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  Series  Preface   

 This volume of the series Advances in Mathematics Education edited by Yeping Li, 
Edward Silver, and Shiqi Li on “Transforming Mathematics Instruction” provides 
the reader with an overview on different approaches for transforming mathematics 
instruction. Departing from the evidence from large-scale assessments pointing out 
to strong weaknesses of many educational systems from all over the world, especially 
the strong learning gap between East Asian and Western learners, the current book 
seeks to survey and synthesize current research developments on innovative 
approaches for the change of mathematics classroom culture. There is a wealth of 
studies on the quality of education in general and the quality of mathematics education 
in particular, partly summarized by current meta-studies. However, most of these 
studies focus on Western countries. The current book overcomes this weakness by 
including not only studies and approaches from Western countries but also approaches 
from East Asian countries as well, refl ecting their own way of innovative mathematics 
teaching. With this impressive overview on transforming mathematics instruction 
from Eastern and Western countries, this book will provide an insightful summary 
on possible ways to improve mathematics education while considering various 
cultural infl uences which the reader will hopefully fi nd interesting.  

   University of Hamburg,    Hamburg ,  Germany       Gabriele     Kaiser   
  University of Montana,    Missoula ,  MT ,  USA       Bharath     Sriraman 

Series editors     



                        



vii

 Classroom instruction is commonly seen as one of the key factors contributing to 
students’ learning of mathematics, but much remains to be understood about teach-
ers’ instructional practices that lead to the development and enactment of effective 
classroom instruction, and approaches and practices developed and used to trans-
form classroom instruction in different education systems. 

 This book surveys and examines several different approaches and practices that 
 contribute to the changes in mathematics instruction, including: (1) innovative approaches 
that bring direct changes in classroom instructional practices, (2) curriculum reforms 
that introduce changes in content and requirements in classroom instruction, and 
(3) approaches in mathematics teacher education that aim to improve teachers’ 
 expertise and practices. It also surveys relevant theory and methodology development in 
studying and assessing mathematics instruction. 

  Transforming Mathematics Instruction  is organized to help readers learn not 
only from reading individual chapters, but also from reading across chapters and 
sections to explore broader themes, including:

 –    Identifying what is important in mathematics for teaching and learning emphasized 
in different approaches  

 –   Exploring how students’ learning are considered and facilitated through different 
approaches and practices  

 –   Learning and understanding the nature of various approaches that are valued in 
different systems and cultural contexts  

 –   Probing culturally valued approaches in identifying and evaluating effective 
instructional practices    

 The book brings new research and insights into multiple approaches and practices 
for transforming mathematics instruction to the international community of mathe-
matics education, with 25 chapters and four section prefaces contributed by 56 
scholars from 10 different education systems. This rich collection is indispensable 
reading for mathematics educators, researchers, teacher educators, curriculum 
developers, and graduate students interested in learning about different instructional 

  Preface and Ac knowledgements   
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practices, approaches for instructional transformation, and research in different 
education systems. 

 It will help readers to refl ect on approaches and practices that are useful for 
instructional changes in their own education systems, and also inspire them to 
 identify and further explore new areas of research and program development in 
improving mathematics teaching and learning. 

 We want to take this opportunity to thank and acknowledge all of those who have 
been involved in the process of preparing this book. This has been a wonderful col-
laboration. The work on this book has not only brought together long time friends 
and colleagues, but also  created new professional connections and new friends. We 
want to thank all those who were so ready and willing to contribute to the topic 
that is proven to be very important to the international mathematics education 
community. 

   Texas A&M University, USA Yeping Li   
 University of Michigan, USA  Edward A. Silver    
   East China Normal University, China  Shiqi Li     
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    Abstract     Mathematics classroom instruction, often seen as a key contributing 
 factor to students’ learning, has remained virtually unchanged for the past several 
decades. Efforts to improve the quality of mathematics education have led to mul-
tiple approaches and research that target different contributing factors but lack a sys-
tematic account of diverse approaches and practices for improving mathematics 
instruction. This book is thus designed to survey, synthesize, and extend current 
research on specifi c approaches and practices that are developed and used in differ-
ent education systems for transforming mathematics instruction. In this introduction 
chapter, we highlight the background of this book project, its purposes, and what 
can be learned from reading this book.  
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        Introduction 

 Mathematics instruction is ubiquitous in compulsory schooling across the globe. 
In virtually every country, at every grade level, on every day during the academic 
year, a student attending school is likely to receive mathematics instruction. 
Moreover, among all the school subjects that a student may study, the learning 
of mathematics is generally viewed as the one most contingent on classroom 
instruction. Whereas students may have many opportunities to sharpen literacy 
skills or to learn history or science independent of classroom instruction, it is gener-
ally acknowledged that the learning of mathematics depends to a great extent on the 
quantity and quality of classroom instruction and the completion of associated 
assignments. Thus, parents, educators, and education policy professionals across the 
world share a common interest in improving the quality of mathematics instruction. 
Despite this strong, shared interest, we currently lack clarity about the nature of 
effective mathematics instruction, and we know too little about how to improve the 
quality of classroom instruction. 

 One pathway toward better understanding that has been pursued in recent years and 
that has borne some fruits is cross-national examination of mathematics classroom 
instruction. In a pioneering effort in 1995, the Third International Mathematics and 
Science Study (TIMSS) – a large-scale international survey of mathematics and 
science achievement conducted by the International Association for the Evaluation 
of Educational Achievement (IEA) – included for the fi rst time a component that 
involved an analysis of videotaped classroom instruction from three participating 
countries (Germany, Japan, and the United States) (Stigler and Hiebert  1999 ). 
The examination of classroom instruction was also included in the following TIMSS 
survey and was expanded to include more education systems. The TIMSS classroom 
video studies revealed that while mathematics classroom instruction was generally 
quite similar within a country, it varied considerably across countries, though there 
were few observable characteristics of classroom instruction that differentiated 
teaching in countries where students performed relatively well on the TIMSS 
mathematics assessment from that found in countries where students performed 
relatively poorly. 

 The TIMSS classroom video studies have prompted others to examine mathe-
matics classroom instruction across different education systems, such as the 
Learner’s Perspective Study (e.g., Clarke et al.  2006 ) and studies on classroom 
instruction in East Asia (e.g., Li and Huang  2013 ; Li and Shimizu  2009 ). These 
studies, and others, have collectively suggested the value of examining classroom 
instruction in diverse settings as a way to draw explicit attention to features of 
instruction that might otherwise remain implicit and to suggest alternative possibili-
ties for mathematics teaching that might enrich efforts to improve classroom instruc-
tion. Nevertheless, our understanding of mathematics classroom instruction and its 
improvement remains fragmented. In particular, much remains to be understood 
about how to facilitate and support the development and enactment of effective 
classroom instruction. A systematic examination of different approaches and 
practices for classroom instruction improvement is critically important, especially in 

Y. Li et al.



3

the current context in which the improvement of students’ mathematics learning is 
a focus of emphasis around the world. 

 Our currently limited knowledge is due in no small measure to the inherent 
 diffi culty of capturing and analyzing the complexity of classroom instruction. 
Considered independently, student learning and teaching practices are each complex 
domains of inquiry, and inquiry becomes further complicated when these domains 
are seen as interacting with each other, and also with curriculum materials and 
mathematical ideas, within classroom settings. Nonetheless, some successes have 
begun to emerge in recent years in the quest to improve the quality of mathematics 
instruction, deriving from three different approaches that target different potential 
levers for change and improvement:

    1.    Approaches that directly target innovative classroom instruction practices 
(see, e.g., Bergmann and Sams  2012 ; Carpenter et al.  1999 ; Smith and Stein  2011 ; 
Stillman et al.  2013 )   

   2.    Approaches that seek to change instructional practice indirectly through the 
introduction of curriculum reforms that alter content or performance require-
ments (see, e.g., Huang and Li  2009 ; Leung and Li  2010 ; Li and Lappan  2014 ; 
Stein et al.  2007 )   

   3.    Approaches that seek to change instructional practice through professional 
development aimed at augmenting teachers’ mathematics pedagogical knowl-
edge and profi ciency (see, e.g., Fernandez and Yoshida  2004 ; Li and Even  2011a ; 
Li and Kaiser  2011 ; Stein et al.  2009 ; Yang and Ricks  2013 )    

Given the recent emergence of promising work related to each of these three 
approaches, the time appears to be ripe to survey and synthesize current research 
development on transforming mathematics instruction. 

 In this book, we have assembled a sample of contemporary research efforts 
aimed at understanding and transforming mathematics instruction. In addition to 
work exemplifying the three approaches described above, this book also extends 
to recent international studies focusing on mathematics classroom instruction and 
its improvement in different education systems. 

 In summary, then, our production of this volume was undergirded by two major 
motivations. First, we wished to build upon our previous work on mathematics 
classroom instruction in different education systems (e.g., Li  2006 ; Li and Huang 
 2013 ; Li and Shimizu  2009 ; Silver et al.  1990 ; Stein et al.  2009 ). Examining and 
learning about classroom instruction in different systems and cultural contexts can 
enrich our understanding of effective mathematics classroom instruction. This book 
contains 25 chapters and four section prefaces contributed by a total of 56 mathe-
matics educators and researchers from ten different education systems (Australia, 
Canada, China, Germany, Hong Kong, Israel, the Netherlands, Portugal, the United 
Kingdom, and the United States). This variety of perspectives ensures that readers 
will be able to gain insights into the approaches and practices that are found and 
valued in different education systems. Second, we wished to consider a variety of 
perspectives, other than those that derive from cross-national contrasts, about mathe-
matics instruction that would inform transformative efforts. A recent publication on 
different approaches and practices for improving mathematics teachers’ expertise 
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(Li and Even  2011a ) contained 18 articles that provided an array of perspectives and 
approaches on the nature of expert mathematics teaching and its improvement. 
Similarly, some others of our recent work on mathematics curriculum and teacher 
education (e.g., Leung and Li  2010 ; Li and Kaiser  2011 ; Li and Lappan  2014 ) 
suggest that those perspectives also offer important insights that can contribute to 
our conceptualization, analysis, and transformative efforts regarding mathematics 
classroom instruction. This book contains a rich collection of chapters that spans a 
variety of issues and factors relevant to classroom mathematics instruction. 

 In the following section, we provide general information about the book, its 
structure, and chapters.  

    What Do We Know and What Can We Learn from Multiple 
Approaches and Practices? 

 This book contains 25 chapters, with Ch 1 as an introduction to the book and the 
remaining chapters distributed into fi ve parts. Part I contains seven chapters that 
examine different approaches and practices for improving mathematics instruction 
with a focus on classroom instruction itself. Parts II and III contain 13 chapters (six 
in Part II and seven in Part III) that expand the perspectives on transforming class-
room instruction by attending to issues of mathematics curriculum and teacher edu-
cation. Part IV contains seven chapters on recent development in theory and methods 
for studying and assessing mathematics classroom instruction. Part V is a section 
for commentary and conclusion; one commentary chapter is included to refl ect on 
the research reported in Parts I to IV. Each chapter stands as an independent contribu-
tion. Moreover, the chapters comprising each section offer readers an opportunity to 
synthesize within the perspective represented by a section. And  readers will likely 
fi nd other productive ways to synthesize across chapters. 

    Knowing and Learning About Multiple Approaches 
and Practices as Presented in Individual Chapters 

 The simplest way of knowing and learning about multiple approaches and practices 
is to follow the book’s structure. In the fi rst part describing approaches and changes 
to classroom instruction practices, readers should discover several different perspec-
tives and approaches that are highlighted in these seven chapters. They include the 
modeling approach (Vorhölter et al.  2014 ), guided reinvention (Stephan et al.  2014 ), 
the use of multiple solution tasks and mathematical investigations (Leikin  2014 ), 
the use of numeracy teaching model (Goos et al.  2014 ), exploratory work (da Ponte 
et al.  2014 ), and random grouping in classroom instruction (Liljedahl  2014 ). 
These diverse approaches and practices vary in terms of not only the nature of 
these approaches but also the rationale behind these approaches and practices. 
Such information is very important for readers to understand not only what these 
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different approaches and practices are, but also why developing and using these 
approaches and practices is important. With no specifi c system or cultural con-
straints being specifi ed, readers can certainly consider the feasibility of adapting 
and modifying a certain approach or practice for implementation in their system 
contexts. At the same time, however, David Clarke ( 2014 ) also pointed out in his 
preface that the effectiveness of these approaches and practices could be better 
supported with further empirical evidence and studies. 

 Parts II and III focus on other approaches and practices that can possibly lead 
to mathematics instruction transformation, with Part II concentrating on school 
curriculum changes and Part III concentrating on teacher changes through educa-
tion and practices. Each part has its own preface that summarizes the various 
approaches and practices presented in that part (see Silver  2014 ; Sullivan  2014 ). 
A total of 13 chapters are included in these two parts, with some providing general 
perspectives on factors contributing to mathematics instruction transformation 
(e.g., Gravemeijer  2014 ; Watanabe  2014 ) and others providing specifi c approaches 
and practices (e.g., Borko et al.  2014 ; Oliveira and Mestre  2014 ; Smith et al.  2014 ; 
Yang  2014 ). As these approaches and practices are often presented within specifi c 
system and cultural contexts, readers also have the opportunity to appreciate the 
possible cultural value and signifi cance of these approaches. At the same time, since 
these approaches and practices focus on curriculum and teacher changes, questions 
remain about the effectiveness of these approaches and practices on transforming 
mathematics instruction. Readers are encouraged to take further steps to explore 
and discuss how these approaches and practices can help lead to a successful 
transformation of classroom instruction in specifi c systems and cultural contexts. 

 The last two parts (Parts IV and V) view mathematics instruction as professional 
practices that call for further research and ongoing improvement. Part IV has six 
chapters and its own preface contributed by Norma Presmeg ( 2014 ). These chapters 
present readers with several new perspectives and approaches for studying and 
assessing mathematics instruction. Although the last part contains only one chapter, 
Ball and Hoover ( 2014 ) provide an inspiring commentary that calls for research 
transformation to support instructional transformation in classrooms.  

    Learning Through Refl ecting on Multiple Approaches 
and Practices Across Chapters and Parts 

 Readers should learn much from reading the book, as outlined above, and can learn 
even more through refl ecting on these approaches and practices across chapters and 
parts. In the following subsections, we will share with readers four aspects that are 
built upon our research and perspectives. The fi rst two aspects refer to those that are 
not designed as the foci of this book, but we call for readers’ special attention to 
these inseparable components when considering mathematics instruction and its 
changes. The last two culture-related aspects are pertinent to this book as multiple 
approaches and practices are situated in different systems and cultural contexts, and 
we share with readers what may be learned from these approaches and practices. 
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    Identifying What Is Important in Mathematics for Teaching 
and Learning Emphasized in Different Approaches 

 It is clear that transforming mathematics instruction is not the purpose by itself, but 
a way of helping students learn  mathematics better . However, what  mathematics  is 
important for teaching and learning and how to assess the quality of teaching and 
learning (i.e.,  better ) are not the focus of this book. This does not mean that curricu-
lum is an optional part of mathematics instruction, but rather requires readers to go 
beyond knowing multiple approaches and practices for transforming mathematics 
instruction to refl ect on and identify what is important in mathematics for teaching 
and learning as is highlighted in different approaches. Some approaches have such 
information clearly presented, but others do not. For example, several approaches 
and practices presented in the fi rst three parts contain more specifi c curriculum 
information that include numeracy as the use of mathematics in real-world contexts 
and different school subjects (Goos et al.  2014 ), algebraic thinking (Oliveira and 
Mestre  2014 ), algorithms as a core concept in secondary school mathematics 
(Huang and Li  2014 ), mathematical exploration (da Ponte et al.  2014 ), and reason-
ing and proving (Smith et al.  2014 ). Others contain less explicit curriculum 
information but with such information demonstrated through their research focus. 
As an example, several chapters in this book focus on the cognitive and mathematical 
challenges of specifi c tasks (e.g., Leikin  2014 ; Ni et al.  2014 ; Yang  2014 ). Such a 
focus refl ects the importance placed on students’ cognitive ability development 
(as opposed to procedural skills) through mathematics instruction. 

 At the same time, identifying and refl ecting on what is important in mathematics 
for teaching and learning are also critical for readers who think about adapting and 
using specifi c approaches and practices. For example, the emphasis on cognitive 
challenges of mathematical tasks should help readers to think about the use of 
specifi c approaches and practices for developing students’ ability in problem 
solving and doing mathematics. The approaches of modeling (Vorhölter et al.  2014 ) 
and numeracy (Goos et al.  2014 ) can likely help students connect mathematics with 
real-world contexts and improve their mathematical application ability. Certainly, 
different approaches and practices may also be constrained by their content focuses. 
Recognizing the diversity in curricular foci across different approaches and practices 
can help readers understand these approaches and practices better.  

    Exploring How Students’ Learning Is Considered and Facilitated 
Through Different Approaches and Practices 

 With a focus on mathematics instruction transformation, readers may notice that the 
attention to students and their learning can be clear in some approaches and 
practices but not in others. For example, students and their learning are clearly 
considered in many chapters in Part I and some chapters in other parts, such as 
Even ( 2014 ), Ni et al. ( 2014 ), and Silver and Suh ( 2014 ). The less explicit attention to 
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students and their learning in other chapters does not mean that students and their 
learning should not be focused on when considering mathematics instruction changes. 
Instead, as we pointed out at the beginning, classroom instruction is a very complex 
process that involves many different factors. Various simplifi cations are often needed 
to focus on certain aspects and factors related to classroom instruction at a specifi c 
time, instead of all areas of mathematics classroom instruction simultaneously. Thus, 
readers should go beyond knowing and learning specifi c approaches and practices 
to consider how students and their learning may be affected. Such considerations 
can possibly be carried out (at least) in the following two ways:

    1.    Readers can cross-examine various approaches and practices highlighted in 
different chapters and parts to explore how students and their learning may be 
considered and improved. Adding the explicit dimension of students and their 
learning should help readers to learn and better understand different approaches 
and practices.   

   2.    Readers can view students and their learning as the focus of possible follow-up 
research efforts, especially when considering how to adapt and use a specifi c 
approach or practice. As the book’s editors, we encourage readers to discuss, 
document, and assess specifi c approaches and practices supported with empirical 
evidence of students’ learning improvement.    

     Learning and Understanding the Nature of Various Approaches 
That Are Valued in Different Systems and Cultural Contexts 

 With these approaches and practices contributed by authors from different edu-
cation systems, it is natural to consider possible differences (and thus constraints) 
imposed by the system and cultural contexts. It is not diffi cult to notice that some 
approaches and practices are system and culture specifi c. For example, the text-
book transformation in Japan over years (Watanabe  2014 ), the development and 
use of exemplary lessons in China (Huang and Li  2014 ), the Teaching Research 
Group (Yang  2014 ), and teaching contests (Li and Li  2014 ) are quite unique and 
suited to specifi c system and cultural contexts. Knowing and learning about these 
approaches and practices require readers to take further steps in learning and 
understanding their cultural niches. However, this system and cultural specifi city 
does not mean that these approaches and practices are totally infeasible for 
implementation in another system and cultural context. One good example is lesson 
study, a cultural- pedagogical practice in Japan (Fernandez and Yoshida  2004 ), 
which has been  disseminated and adapted in many other countries, including 
the United States. 

 At the same time, what can be learned from culture-specifi c approaches and 
practices is another important question to consider. If we take lesson study as an 
example, Schoenfeld ( 2013 ) argued that it is important to have a reasoned 
understanding of lesson study in its culture-specifi c elements, including its goals 
and the cultural support needed for its implementation. Without such a reasoned 
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understanding, it is naïve to simply adopt and implement lesson study in the United 
States. However, Schoenfeld recognized and acknowledged the signifi cance of 
learning important lessons from such culturally valued approaches, including 
teacher practice and collaboration. It is in the same idea that readers, from all over 
the world, can also identify culture-specifi c elements of these approaches and 
practices presented in this book and take important lessons that can be used in 
another system and cultural context. 

 There are quite a few approaches and practices presented in this book that don’t 
give readers a sense of cultural uniqueness. Partially, this is due to the fact that many 
approaches and practices focus on the cognitive dimension of changes. It should be 
noted that being “culturally neutral” does not automatically grant such approaches and 
practices the capacity for direct adoption into another system and cultural context. 
Indeed, the development and use of any specifi c approach and practice contain its 
specifi c goal and supporting mechanism. As an example, Sullivan ( 2014 ) pointed 
out that chapters included in Part III present approaches from two different countries, 
China and the United States, and there are important differences among these 
approaches. The two approaches from China stem from the work of practitioners as 
teacher driven. In contrast, all of the approaches from the United States share an 
important similarity with substantial input from researchers. Sullivan’s point 
coincides with the observation made by Li and Even ( 2011b ) when examining various 
approaches and practices used in developing mathematics teachers’ expertise in 
the West and East. Such differences suggest that, even for such “culturally neutral” 
approaches, they incorporate unique and culturally embedded support (from 
researchers) that may not be readily available in another system and cultural 
context. Nevertheless, there are also some important lessons (e.g., the quality of 
mathematical tasks designed and the generalizability of specifi c approaches) for 
others to recognize and use in their own system and cultural contexts.  

   Probing Culturally Valued Approaches in Identifying 
and Evaluating Effective Instructional Practices 

 The action of transforming mathematics instruction in different systems and cultural 
contexts itself contains special cultural elements. Such cultural elements can be 
thought of as special values and considerations  placed on  developing and using a 
specifi c approach or practice. In this regard, we already shared with readers in the 
above subsection what may or may not be taken away from specifi c approaches and 
practices situated in different systems and cultural contexts. 

 Such cultural elements can also be thought of as special values and consideration 
 placed behind  developing and using specifi c approach and practice. In this regard, 
special values and consideration can include the specifi cation of what can be 
counted as effective instructional practice, how such effective instructional practice can 
be identifi ed, what changes need to be made in order to develop such effective 
instructional practice, and how to evaluate the effectiveness of instructional 
practices. The learning and understanding of such cultural elements can help ensure 

Y. Li et al.



9

that the intended transformation will help lead to the expected effectiveness of 
mathematics instruction that is valued in specifi c system and cultural context. 
However, attempting to answer these questions goes beyond the scope of this 
book. We shall encourage readers to uncover possible hints for identifying and 
evaluating effective instructional approaches valued in different systems and cultural 
contexts, within this book.    

    Signifi cance and Limitations 

 With a focus on ways of transforming mathematics instruction, we hope this book 
will help to organize and synthesize several different strands of mathematics educa-
tion research that are often viewed as unrelated. As the chapters in this volume 
attest, many different factors can be the focus of efforts to understand or improve 
mathematics instruction and ultimately students’ learning of mathematics. Though 
they differ in approach and focus, they share similar goals, and each offers an impor-
tant independent contribution to our collective understanding and the development 
of a comprehensive approach to improvement. This book thus provides a broadened 
perspective to survey, synthesize, and extend current research on specifi c approaches 
and practices that are developed and used in different education systems. Several 
parts of the book (esp. Parts I, II, and III), as structured, help provide a systematic 
account of multiple approaches and practices that can lead to mathematics instruc-
tion improvement. Such a broadened perspective allows readers to see possible 
connections among these seemingly disconnected approaches and practices and also 
see the complexity and challenge of making mathematics instruction improvement 
a success. 

 At the same time, we affi rm the view promoted by Stigler and Hiebert ( 1999 ) 
that classroom instruction is a culturally constituted activity. As such, this book is 
not designed to promote simple and direct adoption of a specifi c approach or 
practice from one education system to another, but rather to provide a platform for 
mathematics educators all over the world to share and learn important lessons from 
others. It is in the process of sharing, learning, and refl ecting on different approaches 
and practices, rather than taking away specifi c approaches and practices as fi nal 
products, that readers can benefi t the most from reading the book. 

