&D projects
are characterized by sequential investments and therefore they can be considered as
compound option involving a set of interacting American-type options. The basic
Monte Carlo simulation takes a long time and it is computationally intensive and
inefficient.

In this context, LSM method is a powerful and flexible tool for capital budgeting
decisions and for valuing R&D investments. In particular way, stress testing dif-
ferent basis functions, we show the major technical advantages as reduction of the
execution time and improvement in the simulation on the R&D projects valuation.

Keywords Least-squares Monte Carlo · R&D real options · Robustness analysis

1 Introduction

Option pricing theory has been used successfully in practice to value firm’s invest-
ment opportunities. In real options, the options involve real assets as opposed to fi-
nancial ones. To have a real option means to have the possibility for a certain period
to either choose to realize an investment or to delay it, waiting better information.
In particular, the R&D projects have received great attention in recent years, be-
cause these projects are similar to the purchase of an option on a future investments.
An R&D investment usually involves several phases, in which the start of a phase
depends on the success of the preceding phase. Therefore, the R&D investments
can be considered as compound options. Moreover, in order to value the managerial
flexibility to realize an investment before the maturity date, most of R&D invest-
ments are structured as compound American options. In this context, Monte Carlo
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simulation, and in particular way the Least-Squares Monte Carlo (LSM) approach
proposed by [3], is an attractive tool to solve complex real options models, as it is
witnessed in [2] and [5].

The focus of our paper is to study the robustness of LSM in valuing R&D in-
vestment opportunities. In particular way, stress testing different basis functions,
we show the major technical advantages as reduction of the execution time and im-
provement in the simulation on the R&D projects valuation.

2 The Basic Model

In this model, we assume a two-stage R&D investment which structure is the fol-
lowing:

• R is the Research investment spent at initial time t0 = 0;
• IT is the Investment Technology to research innovations payed at time t1. We

further suppose that IT = qD is a proportion q of asset D, so it follows the same
stochastic process of D;

• D is the Development investment that the firm needs to invest to receive the R&D
project’s value. We assume that D can be realized between t1 and T ;

• V is the R&D project value.

Equations (1), (2) and (3) describe the evolutions of assets V and D:

dV

V
= (μv − δv)dt + σvdZ

v
t (1)

dD

D
= (μd − δd)dt + σddZ

d
t (2)

cov

(
dV

V
,
dD

D

)

= ρvdσvσd dt. (3)

In particular way, investing R at time t0, the firm obtains a first investment oppor-
tunity that we can be value as a Compound American Exchange Option (CAEO)
denoted by C(Sk, IT, t1). This option allows to realize the Investment Technology
IT at time t1 and to obtain, as underlying asset, the option to realize the market
launch; let denote by Sk(V,D,T − t1) this option value at time t1 with maturity
date T − t1 and exercisable k times. In detail, during the market launch, the firm has
got a second investment opportunity to investD between t1 and T and to receive the
R&D project value V . In particular way, using the LSM model, the firm must de-
cide at any discrete time τk = t1 + k�t , for k = 1,2, . . . , h with τh = t1 +h�t = T ,
whether to invest D or to wait, and so to delay the decision at next time. In this
way we capture the manager flexibility to invest D before the maturity T and so to
realize the R&D cash flows.

After some manipulation, Eq. (4) describes the evolution of asset P = V
D

under
the risk-neutral probability measure Q̃:

P(t)= P0 exp

{(

δd − δv − σ 2

2

)

t + σZp(t)

}

(4)
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Table 1 Input values for R&D valuation

Project I II III IV

R&D Project Value V0 250 000 210 000 750 000 410 000

Development Cost D0 140 000 200 000 950 000 310 000

Investment Technology IT0 70 000 120 000 171 000 46 500

Research Investment R 50 000 40 000 35 000 100 000

Exchange Comp. ratio q 0.50 0.60 0.18 0.15

Dividend-Yield of V δv 0.20 0.15 0.15 0.15

Dividend-Yield of D δd 0.05 0.05 0 0

Time to Maturity t1 1 year 1 year 2 year 3 year

Time to Maturity T 2 year 3 year 5 year 7 year

Correlation ρvd 0.38 0.26 0.08 0.12

Volatility of V σv 0.83 0.64 0.54 0.88

Volatility of D σd 0.32 0.41 0.15 0.31

where σ =
√
σ 2
v + σ 2

d − 2σvσdρvd and Zp is a geometric Brownian motion un-

der Q̃. The value of CAEO can be determined as the expected value of discounted
cash-flows:

C(Sk, IT, t1)=D0e
−δd t1EQ̃

[
max
(
Sk(Pt1 ,1, T − t1)− q,0

)]
.

The main contribution of LSM method is to determine the expected continuation
values by regressing the subsequent discounted cash flows on a set of basis func-
tions of current state variables. Unlike our previous paper (see [5]) , we show the
effect on CAEO prices of a change in the type or the number of basis functions.
As described in [1] and [4], the common choice of basis functions are the weighted
Power, Laguerre, Hermite, Legendre, Chebyshev, Gegenbauer and Jacobi polyno-
mials.

3 Expected Numerical Results on the Robustness of LSM

For complex options, such as the CAEO, the choice of basis functions is not clear,
since we have to combine polynomials with other functions. The choice of poly-
nomial family and the number of polynomials can produce results incorrect about
the estimation of the continuation value of the option and so very inaccurate option
value estimation. Table 1 summarizes the input parameters about four R&D invest-
ments that we are going to consider. We can observe that, as R&D present a high
uncertainty about their results, we assume that σv changes between 0.54 and 0.88.

For the CAEO option, following an early analysis, we find that the type and
number of basis functions can affect both option prices and the computation time
and, therefore, the choice among several R&D projects. An early test shows that, for
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the CAEO pricing, the accuracy improvement stops at 5 polynomials. The Standard
Error εn = σ̂

n
is a measure of simulation accuracy and it is estimated as the realised

standard deviation of simulations divided by the square root of simulations. We
assume that the number of paths is m = 20 000, n = 10 000 with x = 20 steps for
year.

Moreover, the accuracy of simulation, and so the choice of basis function, is
strong affected when the R&D projects are characterized by high volatility (such
as Projects I and IV) and high time maturity (such Projects III and IV). In order to
decrease the standard error it is necessary to increasing the number of paths, and
so the computation time, or by using variance reduction procedures, such as the
antithetic variates method.

Another result underlines that, when time is relevant, the Powers polynomial
is one the fastest to compute. To give an idea of CFU computation time, it takes
about three hours for basic MC and two hours for LSM using the three weighted
Powers polynomial. So, from an early test, the results on robustness show that it is
possible to increase the accuracy of LSM option valuation method without a major
computational costs.
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The Common Pool Problem
of Intergovernmental Interactions
and Fiscal Discipline: A Stackelberg Approach

Giovanna Bimonte and Pietro Spennati

Abstract In common pool models fiscal outcomes are determined by the decision-
making rule that is used to aggregate conflicting interests into a single budget and
they can affect spending bias.

This paper analyses a model in which the minister of finance internalizes the
common pool budget’s externality. From an institutional point of view, this assump-
tion is realistic because he takes in account the budget equilibrium. Formally, this is
reflected in the assumption that the minister of finance maximizes à la Stackelberg
his utility function. In Stackelberg equilibrium, leader’s expenditure choice is grater
than in Cournot-Nash result, while the deficit bias is lower due to agenda setting
power over spending ministers.

Keywords Common pool · Deficit bias · Cournot-Nash · Stackelberg

1 Introduction

The rationale for fiscal rules and institutions has been explained by the existence
of deficit and spending biases that arise due to political fragmentation within gov-
ernment or between governments that alternate in office. The basic argument is that
fragmented decision making increases the perspective on concentrated benefits of
fiscal decisions for specific groups or during a specific period of time, while dispers-
ing the costs in the form of general taxation over other groups in society or in time.
Recent research shows that the origins of political fragmentation may go beyond
political decision-making within the government itself. Persson and Tabellini [2]
argue that the degree of political fragmentation within the government is related to
the electoral rules in place. Political fragmentation within governments and between
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governments are generally seen as the principal political sources of fiscal biases. The
more fragmented is the system of budgetary decision-making, the weaker are the in-
centives for each participant to internalize the full tax burden of its spending bids
so that a suboptimal level of spending results. Deficit and spending biases arise due
to the political nature of fiscal decision-making. As a result, the incentives for bi-
ased policies could be removed or softened by taking (part of) the decision-making
authority out of the political arena.

2 The Common Pool Problem

In common pool models fiscal outcomes are determined by the degree of political
fragmentation and by the decision-making rule that is used to aggregate conflict-
ing interests into a single budget. The rules according through which the budget is
prepared, approved and carried out—in short the fiscal institutions—may therefore
act to counteract political biases that are rooted in political fragmentation. In [3] the
common pool problem may manifest itself during different phases of the budgetary
process. When the budget is drafted within the cabinet, biases may arise due to the
fact that spending ministers may recognize the full benefits of their own specific
spending proposals, but fail to internalize the costs for the tax-paying population at
large. Biases may again show up during the implementation phase of the budget,
in the way policy reacts to unforeseen events and the way supplementary budgets
are drafted, decided upon and implemented. von Hagen and Harden [4] consider a
government consisting of n spending ministers. The budget allocates public funds,
raised through distorting taxation, to spending ministers, each of them pursuing its
policy target. Collectively, the cabinet would wish to minimize the divergence be-
tween policy targets and actually allocated funds and, at the same time, to minimize
the excess burden of taxation. In this model agents, having the same utility func-
tion subjected to the same budget constraint, interact simultaneously. The Cournot-
Nash equilibrium shows that the bargaining between spending ministries reduces
the spending bias due to the externality problem. The common pool problem arises
from the fact that each spending minister takes into account only a share of that ex-
cess burden: the portion that falls on his constituency. From this premise, the budget
realized by the cabinet is going to depend critically on the decision-making proce-
dure. If the procedure entails collecting each minister’s bid and taking a vote on the
resulting budget, than the final budget will exhibit a spending bias.

In order to reduce the spending and deficit bias arising from the coordination
problem in the budget process, we model a delegation of authority to a “fiscal en-
trepreneur” (the finance minister) with the aim to set binding limits on expenditure
allocations collectively negotiated at the beginning of the budgeting process. The
larger the finance minister’s agenda-setting power, the closer the deficit comes to
the collectively optimal outcome. Under this approach, the multilateral nature of the
negotiations on fiscal targets implicitly forces all participants to consider the full
cost in terms of tax burden associated with additional spending.
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In [1] is modeled a weighted utility function in order measure the finance minis-
ter’s power as an agenda setter. In this way they try to neutralize the incentive that
single spending ministers will have to defect from the approved budget. Using a
Nash-bargaining solution they show the larger the finance minister’s agenda-setting
power, the closer the deficit comes to the collectively optimal outcome.

3 Model and Results

We consider a two-period model of budgeting in a cabinet government. Consider a
government consisting of i = 1, . . . , n+ 1 spending ministers. Government expen-
ditures consist of transfer xi to groups i in society. Revenues consist of taxes levied
on all groups of society and borrowing. In the first period borrowing must be repaid
with interest in the second period. we assume that government can borrow or lend
at a fixed real interest rate, r . We assume that government receives in the second pe-
riod an amount τ2 of nontax revenue. The resulting intertemporal budget constraint
involves a trade-off between the benefit from paying out more transfers in the first
period and the cost of taxation in second period. The intertemporal utility function
of each spending ministers is:

U(xt,i)= −1

2

2∑

t=1

δt−1[xt,i − x�t,i
]2 −miΓ (T )

with i = 1, . . . , n+ 1, δ is the discount rate, 0< δ < 1, xt,i is the level of spending
allocated to minister i and x�t,i the ideal level of spending from perspective of a
single spending minister. We assume that x�i = x�1,i = x�2,i . Each mi denotes the
share of the excess burden from taxation falling on the minister i’s constituency,
with mi < 1 and for simplicity mi = 1/n. The excess burden of taxation, i.e. the
cost of taxation, is

Γ (T )= 1

2
θT 2.

The intertemporal spending minister’s budget constraint over the two periods is

T = rB1 +B2 − τ2

where Bt =∑n+1
i=1 xt,i for each period t = 1,2. We first consider the case where all

the spending ministers maximize their individual utility function subject to the in-
tertemporal budget constraint, taking the other ministers’ bids as given. The optimal
levels for each individual spending ministers from the Cournot-Nash equilibrium
are:

x̂1,i = x� −miδθrT̂

x̂2,i = x� −miθT̂ .
(1)

In the main literature the strong finance minister is modeled as a social planner
maximizing a weighted intertemporal utility function. In this work, we consider the
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finance minister precommit fiscal policy and observes the n spending ministers’ op-
timal choices. This means that Finance Minister acts as a Stackelberg leader and the
n spending ministers as followers. The optimal choice of spending ministers remain
the same in the previous model where they play Nash with each other. Instead, the
finance minister’s optimal choice is

x̃1,1 = x�1 −m1δθrT̃

[

1 −
n+1∑

i=2

miθ
(
1 + δr2)

]

x̃2,1 = x�2 −m1θT̃

[

1 −
n+1∑

i=2

miθ
(
1 + δr2)

]

.

(2)

4 Conclusion

In this paper we assume that the minister of finance internalizes the common pool
externality of the budget. From an institutional point of view, this assumption is re-
alistic because he takes in account the budget equilibrium. Formally, this is reflected
in the assumption that the minister of finance maximizes first (as a leader) his utility
function. The finance minister’s maximizing problem capture the different objective
with respect to spending ministers: Finance Minister is benevolent i.e. internalizes
spending bias. Comparing (1) and (2) reveals the nature of common pool problem.
While main literature takes into account the role played by the portionmi of the cost
of taxation when spending ministers making their budget bids, our result is related to
the leader role of the finance minister, modelled à la Stackelberg. As finance min-
ister’s agenda setting power, his choices maximize utility subject to the condition
that the proposal must be accepted by the spending ministers. In Stackelberg equi-
librium, leader’s expenditure choice is grater than in Cournot-Nash result, while the
deficit bias is lower due to agenda setting power over spending ministers.
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Evaluating Correlations in European
Government Bond Spreads

Simona Boffelli and Giovanni Urga

Abstract We propose a DCC-MIDAS model to estimate high- and low-frequency
correlations in the 10-year government bond spreads. The high-frequency compo-
nent, reflecting financial market conditions, is evaluated at 15-minute frequency,
while the low-frequency one, fixed through a month, depends on country specific
macroeconomic fundamentals. Although macroeconomic factors contribute in ex-
plaining volatilities and correlations, the increasing correlation in spreads during the
pick of the sovereign debt crisis cannot be completely ascribed to macroeconomic
factors.

Keywords DCC-MIDAS · Sovereign crisis

1 Introduction and Methodology

Since the introduction in 1999 of the Euro, the remarkable compression of sovereign
risk premium differentials was considered a hallmark of successful financial integra-
tion in the Euro area. With the explosion of the sovereign debt crisis, government
bond spreads started to diverge substantially as a sign of a regained ability of finan-
cial markets to careful monitor the fiscal performance of member states. Anyway,
whether the yields were driven by countries fundamentals or rather by other factors,
e.g. a regime shift in market pricing of government credit risk, was part of recent
economic debate.

This paper is aimed at addressing that empirical question by extending the MIxed
Data Sampling (MIDAS) framework which allows linking financial market data,
sampled at high-frequency, with macroeconomic data recorded at lower frequency.
In particular, we extend DCC-MIDAS in [1] based upon a pure time series approach
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by allowing the low-frequency component to be driven by country macroeconomic
fundamentals. In details, we assess whether employment, industrial production and
economic sentiment, recorded at monthly frequency, concur in explaining the pat-
tern of 10-year government bonds spreads of Belgium, France, Italy, Spain and the
Netherlands with respect to Germany measured on a 15-minute time scale over the
period 1st June 2007–31st May 2012. Data were provided by Morningstar.

Let us consider a (M × 1) vector of returns for the i-th subinterval belonging
to month τ , rτ,i = [r1

τ,i , . . . , r
M
τ,i]′ distributed as a multivariate normal variable with

mean vector μ and variance covariance matrix Hτ,i of order (M ×M). Following
the classical DCC model, the variance-covariance matrix Hτ,i can be decomposed
as Dτ,iRτ,iDτ,i with Dτ,i diagonal matrix of volatilities and Rτ,i conditional corre-
lation matrix. Volatilities are obtained by GARCH-MIDAS in [2], where the overall
volatility can be decomposed into two parts, one pertaining to short term fluctua-
tions, gτ,i and the other to a long-run secular component, ψτ :

rτ,i = μ+√ψτgτ,iετ,i
where ετ,i |Φτ,i−1 ∼N(0,1) with Φτ,i−1 information set available up to (τ, i − 1).

The volatility dynamics of gτ,i is modeled as a GARCH(1,1) process:

gτ,i = (1 − α− β)+ α
ε2
τ,i−1

ψτ
+ βgτ,i−1

while the low-frequency component ψτ depends on macroeconomic variables:

logψτ =m+
S∑

s=1

ϑs,l
U∑

u=1

ϕs,lu (ω)X
s,l
τ−u +

S∑

s=1

ϑs,v
U∑

u=1

ϕs,vu (ω)X
s,v
τ−u

where Xs,lτ−u = abs(
Y
s,l
τ−u
Y
s,l
τ0

− Y
s,l,DE
τ−u
Y
s,l,DE
τ0

); Y s,lτ level (l) of macroeconomic variable s at

month τ ; Y s,l,DE
τ the same macrovariable s for Germany, acting as benchmark

country; Xs,vτ−u = abs(Y s,vτ−u − Y
s,v,DE
τ−u ) where Y s,vτ volatility (v) of macrovariable s;

ϕu(ω) beta weights andU maximum lag for macrovariable s, with s = 1, . . . , S with
S representing the total number of macroeconomic variables.

Once univariate volatilities are estimated, the main focus is on the correlation
dynamics. In [1] it is shown that the high-frequency correlations obey a standard
DCC scheme but with the intercept being a slowly moving process. Based on the
DCC framework, the elements ρkjτ,i of the conditional correlation matrix Rτ,i , with
k, j = 1, . . . ,M , are computed as:

ρ
kj
τ,i =

q
kj
τ,i

√
qkkτ,i

√
q
jj
τ,i

whose elements qkjτ,i are modeled by:

q
kj
τ,i = ρkjτ (1 − a − b)+ aξkτ,i−1ξ

j

τ,i−1 + bq
kj

τ,i−1
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where ξτ,i standardized residuals. The long-run correlation ρkjτ is obtained from the
Fisher-z transformation of:

γ kjτ =mkj +
S∑

s=1

ϑs,l
U∑

u=1

ϕs,lu (ω)
∣
∣�Yk;s,lτ−u −�Y

j ;s,l
τ−u
∣
∣

+
S∑

s=1

ϑs,v
U∑

u=1

ϕs,vu (ω)
(
�Y

k;s,v
τ−u −�Y

j ;s,v
τ−u
)

where �Yk;s,lτ = 100 × [ln(Y k;s,lτ ) − ln(Y k;s,lτ−1 )] and |�Yk;s,lτ − �Y
j ;s,l
τ | measure

of the absolute distance in the rate of change for macrovariable s during the pe-
riod (τ, τ − 1) between country k and country j . Y k;s,vτ volatility of changes for
macroeconomic fundamental s for country k.

2 Empirical Results

Overall, the macroeconomic variables are found to be statistically relevant in ex-
plaining the volatility of European sovereign spreads, with the most important driver
being the absolute difference between each country industrial production with re-
spect to Germany: an increase of that difference determines a correspondent increase
in volatility for all the countries but the Netherlands. As far as the economic senti-
ment is concerned, an increase in the absolute difference with respect to Germany
implies a higher volatility for 3 out of 5 countries, Belgium, Italy and Spain, while
employment is statistically significant just for the Netherlands. The differences in
countries fundamental volatilities instead do not contribute in explaining volatilities
of government bond spreads.

As per correlations, the macroeconomic variables turned out to be statistically
significant drivers as well. Starting from the levels, there exists a negative relation-
ship between correlations and the absolute differences in the rate of change of em-
ployment in 6 out of 10 pairs of countries, of industrial production in 4 out of 10 and
of economic sentiment in 7 out of 10. Therefore, our results support the existence
of a negative dependence between the correlation of two countries and the absolute
difference in their macroeconomic fundamentals: as two countries get more similar
in terms of their macroeconomic fundamentals, their respective government bond
spreads start to move closer and closer. Focusing now on the absolute difference in
the volatility of the rate of change of fundamentals, our results support the existence
of a negative relationship with correlations for 4 out of 5 pairs of countries for which
the estimates are statistically significant when the employment is taken into account,
in 6 out of 6 for industrial production and in 5 out of 6 for economic sentiment.

Therefore, not only convergence in rates of change of macroeconomic variables
determines an increase in correlation but the volatility of the rate of change too
explains correlations in the same direction: as two countries get more similar in
terms of volatilities of their fundamentals, their government bond spreads get even
more correlated.
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Fig. 1 In grey is the
high-frequency and in black
the low-frequency component
of correlation. (a) IT-FR;
(b) IT-ES

In Fig. 1, we report the pattern of correlations between Italy and France and Italy
and Spain (for Belgium and the Netherlands a similar pattern was identified).

First, we note the failure of the long run component driven by macroeconomic
fundamentals (in black) in picking-up the break in correlations in financial markets
(in grey) during the period December 2010–July 2011. This result sheds light in
identifying the possible sources underlying the increasing systemic risk: the sub-
stantial break in correlations in government bond spreads, despite no change in cor-
relations between countries fundamentals, shows that the increase in risk originated
from financial markets rather than from shocks coming from the real side of econ-
omy. Second, the sharp increase in correlations is most likely due to a change in
market sentiment as markets during crisis periods become more volatile and invest-
ment activities myopic. During the recent sovereign crisis this attitude was translated
in a severe penalization of peripheral European countries in favour of Germany con-
sidered a “safe heaven”.
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Probability of Default: A Modern Calibration
Approach

Stefano Bonini and Giuliana Caivano

Abstract An extensive academic and practitioner’s literature exists on rating mod-
els development with well-structured statistical methods, however these models do
not estimate PDs aligned with the economic scenario, then it is necessary a calibra-
tion. During the last years the effect of not well calibrated models has been observed
on the credit market: actually they show a high level of procyclicality that let them
loss market credibility and banking usability. The aim of this paper is to show a
modern structured calibration approach, based on Bayesian techniques, taking into
consideration specific economic factors. The calibration approach has been applied
on real data of a Corporate portfolio of a top tier European Bank and a new calibra-
tion test, adjusted by the economic cycle, has been performed.

Keywords Rating models · Credit risk modeling · Bayesian econometric
methods · Economic cycle

1 Introduction

Today, even because of the financial crises, banks need more and more reliable and
usable risk management tools. Moreover within Basel2 and Basel 3 Accord the es-
timation of Probability of Default (PD) plays a key role for an efficient allocation of
capital, pricing, client sanctioning, credit monitoring, and finally regulatory compli-
ance.

A typical feature of PD models across countries is that they are often based on
individual characteristics of clients or they use some information related to the type
of specific products, but no information are commonly used for taking into account
macroeconomic variables.

Typically the only way to align rating models with the economic scenario (as in
[1] and [3]) is to apply a sort of “addendum” to the model itself: that’s what is com-
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monly known as calibration. When speaking about calibration, it is a best practice
among banks to refer to Through-the-Cycle (TTC) PDs as forecasts aligned with
the average long run historical default rate typically used for capital requirement
calculation. In this context the use of models that reflect the average long run his-
torical default rate is required in order to stabilize capital ratios and optimize capital
management policies: in positive economic conditions a run up of capital should be
kept for negative economic phases. Given the relevance of final PDs in reflecting the
economic conditions this paper proposes a modern structured calibration approach
using Bayesian techniques for the estimation of average long run historical default
rate (so called Central Tendency, CT). The added value of this work is related to
the relevance itself of the topic in the last year: given the current context of crisis,
it is very important for banks to forecast PDs that are able to ensure stable capital
ratios. The methodology here proposed is easy to understand and also applicable to
each kind of portfolio, as demonstrated by the application on real data of a Corpo-
rate portfolio of a top tier European Bank. In addition, the paper proposes a new
binomial calibration test using PDs adjusted by the economic cycle.

2 Calibration Framework: Model Development and Validation
Tests

As above mentioned, the goal of calibration is to assign implicit PD’s to each grade
or score defined by the rating model: in this way it is possible to define a consistent
long-term PD based on the underlying scores defined by the statistical model.

In this context the Central Tendency has a key role, that is—among researchers
and practitioners—quite often defined as the average of historical defaults. Here
a new methodology is presented, in which the impact of a cyclical downturn in the
future is embedded. For this scope, it is quite common [4] the use of macroeconomic
variables such as GDP and their correlation with corporate defaults of each country
in order to define a cut-off between positive and negative cycles [2]. Here we then
define the correlation between quarterly Italian GDP, Italian corporate default rates,
European corporate default rate and bank corporate portfolio default rate in order to
forecast the future default and define the true picture of the portfolio in the current
as well as in the future scenarios, even under stress hypotheses.

We here define the calibration function by solving an optimization problem with
one objective function subject to the constraint that Central Tendency has to be equal
to the implicit probability of default derived from calibration, as in (1):

#rating∑

i=1

PDEstimated
t × %Popi = CT (1)

where %Popi represents the percentage of observations in the bucket i after propor-
tioning.
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The objective (target) calibration function has been defined according to (2):

CF =
n∑

i=1

[

ln

(
1 − PDEstimated

i

PDEstimated
i

)

− ln

(
1 − DRi

DRi

)]2

(2)

where:

• i′ = score bucket i;
• n= number of buckets;
• RDFi = observed default rate post re proportioning in the bucket i;
• PDestimated

i is the PD calculated as logistic transformation of scores of statistical
model.

According to the Bayesian approach [5] the default rates of each bucket have
been proportioned in order to align them with the Central Tendency as shown in (3).

Adj.DRbucket =
DRbucket

CT
DRsample

DRbucket
CT

DRsample
+ (1 − DRbucket)

1−CT
1−DRsample

(3)

A model calibrated according to cyclical effect generate PDs that could be
slightly different from the observed default rates during the most recent period
(e.g. the last year of observation) in this case the standard calibration binomial tests
(based on the null hypothesis H0 that the PD of each rating grade is correctly esti-
mated)1 could “wrongly” fail [6]. The authors propose then a new calibration test
called “cycle adjusted” in which PDs are “adjusted for the economic cycle trend, as
defined in (4):

PDadj
1,t =N

[
N−1(PD1)−

√
AC ×N−1(�Y t )√

1 − AC

]

(4)

where:

• PDi = Average PD of each rating class;
• AC = Asset correlation of defaults;
• �Y = percentile of empirical GDP variation at time t .

The calibration function has been estimated on 7 years of historical data (2004–
2011) of a Corporate portfolio of a top tier European Bank: the gradient (β) of curve
has been considered as a constant, while the intercept (α) has been changed in order
to ensure that the average PD of the portfolio will be equal to the CT. In particular,
taking into account the function constraint (average PD equal to CT), the final values
of α (−50.02) and β (−115.97) have been found as the values that could minimize
the difference between estimated PD and proportioned default rate, as in (3).

1k∗ = φ−1(q)
√
nPD(1 − PD)+ nPD

where:
q = is the confidence level of test;
PD =: is the theoretical PD of each rating grade;
n= number of observations.



44 S. Bonini and G. Caivano

This function has been applied on a portfolio of Corporate loans existing in 2012,
thus only the value of intercept has been changed in order to align the average PDs
to CT, obtaining a new value of α equal to −32.20.

Finally, an adjusted binomial test has been performed, in which the adjusted PDs
have been used (as defined in (4)) for assessing the goodness of the overall model
after the calibration process.

3 Conclusion

In this paper a new approach of calibration has been proposed for aligning “tra-
ditional” rating models to the economic cycle by avoiding, at the same time, the
pro-cyclical effect of using long run estimates. In particular, a new approach for
the definition of Central Tendency has been proposed by forecasting the historical
default rates on a “long run” period (10 years) to be used for fitting the calibration
curve of the application portfolio represented by Corporate exposures of a top tier
European bank between 2004–2012. The authors have also performed a binomial
test “adjusted” for the state of the economy, in order to avoid the underestimation of
PDs during the last recent years: the results of the test show that the estimated PDs
are conservative.
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Development of a LGD Model Basel2
Compliant: A Case Study

Stefano Bonini and Giuliana Caivano

Abstract The Basel2 Accord allows banks to calculate their capital requirements
using Advanced Internal Ratings Based Approach (AIRBA) based on the estimation
of three credit risk parameters—Probability of Default (PD), Exposure at Default
(EAD) and Loss Given Default (LGD). While on PD models an extensive academic
and practitioner’s literature exists, LGD studies are in a less advance status because
of the lack of data on recoveries of commercial loans: the existing literature on LGD
is for the most part related to Corporate Bonds. In this paper a case study on a real
Basel 2 compliant model has been developed starting from a workout approach and
stressing on estimation of the discount rate as main component of Economic LGD
but also on the definition of the final multivariate regressive model.

Keywords Loss given default · Basel2 · Credit risk modeling · Quantitative finance

1 Introduction

In the last years the biggest European Banking Groups started to assess the possi-
bility of adopting the Advanced Internal Rating Based Approach (AIRBA) under
Basel2, in order to save capital thanks also to the possibility of a larger use of Credit
Risk mitigators with respect to the Standardized Approach. The AIRBA framework
requires banks to develop statistical models for estimating probability of default
(PD), Loss Given Default (LGD) and Exposure at Default (EAD). In particular the
LGD, that is defined as credit loss when extreme events occur influencing the obligor
ability to repay debts, has a high relevance into credit and recovery process because
of its direct impact on capital savings.

The New Basel2 Accord, which has been implemented throughout the banking
world starting from 1 January 2007, made a significant difference to the use of
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modeling within financial organizations, by highlighting the relevant role of Loss
Given Default (LGD) modeling [2].

While on PD models an extensive academic and practitioner’s literature exists,
LGD studies are in a less advance status because of the lack of data on recoveries and
differences in recovery process among commercial banks. The existing literature on
LGD is for the most part related to Corporate Bonds given the public availability of
data (as in [1] and [6]) and in most cases the existing papers only try to test different
statistical approaches in order to identify the most predictive variables/methods of
recovery rates (as in [8, 9], and [3]).

The aim of this paper is to show the results of a case study on a real Basel2
compliant LGD model starting from a workout approach and stressing on the esti-
mation of the discount rate as main component of Economic LGD, but also on the
definition of the final multivariate regressive model for the LGD estimation. The
model has been developed on 10 years of historical real data of Corporate and Re-
tail portfolio of an Italian commercial bank among the fifteen Italian Banks that
will be supervised by ECB. This paper adds a real value to the existing literature
because it follows all the Basel2 requirements and it is linked to the Italian Bank-
ing context. Italy, unlike the rest of Europe, can be considered a more general and
complicate case of LGD computation because of specific recovery process and more
than one default status (doubtful loans, past-dues, charge-offs). This paper, finally,
contributes to the understanding of the Italian recovery process in order to define an
even more common European framework looking forward the ECB Banking Super-
vision.

2 LGD Model Development

The LGD model proposed in this paper has been developed on a sample of around
25,000 charge-offs loans (opened and closed between January 2000 and December
2012) belonging to Corporate and Retail (40 % and 60 % respectively) clients with
different types of products: 30 % mortgages, 65 % checking accounts, and 5 %
others.

The best practice on European Banks, in particular on Corporate and Retail Port-
folios, is to use a workout approach [4]. It is based on economic notion of loss and
consists in the calculation of empirical loss rates through the observation of histor-
ical cash flows (discounted for taking into account the volatility embedded in time)
occurring on each charge-off until the end of recovery process, according to (1) and
the definitions in Table 1:

LGDc = 1 − RR = 1 −
∑

Reciδti −∑Aiδ
t
i − Costs

EAD
(1)

For the calculation of economic LGD, and in particular the definition of discount
rate, the Capital Asset Pricing Model (CAPM) has been used based on the theoret-
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Table 1 List of factors for LGD calculation on charge-off positions

Parameter Description

LGDC LGD estimated on charge-offs positions

RR Recovery rate on charge-offs

RECi Recovery flow at date i

Ai Increase flow at date i

Costs Costs of litigation

EAD Exposure of default at charge off opening date

i Date in which each flow has been registered

t Charge—off opening date

δti Discount rate of each flow between date i and date t

Table 2 Discount rate definition: main parameters

CAPM parameter Description

Market volatility—σM Standard deviation of logarithmic returns of stock market

Asset volatility—σi Standard deviation of logarithmic returns of the ratio between annual
recoveries and total exposure at default

Correlation Ri Basel2 correlation framework for capital requirements

Market Risk Premium Set at 5.6 % according to [5]

Risk Free component Defined from a linear interpolation of interest rate curves

ical framework proposed by [7] in (2) and according to the meaning of parameters
provided in Table 2:

rt = rRF
t + βi,M × MRP = rRF

t + σiρi,M

σM
× MRP = rRF

t + σiRi

σM
× MRP (2)

The methodology applied is based on the hypothesis that when a corporate de-
faults, its credit contract can be considered as a potential investment contract: thus
the discount rate must reflect the cost-opportunity of this investment.

The risk premium1 for retail clients as been set to 0.48 % for Mortgages and
0.45 % for Other Products, instead for corporate clients it has been set to 0.50 %.

A final average value of Economic LGD of 50 % has been obtained on devel-
opment sample, and the Economic LGD has been used as target variable of the
multivariate regression model, consisting in a linear regression based on Ordinary
Least Square (OLS).2

In Table 3 the final model is shown with the main drivers of recovery identified.

