
Chapter 4

Heuristic Approaches for Solving

the Tetris-like Item Problem in Practice

As easily gathered, the general MIP model, conceived to sort out the tetris-like item
packing problem (Sect. 2.1), is usually very hard to solve. In this chapter the

relevant intrinsic difficulties are examined first (Sect. 4.1). A heuristic philosophy

is then emphasized to tackle efficiently the problem, even if just nonproven optimal

solutions can, in general, be obtained.

The basic concept of abstract configuration is introduced (Sect. 4.2). Chapter 3

reformulations, devised to solve the feasibility subproblem, are exploited to

look into an initial approximate solution (Sect. 4.3.1). Two alternative heuristic

procedures, thought up to improve it recursively, until a satisfactory result is

reached, are discussed next (Sects. 4.3.2 and 4.3.3). The possibility of interacting

with the solution process is also outlined (Sect. 4.3.4).

4.1 Intrinsic Difficulties

Broad classes of packing problems are notoriously well known for being NP-hard
(as regards this classification and, more in general, the theoretical aspects related to

computational complexity and approximability, see, for instance, Ausiello et al. 2003,
Chlebı́k and Chlebı́ková 2006, Goldreich 2008).

The general MIP model reported in Chap. 2 is, per se, extremely hard to solve in

practice, when real-world instances have to be dealt with. This holds, even if only

single parallelepipeds are involved and no additional conditions are set (see Sect. 2.1,

special case). In this circumstance, insights on its complexity can be provided by

looking upon the model overall structure (N indicates here the total number of single

parallelepipeds):

O(3N(N � 1)) binary variables σ
O(9N ) binary variables δ
O(N ) binary variables χ
O(6N ) orthogonality constraints

G. Fasano, Solving Non-standard Packing Problems by Global
Optimization and Heuristics, SpringerBriefs in Optimization,

DOI 10.1007/978-3-319-05005-8_4, © Giorgio Fasano 2014

39

http://dx.doi.org/10.1007/978-3-319-05005-8_2#Sec1
http://dx.doi.org/10.1007/978-3-319-05005-8_3
http://dx.doi.org/10.1007/978-3-319-05005-8_2
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Sec1


O(3N ) domain constraints

O 7
N N � 1ð Þ

2

� �
non-intersection constraints (of which O(3N(N � 1))big-Ms)

The model scale increases quite dramatically when N actual tetris-like items are

involved. In order to discuss this case, we shall indicate, for each item i, with |Ci| the

cardinality of the set Ci relative to its components. The total number of pairs of

components, belonging to different items, is denoted by NC and computed as

follows:

NC ¼
X
i∈ I

Cij j
2

 !
�
X
i∈ I

��Ci

��
2

� �
, ð4:1Þ

where the symbol
N1

N2

� �
represents, in general, the N2-combinations of a set

containing N1-elements. The model overall structure is hence represented by the

following:

O(24N ) binary variables θ
O(N ) binary variables χ
O(6NC) binary variables σ
O(7NC) non-intersection constraints (of which O(6NC) big-Ms).

Even at a first glance, the intricacy of both scenarios mentioned above is not only

related to the binary variables. Indeed, it primarily depends on the presence of the

big-M constraints, related to the non-intersection conditions. The occurrence of the
implicit transitivity conditions (see Sect. 3.2), moreover, provides a significant

insight on the hidden model difficulties. The following proposition shows how

their total number can be computed.

Proposition 4.1 Given N tetris-like items, the total number of transitivity condi-

tions is 18
X

i, i0, i00 ∈ I=
i < i0 < i00

Ci �j jCi
0 �j jCi

00
�� ��.

Proof To prove this proposition we can firstly concentrate on the particular case of

Sect. 3.2, where the sequence h precedes h0 and h0 precedes h00 (h ≺ h0 ≺ h00) along
the (general) axis wβ is considered. The conditions 8β∈B, 8i, i0, i00∈ I=i < i0 < i00,
8h∈Ci, 8h0 ∈Ci

0, 8h00 ∈Ci
00σ�βhh00ii00 � σ�βhh0ii0 þ σ�βh0h00i0i00 � 1 are therefore recalled.

Selecting (for the time being) the specific axis wβ, for a given pair of components

h and h0 of i and i0, respectively, there are Ci
00

�� �� such conditions; for a given component

h of i, they are Ci
0
�� � ��Ci

00
�� ��, so that their total number is Ci

�� � ��Ci
0
�� � ��Ci

00
�� ��. This

corresponds to the order relation h∈Cið Þ≺ h
0
∈Ci

0
� �

≺ h
00
∈Ci

00
� �

. There are 3!

permutations of such a kind, for which the above transitivity conditions have to be

40 4 Heuristic Approaches for Solving the Tetris-like Item Problem in Practice

http://dx.doi.org/10.1007/978-3-319-05005-8_3#Sec6
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Sec6


properly rearranged (utilizing appropriately the variables σ� and σ+). This must hold

for any triplet i, i0 and i00, such that i < i0 < i00, and for each axis wβ. □

Remark 4.1 When all the tetris-like items involved have the same number (jCij,
8 i ∈ I) of components, the total number of transitivity conditions is 18

��Ci

��3 N
3

� �
.

