
Chapter 6

Extensions and Mixed-Integer Nonlinear
Approaches for Further Applications

The modelling approach advocated by this volume is susceptible to possible

extensions. One, in particular, deals with the problem of looking into how the

free volume of a container, partially loaded with tetris-like items, could be profit-

ably exploited. Virtual items, i.e. (rectangular) parallelepipeds of non-prefixed

dimensions, are purposely introduced to ‘suggest’ how to fill the empty volumes.

In order to meet the practical demand, depending on the specific framework in

question, limitations are stated on the maximum number of virtual items allowed,

as well as on their minimum dimension. This issue is investigated hereinafter,

highlighting a dedicated MIP formulation (Sect. 6.1).

The global optimization approach, stressed in this work, is further extended to

the problem of packing simple polygons, with continuous rotations, inside a convex

polygon. A heuristic approach, solving recursively a dedicated mixed-integer
nonlinear programming (MINLP) model (founded on necessary conditions), is

outlined (Sect. 6.2). It is aimed at providing an approximate global solution that

can be further refined by exact local optimization-based methods. The tetris-like
formulation is properly adapted to generate the first starting solution and profitably

initialize the mixed integer nonlinear programming search process.

6.1 Exploiting Empty Volumes by Adding Virtual Items

This section is devoted to the issue of exploiting the residual volume of a container,

partially loaded, by adding a certain number of virtual items. These are intended as

(rectangular) parallelepipeds, not defined a priori in terms of dimensions. They are

aimed at indicating how real items could still be loaded into the container.

This kind of problem arises, for instance, quite frequently in the framework of

the logistic support to the International Space Station (ISS, cf. http://www.nasa.

gov), when planning the periodical resupply of the resources stowed on board.

A significant number of similar applications are expected in logistics in general.

Here, indeed, the frequent necessity of introducing (rigid) packaging material, to
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prevent item collisions, represents, from the analytical point of view, the same

problem typology. Further examples, albeit in quite different fields, concern the use

of autonomous robots (e.g. when requested to determine accessibility zones or to

carry out assembling activities) and specific packing issues in the VLSI context.

The problem considered in this section can be formulated as follows:

Given a (convex three-dimensional) domain D, and a set of tetris-like items

inside it, let us add a number (not exceeding the maximum value of NV) of virtual
items (i.e. rectangular parallelepipeds of variable dimensions). The total loaded
volume is maximized by repositioning, if necessary, the (tetris-like) items already
accommodated.

Two classes of items are then taken into account: the tetris-like and virtual, that
are single (rectangular) parallelepipeds, with no a-priori-given dimensions. All

positioning rules of the general problem of Sect. 2.1, i.e. orthogonality, domain
and non-intersection conditions, still hold. In particular:

• Each virtual item has to be positioned orthogonally, with respect to the main
reference frame.

• Each virtual item has to be contained within (the convex domain) D.
• Virtual items cannot overlap either with the tetris-like or other virtual ones.

6.1.1 Model Formulation

An MINLP formulation of the optimization problem in question is considered first.

We shall point out that the packing rules expressed above can be grouped as

follows:

• Orthogonality, domain and non-intersection conditions for tetris-like items only

• Orthogonality, domain and non-intersection conditions for virtual items only

• Non-intersection conditions between tetris-like items and the virtual ones

As far as the first group is concerned, they are represented by constraints (2.1),

(2.2), (2.3), (2.4), (2.5a), (2.5b) and (2.6) of Sect. 2.1. The orthogonality, domain and
non-intersection conditions for virtual items only, as well as the non-intersection
ones, between tetris-like items and the virtual ones, are quite straightforward. They
are discussed here below.

Let us introduce the set of virtual items IV, and the binary variables χVj ∈ {0, 1},

j ∈ IV, with the meaning: χVj ¼ 1 if virtual item j is included; χVj ¼ 0 otherwise.