1The value of risk premium has been differentiated according to the correlation values of capital
requirements calculation formula of Basel2 framework.
2SAS PROC GLM procedure has been used.
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Table 3 Final Model

Variables Values

Geographical area South & Islands, Center, North West, and North East

Exposure at Default EAD ≤ 1,500, 1,500> EAD ≤ 2,500, 2,500> EAD ≤ 7,500,
7,500> EAD ≤ 15,000. and EAD> 15,000

Type of product Residential Mortgages, Checking Accounts, and Other products

Type of segment Retail, Corporate

Presence of Prs Guarantees

Presence of Pledge

3 Conclusion

This paper has presented a case study of LGD in which, according to the require-
ments of Basel2, the model has been developed on 10 years of historical real data
of Corporate and Retail portfolio of an Italian commercial bank among the fifteen
Italian Banks that will be supervised by ECB. Giving a particular stress on the eco-
nomic component of the model, the presented model highlights the determinant role
of mitigators as recovery drivers, but also the geographical localization of loans, the
loan and commercial segment. This paper adds a real value to the existing literature
because it follows all the Basel2 requirements and is linked to the Italian Banking
context. Italy, unlike the rest of Europe, can be considered a more general and com-
plicate case of LGD computation because of specific recovery process and more
than one default status (past-due, doubtful, and charge-off). Moreover it contributes
to the understanding of the Italian recovery process in order to define an even more
common European framework looking forward the ECB Banking Supervision.
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Modelling the Latent Components of Personal
Happiness

Stefania Capecchi and Domenico Piccolo

Abstract We discuss a class of statistical models able to measure the self-evaluation
of happiness by means of a sample of respondents and investigate the ability of this
proposal to enhance the different contribution of subjective, environmental and eco-
nomic variables. The approach is based on a mixture model introduced for interpret-
ing the ordered level of happiness as a combination of a real belief and a surrounding
uncertainty: these unobserved components may be easily parameterized and imme-
diately related to subjects’ covariates. An empirical evidence is supported on data
set derived by the Survey of Household Income and Wealth (SHIW) conducted by
the Bank of Italy.

Keywords Happiness · Ordinal data · CUB models · SHIW data set

1 Introduction

According to dictionaries, happiness is a state of well-being characterized by emo-
tions ranging from contentment to intense joy. Together with life and liberty, the
pursuit of happiness has been considered an unalienable right by the US Declara-
tion of Independence. Specifically, intangible goods are a relevant issue in the ap-
proach promoted by the Stiglitz Commission [7]. In recent years, several countries
introduced new measures of global subjective happiness and noticeably in 1972 the
Kingdom of Bhutan established the Gross National Happiness (GNH) measure as a
multidimensional indicator of people well-being and satisfaction of life. In Italy, the
ISTAT experience of BES is a remarkable one.

Happiness is a concept perceived in different ways by people and it is often used
as synonym of flourishing quality of life. Scientists are engaged to derive origin and
causes of happiness, and it is now a common evidence that it derives from a blend
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of internal and external pleasures, including monetary achievements. In fact, people
living in more developed nations tend to be on average happier than those of less
developed ones. Although the effect is not linear and diminishes with wealth, this
circumstance explains why GDP and GNP have been used as measures of successful
policies. On the other side, the well known Easterlin paradox [2] assesses that once
wealth reaches a subsistence level, its effectiveness as a generator of well-being is
greatly diminished. Thus, indicators and models to face with a fuzzy concept as
happiness are both a need and a challenge.

This work relies on a statistical model elaborated for investigating ordinal re-
sponses and checks its effectiveness on the Survey of Household Income and Wealth
(SHIW) conducted by the Bank of Italy. The scope is to emphasize the effective
possibility to investigate the interpretation of the declared happiness as a function
of subjective, contextual and economic covariates.

The paper is organized as follows: in the next section the data set is described
and the model chosen for the statistical analysis is briefly motivated. In Sect. 3 the
main results are presented.

2 Data and Model

Several scales may be considered to measure happiness by means of subjective eval-
uation. In a large and accurate data set as the 2010 edition of SHIW, responses are
expressed on a Likert 10-point scale. It is sufficiently fine to allow adequate expres-
sion of personal opinions and our analysis is based on n= 3816 validated question-
naires.

Economists have been skeptical about subjective data but recent approaches
based on the relationship between economic variables and components of well-
being emphasize the importance of subjective evaluation data [7]. A further con-
sideration derives from the common assumptions of economists who assume that
people make decisions basically on expectations for unknown quantities and so to
maximize expected utility. Indeed, when using ordinal data, the use of expectation
has to be critically considered because several distributional shapes are admissible
for a given expectation. Thus more comprehensive approaches should be pursued.

Specifically, we consider ordinal responses as a manifest piece of information
which conveys both the latent variable to be measured and some intrinsic indecision.
Then, we assume that the psychological expression of the degree of happiness is the
composition of a real perception generated by a continuous random variable and a
second component pertaining to an inherent uncertainty.

These considerations motivated the introduction of CUB models [1, 6] defined
as a mixture distribution in which the rating r is the realization of a random vari-
able R with probability mass which is a Combination of a (shifted) Binomial and a
(discrete) Uniform random variable, that is:

Pr(R = r)= π

(
m− 1

r − 1

)

ξm−r (1 − ξ)r−1 + (1 − π)
1

m
, r = 1,2, . . . ,m.
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These models are identifiable for a given m > 3 [3]. The uncertainty (measured
by 1 − π ) and the perception (measured by 1 − ξ ) may be easily visualized in the
parameter space (that is, the unit square); thus, it is immediate to see the role of these
components. In our context, (1 − ξ) may be interpreted as perception of happiness
whereas (1 − π) explains the degree of indecision of the respondent.

This class of models has been applied in many different fields and generalized in
several directions [4, 5]; in the following, we limit ourselves to show the potential
of the approach in its standard formulation.

3 Main Results

The selection of significant covariates is a relevant issue in the building of economet-
ric models and it deserves specific attention when the response is an ordinal variable
as the expressed rating of happiness. In this regard, we performed a stepwise strat-
egy mainly based on the joint consideration of parameters significance and increase
in log-likelihood measures. The omnibus CUB model we present is the final result
of this sequential approach and expresses the probability of the ordinal response as
the consequence of both perception and uncertainty related to significant covariates.

If we set logit(z)= [1 + exp(−z)]−1, then we may consider πi = logit(βyi ) and
ξi = logit(γwi ), where yi and xi are the significant covariates of the i-th subject,
for i = 1,2, . . . , n, selected to explain uncertainty and perception, respectively. Ta-
ble 1 shows the estimates of the CUB model. All parameters are significant (standard
errors in parenthesis) and results are effectively obtained by maximum likelihood
methods (a program in R is freely available from Authors).

It turns out that some covariates are subjective (age, married, confi-
dence), environmental (South) and economic (familycond, wealth). No-
tice that confidence is related to the general attitude of trust towards the others
whereas familycond expresses if household income is sufficient to see the fam-
ily to make ends meet and ranges from 1 (with great difficulty) to 6 (very easily).
The estimated model shows that happiness is positively related with married,
familycond, confidence, wealth whereas age and South have a negative
effect; the effect of age is negative when people are aged more than 58.6 years.
On the other side, uncertainty increases for married and confidence but de-
creases with age, South, familycond and wealth. It is also possible to show
that married, familycond and wealth give the best explanation to the per-
ception of happiness whereas married and confidence give the most relevant
contribution to explain the uncertainty.

The proposed approach allows to depict expected profiles of responses given
some values for covariates. As an instance, given approximately the same wealth, we
compare in Fig. 1 the probability distributions of declared happiness of an unmarried
resident in South and aged 30 with low confidence and familycond (dotted
left-shifted) to the happiness of a resident elsewhere, married and aged 57 with high
confidence and familycond (squared right-shifted). It is quite evident how
happiness changes in a substantial way when the significant covariates are modified.
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Table 1 Estimated CUB

model Covariates β̂k γ̂k

Constant −2.653 (0.928) 1.576 (0.319)

Age-dev 0.008 (0.001)

Married −1.173 (0.144) −0.521 (0.047)

South 0.351 (0.144) 0.231 (0.047)

Familycond −0.204 (0.063) −0.091 (0.020)

Confidence 0.117 (0.025) −0.054 (0.012)

Wealth-Log 0.273 (0.081) −0.119 (0.028)

Fig. 1 Different respondents
profiles
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Measuring the Impact of Behavioural Choices
on the Market Prices

Massimiliano Caporin, Luca Corazzini, and Michele Costola

Abstract We present a methodology to build a new sentiment index of market
(ir)rationality. The proposed index, derived only on the basis of equity market prices,
could be used to monitor the impact on behavioural-driven agent’s choices. In this
note, we discuss the main idea behind the proposed approach.

Keywords Investment decision · Behavioural agents · Mixture model ·
Behavioural expectations

1 Introduction

According to the traditional theory of finance, see [5], in taking their financial in-
vestment decisions, agents are assumed to be rational in that they make their choices
by maximising a utility function that is consistent with the Expected Utility Theory
(EUT). However, the rational hypothesis is inconsistent with several empirical puz-
zles, see [1], among others.

Those evidences lead the development of models including behavioral and psy-
chological elements in the agents’ decision process, namely, agents are not fully
rational, [3]. One of the most successful approaches is the Prospect Theory [4],
where the (risk) preferences of agents are described by a value function making
them risk-seeker in the domain of losses and risk averse in the domain of gains.

Despite the several generalizations appeared in the financial literature, the
Prospect Theory leaves important empirical issues unexplored. One of the most
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relevant is associated with the measurement of the behavioural component of the
financial market. In fact, we might assume that the market is composed by agents
that are either rational (endowed with a risk averse utility function that is coher-
ent with the standard EUT assumptions) or behavioural (with a S-shaped utility
function). By means of this setting, we can investigate into the relative weights of
the two categories and analyse how the behavioural component changes over time.
Intuitively, in periods of recessions we might expect a divergence of investment de-
cisions, with behavioural agents taking more risky investment decisions compared
to rational ones.

In this note, we introduce a Bayesian mixture approach to estimate the relative
weight of the behavioural component of the financial market. In a market that is
populated by two types of non-strategic financial agents (rational and behavioural),
the evolution of the prices reflects the interplay between their choices. We thus de-
fine the investment decision of agents as driven by a specific performance measure,
which allows them to build ranks of assets and use those ranks to define their port-
folio. Given their portfolio, agents are assumed to invest in the subset of the in-
vestment universe including the best performing assets. In such a framework, the
financial market produces a mixture ranking that is built by conditioning the prior
ordering of the rational, risk-averse agents on that produced by the behavioural cat-
egory. The mixture depends on a weighting factor that expresses the relative weight
of the behavioural category over the rational one: the higher the value of the weight-
ing factor, the more the ranking of the financial market approaches the one produced
by the behavioural agents.

In the following we introduce the model that depends on the weighting factor and
describe its estimation approach.

2 Agents and Market Behaviour

As mentioned above, our framework postulates the existence of two types of agents
that choose their optimal allocation and make their evaluations in terms of perfor-
mance measures at the level of the single asset. Performance measures are related
to the level of maximum expected utility provided by a given asset and are function
of the moments of the risky assets returns distribution. The higher the performance
measure, the higher the maximum expected utility that the investor attaches to the
asset. The allocation choice of the agent is made by investing in a subset composed
of the most performing assets—namely, those with the highest performance mea-
sures.

The first agent is rational, with a utility function consistent with the expected
utility theory, namely a negative exponential utility. The second agent is behavioural
and with the generalized behavioural utility function of [6]

U(W)=
{

1+(W −W0)× (W −W0)− (γ+/α)(W −W0)
α, if W ≥W0,

−λ(1−(W0 −W)× (W −W0)+ (γ−/β)(W0 −W)β), if W <W0,

(1)
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where: 1+(·) and 1−(·) are the indicator functions, while γ+, γ−, λ > 0, α > 0 and
β > 0 are real numbers. The agents allocate their wealth over a set of risky assets
by analysing the expected utility of each single asset, investing only in the best
performing. We are thus interested in the rankings of the performance measures that
are produced by the rational and behavioural utility functions.

For the rational agent, we follow [7] and consider the Generalized Sharpe ratio
(GSR), obtained by the numerical optimization of the expected utility,

GSR =
√

−2 log
(−E[U(w̃)]), (2)

E
[
U(w̃)

]= maxa

∫

−e−λa(x−rf )f̂ (x)dx (3)

with x being the return of a risky asset, rf the return of the risk-free asset, f̂ (x)
a Kernel estimate of the risky asset returns density, and λ the risk aversion coeffi-
cient.

The behavioural agent ranks assets according to a different index, the Z-ratio,
see [6],

Zγ−,γ+,λ,β = E(x)− rf − (1−(W −W0)λ− 1)LPM1(x, rf )

β
√
γ+UPMβ(x, rf )+ λγ−LPMβ(x, rf )

, (4)

where LPM and UPM are the lower and upper partial moments.
Both agents allocate their wealth on the best performing assets. We assume that

the allocation choice follows a naive rule. If the market includes K assets, we
might assume that the rational (behavioural) investor allocates his wealth across the
M � K assets with highest value of the GSR (Z-ratio) with an equally weighted
strategy. Such a choice allows limiting the impact of the estimation error and is
preferred over optimal weighting schemes, see [2].

While both types populate the market, one could question whether market fluc-
tuations are more closely related to the choices of the rational rather than the be-
havioral agents—irrespective of their numerosity. Our objective is to determine the
relevance or the impact of the behavioural choices in the movements of risky asset
returns. We propose to recover such a measure in an indirect way by assuming that
the observed market behaviour is a blend of choices made by the different choices
made by the two types. Given this framework, we estimate the blending parame-
ter(s) in such a way that the combination of choices is as closer as possible to the
observed market fluctuations. We blend the choices of the two agents types within
a Bayesian framework where one of the two agent’s beliefs is considered a prior
(the rational), while choice of the behavioural agents plays the role of additional
conditioning information. The beliefs of the agents are given by their performance
measures, the GSR and the Z-ratio.

We thus derive the posterior aggregate performance measure:

μp = [(τσ 2)−1 +ω−2]−1[(
τσ 2)−1

GSR +ω−2Zγ−γ+,λ,β
]

(5)

where σ 2 is the variance of the GSR, ω2 is the variance of the Z-ratio, and τ is
our main objective, the parameter driving the reliability of the prior information.
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The higher the τ the more uncertain the prior rational information and, conversely,
the more relevant the behavioural impact on aggregate rankings. The aggregate ex-
pected measure μp might be considered as the quantity used, at the market level,
to order or rank assets. As a consequence, we determine the role of behavioural
choices through the composite measure, by looking at the optimal allocation made
by an agent which is deciding where to invest his wealth across a set of risky assets
ordered according to (5). In this case, the allocations might be evaluated in terms
of past performances, while the impact of behavioural beliefs is determined by esti-
mating the optimal τ level within a specified criterion function. We take a simplified
allocation choice and consider an equally weighted investment strategy. The optimal
choice of τ is determined by maximizing the portfolio returns, that is

max
τ

f (τ )= 1

m

t∑

l=t−m+1

rp,l (6)

s.t. rp,l = 1

k

∑

j∈At (τ )

rj,l (7)

where the set At (τ ) contains theM best assets (with highest aggregate posterior per-
formance measure) across the K included in the investment universe. The optimal
value τ ∗ provides the maximum cumulated return obtained by an agent investing
in a subset of the risky assets traded in the market and taking decisions blending
rational and behavioural choices.
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A Note on Natural Risk Statistics,
OWA Operators and Generalized
Gini Functions

Marta Cardin

Abstract The notion of risk measure arose from the problem of quantifying risk.
The coherent risk measures and the insurance risk measures are risk measures that
satisfy a set of axioms. In this note we consider a different approach to risk mea-
surement and we study natural risk statistics that are based on data and that are
characterized by a new set of axioms. In this paper we consider the relationship
between risk measurement and aggregation theory.

Keywords Risk measure · Coherent risk measure · Natural risk statistic · Gini
index

1 Introduction

During the last decades, researchers joined efforts to properly compare, quantify
and manage risk. In this direction, risk measures constitute an important and widely
studied tool. Different families of risk measures have been proposed in the literature.
The paper that lays the foundations of the axiomatic approach in defining a risk
measure is [4].

In 2007 Heyde et al. [6] introduced the natural risk statistics that are risk mea-
sures depending on data (see also [1]). The natural risk statistics are associated with
a finite sample and satisfy a more general subadditivity assumption then that of
classical coherent risk measures and are robust thus particularly suitable for exter-
nal risk measurement. The aim of this note is to study and characterize some classes
of natural risk statistics that are defined by ordered weighted averaging operators.
These operators were introduced in aggregation theory by Yager and have been em-
ployed in a wide range of fields and only recently considered in risk measurement.
Moreover we introduce in risk measurement the generalized Gini welfare functions
that are traditionally studied as inequality indices.
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2 Natural Risk Statistics

We assume that the behavior of a random loss X is represented by a collection
of data observation x̃ = (x1, x2, . . . , xn) ∈ R

n (could be empirical or subjective or
both). A risk statistics ρ̃ is a mapping from the data in R

n to a numerical value in R.
Next we postulate a set of axioms for the risk statistic ρ̂.

A1 Positive homogeneity and translation invariance:

ρ̂(ax̃ + b1 = aρ̂(̃x)+ b if x̃ ∈R
n, a � 0, b ∈R,

where 1 = (1,1, . . . ,1) ∈R
n.

A2 Monotonicity:

ρ̂(̃x)� ρ̂(ỹ), if x̃ � ỹ,

where x̃ � ỹ if and only if xi � yi, i = 1, . . . , n.
A3 Comonotonic subadditivity:

ρ̂(̃x + ỹ)� ρ̂(̃x)+ ρ̂(ỹ), if x̃ and ỹ are comonotonic,

where x̃ and ỹ are comonotonic if and only if (xi − xj )(yi − yj )� 0, for any
i �= j .

A4 Permutation invariance:

ρ̂(x1, x2, . . . , xn)= ρ̂(xi1 , xi2, . . . , xin) for any permutation (i1, . . . , in).

A risk statistic ρ̂ : Rn → R is called a natural risk statistic if it satisfies Axioms
A1–A4. For a justification of the concept as well for a detailed study of the axioms
we refer to [6].

3 OWA Risk Statistics

The problem of aggregating multiple numerical values into a single value is of con-
siderable importance in many disciplines. The most commonly used aggregation
is based on the weighted sum. In the ordered weighted averaging operators OWA
developed by Yager in [10] the weights are assigned to the ordered values (i.e. to
the smallest value, the second smallest and so on) rather than to the specific values.
Since its introduction, the OWA aggregation has been successfully applied to many
fields of decision making and recently considered in connection with risk measure-
ment in [5]. Moreover the OWA operator allows us to model various aggregation
functions from the maximum through the arithmetic mean to the minimum.

Now we consider OWA risk statistics that are risk statistics ρ̂ :Rn → R such that

OWAω̃ (̃x)=
n∑

i=1

ωix(i)

where for a vector x ∈ R
n we denote its elements ranked in ascending order as

x(1) � x(2) · · ·� x(n) and ω̃= (ω1,ω2, . . . ,ωn) ∈ [0,1]n with
∑n

i=1ωi = 1.
It can be proved that a OWA risk statistic is a natural risk statistic that satisfy the

following axiom:
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A5 Comonotonic additivity:

ρ̂(̃x + ỹ)= ρ̂(̃x)+ ρ̂(ỹ), if x̃ and ỹ are comonotonic.

The following result characterize OWA risk statistics and prove that OWA risk statis-
tics generate all risk statistics.

Proposition 1 A risk statistic is a OWA risk statistics if and only if satisfies axioms
A1, A2, A4 and A5.

A risk statistic ρ̂ is a natural risk statistic if and only if there exists a set of weights
W = {ω̃= (ω1,ω2, . . . ,ωn)} ⊆ R

n such that

ρ̂(̃x)= sup
ω̃∈W

OWAω̃ (̃x).

Proof A real operator defined on R
n is a Choquet integral with respect to a mono-

tone measure if and only if it is monotone, positive homogeneous and comonotonic
additive (see for example [9]) The operator is symmetric if and only the monotone
measure is symmetric (see [7] for the definition of a symmetric measure and for the
result). A Choquet integral with respect to a monotone measure is a OWA operator
if and only if the measure is symmetric as is proved in [7]. The second part of the
proposition follows from the main theorem in [6]. �

4 Generalized Gini Risk Statistics

We also consider the concept of majorization arising as a measure of diversity of
the components of a n-dimensional vector. Majorization has been comprehensively
treated by [3] and [8]. We aim to formalize the idea that the components of a vector
y are less “spread out” or “more nearly equal” than the components of x. The vector
x is said to majorize the vector y which is denoted as x � y, if

k∑

i=1

x(i) ≤
k∑

i=1

y(i) for k = 1,2, . . . , n− 1 and
n∑

i=1

xi =
n∑

i=1

yi . (1)

Majorization is a partial ordering among vectors, which applies only to vectors hav-
ing the same sum. It is a measure of the degree to which the vector elements differ.
For example it can be easily shown that all vectors of sum s majorize the uniform
vector u = ( s

n
, . . . , s

n
). Intuitively, the uniform vector is the vector with minimal

differences between elements, so all vectors majorize it.
A real function f :Rn → R is S-convex if f (x) � f (y) when x � y. f is S-

concave if −f is S-convex. S-convex i functions thus preserve majorization. We
note also that a Schur increasing or decreasing function must be a symmetric func-
tion. Moreover a symmetric convex function is Schur increasing [8].

The following axiom consider majorization between data sets.

A6 S-convexity:

ρ̂(̃x)� ρ̂(ỹ), if x̃ � ỹ.
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Then if we accept axiom A6 we consider more risky a situation in which data are
more “spread out” . We can easily prove as in [2] the following result.

Proposition 2 A OWA risk statistics satisfies axioms A6 if and only if

ω1 > · · ·>ωn.

It seems important to note that the OWA operators that satisfy the condition in
Proposition 4 are associated with the classical Gini inequality measure (see [2] and
the references therein) and are called generalized Gini functions. Finally, we intend
to characterize natural risk statistics that satisfy axiom A6.

References

1. Ahmed, S., Filipovic̀, D., Svintland, G.: A note on natural risk statistics. Oper. Res. Lett. 36,
662–664 (2008)

2. Aristondo, O., García-Lapresta, J.L., Lasso de la Vega, C., Marques Pereira, A.: Classical
inequality index, welfare and illfare functions, and the dual decomposition. Fuzzy Sets Syst.
228, 114–136 (2013)

3. Arnold, B.C.: Majorization and the Lorenz Order: A Brief Introduction. Springer, New York
(1987)

4. Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9(3),
203–228 (1999)

5. Belles-Sampera, J., Merigó, J.M., Guillén, M., Santolino, M.: The connection between dis-
tortion risk measures and ordered weighted averaging operators. Insur. Math. Econ. 52(2),
411–420 (2013)

6. Heyde, C.C., Kou, S.G., Peng, X.H.: What is a good external risk measure: bridging the gaps
between robustness, subadditivity and insurance risk measures. Preprint (2007)

7. Marichal, J.L.: Aggregation of interacting criteria by means of the discrete Choquet integral.
In: Calvo, T., Mayor, G., Mesiar, R. (eds.) Aggregation Operators: New Trends and Applica-
tions. Studies in Fuzziness and Soft Computing, vol. 97, pp. 224–244. Physica, Heidelberg
(2002)

8. Marshall, A.W., Olkin, I.: Inequalities: Theory of Majorization and Its Applications. Academic
Press, New York (1979)

9. Schmeidler, D.: Integral representation without additivity. Proc. Am. Math. Soc. 97(2), 255–
261 (1986)

10. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision
making. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)



The Estimation of Standard Deviation
of Premium Risk Under Solvency 2

Rocco Roberto Cerchiara and Vittorio Magatti

Abstract Solvency 2 Directive provides a range of methods to calculate the Sol-
vency Capital Requirement (SCR). Focusing on the Standard Formula (SF) ap-
proach with Undertaking-Specific Parameters (USPs), the Technical Specifications
(TS) of Quantitative Impact Study 5 (QIS5) describes a subset of the SF market pa-
rameters (standard deviations) that may be replaced by USPs, in order to calculate
the SCR deriving from Premium Risk, using three different standardised methods.
Compared to the existing literature and practice, this paper innovates in that this
standard deviation will be calculated using a Partial Internal Risk Model (PIRM),
based on Generalised Linear or Additive Models (GLM or GAM), showing how the
techniques usually developed for premium calculation could be useful for this goal.

Keywords Solvency 2 · Premium risk · Undertaking specific parameters

1 Introduction

GLM and GAM can be used in order to define an estimated Aggregate Claim
Amount (ACA) as a function of the tariff variables detectable in the insurance con-
tract and consequently a propensity of each insured to produce a loss for the un-
dertaking. Pricing Staff is interested on determining the expected value of the ACA
(risk neutral) and Risk Management could identify the volatility (real world) in the
pricing process calculating the moments and/or the percentiles of the estimated dis-
tribution of the ACA with the same model. Perimeter of the approach we propose
in this paper will cover personal line insurance or generally product priced using
regression techniques. If GLM represents a benchmark within this technical frame-
work, GAM is an interesting alternative for its non-parametric or semi-parametric

R.R. Cerchiara (B)
University of Calabria, Rende Cosenza, Italy
e-mail: cerchiara@unical.it

V. Magatti
University of Rome La Sapienza, Rome, Italy
e-mail: vittorio.magatti@uniroma1.it

C. Perna, M. Sibillo (eds.), Mathematical and Statistical Methods for Actuarial Sciences
and Finance, DOI 10.1007/978-3-319-05014-0_14,
© Springer International Publishing Switzerland 2014

61

mailto:cerchiara@unical.it
mailto:vittorio.magatti@uniroma1.it
http://dx.doi.org/10.1007/978-3-319-05014-0_14


62 R.R. Cerchiara and V. Magatti

structure and furthermore when the distribution of the aggregate claim amount for
the tariff variables are not linear. This paper will show a summary of the outputs,
statistics and graphical analysis of residuals necessary to validate the optimum GLM
and GAM, but also to exhibit which model predicts better the expected value of the
ACA. Using models outlined above, a comparison between the SF market parame-
ters, USPs (see Sect. 2 for more details) and the standard deviation of the PIRM will
be shown in Sect. 3, regarding a case study for the Line of Business Motor Third
Party Liability (MTPL). More details will be given in the extended version of this
short paper.

2 Undertaking Specific Parameters

CEIOPS (now EIOPA) in the 5th Quantitative Impact Studies (QIS5, see [2])
showed the option of using USPs for Premium Risk and Reserving Risk (see [3] for a
market analysis of USPs for Italian Market). Three alternative methods are presented
in QIS5 about the calculation of USPs for Premium Risk. The first two methods are
similar as approach and in the assumptions. An insurance company could use those
methods when the loss is proportional to premium and if Company has a different
but constant Expected Loss Ratio (ELR). Furthermore, Methods 2 is based on the
LogNormal distribution of the losses. The third method is a frequency/severity ap-
proach. Whereas the first two methods are influenced by the volatility of Earned
Premium and/or of the ELR, Method 3 is influenced by the exposure and/or in the
number of claim and it is more onerous than the other one concerning the input.
USPs should be calibrated on the basis of internal data and the use of them requires
supervisory approval. Data in particular used for the calculation of USPs should be
complete, accurate and appropriate (see [2]).

3 Partial Internal Model Specification

As reported in [5], Member States shall ensure that insurance or reinsurance under-
takings may calculate the Solvency Capital Requirement using a Full or Partial In-
ternal Model as approved by the Supervisory Authorities. Since the Premium Risk is
defined as the risk due to error in the assumptions, models or methods used to solve
a pricing problems, the solution we propose in this paper is to stress the opportunity
that Risk Management has to find this information directly from the model used
in the Pricing Staff to determine the premium. Generally this approach is valid for
personal line guarantees and/or for product priced using actuarial methods. In order
to define and solve a pricing problem, Pricing Staff will have to study the random
variable (r.v.) Aggregate Claim Amount (ACA):

ACA =
N∑

i=1

Yi. (1)
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WhereN is the r.v. number of claims and Y the r.v. amount of claim. In [4, 6] and [8],
it is demonstrated that, if Yi for i in (1, . . . ,N) are independent and identically
distributed, the premium P is equal to:

E(ACA)=E(N) ·E(Y)= P. (2)

Observing the historical number and amount of the incurred claims summarized
for each risk profile (i.e. insured), Risk Management should set a real world global
level of those figures, according with the Actuarial Function. The biggest difference
with respect to the calculation of the premium concerns the time horizon. Actually
Risk Management have to determine a SCR in one-year horizon and not at ultimate
cost. For this reason, we update the observed incurred amount of claim to reach
the ultimate one-year view at policy level (ACA1−yr ). Article 122 of the Solvency
Directive (see [5]) allows the (re-) insurance undertaking to use a different time
period or risk measure to calculate the Solvency Capital Requirement with a PIRM,
in a manner that provides policy holders and beneficiaries with a level of protection
equivalent. Solution we present in this paper is to calculate:

σPIRM
(prem,lob) = σ(ACA1−yr ). (3)

Two pricing models are used to identify the moments of estimated ACA1−yr for
each insured: Generalized Linear Model (GLM) and Generalized Additive Model
(see [7, 9] and [10] for more details). Process we follow to model the ACA1−yr
with GAM consists of two parts: a non-parametric fitting for all the risk factors to
understand what are the regressors distributed not linearly against to ACA1−yr and
a semi-parametric step in which the regressors identified before are fitted without
an assumption about the error structure, whilst all other rating factors are fitted with
the same assumption of GLM: Poisson distribution for the r.v. N number of claims
(i.e. frequency) and Gamma distribution for the r.v. Y the r.v. amount of claim (i.e.
severity). Within this probabilistic framework, assuming independence between r.v.
N and Yi , the convolution between the frequency and severity models is distributed
as a Gamma under a Poisson compound process (see [4] and [8]). Extending the
previous formula, the solution we present in this paper becomes:

σPIRM
(prem,LoB) = σ(ACA1−yr )=

√
E(ACA1−yr )2

φ
(4)

where φ is the scale parameter (GLM and GAM calculate this parameter when fit
the ACA1−yr ). To appreciate the differences between market-wide parameters, USPs
and PIRM, we develop a case study for an hypothetical MTPL portfolio for cars:
a large number of constraints have been considered in out IT procedure in order to
define risk profiles with simulated numbers and amounts of claims coherent with
the statistics of the Italian Market (see [1]). According this procedure, we define a
portfolio of a medium size Italian company, assuming it was authorized from Su-
pervisory at least 15 years ago and we set also the global level in one-year horizon
of amount of claims for each risk profile underwritten between 2009–2011. Fitting
a non-parametric GAM, only the policy duration is distributed not linearly against
to ACA1−yr , both in frequency (N ) and severity (Y ) models. Furthermore, after the
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Table 1 Summary of results

Market-Wide USP-Met. 1 USP-Met. 2 USP-Met. 3 GLM GAM

10.0 % 8.0 % 7.8 % 9.1 % 4.0 % 3.9 %

convolution between frequency and severity model, assuming Gamma distribution,
GAM it seems to be the candidate PIRM. However, GLM produces results very
close to GAM and, for this reason, we will present below the volatility of the Pre-
mium Risk for both models with a comparison with the three QIS5 methods (see
Table 1).

Due to the correlation between Premium and Reserving risk (see [2]), we cannot
affirm that GLM or GAM can reduce the SCR for the Underwriting Risk for every
company, but PIRMs allow a considerable saving for this (hypothetical) Insurance
Company considering only Premium Risk. PIRMs have to be submitted for supervi-
sor pre-approval and so are more onerous in terms of resources and costs respect to
Standard Formula or USPs, but in this paper we would remark the opportunity under
a PIRM that a company could create a joint approach between Pricing Staff, Actuar-
ial Function and Risk Management in order to define and monitor the underwriting
risk and/or which are exposed to, strictly linked to SCR definition.
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The Solvency Capital Requirement Management
for an Insurance Company

Mariarosaria Coppola and Valeria D’Amato

Abstract Longevity risk plays a central role in the insurance company management
since only careful assumptions about future evolution of mortality phenomenon al-
lows the company to correctly front its future obligations. According to Solvency II
longevity risk represents a sub-module of the underwriting risk module in the regu-
latory standard formula. In this paper we examine the adequacy of the shock’s struc-
ture suggested by the standard formula studying its impact on the solvency capital
requirements and liabilities at different ages. In particular, we propose an alterna-
tive to the regulatory standard model represented by a flexible internal model. The
innovative approach hinges on a stochastic volatility model and a so-called coherent
risk measure as the expected shortfall. An empirical analysis is provided.

Keywords Solvency capital requirement · Longevity risk · Longevity shocks ·
Expected shortfall

1 Introduction

The dynamic management process of an insurance company business is affected
by many different kinds of risks. In particular, in the case of life insurance we can
recognize two main risks: the investment risk and the demographic risk. The for-
mer derives by the random fluctuations of the financial market. The latter can be
split into insurance risk, due the random deviation of the number of deaths from
its expected value, and longevity risk deriving from the improvement in mortality
rates. Longevity risk plays a central role in the insurance company management
since only careful assumptions about future evolution of mortality phenomenon al-
lows the company to correctly front its future obligations. Longevity risk represents
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a sub-module of the underwriting risk module in the Solvency II standard formula.
According to this formula Solvency Capital Requirement for Longevity Risk (SCR-
Long) should be calculated as the change in the net asset value (NAV) due to a
pre-specified longevity shock. This shock is actually represented by a 20 % per-
manent reduction of mortality rates for each age and contract linked to longevity
risk. To correctly calculate the solvency capital requirements we evaluate at the be-
ginning of each year the amount of capital that the insurer need to meet its future
obligations year by year till the contract will be in force. We examine the adequacy
of the shocks structure suggested by the standard formula studying its impact on the
SCRLong and liabilities at different ages. A constant reduction of mortality rates for
all ages could cause a result of underestimation or overestimation of longevity risk
changing with the different considered ages. We discuss about a framework based on
an age-dependent longevity shock. It seems to be the only way allowing the insurer
to correctly calculate the solvency capital requirement to front its future obligations.
We propose an alternative to the regulatory standard model represented by a flexible
internal model. To avoid biased allocation of capital the mathematical formulation
of the problem considers that the liabilities of the life insurance company are related
to the longevity phenomenon volatility and the volatility evolution is described by
an appropriate stochastic process. The innovative approach hinges on the stochastic
volatility model and a so-called coherent risk measure as the expected shortfall.