To consider a quantitative example, an instance involving 50 items, of five compo-
nents each, the order of magnitude relevant to all the non-intersection (big-M)

constraints is 6 � 3 � 104; that of the transitivity conditions is 4 � 107. Section 4.2

investigates the sets of variables σ+ and σ� (at most one for each pair of components

belonging to different items) that, if fixed to one, are compliant with the transitivity
implications. These variables σ are called transitivity compatible.

4.2 Abstract Configurations

The abstract configuration concept is introduced by the following definitions.

Definition 4.1 Constraints of the types

wβ0hi � wβ0kj � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �

,

wβ0kj � wβ0hi � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �

,

corresponding to either σþβhkij ¼ 1 or σ�βhkij ¼ 1 in (2.5a) and (2.5b), respectively,

are called relative position constraints.

Definition 4.2 Given a set of N items and all the NC pairs of components,

belonging to different items, an abstract configuration consists of NC relative

position constraints (one and only one for each pair) compatible in any unbounded

domain.

Remark 4.2 From Definition 4.2, it follows immediately that, for a given set of

N items, an abstract configuration corresponds to a set of NC transitivity-compatible

σ variables fixed to one.

To interpret the concept of abstract configuration, it is opportune to restrict the

discussion to the simpler case of single-component items (see Sect. 2.1, special case).

Theoretically, in such a case, all the abstract configurations, associated to a given set
of N items, could be directly derived by adopting a three-dimensional generalization

of the square grid graph (e.g. Weisstein 2012). This is the graph whose vertices

correspond to the points ofN3 � R3 (referred to an orthogonal reference frame), with

integer coordinates that are in the range 0, . . ., N � 1 and with any two vertices

connected by an edge, whenever they are at unit distance; see Fig. 4.1.

4.2 Abstract Configurations 41

http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ5
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ6
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Sec1


Since the relative positions are to be considered in an unbounded domain, from

this ‘topological’ perspective, the actual dimensions of the items can be totally

neglected. Items can, thus, simply be considered as geometrical points and their

relative placement represented by N nodes (intended as points of N3) of the

aforementioned grid. A set of corresponding relative position constraints can

hence be selected to generate an abstract configuration. If, for instance, item i is
associated to node (0,0,0) and item j is associated to node (N � 1, N � 1, N � 1),

their coordinate relative distance on the grid, with respect to each axis, is (N � 1)

units and i precedes j in all directions. This, in an unbounded domain, is compliant,

with the following relative position constraints:

w1j � w1i � 1

2

X
α∈A

Lαiδα1i þ Lαjδα1j
� �

,

w2j � w2i � 1

2

X
α∈A

Lαiδα2i þ Lαjδα2j
� �

,

w3j � w3i � 1

2

X
α∈A

Lαiδα3i þ Lαjδα3j
� �

:

Any of the above relative position constraints can thus be selected, as the one

corresponding to the pair of items (i,j), to create an abstract configuration (relative

to the given set of N items). Similar considerations hold for all the possible
N3

N

� �
associations of N items to the N3 grid nodes. It is worth noticing that, in any

unbounded domain, each given abstract configuration yields an infinity of packing

scenarios, obtainable by simple roto-translations of the items. This suggests that

even when an abstract configuration is forced, if compliant with the given domain,

the items still have a certain freedom of movement.

As it is immediately understood, even for relatively small-scale instances,

the number of all possible associations of N items to N3 grid nodes is immense.

Fig. 4.1 Three-dimensional grid

42 4 Heuristic Approaches for Solving the Tetris-like Item Problem in Practice



Of course, it is higher than that of the abstract configurations which can actually be
generated, as the following example shows. Let us consider the set of three items i,
i0 and i00, together with the two following distinct associations A1 and A2:

A1Þ i ! 0; 0; 0ð Þ, i
0 ! 2; 0; 0ð Þ, i

00 ! 1; 2; 0ð Þ;
A2Þ i ! 0; 1; 0ð Þ, i

0 ! 2; 1; 0ð Þ, i
00 ! 1; 2; 0ð Þ:

These are compliant with the same relative position constraints and, thus, give

rise to the same corresponding abstract configurations.
Considering also that some associations ‘dominate’ others, in the sense that their

corresponding sets of abstract configurations strictly contain those of the ‘domi-

nated’ ones, several further redundancies are expected. It is gathered that quite a lot

of duplications could be eliminated. The number of grid nodes could be reduced, for

instance, taking into account the actual size of the domain D. Indeed (see Fig. 4.1),
its maximum value, on each axis wβ, respectively, is given by

8β∈B Nβ ¼ maxPN0 �N

i¼1

L1i�Dβ

N
0

n o
:

It is, nevertheless, obvious that any exhaustive approach, based on the genera-

tion of all possible abstract configurations, would be impracticable, in real-world

cases. It is, moreover, quite intuitive that a generalized use of the three-dimensional

grid, to cope also with the case of tetris-like items (and not only of single parallel-

epipeds), would be quite tricky indeed.

The basic idea of the heuristic approaches put forward in Sect. 4.3 addresses

instead the exploitation of a number of ‘good’ abstract configurations. The follow-
ing discussion focuses therefore on the capability of extracting, from approximate

solutions (with possible item overlap), abstract configurations that, at least par-

tially, consider the actual characteristics of the problem (e.g. conditions on items,

domain and balancing). The thus obtained abstract configurations are then

exploited to give rise to integer-feasible (even if, generally, suboptimal) solutions,

compliant with all the given conditions (including, most certainly, orthogonality,
domain and non-intersection).

