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Preface

This book originates from a long-lasting research effort aimed at tackling difficult

non-standard packing issues arising in space engineering and logistics. In this

framework the necessity of exploiting the spacecraft load capacity, as much as

possible, represents a paramount challenge. This holds especially in the perspective

of the manned and unmanned interplanetary missions that are going to be carried

out in the near future. The experience gained in this quite peculiar context is able to

suggest insights on possible extensions to several engineering and industrial sec-

tors. They range from transportation to manufacturing, including sophisticated

technological areas, such as Electronic Design Automation (EDA) and Very

Large Scale Integration (VLSI).

This work is not intended to provide the readers, independently from their

technical background, with a comprehensive survey on packing applications and

the relevant cutting-edge methodologies. Quite a specific point of view is presented

instead, reflecting the author’s experience and acquired know-how. The overall

Global Optimization (GO) approach, based on Mixed Integer Linear/Nonlinear
Programming (MIP, MILP/MINLP) and heuristic processes, as carried out in the

above mentioned context, is argued. Both the modelling, algorithmic and experi-

mental aspects are considered, always keeping in mind possible links and synergic

interactions with alternative, as well as complimentary, perspectives.

This study encloses both the author’s previous consolidated work and a signif-

icant part of novel achievements, in terms of experimental outcomes, as well as

model and algorithm enhancements. Drawing up this work, a systematic effort has

been devoted to the harmonization and integration of both previous and current

innovative material. A number of mathematical concepts are understood, as well as

more specific notions (usually indicated in italics) that concern the optimization and
mathematical programming context. For further in-depth clarification the reader

may refer to the websites: http://mathworld.wolfram.com and http://glossary.com

puting.society.informs.org.

v

http://mathworld.wolfram.com/
http://glossary.computing.society.informs.org/
http://glossary.computing.society.informs.org/


Thisworkmost certainly focusesmore on practical aspects than on theoretical rigour,

referring the reader to the topical specialist literature, when necessary. It is, however,

addressed both to researchers and practitioners involved in optimized packing, with

strong motivation by challenging and non-conventional real-world problems.

Turin, Italy Giorgio Fasano

January 15, 2014
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Notations

• All sets, including geometrical shapes/domains (intended as subsets of the

ordinary two- to three-dimensional Euclidean space), are denoted by capital

letters.

• All parameters (data) are denoted by Latin capital letters.

• All variables are designated with lower-case letters.

Latin letters refer to continuous variables only.

Binary (0–1) variables are indicated by Greek letters.

• The superscript ‘*’ always refers to terms concerning balancing conditions.

• Lower bounds of variables are underlined; upper bounds are ‘overlined’.

• Vectors are represented by bold letters.

Main Sets

B ¼ {1, 2, 3} Set of the axes of the main orthogonal reference frame

Ci, i ∈ I Set of the components associated to tetris-like item i

D Convex domain (polygon/polyhedron)

Ehi, i ∈ I, h ∈ Ci Set of the vertices of each component h of tetris-like item i

E
_

hi, i∈ I, h∈Ci
Ehi extended by including the geometrical center of

component h

I Set of tetris-like items

V Set of the vertices delimiting D

Ω Set of all possible orthogonal rotations for each tetris-like
item

xi



Main Parameters

Lωβhi, ω ∈ Ω, β ∈ B,
i ∈ I, h ∈ Ci

Side, parallel to the main reference frame axis wβ, of

component h of tetris-like item i, corresponding to

orientation ω

Vβγ, β ∈ B, γ ∈ V D vertex coordinates with respect to the main

reference frame

Wωβηhi, ω∈Ω, β∈B,

i∈ I, h∈Ci, η∈ E
_

hi

Projections, on the main reference frame axes wβ, of

the coordinate differences between points η∈E
_

hi and

the origin of the local reference frame, corresponding

to orientation ω of tetris-like item i

Main Variables

lβhi, β ∈ B, i ∈ I, h ∈ Ci Projections, on the main reference frame

axes wβ, of the (rectangular) parallelepiped

enclosing component h of tetris-like item i

wβηhi, β∈B, η∈ E
_

hi,

i∈ I, h∈Ci

Coordinates, with respect to the main

reference frame, of component h vertices, or

its geometrical center (η ¼ 0), relative to

tetris-like item i

oβi, β ∈ B, i ∈ I Coordinates, with respect to the main

reference frame, of tetris-like item i local
reference frame origin

ϑωi ∈ {0, 1}, ω ∈ Ω, i ∈ I ϑωi ¼ 1 if tetris-like item i is loaded and has

the (orthogonal) orientation ω ∈ Ω;

ϑωi ¼ 0 otherwise

σþ=�
βhkij ∈ {0, 1}, β ∈ B, i ∈ I,

h ∈ Ci, j ∈ I, k ∈ Cj

σþβhkij ¼ 1 if the projections of component

h and k of tetris-like items i and j respectively
do not overlap on axis wβ, and k precedes
h along it; σ�βhkij ¼ 1 if the projections of

component h and k of tetris-like items i and
j respectively do not overlap on axis wβ, and

h precedes k along it

χ
i ∈ {0, 1}, i ∈ I χ

i ¼ 1 if tetris-like item i is loaded; χi ¼ 0

otherwise

xii Notations
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Chapter 1

Non-standard Packing Problems:

A Modelling-Based Approach

The general subject of packing objects, exploiting the available volume, as much as

possible, has represented, for centuries, or even longer, an extremely tricky task.

This issue seems trivial, until one encounters it. The question arose, for instance,

when dealing with cannon ball stowage in ancient vessels. It is not surprising at all

that it gained the role of the packing issue par excellence, when Hilbert announced

his eighteenth problem (to date resolved by computer-assisted proof, e.g. Gray

2000). It concerned the accommodation of equal spheres, attaining the maximum

density.

Paramount effort has been carried out, and is ongoing, to dominate extremely

challenging overall packing problems, from the theoretical point of view.

Well-known directions of speculative investigations include infinite dimensional

space issues. For instance, we could consider the packing of Platonic solids in the

ordinary Euclidean space and of spheres in higher dimensions. Further examples

concern finite space questions, such as those of placing squares/circles or cubes/

spheres into regular figures (e.g. http://mathworld.wolfram.com).

An unquestionably much more practical slant is instead underlined in the

operations research and computational geometry frameworks. In such a context,

the role of the numerical approach to look into high-quality (albeit usually

nonproven optimal) solutions to even more complex, real-world packing problems

is emphasized. This is most definitely the point of view of this work.

There is vast specialist literature on multidimensional packing from a numerical

optimization standpoint. It is, therefore, not intended to be surveyed here. The

reader may refer to some comprehensive overviews (e.g. Cagan et al. 2002;

Dyckhoff et al. 1997; Ibaraki et al. 2008). As is known, a significant part of the

topical bibliography focuses on the orthogonal placement of rectangles/parallele-

pipeds into rectangles/parallelepipeds (e.g. Faroe et al. 2003; Fekete and Schepers

2004; Fekete et al. 2007; Martello et al. 2000; Pisinger 2002), even if several works

also consider different typologies of packing issues (e.g. Addis et al. 2008a; Birgin

et al. 2006; Egeblad et al. 2007; Gomes and Olivera 2002; Scheithauer et al. 2005;

Teng et al. 2001).

G. Fasano, Solving Non-standard Packing Problems by Global
Optimization and Heuristics, SpringerBriefs in Optimization,

DOI 10.1007/978-3-319-05005-8_1, © Giorgio Fasano 2014
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Several versions of two-/three-dimensional packing problems can be differently

classified, depending on the specific optimization criterion adopted. When, for

instance, the number of containers is fixed and the total load has to be maximized

(e.g. in terms of its volume/value), the relevant model is referred to as a knapsack
problem (e.g. Caprara and Monaci 2004; Egeblad and Pisinger 2006, 2009; Fekete

and Schepers 1997). It is reduced to the single container one, when only one

container is available (e.g. Bortfeldt et al. 2012; Kang et al. 2010; Parreño

et al. 2008).

The issue of loading a set of given objects, whilst minimizing the number of

containers to utilize (or, more in general, their total volume/cost), is referred to as

the bin packing problem (e.g. Lodi et al. 2010; Martello et al. 2000; Pisinger and

Sigurd 2007).

Further questions concern the ‘reduction’ of the container. This is the case, in

particular, of the strip packing problem (e.g. Iori et al. 2003; Kenmochi et al. 2009;

Zhang et al. 2006), where a single dimension of the (rectangle/parallelepiped-

shaped) domain has to be minimized. Another class of interesting issues consists

of the (rectangle/parallelepiped-shaped) domain (area/volume) minimization prob-

lem (e.g. Li et al. 2002; Pan and Liu 2006). This is of importance in several

applications, ranging from manufacturing and logistics to electronic design

(e.g. floor-planning in very large scale integration, VLSI). Still related to the

container volume minimization, it is worth mentioning the issue of the sphere
packing in optimized spheres (e.g. Kampas and Pintér forthcoming).

Remarkable effort has been dedicated to tackling several kinds of packing

problems algorithmically, often by adopting general meta-heuristics or dedicated
heuristics (e.g. Allen et al. 2011; Bennell et al. 2013; Bennel et al. 2013; Bennell

and Oliveira 2009; Bortfeldt and Gehring 2001; Bortfeldt et al. 2003; Burke

et al. 2006, 2010; Coffman et al. 1997; Dowsland et al. 2006; Gehring and Bortfeldt

2002; Gomes and Olivera 2002; Gonçalves and Resende 2012; Hopper and Turton

2001, 2002; López-Camacho et al. 2013; Mack et al. 2004; Oliveira et al. 2000;

Pisinger 2002; Ramakrishnan et al. 2013; Terashima-Marı́n et al. 2010; Wang

et al. 2008; Yeung and Tang 2005). Nonetheless, modelling-based approaches

have also been investigated (e.g. Allen et al. 2012; Chen et al. 1995; Chernov

et al. 2010; Fasano 1989; Fischetti and Luzzi 2009; Hadjiconstantinou and

Christofides 1995; Kallrath 2009; Padberg 1999; Pisinger and Sigurd 2005).

These works refer to the overall context of Mathematical Programming, including
mixed-integer (linear) programming (MILP, MIP) and mixed-integer nonlinear
programming (MINLP).

The underlying theme examined here originates from a long-lasting research

work devoted to tackling complex non-standard packing issues arising in space

applications. These usually concern both design and logistics aspects. In this sector,

the necessity of exploiting the spacecraft load capacity, as much as possible, pre-

sents the engineers with a paramount challenge. This is foreseen especially in the

perspective of the extremely demanding missions that are going to be carried out in

the near future.

2 1 Non-standard Packing Problems: A Modelling-Based Approach



Generally, the volume or the mass of the loaded cargo has to be maximized.

Other optimization criteria, however, can also be stated, depending on the specific

mission scenarios to deal with. In any case, very tough accommodation rules have

to be taken into account, in compliance with demanding requirements relative to

safety, ergonomic and operational concerns.

Tight balancing conditions, deriving from control specifications, are usually

posed at an overall system level (i.e. the whole spacecraft). However, the require-

ment of considering them also when loading each single internal container (such as,

for instance, racks or bags) is quite often needed. The space-system internal

geometries are normally very intricate. As a consequence, in order to exploit each

available volume, as much as possible, the shape of the adopted containers them-

selves can become quite peculiar. This occurs, for instance, when dealing with the

cargo accommodation of the European Automated Transfer Vehicle (ATV, ESA,

cf. http://www.esa.int). In such a case, some specific bags have curved surfaces to

fit with the shape of the racks they have to be accommodated into that is, itself,

determined by the cylindrical form of the carrier.

A specific class of ‘hard’ non-standard packing problems with additional con-

ditions arises. All this is determined by balancing conditions, the shapes of domains

and objects, the possible presence of internal separation planes, or structural
elements, not to mention complicated accommodation rules. This situation can

arise in space engineering and logistics. Despite the specificity of the context,

however, it is, in more or less similar versions, susceptible to several real-world

applications. This happens also in very different frameworks.

Balancing conditions and complex geometries, for instance, are increasingly

important subjects in the high-speed transportation system sector. Complex engi-

neering structures (e.g. oil rigs), even if related to quite different operational

scenarios, pose similar problems. Non-standard packing issues have to be consid-

ered daily in manufacturing, even if not necessarily in the presence of balancing

conditions. This occurs, often, just in a two-dimensional context (e.g. Electronic

Design Automation, EDA and VLSI). This work discusses in depth some real-

world packing scenarios, from an application perspective. It is aimed at introducing

an efficient methodology to solve non-trivial problems in practice.

In several applicative contexts, items can often be assumed to be (rectangular)

parallelepipeds, without significant loss of information. Nevertheless, generally,

such an approximation does not hold, especially when dealing with large and

complex items. Similar considerations can, moreover, be made, considering the

container shape, since frequently it is not just a (rectangular) parallelepiped. The

presence of additional geometric and operational conditions presents further

challenges.

Remarkable works, concerning non-standard packing problems, are available.

In the author’s opinion, however, this topic definitely deserves much more

commitment, also in consideration of the increasing demand generated by the

real-world context. This is the essential motivation inspiring the drawing up of

the present work.

1 Non-standard Packing Problems: A Modelling-Based Approach 3
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When dealing with non-standard packing problems, with overall conditions,

such as balancing, the simplistic approach (adopted by several packing algorithms)

of placing items one at a time is scarcely efficient. A strongly nonlocal viewpoint is

therefore highly desirable, also in consideration of the outstanding results recently

achieved in the framework of global optimization (GO, consult, e.g. Addis

et al. 2008b; Castillo et al. 2008; Floudas et al. 2005; Floudas and Pardalos 1990,

2001; Floudas et al. 1999; Horst and Pardalos 1995, 1997; Horst and Tuy 1996;

Kallrath 1999, 2008; Liberti and Maculan 2005; Locatelli and Raber 2002; Pardalos

and Resende 2002; Pardalos and Romeijn 2002; Pintér 1996, 2006, 2009;

Rebennack et al. 2009).

A modelling-based philosophy, as opposed to a pure algorithmic one, has been

looked into, characterizing the whole approach followed hereinafter. GO represents

therefore a first highlight. The packing problems in general, moreover, even when

posed in quite an elementary version (e.g. the placement of simple boxes in a

container box, without any additional conditions) are well known for being

NP-hard. As a consequence, no deterministic methodology to successfully solve

the problem to optimality is expected. An overall heuristic point of view is therefore

a second key characteristic of this volume. In particular, a joint use of GO, based on

MIP/MINLP formulations, and heuristic procedures is emphasized.

The concept of tetris-like item is introduced, representing a fundamental refer-

ence paradigm for the generic approach proposed here. It generalizes the original

idea of tetris item, deriving, in turn, from that of polyomino (see Golomb 1994).

Either three- or two-dimensional tetris-like items are considered, and, differently

from the original concept, they are not supposed to have integer side lengths.

This notion is, by itself, quite interesting, as it is adequate to represent a wide

range of real-world objects, in a streamlined but sufficiently realistic way. In several

applications, indeed, one has to deal with quite complex objects, characterized by

intricate shapes. Considering items, as a whole, just in terms of their smallest

enclosing boxes would clearly result, in most cases, extremely restrictive. In any

accommodation practical problem, where quite an efficient exploitation of the

overall volume available is a mandatory task, this would be of no use at all.

Substituting complex objects with tetris-like items, i.e. clusters of mutually

perpendicular cuboids (rectangular parallelepipeds), could make their representa-

tion much more realistic, even if simplified and thus still approximate.

The original object is therefore partitioned into parts, enclosing each in a cuboid.

Obviously, the bigger (i.e. refined) the partition is, the more realistic the represen-

tation results. Figure 1.1 shows a (not too sophisticated) tetris-like approximation of

a real-world object. Similarly to the case concerning the items to load, structural

elements, equipment/devices and clearance/accessibility regions, inside the con-

tainer, may well benefit from this representation, as illustrated by Fig. 1.2, referring

to the internal part of a space module. Reinforcements of the cylindrical structure

are present, together with some electronic devices that are supposed to be protected

by forbidden zones.

In addition to what mentioned above, the relevant modelling features of the

tetris-like representation are quite suitable for MIP formulations that provide a
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linear-based overall structure, obviously beneficial to a GO approach. Moreover, its

MIP formulation is able to cover a non-negligible number of additional conditions.

This volume both reviews the author’s previous works (e.g. Fasano 2008, 2013)

and introduces new research outcomes, establishing a basis for further investigation

and development.

The second chapter discusses, at quite a detailed level, a general mathematical

model for the orthogonal packing of three-dimensional tetris-like items within a

convex domain (polyhedron). Some critical aspects are pointed out, suggesting how

it is quite easy to overcome them. A number of additional conditions are looked

into, including the prefixed position/orientation of subsets of items, the presence of

‘holes’ or forbidden zones as well as of separation planes and structural elements,

relative distance bounds and static/dynamic balancing requirements.

The corresponding feasibility subproblem is discussed in the third chapter.

It consists of the special case taking place when no optimization criterion

(e.g. the total volume maximization) is selected a priori, and all items have to

be loaded. This situation can be profitably exploited by introducing an ad hoc

objective function, aimed at facilitating the resolving process in finding integer-
feasible solutions. Both linear and nonlinear readjustments of the general MIP

model are considered. The third chapter also outlines the issue of tightening the

Fig. 1.1 Representation of complex objects with tetris-like items

Fig. 1.2 Internal devices and forbidden zones approximated by tetris-like items
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general MIP model, by introducing implications and valid inequalities, suitable,

in particular, for a dedicated branch-and-cut approach.
As the general MIP model is extremely tough to solve, even when not too

large-scale instances are involved, an MIP-based heuristic point of view is

described in the fourth chapter. There, the basic concept of abstract configuration
is enucleated. It essentially consists of a set of item-item relative positions, feasible

in any unbounded domain. The feasibility sub-models are profitably adopted to

generate ‘good’ abstract configurations. The heuristic approaches delineated in this
chapter are founded on recursive generations of these.

The fifth chapter is devoted to the experimental results, obtained to date, relevant

to a real-world application framework. The sixth explores both extensions of the

general MIP model and nonlinear (MINLP) formulations, in order to tackle two

further non-standard packing issues. The first concerns the creation of possible

virtual items, to exploit the empty spaces of a container, already partially loaded

with tetris-like items. This aspect is of importance in several applications. The

second issue deals with the non-orthogonal placement of polygons with (continu-

ous) rotations in a convex domain (polygon). Also in this case, a GO-based heuristic

approach is proposed. It is aimed at finding a ‘good’ approximate solution suscep-

tible to further local refinement by more sophisticated formulations, such as the one

based on the Stoyan’s Φ-functions (e.g. Stoyan et al. 2004). The tetris-like item

model is advantageously exploited to provide the MINLP solution process with a

‘good’ starting solution.

The last chapter concludes the volume providing some insights on prospective

enhancements, in terms of further experimental analysis needed, but also from

the modelling and development point of view, including extended applications

(one in particular dealing with scheduling problems).
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Chapter 2

Tetris-like Items

The packing of tetris-like items, i.e. clusters of mutually orthogonal rectangular

parallelepipeds, inside a given domain, is discussed here; see Fig. 2.1. Orthogonal

rotations are admitted and additional conditions can be present. Before introducing

the general problem and its mathematical formulation, the following definition is

provided as a fundamental concept.

Definition 2.1 A tetris-like item is a set of rectangular parallelepipeds positioned

orthogonally, with respect to an (orthogonal) reference frame. This is called ‘local’
and each parallelepiped ‘component’.

In the following, ‘tetris-like item’ will usually be simply denoted as ‘item’, if

no ambiguity occurs. Similarly, ‘rectangular parallelepipeds’ are indicated as

‘parallelepipeds’.

The term ‘domain’ refers to a subset of the three-dimensional Euclidean space R3.

Convex domains are mainly considered, providing the proper specifications

explicitly, when otherwise. The general problem is examined first (Sect. 2.1),

discussing some possible criticalities (Sect. 2.2), before investigating the issue of

modelling a set of additional conditions (Sect. 2.3).

2.1 General Problem Statement and Mathematical

Model Formulation

This section looks upon a first basic statement of the tetris-like packing issue, as an

extension of the classical single container loading problem. The issue of placing

small boxes into a big one has consolidated mathematical models. The formulation

usually referred to as space-indexed is based on the container discretization

(e.g. Beasley 1985; Hadjiconstantinou and Christofides 1995). The relative MIP

model provides very strong bounds (see Allen et al. 2012), as it also occurs for

similar discretized formulations for scheduling problems (corresponding to

G. Fasano, Solving Non-standard Packing Problems by Global
Optimization and Heuristics, SpringerBriefs in Optimization,
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one-dimensional packing, e.g. Pan and Shi 2007). This characteristic, in several

cases, greatly makes up for the discretization. This holds, in particular, when all the

items involved have integer side lengths (e.g. unit squares/cubes). The extension of

this space-indexed formulation to the accommodation of the tetris-like items issue

discussed in this chapter would be quite straightforward.

A non-space-indexed paradigm is considered in this work. A corresponding

mathematical model, expressed in terms of mixed-integer linear programming
(MILP), is formulated (it is usually denoted as the general MIP model, when no

ambiguity occurs, omitting the specification ‘linear’).

To state the problem, we shall consider a set of N items, each identified by an

associated local reference frame. This set is denoted by I. A (bounded) convex

domainD, consisting of a polyhedron (see Fig. 2.1), is considered. It is associated to
a given orthogonal reference frame, denoted in the following as main. The problem

is that of placing items into D, maximizing the loaded volume (or mass), with the

following positioning rules:

• Each local reference frame axis has to be positioned orthogonally, with respect
to the main frame (orthogonality conditions).

• For each item, each component has to be contained within D (domain
conditions).

• Components of different items cannot overlap (non-intersection conditions).

This problem can easily be formulated as an MIP (Fasano 2008). When dealing

with tetris-like items, each one consisting of a single component only and a domain

consisting of a parallelepiped, the tetris-like item general problem stated above

reduces to the classical container loading issue (e.g. Bortfeldt and Wäscher 2012).

Its MIP formulation can be found, with possible variations, in some previous works

(e.g. Chen et al. 1995; Fasano 1989, 1999, 2003, 2004; Padberg 1999; Pisinger and

Sigurd 2005).

To formulate the general MIP model in question, the main orthogonal reference

frame, with origin O and axes wβ, β ¼ {1, 2, 3} ¼ B, is defined. Each local

reference frame, associated to every item i, is chosen, without loss of generality,

Fig. 2.1 Tetris-like item

packing into a convex

domain (polyhedron)
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so that all item components lie within its first octant. Its origin coordinates, with

respect to the main reference frame, are denoted in the following by oβi. We shall

then introduce the set Ω of all possible orthogonal rotations, admissible for any

local reference frame, with respect to the main one. It is easily seen that they are

24 in all, since items are, in general, asymmetric objects.

This is illustrated by Fig. 2.2, where an item, consisting of three mutually

orthogonal components, is considered. The components have lengths of 1, 3 and

9 units respectively. The component of length 3 units is parallel to the vertical axis

of the observer reference frame. Two sub-cases are considered: in one

(corresponding to the four images above) the item is up-oriented, whilst in the

other (corresponding to the four images below) it is down-oriented. As can be seen

from the figure, four orthogonal (clockwise) rotations (around the vertical axis) are

associated to each sub-case, so that when the component of length 3 units is vertical

(either up-oriented or down-oriented), eight relative rotations have to be taken into

account. The same holds when either the component of length 1 unit or the one of

length 9 units assumes the vertical position, so that the total number of orthogonal

orientation is 24.

In the following, the set of components associated to the generic item i is denoted
by Ci. We shall introduce, for each item i, the set Ehi of all (eight) vertices

associated to each of its component h. An extension of this set is obtained by adding
to Ehi the geometrical centre of component h. This extended set is denoted in the

following by E
_

hi. For each item i and each possible orthogonal orientation ω ∈ Ω,

we define the following binary (0–1) variables:
χ
i ∈ {0, 1}, with χ

i ¼ 1 if item i is picked, χi ¼ 0 otherwise;

ϑωi ∈ {0, 1}, with ϑωi ¼ 1 if item i is picked and has the orthogonal orientation
ω ∈ Ω, ϑωi ¼ 0 otherwise.

The above orthogonality conditions can be expressed as follows:

8i∈ I
X
ω∈Ω

ϑωi ¼ χi, ð2:1Þ

8β∈B,8i∈ I,8h∈Ci,8η∈ E
_

hi

wβηhi ¼ oβi þ
X
ω∈Ω

Wωβηhiϑωi:
ð2:2Þ

Fig. 2.2 Tetris-like item

rotations around a

single axis
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Here wβηhi (8η∈ E
_

hi) are the vertex coordinates, with respect to the main reference

frame, of component h, or its geometrical centre (η ¼ 0), relative to item i; Wωβηhi

are the projections on the axes wβ of the coordinate differences between points

η∈E
_

hi and the origin of the local reference frame, corresponding to orientation

ω of item i.
The domain conditions are expressed as follows:

8β∈B,8i∈ I,8h∈Ci,8η∈Ehi

wβηhi ¼
X
γ∈V

Vβγλγηhi, ð2:3Þ

8i∈ I,8h∈Ci, 8η∈Ehi

X
γ∈V

λγηhi ¼ χi: ð2:4Þ

Here wβηhi (η ∈ Ehi) are the vertex coordinates, with respect to the main reference

frame, of component h relative to item i; V is the set of vertices delimitingD and Vβγ

are their coordinates (assumed as non-negative, with no loss of generality) and λγηhi
are non-negative variables. These conditions correspond to the well-known neces-

sary and sufficient conditions for which a point belongs to a convex domain.