For each virtual item j, wV0βj denote the centre coordinates, with respect to the main

reference frame, and lVβj the side parallel to the axis wβ (of the main reference

frame). EVj is the set of (eight) vertices associated to j whose coordinates are

expressed as follows:
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8β∈B,8j∈ IV ,8η∈EVj

wVβηj ¼ wVβ0j � 1

2
lVβj: ð6:1Þ

It is easily seen (cf. Sect. 2.1) that the orthogonality conditions are implicitly

contemplated by equations (6.1), while the domain constraints have the same

expressions of equations (2.3) and (2.4) (adopting the specific virtual item

symbolism).

The following inequalities represent the non-intersection conditions between the
generic tetris-like item i and the virtual one j, cf. constraints (2.5a), (2.5b) and (2.6):

8β∈B,8i∈ I,8j∈ IV , 8h∈Ci

wβ0hi � wVβ0j � 1

2

X
ω∈Ω

Lωβhiϑωi
� �þ 1

2
lVβj � Dβ 1� σþVβhij

� �
,

ð6:2aÞ

8β∈B,8i∈ I,8j∈ IV ,8h∈Ci

wVβ0j � wβ0hi � 1

2

X
ω∈Ω

Lωβhiϑωi
� �þ 1

2
lVβj � Dβ 1� σ�Vβhij

� �
,

ð6:2bÞ

8i∈ I, 8j∈ IV ,8h∈Ci

X
β∈B

σþVβhij þ σ�Vβhij
� �

� χi þ χVj � 1, ð6:3Þ

8i∈ I, 8j∈ IV ,8h∈Ci

X
β∈B

σþVβhij þ σ�Vβhij
� �

� χi, ð6:4aÞ

8i∈ I,8j∈ IV , 8h∈Ci

X
β∈B

σþVβhij þ σ�Vβhij
� �

� χVj, ð6:4bÞ

where σþVβhij and σ
�
Vβhij ∈ {0, 1}. The non-intersection constraints for virtual items

only are immediately understood. The lower bound LV is further introduced for all

virtual item sides, in order to obtain acceptable solutions from a practical point of

view (i.e. excluding ‘too small’ objects). The following constraints are thus stated:

8j∈ IV LVχVj � lVβj � DβχVj: ð6:5Þ

Since the total volume of the virtual items added has to be maximized, the

nonlinear objective function below is defined:

max
X
j∈ IV

Y
β∈B

lVβj: ð6:6Þ

Remark 6.1 It is gathered that the additional conditions discussed in Sect. 2.3 can

easily be introduced (with proper adaptation, if necessary). As far as the static

balancing ones (Sect. 2.3.4.1), in particular, are concerned, they have to be ade-

quately extended to include the virtual items. To do this, we shall firstly assume that
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they have the (hypothetical average) density RV. Expressions (2.23) and (2.24) are

therefore modified as

8β∈B
X
i∈ I

Miw
�
βi þ RV

X
j∈ IV

wVβ0j

Y
β∈B

lVβj ¼
X
γ∈V�

V�
γβψ

�
γ ,

X
γ∈V�

ψ�
γ ¼ m,

where m ¼
X
i∈ I

Mi þ RV

X
j∈ IV

Y
β∈B

lVβj, 8 γ ∈ V*, ψ�
γ ¼ eψ �

γm and eψ �
γ � 0. As is

easily seen, these conditions, differently from the case of Sect. 2.3.4.1, are no longer

linear.

6.1.2 Model Approximations

A possible (quite daring) approximation of the MINLP model presented in

Sect. 6.1.1 consists of adopting the following linear objective function as a

surrogate of the nonlinear (6.6):

max
X
β∈B=
j∈ IV

lVβj: ð6:7Þ

An alternative approach consists of replacing function (6.6) with a separable one

and carrying out a piecewise linear approximation of each term (e.g. Williams 1993).