Given any approximate solution, the objective of the abstract configuration
generation consists of assigning one and only one relative position constraint to

each pair of components, belonging to different items (in the following, this is

understood, when referring to any pair of components).
The (arbitrary) rules listed below represent very simple selection criteria the

abstract configuration generation could be based on; see Fig. 4.2:

• If the components do not intersect and the non-intersection conditions hold only

with respect to one axis, the corresponding relative position constraint is

selected.

4.2 Abstract Configurations 43



• If the components do not intersect and the non-intersection conditions hold for

more than one axis, the relative position corresponding to the maximum distance

between the projections of the respective coordinate centres is selected.

• If the components intersect, the relative position corresponding to the maximum

distance between the projections of the respective coordinate centres is selected.

Figure 4.2 provides a (two-dimensional) representation of the above selection

rules. Just single-component items, denoted as i, i0 and i00, respectively, are consid-
ered, to make the example clearer (the generalization to actual tetris-like items is

straightforward). As easily seen in the figure, they are subject to the following

conditions:

• Items i and i0 projections overlap on both the axes w1 and w2, with

w
2i

0 � w2i > w
1i

0 � w1i.

• Items i and i00 projections neither overlap on the axis w1 nor on w2, with

w
1i

00 � w1i > w
2i

00 � w2i.

• Items i0 and i00 projections do not overlap on the axis w1 only, with w
1i

00 > w
1i

0 .

Based on the rules listed above, the following abstract configuration (relative to
the single-component items i, i0 and i00) is extracted:

w
2i

0 � w2i � 1

2

X
α∈A

Lαiδα2i þ Lαjδα2i0
� �

,

w
1i

00 � w1i � 1

2

X
α∈A

Lαiδα1i þ Lαjδα1i00
� �

,

w
1i

00 � w
1i

0 � 1

2

X
α∈A

Lαiδα1i þ Lαjδα1i00
� �

:

w2

w2i”

w2i’

i’

i”

iw2i

w1i w1i’ w1i” w1

Fig. 4.2 Abstract
configuration derived

from an approximate

solution (two-dimensional

representation of single-

component items)

44 4 Heuristic Approaches for Solving the Tetris-like Item Problem in Practice



Remark 4.3 As the above selection criteria are not based on rigorous reasoning, it is

evident that a number of different (and supposedly more sophisticated) empirical

rules could be explored. In case of intersection, the third rule proposed above could

be, for instance, substituted with the one that selects the relative position

corresponding to the projection where the minimum overlap occurs.

4.3 Solution Search

As already pointed out, the generation of abstract configurations, on the basis of

approximate solutions, represents a fundamental concept of the overall philosophy

adopted here. The first step of both the heuristic processes that are to be addressed in

this section focuses, therefore, on the creation of a high-quality starting approxi-

mate solution. It is trusted, indeed, that the ‘closer’ to an actual solution it is, the

‘better’ the generated abstract configuration results. Consequently, less computa-

tional effort is needed to obtain a satisfactory ultimate result. This step is denoted as

initialization.
The heuristic processes outlined in Sects. 4.3.2 and 4.3.3, respectively, provide,

as a matter of fact, two alternative search strategies to work out (at least at a

suboptimal level) the general MIP model (with possible additional conditions).

As an overall rule of thumb, the first is more oriented to solving quite tricky

instances but with a relatively limited total number (<100) of item components
involved. The second is mainly proposed for larger ones. A joint use of the two (also

in a parallelized mode) could be subject to further investigation.

4.3.1 Initialization

The reformulated models of Sect. 3.1, aimed at solving the feasibility subproblem,

can properly be adapted to serve the initialization purpose. Partial LP relaxations,
either of the first (Sect. 3.1.1) or the second (Sect. 3.1.2) linear reformulations

(including all the given additional conditions or a subset of them), are hence

utilized. They have the scope of finding a first approximate solution, to be refined

(if opportune) by the nonlinear reformulation (Sect. 3.1.4).

In all such approximate solutions, the overlap of items is allowed, but it is

minimized, in the sense specified, for each reformulated version, in Sect. 3.1. On

the contrary, both the orthogonality and domain constraints are imposed. Of course,

the more the additional conditions are included (even if in approximate versions),

the more the obtained starting solution is a realistic representation of the actual

problem to solve.

Hereinafter, we shall reexamine, in this perspective, the three reformulations, one

at a time. In all these cases, we shall still consider the problem in terms of feasibility,
as it will be tentatively assumed, a priori, that all the given items can be loaded.

4.3 Solution Search 45

http://dx.doi.org/10.1007/978-3-319-05005-8_3#Sec1
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Sec2
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Sec3
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Sec5
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Sec1


This way, all variables χ are set to one and the constraints involving them readjusted

properly. In each reformulation, as stated above, constraints (2.1), (2.2), (2.3) and

(2.4) are maintained. In the following discussion, for the sake of simplicity, the

additional conditions are neglected, as it is understood that they can be properly

added each time, accordingly to the specific problem to deal with.