The layout of the paper is organised as follows. In Sect. 2 a stochastic model for
representing the volatility of the longevity shocks is proposed. Section 3 is devoted
to some remarks on the innovative volatility-adjusted internal model.

2 The Longevity Shock Model

One of the main management problems that actuaries have to front is the determina-
tion of the Solvency Capital Requirements, which represents the main contribution
in the Solvency II framework. The SCR is set up to prevent policyholders against
unforeseen losses [2]. According to this regulation, the SCR can be computed by
a standard formula or an internal model. The basic principle is that the SCR is de-
termined as the 99.5 % Value at risk (VaR) of the Available Capital over one-year
time horizon [1]. The SCR for longevity risk under Solvency II standard formula is
defined as the net change in Net Asset Value (NAV) due to a permanent longevity
shock equal to 20 % of the mortality rates for each age under a specific survival sce-
nario at time t = 0. The adequacy of the one-off shock structure that is equal for all
ages and maturities appears to be less appropriate than a gradual change in mortality
rates. In particular, some authors like [6] come to conclusion that the shock scenario
referred to by the standard formula can be far away from the actual experience of the
insurer, and thus may lead to a biased allocation of capital. In light of the previous
considerations, we propose to model the longevity shock as a function of mortality
rate volatility. To this aim, we recognize two kinds of mortality rate volatility: the
time volatility vxj (tj ) and the age volatility vtj (xj ). In the former case, mortality
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rate volatility expresses the variability of mortality as the time varies. In the latter
one, it represents the variability of mortality as the age varies. Furthermore, in a
dynamic approach of the longevity phenomenon, the shock also depends on the cal-
endar year. On the basis of these issues, we suppose that the mortality rate volatility
evolution is described by the stochastic process Vt and the longevity shock LS is
given by:

LS = f (Vt , t) (1)

resulting as a function of the stochastic mortality rate volatility Vt and the time t .
Let us suppose the PDE for longevity shock is:

∂LS(v, t)

∂t
+ a(v, tj )

∂LS(v, t)

∂v
+ 1

2
b2(v, t)× ∂2LS(v, t)

∂v2
= 0 (2)

being LS a solution of the deterministic PDE, under the terminal condition:
LS(v, T ) = h(v) ∀v ∈ R, where a(v, t), b2(v, t) : [0, T ] × R → R, h(v) : R → R

are given functions such that {Vt }t≥0 is the solution to the SDE:

dVs = a(Vs, s)ds + b(Vs, s)dz(t) ∀s ∈ [t, T ] (3)

being dz(t) a Wiener process and Vt = v.
According to Feynman-Kac theorem if: E[∫ T

t
|b(Vs, s) ∂∂vLS(Vs, s)|2 ds] < ∞

the solution to PDE has the following form:

LS(t, v)=E
[
h(Vt )|Vt = v

] ∀(t, v) ∈ [0, T ] ×R. (4)

Formula (4) represents the stochastic evolution in time of the mortality rate
volatility in the general case. It can be characterized in specific different way. For
example we can consider that it is governed by an Ornstein-Uhlenbeck process as
in [8] and [7], so we can rewrite (4) as: dVs = −δ(Vs −Θ)ds + kdz(t). Alterna-
tively we can suppose that the mortality rate volatility is described by the square-root
process as in [4]: dVt = k[ϑ − Vt ]dt + σ

√
Vtdz(t).

The Expected Shortfall (ES) allows to determine the expected loss incurred in
the α =A % [3] worst cases of our portfolio. It is given by:

ESα = 1

α

∫ α

0
VaR1−γ (X)dγ. (5)

In our case X represents the loss variable defined as follows:

X =
(

BELt − CFt
1 + i(t − 1, t)

)

− BELt−1 (6)

where CFt denotes the company’s stochastic cash flow at time t , and BELt is the
best estimate of liabilities at time t .

3 Remarks

Insurance companies allocate capital through their yearly budgeting process. It de-
pends on international guidelines and internal decisions about different lines of busi-
ness. To achieve an effective, dynamic and forward-looking allocation of capital a
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consistent approach is required. A consistent approach does not often correspond to
the standard model proposed in Solvency II. Under Solvency II, the capital require-
ments are evaluated for the separate risk classes. In particular, the capital charge
for longevity risk results by the net change in Net Asset Value due to a constant
longevity shock equal to 20 %. The empirical evidences show an age-dependent
shock which highlights the structural shortcoming of the standard model, suggesting
another more appropriate configuration for calculating the solvency capital require-
ments. The alternative to the standard model is represented by an internal model.
According to Groupe Consultatif CEA Glossary, it consists in a risk measurement
system developed by an insurer to analyse the overall risk position, to quantify the
risks and to determine the economic capital required to meet those risks. To make
effective an insurer’s internal model in risk and capital management it has to be
fully embedded into the risk strategy and operational processes of the insurer [5].
In this research we propose an internal volatility-adjusted model by representing
the longevity shock on the basis of a stochastic volatility model and a coherent risk
measure as the expected shortfall. For the company’s own flexibility, the SCRs are
calculated by using various risk measures, confidence levels and time horizons, so
that other risk indexes not recognized in the regulatory model are properly included.
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Direct Multi-Step Estimation and Time Series
Classification

Marcella Corduas

Abstract The AR metric represents a consolidated model-based approach for time
series classification. The goodness of the final classification may of course be af-
fected by the misspecification of the models describing the observed time series.
This article investigates whether a direct multi-step estimation approach can shed
some more light on time series comparison.

Keywords AR metric · Time series classification · Adaptive estimation · Direct
multi-step estimation

1 Introduction

Direct multi-step estimation (DMS) has attracted considerable attention in recent
years as a strategy for improving multi-step ahead forecasts (see [13] and [4] for
an extensive review). In particular, among the earlier contributions, Tiao and Xu
[16] extended the results by Cox [8] and showed that direct multi-step estimation
can lead to more efficient forecasts when the model is misspecified. In the same
line, Tiao and Tsay [15] discussed the use of multi-step estimation for forecasting
ARFIMA processes. According to those authors, the rationale for the use of multi-
step (adaptive) forecasting is that all statistical models are imperfect representations
of reality and that local approximations are more relevant than global ones when
the objective of the analysis is forecasting. For this reason, different models should
be fitted for each forecast. The debate is still alive and various controversial works
have been published about the performance of iterated and adaptive forecasting [9].

The focus of the present article is on model based classification for time series.
A consolidated approach, proposed by Piccolo ([10, 11]), is based on the compar-
ison of the data generating processes by means of the AR metric. Under suitable
assumptions, the AR metric can be interpreted as a distance measure between the
forecasting functions associated to each generating process. The goodness of the
final classification may of course be affected by the misspecification of the ARIMA
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models describing the observed time series. Thus, it is worth investigating whether
the DMS approach can improve time series comparison. The article is organized as
follows: firstly, the methodology proposed in the present paper is outlined by intro-
ducing the AR metric and its extension. Secondly, an empirical case study and some
remarks about further methodological developments are discussed.

2 An Extension of the AR Metric for ARIMA Models

The class of Gaussian ARIMA processes provides a useful parsimonious represen-
tation (see [3]) for linear time series. Specifically, Zt ∼ ARIMA(p, d, q) is defined
by:

φ(B)∇dZt = θ(B)at , (1)

where at is a Gaussian White Noise (WN) process with constant variance σ 2, B is
the backshift operator such that BkZt = Zt−k , ∀k = 0,±1, . . . , the polynomials
φ(B)= 1−φ1B−· · ·−φpBp and θ(B)= 1− θ1B−· · ·− θqBq , have no common
factors, and all the roots of φ(B)θ(B)= 0 lie outside the unit circle. Moreover, we
assume that the time series has been preliminary transformed in order to improve
Gaussianity, to deal with non-linearities, to reduce asymmetry, and to remove any
outlier or deterministic components.

A distance criterion which compares the forecasting functions of two ARIMA
models given a set of initial values was proposed by Piccolo ([10, 11]). In particular,
assuming that Zt is a zero mean invertible process which admits the AR(∞) repre-
sentations: π(B)Zt = at , the π -weights sequence and the WN variance completely
characterize Zt (given the initial values). Hence, a measure of structural diversity
between two ARIMA processes with given orders, Xt and Yt , can be defined as:

DAR =
√
√
√
√

∞∑

j=1

(πxj − πyj )2. (2)

The WN variances are not included in the distance formulation since they de-
pend on the units of measurement. The criterion has been widely experimented (see
[12] for a review) and the asymptotic properties have been derived under general
assumptions ([5, 7]).

Although the AR metric is defined for ARIMA processes in the following, for
the sake of simplicity, we restrict our attention to stationary processes. Moreover,
we do not consider the problem of order selection (see, for instance, [1, 2, 14])
but we assume that the structure of the time series model does not change with the
forecast horizon.

Most applications of the AR metric involve a large number of time series to be
compared. In such a case, each time series is treated as a realization of an AR(∞)

process which is approximated by an AR(k)model. This approximate representation
of the unknown generating process becomes the basis for the evaluation of the AR
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distance. The selection of the order k is performed by means of an automatic criteria
such as BIC. In this respect, given the initial values, we can consider two approaches
for producing a forecasting function.

The first one relies on the standard least squares approach which estimates the
unknown AR coefficients by minimizing the sum of squares of one-step ahead pre-
diction errors:

∑n−1
t=k (Zt+1 −φ1Zt −· · ·−φkZt−k+1)

2, where n is the number of ob-
servations. This produces a set of estimated coefficients which are used to construct
the h-step forecasts (for h= 1,2, . . . ,m) by repeatedly iterating the autoregression
and by using the plug-in principle to replace unknown values.

In the second alternative, instead, the h-step forecasts are constructed by fit-
ting the autoregression separately for each lead time. Specifically, the AR coeffi-
cients are obtained by minimizing:

∑n−h
t=k (Zt+h − φh1Zt − · · · − φhk Zt−k+1)

2 for
h= 2,3, . . . ,m.

We propose to use the set of estimated coefficients: (φh1 , . . . , φ
h
k ), h = 1, . . . ,m

in order to characterize a time series at each lead time h. Thus, the dissimilarity
measure between Xt and Yt will be defined as:

D̃2
(h) =

k∑

j=1

(
φhxj − φhyj

)2
h= 1, . . . ,m. (3)

Finally, the overall dissimilarity measure can be introduced as:

D̃2
A.(h) =

1

m

m∑

h=1

D2
(h). (4)

The dissimilarity will be zero if and only if, given a set of initial values, the AR
models characterizing the two time series will produce the same adaptive multi-step
ahead forecasts.

3 An Empirical Application

We applied the proposed technique in order to compare the dynamics of 80 time
series consisting of 2000 observations of mean daily discharge of streamflow rivers.
This dataset was deeply discussed by Corduas [6] and represents a useful benchmark
since the dynamics of this type of series may be affected by long memory compo-
nents and thus the use of AR models may lead to misspecified structures. This is
a common situation which may arise in other fields such as the analysis of finan-
cial data. The proposed dissimilarity measure seems to improve the representation
provided by the complete linkage clustering method with respect to the results pro-
duced by using D2

AR. Specifically, the representation shows two large clusters and
remain unchanged for most time series. However, the new dissimilarity measure en-
hances: (i) a larger number of isolated elements; (ii) a number of time series which
move from one cluster to the other due to an improved description of the inertial
components that typically characterize streamflow time series.
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The increased selectiveness of the proposed approach is very promising and pave
the way to further studies. Specifically, the statistical properties of the new distance
criterion have to be investigated in order to make it an effective tool. The main
advantage of the AR metric is, in fact, related to its statistical properties which
allows to set the time series comparison in an inferential framework.

Acknowledgements This work was financially supported by PRIN project 2013-2015: “La pre-
visione economica e finanziaria: il ruolo dell’informazione e la capacità di modellare il cambia-
mento”.

References

1. Bhansali, R.: Asymptotically efficient autoregressive model selection for multistep prediction.
Ann. Inst. Stat. Math. 48, 577–602 (1996)

2. Bhansali, R.J.: Parameter estimation and model selection for multistep prediction of a time
series: a review. In: Gosh, S. (ed.) Asymptotics, Nonparametrics, and Time Series, pp. 201–
258. CRC Press, Boca Raton (1999)

3. Brockwell, A.P.J., Davies, R.A.: Time Series: Theory and Methods, 2nd edn. Springer, New
York (1991)

4. Chevillon, G.: Direct multi-step estimation and forecasting. J. Econ. Surv. 21, 746–785 (2007)
5. Corduas, M.: La metrica autoregressiva tra modelli ARIMA: una procedura in linguaggio

GAUSS. Quad. Stat. 2, 1–37 (2000)
6. Corduas, M.: Clustering streamflow time series for regional classification. J. Hydrol. 407, 73–

80 (2011)
7. Corduas, M., Piccolo, D.: Time series clustering and classification by the autoregressive met-

ric. Comput. Stat. Data Anal. 52, 1860–1872 (2008)
8. Cox, D.R.: Prediction by exponentially weighted moving averages and related methods. J. R.

Stat. Soc. B 23, 414–422 (1961)
9. Marcellino, M., Stock, J.H., Watson, M.: A comparison of direct and iterated multistep AR

methods for forecasting microeconomic time series. J. Econom. 135, 499–526 (2006)
10. Piccolo, D.: Una topologia per la classe dei processi ARIMA. Statistica XLIV, 47–59 (1984)
11. Piccolo, D.: A distance measure for classifying ARIMA models. J. Time Ser. Anal. 11, 153–

164 (1990)
12. Piccolo, D.: The autoregressive metric for comparing time series models. Statistica LXX,

459–480 (2010)
13. Proietti, T.: Direct and iterated multistep AR methods for difference stationary processes. Int.

J. Forecast. 27, 266–280 (2011)
14. Shibata, R.: Asymptotically efficient selection of the order of the model for estimating param-

eters of a linear process. Ann. Stat. 8, 147–164 (1980)
15. Tiao, G.C., Tsay, R.S.: Some advances in non-linear and adaptive modelling in time-series

analysis. J. Forecast. 13, 109–131 (1994)
16. Tiao, G.C., Xu, D.: Robustness of maximum likelihood estimates for multi-step predictions:

the exponential smoothing case. Biometrika 80, 623–641 (1993)



Alternative Assessments of the Longevity Trends

Valeria D’Amato, Steven Haberman, Gabriella Piscopo, and Maria Russolillo

Abstract The improvement of the longevity trend constitutes a great challenge for
society. The long-term social and economic impact on health and care services as
well as on the provision of pensions, annuities and insurance requires to accurately
understand the uncertainty in the future evolution of life expectancy. The most pop-
ular and widely used model for projecting longevity is the well-known Lee Carter
model. This study considers recent model enhancements in the present setting by
comparing their main benefits and drawbacks.

Keywords Lee Carter model · Variance reduction techniques · Sieve bootstrap ·
Vector auto-regression

1 Background

Over the last 150 years there has been an improvement in mortality for adults and
a decrease most significantly impacting the elderly. This evolution is observable in
the majority of industrialised countries, y looking at the data available at the Human
Mortality Database (HMD [7]). In Italy, males have realised an average annual gain
of 3 months or a quarter of life expectancy at birth since 1960; and 4.2 months on the
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last ten years [2]. Other trends are also emerging, such as the cohort effect, which is
especially evident in the United Kingdom where the generation born between 1925
and 1945 has experienced impressive improvements in longevity, with improvement
rates well above those born in previous generations, and even those born afterward.
This cohort effect is not homogeneous across countries or periods. The most popular
approaches in the actuarial field is the Lee-Carter model ([8]; hereafter LC). This
model has been extended to capture the main features of the dynamics of mortality
rates as in [3] and in [9–12].

Nevertheless, it is important to quantify the uncertainty in projections through
the computation of prediction intervals. In order to improve the predictions of sur-
vival probabilities we propose different stochastic approaches represented in the LC
framework by remarking the main advantages and critical issues of each of them. In
particular we develop integrated Variance Reduction Techniques (VRTs), discussing
the main features of the advances. In Sect. 3 we stress the main advantages in com-
parison with a dependence-based approach in the Lee Carter setting (as proposed
in [6]).

2 Methodological Approaches

Among the methods that are commonly used for improving a simulation process on
the speed and efficiency, i.e. the VRT’s, the stratified sampling is a multiple steps
approach where basic idea behind is to take advantage from the a-priori information.
The a-priori information is used to select the stratification variable for performing a
significant grouping of the elements of the available dataset into a disjoint subsets
of the whole space, the so-called strata, from which the sample was drawn. The
determination how many strata are suitable corresponds to the question whether an
advantage from stratification with the chosen variable can be expected at all.

Let consider the case of the a rectangular mortality data array (dxt , ext ), compris-
ing the numbers of deaths, modeled as independent Poisson responses dxt , being ext
the exposures to the risk of death, in combination with the log-bilinear structure for
the force of mortality

mxt = exp(αx + βxκt ) (1)

where respectively αx represents the general shape of the age-specific mortality
profile and βx the age-specific component indicating which rates decline rapidly
and which slowly over time in response to changes in time-varying parameter κt .

In the present setting, the number of groups (strata) to be considered has to be de-
termined by the characteristics of the array under consideration. In particular strata
per single ages can be considered. The idea behind is to integrate basic VRTs in
order to take advantage of their respective complementary properties, leading to a
variance reduction of the estimates wider than using the single constituent tech-
nique. Thus, the integrated VRT’s can achieve high efficiency gains even though the
respective constituent basic VRT’s are not applied under optimal conditions. Rela-
tively little work has been directed towards integrating some of VRT’s in an overall
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scheme that can exploit various sources of efficiency improvements simultaneously
[1], while they have not been used so far in the context of LC projections. In particu-
lar, we produce stratified bootstrap frames using the stratified sampling techniques.
Then, for each stratified bootstrap frame the antithetic frame is generated. The sim-
ulation scheme works as follows. First, the stratification is performed. Then the
semi-parametric bootstrap is implemented, for each stratum in the so-called origi-
nal samples and simultaneously in the antithetic one. We observe that the antithetic
estimator is obtained by combining the two estimators: the original and the anti-
thetic as well. In the event of negative correlation between the estimators, arising
from the samples being dependent, a variance reduction is realized. To exploit var-
ious sources of efficiency improvement simultaneously, we arrange the following
scheme:

1. Stratification process of the number of deaths at age x at time t , dxt , into rela-
tively homogeneous subgroups according to the Stratified Sampling Technique
(SS);

2. Bootstrapping m = 1,2, . . . ,M samples from each of the strata simulating re-
sponses d∗

xt drawn from Poi(d̂xt ). We will refer to m = 1,2, . . . ,M as Original
Samples;

3. Generation of the respective highly negative correlated m = 1,2, . . . ,M Anti-
thetic Samples for each of the strata, according to the Antithetic Variables Tech-
nique (AV);

4. Fitting the log-bilinear structure to d∗
xt for obtaining the model parameter vector

θ∗
o = (α̂∗

x , β̂
∗
x , κ̂

∗
t ) for m = 1,2, . . . ,M original samples and simultaneously for

the respective antithetic samples θ∗
A = (α̂∗

x, β̂
∗
x , κ̂

∗
t );

5. Projecting mortality estimates on the basis of the θ∗ = (α̂∗
x , β̂

∗
x , κ̂

∗
t ) derived from

the application of the antithetic reduction properties.

Synthetically, the simulation scheme works as follows. First, the stratification is
performed. Then the semi-parametric bootstrap is implemented, for each stratum in
the so-called original samples and simultaneously in the antithetic one. We observe
that the antithetic estimator is obtained by combining the two estimators: the original
and the antithetic as well. In the event of negative correlation between the estimators,
arising from the samples being dependent, a variance reduction is realized.

Nevertheless, the interactions between age and time is neglected in the proposed
algorithm. As shown in [5, 6] when the dependency risk is ignored, an inefficient
risk management is obtained.

The predictor structure proposed in [6] takes up the idea of first fitting Lee Carter
parametric model, and then re-sampling the centred residuals, according to an au-
toregressive approximation for generating bootstrap replications of the data.

3 Remarks

Following [4], a significant key criterion for detecting whether any stochastic mor-
tality model is “suitable” or not “forecast levels of uncertainty and central trajec-
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tories should be plausible and consistent with historical trends and variability in
mortality data”.

The aforementioned algorithms represent enhancements in LC respect. They pro-
duce more accurate confidence intervals (CI’s) for longevity projections. The VRTs
approach leads to narrower CI’s, even if a smaller number of sources of risk is taken
into account. The risk management from insurance companies point of view could
be less effective.

On the contrary when the overall sources of risk are taken into account, including
the dependency risk, the uncertainty measurement is more a reliable. Nevertheless
the CI’s will be wider.

More details about the impact of the approaches under consideration on the ac-
tuarial evaluations will be given in the extended version of this short paper.
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Combinatorial Nonlinear Goal Programming
for ESG Portfolio Optimization and Dynamic
Hedge Management

Gordon H. Dash Jr. and Nina Kajiji

Abstract Compared to their fundamentally weighted counterparts naively diver-
sified investment portfolios that embrace environmental, sustainability and gover-
nance (ESG) factors are known to experience enhanced long-term investment per-
formance. This paper introduces a combinatorial nonlinear multiple objective opti-
mization model to diversify the short-term ESG portfolio. The expectation of long-
term wealth creation from an ESG portfolio is also examined. This latter investment
objective is explored by implementing a discrete period ESG portfolio re-balancing
with attached dynamic hedging. Post simulation, we report comparatively higher
Sharpe ratios and lower VaR metrics for the multiobjective and dynamically hedged
ESG portfolio investment style.

Keywords Combinatorial goal programing · ESG-factor portfolios · Hedging

1 Introduction

The accessibility of data on firm-wide ESG-factors presents investors with the op-
portunity to refine their portfolio diversification goals to better achieve long-term
value creation. The ESG investment approach offers a direct benefit to non-profit
organizations. Largely, non-profit organizations exist to offer sustainable social and
environmental value to the public. This goal is clearly consistent with the objectives
of the ESG-factor approach to investing and long-term value creation. As a local
non-profit organization, Girl Scouts of Rhode Island (GSRI) derives its long-term
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view on service delivery and its adoption of sustainable investing (SI) from the phil-
anthropic guidelines of its global parent, the World Association of Girl Guides and
Girl Scouts.

The purpose of this research is to demonstrate how the portfolio investment deci-
sion faced by GSRI can be specified as a short-term ESG-factor based combinatorial
nonlinear multiple objective optimization (MINLGP) model. We also examine the
characteristics of long-term risk mitigation by subjecting the short-term MINLGP
portfolio to an optimally derived dynamic futures hedge.

2 Literature Review

Contemporary research reports that companies with high ESG scores tend to have
less company-specific risk ([1, 7]). A broader examination of extant research shows
companies with an adherence to ESG criteria contribute significantly to the overall
reduction in portfolio risk ([5, 6]). However, for many non-profit organizations, state
investment authorities and sovereign wealth management firms, the behavioral bias
inherent in SI strategies presents a key barrier to practical implementation. This de-
terrent raises important questions about the steps these professional fund managers
can take to gain the long-term benefits offered by SI and ESG-factor investing. An
informed response requires institutional investment policymakers to: (a) adopt a
greater breadth in the development of an approved investment list, and (b) increase
the scope of investment policy in a manner that unites short-term risk mitigation
with a long-term value creation model—a model that embraces factors beyond the
traditional financial valuation method. Urwin [9] argues that his five-factor approach
to SI produces two important advantages: (a) lower operational costs, and (b) an in-
vestor’s objective function that is more aligned with (long-term) inter-generational
equity management. The precepts in [9] are consistent with the MINLGP specifica-
tion proposed in this research.

3 Combinatorial Nonlinear Goal Programming

Under the SI approach to diversification it is not always possible to satisfy all in-
vestment objectives simultaneously. For this reason alone the modeling process pre-
ferred for SI factor diversification conforms to recent advances in convex nonlinear
multiple objective modeling (for a review, see [3, 8] and [4]). Modeling the Sharpe
portfolio diversification problem by MINLGP is a three-step application. The steps
are: (1) after applying negative screens, define the set of investable securities; (2) add
the goal-directed constraint set to the MINLGP model; and (3) choose an action for
the futures hedge, F .

The completed MINLGP is stated as:

MINLGP = MinZ = [P1
(
h−, h+),P2

(
h−, h+), . . . ,PL

(
h−, h+)]

S.T. Ax +Bf + h− − h+ = b.
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Where: x,f,h−, h+ ≥ 0, f ∈ ZF , and, x ∈ �n−F .
Here m is the number of goal constraints such that A ∈ �mxn, B ∈ ZmxF ,

b ∈ �m, and Z quantifies the attainment of L hierarchical levels such that
P1(h

−, h+) > P2(h
−, h+) > · · · > PL(h

−, h+). When necessary, scaling effects
applied to Pl(h−, h+) are defined by the nature and numerical definition of the
separable goal programming model. We note that in the absence of hedging con-
straints (i.e., F = 0) we obtain the solution to the unconstrained convex Sharpe
goal program. Under this specification b is the m-component vector of goal targets
while h− and h+ are m-component column vectors that capture goal under- and
over-achievement, respectively. Lastly, we define the optimal solution to the convex
MINLGP, x∗, as the one that satisfies all hierarchical levels as much as possible. The
convexity property of the MINLGP permits adding the necessary if-then constraint
to control the dynamic trading of the contingent claim contract. Throughout, we
refer to the formulation where F > 0 as the “dynamically hedged Sharpe MINLGP
optimization.”

4 Application and Results

In this section of the paper we model the short-term ESG diversification problem as
a single-period Sharpe efficient portfolio with Nf contingent claims attached. The
model is applied after obtaining historical daily price data for n instruments, n ∈
{1, . . . ,75}, and the market proxy over the period from November 1, 2012 through
November 31, 2012, inclusive. Next we formulate relevant goal constraints.

The Sharpe MINLGP approach to mean-variance minimization relies upon hi-
erarchical goal equations to control efficient asset allocation per unit of systematic
portfolio risk (for details see [4]). The model proposed in this research augments
the basic Sharpe MINLGP objective function to include ESG factors. Additionally,
integrability relations are added to the canonical specification in order to open the
dynamic hedge with an optimal number of futures contracts (Nf ). For post simula-
tion comparative analytics we follow [2]. Here we compare the long-term risk-return
differences between ESG and naively diversified portfolios. For a designated return
level, preliminary results report a small dollar loss of approximately $14,000 for
the unhedged MINLGP GSRI portfolio. The equivalent naively diversified portfolio
experience a loss of just under $20,000. As expected, interim period hedging pro-
duced wealth gains that more than offset reported investment losses. The gains from
dynamically hedging the GSRI portfolio totaled $34,299; an outcome that produced
lower VaR metrics and higher Sharpe ratios across the simulated time periods.

5 Summary and Conclusions

The research presented in this paper was inspired by non-profit investors who seek
long-term consistency in risk-adjusted performance. With a clear view of the phil-
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anthropic role that guides non-profit decision-making, this research identified a fea-
sible investment guide for these fund managers. By relying on ESG-factor opti-
mized and dynamic interim period hedging, the research demonstrated a clear risk-
mitigated advantage for the non-profit GSRI. Except for low rate of return port-
folios, the results of applying the short-term MINLGP model across consecutive
re-balancing periods in conjunction with interim period hedging produced superior
risk-adjusted performance metrics. These results amplify the usefulness of interim
period hedging in ESG-factor based sustainable investing.
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On the Geometric Brownian Motion
with Alternating Trend

Antonio Di Crescenzo, Barbara Martinucci, and Shelemyahu Zacks

Abstract A basic model in mathematical finance theory is the celebrated geometric
Brownian motion. Moreover, the geometric telegraph process is a simpler model to
describe the alternating dynamics of the price of risky assets. In this note we con-
sider a more general stochastic process that combines the characteristics of such
two models. Precisely, we deal with a geometric Brownian motion with alternating
trend. It is defined as the exponential of a standard Brownian motion whose drift
alternates randomly between a positive and a negative value according to a general-
ized telegraph process. We express the probability law of this process as a suitable
mixture of Gaussian densities, where the weighting measure is the probability law
of the occupation time of the underlying telegraph process.

Keywords Alternating counting process · Exponential random times · Occupation
time · Telegraph process

1 Introduction

A customary assumption in mathematical finance theory is that the price of a risky
asset evolves according to the time-homogeneous geometric Brownian motion. Var-
ious other models can be employed in order to capture the alternation between in-
creasing and decreasing trends observed often in true markets. A basic model char-
acterized by alternating trend is the telegraph process. This is used to describe the
random motion of a particle that runs with finite speed on the real line and alter-
nates between two possible directions of motion at random time instants driven by a
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homogeneous Poisson process. See [7] for the explicit form of the probability law,
which is governed by the telegraph equation, and for various other results on such
random process. We refer to the book [6] for a comprehensive treatise on this topic.

Among the several generalizations of the telegraph process considered in the lit-
erature we recall the geometric telegraph process. It was proposed in [2] as a model
in mathematical finance. Such a process has bounded variations and exhibits in-
creasing and decreasing trends alternating according to a suitable counting process.
It was improved in [8] and [9] by inclusion of jumps, which avoid arbitrage oppor-
tunities thanks to the martingale property.

Aiming to deal with a more flexible stochastic process of interest in financial
modeling, in this note we investigate a geometric Brownian motion with alternating
trend. This is defined as the exponential of a Brownian motion whose drift alternates
randomly between a positive and a negative value (see [3]), according to a gener-
alized telegraph process. In Sect. 2 we provide the probability law of this process,
expressed as a suitable mixture. As example, we consider two cases when the times
separating consecutive trend changes have exponential distribution with constant
and linear rates, the latter case being stimulated by studies in [1] and [5].

2 The Model and Its Probability Law

We assume that the price of a risky asset is described by the stochastic process

S(t)= s0 exp
[
Y(t)+ σB(t)

]
, t ≥ 0, (1)

with σ > 0, and where {Y(t)} is a generalized (integrated) telegraph process, and
{B(t)} is a standard Brownian motion. Let Y(t) and B(t) be independent pro-
cesses, and let Y(0) = B(0) = 0, so that S(0) = s0 > 0 is the price at time 0.
The telegraph process Y(t) describes the alternating trend of S(t), with velocities
c > 0 and −v < 0, which alternate in time according to an independent alternat-
ing counting process N(t) governed by independent random times {U1,U2, . . .} and
{D1,D2, . . .}. The random time Uk (resp.Dk) describes the k-th random period dur-
ing which Y(t) has velocity c (resp. −v). We denote by V (t) the velocity of Y(t)
at time t ≥ 0, and assume that initially it is equal to c or −v with equal probability,
i.e. P {V (0) = c} = P {V (0) = −v} = 1

2 , with V (0) independent from B(t). Thus
we have:

Y(t)=
∫ t

0
V (s)ds, V (t)= c− v

2
+ sgn

(
V (0)

)c+ v

2
(−1)N(t), t > 0; (2)

see [3] for other details. In particular, the probability law of S(t) can be expressed
in terms of the distribution of the following occupation time:

W(t) :=
∫ t

0
1{V (s)=c}ds, t > 0, (3)

which is the fraction of time during which Y(t) had velocity c in [0, t]. Set
FD1(t) = P(D1 > t) and FU1(t) = P(U1 > t). Moreover let f (n)U and F (n)U (resp.
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f
(n)
D and F (n)D ) be respectively the density and the distribution function of U(n) :=
U1 + · · · + Un (resp. D(n) := D1 + · · · + Dn). Recalling Theorem 3.1 of [3], the
probability law of W(t) has a discrete mass on points 0 and t such that

P
[
W(t)= 0

]= 1

2
FD1(t), P

[
W(t)= t

]= 1

2
FU1(t), (4)

and a density ψ(w, t) := ∂
∂w
P [W(t)≤w] expressed in series form as

ψ(w, t)=
+∞∑

n=1

[
F
(n)
U (w)− F

(n+1)
U (w)

]
f
(n)
D (t −w)

+
+∞∑

n=0

[
F
(n)
D (t −w)− F

(n+1)
D (t −w)

]
f
(n+1)
U (w)

+
+∞∑

n=0

[
F
(n)
U (w)− F

(n+1)
U (w)

]
f
(n+1)
D (t −w)

+
+∞∑

n=1

[
F
(n)
D (t −w)− F

(n+1)
D (t −w)

]
f
(n)
U (w), 0<w < t. (5)

We are now able to evaluate the distribution function of process S(t). Recall that
Eqs. (2) and (3) yield Y(t)= (c+ v)W(t)− vt , for t > 0. Hence, making use of (1)
and conditioning on W(t) we have, for x > 0 and t > 0,

P
[
S(t)≤ x

]=
∫ t

0
Φ

(
1

σ

[

ln
x

s0
− (c+ v)w+ vt

])

dFW(t)(w),

where as usual Φ(·) denotes the standard normal distribution. By differentiation
and recalling Eqs. (4) and (5) we obtain the probability density of S(t), say p(x, t),
given by the following mixture of the standard normal density φ(·), for x > 0 and
t > 0:

p(x, t)= 1

2
FD1(t)φ

(
1

σ

(

ln
x

s0
+ vt

))

+ 1

2
FU1(t)φ

(
1

σ

(

ln
x

s0
− ct

))

+ 1

σx

∫ t

0
ψ(w, t)φ

(
1

σ

[

ln
x

s0
− (c+ v)w+ vt

])

dw. (6)

As a case study we assume that the random times Uk and Dk , k = 1,2, . . . , have
exponential distribution with parameters λk and μk , respectively, and consider the
two instances with (i) constant parameters λk = λ and μk = μ, and (ii) linear param-
eters λk = λk and μk = μk. See Propositions 5.1 and 5.4 of [3], where the density
ψ(w, t) has been evaluated in such two cases. This allows to apply a numerical
procedure able to obtain some plots of the density (6) given in Fig. 1.

