
Chapter 2

Tetris-like Items

The packing of tetris-like items, i.e. clusters of mutually orthogonal rectangular

parallelepipeds, inside a given domain, is discussed here; see Fig. 2.1. Orthogonal

rotations are admitted and additional conditions can be present. Before introducing

the general problem and its mathematical formulation, the following definition is

provided as a fundamental concept.

Definition 2.1 A tetris-like item is a set of rectangular parallelepipeds positioned

orthogonally, with respect to an (orthogonal) reference frame. This is called ‘local’
and each parallelepiped ‘component’.

In the following, ‘tetris-like item’ will usually be simply denoted as ‘item’, if

no ambiguity occurs. Similarly, ‘rectangular parallelepipeds’ are indicated as

‘parallelepipeds’.

The term ‘domain’ refers to a subset of the three-dimensional Euclidean space R3.

Convex domains are mainly considered, providing the proper specifications

explicitly, when otherwise. The general problem is examined first (Sect. 2.1),

discussing some possible criticalities (Sect. 2.2), before investigating the issue of

modelling a set of additional conditions (Sect. 2.3).

2.1 General Problem Statement and Mathematical

Model Formulation

This section looks upon a first basic statement of the tetris-like packing issue, as an

extension of the classical single container loading problem. The issue of placing

small boxes into a big one has consolidated mathematical models. The formulation

usually referred to as space-indexed is based on the container discretization

(e.g. Beasley 1985; Hadjiconstantinou and Christofides 1995). The relative MIP

model provides very strong bounds (see Allen et al. 2012), as it also occurs for

similar discretized formulations for scheduling problems (corresponding to
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one-dimensional packing, e.g. Pan and Shi 2007). This characteristic, in several

cases, greatly makes up for the discretization. This holds, in particular, when all the

items involved have integer side lengths (e.g. unit squares/cubes). The extension of

this space-indexed formulation to the accommodation of the tetris-like items issue

discussed in this chapter would be quite straightforward.

A non-space-indexed paradigm is considered in this work. A corresponding

mathematical model, expressed in terms of mixed-integer linear programming
(MILP), is formulated (it is usually denoted as the general MIP model, when no

ambiguity occurs, omitting the specification ‘linear’).

To state the problem, we shall consider a set of N items, each identified by an

associated local reference frame. This set is denoted by I. A (bounded) convex

domainD, consisting of a polyhedron (see Fig. 2.1), is considered. It is associated to
a given orthogonal reference frame, denoted in the following as main. The problem

is that of placing items into D, maximizing the loaded volume (or mass), with the

following positioning rules:

• Each local reference frame axis has to be positioned orthogonally, with respect
to the main frame (orthogonality conditions).

• For each item, each component has to be contained within D (domain
conditions).

• Components of different items cannot overlap (non-intersection conditions).

This problem can easily be formulated as an MIP (Fasano 2008). When dealing

with tetris-like items, each one consisting of a single component only and a domain

consisting of a parallelepiped, the tetris-like item general problem stated above

reduces to the classical container loading issue (e.g. Bortfeldt and Wäscher 2012).

Its MIP formulation can be found, with possible variations, in some previous works

(e.g. Chen et al. 1995; Fasano 1989, 1999, 2003, 2004; Padberg 1999; Pisinger and

Sigurd 2005).

To formulate the general MIP model in question, the main orthogonal reference

frame, with origin O and axes wβ, β ¼ {1, 2, 3} ¼ B, is defined. Each local

reference frame, associated to every item i, is chosen, without loss of generality,

Fig. 2.1 Tetris-like item

packing into a convex

domain (polyhedron)
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so that all item components lie within its first octant. Its origin coordinates, with

respect to the main reference frame, are denoted in the following by oβi. We shall

then introduce the set Ω of all possible orthogonal rotations, admissible for any

local reference frame, with respect to the main one. It is easily seen that they are

24 in all, since items are, in general, asymmetric objects.

This is illustrated by Fig. 2.2, where an item, consisting of three mutually

orthogonal components, is considered. The components have lengths of 1, 3 and

9 units respectively. The component of length 3 units is parallel to the vertical axis

of the observer reference frame. Two sub-cases are considered: in one

(corresponding to the four images above) the item is up-oriented, whilst in the

other (corresponding to the four images below) it is down-oriented. As can be seen

from the figure, four orthogonal (clockwise) rotations (around the vertical axis) are

associated to each sub-case, so that when the component of length 3 units is vertical

(either up-oriented or down-oriented), eight relative rotations have to be taken into

account. The same holds when either the component of length 1 unit or the one of

length 9 units assumes the vertical position, so that the total number of orthogonal

orientation is 24.

In the following, the set of components associated to the generic item i is denoted
by Ci. We shall introduce, for each item i, the set Ehi of all (eight) vertices

associated to each of its component h. An extension of this set is obtained by adding
to Ehi the geometrical centre of component h. This extended set is denoted in the

following by E
_

hi. For each item i and each possible orthogonal orientation ω ∈ Ω,

we define the following binary (0–1) variables:
χ
i ∈ {0, 1}, with χ

i ¼ 1 if item i is picked, χi ¼ 0 otherwise;

ϑωi ∈ {0, 1}, with ϑωi ¼ 1 if item i is picked and has the orthogonal orientation
ω ∈ Ω, ϑωi ¼ 0 otherwise.