 We close with a few cautionary words to the reader. Our decision to include 
particular approaches and practices in this volume should not be taken to imply that 
we endorse them or attest to their effi cacy. Our goal was to display richness and 
diversity. Furthermore, the specifi c approaches and practices presented and dis-
cussed in different chapters are sometimes presented with reference to the cultural 
and education system within which they are embedded, but we are not attesting that 
these specifi c approaches and practices are representative of typical practice in the 
designated education systems. Nevertheless, keeping these cautions in mind, we 
invite readers to avail themselves of the rich collection of examples contained herein. 
We affi rm the value of sharing and exchanging information regarding different 
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approaches and practices for transforming mathematics instruction within and 
across education systems. Sharing and examining multiple approaches and practices 
developed and used in different education systems can allow us to learn important 
lessons that are otherwise not available when we look only at ourselves.     
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      Some approaches to the transformation of mathematics instruction might involve 
indirect approaches such as: change teacher education, change the curriculum or 
change assessment. It can be safely assumed that changes to teacher education, 
changes to the curriculum or changes to assessment will have their consequences 
for instruction. Part I of this book takes the direct route and addresses the possibility 
of changing mathematics instruction directly. But the other parts of this book remind 
us that any such change in instructional practice must occur within the constraints 
imposed by the curriculum, by existing assessment practices and by the teacher 
education programmes that equip teachers to engage in transformative practice. 
Acknowledging the signifi cance of these different contexts within which we might 
attempt the transformation of instruction, the question remains: “In what direction, 
for what purpose and in what form might mathematics instruction be transformed?” 
The chapters in Part I offer some possible answers to this question. 

 Vorhölter, Kaiser and Ferri extol “the innovative power of the teaching and learning 
of mathematical modelling” and support their advocacy with examples from innovative 
projects designed to integrate modelling into the practices of mathematics classrooms. 
In part, their advocacy is based on a perceived need to make school mathematics more 
relevant to students and the community. This argument has been with us since Mogens 
Niss labelled it the “Relevance Paradox”.

  The discrepancy between the objective social signifi cance of mathematics and its subjective 
invisibility constitutes one form of what the author often calls the  relevance paradox  
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formed by the simultaneous objective relevance and subjective irrelevance of mathematics 
in society. (Niss  1994 ) 

   Vorhölter, Kaiser and Ferri restate this as, “a gap exists between the high relevance 
of mathematics in daily life, sciences, and this feeling of the uselessness of school 
mathematics”. It should be humbling to the mathematics education community that 
we fi nd ourselves still addressing this same “paradox” 20 years after Niss’ original 
formulation. Yet the argument that mathematical modelling provides at least part of the 
key to establishing the relevance of classroom mathematics to situations of everyday 
life seems a convincing one. Having established the need and identifi ed the strategy, 
we now address the question of tactics. How might mathematical modelling be used 
to transform mathematics instruction? 

 The chapter by Vorhölter, Kaiser and Ferri succeeds in addressing this question 
in at least three respects. Most importantly, it provides a well-referenced rationale 
for the inclusion of “applications and modelling” in the enacted curriculum and 
distinguishes usefully between the alternative attractions of holistic and atomistic 
approaches to the teaching of modelling, echoing past debates over the relative mer-
its of teaching problem solving as a discrete or pervasive component of the mathe-
matics curriculum. A variety of research projects are usefully cited to demonstrate 
the “innovative potential of modelling to change mathematics education”. Any sug-
gestion of single, simple approach is problematised by statements such as “there 
exist not only ‘the modelling cycle’, but modelling cycles for different purposes” 
and the demonstrated difference between research projects (and related approaches 
to instructional change) focusing on student behaviours and those focusing on 
teacher education. 

 The discussion of “scaffolding and adaptive interventions” is particularly 
interesting and leads naturally to the assertion that “modelling activities need to 
be carried out in a permanent balance between minimal teacher guidance and 
maximal students’ independence, following well-known pedagogical principles 
such as the principal of minimal help”. In this case, it is clear that it is the need 
for balance that is “permanent” and not the composition of that balance, which is 
based on “individual, adaptive, independence-preserving teacher interventions 
within modelling activities”. 

 The chapter by Stephan, Underwood-Gregg and Yackel proposes a teaching 
approach they call “guided reinvention” that “moves beyond” inquiry approaches 
to mathematics teaching to an integration of aspects of “Realistic Mathematics 
Education” (Freudenthal  1973 ) with more recent conceptions of hypothetical 
learning trajectories (Simon and Tzur  2004 ). As with all the chapters in this book, 
it is legitimate to ask, “What’s new?” and the answer is encouraging. In this case, 
the transformation of mathematics instruction is advanced by the advocacy of an 
approach to teaching that demonstrably and usefully builds on established and 
relevant research. This is suffi ciently novel within the discipline as to be highly 
encouraging. Education as a discipline and mathematics education as a specifi c 
case do not have a happy history when it comes to the integration, consolidation 
and extension of knowledge. Guided reinvention is presented as a powerful 
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approach that draws its warrant from fi rm foundations in existing theory and 
research. In a book titled “Transforming Mathematics Instruction”, this is both 
reassuring and inspiring. 

 Leikin examines the interplay between multiple solution tasks (MSTs) and 
 mathematical investigations (MIs). Analysis of the several examples of each takes as 
its utility function 1  “a student’s mathematical potential” and posits a four-variable 
model of mathematical potential that encompasses mathematical ability, affective 
characteristics, personality traits and learning opportunities. The inclusion of  “learning 
opportunities” immediately establishes the author’s relativist position, further elabo-
rated in relation to mathematical creativity. Recruiting Vygotsky’s characterisation of 
imagination as further endorsement of the role of creativity in learning, Leikin then 
proposes MSTs and MIs as the vehicles by which student mathematical potential 
might be optimally realised. 

 Optimisation of the instructional use of MSTs and MIs is linked to “mathemati-
cal challenge” and thence back to Vygotsky again through connection to the Zone 
of Proximal Development. The author’s relativist position is further consolidated by 
the assertion that “mathematical challenge is subjective”. The transformation of 
mathematics instruction advocated in this chapter comes from tasks that “facilitate 
students with different levels of mathematical potential in overcoming mathemati-
cal challenges”. As promised, the geometry tasks presented take conventional task 
forms and morph them into MST and MI versions with much greater capacity to 
stimulate, promote and realise student mathematical potential. 

 Goos, Geiger and Dole focus specifi cally on numeracy teaching. The project 
described in this chapter is shaped by a particularly rich conception of numeracy 
that encompasses “real-life contexts, application of mathematical knowledge, use of 
representational, physical, and digital tools, and positive dispositions towards math-
ematics” within the framework of a coherent, structured “model for numeracy in the 
21 st  century”. Central to this model is “a critical orientation towards numeracy” 
that connects the authors’ conception of numeracy to some of the more emancipa-
tory aspects of mathematical literacy (Jablonka  2003 ). The vehicle of change was a 
 yearlong action research programme involving workshops and school visits. The 
structure, sequencing and rationale for this programme are provided in useful detail. 
The numeracy model is used to provide a particularly revealing representation of 
one teacher’s trajectory towards transformed numeracy teaching. A case study 
 outlines the teacher’s professional development in compelling detail. 

 In evaluating the effectiveness of the professional development approach, 
teacher responses to a questionnaire administered before and after the action 
research programme are analysed. Emphasis is given to the increase in teachers’ 
confi dence in the various aspects of numeracy teaching. With respect to the classroom 
realisation of numeracy, “teachers seemed most comfortable with incorporating 
the  knowledge ,  dispositions , and  contexts  components of the model into their 
thinking about numeracy”, but the overarching “critical orientation” to numeracy 
was not widely achieved. The challenge of integrating this critical orientation 

1   A useful construct from economics, meaning “that which is maximised”. 
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into their numeracy teaching proved too much for most participating teachers. 
The authors highlight the need for further research into how teachers might be better 
supported in implementing a critical orientation to numeracy. Notwithstanding the 
unevenness with which this critical orientation was achieved, the programme 
outlined provides a wonderful foundation on which further efforts to transform 
numeracy teaching might be undertaken. 

 From numeracy the focus shifts to exploratory work in the mathematics  classroom 
(da Ponte, Branco and Quaresma). Examples are provided of the integration of 
exploratory work into the daily activities of the mathematics classroom. This is 
contrasted with the “exposition of concepts and procedures” and the “presentation 
of examples and practice of exercises” associated with “conventional education”. 
The distinctive features of the problems used to initiate student mathematical explo-
ration were “elements of uncertainty or openness, requiring students to undertake a 
signifi cant work of interpreting the situation”. The purpose of the chapter is to show 
how exploration tasks can be used to create a productive classroom environment and 
a teaching experiment is described with this focus. 

 Results of the research indicate student improvement in their understanding of 
fractions, percent and decimals. Representations (particularly student-generated 
representations) appear to play a critical role in the instructional approach, and the 
description of student activity as rebuilding their representations of the problem 
situation is particularly evocative. The emphasis on student presentation of their 
fi ndings clearly contributes to the development of student learning while providing 
important information on that learning. In common with other instructional innova-
tions discussed in Part I, student achievement of the more sophisticated learning 
goals was uneven; nonetheless, the examples provided constitute a form of proof of 
concept or validation of the viability of the use of exploration tasks in successfully 
promoting both conventional mathematics learning and more ambitious learning 
goals such as mathematical reasoning and communication. 

 The fi nal chapter in Part I (Liljedahl) takes group work as its focus and explores 
the consequences of random assignment of students to groups. These consequences 
include student affect, classroom social fl exibility and affordances and the devolu-
tion of the responsibility for generating mathematical knowledge from the teacher 
to the students. The recurrent argument of the chapter is that random assignment of 
students to groups has defi nite advantages in comparison with the strategic structur-
ing of group membership advocated elsewhere. 

 Interestingly, the emphasis of this chapter is on social organisation, collegial 
activity and the emergence of a sense of community within the classroom, rather 
than on conventional cognitive outcomes. Randomised groupings served to destabi-
lise existing classroom norms, particularly those related to the teacher’s role as 
“expert” and compelled a reconceptualisation of classroom mathematical activity. It 
is also suggested that the role of mathematical tasks changed from fragmented 
assemblages of loosely connected examples and opportunities for skill practice to a 
more central role as the vehicle for group work and mathematical discussion. One 
of the most appealing aspects of this chapter is the relative simplicity of the change 
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strategy and the extensive and sophisticated nature of its consequences in terms of 
social function, student engagement and classroom mathematical activity. 

 If our goal is “Transforming Mathematics Instruction”, then we need not only the 
mechanisms of transformation but a compelling rationale for the direction of change 
and the reassurance that evidence exists that each advocated transformation is likely 
to lead to productive learning. The chapters of Part I provide the examples and 
the rationale, the strategies and the consequences. The claims made are tempered 
by the recognition that more could still be achieved, but each chapter provides 
plausible evidence of fruitful development. In combination, we have a picture of the 
sophistication and complexity of mathematics instruction, amenable to constructive 
transformation from several different perspectives.    
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    Abstract     The attitude of many students all over the world is shaped by the experience 
of learning impractical algorithms without any relevance for their actual or future 
life. Many students only learn algorithms and concepts in order to pass examina-
tions and forget them afterwards. The inclusion of mathematical modelling in 
schools is one current innovative approach, which has the potential to offer students 
insight into the usefulness of mathematics in their life. In this chapter, the develop-
ment of the current discussion on teaching and learning mathematical modelling is 
described by detailing the goals of implementing mathematical modelling in schools 
and ways of integrating modelling into classrooms. Innovative projects for the inte-
gration of modelling into classrooms are described, displaying the innovative power 
of the teaching and learning of mathematical modelling in school. Based on the 
results of empirical studies, scaffolding as an approach to support students’ inde-
pendent modelling processes is discussed in detail distinguishing approaches at a 
macro- and a micro-level.  
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        Introduction 

 The relevance of promoting applications and mathematical modelling in schools 
is currently accepted in most parts of the world. Departing from literacy studies 
claiming that mathematics education aims to promote responsible citizenship, the 
promotion of modelling competencies, i.e. the competencies to solve real-world 
problems using mathematics, is accepted as a central goal for mathematics education 
worldwide. The reasons for this change in mathematics education are multifaceted. 
Amongst other motives, the negative attitudes towards mathematics of many students 
are responsible for this change, which became apparent in various large- scale assess-
ments such as TIMSS and PISA and in the daily work at school (cf. Mullis et al. 
 2012 ; OECD  2010 ). This is not a new phenomenon, but has been well known for 
decades. Especially in Western countries, many students are complaining about the 
uselessness of the mathematics learned in school for their actual and future life. They 
express that they do not see any sense in learning mathematics. A gap exists between 
the high relevance of mathematics in daily life and the sciences and this feeling of the 
uselessness of school mathematics. Furthermore, large-scale studies like PISA, 
which are focused on assessing mathematical literacy in a broad sense or, more con-
crete, on evaluating the competencies of the students to use mathematics in order to 
solve problems based on real-world contexts, show the unsatisfactory results of many 
students in this domain. Especially complex, multistep solution processes of contextual-
rich problems, which require translation processes between mathematics and the real 
world, are of high diffi culty for students in school (see OECD  2010 ). 

 The inclusion of real-world and modelling examples in many national curricula 
worldwide emphasising modelling competencies on a broad level refl ects the 
concerns of politicians and mathematics educators, who are afraid that the young 
generation acquires neither the competencies for being mathematically literate nor the 
positive attitudes towards mathematics necessary for an open-minded acquaintance 
with mathematics. It is nowadays mostly agreed in the broad international debate on 
mathematical education, especially at the offi cial curricular discussion, that applica-
tions and modelling have to play a decisive role at school, covering all age levels 
and ability strands (although there are still contesters against a strong role of appli-
cations and modelling in school).  However, beyond this consensus on the relevance 
of modelling, it is still discussed how to integrate mathematical modelling in math-
ematical teaching and learning processes. There is still a lack of strong empirical 
evidence on the effects of the integration of modelling examples into school prac-
tice, although there exist many smaller and several large- scale projects aiming to 
include mathematical modelling into school practice. We will describe in the 
next section the development of the discussion on the integration of mathematical 
modelling into school practice, and then we exhibit projects and practical approaches 
for the promotion of mathematical modelling into school in section “ Ways of 
Implementing Modelling into Day-to-Day Teaching ” and conclude with results of 
empirical studies on the inclusion of mathematical modelling in school practice in 
section “ Scaffolding and Adaptive Interventions in Modelling Processes ”.  
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    Theoretical Framework and Strands 
of the Modelling Discussion 

 Although applications and modelling have already played an important role in 
mathematics education in the nineteenth century, the request to teach mathematics 
in an application-oriented way has become more prominent at the turn from the 
nineteenth to the twentieth century, when innovative new syllabi, which included 
applications in mathematics teaching, were developed. This development was 
forced by the fast technological progress at the turn from the nineteenth to the twen-
tieth century, which necessitated a better understanding of real-world examples, 
especially of problems in technology and engineering. Despite this technological 
necessity, mathematics education was, in many parts of the world, dominated by 
pure algorithms with no relations to the real world. This unsatisfactory situation has 
changed dramatically in the last decades with the famous symposium ‘Why to teach 
mathematics so as to be useful’ (Freudenthal  1968 ; Pollak  1968 ), which was carried 
out in 1968. Since then, the question of how to change mathematics education in 
order to include applications and modelling in daily teaching has been the focus of 
many research studies. However, this high amount of studies has not led to a consis-
tent argumentation of how to teach mathematics so as to be useful. There have been 
several attempts to analyse the various theoretical approaches to teach mathematical 
modelling and applications and to clarify possible commonalities and differences. 
For example, Kaiser-Messmer ( 1986 ) distinguished in her analysis, from the begin-
ning of the recent debate on modelling until the mid-1980s of the last century, two 
main streams within the international debate on applications and modelling, a so- 
called pragmatic perspective, focusing on utilitarian or pragmatic goals with Henry 
Pollak ( 1968 ) as protagonist, and a scientifi c-humanistic perspective oriented more 
towards mathematics as a science and humanistic ideals of education with Hans 
Freudenthal ( 1968 ) as main protagonist. The different goals emphasised had conse-
quences concerning how to include mathematical modelling, namely, either based 
on cyclic modelling processes as requested by Pollak ( 1968 ) or as complex mathe-
matising interplay between mathematics and the real world as described by 
Freudenthal ( 1973 ). 

 A few years later, Blum and Niss ( 1991 , p. 43f) focused on the arguments and 
goals for the inclusion of applications and modelling and discriminated fi ve layers 
of arguments in their extensive survey on the state of the art, namely:

•    The formative argument is related to the promotion of general competencies 
and attitudes, in ‘particular orientated towards fostering overall explorative, 
creative and problem solving capacities (such as attitudes, strategies, heuristics, 
techniques etc.), as well as open-mindedness, self-reliance and confi dence in 
their own powers’.  

•   The critical competence argument aims ‘to enable students to “see and judge” 
independently, to recognize, understand, analyse and assess representative 
examples of actual uses of mathematics, including (suggested) solutions to 
socially signifi cant problems’.  
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•   The utility argument requires that ‘mathematics instruction should enable 
students to practice applications and modelling in a variety of contexts where 
mathematics has instrumental services to offer without occupying in itself the 
focal point of interest’.  

•   The ‘picture of mathematics’ argument ‘insists that it is an important task of 
mathematics education to establish with students a rich and comprehensive 
picture of mathematics in all its facets, as a science, as a fi eld of activity in 
society and culture’.  

•   The promotion of mathematics learning argument emphasises that the ‘incorpo-
ration of problem solving, applications and modelling aspects and activities in 
mathematics instruction is well suited to assist students in acquiring, learning 
and keeping mathematical concepts, notions, methods and results, by providing 
motivation for and relevance of mathematical studies’.    

 Blum and Niss ( 1991 ) emphasised especially the promotion of three goals: that 
a student should be able to perform the modelling processes, to acquire knowledge 
of existing models, and to critically analyse given examples of modelling processes. 

 Various other classifi cations exist amongst others by Kaiser-Meßmer ( 1986 ) and 
Blum ( 1996 ), however, the core and intention of these multilayered systems of goals 
remain the same. 

 Various approaches on how to consider applications and modelling in mathemat-
ics instruction have been proposed since the beginning of the debate ranging from a 
simple inclusion of applications and modelling into a mainly mathematically struc-
tured curriculum to the organising of the curriculum along real-world examples. 
Blum and Niss ( 1991 , p. 60f) distinguished several ways to include applications and 
modelling in mathematics instruction:

    1.     The separation approach and two-compartment approach . The mathematical 
programme is divided into distinct parts, a usual course in ‘pure’ mathematics, 
whereas the second one deals with one or more ‘applied’ items, utilising mathe-
matics established in the fi rst part or earlier.    

   2.     The islands approach.  The mathematical programme is divided into several parts 
each organised according to the two-compartment approach.   

   3.     The mixing approach.  Applications and modelling examples are included fre-
quently into the mathematical programme in order ‘to assist the introduction of 
mathematical concepts etc. Conversely, newly developed mathematical con-
cepts, methods and results are activated towards applicational and modelling 
situations whenever possible’.   

   4.     The mathematics curriculum integrated approach and the interdisciplinary inte-
grated approach.  ‘Here problems, whether mathematical or applicational, come 
fi rst and mathematics to deal with them is sought and developed subsequently’ 
or ‘one operates with a full integration between mathematical and extra- 
mathematical activities within an interdisciplinary framework where “mathe-
matics” is not organized as a separate subject’.    
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  Which approaches or which combination of approaches is favourable and should 
be chosen depends, according to Blum and Niss ( 1991 ), on ‘a multitude of factors: 
the arguments for and the purposes and goals of problem solving, modelling and 
applications in mathematics instruction, or the characteristics and peculiarities 
(legal restrictions and other boundary conditions, specifi c task traditions, resources 
etc.) of the educational (sub)system under consideration’ (p. 61). However, Blum 
and Niss ( 1991 ) emphasised the relation to the school level. According to their 
standpoint, the islands and mixing approaches are especially favourable for elemen-
tary school level, because the fundamental mathematics needs to be acquired. At the 
secondary level, a more integrated approach seems to be favourable, for experimen-
tal curricula even the interdisciplinary integrated approach might be appropriate. 
At the tertiary level, for example, in a mathematics service subject programme, all 
approaches are possible; however, the two-compartment, the islands, and the 
mixing approaches might be the most favoured. 

 Apart from the goals for the inclusion of applications and modelling in mathe-
matics education and the approaches to including modelling into mathematics 
teaching, there is another key characteristic of the discussion on mathematical 
modelling, specifi cally, how the mathematical modelling process is understood, i.e. 
how the relation between mathematics and the ‘rest of the world’ (Pollak  1968 ) is 
described. Analyses show that the modelling processes are differently described by 
various perspectives and streams within the modelling debate. The perspectives 
mentioned above developed different notions of the modelling process: emphasis-
ing either the solution of the original problem, as it is done by an applied modelling 
perspective, or the development of mathematical theory as it is done by more 
theoretically oriented approaches (for a description of these different perspectives, 
see Kaiser and Sriraman  2006 ). So, corresponding to different perspectives on 
mathematical modelling, there exist various modelling cycles with specifi c emphasis 
(for an overview, see Borromeo Ferri  2006 ). That means that there exists not only 
‘the modelling cycle’ but modelling cycles for different purposes. 

 A kind of a modelling cycle nowadays used in many empirical studies was developed 
by Blum ( 1996 ) and Kaiser-Messmer ( 1986 ) and is based, amongst others, on work 
by Pollak ( 1968 ). This description contains the characteristics, which can be found 
in various modelling cycles used in various strands of the debate on modelling: the 
given real problem is simplifi ed in order to build a real model of the situation, many 
assumptions have to be made, and central infl uencing factors have to be identifi ed. 
To create a mathematical model, the real model has to be translated into mathematics. 
However, the distinction between a real and a mathematical model is not always well 
defi ned, because the process of developing a real model and a mathematical model is 
interwoven, partly because the developed real problem is related to the mathematical 
knowledge of the modeller. Inside the mathematical model, mathematical results 
are worked out by using mathematics. After interpreting the mathematical results, 
the real results have to be validated as well as the whole modelling process itself. 
Individual parts or the whole process may have to be repeated. 

 The modelling cycle by Kaiser and Stender ( 2013 ) in Fig.  1  contains these core 
elements and is a slight variation of a description proposed by Maaß ( 2005 ).
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   The cycle idealises the modelling process. In reality, several mini-modelling 
cycles occur that are worked out either in linear sequential steps like the cycle or in 
a less ordered way. Most modelling processes include frequent switching between 
different steps of the modelling cycles (Borromeo Ferri  2011 ). All of these steps are 
potential cognitive barriers for students, as well as essential stages in real modelling 
processes (Matos and Carreira  1997 ; Stillman  2011 ). These individual modelling 
processes – so-called modelling routes (Borromeo Ferri  2011 ) – are strongly infl uenced 
by the mathematical thinking style of the students as described by Borromeo Ferri 
( 2011 ) in her extensive study. Students with a preference to an analytic thinking 
style usually switch to the mathematical model immediately and return to the real 
model only afterwards, when the need arises to understand the task in a better way. 
They work mainly in a formalistic manner and are better at ‘perceiving’ the mathe-
matical aspects of a given real situation. Students with a preference towards a 
visual thinking style mostly imagine the situation in pictures and use pictographic 
drawings. Their argumentation during the modelling process is strongly related to 
the real world, even when they work within the mathematical model. 

