
Chapter 3

Model Reformulations and Tightening

The generalMIPmodel, discussed in Chap. 2, is reconsidered hereinafter, investigating

some possible reformulations, from different points of view (Sect. 3.1). The

objective of enucleating implicit implications and introducing valid inequalities,

to tighten the model, is examined next (Sect. 3.2).

3.1 Alternative Models

The issue discussed in this section focuses mainly on the case occurring when the

packing problem is expressed in terms of feasibility, i.e. when all the given items

have to be placed and no objective function is stated a priori. This situation can

arise, for instance, when the items are the elements of a device and, as such, they all

have to be installed inside an appropriate container, as essential parts of the same

equipment. The thus defined feasibility subproblem is also of interest, as it repre-

sents one of the basic concepts of the heuristic procedures put forward in Chap. 4.

As far as this specific subproblem is concerned, since no objective function is

specified a priori, an arbitrary one can be introduced, in order to simplify the task

of finding an integer-feasible solution.
The general model of Sect. 2.1 (including the additional conditions of Sect. 2.3)

is reconsidered hereinafter in terms of feasibility, providing three different

reformulations of it (Sects. 3.1.1, 3.1.2 and 3.1.4). In all of them, it is understood

that either all the given items can be loaded or the instance to solve is infeasible. In

each of these reformulations, an ad hoc objective function is defined, with the scope
of minimizing (even if indirectly) the overall overlap of items. In the first

(Sect. 3.1.1) and second (Sect. 3.1.2, except the variation outlined at the end), no

sooner does the solver obtain the first integer-feasible solution than the optimiza-

tion is stopped (even if just a suboptimal solution of the ad hoc objective function
has been found). In all reformulations, both the orthogonality and domain condi-

tions are maintained, as defined in Sect. 2.1. (i.e. consisting of constraints (2.1),

(2.2), (2.3) and (2.4)). The second reformulation (Sect. 3.1.2) is subject to
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straightforward variations. One in particular (Sect. 3.1.3) is an actual alternative to

the general MIP model, no longer restricted to the feasibility subproblem. It could

also be utilized (at least partially) in the heuristics of Chap. 4. This aspect would

definitely represent an interesting objective for future research.

3.1.1 General MIP Model First Linear Reformulation

The rationale of the general MIP model reformulation presented hereinafter stresses

the introduction of an ad hoc objective function. This aims at reducing the solution

search region, as much as possible, in order to obtain any integer-feasible solution.
The approach adopted draws on the work achieved by Suhl (1984), dealing with

(large-scale) fixed-charge models. Suhl’s work provides an efficient preprocessing

technique aimed at reducing the big-M terms, associated to the fixed-charge con-

straints, i.e. at ‘minimizing’ (a priori) the related region, in the LP relaxation.
As far as the model reformulation in question is concerned, an approach, intended

to ‘minimize’ the search region RS, relative to the non-intersection (big-M )

constraints (2.5a) and (2.5b), is investigated, to tackle efficiently the relative feasi-
bility subproblem. These constraints are then reformulated in an LP-relaxed form

and an ad hoc objective function, substituting (2.7), is introduced. The reformulated

model is described as follows.

All variables χ are set to one, as all the given items must be inside the domain

and the non-intersection constraints (2.5a) and (2.5b) are rewritten as

8β∈B, 8i, j∈ I=i < j,8h∈Ci,8k∈Cj

wβ0hi � wβ0kj � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �þ dþβhkij � Dβ,

ð3:1aÞ

8β∈B,8i, j∈ I=i < j,8h∈Ci,8k∈Cj

wβ0kj � wβ0hi � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �þ d�βhkij � Dβ:

ð3:1bÞ

Constraints (2.6) are substituted with the following:

8β∈B,8i, j∈ I=i < j, 8h∈Ci, 8k∈Cj dþβhkij � σþβhkijDβ, ð3:2aÞ
8β∈B,8i, j∈ I=i < j,8h∈Ci,8k∈Cj d�βhkij � σ�βhkijDβ, ð3:2bÞ

8i, j∈ I=i < j,8h∈Ci,8k∈CjX
β∈B

�
σþβhkij þ σ�βhkij

� ¼ 1, ð3:3Þ

where dþβhkij, d
�
βhkij ∈ [0, Dβ].
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The adopted ad hoc objective function is

max
X

β∈B,
i, j∈ I=i < j,
h∈Ci, k∈Cj

dþβhkij þ d�βhkij
Dβ

: ð3:4Þ

Any optimal solution of the reformulated model identifies a minimal subset of

the feasibility region, relative to the general MIP model (Sect. 2.1).