The above orthogonality conditions can be expressed as follows:

8i∈ I
X
ω∈Ω

ϑωi ¼ χi, ð2:1Þ

8β∈B,8i∈ I,8h∈Ci,8η∈ E
_

hi

wβηhi ¼ oβi þ
X
ω∈Ω

Wωβηhiϑωi:
ð2:2Þ

Fig. 2.2 Tetris-like item

rotations around a

single axis
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Here wβηhi (8η∈ E
_

hi) are the vertex coordinates, with respect to the main reference

frame, of component h, or its geometrical centre (η ¼ 0), relative to item i; Wωβηhi

are the projections on the axes wβ of the coordinate differences between points

η∈E
_

hi and the origin of the local reference frame, corresponding to orientation

ω of item i.
The domain conditions are expressed as follows:

8β∈B,8i∈ I,8h∈Ci,8η∈Ehi

wβηhi ¼
X
γ∈V

Vβγλγηhi, ð2:3Þ

8i∈ I,8h∈Ci, 8η∈Ehi

X
γ∈V

λγηhi ¼ χi: ð2:4Þ

Here wβηhi (η ∈ Ehi) are the vertex coordinates, with respect to the main reference

frame, of component h relative to item i; V is the set of vertices delimitingD and Vβγ

are their coordinates (assumed as non-negative, with no loss of generality) and λγηhi
are non-negative variables. These conditions correspond to the well-known neces-

sary and sufficient conditions for which a point belongs to a convex domain.

The non-intersection conditions are represented by the constraints below:

8β∈B,8i, j∈ I=i < j,8h∈Ci, 8k∈Cj

wβ0hi � wβ0kj � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �� Dβ 1� σþβhkij

� �
,

ð2:5aÞ

8β∈B, 8i, j∈ I=i < j, 8h∈Ci,8k∈Cj

wβ0kj � wβ0hi � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �� Dβ 1� σ�βhkij

� �
,

ð2:5bÞ

8i, j∈ I=i < j,8h∈Ci, 8k∈CjX
β∈B

σþβhkij þ σ�βhkij
� �

� χi þ χj � 1,
ð2:6Þ

where Dβ are the sides (parallel to the main reference frame) of the parallelepiped,

of minimum dimensions, containing D (minimum enclosing parallelepiped); wβ0hi

and wβ0kj are the centre coordinates, with respect to the main reference frame, of

components h and k of items i and j respectively; Lωβhi and Lωβkj are their side

projections on axes wβ, corresponding to orientation ω; σþβhkij and σ�βhkij ∈ {0, 1}.

Inequalities (2.5a) and (2.5b) state that if, for any pair of components h (of i) and
k (of j), a variable σ is equal to one, then the corresponding non-intersection constraint
is made active; otherwise it becomes redundant. The condition σþβhkij ¼ 1 means that

k precedes h, with respect to the axiswβ and vice versa if σ�βhkij ¼ 1.When both i and j
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are picked, the relative inequality (2.6) guarantees that at least one σ is equal to one,

and this means that, at least, one non-intersection constraint holds.
The objective function has the following expression:

max
X
i∈ I

Kiχi, ð2:7Þ

where Ki is either the volume Vi or the massMi of item i. The total volume loaded is

denoted by v, with v ¼
X
i∈ I

Viχi, whilst analogously, m, with m ¼
X
i∈ I

Miχi, refers

to the overall mass.

Remark 2.1 The constants Dβ can be interpreted as the classical big-Ms of the

mathematical programming literature and the inequalities (2.5a) and (2.5b) as

big-M constraints. It is indeed quite easy to rearrange each of them in the more

usual general form
X
l

Klul � K0 þ 1� ςð ÞK, where Kl, K0 are constants, ul are

continuous variables, ς ∈ {0, 1} and K is the corresponding big-M. Each big-M
could be theoretically substituted with any constant, sufficiently big to make the

relative constraint redundant when the corresponding ς is zero. In the whole MIP/

MINLP context, it is, however, well known that there is computational advantage in

making each big-M as small as possible, without excluding any integer-feasible

solutions (e.g. Williams 1993).

A property of interest, dealing with the issue of tightening the big-Ms appearing
in (2.5a) and (2.5b), is briefly looked upon here below. Prior to introducing

Proposition 2.1, we shall define the concept of external component, i.e. a component
with, at least, one side adjacent to the minimum enclosing parallelepiped,
enveloping the corresponding tetris-like item.

Proposition 2.1 Given that the domainD is a parallelepiped, for any pair of external
components h and k, belonging to two different tetris-like items, the (big-M) terms Dβ,

appearing in (2.5a) and (2.5b), cannot be further tightened.

Proof Consider any two items i, j and any relative external components h and

k respectively. We shall write constraints (2.5a) and (2.5b) in the form

8β∈B,8i, j∈ I=i < j, 8h∈Ci, 8k∈Cj

wβ0hi � wβ0kj � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �� Kþ

βhkij 1� σþβhkij
� �

,

8β∈B,8i, j∈ I=i < j, 8h∈Ci, 8k∈Cj

wβ0kj � wβ0hi � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �� K�

βhkij 1� σ�βhkij
� �

,
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where Kþ
βhkij and K�

βhkij are positive constants. If σþβhkij ¼ 1, the non-intersection

constraint between h and k, with respect to the corresponding axis wβ becomes

active, as the multiplier of Kþ
βhkij reduces to zero. If, instead, σþβhkij ¼ 0, the

inequality below must hold for any possible position of i and j in D:

Kþ
βhkij � �wβ0hi þ wβ0kj þ 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �

:

To prove the proposition, it is therefore sufficient to consider the extreme case,

where item j minimum enclosing parallelepiped, is, with respect to the corresponding
side Dβ, at its upper bound and item i minimum enclosing parallelepiped at the lower

one. Denoting, for any rotation ω and ω0 of i and j, respectively, by Lωβi and Lω0βj,

the side projections of their minimum enclosing parallelepipeds on wβ, the following

inequality must hold:

Kþ
βhkij � Dβ � Lω0βj þWω0β0kj þ

1

2
Lω0βkj � Lωβi þWωβ0hi þ 1

2
Lωβhi:

As this is requested for any ω and ω0, the condition is true, in particular, also

when �Lω0βj þWω0β0kj þ 1
2
Lω0βkj � Lωβi þWωβ0hi þ 1

2
Lωβhi ¼ 0, occurring when

both h and k attain the contact condition (with respect the domain sides perpendic-

ular toDβ). The same reasoning occurs, obviously, for σ�βhkij, so that neitherK
þ
βhkij

nor

K�
βhkij

can be smaller than Dβ. □

Remark 2.2 The proof of Proposition 2.1 suggests how to determine, albeit in a

much more complicated way, the smallest big-Ms when the domain D is not just a

parallelepiped but a more general polyhedron. For this purpose, let us introduce the

termsWωβ0hi, representing the minimum value that wβ0hi can attain (inD) when item

i has the orientation ω, andWωβ0hi, representing the maximum value that wβ0hi can

attain (in D) when item i has the orientation ω.

The minimum Kþ
βhkij is hence determined by the expression

Kþ
βhkij

¼ max
ω,ω0 ∈Ω

�Wωβ0hi þWω0β0kj þ
1

2
Lωβhi þ Lω0βkj

� �� �
and analogously for

the corresponding minimum K�
βhkij. The above considerations hold both for

external and non-external components, including, for these, the case when D is a

parallelepiped.

Special case of single parallelepipeds (single-component items)
The special case concerning single-component items is introduced here. The

resulting single parallelepipeds are assumed to be of homogeneous density, so

that the problem is greatly simplified, as six orthogonal rotations, with respect

to the main reference frame, are sufficient to determine their actual orientation.

A further simplification is carried out, restricting the domainD to be a parallelepiped.
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Posing α ∈ {1, 2, 3} ¼ A, for each parallelepiped i, denote by Lαi its

sides, supposing, with no loss of generality, L1i � L2i � L3i (as this assumption

can be of use in extended versions of this model). The coordinates of its centre,

with respect to the main reference frame, are indicated as wβi. The domain D is a

parallelepiped with sides Dβ parallel to the main reference frame axes wβ, respec-

tively. A vertex of D is, moreover, supposed to be coincident with its origin O
andD lies within the first octant. For each item i, the binary variables δαβi ∈ {0, 1}

are introduced, with the meaning δαβi ¼ 1 if Lαi is parallel to the axis wβ and

δαβi ¼ 0 otherwise.

The general objective function (2.7) is kept unchanged, whilst the overall

conditions are rewritten as follows:

Orthogonality constraints:

8α∈A,8i∈ I
X
β∈B

δαβi ¼ χi, ð2:8aÞ

8β∈B,8i∈ I
X
α∈A

δαβi ¼ χi: ð2:8bÞ

Domain constraints:

8β∈B,8i∈ I

0 � wβi � 1

2

X
α∈A

Lαiδαβi � wβi þ 1

2

X
α∈A

Lαiδαβi � Dβχi:
ð2:9Þ

Non-intersection constraints:

8β∈B,8i, j∈ I=i < j

wβi � wβj � 1

2

X
α∈A

Lαiδαβi þ Lαjδαβj
� �� 1� σþβij

� �
Dβ,

ð2:10aÞ

8β∈B, 8i, j∈ I=i < j

wβj � wβi � 1

2

X
α∈A

Lαiδαβi þ Lαjδαβj
� �� 1� σ�βij

� �
Dβ,

ð2:10bÞ

8i, j∈ I=i < jX
β∈B

σþβij þ σ�βij
� �

� χi þ χj � 1,
ð2:11Þ

where σþβij and σ�βij ∈ {0, 1}.
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2.2 Excluding Non-realistic Solutions

The general MIP model discussed in Sect. 2.1 can be subject to criticism, whenever

some practical aspects cannot be neglected. First of all, it does not include constraints

that prevent items to assume a ‘floating’ position within the container. This flaw is

scarcely influential in some contexts, such as that of bag loading in space logistics,

where the internal empty spaces are usually filledwith packagingmaterial (e.g. bubble

wrap or foam). Nonetheless, it can be non-negligible in several different applications.

For the sake of simplicity, referring to the case of single parallelepipeds, a ‘trick’

to overcome this difficulty in practice can easily be adopted. To this purpose, it is

sufficient to carry out a two-step optimization process, the first aimed at finding

what the maximum cargo (in terms of volume or mass) is and the second at

lowering the position of the items towards the container floor, as much as possible.

Let us suppose that the general MIP model is aimed at maximizing the loaded

volume (similar considerations would hold in the case of the mass) and denote by v̂
the (optimal) value, obtained at the first step. The second is executed by adopting

a variation of the general MIP. The constraint
X
i∈ I

Viχi, ¼ v̂ is therefore added,

imposing that the total volumemust be equal to that obtained (as an optimal solution)

in the first step. The objective function min
X
i∈ I

w3i, replaces (2.7) (axes w3 is

assumed as the vertical one). This will lower the position of each item, reducing, as a

consequence, the undesired ‘floating’ position effect (if an optimal solution, in

particular, is found, no item can stay totally suspended any longer).