The non-intersection conditions are represented by the constraints below:

8β∈B,8i, j∈ I=i < j,8h∈Ci, 8k∈Cj

wβ0hi � wβ0kj � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �� Dβ 1� σþβhkij

� �
,

ð2:5aÞ

8β∈B, 8i, j∈ I=i < j, 8h∈Ci,8k∈Cj

wβ0kj � wβ0hi � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �� Dβ 1� σ�βhkij

� �
,

ð2:5bÞ

8i, j∈ I=i < j,8h∈Ci, 8k∈CjX
β∈B

σþβhkij þ σ�βhkij
� �

� χi þ χj � 1,
ð2:6Þ

where Dβ are the sides (parallel to the main reference frame) of the parallelepiped,

of minimum dimensions, containing D (minimum enclosing parallelepiped); wβ0hi

and wβ0kj are the centre coordinates, with respect to the main reference frame, of

components h and k of items i and j respectively; Lωβhi and Lωβkj are their side

projections on axes wβ, corresponding to orientation ω; σþβhkij and σ�βhkij ∈ {0, 1}.

Inequalities (2.5a) and (2.5b) state that if, for any pair of components h (of i) and
k (of j), a variable σ is equal to one, then the corresponding non-intersection constraint
is made active; otherwise it becomes redundant. The condition σþβhkij ¼ 1 means that

k precedes h, with respect to the axiswβ and vice versa if σ�βhkij ¼ 1.When both i and j
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are picked, the relative inequality (2.6) guarantees that at least one σ is equal to one,

and this means that, at least, one non-intersection constraint holds.
The objective function has the following expression:

max
X
i∈ I

Kiχi, ð2:7Þ

where Ki is either the volume Vi or the massMi of item i. The total volume loaded is

denoted by v, with v ¼
X
i∈ I

Viχi, whilst analogously, m, with m ¼
X
i∈ I

Miχi, refers

to the overall mass.

Remark 2.1 The constants Dβ can be interpreted as the classical big-Ms of the

mathematical programming literature and the inequalities (2.5a) and (2.5b) as

big-M constraints. It is indeed quite easy to rearrange each of them in the more

usual general form
X
l

Klul � K0 þ 1� ςð ÞK, where Kl, K0 are constants, ul are

continuous variables, ς ∈ {0, 1} and K is the corresponding big-M. Each big-M
could be theoretically substituted with any constant, sufficiently big to make the

relative constraint redundant when the corresponding ς is zero. In the whole MIP/

MINLP context, it is, however, well known that there is computational advantage in

making each big-M as small as possible, without excluding any integer-feasible

solutions (e.g. Williams 1993).

A property of interest, dealing with the issue of tightening the big-Ms appearing
in (2.5a) and (2.5b), is briefly looked upon here below. Prior to introducing

Proposition 2.1, we shall define the concept of external component, i.e. a component
with, at least, one side adjacent to the minimum enclosing parallelepiped,
enveloping the corresponding tetris-like item.

Proposition 2.1 Given that the domainD is a parallelepiped, for any pair of external
components h and k, belonging to two different tetris-like items, the (big-M) terms Dβ,

appearing in (2.5a) and (2.5b), cannot be further tightened.

Proof Consider any two items i, j and any relative external components h and

k respectively. We shall write constraints (2.5a) and (2.5b) in the form

8β∈B,8i, j∈ I=i < j, 8h∈Ci, 8k∈Cj

wβ0hi � wβ0kj � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �� Kþ

βhkij 1� σþβhkij
� �

,

8β∈B,8i, j∈ I=i < j, 8h∈Ci, 8k∈Cj

wβ0kj � wβ0hi � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �� K�

βhkij 1� σ�βhkij
� �

,
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where Kþ
βhkij and K�

βhkij are positive constants. If σþβhkij ¼ 1, the non-intersection

constraint between h and k, with respect to the corresponding axis wβ becomes

active, as the multiplier of Kþ
βhkij reduces to zero. If, instead, σþβhkij ¼ 0, the

inequality below must hold for any possible position of i and j in D:

Kþ
βhkij � �wβ0hi þ wβ0kj þ 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �

:

To prove the proposition, it is therefore sufficient to consider the extreme case,

where item j minimum enclosing parallelepiped, is, with respect to the corresponding
side Dβ, at its upper bound and item i minimum enclosing parallelepiped at the lower

one. Denoting, for any rotation ω and ω0 of i and j, respectively, by Lωβi and Lω0βj,

the side projections of their minimum enclosing parallelepipeds on wβ, the following

inequality must hold:

Kþ
βhkij � Dβ � Lω0βj þWω0β0kj þ

1

2
Lω0βkj � Lωβi þWωβ0hi þ 1

2
Lωβhi:

As this is requested for any ω and ω0, the condition is true, in particular, also

when �Lω0βj þWω0β0kj þ 1
2
Lω0βkj � Lωβi þWωβ0hi þ 1

2
Lωβhi ¼ 0, occurring when

both h and k attain the contact condition (with respect the domain sides perpendic-

ular toDβ). The same reasoning occurs, obviously, for σ�βhkij, so that neitherK
þ
βhkij

nor

K�
βhkij

can be smaller than Dβ. □

Remark 2.2 The proof of Proposition 2.1 suggests how to determine, albeit in a

much more complicated way, the smallest big-Ms when the domain D is not just a

parallelepiped but a more general polyhedron. For this purpose, let us introduce the

termsWωβ0hi, representing the minimum value that wβ0hi can attain (inD) when item

i has the orientation ω, andWωβ0hi, representing the maximum value that wβ0hi can

attain (in D) when item i has the orientation ω.

The minimum Kþ
βhkij is hence determined by the expression

Kþ
βhkij

¼ max
ω,ω0 ∈Ω

�Wωβ0hi þWω0β0kj þ
1

2
Lωβhi þ Lω0βkj

� �� �
and analogously for

the corresponding minimum K�
βhkij. The above considerations hold both for

external and non-external components, including, for these, the case when D is a

parallelepiped.

Special case of single parallelepipeds (single-component items)
The special case concerning single-component items is introduced here. The

resulting single parallelepipeds are assumed to be of homogeneous density, so

that the problem is greatly simplified, as six orthogonal rotations, with respect

to the main reference frame, are sufficient to determine their actual orientation.

A further simplification is carried out, restricting the domainD to be a parallelepiped.
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Posing α ∈ {1, 2, 3} ¼ A, for each parallelepiped i, denote by Lαi its

sides, supposing, with no loss of generality, L1i � L2i � L3i (as this assumption

can be of use in extended versions of this model). The coordinates of its centre,

with respect to the main reference frame, are indicated as wβi. The domain D is a

parallelepiped with sides Dβ parallel to the main reference frame axes wβ, respec-

tively. A vertex of D is, moreover, supposed to be coincident with its origin O
andD lies within the first octant. For each item i, the binary variables δαβi ∈ {0, 1}

are introduced, with the meaning δαβi ¼ 1 if Lαi is parallel to the axis wβ and

δαβi ¼ 0 otherwise.

The general objective function (2.7) is kept unchanged, whilst the overall

conditions are rewritten as follows:

Orthogonality constraints:

8α∈A,8i∈ I
X
β∈B

δαβi ¼ χi, ð2:8aÞ

8β∈B,8i∈ I
X
α∈A

δαβi ¼ χi: ð2:8bÞ

Domain constraints:

8β∈B,8i∈ I

0 � wβi � 1

2

X
α∈A

Lαiδαβi � wβi þ 1

2

X
α∈A

Lαiδαβi � Dβχi:
ð2:9Þ

Non-intersection constraints:

8β∈B,8i, j∈ I=i < j

wβi � wβj � 1

2

X
α∈A

Lαiδαβi þ Lαjδαβj
� �� 1� σþβij

� �
Dβ,

ð2:10aÞ

8β∈B, 8i, j∈ I=i < j

wβj � wβi � 1

2

X
α∈A

Lαiδαβi þ Lαjδαβj
� �� 1� σ�βij

� �
Dβ,

ð2:10bÞ

8i, j∈ I=i < jX
β∈B

σþβij þ σ�βij
� �

� χi þ χj � 1,
ð2:11Þ

where σþβij and σ�βij ∈ {0, 1}.
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2.2 Excluding Non-realistic Solutions

The general MIP model discussed in Sect. 2.1 can be subject to criticism, whenever

some practical aspects cannot be neglected. First of all, it does not include constraints

that prevent items to assume a ‘floating’ position within the container. This flaw is

scarcely influential in some contexts, such as that of bag loading in space logistics,

where the internal empty spaces are usually filledwith packagingmaterial (e.g. bubble

wrap or foam). Nonetheless, it can be non-negligible in several different applications.

For the sake of simplicity, referring to the case of single parallelepipeds, a ‘trick’

to overcome this difficulty in practice can easily be adopted. To this purpose, it is

sufficient to carry out a two-step optimization process, the first aimed at finding

what the maximum cargo (in terms of volume or mass) is and the second at

lowering the position of the items towards the container floor, as much as possible.

Let us suppose that the general MIP model is aimed at maximizing the loaded

volume (similar considerations would hold in the case of the mass) and denote by v̂
the (optimal) value, obtained at the first step. The second is executed by adopting

a variation of the general MIP. The constraint
X
i∈ I

Viχi, ¼ v̂ is therefore added,

imposing that the total volumemust be equal to that obtained (as an optimal solution)

in the first step. The objective function min
X
i∈ I

w3i, replaces (2.7) (axes w3 is

assumed as the vertical one). This will lower the position of each item, reducing, as a

consequence, the undesired ‘floating’ position effect (if an optimal solution, in

particular, is found, no item can stay totally suspended any longer).

Remark 2.3 If, in the first step, only a suboptimal (or a nonproven optimal) solution

is found, the inequality
X
i∈ I

Viχi, � v̂ can substitute the corresponding equation.

As an alternative to what is outlined above, a more sophisticated approach could be

followed. This may be done by providing the main general MIP model with further

constraints, to make the packing solutions as realistic as possible, taking into

account both layer and stability conditions (see Sect. 2.3.5).

In addition to the criticality due to the aforementioned ‘floating’ positions, a

non-trivial issue may arise when in the presence of ‘closed’ tetris-like items, as shown

in Fig. 2.3. In some cases, to exclude solutions that are not feasible from the practical

point of view, particular precautions should be taken. This may be done by stating

special constraints not contemplated by the general MIP model of Sect. 2.1.

To explain the concept, let us consider a very simple example (see Fig. 2.3), by

introducing a pair of (identical) items i and j, each composed of four parallelepipeds

(components) forming a ‘squared’ ring (homeomorphic to the classical topological

figure of the torus).

As is immediately gathered, the non-intersection conditions (2.5a), (2.5b) and

(2.6), reported in Sect. 2.1, are not sufficient to avoid situations such as the one

illustrated in Fig. 2.3. They, indeed, prevent the intersection of each component
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of iwith every one of j, and this holds also for the situation represented in the figure,
as a matter of fact.

Nonetheless, in most real-world frameworks, a similar result would not be

acceptable. In the case under consideration, in particular, to overcome this stum-

bling block, it would be sufficient to represent the empty space (internal ‘hole’)

associated to item i as an equivalent (zero mass) additional component (see Fig. 2.4)
and include it in the non-intersection conditions between items i and j.

It is understood that the additional components have to be neglected when not

necessary, as in the case, for instance, of the items represented in Fig. 2.5. The

presence of additional components should indeed be considered, case by case, for

each pair of items, depending on the specific context under analysis. Of course,

much more tricky situations could also occur, even if they are not considered here.

As is easily understood, however, the approach proposed above could simply be

extended, to tackle adequately the specific cases under consideration.

Fig. 2.4 ‘Squared’ ring

(left) with additional

(zero-mass internal)

component (right)

Fig. 2.5 Acceptable

solution

Fig. 2.3 Concatenated

‘squared’ rings
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2.3 Additional Conditions

The MIP approach introduced in Sect. 2.1, differently from other packing method-

ologies (especially the ones based on sequential placement algorithms), is quite

suitable for treating a number of additional conditions. A survey of cases, quite

frequent in practice, is reported hereinafter. Before going on with this part, it is

however useful to introduce, for each pair of items i and j, the variable χij ∈ [0, 1]

(implicitly binary, i.e. χij ∈ {0, 1}), with the following conditions:

8i, j∈ I=i < j χij � χi, ð2:12aÞ
8i, j∈ I=i < j χij � χj, ð2:12bÞ
8i, j∈ I=i < j χij � χi þ χj � 1: ð2:13Þ

2.3.1 Conditions on Item Position and Orientation

Specific loading conditions, such as those concerning the pre-fixed position and

orientation of some items, are straightforward. Indeed this task, from the modelling

point of view adopted, simply consists of fixing the relative variables oβi at the desired
values and setting to one the ϑωi corresponding to the orientation that is targeted.

Weaker conditions on the item position can easily be introduced, if necessary, by

posing lower and upper bounds on its local reference frame origin or even on the

centre of each single component. Some orientations can be inhibited simply by

setting to zero the corresponding ϑωi this allows, for instance, to force a local

reference frame axis to be parallel to a particular direction (i.e. parallel to an axis of

the main reference frame).

Similarly, (pairwise) ‘parallelism’ conditions can be taken into account, by

acting properly on the relevant variables ϑ. Given, for instance, two identical

items i and j, the constraints below state that if both of them are loaded, they

must have the same orientation: 8 ω ∈ Ω, θωi � θωj + χij � 1.

2.3.2 Conditions on Pairwise Relative Distance

In some practical applications, either minimum or maximum distance conditions,

involving pairs of components, belonging to different items, can be posed. From a

general point of view, constraints like the following can thus be required for

components h and k of item i and j, respectively:X
β∈B

wβ0hi � wβ0kj

� �2 � D2
hkijχij, ð2:14Þ
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X
β∈B

�
wβ0hi � wβ0kj

�
2 � D

2

hkijχij þ
X
β∈B

D2
β

 !
1� χij
� �

, ð2:15Þ

where Dhkij and Dhkij are the given lower and upper bounds for their relative

distance, respectively, whilst the other terms have already been defined. Clearly,

inequality (2.14) expresses the minimum distance condition, whilst (2.15) the one

on the maximum, holding if both items are loaded. Inequalities (2.14) and (2.15)

become redundant, otherwise, if at least one of the items is not loaded, i.e. χij ¼ 0.
Constraint (2.14) coincides (when χij ¼ 1) with the classical one that guarantees

the non-intersection between two spheres. This is notoriously non-convex and well

known for being very difficult to deal with, as results from the specialist literature

on circle/sphere packing (e.g. Addis et al. 2008a, b; Castillo et al. 2008; Gensane

2004, Kampas and Pintér 2005; Locatelli and Raber 2002; Stoyan and Yaskov

2008; Stoyan et al. 2003; Sutou and Dai 2002). Constraint (2.15), on the contrary, is

convex and, as such, much easier to treat, even if still nonlinear (it could be

observed that tighter big-Ms could be profitably chosen).

Remark 2.4 To show that the constraint
X
β∈B

wβ0hi � wβ0kj

� �2 � D
2

hkij is convex, it

suffices to observe that, for any β, each quadratic form (wβ0hi � wβ0kj)
2 is obviously

positive semi-definite and the first member of the inequality above is thus a sum

(with positive coefficients) of convex functions (e.g. Minoux and Vajda 1986).

In order to remain within an MIP framework, a piecewise linear approximation

(e.g.Williams 1993) can easily be applied both to (2.14) and (2.15). To this purpose, it

is useful to pose eβhkij ¼ wβ0hi � wβ0kj, with eβhkij ∈ [�Dβ, Dβ]. Adopting an obvi-

ous simplification of the symbols, constraints (2.14) and (2.15) hence assume the formX
β∈B

e2β � D2χ, ð2:16Þ

X
β∈B

e2β � D
2
χ þ

X
β∈B

D2
β

 !
1� χð Þ: ð2:17Þ

For the sake of simplicity, focusing just on constraint (2.16),we shall then discretize

the interval [�Dβ, Dβ] inNS subintervals, i.e. �Dβ,Dβ

� 	 ¼ [
γ�1, γ∈Ds

Dγ�1;Dγ

� 	
, with

Ds ¼ {0, . . ., γ, . . ., Ns}. The terms e2β can then be approximated by piecewise linear

functions ([�Dβ, Dβ] ! [0, D2
β]) simply by posing

8β∈B eβ ¼
X
γ∈DS

λβγDγ, ð2:18Þ

8β∈B e2β �
X
γ∈DS

λβγD
2
γ , ð2:19Þ
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X
γ∈DS

λβγ ¼ 1, ð2:20Þ

where the λβγ are non-negative variables and such that at most two adjacent can be
non-zero (adjacency condition). Indeed, this restriction has to be added in order to

guarantee that for each eβ ∈ [�Dβ, Dβ], the point eβ;
X
γ∈DS

λβγD
2
β

 !
∈R2 actually

lies on a segment of the corresponding piecewise linear function.

Variables subject to the adjacency condition stated above are said to determine a

special ordered set of variables of type 2 (SOS2, e.g. Williams 1993). It is well

known that such a condition (or, more in general, special ordered sets of the various
types) can be tackled either algorithmically (most MIP solvers have dedicated

features) or by introducing additional binary variables and proper constraints in

the model (an highly efficient formulation for the SOS2 case can be found in

Vielma and Nemhauser 2009).

Piecewise linear approximation (and the SOS2 approach) is directly applicable

to separable functions in general, but also more complex classes can be considered

(e.g. Williams 1993). Here it is worth pointing out that when convex constraints

(expressed by separable functions) are concerned, as, for instance, (2.17), it can

easily be shown that the adjacency condition may be dropped, without bringing in

any undesirable solution (e.g. Williams 1993). In the specific case in question,

(2.18), (2.19) and (2.20) are indeed sufficient, per se, to guarantee that each point

eβ;
X
γ∈DS

λβγD
2
γ

0@ 1A belongs to the convex domain (in R2) delimited by the vertices

(Dγ, D
2
γ ), for all γ ∈ DS. This way, the convex constraint (2.17) is always satisfied,

since, for any values assumed by the variables λβγ, it is never underestimated

(similar considerations hold when the minimization of a separable convex objective
function is concerned, e.g. Williams 1993).

In addition to what is discussed above, very simple indirect conditions on the

relative distance between components of two different items can be obtained as

variations of (2.5a) and (2.5b):

8β∈B,8i, j∈ I=i < j,8h∈Ci, 8k∈Cj

wβ0hi � wβ0kj � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �þ Ghkij � Dβ þ Ghkij

� �
1� σþβhkij
� �

,

ð2:21aÞ
8β∈B,8i, j∈ I=i < j,8h∈Ci,8k∈Cj

wβ0kj � wβ0hi � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �þ Ghkij � Dβ þ Ghkij

� �
1� σ�βhkij
� �

:

ð2:21bÞ
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Here Ghkij are given constants. Inequalities (2.21a) and (2.21b) thus guarantee a

minimum gap between components h of i and k of j, respectively, along the axis

corresponding to the active non-intersection condition. Of course, more compli-

cated gap conditions could be stated similarly, but are not reported here.

Remark 2.5 It is, instead, worth mentioning that close-related topics come up in the

context of the electronic design automation (EDA) and very large scale integration

(VLSI), when dealing with the issue of minimizing the total wire length. Depending

on the specific framework to look upon, the wire-length objective function terms

are expressed by linear, quadratic or, more in general, nonlinear functions

(e.g. Kahng and Wang 2005; Kim and Kim 2003; Kleinhans et al. 1991).

2.3.3 Conditions on Domains

Quite often in practice one has to take into account domains that are not convex,

owing to the presence of forbidden zones, e.g. due to clearance requirements or

actual ‘holes’. This makes the domain non-convex, as a matter of fact.

If the forbidden zones and ‘holes’ are tetris-like-shaped (or properly approximated

as such), they can easily be treated by themodel reported in Sect. 2.1. Theymay indeed

simply be considered as zero-mass items with given position and orientation. Analo-

gous considerations hold also if the domain external shape is not convex, since it can

easily be approximated by introducing forbidden zones, as appropriate, see Fig. 2.6.

A similar approach can be adopted, in the presence of structural elements that

can be taken account of in terms of non-zero-mass items with fixed position and

orientation: see Fig. 2.7.

Further conditions, quite useful in practice, can be introduced to deal with separa-
tion planes, partitioning the whole domain in sectors. They can simply be represented

as ‘flat’ parallelepipeds: their bases are assumed to be parallel to one of the planes

of the main reference frame and cover the whole domain sections they cut; their

position (distance with respect to the parallel plane of the main reference frame) is

allowed to vary within a given range. An alternative formulation can be applied by

introducing, for each item, a set of binary variables, one per sector, that are equal to

one if the item belongs to the corresponding sector and zero otherwise (Fasano 2003).

Fig. 2.6 Non-convex domain (left) approximated with forbidden zones (right, 2D representation)
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2.3.4 Conditions on the Total Mass
Loaded and Its Distribution

In several real-world applications, such as aerospace engineering and transportation

systems in general, quite demanding requirements on the total mass or its distri-

bution inside the domain have to be taken into account. Restrictions on the overall

load are simply posed as follows:

M �
X
i∈ I

Miχi � M, ð2:22Þ

where M and M are the given lower and upper mass bounds, respectively. Some

insights concerning balancing conditions are provided next.

2.3.4.1 Static Balancing Restriction

The problem of loading a set of single parallelepipeds inside a convex domain, each

with a given mass, so that the overall centre of mass lies within a given convex

subdomain (inside the container), has been previously discussed (Fasano 2004,

2008). This restriction is denoted in the following by static balancing.
To generalize this issue to the case of tetris-like items, we shall firstly introduce

for each one of them the terms W�
ωβi. These represent the projections, on the axes

wβ, of the coordinate differences between item i centre of mass and the origin of the

local reference frame, corresponding to orientations ω. With w�
βi we shall denote,

for each item i, its centre of mass coordinates, with respect to the main reference

frame. Conditions (2.2), (2.3) and (2.4) are then properly adapted to take into

account also this point (so that, in particular, w�
βi ¼ 0 if χi ¼ 0). Let us indicate

with D* the convex subdomain in which the overall centre of mass must stay, in

compliance with the static balancing restriction. Denoting with V* the set of

Fig. 2.7 Domain with structural elements (left) and items packed around (right)
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vertices delimiting D* and with V�
βγ their coordinates, with respect to the main

reference frame, the proposition stated below holds.

Proposition 2.2 Static balancing necessary and sufficient conditions are as
follows:

8β∈B
X
i∈ I

Miw
�
βi ¼

X
γ∈V�

V�
βγψ

�
γ , ð2:23Þ

X
γ∈V�

ψ�
γ ¼ m, ð2:24Þ

where m ¼
X
i∈ I

Miχi and 8 γ ∈ V* ψ�
γ ¼ eψ �

γm, with eψ �
γ � 0.

Proof To prove this proposition, it can simply be observed that the following

conditions are necessary and sufficient for the overall centre of mass staying inside

the given (sub)domain (supposing m > 0): 8 β ∈ B
X
i∈ I

Miw
�
βi

m
¼
X
γ∈V�

V�
βγeψ �

γ , withX
γ∈V�

eψ �
γ ¼ 1 and eψ �

γ � 0. Indeed they state that point
X
i∈ I

Miw
�
βi

m
, i.e. the overall

centre of mass, lies inside the convex (sub)domain D* of vertices V�
γ ∈ V*.

The above conditions are obviously equivalent to (2.23) and (2.24), by using

ψ�
γ ¼ meψ �

γ . (If m ¼ 0, (2.23) and (2.24) are trivially satisfied, as, by (2.2), for

each non-picked item i, the variables w�
βi become zero). □

Remark 2.6 It is important to point out that the correlations 8 γ ∈ V* ψ�
γ ¼ eψ �

γm,eψ �
γ � 0 can simply be substituted with 8 γ ∈ V* ψ�

γ � 0 (as the variables eψ �
γ only

play an ‘ancillary’ role, having no ‘physical’ meaning in the model). This way,

conditions (2.23) and (2.24) are linear (as the nonlinear ones ψ�
γ ¼ meψ �

γ are omitted

tout court). Moreover, the above balancing conditions are simplified when the centre

of mass (sub)domain is a parallelepiped, i.e. defined, for each axis wβ, by the

intervals C�
β;C

�
β

h i
: In such a case, they have the simpler form 8 β

C�
βm �

X
i∈ I

Miw
�
βi � C

�
βm. It is gathered that (2.23) and (2.24) do not take account

of the mass of the container. An appropriate modification of them can easily be

attained, in order to include it and its contribution to the overall centre of mass.

Remark 2.7 An item consisting of a single nonhomogeneous parallelepiped can

simply be considered as composed of two elements: one parallelepiped with zero

mass, geometrically identical to the item itself and its centre of mass. The composed

item can hence be treated as a (degenerate) tetris-like item, whose components are

the parallelepiped with zero mass and this point.

An interesting issue arises when looking upon the presence of a filling material

of non-negligible density. This situation can occur, for instance, in the space
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engineering context, when quite dense protective foam has to fill every gap between

the loaded items. To formulate the related model, it is sufficient to consider the

whole domain D as if it were entirely filled with the filling material and replace all

the mass associated to the volumes occupied by each item, with their actual one.