4.3.1.1 Use of the First Linear Reformulation

A partial LP relaxation of the first linear reformulation is carried out by eliminating

inequalities (3.2a), (3.2b) and (3.3), whilst keeping (3.1a), (3.1b) and the objective
function (3.4) unaltered.

Remark 4.4 It should be observed that, even when no additional conditions are

present, the (partially) LP-relaxed model is still of an MIP type. This is due to the

presence of the orientation variables. When the number of components involved is

very high, the orientation of some (or all) items could be pre-fixed (on the basis of

some empirical criterion). Analogously, it could be done for the biggest side.

4.3.1.2 Use of the Second Linear Reformulation

The second linear reformulation can be adopted, as an alternative to the first. The

non-intersection constraints (3.5a) and (3.5b) are kept the same, whilst, as partial

LP relaxation, inequalities (3.6) are dropped. The objective function (3.7) is

maintained as is. This way, whilst the model is significantly simplified, it is no

longer guaranteed that each component is actually enclosed by the associated

parallelepiped (whose volume is maximized, in the sense specified in Remark 3.2).

If, moreover, all components, once reduced to the corresponding cubes of sides

L1hi, can actually be loaded into D, the following bounds are advantageously

imposed. They are aimed at mitigating the mutual competition among items,

i.e. avoiding that excessive volume is attributed to some components to the detri-

ment of others:

8β∈B,8i∈ I, 8h∈Ci L1hi � lβhi � L3hi: ð4:2Þ

Otherwise, if not all the cubes of sides L1hi can be loaded, the lower bounds

appearing in (4.2) may be properly reduced, for instance, by subsequent attempts.

Alternatively, they could be rewritten as L1hi � rβhi � lβhi, where the terms rβhi are
non-negative variables. In such a case, the objective function (3.7) can be

substituted with max
X

β∈B,
i∈ I, h∈Ci

lβhi � KRrβhi
� �

, where KR represents an appropriate

(positive) coefficient.

46 4 Heuristic Approaches for Solving the Tetris-like Item Problem in Practice

http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ1
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ2
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ3
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ4
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Equ3
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Equ4
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Equ5
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Equ1
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Equ2
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Equ6
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Equ7
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Equ8
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Equ9
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Equ10
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Equ10


It should, moreover, be noticed that the approximate solution obtained by the

second linear reformulation, when the (lower) bounds (4.2) are introduced, provides

a set of transitivity-compatible variables σ (relative to all the items involved). Since

they already represent an abstract configuration, no further generation of it is

needed.

If the model variation outlined at the end of Sect. 3.1.2 (substituting (3.6) with

(3.8)) is to be applied, a possible ‘relaxation’ can simply be obtained by renouncing

the global optimal solution (cf. Sect. 4.3.1.3) and thus admitting possible intersec-

tions among items (quite satisfactory suboptimal solutions are expected to be found

with a moderate computational effort).

4.3.1.3 Use of the Nonlinear Reformulation

As already mentioned, this model is aimed at improving the approximate solutions

obtained either by the first or second reformulations. The MIP solution obtained by

either the first or second linear reformulation is then inherited to initialize its related

Mixed Integer Non-Linear Programming (MINLP) search process.

In this case, the ‘relaxation’ just concerns the solution quality, in the sense that

no global optimal solution is requested. Looking for local optimal solutions only,

indeed, means trying to minimize the item overall overlap, but, obviously, it is not

guaranteed that the non-intersection constraints are satisfied.

Remark 4.5 A possible alternative to the above nonlinear reformulation consists of

substituting, in the first linear one, the objective function (3.4), with the following:

max
X

β∈B,
i, j∈ I=i < j,
h∈Ci, k∈Cj

dþβhkij � d�βhkij
� �2

D2
β

:

This way, the item overall intersection is no longer minimized with direct

‘competition’ between each pair of variables dþβhkij and d�βhkij, relative to the same

reference frame axis wβ. Nonetheless, it should be noticed that, with this formula-

tion, even the attainment of a global optimum is not up to guaranteeing that no

intersection occurs.

Remark 4.6 It should be noticed that the total superposition of the centres of two

components can occur both with the first linear reformulation and the second one,

when the (lower) bounds (4.2) are neglected. In this case, the approximate solution

can properly be perturbed, in order to get rid of this ambiguity (with the rules

presented, for instance, in Sect. 4.2, to generate the abstract configuration, indeed,

in case of such superposition, no relative position could be selected). This aspect is,

however, not considered here, for the sake of simplicity.

4.3 Solution Search 47

http://dx.doi.org/10.1007/978-3-319-05005-8_3#Sec3
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Equ9
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Equ11
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Equ6


Remark 4.7 It is gathered that, as a first (and quite daring) attempt, the abstract

configuration derived from the initialization step could be directly forced into the

general MIP model, requesting that all items are loaded. To do this, it would be

sufficient to substitute all the non-intersection constraints (2.5a), (2.5b) and (2.6)

with the available relative position ones. It is obvious, however, that an integer-

feasible solution could hardly be found this way, even for very simple instances.

Remark 4.8 As some items may have prefixed orientation, this aspect could be

taken into account also during the initialization step (within the limits implied by its

characteristic of admitting overlap). When utilizing the first linear reformulation or

the nonlinear one, the imposition of the given pre-orientations is straightforward.