Remark 2.3 If, in the first step, only a suboptimal (or a nonproven optimal) solution

is found, the inequality
X
i∈ I

Viχi, � v̂ can substitute the corresponding equation.

As an alternative to what is outlined above, a more sophisticated approach could be

followed. This may be done by providing the main general MIP model with further

constraints, to make the packing solutions as realistic as possible, taking into

account both layer and stability conditions (see Sect. 2.3.5).

In addition to the criticality due to the aforementioned ‘floating’ positions, a

non-trivial issue may arise when in the presence of ‘closed’ tetris-like items, as shown

in Fig. 2.3. In some cases, to exclude solutions that are not feasible from the practical

point of view, particular precautions should be taken. This may be done by stating

special constraints not contemplated by the general MIP model of Sect. 2.1.

To explain the concept, let us consider a very simple example (see Fig. 2.3), by

introducing a pair of (identical) items i and j, each composed of four parallelepipeds

(components) forming a ‘squared’ ring (homeomorphic to the classical topological

figure of the torus).

As is immediately gathered, the non-intersection conditions (2.5a), (2.5b) and

(2.6), reported in Sect. 2.1, are not sufficient to avoid situations such as the one

illustrated in Fig. 2.3. They, indeed, prevent the intersection of each component
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of iwith every one of j, and this holds also for the situation represented in the figure,
as a matter of fact.

Nonetheless, in most real-world frameworks, a similar result would not be

acceptable. In the case under consideration, in particular, to overcome this stum-

bling block, it would be sufficient to represent the empty space (internal ‘hole’)

associated to item i as an equivalent (zero mass) additional component (see Fig. 2.4)
and include it in the non-intersection conditions between items i and j.

It is understood that the additional components have to be neglected when not

necessary, as in the case, for instance, of the items represented in Fig. 2.5. The

presence of additional components should indeed be considered, case by case, for

each pair of items, depending on the specific context under analysis. Of course,

much more tricky situations could also occur, even if they are not considered here.

As is easily understood, however, the approach proposed above could simply be

extended, to tackle adequately the specific cases under consideration.

Fig. 2.4 ‘Squared’ ring

(left) with additional

(zero-mass internal)

component (right)

Fig. 2.5 Acceptable

solution

Fig. 2.3 Concatenated

‘squared’ rings
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2.3 Additional Conditions

The MIP approach introduced in Sect. 2.1, differently from other packing method-

ologies (especially the ones based on sequential placement algorithms), is quite

suitable for treating a number of additional conditions. A survey of cases, quite

frequent in practice, is reported hereinafter. Before going on with this part, it is

however useful to introduce, for each pair of items i and j, the variable χij ∈ [0, 1]

(implicitly binary, i.e. χij ∈ {0, 1}), with the following conditions:

8i, j∈ I=i < j χij � χi, ð2:12aÞ
8i, j∈ I=i < j χij � χj, ð2:12bÞ
8i, j∈ I=i < j χij � χi þ χj � 1: ð2:13Þ

2.3.1 Conditions on Item Position and Orientation

Specific loading conditions, such as those concerning the pre-fixed position and

orientation of some items, are straightforward. Indeed this task, from the modelling

point of view adopted, simply consists of fixing the relative variables oβi at the desired
values and setting to one the ϑωi corresponding to the orientation that is targeted.

Weaker conditions on the item position can easily be introduced, if necessary, by

posing lower and upper bounds on its local reference frame origin or even on the

centre of each single component. Some orientations can be inhibited simply by

setting to zero the corresponding ϑωi this allows, for instance, to force a local

reference frame axis to be parallel to a particular direction (i.e. parallel to an axis of

the main reference frame).

Similarly, (pairwise) ‘parallelism’ conditions can be taken into account, by

acting properly on the relevant variables ϑ. Given, for instance, two identical

items i and j, the constraints below state that if both of them are loaded, they

must have the same orientation: 8 ω ∈ Ω, θωi � θωj + χij � 1.

2.3.2 Conditions on Pairwise Relative Distance

In some practical applications, either minimum or maximum distance conditions,

involving pairs of components, belonging to different items, can be posed. From a

general point of view, constraints like the following can thus be required for

components h and k of item i and j, respectively:X
β∈B

wβ0hi � wβ0kj

� �2 � D2
hkijχij, ð2:14Þ
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X
β∈B

�
wβ0hi � wβ0kj

�
2 � D

2

hkijχij þ
X
β∈B

D2
β

 !
1� χij
� �

, ð2:15Þ

where Dhkij and Dhkij are the given lower and upper bounds for their relative

distance, respectively, whilst the other terms have already been defined. Clearly,

inequality (2.14) expresses the minimum distance condition, whilst (2.15) the one

on the maximum, holding if both items are loaded. Inequalities (2.14) and (2.15)

become redundant, otherwise, if at least one of the items is not loaded, i.e. χij ¼ 0.
Constraint (2.14) coincides (when χij ¼ 1) with the classical one that guarantees

the non-intersection between two spheres. This is notoriously non-convex and well

known for being very difficult to deal with, as results from the specialist literature

on circle/sphere packing (e.g. Addis et al. 2008a, b; Castillo et al. 2008; Gensane

2004, Kampas and Pintér 2005; Locatelli and Raber 2002; Stoyan and Yaskov

2008; Stoyan et al. 2003; Sutou and Dai 2002). Constraint (2.15), on the contrary, is

convex and, as such, much easier to treat, even if still nonlinear (it could be

observed that tighter big-Ms could be profitably chosen).