Recalling the general definition of centre of mass, its coordinates w�
β are expressed

by the following equations:

8β∈B w�
β ¼

ð
D

uβr uð Þduβ

m
: ð2:25Þ

Here m represents the total mass contained in D (referring both to the items loaded

and the filling material), whilst r(u) its relative density function (that in the specific
case under consideration is a constant). The following equations hold:

8β∈B mw�
β ¼

ð
D
^

uβrduβ þ
X
i∈ I

Miw
�
βi ¼ M

^
W
^ �

β þ
X
i∈ I

Mi �M
^

i

� �
w�
βi: ð2:26Þ

Here D
^

is the subdomain of D corresponding to the volume not occupied by the

items (and thus occupied by the filling material); M
^

i denotes the mass each item

iwould assume if its density were the same of the filling material;M
^
andW

^ �
indicate

the total mass of the filling material and its relative centre of mass, respectively, if it

filled the whole domainD (i.e. with no items inside). Thus, the following conditions

extend the static balancing conditions (2.23) and (2.24):

8β∈B M
^
W
^ �

β þ
X
i∈ I

Mi �M
^

i

� �
w�
βi ¼

X
γ∈V�

V�
βγψ

�
γ , ð2:27Þ

X
γ∈V�

ψ�
γ ¼ M

^ �
X
i∈ I

M
^

i �Mi

� �
χi, ð2:28Þ

8γ∈V�, ψ�
γ � 0:

2.3.4.2 Dynamic Balancing Restrictions

Quite demanding requirements, involving inertia properties of the whole system,

may be posed (e.g. Egeblad 2009; Limbourg et al. 2012). In space engineering, for

instance, quite frequently, specific conditions on the spacecraft inertia matrix are set

to address fuel consumption or attitude control concerns. Assuming the items as

point masses, we shall introduce the following constraints:

8β, β0
∈B=β < β

0



X
i∈ I

Miw
�
βiw

�
β
0
i



 � Iββ0 mð Þ, ð2:29Þ
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8β, β0
, β

00
∈B=β < β

0
, β, β

0 6¼ β
00X

i∈ I

Mi w�2
βi þ w�2

β
0
i

� �
� Iβ00

�
m
�
,

ð2:30aÞ

8β, β0
, β

00
∈B=β < β

0
, β, β

0 6¼ β
00X

i∈ I

Mi w�2
βi þ w�2

β
0
i

� �
� Iβ00

�
m
�
,

ð2:30bÞ

where Iββ0 mð Þ, Iβ00 mð Þ and Iβ00 mð Þ are (non-negative) functions of the total loaded

mass m.

Remark 2.8 It is immediately gathered that (2.29), (2.30a) and (2.30b) are

nonlinear constraints, giving rise to an MINLP model. In these constraints, the

inertia characteristics of each single item have been neglected, considering, for

the sake of simplicity, just simple point masses, but more precise formulations

could be looked into.

It is of particular interestwhen I1 mð Þ � I1 mð Þ � I2 mð Þ � I2 mð Þ(andIββ0 mð Þ � 0).

With an appropriate setting of the static balancing conditions, indeed, this case

makes the system mass distribution assume, at a certain grade of approximation,

the dynamic properties of a homogeneous cylinder.

2.3.5 Further Loading Restrictions

A significant number of further restrictions could be added, depending on the

specific framework. Conditions concerning the relative position between items,

such as, for instance, ‘item imust stay over or under j’, would also be treated easily,
simply by acting properly on the relevant variables σ+/�.

Much more demanding scenarios are, instead, tackled in the specialist packing

literature, looking upon further additional loading conditions such as stability, load
bearing and multi-dropping (e.g. Bischoff 2006; Bortfeldt and Gehring 2001;

Christensen and Rousøe 2009; Eley 2002; Junqueira et al. 2011; Junqueira

et al. 2012; Lai et al. 1998; Morabito and Arenales 1994; Moura and Oliveira

2005; Pisinger 2002; Ratcliff and Bischoff 1998; Silva et al. 2003).

These can be defined as follows (Junqueira et al. 2013): ‘Cargo stability refers

to the support of the bottom faces of boxes, in the case of vertical stability (i.e., the
boxes must have their bottom faces supported by other box top faces or the container

floor), and the support of the lateral faces of boxes, in the case of horizontal stability.
Load bearing strength refers to the maximum number of boxes that can be stacked

one above each other, or more generally, to the maximum pressure that can be applied

over the top face of a box. Multi-dropping refers to cases where boxes that are

delivered to the same customer (destination) must be placed close to each other inside
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the container and the loading pattern must take into account the delivery route

of the vehicle and the sequence in which the boxes are unloaded’.

Dealing with such additional conditions, an interesting approach has been

suggested (Junqueira et al. 2013). It develops a ‘grid-based position paradigm’

(i.e. space-indexed formulation, e.g. Allen et al. 2012), as opposed to the ‘position

free’ one, i.e. the MIP model of Sect. 2.1 (or equivalent versions), that instead

allows for continuous item positions.

Extensions of the single parallelepiped MIP model (Sect. 2.1), aimed at tackling

a number of additional conditions, are taken into account by Pesch (working paper).

Those, for instance, denoted by layer constraints consider the presence of incom-

patibility relations of the type: item i cannot be positioned ‘on the top’ of item j.
As pointed out in this work, they can be represented by a directed graph G, where
arc(i, j) ∈ G if and only if item i cannot be placed on item j. Moreover, if an item

is not placed on the floor, it has to be supported by at least another item.

Whilst such additional conditions can be expressed by an MINLP formulation

(Pesch, working paper), an alternative MIP model is briefly discussed here, also

referring, for the sake of simplicity, to the case of single parallelepipeds.

To this purpose, we shall introduce, firstly, the binary variables χ
i
and χ

_
i, with

the meaning:

χ
i
¼ 1 if item i lies on the container basis; χ

i
¼ 0 either if it is not loaded or it is

supported by (at least) another item.

χ
_
i ¼ 1 if item i is supported by (at least) another item; χ

_
i ¼ 0 either if it is not

loaded or it lies on the container basis.

These have the task of controlling the status of possible contact, for each item i,
with respect to the lower basis of the container (floor). They are linked, in a

mutually exclusive mode, to the corresponding variables χi as follows:

8i∈ I χ
i
þ χ

_
i ¼ χi,

This way, if item i is picked, then one and only one of the two related statuses is

admissible. Thus, assuming that the axis w3 of the main reference frame is the

‘vertical’ one, the conditions below hold:

8i∈ I w3i � 1

2

X
α∈A

Lαiδα3i � 1

2
L3i 1� χ

i

� �
,

8i∈ I w3i � 1

2

X
α∈A

Lαiδα3i þ D3 � L1ið Þ 1� χ
i

� �
:

These constraints force item i to lie on the container base, when the

corresponding condition is active, i.e. χ
i
¼ 1, and become redundant otherwise,

i.e. when χ
i
¼ 0.
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In addition to this, the case corresponding to χ
_
i ¼ 1, i.e. when item i is picked

but it is supported by (at least) another item, has to be properly examined. Before

going ahead with this point, however, we shall introduce the binary variables σ
_þ
3ij

and σ
_�
3ij, with the meaning:

σ
_þ
3ij ¼ 1 if item i is placed on the top of j and zero otherwise.

σ
_�
3ij ¼ 1 if item j is placed on the top of i and zero otherwise.

The inequalities below are thus added to (2.10a) and (2.10b), respectively:

8i, j∈ I=i < j w3i � w3j � 1

2

X
α∈A

Lαiδα3i þ Lαjδα3j
� �� 1� σ

_þ
3ij

� �
D3,

8i, j∈ I=i < j w3i � w3j � 1

2

X
α∈A

Lαiδα3i þ Lαjδα3j
� �þ 1� σ

_þ
3ij

� �
D3,

8i, j∈ I=i < j w3j � w3i � 1

2

X
α∈A

Lαiδα3i þ Lαjδα3j
� �� 1� σ

_�
3ij

� �
D3,

8i, j∈ I=i < j w3j � w3i � 1

2

X
α∈A

Lαiδα3i þ Lαjδα3j
� �þ 1� σ

_�
3ij

� �
D3:

They imply, as is immediately seen, that w3i ¼ w3j þ 1

2

X
α∈A

Lαiδα3i þ Lαjδα3j
� �

(i.e. i lies on the top of j), when σ
_þ
3ij ¼ 1, and w3j ¼ w3i þ 1

2

X
α∈A

Lαiδα3i þ Lαjδα3j
� �

(i.e. j lies on the top of i), when σ
_�
3ij ¼ 1. The first pair of inequalities becomes

redundant otherwise when σ
_þ
3ij ¼ 0 and, similarly for the second one, when σ

_�
3ij ¼ 0.

Inequalities (2.11) are then extended as follows:

8i, j∈ I=i < j
X
β∈B

σþβij þ σ�βij
� �

þ σ
_þ
3ij þ σ

_�
3ij þ � χi þ χj � 1,

where the terms σ
_þ
3ij are set, a priori, to zero if arc(i, j) ∈ G and, analogously, for

σ
_�
3ij, if arc( j, i) ∈ G. The conditions stated below imply that if χ

_
i ¼ 1, item

i has to be positioned on the top of (at least) another one:

8i∈ I χ
_
i �

X
j∈ I=
i < j

σ
_þ
3ij þ

X
i
0
∈ I=

i
0
< i

σ
_�
3i

0
i
:
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Further conditions can be taken into account to include the stability requirements

(e.g. Pesch, working paper). This way, it is guaranteed that when item i is on the

top of item j, the projection of its centre of mass, on the ‘horizontal’ plane,

i.e. (O, w1, w2), lies inside the rectangle determined by the projection of item j.
The following conditions (or more refined ones, with tighter big-Ms) can thus be

added:

β∈ 1; 2f g,8i, j∈ I=i < j wβi � wβj þ 1

2

X
α∈A

Lαjδαβj þ 1� σ
_þ
3ij

� �
Dβ,

β∈ 1; 2f g,8i, j∈ I=i < j wβi � wβj � 1

2

X
α∈A

Lαjδαβj � 1� σ
_þ
3ij

� �
Dβ:

The layer and stability additional conditions can efficiently be tackled algorith-

mically, by means of a dedicated heuristic (Pesch, working paper). The (non-trivial)

computational aspects, related to the extended MIP model discussed above

(or possible alternative formulations), could, nevertheless, represent an interesting

line for further in-depth investigation.
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Chapter 3

Model Reformulations and Tightening

The generalMIPmodel, discussed in Chap. 2, is reconsidered hereinafter, investigating

some possible reformulations, from different points of view (Sect. 3.1). The

objective of enucleating implicit implications and introducing valid inequalities,

to tighten the model, is examined next (Sect. 3.2).

3.1 Alternative Models

The issue discussed in this section focuses mainly on the case occurring when the

packing problem is expressed in terms of feasibility, i.e. when all the given items

have to be placed and no objective function is stated a priori. This situation can

arise, for instance, when the items are the elements of a device and, as such, they all

have to be installed inside an appropriate container, as essential parts of the same

equipment. The thus defined feasibility subproblem is also of interest, as it repre-

sents one of the basic concepts of the heuristic procedures put forward in Chap. 4.

As far as this specific subproblem is concerned, since no objective function is

specified a priori, an arbitrary one can be introduced, in order to simplify the task

of finding an integer-feasible solution.
The general model of Sect. 2.1 (including the additional conditions of Sect. 2.3)

is reconsidered hereinafter in terms of feasibility, providing three different

reformulations of it (Sects. 3.1.1, 3.1.2 and 3.1.4). In all of them, it is understood

that either all the given items can be loaded or the instance to solve is infeasible. In

each of these reformulations, an ad hoc objective function is defined, with the scope
of minimizing (even if indirectly) the overall overlap of items. In the first

(Sect. 3.1.1) and second (Sect. 3.1.2, except the variation outlined at the end), no

sooner does the solver obtain the first integer-feasible solution than the optimiza-

tion is stopped (even if just a suboptimal solution of the ad hoc objective function
has been found). In all reformulations, both the orthogonality and domain condi-

tions are maintained, as defined in Sect. 2.1. (i.e. consisting of constraints (2.1),

(2.2), (2.3) and (2.4)). The second reformulation (Sect. 3.1.2) is subject to
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straightforward variations. One in particular (Sect. 3.1.3) is an actual alternative to

the general MIP model, no longer restricted to the feasibility subproblem. It could

also be utilized (at least partially) in the heuristics of Chap. 4. This aspect would

definitely represent an interesting objective for future research.

3.1.1 General MIP Model First Linear Reformulation

The rationale of the general MIP model reformulation presented hereinafter stresses

the introduction of an ad hoc objective function. This aims at reducing the solution

search region, as much as possible, in order to obtain any integer-feasible solution.
The approach adopted draws on the work achieved by Suhl (1984), dealing with

(large-scale) fixed-charge models. Suhl’s work provides an efficient preprocessing

technique aimed at reducing the big-M terms, associated to the fixed-charge con-

straints, i.e. at ‘minimizing’ (a priori) the related region, in the LP relaxation.
As far as the model reformulation in question is concerned, an approach, intended

to ‘minimize’ the search region RS, relative to the non-intersection (big-M )

constraints (2.5a) and (2.5b), is investigated, to tackle efficiently the relative feasi-
bility subproblem. These constraints are then reformulated in an LP-relaxed form

and an ad hoc objective function, substituting (2.7), is introduced. The reformulated

model is described as follows.

All variables χ are set to one, as all the given items must be inside the domain

and the non-intersection constraints (2.5a) and (2.5b) are rewritten as

8β∈B, 8i, j∈ I=i < j,8h∈Ci,8k∈Cj

wβ0hi � wβ0kj � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �þ dþβhkij � Dβ,

ð3:1aÞ

8β∈B,8i, j∈ I=i < j,8h∈Ci,8k∈Cj

wβ0kj � wβ0hi � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �þ d�βhkij � Dβ:

ð3:1bÞ

Constraints (2.6) are substituted with the following:

8β∈B,8i, j∈ I=i < j, 8h∈Ci, 8k∈Cj dþβhkij � σþβhkijDβ, ð3:2aÞ
8β∈B,8i, j∈ I=i < j,8h∈Ci,8k∈Cj d�βhkij � σ�βhkijDβ, ð3:2bÞ

8i, j∈ I=i < j,8h∈Ci,8k∈CjX
β∈B

�
σþβhkij þ σ�βhkij

� ¼ 1, ð3:3Þ

where dþβhkij, d
�
βhkij ∈ [0, Dβ].
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The adopted ad hoc objective function is

max
X

β∈B,
i, j∈ I=i < j,
h∈Ci, k∈Cj

dþβhkij þ d�βhkij
Dβ

: ð3:4Þ

Any optimal solution of the reformulated model identifies a minimal subset of

the feasibility region, relative to the general MIP model (Sect. 2.1).

Proposition 3.1 For any given set of items, the feasibility regions, associated to
the general MIP model and its first linear reformulation respectively (neglecting
the subspace associated to the variables d+ and d�), are coincident.

Proof Dealing with the feasibility subproblem, all variables χ are set to one.

Constraints (2.1), (2.2), (2.3) and (2.4) are obviously coincident in both models,

and it is thus sufficient to demonstrate that constraints (2.5a), (2.5b) and (2.6) of the

general MIP model are equivalent to constraints (3.1a), (3.1b), (3.2a), (3.2b) and

(3.3) of the reformulated one. It is immediately seen that given that all variables χ
are set to one, constraints (2.6) can be substituted with (3.3). To show that

constraints (2.5a) and (2.5b) are equivalent to (3.1a), (3.1b), (3.2a) and (3.2b), we

shall distinguish the cases where the variables σ are zero from those where they are

equal to one.

Consider, for instance, σþβhkij ¼ 0. This implies that constraints (2.5a) become

wβ0hi � wβ0kj � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �� Dβ.

These are equivalent to constraints (3.1a), with dþβhkij ¼ 0, in compliance

with constraints (3.2a). Considering, instead, σþβhkij ¼ 1, this implies that constraints

(2.5a) become wβ0hi � wβ0kj � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �

.

These are equivalent to constraints (3.1a), with dþβhkij ¼ Dβ, in compliance with

constraints (3.2a). As the same reasoning can be carried out, taking into account the

cases relative to the variables σ�βhkij, the two models are equivalent. □

Remark 3.1 To better understand the meaning of the general MIP model first linear

reformulation, we shall make some intuitive considerations. Let us define, for each β,
for every pair of components h and k of item i and j, respectively, the squared

subspace Sβ ¼ [0, Dβ] � [0, Dβ] � R2, associated to variables d�βhkij and dþβhkij. The

bound dþβhkij þ d�βhkij � 2Dβ �
X
ω∈Ω

�
Lωβhiϑωi þ Lωβkjϑωj

�
is implicitly determined

by inequalities (3.1a) and (3.1b). The objective function induces the solution projection

on Sβ to stay along the straight line d
þ
βhkij þ d�βhkij ¼ 2Dβ �

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �

.

If Dβ �
X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� � � 0, this intersects Sβ in the points
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Dβ,Dβ �
X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� � !

and Dβ �
X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �

,Dβ

 !
,

respectively, determining an internal segment. In this occurrence, if the linear solver

(utilized by the MIP optimizer) looks for vertex solutions (as in the case of a simplex-

based one), the above extreme points are more likely to be selected than the ones internal

to the segment (although this expectation is not based on rigorous reasoning). One has to

bear inmind, moreover, that either dþβhkij ¼ Dβ or d
�
βhkij ¼ Dβ (for any β) guarantees that

no intersection occurs between the two corresponding items.

As a partially alternative version of this model reformulation, the constraints

8 β ∈ B, 8 i, j ∈ I/i < j, 8 h ∈ Ci, 8 k ∈ Cj, d
þ
βhkij + d�βhkij � Dβ could also

be added to tighten the feasibility region (creating in the subspace Sβ the two extreme

points (Dβ, 0) and (0, Dβ), without excluding any solution. These inequalities are

obviously tighter than the bounds dþβhkij þ d�βhkij� 2Dβ �
X
ω∈Ω

�
Lωβhiϑωi þ Lωβkjϑωj

�
,

when Dβ �
X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� � � 0. The conditions d�βhkij, d

þ
βhkij ∈ [0, Dβ],

moreover, if explicitly introduced in the model, can be of computational advantage,

when the linear solver adopted treats the variable bounds independently (as in the

case of simplex-based ones).

3.1.2 General MIP Model Second Linear Reformulation

To discuss this alternative model, we shall consider, for each item component, the
set of all concentric parallelepipeds containing it. The reformulation examined

hereinafter is also based on an ad hoc objective function. It is aimed at finding,

for each component, the enclosing parallelepiped (included in D) of maximum

volume that does not intersect any other enclosing parallelepipeds, associated to

components of different items.

To this purpose, the non-intersection conditions of Sect. 2.1 are properly

changed. Whilst (2.6) is kept, inequalities (2.5a) and (2.5b) are substituted with

the constraints below. For each component h of i, the non-negative variables lβhi are
introduced, assuming that all variables χ are set to one:

8β∈B, 8i, j∈ I=i < j,8h∈Ci,8k∈Cj

wβ0hi � wβ0kj � 1

2
lβhi þ lβkj
� �� Dβ 1� σþβhkij

� �
,

ð3:5aÞ

8β∈B, 8i, j∈ I=i < j,8h∈Ci,8k∈Cj

wβ0kj � wβ0hi � 1

2
lβhi þ lβkj
� �� Dβ 1� σ�βhkij

� �
,

ð3:5bÞ
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8ω∈Ω,8β∈B,8i∈ I, 8h∈Ci

lβhi � Lωβhiϑωi:
ð3:6Þ

The following (surrogate) objective function is defined:

max
X

β∈B,
i∈ I, h∈Ci

lβhi: ð3:7Þ

For each component h of each item i, the terms lβhi represent (for the orientation
ω assumed by i) the projections, on the axes wβ, of an enclosing parallelepiped,

containing component h and centred with it. Inequalities (3.5a), (3.5b) and (3.6)

(together with (2.6)) guarantee that the enclosing parallelepipeds, belonging to

different items, do not intersect.

Remark 3.2 Rigorously speaking, as the objective function (3.7) refers to the total

sum of the component sides, it should be considered as a surrogate expression of

max
X

i∈ I, h∈Ci

Y
β∈B

lβhi.

As previously mentioned, possible variations of the approach discussed above

could be considered. One is obtained simply by inverting inequalities (3.6) as

follows and keeping all remaining constraints, as well as the objective function,

unaltered:

8ω∈Ω,8β∈B,8i∈ I, 8h∈Ci

lβhi � Lωβhiϑωi:
ð3:8Þ

In this case, an integer-optimal solution (and not just any integer-feasible one)
has necessarily to be found, in order to guarantee that no intersections occur among

the given items. It should be noticed that, at each step, the optimization process is

induced to minimize the overall overlap, without assigning items a volume that

exceeds their own. Moreover, since, in this case, the value of the global optimal

solution is known a priori, it can be advantageously utilized as cutoff parameter

(to get rid of suboptimal solutions).

3.1.3 A Non-restrictive Reformulation of the General
MIP Model

A possible reformulation of the general MIP model, without renouncing its original

objective of maximizing either the overall loaded volume or mass, is also quite

straightforward. The problem is no longer expressed in terms of feasibility
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(i.e. without the possibility of rejecting items), so that all variables χ are set free

again, as in Sect. 2.1.

As a first step, inequalities (3.6) are transformed into the equations:

8ω∈Ω,8β∈B,8i∈ I, 8h∈Ci

lβhi ¼ Lωβhiϑωi:
ð3:9Þ

In order to define the new objective function (substituting (2.7)), the terms Khi are

introduced (with obvious meaning) for each component h of each item i, where

8i∈ I
X
h∈Ci

Khi ¼ Ki, cf. (2.7). The dimensions of component h of i are indicated

with Lαhi, α ∈ {1, 2, 3} ¼ A, assuming, from now on, that L1hi � L2hi � L3hi. The
new objective function is then expressed by the following:

max
X

β∈B,
i∈ I, h∈Ci

KhiX
α∈A

Lαhi
lβhi: ð3:10Þ

It is easily seen that the two objective functions (2.7) and (3.10) are equivalent

for any integer-feasible solution (by (3.9)). The expression (3.10), differently from

(2.7), provides the significant computational advantage of minimizing the item

overall overlap at each step of the optimization process. Just to summarize the

reformulation in question, we could point out that it consists of constraints (2.1),

(2.2) (orthogonality), (2.3), (2.4) (domain), (2.6), (3.5a), (3.5b) and (3.9) (non-
intersection), in addition to objective function (3.10). It is also understood that in all
the relevant expressions above, the variables lβhi could be eliminated. They may,

indeed, be substituted by their corresponding terms, on the basis of (3.9) (that could

also be eliminated).

3.1.4 General MIP Model Nonlinear Reformulation

The general packing problem presented in Sect. 2.1 is notoriously subject to

nonlinear (MINLP) formulations (e.g. Birgin and Lobato 2010; Birgin

et al. 2006; Cassioli and Locatelli 2011). We shall introduce, hereinafter, a

nonlinear reformulation of the general MIP model non-intersection constraints,

assuming, as previously, that all variables χ are set to one (as the feasibility
subproblem is in question). It is straightforward to prove that the nonlinear con-

straints below are equivalent to (2.5a), (2.5b) and (2.6):
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8β∈B, 8i, j∈ I=i < j,8h∈Ci,8k∈Cj

wβ0hi � wβ0kj

� �2 � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �24 352

¼ sβhkij � rβhkij,
ð3:11Þ

8β∈B, 8i, j∈ I=i < j,8h∈Ci,8k∈CjY
β∈B

rβhkij ¼ 0, ð3:12Þ

where sβhkij ∈ [0, D2
β] and rβhkij ∈ [0, D2

β] (actually, smaller upper bounds could

be chosen for both sets of variables).

Indeed, for each pair of components h and k, of items i and j, respectively,
equations (3.12) guarantee that for at least one β, the corresponding term rβhkij is
zero, and equations (3.11) that the non-intersection conditions hold for such a β, i.e.��wβ0hi � wβ0kj

�� � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �

. More precisely, constraints (2.5a)

and (2.5b) correspond to equations (3.11), whilst equations (2.6) correspond

to (3.12).

As the non-intersection constraints (3.11) and (3.12) are most likely hard to

tackle, they are therefore considered in terms of fixed penalization in the ad hoc

objective function we are going to introduce. All remaining linear (MIP),

constraints are kept as such. A formulation aimed at satisfying as much non-
intersection conditions as possible is the following:

min
X

β∈B,
i, j∈ I=i < j,
h∈Ci, k∈Cj

wβ0hi � wβ0kj

� �2 � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �24 352

� sβhkij þ rβhkij

8<:
9=;

2

8>>>>><>>>>>:
þ KP

X
i, j∈ I=i < j,
h∈Ci, k∈Cj

Y
β∈B

rβhkij

9>>=>>;
ð3:13Þ

where KP is a positive coefficient (that represents an appropriate ‘weight’ associ-

ated to the product terms).

It is immediately seen that the objective function (3.13) is non-negative. A zero-

global-optimal solution exists if and only if the constraints ((2.1), (2.2), (2.3), (2.4),

(2.5a), (2.5b) and (2.6) of the generalMIPmodel of Sect. 2.1 (with all variables χ set to
one) delimit a feasible region. Thisobjective function thus ‘minimizes’ the intersection

between items. Its global optima, moreover, guarantee an ultimate (non-approximate)
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solution to the feasibility subproblem under discussion. It could be observed that for

each set of variables ϑ, (3.13) is a polynomial function (providing, as such, potential

algorithmic advantages; on global polynomial optimization, see, for instance,

De Loera et al. 2012; Hanzon and Jibetean 2003; Schweighofer 2006).

Alternative fixed penalization can be considered (e.g. Cassioli and Locatelli

2011). We shall introduce here one objective function with fixed penalization
correlated to the non-intersection constraints only:

min

X
β∈B,
i, j∈ I=i < j,
h∈Ci, k∈Cj

max � wβ0hi � wβ0kj

� �2 þ 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �24 352

, 0

8<:
9=;

8>>>>><>>>>>:
þ KP

X
i, j∈ I=i < j,
h∈Ci, k∈Cj,

Y
β∈B

rβhkij

9>>=>>;
ð3:14Þ

As the previous one, this objective function is also non-negative and each zero-

global-optimum corresponds to a solution of the feasibility problem.

Remark 3.3 Both the MINLP formulations discussed above contain only linear

(MIP) constraints. This aspect could be advantageous, when the MINLP solvers

utilized treat the model linear sub-structure independently (e.g. The MathWorks

2012). It is moreover worth noticing that all functions involved in both MINLP

formulations are Lipschitz-continuous and, consequently, Lipschitzian solvers can

be profitably adopted (e.g. Pintér 1997, 2009). Indeed, all constraints are of the MIP

type and (3.13) is smooth. As far as (3.14) is concerned, it is sufficient to observe

that the termsmax � wβ0hi � wβ0kj

� �2 þ 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �" #2

, 0

8<:
9=; keep

their Lipshitz-continuous characteristic (e.g. Pintér 1996).