Proposition 3.1 For any given set of items, the feasibility regions, associated to
the general MIP model and its first linear reformulation respectively (neglecting
the subspace associated to the variables d+ and d�), are coincident.

Proof Dealing with the feasibility subproblem, all variables χ are set to one.

Constraints (2.1), (2.2), (2.3) and (2.4) are obviously coincident in both models,

and it is thus sufficient to demonstrate that constraints (2.5a), (2.5b) and (2.6) of the

general MIP model are equivalent to constraints (3.1a), (3.1b), (3.2a), (3.2b) and

(3.3) of the reformulated one. It is immediately seen that given that all variables χ
are set to one, constraints (2.6) can be substituted with (3.3). To show that

constraints (2.5a) and (2.5b) are equivalent to (3.1a), (3.1b), (3.2a) and (3.2b), we

shall distinguish the cases where the variables σ are zero from those where they are

equal to one.

Consider, for instance, σþβhkij ¼ 0. This implies that constraints (2.5a) become

wβ0hi � wβ0kj � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �� Dβ.

These are equivalent to constraints (3.1a), with dþβhkij ¼ 0, in compliance

with constraints (3.2a). Considering, instead, σþβhkij ¼ 1, this implies that constraints

(2.5a) become wβ0hi � wβ0kj � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �

.

These are equivalent to constraints (3.1a), with dþβhkij ¼ Dβ, in compliance with

constraints (3.2a). As the same reasoning can be carried out, taking into account the

cases relative to the variables σ�βhkij, the two models are equivalent. □

Remark 3.1 To better understand the meaning of the general MIP model first linear

reformulation, we shall make some intuitive considerations. Let us define, for each β,
for every pair of components h and k of item i and j, respectively, the squared

subspace Sβ ¼ [0, Dβ] � [0, Dβ] � R2, associated to variables d�βhkij and dþβhkij. The

bound dþβhkij þ d�βhkij � 2Dβ �
X
ω∈Ω

�
Lωβhiϑωi þ Lωβkjϑωj

�
is implicitly determined

by inequalities (3.1a) and (3.1b). The objective function induces the solution projection

on Sβ to stay along the straight line d
þ
βhkij þ d�βhkij ¼ 2Dβ �

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �

.

If Dβ �
X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� � � 0, this intersects Sβ in the points
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Dβ,Dβ �
X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� � !

and Dβ �
X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �

,Dβ

 !
,

respectively, determining an internal segment. In this occurrence, if the linear solver

(utilized by the MIP optimizer) looks for vertex solutions (as in the case of a simplex-

based one), the above extreme points are more likely to be selected than the ones internal

to the segment (although this expectation is not based on rigorous reasoning). One has to

bear inmind, moreover, that either dþβhkij ¼ Dβ or d
�
βhkij ¼ Dβ (for any β) guarantees that

no intersection occurs between the two corresponding items.

As a partially alternative version of this model reformulation, the constraints

8 β ∈ B, 8 i, j ∈ I/i < j, 8 h ∈ Ci, 8 k ∈ Cj, d
þ
βhkij + d�βhkij � Dβ could also

be added to tighten the feasibility region (creating in the subspace Sβ the two extreme

points (Dβ, 0) and (0, Dβ), without excluding any solution. These inequalities are

obviously tighter than the bounds dþβhkij þ d�βhkij� 2Dβ �
X
ω∈Ω

�
Lωβhiϑωi þ Lωβkjϑωj

�
,

when Dβ �
X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� � � 0. The conditions d�βhkij, d

þ
βhkij ∈ [0, Dβ],

moreover, if explicitly introduced in the model, can be of computational advantage,

when the linear solver adopted treats the variable bounds independently (as in the

case of simplex-based ones).