Remark 2.4 To show that the constraint
X
β∈B

wβ0hi � wβ0kj

� �2 � D
2

hkij is convex, it

suffices to observe that, for any β, each quadratic form (wβ0hi � wβ0kj)
2 is obviously

positive semi-definite and the first member of the inequality above is thus a sum

(with positive coefficients) of convex functions (e.g. Minoux and Vajda 1986).

In order to remain within an MIP framework, a piecewise linear approximation

(e.g.Williams 1993) can easily be applied both to (2.14) and (2.15). To this purpose, it

is useful to pose eβhkij ¼ wβ0hi � wβ0kj, with eβhkij ∈ [�Dβ, Dβ]. Adopting an obvi-

ous simplification of the symbols, constraints (2.14) and (2.15) hence assume the formX
β∈B

e2β � D2χ, ð2:16Þ

X
β∈B

e2β � D
2
χ þ

X
β∈B

D2
β

 !
1� χð Þ: ð2:17Þ

For the sake of simplicity, focusing just on constraint (2.16),we shall then discretize

the interval [�Dβ, Dβ] inNS subintervals, i.e. �Dβ,Dβ

� 	 ¼ [
γ�1, γ∈Ds

Dγ�1;Dγ

� 	
, with

Ds ¼ {0, . . ., γ, . . ., Ns}. The terms e2β can then be approximated by piecewise linear

functions ([�Dβ, Dβ] ! [0, D2
β]) simply by posing

8β∈B eβ ¼
X
γ∈DS

λβγDγ, ð2:18Þ

8β∈B e2β �
X
γ∈DS

λβγD
2
γ , ð2:19Þ
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X
γ∈DS

λβγ ¼ 1, ð2:20Þ

where the λβγ are non-negative variables and such that at most two adjacent can be
non-zero (adjacency condition). Indeed, this restriction has to be added in order to

guarantee that for each eβ ∈ [�Dβ, Dβ], the point eβ;
X
γ∈DS

λβγD
2
β

 !
∈R2 actually

lies on a segment of the corresponding piecewise linear function.

Variables subject to the adjacency condition stated above are said to determine a

special ordered set of variables of type 2 (SOS2, e.g. Williams 1993). It is well

known that such a condition (or, more in general, special ordered sets of the various
types) can be tackled either algorithmically (most MIP solvers have dedicated

features) or by introducing additional binary variables and proper constraints in

the model (an highly efficient formulation for the SOS2 case can be found in

Vielma and Nemhauser 2009).

Piecewise linear approximation (and the SOS2 approach) is directly applicable

to separable functions in general, but also more complex classes can be considered

(e.g. Williams 1993). Here it is worth pointing out that when convex constraints

(expressed by separable functions) are concerned, as, for instance, (2.17), it can

easily be shown that the adjacency condition may be dropped, without bringing in

any undesirable solution (e.g. Williams 1993). In the specific case in question,

(2.18), (2.19) and (2.20) are indeed sufficient, per se, to guarantee that each point

eβ;
X
γ∈DS

λβγD
2
γ

0@ 1A belongs to the convex domain (in R2) delimited by the vertices

(Dγ, D
2
γ ), for all γ ∈ DS. This way, the convex constraint (2.17) is always satisfied,

since, for any values assumed by the variables λβγ, it is never underestimated

(similar considerations hold when the minimization of a separable convex objective
function is concerned, e.g. Williams 1993).

In addition to what is discussed above, very simple indirect conditions on the

relative distance between components of two different items can be obtained as

variations of (2.5a) and (2.5b):

8β∈B,8i, j∈ I=i < j,8h∈Ci, 8k∈Cj

wβ0hi � wβ0kj � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �þ Ghkij � Dβ þ Ghkij

� �
1� σþβhkij
� �

,

ð2:21aÞ
8β∈B,8i, j∈ I=i < j,8h∈Ci,8k∈Cj

wβ0kj � wβ0hi � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �þ Ghkij � Dβ þ Ghkij

� �
1� σ�βhkij
� �

:

ð2:21bÞ
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Here Ghkij are given constants. Inequalities (2.21a) and (2.21b) thus guarantee a

minimum gap between components h of i and k of j, respectively, along the axis

corresponding to the active non-intersection condition. Of course, more compli-

cated gap conditions could be stated similarly, but are not reported here.

Remark 2.5 It is, instead, worth mentioning that close-related topics come up in the

context of the electronic design automation (EDA) and very large scale integration

(VLSI), when dealing with the issue of minimizing the total wire length. Depending

on the specific framework to look upon, the wire-length objective function terms

are expressed by linear, quadratic or, more in general, nonlinear functions

(e.g. Kahng and Wang 2005; Kim and Kim 2003; Kleinhans et al. 1991).

2.3.3 Conditions on Domains

Quite often in practice one has to take into account domains that are not convex,

owing to the presence of forbidden zones, e.g. due to clearance requirements or

actual ‘holes’. This makes the domain non-convex, as a matter of fact.