We remark that a simulation-based approach useful to face with the first-passage
time problem through constant boundaries for S(t) is provided in [4].

In conclusion, we point out that (1) can be viewed as a starting point for more
tight models. Indeed, the problem of existence of arbitrage opportunities for (1) will
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Fig. 1 Density (6) for t = 1,
σ = 1, s0 = 1, c= 1, for
exponential times Uk and Dk
with (i) constant rates and
(ii) linear rates, with
λ= μ= 1

be the object of a future investigation, aimed to prove that S(t) is a martingale under
specific assumptions, for instance modifying the process by inclusion of jumps.
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Empirical Evidences on Predictive Accuracy
of Survival Models

Emilia Di Lorenzo, Michele La Rocca, Albina Orlando, Cira Perna,
and Marilena Sibillo

Abstract The paper focuses on a stochastic proportional hazard model depicting
the evolution of the force of mortality; in particular the real data are plotted against a
specific survival model by means of the stochastic process that describes their ratio.
The predictive accuracy of the survival model is investigated, since, by means of the
calibrated “ratio process”, its forecasting skills are assessed. A statistical analysis is
developed in order to test the capacity the assumed survival model has to follow the
real behavior of the observed data.

Keywords Survival models · Longevity risk · Parametric bootstrap

1 Introduction

The mathematical models describing the evolution of survival still leave many open
problems, being hard a good fitting of the real data. By virtue of the socio-economic
importance of the phenomenon they represent, the issue is pregnant in several prac-
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tical applications. In fact, the recent decades are witnessing a continuous decline in
the mortality rate and, simultaneously, a marked phenomenon of rectangularization
and expansion of the survival function. Within the socio-economic development, the
current guidelines aim at exploiting the survival trend as competitive leverage, and,
at the same time, they address to protect the rights of the elderly, as consumers. In
this context, it is necessary to frame a number of financial instruments, particularly
with regard to the pension sector. The aim of the paper is in line with the need to
understand if existing survival models are able to represent the real behavior of the
survival phenomenon. In the paper we consider the stochastic proportional hazard
model proposed in [1] for the evolution of the force of mortality; in particular the
real data are plotted against a specific survival model by means of the stochastic
process that describes their ratio. We model the ratio by means of a CIR stochastic
process and following this guideline, the predictive accuracy of the survival model
can be developed, since, by means of the calibrated ratio process, we can assess its
forecasting skills. The idea, with strong applicative impact, is to pick out where,
in what age interval, for what population characteristics and so on, the predictive
capacity of the chosen survival model can be judged good.

2 The Model

Let us consider a person aged x (say (x)). According to the model proposed by Di
Lorenzo et al. in 2006 (cf. [1]), we consider a representation of the mortality rates
based on a stochastic model apt to involve properly the observed data. In partic-
ular, we consider that the force of mortality dynamic follows a stochastic process
obtained by modifying the deterministic anticipated realizations of the force of mor-
tality by means of a stochastic process.

Let μx+t the survival model chosen to describe the future behavior of the mor-
tality rates capturing the survival improvement due to longevity. The idea is to deep
the capability the process μx+t has in repeating the observed data. The evolution in
time of the real survival phenomenon (observed data) is described by the following
model:

Bx,t = μx+t Yt , (1)

where Yt is the process involved by the stochastic differential equation:

dYt = α(γ − Yt )dt + σ
√
YtdWt (2)

α, γ and σ being positive constants and Wt a Wiener process. Yt is a continuous
and positive process, which doesn’t reach 0 for 2α ≥ σ 2. As remarked in [1], a good
choice of the deterministic function determines the reversion towards the long term
value of the process with γ = 1; in this sense the long term value coincides with the
position of the process in t = 0, just when its value corresponds to the observation
at the beginning. In that case Bx,t = μx+t and Y0 = 1.

The study focuses on the stochastic ratio Yt = Bx,t
μx+t and develops a statistical

analysis in order to test the capacity the survival function assumed to model μx+t
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has in following the real behavior of the observed data, in particular for the cohort
of interest. The final goal aims at determining, for a specific population cohort of
interest, a proper calibration procedure, which allows, on the basis of (2), to forecast
accurate mortality/survival projections.

3 Parameter Estimation and Bootstrap Inference

Let {Yt }nt=0 be observations from process Yt . Then they satisfy the following discrete
time series model

Yt = e−αδYt−1 + γ
(
1 − e−αδ

)+ εt

where E(εt )= 0, E(εtεs)= 0 ∀t �= s and E(ε2
t )= 1

2σ
2α−1(1 − e−2αδ)Yt−1.

Assuming that εt is Gaussian distributed, pseudo-MLEs can be obtained as
(cf. [4]):

α̂ = −δ−1 log(θ̂1) γ̂ = θ̂2 σ̂ 2 = 2α̂θ̂3

1 − θ̂2
1

(3)

where

θ̂1 = n−2∑n
t=1 Yt

∑n
t=1 Y

−1
t−1 − n−1∑n

t=1 YtY
−1
t−1

n−2
∑n

t=1 Yt−1
∑n

t=1 Y
−1
t−1 − 1

;

θ̂2 = n−1∑n
t=1 YtY

−1
t−1 − θ̂1

(1 − θ̂1)n−1
∑n

t=1 Y
−1
t−1

θ̂3 = n−1
n∑

t=1

{
Yt − Yt−1θ̂1 − θ̂2(1 − θ̂1)

}2
Y−1
t−1.

Inference on the unknown parameters α, γ and σ 2 can be gained by using a
parametric bootstrap scheme.

The empirical distribution functions of these bootstrap replicates can be used to
make an inference on the unknown parameters α, γ and σ 2. Bootstrap confidence
intervals with nominal level 1 − α can be easily obtained by taking as confidence
limits the percentiles of order α/2 and 1 − α/2 of the bootstrap distributions.

4 Results and Final Remarks

The model presented in Sect. 2 has been implemented choosing μx+t modeled by
the Lee Carter stochastic survival function, as in Lee and Carter (cf. [3]). The analy-
sis has been performed on the French total population mortality data got by Human
Mortality database website (cf. [2]). In particular, the Lee Carter parameter estima-
tion has been based on data from 1861 to 1960. The statistical tests on the model
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Fig. 1 Bootstrap percentile confidence intervals, with nominal confidence level equal to 0.95, for
the parameters of CIR models estimated for ages ranging from 25 to 55. Panels 1, 2 and 3 refer,
respectively, to parameters α, γ and σ 2

in (1) have been carried out in the period 1961–2007. Here the inference proce-
dure on the CIR model has been executed for the age range 25–55, considering the
practical motive of this application referred to post retirement insurance covering
purposes. As clearly showed in Panel 2 of Fig. 1, at 0.95 confidence level the inter-
vals around 1 are sufficiently small in the age interval of interest.
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RedES™, a Risk Measure in a Pareto-Lévy
Stable Framework with Clustering

Riccardo Donati and Marco Corazza

Abstract In this communication: (1) we present RedES™, an Expected Shortfall
based risk measure developed in the framework of the Pareto-Lévy stable distribu-
tions with clustering; (2) we apply it to about 3,000 equity stocks. The results show
that RedES™ is able to take into account the fat tail effects in a robust manner.

Keywords RedES™ · Pareto-Lévy stable distributions · Clustering · Equity stocks

1 Introduction

The shape of log-return distributions is crucial for many financial applications, from
risk management to portfolio optimization. In order to detect the “right” distribution
class, instead of performing several empirical analyses, we assume a simple time-
invariance hypothesis, as Mandelbrot did in the 60s of the past century (see, for
instance, [1]). This hypothesis straightly leads to the Pareto-Lévy stable (PLs) dis-
tributions class.

In this communication we first present RedES™, an Expected Shortfall (ES)
based risk measure developed in the framework of the PLs distributions with clus-
tering. Then we apply it to about 3,000 equity stocks.

In short, a distribution is PLs if its form is invariant under addition. The param-
eterization of the class involves four quantities: α, the stability parameter; β , the
skewness parameter; μ, the location parameter; σ , the scale parameter (for PLs-
based models in finance see [2]). Generally, the probability density function (PDF)
of a PLs distribution is not analytically expressible, resulting in some computational
difficulties that have to be carefully managed. Another tricky aspect arises from in-
finite variance.
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2 RedES™ and Its Applications

The construction and the utilization of RedES™ can be itemized as follows:

• First, we test the ability of PLs distributions to fit real log-returns. To this end we
consider the constituents of the NYSE Composite, a stock market index covering
all common stocks listed on the New York Stock Exchange. More than 2,000
stocks constitute this index, about 1,600 from United States (US) companies and
about 400 from non-US companies. Further, we consider the constituents of the
NASDAQ Composite, a stock market index of the common stocks and similar
securities on the NASDAQ stock market. It has more than 3,000 components.
Also in this stock market both US and non-US companies are listed. Our tests
focuses on two time frames: 20 years (07/1991 to 07/2011) for 795 stocks, and
10 years (07/2001 to 07/2011) for 2,233 stocks.

For the considered constituents, we first calculate the daily log-return (plus
dividend yield) time series, the normal best fit, and the PLs best fit using the
maximum likelihood method. Then, we calculate the p-value statistic and we
perform the χ2 test. Finally, we study the quantity g = −Log10(p-value). An
high g value suggests that it is unlikely that the data comes from the considered
theoretical distribution.

In Fig. 1 we graphically report the results for both the time frames. The values
of g associated to the PLs best fit is generally lower than the one associated to the
normal best fit, especially in the tails.

• Then, we investigate the stability parameter α relating it to the industry sector
and, through a Kruskal-Wallis test used as a metric, we cluster all the involved
industry sectors. Four clusters with similar α result. Given this, we build RedES™
as follows: we calculate the log-returns of the investigated time series; for each
of these time series we calculate the best PLs fit with α constrained to its cluster
and we calculate the ES 99 % over that fit.

• Finally, in order to be able to homogeneously compare different risk magnitudes,
we defined the risk class function rc(r) = log2(100|r| + 1), where r is a given
estimation of risk in terms of log-return distribution.

Note that, to the best of our knowledge, both the calculation of the best PLs fit
with α constrained to its industrial sector cluster and the introduction of the risk
class function rc(·) constitute elements of novelty.

Ended this phase, we deal with the following question: is RedES™ able to offer
a reasonably “good” measure of risk even if only short time series are available?

In order to provide an answer, given that we consider as ex-ante “good” risk mea-
sure the StableES 99 % over 20 years, we calculate the errors introduced consider-
ing only a 2 year time window using the following estimators for all the considered
stocks: NormalES 99 % 2 years; StableES 99 % 2 years; RedES™ 2 years. In Fig. 2
we report the PDFs of the differences between each of the later risk measures and
the StableES 99 % over 20 years.

Notice that RedES™ 2 years is very close to StableES 99 % 20 years, unlike Nor-
malES 99 % 2 years and StableES 99 % 2 years. So RedES™ appears appropriate
for ex-ante calculating risk also when only short time series are available.
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Fig. 1 Behavior of the χ2

test for both the considered
time frames

Finally, we consider the difference between the risk classes rc(RedES™ 2 years)
and rc(StableES 99 % 20 years), relating such difference with respect to the market
capitalization of the stocks. In Fig. 3 we graphically report the results.

Fig. 2 PDFs of: NormalES 99 % 2y–StableES 99 % 20y; StableES 99 % 2y–StableES 99 % 20y;
RedES™ 2y–StableES 99 % 20y
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Fig. 3 PDF of rc(RedES™ 2 years)–rc(Stable 99 % 20 years) with respect to the market capital-
ization of the stocks

It is possible to see that RedES™ 2 years is very close to the “true” risk Sta-
bleES 99 % 20 years. Only a few shifts below −1 are observed essentially when
market capitalization is very small.

Note that this robustness of RedES™ with respect to both the time window length
and the market capitalization of the stocks constitute a further element of novelty of
our approach.

3 Some Concluding Remarks

We can conclude that RedES™, a risk measure built in a Pareto-Lévy stable frame-
work with clustering, is able: to correctly estimate risk taking into account the fat
tail effects; to work well also when only short time series are available; to be robust
with respect to the market capitalization of the stocks.
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Run-Off Error in the Outstanding Claims
Reserves Evaluation

Nicolino Ettore D’Ortona and Giuseppe Melisi

Abstract The variability of claim costs represents an important risk component,
which should be taken into account while implementing the internal models for sol-
vency evaluation of an insurance undertaking. This component can generate differ-
ences between future payments for claims and the provisions set aside for the same
claims (run-off error). If the liability concerning the claims reserve is evaluated
using synthetic methods, than the run-off error depends on the statistical method
adopted. This work focuses on measuring the run-off error with reference to claims
reserves evaluation methods applied to simulated run-off matrices for the claims-
settlement development. The results from the numerical implementations provide
us with useful insights for a rational selection of the statistical-actuarial method for
the claims reserve evaluation on an integrated risk management framework.

Keywords Run-off error · Outstanding claims reserves · Stochastic simulation

1 Outstanding Claims Reserve

The random claim settlement regarding the accident year i (i = 0,1, . . . , t) is given
by the sum of a random number of claims, each one subject to a single claim settle-
ment. Since the settlement claimed for every accident usually requires two or more
payments, which can take place during the accident year or the subsequent years,
the aggregated claims cost for every accident year can be represented as follows:

X̃(i)=
t∑

j=0

X̃(i, j) i = 0,1, . . . , t (1)
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where X̃(i, j) represents the amount paid for settlements regarding claims incurred
during the accident year i and settled after j years; t represents the maximum num-
ber of deferment years considered for the total settlement of a single claim.

The random amount required for future settlements regarding claims not yet set-
tled or reported, for each accident year, is given by:

R̃(i)=
t∑

j=t−i+1

X̃(i, j) i = 1,2, . . . , t (2)

The aggregate amount required is then given by the sum: R̃ =∑t
i=1 R̃(i).

2 Introduction to Statistical Methods

The statistical methods for the outstanding claims reserve evaluation consist in the
formulation of a forecasted value of necessary reserve, based on a projected analysis
of the data obtained by the examination of relevant time series. In other words, an
evaluation method provides an estimator R̂ = f (K̃0, K̃1, . . . , K̃t ) of the expected
value for the outstanding claims reserve,1 which depends on the information at dis-
posal K = (K̃0, K̃1, . . . , K̃t ) for each accident year.

The difference between future payments for claims settlements and the amount
of the outstanding claims reserve, evaluated using a specific estimator, gives us the
run-off error. The run-off error for each accident year can be represented as follows:

ẽ(i)= R̂(i)− R̃(i)=
t∑

j=t−i+1

[
X̂(i, j)− X̃(i, j)

]
i = 1,2, . . . , t. (3)

In practice, the run-off error can be measured only after the completion of the claims
settlement process. In this work, we will quantify the run-off error, simulating the
claims settlement process until we obtain all the members of the run-off error for-
mula ẽ(i), i = 1,2, . . . , t .

For this purpose, we represent the random settlements, in each cell of the run-off
matrix, with the following (collective) model:

X̃(i, j)=
Ñ(i,j)∑

k=0

Ỹk(i, j) i, j = 0,1, . . . , t (4)

where Ñ(i, j) represents the total number of claims for the accident year i, settled
during the development year j ; Ỹk(i, j) represents the random settlement for the
claim k incurred during the accident year i and settled after j years.

Between the multiple procedures for the evaluation of outstanding claims reserve
proposed in literature, four of them were chosen for this work, considering their

1In general, for the distribution of the claims outstanding reserve, other than the expected value we
can estimate moments of order higher than 1 or even particular quantiles.
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widespread utilization in the professional environment: the Chain Ladder method
([3–5, 10]), the separation method (arithmetic and geometric) [9], the Fisher-Lange
method and the Bornhuetter-Ferguson method [1].

3 The Results of the Comparative Analysis

For the simulation of the amounts X̃(i, j) we have considered four methods, which
are distinguished for the development rule concerning the claims settlement inside
the run-off triangle.

A comparative analysis was set up for the examination of the run-off error am-
plitude regarding each estimating method, considering different sets of parameters,
which were recursively modified predicting: a different level of inflation, a higher
volatility of the settlement amount, a higher volatility of the disturbing factors char-
acterizing the settlement process, various temporal profiles for the claims develop-
ment. For each set of parameters were generated 4.100 settlement matrices with each
one of the following simulation techniques. The inferior triangle of the future set-
tlements was obtained for each simulated matrix. Therefore, gap indicators between
estimated reserves and effective (simulated) reserves were calculated.

Method of random development factors (Method 1) This method simulates the
run-off matrix through the steps described in [6]. According to the mean square
error criterion, the Fisher-Lange method presents a higher level of preferability.
Analysing the single accident years, we deduce that the Chain-Ladder method pro-
vides a less biased estimator, with the relevant exception of the last accident year.

Method of backward calculated random development factors (Method 2) The
method generates the run-off matrix through the steps described in [6]. The Fisher-
Lange method estimator shows the lower mean square error for both the single acci-
dent year estimation and the whole portfolio estimation. The Chain-Ladder estima-
tor results to be the less biased estimator and shows the lower expected percentage
error.

Method of single settlements (Method 3) This simulative method is ascribable
to the estimation models proposed by Stanard [8] and by Buhlmann, Schnierper
and Straub [2]. The simulating technique appears to be rather coherent in structure,
with the claims development model upon which is based the Fisher-Lange method.
All methods provide estimators with high levels of correlation with the estimated
reserve.

Pentikainen-Rantala method (Method 4) This method operates through the
steps described in [7]. In this case, according to both the expected percentage er-
ror criterion and the dispersion criterion, the geometric separation method presents
the higher level of preferability.
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Table 1 Main results of numerical simulations—Mean Percentage Error

Method Chain-
Ladder

Arithmetic
Separation

Geometric
Separation

Fisher-
Lange

Bornhuette-
Ferguson

Method 1 0.32 % 0.26 % 0.64 % 0.82 % −7.32 %

Method 2 0.16 % −0.37 % −2.01 % 1.15 % −3.74 %

Method 3 0.10 % −0.74 % 0.69 % −0.16 % 0.49 %

Method 4 1.12 % 0.07 % −0.07 % 2.16 % −1.67 %

Table 1 shows the mean percentage error obtained by dividing the mean error of
each estimation method to the estimated value of the claims reserve. These statistics
allow you to know the sign of the error, and then the tendency of the evaluation
methods to overestimate or underestimate the value of the reserve.

The numerical implementation results point out the following:

• the estimating methods produce a lower run-off error if applied to a development
matrix which, despite not respecting some of the probabilistic hypothesis of the
method, provide a settlement distribution according to the mechanism considered
by the estimating model;

• some of the estimating methods despite showing a minor distortion of the reserve
estimation for the entire portfolio, result imprecise in the prediction of the run-off
for single accident years;

• the preferability of the estimating methods did not show particular sensibility to
the choice of numerical values attributed to the parameters.
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Trajectory Based Market Models.
Arbitrage and Pricing Intervals

Sebastian Ferrando, Alfredo Gonzalez, Ivan Degano,
and Massoome Rahsepar

Abstract The paper introduces general, discrete, non probabilistic models and a
natural global minmax pricing rule that, for a given option, leads to a pricing in-
terval. Conditions are described for the absence of arbitrage and a dynamic pro-
gramming local minmax optimization is defined that evaluates the pricing interval
bounds.

Keywords Minmax · Pricing intervals · Non probabilistic

1 Introduction

The market model introduced in [3], by Britten-Jones and Neuberger (BJ&N), incor-
porates several important market features: it reflects the discrete nature of financial
transactions, it models the market in terms of observable trajectories and incorpo-
rates practical constraints such as jump sizes as well as methodological constraints
in terms of the quadratic variation. The book treatment of this model in [6] also
emphasizes the fundamental characteristics of the model’s assumptions. Here we
summarize new fundamental results providing arbitrage-free models as well as a
general computational framework for a general class of models encompassing the
BJ&N setup. Proofs and many other results are fully described in [4].
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The framework of the paper is a tuple M = (S,H) where the set S is a set
of discrete trajectories and H a collection of hedging/investment portfolios. For
a given option Z, of American or European type, we describe a pricing interval
[V (Z),V (Z)] such that any market price falling outside of this interval generates
an arbitrage opportunity relative to the market model M. This arbitrage opportunity
can be realized by means of an element in H and it provides a profit for all elements
of S (and so it is riskless).

Part of the practical relevance of the interval [V ,V ] will depend of the relative
sizes of the sets (S,H). On the one hand, we should design S to be large enough so
that it allows for arbitrarily close approximations of stock charts but not any larger
so as not to artificially enlarge the bounding interval. On the other hand, H should
include only portfolios that can be implemented in practice (albeit in an idealized
way) as the introduction of more powerful, but impractical, hedging strategies will
artificially shrink the bounding interval.

2 General, Discrete, Non Probabilistic Models

Definition 1 S(S0) will be called a set of (discrete) trajectories if, for a given non-
negative real number S0, S(S0) is a set of nonnegative real valued sequences, i.e.
S = {Si}i≥0, Si ≥ 0 such that if S,S′ ∈ S , then S0 = S′

0.

We will refer to the given S0 as the initial value and will replace S(S0) for S
whenever convenient. Elements of such sets S will be simply referred as trajectories.

Definition 2 Given a set of trajectories S(S0), H will be called a set of portfolios
acting on a set of trajectories S if elements H ∈ H are infinite sequences of (pairs
of) functions H = {Φi = (Bi,Hi)}i≥0 with Bi,Hi : S → �. Elements H ∈ H are
non anticipative, namely: Φi(S) = Φi(S

′) whenever S,S′ ∈ S and S′
k = Sk for all

0 ≤ k ≤ i. Moreover, elementsH ∈ H are also required to be self-financing, namely,
the following holds for all S and all i:

Hi(S)Si+1 +Bi(S)=Hi+1(S)Si+1 +Bi+1(S). (1)

Moreover, we further assume that for each S ∈ H there exists an integer N(S) such
that Hk(S)= 0 for all k ≥N(S).

Elements of such sets H will be simply referred as portfolios.

Definition 3 (Discrete Market Models) A discrete market model is a tuple M =
(S(S0),H) where S(S0) is a set of trajectories and H a set of portfolios.

For simplicity we will assume that Bi represents the values of a Bank account
with interests rates r = 0. Consider an unfolding stock chart S(t) and bank account
B(t), the number Hi(S) is interpreted as the hedging investment just after the i-th
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trading has taken place. Si is the value taken by the unfolding chart at the i-th trad-
ing. Bi(S) is interpreted as the money in the balancing bank account just after the
i-th trading has taken place. The value S0 represents, for any trajectory S, the stock
value S(0) at initial time t0. Given an option Z, i.e. a function Z : S → �, N(S)
represents the, path dependent, number of trading instances i = 0,1, . . . ,N(S)− 1
taking place until the option is exercised at instance N(S) and the investment in S
is liquidated.

Given S ∈ S andH ∈ H, the self-financing property (1) implies that the portfolio
value, defined by VH (i, S)= Bi(S)+Hi(S)Si equals:

VH (i, S)= VH (0, S0)+
i−1∑

k=0

Hi(S)(Sk+1 − Sk), (2)

during the period [i, i+1) for i = 0, . . . ,N(S)−2 and valid over [N(S)−1,N(S)]
for the case i =N(S)− 1. Of course, VH (0, S0)≡ VH (0, S)= B0(S)+H0(S)S0.

Remark 1 Clearly, to specify H = {(Bi,Hi)} one can, alternatively, specify {Hi}
and a real number VH (0, S).

The above non probabilistic notions can be extended to continuous time under
the assumption that the limits of the finite sums in (2) exist as is the case of the Ito-
Föllmer integral ([5]). This has been introduced and studied in [2]. The connection
between the continuous time trajectories S(t) and the setup of our paper is given
through the use of non probabilistic stopping times τi : S → � which gives Si =
S(τi(S)). This last remark also allows to explicitly introduce time in our present
formalism (something needed for the r > 0 case). We refer to [1] for details.

2.1 Arbitrage-Free Markets and Pricing Bounds

Having the notion of a discrete financial market model we can naturally define the
notion of arbitrage.

Definition 4 Given a discrete market model M = (S,H), we will call H ∈ H an
arbitrage strategy if:

• ∀S ∈ S , VH (N(S), S)≥ VH (0, S0);
• ∃S∗ ∈ S satisfying VH (N(S∗, S∗)) > VH (0, S0).

We will say M is arbitrage-free if H contains no arbitrage strategies.

Definition 5 A given trajectory space S is said to satisfy the up-down property if
for S ∈ S and a positive integer j :

sup
Ŝ∈S, Πj (Ŝ)=Πj (S)

(Ŝj+1 − Sj ) > 0, and inf
Ŝ∈S Πj (Ŝ)=Πj (S)

(Ŝj+1 − Sj ) < 0, (3)
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or:

sup
Ŝ∈S, Πj (Ŝ)=Πj (S)

(Ŝj+1 − Sj )= inf
Ŝ∈S Πj (Ŝ)=Πj (S)

(Ŝj+1 − Sj )= 0. (4)

Theorem 1 Any discrete market model M= (S,H) where S satisfies the up-down
property is arbitrage-free.

Definition 6 Given a discrete market model M = (S,H) and a functionZ : S → �,
define the following quantities:

V (S0,Z,M)= inf
H∈H

{

sup
S∈S

{

Z(S)−
N(S)−1∑

i=0

Hi(S)(Si+1 − Si)

}}

, (5)

and V (S0,Z,M)= −V (S0,−Z,M).

It is possible to prove that any market price for an option Z that is outside of
[V (S0,Z,M),V (S0,Z,M)] gives an arbitrage portfolio in the market M.

As per Proposition 1 below, in an arbitrage-free market the zero option has zero
price.

Proposition 1 Let M be an arbitrage-free discrete market model. Then

inf
H∈H

{

sup
S∈S

{

−
N(S)−1∑

i=0

Hi(S)(Si+1 − Si)

}}

= 0. (6)

Definition 7 (Bounded Discrete Market Models) A discrete market model M =
(S,H)will be called n-bounded, if there exists a natural number n such thatN(S)≤
n, for all S ∈ S . Such a market will be denoted by Mn.

Fixed H̃ ∈H, S̃ ∈ S , and 0 ≤ k ≤ n, set

S
(S̃,k)

≡ {S ∈ S : Si = S̃i ,0 ≤ i ≤ k} and

H
(H̃ ,k)

≡ {H ∈H :Hi = H̃i,0 ≤ i ≤ k}.
For S ∈ S we will use the notation �iS ≡ Si+1 − Si for i ≥ 0.

The following inductive definition gives the basic dynamic programming formu-
lation to compute the price bounds.

Definition 8 Consider an n-bounded, discrete market model Mn = (S,H). For a
given derivative Z defined on S , any S ∈ S , and any H ∈H, set:

Ui
(
S,H,Z,Mn

)= 0, for N(S) < i ≤ n, (7)

UN(S)
(
S,H,Z,Mn

)= Z(S). (8)



Trajectory Based Market Models. Arbitrage and Pricing Intervals 103

For 1 ≤ i < N(S) define recursively,

Ui
(
S,H,Z,Mn

)= inf
H̃∈H(H,i−1)

sup
S̃∈S(S,i)

[
Ui+1

(
S̃, H̃ ,Z,Mn

)+ H̃i(S)(S̃i+1 − Si)
]
,

(9)

and

U0
(
S0,Z,Mn

)= inf
H∈H

sup
S∈S
[
U1
(
S,H,Z,Mn

)+H0(S)�0S
]
.

Under appropriate conditions it is possible to prove that U0(S0,Z,Mn) =
V (S0,Z,Mn).
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A Statistical Test for the Heston Model

Gianna Figà-Talamanca

Abstract We introduce a formal test to detect whether a times series of financial
log-returns is consistent with the Heston stochastic volatility model as data gener-
ating process. The test is based on the auto-covariance structure of the integrated
volatility, which is available in closed form for the model under investigation. The
test suggested in this contribution also relies on the outcomes of a companion paper
where we prove asymptotic results for the distribution of sample moments of the
squared log-returns in the fully-specified Heston model.

Keywords Heston model · Sample auto-covariance · Asymptotic distribution

1 Introduction and Model Setting

One of the alternative approaches for the generalization of the seminal paper by [2]
on option pricing theory, is to allow for random volatility in the underlying stock
price process (see [8, 11, 12] and [7], among others). Such models, usually referred
to as Stochastic Volatility models, may explain many stylized facts in the stock and
in the derivative markets, such as the leptokurtosis of financial log-returns and the
so-called smile curve of the implied volatility of options when plotted against the
strike price (see e.g. [3]). Even though classical Stochastic Volatility models are
outdated from a modelling viewpoint, a renewed attention has been recently de-
voted to the Heston model ([7]) for which a quasi-closed formula is available for the
price of European plain vanilla options. This property make it possible to calibrate
the Heston model parameters on a sample of market prices for derivative financial
instruments. Calibration of parameters may be performed on market option prices
as suggested, among others, in [4] but may be applicable considering more com-
plex derivatives, such as volatility and variance options and swaps, for which closed
formulas have been made available in recent years (see e.g. [10]) under Heston as-
sumptions.
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Motivated by this new interest and by the huge increasing of estimation and cali-
bration techniques for the Heston model, often leading to very different parameters
values, we introduce in this paper a formal statistical test to detect whether the auto-
covariance structure for the squared log-returns of a given financial stock is consis-
tent with the auto-covariance structure for the integrated volatility process which is
available in closed form for the Heston model (see [6]). The Test statistics is built
upon the outcomes detailed in [5] which are omitted here for brevity. In the rest of
the paper we consider the Heston model, described by the following bi-dimensional
process:

dYt =
√
VtdW̃t , Y0 = 0,

dVt = α(β − Vt )dt + c
√
VtdWt , V0 = ν,

(1)

where (W̃ ,W) is a Brownian motion in R
2 defined on a probability space (Ω,F,P )

with 〈dW̃ , dW 〉 = ρdt and ν is a real random variable defined on Ω , independent
of (W̃ ,W); β , α are constant parameters representing, respectively, the long-run
mean and the mean-reversion speed (toward β) of the instantaneous variance Vt and
c is the so-called “volatility of volatility” parameter. If α > 0 and 2αβ ≥ c2, then
it is well known that Vt is a strictly stationary Markov process on the state space
(l, r)= (0,+∞).

2 A Formal Test for the Heston Model

Assume we are given a time series {Y0, Y1, . . . , Yn} for the log-price process of a
financial stock, with observation step �. We want to test whether this time-series
may have been generated from a continuous process as defined in (1) with assigned
parameters. Define, for i = 1,2, . . . , n, the scaled log-returns {Ri}i and the sample
moments Mh, for h≥ 0, as follows:

Ri = Yi − Yi−1√
�

, (2)

M0 = 1

n

n∑

1

R2
i , (3)

Mh = 1

n

n−h∑

1

R2
i R

2
i+h. (4)

Let M = (M0,M1,M2, . . . ,MH ) for a fixed lag H ; the results in [5] guarantee
that, if the discrete process {Yi}i is a discretized version of the continuous process
defined by (1) then, for n sufficiently large, M is asymptotically multivariate normal
with mean μ and covariance matrix n� (for details on how to obtain μ and �

see [5]).
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Set A = �−1; by applying Theorem 5.4.2 in [9] we get that the asymptotic dis-
tribution of

√
nA1/2(M − μ) (5)

is a standard multivariate normal of dimension H + 1. Further, the quadratic form

Q
(n)
H = n(M − μ)T A(M − μ) (6)

is distributed as a χ2 with H + 1 degrees of freedom.
Hence, we can use the Q(n)

H statistics in order to construct a formal statistical test
for the sample auto-covariance structure of the process {R2

i }i under the Null of a
data generating process for {Yi}i defined by (1). Precisely, if Fχ2(H+1) represents
the cumulative distribution function of a χ2 random variable with H + 1 degrees of
freedom and n is sufficiently large, we reject the Null hypothesis with a confidence
level p when Q(n)

H > F−1
χ2(H+1)

(p).
While μ is easily available in explicit form, the derivation on matrix � in closed

form (with respect to the assigned parameters) is often cumbersome, although pos-
sible in principle. Nevertheless, it might be replaced by an estimate of the matrix
obtained, for example, via the Bootstrap resampling method; if the estimator is con-
sistent then the asymptotic results on the distribution of Q(n)

H still hold (see [9]).

3 A Simulation Exercise

As a preliminary analysis, in order to evaluate the performance of the proposed
test, we simulate m= 1000 paths for a one year long time series of log-prices with
discretization step δ = 1/3000, assuming α = 1, β = 0.05, c= 0.25 and ρ = −0.04;
for the simulation we applied the Quadratic-Exponential scheme proposed in [1]
with Y0 = log 100 and ν = 0.05.

For each j = 1,2, . . . ,m, we compute the scaled log-returns {Rji }i and the sam-
ple empirical moments to get Mj ; μ is obtained via the explicit formulas with re-
spect to model parameters (see [5]) while, for the sake of simplicity, the matrix n�

is derived as the covariance matrix of Mj on all simulated paths. Finally, we evaluate
the statistics Q(n)

H,j , with H = 5, and apply the test suggested above to each simu-

lated trajectory; as an example we represent in Fig. 1 the sample moments in Mj

for two sample trajectories as well as their theoretical limit μ and the corresponding
asymptotic confidence bands with 95 % confidence level.