This can easily be achieved by introducing the (likewise) surrogate objective function:

max
X

β∈B,
j∈ IV=
lVβj > 0

ln lVβj
� �

: ð6:8Þ

This is indeed separable (and no longer a surrogate one, when just a single

virtual item is considered, cf. Sect. 6.1.3). The piecewise linear approximation of

each (single-variable) logarithmic term in (6.8) reduces then the original MINLP

model to a much simpler (approximate) MIP one. A straightforward formulation is

outlined here below (cf. Williams 1993 and Sect. 2.3.2).

For each axis wβ, we shall discretize the intervals LV ;Dβ

� �
in a set DSVβ of

subintervals [DVβ(γ�1), DVβγ] and then pose

8β∈B,8j∈ IV lVβj ¼
X

γ∈DSVβ

DVβγλVβγj, ð6:9Þ
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8β∈B, 8j∈ IV ln lVβj
� � � X

γ∈DSVβ

ln DVβγ

� �
λVβγj, ð6:10Þ

8β∈B,8j∈ IV
X

γ∈DSVβ

λVβγj ¼ χVj, ð6:11Þ

where the terms λVβγj are nonnegative variables.
It is worth noticing that, in this specific case (as in that of equations (2.20) of Sect.

2.3.2), the adjacency condition (for which at most two adjacent λ can be non-zero)
may be dropped tout court (cf.Williams 1993), with significant computational benefit.

It is, indeed, sufficient to observe that the optimization problem in question is

equivalent to that of minimizing a convex objective function. This is immediately

seen simply considering that expression (6.8) is equivalent to min
X
β∈B,
j∈ IV

�ln lVβj
� �� �

that is convex, as it is a sum (with positive coefficients) of convex functions

(e.g. Minoux and Vajda 1986).

Both objective functions (6.7) and (6.8) are suitable for providing a starting

approximated solution for the (exact) MINLP formulation of Sect. 6.1.1. A more

refined (even if more demanding) approach could be followed as an alternative to

avoid the introduction of surrogate functions. It is based on the method of

converting products of (two or more) variables into separable functions, by

means of quadratic terms (e.g. Williams 1993). It is briefly outlined here.

In the case of the product of two variables q1q2, it is sufficient to introduce the new
variables s1 and s2 (not restricted to be nonnegative), by performing the transforma-

tions s1 ¼ 1
2
q1 þ q2ð Þ, s2 ¼ 1

2
q1 � q2ð Þ. The terms q1q2 are hence substituted with

s21 � s22 (that is a non-convex function). The method can be extended when the

products involve more than two variables and a piecewise linear approximation of

the quadratic terms can hence be achieved.

Remark 6.2 The task of minimizing the container area/volume can also be

achieved by performing a logarithmic transformation and a piecewise linear

approximation, without introducing any surrogate objective function (e.g. Pan

and Liu 2006; Wang and Tsai 2010). The resulting model, nonetheless, appears

quite complicated. Indeed, indicating with dβ the variables representing the con-

tainer (parallelepiped) dimensions, with respect to the corresponding axes wβ, the

objective function (in logarithmic form)
X
β∈B

ln dβ
� �

to minimize is not convex. As a

consequence, the adjacency condition cannot be neglected.

Remark 6.3 The presence of the binary variables χVj in expressions (6.5) guaran-

tees that if a virtual item is not added, its contribution to the total volume is zero.

This implication is nonetheless implicitly stated by equations (6.1) together with

the domain constraints for virtual items.
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6.1.3 Applications

A previous work (Fasano and Vola 2013) focuses on the utilization of the

surrogate linear objective function (6.7), in the context of a dedicated heuristic

approach. This has been conceived with the aim of obtaining quick satisfactory

(but typically suboptimal) solutions to the original (nonlinear) problem. This

approach is outlined, briefly, hereinafter, whilst the reader is referred to the

work quoted above for more details, both on the algorithmic and experimental

aspects.