If the forbidden zones and ‘holes’ are tetris-like-shaped (or properly approximated

as such), they can easily be treated by themodel reported in Sect. 2.1. Theymay indeed

simply be considered as zero-mass items with given position and orientation. Analo-

gous considerations hold also if the domain external shape is not convex, since it can

easily be approximated by introducing forbidden zones, as appropriate, see Fig. 2.6.

A similar approach can be adopted, in the presence of structural elements that

can be taken account of in terms of non-zero-mass items with fixed position and

orientation: see Fig. 2.7.

Further conditions, quite useful in practice, can be introduced to deal with separa-
tion planes, partitioning the whole domain in sectors. They can simply be represented

as ‘flat’ parallelepipeds: their bases are assumed to be parallel to one of the planes

of the main reference frame and cover the whole domain sections they cut; their

position (distance with respect to the parallel plane of the main reference frame) is

allowed to vary within a given range. An alternative formulation can be applied by

introducing, for each item, a set of binary variables, one per sector, that are equal to

one if the item belongs to the corresponding sector and zero otherwise (Fasano 2003).

Fig. 2.6 Non-convex domain (left) approximated with forbidden zones (right, 2D representation)
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2.3.4 Conditions on the Total Mass
Loaded and Its Distribution

In several real-world applications, such as aerospace engineering and transportation

systems in general, quite demanding requirements on the total mass or its distri-

bution inside the domain have to be taken into account. Restrictions on the overall

load are simply posed as follows:

M �
X
i∈ I

Miχi � M, ð2:22Þ

where M and M are the given lower and upper mass bounds, respectively. Some

insights concerning balancing conditions are provided next.

2.3.4.1 Static Balancing Restriction

The problem of loading a set of single parallelepipeds inside a convex domain, each

with a given mass, so that the overall centre of mass lies within a given convex

subdomain (inside the container), has been previously discussed (Fasano 2004,

2008). This restriction is denoted in the following by static balancing.
To generalize this issue to the case of tetris-like items, we shall firstly introduce

for each one of them the terms W�
ωβi. These represent the projections, on the axes

wβ, of the coordinate differences between item i centre of mass and the origin of the

local reference frame, corresponding to orientations ω. With w�
βi we shall denote,

for each item i, its centre of mass coordinates, with respect to the main reference

frame. Conditions (2.2), (2.3) and (2.4) are then properly adapted to take into

account also this point (so that, in particular, w�
βi ¼ 0 if χi ¼ 0). Let us indicate

with D* the convex subdomain in which the overall centre of mass must stay, in

compliance with the static balancing restriction. Denoting with V* the set of

Fig. 2.7 Domain with structural elements (left) and items packed around (right)
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vertices delimiting D* and with V�
βγ their coordinates, with respect to the main

reference frame, the proposition stated below holds.

Proposition 2.2 Static balancing necessary and sufficient conditions are as
follows:

8β∈B
X
i∈ I

Miw
�
βi ¼

X
γ∈V�

V�
βγψ

�
γ , ð2:23Þ

X
γ∈V�

ψ�
γ ¼ m, ð2:24Þ

where m ¼
X
i∈ I

Miχi and 8 γ ∈ V* ψ�
γ ¼ eψ �

γm, with eψ �
γ � 0.

Proof To prove this proposition, it can simply be observed that the following

conditions are necessary and sufficient for the overall centre of mass staying inside

the given (sub)domain (supposing m > 0): 8 β ∈ B
X
i∈ I

Miw
�
βi

m
¼
X
γ∈V�

V�
βγeψ �

γ , withX
γ∈V�

eψ �
γ ¼ 1 and eψ �

γ � 0. Indeed they state that point
X
i∈ I

Miw
�
βi

m
, i.e. the overall

centre of mass, lies inside the convex (sub)domain D* of vertices V�
γ ∈ V*.

The above conditions are obviously equivalent to (2.23) and (2.24), by using

ψ�
γ ¼ meψ �

γ . (If m ¼ 0, (2.23) and (2.24) are trivially satisfied, as, by (2.2), for

each non-picked item i, the variables w�
βi become zero). □

Remark 2.6 It is important to point out that the correlations 8 γ ∈ V* ψ�
γ ¼ eψ �

γm,eψ �
γ � 0 can simply be substituted with 8 γ ∈ V* ψ�

γ � 0 (as the variables eψ �
γ only

play an ‘ancillary’ role, having no ‘physical’ meaning in the model). This way,

conditions (2.23) and (2.24) are linear (as the nonlinear ones ψ�
γ ¼ meψ �

γ are omitted

tout court). Moreover, the above balancing conditions are simplified when the centre

of mass (sub)domain is a parallelepiped, i.e. defined, for each axis wβ, by the

intervals C�
β;C

�
β

h i
: In such a case, they have the simpler form 8 β

C�
βm �

X
i∈ I

Miw
�
βi � C

�
βm. It is gathered that (2.23) and (2.24) do not take account

of the mass of the container. An appropriate modification of them can easily be

attained, in order to include it and its contribution to the overall centre of mass.

Remark 2.7 An item consisting of a single nonhomogeneous parallelepiped can

simply be considered as composed of two elements: one parallelepiped with zero

mass, geometrically identical to the item itself and its centre of mass. The composed

item can hence be treated as a (degenerate) tetris-like item, whose components are

the parallelepiped with zero mass and this point.