3.2 Implications and Valid Inequalities

As is well known, in the MIP context, remarkable research effort has been devoted

to looking into general approaches to tighten the model. This means to make its

linear relaxation an as precise as possible approximation of the convex hull relative
to the mixed-integer solutions (e.g. Andersen et al. 2005; Ceria et al. 1998;

De Farias et al. 1998; Jünger et al. 2009; Marchand et al 1999; Nemhauser and

Wolsey 1990; Van Roy and Wolsey 1987; Weismantel 1996; Wolsey 1989).
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Polyhedral analysis (e.g. Atamtürk 2005; Constantino 1998; Dash et al. 2010;

Hamacher et al. 2004; Padberg 1995; Pochet and Wolsey 1994; Yaman 2009) is

adopted to this purpose, in order to find valid inequalities (e.g. Aardal et al. 1995;

Cornuéjols 2008; Padberg et al. 1985; Wolsey 1990, 2003). These are aimed at

tightening the MIP model under consideration. The introduction of such auxiliary

conditions is particularly suitable when a branch-and-cut approach (e.g. Andreello

et al. 2007; Balas et al. 1996; Cordier et al. 2001; Padberg 2001; Padberg and

Rinaldi 1991) is followed.

Differently from more traditional MIP algorithms, such as branch-and-bound
(where all model constraints have to be set a priori) with a branch-and-cut process,
the valid inequalities are activated just when needed and dropped when not required.

With reference to the general MIP model (Sect. 2.1), for items consisting of

single parallelepipeds to load into a parallelepiped (see Sect. 2.1, special case),

some valid inequalities, holding under specific assumptions, have been put forward

by Padberg (1999). This has been done to tackle the problem by means of a

dedicated branch-and-cut approach. Some quite simple conditions, not restricted

to the case of single parallelepipeds, are considered hereinafter (limited subsets of

them can be advantageously taken into account also when a branch-and-bound
approach is adopted). A first group of inequalities is hence introduced:

8i, j∈ I=i < j,8h∈Ci,8k∈CjX
β∈B

σþβhkij þ σ�βhkij
� �

� χi,
ð3:15aÞ

8i, j∈ I=i < j,8h∈Ci,8k∈CjX
β∈B

σþβhkij þ σ�βhkij
� �

� χj:
ð3:15bÞ

These, together with (2.6), for each pair of components h and k of items i and j,

respectively, imply that one, and only one, of the relative variables σþβhkij and σ�βhkij
has to be equal to one if both items are loaded; all of them are equal to zero

otherwise. It is immediate to notice that in the general MIP model of Sect. 2.1, in

case both items are picked, more than one of the variables σþβhkij and σ�βhkij could be

non-zero. The above extended version is hence tighter than the previous, without

any loss of generality, as no integer-feasible solutions are excluded.
Some straightforward examples of necessary conditions, concerning pairs of

items, in particular situations, can be considered. Firstly, let us consider the very

simple case when item i and j cannot be aligned with respect to the axis wβ (because

they would exceed the dimension Dβ, for all possible orientations of both). In such

an occurrence, the conditions below can be explicitly posed:

8h∈Ci,8k∈Cj σþβhkij ¼ σ�βhkij ¼ 0:
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In addition to these, a set of more complicated implications, correlating align-

ment and orientation, could be introduced. An example, dealing with the special

case of Sect. 2.1, relative to single parallelepipeds, is reported here.1 Considering

items i and j, if L1i + L2j > Dβ, they cannot be aligned along the axis wβ, with either
L2j or L3j parallel to it. And analogously, this holds if L1j + L2i > Dβ. The follow-

ing inequalities can hence be set:

8β, 8i, j∈ I=i < j, L1i þ L2j > Dβ δ2βj þ δ3βj � 1� σþβij � σ�βij,

8β,8i, j∈ I=i < j, L1j þ L2i > Dβ δ2βi þ δ3βi � 1� σþβij � σ�βij:

These conditions can easily be extended when tetris-like items are involved,

i.e. when the general MIP model of Sect. 2.1 is considered. This gives rise to

inequalities of the type
X

ω∈Ω
0
βhkij

ϑωj � 1� σþβhkij � σ�βhkij, where Ω
0
βhkij (i < j) is the

set of orientations (of j), incompatible with the alignment conditions of the com-

ponents h (of i) and k (of j). Similar expressions hold for i, with Ω
0
βhkji (i < j).

Straightforward transitivity conditions (e.g. Padberg 1999; Fasano 2008) can,

moreover, be looked upon, when triplets of single parallelepipeds are taken into

account. They can easily be extended when actual tetris-like items are involved.

Focusing on the triplet of components h, h0, h00 of items i, i0, i00, respectively, if,
along the axis wβ, h precedes h0 and h0 precedes h00, then h precedes h00, along the
same axis. This implication is expressed by

8β∈B,8i, i0 , i00 ∈ I=i < i
0
< i

00
,8h∈Ci,8h0

∈Ci
0 ,8h00

∈Ci
00

σ�
βhh

00
ii
00 � σ�

βhh
0
ii
0 þ σ�

βh
0
h
00
i
0
i
00 � 1:

Still referring to the same triplet of components, the further implication holds: if
L1hi þ L

1h
0
i
0 þ L

1h
00
i
00 > Dβ, then the whole triplet cannot be aligned along the axis

wβ. This is expressed by the following constraints:

8β∈B, 8i, i0 , i00 ∈ I=i < i
0
< i

00
, 8h∈Ci, 8h0

∈Ci
0 , 8h00

∈Ci
00=L1hi þ L

1h
0
i
0 þ L

1h
00
i
00 > Dβ

σþ
βhh

0
ii
0 þ σ�

βhh
0
ii
0 þ σþ

βh
0
h
00
i
0
i
00 þ σ�

βh
0
h
00
i
0
i
00 þ σþ

βhh
00
ii
00 þ σ�

βhh
00
ii
0 � 2:

The proof is straightforward. It is sufficient to notice that being the hypothesis

stated, at the most, two components may be aligned along the axis wβ and that

for each pair of components, either the corresponding variable σþβ or σ�β must

be zero.

1 Note These conditions have been introduced by S. Gliozzi, senior managing consultant at IBM

GBS Advanced Analytics and Optimization.
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As a further observation, note that the implications correlating alignment and

orientation, as presented in this section, would be susceptible to extensions involv-

ing chains of more than three components. Their introduction could provide prac-

tical advantages in the perspective of a dedicated branch-and-cut approach.

Remark 3.4 When the layer constraints reported in Sect. 2.3.5 are introduced in the

model, inequalities (3.15a) and (3.15b) can properly be extended. Moreover, the

necessary conditions 8i∈ I w3i � min
i
0 6¼i

L
1i

0
� �

χ
_
i can explicitly be added, following

the perspective presented in this section.
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Chapter 4

Heuristic Approaches for Solving

the Tetris-like Item Problem in Practice

As easily gathered, the general MIP model, conceived to sort out the tetris-like item
packing problem (Sect. 2.1), is usually very hard to solve. In this chapter the

relevant intrinsic difficulties are examined first (Sect. 4.1). A heuristic philosophy

is then emphasized to tackle efficiently the problem, even if just nonproven optimal

solutions can, in general, be obtained.

The basic concept of abstract configuration is introduced (Sect. 4.2). Chapter 3

reformulations, devised to solve the feasibility subproblem, are exploited to

look into an initial approximate solution (Sect. 4.3.1). Two alternative heuristic

procedures, thought up to improve it recursively, until a satisfactory result is

reached, are discussed next (Sects. 4.3.2 and 4.3.3). The possibility of interacting

with the solution process is also outlined (Sect. 4.3.4).

4.1 Intrinsic Difficulties

Broad classes of packing problems are notoriously well known for being NP-hard
(as regards this classification and, more in general, the theoretical aspects related to

computational complexity and approximability, see, for instance, Ausiello et al. 2003,
Chlebı́k and Chlebı́ková 2006, Goldreich 2008).

The general MIP model reported in Chap. 2 is, per se, extremely hard to solve in

practice, when real-world instances have to be dealt with. This holds, even if only

single parallelepipeds are involved and no additional conditions are set (see Sect. 2.1,

special case). In this circumstance, insights on its complexity can be provided by

looking upon the model overall structure (N indicates here the total number of single

parallelepipeds):

O(3N(N � 1)) binary variables σ
O(9N ) binary variables δ
O(N ) binary variables χ
O(6N ) orthogonality constraints

G. Fasano, Solving Non-standard Packing Problems by Global
Optimization and Heuristics, SpringerBriefs in Optimization,
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O(3N ) domain constraints

O 7
N N � 1ð Þ

2

� �
non-intersection constraints (of which O(3N(N � 1))big-Ms)

The model scale increases quite dramatically when N actual tetris-like items are

involved. In order to discuss this case, we shall indicate, for each item i, with |Ci| the

cardinality of the set Ci relative to its components. The total number of pairs of

components, belonging to different items, is denoted by NC and computed as

follows:

NC ¼
X
i∈ I

Cij j
2

 !
�
X
i∈ I

��Ci

��
2

� �
, ð4:1Þ

where the symbol
N1

N2

� �
represents, in general, the N2-combinations of a set

containing N1-elements. The model overall structure is hence represented by the

following:

O(24N ) binary variables θ
O(N ) binary variables χ
O(6NC) binary variables σ
O(7NC) non-intersection constraints (of which O(6NC) big-Ms).

Even at a first glance, the intricacy of both scenarios mentioned above is not only

related to the binary variables. Indeed, it primarily depends on the presence of the

big-M constraints, related to the non-intersection conditions. The occurrence of the
implicit transitivity conditions (see Sect. 3.2), moreover, provides a significant

insight on the hidden model difficulties. The following proposition shows how

their total number can be computed.

Proposition 4.1 Given N tetris-like items, the total number of transitivity condi-

tions is 18
X

i, i0, i00 ∈ I=
i < i0 < i00

Ci �j jCi
0 �j jCi

00
�� ��.

Proof To prove this proposition we can firstly concentrate on the particular case of

Sect. 3.2, where the sequence h precedes h0 and h0 precedes h00 (h ≺ h0 ≺ h00) along
the (general) axis wβ is considered. The conditions 8β∈B, 8i, i0, i00∈ I=i < i0 < i00,
8h∈Ci, 8h0 ∈Ci

0, 8h00 ∈Ci
00σ�βhh00ii00 � σ�βhh0ii0 þ σ�βh0h00i0i00 � 1 are therefore recalled.

Selecting (for the time being) the specific axis wβ, for a given pair of components

h and h0 of i and i0, respectively, there are Ci
00

�� �� such conditions; for a given component

h of i, they are Ci
0
�� � ��Ci

00
�� ��, so that their total number is Ci

�� � ��Ci
0
�� � ��Ci

00
�� ��. This

corresponds to the order relation h∈Cið Þ≺ h
0
∈Ci

0
� �

≺ h
00
∈Ci

00
� �

. There are 3!

permutations of such a kind, for which the above transitivity conditions have to be
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properly rearranged (utilizing appropriately the variables σ� and σ+). This must hold

for any triplet i, i0 and i00, such that i < i0 < i00, and for each axis wβ. □

Remark 4.1 When all the tetris-like items involved have the same number (jCij,
8 i ∈ I) of components, the total number of transitivity conditions is 18

��Ci

��3 N
3

� �
.

To consider a quantitative example, an instance involving 50 items, of five compo-
nents each, the order of magnitude relevant to all the non-intersection (big-M)

constraints is 6 � 3 � 104; that of the transitivity conditions is 4 � 107. Section 4.2

investigates the sets of variables σ+ and σ� (at most one for each pair of components

belonging to different items) that, if fixed to one, are compliant with the transitivity
implications. These variables σ are called transitivity compatible.

4.2 Abstract Configurations

The abstract configuration concept is introduced by the following definitions.

Definition 4.1 Constraints of the types

wβ0hi � wβ0kj � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �

,

wβ0kj � wβ0hi � 1

2

X
ω∈Ω

Lωβhiϑωi þ Lωβkjϑωj
� �

,

corresponding to either σþβhkij ¼ 1 or σ�βhkij ¼ 1 in (2.5a) and (2.5b), respectively,

are called relative position constraints.

Definition 4.2 Given a set of N items and all the NC pairs of components,

belonging to different items, an abstract configuration consists of NC relative

position constraints (one and only one for each pair) compatible in any unbounded

domain.

Remark 4.2 From Definition 4.2, it follows immediately that, for a given set of

N items, an abstract configuration corresponds to a set of NC transitivity-compatible

σ variables fixed to one.

To interpret the concept of abstract configuration, it is opportune to restrict the

discussion to the simpler case of single-component items (see Sect. 2.1, special case).

Theoretically, in such a case, all the abstract configurations, associated to a given set
of N items, could be directly derived by adopting a three-dimensional generalization

of the square grid graph (e.g. Weisstein 2012). This is the graph whose vertices

correspond to the points ofN3 � R3 (referred to an orthogonal reference frame), with

integer coordinates that are in the range 0, . . ., N � 1 and with any two vertices

connected by an edge, whenever they are at unit distance; see Fig. 4.1.
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Since the relative positions are to be considered in an unbounded domain, from

this ‘topological’ perspective, the actual dimensions of the items can be totally

neglected. Items can, thus, simply be considered as geometrical points and their

relative placement represented by N nodes (intended as points of N3) of the

aforementioned grid. A set of corresponding relative position constraints can

hence be selected to generate an abstract configuration. If, for instance, item i is
associated to node (0,0,0) and item j is associated to node (N � 1, N � 1, N � 1),

their coordinate relative distance on the grid, with respect to each axis, is (N � 1)

units and i precedes j in all directions. This, in an unbounded domain, is compliant,

with the following relative position constraints:

w1j � w1i � 1

2

X
α∈A

Lαiδα1i þ Lαjδα1j
� �

,

w2j � w2i � 1

2

X
α∈A

Lαiδα2i þ Lαjδα2j
� �

,

w3j � w3i � 1

2

X
α∈A

Lαiδα3i þ Lαjδα3j
� �

:

Any of the above relative position constraints can thus be selected, as the one

corresponding to the pair of items (i,j), to create an abstract configuration (relative

to the given set of N items). Similar considerations hold for all the possible
N3

N

� �
associations of N items to the N3 grid nodes. It is worth noticing that, in any

unbounded domain, each given abstract configuration yields an infinity of packing

scenarios, obtainable by simple roto-translations of the items. This suggests that

even when an abstract configuration is forced, if compliant with the given domain,

the items still have a certain freedom of movement.

As it is immediately understood, even for relatively small-scale instances,

the number of all possible associations of N items to N3 grid nodes is immense.

Fig. 4.1 Three-dimensional grid
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Of course, it is higher than that of the abstract configurations which can actually be
generated, as the following example shows. Let us consider the set of three items i,
i0 and i00, together with the two following distinct associations A1 and A2:

A1Þ i ! 0; 0; 0ð Þ, i
0 ! 2; 0; 0ð Þ, i

00 ! 1; 2; 0ð Þ;
A2Þ i ! 0; 1; 0ð Þ, i

0 ! 2; 1; 0ð Þ, i
00 ! 1; 2; 0ð Þ:

These are compliant with the same relative position constraints and, thus, give

rise to the same corresponding abstract configurations.
Considering also that some associations ‘dominate’ others, in the sense that their

corresponding sets of abstract configurations strictly contain those of the ‘domi-

nated’ ones, several further redundancies are expected. It is gathered that quite a lot

of duplications could be eliminated. The number of grid nodes could be reduced, for

instance, taking into account the actual size of the domain D. Indeed (see Fig. 4.1),
its maximum value, on each axis wβ, respectively, is given by

8β∈B Nβ ¼ maxPN0 �N

i¼1

L1i�Dβ

N
0

n o
:

It is, nevertheless, obvious that any exhaustive approach, based on the genera-

tion of all possible abstract configurations, would be impracticable, in real-world

cases. It is, moreover, quite intuitive that a generalized use of the three-dimensional

grid, to cope also with the case of tetris-like items (and not only of single parallel-

epipeds), would be quite tricky indeed.

The basic idea of the heuristic approaches put forward in Sect. 4.3 addresses

instead the exploitation of a number of ‘good’ abstract configurations. The follow-
ing discussion focuses therefore on the capability of extracting, from approximate

solutions (with possible item overlap), abstract configurations that, at least par-

tially, consider the actual characteristics of the problem (e.g. conditions on items,

domain and balancing). The thus obtained abstract configurations are then

exploited to give rise to integer-feasible (even if, generally, suboptimal) solutions,

compliant with all the given conditions (including, most certainly, orthogonality,
domain and non-intersection).

Given any approximate solution, the objective of the abstract configuration
generation consists of assigning one and only one relative position constraint to

each pair of components, belonging to different items (in the following, this is

understood, when referring to any pair of components).
The (arbitrary) rules listed below represent very simple selection criteria the

abstract configuration generation could be based on; see Fig. 4.2:

• If the components do not intersect and the non-intersection conditions hold only

with respect to one axis, the corresponding relative position constraint is

selected.
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• If the components do not intersect and the non-intersection conditions hold for

more than one axis, the relative position corresponding to the maximum distance

between the projections of the respective coordinate centres is selected.

• If the components intersect, the relative position corresponding to the maximum

distance between the projections of the respective coordinate centres is selected.

Figure 4.2 provides a (two-dimensional) representation of the above selection

rules. Just single-component items, denoted as i, i0 and i00, respectively, are consid-
ered, to make the example clearer (the generalization to actual tetris-like items is

straightforward). As easily seen in the figure, they are subject to the following

conditions:

• Items i and i0 projections overlap on both the axes w1 and w2, with

w
2i

0 � w2i > w
1i

0 � w1i.

• Items i and i00 projections neither overlap on the axis w1 nor on w2, with

w
1i

00 � w1i > w
2i

00 � w2i.

• Items i0 and i00 projections do not overlap on the axis w1 only, with w
1i

00 > w
1i

0 .

Based on the rules listed above, the following abstract configuration (relative to
the single-component items i, i0 and i00) is extracted:

w
2i

0 � w2i � 1

2

X
α∈A

Lαiδα2i þ Lαjδα2i0
� �

,

w
1i

00 � w1i � 1

2

X
α∈A

Lαiδα1i þ Lαjδα1i00
� �

,

w
1i

00 � w
1i

0 � 1

2

X
α∈A

Lαiδα1i þ Lαjδα1i00
� �

:

w2

w2i”

w2i’

i’

i”

iw2i

w1i w1i’ w1i” w1

Fig. 4.2 Abstract
configuration derived

from an approximate

solution (two-dimensional

representation of single-

component items)
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Remark 4.3 As the above selection criteria are not based on rigorous reasoning, it is

evident that a number of different (and supposedly more sophisticated) empirical

rules could be explored. In case of intersection, the third rule proposed above could

be, for instance, substituted with the one that selects the relative position

corresponding to the projection where the minimum overlap occurs.

4.3 Solution Search

As already pointed out, the generation of abstract configurations, on the basis of

approximate solutions, represents a fundamental concept of the overall philosophy

adopted here. The first step of both the heuristic processes that are to be addressed in

this section focuses, therefore, on the creation of a high-quality starting approxi-

mate solution. It is trusted, indeed, that the ‘closer’ to an actual solution it is, the

‘better’ the generated abstract configuration results. Consequently, less computa-

tional effort is needed to obtain a satisfactory ultimate result. This step is denoted as

initialization.
The heuristic processes outlined in Sects. 4.3.2 and 4.3.3, respectively, provide,

as a matter of fact, two alternative search strategies to work out (at least at a

suboptimal level) the general MIP model (with possible additional conditions).

As an overall rule of thumb, the first is more oriented to solving quite tricky

instances but with a relatively limited total number (<100) of item components
involved. The second is mainly proposed for larger ones. A joint use of the two (also

in a parallelized mode) could be subject to further investigation.

4.3.1 Initialization

The reformulated models of Sect. 3.1, aimed at solving the feasibility subproblem,

can properly be adapted to serve the initialization purpose. Partial LP relaxations,
either of the first (Sect. 3.1.1) or the second (Sect. 3.1.2) linear reformulations

(including all the given additional conditions or a subset of them), are hence

utilized. They have the scope of finding a first approximate solution, to be refined

(if opportune) by the nonlinear reformulation (Sect. 3.1.4).

In all such approximate solutions, the overlap of items is allowed, but it is

minimized, in the sense specified, for each reformulated version, in Sect. 3.1. On

the contrary, both the orthogonality and domain constraints are imposed. Of course,

the more the additional conditions are included (even if in approximate versions),

the more the obtained starting solution is a realistic representation of the actual

problem to solve.

Hereinafter, we shall reexamine, in this perspective, the three reformulations, one

at a time. In all these cases, we shall still consider the problem in terms of feasibility,
as it will be tentatively assumed, a priori, that all the given items can be loaded.
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This way, all variables χ are set to one and the constraints involving them readjusted

properly. In each reformulation, as stated above, constraints (2.1), (2.2), (2.3) and

(2.4) are maintained. In the following discussion, for the sake of simplicity, the

additional conditions are neglected, as it is understood that they can be properly

added each time, accordingly to the specific problem to deal with.

4.3.1.1 Use of the First Linear Reformulation

A partial LP relaxation of the first linear reformulation is carried out by eliminating

inequalities (3.2a), (3.2b) and (3.3), whilst keeping (3.1a), (3.1b) and the objective
function (3.4) unaltered.

Remark 4.4 It should be observed that, even when no additional conditions are

present, the (partially) LP-relaxed model is still of an MIP type. This is due to the

presence of the orientation variables. When the number of components involved is

very high, the orientation of some (or all) items could be pre-fixed (on the basis of

some empirical criterion). Analogously, it could be done for the biggest side.

4.3.1.2 Use of the Second Linear Reformulation

The second linear reformulation can be adopted, as an alternative to the first. The

non-intersection constraints (3.5a) and (3.5b) are kept the same, whilst, as partial

LP relaxation, inequalities (3.6) are dropped. The objective function (3.7) is

maintained as is. This way, whilst the model is significantly simplified, it is no

longer guaranteed that each component is actually enclosed by the associated

parallelepiped (whose volume is maximized, in the sense specified in Remark 3.2).

If, moreover, all components, once reduced to the corresponding cubes of sides

L1hi, can actually be loaded into D, the following bounds are advantageously

imposed. They are aimed at mitigating the mutual competition among items,

i.e. avoiding that excessive volume is attributed to some components to the detri-

ment of others:

8β∈B,8i∈ I, 8h∈Ci L1hi � lβhi � L3hi: ð4:2Þ

Otherwise, if not all the cubes of sides L1hi can be loaded, the lower bounds

appearing in (4.2) may be properly reduced, for instance, by subsequent attempts.

Alternatively, they could be rewritten as L1hi � rβhi � lβhi, where the terms rβhi are
non-negative variables. In such a case, the objective function (3.7) can be

substituted with max
X

β∈B,
i∈ I, h∈Ci

lβhi � KRrβhi
� �

, where KR represents an appropriate

(positive) coefficient.
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It should, moreover, be noticed that the approximate solution obtained by the

second linear reformulation, when the (lower) bounds (4.2) are introduced, provides

a set of transitivity-compatible variables σ (relative to all the items involved). Since

they already represent an abstract configuration, no further generation of it is

needed.

If the model variation outlined at the end of Sect. 3.1.2 (substituting (3.6) with

(3.8)) is to be applied, a possible ‘relaxation’ can simply be obtained by renouncing

the global optimal solution (cf. Sect. 4.3.1.3) and thus admitting possible intersec-

tions among items (quite satisfactory suboptimal solutions are expected to be found

with a moderate computational effort).

4.3.1.3 Use of the Nonlinear Reformulation

As already mentioned, this model is aimed at improving the approximate solutions

obtained either by the first or second reformulations. The MIP solution obtained by

either the first or second linear reformulation is then inherited to initialize its related

Mixed Integer Non-Linear Programming (MINLP) search process.

In this case, the ‘relaxation’ just concerns the solution quality, in the sense that

no global optimal solution is requested. Looking for local optimal solutions only,

indeed, means trying to minimize the item overall overlap, but, obviously, it is not

guaranteed that the non-intersection constraints are satisfied.

Remark 4.5 A possible alternative to the above nonlinear reformulation consists of

substituting, in the first linear one, the objective function (3.4), with the following:

max
X

β∈B,
i, j∈ I=i < j,
h∈Ci, k∈Cj

dþβhkij � d�βhkij
� �2

D2
β

:

This way, the item overall intersection is no longer minimized with direct

‘competition’ between each pair of variables dþβhkij and d�βhkij, relative to the same

reference frame axis wβ. Nonetheless, it should be noticed that, with this formula-

tion, even the attainment of a global optimum is not up to guaranteeing that no

intersection occurs.

Remark 4.6 It should be noticed that the total superposition of the centres of two

components can occur both with the first linear reformulation and the second one,

when the (lower) bounds (4.2) are neglected. In this case, the approximate solution

can properly be perturbed, in order to get rid of this ambiguity (with the rules

presented, for instance, in Sect. 4.2, to generate the abstract configuration, indeed,

in case of such superposition, no relative position could be selected). This aspect is,

however, not considered here, for the sake of simplicity.
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Remark 4.7 It is gathered that, as a first (and quite daring) attempt, the abstract

configuration derived from the initialization step could be directly forced into the

general MIP model, requesting that all items are loaded. To do this, it would be

sufficient to substitute all the non-intersection constraints (2.5a), (2.5b) and (2.6)

with the available relative position ones. It is obvious, however, that an integer-

feasible solution could hardly be found this way, even for very simple instances.

Remark 4.8 As some items may have prefixed orientation, this aspect could be

taken into account also during the initialization step (within the limits implied by its

characteristic of admitting overlap). When utilizing the first linear reformulation or

the nonlinear one, the imposition of the given pre-orientations is straightforward.