An appropriate lower bound, as stated by conditions (6.5), is generated

each time, depending on the specific instance to solve. The heuristic approach

adopted assumes that an abstract configuration, relative to the already loaded

tetris-like items, is provided. Since the addition of several virtual items, all

together, would represent a significant computational effort, the heuristic proce-

dure progresses incrementally. This is obtained by adding one virtual item after

the other, until either a satisfactory solution is obtained or their maximum number

is reached.

A currently ongoing experimental analysis (Fasano and Vola 2013) is being

carried out. Some insights on the computational results, obtained to date, are briefly

illustrated in Table A.11; see Appendix. They refer to a set of 32 case studies. For

all tests considered, a maximum threshold of 10 virtual items was imposed, setting

a runtime limit of 3 CPU hours. Case studies 6 and 22 are illustrated by Figs. 6.1

and 6.2, respectively (on the left the already loaded tetris-like items are shown and,

on the right, the virtual ones added).

Fig. 6.1 Virtual item Case Study 6
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6.1.3.1 Container Area/Volume Minimization by Maximizing
Virtual Items

The concept of virtual item and the relative packing model can be utilized to solve the

important issue of the container area/volume minimization. In its two-dimensional

form, it consists of placing (orthogonally) a given set of single rectangles into one of

minimum area (the generalization to the case of three-dimensional tetris-like items

inside a parallelepiped is straightforward). We introduce first the domain D of sides

Dβ, β ¼ {1, 2} (the set of axes is still denoted by B, cf. Sect. 2.1), assumed

sufficiently big to allow the loading of all items inside the corresponding rectangle.

For all of them the constraints stated in the special case of Sect. 2.1 hold, with the

corresponding variables χ set to one. Two virtual items are then introduced with the

purpose of restricting the domain from the right and the upper edges, respectively.

They are denoted as R and U. R sides are l1R (variable), parallel to D1 and D2

(constant). Its centre coordinates are indicated with wβR. The following specific

(domain) constraints are posed:

w1R þ
1

2
l1R ¼ D1, ð6:12aÞ

w2R ¼ 1

2
D2: ð6:12bÞ

Similar equations are set for the virtual item U:

w1U ¼ 1

2
D1 � l1R
� � ð6:13aÞ

Fig. 6.2 Virtual item Case Study 22
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w2U þ 1

2
l2U ¼ D2 ð6:13bÞ

The non-intersection constraints (6.2a) and (6.2b) are specified as follows:

8i∈ I w1R � w1i � 1

2

X
α∈A

Lαiδα1ið Þ þ 1

2
l1R, ð6:14aÞ

8i∈ I w2U � w2i � 1

2

X
α∈A

Lαiδα2ið Þ þ 1

2
l2U, ð6:14bÞ

where the meaning of the symbols is understood (cf. Sect. 2.1, special case). It is

immediate to see that, as a consequence, all the given items are confined to

the inside of the rectangle cut out from D by R and U. This rectangle has the

vertex (0,0) in common with the domain D and the sides D1 � l1R and D2 � l2U
laying on w1 and w2, respectively. The optimization problem under consideration

consists hence of minimizing this area (obviously included within D) simply by

adopting, for the virtual itemsRandU, the objective function (6.6). This assumes, in

the specific case, the following form (easily reducible to a separable function, even
if non-convex, as outlined in Sect. 6.1.2):

max D2l1R � l1Ul2U
� �

: ð6:15Þ

The heuristic approach presented in this section can thus be well adopted to

obtain an approximate solution.

6.2 Non-orthogonal Packing of Non-rectangular Items

The key idea advocated in this monograph on non-standard packing problems, with

additional conditions, also of ‘transversal’ nature (e.g. balancing), relies on a

modelling-based GO approach. This point of view, espoused for the tetris-like

item orthogonal packing, can be extended, at least at an approximate level, to

more complex frameworks. This holds, in particular, for objects like polyhedrons,

with the possibility of continuous rotations. According to the approach put forward

here, the tetris-like formulation still plays an important role, providing a ‘naı̈ve’

starting global solution.