 Especially important for modelling activities are modelling competencies, i.e. 
the ability and the volition to work out problems with mathematical means taken 
from the real-world problem through mathematical modelling. Based on the 
concept of the modelling cycle, the modelling debate distinguishes between 
sub- competencies and global competencies; sub-competencies relate to the single 
steps of the modelling cycle, and global modelling competencies, in contrast, relate 
to necessary abilities to perform the whole modelling process and to refl ect on it 
(see Kaiser  2007 ).  Based on the extensive studies by Maaß ( 2006 ) and work by 
Kaiser and Schwarz ( 2010 ), extensive work by Haines et al. ( 2000 ), Houston and 
Neill ( 2003 ), and Galbraith et al. ( 2007 ), and further studies which are summarised 
by Blomhøj ( 2011 ), different sub-competencies can be distinguished, whereby this 
list is far from being complete:

•    ‘Competency to solve at least partly a real world problem through mathematical 
description (that is, model) developed by oneself;  

•   Competency to refl ect about the modelling process by activating meta- knowledge 
about modelling processes;  

  Fig. 1    Modelling process by 
Kaiser and Stender 
( 2013 , p. 279)       
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•   Insight into the connections between mathematics and reality;  
•   Insight into the perception of mathematics as process and not merely as product;  
•   Insight into the subjectivity of mathematical modelling, that is, the dependence 

of modelling processes on the aims and the available mathematical tools and 
students competencies;  

•   Social competencies such as the ability to work in a group and to communicate 
about and via mathematics.’ (Kaiser  2007 , p. 111)    

 It is an open question whether special sub-competencies or modelling competen-
cies in general should be fostered in the teaching and learning of mathematical 
modelling. Blomhøj and Jensen ( 2003 ) distinguish the two fundamentally different 
ways of teaching modelling, namely, in a holistic or an atomistic way. It is still an 
unanswered question if modelling can be better learned when focusing on one 
phase of the modelling cycle (atomistic way) and so using non-complex modelling 
problems or to start with complex tasks and carry out a whole modelling cycle 
(holistic way). The ongoing empirical study by Grünewald ( 2013 ) is measuring the 
effi ciency of both approaches based on the increase of modelling competencies by 
students taught each way. The fi rst results already point out that both approaches 
have advantages and disadvantages and seem to be able to support different 
sub- competencies of modelling. 

 Another infl uencing factor is the personal meaning students create when engaging 
in mathematics or working on mathematical tasks in class. As already mentioned, 
one reason for the implementation of mathematical modelling at a broader level is 
the negative attitudes of many students towards mathematics. Based on the concept 
of personal meaning as a special relation between mathematics and its relevance 
for the single student, the study by Vorhölter ( 2009 ) shows the high importance of 
the personal relation to the context taught and the necessity to include meaningful 
examples offering insight into a better understanding of the world around us. In detail 
the study emphasised that the personal meanings of mathematics as a service tool 
(i.e. students want to use mathematics in their present or future private life or at 
work as a tool and want to be prepared in school to this use) and self-fulfi lment 
(i.e. students want to experience joy in mathematical activities and feel challenged 
by these) are decisive factors for students’ learning and need to be considered in 
innovative teaching and learning approaches. 

 In the following, we want to show the innovative potential of modelling to change 
mathematics education by various projects, which attempt to implement mathematical 
modelling into the day-to-day teaching of mathematical classrooms.  

     Ways of Implementing Modelling into Day-to-Day Teaching 

 Due to the high number of both large and small projects, we concentrate on two 
different kinds of projects. The fi rst focuses on students and, in this special case, 
on future teachers within the framework of teacher education. The second is 
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embedded into the activities of in-service teacher education and focuses on practising 
teachers (for an overview on projects, cf. Blum et al.  2007 ; Kaiser et al.  2011 ; 
Stillman et al.  2013 ). 

 An infl uential way of implementing modelling into mathematics education is 
project-oriented work, amongst other so-called modelling weeks or modelling days, 
which are focused on students and future teachers. Originally developed at the 
University of Kaiserslautern and carried out for more than a decade at the University 
of Hamburg, they are now implemented at several other German universities. During 
modelling weeks, students from the upper secondary level (aged 16–18) work on a 
single modelling problem for a whole week at the university, whereas modelling 
days with students from the lower secondary level (aged 14–16) are organised at 
the participating school and last only 3 days. Students choose at the beginning of 
the activity one problem, which they tackle for the duration of the programme. 
The most important purpose of these projects is that the participating students will 
acquire competencies that enable them to carry out modelling examples indepen-
dently, i.e. the ability to extract mathematical questions from the given problem 
contexts and to develop the solutions autonomously. Furthermore, it is hoped that 
students will be enabled to work purposefully on their own in open problem situa-
tions and will experience the feelings of uncertainty and insecurity, which are char-
acteristics of real applications of mathematics in everyday life and the sciences. 
An overarching goal is that students’ experiences with mathematics and their math-
ematical world views or mathematical beliefs are broadened (for details, see Kaiser 
et al.  2013 ). This can be described as a holistic approach, using the terminology of 
Blomhøj and Jensen ( 2003 ), i.e. the whole mathematical modelling process is car-
ried out, covering all phases of the modelling cycle described above. The central 
feature of these projects is the use of authentic examples coming from industry, 
which are only simplifi ed slightly. For example, the following themes have been 
tackled so far:

•    Pricing for Internet booking of fl ights  
•   Optimal automated irrigation of a garden  
•   Development of ladybugs  
•   Chlorination of a swimming pool  
•   Optimal design of a bus stop    

 Quite often only a problematic situation is described, and the students have to 
develop a question that can be solved – the development and description of the 
problem to be tackled are the most important and most ambitious part of a modelling 
process, mostly neglected in ordinary mathematics lessons. Another feature of 
the problems is their openness, which means that various problem defi nitions and 
solutions are possible, depending on the views of the modellers. 

 One special feature of the activities carried out at the University of Hamburg is 
the integration of future teachers, i.e. that future teachers support the students 
during modelling activities as part of their university study. 

 The teaching and learning process is characterised as autonomous, self- organised 
learning, i.e. the students decide their ways of tackling the problem and no fast 
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intervention by the tutors or teacher shall take place. That implies that various 
scaffolding and supporting measures need to be known by teachers, or in this case 
the student tutors, who therefore need to be trained beforehand. However, empirical 
research on the possibilities of supporting students with scaffolding measures and 
the effi ciency of various measures has just started departing from the discussion on 
scaffolding in modelling at a micro-level described in the next section (see amongst 
others Kaiser and Stender  2013 ). 

 The other kind of projects we wish to describe focuses on practising teachers and 
takes place in the context of in-service teacher education. The international project 
LEMA (Learning and Education in and through Modelling and Applications) has 
developed different ways of implementing modelling into the mathematics class-
rooms of primary and secondary schools. The main aim is to implement mathemati-
cal modelling into day-to-day teaching by changing the teacher’s practice and 
beliefs towards modelling and application. In order to achieve this goal, a teacher 
training course was designed, piloted, and evaluated in the classrooms of six partici-
pating countries from Europe. The core of the teacher training consists of fi ve mod-
ules covering modelling tasks, lessons, assessment, and refl ection. Sub-modules 
offered training in guidelines, resources, and teaching diaries. The modular design 
of the training course allows for fl exible use in the different participating countries, 
considering national specifi cs as well as cultural aspects. The work of this interna-
tional group refl ects the diffi culties of implementing a joint approach into class-
rooms of different cultures. Amongst others, the different theoretical backgrounds 
of the participating countries resulted in a multi-perspective approach and led to 
a critical consideration of the developed materials from different perspectives, 
which needed to be improved in further research (for details, see García et al.  2010 ). 
The main fi ndings of the evaluation of the teacher training course point out that the 
course had no effect on the teachers’ beliefs but had a positive effect on their 
pedagogical content knowledge and self-effi cacy in terms of modelling. Furthermore, 
a high degree of satisfaction regarding the teachers’ professional development and 
the intention to implement modelling tasks in day-to-day teaching could be deter-
mined (for details, see García and Ruiz-Higueras  2011 ; Maaß and Gurlitt  2011 ). 
This project shows clearly the diffi culties that arise when modelling is implemented 
in ordinary classrooms, which are apparently quite similar in different countries 
despite the cultural differences. 

 In spite of the strong claims for the inclusion of mathematical modelling in 
schools and the variety of projects, applications and modelling still do not play a 
central role in the day-to-day teaching of mathematics around the world, as one 
would expect in the light of the curricular and didactical debate. As already men-
tioned, there exist worldwide many proposals for modelling examples, so the reason 
for this still unsatisfactory situation apparently does not lay in the scarcity of examples. 
However, in contrast to the wealth of examples, there still does not exist secure knowl-
edge of how to teach mathematical modelling. In the beginning of the more recent 
modelling tradition, starting with the famous Freudenthal symposium, the rare 
empirical studies focused mainly on the aim of implementing mathematical model-
ling in classroom and how to implement it (cf. the study by Kaiser-Messmer  1986 ). 
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More recently, the focus has changed towards the question of how modelling can be 
taught and learned more effectively. Based on evidence from empirical studies and 
large-scale projects dealing with the teaching and learning of modelling, it was 
pointed out that mathematical modelling is not only a challenge for students but for 
teachers as well. The central question arises, how can teachers support their students 
within their modelling activities without destroying the independency of these mod-
elling activities? The theoretical approach of scaffolding as a comprehensive, long-
term approach combined with interventions as direct and immediate adaptive actions 
by the teachers – stemming from the tradition of self-directed independent learning 
approaches – seems to be highly adequate for these kinds of co- operative, self-
directed activities, which are decisive for the modelling debate. In the following 
chapter, we will present research on various forms of scaffolding and adaptive inter-
ventions in modelling processes.  

     Scaffolding and Adaptive Interventions in Modelling 
Processes 

 Teaching and learning modelling is a complex interactional process infl uenced 
by many factors, ranging from the learning environment to teachers’ knowledge. In 
order to support students effectively, teachers not only have to have a high content 
knowledge about modelling and the underlying mathematical and real-world knowl-
edge but also sound knowledge of the different kinds of teaching methods. In the 
last decade, within the framework of constructivist teaching and learning approaches 
emphasising the construction of the own knowledge by the students and their inde-
pendency within learning processes, the pedagogical approach of scaffolding and 
adaptive teaching interventions has been developed, which aims for tailored and 
temporary support that teachers can offer students during autonomous teaching 
and learning processes. Within the current debate on scaffolding, there exist differ-
ent approaches and conceptualisations, as has been pointed out by van de Pol et al. 
( 2010 ) in their survey on state of the art on scaffolding. Despite various differences, 
the central goal of scaffolding approaches is to enable students to solve a problem 
on their own. Therefore, adequate measures are provided in order to support the 
students in case they are not able to solve the given problem or when they are stuck. 
The support focuses on cognitive level means (such as required strategies and con-
cepts) and metacognitive level measures (such as instructing self-regulated learn-
ing). The main principle is a consequent orientation on the individual learning 
process. Van de Pol et al. ( 2010 ) call this ‘contingency’ as one of the three central 
attributes of scaffolding. A condition, therefore, is the willingness and the compe-
tency of teachers to be responsible for the demands of thinking and understanding 
processes of students. When students work on complex modelling tasks and 
can choose mathematical algorithms on their own, the teacher must be able to 
decide, in a short time, if the student’s path is goal-oriented or not. Depending on 
how self- regulated students are in this process, the teacher may try to reduce the 
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support given to them, which is called ‘fading’ by van de Pol et al. ( 2010 ), because 
the teachers are ‘transferring the responsibility’ to their students. 

 The pedagogical approach of scaffolding is used in many studies concerning 
classroom instruction, and the approach by Hammond and Gibbons ( 2005 ) seems to 
be especially interesting. Hammond and Gibbons distinguish between macro- 
scaffolding, which covers all aspects of planning, and micro-scaffolding, which 
refers to interactional aspects, e.g. all kinds of teacher interventions. Both kinds of 
scaffolding are important for students’ success and learning effects. 

 There exists extensive research on aspects, which refer to macro-scaffolding, 
especially effective lesson settings for modelling lessons. The large-scale project 
DISUM (didactical intervention modes for mathematics teaching oriented towards 
self-regulation) describes in its fi ndings the motivational and challenging aspects of 
modelling tasks, the important role of motivational feedback by the teachers, the 
potential of individual work within group work, and the practicability of modelling 
activities with low-achieving students (Blum and Leiss  2007 ). In addition, two ways 
of teaching modelling problems were contrasted: a directive (teacher-centred) ver-
sus an operative-strategic (more student centred, emphasising group work and stra-
tegic scaffolding) instruction. Findings of this comparison point out that learning in 
operative-strategic groups promotes signifi cantly higher performances in modelling 
than learning in directive groups. Furthermore, in the operative-strategic group, stu-
dents’ self-regulation was strongly improved. Students’ self-reported enjoyment, 
effort, and use of learning strategies (Schukajlow et al.  2012 ) were positively related 
to performance. The modelling cycle introduced explicitly to students and used by 
them within the modelling process had positive impacts on student performance, 
settings, and strategies. However, teachers need to be trained for an adequate usage 
(Schukajlow et al.  2010 ). The effects of feedback given by the teachers were studied 
by the project Co 2 CA (Conditions and Consequences of Classroom Assessment), 
whose results point out that a differentiated feedback such as process-related, social 
comparative, or criteria-based feedback results in higher student motivation, but 
does not lead to higher achievement results. 

 The impact of heuristic worked-out examples on the promotion of modelling 
competencies was analysed by the project KOMMA (Kompendium Mathematik). 
The study showed that working with worked-out examples within the learning 
environment seems to be more appropriate for students with lower modelling com-
petencies at the beginning (Zöttl et al.  2011 ). The infl uence of the promotion of 
multiple solution methods in modelling processes was evaluated in the project 
MultiMa (multiple solutions for mathematics teaching oriented towards students’ 
self- regulation), which identifi ed the better modelling performance of students who 
had been encouraged to develop multiple solutions of modelling problems. In addi-
tion, their self-regulation increased and their cognitive activation was much higher 
(Schukajlow and Krug  2013 ). To summarise, there is a wealth of studies that show 
the high potential of modelling in classrooms; however, it becomes clear that 
the way modelling is treated in daily teaching is decisive whether modelling 
competencies are promoted or not. 
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 In the didactical research on scaffolding and interventions, several theoretical 
approaches for the support of learners by teachers are discussed. A distinction 
between different kinds of interventions – well known in the German debate – is 
offered by the taxonomy of assistance developed by Zech ( 1998 ), which refers to 
the principle of minimal help developed by Aebli ( 1983 ). This taxonomy was devel-
oped by Zech ( 1998 ) for problem-solving activities and departs from the norm in 
stating that the intensity and strength of the intervention shall increase step by step 
in relation to the lack of success of the students and that these interventions shall 
support the students to develop a solution on their own, if possible. This taxonomy 
differentiates motivational, feedback, general-strategic, content-oriented strategic, 
and content-oriented assistance. The intensity of the intervention increases 
gradually from motivational assistance to the content-oriented assistance. This classi-
fi cation has already been used in modelling activities for a long time but only at a 
practical level and without empirical evaluation of its effi ciency. Based on this 
categorisation, Leiß ( 2007 ) evaluated the usage of various kinds of support given by 
teachers in modelling processes in a laboratory study within the project DISUM 
(cf. Blum  2011 ). The main results of Leiß’s study were, amongst others, that strategic 
interventions are included in the intervention repertoire of the observed teachers 
only very marginally and that the teachers often choose indirect advice where stu-
dents have to fi nd only one step by themselves in order to overcome the diffi culty. 
Further studies from Link ( 2011 ) and Beutel and Krosanke ( 2012 ) did not confi rm 
these results. Link’s study departed from the taxonomy developed by Zech and 
identifi ed in laboratory studies a high amount of general-strategic interventions. 
Both studies found that particular strategic interventions lead to metacognitive 
activities in learners. The ongoing study by Stender on effective adaptive interven-
tions has already identifi ed one powerful and effective general-strategic interven-
tion, namely, the request by the teacher to the students to present their state of work 
to him/her when approaching the group in a co-operative learning environment 
(Kaiser and Stender  2013 ). This intervention is a prerequisite of an adequate scaf-
fold by the teacher, because scaffolding has to be based on a careful diagnosis of 
students’ work, if it is to be effi cient and successful. This kind of intervention is 
also, as the synthesis of meta-studies by Hattie ( 2009 ) has pointed out, a central part 
of an effective feedback and is closely related to the kind of feedback questions 
Hattie ( 2009 ) identifi es as being effective. 

 Besides studies on this principle of minimal help, the role of metacognition 
within mathematical modelling for a basis of possible interventions was studied by 
Stillman et al. ( 2007 ) and Stillman et al. ( 2010 ). These studies identify mental or 
cognitive blockages, which prevent students from successful modelling. They 
emphasise the necessity of the metacognitive activities of the students, i.e. students 
should observe their own modelling process as ‘looking over one’s own shoulder’. 
 Stillman ( 2011 ) claims the necessity for teachers’ refl ections about students’ meta-
cognitive activity within the specifi c situation and with respect to the teacher’s role 
in the modelling process and calls for a meta-metacognitive process to be included in 
modelling activities. It is accepted within these studies that teacher interventions are 
necessary in order to facilitate refl ective learning, e.g. as teachers’ actions ‘on the fl y’.  
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    Summary and Prospects 

 As discussed in this paper, the potential of mathematical modelling as an innovative 
teaching and learning approach has been shown in many studies. However, so far, 
the role of the teacher within modelling activities has not been researched suffi -
ciently: not enough secure empirical evidence exists on how teachers can support 
students in independent modelling activities, how they can support them in over-
coming cognitive blockages, or how can they foster metacognitive competencies. It 
is agreed that modelling activities need to be carried out in a permanent balance 
between minimal teacher guidance and maximal students’ independence, following 
well-known pedagogical principles such as the principle of minimal help. Research 
calls for individual, adaptive, independence-preserving teacher interventions within 
modelling activities, which relates modelling activities to the approach of scaffold-
ing. Scaffolding can be described, according to well-known defi nitions, as a meta-
phor for the tailored and temporary support that teachers offer students to help them 
solve a task that they would otherwise not be able to perform. So, it can be assumed 
that scaffolding is useful for the facilitation of student learning. Although scaffold-
ing has been studied extensively in the last few decades, it was found to be rare in 
classroom practice. Scaffolding seems to be especially necessary and appropriate 
for modelling processes, which comprise complex cognitive activities. However, 
scaffolding has to be based on a diagnosis of students’ understanding of the learning 
content, which most teachers did not usually ascertain; in contrast, most teachers 
provided immediate support or even favoured their own solution. 

 In the future, learning environments for modelling which support independent 
modelling activities need to be established, for example, by sense-making or using 
meaningful tasks (Freudenthal  1973 ; Vorhölter  2009 ), by model-eliciting activities 
based on challenging tasks (Lesh and Doerr  2003 ), or by the usage of authentic 
tasks (Kaiser and Schwarz  2010 ).     
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    Abstract     In this chapter, the theoretical construct of guided reinvention is extended 
to include desirable pedagogical practices for teachers implementing RME 
sequences. First, we explain what a guided reinvention teaching approach looks like 
and how it evolved out of over 25 years of research. We then articulate the planning 
and teaching practices of guided reinvention teachers and describe how those prac-
tices move beyond what many call “inquiry approaches” to mathematics teaching. 
We end the chapter by offering a set of learning goals that professional developers 
might use when mentoring aspiring guided reinvention teachers.  

  Keywords     Inquiry mathematics   •   Cognitive coaching   •   Planning and classroom 
practices   •   Guided reinvention   •   Realistic Mathematics Education  

     In this chapter, we discuss a form of mathematics instructional practice that is 
informed by several decades of classroom-based design research, challenges to 
implementing such instruction including major shifts in teachers’ planning prac-
tices, and approaches to mentoring that we have found to be effective in supporting 
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teachers as they develop this form of teaching practice. All three authors have been 
directly involved in a number of classroom-based design research projects that have 
resulted in both further elaborating and extending an approach to instruction that 
Cobb et al. ( 1992 ), following Richards ( 1991 ), called the “inquiry mathematics 
 tradition” and in the development of instructional resources for various content 
areas (Stephan and Akyuz  2012 ; Underwood-Gregg  2002 ; Underwood-Gregg and 
Yackel  2002 ). The instructional approach that Cobb and colleagues called the 
inquiry mathematics tradition differs sharply from recent use of the term  inquiry  
that is associated with student-centered, discovery, and standards-based approaches 
to teaching. Further, since the 1990s, Cobb and colleagues, including the authors of 
this chapter, have substantially extended their approach to mathematics instruction 
to incorporate specifi c aspects of instructional design theory. In this chapter, we 
describe this extension, which we call the “guided reinvention” approach to teach-
ing, to avoid confusion with current uses of the term  inquiry instruction . In the fi rst 
section of this chapter, we explain in detail what we mean by the guided reinvention 
approach to teaching. 

 In addition, the authors have all worked with practicing teachers to support them 
as they restructure their instructional practice to the guided reinvention approach 
and, in some cases, make use of the developed resources. We contend that in order 
for teachers to become experts in the guided reinvention approach to teaching, a 
mentor teacher or mathematics education research practitioner should engage them 
in activities that focus the novice on the planning and classroom practices that char-
acterize this teaching approach. Thus, the second section of our chapter focuses on 
defi ning the planning and classroom teaching practices that are specifi c to guided 
reinvention. 

 We end the chapter with a discussion of the learning goals that can be effective 
when mentoring teachers who strive to implement a guided reinvention approach 
to teaching. We use the authors’ work with teachers to illustrate a possible set of 
learning goals inherent in inducting a new teacher into the guided reinvention 
approach. The chapter can be viewed as a demonstration of how a body of mathe-
matics education research and mentoring is being used to dramatically restructure 
the learning experiences of students and the instructional practices of ordinary, 
albeit highly motivated, teachers. 

    Guided Reinvention 

 The guided reinvention teaching approach grew out of our work with not only 
 students and teachers over the last 25 years but also our interactions with teams of 
researchers and teachers who conducted design experiments in a variety of class-
rooms. One of the goals of these experiments was to use an instructional design 
theory from the Netherlands called Realistic Mathematics Education (RME) to 
 create mathematics instruction that would result in students reinventing important 
mathematical concepts, with careful guidance from their teacher. In the sections 

M. Stephan et al.



39

below, we elaborate some of the most important aspects of this design approach as 
a way to ground later discussions regarding the complexity that teachers face when 
learning to guide students’ reinventions. 

    Origin and Characteristics of Instructional Resources 
for Guided Reinvention Teachers 

 The initial instructional activities we used in the beginning years of our research 
were constructed by teams of researchers who had been involved in constructivist 
teaching experiments (Steffe and Thompson  2000 ). With no clear articulation of 
any design principles, we searched for a heuristic-based design theory for mathe-
matics instruction which led us to the theory of Realistic Mathematics Education 
(RME). All of our more recent instructional resources were created using the RME 
design theory and incorporate the following heuristics that often differ from most 
reform textbooks. 

    Heuristic One: Guided Reinvention 

 One of the most important heuristics of RME is that the instructional resources 
should be designed to encourage students’ reinvention of key mathematical con-
cepts (Freudenthal  1973 ). To start developing an instructional sequence, the 
designer fi rst engages in a thought experiment to envision a learning route the class 
might invent itself (Gravemeijer  2004 ). Whereas some of what we consider to be 
basic mathematical concepts today took mathematicians decades or even centuries 
to fully develop, students are expected to develop comprehensive conceptual 
understandings of mathematical concepts within the span of several weeks or 
months of a single school year. RME instructional resources help students reinvent 
these ideas in shortened time periods using carefully sequenced problems and tools 
and guidance from the teacher. In this reinvention approach, mathematical con-
cepts are not presented to students in a top-down manner, as in traditional instruc-
tion. Rather, the learning route is designed so that the concepts emerge as students 
engage in the instructional sequence. It is in this sense that we say that students 
“reinvent” mathematics. 

 As an example, in 2009 a hypothetical learning trajectory and associated instruc-
tional sequence was created by a group of 7th grade teachers with the fi rst author. 
The intention of this sequence was to help students reinvent the meaning underlying 
positive and negative integers and to develop a basis for computation with integers, 
including integer addition, subtraction, and simple multiplication. To this end, the 
teachers began instruction within the context of fi nance, helping students under-
stand the meaning of net worth, assets, and debts. The instructional sequence was 
then designed to support students making sense of “transactions” on a net worth 
such as what happens when a person adds a debt of $50, symbolized as +(−50), to a 
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net worth of $10. By the end of the instructional sequence, together with the teacher’s 
guidance through tools, discourse, and gestures, students reinvent their own meaning 
and rules for integer operations.  