The situation is more complicated when the second linear reformulation is adopted.

In such a case, the related model can be properly modified.

Let us suppose, for the sake of simplicity, that all items are pre-oriented.

Inequalities (3.5a) and (3.5b) can be modified as follows:

8β∈B,8i, j∈ I=i < j,8h∈Ci,8k∈Cj

wβ0hi � wβ0kj � 1

2
L

0
βhi � l

0
βhi þ L

0
βkj � l

0
βkj

� �
� Dβ 1� σþβhkij

� �
,

8β∈B,8i, j∈ I=i < j,8h∈Ci,8k∈Cj

wβ0kj � wβ0hi � 1

2
L

0
βhi � l

0
βhi þ L

0
βkj � l

0
βkj

� �
� Dβ 1� σ�βhkij

� �
:

Here, for each component h of item i, the terms L
0
βhi represent its pre-oriented

sides, and l
0
βhi are non-negative variables. The objective function min

X
β∈B,
i∈ I, h∈Ci

l
0
βhi can

then substitute (3.7) and bounds (4.2) have to be properly rewritten.

Remark 4.9 When the number of items/components involved is large, the initial-

ization step, independently from the formulations adopted, may require quite a

significant computational effort. To cope with this practical difficulty, the items

involved in the original instance can be partitioned in subsets and added incremen-

tally. At each step, the abstract configuration corresponding to the items already

loaded is imposed (taking appropriate precautions to prevent possible infeasibil-

ities). Once a new subset of items has been added, the corresponding solution gives

rise to an upgraded abstract configuration, relevant to all the so-far-loaded items.

Notice that a similar recursive approach could advantageously be adopted by

utilizing the non-restrictive reformulation of Sect. 3.1.3. Whenever it stops

yielding improvements, either the first or the second linear reformulations can

take its place in the process, in order to eventually include all the items of the

original instance. It is understood that the use of the non-restrictive reformulation

could be quite advantageous, since, for each (suboptimal) solution found, no

overlap can occur.

48 4 Heuristic Approaches for Solving the Tetris-like Item Problem in Practice

http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ5
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ6
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ7
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Equ7
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Equ8
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Equ10
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Sec4


4.3.2 Heuristic Process Based on Suggested Abstract
Configurations

The heuristic process outlined here stresses the idea of inheriting the abstract
configuration derived from the initialization step (Sects. 4.2 and 4.3.1). It is

exploited (by subsequent adaptations) to obtain a satisfactory solution to the general

MIP model (inclusive of the additional conditions if present, see Sect. 2.3).

The abstract configuration and its modifications, achieved during the whole pro-

cedure, are ‘suggested’ recursively, adding or subtracting, time after time, items

from the given set. This is carried out by means of a dichotomous approach.

In order to ‘suggest’ any abstract configuration, the general MIP model objec-
tive function (2.7) has to be properly modified. For this purpose, let us firstly recall

that, as pointed out in Remark 4.2, any abstract configuration can be represented by
a set of (transitivity-compatible) variables σ+ and σ�, fixed to one. This way, on the
basis of the abstract configuration that is to be ‘suggested’, the following coeffi-

cients σ̂ þ
βhkij and σ̂ �

βhkij ∈ 0; 1f g are introduced:

8β∈B, 8i, j∈ I=i < j,8h∈Ci,8k∈Cj

σ̂ þ
βhkij ¼ 1 if the relative position constraint wβ0hi � wβ0kj � 1

2

X
ω∈Ω

Lωβhi ϑωi þ�
LωβkjϑωjÞ belongs to the abstract configuration; σ̂ þ

βhkij ¼ 0 otherwise.

Analogous constraints can be stated for σ̂ �
βhkij. The objective function below

substitutes then (2.7):

max
X

β∈B,
i, j∈ I=i < j,
h∈Ci, k∈Cj

σ̂ þ
βhkijσ

þ
βhkij þ σ̂ �

βhkijσ
�
βhkij

� �
: ð4:3Þ

As is easily realized, this new optimization criterion has the effect of inducing

each variable σ, corresponding to a non-zero σ̂ , to attain the value of one, in

compliance with the ‘suggested’ abstract configuration. This has the expected

effect of obtaining an integer-feasible solution, when existing, by a dramatically

reduced computational effort.

In order to perform the heuristic process under consideration here, a first attempt

is made by imposing that all the given items must be loaded. The abstract
configuration derived from the initialization step is thus adopted. If any integer-
feasible solution to the general MIP model, modified with the ad hoc objective
function (4.3), is obtained, the given problem is solved. In the opposite case, the

following dichotomous procedure is started.

4.3 Solution Search 49

http://dx.doi.org/10.1007/978-3-319-05005-8_2#Sec3
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ8
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ8


An initial subset of all the given items is taken, by imposing (still tentatively)

that all of them must be loaded. If any integer-feasible solution is obtained, a new

abstract configuration (relative to the whole set of items) is derived, simply by

carrying out a new initialization step: for all the items already loaded, their relative
positions are fixed (when the nonlinear reformulation is used, the model includes

them, as explicit constraints). A new abstract configuration is then generated.