The literature on the packing of complex (non-rectangular) objects is extensive

(e.g. Bennell and Oliveira 2008; Betke and Henk 2000; Cagan et al. 2002; Chernov

et al. 2010; Egeblad et al. 2009a, b; Gan et al. 2004; Kallrath 2009; Torquato and

Jiao 2009), also including quite sophisticated formulations, but mostly addressed

to local optimization. A methodology of particular interest in this sense

(Scheithauer et al. 2005; Stoyan and Chugay 2009; Stoyan et al. 1996, 2012) could

well serve the scope of improving the approximate (quasi-global) solutions obtained
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with the approach discussed in this section. Stoyan’s method introduces the

concept of Φ-functions (e.g. Chernov et al. 2012; Stoyan et al. 2002, 2004).

These are briefly outlined here below (limiting the discussion, for simplicity, to the

two-dimensional case without rotations).

Given two general itemsAi(oi) and Aj(oj), where oi ¼ (o1i, o2i) and oj ¼ (o1j, o2j)
represent their local reference frame position, respectively, any everywhere contin-

uous function Φij : R
4 ! R is called a Φ-function of Ai(oi) and Aj(oj) if it possesses

the following properties:

Φij > 0 if Ai(oi) \ Aj(oj) ¼ {Ø}
Φij ¼ 0 if int Ai(oi) \ int Aj(oj) ¼ {Ø} and ∂Ai(oi) \ ∂Aj(oj) 6¼ {Ø}
Φij < 0 if int Ai(oi) \ int Aj(oj) 6¼ {Ø}

In such a way, Φij � 0 guarantees that items Ai(oi) and Aj(oj) do not intersect

(apart from their borders).

This section discusses the (two-dimensional) placement of simple polygons,

i.e. polygons with no intersection between two nonconsecutive edges, inside a

convex polygon. The approach introduced is closer, with respect to Stoyan’s one,

to alternative GO-based methodologies (e.g. Fischetti and Luzzi 2009; Sykora

et al. 2011). An MINLP model is formulated. It is intended to be processed

recursively, following a successive approximation philosophy. Once an acceptable

(approximate) solution has been obtained, it can be exploited, as a starting point to

solve the corresponding exact Φ-function-based MINLP model. The reader is

referred to the previous work (Fasano 2013), for more details.

6.2.1 Approximate MINLP Model

Some necessary conditions, formulated in terms of MINLP constraints, are consid-

ered hereinafter. They are aimed at looking into approximate solutions to the

two-dimensional problem of placing simple polygons (in the following just called

polygons) from a given set IP, into a convex polygon D (domain). The overall

surface of the loaded items is maximized. For each polygon, any possible orienta-

tion is admitted. A recursive process is performed to improve, by successive

approximation, the current solution, until a satisfactory one is reached. The posi-

tioning rules for each picked item are simply:

• Each polygon has to be contained within D (domain conditions).

• Polygons cannot overlap (non-intersection conditions).

To formulate the corresponding mathematical model, we shall consider a given

(main) reference frame with origin O and axes wβ, β ∈ {1, 2} (the set of axes is

still denoted by B, cf. Sect. 2.1). The domainD is delimited by the set of vertices VP,

whose coordinates, with respect to the main reference frame, are represented by

VPβγ, γ ∈ VP. They are assumed as nonnegative (without loss of generality). We

shall then consider any polygon i (denoted in the following by Pi), from the given
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set IP, and associate to it a local reference frame with origin oPi, of coordinates oPβi
(with respect to the main reference frame). The set of all vertices associated to

polygon i is denoted by EPi. The coordinates of each vertex η ∈ EPi are indicated,

with respect to the local reference frame, by VPβηi. The vector equations below hold