3.1.2 General MIP Model Second Linear Reformulation

To discuss this alternative model, we shall consider, for each item component, the
set of all concentric parallelepipeds containing it. The reformulation examined

hereinafter is also based on an ad hoc objective function. It is aimed at finding,

for each component, the enclosing parallelepiped (included in D) of maximum

volume that does not intersect any other enclosing parallelepipeds, associated to

components of different items.

To this purpose, the non-intersection conditions of Sect. 2.1 are properly

changed. Whilst (2.6) is kept, inequalities (2.5a) and (2.5b) are substituted with

the constraints below. For each component h of i, the non-negative variables lβhi are
introduced, assuming that all variables χ are set to one:

8β∈B, 8i, j∈ I=i < j,8h∈Ci,8k∈Cj

wβ0hi � wβ0kj � 1

2
lβhi þ lβkj
� �� Dβ 1� σþβhkij

� �
,

ð3:5aÞ

8β∈B, 8i, j∈ I=i < j,8h∈Ci,8k∈Cj

wβ0kj � wβ0hi � 1

2
lβhi þ lβkj
� �� Dβ 1� σ�βhkij

� �
,

ð3:5bÞ
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8ω∈Ω,8β∈B,8i∈ I, 8h∈Ci

lβhi � Lωβhiϑωi:
ð3:6Þ

The following (surrogate) objective function is defined:

max
X

β∈B,
i∈ I, h∈Ci

lβhi: ð3:7Þ

For each component h of each item i, the terms lβhi represent (for the orientation
ω assumed by i) the projections, on the axes wβ, of an enclosing parallelepiped,

containing component h and centred with it. Inequalities (3.5a), (3.5b) and (3.6)

(together with (2.6)) guarantee that the enclosing parallelepipeds, belonging to

different items, do not intersect.

Remark 3.2 Rigorously speaking, as the objective function (3.7) refers to the total

sum of the component sides, it should be considered as a surrogate expression of

max
X

i∈ I, h∈Ci

Y
β∈B

lβhi.

As previously mentioned, possible variations of the approach discussed above

could be considered. One is obtained simply by inverting inequalities (3.6) as

follows and keeping all remaining constraints, as well as the objective function,

unaltered:

8ω∈Ω,8β∈B,8i∈ I, 8h∈Ci

lβhi � Lωβhiϑωi:
ð3:8Þ

In this case, an integer-optimal solution (and not just any integer-feasible one)
has necessarily to be found, in order to guarantee that no intersections occur among

the given items. It should be noticed that, at each step, the optimization process is

induced to minimize the overall overlap, without assigning items a volume that

exceeds their own. Moreover, since, in this case, the value of the global optimal

solution is known a priori, it can be advantageously utilized as cutoff parameter

(to get rid of suboptimal solutions).

3.1.3 A Non-restrictive Reformulation of the General
MIP Model

A possible reformulation of the general MIP model, without renouncing its original

objective of maximizing either the overall loaded volume or mass, is also quite

straightforward. The problem is no longer expressed in terms of feasibility
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(i.e. without the possibility of rejecting items), so that all variables χ are set free

again, as in Sect. 2.1.

As a first step, inequalities (3.6) are transformed into the equations:

8ω∈Ω,8β∈B,8i∈ I, 8h∈Ci

lβhi ¼ Lωβhiϑωi:
ð3:9Þ

In order to define the new objective function (substituting (2.7)), the terms Khi are

introduced (with obvious meaning) for each component h of each item i, where

8i∈ I
X
h∈Ci

Khi ¼ Ki, cf. (2.7). The dimensions of component h of i are indicated

with Lαhi, α ∈ {1, 2, 3} ¼ A, assuming, from now on, that L1hi � L2hi � L3hi. The
new objective function is then expressed by the following:

max
X

β∈B,
i∈ I, h∈Ci

KhiX
α∈A

Lαhi
lβhi: ð3:10Þ

It is easily seen that the two objective functions (2.7) and (3.10) are equivalent

for any integer-feasible solution (by (3.9)). The expression (3.10), differently from