    Heuristic Two: Sequences Should Be Experientially Real for Students 

 One of the central heuristics of RME is that the starting points of instructional 
sequences should be experientially real in that the students are able to engage in 
personally meaningful activity (Gravemeijer  1994 ). Often, this means grounding 
students’ initial mathematical activity in experientially real scenarios (which can 
include mathematical situations). The 7th grade integer instruction serves as a 
t ypical example of this heuristic since students’ work was grounded in the context 
of fi nance, net worths, and transactions on them. Finance turned out to be a realistic 
context for students since many of them could imagine incurring debts and obtain-
ing assets, especially during a period of economic hardships. While many textbook 
authors see the value of using real-world problems in instruction, RME goes beyond 
simply situating mathematics in the real world. Rather, instructional tasks draw on 
realistic situations as a semantic grounding for students’ mathematizations, and 
activities are sequenced so that students will organize their activity within the 
 realistic context to reinvent important mathematics. Students begin to reason with 
abstract symbols as their reinventions become more and more sophisticated.  

    Heuristic Three: Emergent Models 

 The third heuristic involves designing instructional activities that encourage  students 
to transition from reasoning with models of their informal mathematical activity 
to modeling their formal mathematical activity, also called  emergent modeling  
(Gravemeijer and Stephan  2002 ). During the transition from informal to formal, the 
designer/teacher supports students’ modeling by introducing new tools or using 
student- created tools, such as physical devices, inscriptions, and symbols that can 
be shared by students to explain their mathematical reasoning. The integer instruc-
tional sequence was designed such that a vertical number line might fi rst emerge as 
a model of students’ ordering of integers on the number line. Then, it might evolve 
to become a model for formal addition/subtraction strategies for integers (see 
Stephan and Akyuz  2012 ).  

    Hypothetical Learning Trajectory 

 Guided by the three heuristics described above, the designer creates an instructional 
sequence while at the same time envisioning a path that the class may follow as 
they engage in the tasks (Gravemeijer  2004 ). The anticipated path has been labeled 
a  hypothetical learning trajectory  (Simon  1995 ) because the designer makes 
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conjectures about the mathematical route the class, as a community, will travel, 
including the mathematical goals and tool use, as they engage with the instructional 
tasks and anticipate the means by which the teacher can support that route. 1  After 
implementation, the designer analyzes the collective learning of the class (and indi-
vidual student development) and revises the instructional sequence accordingly. 
Another classroom experiment occurs with a newly revised, hypothesized learning 
trajectory (HLT) and the results feedback to inform future implementations. At the 
completion of testing and revising, a well-researched, stable instructional theory is 
ready for future adaptation by other teachers. 

 The HLT that served as the instructional backbone for integers can be seen in 
Appendix  A . It is organized in a table that is separated into fi ve categories: the tools, 
imagery, activity/interest, possible topics of mathematical discourse, and gestures 
that would support students’ reinventions. The tools, imagery, interests, and dis-
course, in addition to the tasks themselves, can all be seen as a variety of supports 
that can be used by the teacher to guide students in their reinvention processes. 

 A teacher who attempts to adapt this HLT to her own classroom might use this 
table as a way to preplan an integer unit in order to form a big picture of the over-
arching sequence of instruction with goals, tools, and mathematical ideas that can 
be used throughout the unit. A more detailed description of the purposes of the 
activities can be used for day-to-day planning, with the table illustrating the global 
picture. 

 The importance of RME instructional design and guided reinvention cannot be 
understated. Very few reform textbooks actually use a formal, operational instruc-
tional design theory  specifi c to mathematics  to guide the design of their instruction. 
The teacher’s responsibility in guided reinvention is to provide the opportunities 
necessary to guide students progressively in their reinvention of sophisticated 
mathematics.    

    The Teacher’s Guidance 

 As the former section suggests, the fi rst major tool for guiding students’  mathematical 
development is grounded in the careful design of the sequenced tasks themselves. We 
also maintain that the teacher serves an essential role in guiding students’ reinvention. 
In this section, we elaborate on the theory of learning and the associated constructs 
that have emerged from our work in mathematics classrooms over the last three 
decades. This learning theory and interpretive framework guides our work with 
 teachers as we collaborate with them in learning how to guide students’ reinventions. 

 In our work with classroom teachers who are transitioning to guided reinvention 
teaching (GR teaching), we fi nd the framework developed by Cobb and Yackel 

1   It is important to emphasize that the hypothetical learning trajectory describes the learning of the 
class as a collective. That is, it refers to the taken-as-shared learning of the group of students as a 
whole. It does not refer to the learning of individual students. 
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( 1996 ) extremely helpful for orienting our initial conversations. The interpretive 
framework grew out of their attempts to develop a way to understand the mathematical 
interactions among classroom members. The  emergent perspective  argues that indi-
viduals make shifts in their cognition as they participate in and contribute to the 
social and mathematical practices of the classroom community (Cobb and Yackel 
 1996 ). Cobb and Yackel developed three constructs that describe the social dynamics 
of the mathematics classroom: social norms, sociomathematical norms, and class-
room mathematical practices. 

 Norms refer to regularities in interaction patterns and, as such, are interactively 
constituted by the classroom participants, including the teacher and the students. 
Social norms can be described by indicating the expectations and obligations that the 
teacher and students have for one another during mathematical discussions. Cobb and 
colleagues (Cobb et al.  1988 ) have documented at least four social norms that sustain 
classroom microcultures characterized by explanation, justifi cation, and argumenta-
tion: Students are expected to (1) explain and justify their solutions and methods, 
(2) attempt to make sense of others’ explanations, (3) indicate agreement or disagree-
ment, and (4) ask clarifying questions when the need arises. Sociomathematical 
norms, on the other hand, are normative aspects of mathematical discussions that are 
specifi c to mathematical activity. They involve the  criteria  for what counts as an 
acceptable mathematical explanation, a different solution, an effi cient solution, and a 
sophisticated solution. For example, the understanding that students are expected to 
explain their thinking is a social norm, whereas the understanding of what counts as 
an acceptable mathematical explanation is a sociomathematical norm. In guided 
 reinvention classrooms, acceptable explanations and justifi cations have to involve 
descriptions of actions on mathematical objects that are experientially real for the 
students rather than procedural instructions (Yackel and Cobb  1996 ). 

 Classroom mathematical practices can be described as the taken-as-shared ways 
of reasoning and arguing mathematically that are content specifi c (Cobb et al.  2001 ). 
Like social and sociomathematical norms, classroom mathematical practices are 
interactively constituted. In this sense, classroom mathematical practices evolve as 
the teacher and students discuss situations, problems, and solution methods and 
often include aspects of symbolizing and notating (Cobb et al.  1997 ). Classroom 
mathematical practices differ from social and sociomathematical norms in that they 
are content specifi c. While social and sociomathematical norms describe the norma-
tive ways of communicating with one another, both in general and mathematically, 
classroom mathematical practices can best be thought of as specifi c mathematical 
interpretations that become normative through these interactions (e.g., normative 
 integer  interpretations and methods). 

 When working with teachers, we have found ourselves discussing the meaning 
of each of these three constructs as well as techniques the teachers can use in their 
classroom to initiate the constitution of these norms and practices. Additionally, 
Akyuz ( 2010 ) documented the classroom teaching practices of an expert GR teacher 
and found that attention to social and sociomathematical norms that characterize 
guided reinvention teaching constituted a major portion of her decision making 
regarding classroom interactions. Moreover, it was the learning trajectory that 

M. Stephan et al.



43

served as a tool to help her orchestrate whole-class discussions in which certain 
classroom mathematical practices were established. In the section below, we elabo-
rate the fi ve classroom teaching practices of a GR teacher found by Akyuz ( 2010 ) 
that ground our work with teachers in the fi eld today. 

    Classroom Teaching Practices of the GR Teacher 

    Practice One: Initiating and Sustaining Social Norms 

 Practice one involves the role that the teacher plays in establishing and sustaining 
classroom social norms that are conducive to children’s reinvention. Elsewhere we 
have written about the role of the teacher in establishing these social norms (Cobb 
et al.  1989 ). In our experience, this practice is one that most GR teachers are able to 
establish (cf. Inoue and Buczynski  2011 ). Furthermore, they are typically successful 
in doing so within the fi rst several months of the school year.  

    Practice Two: Supporting the Development of Sociomathematical Norms 

 Another important part of establishing the learning environment involves initiating 
and maintaining sociomathematical norms. While the teacher’s role in this process 
has been detailed elsewhere at various grade levels (Stephan and Whitenack  2003 ; 
Yackel and Cobb  1996 ; Yackel et al.  1999 ,  2000 ), in guided reinvention classrooms, 
students’ explanations are acceptable if they meet the criterion that they describe the 
students’ actions on mathematical objects that are experientially real to them. 
Descriptions of only procedural steps are not counted as acceptable. Descriptions of 
procedures for fi nding an answer must be accompanied by the reasons for the calcu-
lations as well as what these calculations and their results mean in terms of the 
problem (Stephan et al.  2003 ). That is, the discourse is conceptual rather than 
 calculational in nature (Cobb et al.  2001 ; Thompson et al.  1994 ). Furthermore, we 
emphasize that when the social norms described above are in place, students are 
obliged to ask questions when they disagree or do not understand. As a conse-
quence, the decision about whether or not an explanation is acceptable is not the 
province of the teacher but of the entire class. Since we take an explanation to be a 
clarifi cation of one’s thinking for others (Cobb et al.  1992 ), an explanation is inad-
equate if others in the class have questions.  

    Practice Three: Capitalizing on Students’ Imagery 
to Create Inscriptions and Notations 

 Practice three revolves around the teacher’s encouragement of students’ imagery 
through notations and tools use. She does this by capitalizing on the tool development 
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that is part of the RME instructional design and the rich imagery that the design can 
foster. For example, in the integer instruction, the teacher capitalized on some 
 students’ imagery of marking numbers on a horizontal number line to introduce an 
empty vertical number line. Students used the vertical number line to record two net 
worths (e.g., $2,000 and $3,000) and fi nd their difference ($5,000).  

    Practice Four: Developing Small Groups as Communities of Learners 

 This practice focuses on establishing the criteria for engaging in productive small 
groups. One of the roles of the teacher is to help students learn the value of working 
with peers as well as ways to do so. It is the teacher’s responsibility to initiate the 
constitution of small group social norms that are conducive to reinvention. These 
include that students (1) develop personally meaningful solutions, (2) explain their 
reasoning to their partner(s), (3) listen to and attempt to understand the explanations 
of their partner(s), (4) persist on challenging problems, and (5) collaborate to com-
plete the activities including indicating agreement or disagreement with their 
partner(s) (Wood and Yackel  1990 ; Yackel et al.  1991 ). Another small group norm 
is that if a student needs help, he is obligated to ask his partner(s) fi rst before asking 
the teacher.  

    Practice Five: Facilitating Genuine Mathematical Discourse 

 The last practice involves the methods by which a GR teacher facilitates genuine 
and meaningful discourse about mathematics. She does this by (1) introducing 
mathematical vocabulary and tools to record students’ inventions, (2) asking ques-
tions that promote students’ strategies, (3) restating students’ solutions in clearer or 
more advanced ways, and (4) using students’ strategies during exploration time to 
orchestrate an effective whole-class discussion. This practice, in our experience, 
has been the most diffi cult to develop among novice guided reinvention teachers 
(cf. Inoue and Buczynski  2011 ) and requires the teacher to develop a thorough 
knowledge of both the HLT and the mathematics content. 

 The classroom teaching practices of a GR teacher are complex and thus may take 
many years to develop to sophistication. It is important to note that establishing 
productive social and sociomathematical norms, productive group norms, and genu-
ine mathematical discourse alone is insuffi cient. Reinventions occur not only as 
students work together and explain their thinking but also as the teacher incorpo-
rates modeling and certain questioning and debate in her classroom. For this reason, 
it is essential that establishing specifi c classroom mathematical practices that are 
part of a well-designed learning trajectory becomes an integral part of the guided 
reinvention teacher’s approach. Choosing appropriate instructional materials and 
 mindfully planning  for class discussion are therefore essential for maintaining the 
GR teaching approach. In the next section, we elaborate on the planning practices 
that are crucial for guided reinvention teaching.   
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    Planning Practices of the GR Teacher 

   Practice One: Preparation 

 When planning the implementation of an RME instructional sequence, the teacher 
must plan lessons not only on a  daily  basis but, equally important,  long range  
(Akyuz et al.  2013 ). Preparing long range means familiarizing herself with the goals 
of the entire unit of study. This includes becoming intimately familiar with the 
 outlined hypothetical learning trajectory. Just like the designer, the teacher should 
understand the mathematics to be learned and students’ preconceptions. The teacher 
then works through the instructional activities herself to unpack the intent of the 
tasks and to create a hypothetical image of the variety of pathways that can emerge as 
a result of the diversity of her students’ reasoning. She also envisions the possible 
topics of conversation that might transpire as students work through and discuss the 
tasks and the potential classroom mathematical practices (and associated tools) that 
can be established through discourse. At times, it can become useful for the teacher 
to read relevant research to help her fi ll out her picture of the HLT more completely. 
The HLT as illustrated in Appendix  A  can be a helpful artifact for teachers to dis-
cuss together as they imagine ways of guiding their students’ reinvention with the 
instructional tasks. While practice one focuses on creating a general long-range 
vision of the unit, practices 2, 3, and 4 involve the planning that occurs daily.  

   Practice Two: Anticipation (Looking Forward) 

 Before each class period, the teacher(s) hypothesizes the best ways to introduce the 
tasks, works out problems to anticipate possible student thinking and how it fi ts with 
current mathematical practices, and uses conjectured student thinking to imagine 
potential discussion topics that may or may not be aligned with current learning 
goals. She uses this analysis to lesson image (Schoenfeld  2000 ), that is, to create an 
image of how the next lesson will fl ow (i.e., what strategies students will develop, 
which are important for progress toward reinventing the mathematical ideas, which 
student should be called on fi rst, second, and third, to help realize the learning goals). 

 From a theoretical point of view, the teacher is using both a collective and an 
individual lens in this practice. As she anticipates the diverse ways that students will 
engage in the tasks, she takes an individual lens while putting the collective learning 
in the background. When she lesson images to create a vision of how to use indi-
vidual reasoning to structure the whole-class discussion and the practices that might 
become taken as shared in the collective, she has switched to a social lens.  

   Practice Three: Refl ection (Looking Back) 

 After each class period, the teacher refl ects on (1) the student reinventions and 
 discourse to determine the status of classroom mathematical practices, including 
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students’ tool use, (2) the mathematical learning that emerged, and (3) the status of 
the social and sociomathematical norms. She then uses her refl ective analysis to 
make revisions to the instruction for subsequent class periods.  

   Practice Four: Assessment 

 The GR teacher creates and implements formative assessments to ascertain the daily 
evolution of the classroom mathematical practices and individual students’ growth. 
Short problems given at the beginning or end of class can assess their current under-
standing. Also, during students’ exploration time, the teacher gathers data on  student 
thinking as they attempt to solve the problems posed in class. Summative assessments 
can be used to document students’ cumulative learning.  

   Practice Five: Revision 

 Revising occurs at two levels, one involving daily revisions based upon ongoing 
formative assessments. The other revision occurs at the end of the instructional 
sequence in the form of noting changes that should be made to the materials, tools, 
or questions that should be asked for the next year. 

 The planning practices, in a sense, mirror the practices of an RME instructional 
designer except that the GR teacher is not attempting to create an HLT and instruc-
tional activities from scratch. However, like the designer, a GR teacher must think 
and plan long range, which requires familiarizing herself with an already- constructed 
HLT. Furthermore, she must anticipate student strategies and possible whole-class 
discussions, together with the tools she can introduce. She must develop a refl ective 
disposition in which she uses students’ strategies and classroom mathematical prac-
tices to make informed decisions about future instruction. Finally, she must conduct 
formative and summative assessments for the purposes of revising in action as well 
as upon completion of the unit. These complex planning practices require unique 
forms of mentoring to help teachers develop them. In the next section, we highlight 
the learning goals that are associated with supporting aspiring GR teachers.    

    Mentoring Aspiring Guided Reinvention Teachers 

 It is well accepted that a variety of mentoring approaches including coaching, 
co- teaching, co-planning, model teaching, lesson study, and a diversity of profes-
sional development programs can have a positive effect on teacher change and, 
hence, student achievement. While coaching is becoming a popular mentoring 
approach, only a few studies have shown a statistically signifi cant effectiveness of 
mathematics coaching on student achievement (e.g., Campbell and Malkus  2010 ; 
McCombs  1995 ). Of the many types of coaching, cognitive coaching (Costa and 
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Garmston  1994 ) is touted as the approach that engages teachers in the deepest 
refl ection on their practice. Others including content-focused coaching (West and 
Staub  2003 ), instructional coaching (Kowal and Steiner  2007 ), and collaborative 
coaching and learning (Neufeld  2002 ) show additional promise, with peer coaching 
showing the least (Murray et al.  2009 ). However, it is less clear what approach 
works best with which teachers or if there are aspects of each that can be blended 
together to optimize the experience. In addition to a variety of coaching approaches, 
other notable programs involve teachers attending weeklong summer institutes with 
follow-up mentoring during the school year (cf. Yackel  2008 ). 

 We have argued that a guided reinvention approach to teaching requires highly 
specialized knowledge in the form of a different type of planning and of classroom 
teaching practices. It is not clear which of the mentoring approaches above can be 
used to best induct teachers into this approach. However, we have identifi ed some 
possible learning goals for supporting teachers’ shifts toward GR teaching and will 
specify these, along with associated mentoring activities, in the remainder of the 
chapter. 

    Catalysts for Change 

 We contend that some event typically occurs that serves as an impetus for a teacher 
to rethink their teaching practice, such as the adoption of a reform-based textbook, 
mandate from a principal, inspiration from a graduate education class, attendance at 
a conference, observation of a peer teacher, or some self-provocation. Without 
proper and meaningful guidance, however, the journey can be short-lived or even 
tumultuous. It is therefore important to develop and retain strong GR mentors within 
a school so that when teachers express a desire to change, adequate staff and 
resources are available. For example, the fi rst author, Stephan, worked as a full-time 
middle school teacher in a suburb of Orlando, Florida. At the suggestion of the 
assistant principal, a fi rst-year teacher, Sean, visited her classroom in order to 
observe a master GR teacher in action. Having quickly noticed how different her 
approach was with the students, Sean began discussing teaching with Stephan 
 during their shared lunch periods as often as possible and subsequently shared his 
desire to shift from traditional teaching to an approach that valued students’ think-
ing and explanation. At this time, they made an intentional decision to work together 
in an unoffi cial mentoring capacity the following school year. The catalyst for 
change in Sean’s case was an opportunity provided by an administrator to provide a 
peer observation for a novice teacher. We will draw on Stephan and Sean’s fi ve-year 
collaboration throughout this paper to ground many of the suggestions we make 
regarding mentoring goals. 

 Once the recognition for change occurs to a teacher and a GR mentor is found, 
there are fi ve learning goals we have identifi ed that serve as the foundation for 
future mentoring activities:  develop an ear for listening hermeneutically, effectively 
interpret and implement the results of cognitive formative assessments,   understand 

Guided Reinvention



48

and implement GR planning practices ,  implementing GR classroom practices,  and 
 coach self and others in the GR teaching approach.  These learning goals are not to 
be considered as isolated objectives or as occurring in a linear fashion. Rather, we 
contend that a mentor works toward all fi ve goals simultaneously, with one or more 
goals enjoying heightened attention at times within certain activities.  

    Learning Goal 1: Develop an Ear for Listening Hermeneutically 

 A chief learning goal for aspiring GR teachers is to develop an ear for listening to 
students hermeneutically (Davis  1997 ). Basically, listening hermeneutically goes 
beyond listening to evaluate students’ answers. Rather, teachers listen to students’ 
strategies and explanations in order to  alter  instruction both on the fl y and in plan-
ning later lessons. This is a complex form of listening because student thinking 
drives instruction and often results in changing the tasks and questions in the 
moment. For example,  during discussions in his fi rst mentoring year, Sean repeat-
edly asked Stephan’s advice about his teaching techniques, like “What should I have 
done instead to address this problem?” Stephan always answered, “Well, how were 
your students thinking?” Sean often replied that he did not know how his students 
were reasoning and learned fairly quickly that, in his words, “I had better start lis-
tening to my  students so I will have an answer to her questions next time.” Sean also 
commented that the fact that Stephan repeatedly turned the conversation back to his 
students often took the pressure off him and led to a risk-free collaboration in which 
his teaching practice was not under evaluation. 

 This initial focus on listening skills is not typically the starting point for profes-
sional development experiences. Often, coaches offer to model teach in order to 
illustrate good classroom teaching practices. Or the coach observes the mentee 
teach a lesson and provides evaluative feedback on his practice. In contrast, a GR 
mentor might start from the viewpoint that good GR teaching practice is only 
 possible when a teacher listens to the reasoning of his students and uses that as the 
basis for his teaching practice (cf. Ball  1991 ).  

    Learning Goal 2: Effectively Interpret and Implement 
the Results of Cognitive Formative Assessments 

 Another learning goal we have found powerful for helping GR teachers shift their 
practice is to become skilled at interviewing and interpreting the results of students’ 
cognitive assessments. Cognitive interviews do not assess students’ facility with 
basic skills but rather prompt students to reveal their understanding of a topic (for a 
sample problem, see Appendix  B ). The purpose of the interview is to listen herme-
neutically to the student to understand their thinking and use that knowledge to 
organize instruction. Formative assessment has gained prominence in mathematics 
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teaching, but the message that is typically sent to teachers (as was the case at 
Stephan and Sean’s school) is that they should assess students on a  more consistent 
basis  than at the end of a unit. However, most techniques presented to teachers are 
basic skills-driven assessments that reveal only which skills and facts students have 
mastered, but not the meaning students hold for a concept. A cognitive-based assess-
ment would give them both the reasons that a child may not be performing a skill 
well and the means for making better-informed decisions about problem choices in 
the classroom. 

 While Stephan has used cognitive assessments to guide individual teachers 
in their learning, we have also used cognitive interviewing to help teams of both 
in- service and preservice teachers learn to listen hermeneutically (Stephan et al. 
 2012 ; Yackel  2003 ). Results from our work with preservice teachers show that inter-
viewing and listening hermeneutically was an extremely important part of shifting 
their envisioned teaching practice.  

    Learning Goal 3: Understand and Implement 
GR Planning Practices 

 A third learning goal involves supporting new GR teachers in their attempts to 
adopt the planning practices of GR teaching. While learning to listen, analyzing 
student thinking, and using student ideas to inform instruction are an important 
part of GR teaching, equally crucial is mindfully anticipating beforehand how 
 students might think, so that the teacher can be more prepared to draw on those 
student contributions which align with the learning goals in the HLT. The fi ve plan-
ning practices of a GR teacher outlined in a previous section constitute the basis 
with which we work with teachers to learn new planning techniques. Understanding 
how to plan like a GR teacher cannot be accomplished through reading or lecturing 
alone, but rather requires working with a more experienced teacher. For example, 
we have worked as co-teachers and co-planners with a variety of teachers. One way 
to co-plan is for the university or teacher mentor to coach other teachers during 
their planning period. 

 A second way that we have found successful is for an expert GR teacher to teach 
the same class as the aspiring teacher and plan their lessons collaboratively on a 
daily basis. The expert GR teacher, then, models the fi ve planning practices in a 
very genuine way as they are both planning for and teaching the same lessons in 
their classrooms simultaneously. This relationship is different from coaching or 
other professional development experiences where the expert is not teaching the 
lesson and thus is an outsider to the experience. The expert and aspiring GR teacher, 
in the second case, share similar goals, purposes, and experiences, and thus, the 
entirety of the teacher’s energy can be focused on supporting both her own students 
and those of the aspiring GR teacher. In the section below, we share an example 
from Stephan’s work with Sean to show how GR planning practices can be sup-
ported by a mentor who is working alongside an aspiring teacher. 
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   Collaborative Lesson Planning 

 Sean and Stephan lesson-planned collaboratively before each mathematics unit to 
prepare long range for the unit they would teach (planning practice 1 [PP1]). These 
conversations often involved a discussion of the HLT (if one existed) or of the 
long- range goals of a textbook unit. Stephan engaged Sean in conversations in 
which they attempted to highlight the mathematical concepts that formed the basis 
for the unit (or instructional sequence) as well as the tools and inscriptions that 
would be used to support students’ reasoning. Once they were comfortable with 
the overarching mathematical goals, tool use, and student thinking that was 
intended throughout the unit, they then focused on implementing the sequence. 
Each day, they worked through the problems and anticipated how students might 
reinvent the relevant mathematical ideas. Then, they used their anticipations to 
imagine who they would call on during the summary whole-class discussion and in 
what order so that the relevant mathematical idea would emerge from the students 
during the discussion (PP2). They also planned certain questions based upon how 
they expected the discussion to unfold. These questions were intended to help 
 students present their strategies in ways that other students could make sense of 
them, contrast them with theirs and others’ strategies, and make decisions about 
the accuracy, sophistication, and effi ciency of the ideas. The teachers also looked 
for ways that they could notate anticipated student strategies to move their thinking 
toward more effi ciency and sophistication. 