In the opposite case, i.e. when the above subset of items does not allow for any

integer-feasible solution, some of them are rejected, until a successful result is

obtained. The heuristic process is then executed by activating, recursively, either

the forward or the backward steps just described. Since the process tries and

modifies, time after time, the ‘suggested’ abstract configurations as little as possi-
ble, the whole effect is that of performing an overall depth-first strategy.

Remark 4.10 Different versions of the heuristic approach described in this section

could of course be considered. When ‘suggesting’ the current abstract configura-

tion, for instance, some of the corresponding relative position constraints could be

tentatively forced.

4.3.3 Heuristic Process Based on Imposed Abstract
Configurations

A heuristic procedure, based on the imposition of abstract configurations , has been
previously introduced (Fasano 2008) to tackle instances involving only single

parallelepipeds to load into a convex domain. The adopted approach has been

refined and extended to the case of actual tetris-like items, as outlined hereinafter.

This process, summed up by Fig. 4.3, is aimed at generating and imposing a

sequence of ‘good’ abstract configurations and at solving correspondingly, step by

step, a reduced MIP model, until a final satisfactory solution is attained.

The reduced model (inclusive of the additional conditions, when present; see

Sect. 2.3) is derived, each time, from the general one (see Sect. 2.1) by eliminating

all the redundant non-intersection constraints and variables σ, not contemplated by

the abstract configuration imposed.

The packingmodule (see Fig. 4.3) is assigned the task of solving, time after time,

the reduced models. Items are rejected, if necessary, to make the current abstract
configuration (referred to the whole set of the given items) compatible with the

given domain D (and the additional conditions, if any). The item-exchange and

hole-filling modules (see Fig. 4.3) are employed, during the whole process, to

provide new approximate solutions and supposedly improved abstract configura-
tions. The abstract configurations are generated (on the basis of what is discussed in
Sect. 4.2) from the approximate solutions obtained either by the initialization
(Sect. 4.3.1) or the hole-filling steps. When derived from this one, the relative
positions of the items previously loaded by the packing module are contemplated.

The item-exchange step directly provides a new abstract configuration, so that no

50 4 Heuristic Approaches for Solving the Tetris-like Item Problem in Practice

http://dx.doi.org/10.1007/978-3-319-05005-8_2#Sec3
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Sec1


proper generation activity has to be performed. The packing module is discussed

hereinafter, together with those dedicated to the item-exchange and hole-filling
steps, neglecting several details, unnecessary for an overall comprehension. The

general methodology is further outlined, suggesting a possible alternative approach.

4.3.3.1 Packing

The task of this module is that of obtaining an integer-feasible solution to the general
MIPmodel (with possible additional conditions, see Sects. 2.1 and 2.3) by imposing an

abstract configuration. The non-intersection constraints (2.5a) and (2.5b),

corresponding to the relative positions of the abstract configuration imposed, are kept

unaltered, with their associated variables σ. All the remaining ones are instead elimi-

nated. Inequalities (2.6) are reduced, for all the variables σ involved, to the following:

8i, j∈ I=i < j, 8h∈Ci, 8k∈Cj σþ=�
βhkij � χi þ χj � 1: ð4:4Þ

All other constraints and variables of the general MIP model (including possible

additional conditions) are kept and the objective function (2.7) still has the purpose
of maximizing either the overall loaded volume or mass.

As an interesting alternative, the non-restrictive reformulation (Sect. 3.1.3), with

all the relevant constraints, inclusive of possible additional conditions, and the

objective function (3.10) could be used. The imposition of the abstract configura-
tionswould be carried out as explained above, involving the appropriate constraints.

Fig. 4.3 Heuristic process based on the abstract configuration imposition

4.3 Solution Search 51

http://dx.doi.org/10.1007/978-3-319-05005-8_2#Sec1
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Sec3
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ5
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ6
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ7
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ8
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Sec4
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Equ13


Remark 4.11 It can immediately be observed that because of constraints (4.4), the

integrality condition on the variables σ may be dropped, so that they can simply be

considered as continuous in the interval [0,1]. Furthermore, for each pair of com-

ponents, one and only one of the non-intersection constraints (2.5a) and (2.5b) is still

present, leading to a dramatic reduction of the original model dimension.

4.3.3.2 Item Exchange

This module is aimed at perturbing and tentatively improving the abstract config-
uration (referred to the whole set of items), corresponding to the current packing
solution. An index permutation p among the set of items (and consequently in all

the relative position constraints) is thus executed: 8 i ∈ I, i ! p(i). In such a way,
the overall effect consists of exchanging some of their relative positions, within the

given abstract configuration, providing a new one.

In order to carry out (at least supposedly) promising exchanges, the following

heuristic rationale, open to different possible versions, is proposed. It is sketched in

Fig. 4.4. Picked items are exchanged with bigger non-picked items (or with items

with bigger mass, if this corresponds to the optimization criterion chosen).

Non-loaded items can also be exchanged. The way the above exchanges are

implemented determines the specific strategy followed.

Remark 4.12 The item-exchange module performs actions likely to be advanta-

geous in terms of loaded volume (or mass), just by performing permutations. It does

Fig. 4.4 Item-exchange

rationale (two-dimensional

representation)

52 4 Heuristic Approaches for Solving the Tetris-like Item Problem in Practice

http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ5
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ6


not take into account (directly) any constraints of the general MIP model that are,

instead, contemplated by the packing module and (partially) by the hole-filling one.