(2.7), provides the significant computational advantage of minimizing the item

overall overlap at each step of the optimization process. Just to summarize the

reformulation in question, we could point out that it consists of constraints (2.1),

(2.2) (orthogonality), (2.3), (2.4) (domain), (2.6), (3.5a), (3.5b) and (3.9) (non-
intersection), in addition to objective function (3.10). It is also understood that in all
the relevant expressions above, the variables lβhi could be eliminated. They may,

indeed, be substituted by their corresponding terms, on the basis of (3.9) (that could

also be eliminated).

3.1.4 General MIP Model Nonlinear Reformulation

The general packing problem presented in Sect. 2.1 is notoriously subject to

nonlinear (MINLP) formulations (e.g. Birgin and Lobato 2010; Birgin

et al. 2006; Cassioli and Locatelli 2011). We shall introduce, hereinafter, a

nonlinear reformulation of the general MIP model non-intersection constraints,

assuming, as previously, that all variables χ are set to one (as the feasibility
subproblem is in question). It is straightforward to prove that the nonlinear con-

straints below are equivalent to (2.5a), (2.5b) and (2.6):
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8β∈B, 8i, j∈ I=i < j,8h∈Ci,8k∈Cj

wβ0hi � wβ0kj

� �2 � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �2

4
3
5
2

¼ sβhkij � rβhkij,
ð3:11Þ

8β∈B, 8i, j∈ I=i < j,8h∈Ci,8k∈CjY
β∈B

rβhkij ¼ 0, ð3:12Þ

where sβhkij ∈ [0, D2
β] and rβhkij ∈ [0, D2

β] (actually, smaller upper bounds could

be chosen for both sets of variables).

Indeed, for each pair of components h and k, of items i and j, respectively,
equations (3.12) guarantee that for at least one β, the corresponding term rβhkij is
zero, and equations (3.11) that the non-intersection conditions hold for such a β, i.e.��wβ0hi � wβ0kj

�� � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �

. More precisely, constraints (2.5a)

and (2.5b) correspond to equations (3.11), whilst equations (2.6) correspond

to (3.12).

As the non-intersection constraints (3.11) and (3.12) are most likely hard to

tackle, they are therefore considered in terms of fixed penalization in the ad hoc

objective function we are going to introduce. All remaining linear (MIP),

constraints are kept as such. A formulation aimed at satisfying as much non-
intersection conditions as possible is the following:

min
X

β∈B,
i, j∈ I=i < j,
h∈Ci, k∈Cj

wβ0hi � wβ0kj

� �2 � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �2

4
3
5
2

� sβhkij þ rβhkij

8<
:

9=
;

2

8>>>>><
>>>>>:
þ KP

X
i, j∈ I=i < j,
h∈Ci, k∈Cj

Y
β∈B

rβhkij

9>>=
>>;

ð3:13Þ

where KP is a positive coefficient (that represents an appropriate ‘weight’ associ-

ated to the product terms).

It is immediately seen that the objective function (3.13) is non-negative. A zero-

global-optimal solution exists if and only if the constraints ((2.1), (2.2), (2.3), (2.4),

(2.5a), (2.5b) and (2.6) of the generalMIPmodel of Sect. 2.1 (with all variables χ set to
one) delimit a feasible region. Thisobjective function thus ‘minimizes’ the intersection

between items. Its global optima, moreover, guarantee an ultimate (non-approximate)
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solution to the feasibility subproblem under discussion. It could be observed that for

each set of variables ϑ, (3.13) is a polynomial function (providing, as such, potential

algorithmic advantages; on global polynomial optimization, see, for instance,

De Loera et al. 2012; Hanzon and Jibetean 2003; Schweighofer 2006).