 When the lesson was completed that day, Stephan and Sean met again briefl y at 
the end of the day to discuss the ways in which their hypothesized image of the 
classes compared with what actually happened (PP3). In these discussions, student 
strategies were shared as well as the techniques each teacher used to structure the 
whole-class discussion. At this point, the teachers would decide if any changes 
needed to be made to their plan for the subsequent lesson. The next day, the cycle of 
anticipation and refl ection began again. These cycles occurred on an almost daily 
basis throughout each unit. When appropriate, the teachers planned more formal 
formative assessments in the form of short quizzes or student presentations (PP4) 
and wrote a fi nal unit assessment to determine the learning of individual students 
over the course of the instructional sequence. They then used their daily refl ections 
as well as results from the unit assessment to record changes that needed to be made 
for the instructional sequence the following year (PP5). 

 For a coach who may not be teaching the same subject or may not be teaching at 
all, the strategies above can still be utilized with the intent to recreate, as closely as 
possible, some of the same activities. For instance, if the coach is not teaching full 
time, she can still co-plan with the teacher and develop formative assessments. 
However, since she doesn’t teach, she has the added benefi t of being able to be 
 present during the implementation of their plan in her mentee’s classroom that day. 
Then, they have a shared classroom experience through which to refl ect on the 
 current status of the HLT as well as fodder for follow-up co-planning sessions. 
Furthermore, they have a shared classroom experience that can be referred to as they 
discuss the teacher’s GR classroom practices.   
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    Learning Goal 4: Implementing GR Classroom Practices 

 The GR classroom practices are just as important as planning. Generally, our 
 discussions with teachers begin with classroom practice 1 (CP1) that deals with 
establishing a teaching and learning environment conducive to the reinvention of 
mathematics. Focusing on social norms is a rich place to begin mentoring because 
a guided reinvention approach to teaching necessarily presumes a classroom partici-
pation structure in which students explain their thinking, make sense of other’s 
thinking, and ask each other questions. We use teachers’ classroom experiences 
(i.e., taught lessons) as an opportunity for discussing ways to initiate and establish 
strong GR social norms. However, what counts as acceptable mathematical expla-
nations (CP2) are integral to discussions about social norms. Not only does a teacher 
want to establish a safe-discursive environment (CP1), but she must also think about 
the mathematical and discursive quality of those explanations (CP2). During these 
conversations with an experienced GR teacher, the other practices necessarily come 
into play because the teacher needs to anticipate what kinds of questions will help 
students develop acceptable explanations. She must also attend to students’ symbol-
izations and what types of tools and inscriptions can support students’ explanations 
and mathematical development. So, while discussions about social norms are a 
helpful starting point for learning about the GR classroom practices, they are con-
ducted in the context of teacher’s actual teaching and are not discussed in isolation 
of the other practices. 

 In attempting to support this learning goal, coaching can be an integral part of the 
mentoring experience. We have used a variety of coaching approaches with  teachers, 
namely, the cognitive coaching approach (Costa and Garmston  1994 ) and less 
 formal approaches such as observing a lesson and discussing the teacher’s practice 
afterward. Additionally, model teaching can be effective in some instances if the 
expert GR teacher is intentional about illuminating the rationale for certain peda-
gogical moves (related to GR classroom practices) she made during the lesson. 
Co-teaching can also be effective as well as videotaping an aspiring or model 
 teacher’s lesson and analyzing their GR classroom practices. 

 The list of GR practices themselves can be useful during discussion. A more 
detailed version of the GR classroom practices (see Appendix  C ) was developed by 
a team of GR teachers at Stephan’s school and can be used to frame discussions 
about a teacher’s practice, both before and after the class session.  

    Learning Goal 5: Coach Self and Others 
in the GR Teaching Approach 

 The fi nal learning goal involves learning to be a self-directed and refl ective teacher 
and teaching those skills and GR practices to other teachers. For example, in Sean’s 
fourth year, he was asked by the principal to serve as a community of learners 
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(COL) leader of three other teachers. The goal of the COLs that year was to provide 
all teachers the opportunity to co-plan with their peers and be coached where appro-
priate. Sean used this platform as a way to engage his teachers in the planning and 
classroom teaching practices of the GR teacher, including working solely from 
RME designed instructional sequences. He often used a coaching template 
(Appendix  D ) that Stephan had used with him to structure his planning meetings 
with teachers. In this way, Sean became a mentor who created activities and 
resources to mentor other teachers new to the GR teaching approach. Coaching 
 others (in essence serving as a GR teaching mentor for others) provided another 
level of activity that strengthened his continued learning and classroom teaching 
practices as well as grew a new fi eld of GR teachers.   

    Conclusion 

 In this chapter, we have described the guided reinvention approach to teaching that 
has grown out of decades of classroom-based research informed by the instructional 
design theory of Realistic Mathematics Education. The GR teaching approach 
 differs sharply from many current inquiry approaches by framing teachers’ work as 
supporting their students’ reinvention of important mathematical ideas. Not only is 
instruction grounded in realistic scenarios, but attempts are made to help students 
build on their informal, concrete work with real-world settings to create abstract 
mathematical strategies. 

 We have argued that a guided reinvention approach to teaching requires 
 knowledge of hypothetical learning trajectories and familiarity with research on 
students’ conceptual development in the topic area being taught. Therefore, both the 
mathematical content and the ways of supporting students’ progressive develop-
ment are brought more to the forefront of teachers’ practices. Teachers must develop 
the ability to use formative assessments to select, modify, and sequence learning 
activities that will guide students to reinvent increasingly sophisticated mathemati-
cal understandings. A teacher may draw upon problems and activities in a textbook 
in the course of creating, implementing, and revising instructional sequences, but 
guided reinvention teaching involves much more than simply following a textbook 
and asking students, “Why?” 

 We have also argued that a GR teaching approach is contingent upon the consti-
tution of certain taken-as-shared social and sociomathematical norms that infl uence 
both small group interactions and whole-class discourse. Further, the teacher must 
be able to introduce notation, pose questions, and highlight student contributions 
that will support her students’ thinking and move them along a learning trajectory. 
In other words, GR teaching is a system of interactions among the instructional 
sequence, the teacher’s practice (including norm building, notational support, 
and formative assessment), and the students’ participation. If we have made GR 
teaching sound complex, that is because it is. It involves social and sociomathemati-
cal  norm -building and specifi c attention to students’  mathematics,  the nature of the 
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instructional materials, teacher-led discourse and questioning, and student strategies 
that best support student learning. 

 In the next part of our chapter, we elaborated on the classroom teaching and 
 planning practices of an expert, guided reinvention teacher. We then outlined fi ve 
learning goals that can be used by mentor GR teachers in their efforts to support 
aspiring GR teachers. As a starting point, the mentor may begin by engaging the 
teacher in the act of listening to his students hermeneutically rather than evaluating 
his current teaching practice. We argued that learning to listen in this way prepares 
the teacher for the remaining learning goals involving assessing students cogni-
tively to inform instruction, incorporating the planning and classroom practices into 
one’s current teaching, and coaching oneself and others. Given the complex learn-
ing goals and practices involved in learning the GR teaching approach, we argue 
that it may take up to 5 years of working in a close mentoring program with an 
expert GR teacher or researcher. Building GR teacher capacity is then crucial so that 
they can then serve as GR mentors to new teachers within the profession. 

 In retrospect, this chapter outlined a hypothetical learning trajectory for a type of 
 teacher professional development  that has been over 25 years in the making. We 
believe that this chapter can provide mathematics educators with a framework for 
mathematics professional development that utilize a variety of mentoring activities 
to support aspiring GR teachers. We suggest that mathematics educators draw upon 
the learning goals in this chapter to develop their own hypothetical learning goals 
for their work with teachers.      

      Appendix A: Integer Hypothetical Learning Trajectory (HLT) 

 Phase  Tool  Imagery 

 Activity/
taken-as- shared 
interests 

 Possible topics of 
mathematical 
discourse 

 Possible 
gesturing 
and metaphors 

  One   Net worth 
statements 

 Assets and 
debts are 
quantities 
that have 
opposite 
effect on 
net worth 

 Learning 
fi nance 
terms 

 Conceptualizing an 
asset as 
something 
owned, a debt as 
something owed 

 Conceptualizing a 
net worth as an 
abstract quantity 
(not tangible) 

  

  Two   Net worth 
statements 
(vertical 
number 
line) 

 Differences in 
collections 
of assets 
and 
collections 
of debts 

 Determining a 
person’s net 
worth 

 Who is worth 
more? 

 Different strategies 
for fi nding net 
worths 

 Pay off 

(continued)
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 Phase  Tool  Imagery 

 Activity/
taken-as- shared 
interests 

 Possible topics of 
mathematical 
discourse 

 Possible 
gesturing 
and metaphors 

  Three   Symbols 
(+ and −) 

 + means asset 
and − 
means debt 

 Determining 
and 
comparing 
net worths 

 Different strategies 
for fi nding net 
worths 

 Creating additive 
inverses as 
objects 

 Pay off 

  Four   Good decisions 
increase net 
worth 

 Bad decisions 
decrease 
net worth 

 Which 
transactions 
have good 
and bad 
effects on 
net worth? 

 When taking away an 
asset, is this good 
or bad? 

 When taking away a 
debt, is this good 
or bad? 

 Judging the results of 
transactions and 
therefore 
direction to move 
on a number line 

 Arms moving 
up and 
down to 
indicate 
good or 
bad 
movements 

  Five   Vertical 
number 
line (VNL) 

  Model of to 
model for 
transition  

 Empty number 
line to 
express 

 (+ and −) 
movements 

 Transactions 
 Reasoning with 

number line 
to fi nd a net 
worth after a 
transaction 
has occurred 

 How do various 
transactions affect 
net worth? 

 Going through zero 
 The effect of 

different 
transactions 

 Different strategies 
for fi nding net 
worths 

 Arms moving 
up and 
down to 
indicate 
good or 
bad 
movements 

 Pay off 

  Six   Unknown 
transaction/
net worth 
problems 

 Determining 
different 
possible 
transactions 

 Inventing integer 
rules 

 +(+) = + 
 −(−) = + 
 +(−) = − 
 −(+) = − 

 Pay off 

(continued)

        Appendix B: Sample of Cognitive-Based Interview Task 

  $2.00     

  Ellen, Jim, and Steve bought three helium-fi lled balloons and paid $2.00 
for all three. They decided to go back to the store and get enough 
balloons for everyone in their class. How much did they have to pay for 
24 balloons?  
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        Appendix C: A Resource for Transforming 
GR Classroom Practices 

 Teacher evidence  Student evidence 

 Teacher practice:  social norms  
 • T encourages Ss to explain 
 • T encourages Ss to ask questions 
 • T encourages Ss to ask questions  to other Ss  
 •  T encourages Ss to understand other Ss 

solutions 
 •  T encourages Ss to use mistakes as learning 

opportunities 
 •  T encourages Ss to indicate agreement or 

disagreement 
 •  T encourages Ss to take responsibility/

ownership for their learning 

 Teacher practice:  discourse  
 • T restates Ss explanation in clearer language 
 •  T restates Ss explanation in a more advanced 

way 
 •  T introduces vocabulary when students have 

invented an idea 
 • T asks Ss to repeat other Ss solutions 
 •  T asks questions that promote higher-level 

thinking (e.g., comparing, analyzing, 
synthesizing) 

 •  T uses Ss solutions effectively to engineer his/
her summary 

 Teacher practice:  mathematical  
 • T encourages conjecturing 
 • T encourages proving 
 • T encourages different solutions 
 • T encourages effi cient solutions 
 • T encourages sophisticated solutions 

 Teacher practice:  imagery  
 • T encourages Ss to record their thinking 
 • T encourages Ss to model their thinking 
 •  T encourages Ss to draw on previous images 

when they are stuck 
 •  T “cements” Ss ideas on board or in display 

around the room 

 Teacher practice:  small group  
 • T encourages Ss to ask each other for help 
 • T collects data, not fi x Ss mistakes 
 • T asks Ss how they solved problems 
 •  T encourages Ss to draw on previous images 

when they are stuck 
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        Appendix D: Coaching Template 

 Mathematical Idea(s) of Lesson 
 Launch 
 Explore: Anticipated Student Thinking 
 Whole-Class Discussion 
 Assessment: What Evidence Shows Mathematical Ideas Are/Are Becoming Realized 
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    Abstract     In this chapter, I analyze multiple solution tasks (MSTs) and mathematical 
investigations (MIs) and the interplay between them. I argue that MSTs and MIs are 
effective instructional tools for balancing the level of mathematical challenge in the 
mathematics classroom and, thus, for realizing students’ mathematical potential at 
 different levels. Additionally, these tasks lead to the development of mathematical 
knowledge, mental fl exibility, and critical thinking. They also deepen mathematical 
understanding since they promote the design of mathematical connections of different 
types. I present several examples of MSTs and MIs and analyze these mathematical 
tasks from the perspective of their conventionality, the mathematical connections 
embedded in the tasks, and their potential for developing learners’ mathematical 
 creativity. MIs will be presented in this paper in connection to MSTs. Particular empha-
sis is placed on analyzing the relationships between production of multiple solutions, 
mathematical investigations, and varying levels of mathematical challenge.  

  Keywords     Mathematical challenge   •   Geometry   •   Problem solving   •   Multiple 
 solution strategies   •   Investigation in dynamic geometry   •   Task transformations  

        Introduction 

 This chapter will rely on several basic assumptions:

    1.    The main purpose of mathematical instruction is to provide learning opportunities 
that enable the realization of learners’ intellectual potential.   
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   2.    Mathematical challenge is a core factor in mathematical instruction that  promotes 
the realization of learners’ mathematical potential.   

   3.    Along with developing mathematical knowledge and skill, mathematics educa-
tion should be directed toward developing learners’ mathematical creativity.     

 In this paper, I will analyze multiple solution tasks (MSTs) and mathematical 
investigations (MIs) as effective tools that promote the realization of students’ math-
ematical potential. I will explore relationships between MSTs and MIs and will argue 
that a combination of MSTs and MIs mutually strengthens their instructional power.  

    Background 

    Mathematical Potential 

 Based on the defi nition of mathematical promise (NCTM  1995 ; Sheffi eld  1999 , 
 2009 ), I use a construct of a student’s  mathematical potential , which is a complex 
function of four variables: mathematical ability ( both analytical and creative ), 
affective characteristics, individual personality traits, and learning opportunities 
which the person encounters in his/her life (Leikin  2009a ). The variables are inter-
related, and each clearly plays an important role in the realization of the mathemati-
cal potential of a student. The construct of mathematical potential acknowledges the 
dynamic (developmental) nature of the human intellectual potential, meaning that 
abilities can be developed and beliefs may be altered if the opportunities provided 
to students match their potential. 

 It is quite obvious that mathematical potential varies in different students from 
low to high (even extremely high) levels. This variability determines heterogeneous 
nature of the mathematics classes that constitutes one of the central common chal-
lenges in teachers’ practice. Each class, even those in which students are selected 
according to their ability level, is heterogeneous and requires teachers to devolve to 
their students’ mathematical tasks that will allow each and every student to realize 
his/her mathematical potential to the maximal level. 

 According to the construct of students’ mathematical potential (including the stu-
dents’ abilities, affective characteristics, and personality), mathematical tasks intro-
duced to the students should, fi rst of all, match their mathematical abilities and 
knowledge. The tasks should secondly be directed toward the promotion of positive 
affects, at both global and local level (Goldin  2009 ). The global affect includes stable 
structures such as beliefs, motivation, and attitudes toward mathematics, whereas the 
local affect includes, for example, contentment or dissatisfaction associated with prog-
ress in solving a particular problem. Students’ commitment to task performance and 
their persistence in achieving the goal are personal characteristics that are defi nitely 
important for the realization of their potentials and should be encouraged by the task.  
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    Creativity and Mathematical Potential 

 Creativity is a personal and social trait that fosters human progress at all levels and 
at all points in history. In school mathematics, students’ creativity can be expressed 
in production of mathematical ideas/solutions in a new situation (to a new mathe-
matical problem that was not learned previously) or production of original solutions 
to problems previously learned (Leikin and Pitta-Pantazi  2013 ). Leikin ( 2009b ) 
suggested that creativity in school students is relative creativity, since this creativity 
is usually regarded with respect to their own individual educational history and in 
comparison with other students. This is in contrast to absolute creativity, which is 
evaluated in terms of high achievements in the creator’s fi eld and whose signifi -
cance is evaluated by the professional community that regards it as a meaningful 
creation from a historical perspective. 

 Developing creative mathematical thinking was ignored for many years by dif-
ferent school curricula, as well as in mathematics education research. However, in 
the past decade more attention has been given to the creative component of mathe-
matics education. Starting with Haylock ( 1987 ) and Silver ( 1997 ), Sriraman ( 2005 ), 
Sheffi eld ( 2009 ), and Leikin ( 2009b ) emphasized the possibility of developing 
mathematical creativity in all students. 

 Research literature acknowledges the relationship between knowledge and cre-
ativity: On the one hand, being creative in a fi eld requires a person to have a certain 
knowledge base that allows him to be creative. On the other hand, creativity is one 
of the mechanisms of knowledge development. The former view is based on 
Vygotsky’s ( 1930/1984 , 1930/1982) argument that creativity (imagination) is one of 
the basic mechanisms that allows new knowledge to develop. A child activates 
his/her imagination when connecting new and previously known concepts, when 
elaborating the known constructs, and when developing abstract notions. Thus, 
imagination (or creativity) is a basic component of knowledge construction. 

 Researchers in mathematics education explicitly connect development of math-
ematical creativity with implementation of MSTs (Silver  1997 ; Leikin  2009a ,  b ; 
Levav-Waynberg and Leikin  2012a ) and with problem posing (Silver  1997 ) and 
MIs (Yerushalmy  2009 ). This paper presents an analysis of MSTs and MIs as 
instructional tools in mathematics education and mathematics instruction directed 
toward the development of mathematical creativity and varying levels of mathemat-
ical challenge that suit different ability levels. 

 Yerushalmy ( 2009 ) argues that  Proofs and Refutations  by Lakatos ( 1976 ) is the 
ultimate example of creativity in mathematics. It demonstrates the creative process 
of conjecturing, in which even defi nitions should be created by the shared effort of 
a teacher and a group of learners. In Lakatos’s essay, a problem that seemed to have 
been already solved on the fi rst page led to a mathematically rich, creative discus-
sion. This paper presents several examples of simple mathematical problems which, 
by means of different requirements, are transformed into tasks with different levels 
of mathematical challenge.  
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    Mathematical Challenge 

 In my view,  a mathematical challenge is an interesting and motivating mathematical 
diffi culty that a person can overcome  (Leikin  2007 ,  2009a ). Mathematical challenge 
is a core element of mathematical instruction aimed at fulfi llment of the learners’ 
mathematical potential through integration of mathematical diffi culty and positive 
affect in the learning process (Barbeau and Taylor  2009 ). The importance of the 
construct of challenge is rooted in Vygotsky’s ( 1978 ) notion of ZPD (zone of proxi-
mal development) and Leontiev’s ( 1983 ) theory of activity and Davydov’s ( 1996 ) 
principles of “developing education.” 

 The importance of mathematical challenges in mathematics education strength-
ens the meaningful distinction between mathematical problems and exercises. An 
exercise is a mathematical task a student can solve using a readily available algo-
rithm. Sheffi eld ( 2009 ) maintains that teachers must challenge students who are 
ready to move to a higher level and provide hints to students who may be frustrated. 
Thus, exercises can be solved without the teacher’s involvement, but mathematical 
challenges aimed at developing students’ mathematical knowledge usually entail 
scaffolding provided by a teacher. A challenging problem must meet four conditions: 
First, the person who performs the task has to be motivated to fi nd a solution. Second, 
the person has to have no readily available procedures for fi nding a solution. Third, 
the person has to make an attempt and persist to reach a solution. Fourth, the task or 
a situation has several solving approaches (Leikin  2004 , compiled from Polya  1981 ; 
Schoenfeld  1985 ; Charles and Lester  1982 ). 

 A mathematical challenge is  subjective  because it depends on the learner’s abili-
ties and knowledge. A mathematical challenge is also  relative : Whereas a task that 
is challenging for student A might be too easy and thus unchallenging for student B, 
the same task might be too diffi cult and thus too challenging for student C. 
Mathematical tasks introduced to learners in the presence of a teacher should be 
challenging, while exercises should be assigned for homework – especially for 
 students with high mathematical potential. 

 Challenging mathematical tasks can require solving mathematical problems, 
proving, posing new questions and problems, and investigating mathematical 
objects and situations (Barbeau and Taylor  2009 ). Investigation tasks are the 
most inclusive tasks that take into consideration different mathematical situa-
tions, conjecturing, examining the conjectures, proving, and posing new ques-
tions. Some variables, like the length of the logical or manipulative chain of a 
solution and the conceptual density of a task (Silver and Zawodjewsky  1997 ), 
can determine the task’s complexity. However, the length of a solution and the 
conceptual density do not raise the interest of a student in solving a problem and 
thus do not affect the degree of its challenge. 

 Conventionality of a task or of its solution is an additional variable (and the main 
one, in my opinion) that determines the level of mathematical challenge embedded 
in the task. Conventional solutions are those generally recommended by the curricu-
lum, displayed in textbooks and taught by the teachers. By contrast, unconventional 
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solutions are based on strategies usually not prescribed by the school curriculum or 
those which the curriculum recommends with respect to a different type of problem. 
From the Vygotskian perspective, unconventional tasks require imagination in con-
necting students’ existing knowledge to the new ideas constructed while approach-
ing the tasks (Vygotsky  1930/1984 ). From this perspective, mathematical challenge 
is determined by the level of the learners’ familiarity with the strategies (ways) that 
may be used to approach a problem and, thus, by the level of autonomy in solv-
ing an unconventional task. When solving unconventional problems or proving 
new theorems, students must make connections with previously learned material, 
 connections that require creative thinking. Mathematical challenges should allow 
mathematically promising students to experience activities in which professional 
mathematicians are involved:

  Felix Klein (1924) came out strongly against the practice of presenting mathematical topics 
as completed axiomatic-deductive systems, and instead argued for the use of the so-called 
 bio-genetic  principle in teaching. [According to this approach] learners should be exposed to 
or engaged with the typical mathematical processes by which new content in mathematics is 
discovered, invented and organized. (De Villiers  1998 ) 

   Finally, the level of mathematical challenge can be determined by mathematical 
tasks devolved to the students and can be enhanced by the didactical setting in 
which the tasks are introduced to the students. 

 In the next section, I defi ne and briefl y exemplify different types of challenging 
mathematical tasks. In the section entitled “From Multiple Proofs to Investigation 
and Back to Multiple Proofs,” I present one particular geometry problem that is 
transformed into MST and IT as performed by prospective teachers at a “theory and 
practice in teaching school geometry” course. I explain the mutual relationships 
between multiple proofs and investigations. In the last section of this paper, I return 
to the construct of mathematical challenge and explain how tasks presented in this 
paper facilitate students with different levels of mathematical potential in overcom-
ing mathematical challenges.   