8i∈ IP, 8η∈EPi wPηi ¼ χPioPi þ χPi qββ0
���

���
i
VPηi: ð6:16Þ

Here for each vertex η ∈ EPi, wPηi ¼ (wP1ηi, wP2ηi)
T is the vector of its coor-

dinates with respect to the main reference frame; oPi ¼ ( oP1i, oP2i)
T; VPηi ¼ (VP1ηi,

VP2ηi)
T; qββ0
���

���
i
is the (orthogonal) rotation matrix of the local reference frame, with

respect to the main one, and χPi ∈ {0, 1}, as in the previous cases, has the

meaning: χPi ¼ 1 if polygon i is picked; χPi ¼ 0 otherwise.

The domain conditions below are stated to guarantee that each picked polygon

i lies within the given polygon D:

8β∈B,8i∈ IP,8η∈EPi

wPβηi ¼
X
γ∈VP

VPβγλPγηi, ð6:17Þ

8i∈ IP,8η∈EPi

X
γ∈VP

λPγηi ¼ χPi, ð6:18Þ

where the variables λ are nonnegative and have the same meaning as in Sect. 2.1.

While in the case of tetris-like items, the non-intersection conditions are quite

easy to state, dealing with polygons they become much more complex. Three easy-

to-prove necessary conditions are posed hereinafter. They establish a basis for the

recursive process proposed (that acts by successive approximation). The following

propositions are then stated.

Proposition 6.1 Given a set of internal circles CPi and CPj, for any pair of poly-
gons i and j, respectively, no circle of CPi can intersect a circle of CPj .

Proposition 6.2 For any pair of polygons i and j, no vertex of Pi can belong to any
circle of CPj and vice versa.

Proposition 6.3 For each pair of polygons i and j, any set of points of Pi must
belong to the external region of Pj and vice versa: this holds in particular for all
vertices of the polygons.

Remark 6.4 In the above propositions, tangency conditions are admitted. In par-

ticular, it is understood that the external regions enclose the respective boundaries.

The third necessary non-intersection conditions posed above (Prop. 6.3) can be

advantageously restricted to bounded external slices. To this purpose, the concept

of augmented polygon is introduced by the following definition.

Definition 6.1 (Augmented polygon) For each Pi, consider the polygon, denoted

by Pi, such that
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Pi � Pi,

Pi � Pi ¼ [
ν∈ Si

Uνi,

where Uνi (slices) are convex polygons (not necessarily disjoint), associated to Pi,

and Si is their set. Each Pi is called augmented polygon associated to Pi (Pi � Pi

could always be partitioned into a set of triangles; see Fig. 6.3 and, for instance, de
Berg et al. (2000) for polygon triangulation).

Figure 6.3 shows, as a matter of example, how a simple polygon can be

augmented by convex slices. It is moreover immediately seen that whenever an

internal ‘cleft’ (consisting of a non-convex simple polygon) is present, it can be

partitioned into a set of triangles (i.e. convex slices). A specific case of the

augmented polygon concept, adopted in the following, is provided by the definition

below.

Definition 6.2 (Domain-covering augmented polygon) For each polygon i, any
associated augmented polygon that covers the whole domain D, for any position

and orientation of i within D, is called domain-covering augmented polygon,

associated to polygon i. It is denoted by Pi.

The third necessary non-intersection conditions (Prop. 6.3), when restricted to

bounded external regions, can therefore simply be expressed as follows:

For each pair of polygons i and j, with any associated Pi and Pj, each point of Pi

must belong to Pj and, vice versa, each point of Pj must belong to Pi.