As it was expected, the test do not reject the Heston model specification nei-
ther for p = 95 % nor for p = 99 %. Analogous results are obtained if we replace
matrix n� with the Covariance matrix obtained through a Bootstrap resampling of
each path. Of course, theoretical properties of the test should be further investigated
and more extensive simulation experiments be performed. We leave these issues to
future research. Anyway, the preliminary outcomes reported here show that the pro-
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Fig. 1 Sample
auto-covariance structure
(circles) for two of the
simulated paths for α = 1,
β = 0.05, c= 0.25,
ρ = −0.04, Y0 = log 100 and
ν = 0.05. The mean value
μM (dashed-line) and
confidence bands (solid line)
are also reported

posed test is a promising tool in order to test the Heston model on market historical
data; this might be useful, as already observed in the introduction, when models
parameters are obtained implicitly using derivatives prices as input data instead of
historical prices of the underlying to which parameters are indeed related. We are
currently working on the application of the test to observed financial stock prices
and the results will contribute to a related paper.

References

1. Andersen, L.B.G.: Simple and efficient simulation of the Heston stochastic volatility model.
J. Comput. Finance 11(3), 1–42 (2008)

2. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81,
637–659 (1973)

3. Cont, R.: Empirical properties of asset returns: stylized facts and statistical issues. Quant.
Finance 1(2), 223–236 (2001)

4. Ewald, C.O., Zhang, A.: A new method for the calibration of stochastic volatility models: the
Malliavin gradient method. Quant. Finance 6(2), 147–158 (2006)

5. Figà-Talamanca, G.: Limit results for stochastic volatility models. Quaderni del Dipartimento
di Economia, Finanza e Statistica 63 (2008)

6. Figà-Talamanca, G.: Testing volatility autocorrealtion in the CEV model. Comput. Stat. Data
Anal. 53, 2201–2218 (2009)

7. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to
bond and currency options. Rev. Financ. Stud. 6, 327–343 (1993)

8. Hull, J., White, A.: The pricing of options on assets with stochastic volatility. J. Finance 42(2),
281–300 (1987)

9. Lehmann, E.L.: Elements of Large-Sample Theory. Springer, Berlin (1998)
10. Sepp, A.: Pricing options on realized variance in the Heston model with jumps in returns and

volatility. J. Comput. Finance 11(4), 33–70 (2008)
11. Stein, E., Stein, J.: Stock price distributions with stochastic volatility. Rev. Financ. Stud. 4,

27–752 (1991)
12. Wiggins, J.: Option values under stochastic volatilities. J. Financ. Econ. 19(351), 372 (1987)



Threshold Random Walk Structures in Finance

Francesco Giordano, Marcella Niglio, and Cosimo Damiano Vitale

Abstract In this paper we propose a new model that generalizes, in nonlinear do-
main, the random walk process: we call this model threshold random walk. From
the empirical point of view it is able to model the asymmetric behaviour of financial
data that is neglected from the random walk structure. We further provide a statisti-
cal tool for testing unit root versus a stationary threshold autoregressive model.

Keywords Threshold random walk · Unit root test

1 Introduction

The study of stochastic processes that are able to mimic the dynamic structure of
stock returns has largely interested the statistical and econometric literature. In this
context the well known Random Walk has been historically used by many modelers
that have based their theoretical assumptions on the market efficiency and so on the
unpredictability of stock returns on the basis of current available information.

The complexity of the stock markets and the relationships among their agents
have made quite weak the efficiency assumption and a large number of stochastic
structures have been proposed to model the behaviour of most financial data.

The aim of the present paper is to propose a generalization, in nonlinear domain,
of the Random Walk model. More precisely starting from the threshold models,
widely discussed in [14], we present the Threshold Random Walk model. In more
detail in the next section, after shortly review the more recent literature on the thresh-
old models with unit root, we propose a new stochastic model that is able to take
into account the asymmetric behaviour of financial data. A test for detecting the
presence of a unit root against model stationarity is further provided.
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2 Unit Roots in Threshold Autoregressive Models

Let Xt be a nonlinear time series, it is said to be generated by a threshold autore-
gressive (TAR) process when:

Xt =
k∑

j=1

(
p∑

i=1

φ
(j)
i Xt−i

)

I (Yt−d ∈ Rj )+ et , (1)

where k is the number of regimes, p is the autoregressive order, I (·) is an indicator
function, d is the threshold delay, Rj is a subset of R, such that Rj = [rj−1, rj ) and
−∞ = r1 < r2 < · · · < rk−1 < rk = +∞, and et is the error term. If Yt−d = Xt−d
model (1) is said to be a Self Exciting Threshold AutoRegressive (SETAR) model.

The study of unit roots in presence of SETAR processes has been differently
faced: after the results in [12] where the loss of power of the Dickey and Fuller ([4])
test is shown, Enders and Granger [5] proposes a unit root testing procedure for a
SETAR process with k = 2, p = 1 and d = 1.

A seminal contribution in unit root testing in presence of threshold processes
has been given in [3] for the threshold autoregressive model (1) with k = 2 and
d = 1 whereas [7] propose the so called threshold unit root model, given by (1) with
p = 1. Bec et al. [1], after discussing the stationarity conditions of model (1) with
Yt−d =Xt−d and k = 3, proposes a unit root test for a particular SETAR model then
generalized in [2]. Further results are given in [8] that proposes a unit root test for
the following three regimes SETAR structure:

Xt −Xt−1 = ρ1Xt−1I{Xt−1≤r1} +Xt−1I{r1<Xt−1≤r2} + ρ3Xt−1I{Xt−1>r2} + et , (2)

where the second regime is assumed to have a unit root. Kapetanios and Shin [8]
generalizes the testing results even to the case where et is a linear stationary autore-
gressive process, et =∑p

i=1 γi∇Xt−i + εt (with εt ∼ i.i.d.(0, σ 2)).
Another contribution in this domain is given in [13] that starting from the follow-

ing SETAR model:

∇Xt = ρ1Xt−1I{Xt−1≤r1} + ρ2Xt−1I{Xt−1>r1} + et , (3)

proposes an Augmented Dickey and Fuller-type unit root test where et is allowed to
be weakly dependent.

Further results on unit root in presence of three regimes threshold autoregressive
models are given in [10] whereas new results mainly related to the estimation of the
model parameters are given in [9] and [6].

Starting from these results we introduce the following model: let ∇Xt = Xt −
Xt−1 be a threshold process with two regimes and autoregressive order p = 1:

∇Xt = ρ1Xt−1It−1 + ρ2Xt−1(1 − It−1)+ et , (4)

with ρj = φ
(j)

1 − 1 (for j = 1,2), It−1 = 1 if Xt−1 ≥ r and 0 otherwise, where the
threshold value r belongs to the compact set P ⊂ R and the innovation process {et }
can follow two alternative threshold structures. The first one is

et = e1t I
′
t−1 + e2t

(
1 − I ′

t−1

)
, (5)
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with indicator function I ′
t−1 = 1 if ∇Xt−1 ≥ r ′ and 0 otherwise, whereas {e1t } and

{e2t } are two independent i.i.d. sequences with positive density functions for both
e1t and e2t with E(e1t )=E(e2t )= 0 and Var(e1t )= σ 2

1 <∞, Var(e2t )= σ 2
2 <∞.

The second structure for the innovation process is

et = β1∇Xt−1I
′
t−1 + β2∇Xt−1

(
1 − I ′

t−1

)+ εt (6)

with β1 < 1, β2 < 1 and β1β2 < 1 as in [11].
When ρ1 = ρ2 = 0 we call model (4) Self Exciting Threshold Random Walk

(SETRW).
Starting from this theoretical context we propose a unit root testing procedure for

model (4) with innovations (5) or (6), which is based on a Wald statistic. In more
detail given model (4) with innovations (5), it can be equivalently written as:

∇X = Yρ + e, (7)

where ρ = (ρ1, ρ2)
T , ∇X = (∇X1, . . . ,∇Xn)T , e = (e1, . . . , en)

T , n is the time
series length and

Y =
⎛

⎜
⎝

X0I0 , X0(1 − I0)
... ,

...

Xn−1In−1 , Xn−1(1 − In−1)

⎞

⎟
⎠ .

The Null hypothesis that ρ1 = ρ2 = 0 can be tested using the Wald statistic related
to Eq. (7)

W
(
r, r ′
)= ρ̂T (YT Y)ρ̂

S2
e

, (8)

where ρ̂ is the OLS estimator of ρ and S2
e = 1

n−2

∑n
t=1 ê

2
t with êt the estimated

residuals from model (4) with innovation process in (5).
To obtain the asymptotic distribution of W(r, r ′) consider the following assump-

tion:

Assumption 1 Let {e1t } and {e2t } be two independent i.i.d. sequences of ran-
dom variables with zero mean, 0 < σ 2

1 , 0 < σ 2
2 variances and E(|e1t |4+η) < ∞,

E(|e2t |4+η) <∞, respectively for some η > 0. Moreover, the density functions are
positive on R.

In presence of fixed thresholds r and r ′ we can state:

Proposition 1 Given the threshold process (4) that fulfills the assumption 1, under
the Null hypothesis ρ1 = ρ2 = 0 the Wald statistic defined by (8) with r = r ′ = 0,
has the following asymptotic distribution

W(0,0)
d−→ [∫ 1

0 I{B(s)≥0}B(s)dB(s)]2

∫ 1
0 I{B(s)≥0}B2(s)ds

+ [∫ 1
0 I{B(s)<0}B(s)dB(s)]2

∫ 1
0 I{B(s)<0}B2(s)ds

,

where B(s) is the standard Brownian motion with s ∈ [0,1].
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Similar results can be obtained for model (4) with innovations (6) that for brevity
are here omitted.
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Stochastic Mortality Models. Application to CR
Mortality Data

Ján Gogola

Abstract The ageing process is a great challenge for many European countries, not
excluding Czech Republic (CR) and it brings financial risk in areas such as social
policy, pensions and health care. The motivation for this paper is to compare various
mortality models. We have attempted to explain mortality improvements for males
aged 62–90 in CR using a several stochastic mortality models. We compare quan-
titatively number of stochastic models explaining improvements in mortality rates
in CR. It is clear that mortality improvements are driven by an underlying process
that is stochastic. Numbers of stochastic models have been developed to analyse
these mortality improvements. We will deal in models such as Lee-Carter model,
Renshaw and Haberman model, Aged-Periodic-Cohort model (APC), Cairns-Blake-
Dowd model (CBD) and their extensions. Each model is fitted to the male data be-
tween 1968 and 2011. Our analysis focuses on mortality at higher ages (62–90),
given our interest in pension-related applications. By the Bayes Information Crite-
rion (BIC) we find that an extension of the Cairns-Blake-Dowd (CBD) model fits
the Czech Republic male’s data best.

Keywords Mortality · Constraints · Bayes Information Criterion ·
Force of mortality

1 Introduction

This paper deals with a stochastic mortality models. In many developed countries
the life expectancy is increasing. Such increases imply rapidly increasing cost in
pensions and health care for the elderly. The effort of forecasting the future trend
of mortality has been a subject of great interest. Over the past twenty years, a great
number of new approaches were developed in order to forecast mortality by using
stochastic models, such as the ones presented by McNown and Rogers (1989, 1992),
Bell and Monsell (1991), and Lee and Carter (1992).
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The Lee-Carter model became one of the most well-known models and it is ap-
plied in different countries around the world to forecast age-specific death rates. In
their paper [4] they used mortality data classified by age of death and year of death,
and then modelled the force of mortality.

A wide family of mortality models is assessed by [1]. They consider eight models
for mortality rates in England and Wales. They have noticed if these models are
applied to different countries then conclusions about which model is most suitable
might be different.

The primary aim of this paper is to apply some of these stochastic models on age-
specific death rates from CR and compare and rank these varieties of models. We are
focusing on mortality at higher ages (62–90), given our interest in pension-related
application. This paper follows on the article [3]. They deal with the development
and the prediction of life expectancy in selected European countries (CR, Slovakia,
Finland, Spain) by applying only Lee-Carter model.

Our approach consists of three steps: (1) obtain and solve the maximum like-
lihood equations for each model; (2) write the associated code in R program; (3)
select the best fitting model. The plan of this paper is as follow. In Sect. 2 is a brief
description of our data and notation. In Sect. 3 we describe six stochastic mortality
models. Section 4 gives the main results. We are fitting models to our data. Finally,
in Sect. 5 we present some conclusions.

2 Data and Notation

We use data on male deaths and exposure to risk between 1968 and 2011 from the
Human Mortality Database. We consider the restricted age range from 62 to 90, the
range of interest to providers of pensions.

The data will cover the range x1, x2, . . . , xna and t1, t2, . . . , tny , with unit incre-
ments where na is the number of ages and ny is the number of years. Let dx,t be the
number of deaths aged x last birthday in calendar year t . We suppose that the data
on deaths are arranged in a matrix D = (dx,t ). Similarly, the data on exposure to risk
are arranged in a matrix Ec = (ex,t ) where ex,t is the average size of the population
aged x last birthday in calendar year t . We denote the force of mortality at exact
time t for lives with exact age x by μx,t . The force of mortality is interpreted as
the instantaneous death rate and the probab. that individual dies in the small interval
(t, t + dt) is approx. μx,t · dt . We also consider the mortality rate qx,t . This is the
probab. that an individual aged exactly x at exact time t will die between t and t+1.

Some of the models we consider model the force of mortality μx,t , whereas oth-
ers model the mortality rate qx,t . To ensure a valid comparison between the different
models, our analysis of the models for qx,t involve an additional step. For a given set
of parameters we calculate the qx,t then we transform these into force of mortality
using the identity μx,t = log(1 − qx,t ).

We can calculate the likelihood for all models consistently based on the μx,t .
For a given model we use φ to represent the full set of parameters and the notation

for μx,t is extended to μx,t (φ), to indicate its dependence on these parameters.
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For all models the log-likelihood is

l
(
φ;D,Ec)=

∑

x,t

(
dx,t · log

[
ex,t ·μx,t (φ)

]− ex,t ·μx,t (φ)− log(dx,t !)
)
, (1)

and estimation is by maximum likelihood.

3 The Mortality Models

We deal with the following models:

1. Lee-Carter model;
2. APC model [2];
3. Renshaw-Haberman model [5];
4. Cairns-Blake-Dowd model (CBD model);
5. CBD model with cohort effect;
6. Quadratic CBD model with cohort effect.

Our models are fitting to historical data.
With nested models we have mentioned above we can always improve the maxi-

mum likelihood by introducing further parameters into our model.
We penalize the likelihood each time we add in additional parameters.
One of the well-known approach is the Akaike Information Criterion (AIC)

which seeks to maximize li (φ̂i;x)− ki .
With the AIC we can see that the addition of one parameter requires a improve-

ment in the log-likelihood of at least 1 for the more complex model to be worthwhile.
We are focusing on the Bayes Information Criterion (BIC).

4 Main Results

The maximum log-likelihood of our models are displayed in Table 1, together with
the respective values of BIC.

If we rank models with the top model having the maximum log-likelihood, we
can see that Quadratic CBD model with cohort effects is the best. However if we
rank models with the top model having the lowest BIC, it can be seen that the order
has changed and CBD model with cohort effects comes out on top.

5 Conclusion

We have attempted to explain mortality improvements for males aged 62–90 in
CR using a number of stochastic mortality models. We have found out that dif-
ferent models have different strengths. By the value of maximum log-likelihood the
Quadratic CBD model with cohort effects fits our data set best.

By the BIC ranking criteria, the CBD model with cohort effects fits our data set
best.
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Table 1 Models with their maximum log-likelihood, effective number of parameters e. n. p., and
Bayes Information Criteria

Model Maximum log-likelihood Rank e. n. p. BIC Rank

Lee-Carter −7346.371 5. 100 15407.890 5.

Renshaw-Haberman −6408.408 2. 199 14239.960 3.

APC −6922.780 4. 142 14861.070 4.

Cairns-Blake-Dowd −8082.376 6. 88 16794.080 6.

CBD with cohort effects −6414.079 3. 158 13978.090 1.

Quadratic CBD −6351.361 1. 201 14140.170 2.

Source: Own Processing

References

1. Cairns, A.J.G., Blake, D., Dowd, K., Coughlan, G.D., Epstein, D., Ong, A., Balevich, I.:
A quantitative comparison of stochastic mortality models using data from England and Wales
and the United States. N. Am. Actuar. J. 13(1), 1–35 (2009)

2. Currie, I.D., Durban, M., Eilers, P.H.C.: Smoothing and forecasting mortality rates. Stat. Model.
4, 279–298 (2004)
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Risk Adjusted Dynamic Hedging Strategies

Martin Harcek

Abstract The aim of the paper is to develop a dynamic portfolio hedging strategy
leading to an optimal wealth policy in a finite investment horizon while obeying
a risk constraint. The utility maximization problem is restricted by an upper bound
applied on the Conditional Value-at-Risk (CVaR) measure. We investigate the strat-
egy dynamics and properties in terms of the desired wealth distribution and risky
assets exposure.

Keywords Dynamic strategy · Conditional Value-at-Risk · Complete market

1 Market Settings

We consider a financial market with N risky assets with random returns and
one risk-free asset with deterministic yield. The dynamics of market prices fol-
low the system of N stochastic and one ordinary differential equations dS(t) =
S(t)μ(t)dt + S(t)σ (t)dw(t) and dB(t) = B(t)r(t)dt , where μ(t) is the vector of
drifts, σ(t) is the volatility matrix and r(t) is the deterministic bond yield. The pro-
cess w(t) is an N -dimensional standardised Brownian motion.

Let W(t) be a value of the portfolio at time t . The investor chooses the invest-
ment horizon T and the investment strategy θ(t), which represents the fraction of
wealth invested in each risky asset at time t ∈ (0, T ]. Then the portfolio value fol-
lows the stochastic differential equation dW(t)=W(t)θ(t)�(μ(t)dt + σdw(t))+
W(t)(1 − θ(t)�1)r(t)dt , where 1 ≡ (1,1, . . . ,1)�. We assume that market is com-
plete. Such an assumption implies (by Ito’s lemma) the existence of a unique state-
price density process ξ(t) given by dξ(t)= −ξ(t)r(t)dt − ξ(t)κ(t)�dw(t), where
ξ(0)= 1 and κ(t)= σ(t)−1(μ(t)− r(t)1) is the Sharpe ratio process.
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2 Problem Statement

The coherent [1] and convex [3] risk measure Conditional Value-at-Risk (CVaR) is
defined as a conditional expectation of losses greater than the Value-at-Risk (VaR)
threshold. VaR is a widely used risk measure, technically it is equal to (1 − α)-
quantile of the portfolio loss distribution (e.g. 99 %)

CVaRα(W0 −WT )= E
[
W0 −WT |W0 −WT ≥ VaRα(W0 −WT )

]≤ δW0

VaRα(W0 −WT )=
{
c ∈R : P(W0 −WT ≤ c)= 1 − α

}
.

As the above statement is relatively complex, we substitute it by a more convenient
representation

Gα(W0 −WT ,c)= c+ 1

α

∫ ∞

−∞
(W0 −WT − c)+dP (W0 −WT ). (1)

The way of CVaR substitution is well described in [4]. We incorporate the risk con-
straint in terms of the terminal portfolio CVaR in the utility maximization problem,
hence define the CVaR Investor Optimization Problem:

max
WT ,c

E
[
u(WT )

]
s.t. E[ξT WT ] ≤W0 and Gα(W0 −WT ,c)≤ δW0, (2)

where Gα(W0 −WT ,c) is given by (1), u(·) is the utility function, W0 is the initial
wealth, α and δ are given exogenously, ξT is defined in previous section and c ∈ R

is a variable to be optimized.

3 Optimal Investment Strategy

We solve the problem as a two-stage optimization procedure. The solution of the first
stage (Theorem 1) defines an optimal portfolio choice in the WT × ξT space for
each given c. As a result of the second stage optimization, we obtain an optimum
through all possible settings of c by solving maxc∈RE[u(ŴT (c))]. In our practical
calculations we suppose that the investor’s preferences are well described by an
iso-elastic utility function given by u(x) = xp

p
,p < 0 and the exogenous model

parameters r and κ are constant in time.

Theorem 1 (T -Time Optimal Portfolio Choice) Define

WT (c, y1, y2)= I (y1ξT )1{ξT <ξ} + (W0 − c)1{ξ≤ξT <ξ } + I (y1ξT − y2/α)1{ξ≤ξT },

where c ∈R, y1 > 0, y2 ≥ 0, I (·) is the inverse function of u′(·), 1{·} is the indicator
function, ξ = u′(W0 − c)/y1 and ξ = (u′(W0 − c)+ y2

α
)/y1. Denote ŷ1 and ŷ2 to be

a solution of equation system

E
[
ξT WT (c, ŷ1, ŷ2)

]=W(0)

c+ 1

α
E
[(
W0 −WT (c, ŷ1, ŷ2)− c

)+]= δW0 or ŷ2 = 0.

Then ∀c the problem (2) attains maximum at the point ŴT (c)≡WT (c, ŷ1, ŷ2).
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Theorem 2 (t-Time Optimal Portfolio Choice) The wealth process of the solution
ŴT given by Theorem 1 is

W(t)= y
1

p−1
1

ξt
e

p
p−1 (ln ξt+( ‖κ‖2

2p−2 −r)(T−t))
Φ(d3)

+ W0 − c

ξt
eln ξt−r(T−t)(Φ(d2)−Φ(d1)

)

+ 1

ξt

∫ ∞

ξ

ξT

(

y1ξT − y2

α

) 1
p−1

dP(ξT ),

where Φ(·) is the cumulative distribution function of N(0,1),

d1 = ln ξ − ln ξt + (r − 1
2‖κ‖2)(T − t)

‖κ‖√T − t
, d2 = d1 + ln ξ − ln ξ

‖κ‖√T − t
and

d3 = d1 − p

p− 1

‖κ‖
2

√
T − t .

By definition of the portfolio wealth process Wt and the optimal process of
the solution ŴT given by Theorem 2, the optimal dynamic strategy is given by

θ(t) = − (σ�)−1κ�
W(t)

∂W(t)
∂ξ(t)

ξ(t) = − 1−p
W(t)

θB(t)
∂W(t)
∂ξ(t)

ξ(t), where θB(t) stands for the

benchmark investor strategy defined in [2] as θB(t) = 1
1−p (σ

�)−1κ�. Finally, we
can define the process q(t) as the exposure to risky assets relative to the benchmark
portfolio, that we use for further analyses: θB(t)q(t)= θ(t).

4 Numerical Results

To represent a real world market we set the exogenous model parameters as follows:
α = 0.05, δ = 0.15,p = −1.5, κ = 0.4, ξ(0) = 1, W(0) = 1, r = 0.03 and T = 1.
In common model applications we observe three market-state intervals in which the
portfolio manager behaves differently. In good market states (low ξT ) the CVaR
portfolio payoff is similar to the benchmark payoff. In intermediate states the CVaR
portfolio is fully hedged to the level W0 − ĉ and in the worst states (high ξT ) the
CVaR portfolio is only partially secured. As a result of our hedging strategy we
observe an adjusted distribution of the terminal portfolio value, indicating lower
probability mass concentrated in the left tail, i.e. the probability of attaining the
most severe losses is lower than that of the benchmark investor (Fig. 1).

In good states the exposition to risky assets is very similar to the benchmark
investor. As the market goes down, CVaR investor is selling out risky positions in
order to retain the portfolio value above the acceptable level of loss. In the worst
cases we observe a leverage effect: the investor opens relatively large positions in the
risky assets with the intention to rise the portfolio value back to the acceptable level.
The portfolio values before investment horizon can be evaluated as a response to the
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Fig. 1 Left: CVaR terminal portfolio payoff and benchmark terminal portfolio payoff, both as
functions of the state variable ξ(T ). Right: Distribution of the CVaR terminal value payoff for the
initial wealth W0 = 1

Fig. 2 Left: The dynamics of the relative risky assets exposition as a function of ξ(t). Right: CVaR
portfolio payoffs convergence to the terminal time shape; as functions of the state variable ξ(t)

dynamic investment strategy process θ(t). As time t approaches T , the convergence
to the terminal payoff is a necessary condition for the models consistency (Fig. 2).
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Pricing and Hedging Variable Annuities

Abdou Kélani and François Quittard-Pinon

Abstract The aim of this paper is to present a general method to value, hedge
and assess risk for a subclass of VA contracts in a Lévy market. This subclass
contains Guaranteed Minimum Maturity Benefit (GMMB), Guaranteed Minimum
Death Benefit (GMDB), and Guaranteed Minimum Accumulation Benefit (GMAB)
that has a cliquet-style option in its design. The suggested unifying method is based
on the generalized Fourier transform and gives general quasi-closed form solutions
for a large class of Lévy processes.

A numerical analysis that uses a Kou process illustrates the whole procedure.

Keywords Variable annuities · Lévy processes

1 Products

Let T be the expiration date of the contract, Tx the residual life at time 0 for a poli-
cyholder aged x at that time. We denote by γ ≤ T , the time at which the guarantee is
triggered. The contract payoffs are of the following type: max(Fγ ,Gγ ), where Fγ
is the account, or fund value, of the policyholder at time γ . The quantity Gγ is the
guarantee that can take many expressions such as a constant equal to the premium,
the premium accrued at a guaranteed rate g, or the highest account value recorded
up to γ . Because max(Fγ ,Gγ ) is Fγ +[Gγ −Fγ ]+, the contract can be considered
from the policyholder’s point of view as a long position in the fund and a put option
with the strike price of Gγ . The insurer is at risk because of the short position in the
option. The policyholder’s account value is obtained by continuously deducting at
the rate m the value S of the policyholder’s portfolio invested in the financial mar-
ket. We consider m as the sum of two rates: mo used to fund the guarantee and ma ,
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for the other management expenses. In other words,m=mo+ma . Thus the account
value at time t is

Ft = F0
St

S0
e−mt = Ste

−mt , F0 = S0. (1)

To introduce mortality, we denote tpx as the survival probability Pr[Tx > t]. The
probability of dying t qx is 1 − tpx . For convenience, we first consider GMMB and
GMDB with a constant guarantee K . The insured receives if alive at age T , FT +
[K − FT ]+ under the GMMB and FTx + [K − FTx ]+ under the GMDB. We then
consider the GMAB contract which adds the possibility to modify the guarantee
at some specified dates by adding a ratchet effect. The investment period [0, T ] is
subdivided into T/h subintervals of the same duration. Also, we denote as ξS0,mo,t

the initial price of the embedded guarantee in the VA contract at time t .

1.1 Fair Fees and General Valuation Formulas

Let r be the instantaneous interest rate in the economy, then the discount function
is defined by δ(t) := exp{− ∫ t0 r(u)du}. The mortality and expense M&E is the
expected discounted value under a risk-neutral measure of all the fees paid until the
contract is in force, i.e. until death or maturity, whatever comes first. In an equivalent
definition, M&E =EQ[F̄T∧Tx ]. Following [2],

M&E(mo)= F0
mo

m

{

T px
(
1 − e−mT

)+
T−1∑

t=0

tpxqx+t
(
1 − e−m(t+1))

}

. (2)

For a given management rate ma , the equilibrium value or the fair price for the
guarantee is the solution in mo of the equation:

ξS0,mo,t =M&E(mo). (3)

Otherwise stated, the fair cost is such that the value associated with the discounted
continuous cash flows coming from the fees is equal to the contract’s optional rider
value. It is worth noting that this equilibrium equation gives a correspondence be-
tween the marginal offset rate mo and the management rate ma . Also, Eq. (3) takes
different expressions according to the particular VA contracts. Using arbitrage pric-
ing theory in continuous time, general formulae can be obtained. The contract values
can be expressed as linear combinations of European puts. The GMAB contract in-
corporates a ratchet effect on the guarantee. To be more precise, a set of rollover
dates A = {t1, t2, . . . , tn}, allows that at each of these times the guarantee is mod-
ified in the following way: Let F−

t be the fund value just before the guarantee is
reset at time t . At time ti , the guarantee becomes: max(Gti−1 ,F

−
ti
)= F−

ti
+Lti , with

Lti = [Gti−1 − F−
ti

]+, where the starting guarantee is G0, and the starting account
value is F0. General formulae can be obtained, cf. [2].
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2 Pricing and Hedging in a Lévy Context

Because of jumps in the financial prices, we are in an incomplete market. In this pa-
per we choose the Esscher risk-neutral measure which makes the discounted prices
martingale. For the pricing and hedging, we resort to the generalized Fourier ap-
proach in the line of the work of [1]. As shown in Eq. (1), the dynamics of F is the
same as those of S, up to the continuous dividend rate q equal to m. We assume that
St = S0e

Xt , where X is a Lévy process.

2.1 Pricing

The random function X, being a Lévy process, can be completely specified by its
characteristic exponent, ψ : E(eiuXt ) = e−tψ(u). The price at time t of a European
put option with exercise price K and maturity τ = T − t , can be written as

P(S,K,q,T )=K
1

2π
e−bx′

∫

R

eiux
′ e−τ(r+ψQ(u+ib))

(−iu+ b)(−iu+ b+ 1)
du, (4)

with b > 0, x′ = ln(S/K). It is worth noting that formula (4) holds for a European
call option, with b <−1. Also note that the expression in Eq. (4) is very suited for
a Fast Fourier Transform computation.

2.2 Hedging

Using a local risk minimization criterion, the optimal hedging ratio writes:

θ(St , T )=K
1

2Sπ
e−bx′

∫

R

eiux
′ e−τ(r+ψQ(u+ib))BP (u+ ib)

(−iu+ b)(−iu+ b+ 1)
du with b > 0, (5)

where

BP (u)= −ψP (u− i)+ψP (u)+ψP (−i)
−ψP (−2i)+ 2ψP (−i) . (6)

The superscripts P and Q refer to parameters in the historical and the risk-neutral
worlds, respectively. As can be seen in Eq. (5), the hedging ratio is obtained in
exactly the same way the option price is calculated in Eq. (4), up to factors BP (.)
and S−1, leading to a unified approach both for pricing and hedging.

3 Risk Management

We consider the distribution of future losses which appear as the sum of three com-
ponents. The first is the discounted value of the residual errors (HE). The second
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component is given by transaction costs (TC), and the third is the margin amount
M that is deducted by the insurer to fund the guarantee. This amount is also known
as the margin offset. Thus, the loss at time t is given by

Lt = HEt +TCt − tpxMt , (7)

with Mt =mo ×Ft , where mo is the offset ratio obtained via the equilibrium equa-
tion (3). Furthermore, the TC are proportional to the absolute variation of the amount
allocated in the hedging portfolio: TCt = CSt |Ψt − Ψt−1|, at time t . Using Eq. (7)
for the risk management of the contracts, we compute the VaR and CTE.

4 Illustration

We consider an insured of age 40 years at the contract inception who pays a sin-
gle 100 USD premium, invested in the referenced portfolio whose initial value
is F0 = 100. The interest rate r is assumed to be 6 %. GMMB, GMDB, mixed
GMMB/GMDB, and GMAB. The guarantee is assumed to be 100 % and 80 % of
the initial premium for the first three contracts and for the last one, respectively. The
guarantees within the contract, are funded endogenously at the rate mo, according
to the equilibrium equation (3). The hedging strategy uses a MC simulation with
20 000 sample paths and with the θ ratio. Using a Gompertz-Makeham mortality
law and a Kou process for the referenced risky portfolio, we numerically illustrate
the whole procedure, see [2]. The following table provides a short summary.

Mean Std VaR(95 %) CTE(95 %)

GMMB/GMDB: T = 10 −0.2496 1.3199 1.6965 2.2266
GMAB: A = {2,12,22} −13.6641 18.3114 8.0758 14.7923
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Monetary Risk Functionals on Orlicz Spaces
Produced by Set-Valued Risk Maps
and Random Measures

Dimitrios G. Konstantinides and Christos E. Kountzakis

Abstract In this article we study the construction of coherent or convex risk func-
tionals defined either on an Orlicz heart, either on an Orlicz space, with respect to a
Young loss function. The Orlicz heart is taken as a subset of L0(Ω,F ,μ) endowed
with the pointwise partial ordering. We define set-valued risk maps related to this
partial ordering. We also derive monetary risk functionals both by the class of co-
herent set-valued risk maps defined on them. We also use random measures related
to heavy-tailed distributions in order to define monetary risk functionals on Orlicz
spaces, whose properties are also compared to the previous ones.

Keywords Set-valued risk measure · Random measure · Young loss function ·
Orlicz heart

1 Orlicz Hearts and Orlicz Spaces in Finance

We consider two periods of time (0 and 1) and a non-empty set of states of the world
Ω which is supposed to be an infinite set. The true state ω ∈Ω that the investors
face is contained in some A ∈F , where F is some σ -algebra of subsets ofΩ which
gives the information about the states that may occur at time-period 1. A financial
position is a F -measurable random variable x :Ω → R. This random variable is the
profile of this position at time-period 1. We suppose that the probability of any state
of the world to occur is given by a probability measure μ : F → [0,1]. We remind
of the use of Orlicz Spaces in Finance, through the notion of loss function.