The situation is more complicated when the second linear reformulation is adopted.

In such a case, the related model can be properly modified.

Let us suppose, for the sake of simplicity, that all items are pre-oriented.

Inequalities (3.5a) and (3.5b) can be modified as follows:

8β∈B,8i, j∈ I=i < j,8h∈Ci,8k∈Cj

wβ0hi � wβ0kj � 1

2
L

0
βhi � l

0
βhi þ L

0
βkj � l

0
βkj

� �
� Dβ 1� σþβhkij

� �
,

8β∈B,8i, j∈ I=i < j,8h∈Ci,8k∈Cj

wβ0kj � wβ0hi � 1

2
L

0
βhi � l

0
βhi þ L

0
βkj � l

0
βkj

� �
� Dβ 1� σ�βhkij

� �
:

Here, for each component h of item i, the terms L
0
βhi represent its pre-oriented

sides, and l
0
βhi are non-negative variables. The objective function min

X
β∈B,
i∈ I, h∈Ci

l
0
βhi can

then substitute (3.7) and bounds (4.2) have to be properly rewritten.

Remark 4.9 When the number of items/components involved is large, the initial-

ization step, independently from the formulations adopted, may require quite a

significant computational effort. To cope with this practical difficulty, the items

involved in the original instance can be partitioned in subsets and added incremen-

tally. At each step, the abstract configuration corresponding to the items already

loaded is imposed (taking appropriate precautions to prevent possible infeasibil-

ities). Once a new subset of items has been added, the corresponding solution gives

rise to an upgraded abstract configuration, relevant to all the so-far-loaded items.

Notice that a similar recursive approach could advantageously be adopted by

utilizing the non-restrictive reformulation of Sect. 3.1.3. Whenever it stops

yielding improvements, either the first or the second linear reformulations can

take its place in the process, in order to eventually include all the items of the

original instance. It is understood that the use of the non-restrictive reformulation

could be quite advantageous, since, for each (suboptimal) solution found, no

overlap can occur.
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4.3.2 Heuristic Process Based on Suggested Abstract
Configurations

The heuristic process outlined here stresses the idea of inheriting the abstract
configuration derived from the initialization step (Sects. 4.2 and 4.3.1). It is

exploited (by subsequent adaptations) to obtain a satisfactory solution to the general

MIP model (inclusive of the additional conditions if present, see Sect. 2.3).

The abstract configuration and its modifications, achieved during the whole pro-

cedure, are ‘suggested’ recursively, adding or subtracting, time after time, items

from the given set. This is carried out by means of a dichotomous approach.

In order to ‘suggest’ any abstract configuration, the general MIP model objec-
tive function (2.7) has to be properly modified. For this purpose, let us firstly recall

that, as pointed out in Remark 4.2, any abstract configuration can be represented by
a set of (transitivity-compatible) variables σ+ and σ�, fixed to one. This way, on the
basis of the abstract configuration that is to be ‘suggested’, the following coeffi-

cients σ̂ þ
βhkij and σ̂ �

βhkij ∈ 0; 1f g are introduced:

8β∈B, 8i, j∈ I=i < j,8h∈Ci,8k∈Cj

σ̂ þ
βhkij ¼ 1 if the relative position constraint wβ0hi � wβ0kj � 1

2

X
ω∈Ω

Lωβhi ϑωi þ�
LωβkjϑωjÞ belongs to the abstract configuration; σ̂ þ

βhkij ¼ 0 otherwise.

Analogous constraints can be stated for σ̂ �
βhkij. The objective function below

substitutes then (2.7):

max
X

β∈B,
i, j∈ I=i < j,
h∈Ci, k∈Cj

σ̂ þ
βhkijσ

þ
βhkij þ σ̂ �

βhkijσ
�
βhkij

� �
: ð4:3Þ

As is easily realized, this new optimization criterion has the effect of inducing

each variable σ, corresponding to a non-zero σ̂ , to attain the value of one, in

compliance with the ‘suggested’ abstract configuration. This has the expected

effect of obtaining an integer-feasible solution, when existing, by a dramatically

reduced computational effort.

In order to perform the heuristic process under consideration here, a first attempt

is made by imposing that all the given items must be loaded. The abstract
configuration derived from the initialization step is thus adopted. If any integer-
feasible solution to the general MIP model, modified with the ad hoc objective
function (4.3), is obtained, the given problem is solved. In the opposite case, the

following dichotomous procedure is started.
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An initial subset of all the given items is taken, by imposing (still tentatively)

that all of them must be loaded. If any integer-feasible solution is obtained, a new

abstract configuration (relative to the whole set of items) is derived, simply by

carrying out a new initialization step: for all the items already loaded, their relative
positions are fixed (when the nonlinear reformulation is used, the model includes

them, as explicit constraints). A new abstract configuration is then generated.

In the opposite case, i.e. when the above subset of items does not allow for any

integer-feasible solution, some of them are rejected, until a successful result is

obtained. The heuristic process is then executed by activating, recursively, either

the forward or the backward steps just described. Since the process tries and

modifies, time after time, the ‘suggested’ abstract configurations as little as possi-
ble, the whole effect is that of performing an overall depth-first strategy.

Remark 4.10 Different versions of the heuristic approach described in this section

could of course be considered. When ‘suggesting’ the current abstract configura-

tion, for instance, some of the corresponding relative position constraints could be

tentatively forced.

4.3.3 Heuristic Process Based on Imposed Abstract
Configurations

A heuristic procedure, based on the imposition of abstract configurations , has been
previously introduced (Fasano 2008) to tackle instances involving only single

parallelepipeds to load into a convex domain. The adopted approach has been

refined and extended to the case of actual tetris-like items, as outlined hereinafter.

This process, summed up by Fig. 4.3, is aimed at generating and imposing a

sequence of ‘good’ abstract configurations and at solving correspondingly, step by

step, a reduced MIP model, until a final satisfactory solution is attained.

The reduced model (inclusive of the additional conditions, when present; see

Sect. 2.3) is derived, each time, from the general one (see Sect. 2.1) by eliminating

all the redundant non-intersection constraints and variables σ, not contemplated by

the abstract configuration imposed.

The packingmodule (see Fig. 4.3) is assigned the task of solving, time after time,

the reduced models. Items are rejected, if necessary, to make the current abstract
configuration (referred to the whole set of the given items) compatible with the

given domain D (and the additional conditions, if any). The item-exchange and

hole-filling modules (see Fig. 4.3) are employed, during the whole process, to

provide new approximate solutions and supposedly improved abstract configura-
tions. The abstract configurations are generated (on the basis of what is discussed in
Sect. 4.2) from the approximate solutions obtained either by the initialization
(Sect. 4.3.1) or the hole-filling steps. When derived from this one, the relative
positions of the items previously loaded by the packing module are contemplated.

The item-exchange step directly provides a new abstract configuration, so that no
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proper generation activity has to be performed. The packing module is discussed

hereinafter, together with those dedicated to the item-exchange and hole-filling
steps, neglecting several details, unnecessary for an overall comprehension. The

general methodology is further outlined, suggesting a possible alternative approach.

4.3.3.1 Packing

The task of this module is that of obtaining an integer-feasible solution to the general
MIPmodel (with possible additional conditions, see Sects. 2.1 and 2.3) by imposing an

abstract configuration. The non-intersection constraints (2.5a) and (2.5b),

corresponding to the relative positions of the abstract configuration imposed, are kept

unaltered, with their associated variables σ. All the remaining ones are instead elimi-

nated. Inequalities (2.6) are reduced, for all the variables σ involved, to the following:

8i, j∈ I=i < j, 8h∈Ci, 8k∈Cj σþ=�
βhkij � χi þ χj � 1: ð4:4Þ

All other constraints and variables of the general MIP model (including possible

additional conditions) are kept and the objective function (2.7) still has the purpose
of maximizing either the overall loaded volume or mass.

As an interesting alternative, the non-restrictive reformulation (Sect. 3.1.3), with

all the relevant constraints, inclusive of possible additional conditions, and the

objective function (3.10) could be used. The imposition of the abstract configura-
tionswould be carried out as explained above, involving the appropriate constraints.

Fig. 4.3 Heuristic process based on the abstract configuration imposition
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Remark 4.11 It can immediately be observed that because of constraints (4.4), the

integrality condition on the variables σ may be dropped, so that they can simply be

considered as continuous in the interval [0,1]. Furthermore, for each pair of com-

ponents, one and only one of the non-intersection constraints (2.5a) and (2.5b) is still

present, leading to a dramatic reduction of the original model dimension.

4.3.3.2 Item Exchange

This module is aimed at perturbing and tentatively improving the abstract config-
uration (referred to the whole set of items), corresponding to the current packing
solution. An index permutation p among the set of items (and consequently in all

the relative position constraints) is thus executed: 8 i ∈ I, i ! p(i). In such a way,
the overall effect consists of exchanging some of their relative positions, within the

given abstract configuration, providing a new one.

In order to carry out (at least supposedly) promising exchanges, the following

heuristic rationale, open to different possible versions, is proposed. It is sketched in

Fig. 4.4. Picked items are exchanged with bigger non-picked items (or with items

with bigger mass, if this corresponds to the optimization criterion chosen).

Non-loaded items can also be exchanged. The way the above exchanges are

implemented determines the specific strategy followed.

Remark 4.12 The item-exchange module performs actions likely to be advanta-

geous in terms of loaded volume (or mass), just by performing permutations. It does

Fig. 4.4 Item-exchange

rationale (two-dimensional

representation)
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not take into account (directly) any constraints of the general MIP model that are,

instead, contemplated by the packing module and (partially) by the hole-filling one.

Remark 4.13 Depending on the strategy adopted, this module, even by exchanging

a limited number of items, can accomplish either a ‘weak’ or a ‘strong’ perturbation

of the current abstract configuration. When a ‘weak’ perturbation strategy is

executed, the exchanged items are not too different (in terms of volume and/or

mass) from each other. They are, on the contrary, quite different, when a ‘strong’

perturbation strategy is chosen. When a ‘weak’ one is followed, the new abstract

configuration remains ‘close’ to the previous, and the same is expected for the

corresponding solution. This way, the general MIP model constraints (and

the additional ones, when present) are therefore indirectly considered, through the

‘neighbourhood’ with the previous solutions .

Remark 4.14 If not all the exchanges carried out, in the new abstract configuration,

between selected and nonselected items are feasible, the packing module is forced

to actuate some rejections. It is, however, possible to avoid this inconvenience.

Indeed, let us consider, for instance, the potential exchange of the picked item iwith
the non-picked one i0. It would be sufficient to duplicate, in the current packing MIP

model, for item i0, all relative position constraints corresponding to i and pose the

further condition: χi þ χi0 ¼ 1 (updating, subsequently, the abstract configuration,

on the basis of the obtained solution). This way the relevant exchange would not be

imposed (preventing the possible consequence of rejection of both items).

4.3.3.3 Hole Filling

Also this module is aimed at perturbing the packing module (current) solution.

Empty spaces are exploited by tentatively adding items extracted from the set Î E of
the currently excluded ones. This should produce an improved approximate solu-

tion (better in terms of volume or mass loaded, depending on the optimization

criterion chosen, but with possible intersections) and an expectantly improved

subsequent abstract configuration. To this purpose, the packing module current

solution is ‘immersed’ into a grid domain, giving rise to a set N̂ G of non-covered

grid nodes; see Fig. 4.5.

The basic idea of the hole-fillingmodule is that of selecting a subset N̂
0
G � N̂ G and

one Î
0
E � Î E, of the currently excluded items, potentially associable to the chosen

non-covered nodes (assuming Î
0
E

�� � ��N̂ 0
G

�� ��). This is aimed at obtaining (even if in an

approximate way, i.e. with possible overlap) more loaded volume (or mass).

Three sub-steps are then considered hereinafter:

• Non-covered node selection
• Excluded item selection
• Overall overlap minimization
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The first and the second are skipped immediately, whenever the relevant sets

have the desired cardinality.

4.3.3.4 Non-covered Node Selection

The following simple MIP model serves the scope of this sub-step. Denoting by ν

the index of the generic non-covered node of N̂ G, the binary variable ζν is

introduced, with the meaning ζν ¼ 1 if the corresponding (non-covered) node is

selected; ζν ¼ 0 otherwise.

The conditions below are then posed:X
ν∈ N̂ G

ζν ¼
��N̂ 0

G

��, ð4:5Þ

8ν, ν0
∈ N̂ G=ν < ν

0 eζνν0 � ζν, ð4:6aÞ

8ν, ν0
∈ N̂ G=ν < ν

0 eζνν0 � ζν0 , ð4:6bÞ

where eζνν0 ∈ 0; 1½ �. The objective function below selects the (non-covered) nodes

maximizing the overall relative distance:

Fig. 4.5 Hole-filling
rationale (two-dimensional

representation)
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max
X

β∈B,
ν, ν

0 ∈ N̂ G=
ν < ν

0

WGβν �WGβν0
� �2eζνν0 : ð4:7Þ

HereWGβν are the coordinates of the grid nodes. It is understood that alternative

selection criteria could be chosen. This step provides, as outcome, the subset N̂
0
G of

the selected non-covered nodes.

4.3.3.5 Excluded Item Selection

In this sub-step, N̂
0
Gi 	 N̂

0
G denotes for each item i∈ Î E, the set of selected nodes

that allow its placement inside the domain, for at least one orientation θωi. The
following binary variables are introduced with the meaning ξiν ¼ 1 if the excluded

item i is associated to the node ν; ξiν ¼ 0 otherwise. The following equations

guarantee that at most one item i∈ Î E is allocated to the same node:

8i∈ Î E, 8ν∈ N̂
0
G

X
i∈ Î E=
ν∈ N̂ Gi

ξiν � 1: ð4:8Þ

The following objective function substitutes (2.7) and maximizes the total

volume (or mass) of the excluded items, associated to the grid nodes:

max
X

i∈ IE=
ν∈ N̂ Gi

Kiξiν: ð4:9Þ

The outcome of this sub-step determines the set of the items to add.

4.3.3.6 Overall Overlap Minimization

To perform this step, either the first or second linear reformulation (Sects. 3.1.1 and

3.1.2) is adopted. For the items already loaded, in the current packingmodule solution,

the corresponding abstract configuration is imposed. All the non-intersection
constraints involving the items selected to be added are, instead, generated. In such

a way, the objective function minimizes the overall overlap. When balancing condi-

tions are present, the relevant constraints are taken into account, together with the

following equations:
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8β∈B,8i∈ Î E w

βi ¼

X
ν∈ N̂ Gi

WGβνξiν ð4:10Þ

(where w

βi are the centre of mass coordinates of the new items).

4.3.3.7 General Methodology Background and Alternative Approach

It is understood (see Fig. 4.3) that the item-exchange and hole-filling modules can be

activated in various sequences, following different strategies. The packingMIPmodel

is solved, each time, by adopting a branch-and-bound. Throughout this process, the
binary variables χ, σ and θ are handled sequentially, by groups of items, prioritized by

volume (or mass). A depth-first strategy is followed, during which subsets of binary

variables can temporarily be fixed. A lower bound cutoff is set, on the basis of the best-
so-far solution, and part of the items, previously picked, can be imposed, following a

greedy search approach. If a satisfactory solution is found, it is taken as the ultimate

one and the whole process ends. Otherwise, the best-so-far solution is stored and the

process continues, until a (previously stated) stopping rule intervenes.

It should be further observed that the heuristic process discussed in this section,

essentially, reproduces an overall (delayed) column generation philosophy (con-

sult, e.g. the topical entry of INFORMS Computing Society 2013). The packing
MIP mode, indeed, at each step, contemplates only a limited subset of variables σ,
corresponding to the current abstract configuration imposed. This model thus plays

the master’s role, in a column generation framework. The generation of ‘good’

abstract configurations, and the corresponding selection of the variables σ, instead,
represents the pricing phase, carried out by a heuristic process.

Before concluding this section, it is worth noticing that quite a promising

alternative, compliant with the overall methodology adopted, consists of utilizing

the non-restrictive reformulation of Sect. 3.1.3. This can substitute, tout court, both

the item-exchange and hole-filling modules.

As far as the first is concerned, a number of items are still selected as candidates

for the exchanges, as discussed above. Afterwards, all the relative position con-

straints, corresponding to the current abstract configuration, with at least one

candidate, are substituted with the full set of non-intersection inequalities (2.6),

(3.5a), (3.5b) and (3.9). The MIP model of the non-restrictive reformulation is

hence adopted, keeping, for all the remaining items, the imposed relative position
constraints. The objective function hence aims at carrying out the advantageous

exchanges, improving, if successful, the current solution. In such a case, a new

abstract configuration is directly generated. This is in general a larger perturbation

of the current one, with respect to that obtainable by the item-exchange module.

As it is easily gathered, similar considerations hold when the hole-fillingmodule is

considered. In this case, all the relative position constraints corresponding to the items

already loaded are kept. Those relevant to the items selected to be supposedly added

are, instead, again substituted by the full sets of non-intersection constraints. TheMIP
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model of the non-restrictive formulation tries and exploits (in a continuous mode) the

volume still available and no discretization of the domain is needed any longer. If an

improved solution is thus obtained, an upgraded abstract configuration is available.

4.3.4 Interaction with the Solution Process

As shown in Sect. 4.2, abstract configurations can easily be extracted by approx-

imate solutions of the original problem. These are provided by the initialization and
hole-filling modules. Any alternative process, however, up to yielding ‘good’

approximate solutions, could be activated as well. If, for example, a solution, of

an instance similar to the specific one to sort out, is available, then it could be

utilized to generate a first abstract configuration, skipping, directly, the initializa-
tion step. And similar opportunities could come up during the whole solution

process, whenever a new abstract configuration has to be generated.

This suggests a sort of parallelization of human and computational capabilities

by means of a two-way interface between the optimizer and a graphic system. The

relevant approach can become quite effective in practice. Intermediate outcomes

can, indeed, be visualized, time after time, and the natural human skills, up to

managing (even very tricky) three-dimensional jobs by actually ‘seeing’ the objects

involved, profitably exploited. This cannot only speed up the whole search for a

satisfactory solution, but it also allows the extemporaneous introduction of further

conditions hard to formulate explicitly in the model (for instance, ergonomic

conditions). Figure 4.6 illustrates the two-way interface rationale.

Fig. 4.6 Graphic-numerical interaction

4.3 Solution Search 57



Chapter 5

Computational Experience

and Real-World Context

Dealing with non-standard packing problems, and precisely because they are by

definition outside the framework of any conventional classification, poses, from the

experimental point of view, non-negligible difficulties. Firstly, a remarkable effort

is requested to collect, or even generate ex novo, non-trivial instances. They need,

actually, to cover an adequate number of scenarios, representative of a sufficiently

wide area of real-world applications. Secondly, the elaboration of instances of

practical interest is mostly very time consuming. Therefore, an extensive dedicated

test campaign is extremely demanding, both in terms of human and computational

resources.

In this chapter, an attempt has been made to provide useful insights on the

computational aspects, relevant to the various formulations and approaches pro-

posed so far. The author is, nonetheless, aware that a systematic and exhaustive

experimental approach could hardly be followed. Outcomes concerning the rele-

vant (ongoing) trial activity are reported hereinafter. The case studies are grouped

in separate sections, based on different perspectives, also with the expectation of

stimulating possible directions for further dedicated research. In the whole chapter,

if not otherwise specified, IBM ILOG Optimizer 12.3 (IBM Corporation 2010) is

referred to as the MIP solver adopted, supported by a personal computer, equipped

with Core 2 Duo P8600, 2.40 GHz processor; 1.93 GB RAM; and MSWindows XP

Professional, Service Pack 2.

5.1 Direct Solutions Obtained from the General

MIP Model

The heuristic approaches proposed in Chap. 4 have been introduced to obtain

satisfactory (suboptimal) solutions to real-world model instances whilst reducing

the computational effort as much as possible. As it is easily gathered, most practical
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instances can hardly be solved directly, as a matter of fact. This is because of the

general MIP model intrinsic difficulties (Sect. 4.1) that are significantly increased

when additional conditions (Sect. 2.3) are present. Nonetheless, when relatively

small-scale exercises are involved, good-quality results can be obtained as well, by

solving the model directly. A set of pertinent case studies (1.1–1.20, see Appendix)

has been considered, as a general indication. The packing instances in question are

expressed in terms of feasibility (i.e., all items have to be loaded). They have been

deliberately ‘fabricated’, in order to deal with cases known a priori for admitting at

least one solution.

These case studies contain both single parallelepipeds and actual tetris-like

items. All are allowed any possible rotation. The domain is always a parallelepiped,

except for Case Study 1.18, for which it is a right prism. The general MIP model of

Sect. 2.1 (including some of the auxiliary constraints discussed in Sect. 2.3) has

been utilized with a different objective function, aimed at minimizing the centre of

mass off-centring. For this purpose, the minimum ‘virtual’ cube, acting as centre of

mass domain and ‘centred’ with respect to the container, is searched for (in Case

Studies 1.1–1.4 and 1.7–1.11, the ‘virtual’ cube has additionally been provided with

upper bounds). It is assumed that all items involved are homogeneous and have the

same density.

Some details are reported in Tables A.1 and A.2; see Appendix. Figures 5.1, 5.2

and 5.3 represent Case Studies 1.14, 1.18 and 1.20, respectively. As usually

understood throughout the whole text, all components of each tetris-like item are

represented with the same colour.

Fig. 5.1 Tetris-like items inside a parallelepiped (Case Study 1.14)
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5.2 Direct Solutions Obtained by Reformulations

of the General MIP Model

A number of case studies are considered in this section, focusing on the general MIP

model reformulations 3.1.2 and 3.1.3, discussed in Chap. 3. All cases reported in

this section focus on the packing of single parallelepipeds, with any possible

rotation, into a parallelepiped. No additional conditions have been included (apart

from the presence of separation planes in Case Study 2.2). All the case studies

considered in this section have been solved by utilizing IBM ILOG CPLEX 12.5.1

(supported by a personal computer, equipped with Core 2 Duo P8600, 2.40 GHz

processor; 1.93 GB RAM; MS Windows XP Professional, Service Pack 2; and

CPLEX 12.5.1 version significantly outperforms 12.3, also referred to in this

section).

Fig. 5.2 Tetris-like items inside a right prism (Case Study 1.18)

Fig. 5.3 Large tetris-like item acting as a domain (Case Study 1.20)
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Some interesting case studies, relative to the second linear reformulation for

solving the feasibility subproblem (Sect. 3.1.2), are reported hereinafter.

Table 5.1 reports six classes of parallelepipeds adopted to execute some tests

considered.1 Case Study 2.1 Contemplates 22 items, extracted from the table: 1 of

type A, 6 of B, 6 of C, 5 of D and 4 of E. The domain consists of a cube of eight

units. The solution depicted in Fig. 5.4 was found in 30 CPU seconds. The occupied

volume reaches 87.5 % of the total available.

Cases Studies 2.2, 2.3 and 2.4 follow. Case 2.2 includes two separation
planes. Tables A.3, A.4 and A.5, in the Appendix, report, for each case, the item

dimensions, whilst Table A.6 those of the relevant domains. The results obtained

are summarized here below in Table 5.2. Case Study 2.4 is represented graphically

in Fig. 5.5.

The non-restrictive reformulation of the general MIP model reported in Sect.

3.1.3 seems quite suitable to solve the problem directly, when not too large-scale

Table 5.1 Six classes

of test parallelepipeds
Classes

of single

parallelepipeds

L1 side

(units)

L2 side

(units)

L3 side

(units)

A 4 4 4

B 2 3 5

C 1 3 6

D 1 2 6

E 1 3 3

F 1 2 2

Fig. 5.4 Case Study 2.1

1 These classes refer to quite a difficult instance proposed by Jürgen Rietz (Dept. Produção e

Sistemas, Centro de Investigação Algoritmi da Universidade do Minho, Escola de Engenharia,

Universidade do Minho, 4710–057, Braga, Portugal). It consists of the following: given a cube of

8 units, load 1 item of type A and 6 for all of the remaining types.
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instances are involved. As is easily seen, this reformulated model, differently from

the heuristic approaches considered in Chap. 4, allows the optimizer, at least

theoretically, to find and to prove the actual optimal solution.

An experimental analysis in this direction is currently ongoing. A significant

effort is still expected to confirm the apparent advantage of the use of this

reformulation, both as a stand-alone model and in support of the heuristic

approaches.

Some successful exercises are reported here. A first indication can be provided by

reconsidering Case Studies 2.2–2.4, as solved by the non-restrictive reformulation in

question. The same results were obtained in terms of volume occupation, packing all

the given items, even if no impositions were made on their loading. Different

outcomes, nonetheless, arose, concerning the computational effort: Case Study 2.2

was solved in 280 CPU seconds, Case Study 2.3 in 370 CPU seconds and Case Study

2.4 in 313 CPU seconds (the information available to date, relevant to the

non-restrictive reformulation, is however not sufficient to confirm this apparently

outperforming trend).

Table 5.2 Results

of Case Studies 2.2

to 2.4 Case studies

Total number

of single

parallelepipeds

Loaded volume %

(rounded to nearest)

CPU

time (s)

Case Study 2.2 31 80.9 2,659

Case Study 2.3 25 84.6 549

Case Study 2.4 17 90.5 834

Fig. 5.5 Case Study 2.4
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Case Study 3.1 refers to the instance derived from Table 5.1, involving 1 item of

class A, 6 of B, 6 of C, 6 of D, 6 of E and 6 of F, considering, as a domain, a cube of

8 units (cf. Note 2). An optimal solution (loading all the given 31 items) was found

in 995 CPU seconds. The occupied volume is 98 % of the available one. It is

depicted in Fig. 5.6.