It is then immediately seen that Proposition 6.1 is expressed by the following

constraints:

Pi

w1

w2

u5i

u4i u3i

u2i

u1i

u8i

u9i

u7i

u6i

Fig. 6.3 Example of

augmented polygon
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8i, j∈ IP=i < j,8h∈CPi,8k∈CPjX
β∈B

�
oPβhi�oPβkj

�
2 � χPij Rhi þ Rkj

� �2
: ð6:19Þ

Here CPi and CPj denote the (arbitrary) sets of internal circles associated to

polygons i and Rhi and Rkj the radius of the relative circles; oPβhi and oPβkj are their
centre coordinates, with respect to the main reference frame; and the (implicitly

binary) variables χPij ∈ [0, 1] are subject to the same constraints expressed by

(2.12a), (2.12b) and (2.13). The following vector equations hold:

8i∈ IP,8h∈CPi

oPhi ¼ χPioPi þ χPi qββ0
���

���
i
OPhi:

ð6:20Þ

They represent (with obvious meaning of the symbols), for the centre of circle h,
the coordinate transformation between the local reference frame (associated to

polygon i) and the main one. Proposition 6.2 is very similar and it is not reported.

Given a domain-covering augmented polygon Pi, associated to polygon i, the

corresponding set of slices are denoted by Si. The set of vertices delimiting each

slice ν (ofPi) is instead represented byEνi, ν∈ Si. The following constraints express,
for the polygon vertices, the third necessary non-intersection conditions (Prop. 6.3):

8β∈B,8i, j∈ IP,8η∈EPi

χPijwPβηi ¼
X

γ∈Eνj,

ν∈ Sj

λPηiγνj wPβγνj, ð6:21Þ

8i, j∈ IP,8η∈EPi,8ν∈ SjX
γ∈Eνj

λPηiγνj ¼ χPηiνj, ð6:22Þ

8i, j∈ IP,8η∈EPi

X
ν∈ Sj

χPηiνj ¼ χPij, ð6:23Þ

where, as before, wPβηi are the coordinates of polygon i vertices with respect to the

main reference frame. Similarly, wPβγνj are the vertex coordinates of slices ν
associated to polygon j; λPηiγνj are nonnegative variables and χPηiνj ∈ {0, 1}.

Constraints (6.21), (6.22) and (6.23) ensure thus that if both polygons i and j are
loaded, then each vertex of polygon i will belong to one slice ν of (the augmented
polygon associated to) j and vice versa.

Remark 6.5 As is easily gathered, the presence of the χPηiνj binary variables increases
the model complexity dramatically. Constraints (6.22) and (6.23) could thus be profit-

ably substituted by the following 8i, j∈ IP,8η∈EPi, 8ν∈ Sj
X
γ∈Eνj

λPηiγνj ¼ χPij.
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The logical restriction expressed by constraints (6.23) may indeed be treated algorith-

mically, by introducing appropriate special ordered sets, similar to those suggested

by Escudero (1988). More specifically, in such a case, only the variables λPηiγνj

corresponding to a single slice ν∈ Sj would be allowed to be positive, while all

remaining are forced to zero.

6.2.2 Applications

The difficulty in solving the MINLP model of Sect. 6.2.1 is, per se, extremely high,

even when small-scale instances are involved. Consequently, it is not expected to

accomplish the task directly, and an incremental procedure is strongly

recommended. As a rough approximation, for instance, for each polygon i, just
one of its biggest internal circles could be considered. The number of internal

circles could be sequentially increased, for all pairs of polygons currently

intersecting, until a satisfactory (approximate) solution is attained. And similar

considerations hold for all the necessary conditions considered in Sect. 6.2.1.

As, in any case, the MINLP solution process efficiency is strongly affected by

the initial guess available, the tetris-like model of Sect. 2.1 can be utilized for this

purpose. This can be done by temporarily replacing the given polygons with

covering tetris-like items and considering, for each polygon iP ∈ IP, just a set

ΩPi of possible (arbitrary) discretized rotations; see Fig. 6.4.