Definition 1 A function l : R → R is a loss function if (a) l is increasing and con-
vex, (b) l(0)= 0 and l(x)≥ x.
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Such a function is used to measure the expected loss Eμ(l(−x)) of a financial
position x. Related to the neutral evaluation of losses Eμ(−x) under the state-of-the
world measure, the expected loss Eμ(l(−x)) puts greater weights on high losses
than gains. Since l is convex, its convex conjugate l∗(y) = supx∈R{xy − l(x)} is
well defined (see also [6], p. 4). Let E be a (normed) linear space. A set C ⊆ E

satisfying C + C ⊆ C and λC ⊆ C for any λ ∈ R+ is called wedge. A wedge for
which C ∩ (−C)= {0} is called cone. A pair (E,≥) where E is a linear space and
≥ is a binary relation on E satisfying the following properties:

(i) x ≥ x for any x ∈E (reflexive);
(ii) if x ≥ y and y ≥ z then x ≥ z, where x, y, z ∈E (transitive);

(iii) if x ≥ y then λx ≥ λy for any λ ∈ R+ and x + z≥ y + z for any z ∈E, where
x, y ∈E (compatible with the linear structure of E),

is called partially ordered linear space. The partially ordered vector space E is a
vector lattice if for any x, y ∈E, the supremum x∨y and the infimum x∧y of {x, y}
with respect to the partial ordering inE. If so, |x| = sup{x,−x} is the absolute value
of x and if E is also a normed space such that ‖|x|‖ = ‖x‖ for any x ∈ E, then E
is called normed lattice. If a normed lattice is a Banach space, then it is called
Banach lattice. If we consider the pointwise partial ordering on L0(Ω,F ,μ), then
the Orlicz Heart Xl := {x ∈ L0 | Eμ[l(c|x|)] < ∞, ∀c > 0} endowed with the l-
Luxemburg norm

‖x‖l := inf

{

a > 0 | Eμ
[

l

( |x|
a

)]

≤ 1

}

,

is a Banach lattice. The norm-dual of Xl is the X∗
l := {y ∈ L0 | Eμ[l∗(c|y|)] <

∞,∃c > 0} Orlicz Space, endowed with the Orlicz norm ‖y‖l∗ := sup{Eμ(xy) :
‖x‖l ≤ 1}, being equivalent to the l∗-Luxemburg norm (see also in [4]). Since l(x)≥
x, x ∈ R+, then Xl ⊆ L1. We also denote by Ml,l∗(μ) the probability measures on
(Ω,F), which are absolutely continuous with respect to μ and their densities lie in
Xl∗ (see [6], p. 5). First, we remind the definitions of monetary risk functionals on
Xl , being alike to the ones met in [2, 5, 7].

Definition 2 A real-valued function ρ : Xl → R is a coherent monetary risk mea-
sure if it is satisfying

(i) ρ(x + a1)= ρ(x)− a (Translation Invariance);
(ii) ρ(λx + (1 − λ)x)≤ λρ(x)+ (1 − λ)ρ(y) for any λ ∈ [0,1] (Convexity);

(iii) ρ(λx)= λρ(x) for any x ∈Xl and any λ ∈ R+ (Positive Homogeneity);
(iv) y ≥ x implies ρ(y)≤ ρ(x) (Monotonicity),

where x, y ∈Xl , is called convex.

Definition 3 A correspondence ρ : Xl → 2Xl is a coherent risk correspondence
if it satisfies the properties

(i) ρ(x + a1)= ρ(x)− {a1}, a ∈ R (Translation Invariance);
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(ii) ρ(λx + (1 − λ)x)⊆ λρ(x)+ (1 − λ)ρ(y) for any λ ∈ [0,1] (Convexity);
(iii) ρ(λx)= λρ(x) for any x ∈Xl and any λ ∈ R+ (Positive Homogeneity);
(iv) y ≥ x implies ρ(y)⊆ ρ(x) (Monotonicity),

where x, y ∈Xl .

Definition 4 A financial position x is safe with respect to ρ :Xl → 2Xl , if for this
x ∈Xl , ρ(x)⊆ −Xl,+.

Definition 5 The wedge of the safe financial positions Aρ = {x ∈ Xl |ρ(x) ⊆
−Xl,+} is called acceptance set of ρ.

Suppose that C is a wedge of a linear space E. A linear functional f of E is
called positive functional of C if f (x) ≥ 0 for any x ∈ C. f is a strictly positive
functional of C if f (x) > 0 for any x ∈ C \ {0}. A linear functional f of E, where
E is a normed linear space, is called uniformly monotonic functional of C if there is
some real number a > 0 such that f (x)≥ a‖x‖ for any x ∈ C.

The set of functions C0 = {f ∈E∗|f (x)≥ 0, ∀x ∈ C} is the dual wedge of C in
E∗. If for two wedges K,C of E K ⊆ C holds, then C0 ⊆K0. If C is a cone, then
a set B ⊆ C is called base of C if for any x ∈ C \ {0} there exists a unique λx > 0
such that λxx ∈ B .

The set Bf = {x ∈ C|f (x)= 1}, where f is a strictly positive functional of C is
the base of C defined by f . Bf is bounded if and only if f is uniformly monotonic.
If B is a bounded base of C such that 0 /∈ B then C is called well-based. If C is
well-based, then a bounded base of C defined by a g ∈ E∗ exists. Also, f ∈ E∗
is a uniformly monotonic functional of C if and only if f ∈ intC0, where intC0

denotes the norm-interior of C0.

Theorem 1 The derivative monetary coherent risk measure ρ̂ :Xl → R ∪ {+∞},
which arises from ρ :Xl → 2Xl is defined as follows:

ρ̂(x)= sup
π∈A0

ρ∩Ml,l∗(μ)
π(−x), x ∈Xl.

The consistence range of ρ is used for the definition of a pricing functional
ψ : E → R, which satisfies the properties of a generalized price indicated in [1]
Lemma 3.3. These properties are listed in the following

Definition 6 A functional ψ :E → R is a generalized price if and only if satisfies
the following properties:

(i) If x ≥ y, then ψ(x)≥ψ(y) (E+-Monotonicity);
(ii) ψ(x + y)≥ψ(x)+ψ(y) (Super-Additivity);

(iii) ψ(a · x)= aψ(x), x ∈E,a ∈R+ (Positive Homogeneity).

We obtain the following duality between monetary coherent risk measures and
generalized prices.
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Theorem 2 If ψ : Xl → R is a generalized price which is normalized at the nu-
meraire financial position 1 ∈Xl,+ (ψ(1)= 1) and satisfies the Translation Invari-
ance ψ(x + a1) = ψ(x) + a, a ∈ R, then −ψ = ρψ is a monetary coherent risk
measure. On the other hand if ρ : Xl → R is a monetary coherent risk measure,
then −ρ =ψρ :E →R is a generalized price functional.

2 Monetary Risk Functionals Arising from Random Measures

We consider the probability space (Ω,F ,μ) and a measurable space (E,E). A ran-
dom measure (see [8]) ξ on (E,E) over the probability space (Ω,F ,μ) is a map
ξ : E ×Ω → R+, such that

1. the map ω �→ ξ(A,ω) is a random variable for any A ∈ E ;
2. the map A �→ ξ(A,ω) is a measure on E , μ-almost surely in Ω .

The measurable (E,E) is actually (S,BS), where B is the Borel σ -algebra on S. If
we would like to create a V-related coherent ρ : Xl → R, where V is a family of
heavy-tailed distributions (see [3]), such that the densities of ξ(y), y ∈ S belong to
Ml,l∗(μ), where S ⊆ Y is compact and Y is a finite-dimensional topological mani-
fold Y (see [9]) of parameters of V .

Theorem 3 The following risk measure is coherent on Xl

ESa,V,S,l(x)= sup
0≤ dμξ(y)

dμ
≤ 1
a
, y∈S

Eμξ(y) (−x), x ∈Xl.
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A Probability Inequality Related to Mardia’s
Kurtosis

Nicola Loperfido

Abstract We use the measure of multivariate kurtosis introduced by Mardia to de-
fine an upper bound for the probability that the Mahalanobis distance of a random
vector from its mean is greater or equal than a given value. The bound improves on
a similar one, based on Markov’s theorem, and generalizes to the multivariate case
an inequality which appears in several textbooks. It might be applied whenever the
distribution of the Mahalanobis distance of a random vector from its mean is not
easily computable, as it is often the case in finance and actuarial sciences.

Keywords Kurtosis · Mahalanobis distance · Markov’s theorem

1 Introduction

Let x be a d-dimensional random vector with mean μ, nonsingular covariance ma-
trixΣ and finite fourth-order moments. Mardia [8] proposed to measure the kurtosis
of x by

β2,d (x)=E
[
(x −μ)T Σ−1(x −μ)

]2
. (1)

In the univariate case, (1) coincides with Pearson’s kurtosis, that is the fourth mo-
ment of a standardized random variable. Mardia’s kurtosis has become the best
known and most used measure of multivariate kurtosis [4, 6, 14]. Mardia [8] ap-
plied Markov’s theorem to obtain

P
[
(x −μ)T Σ−1(x −μ)≥ ε

]≤ β2,d

ε2
, (2)

which is useless when ε ≤ d , since β2,d ≥ d2 [8]. For a random variable X with
mean μ, standard deviation σ and standardized fourth moment β2, it becomes

P

(∣
∣
∣
∣
X−μ

σ

∣
∣
∣
∣≥ λ

)

≤ β2

λ4
, (3)
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which can be improved as follows, for λ > 1:

P

(∣
∣
∣
∣
X−μ

σ

∣
∣
∣
∣≥ λ

)

≤ β2 − 1

(λ2 − 1)2 + β2 − 1
. (4)

The above inequality appears in several textbooks: [2] (p. 256), [13] (p. 102), [12]
(pp. 53–55) and [11] (p. 323), where it is introduced as the David and Barton in-
equality. The present paper sharpens (2) by generalizing (4) to the multivariate case.
The next section contains the main result and the last one comments it.

2 Inequality

This section states the inequality and proves it. The inequality is related to Markov’s
theorem, which appears in its proof. Probability inequalities related to Markov’s
theorem are thoroughly discussed by [3].

Theorem 1 Let β2,d be Mardia’s kurtosis of a random vector x with mean μ

and nonsingular covariance Σ . Then the following inequalities hold for any real
ε greater than d :

P
[
(x −μ)T Σ−1(x −μ)≥ ε

]≤ β2,d − d2

ε2 − 2dε+ β2,d
≤ β2,d

ε2
. (5)

Proof Let Y = (x − μ)T Σ−1(x − μ) be the squared Mahalanobis distance of x
from its mean μ and consider the mean of [(Y − d)(ε− d)+ (β2,d − d2)]2, that is

(ε− d)2E
[
(Y − d)

]2 + 2(ε− d)
(
β2,d − d2)E(Y − d)+ (β2,d − d2)2. (6)

The above expectation might be simplified into

(ε− d)2
(
β2,d − d2)+ (β2,d − d2)2 = (β2,d − d2)(ε2 − 2dε+ β2,d

)
(7)

by noticing that E(Y)= d and E(Y 2)= β2,d . It follows that the expectation of the
random variable

W =
[
(Y − d)(ε− d)+ (β2,d − d2)

ε2 − 2dε+ β2,d

]2

(8)

is (β2,d − d2)/(ε2 − 2dε + β2,d ). Since W is nonnegative with finite expectation
Markov’s theorem leads to

P(W ≥ 1)≤ β2,d − d2

ε2 − 2dε+ β2,d
. (9)

The assumption ε > d implies that P(W ≥ 1) = P(Y ≥ ε), as it can be seen from
the inequalities (Y − d)(ε− d)+ (β2,d − d2)≥ ε2 − 2dε+ β2,d , (Y − d)(ε− d)≥
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ε2 − 2dε + d2 and (Y − d) ≥ (ε − d). We can now complete the first part of the
proof by recalling the definition of Y :

P
[
(x −μ)T Σ−1(x −μ)≥ ε

]≤ β2,d − d2

ε2 − 2dε+ β2,d
. (10)

We shall now prove the second part of the theorem. A little algebra shows that the
inequality

β2,d

ε2
≥ β2,d − d2

ε2 − 2dε+ β2,d
(11)

is equivalent to

(β2,d − dε)2

ε2[(ε− d)2 + β2,d − d2] ≥ 0, (12)

which always holds since β2,d ≥ d2 [8] and ε > d . This completes the proof. �

3 Remarks

The following remarks are meant to give a better insight into the previous section’s
inequality.

The distribution of the Mahalanobis distance of a random vector from its mean
has a simple analytical form only in a few cases, notably the normal and t ones. In
the general case it is not easily computable: finance and actuarial sciences provide
many such examples. On the contrary, Mardia’s kurtosis has a simple analytical
form for many well-known multivariate distributions: normal [8], mixture of two
normals [9], bivariate uniform, bivariate Pareto, bivariate exponential [10], scale
mixture of skew-normal distributions ([5]), multivariate Laplace [7], elliptical dis-
tributions [14], multivariate t, multivariate Pearson type II, multivariate Pearson type
VII, multivariate symmetric Kotz type [1]. Hence Theorem 1 might be helpful in ap-
proximating the cumulative distribution function of the Mahalanobis distance of a
random vector from its mean.

The assumption ε > d cannot removed without replacing it with other assump-
tions, as shown in the following example. Let X1, . . . ,Xd be pairwise independent
random variables satisfying P(Xi = 1) = P(Xi = −1) = 0.5, for i = 1, . . . , d . It
easily follows that the mean and the variance of x = (X1, . . . ,Xd)

T equal the null
vector and the identity matrix, respectively. Moreover, Mardia’s kurtosis of x at-
tains its minimum value, that is d2. The Mahalanobis distance of x from its mean
is d with probability one. The upper bound of the above inequality is zero, but the
probability of the Mahalanobis distance of x from its mean being greater or equal to
d is one. Hence the above inequality does not always hold when ε is not constrained
to be greater than the vector’s dimension.

Acknowledgements The Author wish to thank Prof. Domenico Piccolo for the encouragement.
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Integrating Industrial and Financial Analysis
into a Rating Methodology for Corporate Risk
Detection: The Case of the Vicenza
Manufacturing Firms

Guido Max Mantovani, Giancarlo Coro, Paolo Gurisatti, and Mattia Mestroni

Abstract Banks weakness derived from rating models that produce cyclical effects
on credit availability and are not able to anticipate anti-cyclical firms’ trends. The
aim of the paper is to develop a framework for an original rating methodology
derived from integration of industrial and financial analysis able to identify best
performers in crisis scenarios (anti-cyclically). Industrial analysis is based on firm
heterogeneity approaches to measure three dimensions of analysis: innovation, in-
ternationalization and growth. Financial analysis focuses on operational return and
risks measures and develops an integrated classification of firms using standardized
XBRL financial data. Further integration of the two methodologies is used to create
the effective set of information needed for rating system.

Keywords Corporate risks · Rating · Firm behavior · Firm performance

1 Introduction

Techniques adopted in the classical financial risk approaches are often useless, since
they are based on the heterogeneous nature of risks. Instead, in real terms corpo-
rate risks have huge endogenous components. Risk is continuously crafted by man-
agerial decisions, including those adopted in order to manage them. The simple
financial approach in corporate risk management is reductive, missing the business
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model determinants along with the managerial decisions contribution. An integrated
approach is then required, in order to soundly support the managerial choices.

2 Literature Review

The great financial crisis of 2008 has shown all the weaknesses of a World Bank
regulation that presents high levels of pro-cyclical effects [3, 4]. The evidence of
such limits and threats incorporated in Basel regulation was extensively proved by
academic world [5, 8, 10]. The high proportion of SMEs and the high productivity
of North East [1, 7] drive our choices on manufacturing firms of Vicenza to test
our original rating methodology. The integration of financial methodology with an
industrial one puts our work in line with some precedent papers that underline the
importance of adding soft information to standard financial approaches to a correct
valuation of firms credit merit [4, 6].

3 Industrial Analysis

This investigation was initiated with a survey to a sample of 309 industrial firms,
selected by industry and size representativeness, located in Vicenza. Our research
hypothesis refers to firm heterogeneity approaches [2]: firstly we look at innova-
tion capabilities, collecting data on patents and R&D offices; secondly, we evalu-
ate the international activities through information on firm’s export, the occurrence
of affiliates abroad and where firms’ main competitors are; finally, we measured
the turnover and profit performance just after the 2008 crisis. According with the
emerging characteristics, we named the five groups as following:

• G1–International and reactive firm (about 20 per cent of the sample);
• G2—International but not reactive firm (15 per cent of the sample);
• G3—Local reactive firm (20 per cent of the sample);
• G4—National or local not reactive firms (15 per cent of the sample);
• G5—Average or standard firms (30 per cent of the sample).

4 The Sample

Any authority identification code of the 309 firms considered in industrial analysis
was available in our data set of manufacturing firms located in Vicenza. Using iden-
tification codes, by AIDA database research function we could extract complete
balance sheets for financial analysis implementation. The analysis was performed
on a sample data containing continuous and complete 2004–2012 standard financial
reports.
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Table 1 Financial model framework for the classification of firms (ROC = Return On Capital)

RETURNS

INCREASING ROC (ROC2010 > ROC2007) DECREASING ROC
(ROC2010 < ROC2007)

STEADY TREND
(ROC2010 > ROC2008)

UNSTEADY TREND
(ROC2010 < ROC2008)

WORSENING

RISK DECREASING
RISK

OK Anomalous Firms to
be reclassified

Critic firms

INCREASING
RISK

Anomalous Firms to
be reclassified

Critic firms KO

5 Financial Analysis

The intuition behind this model is the need to give an appropriate emphasis to risk
dimensions in classifying a “performing” firm. The resulting matrix (Table 1) classi-
fies the sample into six quadrants: “OK firms”, “KO firms”, two quadrants identified
as “Critic Firms” and two quadrants identified as “Anomalous Firms to be reclassi-
fied”. Three risk dimensions considered are Degree of Operative Leverage (DOL)
for both price and volumes changes in operating revenue, and working capital ab-
solute intensity, that is the working capital on operating revenue rate. Risk indexes
and ROC definitions follow previous research standards defined by [9]. The above
analysis is performed over three timeframes: the pre-crisis period (2004–2007); the
crisis period (2007–2010) and the post-crisis period (2010–2012).

6 Results

In sum, we can say that industrial analysis produce a consistent method to iden-
tify best performers, confirmed by post crisis financial analysis. On one hand, the
industrial method identifies firms with high return rate and low risk exposure—as
G1, G3 and G5—and firms with low return rate and high risk exposure—as G2
and G4. On the other, the financial method confirm the capacity to react to crisis of
best performers groups, identified by industrial methodology—G1 and G3—and the
expectations about cluster performance are confirmed also after crisis.

7 Conclusions

Financial analysis demonstrate that industrial classification identifies correctly the
cluster G1 as best performers: it has the best capacity to react to crisis and the high
percentage of OK firms during the pre-crisis, the crisis and the post-crisis periods.
Also G4 was correctly identified as the worst performer group: it has the lowest
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percentage of improving firms and the highest percentage of worsening firms in
crisis and post crisis timeframes. As industrial model predicts, G3 and G5 result as
clusters of good performers even if due to different features. The most interesting
cluster is the G2 group, defined by the industrial analysis as a group of international
players firms with low performance. During crisis, this group suffers a high degree
of risk exposure that is the reason of the low performance on the three timeframes.
But, its international openness permitted to reduce risk exposure after crisis and
G2 report an improvement in financial classification, even if conserving low ROC
levels. The results of the empirical analysis are clear: an integrated approach in
corporate risk detection is clearly more efficient. By adopting such a methodology
you must measure the impact of risks that do persist into the firm, along with their
impact as a bundle.
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Risk Measurement Using the Mixed Tempered
Stable Distribution

Lorenzo Mercuri and Edit Rroji

Abstract The Mixed Tempered Stable distribution (MixedTS) recently introduced
has as special cases parametric distributions used in asset return modelling such as
the Variance Gamma (VG) and Tempered Stable. In this paper, we start from this
flexible distribution and compare the historical estimates for the two homogeneous
risk measures with the quantities obtained using direct numerical integration and
the saddle-point approximation. The homogeneity property enables us to go further
and look for the most important sources of risk. Although risk decomposition in a
parametric context is not straightforward, modified versions of VaR and ES based
on asymptotic expansions simplify the problem.

Keywords MixedTS · Homogeneity · Risk decomposition

1 Model Description

Value at risk [6] and Expected Shortfall [10] have emerged as industry standards
for measuring downside risk. Non-parametric approaches for their estimation have
gained the consensus of practitioners since they are easier to implement and only the
information in the return series is used. However, non-parametric methods imply
more uncertain estimates for the risk measures considered as shown for example
in [1]. In this paper we consider a parametric distribution, the Mixed Tempered
Stable [9], for modeling asset returns and use it in risk computation. We say that a
continuous random variable Y follows a Mixed Tempered Stable distribution if:

Y
d= √

V X̃ (1)
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where X̃|V ∼ stdCTS(α,λ+
√
V ,λ−

√
V ). V is a Lévy distribution defined on posi-

tive axis and its m.g.f always exists. The logarithm of the m.g.f. is:

ΦV (u)= ln
[
E
[
exp(uV )

]]
. (2)

We compute the characteristic exponent for the new distribution and apply the law
of iterated expectation:

E
[
eiu

√
V X̃
]=E

{
E
[
eiu

√
V X̃|V ]}

= exp
[
ΦV
(
LstdCTS(u;α,λ+, λ−)

)]
. (3)

The characteristic function identifies the distribution at time one of a time changed
Lévy process and the distribution is infinitely divisible.

Proposition 1 The first four moments for the MixedTS have an analytic expression:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E[√V X̃] = 0

Var[√V X̃] =E[V ]

γ1 = (2 − α)
(λα−3+ − λα−3− )

(λα−2+ + λα−2− )
E−1/2[V ]

γ2 =
[

3 + (3 − α)(2 − α)
(λα−4+ + λα−4− )

(λα−2+ + λα−2− )

]
E[V 2]
E2[V ] .

(4)

The choice of using this distribution comes from the fact that if we assume that
V ∼ Γ (a,σ 2), we have as special cases some well-known distributions in model-
ing financial returns. We get the VG [8] for α = 2 and the standardized Classical
Tempered Stable [4] (stdCTS) when σ = 1√

a
and a goes to infinity.

Edgeworth expansions are frequently used to approximate distributions when
higher order moments are available. This methodology seems to work well in the
center of the distribution but it often produces negative values for densities in the
tails. Saddle-point expansion [7] can be understood as an refinement of the Edge-
worth expansion on the tails. In [3] is given a general description about how to
approximate the density and the cumulative distribution function (cdf) of a contin-
uous r.v. X whose moment generating function (mgf) MX(t) exists in an open set
around zero. Given the cumulant generating function (cgf)

KX(t)= ln
[
MX(t)

]
(5)

the solution ŝ = s(x) of the equation x =K ′
X(ŝ) is the saddle-point at x belonging to

the support of the r.v X. The first order Saddle-Point approximation for the density
fX(x) is:

f̂X(x)= 1
√

2πK ′′
X(ŝ)

exp
{
KX(ŝ)− xŝ

}
(6)

while continuing with the derivation is it is possible to arrive at the second order
approximation and the existence of the first four moments becomes crucial. After
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Table 1 Comparison of the Expected Shortfall at level 5 % using the empirical distribution and
the parametric MixedTS distribution. The dataset is compose by daily log returns ranging from
14-June-2011 to 20-September-2013 of the VFIAX, which is a fund that tries to replicate the
performance of the S&P 500 index, and the ten sector indexes in the USA market

ESMixedTS
0.05 ESFourier

0.05 ESSPA1
0.05 ESSPA2

0.05 ESEmp
0.05

VFIAX 0.0173 0.0179 0.0205 0.0204 0.0170

COND 0.0157 0.0158 0.0155 0.0164 0.0170

CONS 0.0176 0.0177 0.0200 0.0196 0.0163

ENRS 0.0184 0.0185 0.0182 0.0192 0.0230

FINL 0.0192 0.0194 0.0194 0.0202 0.0206

HLTH 0.0177 0.0188 0.0209 0.0204 0.0171

INDU 0.0210 0.0210 0.0235 0.0233 0.0197

INFT 0.0209 0.0206 0.0231 0.0223 0.0191

MATR 0.0215 0.0211 0.0212 0.0218 0.0233

TELS 0.0186 0.0188 0.0189 0.0192 0.0216

UTIL 0.0161 0.0161 0.0165 0.0165 0.0170

testing the ability of the new distribution to reproduce the features of the returns ob-
served in the market, we focus on the computation of risk measures in a parametric
context in order to exploit the results obtained previously. As a first exercise, we fit
the MixedTS directly to the returns of Vanguard Fund Index which tries to replicate
the S&P 500 and to the ten indexes. The fitted parameters are used for the compu-
tation of the risk measures.
We evaluate the cumulative distribution function using the formula that through the
characteristic function φX(t) allows us to evaluate the cdf FX(x):

FX(x)= 1

2
− 1

2π

∫ +∞

−∞
[e−itxφX(t)]

it
dt. (7)

We consider the VaR computed using the Inverse Fourier Transform and compare
it with that obtained with the historical simulation approach. In Table 1, for each
index, we compare the empirical ES estimates with the estimates using four different
methodologies.

1. Numerical integration of the expected value, i.e the distribution is obtained
through the Inverse Fourier Transform. We recall that, under the assumption of
the existence for the E(X),1 the Expected Shortfall can be written as

ESα(X) :=E[X|X ≤ xα] = xα − 1

α

∫ xα

−∞
F(u)du; (8)

2. The second approach is based on Monte Carlo simulation. The random number
generator is built using the Inverse Transform Sampling method [5];

1For the Mixed Tempered Stable distribution, this condition is ensured by the existence of moment
generating function.
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3. First order Saddle Point Approximation formula.

ESα(X)= 1

α

∫ q

−∞
xfX(x)dx ≈ 1

α

[

μXFX(q)− fX(q)
q −μX

ŝ

]

; (9)

4. Second order Saddle Point Approximation formula.

ÊSα(X)=Φ(ω̂q)μX +
√

1

2π
exp

{

− ω̂
2
q

2

}[
μX

ω̂q
− q

ûq

]

(10)

where ω̂q , ûq are evaluated in the quantile point x = q .

The study of risk attribution using the MixedTS is based on the definitions of
modified VaR [11] and modified ES [2] that consider asymptotic expansions and
require only the existence of the first four moments. Parametric risk decomposition
is more difficult than a simple historical approach but estimates are more stable and
accurate.
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Corporate Finance. . . What Else? The Case
of the Productive Chain Networks in North-East
Italy and the Scaffolding Finance Adopted
by Their Leader

Mattia Mestroni, Elisabetta Basilico, and Guido Max Mantovani

Abstract The Italian North-East district is a clear evidence of the presence of pro-
ductive chain networks, in which firms tend to specialize in specific risk manage-
ment. This generates new approaches in the theory of the firm. We investigate which
are the implications for the financial activities of the clusters. The paper presents a
methodology to identify firms according to their network role: LF, SF and standing
alone firms (SA). Accordingly, empirical evidence about the capital raising activity
of LF, SF and SA is reported, deploying the necessity of a new approach in finance,
where “corporation” is no more the focus.

Keywords Networks · Firm boundaries · Corporate finance · Working capital

1 Introduction

Can we still adopt the expression “corporate finance” in an economic environment
where the detection of the boundaries of corporations is becoming more and more
difficult? Maybe the answer is “no more”! The necessity to satisfy the increasingly
evolving and unique needs, together with the necessity to specialize in the use of
productive factors, requires a continuous evolution of the firm concept. Barney and
Ouchi [1] collected a wide range of papers, explaining why some transactions can be
better managed by approaches that stand-in-the-middle between pure markets and
firm organizations. Within this framework, and as [2] predicted, large corporations
are generated only when the firm organization can be more efficient than markets.
In other cases, markets can be more efficient, but in some others, hybrids models are
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required: transactions are still managed by markets and they are assisted by a clan
(i.e. semi-organizational) agreement [1]. Small and Medium Enterprise (SME) busi-
nesses give strong empirical insights about this evidence of the evolution toward a
twin-necessities-satisfaction. Very challenging SMEs are now competing more and
more, by acting together into clusters that coordinate their actions [6]. Sometimes,
this cluster competition is mainly driven by the nature of the sold products (e.g.
in the case of chains of firms); in other cases, technology is the main driver of the
competitive advantage of the cluster (e.g. in the case of districts). In both cases the
cluster acts similarly to a unique firm, but its organization nexus is based on mar-
ket transactions, assisted by clan’s rules. This approach allows any single member
of the cluster, to specialize in the areas where its own skills are efficient at most.
Two possible approaches can be configured: (i) a network/partnership agreement,
which is the institution where the money is flowed to; (ii) a leader (in finance),
which is identified inside the cluster and appointed as financial manager for the
entire group. Clusters already self-appoint leaders to manage their transaction (i.e.
main contractors for selling activities, productive leader to spread skills, etc.). The
mission-critical role of such leaders candidates them to manage the financial profile
of the cluster as a whole. According to this, “corporate finance” is to become “some-
thing else” managing both the external financial needs of the cluster, along with the
internal allocation of the financial resources. Indeed, the corporation is no more the
institution to refer to, in order to understand the economics of transactions, while a
“scaffolding approach” as suggested by [3], is preferable. Talking about “corporate-
else finance” is then to be preferred to the classic corporate finance. This requires
identifying the subject of the managerial finance activity. In this paper, we inves-
tigate the effective capability of the firm scaffolding, to appoint leaders in finance
and to delegate them to the management of transactions, which are required to fund
the entire cluster. To do this, we present a methodology to discriminate between the
“leader” of a productive chain and the rest of the companies in this network (the
suppliers). The idea is based on the discovery by [5], who show that in the Italian
North East District of Treviso there appears to be a clear “Production Chain Net-
work” where the leading firm (LF) finances eight supplier firms (SF). The inner aim
of the paper is to discover if capitals prefer to flow to companies as legal entities (i.e.
corporate finance),or to clusters as real entities (corporate-else finance). We think it
is important to delve into this puzzle because, if it exists, banks are better off deter-
mining the merit of credit based on the “overall” network and not based on single
entities in the network.

2 Theoretical Model and Robustness Checks

Specifically, in order to identify the leading firm (LF) and the supplier firms (SF)
in the network, we hypothesize that the LF finances the rest of the network (its
suppliers). To the contrary, we hypothesize that the SA does not finance the rest of
the network. Figures 1 and 2 show the differences in the capital structure of both
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Fig. 1 Leading firm (LF) in a productive chain

Fig. 2 Standing Alone firm (SA)

LF and SA. LF presents additional working capital compared to SA because part of
the capital raised from banks (net financial resources) is transferred to its suppliers,
which are part of the productive chain network.

Net Financial Resources = Equity + Net Debt (1)

WKCA = Working Capital = Debtors + Inventory − Creditors (2)

Based on a number of theoretical simulations on the firms balance sheet, we are able
to develop the following hypothesis: 1. LF firms show a positive correlation between
absolute working capital intensity and absolute weight of financial resources (ρ1);
2. LF firms show a positive correlation between relative working capital intensity
and absolute weight of financial resources (ρ2); 3. SA working capital is greater
than that of LF; 4. SA Net financial resources are greater than those of SF; 5. There
is a decreasing working capital intensity of SA. We test the above hypothesis on a
sample of 13,391 firms incorporated in three regions of North East Italy (Veneto,
Friuli Venezia Giulia and Trentino Alto-Adige) and with balance sheet data for ev-
ery year from 2006 to 2012. We are able to identify 553 LF, 1.115 SA and 3.334SF.
In order to check the validity of the theoretical model, we perform panel regressions
which analyze the relation between the return of investment and a series of variables
which try to capture the risk level of firms in the analysis [4] over the period from
2007 to 2012. The panel regression analysis is performed on four different samples:
the total population, the manufacturing sector, the standing alone-SA cluster and the
supplier firms-SF cluster and the leader firms-LF cluster. The results show that both
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the sub-samples identified by the SA and LF clusters present a higher Adjusted R-
squared estimation, moving from 0.15 (manufacturing firms sub sample) to 0.73 in
the SA cluster and 0.65 in the LF cluster when including the autoregressive compo-
nent (ROIt−1). Similarly, the estimation parameter moves from 0.06 to 0.64 in SA
and 0.55 in LF when the autoregressive component (ROIt−1) is excluded. Addition-
ally, as expected, the Hannan-Quinn criterion for the above two clusters decreases
in value. Thus, we conclude that results of the panel regressions analysis seem to
confirm the soundness of the Productive Chain Networks identification method.

3 Conclusions

Even if clusters can be evidenced only by concrete case studies, this paper tries to
investigate whether the hypothesis of corporate-else finance can be supported by
empirical evidence. Leaders are identified recurring to a methodology based on the
hypothesis of polarized farming of productive farming inside the clusters. This gen-
erates specific capital intensity levels both for working capital and for fixed capital;
the relationship existing between their relative intensity and the capital flows can
be proof of a leadership even in financial functions. Testing the methodology in the
very dense area, in terms of number of firms of the North-East Italy, seems to detect
correctly the leaders (LF). Financial reports depict their specificities, if compared
with the other cluster firms and the stand alone ones. Evidences demonstrate that
LF receive more debt resources than any others, and that they pay less for these
resources. This results in a substitution of the banks role in the selection of invest-
ments. Hence, banks that are able to explore firms boundaries among networks, can
surely improve their ability to estimate the merit of credit of such firms in two ways:
(1) by improving the efficiency of rating models and (2) by considering both possi-
ble network re-allocation of financial resources and economic interdependencies.
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BEKK Element-by-Element Estimation
of a Volatility Matrix. A Portfolio Simulation

Alessia Naccarato and Andrea Pierini

Abstract The use of a BEKK (Baba-Engle-Kraft-Kroner) model is proposed to es-
timate the volatility of a set of financial historical series with a view to the selection
of a stock portfolio. An individual element on the diagonal of the volatility matrix
is estimated by applying the model to the series of log returns both of the share i to
which it refers and of the market index. An extra-diagonal element is instead esti-
mated by using in the model the covariances between the series of log returns of the
two shares i and j to which the element of the volatility matrix corresponds.

The procedure proposed for the estimation of volatility was applied to the series
of monthly stock log returns of 150 shares of major value traded on the Italian
market between 1 January 1975 and 31 August 2011 and the Markowitz portfolio is
simulated.