    Examples of Different Types of Mathematically 
Challenging Tasks  

    Defi ning Tasks 

 De Villiers ( 1998 ) argues that defi ning activities allow bridging school mathemati-
cal activities with those of professional mathematicians. These activities can be 
introduced to students at a stage when a concept has not yet been learned, and they 
can be asked to provide a new defi nition for the concept. Figure  1  illustrates a task 
in which students are required to defi ne midlines in a quadrilateral in different ways 
that determine different numbers of the midlines.
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   In such an activity, students are creators of their mathematical world. They 
deepen both their understanding of a concept of a midline and the meaning of a 
metamathematical notion of a defi nition. This defi ning task is challenging; it is both 
diffi cult and interesting. The diffi culty is related to the requirement for rigorous use 
of mathematical language – changing just one word in a sentence changes the 
objects defi ned (see Fig.  2 ). Additionally, challenge is related to the unconventional 
nature of the task associated both with involving the students in creation of their 
mathematical world and with unfamiliarity of the mathematical concept: Though 
the midline of a trapezoid is one of the central concepts of school geometry, the 
“midline of a quadrilateral” is not part of the curriculum. The outcomes are surpris-
ing and the activity is joyful and gratifying.

       Investigation Tasks 

 In the last two decades, the mathematics education community has strongly empha-
sized the importance of investigation-based learning environments (Da Ponte  2007 ; 
Yerushalmy  2009 ). Yerushalmy ( 2009 ) argued that the  objectives of any curriculum  
include encouraging the personal growth and development of individuals, preparing 
people for work, and transmitting the culture from one generation to the next (Schwartz 
 1999 ). However,  in practice , most mathematics curricula are organized along a set of 
techniques and procedures, adhering to a specifi c order and way of viewing the 
 concepts to be learned (Yerushalmy  2009 ). Here I demonstrate techniques in which 
 mathematical investigations can become a routine in mathematics classroom. 

 Investigation tasks require students to consider a particular situation, object, 
or group of objects, identify their properties, and prove them. The main component 

a

b

c

Define midlines in a quadrilateral so that a quadrilateral would have exactly two midlines.

Define midlines in a quadrilateral so that a quadrilateral would have exactly four midlines.

Define midlines in a quadrilateral so that a quadrilateral would have exactly six midlines.

  Fig. 1    Defi ning midlines in a quadrilateral       

Four midpoints 
on the sides of a 
quadrilateral

Definition a:

Midlines in a quadrilateral 
are segments connecting 
midpoints on the opposite
sides of a quadrilateral

Definition b:

Midlines in a quadrilateral
are segments connecting
midpoints on the adjacent sides
of a quadrilateral

Definition c:

Midlines in a quadrilateral
are segments connecting
midpoints on the sides of a
quadrilateral

  Fig. 2    Defi nitions of midlines in a quadrilateral       
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of an investigation activity in mathematics is conjecturing, which means “putting 
 forward a proposition about objects and operations on them that suggests unexpected 
relationships” (Yerushalmy  2009 , p. 103). Furthermore, investigation activities require 
refi ning the conjectures, refuting or proving them, and, consequently, monitoring the 
proof. Thus, investigation activities both require and develop students’ creative and 
critical reasoning. Figures  3  and  4  illustrate some possible results of investigation of 
the properties of midlines in quadrilaterals.

    The properties that students identify in activities of this kind are usually not 
new to professional mathematicians; however, they are new and surprising to stu-
dents. “At the K–12 level, one normally does not expect works of extraordinary 
creativity; however, it is certainly feasible for students to offer new insights” 
(Sriraman  2005 ).  

    Proof Tasks 

 The central role of proofs in mathematics education is widely agreed upon among 
mathematicians, educational researchers, and mathematics educators (Lin et al. 
 2009 ). Proof tasks are among the most challenging in school mathematics. The 
challenge embedded within proof tasks can be associated with procedures that are 
not readily available for students, with the requirements of rigorous justifi cations, 
and with (in geometry) auxiliary constructions that must be performed. This paper 
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  Fig. 3    Midlines connecting opposite sides in a quadrilateral bisect each other       
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  Fig. 4    Midlines connecting adjacent sides in a quadrilateral form a parallelogram       

 

 

Challenging Mathematics with Multiple Solution Tasks



66

demonstrates that the order in which proof problems are presented to the students 
can also determine the level of mathematical challenge of a task. 

 For students to prove that midlines connecting opposite sides in a quadrilateral 
bisect each other before proving that midlines connecting adjacent sides in a quad-
rilateral form a parallelogram is a real challenge (Figs.  3  and  4 ). On the other hand, 
proving that midlines in a quadrilateral that connect opposite sides of a quadrilateral 
bisect each other after proving that midlines in a quadrilateral connecting adjacent 
sides form a parallelogram can be trivial. 

 Note that in the classroom, no explicit requirement for multiple proofs was pre-
sented to the students with respect to the six midlines in quadrilaterals, the internal 
quadrilaterals, or their diagonals. However, different proofs were produced by differ-
ent students. These student-generated proofs serve as the basis of classroom discus-
sion on the clarity of the solutions, their elegance, and level of diffi culty. Through 
observation of multiple proofs, students focus on the connections between different 
mathematical concepts and different mathematical properties that enable them to pro-
duce a variety of solutions. The emphasis is also made here on the sequence in which 
the proofs are performed and the different challenges posed by the different sequences. 

 I present additional examples of how the order in which proof problems are 
introduced to students can vary the level of a mathematical challenge, by means of 
Problem 3.  

    From Proof to Investigation and Back to Proof 

 One of the ways to discover a challenge embedded in a proof problem is to trans-
form a proof problem into an investigation task (Leikin  2004 ; Leikin and Grossman 
 2013 ). All the tasks and their solutions presented in this section are borrowed 
either from school mathematics classrooms or from workshops for prospective 
mathematics teachers. 

    Problem 1 

    Problem 1a: The Original Proof Problem 

  In the isosceles trapezoid ABCD, the diagonals are perpendicular (AC BD). Prove 
that the altitude of the trapezoid is equal to the midline joining the midpoints of the 
two sides of the trapezoid. Prompt: Build the altitude through O [the point of inter-
section of the diagonals].  

 This proof problem, according to its placement in the textbook, clearly requires 
from the students the application of the midline of a trapezoid theorem. The drawing 
is presented, and the prompt, which is given in the text of the problem, simplifi es the 
solution and directs it toward one particular solving approach. An intended solution 
of the original tasks is depicted in Fig.  5 .
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   In the lesson described here (conducted several times with prospective mathematics 
teachers), the following investigation Problem 1b transformed from Problem 1a and 
clearly related to the defi ning task presented earlier in this paper.  

   Problem 1b: The New Investigation Problem 

  In the isosceles trapezium ABCD, the diagonals are perpendicular (AC BD). Find 
possible relationships between two midlines of the trapezoid, which join midpoints 
of the opposite sides of the trapezoid.  

 Replacement of “the altitude” in the original problem by the “second midline” 
makes the problem more elegant. The students cope with an open question: It 
becomes clear that the altitude is perpendicular to the midline; however, the rela-
tionship between the two midlines is not obvious. 

 This formulation of the problem leads fi rst to the challenge of constructing the 
isosceles trapezoid with perpendicular diagonals (see more details in Leikin 
 2012a ,  b ). Requirement of such a construction leads to the precise analysis of the 
properties of an isosceles trapezoid whose diagonals are perpendicular. This 
analysis includes thinking about necessary and suffi cient conditions of the 
 geometric fi gure. 

 Several different strategies for construction of the equilateral trapezoid with perpen-
dicular diagonals can be performed. Figure  6  depicts two of these constructions.

   Perpendicular diagonals that are congruent and are divided into two pairs of 
congruent segments by the intersection point serve a suffi cient condition for con-
struction of the given fi gure. The different constructions include either two pairs of 
congruent segments on the two perpendicular straight lines or completing a right 
isosceles. Within each big strategy, there are several variations, and the different 
ways in which the given trapezoid can be constructed are usually surprising for both 
teachers and students. 

 Let me note here that in advanced-level mathematics classes or in courses for 
prospective mathematics teachers, students are required to perform the construc-
tion, whereas, in mid-level or low-level mathematics classes, students are presented 
with various constructions performed by the teacher. After the fi gure construction 
stage, mathematical discussion is based on the properties used by either the students 
or the teacher for constructing the fi gure. The discussion is focused on those 

GH-height through O, then OG and OH are the medians,
the altitudes and the bisectors in the triangles BOC and
AOD. 

Hence, triangles AHD and AGH are right isosceles
triangles:  HD=HO, GC=GO

Thus, GH=GO+OH=GC+HD=½BC+½AD=EF
A H D

F

CGB

E
O

  Fig. 5    A solution of the original task       
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properties of the fi gure which constitute suffi cient conditions for the fi gure’s con-
struction that guarantee immunity of the fi gure’s properties under dragging in 
dynamic geometry environment (DGE). 

 By dragging the fi gure (in DGE), and by measuring and comparing, the partici-
pants realize that the two midlines connecting opposite sides of an equilateral trap-
ezoid with perpendicular diagonals are equal and perpendicular. As in the case 
presented in the previous section, students are not explicitly required to produce 
multiple proofs; however, the alternative proof follows from the way in which the 
trapezoid was constructed (see Fig.  7 ).

         Multiple Solution Tasks 

  Multiple solution tasks  are tasks that contain an explicit requirement for solving a 
problem (or proving a theorem) in multiple ways. The differences between the solu-
tions can be based on using (a) different representations of a mathematical  concept 

Construction: BD
k⊥BD, O∈ BD
Circle (O; |OB|)∩k=C

Circle (O; |OD|)∩k=A Circle (C; |BD|)∩k=A

k

A

CB

D

O

k

A

C

D

B

O

  Fig. 6    Two different constructions       

The internal quadrilateral with vertexes in the midpoints of
the given trapezoid is a square (a parallelogram with equal
and perpendicular sides since the diagonals in the trapezoid
are equal and perpendicular). Thus the midlines that join
midpoints of the opposite sides of the trapezoid are equal to
each other and perpendicular to each other as the diagonals
of the square.
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  Fig. 7    The alternative proof that follows from the trapezoid construction       
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(e.g., proving the formula of the roots of a quadratic function using graphical repre-
sentation, symbolic representation in canonic form, or symbolic representation in a 
polynomial form), (b) different properties (defi nitions or theorems) of mathematical 
concepts from a particular mathematical topic (Fig.  5 ), (c) different mathematical 
tools and theorems from different branches of mathematics, or (d) different tools 
and theorems from different subjects (not necessarily mathematics) (Leikin  2007 , 
 2009b ). 

 The requirement for multiple solutions (or proofs) transforms a conventional 
 (routine) problem into a challenging and unconventional one. A problem for which a 
solution strategy is algorithmic can require insight when it must be solved in multiple 
ways. For example, a symmetric system of linear equations (3 x  + 2 y  = 5  ∧  2 x  + 3 y  = 5) 
can be solved algorithmically by the substitution of variables or by linear combina-
tions. But if asked to fi nd an additional solution, students become more attentive and 
can argue that  x  =  y  and because the system “has special coeffi cients, they are the same 
but inverse in the two equations” (cited from an interview with a student). 

 In other cases, the challenge is related to the large number of proofs that can be 
produced to solve one particular problem. The requirement for production of mul-
tiple proofs requires mental fl exibility (Elia et al.  2009 ) that determines the level of 
mathematical challenge. 

 There are two main types of MST and MI implementation in the classroom: 
teacher-initiated and student-initiated implementation (Leikin and Levav-Waynberg 
 2008 ). In a  teacher-initiated implementation , the teacher creates a didactical situa-
tion in which students are required to produce multiple solutions (for MSTs) or 
discover new mathematical facts (for MIs). These requirements become a part of a 
didactical contract between the teacher and the students. Teacher-initiated MSTs 
and MIs may differ with respect to their openness. A teacher can plan either a  guided 
instruction , in which his/her outlines several directions in which solutions or inves-
tigations might be performed and the students have to perform these MSTs or MIs, 
or  non-guided solutions , in which the students have to fi nd directions for solving the 
problems while also being expected to produce solutions using them. In  student- 
initiated situations , the teacher does not plan MSTs as a part of the planned learning 
trajectory; therefore, the way the lesson develops depends on student ideas and 
teacher fl exibility. The possibility of solving a problem in more than one way can be 
raised by the students themselves. This happens either when they don’t understand 
the fi rst solution offered or when they fi nd an alternative solution and want to share 
it with the teacher and their classmates. In this chapter, I address a setting in which 
the teacher initiates production of multiple solutions and mathematical investiga-
tions. This setting is challenging for a teacher himself/herself, as it cannot be pre-
cisely planned and it requires variability of scaffolding methods. 

 There are clear mutual relationships between MSTs and MIs: Multiple solutions 
(proofs) lead to investigations of the applicability of different proofs to different 
mathematical objects and the existence of additional properties that can be proven 
in similar but different ways. Figure  8  demonstrates an MST with seven different 
proofs, which all were generated by the students during a 90-min mathematics les-
son. Most of the students produced one or two proofs, while the collective  solution 
space appeared to be much richer and exposed students to different mathematical 
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tools and different ways of thinking. In this way, the implementation of an MST led 
the teacher to an IT in the “what if not” manner, which included an exploration of 
the object’s properties, of the proofs, of the connections between them, and of their 
applicability with respect to other mathematical objects. The setting leads to learn-
ing geometry by the students and their teacher, alike. 

    Problem 2 

    MSTs in geometry are among the effective didactical approaches that lead to the 
development of geometry knowledge (Levav-Waynberg and Leikin  2012a ,  b ). 
Figure  8  demonstrates an example of an MST in geometry that has 7 different proofs. 
Six proofs (proofs 1, 3, 4, 5, 6, 7) are based on different auxiliary constructions, 
while Proof 2 is based on the same auxiliary construction as Proof 1 but refers to the 
same element of mathematical fi gures in different ways (e.g., while HC is a median, 
an altitude, and a height in the triangle CDF, it is a midline in the trapezoid). The 
challenge in this MST is embedded in the requirement of producing multiple proofs, 

Auxiliary constructions for proofs 1-7
Problem 2

3: CH⊥ DF

1: CK || AE
: CK K is middle of AD

Given ABCD– square; 
E – middle ofBC; 
DF⊥ AE

Prove in as many ways as you
can

FC DC

5: HFMC rectangle4: EG continuation of AE; G on DC

7: Circle through D, F, E, C6: CR cont. of BC; CR=CE
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  Fig. 8    Example of MST with seven different solutions       
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while the variability of mathematical tools from different geometry topics requires 
mental fl exibility and connectedness of mathematical knowledge. 

 Problem 2 is equivalent to a problem in which the givens are identical, but par-
ticipants are asked to prove that FC = BC. This property does not exist in rectangles 
which are not squares and is more challenging since it requires the solvers to dis-
cover that in order to prove that FC = BC, they must prove that FC = DC.  

    Back to Investigation 

 Some of the central questions to consider when producing multiple solutions to a 
problem are the following: “Which mathematical concepts are common to all the 
solutions? Which additional properties of the objects follow from these  solutions? 
Which mathematical objects, different from the one given in the problem, also 
fulfi ll these properties?” For example, through investigation, students discovered 
that a property proved for a square in Problem 2 exists in any parallelogram. In 
this case, the challenge is in choosing proofs that are specifi c to a square and 
cannot be applied to a new problem without examining all the proofs produced 
for a square. 

 Proof 7 (Fig.  8 ) is only one proof that makes use of the property of the square 
BCD = 90°. It does not hold for a parallelogram (Fig.  9a ); however, it works in a 
rectangle (Fig.  9b ).

        From Multiple Proofs to Investigation and Back 
to Multiple Proofs 

 This section focuses on one geometry problem (Problem 3a), borrowed from a stan-
dard textbook, that was transformed into an integrative task (Problem 3b) including 

Circle-based proof "does not work" in a parallelogram but
works in a rectangle

a b     

PROBLEM 2'

Given ABCD–
parallelogram; 
E – middle of BC; 
DF⊥AE

Prove FC DC
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  Fig. 9    Proof which are specifi c for a square       
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production of multiple proofs and mathematical investigations. The integration of 
multiple proving and investigation activities allows varying levels of mathematical 
challenge so that each student can fulfi ll the task requirements; however, they may 
perform the task at different levels, as will be presented below. All the proofs and 
discoveries described below are taken from the works of prospective mathematics 
teachers performed as a homework assignment. The richness of the discoveries and 
the proofs demonstrates that teachers are able to develop their profi ciency in gener-
ating MIs for their students. 

    Problem 3 

        Multiple Proofs for Problem 3 

    Problem 3 is of an integrative nature that includes proving a geometric property in 
multiple ways, investigating a geometric object given in the problem for additional 
properties (experimenting, conjecturing, testing), discovering of (relatively) new 
properties, proving or refuting the discovered properties, and formulating new 
multiple proofs and investigation problems. Figure  10  presents four proofs for 
Problem 3. Proofs 3.1, 3.2, and 3.3 use properties of the segments OD and OC: 
Proof 3.1 uses properties of segments OD and OC to be bisectors of angles ADC 
and DCB and the sum of angles in quadrilateral. Proof 3.2 is based on the ability 
of OD and OC to bisect angles AOE and EOB and the value of a fl at angle. Proof 
3.3 uses the property that the segments OD and OC are perpendicular to chords AE 
and EB, and the property of the inscribed angle AEB relies on the diameter. Proof 
3.4 uses the property of the midline OM in the trapezoid ADCB (OM is half of the 
sum AD + BC) and the property of the tangent segment from a point to a circle 
(AD + BC = DE + EC); OM is a median in the triangle DOC and OM =  1 / 2 DM. Thus, 
DOC is a right angle (Fig.  11 ). 

 I now turn to the mathematical investigation (performed by students in DGE) and 
analyze proofs and investigations and the varying levels of mathematical challenge 
embedded in the task.  

Problem 3a Given: AB – diameter in circle (O, R)

AD, BC, DC – tangent segments

Prove:  DOC = 90�

Problem 3b 
– an integrative 
task

a. Prove the property in at least 2 different ways
b. Find at least 3 additional properties of the given object
c. Prove each discovered property in at least 2 different ways.

C

DA

O

B

E

  Fig. 10    Integrative task based on Problem 3       
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    Discovering New Properties 

 Once students started investigating the given geometric object (with DGE), they 
searched for additional properties of the given geometric object. They chose ele-
ments of the given object, performed additional constructions, performed measure-
ments, compared different measures, and searched for the invariants under dragging. 
Once some conjectures were raised, they were tested by the participants again and 
were proven. The requirement for the performance of multiple proofs was very 
important here, since these proofs led to the discovery of additional properties of the 
given geometric object. Figure  12  illustrates eight properties that students discov-
ered when performing investigations and proofs.

   The discovered properties vary in their complexity. Property 1 follows immediately 
from Proof 3.2, and Property 2 is an element of Proof 3.3. Thus, these properties are 
trivial. Properties 3 and 4 are slightly less trivial since Property 1 serves as proof for 
Property 3 and Property 4 follows Property 2. Properties 3 and 4 are more challenging 
when discovered without knowing Properties 1 and 2. Properties 5, 6, 7, and 8 are more 
challenging for discovery since all of them introduce new geometric objects and their 
proofs are more complex, as they require auxiliary constructions.  

    Proving the Discovered Properties 

 Proving Properties 1 and 2 is a trivial task, since these proofs were performed 
within Proofs 3.2 and 3.3. Proving Properties 3 and 4 is trivial once Properties 1 

Proof 3.1 OD and OC
are angle
bisectors

Sum of angles
in ADCB is 360�.

α + β = 90�

AOB is a flat angle
x + y=90�

Proof 3.2

Proof 3.3

Three right
angles in the 
quadrilateral 
OYEX; thus it is 
rectangle.

Proof 3.4 OM midline in 
the trapezoid
ADCB
OM median in the 
triangle DOC
OM= ½ DM
Thus DOC is a
right triangle.
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  Fig. 11    Four proofs for Problem 3       
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and 2 are proven. However, these proofs are less trivial if Properties 3 and 4 have 
to be proven before Properties 1 and 2. Once again, the sequence of proving 
 activities determines challenge embedded in the proving task. 

 Proving Properties 5–8 appeared to be more challenging. Figure  13  depicts out-
lines of proofs for these properties. All the proofs require auxiliary constructions, 
continuous visual and analytical decomposition of the geometric objects into com-
posing elements, and composition of the elements into a whole picture 
(cf. Duval  2012 ). One of the challenges of these proofs is the identifi cation of the 
common elements in different geometric fi gures (e.g., segment ZX is one of the 
bases in the trapezoid ZXME and a midline in the triangle DBE) and their different 
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Property 8

Area AFB

= 

2Area EFT
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  Fig. 12    Eight discovered properties       
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functions as related to the different fi gures. Once one of the properties (5 or 6) is 
proven, the other becomes less challenging. Figure  13  depicts two different proofs 
for Property 7. The proofs themselves include additional properties of the given 
geometric object. Proof of Property 8 is based on one of the basic properties of 
trapezoid (equality between the areas of “side triangles”). However, this property is 
not a part of the school curriculum and not used in geometry problem solving; thus, 

Properties 5 and 6: ZEMX is a trapezoid, ZMCS is a parallelogram.

Proof outline 

OM midline in 
trapezoid ADCB

ZM||BC

BZ=ZD

BX=XE

ZX is a midline of 
the triangle DBE

ZX||DE

ZS||MC

ZX||EM

Property  7: Area ROA = Area RCB

Proof a - outline

WOSR and WCLR
are rectangles

A(AOR)= ½ AR*WO

=WR*RS

A(RCB)= ½ RB*CL=

=RS*WR

Proof b - outline

AOR ≅ EOB

OB-Median in REB

A(AOR)=½ A(REB)

CL=½ EB

A(RCB)= ½ A(REB)

Property  8: Area AFB = 2Area EFT

Proof outline

FO median in AFB

A(AFB)= 2A(AOF)

We can prove 

A(AFO)=A(EFT)

According to 

Property 4 AETO is 

a trapezoid; thus

A(AFO)=A(EFT)

Note:

One should know this
property of the
trapezoid; otherwise it
should be proven.
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  Fig. 13    Proof outlines – eight discovered properties (see Fig.  12 )       

 

Challenging Mathematics with Multiple Solution Tasks



76

the proof can be considered a diffi cult one. Moreover, preceding steps of this proof 
also require decomposition of the big triangle into two “halves” and composing a 
trapezoid from the vertices of the two equivalent triangles. The level of challenge 
can be reduced by connecting Property 8 with Property 4, if proven earlier. All of 
the proofs depicted in Fig.  13  require deep, broad, and connected knowledge from 
different topics within the school geometry course.

       Summary: Multiple Proving and Investigation Activity 

 Each participant in this activity produced several proofs. Some proofs were similar 
(e.g., 3.1 and 3.2), while others differed in auxiliary constructions and theorems 
used for proving the property (e.g., 3.1 and 3.4). Each participant discovered “new” 
properties and proved them. Collectively, all of the participants were presented with 
4 proofs for Problem 3, and additionally, after discovering new properties, produced 
proofs of “new” geometric properties. 

 The whole-group discussion touched on issues that in the usual “one proof for each 
problem” setting were irrelevant. Among the focal issues for discussion were same-
ness and differences between the proofs and between the discovered properties, the 
elegance of the proofs and surprise embedded in the discovered properties, the clarity 
and complexity of proofs, and the preciseness and completeness of the proofs. 

 Not less important for this activity is the essentiality of communicative and col-
lective elements of knowledge construction. The clear evolution of the knowledge 
development in this task started from the individual mathematical production (prov-
ing and discovering) based on individual knowledge skills and understanding, then 
turning to collective production in which each of the participants was exposed to the 
individual outcomes, advancing to collaborative production which involved com-
paring and connecting different individual products and ultimately resulting in a 
shared product that broadens and promotes individual production, knowledge, and 
understanding.    

    Discussion 

    Challenge Embedded in MSTs and MIs 

 At the beginning of this chapter, I presented the construct of students’ mathematical 
potential which comprises students’ abilities (both analytical and creative) and their 
affective characteristics and individual personality traits. I presented examples of 
MSTs and MIs, in which challenge is embedded and their common characteristics 
including newness, which leads to discovery, surprise, and enjoyment; diffi culty, 
which requires coping and persistence; and pleasure associated with surprise and 
the satisfaction of overcoming the diffi culty. 
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 I argue that many textbook problems can be transformed into MSTs and MIs. 
Problems 1, 2, and 3 in this paper demonstrate such transformations. While the 
requirement to solve (prove) a problem in multiple ways commonly transforms a 
problem into an MST, transformation of a proof problem into an investigation task 
is more complex (for complexity of the transformation, see Leikin  2012a ). Problems 
1, 2, and 3 in this paper lead to investigation in different ways. Problem 1 is refor-
mulated so that the main elements of the problems were renamed; Problem 2 leads 
to investigation in the “what if not” manner; and Problem 3 was transformed into 
an IT by a simple requirement: “fi nd additional properties of the given fi gure.” 
Geometric construction of the given object can serve as a pitfall in such an activity, 
and teachers can provide students with construction guidance in order to reduce the 
level of complexity. 