Input data relevant to the following Case Studies 3.2 and 3.3 are reported in

Tables A.7 and A.8; see Appendix. An optimal solution, including all the 51 items,

was found in 757 CPU seconds for Case Study 3.2. The occupied volume is 82.7 %

of the available one. An optimal solution, including all the 84 items, was found in

2,727 CPU seconds for Case Study 3.3. The occupied volume is 80 % of the

available one. It is worth noticing that the relative instance contains 27,902 con-

straints and 22,261 variables, of which 21,756 are binary. It is represented by

Fig. 5.7.

Fig. 5.6 Case Study 3.1

Fig. 5.7 Case Study 3.3
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5.3 Use of the Linear Reformulations to Obtain

Approximate Solutions

In the following, some insights are provided, concerning the (LP-relaxed)
reformulations of Sects. 4.3.1.1 and 4.3.1.2, respectively, both aimed at finding

approximate solutions (as initialization steps). Case Studies 2.2–2.4 (cf. Sect. 5.2)

are reconsidered here as reference instances.

The first linear reformulation has been utilized to find an approximate solution to

Case Study 2.3. The process took only 2 CPU seconds, but 38 intersections were

identified (out of 300 pairs of items). The overlap volume is 38.6 % of that

associated to the totality of items to load. The graphical results are represented by

Fig. 5.8.

The second linear reformulation was adopted by dropping inequalities (3.6)

(of Sect. 3.1.2) and including (4.2) (as suggested in Sect. 4.3.1.2). An approximate

solution to Case Study 2.4 was obtained within a time limit of 300 CPU seconds,

with 23 intersections (out of 136 pairs of items) and 12.7 % of overall volume

overlap, considering the actual parallelepipeds. It is shown in Fig. 5.9 (with the

occurring intersections). The variation of the second linear reformulation of Sect.

3.1.2 (substituting (3.6) with (3.8), cf. Sect. 4.3.1.2) was, instead, considered for

Case Study 2.2. The relative solution (suboptimal for this reformulated model) is

represented in Fig. 5.10 (with the occurring intersections). It was found within a

time limit of 300 CPU seconds. The number of identified intersections (with respect

to the actual items) is 11 (out of 528 pairs of items, considering also the separation
planes as such), corresponding to 5.5 % of the overlap volume.

The three study cases in question suggest that the first linear reformulation

provides quick but quite imprecise solutions, whilst the two versions of the second

reformulation are more time consuming but offer better results. This trend seems to

be confirmed by the comparative analysis currently ongoing, but a further in-depth

experimentation is certainly needed. The approach adopted for Case Study 2.2

presents, for the time being, promising perspectives. From the preliminary out-

comes available, indeed, it is usually able to find a number of integer-feasible
(suboptimal) solutions quite easily.

Fig. 5.8 Case Study 2.3 approximate solution (obtained by the first linear reformulation)
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5.4 Nonlinear Reformulation Approach to Improve

Approximate Solutions

A dedicated experimental analysis, focusing on the use of the nonlinear

reformulation referred to in Sect. 4.3.1.3, with objective function (3.13), is currently
ongoing (Fasano and Castellazzo 2013). As outlined there, this approach can be

utilized to improve the approximate solutions, obtained either by the first or second

linear reformulations; cf. Sects. 4.3.1.1 and 4.3.1.2, respectively (or by any alter-

native initialization process).

Fig. 5.10 Case Study 2.2 approximate solution (obtained by the second linear reformulation

variation)

Fig. 5.9 Case Study 2.4 approximate solution (obtained by the second linear reformulation)
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Some preliminary outcomes are briefly reported here. A first rough trend esti-

mate, relative to a sample of 35 case studies (considering, for the time being, just

quite a limited number of single parallelepipeds), is suggested by Fig. 5.11 that

shows different groupings, based on the number of items involved. For each group,

the (average) percentage of overlap volume is displayed, with respect to the initial

approximate solution (left column) and the improved one (right column). Some

indications, concerning the computational effort, are given in Fig. 5.12. Such an

effort is expected to decrease in the near future, by improving the optimization

strategies adopted.

Three case studies (4.1–4.3) involving 7, 12 and 18 items are depicted by

Figs. 5.13, 5.14 and 5.15, respectively (representing the initial solutions on the

left and the improved ones on the right).
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Fig. 5.13 Case Study (4.1) with 7 items

Fig. 5.14 Case Study (4.2) with 12 items

Fig. 5.15 Case Study (4.3) with 18 items
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5.5 The Use of Heuristics

This section is devoted to providing some insights on the use of the heuristic

approaches proposed in Chap. 4. A significant number of real-world packing issues

(more or less complicated, in terms of additional conditions) have been solved

successfully in the space engineering context that gave rise to this work (in the

framework of the International Space Station, ISS, cf. http://www.nasa.gov, in

particular within the CAST project; see (Fasano et al. 2009)). Nonetheless, a

substantial commitment is still expected to consolidate the outcomes available

to date.

As previously pointed out, differently from other methods, the modeling-based

ones, proposed in this volume, try to solve the relevant packing models, taking into

account, contemporarily, all the items (or at least subsets of the original instance).

This offers the evident advantage of providing a global point of view, allowing, if

necessary, for the introduction of overall (i.e. ‘transversal’) conditions, such as

balancing. On the other side, it is easily seen that solving such (MIP/MINLP)

models is generally much more complex than carrying out packing algorithms

based on sequential placement. It is hence quite obvious that if no additional

conditions have to be taken into account, then most non-modeling-based

approaches (e.g., Martello et al. 2000) are expected to outperform the modeling-

based ones discussed in this monograph.

In addition to the above considerations, a non-trivial issue comes up, since a

practical threshold, concerning the scale of the instances to face, is understood. The

number of items involved becomes, as a matter of fact, a first limiting factor.

It, indeed, directly affects the instance size (that, when the model is formulated in

terms of MIP, corresponds to that of the relative matrix), as well as the number of

binary variables. Nevertheless, even when the given instance is, as a matter of fact,

too large to cope with, a partition into subproblems can be carried out. Quite a

successful approach of this type has been applied, in the space engineering context,

to the Automated Transfer Vehicle (ATV, ESA; cf. http://www.esa.int). Its

extremely challenging cargo accommodation problem has been tackled by devel-

oping an ad hoc packing optimization system, decomposing the overall problem at

different levels (see Fasano et al. 2009).

5.5.1 Test Instances from the Literature

The description of instances containing a significant number of tetris-like items,

with several components each, represents quite a heavy task indeed. For this reason
and in order to provide the reader with quite an easy-to-access experimental

framework, it has been decided to concentrate on standard instances.

A dedicated test campaign has been fulfilled for the first heuristic procedure

presented in Sect. 4.3.2 (at present, the most consolidated approach, from the
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experimental point of view), referring to the ‘Three Dimensional Cutting and Packing

Data Sets—THPACK 1–7 BR’ (Bischoff and Ratcliff 1995): http://www.euro-online.

org/web/ewg/25/esicup-euro-special-interest-group-on-cutting-and-packing. As it is

known, this test bed consists of 7 sets of 100 instances each. They are indicated in the

following as Case Studies ‘5.s.n’, where ‘s’ is the progressive number of the set and ‘n’

the index of the test problem instance. 670 instances out of the 700 available have been

tested (excluding all those exceeding 200 items).

Table 5.3 reports the relevant results. All the tests were executed within the limit

of 1 h of CPU time. Figure 5.16 shows as an indicative example, Case Study 5.1.43

solution, in which 86.68 % of the available volume has been exploited (loading

94 items out of 141).

The experimental activity relevant to the heuristic procedure described in Sect.

4.3.3 is currently being carried on. Since the computational effort strongly depends

on the overall solution strategy followed, it is worth providing some insights on the

relevant performances, at each single-phase level. On the basis of the experience

acquired to date, Table 5.4 provides quite a consolidated general trend, referring to

the process steps separately.

As far as the alternative approach suggested in Sect. 4.3.3 is concerned, a further

set of 24 tests from ‘Three Dimensional Cutting and Packing Data Sets—THPACK

1–7 BR’ was executed, namely, 5.1.17, 5.1.39, 5.1.67, 5.1.68, 5.1.76, 5.1.91,

5.1.100; 5.2.4, 5.2.13, 5.2.39, 5.2.59, 5.2.77, 5.2.79, 5.2.85, 5.2.96; 5.3.39, 5.3.56,

5.3.59, 5.3.77; 5.4.39, 5.4.56, 5.4.79; 5.5.56; 5.6.13.

Table 5.3 Results of 670 case studies (heuristic procedure of Sect. 4.3.2)

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7

Average volume exploitation (%) 78.13 78.48 79.60 79.75 80.04 80.05 80.01

Worst case volume exploitation (%) 69.13 68.94 71.64 72.25 72.56 71.17 72.60

Best case volume exploitation (%) 86.68 85.41 86.79 86.67 86.67 86.61 86.99

Average loaded items 83 80 79 78 80 78 77

Worst case loaded items 42 45 50 47 53 52 56

Best case loaded items 138 122 123 130 118 107 105

Fig. 5.16 Case Study 5.1.43
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For all these tests the number of items available is within the range between

201 and 275. To solve this large-scale instance successfully, an ad hoc solution

strategy was thought up. A basic cycle, consisting of the following sequence of

steps was introduced: initialization, packing, item-exchange and hole-filling. A
number of basic cycles were allowed to be executed, by extending incrementally

the set of items involved, until 75 % of the occupied volume was reached.

Afterwards, a final cycle consisting of hole-filling steps only was admitted. Within

every cycle, each of the above steps was allowed to be repeatedly fulfilled,

following appropriate stopping rules. The process had (about) 1 CPU hour as a

time limit. Overall results are reported here below:

• Average volume ¼ 76.31 %

• Worst case volume exploitation ¼ 61.19 %

• Best case volume exploitation ¼ 85.41 %

• Average loaded items ¼ 141

• Worst case loaded items ¼ 103

• Best case loaded items ¼ 182

Table 5.5 shows the CPU time requested to attain (when reached) 75 % of

volume exploitation and the corresponding number of items loaded.

Table 5.5 Results of 24 case studies (heuristic procedure of Sect. 4.3.3)

Case

studies

Total no of items

(parallelepipeds)

No of loaded items exploiting

75 % of the available volume

CPU time to reach the 75 %

of the available volume

5.1.17 213 116 00:16:36

5.1.39 243 166 00:13:23

5.1.91 238 88 00:07:30

5.1.100 214 142 00:32:41

5.2.4 201 94 00:08:05

5.2.13 228 109 00:22:10

5.2.79 206 128 00:49:53

5.2.85 209 121 00:22:50

5.2.96 202 120 00:31:09

5.3.56 212 112 00:13:49

5.3.77 201 131 01:03:34

5.4.56 233 130 00:31:49

5.4.79 217 119 00:57:58

Table 5.4 Computational trend at single-step level (heuristic procedure of Sect. 4.3.3)

Steps Involved items CPU time estimates (s)

Initialization 75–100 45–90 (recursive mode)

Abstract configuration generation 75–100 <5

Packing 75–100 30–60

Hole-filling 10–15 <15

Item exchange 10–15 <5
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5.5.2 Instance Adopted to Tune the Solution Strategy

A ‘fabricated’ instance (Case Study 6) was introduced (in addition to others) to tune

the solution strategy outlined above. Representing an interesting exercise solved

successfully, it is briefly considered hereinafter. This instance consists of the

packing of up to 280 parallelepipeds into a parallelepiped of dimensions 540, 225

and 220 units, respectively, maximizing the loaded volume. Results obtained, with

1 CPU hour as a time limit, throughout the whole procedure are illustrated in

Figs. 5.17, 5.18 and 5.19, showing different solution levels. Relevant details are

reported in Table A.10; see Appendix.

Fig. 5.17 Case Study 6—third cycle solution (50 % of exploited volume)

Fig. 5.18 Case Study 6—fifth cycle solution (65 % of exploited volume)

Fig. 5.19 Case Study 6—solution obtained in 1 CPU hour (85.77 % of exploited volume)
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5.5.3 Close-to-Real-World Instances

Before concluding this section, two similar-to-real-world instances (Case Studies

7.1 and 7.2) successfully solved, in support of the ISS and ATV logistics, are shown

in the following; see Figs. 5.20 and 5.21 (the relevant technical details are kept

confidential). They were solved by utilizing the heuristic procedure of Sect. 4.3.2,

requiring about 500 CPU seconds.

Further applications involving tetris-like items are considered in Sect. 6.1.3.

Fig. 5.20 Case Study 7.1 (with structural elements and forbidden zones)

Fig. 5.21 Case Study 7.2 (with a curved domain, a separation plane and structural elements)
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Chapter 6

Extensions and Mixed-Integer Nonlinear

Approaches for Further Applications

The modelling approach advocated by this volume is susceptible to possible

extensions. One, in particular, deals with the problem of looking into how the

free volume of a container, partially loaded with tetris-like items, could be profit-

ably exploited. Virtual items, i.e. (rectangular) parallelepipeds of non-prefixed

dimensions, are purposely introduced to ‘suggest’ how to fill the empty volumes.

In order to meet the practical demand, depending on the specific framework in

question, limitations are stated on the maximum number of virtual items allowed,

as well as on their minimum dimension. This issue is investigated hereinafter,

highlighting a dedicated MIP formulation (Sect. 6.1).

The global optimization approach, stressed in this work, is further extended to

the problem of packing simple polygons, with continuous rotations, inside a convex

polygon. A heuristic approach, solving recursively a dedicated mixed-integer
nonlinear programming (MINLP) model (founded on necessary conditions), is

outlined (Sect. 6.2). It is aimed at providing an approximate global solution that

can be further refined by exact local optimization-based methods. The tetris-like
formulation is properly adapted to generate the first starting solution and profitably

initialize the mixed integer nonlinear programming search process.

6.1 Exploiting Empty Volumes by Adding Virtual Items

This section is devoted to the issue of exploiting the residual volume of a container,

partially loaded, by adding a certain number of virtual items. These are intended as

(rectangular) parallelepipeds, not defined a priori in terms of dimensions. They are

aimed at indicating how real items could still be loaded into the container.

This kind of problem arises, for instance, quite frequently in the framework of

the logistic support to the International Space Station (ISS, cf. http://www.nasa.

gov), when planning the periodical resupply of the resources stowed on board.

A significant number of similar applications are expected in logistics in general.

Here, indeed, the frequent necessity of introducing (rigid) packaging material, to
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prevent item collisions, represents, from the analytical point of view, the same

problem typology. Further examples, albeit in quite different fields, concern the use

of autonomous robots (e.g. when requested to determine accessibility zones or to

carry out assembling activities) and specific packing issues in the VLSI context.

The problem considered in this section can be formulated as follows:

Given a (convex three-dimensional) domain D, and a set of tetris-like items

inside it, let us add a number (not exceeding the maximum value of NV) of virtual
items (i.e. rectangular parallelepipeds of variable dimensions). The total loaded
volume is maximized by repositioning, if necessary, the (tetris-like) items already
accommodated.

Two classes of items are then taken into account: the tetris-like and virtual, that
are single (rectangular) parallelepipeds, with no a-priori-given dimensions. All

positioning rules of the general problem of Sect. 2.1, i.e. orthogonality, domain
and non-intersection conditions, still hold. In particular:

• Each virtual item has to be positioned orthogonally, with respect to the main
reference frame.

• Each virtual item has to be contained within (the convex domain) D.
• Virtual items cannot overlap either with the tetris-like or other virtual ones.

6.1.1 Model Formulation

An MINLP formulation of the optimization problem in question is considered first.

We shall point out that the packing rules expressed above can be grouped as

follows:

• Orthogonality, domain and non-intersection conditions for tetris-like items only

• Orthogonality, domain and non-intersection conditions for virtual items only

• Non-intersection conditions between tetris-like items and the virtual ones

As far as the first group is concerned, they are represented by constraints (2.1),

(2.2), (2.3), (2.4), (2.5a), (2.5b) and (2.6) of Sect. 2.1. The orthogonality, domain and
non-intersection conditions for virtual items only, as well as the non-intersection
ones, between tetris-like items and the virtual ones, are quite straightforward. They
are discussed here below.

Let us introduce the set of virtual items IV, and the binary variables χVj ∈ {0, 1},

j ∈ IV, with the meaning: χVj ¼ 1 if virtual item j is included; χVj ¼ 0 otherwise.

For each virtual item j, wV0βj denote the centre coordinates, with respect to the main

reference frame, and lVβj the side parallel to the axis wβ (of the main reference

frame). EVj is the set of (eight) vertices associated to j whose coordinates are

expressed as follows:
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8β∈B,8j∈ IV ,8η∈EVj

wVβηj ¼ wVβ0j � 1

2
lVβj: ð6:1Þ

It is easily seen (cf. Sect. 2.1) that the orthogonality conditions are implicitly

contemplated by equations (6.1), while the domain constraints have the same

expressions of equations (2.3) and (2.4) (adopting the specific virtual item

symbolism).

The following inequalities represent the non-intersection conditions between the
generic tetris-like item i and the virtual one j, cf. constraints (2.5a), (2.5b) and (2.6):

8β∈B,8i∈ I,8j∈ IV , 8h∈Ci

wβ0hi � wVβ0j � 1

2

X
ω∈Ω

Lωβhiϑωi
� �þ 1

2
lVβj � Dβ 1� σþVβhij

� �
,

ð6:2aÞ

8β∈B,8i∈ I,8j∈ IV ,8h∈Ci

wVβ0j � wβ0hi � 1

2

X
ω∈Ω

Lωβhiϑωi
� �þ 1

2
lVβj � Dβ 1� σ�Vβhij

� �
,

ð6:2bÞ

8i∈ I, 8j∈ IV ,8h∈Ci

X
β∈B

σþVβhij þ σ�Vβhij
� �

� χi þ χVj � 1, ð6:3Þ

8i∈ I, 8j∈ IV ,8h∈Ci

X
β∈B

σþVβhij þ σ�Vβhij
� �

� χi, ð6:4aÞ

8i∈ I,8j∈ IV , 8h∈Ci

X
β∈B

σþVβhij þ σ�Vβhij
� �

� χVj, ð6:4bÞ

where σþVβhij and σ
�
Vβhij ∈ {0, 1}. The non-intersection constraints for virtual items

only are immediately understood. The lower bound LV is further introduced for all

virtual item sides, in order to obtain acceptable solutions from a practical point of

view (i.e. excluding ‘too small’ objects). The following constraints are thus stated:

8j∈ IV LVχVj � lVβj � DβχVj: ð6:5Þ

Since the total volume of the virtual items added has to be maximized, the

nonlinear objective function below is defined:

max
X
j∈ IV

Y
β∈B

lVβj: ð6:6Þ

Remark 6.1 It is gathered that the additional conditions discussed in Sect. 2.3 can

easily be introduced (with proper adaptation, if necessary). As far as the static

balancing ones (Sect. 2.3.4.1), in particular, are concerned, they have to be ade-

quately extended to include the virtual items. To do this, we shall firstly assume that
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they have the (hypothetical average) density RV. Expressions (2.23) and (2.24) are

therefore modified as

8β∈B
X
i∈ I

Miw
�
βi þ RV

X
j∈ IV

wVβ0j

Y
β∈B

lVβj ¼
X
γ∈V�

V�
γβψ

�
γ ,

X
γ∈V�

ψ�
γ ¼ m,

where m ¼
X
i∈ I

Mi þ RV

X
j∈ IV

Y
β∈B

lVβj, 8 γ ∈ V*, ψ�
γ ¼ eψ �

γm and eψ �
γ � 0. As is

easily seen, these conditions, differently from the case of Sect. 2.3.4.1, are no longer

linear.

6.1.2 Model Approximations

A possible (quite daring) approximation of the MINLP model presented in

Sect. 6.1.1 consists of adopting the following linear objective function as a

surrogate of the nonlinear (6.6):

max
X
β∈B=
j∈ IV

lVβj: ð6:7Þ

An alternative approach consists of replacing function (6.6) with a separable one

and carrying out a piecewise linear approximation of each term (e.g. Williams 1993).

This can easily be achieved by introducing the (likewise) surrogate objective function:

max
X

β∈B,
j∈ IV=
lVβj > 0

ln lVβj
� �

: ð6:8Þ

This is indeed separable (and no longer a surrogate one, when just a single

virtual item is considered, cf. Sect. 6.1.3). The piecewise linear approximation of

each (single-variable) logarithmic term in (6.8) reduces then the original MINLP

model to a much simpler (approximate) MIP one. A straightforward formulation is

outlined here below (cf. Williams 1993 and Sect. 2.3.2).

For each axis wβ, we shall discretize the intervals LV ;Dβ

� �
in a set DSVβ of

subintervals [DVβ(γ�1), DVβγ] and then pose

8β∈B,8j∈ IV lVβj ¼
X

γ∈DSVβ

DVβγλVβγj, ð6:9Þ
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8β∈B, 8j∈ IV ln lVβj
� � � X

γ∈DSVβ

ln DVβγ

� �
λVβγj, ð6:10Þ

8β∈B,8j∈ IV
X

γ∈DSVβ

λVβγj ¼ χVj, ð6:11Þ

where the terms λVβγj are nonnegative variables.
It is worth noticing that, in this specific case (as in that of equations (2.20) of Sect.

2.3.2), the adjacency condition (for which at most two adjacent λ can be non-zero)
may be dropped tout court (cf.Williams 1993), with significant computational benefit.

It is, indeed, sufficient to observe that the optimization problem in question is

equivalent to that of minimizing a convex objective function. This is immediately

seen simply considering that expression (6.8) is equivalent to min
X
β∈B,
j∈ IV

�ln lVβj
� �� �

that is convex, as it is a sum (with positive coefficients) of convex functions

(e.g. Minoux and Vajda 1986).

Both objective functions (6.7) and (6.8) are suitable for providing a starting

approximated solution for the (exact) MINLP formulation of Sect. 6.1.1. A more

refined (even if more demanding) approach could be followed as an alternative to

avoid the introduction of surrogate functions. It is based on the method of

converting products of (two or more) variables into separable functions, by

means of quadratic terms (e.g. Williams 1993). It is briefly outlined here.

In the case of the product of two variables q1q2, it is sufficient to introduce the new
variables s1 and s2 (not restricted to be nonnegative), by performing the transforma-

tions s1 ¼ 1
2
q1 þ q2ð Þ, s2 ¼ 1

2
q1 � q2ð Þ. The terms q1q2 are hence substituted with

s21 � s22 (that is a non-convex function). The method can be extended when the

products involve more than two variables and a piecewise linear approximation of

the quadratic terms can hence be achieved.

Remark 6.2 The task of minimizing the container area/volume can also be

achieved by performing a logarithmic transformation and a piecewise linear

approximation, without introducing any surrogate objective function (e.g. Pan

and Liu 2006; Wang and Tsai 2010). The resulting model, nonetheless, appears

quite complicated. Indeed, indicating with dβ the variables representing the con-

tainer (parallelepiped) dimensions, with respect to the corresponding axes wβ, the

objective function (in logarithmic form)
X
β∈B

ln dβ
� �

to minimize is not convex. As a

consequence, the adjacency condition cannot be neglected.

Remark 6.3 The presence of the binary variables χVj in expressions (6.5) guaran-

tees that if a virtual item is not added, its contribution to the total volume is zero.

This implication is nonetheless implicitly stated by equations (6.1) together with

the domain constraints for virtual items.
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6.1.3 Applications

A previous work (Fasano and Vola 2013) focuses on the utilization of the

surrogate linear objective function (6.7), in the context of a dedicated heuristic

approach. This has been conceived with the aim of obtaining quick satisfactory

(but typically suboptimal) solutions to the original (nonlinear) problem. This

approach is outlined, briefly, hereinafter, whilst the reader is referred to the

work quoted above for more details, both on the algorithmic and experimental

aspects.

An appropriate lower bound, as stated by conditions (6.5), is generated

each time, depending on the specific instance to solve. The heuristic approach

adopted assumes that an abstract configuration, relative to the already loaded

tetris-like items, is provided. Since the addition of several virtual items, all

together, would represent a significant computational effort, the heuristic proce-

dure progresses incrementally. This is obtained by adding one virtual item after

the other, until either a satisfactory solution is obtained or their maximum number

is reached.

A currently ongoing experimental analysis (Fasano and Vola 2013) is being

carried out. Some insights on the computational results, obtained to date, are briefly

illustrated in Table A.11; see Appendix. They refer to a set of 32 case studies. For

all tests considered, a maximum threshold of 10 virtual items was imposed, setting

a runtime limit of 3 CPU hours. Case studies 6 and 22 are illustrated by Figs. 6.1

and 6.2, respectively (on the left the already loaded tetris-like items are shown and,

on the right, the virtual ones added).

Fig. 6.1 Virtual item Case Study 6
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6.1.3.1 Container Area/Volume Minimization by Maximizing

Virtual Items

The concept of virtual item and the relative packing model can be utilized to solve the

important issue of the container area/volume minimization. In its two-dimensional

form, it consists of placing (orthogonally) a given set of single rectangles into one of

minimum area (the generalization to the case of three-dimensional tetris-like items

inside a parallelepiped is straightforward). We introduce first the domain D of sides

Dβ, β ¼ {1, 2} (the set of axes is still denoted by B, cf. Sect. 2.1), assumed

sufficiently big to allow the loading of all items inside the corresponding rectangle.

For all of them the constraints stated in the special case of Sect. 2.1 hold, with the

corresponding variables χ set to one. Two virtual items are then introduced with the

purpose of restricting the domain from the right and the upper edges, respectively.