Remark 4.13 Depending on the strategy adopted, this module, even by exchanging

a limited number of items, can accomplish either a ‘weak’ or a ‘strong’ perturbation

of the current abstract configuration. When a ‘weak’ perturbation strategy is

executed, the exchanged items are not too different (in terms of volume and/or

mass) from each other. They are, on the contrary, quite different, when a ‘strong’

perturbation strategy is chosen. When a ‘weak’ one is followed, the new abstract

configuration remains ‘close’ to the previous, and the same is expected for the

corresponding solution. This way, the general MIP model constraints (and

the additional ones, when present) are therefore indirectly considered, through the

‘neighbourhood’ with the previous solutions .

Remark 4.14 If not all the exchanges carried out, in the new abstract configuration,

between selected and nonselected items are feasible, the packing module is forced

to actuate some rejections. It is, however, possible to avoid this inconvenience.

Indeed, let us consider, for instance, the potential exchange of the picked item iwith
the non-picked one i0. It would be sufficient to duplicate, in the current packing MIP

model, for item i0, all relative position constraints corresponding to i and pose the

further condition: χi þ χi0 ¼ 1 (updating, subsequently, the abstract configuration,

on the basis of the obtained solution). This way the relevant exchange would not be

imposed (preventing the possible consequence of rejection of both items).

4.3.3.3 Hole Filling

Also this module is aimed at perturbing the packing module (current) solution.

Empty spaces are exploited by tentatively adding items extracted from the set Î E of
the currently excluded ones. This should produce an improved approximate solu-

tion (better in terms of volume or mass loaded, depending on the optimization

criterion chosen, but with possible intersections) and an expectantly improved

subsequent abstract configuration. To this purpose, the packing module current

solution is ‘immersed’ into a grid domain, giving rise to a set N̂ G of non-covered

grid nodes; see Fig. 4.5.

The basic idea of the hole-fillingmodule is that of selecting a subset N̂
0
G � N̂ G and

one Î
0
E � Î E, of the currently excluded items, potentially associable to the chosen

non-covered nodes (assuming Î
0
E

�� � ��N̂ 0
G

�� ��). This is aimed at obtaining (even if in an

approximate way, i.e. with possible overlap) more loaded volume (or mass).

Three sub-steps are then considered hereinafter:

• Non-covered node selection
• Excluded item selection
• Overall overlap minimization

4.3 Solution Search 53



The first and the second are skipped immediately, whenever the relevant sets

have the desired cardinality.

4.3.3.4 Non-covered Node Selection

The following simple MIP model serves the scope of this sub-step. Denoting by ν

the index of the generic non-covered node of N̂ G, the binary variable ζν is

introduced, with the meaning ζν ¼ 1 if the corresponding (non-covered) node is

selected; ζν ¼ 0 otherwise.

The conditions below are then posed:X
ν∈ N̂ G

ζν ¼
��N̂ 0

G

��, ð4:5Þ

8ν, ν0
∈ N̂ G=ν < ν

0 eζνν0 � ζν, ð4:6aÞ

8ν, ν0
∈ N̂ G=ν < ν

0 eζνν0 � ζν0 , ð4:6bÞ

where eζνν0 ∈ 0; 1½ �. The objective function below selects the (non-covered) nodes

maximizing the overall relative distance:

Fig. 4.5 Hole-filling
rationale (two-dimensional

representation)

54 4 Heuristic Approaches for Solving the Tetris-like Item Problem in Practice



max
X

β∈B,
ν, ν

0 ∈ N̂ G=
ν < ν

0

WGβν �WGβν0
� �2eζνν0 : ð4:7Þ

HereWGβν are the coordinates of the grid nodes. It is understood that alternative

selection criteria could be chosen. This step provides, as outcome, the subset N̂
0
G of

the selected non-covered nodes.

4.3.3.5 Excluded Item Selection

In this sub-step, N̂
0
Gi 	 N̂

0
G denotes for each item i∈ Î E, the set of selected nodes

that allow its placement inside the domain, for at least one orientation θωi. The
following binary variables are introduced with the meaning ξiν ¼ 1 if the excluded

item i is associated to the node ν; ξiν ¼ 0 otherwise. The following equations

guarantee that at most one item i∈ Î E is allocated to the same node:

8i∈ Î E, 8ν∈ N̂
0
G

X
i∈ Î E=
ν∈ N̂ Gi

ξiν � 1: ð4:8Þ

The following objective function substitutes (2.7) and maximizes the total

volume (or mass) of the excluded items, associated to the grid nodes:

max
X

i∈ IE=
ν∈ N̂ Gi

Kiξiν: ð4:9Þ

The outcome of this sub-step determines the set of the items to add.

4.3.3.6 Overall Overlap Minimization

To perform this step, either the first or second linear reformulation (Sects. 3.1.1 and

3.1.2) is adopted. For the items already loaded, in the current packingmodule solution,

the corresponding abstract configuration is imposed. All the non-intersection
constraints involving the items selected to be added are, instead, generated. In such

a way, the objective function minimizes the overall overlap. When balancing condi-

tions are present, the relevant constraints are taken into account, together with the

following equations:

4.3 Solution Search 55

http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ8
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Sec2
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Sec3


8β∈B,8i∈ Î E w

βi ¼

X
ν∈ N̂ Gi

WGβνξiν ð4:10Þ

(where w

βi are the centre of mass coordinates of the new items).