For each polygon iP ∈ IP and each selected rotation, ωPi ∈ ΩPi, let us define a

single tetris-like item, covering the polygon for that rotation and such that its sides

Fig. 6.4 Covering tetris-like items (corresponding to possible rotations ω1 � ω6, of the same

polygon i)
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are orthogonal/parallel to the main reference frame axes. Denoting by IT the

set of all tetris-like items built in such a way, the one-to-one correspondence

(iP, ωPi) ∈ IP 	 ΩPi $ iT ∈ IT is defined. This way, the subset of tetris-like

items ITiP is associated to each polygon iP ∈ IP. The problem in question is

hence that of placing the covering tetris-like items of set IT, one (and only one)

for each subset ITiP , into D, without any possibility of rotation. This leads to a

special case of the MIP model of Sect. 2.1: constraints (2.1) are dropped, whilst

(2.2), (2.3), (2.4), (2.5a), (2.5b) and (2.6) are kept, setting all variables θ to one and
eliminating all indexes ω, as well as the related sums. Let us denote (with a little of

abuse of notation) by χiP ∈ 0; 1f g and χiT ∈ 0; 1f g the decisional variables control-

ling the selection of polygon iP ∈ IP and its associated (pre-oriented) tetris-like

item iT ∈ ITiP . The following conditions have to be added:

8iP ∈ IP
X

iT ∈ ITiP

χiT ¼ χiP : ð6:24Þ

This guarantees that if polygon iP is picked, it is represented by one and only one
tetris-like item iT, corresponding to a specific orientation (from the set of the

discretized ones associated to iP).

Remark 6.6 An alternative tetris-like item approximation could be considered,

keeping all the constraints (2.1), (2.2), (2.3), (2.4), (2.5a), (2.5b) and (2.6) (for-

mally) as they are. Each projection Lωβhi would be associated to a specific

(discretized) orientation of the related polygon. These terms, however, would no

longer correspond to rigid rotations of the relative tetris-like items (covering tetris-

like items, indeed, change their pattern, depending on the orientation). Figure 6.4

clearly illustrates this aspect.

With the approximation approach suggested, any tetris-like item covers the

corresponding polygon for a specific rotation of it. Any feasible solution of the

tetris-like item problem is also a feasible solution of the polygon problem and thus

represents (for the surface maximization) a lower bound. Once a good initial

solution is attained, the actual items (polygons) can be introduced and the

MINLP process activated.

A heuristic dedicated to the polygon packing problem is currently at a

prototyping stage (see Fasano 2013; LGO Solver Suite for Global–local Nonlinear

Optimization is utilized as a nonlinear optimizer, see Pintér 1997, 2002, 2005,

2007; Pintér Consulting Services 2013). It performs the tetris-like approximation as

an initialization step (virtual items are purposely introduced, in order to concentrate

unexploited areas in a limited number of uncovered zones). Then, different general

techniques, such as item fixing/exchange and ‘hole’ filling, are adopted (exploiting

the features of Prop. 6.1, 6.2 and 6.34). An experimental investigation is currently

under study (Fasano 2013).

Concerning the computational aspects related to the first phase, based on a

two-dimensional tetris-like item MIP model, insights can be derived from Chap. 5.
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The necessary conditions expressed by Propositions (6.1) and (6.2) rely, instead, on

the MINLP formulation of circle packing, and significant topical literature is

available (e.g. Castillo et al. 2008; Hifi and M’Hallah 2009; Specht 2012).

It is argued that the additional conditions discussed in Sect. 2.1 could also be

(at least in principle) extended to the case of polygon packing. This holds, for

instance, when balancing restrictions are stated. Domains with ‘holes’ or forbidden

zones can in general be modelled by introducing zero-mass items (see Fig. 6.5).

Moreover, when some items contain ‘holes’, these become part of their external

regions (see Fig. 6.6).

w10

w2

DD

Fig. 6.5 Domain with

internal polygonal ‘holes’

Fig. 6.6 Simple polygons

with ‘holes’
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