They are denoted as R and U. R sides are l1R (variable), parallel to D1 and D2

(constant). Its centre coordinates are indicated with wβR. The following specific

(domain) constraints are posed:

w1R þ
1

2
l1R ¼ D1, ð6:12aÞ

w2R ¼ 1

2
D2: ð6:12bÞ

Similar equations are set for the virtual item U:

w1U ¼ 1

2
D1 � l1R
� � ð6:13aÞ

Fig. 6.2 Virtual item Case Study 22
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w2U þ 1

2
l2U ¼ D2 ð6:13bÞ

The non-intersection constraints (6.2a) and (6.2b) are specified as follows:

8i∈ I w1R � w1i � 1

2

X
α∈A

Lαiδα1ið Þ þ 1

2
l1R, ð6:14aÞ

8i∈ I w2U � w2i � 1

2

X
α∈A

Lαiδα2ið Þ þ 1

2
l2U, ð6:14bÞ

where the meaning of the symbols is understood (cf. Sect. 2.1, special case). It is

immediate to see that, as a consequence, all the given items are confined to

the inside of the rectangle cut out from D by R and U. This rectangle has the

vertex (0,0) in common with the domain D and the sides D1 � l1R and D2 � l2U
laying on w1 and w2, respectively. The optimization problem under consideration

consists hence of minimizing this area (obviously included within D) simply by

adopting, for the virtual itemsRandU, the objective function (6.6). This assumes, in

the specific case, the following form (easily reducible to a separable function, even
if non-convex, as outlined in Sect. 6.1.2):

max D2l1R � l1Ul2U
� �

: ð6:15Þ

The heuristic approach presented in this section can thus be well adopted to

obtain an approximate solution.

6.2 Non-orthogonal Packing of Non-rectangular Items

The key idea advocated in this monograph on non-standard packing problems, with

additional conditions, also of ‘transversal’ nature (e.g. balancing), relies on a

modelling-based GO approach. This point of view, espoused for the tetris-like

item orthogonal packing, can be extended, at least at an approximate level, to

more complex frameworks. This holds, in particular, for objects like polyhedrons,

with the possibility of continuous rotations. According to the approach put forward

here, the tetris-like formulation still plays an important role, providing a ‘naı̈ve’

starting global solution.

The literature on the packing of complex (non-rectangular) objects is extensive

(e.g. Bennell and Oliveira 2008; Betke and Henk 2000; Cagan et al. 2002; Chernov

et al. 2010; Egeblad et al. 2009a, b; Gan et al. 2004; Kallrath 2009; Torquato and

Jiao 2009), also including quite sophisticated formulations, but mostly addressed

to local optimization. A methodology of particular interest in this sense

(Scheithauer et al. 2005; Stoyan and Chugay 2009; Stoyan et al. 1996, 2012) could

well serve the scope of improving the approximate (quasi-global) solutions obtained
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with the approach discussed in this section. Stoyan’s method introduces the

concept of Φ-functions (e.g. Chernov et al. 2012; Stoyan et al. 2002, 2004).

These are briefly outlined here below (limiting the discussion, for simplicity, to the

two-dimensional case without rotations).

Given two general itemsAi(oi) and Aj(oj), where oi ¼ (o1i, o2i) and oj ¼ (o1j, o2j)
represent their local reference frame position, respectively, any everywhere contin-

uous function Φij : R
4 ! R is called a Φ-function of Ai(oi) and Aj(oj) if it possesses

the following properties:

Φij > 0 if Ai(oi) \ Aj(oj) ¼ {Ø}
Φij ¼ 0 if int Ai(oi) \ int Aj(oj) ¼ {Ø} and ∂Ai(oi) \ ∂Aj(oj) 6¼ {Ø}
Φij < 0 if int Ai(oi) \ int Aj(oj) 6¼ {Ø}

In such a way, Φij � 0 guarantees that items Ai(oi) and Aj(oj) do not intersect

(apart from their borders).

This section discusses the (two-dimensional) placement of simple polygons,

i.e. polygons with no intersection between two nonconsecutive edges, inside a

convex polygon. The approach introduced is closer, with respect to Stoyan’s one,

to alternative GO-based methodologies (e.g. Fischetti and Luzzi 2009; Sykora

et al. 2011). An MINLP model is formulated. It is intended to be processed

recursively, following a successive approximation philosophy. Once an acceptable

(approximate) solution has been obtained, it can be exploited, as a starting point to

solve the corresponding exact Φ-function-based MINLP model. The reader is

referred to the previous work (Fasano 2013), for more details.

6.2.1 Approximate MINLP Model

Some necessary conditions, formulated in terms of MINLP constraints, are consid-

ered hereinafter. They are aimed at looking into approximate solutions to the

two-dimensional problem of placing simple polygons (in the following just called

polygons) from a given set IP, into a convex polygon D (domain). The overall

surface of the loaded items is maximized. For each polygon, any possible orienta-

tion is admitted. A recursive process is performed to improve, by successive

approximation, the current solution, until a satisfactory one is reached. The posi-

tioning rules for each picked item are simply:

• Each polygon has to be contained within D (domain conditions).

• Polygons cannot overlap (non-intersection conditions).

To formulate the corresponding mathematical model, we shall consider a given

(main) reference frame with origin O and axes wβ, β ∈ {1, 2} (the set of axes is

still denoted by B, cf. Sect. 2.1). The domainD is delimited by the set of vertices VP,

whose coordinates, with respect to the main reference frame, are represented by

VPβγ, γ ∈ VP. They are assumed as nonnegative (without loss of generality). We

shall then consider any polygon i (denoted in the following by Pi), from the given
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set IP, and associate to it a local reference frame with origin oPi, of coordinates oPβi
(with respect to the main reference frame). The set of all vertices associated to

polygon i is denoted by EPi. The coordinates of each vertex η ∈ EPi are indicated,

with respect to the local reference frame, by VPβηi. The vector equations below hold

8i∈ IP, 8η∈EPi wPηi ¼ χPioPi þ χPi qββ0
���

���
i
VPηi: ð6:16Þ

Here for each vertex η ∈ EPi, wPηi ¼ (wP1ηi, wP2ηi)
T is the vector of its coor-

dinates with respect to the main reference frame; oPi ¼ ( oP1i, oP2i)
T; VPηi ¼ (VP1ηi,

VP2ηi)
T; qββ0
���

���
i
is the (orthogonal) rotation matrix of the local reference frame, with

respect to the main one, and χPi ∈ {0, 1}, as in the previous cases, has the

meaning: χPi ¼ 1 if polygon i is picked; χPi ¼ 0 otherwise.

The domain conditions below are stated to guarantee that each picked polygon

i lies within the given polygon D:

8β∈B,8i∈ IP,8η∈EPi

wPβηi ¼
X
γ∈VP

VPβγλPγηi, ð6:17Þ

8i∈ IP,8η∈EPi

X
γ∈VP

λPγηi ¼ χPi, ð6:18Þ

where the variables λ are nonnegative and have the same meaning as in Sect. 2.1.

While in the case of tetris-like items, the non-intersection conditions are quite

easy to state, dealing with polygons they become much more complex. Three easy-

to-prove necessary conditions are posed hereinafter. They establish a basis for the

recursive process proposed (that acts by successive approximation). The following

propositions are then stated.

Proposition 6.1 Given a set of internal circles CPi and CPj, for any pair of poly-
gons i and j, respectively, no circle of CPi can intersect a circle of CPj .

Proposition 6.2 For any pair of polygons i and j, no vertex of Pi can belong to any
circle of CPj and vice versa.

Proposition 6.3 For each pair of polygons i and j, any set of points of Pi must
belong to the external region of Pj and vice versa: this holds in particular for all
vertices of the polygons.

Remark 6.4 In the above propositions, tangency conditions are admitted. In par-

ticular, it is understood that the external regions enclose the respective boundaries.

The third necessary non-intersection conditions posed above (Prop. 6.3) can be

advantageously restricted to bounded external slices. To this purpose, the concept

of augmented polygon is introduced by the following definition.

Definition 6.1 (Augmented polygon) For each Pi, consider the polygon, denoted

by Pi, such that
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Pi � Pi,

Pi � Pi ¼ [
ν∈ Si

Uνi,

where Uνi (slices) are convex polygons (not necessarily disjoint), associated to Pi,

and Si is their set. Each Pi is called augmented polygon associated to Pi (Pi � Pi

could always be partitioned into a set of triangles; see Fig. 6.3 and, for instance, de
Berg et al. (2000) for polygon triangulation).

Figure 6.3 shows, as a matter of example, how a simple polygon can be

augmented by convex slices. It is moreover immediately seen that whenever an

internal ‘cleft’ (consisting of a non-convex simple polygon) is present, it can be

partitioned into a set of triangles (i.e. convex slices). A specific case of the

augmented polygon concept, adopted in the following, is provided by the definition

below.

Definition 6.2 (Domain-covering augmented polygon) For each polygon i, any
associated augmented polygon that covers the whole domain D, for any position

and orientation of i within D, is called domain-covering augmented polygon,

associated to polygon i. It is denoted by Pi.

The third necessary non-intersection conditions (Prop. 6.3), when restricted to

bounded external regions, can therefore simply be expressed as follows:

For each pair of polygons i and j, with any associated Pi and Pj, each point of Pi

must belong to Pj and, vice versa, each point of Pj must belong to Pi.

It is then immediately seen that Proposition 6.1 is expressed by the following

constraints:

Pi

w1

w2

u5i

u4i u3i

u2i

u1i

u8i

u9i

u7i

u6i

Fig. 6.3 Example of

augmented polygon
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8i, j∈ IP=i < j,8h∈CPi,8k∈CPjX
β∈B

�
oPβhi�oPβkj

�
2 � χPij Rhi þ Rkj

� �2
: ð6:19Þ

Here CPi and CPj denote the (arbitrary) sets of internal circles associated to

polygons i and Rhi and Rkj the radius of the relative circles; oPβhi and oPβkj are their
centre coordinates, with respect to the main reference frame; and the (implicitly

binary) variables χPij ∈ [0, 1] are subject to the same constraints expressed by

(2.12a), (2.12b) and (2.13). The following vector equations hold:

8i∈ IP,8h∈CPi

oPhi ¼ χPioPi þ χPi qββ0
���

���
i
OPhi:

ð6:20Þ

They represent (with obvious meaning of the symbols), for the centre of circle h,
the coordinate transformation between the local reference frame (associated to

polygon i) and the main one. Proposition 6.2 is very similar and it is not reported.

Given a domain-covering augmented polygon Pi, associated to polygon i, the

corresponding set of slices are denoted by Si. The set of vertices delimiting each

slice ν (ofPi) is instead represented byEνi, ν∈ Si. The following constraints express,
for the polygon vertices, the third necessary non-intersection conditions (Prop. 6.3):

8β∈B,8i, j∈ IP,8η∈EPi

χPijwPβηi ¼
X

γ∈Eνj,

ν∈ Sj

λPηiγνj wPβγνj, ð6:21Þ

8i, j∈ IP,8η∈EPi,8ν∈ SjX
γ∈Eνj

λPηiγνj ¼ χPηiνj, ð6:22Þ

8i, j∈ IP,8η∈EPi

X
ν∈ Sj

χPηiνj ¼ χPij, ð6:23Þ

where, as before, wPβηi are the coordinates of polygon i vertices with respect to the

main reference frame. Similarly, wPβγνj are the vertex coordinates of slices ν
associated to polygon j; λPηiγνj are nonnegative variables and χPηiνj ∈ {0, 1}.

Constraints (6.21), (6.22) and (6.23) ensure thus that if both polygons i and j are
loaded, then each vertex of polygon i will belong to one slice ν of (the augmented
polygon associated to) j and vice versa.

Remark 6.5 As is easily gathered, the presence of the χPηiνj binary variables increases
the model complexity dramatically. Constraints (6.22) and (6.23) could thus be profit-

ably substituted by the following 8i, j∈ IP,8η∈EPi, 8ν∈ Sj
X
γ∈Eνj

λPηiγνj ¼ χPij.
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The logical restriction expressed by constraints (6.23) may indeed be treated algorith-

mically, by introducing appropriate special ordered sets, similar to those suggested

by Escudero (1988). More specifically, in such a case, only the variables λPηiγνj

corresponding to a single slice ν∈ Sj would be allowed to be positive, while all

remaining are forced to zero.

6.2.2 Applications

The difficulty in solving the MINLP model of Sect. 6.2.1 is, per se, extremely high,

even when small-scale instances are involved. Consequently, it is not expected to

accomplish the task directly, and an incremental procedure is strongly

recommended. As a rough approximation, for instance, for each polygon i, just
one of its biggest internal circles could be considered. The number of internal

circles could be sequentially increased, for all pairs of polygons currently

intersecting, until a satisfactory (approximate) solution is attained. And similar

considerations hold for all the necessary conditions considered in Sect. 6.2.1.

As, in any case, the MINLP solution process efficiency is strongly affected by

the initial guess available, the tetris-like model of Sect. 2.1 can be utilized for this

purpose. This can be done by temporarily replacing the given polygons with

covering tetris-like items and considering, for each polygon iP ∈ IP, just a set

ΩPi of possible (arbitrary) discretized rotations; see Fig. 6.4.

For each polygon iP ∈ IP and each selected rotation, ωPi ∈ ΩPi, let us define a

single tetris-like item, covering the polygon for that rotation and such that its sides

Fig. 6.4 Covering tetris-like items (corresponding to possible rotations ω1 � ω6, of the same

polygon i)
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are orthogonal/parallel to the main reference frame axes. Denoting by IT the

set of all tetris-like items built in such a way, the one-to-one correspondence

(iP, ωPi) ∈ IP 	 ΩPi $ iT ∈ IT is defined. This way, the subset of tetris-like

items ITiP is associated to each polygon iP ∈ IP. The problem in question is

hence that of placing the covering tetris-like items of set IT, one (and only one)

for each subset ITiP , into D, without any possibility of rotation. This leads to a

special case of the MIP model of Sect. 2.1: constraints (2.1) are dropped, whilst

(2.2), (2.3), (2.4), (2.5a), (2.5b) and (2.6) are kept, setting all variables θ to one and
eliminating all indexes ω, as well as the related sums. Let us denote (with a little of

abuse of notation) by χiP ∈ 0; 1f g and χiT ∈ 0; 1f g the decisional variables control-

ling the selection of polygon iP ∈ IP and its associated (pre-oriented) tetris-like

item iT ∈ ITiP . The following conditions have to be added:

8iP ∈ IP
X

iT ∈ ITiP

χiT ¼ χiP : ð6:24Þ

This guarantees that if polygon iP is picked, it is represented by one and only one
tetris-like item iT, corresponding to a specific orientation (from the set of the

discretized ones associated to iP).

Remark 6.6 An alternative tetris-like item approximation could be considered,

keeping all the constraints (2.1), (2.2), (2.3), (2.4), (2.5a), (2.5b) and (2.6) (for-

mally) as they are. Each projection Lωβhi would be associated to a specific

(discretized) orientation of the related polygon. These terms, however, would no

longer correspond to rigid rotations of the relative tetris-like items (covering tetris-

like items, indeed, change their pattern, depending on the orientation). Figure 6.4

clearly illustrates this aspect.

With the approximation approach suggested, any tetris-like item covers the

corresponding polygon for a specific rotation of it. Any feasible solution of the

tetris-like item problem is also a feasible solution of the polygon problem and thus

represents (for the surface maximization) a lower bound. Once a good initial

solution is attained, the actual items (polygons) can be introduced and the

MINLP process activated.

A heuristic dedicated to the polygon packing problem is currently at a

prototyping stage (see Fasano 2013; LGO Solver Suite for Global–local Nonlinear

Optimization is utilized as a nonlinear optimizer, see Pintér 1997, 2002, 2005,

2007; Pintér Consulting Services 2013). It performs the tetris-like approximation as

an initialization step (virtual items are purposely introduced, in order to concentrate

unexploited areas in a limited number of uncovered zones). Then, different general

techniques, such as item fixing/exchange and ‘hole’ filling, are adopted (exploiting

the features of Prop. 6.1, 6.2 and 6.34). An experimental investigation is currently

under study (Fasano 2013).

Concerning the computational aspects related to the first phase, based on a

two-dimensional tetris-like item MIP model, insights can be derived from Chap. 5.

88 6 Extensions and Mixed-Integer Nonlinear Approaches for Further Applications

http://dx.doi.org/10.1007/978-3-319-05005-8_2#Sec1
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ1
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ2
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ3
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ4
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ5
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ6
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ7
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ1
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ2
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ3
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ4
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ5
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ6
http://dx.doi.org/10.1007/978-3-319-05005-8_2#Equ7
http://dx.doi.org/10.1007/978-3-319-05005-8_5


The necessary conditions expressed by Propositions (6.1) and (6.2) rely, instead, on

the MINLP formulation of circle packing, and significant topical literature is

available (e.g. Castillo et al. 2008; Hifi and M’Hallah 2009; Specht 2012).

It is argued that the additional conditions discussed in Sect. 2.1 could also be

(at least in principle) extended to the case of polygon packing. This holds, for

instance, when balancing restrictions are stated. Domains with ‘holes’ or forbidden

zones can in general be modelled by introducing zero-mass items (see Fig. 6.5).

Moreover, when some items contain ‘holes’, these become part of their external

regions (see Fig. 6.6).

w10

w2

DD

Fig. 6.5 Domain with

internal polygonal ‘holes’

Fig. 6.6 Simple polygons

with ‘holes’
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Chapter 7

Directions for Future Research

Although this volume summarizes results derived from more than 2 decades of

dedicated research, a number of study directions still remain open. This is mainly

due, on one side, to the heuristic nature of the overall point of view adopted that, as

such, relies on a huge amount of experimental activity. The modeling philosophy

followed is, moreover, subject to a wide range of possible extensions. It is then

worth looking into, at least in perspective, further applications and topical formu-

lations. Section 7.1 outlines the experimental aspects, whilst Sect. 7.2 focuses on

the modeling ones.

7.1 Experimental Context

An extensive testing procedure has been carried out, as reported in Sect. 5.5,

involving standard instances from literature, i.e. concerning the orthogonal packing

of parallelepipeds, into a parallelepiped, with no additional conditions.

The non-standard packing problems considered in this work can hardly be

classified by following a systematic scheme and, therefore, also the relevant

experimental analysis is very demanding. The efficiency of the heuristic approaches

proposed in Chap. 4 is affected by a variety of factors. The difficulties of the

instances to solve, indeed, not only depend on the number of items/components
involved. They are also strongly related to the characteristics of the objects, the

domain geometry and the presence of additional conditions.

The separation planes significantly reduce the volume exploitation. It is, more-

over, understood that the tighter the centre of mass domain is, the tougher the

problem becomes. Roughly speaking, it could be said that the (static) balancing
conditions, with some percentage of admissible off-centring (with respect to the

container dimensions), can decrease the volume exploitation by 15–20 % and

increase the computational effort by up to 25–30 %. These estimates are, however,

very imprecise and indicate just a general rule of thumb.
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Optimization and Heuristics, SpringerBriefs in Optimization,
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Extensive statisticsbasedona tentative (rough) classificationofproblems involving

tetris-like items and (differently combined) additional conditions represents, without

any doubt, quite a demanding research objective for the future. The experience

acquired to date and referred to in this book, indeed, has been confined to the packing

of tetris-like items, inside curved domains, with separation planes, subject to (usually
quite tight) balancing conditions. The reason is due to the fact that the research

surveyed here has been mainly motivated by the space engineering context.

An in-depth testing of further additional conditions would therefore represent a

first important step to widen the relevant knowledge regarding the computational

aspects. Real-world instances, arising in different engineering and logistics fields,

would certainly enrich the overall statistical information, even if this interdisciplin-

ary task represents a remarkable difficulty.

A further experimental investigation related to the feasibility subproblem is

currently ongoing. A significant effort to consolidate and, hopefully, even improve

the present outcomes is expected. This holds, in particular, both for the second

linear reformulation of Sect. 3.1.2 (including its variation, also reported there) and

the nonlinear one of Sect. 3.1.4 that seem promising.

As previously pointed out, the non-restrictive reformulation of the general

Mixed Integer Programming (MIP) model of Sect. 3.1.3 is, per se, worthy of a

dedicated in-depth experimental analysis. Moreover, its possible utilization, to

support the initialization step of Sect. 4.3.1 (see Remark 4.9), definitely deserves

further attention. Similar considerations concern the adoption of this reformulation

as an alternative to the item-exchange and hole-filling modules (see Sect. 4.3.3).

The implications and valid inequalities overviewed in Sect. 3.2 (and possible

further formulations) would deserve dedicated experimentation. Their exhaustive

generation can hardly be carried out when a branch-and-bound approach is adopted,
even for small-scale instances. An ad hoc methodology to select limited subsets of

such auxiliary constraints could thus be investigated. This way, the model could be

tightened, withoutmaking the instance intractable from the dimensional point of view.

It is, moreover, understood that an experience-based generation process, specifically

oriented to a branch-and-cut approach, would also be of great interest. It is however
expected to be quite demanding, both in terms of development and testing.

In any case, independently from the general algorithms adopted to solve the

various models (e.g. branch-and-bound), a crucial aspect concerns the search

strategy (for instance, in terms of branching sequence, variable processing priority,

use of preprocessing/probing/rounding/fixing techniques and so on, e.g., Chen

et al. 2010, Linderoth and Savelsbergh 1999, Marchand and Wolsey 1998). This

holds in general, both for the MIP and Mixed Integer Non-Linear Programming

(MINLP) models considered, so that the way the relative solvers are driven can be

very influential on the computational efficiency. A dedicated experimental activity

is currently being carried out.

Whilst improvements in terms of single model solution, as mentioned above, are

expected, an experimental ‘tuning’ of the heuristic overall processes represents a

further very important objective. Indeed, the heuristics presented in this monograph

are based on several arbitrary choices. In the process of Sect. 4.3.2, for instance, the
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dichotomy-based partitioning of the given set of items can be performed following

different strategies. A similar situation of arbitrary choice arises when executing the

item-exchange step of Sect. 4.3.3.

The stopping rules established (a priori) for each MIP/MINLP solution process

are usually very influential, as well as those concerning the item prioritization.

A wide-range statistical analysis could well suggest how to achieve a dynamic

setting of the relevant parameters that best match, each time, the specific instance to

solve. A dedicated research activity should therefore be addressed to these aspects.

The two heuristic approaches proposed in Chap. 4, moreover, have their pros and

cons, depending on the framework involved and, often, it is hardly understood a

priori which one represents, case by case, the best choice. This shows that a hybrid

system, based on the joint use of both, could be desirable in most practical

situations. Also the combined utilization with other packing algorithms

(in addition to the already mentioned non-restrictive reformulation of the general

MIP model), especially in the initialization phase, could be of interest. All this

paves the way to an experimental analysis in this perspective.

Even hybridizations at model level could be taken into account. A merging of the

MIP model utilized by the heuristic of Sect. 4.3.2 and that of Sect. 3.1.2 could be,

for instance, implemented, introducing ‘proper’ weights in the resulting (combined)

objective function. The contribution of Sect. 3.1.2 model could act, this way, in

support to the heuristic process as an ‘accelerator factor’. A dedicated experimen-

tation would thus represent an interesting research topic.

Concerning the issue of exploiting the empty spaces, by adding virtual items,

extensive computational outcomes relative to the logarithmic formulation discussed

in Sect. 6.1.2 are desirable. Also the use of both the surrogate objective functions,
proposed there, to provide an initial approximate solution to the MINLP model of

Sect. 6.1.1 would be of interest.

As previously pointed out, the heuristic, briefly mentioned in Sect. 6.2.2, is

currently at a preliminary stage. A significant experimentation is foreseen to

properly tune all the relevant steps, including the one based on the tetris-like item

first approximation. The use of the Φ-functions (cf. Sect. 6.2) to refine (by local

optimization) the approximate solutions obtained with the approach proposed is

matter of promising further investigations.

In addition to the experimental research directions suggested so far, it is still

worth considering a further application of the general MIP model second linear

reformulation, in the LP-relaxed version put forward in Sect. 4.3.1.2. This could

indeed serve the scope of providing ‘good’ initial guesses in support of circle/

sphere packing, when a global optimization approach is needed. To this purpose,

expressions (4.2) have to be properly restated. For each given circle (/sphere), the

lower bound appearing there is substituted with the side of the relative inscribed

square (/cube). Analogously, the side of the circumscribed square (/cube) replaces

the corresponding upper bound. This way, an approximate solution, consisting of

the placement of rectangles (/parallelepipeds), inside the given domain is looked for

(each of them encloses the corresponding inscribed square (/cube) and is included

in the circumscribed one).
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7.2 Modeling Enhancements and New Applications

7.2.1 Extension of the Packing Models

In Sect. 2.3 a number of possible additional conditions have been considered.

Nonetheless, this is an area susceptible to a wide range of possible extensions,

taking into account different applicative sectors, each being characterized by

specific requirements. The approach put forward, indeed, is quite flexible and

suitable for including, whenever necessary, the appropriate additional conditions,

without modifying the overall structure of the model.

Further research is foreseen to provide new nonlinear reformulations alternative

to the ones presented in Sect. 3.1.4, as well as to identify further implications and

valid inequalities.

Enhancements concerning the heuristic of Sect. 4.3.3 could represent the objec-

tive of future developments. This holds, in particular, for the hole-filling phase.

A new procedure, based on the generation of virtual items, is intended to be

activated prior to it, in order to ‘enlarge’ the ‘holes’ present (preparing, in such a

way, the room for items not yet loaded). To this purpose, an appropriate combina-

tion of the packing model of Sect. 4.3.3 and the virtual item one of Sect. 6.1 is

currently under study.

Further development concerning this heuristic could, moreover, be stressed.

Indeed, when the packing model is solved, after the hole-filling step execution,

items are tentatively inserted, considering all possible interactions with those

already loaded. This makes the solution process quite time consuming because

of the non-intersection constraints. In order to reduce their number, the concept

of virtual cage is to be introduced (see Fig. 7.1). It consists of a ‘virtual’

Fig. 7.1 Virtual cage basic
concept
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parallelepiped, associated to each item that is expected to be added, and centred

with respect to the corresponding grid node, as selected by the hole-filling step. The
non-intersection conditions (in the packing model), involving the prospective

additional item, are then limited only to the ones that (in the hole-filling solution)

intersect the corresponding virtual cage. The remaining items are forced to main-

tain the non-intersection state with respect to the virtual cage itself.
The global optimization approach discussed in Sect. 6.2 to tackle the polygon

packing issue is currently under study and several enhancements are foreseen. The

present formulation is limited to the case of simple polygons. It is easily seen,

however, that straightforward extensions can be carried out to include a wider class

of objects (Fig. 7.2 shows a case of a non-simple polygon that could be included

with the appropriate modeling).