 Barbeau ( 2009 ) argues that “mathematical challenges in a classroom can equip 
students for facing future challenges in life by fostering desirable attributes such as 
patience, persistence and fl exibility” (ibid., p. 6). The teachers’ main role in any 
mathematical classroom is devolution of good mathematical tasks to the students. 
These include the teachers’ expectations regarding the students’ level of mathemati-
cal knowledge, understanding, and rigorousness in mathematical performance, as 
well as the level of autonomy granted to students in their mathematical activities 
and the use of tasks that require creative and critical thinking. This learning should 
“cultivate  a sense of satisfaction in personal mathematical development  in each 
student” (Goldin  2009 , p.192) and take place in an atmosphere of mutual respect 
and support between the teacher and the students. Students must “sign” this contract 
and endeavor to comply with its provisions. Mathematical challenge in this chapter 
is presented and analyzed as being at the core of such a contract, from both teachers’ 
and students’ perspectives.  

    Challenge and Creativity: Two Sides of the Coin 

 The relative nature of a mathematical challenge and that of mathematical creativity 
become obvious when employing MSTs and MIs. The tasks described in this chap-
ter demonstrate that MSTs and MIs allow varying levels of mathematical challenge 
in one particular mathematics class. Once a teacher presents such a task to a class, 
the students have freedom to cope with a task at an appropriate level of diffi culty 
and to be satisfi ed with his/her individual mathematical products (proofs, discover-
ies, etc.). Thus, by means of MSTs and MIs, a mathematical challenge can be 
monitored by a teacher by using varying levels of uncertainty, identifying mathe-
matical similarities and differences, developing a critical view on proofs and prov-
ing, rethinking mathematics, and learning from other students’ thinking. The 
examples presented in the chapter demonstrate that by changing the order in which 
mathematical statements should be proven by students, a teacher can change the 
level of the mathematical challenge. Thus, when dealing with problems related to 
the same mathematical object, the teacher allows different students to cope with 
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challenges at different levels. The individual activities lead to common discussions 
in which students can participate independently of the task with which students 
coped individually. 

 Clearly, MSTs and MIs are creativity related. These tasks require and develop 
mathematical fl exibility. As being fl exible is defi ned as being “different from one-
self,” students can be fl exible when discovering different properties and producing 
different proofs. The students should activate their critical reasoning to evaluate 
the differences between their products. Since the products vary in their sameness 
and differences, the fl exibility can also be considered as a relative construct. The 
MSTs do not necessarily require originality. However, it becomes a real challenge 
for students with high abilities to produce an original proof which is “different 
from others’ proofs.” In turn, MIs require students to be original since they involve 
discovery of properties which are “new for the students.” This newness is relative 
in most cases. However, my practice demonstrates that sometimes classroom activ-
ities related to MSTs and MIs and their integration lead to discoveries at the abso-
lute level (see Leikin  2012b ).   

    Concluding Remark 

 I would like to challenge the reader by asking you to solve Problem 4 and fi nd math-
ematical connections between Problems 1, 3, and 4. 

    Problem 4 

 Is it possible to inscribe a circle into an isosceles trapezoid with perpendicular 
diagonals?      
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    Abstract     The development of numeracy, sometimes known as quantitative literacy 
or mathematical literacy, requires students to experience using mathematics in a 
range of real-world contexts and in all school subjects. This chapter reports on a 
research study that aimed to help teachers in ten schools plan and implement numer-
acy strategies across the middle school curriculum. Teachers were introduced to a 
rich model of numeracy that gives attention to real-life contexts; application of 
mathematical knowledge; use of representational, physical, and digital tools; and 
positive dispositions towards mathematics. These elements are grounded in a criti-
cal orientation to the use of mathematics. Over one school year, the teachers worked 
through two action research cycles of numeracy curriculum implementation. The 
professional development approach included three whole-day workshops that sup-
ported teachers’ planning and evaluation and two rounds of school visits for lesson 
observations, teacher and student interviews, and collection of student work sam-
ples. During workshops, teachers also completed written tasks that sought informa-
tion about their confi dence for numeracy teaching and how they were using the 
numeracy model for planning. Drawing on data collected during workshops and 
school visits, we demonstrate how teachers’ instructional practices changed over 
time as they progressively engaged with the numeracy model.  
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      Numeracy  is a term used in many English-speaking countries, such as the UK, 
Canada, South Africa, Australia, and New Zealand, whereas in the USA and else-
where, it is more common to speak of  quantitative literacy  or  mathematical literacy . 
Steen ( 2001 ) described quantitative literacy as the capacity to deal with quantitative 
aspects of life and proposed that its elements included confi dence in mathematics, 
appreciation of the nature and history of mathematics and its signifi cance for under-
standing issues in the public realm, logical thinking and decision-making, use of 
mathematics to solve practical everyday problems in different contexts, number 
sense and symbol sense, reasoning with data, and the ability to draw on a range of 
prerequisite mathematical knowledge and tools. The OECD’s ( 2004 ) PISA program 
offers a similarly expansive defi nition of mathematical literacy as:

  an individual’s capacity to identify and understand the role mathematics plays in the 
world, to make well-founded judgments, and to use and engage with mathematics in ways 
that meet the needs of that individual’s life as a constructive, concerned and refl ective 
citizen. (p. 15) 

   Steen ( 2001 ) maintains that, for numeracy to be useful to students, it must be 
learned in multiple contexts and in all school subjects, not just mathematics. 
Although this is a challenging notion, a recent review of numeracy education under-
taken by the Australian government (Human Capital Working Group, Council of 
Australian Governments  2008 ) concurred, recommending:

  That all systems and schools recognise that, while mathematics can be taught in the context 
of mathematics lessons, the development of numeracy requires experience in the use of 
mathematics beyond the mathematics classroom, and hence requires an across the curricu-
lum commitment. (p. 7) 

   The cross-curricular importance of numeracy is endorsed by the recently introduced 
national curriculum for Australian schools, which identifi es numeracy as a general 
capability to be developed in all subjects (Australian Curriculum, Assessment and 
Reporting Authority  2012 ). 

 This chapter reports on a yearlong research study that investigated approaches to 
help teachers plan and implement numeracy strategies across the curriculum in the 
middle years of schooling (grades 6–9). The study was informed by a rich model of 
numeracy that was introduced to the teachers as an aid for their curriculum and 
instructional planning. The chapter addresses two of the research questions that 
guided the project:

    1.    To what extent did teachers’ instructional practices change over time as they 
progressively engaged with the numeracy model?   

   2.    How effective was the professional development approach in building teachers’ 
confi dence in numeracy teaching?     

 The fi rst section of the chapter outlines the theoretical framework for the 
study, which comprises the numeracy model and the professional development 
approach for working with teachers. The second section describes the research 
design and methods. In the third section, we describe how teachers developed 
new strategies for numeracy instruction, drawing on an analysis of the whole 
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group’s developmental trajectories through the numeracy model and a case study 
of one individual teacher. The fi nal section evaluates the effectiveness of the 
professional development approach in terms of changes in teachers’ confi dence 
in numeracy teaching. 

    Theoretical Framework 

    Numeracy Model 

 Current defi nitions of numeracy, quantitative literacy, and mathematical literacy 
share many common features and may usefully inform curriculum development and 
national or international assessments of students’ educational achievement. 
However, they do not provide direct guidance to teachers on how to plan instruction 
with a rich numeracy focus. Goos ( 2007 ) has also argued that a description of 
numeracy for new times is needed to better acknowledge the rapidly evolving nature 
of knowledge, work, and technology. She developed the model shown in Fig.  1  to 
represent the multifaceted nature of numeracy in the twenty-fi rst century. This 
model was intended to be readily accessible to teachers as an instrument for plan-
ning and refl ection.

   According to this model, numeracy development requires attention to real-life 
 contexts ; the application of  mathematical knowledge ; the use of representational, 
physical, and digital  tools ; and positive  dispositions  towards the use of mathemat-
ics. A further important and overarching element of the model is a  critical orienta-
tion  to the use of mathematics. Table  1  provides a succinct summary of the elements 
of the numeracy model, each of which is elaborated below.

   A numerate person requires  mathematical knowledge . In a numeracy context, 
mathematical knowledge includes not only concepts and skills but also problem- 
solving strategies and the ability to make sensible estimations (Zevenbergen  2004 ). 

 A numerate person has  positive dispositions  – a willingness and confi dence 
to engage with tasks, independently and in collaboration with others, and apply 
their mathematical knowledge fl exibly and adaptively. Affective issues have 
long been held to play a central role in mathematics learning and teaching 
(McLeod  1992 ), and the importance of developing positive attitudes towards 
mathematics is emphasized in national and international curriculum documents 
(e.g., National Council of Teachers of Mathematics  2000 ; National Curriculum 
Board  2009 ). 

 Being numerate involves using  tools . Sfard and McClain ( 2002 ) discuss ways in 
which symbolic tools and other specially designed artifacts “enable, mediate, and 
shape mathematical thinking” (p. 154). In school and workplace contexts, tools may 
be representational (symbol systems, graphs, maps, diagrams, drawings, tables, 
ready reckoners), physical (models, measuring instruments), or digital (computers, 
software, calculators, Internet) (Noss et al.  2000 ; Zevenbergen  2004 ). 
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 Because numeracy is about using mathematics to act in and on the world,  people 
need to be numerate in a range of  contexts  (Steen  2001 ). All kinds of occupations 
require numeracy, and many examples of work-related numeracy are specifi c to the 
particular work context (Noss et al.  2000 ). Informed and critical citizens need to be 
numerate citizens. Almost every public issue depends on data, projections, and the 
kind of systematic thinking that is at the heart of numeracy. Different curriculum 
contexts also have distinctive numeracy demands, so that students need to be 
numerate across the range of contexts in which their learning takes place at school 
(Steen  2001 ). 

   Table 1    Descriptions of the elements of the numeracy model   

 Element  Description 

 Mathematical 
knowledge 

 Mathematical concepts and skills, problem-solving strategies, and 
estimation capacities 

 Contexts  Capacity to use mathematical knowledge in a range of contexts, both 
within schools and beyond school settings 

 Dispositions  Confi dence and willingness to engage with tasks and apply mathematical 
knowledge fl exibly and adaptively 

 Tools  Use of physical (models, measuring instruments), representational 
(symbol systems, graphs, maps, diagrams, drawings, tables), and 
digital (computers, software, calculators, Internet) tools to mediate 
and shape thinking 

 Critical orientation  Use of mathematical information to make decisions and judgments, add 
support to arguments, and challenge an argument or position 

  Fig. 1    A model for numeracy in the twenty-fi rst century (Goos  2007 )       
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 This model is grounded in a  critical orientation  towards numeracy since  numerate 
people not only know and use effi cient methods, they also evaluate whether the 
results obtained make sense and are aware of appropriate and  inappropriate uses of 
mathematical thinking to analyze situations and draw  conclusions. In an increas-
ingly complex and information-drenched society, numerate citizens need to decide 
how to evaluate quantitative, spatial, or probabilistic information used to support 
claims made in the media or other contexts. They also need to recognize how 
 mathematical information and practices can be used to persuade, manipulate, disad-
vantage, or shape opinions about social or political issues (Jablonka  2003 ).  

    Professional Development Approach 

 In working with teachers, we integrated four professional development strategies 
recommended by Loucks-Horsley et al. ( 2003 ). The fi rst strategy involved forma-
tion of  collaborative partnerships  between participating teachers, university 
researchers, and curriculum support offi cers from the state Department of 
Education, which commissioned the study. Collaborative structures provide oppor-
tunities for professional learning around topics negotiated and agreed upon by the 
group, thus ensuring common goals. Collaborations are more contextualized to the 
teachers’ setting than most other forms of professional learning. The emphasis on 
collegiality and communication provides a forum for teachers to discuss specifi c 
issues related to their classrooms in an environment in which the discussion is 
valued by their colleagues. 

 The second strategy was to  examine teaching and learning  using action research. 
We conducted a series of project workshops and school visits to support teachers 
through two action research cycles of plan, act, observe, and refl ect in order to 
replan and continue through the next cycle. Additional elements of this strategy 
included inviting teachers to contribute to or formulate their own questions, linking 
teachers with sources of knowledge and stimulation from outside their schools, and 
documenting and sharing the learning from research. 

 Third, we provided teachers with  immersion experiences  that included numeracy- 
based learning opportunities and examples of numeracy investigations and assess-
ment tasks. Successful use of immersion experiences as a strategy for professional 
learning requires two key elements: qualifi ed facilitators and long-term experiences. 
Both of these elements were embedded in the design of the project. The research 
team has extensive mathematical and numeracy knowledge, many years’ experience 
as classroom teachers, and in-depth understanding of the goals and challenges of 
implementing numeracy pedagogy. In addition, unlike one-off professional devel-
opment models, the immersion experiences occurred at every teacher meeting. 
Hence many of the drawbacks of immersion experiences – lack of time and 
resources, mismatch with individual teachers’ learning sequence, and lack of con-
nection to direct classroom practice – were reduced. 
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 Fourth, we expected  curriculum implementation  by requiring teachers to develop 
and implement units of work that targeted numeracy demands of the diverse cur-
riculum areas from which they were drawn. Most short-term workshops that dem-
onstrate innovative materials do not provide support (or even the expectation) for 
the teachers to trial these ideas in their own classrooms. As a result, the ideas pro-
vided in these one-off workshops are rarely put to use in the classroom (Cohen and 
Hill  2001 ). By including the requirement of implementation of the units as part of 
the project, we were able not only to ensure that the teachers would use the ideas 
with their students but also to allow them critical support and time for refl ection on 
the experience. In addition, because the teachers completed at least two cycles of 
curriculum implementation, they were able to put into practice elements that were 
learned and refi ned after the fi rst attempt.   

    Research Design and Methods 

 Teachers were recruited from ten schools with diverse demographic characteristics: 
four primary schools (kindergarten–grade 7), one secondary school (grades 8–12), 
four smaller schools in rural areas (grades 1–12), and one school that combined 
middle and secondary grades (grades 6–12). Each school nominated two teachers, 
thus ensuring that participants were able to connect with a colleague from their own 
school. They included generalist primary school teachers who taught across all cur-
riculum areas as well as secondary teachers qualifi ed to teach specifi c subjects 
(mathematics, English, science, social education, health and physical education, 
design studies). 

 There were three elements to the research design: (1) an audit of the middle years 
curriculum to identify the numeracy demands inherent in all curriculum areas (see 
Goos et al.  2010 ); (2) three whole-day professional development workshops that 
brought together all participants to  examine teaching and learning  and provide 
 immersion experiences ; and (3) two daylong visits to each school to evaluate  cur-
riculum implementation  via lesson observations, collection of planning documents 
and student work samples, and audio-recorded interviews with teachers and students. 
The overall research plan is summarized in Table  2  to show the timeline for the proj-
ect, key activities in the professional development approach, and data sources that 
informed our research into changes in teachers’ instructional practices.

   At the fi rst project workshop, teachers were introduced to the numeracy model 
and the action research approach, and the fi ndings of the curriculum audit were 
shared and discussed. The aim of the audit was to draw teachers’ attention to the 
numeracy demands within all curriculum areas and hence to encourage them to 
accept responsibility for developing students’ numeracy capabilities in the subjects 
they taught. We provided immersion experiences that were designed as cross- 
curricular numeracy investigations suitable for use with middle year students. These 
included investigations of Barbie dolls’ physical proportion (with direct links to the 
health and physical education curriculum; see Fig.  2 ), the occurrence of the Golden 
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Rectangle in art, design, and nature (linked to the arts and design studies curricula), 
and planning for participation in the Tour Down Under, a bicycle race similar to the 
Tour de France (with links to the social education curriculum). At the end of this 
day, teachers were also asked to complete a survey that asked them to assess their 
confi dence in various aspects of numeracy teaching.

   The focus of the second workshop was on evaluating the implementation of the 
initial numeracy unit from the perspective of participating teachers and students and 
on setting goals and planning for the second action research cycle. All teachers were 
asked to bring evidence of one idea, activity, or unit they had tried with their class, to 
describe to the whole group how well (or not) it had worked, and to explain what they 
learned from this experience and how they would use this evaluation to plan subse-
quent lesson sequences. Time was also allocated to revisiting the numeracy model 
and the curriculum audit and to provide feedback on observations from the fi rst 
round of school visits. We found very little evidence of a critical orientation in any of 
the lessons we had observed in the fi rst round of school visits, despite opportunities 
in these lessons for including critique of real-life situations or actions. In interviews 
with teachers, it emerged that they were unsure about how to embed this element of 
the numeracy model into their planning and practice. Therefore, at the second work-
shop, we presented a range of stimulus materials drawn from print and digital media 
sources and asked teachers to work together to develop these into lessons that would 
promote a critical orientation in their students, without losing sight of the other ele-
ments of the numeracy model. (See Fig.  3  for an example of stimulus material.)

   Table 2    Research design   

 Time  Activity  Data sources 

 February  Curriculum audit: identify numeracy 
demands in all curriculum areas 

 March  Professional development workshop: 
introduce numeracy model; share fi ndings 
from curriculum audit; try out numeracy 
teaching strategies and tasks; plan for 
implementation 

 Survey of numeracy teaching 
confi dence 

 June  School visits: observe and evaluate 
implementation 

 Lesson observations, interviews 
with teachers and students, 
collection of teaching materials 

 August  Professional development workshop: 
evaluate implementation; share teaching 
resources and strategies; plan for 
implementation 

 October  School visits: observe and evaluate 
implementation 

 Lesson observations, interviews 
with teachers and students, 
collection of teaching materials 

 November  Professional development workshop: 
evaluate implementation; refl ect on 
professional learning 

 Survey of numeracy teaching 
confi dence 

 Map trajectories through the 
numeracy model 
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Barbie and Body Measurements

1. Measure your:

· height

· arm span

· length of index finger

· length of nose (bridge to point)

· head circumference

· wrist circumference.
(Work in pairs or small groups to make the measuring easier.)

2. Record females’ personal measurements in the left column of the table below.

Name: Barbie

Body part Measurement % of Height Body part Measurement % of Height

height height 30.0 cm

arm span arm span 24.0 cm 80.0%

index finger index finger 1.0 cm 3.3%

nose nose 0.5 cm 1.7%

head head 10.0 cm 33.3%

wrist wrist 2.0 cm 6.7%

3. Now calculate and record the ratio of each measurement to height, and convert this to
percentage of height. Record this personal information in the “% of height” column.

4. Compare the % of height data for female members of your group.

5. We will also use spreadsheet formulae to calculate ratios of body parts to heights for the whole
class (using decimal or percentage representation).

6. Now we’ll use spreadsheet formulae to find the mean (average) of each body ratio for the class.
What similarities and any differences do you notice? What is the physical meaning of these?

7. Make similar measurements for Barbie and record these in the table above. Calculate her body
ratios (express also as percentage of height) and record these. Compare her proportions with the
average proportions of human females calculated from our class set of data.

Is Barbie a realistic representation of human proportions?

What would Barbie look like if she were scaled up to human height?

  Fig. 2    Barbie activity used in fi rst teacher workshop       

   At the third workshop that concluded the project, the research team began by 
reporting on students’ perceptions of numeracy (taken from interviews with stu-
dents on school visits); how well they liked mathematics (or not); where they saw 
numeracy in other learning areas, outside school, and in future careers; what 
advice they would give mathematics teachers to make learning mathematics more 
effective and enjoyable; and what they thought their teachers learned through 
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participation in this project. We next provided teachers with copies of the 
 numeracy model and asked them to map their trajectory through the model 
throughout the project. They did this by identifying the element of the model that 
represented their entry point to the project, together with other elements of the 
model that became more meaningful or signifi cant to them over time. As a result 
of our analysis of school visit data, we invited four teachers who exemplifi ed dif-
ferent types of professional learning trajectories to report on their experiences. 
(One of these is the teacher whose case study is reported in a later section of this 
chapter.) We also immersed the teachers in a fi nal numeracy investigation that 
used temperature data we had collected from inside a car at 10-min intervals over 
2 h. Teachers were asked to sketch out a numeracy activity driven by questions 
that would support a critical orientation to the data and the contexts in which it 
might be collected and interpreted. At the end of the workshop, we readministered 
the numeracy self-assessment survey to enable us to track any changes in confi -
dence in numeracy teaching. 

 The data used in this chapter are drawn from the following sources:

    1.    Field notes from lesson observations and interviews with teachers (research 
question 1)   

   2.    Annotated copies of the numeracy model that were made by teachers at the last 
project workshop to map their developmental trajectory (research question 1)   

   3.    Teachers’ responses to the numeracy confi dence survey that was administered at 
the fi rst and last project workshops (research question 2)     

 The data were analyzed using qualitative and quantitative methods. To address 
research question 1, changes in teachers’ instructional practices were analyzed by 
identifying how teaching plans and actions aligned with the elements of the numer-
acy model as the project progressed. For research question 2, concerning teacher 
confi dence, Likert-style responses to the survey were converted to scores, and the 
score totals were compared at the beginning and end of the project to identify any 
changes in confi dence levels.  

Readers of the Courier-Mail newspaper are invited to write in with questions such as the
one below for the cookery expert (a well known chef ).

Q. I am planning to make a small Christmas cake in a six-inch tin (15 cm) and would 
like to know how to calculate the quantities of ingredients needed if my recipe is for a 
larger tin.

A. Just break down the recipe accordingly; for example, if your cake recipe is for a
12-inch tin (30cm), then halve the recipe.

Is this answer good advice? What questions could you ask to help your students take a
critical orientation to this information?

  Fig. 3    Critical orientation stimulus material used in second teacher workshop       
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    New Numeracy Teaching Strategies 

 This section discusses the developmental trajectories of all teachers in terms of the 
numeracy model that guided the study and illustrates new numeracy teaching strate-
gies via a teacher case study. 

    Teacher Trajectories Through the Numeracy Model 

 At the fi nal project workshop, teachers were provided with a copy of the numeracy 
model and asked to annotate it in a way that indicated their changing understanding 
of numeracy over the duration of the project (Geiger et al.  2011 ). For example, 
Karen annotated her copy of the numeracy model as shown in Fig.  4 .

   Karen’s annotations show that her initial entry point to promoting students’ 
numeracy was to improve their mathematical knowledge, or specifi cally their skills. 
However, her annotations show her growing awareness of elements of numeracy 
through her participation in the project. Following her annotations counterclock-
wise appears to refl ect her trajectory: she wanted to develop mathematical knowl-
edge but also increase links to real-world contexts. For example, she came to 
recognize the importance of using real data. She also noticed increased student con-
fi dence and initiative in relation to dispositions. Her note about taking a risk refl ects 
her own change in perspective in relation to students having confi dence in their 
mathematical skills rather than just being able to demonstrate the skills. Her com-
ment at the top of the diagram is an overall refl ection on the growth of her own 
conceptualization of numeracy. 

 Of the 20 teachers involved in the project, 18 completed the mapping task in 
the way we requested. We examined every annotated copy of the model to iden-
tify the entry point or starting element indicated by each teacher and then the 
sequence of elements in which they claimed to have developed interest and 
understanding as the project progressed. The resulting teacher trajectories are 
shown in Table  3 .