An interesting issue arises when looking upon the presence of a filling material

of non-negligible density. This situation can occur, for instance, in the space
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engineering context, when quite dense protective foam has to fill every gap between

the loaded items. To formulate the related model, it is sufficient to consider the

whole domain D as if it were entirely filled with the filling material and replace all

the mass associated to the volumes occupied by each item, with their actual one.

Recalling the general definition of centre of mass, its coordinates w�
β are expressed

by the following equations:

8β∈B w�
β ¼

ð
D

uβr uð Þduβ

m
: ð2:25Þ

Here m represents the total mass contained in D (referring both to the items loaded

and the filling material), whilst r(u) its relative density function (that in the specific
case under consideration is a constant). The following equations hold:

8β∈B mw�
β ¼

ð
D
^

uβrduβ þ
X
i∈ I

Miw
�
βi ¼ M

^
W
^ �

β þ
X
i∈ I

Mi �M
^

i

� �
w�
βi: ð2:26Þ

Here D
^

is the subdomain of D corresponding to the volume not occupied by the

items (and thus occupied by the filling material); M
^

i denotes the mass each item

iwould assume if its density were the same of the filling material;M
^
andW

^ �
indicate

the total mass of the filling material and its relative centre of mass, respectively, if it

filled the whole domainD (i.e. with no items inside). Thus, the following conditions

extend the static balancing conditions (2.23) and (2.24):

8β∈B M
^
W
^ �

β þ
X
i∈ I

Mi �M
^

i

� �
w�
βi ¼

X
γ∈V�

V�
βγψ

�
γ , ð2:27Þ

X
γ∈V�

ψ�
γ ¼ M

^ �
X
i∈ I

M
^

i �Mi

� �
χi, ð2:28Þ

8γ∈V�, ψ�
γ � 0:

2.3.4.2 Dynamic Balancing Restrictions

Quite demanding requirements, involving inertia properties of the whole system,

may be posed (e.g. Egeblad 2009; Limbourg et al. 2012). In space engineering, for

instance, quite frequently, specific conditions on the spacecraft inertia matrix are set

to address fuel consumption or attitude control concerns. Assuming the items as

point masses, we shall introduce the following constraints:

8β, β0
∈B=β < β

0



X
i∈ I

Miw
�
βiw

�
β
0
i



 � Iββ0 mð Þ, ð2:29Þ
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8β, β0
, β

00
∈B=β < β

0
, β, β

0 6¼ β
00X

i∈ I

Mi w�2
βi þ w�2

β
0
i

� �
� Iβ00

�
m
�
,

ð2:30aÞ

8β, β0
, β

00
∈B=β < β

0
, β, β

0 6¼ β
00X

i∈ I

Mi w�2
βi þ w�2

β
0
i

� �
� Iβ00

�
m
�
,

ð2:30bÞ

where Iββ0 mð Þ, Iβ00 mð Þ and Iβ00 mð Þ are (non-negative) functions of the total loaded

mass m.

Remark 2.8 It is immediately gathered that (2.29), (2.30a) and (2.30b) are

nonlinear constraints, giving rise to an MINLP model. In these constraints, the

inertia characteristics of each single item have been neglected, considering, for

the sake of simplicity, just simple point masses, but more precise formulations

could be looked into.

It is of particular interestwhen I1 mð Þ � I1 mð Þ � I2 mð Þ � I2 mð Þ(andIββ0 mð Þ � 0).

With an appropriate setting of the static balancing conditions, indeed, this case

makes the system mass distribution assume, at a certain grade of approximation,

the dynamic properties of a homogeneous cylinder.

2.3.5 Further Loading Restrictions

A significant number of further restrictions could be added, depending on the

specific framework. Conditions concerning the relative position between items,

such as, for instance, ‘item imust stay over or under j’, would also be treated easily,
simply by acting properly on the relevant variables σ+/�.

Much more demanding scenarios are, instead, tackled in the specialist packing

literature, looking upon further additional loading conditions such as stability, load
bearing and multi-dropping (e.g. Bischoff 2006; Bortfeldt and Gehring 2001;

Christensen and Rousøe 2009; Eley 2002; Junqueira et al. 2011; Junqueira

et al. 2012; Lai et al. 1998; Morabito and Arenales 1994; Moura and Oliveira

2005; Pisinger 2002; Ratcliff and Bischoff 1998; Silva et al. 2003).

These can be defined as follows (Junqueira et al. 2013): ‘Cargo stability refers

to the support of the bottom faces of boxes, in the case of vertical stability (i.e., the
boxes must have their bottom faces supported by other box top faces or the container

floor), and the support of the lateral faces of boxes, in the case of horizontal stability.
Load bearing strength refers to the maximum number of boxes that can be stacked

one above each other, or more generally, to the maximum pressure that can be applied

over the top face of a box. Multi-dropping refers to cases where boxes that are

delivered to the same customer (destination) must be placed close to each other inside
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the container and the loading pattern must take into account the delivery route

of the vehicle and the sequence in which the boxes are unloaded’.

Dealing with such additional conditions, an interesting approach has been

suggested (Junqueira et al. 2013). It develops a ‘grid-based position paradigm’

(i.e. space-indexed formulation, e.g. Allen et al. 2012), as opposed to the ‘position

free’ one, i.e. the MIP model of Sect. 2.1 (or equivalent versions), that instead

allows for continuous item positions.

Extensions of the single parallelepiped MIP model (Sect. 2.1), aimed at tackling

a number of additional conditions, are taken into account by Pesch (working paper).