Keywords BEKK model · CVAR model · Markowitz portfolio · Simulation

1 Introduction

The problem that arises in the selection of a stock portfolio generally regards esti-
mating the volatility of log returns, which means estimating a variance-covariance
matrix [1]. The problems to be addressed in defining a portfolio are, however, of
a different nature. First it is necessary to take the entire set of shares and identify
the subset from which those to be included in the portfolio are selected on the basis
of ranking. Then the volatility matrix, and hence the investment risk, is estimated.
Finally, the portfolio is defined according to the information obtained in the first
two phases. The first problem is addressed in this work by proposing a selection
criterion based on the differences between the log intrinsic value of the shares and
the log returns. The volatility matrix of the shares selected is then estimated through
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combined use of the Cointegrated Vector Autoregressive (CVAR) model [2, 5, 7]
and the Baba-Engle-Kraft-Kroner (BEKK) model [3]. Once the volatility matrix
has been estimated by solving a problem of quadratic optimization, it is possible to
establish the proportions in which each of the shares selected is to be purchased, i.e.
to select a portfolio.

2 Selection of Shares and Estimation of the Volatility Matrix

The need to select a (possibly large) subset of n shares for inclusion in the portfolio
on the basis of their log returns stems from the fact that the entire set of shares
available on the market is so large that it would be impossible to define a portfolio
a through simultaneous study of all their log returns. It therefore makes sense to
concentrate on the subset of the “best” shares, defined here as those with the greatest
difference between log intrinsic value and log returns. The number n of shares to
be selected is established through application of a criterion (efficient frontier) that
identifies the combination of shares offering the returns with minimum risk for every
fixed n but with the composition varying in terms of the quantity of each share to be
purchased. The first problem to be addressed in the selection of shares is therefore
the calculation of the difference between the log intrinsic value of the share and its
log return. It should be pointed out, however, that this is in any case a problem of
prediction, as the point of interest is the future value of the difference between the
two magnitudes considered. This makes it possible to decide which share to select at
the moment of investment. It is therefore necessary to estimate a model that makes
this prediction possible. A CVAR(p) model is adopted in order to estimate both the
log intrinsic value of the share and its log return. The starting point is the K = 150
series, regarding the log returns Rk,t on the shares, and the average log return of the
market RM,t , t = tk, . . . , T , k = 1, . . . ,K . For each series, the CVAR(p) model is
considered for the random vector yt = [y1,t , y2,t ]′ = [Rk,t ,RM,t ]′ as

�yt = ηt +Πyt−1 +A1�yt−1 + · · · +Ap−1�yt−p+1 + ut (1)

where � indicates the usual difference operator, ηt = η0 + η1 · t , Ai is the 2 × 2
matrix, Π is the matrix of parameters containing information on the cointegration
of the series [5], i = 1, . . . , p − 1, η0, η1,Ai,Π are the unknown coefficients and
ut = [u1,t , u2,t ]′ is the vector of errors such that ut ∼N(0,Σu). It should be noted
that the CVAR(p) model is chosen to estimate the unknown coefficients of Eq. (1)
because it makes it possible to consider the possible presence of integration or coin-
tegration between the two components of the random vector yt . Note also that when
the series present neither cointegration nor integration, Eq. (1) is not informative and
it becomes necessary to estimate a Vector Autoregressive (VAR) model. The same
procedure is also adopted to estimate the model for log intrinsic value, where use
is made not only of the historical series of log intrinsic value for the period under
examination, but also of the average log intrinsic value of the sector of economic
activity to which the share belongs. Once the two magnitudes have been estimated
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for every share i, all the differences that present positive values of differences and
log return at the same time are also estimated. With the number n of shares to be
selected set initially at 10, the volatility matrix is estimated element by element. In
particular, a two-step procedure is adopted to estimate the variance of the log return
of share i (element i on the main diagonal of the matrix). First, a CVAR(p) model is
estimated in which the historical series considered are the log return of the share i
itself and the log return of the market index [7]. Second, if the ARCH test [5] carried
out on the residuals of the CVAR model estimated in step 1 indicates the presence
of heteroscedasticity, a BEKK model is applied to the same residuals, which makes
it possible to interpret the temporal dynamics of the variances of the log return of
share i [3]. In order to estimate the extra-diagonal elements of the volatility matrix
(covariances between the log returns of two shares i and j ), the same procedure
is used with the difference that the CVAR model is applied to the series of the log
returns of the two shares. Here too, if the ARCH test indicates the presence of het-
eroscedasticity, a BEKK model is estimated. It should be noted that it is possible to
demonstrate that the two-step procedure converges asymptotically on the simulta-
neous estimation of the elements of the matrix [5]. Moreover, since the estimation
of the entire matrix of volatility is obtained asymptotically as a composition of con-
sistent and increasingly efficient estimates [5], it presents the same characteristics.
The size n of the portfolio is increased by means of an iterative procedure until all
the “best” shares are included in the portfolio.

3 Results and Conclusions

The model put forward was applied to the 150 shares of highest value on the Ital-
ian stock market. The maximum number of shares in the portfolio proved to be 25.
Figure 1 top left shows the volatility and the log return obtained by solving the
Markowitz optimization problem for variation of the expected return Rp,T+1 and
the dimension n of the portfolio (n = 10,11, . . . , nmax). The portfolio risk tends
to decrease as n increases [6]. Figure 1 top right shows the efficient frontiers (de-
fined by the part of every curve continuing upward from X) obtained by solving
the Markowitz optimization problem for variation of the expected return Rp,T+1
and the dimension n of the portfolio (n= 10,11, . . . , nmax). The optimal risk from
a risk-averse standpoint corresponds to n = 25, i.e. to the point on the curve fur-
thest to the left in Fig. 1 to right, indicated with the symbol F. The portfolio thus
identified presents an average monthly return of 0.00993, a standard monthly devi-
ation of 0.0630 and a Sharpe index value of 0.15771. Figure 1 bottom presents the
estimates of the elements of the volatility matrix and shows that the risk is mostly
due to the variances of the shares, to which the highest peaks correspond. It is evi-
dent, however, that the values of variance and covariance are comparable for some
subsets of shares. This suggests that it could prove useful, in order to reduce com-
putational complexity, to take covariance into consideration only for specific sub-
groups of shares and variance alone for the others. It therefore becomes necessary
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Fig. 1 Top Left: n evolution. Top Right: Portfolio frontiers simulation. Bottom: Volatility estima-
tion

to develop a criterion, based for example on the Granger principle of causality or
on analysis of cross-correlation [4], in order to identify the groups of shares to be
addressed in a different way.
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The Effects of Curvature and Elevation
of the Probability Weighting Function
on Options Prices

Martina Nardon and Paolo Pianca

Abstract We evaluate European financial options under continuous cumulative
prospect theory. Within this framework, it is possible to model investors’ attitude
toward risk, which may be one of the possible causes of pricing errors. We focus on
probability risk attitudes and use alternative probability weighting functions. In par-
ticular, curvature of the weighting function models optimism and pessimism when
one moves from extreme probabilities, whereas elevation can be interpreted as a
measure of relative optimism. The constant relative sensitivity weighting function
is the only one, amongst those in the literature, which is able to model separately
curvature and elevation. We are interested in studying the effects of both these fea-
tures on options prices.

Keywords Cumulative prospect theory · Curvature · Elevation · European option
pricing

1 Introduction

Prospect theory (PT) has recently begun to attract attention in the literature on finan-
cial options valuation; when applied to option pricing in its continuous cumulative
version, it seems a promising alternative to other models, for its potential to explain
option mispricing with respect to Black and Scholes [2] model.

According to prospect theory, individuals do not always take their decisions con-
sistently with the maximization of expected utility. Decision makers are risk averse
when considering gains and risk-seeking with respect to losses. They are loss averse:
people are much more sensitive to losses than they are to gains of comparable mag-
nitude. Gambles are evaluated considering potential gains and losses relative to a
reference point, rather than in terms of final wealth. Individuals have also biased
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probability estimates; they tend to underweight high probabilities and overweight
low probabilities.

PT in its formulation proposed by [4] is based on the subjective evaluation of
prospects. Prospects assign to any possible outcome a probability; originally PT
deals only with a limited set of prospects. Risk attitude, loss aversion and subjective
probabilities are described by two functions: a value function v and a weighting
function w, which models probability perception.

Cumulative prospect theory (CPT) developed by [6] overcomes some drawbacks
(such as violation of stochastic dominance) of the original PT. A value function
alone is not able to capture the full complexity of observed behaviors: the degree
of risk aversion or risk seeking appears to depend not only on the value of the out-
comes but also on the probability and ranking of outcome. Let x denote an outcome,
subjective values v(x) are not multiplied by objective probabilities, but using deci-
sion weights. Decision weights are differences in transformed (through a weighting
function) cumulative probabilities of gains or losses.

The shape of the value function and the weighting function becomes significant
in describing actual choice patterns. It is also relevant to separate gains from losses,
as negative and positive outcomes may be evaluated differently: the function v is
typically convex in the range of losses and concave and steeper in the range of gains,
whereas subjective probabilities may be evaluated through a weighting function w−
for losses and w+ for gains.

Specific parametric forms have been suggested for the value function. A function
which is used in many empirical studies is

v− = −λ(−x)b x < 0,

v+ = xa x ≥ 0,
(1)

with positive parameters which control risk attitude (0< a ≤ 1 and 0< b ≤ 1) and
loss aversion (λ ≥ 1); v− and v+ denote the value function for losses and gains,
respectively.

In financial applications, and in particular when dealing with options, prospects
may involve a continuum of values; hence, prospect theory cannot be applied di-
rectly in its original or cumulative versions. Davies and Satchell [3] provide the
continuous cumulative prospect value:

V =
∫ 0

−∞
Ψ−[F(x)

]
f (x)v−(x) dx +

∫ +∞

0
Ψ+[1 − F(x)

]
f (x)v+(x) dx, (2)

where Ψ = dw(p)
dp

is the derivative of the weighting function w with respect to the
probability variable, F is the cumulative distribution function (cdf) and f is the
probability density function (pdf) of the outcomes.

2 The Weighting Function

Prospect theory involves a probability weighting function which models proba-
bilistic risk behavior. A weighting function w is uniquely determined, it maps the
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probability interval [0,1] into [0,1], and is strictly increasing, with w(0) = 0 and
w(1) = 1. The curvature of the weighting function is related to the risk attitude
towards probabilities. Empirical evidence suggests a particular shape of probabil-
ity weighting functions: small probabilities are overweighted w(p) > p, whereas
individuals tend to underestimate large probabilities w(p) < p. This turns out in a
typical inverse-S shaped weighting function: the function is initially concave (proba-
bilistic risk seeking or optimism) for probabilities in the interval (0,p∗), and convex
(probabilistic risk aversion or pessimism) in the interval (p∗,1), for a certain value
of p∗. A linear weighting function describes probabilistic risk neutrality or objec-
tive sensitivity towards probabilities, which characterizes Expected Utility. Empiri-
cal findings indicate that the intersection (elevation) between the weighting function
and the 45 degrees line, w(p)= p, is for p∗ in the interval (0.3,0.4).

The constant relative sensitivity (CRS) weighting function proposed by [1]

w(p)=
{
δ1−γ pγ 0 ≤ p ≤ δ

1 − (1 − δ)1−γ (1 − p)γ δ < p ≤ 1,
(3)

is the only one, amongst those in the literature, which is able to capture separately
the effect of curvature and elevation: the parameter δ controls elevation and may be
interpreted as an index of relative optimism, whereas γ measures relative sensitivity
of the weighting function.1

3 European Options Valuation

We evaluate European financial options within continuous CPT, under the hypoth-
esis that the underlying price dynamics is driven by a geometric Brownian motion.
Versluis et al. [7] provide the prospect value of writing call options, considering dif-
ferent time aggregation of the results. Their results are extended to the case of put
options in [5]; the authors consider the problem both from the writer’s and holder’s
perspective.

In this contribution, we perform a wide sensitivity analysis on call and put options
values, applying alternative weighting functions. In particular, when applying the
weighting function (3), we let vary the parameters γ ∈ [0.7,1.0] and δ ∈ [0.3,0.4],
considering also different sensitivity to probability risk for positive and negative out-
comes. For the value function, we compared different parameters sets, ranging from
TK sentiment (see [6]) to moderate sentiment; a linear function (with a = b = 1
and λ = 1) is considered as a limiting case (no sentiment). We computed the op-
tion prices for several values of the volatility and the strike price X. Numerical
results suggest that option prices are increasing with δ (elevation) within the inter-
val [0.3,0.4], whereas the effect of γ (curvature) is non-trivial, depending on the

1The index of relative sensitivity of function (3) is constant on the interval (0,1) and is equal to
1 − γ .



152 M. Nardon and P. Pianca

Fig. 1 Sensitivity of the call (left) and put (right) option prices (writer’s position in the time-aggre-
gated model) to the curvature of the probability weighting function, γ ∈ [0.7,1.0], with δ = 0.325.
BS is the Black-Scholes price (with γ = 1, a = b = 1, and λ = 1). The option parameters are:
S0 = 100, X ∈ [80,120], r = 0.01, σ = 0.2, T = 1; the parameters of the value function are:
a = b= 0.976, and λ= 1.125

moneyness and the model (time-aggregated or segregated) which is used. As an ex-
ample, Fig. 1 shows some results for the call and put options in the time-aggregated
model; in these cases, option premia are decreasing with curvature. Detailed results
are reported and described in a separate paper.

References

1. Abdellaoui, M., L’Haridon, O., Zank, H.: Separating curvature and elevation: a parametric prob-
ability weighting function. J. Risk Uncertain. 41, 39–65 (2010)

2. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3),
637–654 (1973)

3. Davies, G.B., Satchell, S.E.: The behavioural components of risk aversion. J. Math. Psychol.
51(1), 1–13 (2007)

4. Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica
47(2), 263–292 (1979)

5. Nardon, M., Pianca, P.: A behavioural approach to the pricing of European options. In: Corazza,
M., Pizzi, C. (eds.) Mathematical and Statistical Methods for Actuarial Sciences and Finance,
pp. 217–228. Springer, Milano (2013)

6. Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representation of the
uncertainty. J. Risk Uncertain. 5, 297–323 (1992)

7. Versluis, C., Lehnert, T., Wolff, C.C.P.: A cumulative prospect theory approach to option pric-
ing. Working paper. LSF Research Working Paper Series 09–03, Luxembourg School of Fi-
nance (2010)



A Multivariate Approach to Project the Long
Run Relationship Between Mortality Indices
for Canadian Provinces

Achille Ntamjokouen, Steven Haberman, and Giorgio Consigli

Abstract The cointegration approach is proposed to model cross-province mortal-
ity indices within Canada. We apply and compare the vector autoregressive model
(VAR) and the vector of error correction model (VECM) derived from cointegrated
models for males and females. Relying on the Johansen cointegration test, the anal-
ysis shows clearly that there is a dependence among provincial mortality indices.
The two models fit well the females data. However, poor performance has been re-
vealed for men beyond 10 years horizons. We project the mortality indices from
both models and compute the annuity from the forecasts. We project the mortality
indices from both models and compute the annuity from the forecasts.

Keywords Mortality indices · VAR · VECM · Pricing by cohorts

1 Introduction

Over the last century, life expectancy has been increasing with declining mortality
rates as reported by [6] for G7 countries. The Lee Carter model [1] which is an
extrapolation method is used to quantify this phenomenon. It is not only a measure
of an age period model but it measures also trends on the evolution of mortality
by age. It presents drawbacks such as the uncertainty deriving from errors in the
quantification of pattern of deviation coefficients. Further, a higher factor term could
be incorporated into the model. A growing literature, based on the cointegration
approach, which tackles these deficiencies, is being explored by articles such as
[3, 5].
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Fig. 1 Males mortality indices from each of the 9 provinces in Canada

Fig. 2 Females mortality indices from each of the 9 provinces in Canada

Issues arise regarding long term relationship among the 12 provinces in Canada.
Our goal is to explore evidence of common trends in mortality indices in the long
term. Given that cointegration on mortality indices has been applied only on two
populations for UK (see [7]), we want to extend it to more than two. From the Lee
Carter model, we retrieve the mortality indices from each singular provincial mortal-
ity and then apply the cointegration approach. Mortality data are provided by Cana-
dian Human Mortality Database which the website is www.bdlc.umontreal.ca/chmd.

We use mortality data from the 9 most populated provinces of Canada which in-
clude: Alberta, British Columbia, Manitoba, Nova Scotia, News Brunswick, Prince
Edward Island, Ontario, Quebec, Sakastchewan. The provincial mortality indices
show a decreasing trend for all the provinces from 1921 to 2009 (see Figs. 1 and 2).
Further observations show that trends are amplificated from 1970 onwards.

The methodology includes 6 main points. The first regards the determination of
the order of integration for each of the variable. The second illustrates the compu-
tation of the optimal value of lag of the VAR while the third points out estimations
from various models. The fourth is devoted to the Johansen cointegration test. The
fifth regards the backtesting of both VECM and the VAR models. The sixth deals

www.bdlc.umontreal.ca/chmd
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with the forecasting of derived models. And finally the models will be used to cal-
culate Actuarial pricing value for group of cohorts.

2 Methods and Results

The estimation starts by submitting the mortality indices to the unit root test. The
series show clearly that variables are integrated of order 1 under the 3 main unit root
test including ADF, PP as well as KPSS.

Following [4], We observe that AIC indicates 6 lags for both females and males
whereas other information criterion such as HQ, FPE and SC indicate only 1. Fol-
lowing [2], the optimal lag length is 1 as suggested by SC criteria for both cases.

The vector of autoregression for p lags is written in [2] as:

kt =A0 +A1kt−1 +A2kt−2 + · · · +Apkt−p + et (1)

where kt = (k1t , k2t , . . . , kKt ) for k = 1, . . . ,K time series, (A0 . . .Ai) are the co-
efficients and et is white noise. The long run specification of VECM is in the form:

�kt = Γ1�kt−1 + Γ2�kt−2 + · · · + Γp−1�kt−p+1 +A0 + et (2)

where Γi = −(I −A1 −· · ·−Ai), i = 1, . . . , (p−1),Π = −(I −Ai,−· · ·−Ap) is
a N -dimensional time series, A0 is the intercept term, et is white noise. We run the
estimations for VAR and VECM models with lag = 1 for all provinces. We exper-
iment the Johansen methodology for trace and Eigenvalue tests. Females mortality
indices identify 5 cointegrated equations for both tests. Similar analysis for males
mortality indices show respectively 3 and 4 for respectively trace and eigenvalues.
It can be deduced that there are 4 common stochastic trends in the case of females.
Males analysis rather indicate respectively 6 and 5 common factors. They reveal a
clear dependence between mortality indices in a country. In the following part of
this document, we focus only on the results obtained from the trace test.

We carry out diagnostics tests on residuals. In the case of VAR, the test of non
autocorrelation(Portmanteau test) shows respectively for female and male p-value
as 0.68 and 0.81. Additionally the test of normality shows p-value 0.31 for females
and 0.18 for males. In the case of VECM, the test of autocorrelation(Portmanteau
test) shows respectively for female and male p-value as 0.75 and 0.97. Also, the test
of normality shows p-value as 0.16 for females and 0.04 for males. We remark from
these tests that there is evidence of normality and non autocorrelation of the residu-
als for the two models. The VAR for the two genders group and VECM for females
appear to be well behaved with white noise disturbances. However the normality test
for VECM is rejected in the case of males. A higher order lag may provide better
results with respect to this test. But, Since this study is interested in the forecasting
performance of the model, fewer parameters are expected to be included.

In order to evaluate the performance of these models out-of-sample, We have
backtested the models VAR and VECM by using out-of-samples. The results from
MAPE(Mean absolute of percentage of error) are described in Table 1.
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Table 1 The average MAPE for models VAR and VECM for the 9 provinces: The first two
columns refer to females and the last two to males

Out-of-sample VAR(Females) VECM(Females) VAR VECM

h= 2005–2009 5.63 % 5.13 % 6.85 % 5.73 %

h= 2002–2009 6.63 % 6.52 % 9.47 % 10.96 %

h= 2000–2009 12.89 % 7.43 % 8.42 % 22.91 %

h= 1995–2009 16.38 % 9.79 % 10.66 % 2.45 %

h= 1990–2009 19.36 % 15.14 % 29.67 % 24 %

h= 1984–2009 21.77 % 16.80 % 39.80 % 30.01 %

1. We observe from Table 1 that VECM performs better than VAR for females.
Also, the backtesting for females from both models presents good performance
accuracy overall.

2. It is uncertain for the first 3 periods as to males for first 3 samples which model
is better. Furthermore beyond the 10 years period, errors are too large. This is
due to the fact that they cope volatility of future mortality indices only partially.

We project mortality indices from the 9 provinces in 50 years ahead. We observe
that the forecasts 95 % confidence interval of mortality indices for all the provinces
in Canada are narrow with VAR model (see Figs. 3 and 4). This is due to the fact that
the confidence interval does not allow for more quantification of mortality improve-
ments. However, the predictions interval confidence from VECM is wider for both
sexes (see Figs. 5 and 6). The VECM improves VAR and also the risk quantification
is improved.

The computations of the price of annuities and life expectancy for cohorts 1960,
1970, 1980 are greater when we apply VECM rather than VAR and ARIMA.

3 Conclusion

In this paper, we investigate the dependence of mortality indices between the 9 most
populated Canadian provinces through cointegration approach. Mortality multivari-
ate times series of indices have been retrieved from Lee Carter model for both gen-
ders. Specifically, the Johansen test has been used to show dependence between
provinces. We first compute the VAR then VECM model that show clearly a de-
pendence between mortality indices. This econometric analysis allows to capture
common trends in mortality across provinces. The two models applied to mortality
indices work better for females than for males out-of-sample. They take into ac-
count just part of mortality improvements in the long run for males. The two mod-
els have been used then to project future mortality indices for Canadian provinces.
The VECM allows for more quantification of mortality risk than VAR. Overall, the
model is useful for modeling relationship between provincial mortality indices es-
pecially female gender.
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Measuring and Managing the Longevity Risk:
An Empirical Evidence From the Italian Pension
Market

Albina Orlando, Govanna di Lorenzo, and Massimiliano Politano

Abstract This paper deals with the problem of quantifying the longevity impact for
defined contribution pension funds in a stochastic environment. In the accumulation
phase it is well known that, in presence of a benefit guarantee, the investment risk
dominates the demographic one. However, if the generic subscriber life expectancy
increases, it is very likely that, in the decumulation phase, the wealth accrued will
not be able to cover the liabilities of the fund. For this reason, the fund will be
forced to set aside more resources in order to front its liabilities exposing itself to
greater financial risk. In this paper we study the interaction between financial risk
and longevity: based on the Italian experience for both financial and demographic
factors, this work aims to measure the impact of longevity on the financial factor.

Keywords Pension funds · Longevity risk · Forecasting mortality · Financial risk

1 Introduction

During the 20th century, human life expectancy have considerably increased for the
population of many developed countries. Although past trends suggest that further
changes in the level of mortality are to be expected, the future improvements of life
expectancy are uncertain and difficult to be predicted. This uncertainty about the
future development of mortality gives rise to longevity risk. The real challenge for
pension systems consists precisely in the design of products able to absorb any ad-
verse events concerning the future mortality. In other words, the challenge is how to
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deal with the longevity risk. When we treat benefits depending on the survival of a
certain number of individuals, the calculation of present values requires an appropri-
ate projection of mortality in order to avoid an underestimation of future liabilities.
Actually, this problem is deeply felt by private pension funds. Although the pension
market is not well developed in the European countries, the reduction of the inter-
vention field of public systems, due to the main goal of the cost containment and the
gradual shifts from defined benefit schemes to defined contribution systems, suggest
a growing interest of individuals for pension annuities. The main problem is to make
the pension market attractive. For this reason, many pension fund providers focus
in the issue of sharing the longevity risk between the annuitants and the annuity
provider. In this field, many solution has been proposed: Denuit et al. [4] provides a
solution trough securitization via longevity bonds, Denuit et al. [5] proposed a very
interesting idea based on the reduction of annuity periodic payments, Pitacco [6]
develops this concept and consider an adjustment factor to be applied to future ben-
efits. In this paper, we look at the problem during the accumulation phase: that is, if
future life expectancies of the pension participant increases, which means the plan
is more likely to be underfunded, the fund should take more financial risk to accu-
mulate sufficient funds to cover the claims. In other words, we can find a balance
between the benefits reduction during the cumulation phase and the profitability in-
crease during the accumulation phase. The paper is organised as follows: Sect. 2
introduces analytical developments. Section 3 defines the financial and mortality
scenario. Finally, Sect. 4 offers numerical evidence.

2 The Model

Let us consider a defined contribution (DC) pension fund with an individual funding
method, which pays off a capital amount resulting by a contribution accumulation
process to the subscriber in presence of predecease, disability or old age. If we
consider a benefit guarantee, the liability bh borne out by the fund in the year h with
respect to a generic subscriber is given by

bh = max
{
WA
h ,W

GAR
h

}
(1)

where WA
h =∑ξ

s=0
cs
as
aξ is equal to the share of the equivalent assets constituting

the fund and WGAR
h =∑ξ

s=0 nsas(1 + i)ξ−s denotes the minimum guaranteed ben-
efit. In this context, in case of death (d), disability (i) or old age (v), the liability of
the fund toward a scheme member can be expressed as

WL
0 =

ξ∑

h=0

bh
(
h−1/1q

(d)
x + h−1/1q

(i)
x

)
e−�(h) + bξ ξpxe

−�(ξ) (2)

where �(h)= ∫ h0 rudu is the accumulation function of the spot rate h−1/1q
(d)
x , and

h−1/1q
(i)
x respectively indicate the probability of death and disability in the time

interval [h− 1, h], ξpx is the probability of reaching the pension age.
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3 Financial and Mortality Scenarios

The valuation of the financial instruments involving the fund will be made assuming
a two factor diffusion process obtained by joining Cox-Ingersoll-Ross (CIR) [2]
model for the interest rate risk and a Black-Scholes (BS) [1] model for the stock
market risk; the two source of uncertainty are correlated. The interest rate dynamics
{rt ; t = 1,2, . . .} is described by means of the diffusion process

drt = kr(θ − rt )dt + σ r
√
rtdZ

r
t (3)

where kr(θ − rt ) is the drift of the process, σ r
√
rt is the diffusion coefficient Zrt is

a Standard Brownian Motion. Clearly, it is very important the specification of the
reference portfolio dynamics. The diffusion process for this dynamics is given by
the stochastic differential equation

dSt = μSStdt + σSStdZ
S
t (4)

where St denotes the price at time t of the reference portfolio, μS is the continu-
ously compounded market rate, σS is the constant volatility parameter, is a Standard
Brownian Motion with the property Cov(dZrt , dZ

S
t )= ϕdt , ϕ ∈R. We describe the

evolution in time of mortality by a widely used mortality model supposing that the
force of mortality at time t for an individual aged x + t at time t is given by

dμx+t = km(γ −μx+t )dt + σm
√
μx+t dZmt (5)

where μx+t is the hazard rate for an individual aged x + t in the year t , km and σm

are positive constants, γ is the long term Zmt is a Standard Brownian motion. This
model, referred as the CIR mortality model has the property that the mortality rates
are continuous and remain positive. Moreover, the mortality rates does not reach
zero and the drift factor ensures the mean reversion.

4 Numerical Results

We consider a generic subscriber entering the fund at 40 years and the outgoing
age is fixed as x + ξ = 65. At this age begins the decumulation phase. The risk ad-
justed parameters of the Cox-Ingersoll-Ross process are r0 = 0.0273, kr = 0.001,
σ r = 0.035, θ = 0.0239. The time series related to the interest rates consists of the
annualized net Euribor rates covering the period from January 2003 to December
2013. Referring to the time evolution of the reference fund, we let μS = 0.03 and
σS = 0.20. For the correlation coefficient, a slightly negative value is adopted in line
with the literature concerning the Italian stock market. With regard to the survival
probabilities our data set relates to the Italian male population with age-specific
death counts ranging from ages 65 over the period 1954–2008. We refer to the class
of forward mortality models. These models study changes in the mortality curve for
a specific age cohorts and capture dynamics of each age cohort over time for all
ages greater than x in a specific year t . In this case the mortality curves are mod-
eled diagonally (for example see [3]). Based on our data, the Fund should provide
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a 2.75 % return. In monetary terms, the annual benefits are 2.5 times the contribu-
tions paid. At first glance, the investment for the member appears to be more than
satisfactory. But the risk of the Fund is very high. Because of longevity, the fund
is able to guarantee less than 90 per cent of the benefit promised. At this point, the
benchmark level of 3 % is no longer appropriate and the fund need a more aggres-
sive management. The fund reaches an equilibrium between the benefits promised
and the contribution received only increasing by 20 % the return of the investments.
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Pricing and Hedging Basket Options Under
Shifted Asymmetric Jump-Diffusion Processes

Tommaso Paletta, Arturo Leccadito, and Radu Tunaru

Abstract The empirical characteristics of the underlying asset prices should be
taken into account for the pricing and hedging of options. In this paper, we show how
to price basket options when assets follow the “shifted asymmetric jump-diffusion”
process. The methodology is based on the Hermite polynomial expansion that can
match exactly the first m moments of the model implied-probability distribution.
The resultant pricing and hedging formulae are in closed-form and similar to the
Black and Scholes ones.

Keywords Basket options · Shifted asymmetric jump-diffusion · Hermite
polynomials · Option pricing and hedging

1 Introduction

Basket options are contingent claims on a group of assets, commonly traded over-
the-counter to hedge away exposure to correlation or contagion risks. The required
multi-dimensional framework makes the pricing and hedging of these contingent
claims extremely difficult and most of the existing methods sacrifice the realism of
the underlying price models to circumvent these difficulties.

Recently, Borovkova et al. [1] have considered options on basket whose assets
follow the geometric Brownian motion and assumed the entire basket as a single
asset with “shifted log-normal” dynamics. Even though the latter model can incor-
porate negative skewness (which is well known to characterize equities) while still

T. Paletta (B) · R. Tunaru
Business School, University of Kent, Canterbury, UK
e-mail: t.paletta@kent.ac.uk

R. Tunaru
e-mail: r.tunaru@kent.ac.uk

A. Leccadito
Dipartimento di Economia, Statistica e Finanza, Università della Calabria, Rende (CS), Italy
e-mail: arturo.leccadito@unical.it

C. Perna, M. Sibillo (eds.), Mathematical and Statistical Methods for Actuarial Sciences
and Finance, DOI 10.1007/978-3-319-05014-0_38,
© Springer International Publishing Switzerland 2014

167

mailto:t.paletta@kent.ac.uk
mailto:r.tunaru@kent.ac.uk
mailto:arturo.leccadito@unical.it
http://dx.doi.org/10.1007/978-3-319-05014-0_38


168 T. Paletta et al.

retaining analytical tractability, most of the empirical characteristics of the assets are
lost when the resulting dynamics for the basket is considered. In this work, we tackle
this problem from a different perspective. We assume that each asset follows the
“shifted asymmetric jump-diffusion” process, which can incorporate wide ranges of
skewness and kurtosis values. We provide pricing and hedging formulae for basket
options, by employing the Hermite polynomial expansion to match exactly the first
m moments of the model implied probability distribution. In the following, Sect. 2
describes the market model and Sect. 3 describes the pricing and hedging method-
ology and reports a numerical example in which our method is compared to the one
in [1].

2 The Shifted Asymmetric Jump-Diffusion Model

Consider the filtered probability space1 (Ω,F, (Ft )0≤t≤T ,P ). Let us define, on this

space, the financial market consisting of n assets, S(i) for any i = 1, . . . , n, with
dynamics given by

d
(
S
(i)
t − δ

(i)
t

)=
(

αi −
∑

q={U,D}
λi,qβi,q

)
(
S
(i)
t − δ

(i)
t

)
dt

+ (S(i)t − δ
(i)
t

) nw∑

j=1

γij dW
(j)
t

+ (S(i)
t− − δ

(i)
t

) ∑

q{U,D}
dQ(i,q)

t , S
(i)
0 known, (1)

and the bank account dMt = rMtdt that can be used to borrow and deposit money
with continuously compounded interest rate r ≥ 0, assumed constant over time.
Equation (1) describes the shifted asymmetric jump-diffusion process where αi is
the expected rate of return on the asset i, {W(j)

t }t≥0 are nw mutually independent

Wiener processes, {Q(i,q)
t }t≥0 with q = {U,D} are independent compound Pois-

son processes formed from some underlying Poisson processes {N(i,q)
t }t≥0 with

intensity λi,q ≥ 0 and Y (i,q)j representing the jump amplitude of the j -th jump of

N
(i,q)
t for any i = 1, . . . , n. The index q represents the source of jumps: a total

of two sources were considered (indicated as U and D). The jumps Y (i,q)j for any
i = 1, . . . , n are independent and identically distributed random variables with prob-
ability density function f (i,q)(y) : [−1,∞)→ [0,1] and expected value under the
physical measure βi,q =E[Y (i,q)] = ∫∞

−1 yf
(i,q)(y)dy. Furthermore, δ(i)t is the shift

applied to S(i)t and it is assumed to follow dδ
(i)
t = rδ

(i)
t dt , with δ(i)0 ≥ 0. The cor-

1The content and notation in this subsection benefit from [6, Chap. 11.5].
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relation among assets is defined by the constant parameters γij ∈ �. If a solution
(θ, β̃U , λ̃U , β̃D, λ̃D) of the system2

αi − λi,Uβi,U − λi,Dβi,D − r =
nw∑

j=1

γij θj − λ̃i,U β̃i,U − λ̃i,Dβ̃i,D, i = 1, . . . , n

(2)

does exist and is selected in association with the risk-neutral pricing measure P̃ ,
then, under this risk-neutral measure, the solution of (1) is

S
(i)
t − δ

(i)
0 ert

S
(i)
0 − δ

(i)
0

= e
(r−∑q={U,D} λ̃i,q β̃i,q− 1

2

∑nw
j=1 γ

2
ij )t+

∑nw
j=1 γij W̃

(j)
t

∏

q={U,D}

N
(i,q)
t∏

l=1

(
Y
(i,q)
l + 1

)
. (3)

Because the solution to (2) is, in general, not unique, we assume that one solution
is selected3 and a pricing measure P̃ is fixed.4 Under the P̃ -measure, for asset i-
th in the basket, the intensity of the Poisson process {N(i,q)

t }t≥0 is λ̃i,q and β̃i,q =
Ẽ[Y (i,q)] = ∫ +∞

−1 yf̃ (i,q)(y)dy. An example of distributions for the two jumps can
be found in Ramezani and Zeng [4] where they choose for the U -jump the Pareto
distribution and for the D-jumps the Beta distribution. The two sources of jumps
represent the arrival of good and bad news in the market, and cause upward and
downward jumps in prices respectively.