4.3.3.7 General Methodology Background and Alternative Approach

It is understood (see Fig. 4.3) that the item-exchange and hole-filling modules can be

activated in various sequences, following different strategies. The packingMIPmodel

is solved, each time, by adopting a branch-and-bound. Throughout this process, the
binary variables χ, σ and θ are handled sequentially, by groups of items, prioritized by

volume (or mass). A depth-first strategy is followed, during which subsets of binary

variables can temporarily be fixed. A lower bound cutoff is set, on the basis of the best-
so-far solution, and part of the items, previously picked, can be imposed, following a

greedy search approach. If a satisfactory solution is found, it is taken as the ultimate

one and the whole process ends. Otherwise, the best-so-far solution is stored and the

process continues, until a (previously stated) stopping rule intervenes.

It should be further observed that the heuristic process discussed in this section,

essentially, reproduces an overall (delayed) column generation philosophy (con-

sult, e.g. the topical entry of INFORMS Computing Society 2013). The packing
MIP mode, indeed, at each step, contemplates only a limited subset of variables σ,
corresponding to the current abstract configuration imposed. This model thus plays

the master’s role, in a column generation framework. The generation of ‘good’

abstract configurations, and the corresponding selection of the variables σ, instead,
represents the pricing phase, carried out by a heuristic process.

Before concluding this section, it is worth noticing that quite a promising

alternative, compliant with the overall methodology adopted, consists of utilizing

the non-restrictive reformulation of Sect. 3.1.3. This can substitute, tout court, both

the item-exchange and hole-filling modules.

As far as the first is concerned, a number of items are still selected as candidates

for the exchanges, as discussed above. Afterwards, all the relative position con-

straints, corresponding to the current abstract configuration, with at least one

candidate, are substituted with the full set of non-intersection inequalities (2.6),

(3.5a), (3.5b) and (3.9). The MIP model of the non-restrictive reformulation is

hence adopted, keeping, for all the remaining items, the imposed relative position
constraints. The objective function hence aims at carrying out the advantageous

exchanges, improving, if successful, the current solution. In such a case, a new

abstract configuration is directly generated. This is in general a larger perturbation

of the current one, with respect to that obtainable by the item-exchange module.

As it is easily gathered, similar considerations hold when the hole-fillingmodule is

considered. In this case, all the relative position constraints corresponding to the items

already loaded are kept. Those relevant to the items selected to be supposedly added

are, instead, again substituted by the full sets of non-intersection constraints. TheMIP

56 4 Heuristic Approaches for Solving the Tetris-like Item Problem in Practice

http://dx.doi.org/10.1007/978-3-319-05005-8_3#Sec4
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ7
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Equ7
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Equ8
http://dx.doi.org/10.1007/978-3-319-05005-8_3#Equ12


model of the non-restrictive formulation tries and exploits (in a continuous mode) the

volume still available and no discretization of the domain is needed any longer. If an

improved solution is thus obtained, an upgraded abstract configuration is available.

4.3.4 Interaction with the Solution Process

As shown in Sect. 4.2, abstract configurations can easily be extracted by approx-

imate solutions of the original problem. These are provided by the initialization and
hole-filling modules. Any alternative process, however, up to yielding ‘good’

approximate solutions, could be activated as well. If, for example, a solution, of

an instance similar to the specific one to sort out, is available, then it could be

utilized to generate a first abstract configuration, skipping, directly, the initializa-
tion step. And similar opportunities could come up during the whole solution

process, whenever a new abstract configuration has to be generated.

This suggests a sort of parallelization of human and computational capabilities

by means of a two-way interface between the optimizer and a graphic system. The

relevant approach can become quite effective in practice. Intermediate outcomes

can, indeed, be visualized, time after time, and the natural human skills, up to

managing (even very tricky) three-dimensional jobs by actually ‘seeing’ the objects

involved, profitably exploited. This cannot only speed up the whole search for a

satisfactory solution, but it also allows the extemporaneous introduction of further

conditions hard to formulate explicitly in the model (for instance, ergonomic

conditions). Figure 4.6 illustrates the two-way interface rationale.

Fig. 4.6 Graphic-numerical interaction

4.3 Solution Search 57


	Chapter 4: Heuristic Approaches for Solving the Tetris-like Item Problem in Practice
	4.1 Intrinsic Difficulties
	4.2 Abstract Configurations
	4.3 Solution Search
	4.3.1 Initialization
	4.3.1.1 Use of the First Linear Reformulation
	4.3.1.2 Use of the Second Linear Reformulation
	4.3.1.3 Use of the Nonlinear Reformulation

	4.3.2 Heuristic Process Based on Suggested Abstract Configurations
	4.3.3 Heuristic Process Based on Imposed Abstract Configurations
	4.3.3.1 Packing
	4.3.3.2 Item Exchange
	4.3.3.3 Hole Filling
	4.3.3.4 Non-covered Node Selection
	4.3.3.5 Excluded Item Selection
	4.3.3.6 Overall Overlap Minimization
	4.3.3.7 General Methodology Background and Alternative Approach

	4.3.4 Interaction with the Solution Process