Those, for instance, denoted by layer constraints consider the presence of incom-

patibility relations of the type: item i cannot be positioned ‘on the top’ of item j.
As pointed out in this work, they can be represented by a directed graph G, where
arc(i, j) ∈ G if and only if item i cannot be placed on item j. Moreover, if an item

is not placed on the floor, it has to be supported by at least another item.

Whilst such additional conditions can be expressed by an MINLP formulation

(Pesch, working paper), an alternative MIP model is briefly discussed here, also

referring, for the sake of simplicity, to the case of single parallelepipeds.

To this purpose, we shall introduce, firstly, the binary variables χ
i
and χ

_
i, with

the meaning:

χ
i
¼ 1 if item i lies on the container basis; χ

i
¼ 0 either if it is not loaded or it is

supported by (at least) another item.

χ
_
i ¼ 1 if item i is supported by (at least) another item; χ

_
i ¼ 0 either if it is not

loaded or it lies on the container basis.

These have the task of controlling the status of possible contact, for each item i,
with respect to the lower basis of the container (floor). They are linked, in a

mutually exclusive mode, to the corresponding variables χi as follows:

8i∈ I χ
i
þ χ

_
i ¼ χi,

This way, if item i is picked, then one and only one of the two related statuses is

admissible. Thus, assuming that the axis w3 of the main reference frame is the

‘vertical’ one, the conditions below hold:

8i∈ I w3i � 1

2

X
α∈A

Lαiδα3i � 1

2
L3i 1� χ

i

� �
,

8i∈ I w3i � 1

2

X
α∈A

Lαiδα3i þ D3 � L1ið Þ 1� χ
i

� �
:

These constraints force item i to lie on the container base, when the

corresponding condition is active, i.e. χ
i
¼ 1, and become redundant otherwise,

i.e. when χ
i
¼ 0.
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In addition to this, the case corresponding to χ
_
i ¼ 1, i.e. when item i is picked

but it is supported by (at least) another item, has to be properly examined. Before

going ahead with this point, however, we shall introduce the binary variables σ
_þ
3ij

and σ
_�
3ij, with the meaning:

σ
_þ
3ij ¼ 1 if item i is placed on the top of j and zero otherwise.

σ
_�
3ij ¼ 1 if item j is placed on the top of i and zero otherwise.

The inequalities below are thus added to (2.10a) and (2.10b), respectively:

8i, j∈ I=i < j w3i � w3j � 1

2

X
α∈A

Lαiδα3i þ Lαjδα3j
� �� 1� σ

_þ
3ij

� �
D3,

8i, j∈ I=i < j w3i � w3j � 1

2

X
α∈A

Lαiδα3i þ Lαjδα3j
� �þ 1� σ

_þ
3ij

� �
D3,

8i, j∈ I=i < j w3j � w3i � 1

2

X
α∈A

Lαiδα3i þ Lαjδα3j
� �� 1� σ

_�
3ij

� �
D3,

8i, j∈ I=i < j w3j � w3i � 1

2

X
α∈A

Lαiδα3i þ Lαjδα3j
� �þ 1� σ

_�
3ij

� �
D3:

They imply, as is immediately seen, that w3i ¼ w3j þ 1

2

X
α∈A

Lαiδα3i þ Lαjδα3j
� �

(i.e. i lies on the top of j), when σ
_þ
3ij ¼ 1, and w3j ¼ w3i þ 1

2

X
α∈A

Lαiδα3i þ Lαjδα3j
� �

(i.e. j lies on the top of i), when σ
_�
3ij ¼ 1. The first pair of inequalities becomes

redundant otherwise when σ
_þ
3ij ¼ 0 and, similarly for the second one, when σ

_�
3ij ¼ 0.

Inequalities (2.11) are then extended as follows:

8i, j∈ I=i < j
X
β∈B

σþβij þ σ�βij
� �

þ σ
_þ
3ij þ σ

_�
3ij þ � χi þ χj � 1,

where the terms σ
_þ
3ij are set, a priori, to zero if arc(i, j) ∈ G and, analogously, for

σ
_�
3ij, if arc( j, i) ∈ G. The conditions stated below imply that if χ

_
i ¼ 1, item

i has to be positioned on the top of (at least) another one:

8i∈ I χ
_
i �

X
j∈ I=
i < j

σ
_þ
3ij þ

X
i
0
∈ I=

i
0
< i

σ
_�
3i

0
i
:
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Further conditions can be taken into account to include the stability requirements

(e.g. Pesch, working paper). This way, it is guaranteed that when item i is on the

top of item j, the projection of its centre of mass, on the ‘horizontal’ plane,

i.e. (O, w1, w2), lies inside the rectangle determined by the projection of item j.
The following conditions (or more refined ones, with tighter big-Ms) can thus be

added:

β∈ 1; 2f g,8i, j∈ I=i < j wβi � wβj þ 1

2

X
α∈A

Lαjδαβj þ 1� σ
_þ
3ij

� �
Dβ,

β∈ 1; 2f g,8i, j∈ I=i < j wβi � wβj � 1

2

X
α∈A

Lαjδαβj � 1� σ
_þ
3ij

� �
Dβ:

The layer and stability additional conditions can efficiently be tackled algorith-

mically, by means of a dedicated heuristic (Pesch, working paper). The (non-trivial)

computational aspects, related to the extended MIP model discussed above

(or possible alternative formulations), could, nevertheless, represent an interesting

line for further in-depth investigation.
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