3 Pricing and Hedging Methodology

Let’s consider at time 0 a European put option written on a basket of the n assets in
the market, maturity at T and strikeK∗, then its payoff function at maturity is (K∗ −
B∗
T )

+ where B∗
T , the basket value, is B∗

T =∑n
i=1 aiS

(i)
T = BT +∑n

i=1 aiδ
(i)
0 erT ,

(a1, . . . , an) is the vector of basket weights, which could be positive or negative
and B is the “shifted basket”. Equivalently, the payoff function can be written as
(K −B)+ where K , the “shifted strike price”, is K =K∗ −∑n

i=1 aiδ
(i)
0 ert .

The pricing method is based on the substitution of the model implied risk-neutral
distribution of the basket return with the Hermite polynomial that matches exactly
its first m moments (Hk(·) denotes the k-th order Hermite polynomial):

BT

B0erT
−→ J (z)=

m−1∑

k=0

ϕkHk(Z) (4)

2The proofs of this and all other results are provided by the authors upon request.
3For a review on selection of pricing measures, see [2] and references within.
4Henceforth, Ẽ is used to indicate the expectation operator under the risk-neutral measure P̃ .
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Table 1 The table reports the prices of 3 basket put options written on 6 assets (i = 1 . . .6) which
follow the shifted asymmetric jump-diffusion process with S

(i)
0 = i, λ̃i,U = 0.4, λ̃i,D = 0.04,

Y
(i,U)
l + 1 ∼ Pareto(60), Y (i,D)l + 1 ∼ Beta(70,1), and δ

(i)
0 = e−rT . Furthermore, K∗ = 21,

r = 4 % and the entries of the covariance matrix Σij are 0.7613, 0.8566, 0.8791, 0.6967,
−0.3044, 0.4050, 0.5108, 0.4331, 0.1701, 0.9067, 0.8830, −0.6870, 0.7479, −0.5702, −0.7557
for j = i + 1, . . . ,6. “MC” stands for the standard Monte Carlo method with 106 simulations,
“std” is its standard deviation, “BPW” is the method in [1] and “our method” is the pricing method
described in this chapter

Maturity MC std BPW Our method

T = 1 0.5473 (0.0040) 0.6078 0.5125

T = 2 0.6382 (0.0051) 0.7162 0.6402

T = 3 0.6791 (0.0058) 0.7465 0.6784

RMSE 0.0690 0.0201

where the ϕks are calculated by moment matching. Under these settings, the price
of a European put basket option is given by:

p0 =Ke−rT Φ(h2z̃)−B0
[
ϕ0Φ(h2z̃)− h2g(z̃)

]
(5)

where g(z̃)= φ(z̃)
∑m−2

k=0 ϕk+1Hk(z̃), h2 = sgn(B0), z̃ is the solution of J (z̃)BerT =
K , φ(·) is the standard normal density function and Φ(·) is the standard nor-
mal cumulative distribution function and Z is a standard normal random vari-
able. The model implied k-moment of Bt under P̃ , after the changing of variables
σ 2
i =∑nw

j=1 γ
2
ij and V (i)t =∑nw

j=1
γij
σi
W̃
(j)
t , is:

Ẽ
[
Bkt
]=

n∑

i1=1

· · ·
n∑

ik=1

[

mgf (ei1 + · · · + eik )
k∏

l=1

ail
(
S
(il)
0 − δ

(il )
0

)
e(r+ωil )t

]

(6)

where ωj = −λ̃j,U β̃j,U − λ̃j,Dβ̃j,D − 1
2σ

2
j , ej is the vector having 1 in posi-

tion j and zero elsewhere, the moment generation function (mgf) of σiV
(i)
t +

∑
q={U,D}

∑N
(i,q)
t

l=1 log (Y (i,q)l + 1) is given by:

mgf (u)= exp
{
tu′Σu/2

} ∏

q={U,D}

n∏

i=1

mgf
N
(i,q)
t

(
cgflog(Yi,q+1)(ui)

)
(7)

where Σ denotes the covariance matrix of V = (V
(1)
t , . . . , V

(n)
t )′, mgf

N
(i,q)
t
(u) =

exp(t λ̃i,q(eu − 1)) and cgflog(Yi,q+1)(ui) is the cumulant-generating function of
log(Yi,q + 1). For the sake of brevity, we omit the calculation of the Greek parame-
ters that can be calculated by simple derivation of (5) and by using the methodology
in [1] for the derivatives of the parameters ϕj s.

The usefulness of a pricing method can be gauged by comparing it with other
established methods in the literature. For this reason, we directly benchmark our
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method with the one in [1] (BPW), which is a good competitor because it cov-
ers negative skewness and works well under highly multi-dimensional frameworks.
Furthermore, the standard Monte Carlo methodology (see [3]) is used to obtain the
“true” fair no-arbitrage price. Table 1 contains the prices for three different basket
put options and also, on the last row, the root mean square error (RMSE). On this
example our new method outperforms the BPW using the RMSE as a comparison
criterion by about a factor of 3.5. In an extended version of this chapter, we will
consider a more general comparison on a larger set of basket options and including
also other underlying models such as the ones in [5].
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On a Data Mining Framework
for the Identification of Frequent
Pattern Trends

Marina Resta

Abstract The work discusses a data mining framework that combining Self Orga-
nizing Maps (SOM) and Graphs paradigms is able to offer insights on the clusters
structure of the mapping. The basics of the method rely in the use of trained SOM to
define graphs from best matching units. In particular, we discuss the application to
best matching units of two graphs topologies, originating the SOM-based Minimum
Spanning Tree (SOM-MST), and the SOM-based Planar Maximally Filtered Graph
(SOM-PMFG), respectively. We show that, working with financial time-series data,
it is possible to capture the clusters structure of market assets, and to use such infor-
mation for market active tradings. The discussion of results obtained working with
stocks from Milan Stock Exchange concludes.

Keywords Self organizing maps · Minimum spanning tree · Planar maximally
filtered graph · Financial time-series

1 Motivation

Practitioners attempting to study the behavior of financial markets make use of vari-
ous instruments: quantitative finance as well as fundamental techniques, going deep-
est in detail of either intrinsic mathematical or budgeting features of market assets
try to explain how they can affect market prices. However, there are so many factors
interacting at any time that it may happen to ignore important ones, in favor of those
that are considered as a kind of flavor of the day. Moreover, visually watching to
financial markets, it becomes obvious that there are patterns that repeat over time:
to this extent, we can claim that charts mirror the mood of the crowd, i.e. of the
greatest part of the investors acting into the market, and not of the fundamental fac-
tors. Starting from this point, we are going to discuss a data mining approach that
combines the analysis of financial data with visualization techniques. The beauty of
the method relies on two aspects: (i) we focus on quantitative techniques that make
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Algorithm 1 The SOM algorithm explained

repeat
1 At each step t , present an input x(t) ∈X and select the winner:

ν(t)= arg mini ‖x(t)− wi (t)‖
2 Update the weights of the winner and its neighbors:

�wi (t)= α(t)η(ν, i, t)(x(t)− wν).

until the map converges.

Algorithm 2 Gb-SOM

1 Extract from a SOM all the best matching units (BMUs)
2 For each couple of BMUs compute the correlation
3 From the correlation matrix derive the adjacency matrix and hence build the

graph.

possible to group data according to their similarity in a way as objective as possi-
ble; (ii) we discuss an approach with higher visual impact; this allows final users to
easily understand the results obtained and hence to use them for market active trad-
ings. According to this rationale, what remains of the paper is organized as follows.
Section 2 provides a short mathematical background. Section 3 draws the basics of
an application on stocks from Milan Stock Exchange, while Sect. 4 concludes.

2 Mathematical Background

Self Organizing Maps [2] (SOM) assume to order a set of neurons, often arranged
in a 2-D rectangular or hexagonal grid, to form a discrete topological mapping of an
input space X ⊂ R

n. Let us indicate by wi ∈ R
n (i = 1, . . . ,M) the weight vector

associated to neuron i; at the start of the learning, all the weights {w1,w2, . . . ,wM}
are initialized to small random numbers. Then the algorithm works as shown in the
Box 1.

Here η(ν, i, t)= exp(−‖rν−ri‖2

2σ 2 ) is the neighborhood function between neurons
rν and ri , with σ representing the effective range of the neighborhood; while
α(t) is the so called learning rate, that is a scalar-valued function, decreasing
monotonically, and satisfying: (i) 0 < α(t) < 1; (ii) limt→∞ α(t) → +∞; (iii)
limt→∞ α(t)→ 0 [2, 4].

By construction SOM is a data mining tool that preserves input topology struc-
ture, as to say: similar inputs are mapped into neighbor nodes. However by com-
bining SOM to proper graph structures [1], it is possible to enhance such features.
The pseudo-code in Box 2 explains how the procedure that we named Graph-based
SOM (Gb-SOM) works.

Clearly, depending on the filtering applied in step 3 to build the adjacency matrix,
different graphs can be obtained and hence different information can be retrieved.
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Fig. 1 From left to right: SOM-MST (a) and SOM-PMFG (b) obtained using as input matrix the
log-returns of 167 traded assets in the Milan Stock Exchange

Since our aim is to extract relevant information (and not necessarily all the avail-
able information) to trade the market , we focused on two procedures: the Minimum
Spanning Tree (MST) and the Planar Maximally Filtered Graph (PMFG) [5], origi-
nating the SOM-based Minimum Spanning Tree (SOM-MST), and the SOM-based
Planar Maximally Filtered Graph (SOM-PMFG).

3 A Practical Application

While Gb-SOM has been already successfully employed to monitor countries ex-
posure to financial crisis risk [3], we now focus on how to use it for market active
tradings. To illustrate how our methodology works, we briefly detail an experiment
where input data are the log-returns of 167 stocks quoted on the Milan Stock Ex-
change in the period: December 2011–December 2012. On those data we built for
exemplification purposes both SOM-MST and SOM-PMFG. Figure 1 shows the
market structure as obtained by way of SOM-MST (Fig. 1(a)) and SOM-PMFG
(Fig. 1(b)): clusters are highlighted in both cases.

In both cases the market skeletonization offers visual insights on how the mar-
ket organizes; in particular, whereas the SOM-MST finds 11 relevant stocks clus-
ters, the SOM-PMFG highlights 9 groups of stocks. From the analysis of clusters
composition, we find out that SOM-MST emphasizes dominating sectors (namely:
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Heavy Industry, Public Utilities and Real Estates); on the contrary, in SOM-PMFG
groups are more heterogeneous. Moreover, if we combine clusters composition with
related Sharpe ratio values, it is easy to identify groups (and hence assets) with high-
est/worst performances and to move in the market accordingly. An example is pro-
vided by clusters where Heavy Industry is dominant whose negative Sharpe Ratio
suggests investors to keep away from.

4 Conclusion

In this paper we presented a hybrid procedure that combines Self-Organizing Maps
to Graphs to obtain a visual representation of financial data that can be helpful for
traders in order to choose financial assets to invest on. We have given evidence that
information retrieval from the obtained SOM-MST and SOM-PMFG can be per-
formed at various levels, exploring the groups composition, as well as combining
the clusters features with financial indicators. In our opinion this can be a very fruit-
ful research vein, provided the need of deepest investigations with graphs analysis
tools.
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Risk Processes with Normal Inverse Gaussian
Claims and Premiums

Dean Teneng and Kalev Pärna

Abstract We study risk processes where claims and premiums are modeled by in-
dependent normal inverse Gaussian (NIG) Lévy processes; claims by a spectrally
positive NIG Lévy process. Using martingale technique, the Lundberg inequality
for ruin probability is proved.

Keywords NIG · Risk process · Cramer-Lundberg

1 Introduction

Boykov [1] studies risk processes where claims and premiums are modeled by inde-
pendent compound Poisson processes. In [4], the difference of premiums and claims
are modeled by different Lévy processes; capitalizing on the NIG. Of recent, Stano-
jevic and Levajkovic [6] proposed modeling premiums with a time changed subor-
dinated Lévy process. We implement this proposal using NIG-Lévy process since
it can be represented as an inverse Gaussian time changed Brownian motion with
drift [5]. Further, we model aggregate claims by a spectrally positive NIG Lévy
process. Using martingale technique, we prove the Lundberg inequality for ruin
probability.

2 Model Considerations

2.1 Modified Premium Process

Generally, premiums are determinate, discrete, independent, non-negative stationary
increments [2] and we consider an infinite number collected within the time period.
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Modified premium incorporates the effects of inflation, dividend payouts, tax, inter-
est rate fluctuations, claims processing costs and other administrative expenses by
the insurance company but claims. It can take on negative or positive values and can
be represented by a function with support on the entire real line. Our proposal is to
use a finite mean and finite variance NIG Lévy process; with the mean represent-
ing constant loaded premium and variance the variation in this modified premium
process i.e. stochastic premiums. This is because NIG Lévy process has paths com-
posed of an infinite number of small jumps and exhibit diffusion-like feature with
a jump driven structure [3]. NIG1 Lévy process2 has its Laplace exponent through
Lévy-Khintchine theorem [4] as follows:

Ψ1(λ)= aλ+
∫ +∞

−∞
[
eλx − 1 − λxI{|x|≤1}

]
ν(dx) (1)

where a, λ are real constants and ν(dx) is a measure on R \ {0} such that
∫ +∞
−∞ (1 ∧

X2)ν(dx) <∞.

2.2 Claims

Claims also are generally independent,3 indeterminate, stationary, non-negative in-
crements with an infinite number collected within considered finite time interval [2].
We model these with a spectrally positive NIG Lévy process i.e. an NIG Lévy pro-
cess with no negative jumps and chosen to have finite mean, finite variance and
support on the positive real line (see Fig. 1). It is not the negative of a subordina-
tor.4 Generally, ifX is spectrally positive, then −X is spectrally negative. Spectrally
negative Lévy processes are well studied in the literature. NIG spectrally negative
has its Laplace exponent through Lévy-Khintchine theorem as follows:

Ψ2(λ)= −a1λ+
∫ 0

−∞
[
eλy − 1 − λyI{y>−1}

]
ν1(dy) (2)

1A random variable X is NIG distributed, (denoted NIG(α,β, δ,μ)) if its probability density

function is given by fNIG(x;α,β, δ,μ) = αδ
π
eδ

√
α2−β2+β(x−μ) K1(α

√
δ2+(x−μ)2)√

δ2−(x−μ)2 where Kλ(x) =
∫∞

0 (uλ−1e
−x
2 (u+u−1))du with δ > 0 scaling parameter, α > 0 shape parameter, β with 0 ≤ |β| ≤

α skewness parameter and μ ∈ � location parameter. The mean and variance are given by

μ + δβ√
α2−β2

and δ α2

[
√
α2−β2]3

respectively. It has a simple Laplace exponent Ψ (λ) = −μλ +
δ(
√
α2 − β2 −√α2 − (β − λ)2), |β − λ|< α.

2Let (Ω,F, (F (t))t≥0,P ) be a filtered probability space. An adapted cádlág �-valued process
X = {X(t)}t≥0 with X(0)= 0 is NIG Lévy process if X(t) has independent stationary [3] incre-
ments distributed as NIG(α,β, δ,μ).
3We leave out cases of disasters and serial accidents where claims can be correlated.
4A subordinator is a strictly non-decreasing Lévy process.



Risk Processes with Normal Inverse Gaussian Claims and Premiums 179

Fig. 1 Spectrally positive
NIG(50,−10,1,0) process
depicting aggregate claims

where a1 is a real constant representing drift, λ also real and ν1(dy) is a measure on
R \ {0} such that

∫∞
−∞(1 ∧ Y 2)ν1(dy) <∞.

3 Proposed Model

We propose a Cramer-Lundberg risk model with modified stochastic premiums and
stochastic claims both modeled by different NIG-Lévy processes. The risk process
U(t), t ≥ 0 is defined as

U(t)= u+X1(t)−X2(t) (3)

where u is the initial capital, X1(t) ∼ NIG(α,β, δ1t,μ1t) the modified premium
process andX2(t)∼ NIG(α,β, δ2t,μ2t) the aggregate claims process. The risk pro-
cess U(t)− u is distributed as NIG(α,β, (δ1 − δ2)t, (μ1 − μ2)t) with its Laplace
exponent through Lévy-Khintchine theorem:

ΨT (λ)= Ψ1(λ)+Ψ2(λ)= (a − a1)λ+
∫ +∞

0

[
eλx − 1 − λxI{|x|≤1}

]
ν(dx) (4)

taking in to account the chosen approximation
∫ 0
−∞[eλx − 1 − λxI{|x|≤1}]ν(dx)≈

∫ 0
−∞[eλy−1−λyI{y>−1}]ν1(dy). This approximation basically means the company

has controls in such a way that most claims can be settled, but ultimate ruin or
profitability is determined by (4).ΨT (λ) of (4) has both a constant part (a−a1) and a
stochastic part

∫ +∞
0 [eλx −1−λxI{|x|≤1}]ν(dx) representing in a sense the modified

risk process. Therefore, net profitability condition simply translates to E(X(1)) >
E(Y (1)), where X(1) represents modified premium and Y(1) aggregate claims.5

5Making use of infinite divisibility property of Lévy processes.
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Fig. 2 Risk process which is
the difference of
NIG(50,−10,1,0) and
spectrally positive
NIG(50,−10,2,0)

Considering the Martingale6 approach to ruin probability, if we can find a value
r =R in the domain of the definition of Ψ (λ) such that Ψ (λ)= 0 and τ <∞, then
we could simply write

ψ(u)=EQ
[
eRU(τ)

]
e−Ru, u≥ 0. (7)

We calculate such an R = 2(d
√
α2−β2+β)
d2+1

where d = μ1−μ2
δ2−δ1

, similar to [4] where
their c = μ1 − μ2 and δ = δ2 − δ1; employing similar analysis. Simulated graph
(Fig. 2) demonstrates how the proposed model looks like.
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A Portfolio Model for the Risk Management
in Public Pension

Tadashi Uratani

Abstract The financial viability of government pension plan implies that the re-
serve of pension fund should be positive in the demographic and economical envi-
ronment change, under the condition that the income replacement ratio is more the
given level. Assuming the market asset and the income for pension follows Ito pro-
cesses and the population are modeled by cohort, we apply the martingale method
of the optimal consumption and investment theory to guarantee the pension fund
positivity.

Keywords Pension · Risk management · Martingale

1 The Model

Let p(t, y) denote the numbers of policyholders of the age y at t and ω1 the starting
age of paying premium, ω2 the end age and starting of receiving benefit ω3 the end
age of beneficiary. The total number of contributors satisfies: ξ1

t = ∫ ω2
ω1
p(t, y)dy.

The total number of beneficiaries: ξ2
t = ∫ ω3

ω2
p(t, y)dy. The balance of total premium

and benefit is assumed to be based on the average wage. Let Ht denote the average
wage at t and at be the rate of premium. Let ut be the total premium amount at t ;
ut := atHtξ

1
t . Let bt be the benefit ratio to the average wage and st be the total

benefit amount; st := btHtξ
2
t . We assume that at , bt is predictable process and it

satisfies self-finance strategies, which are in the condition of 0 < at , bt < 1. The
balance of premium and benefit qt (a, b)Ht is defined as:

ut − st =
(
at ξ

1
t − bt ξ

2
t

)
Ht =: qt (a, b)Ht .

The pension portfolio consists of three assets; Market asset price satisfies the fol-
lowing Itô process:

dAt/At = μr(t)dt + σr(t)dW
r
t =: drt .
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Human capital price(wage) process satisfies:

dHt/Ht = μx(t)dt + σx(t)dW
x
t =: dxt .

Let r the risk free rate and the money market asset be ert . Portfolio strategies of
the pension fund are denoted as πt := (φt , at , bt , βt ); Let φt denote the investment
amount to market asset, (at , bt ) denote the strategies for the human capital which
means the policy of pension. Let βt > 0 denote the government subsidy to pension
fund at t and Rt denote the value of pension fund at t . The portfolio value satisfies
at t :

Rt = φtAt + q(a, b)Ht . (1)

From the predictability of strategies (φt ,βt ),the dynamics of fund becomes;

dRt = φtdAt + d
(
q(a, b)Ht

)+ βtdt, R0 = R̄. (2)

The population dynamics is assumed to be non stochastic but not satisfies the self
financing condition then the dynamics of the balance of premium and benefit of
pension is as follows,

d
(
q(a, b)Ht

)= q(a, b)dHt + dq(a, b)Ht ,

where dq(a, b) := atdξ
1
t − btdξ

2
t . By using (1) we obtain:

dRt =Rtdrt + q(a, b)Ht (dxt − drt )+ dq(a, b)Ht + βtdt.

From the PDE of McKendrick-von Foerster in [2], ∂p(t,y)
∂t

= − ∂p(t,y)
∂y

−μ(y)p(t, y),
where μ(y) is decreasing speed of pensionaries of the age y. We use the method
of characteristics in PDE which equals to use the cohort model of population, as
t = k+ y and v(k, y) := p(t, y).

dv(k, y)= −μ(y)v(k, y)dy, v(k, y)= v(k,0) exp

(∫ y

0
μ(s)ds

)

.

Thus the change of pension balance satisfies

dqt (a, b)Ht = −
(

ak+y
∫ ω−

2

ω1

μ(y)v(k, y)dy + bk+y
∫ ω3

ω2

μ(y)v(k, y)dy

)

Ht, (3)

where v(k,ω1) is the new entry numbers of contributors and v(k,ω2) is the new
entry umbers of beneficiaries.

2 The Optimal Pension Strategies for Cohorts

For the time horizon from 0 to T there are k cohort of 0 ≤ k ≤ Tl := T − (ω3 −ω1)

who are their all contributions and benefits are within the planning period. These
cohorts are new comers to the pension. Let c(k) be the net present value for kth
cohort,

c(k) := −
∫ ω−

2

ω1

ay+kH ∗
y+kv(k, y)dy +

∫ ω3

ω2

by+kH ∗
y+kv(k, y)dy. (4)



A Portfolio Model for the Risk Management in Public Pension 185

For existing pensionaries (−ω3 < k < 0), their premium and benefit was decided as
ac and bc for the past: y + k < 0; They will follow the new premium and benefit
from now y + k ≥ 0. The net present value ce(k) should be positive;

ce(k)= −
∫ ω−

2

ω1

(ac1{y+k<0} + ay+k1{y+k≥0})H ∗
y+kv(k, y)dy

+
∫ ω3

ω2

(bc1{y+k<0} + by+k1{y+k≥0})H ∗
y+kv(k, y)dy > 0. (5)

For the future cohort (Tl < k < T ) whose benefit will not finished before T , their
net present value cp(k) should be positive;

cp(k)= −
∫ ω−

2

ω1

(ak+y1{y+k<T } + ãy+k1{y+k≥T })H ∗
y+kp(y + k, y)dy

+
∫ ω3

ω2

(by+k1{y+k<T } + b̃y+k1{y+k≥T })H ∗
y+kp(y + k, y)dy > 0. (6)

The objective function is to maximize the utility function of the new pension partic-
ipant who are the cohort of 0 ≤ k ≤ Tl , where U1(·) is a utility function for present
value of pension and U2(·) is the utility of fund value at T :

max
πt
E

[∫ Tl

0
U1
(
c(k)
)
dk+U2(RT )

]

.

Beside constraints (5) and (6), we impose the following constraints seen in [3];
(1) No default of pension fund, which should satisfies the following; Rt > 0
∀t ∈ [0, T ], (2) Government subsidy γt should be within the limitation;
EQ[∫ T

t
e−rsβsds|Ft ] ≤ γt .

3 Martingale Method for the Risk Management

The risk management of pension should be no default which implies that Rt > 0 for
all t ∈ (0, T ). It can be treated by the martingale method of optimal investment and
consumption problem of Dana-Jeanblanc [1]. Let ert a numeraire from (1) and (2)

d
(
Rt/e

rt
)= φtd

(
At/e

rt
)+ q(a, b)d

(
Ht/e

rt
)+ dq(a, b)Hte

−rt + βte
−rt dt.

Let denote R∗
t :=Rt/e

rt ,A∗
t =At/e

rt ,H ∗
t =Ht/e

rt , then

dR∗
t = φtdA

∗
t + q(a, b)dH ∗

t + dq(a, b)H ∗
t + βte

−rt dt.

The reserve fund at T becomes as follows:

R∗
T =R0 +

∫ T

0
φtdA

∗
t +
∫ T

0
q(a, b)dH ∗

t +
∫ T

0
H ∗
t dq(a, b)+

∫ T

0
βte

−rt dt,

where H ∗
t and A∗

t are martingales under the risk neutral measure Q. The admissi-
ble strategies satisfying the constraint Rt > 0. The pension problem due to aging
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with low fertility satisfies generally the condition dq(a, b) = atdξ
1
t − btdξ

2
t < 0.

It, however, for the cohort that the positive net present value of pension implies the
condition as follows.

We assume that the government subsidy to the pension fund should satisfies βt ≤
−dq(a, b).

R∗
t −
∫ t

0
H ∗
s dq(a, b)−

∫ t

0
βte

−rsds =R0 +
∫ t

0
φsdA

∗
s +
∫ t

0
q(a, b)dH ∗

s =:Mt

Mt is a positive Q Martingale

R∗
t =Mt +

∫ t

0
H ∗
s dq(a, b)+

∫ t

0
βte

−rsds

R∗
t =EQ

[

R∗
T −
∫ T

t

H ∗
t dq(a, b)−

∫ T

t

βt e
−rsds|Ft

]

.

(7)

The necessary condition of Rt > 0 is βt + dq(a, b) < 0 and R∗
T > 0 then

EQ
[

R∗
T −
∫ T

0
H ∗
s dq(a, b)

]

≤R0 + γ0.
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Black Scholes Option Sensitivity Using High
Order Greeks

Yves Rakotondratsimba

Abstract Option high order sensitivities have been presented by Carr P. as Greeks
for geeks, though other authors have analyzed and insisted on the need to go be-
yond to the Delta-Gamma approximation usually considered in the practice of risk
management. Actually in the stress-testing framework, as is required under Basel 3
bank regulation, adding high order Greeks may contribute to a good prediction of
the option PL under extreme shocks. We revisit the Black-Scholes high order Greek
parameters by providing their explicit formulas and proofs, which are expected to
be more accessible for many readers. Limit of the use of these sensitivities are also
analyzed here. Actually our main contribution in this work is on the introduction
of an unified sensitivity approach with the ones used for other classes of assets as
interest rates and commodities. This may be useful in the Credit Adjustment Valua-
tion computation and hedging, where all aspects of risk (equity, interest rate, credit,
commodities, . . . ) need to be simultaneously considered.

Keywords Black-Scholes · Option · Sensitivities · P&L

1 Motivation

The post 2007–2008 financial crisis led the quantitative finance community to be
confronted with various and increasing challenges. Indeed, the inheritance from the
past remains with a lot of main issues still not completely elucidated. On the other
hand, the present time requires us to be face with new market practices and regu-
lation changes (as Basel 3 and Solvency 2). These latter call for an exploration of
new approaches, though the past non-perfect tools and ideas are still considered and
re-used. For example, the Black-Scholes option pricing introduced in 1973 is seen
and recognized as not suitable to be used in the practice reality, however the con-
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cept remains to be fundamental both in practice and theory. As noted in [1] despite
its age, the Black-Merton-Scholes (BMS) model is the lingua franca of option pric-
ing. Greeks in BSM model continues to enjoy multiple applications as in hedging,
market risk measurement, profit and loss attribution, model risk assessment, optimal
contract design and implied parameter estimation.

Nowadays the framework of banking new regulation Basle 3, as in the determina-
tion of Credit Valuation Adjustment (CVA) and in counterparty risks management,
leads us naturally [10] to consider again the pricing and hedging of a European op-
tion on various underlying assets (as equities, bonds, swaps, . . . ). Facing with the
associated complexity, one way very often considered by people is to come down
to the Black-Scholes framework [3]. The CVA management itself leads to take un-
der consideration the option sensitivity with respect to the joint effects of various
risk-drivers as equity, interest rate, credit, commodities and so on. The sensitivities
are also in the heart of fixing the capital requirement in the framework of Insurance
Solvency2.1

Among the main ideas in risk management, always in use, is to see the future
P&L of a portfolio position as a (generally nonlinear) function of one or many risk
driver(s). Either for the prediction or for the position management and hedging, it
may be suitable to substitute the involved function by a more simplified expression.
As in the case of stress tests, constraints imposed by computation speed as well as
database structure lead analysts to use approximations for the portfolio possible val-
ues. Indeed these last appear to be the result of a large variety of scenarios of asset
price changes due to shocks with different sizes. One approach in direction of this
simplification is to use a linear approximation, but it is also standard to resort to at
least a second order polynomial function of the risk driver(s) as the case with the fa-
mous Delta-Gamma approximation (see for example [5]). However, mathematically
speaking, a best fit of the P&L position function2 would be realized by using a high
order polynomial function.

The consideration of option Black-Scholes high order Greeks is not a new topic,
since it has been studied by various authors as in [1, 4] and [2]. However facing with
the new challenges coming from the Financial market and Insurance, as mentioned
above, where extreme shocks and joint effects of risks are needed to be taken into
account, then it appears that revisiting (and possibly enhancing) these high order
sensitivities would be interesting and useful. To perform such a task is our intention
in the present paper.

2 Our Contribution

As alluded above we will focus on the case of any vanilla European option whose
the underlying asset is assumed to follow a log-normal process. Though this last is

1Further informations are available from the EIOPA web-site: https://eiopa.europa.eu/activities/
insurance/solvency-ii/index.html.
2Which is a highly nonlinear function of the risk driver(s) when the considered position contains
derivatives.

https://eiopa.europa.eu/activities/insurance/solvency-ii/index.html
https://eiopa.europa.eu/activities/insurance/solvency-ii/index.html
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not necessarily or directly the suitable model to use in the market reality, it provides
a benchmark approach which may be useful to treat some complex situations.3

1. Under the log-normal process, there is a one-to-one mapping between the under-
lying asset relative change and the corresponding shock responsible. By the term
shock we mean a realization of some standard Gaussian random variable. Nu-
merical results will be provided in order to better visualize this correspondence
between the asset relative change and its associated shock. At this stage, it has a
full sense to consider the option sensitivity with respect to the shock risk driver
rather than to the asset relative change itself, which is commonly used by various
authors as in [1, 4] and [8]. Such a new direction, based on the direct exploration
of the underlying risk factor source, is in line with the approach we have used in
the framework of interest rate in [9] and [6]. The point in this unified approach
is on the opening the way of taking into account the joint effects of various risk
factors. However this last aspect is not analyzed in-depth here, as we focus only
on the plain Black-Scholes log-normal model.

2. Among the main differences between the present work and those performed in
[1, 4] and [2] is that our sensitivities take into account the passage of time. This
is in accordance with the collective intuition that the sensitivities values should
differ with respect to the horizon considered. The classical Black-Scholes Delta
and Gamma do not account for such a fact, and consequently this contributes to
the loss of accuracy in the option P&L approximation when using these Greek
parameters. Of course people make also use of the Theta parameter to take into
account the passage of time, but this is not sufficient enough. The analogue of
Theta, in our present approach, is a zero-order sensitivity whose the explicit ex-
pression is displayed in the text. When no shock does affect the underlying asset,
then the option change is exactly reduced to this zero-order sensitivity.

3. High-order option sensitivities (with respect to the shock driver) are derived in
the present work. They have a little bit resemblance with the BS high order
Greeks introduced by Carr P. in [1], but the difference is that here we do not
have to calculate values of Hermite polynomial functions at the points usually
referred as d1 and d2 in the Black-Scholes pricing framework. Some recursion
formulas are provided such that the reader does not need any knowledge and
notions about Hermite polynomial functions to perform the calculations.

4. Once all of these sensitivities are introduced, then we state that the option P&L
at a given horizon can be approximated by a polynomial function having these
various high order sensitivities as coefficients and the shock as underlying vari-
able. The main point here is that there is no a priori limitation on the size of
the shock under consideration. Moreover the approximation is valid until any
time-horizon strictly less than the option maturity. The classical BS Delta yields
directly the proportion of underlying asset to hold or to sell in order to partially
hedge the associated option. With our high order polynomial function, whose the
underlying variable is the risk driver, the first order sensitivity has not the same

3As for instance in CVA sensitivities calculations.
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interpretation. In the hedging perspective, as seen in [6]. what matters is just the
compensations between the various sensitivities of the same order and for the
whole position (to hedge and the hedging instruments).

5. Beside our introduction of the analytical formulas for the option high order
Greeks and their implementation, three relevant issues arise: (a) Do these sen-
sitivity parameters really contribute to improve the option P&L prediction?
(b) What is the appropriate order of the polynomial function realizing a better
approximation of the future option P&L? (c) What is the range of asset rela-
tive changes for which the polynomial approximation makes a full sense? Our
paper also addresses to these questions by providing both theoretical analysis
and numerical approaches. For example, to the first question, in contrast with
[4] and [7], we find that the Taylor-Lagrange approach may provide a definitive
practical implication compared with the Taylor series ones. Our answers to the
next two questions rely on possible pointwise estimates for the remainder term
under the user views on shock.
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