It is, furthermore, obvious that the extension to the three-dimensional case,

i.e. involving polyhedrons, represents the natural evolution of the present MINLP

model.

In addition to what it is recalled above, it should be noticed that the tetris-like

item approximation, adopted to generate a starting solution for the MINLP process

(Sect. 6.2.2), relies on arbitrary choices. Firstly, it is decided what discretized

orientations have to be considered for each polygon (this determines the sets

ΩPi). Secondly, a tetris-like item is arbitrarily generated for each polygon and

each orientation of it. This point itself could be the subject of a dedicated optimi-

zation problem, stated as follows:

Given a polygon (with prefixed orientation in an orthogonal reference frame),
let us define a covering tetris-like item (oriented orthogonally with respect to
the same frame) of minimum surface, consisting of an established number of
components.

These kinds of approximating tetris-like items could well be automatically

generated by a dedicated optimization process, based on ad hoc models/algorithms.

This aspect also represents quite a challenging objective of future developments.

Fig. 7.2 Case of

non-simple polygons
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7.2.2 Application to Scheduling Problems
with Nonconstant Resource Availability
and Nonconstant Operational Cycles

The application considered next is motivated by a real-world scenario. It is relevant

to the International Space Station (ISS, cf. http://www.nasa.gov) context, where the

resource availability is scarce, whilst the demand, to perform the necessary

on-board activity, quite high. The related optimization framework is of remarkable

interest and even more challenging situations are expected for the space exploration

programs of the near future. In this section we shall address, in particular, a

demanding problem of scheduling. It consists of the activation of a number of

devices, in a context of nonconstant resource availability and nonconstant opera-

tional cycles. Here the issue is dealt with in a streamlined version, with the

confidence, however, that the topic can be of interest for a wide range of applica-

tions, albeit in very different contexts.

Just to focus on an exemplificative instance, let us consider the case of electrical

power as the only resource involved. We shall assume that a certain number of

devices have to perform series of cycles, in a given period of time. The relevant

optimization problem consists of scheduling the activation of each device-cycle, so

that a certain profit criterion is maximized (e.g. utilizing as much of the energy

available as possible). Obviously several operational conditions, affecting the

activation of the various cycles, could be present.

If the electrical power available were constant, as well as the consumption of

each device-cycle, then the relevant optimization problem would be equivalent to

that of packing rectangles into a rectangle (on possible interrelations between

packing and scheduling problems consult, for instance, Alvim and Ribeiro 2004;

Chiong and Dhakal 2009; Liu and Baskiyar 2008; Zhang 2004). Indeed, in such a

case, each cycle would be characterized by its duration and its power consumption.

The area of the corresponding rectangle would simply represent the energy con-

sumption associated to each cycle. Similarly, the rectangle having the given time

period as a base and the (constant) power availability as a height, in a power-time

reference frame, would represent the total amount of energy.

A much more complex situation occurs, however, when the power availability is

not constant and/or the same holds for the consumption associated to each cycle.

Figure 7.3 shows an example of the operational scenario under consideration here.

The situation illustrated is quite similar to that of packing two-dimensional

tetris-like items (corresponding to cycles with nonconstant power consumption)

inside a stepwise two-dimensional domain (corresponding to the nonconstant

power availability over the whole time period). Some important peculiarities

have, however, to be pointed out. Firstly, it is understood that in this context, the

tetris-like items, since they represent operational cycles, cannot be rotated.

Let us suppose, then, that, for a certain device, the relative cycles must be

executed at a fixed rate. Assume, moreover, that the number of cycles itself is

fixed, so that either all of them (i.e. no more and no less) are performed, in the given
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time period, or the device is not activated. This suggests that we should interpret the

whole sequence of cycles, relative to such a device, as a single tetris-like item, as

depicted in Fig. 7.4. It is denoted as a disconnected tetris-like item.

We shall consider, now, the example illustrated in Fig. 7.5. Two devices i, j are
expected to execute just a single cycle each within the time period [0, T]. The given
electrical power (step) function is denoted by w(t), where t ∈ [0, T] represents the
time variable.

Fig. 7.3 Nonconstant resource availability and nonconstant operational cycles

Fig. 7.4 Disconnected tetris-like item

Fig. 7.5 Illustrative

example
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As seen in Fig. 7.5, if the cycles are represented by the tetris-like items depicted

on the left, at most one of them can be activated (indeed, only one of the associated

tetris-like items can stay inside the domain). The optimal result, however, is that

illustrated in Fig. 7.6, where both devices are working.

In this case, in fact, the cycle associated to device j has been provided with a

different representation. To see that it is equivalent to the previous one, let us

consider the general diagram (t,w) of Fig. 7.7, where the two representations Rj1 and

Rj2 of the same (single) cycle, associated to device j, are shown.
Each of them is defined by the two functions wj1 tð Þ, wj1 tð Þ and wj2 tð Þ, wj2 tð Þ,

respectively (wj1 tð Þ and wj2 tð Þ are the lower functions whilst wj1 tð Þ and wj2 tð Þ the
upper ones). All these functions are zero in the whole interval [0, T] except for
t ∈ [tj0, tj0 + Tj], where tj0 is the instant when the cycle is activated and Tj is its
duration (see Fig. 7.7):

8t∈ 0; T½ �
wj1 tð Þ � wj1 tð Þ ¼ wj2 tð Þ � wj2 tð Þ:

This clearly means that the power consumption associated with device j at any
instant t ∈ [0, T] is Δwj tð Þ ¼ wj1 tð Þ � wj1 tð Þ or Δwj tð Þ ¼ wj2 tð Þ � wj2 tð Þ and the

Fig. 7.6 Illustrative

example optimal solution

Fig. 7.7 Example

of different representations

of the same cycle
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two representations Rj1 and Rj2 are equivalent (the heights of the functions wj1 tð Þ
and wj2 tð Þ are, with respect to the time axis, obviously arbitrary. Instead, Δwj(t),

during the whole working time period t ∈ [tj0, tj0 + Tj], must exactly represent

the consumption associated to device j). In the solution illustrated in Fig. 7.6, the

feasibility is guaranteed by the compliance with the following condition:

8t∈ 0;T½ � Δwi tð Þ þ Δwj tð Þ � w tð Þ:

All this suggests that the concept of non-rigid tetris-like item should be intro-

duced to contemplate any possible cycle representation (in the sense clarified

above). We assume therefore that each non-rigid tetris-like item consists of a set

of components that are fixed with respect to the time axis. They can however be

arbitrarily translated along the vertical one (corresponding to the resource that, in

our specific case, is the electrical power). It is obviously assumed that the compo-
nents belonging to the same non-rigid tetris-like item cannot overlap (apart from

their boundaries). As already pointed out, moreover, items (being representations of

cycles) are not allowed to rotate. The concept is illustrated in Fig. 7.8.

The model formulation of Sect. 2.1 can easily be adapted to the scheduling

scenario in question and the concept of non-rigid tetris-like item just introduced.

The main changes are outlined next, supposing, for the sake of simplicity, that each

device can perform just a single cycle (a generalization of this reduced case is

straightforward, also when disconnected tetris-like items are involved).

Each device-cycle is therefore associated to a non-rigid tetris-like item and a

main orthogonal reference frame (t,w) is introduced (limiting its variables to the

first quadrant only). As no rotation is admitted, the orthogonality conditions (2.1)

are eliminated. In the following, for each device-cycle i ∈ ID (set of devices), ti0
(assumed as non-negative) shall denote its activation time, with respect to the main

reference frame; Thi0 the starting time, with respect to ti0, of its phase

h (corresponding to component h, with h ∈ CDi, set of components of device-

cycle i) and Thi its duration. Similarly, Whi represents the electrical power con-

sumption associated to phase h and supposed constant for all its duration. The

binary variables χDi ∈ {0, 1} are introduced next, with the obvious meaning that

Fig. 7.8 Non-rigid tetris-like item basic concept
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χDi ¼ 1 if the corresponding device is activated in the time period [0, T] and

χDi ¼ 0 otherwise.

Conditions (2.2) are then substituted by the following (see Fig. 7.8):

8i∈ ID,8h∈CDi thi ¼ ti0 þ Thi0 þ 1

2
Thi

� �
χDi, ð7:1Þ

where the variables thi denote, for each component (i.e. phase) h of i, the coordinate
t of its centre, with respect to the main reference frame. Similarly, whi (assumed as

non-negative) shall indicate, for each component h of i, the coordinate w of its

centre, with respect to the same reference frame: they are, however, no longer

subject to conditions such as the ones expressed by (2.2), since each component is
free to move vertically.

The domain (see Fig. 7.9), with origin (0,0), is determined by the time period

[0, T] and the stepwise function w(t) defined on it. As already suggested in Sect.

2.3.3, such a domain can be delimited by introducing an enclosing rectangle of sides

T and W ¼ max
t∈ 0;T½ �

w tð Þ that contains fixed rectangles, determining the stepwise

profile of w(t).
The domain conditions below state that if a device is activated, its associated

(single) cycle must be finalized in the time period [0, T]. This means, in particular,

that all the relative phases have to be performed, i.e.,

8i∈ ID,8h∈CDi

Thi0 þ 1

2
Thi

0
@

1
AχDi � thi � T � 1

2
Thi

0
@

1
AχDi:

ð7:2Þ

The domain conditions corresponding to the electrical power axis are expressed

by the following:

8i∈ ID,8h∈CDi

1

2
WhiχDi � whi � W � 1

2
Whi

0
@

1
AχDi:

ð7:3Þ

Fig. 7.9 Domain

associated to a stepwise

function
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The non-intersection conditions (2.5a), (2.5b), (2.6), (3.15a) and (3.15b) are then
substituted with the following:

8i, j∈ ID=i < j,8h∈CDi, 8k∈CDj

thi � tkj � 1

2
Thi þ Tkj

� �� T 1� σþThkij
� �

, ð7:4aÞ

8i, j∈ ID=i < j,8h∈CDi, 8k∈CDj

tkj � thi � 1

2
Thi þ Tkj

� �� T 1� σ�Thkij
� �

, ð7:4bÞ

8i, j∈ ID=i < j, 8h∈CDi,8k∈CDj

whi � wkj � 1

2
Whi þWkj

� ��W 1� σþWhkij

� �
, ð7:5aÞ

8i, j∈ ID=i < j, 8h∈CDi,8k∈CDj

wkj � whi � 1

2
Whi þWkj

� ��W 1� σ�Whkij

� �
, ð7:5bÞ

8i, j∈ ID=i < j,8h∈CDi,8k∈CDj

σþThkij þ σ�Thkij þ σþWhkij þ σ�Whkij � χDi þ χDj � 1,
ð7:6Þ

8i, j∈ ID=i < j,8h∈CDi,8k∈CDj

σþThkij þ σ�Thkij þ σþWhkij þ σ�Whkij � χDi,
ð7:7aÞ

8i, j∈ ID=i < j,8h∈CDi, 8k∈CDj

σþThkij þ σ�Thkij þ σþWhkij þ σ�Whkij � χDj:
ð7:7bÞ

Further non-intersection conditions between the components and the fixed

rectangles inside the domain (introduced to represent the stepwise profile of w(t))
should be included, but, being obvious, they are not reported here. A possible

objective function is

max
X

i∈ ID,
h∈CDi

WhiThiχDi,

where WhiThi is the electrical energy consumption associated to phase h of device-

cycle i.
In addition to what has been outlined up to this point, it could be shown, by simple

‘fabricated’ examples, that even the model based on the concept of non-rigid tetris-
like item does not guarantee that optimal solutions are found. This is essentially due

to the discretized nature of the cycle representation. A possibility to refine the

relevant formulation would consist of decomposing each phase into subphases and

setting the corresponding components free with respect to the vertical axes (obvi-

ously, the bigger the number of the subphases is, the more refined the model results).

The approach proposed in this section has, as a matter of fact, just a heuristic
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meaning. Nonetheless, it is easily seen that any solution of it is a feasible solution

also of the corresponding scheduling problem. In particular, the compliance with the

necessary conditions below holds:

8t∈ 0; T½ �
X

i∈ ID, h∈CDi=
t � ti0 þ Thi0,

t � ti0 þ Thi0 þ Thi

WhiχDi � w tð Þ, ð7:8Þ

X
i∈ ID,
h∈CDi

WhiThiχDi �
Z

t∈ 0;T½ �

w tð Þdt: ð7:9Þ

The brief discussion of this section has focused on the electrical power as the only

resource involved. The extension to a more general case, where a number of

different resources are considered, is quite straightforward. For each resource ρ,
represented by the function wρ(t), 8 t ∈ [0, T], let us consider the plane (t, wρ).

For each (t, wρ), we shall associate to each cycle, a non-rigid tetris-like item,

corresponding to the cycle projection, with respect to the relative resource ρ
(extending, as appropriate, constraints (7.3), (7.5a), (7.5b), (7.6), (7.7a) and (7.7b),

to include all the relevant resources). The overall problem consists then of solving,

contemporarily, for all the planes involved, the two-dimensional model

described here.

As previously mentioned, the case involving also more than one single cycle for

each device, in the presence of possible additional operational conditions, could

quite easily be treated, on the basis of the present discussion. In addition to all this,

it is expected that both disconnected tetris-like items and the non-rigid ones are

susceptible to further applications, also in different fields.

It should be moreover pointed out that the heuristic approaches proposed in this

monograph (Sect. 4.3) could be properly tailored to solve also the non-rigid tetris-

like item model (provided, case by case, with the extensions needed). This certainly

offers quite a motivating cue for future research and development.
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ERRATUM

Chapter 3

Model Reformulations and Tightening

G. Fasano, Solving Non-standard Packing Problems by Global
Optimization and Heuristics, SpringerBriefs in Optimization,

DOI 10.1007/978-3-319-05005-8, pp. 27–38, # Giorgio Fasano 2014

–––––––––––––––
DOI 10.1007/978-3-319-05005-8

In Chapter 3, please substitute expression (3.6) with the better formulation pro-

vided. Please substitute ‘wrong’ expressions (3.8) and (3.9) with the corresponding

‘correct’ ones.

(i) Present Formulation:

8ω∈Ω,8β∈B,8i∈ I, 8h∈Ci

lβhi � Lωβhiϑωi:
ð3:6Þ

Better Formulation:

8β∈B,8i∈ I,8h∈Ci

lβhi �
X
ω∈Ω

Lωβhiϑωi:
ð3:6Þ

–––––––––––––––––

The online version of the original chapter can be found at

http://dx.doi.org/10.1007/978-3-319-05005-8_3

G. Fasano, Solving Non-standard Packing Problems by Global
Optimization and Heuristics, SpringerBriefs in Optimization,

DOI 10.1007/978-3-319-05005-8, # Giorgio Fasano 2014

E1



(ii) Present Formulation, Wrong:

8ω∈Ω,8β∈B,8i∈ I, 8h∈Ci

lβhi � Lωβhiϑωi:
ð3:8Þ

Correct Formulation:

8β∈B,8i∈ I,8h∈Ci

lβhi �
X
ω∈Ω

Lωβhiϑωi: ð3:8Þ

(iii) Present Formulation, Wrong:

8ω∈Ω,8β∈B,8i∈ I, 8h∈Ci

lβhi ¼ Lωβhiϑωi:
ð3:9Þ

Correct Formulation:

8β∈B,8i∈ I,8h∈Ci

lβhi ¼
X
ω∈Ω

Lωβhiϑωi: ð3:9Þ

E2 Erratum



Appendix: Case Studies 1.1–1.20

These cases were solved directly by the general MIP model of Sect. 2.1. Table A.1

reports the overall results.

Table A.2 reports, as an illustrative example, the relevant input data for Case

Study 1.5. This instance involves only single parallelepipeds, to be loaded into a

domain of units 20, 34, and 50, respectively.
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Table A.2 Case Study 1.5 item dimensions

Single

parallelepiped

types L1 side (units) L2 side (units) L3 side (units)

P1 14 20 21

P2 6 12 43

P3 8 13 28

P4 6 21 22

P5 6 20 23

P6 12 13 15

P7 10 12 17

P8 7 12 19

P9 8 14 14

P10 8 10 19

P11 5 7 27

P12 8 9 12

P13 6 10 13

P14 6 6 15

P15 4 11 12

P16 6 6 10

P17 5 6 9

P18 5 5 6
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Case Studies 2.2–2.4

Tables A.3, A.4, A.5, and A.6 report the input data relevant to Case Studies 2.2–2.4.
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Table A.3 Case Study 2.2 item dimensions

Single

parallelepiped

types

Number

of single

parallelepipeds

per type

L1 side

(units)

L2 side

(units)

L3 side

(units)

T1 1 15 30 32

T2 1 10 31 32

T3 1 15 21 22

T4 1 6 10 34

T5 1 6.5 12.5 25

T6 1 4 14 36

T7 8 11 11.43 15

T8 4 10 11.43 15

T9 1 3 20 28

T10 1 5 11.43 15

T11 1 2 12 31

T12 4 3 4 4

T13 4 2 2 10

T14 2 1 2 4

Table A.4 Case Study 2.3 item dimensions

Single

parallelepiped

types

Number of single

parallelepipeds

per type L1 side (units) L2 side (units) L3 side (units)

T1 1 1 23 39

T2 1 4 10 20

T3 1 1 23 24

T4 8 10 4 10

T5 1 1 12 18

T6 1 1 10 20

T7 4 4 4 10

T8 1 1 10 14

T9 1 1 6 20

T10 1 1 8 12
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Table A.5 Case Study 2.4 item dimensions

Single

parallelepiped

types

Number of single

parallelepipeds

per type L1 side (units) L2 side (units) L3 side (units)

T1 1 15 20 25

T2 1 15 15 16

T3 1 15 15 15

T4 8 10 10 25

T5 1 10 15 16

T6 1 10 15 15

T7 4 8 15 15

T8 1 10 10 15

T9 1 7 11 15

T10 1 5 15 15

T11 4 6 8 16

Table A.6 Case Study 2.2–2.4 domain dimensions

Case studies

Domain

side (units)

Domain

side (units)

Domain

side (units)

Case Study 2.2 39 48.3 47.5

Case Study 2.3 39 73.2 47.5

Case Study 2.4 26 38 42

Case Studies 2.2–2.4 109





Case Studies 3.2 and 3.3

Tables A.7 and A.8 report the item input data relevant to Case Studies 3.2 and 3.3.

Table A.9 reports the relevant domain dimensions.
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Table A.7 Case Study 3.2 item dimensions

Single

parallelepiped

types

Number of single

parallelepipeds

per type

L1 side

(units)

L2 side

(units)

L3 side

(units)

T1 1 5 39 49.4

T2 1 12 19 34.4

T3 1 10 22 34

T4 1 5 24 39.4

T5 1 5 29 32

T6 1 5 24 34.4

T7 1 5 22 34

T8 1 5 20 34.4

T9 1 5 19 34.4

T10 1 5 18.9 34.4

T11 3 5 20 20

T12 1 5 14 39.4

T13 2 5 10 54.4

T14 1 5 22 24

T15 2 5 15 34.4

T16 1 5 15 34

T17 1 5 10 49.4

T18 1 5 12 39.4

T19 3 5 10 44.4

T20 1 5 17 24

T21 1 10 10 20

T22 1 5 20 20

T23 1 5 10 39.4

T24 1 5 10 39

T25 1 5 7 54.4

T26 1 5 10 34.4

T27 1 5 15 22

T28 3 5 10 32

T29 1 5 10 29

T30 1 5 7 39.4

T31 1 5 5 54.4

T32 2 5 7 34.4

T33 1 5 10 24

T34 3 5 10 22

T35 1 5 5 42

T36 1 10 10 10

T37 1 5 10 20

T38 1 5 5 39.4

T39 1 5 5 39

T40 1 5 5 37
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Table A.8 Case Study 3.3 item dimensions

Single

parallelepiped

types

Number of single

parallelepipeds

per type L1 side (units) L2 side (units) L3 side (units)

T1 1 19 33 45

T2 1 21 21 50

T3 1 6 33 45

T4 4 10 11.43 15

T5 33 5 6 9

T6 33 5 11.43 15

T7 2 5 9 9

T8 2 5 5 9

T9 4 5 5 5

T10 1 12 16.51 16.87

T11 2 2 5 5

Table A.9 Case Studies 3.2 and 3.3 domain dimensions

Case studies Domain side (units) Domain side (units) Domain side (units)

Case Study 3.2 74.4 49 42

Case Study 3.3 39 73.2 47.5

Case Studies 3.2 and 3.3 113





Case Study 6

Table A.10 summarizes the process carried out to solve Case Study 6.
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Table A.10 Case Study 6—solution process

Main cycle Step

No.

of

steps

No. of

selected

items

No. of

loaded

items

Added

items

Occupied

volume

(%)

CPU

time (s)

Basic Cycle 1 Initialization 1 20 0 0 0.00 00:00:02

Packing 1 20 16 16 26.16 00:00:03

Item-exchange 0 20 16 0 26.16 00:00:00

Hole-filling 2 27 27 11 34.40 00:00:03

Basic Cycle 2 Initialization 1 44 27 0 34.40 00:00:08

Packing 1 44 34 7 39.04 00:00:02

Item-exchange 1 44 33 �1 38.36 00:00:01

Hole-filling 3 56 56 23 49.78 00:00:16

Basic Cycle 3 Initialization 1 68 56 0 49.78 00:00:08

Packing 1 68 60 4 51.41 00:00:02

Item-exchange 0 68 60 0 51.41 00:00:00

Hole-filling 30 81 81 21 59.82 00:01:00

Basic Cycle 4 Initialization 1 86 81 0 59.82 00:00:07

Packing 1 86 81 0 59.82 00:00:02

Item-exchange 0 86 81 0 59.82 00:00:00

Hole-filling 30 96 96 15 64.73 00:01:13

Basic Cycle 5 Initialization 1 107 96 0 64.73 00:00:17

Packing 1 107 98 2 65.33 00:00:03

Item-exchange 0 107 98 0 65.33 00:00:00

Hole-filling 34 115 115 17 69.85 00:02:14

Basic Cycle 6 Initialization 1 129 115 0 69.85 00:00:40

Packing 1 129 118 3 70.51 00:00:05

Item-exchange 1 129 118 0 70.52 00:00:05

Hole-filling 40 138 138 20 74.85 00:04:09

Basic Cycle 7 Hole-filling 117 255 255 117 85.77 00:38:00

Item-exchange 0 255 255 0 85.77 00:00:00
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Virtual Items

Outcomes relevant to a set of 32 virtual item tests are reported in Table A.11.

The tests were executed by using the IBM ILOG CPLEX Optimizer 12.3 (IBM

corporation 2010) on a personal computer (Core 2 Duo P8600, 2.40 GHz processor;

1.93 GB RAM; MS Windows XP Professional, Service Pack 2).
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Search region, 36, 37

Search strategies, 53, 100

Second linear reformulation of the general

MIP model, 39, 54–56, 63, 68,

72, 73, 100, 101

Separation planes, 11, 13, 29, 68, 69, 99

Simple polygons, 82, 90, 93

non-convex, 93

Simplex algorithm/method, 39

Single (operational) cycle, 105, 107, 111

Single non-homogeneous

parallelepipeds, 30

Single parallelepipeds, 20, 21, 28, 29, 33, 44,

45, 49, 68, 76, 83, 99, 113

Small-scale instances/models, 50, 66, 85,

95, 100

Solutions

acceptable, 84

approximate, 14, 51, 53, 55, 57,

61, 65, 71–73, 90, 101

global, 82, 89

initial, 61
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integer-feasible, 13, 19, 36, 41, 44,

53, 55, 57–59

mixed-integer, 43

non-realistic, 22

optimal, 38, 70, 71, 110

satisfactory, 57, 58, 64, 65, 87

starting, (initial ‘guess’), 14, 82, 86,

101, 103

sub-optimal, 41, 71

vertex, 39

Solvers/optimizers, 36

CPLEX, ILOG IBM, 68, 120

LGO, 97

linear, 39

Lipschitzian, 43

MIP (MILP), 27, 66, 97

nonlinear, 97

simplex-based, 39

Space engineering, 3, 10, 11, 22, 29, 31, 76,

80, 82, 99, 103

Special ordered sets (SOS) of type 2 (SOS2),

27, 95

Stability additional conditions/

constraints, 22, 32, 33, 35

Static balancing, 29, 31, 32, 84

Stepwise two-dimensional

domain, 104

Strip packing problem, 10

Structural elements, 11, 13, 28

Sub-domain (static balancing), 29, 30

Sub-optimal solutions, 41, 53, 71

Sufficient conditions, 18

Suggested abstract configurations, 57, 58

Surrogate objective functions,

40, 85, 87, 101

T

Tetris-like items, 12–14, 47, 83, 84, 99

covering, 96

disconnected, 105, 107, 111

non-rigid, 107, 110, 111

single-component, 20, 21, 33, 44, 45, 49,

76, 83, 99, 113

two-dimensional, 97, 104

Three-dimensional Euclidean space, 15

Three-dimensional generalization of the square

grid graph, 49

Tightening (of the MIP model, of big-Ms),

13, 19, 43

Transitivity-compatible σ variables, 49, 54

Transitivity conditions/implications, 45,

48, 49

Two-way graphic interface, 65

U

Upper bounds, 20, 24, 67

V

Valid inequalities, 13, 43, 44, 100, 102

Variables

binary (0–1), 21, 27, 29, 33, 34, 47, 48,

62–64, 83, 87, 95, 108

decisional, 96

non-negative, 18, 26, 39, 54, 56, 86, 94

special ordered set of, 27

Very large scale integration (VLSI),

10, 27–28, 82

Virtual cages, 102

Virtual items, 14, 82–85, 87, 101, 102

VLSI. See Very large scale integration

(VLSI)

W

Wire-length minimization, 28

Z

Zero-global-optimal solutions, 42
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