Alternative fixed penalization can be considered (e.g. Cassioli and Locatelli

2011). We shall introduce here one objective function with fixed penalization
correlated to the non-intersection constraints only:

min

X
β∈B,
i, j∈ I=i < j,
h∈Ci, k∈Cj

max � wβ0hi � wβ0kj

� �2 þ 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �2

4
3
5
2

, 0

8<
:

9=
;

8>>>>><
>>>>>:
þ KP

X
i, j∈ I=i < j,
h∈Ci, k∈Cj,

Y
β∈B

rβhkij

9>>=
>>;

ð3:14Þ

As the previous one, this objective function is also non-negative and each zero-

global-optimum corresponds to a solution of the feasibility problem.

Remark 3.3 Both the MINLP formulations discussed above contain only linear

(MIP) constraints. This aspect could be advantageous, when the MINLP solvers

utilized treat the model linear sub-structure independently (e.g. The MathWorks

2012). It is moreover worth noticing that all functions involved in both MINLP

formulations are Lipschitz-continuous and, consequently, Lipschitzian solvers can

be profitably adopted (e.g. Pintér 1997, 2009). Indeed, all constraints are of the MIP

type and (3.13) is smooth. As far as (3.14) is concerned, it is sufficient to observe

that the termsmax � wβ0hi � wβ0kj

� �2 þ 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �" #2

, 0

8<
:

9=
; keep

their Lipshitz-continuous characteristic (e.g. Pintér 1996).

3.2 Implications and Valid Inequalities

As is well known, in the MIP context, remarkable research effort has been devoted

to looking into general approaches to tighten the model. This means to make its

linear relaxation an as precise as possible approximation of the convex hull relative
to the mixed-integer solutions (e.g. Andersen et al. 2005; Ceria et al. 1998;

De Farias et al. 1998; Jünger et al. 2009; Marchand et al 1999; Nemhauser and

Wolsey 1990; Van Roy and Wolsey 1987; Weismantel 1996; Wolsey 1989).
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Polyhedral analysis (e.g. Atamtürk 2005; Constantino 1998; Dash et al. 2010;

Hamacher et al. 2004; Padberg 1995; Pochet and Wolsey 1994; Yaman 2009) is

adopted to this purpose, in order to find valid inequalities (e.g. Aardal et al. 1995;

Cornuéjols 2008; Padberg et al. 1985; Wolsey 1990, 2003). These are aimed at

tightening the MIP model under consideration. The introduction of such auxiliary

conditions is particularly suitable when a branch-and-cut approach (e.g. Andreello

et al. 2007; Balas et al. 1996; Cordier et al. 2001; Padberg 2001; Padberg and

Rinaldi 1991) is followed.

Differently from more traditional MIP algorithms, such as branch-and-bound
(where all model constraints have to be set a priori) with a branch-and-cut process,
the valid inequalities are activated just when needed and dropped when not required.

With reference to the general MIP model (Sect. 2.1), for items consisting of

single parallelepipeds to load into a parallelepiped (see Sect. 2.1, special case),

some valid inequalities, holding under specific assumptions, have been put forward

by Padberg (1999). This has been done to tackle the problem by means of a

dedicated branch-and-cut approach. Some quite simple conditions, not restricted

to the case of single parallelepipeds, are considered hereinafter (limited subsets of

them can be advantageously taken into account also when a branch-and-bound
approach is adopted). A first group of inequalities is hence introduced:

8i, j∈ I=i < j,8h∈Ci,8k∈CjX
β∈B

σþβhkij þ σ�βhkij
� �

� χi,
ð3:15aÞ

8i, j∈ I=i < j,8h∈Ci,8k∈CjX
β∈B

σþβhkij þ σ�βhkij
� �

� χj:
ð3:15bÞ

These, together with (2.6), for each pair of components h and k of items i and j,

respectively, imply that one, and only one, of the relative variables σþβhkij and σ�βhkij
has to be equal to one if both items are loaded; all of them are equal to zero

otherwise. It is immediate to notice that in the general MIP model of Sect. 2.1, in

case both items are picked, more than one of the variables σþβhkij and σ�βhkij could be

non-zero. The above extended version is hence tighter than the previous, without

any loss of generality, as no integer-feasible solutions are excluded.
Some straightforward examples of necessary conditions, concerning pairs of

items, in particular situations, can be considered. Firstly, let us consider the very

simple case when item i and j cannot be aligned with respect to the axis wβ (because

they would exceed the dimension Dβ, for all possible orientations of both). In such

an occurrence, the conditions below can be explicitly posed:

8h∈Ci,8k∈Cj σþβhkij ¼ σ�βhkij ¼ 0:
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In addition to these, a set of more complicated implications, correlating align-

ment and orientation, could be introduced. An example, dealing with the special

case of Sect. 2.1, relative to single parallelepipeds, is reported here.1 Considering

items i and j, if L1i + L2j > Dβ, they cannot be aligned along the axis wβ, with either
L2j or L3j parallel to it. And analogously, this holds if L1j + L2i > Dβ. The follow-

ing inequalities can hence be set:

8β, 8i, j∈ I=i < j, L1i þ L2j > Dβ δ2βj þ δ3βj � 1� σþβij � σ�βij,

8β,8i, j∈ I=i < j, L1j þ L2i > Dβ δ2βi þ δ3βi � 1� σþβij � σ�βij:

These conditions can easily be extended when tetris-like items are involved,

i.e. when the general MIP model of Sect. 2.1 is considered. This gives rise to

inequalities of the type
X

ω∈Ω
0
βhkij

ϑωj � 1� σþβhkij � σ�βhkij, where Ω
0
βhkij (i < j) is the

set of orientations (of j), incompatible with the alignment conditions of the com-

ponents h (of i) and k (of j). Similar expressions hold for i, with Ω
0
βhkji (i < j).

Straightforward transitivity conditions (e.g. Padberg 1999; Fasano 2008) can,

moreover, be looked upon, when triplets of single parallelepipeds are taken into

account. They can easily be extended when actual tetris-like items are involved.

Focusing on the triplet of components h, h0, h00 of items i, i0, i00, respectively, if,
along the axis wβ, h precedes h0 and h0 precedes h00, then h precedes h00, along the
same axis. This implication is expressed by

8β∈B,8i, i0 , i00 ∈ I=i < i
0
< i

00
,8h∈Ci,8h0

∈Ci
0 ,8h00

∈Ci
00

σ�
βhh

00
ii
00 � σ�

βhh
0
ii
0 þ σ�

βh
0
h
00
i
0
i
00 � 1:

Still referring to the same triplet of components, the further implication holds: if
L1hi þ L

1h
0
i
0 þ L

1h
00
i
00 > Dβ, then the whole triplet cannot be aligned along the axis

wβ. This is expressed by the following constraints:

8β∈B, 8i, i0 , i00 ∈ I=i < i
0
< i

00
, 8h∈Ci, 8h0

∈Ci
0 , 8h00

∈Ci
00=L1hi þ L

1h
0
i
0 þ L

1h
00
i
00 > Dβ

σþ
βhh

0
ii
0 þ σ�

βhh
0
ii
0 þ σþ

βh
0
h
00
i
0
i
00 þ σ�

βh
0
h
00
i
0
i
00 þ σþ

βhh
00
ii
00 þ σ�

βhh
00
ii
0 � 2:

The proof is straightforward. It is sufficient to notice that being the hypothesis

stated, at the most, two components may be aligned along the axis wβ and that

for each pair of components, either the corresponding variable σþβ or σ�β must

be zero.

1 Note These conditions have been introduced by S. Gliozzi, senior managing consultant at IBM

GBS Advanced Analytics and Optimization.
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As a further observation, note that the implications correlating alignment and

orientation, as presented in this section, would be susceptible to extensions involv-

ing chains of more than three components. Their introduction could provide prac-

tical advantages in the perspective of a dedicated branch-and-cut approach.

Remark 3.4 When the layer constraints reported in Sect. 2.3.5 are introduced in the

model, inequalities (3.15a) and (3.15b) can properly be extended. Moreover, the

necessary conditions 8i∈ I w3i � min
i
0 6¼i

L
1i

0
� �

χ
_
i can explicitly be added, following

the perspective presented in this section.
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