   Of the 18 valid responses, 8 people indicated that they had entered the project 
with a concern for students’  dispositions . Their annotations suggested that they 
were uneasy with students’ negative feelings towards mathematics and wanted to 
devise units of work that would have a positive impact on dispositions. Seven teach-
ers indicated that their starting point had been students’  mathematical knowledge  
and skills, and their annotations suggested that they believed that if students had 
appropriate mathematical knowledge and skills, they would be successful in apply-
ing these as required in context. Only three teachers indicated that they started the 
project with an emphasis on  contexts , stating that through contexts, students could 
apply their mathematics knowledge in meaningful situations. None of the teachers 
indicated that they came to the project with a primary interest in the use of  tools  or 
a  critical orientation . 
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 Although varied, teachers’ trajectories through the model showed some patterns 
of similarity (see Table  3 ).  Knowledge  to  dispositions  (K → D) and  dispositions  to 
 knowledge  (D → K) were common patterns, possibly indicating teachers’ beliefs 
about the connection between success in using mathematical knowledge and a posi-
tive disposition. Only four teachers indicated that they considered the  critical orien-
tation  aspect of the numeracy model, and this was their end point. Although the 
teachers identifi ed different starting points and trajectories through the numeracy 
model, at least half of the valid responses to the mapping task indicated they had 
attended to four of the model’s fi ve components during the life of the project: 16 
teachers annotated  knowledge , 16  dispositions , 13  contexts , and 9  tools .  

    Table 3    Teacher’s self-identifi ed trajectories through the numeracy model   

 Starting element  Trajectories 

 Dispositions (D)  D → K/T/C  D → C 
 D → K/T → C  D → C → T 
 D → K/T → C/CO  D → C → K (2 teachers) 
 D → K/T/C → CO 

 Knowledge (K)  K → D (2 teachers)  K → T → D (2 teachers)  K → C → D 
 K → D/C 
 K → D → T 

 Context (C)  C → K → CO  C → All 
 C → K → D → T 

   D  dispositions,  K  knowledge,  T  tools,  C  context,  CO  critical orientation  

A

BI now realise that I 
value having 
confidence in applying 
the skill rather than 
the skill itself and 
taking the risk to have 
a go.

I’ve seen an 
increase in this 
in my students.

Has 
increased.

I am aiming at 
increasing real 
world concepts.

Increased 
importance on 
Real data on actual 
events.

I had to first understand what being numerate was –
it is not the same as being good at math.

How did I get from A to B?

Starting point. I initially 
thought if I could 
increase the skill level, 
everything else would 
just follow or come 
naturally.

  Fig. 4    Karen’s trajectory through the numeracy model       
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    Case Study of a Secondary School Mathematics Teacher 

 Maggie was one of the teachers in the project who explored every aspect of the 
numeracy model as she developed new numeracy teaching strategies. She taught 
mathematics and science at a large secondary school in a rural town. She was an 
early career teacher only in her second year of teaching. The class with which she 
worked for this project was a grade 8 mathematics class. 

    First School Visit 

 Initially, Maggie struggled to come to grips with how to highlight the  numeracy  
within mathematics, but she decided to focus on teaching mathematics in real-life 
contexts that would be of interest to her students. She was supported in her planning 
by the school’s mathematics coordinator, who was an experienced teacher. Together 
they planned an investigation based on the television program  The Amazing Race . 
They decided that students would need 2–3 weeks in the computer laboratory to 
complete the investigation, which was based on organizing an adventure holiday 
around the world, given an itinerary and a budget of $10,000. Along the way stu-
dents had to complete a number of challenges for which they earned an additional 
$2,000 each. The challenges, which included  Diving with Sharks  in Cairns,  Skiing  
in Switzerland, and visiting  The Roman Colosseum , focused on using directed num-
ber in context, a topic that students had studied in the previous weeks. In  The Roman 
Colosseum  challenge, students were also required to use formulas in the context of 
comparing areas of the Colosseum and the Melbourne Cricket Ground, as well as 
looking at exchange rates and converting between currencies (see Fig.  5 ). Students 

Challenge: The Roman Colosseum

Ancient Rome was said to be founded in 753BC.

1. How long after Rome was founded was the Colosseum commissioned?

2. How long after Rome was founded was the Colosseum finished?

3. How long after the Colosseum was finished was the Arch of Constantine built?

The Colosseum is elliptical in shape. The area of an ellipse is given by the formula A = pab, 
where a is the “long radius” and b is the “short radius”. 

4. What is the area of the Colosseum?

5. Would the Colosseum fit into the Melbourne Cricket Ground (MCG)?

“It cost more to visit the Colosseum today than to see the football at the MCG!”, said a
disgruntled Australian visitor.

7. Is this statement true, or is he just grumpy because his football team won the wooden spoon
again this year?

  Fig. 5    The Roman Colosseum challenge       
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were expected to use the Internet to fi nd information about fl ights, accommodation, 
and places they would be visiting. Maggie felt nervous about the fi rst lesson because 
she was unsure of how the class would react. At fi rst students seemed somewhat 
daunted by the size of the investigation, but Maggie and the mathematics coordina-
tor decided that it was well structured enough to be tackled in small chunks.

   Members of the research team observed the second lesson of this unit. The 
 lesson took place in the computer laboratory that Maggie had booked for the dura-
tion of this numeracy investigation. Students entered the room and went straight 
to work without any prompting by Maggie. Although there were enough comput-
ers for each student, most collaborated with a partner on the tasks. Students 
appeared motivated and well prepared, and they were able to explain the investi-
gation to us when we questioned them. Maggie noted that some previously disen-
gaged students were interested in the investigation, while a few others remained 
aloof. Some students seemed so engaged in the task that they acted as though it 
was real; for example, when Maggie asked one boy “Where are you up to?,” he 
replied, “I’m on my way to Paris!” 

 This lesson placed mathematics in the real-life  context  of an adventure holiday. 
It targeted  mathematical knowledge  of directed numbers and operations with inte-
gers (formulae, money calculations), using digital (Internet) and representational 
(charts, tables)  tools . We did not observe teacher actions that promoted positive 
 dispositions  towards numeracy, but students were clearly motivated and confi dent in 
tackling the investigation and trying out different combinations of fl ights and 
accommodation bookings that would fi t within their budget. A  critical orientation  
does not seem to have been built into this investigation. However, this orientation 
could be promoted via teacher questioning, such as that we observed when Maggie 
helped a student compare advantages and disadvantages of booking cheap back-
packers’ accommodation. 

 At this stage of the project, Maggie thought she had changed the way she 
approached teaching numeracy in mathematics by placing more emphasis on using 
“bigger” tasks without a purely mathematical focus. She also realized that tasks she 
thought were routine, such as extracting data from tables, posed numeracy chal-
lenges for students that she had previously taken for granted.  

    Second School Visit 

 Since our fi rst visit, Maggie had been refl ecting on what she had learned as a teacher 
from her previous investigation –  The Amazing Race . She observed that any student 
who had attempted the task had done something well, but overall the performance 
by students on the task was uneven. Maggie attributed this unevenness to absentee-
ism, for some students, who found it diffi cult to catch up on the work they had 
missed and so lost momentum with the larger task, and, for other students, diffi culty 
with maintaining focus on the task for its 3-week duration. 

 Maggie used  The Amazing Race  experience when planning her next task – an 
investigation into the relationship between the heights and walking speeds of 
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students in her class, which was part of a bigger theme titled  Approaches to a 
Healthy Lifestyle . Within this theme, Maggie included many smaller tasks that 
she hoped would make it easier for students to maintain interest and to catch up 
if they were absent. 

 The mathematics embedded in the  height versus walking speed  investigation 
included elements of collecting, representing, reducing, and analyzing data. 
Students were required to learn how to calculate the mean, median, and mode of a 
data set, represent data using line and scatterplots, and use representational tools 
such as graphs to make predictions about an individual’s walking speed, given their 
height (see Fig.  6  for part of this activity). As part of the preparation for the task, 
Maggie had explicitly taught the underlying mathematical concepts and skills 
required by the task.

   In the lesson we observed, students were to make scatterplots using Excel in 
order to determine whether there was a pattern in the data they had collected on 
height and walking speed. In earlier lessons, they had collected height data and 
calculated the mean, median, and mode. In another lesson, students had marked out 
a 40 m section of a 100 m running track and then found the time it took to walk this 
distance. With this information, students had calculated their walking speeds in 
meters per second, meters per minute, and kilometers per hour. 

 Students worked in the computer room in much the same way as we had previ-
ously observed. All appeared engaged with the task and each group or individual 
produced a scatterplot, although the appearance of the graphs varied between each 
group and individual depending on the scales chosen or on the choice of variable for 
the  x  and  y  axes. Most students were able to describe a general trend in the data and 

Does your height influence your walking speed?

In this activity you will investigate whether there is any relationship between a person’s
height and their walking speed.

Using Microsoft Excel and the data we have collected, construct a scatterplot for our class
data, with height in cm on the horizontal axis and speed on the vertical axis. Also construct
scatterplots for the male data and the female data separately.

Comment on whether there is a trend in the data. Compare all three graphs. What are the
similarities and differences?

Based on your findings is it possible to predict the walking speed of the following people?

Staff Member Teaching Area Height (cm) Predicted Speed

Miss G Mathematics 156

Mr D Science 196

Mr M Principal 180

Miss J English 178

If so, explain the process you have used to make the predictions. If not, explain your reasons
for not being able to make a prediction.

  Fig. 6    Predicting walking speeds       
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use this to make a prediction about what might be Maggie’s (Miss G’s) or the school 
principal’s walking speeds, based on their heights (see Fig.  6 ). Interestingly, many 
students gave most attention to their own data point within the scatterplot with com-
ments such as “This is me” (pointing at the appropriate data point) and “This is how 
tall I am and how fast I walk.” Using personal data seemed to be effective for engag-
ing students with the task. From a student’s perspective, the activity was about them 
and how they compared to the rest of the class. 

 Students expressed surprise that the scatterplot was not linear, so that taller peo-
ple did not necessarily walk faster. Maggie spoke to each group and challenged 
them to explain why this should be the case. Some groups suggested that alternative 
variables – with associated alternative hypotheses – should be explored, including, 
for example, the relationship between walking speed and leg length or between 
walking speed and stride rate. One group suggested there might be a stronger rela-
tionship between a person’s height and their maximum walking pace rather than 
their natural walking pace. 

 Maggie chose an engaging  context  that made use of students’ personal details to 
introduce the  mathematical knowledge  that was used in this lesson. The use of per-
sonal data encouraged positive  dispositions  towards involvement in and completion 
of the task. This task required knowledge of how to produce a scatterplot from a 
data set using Excel and the capacity to make predictions from trends in the data. 
Maggie asked students to use  representational tools  such as scatterplots and  digital 
tools  in the form of computers and Excel. By challenging students to explain the 
variance in their data from the anticipated linear relationship, Maggie introduced a 
 critical orientation  to the task.  

    Maggie’s Trajectory Through the Numeracy Model 

 When we asked what the key factors in developing Maggie’s new understanding of 
teaching numeracy were, she said she began with a desire to improve her teaching 
by increasing her focus on embedding student learning in engaging  contexts . She 
believed this was a vital precondition to helping students understand why they 
needed to gain  mathematical knowledge . Through the course of the project, Maggie 
noticed her increased focus on developing activities that provided a  critical orienta-
tion  towards the use of mathematics. Only later did she realize the role that  disposi-
tions  played in encouraging students to try approaches to solving a problem for 
themselves rather than expecting her, as the teacher, to simply provide solutions. By 
the end of the project, Maggie said she had also increased her use of digital  tools  
because she could see there were advantages in using these to explore and analyze 
authentic contexts. 

 When Maggie refl ected on how she had changed and what she had learned dur-
ing the course of the project, she identifi ed her readiness to make use of more 
extended tasks when teaching mathematics. However, she tempered this view by 
arguing that tasks needed to be made up of self-contained subtasks that allowed 
students to move towards smaller achievable goals. Structuring tasks in this way 
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also meant that students who had been absent were not intimidated by what they 
needed to do to cover work that took place while they were away. 

 In the future, Maggie aims to implement two extended units per semester like 
 The Amazing Race  and  Approaches to a Healthy Lifestyle . For her, the level of 
engagement she observed while students were working on thematic activities was a 
compelling case for their inclusion within mathematics classes. Together with her 
teaching partner in this project, she was invited to speak at a staff meeting about her 
involvement in the project. She hopes that once other teachers understood the ben-
efi ts for students of working with context-driven, extended tasks, there might be 
opportunity to work across a broader range of subject areas.    

    Effectiveness of the Professional Development Approach 

 Changes in teachers’ confi dence in numeracy teaching provide an indicator of the 
effectiveness of the professional development approach that was used in this 
project. 

 At the fi rst and last project meetings, teachers completed a survey that asked 
them to assess their confi dence in various aspects of numeracy teaching. The 
survey was based on the  Numeracy Standards for Graduates of Pre-Service 
Teacher Education Programs  published by the Queensland Board of Teacher 
Registration ( 2005 ). Two sets of standards were published: one for teachers of 
mathematics (early years and primary teachers, specialist mathematics teachers 
in the middle and senior years of schooling) and another for teachers of disci-
plines other than mathematics (specialist teachers in the early and primary 
years, as well as teachers of subjects other than mathematics in the middle and 
senior years of schooling). Participating teachers were asked to identify them-
selves as belonging to one of these two categories in order to complete the rel-
evant survey. 

 The Numeracy Standards draw on the  Standards for Excellence in Teaching 
Mathematics in Australian Schools  formulated by the Australian Association of 
Mathematics Teachers ( 2006 ). They address three domains:

    1.    Professional knowledge: knowledge of students, of numeracy, and of students’ 
numeracy learning   

   2.    Professional attributes: personal attributes, personal professional development, 
and community responsibility   

   3.    Professional practice: learning environment, planning, teaching, and assessment    

  Standards statements were available for each domain and sub-domain. These 
were turned into survey items for which teachers were asked to indicate their 
level of confi dence, using a 5-point Likert scale, where a score of 1 corresponded 
to very unconfi dent, 2 to unconfi dent, 3 to unsure, 4 to confi dent, and 5 to very 
confi dent. 
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 At the fi rst and last project meetings, 15 and 12 teachers, respectively, completed 
the self-assessment as teachers of mathematics, while 4 and 5, respectively, com-
pleted the self-assessment as teachers of disciplines other than mathematics. Some 
teachers were present at only the fi rst or last meeting, while two changed the way 
they identifi ed themselves (as teachers of mathematics or other disciplines) between 
the fi rst and last meetings. Because we are interested in change over time, we report 
only on data obtained from teachers who attended both the fi rst and last project 
meetings and who completed the same version of the survey on both occasions. 
These respondents included nine teachers of mathematics and three teachers of dis-
ciplines other than mathematics. 

 To analyze survey responses, score totals were fi rst calculated for each survey item 
for both groups of teachers who completed the surveys at the fi rst (pre) and last (post) 
project meetings. To examine changes in confi dence between the beginning and end of 
the project, shifts in the total scores of at least 4.5 and 1.5 were considered to be of inter-
est for the two groups, respectively, because this was equivalent to half the group chang-
ing their level of confi dence by 1 point on the Likert scale (e.g., from unsure to confi dent). 
The magnitude of score totals was also of interest, with score totals of at least 36 or 12 
indicating confi dence (i.e., an average score of 4) across the respective groups. 

 The complete data set is provided in Table  4  for teachers of mathematics and in 
Table  5  for teachers of disciplines other than mathematics. The tables also provide 
the results of the pre-post analysis using the criteria described above: score totals on 
items for which teachers indicated they felt confi dent are presented in bold type, 
while items signaling a change in confi dence over the duration of the project are 
identifi ed by shaded cells.

    Table  4  indicates that at the start of the project, the teachers of mathematics (pri-
mary teachers as well as specialist teachers of mathematics in the middle and senior 
years of schooling) felt confi dent that they possessed the personal attributes and com-
mitment to professional learning required for numeracy teaching, which vindicated 
their selection as participants. They also had confi dence in some aspects of their pro-
fessional knowledge (knowledge of the diversity of students’ numeracy needs, of the 
pervasive nature of numeracy, of numeracy learning opportunities across the curricu-
lum). However, they lacked confi dence in their ability to establish an appropriate 
numeracy learning environment, plan for numeracy learning, and demonstrate effec-
tive numeracy teaching and assessment strategies. By the end of the project, these 
teachers felt confi dent in almost every aspect of numeracy teaching, apart from their 
ability to foster risk taking and critical inquiry in numeracy learning and to cater for 
the diversity of mathematical abilities and numeracy needs of learners. According to 
the analysis criteria identifi ed earlier, their confi dence levels had risen substantially on 
16 of the 32 survey items, most notably on those in the domains of professional 
knowledge and professional practice. We were also interested to note increased confi -
dence in areas not explicitly targeted by the project, such as theories of how students 
learn mathematics and the use of multiple representations of mathematical ideas. 

 Table  5  suggests that the small group of teachers of disciplines other than mathemat-
ics expressed greater confi dence in numeracy teaching than their colleagues at the start 
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Domain Standard statement Score totals
Professional knowledge Teachers will Pre Post
Students Understand the diversity of mathematical abilities 

and numeracy needs of learners 
38 38

Numeracy Exhibit sound knowledge of mathematics appropriate
for teaching their students 

35 37

Understand the pervasive nature of numeracy and its
role in everyday situations 

37 40

Demonstrate relevant knowledge of the central
concepts, modes of inquiry, and structure of 
mathematics

32 36.5

Establish connections between mathematics topics
and between mathematics and other disciplines 
Recognize numeracy learning opportunities across 
the curriculum 

35 41

36 42

Students’ numeracy
learning

Understand contemporary theories of how students
learn mathematics

29 36

Possess a repertoire of contemporary, theoretically
grounded, student-centeredteaching strategies

33 36

Demonstrate knowledge of a range of appropriate
resources to support students’ numeracy learning
Integrate ICTs to enhance students’ numeracy
learning

32 36.5

29 36.5

Professional attributes Teachers will
Personal attributes Display a positive disposition to mathematics and to

teaching mathematics
40 42

Recognizethat all students can learn mathematics
and benumerate

37 42.5

Exhibit high expectations for their students’
mathematics learning and numeracy development

37 40

Exhibit a satisfactory level of personal numeracy
competence for teaching

40 40

Personal professional
development

Demonstrate a commitment to continual
enhancement of their personal numeracy knowledge

40 41

Exhibit a commitment to ongoing improvement of
their teaching of mathematics

41 44

Demonstrate a commitment to collaborating with
teachers of disciplines other than mathematics to 
enhance numeracy teaching and learning

38 37

Community 
responsibility

Develop and communicate informed perspectives of
numeracy within and beyond the school

34.5 36

Professional practice Teachers will
Learning environment Promote active engagement in numeracy learning

Establish a supportive and challenging numeracy
learning environment 

35.5 39
33.5 37

Foster risk taking and critical inquiry in numeracy
learning

32.5 31

Planning Highlight connections between mathematics topics
and between mathematics and other disciplines

34 38.5

Cater for the diversity of mathematical abilities and
numeracy needs of learners

34 35

Determine students’ learning needs in numeracy to
inform planning and implementation of learning 
experiences

31.5 36

Embed thinking and working mathematically in
numeracy learning experiences

28.5 36

Plan for a variety of authentic numeracy assessment
opportunities

31.5 36

Teaching Demonstrate a range of effective teaching strategies
for numeracy learning

32.5 37

Utilize multiple representations of mathematical 
ideas in mathematics and in other curriculum areas

28.5 34

Sequence mathematical learning experiences
appropriately

35.5 39.5

Demonstrate an ability to negotiate mathematical
meaning and model mathematical thinking and 
reasoning

30.5 36

Assessment Provide all students with opportunities to 
demonstrate their numeracy knowledge
Collect and use multiple sources of valid evidence to
make judgmentsabout students’ numeracy learning

31 39

30 36

    Table 4    Confi dence scores for teachers of mathematics (pre-post);  n  = 9       
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Domain Standard statement Score total
Professional knowledge Teachers will Pre Post
Students Recognize the numeracy knowledge and experiences

that learners bring to their classrooms
12 12

Understand the diversity of numeracy needs of
learners

12 12

Numeracy Understand the pervasive nature of numeracy and its
role in everyday situations

13 13

Understand the meaning of numeracy within their
curriculum area

12 13

Recognize numeracy learning opportunities and
demands within their curriculum area

8 14

Students’ numeracy
learning

Demonstrate knowledge of a range of appropriate
resources and strategies to support students’ 
numeracy learning in their curriculum area

11 12

Professional attributes Teachers will
Personal attributes Display a positive disposition to supporting students’

numeracy learning within their curriculum area
13 13

Recognize that all students can be numerate 11 10
Exhibit high expectations of their students’ numeracy
development

12 11

Exhibit a satisfactory level of personal numeracy
competence for teaching

13 13

Personal professional
development

Demonstrate a commitment to continual 
enhancement of personal numeracy knowledge

13 14

Exhibit a commitment to ongoing improvement of
their teaching strategies to support students’ 
numeracy learning

13 14

Demonstrate a commitment to collaborating with
specialist teachers of mathematics to enhance their
own numeracy learning and numeracy teaching 
strategies

13 14

Community
responsibility

Develop and communicate informed perspectives of
numeracy within and beyond the school

12 13

Professional practice Teachers will
Learning environment Promote active engagement in numeracy learning

within their own curriculum context
13 13

Establish a supportive and challenging learning
environment that values numeracy learning

13 12

Planning Take advantage of numeracy learning opportunities
when planning within their own curriculum context

13 14

Display willingness to work with specialist teachers
of mathematics in planning numeracy learning 
experiences

13 14

Determine students’ learning needs in numeracy to
inform planning and implementation of learning 
experiences

11 13

Teaching Demonstrate effective teaching strategies for 
integrating numeracy learning within their own
curriculum context

12 14

Model ways of dealing with numeracy demands of
their curriculum area

12 14

Assessment Provide all students with opportunities to 
demonstrate numeracy knowledge within their
curriculum area

12 13

    Table 5    Confi dence scores for teachers of disciplines other than mathematics (pre-post);  n  = 3       
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of the project (score totals equivalent to “Confi dent” on 18/22 items). Yet, despite this 
high starting point, reasonable gains in confi dence over the life of the project were 
recorded on items related to recognizing the numeracy learning opportunities and 
demands in their own curriculum areas, determining students’ numeracy learning 
needs to inform planning, demonstrating effective numeracy teaching strategies, and 
modeling ways of dealing with the numeracy demands of their curriculum area. 

 Expressions of increased confi dence provide indirect evidence of the effective-
ness of the professional development program and need to be interpreted in the light 
of observations of classroom practice and other data collected from teachers, such 
as the trajectories through the numeracy model discussed in a previous section. 
Teachers reported feeling confi dent about many aspects of numeracy teaching 
before the project started, and so we were surprised to see endorsement of even 
higher confi dence levels at the end of the project. However, the responses to the 
confi dence survey are consistent with other data in that we observed changes in 
teachers’ planning and classroom instruction as well as changes in their understand-
ing and use of the numeracy model.  

    Conclusion 

 In highlighting the positive outcomes of this project, we do not wish to imply that 
all participating teachers made signifi cant changes to their practice, even though 
most claimed to have gained more confi dence in numeracy teaching and a better 
understanding of what numeracy means. We have not reported here on our obser-
vations of the varying levels of commitment to the project displayed by the teach-
ers with whom we worked. Many became fully immersed in exploring and 
implementing the numeracy model to the extent that some commented that the 
model had changed the way they thought about teaching. However, a few teachers, 
according to their students, only made an effort to incorporate numeracy into their 
lessons on occasions when the researchers were visiting their schools. There are 
many possible reasons why teachers might engage with, ignore, or even resist 
changes in instructional practice promoted by teacher educators. Pedagogical 
beliefs, planning skills, and constraints within the school environment that limit 
access to resources or support for new ideas are all factors that need to be consid-
ered when designing research that aims to transform teaching practice. 

 There are many challenges in planning for and promoting numeracy learning 
across the school curriculum. This study demonstrated that it is possible to plan for 
numeracy learning, but teachers also need to be alive to serendipitous moments for 
promoting numeracy as opportunities occur during lessons, for example, by “see-
ing” the numeracy embedded in current events or students’ personal experiences. 
Effective numeracy teaching also requires that teachers have a rich conception of 
numeracy themselves. The numeracy model provided a framework for attending to 
and valuing numeracy in a holistic way. Teachers seemed most comfortable with 
incorporating the  knowledge ,  dispositions , and  contexts  components of the model 
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into their thinking about numeracy. Development of a  critical  orientation  occurred 
to a lesser extent, and in general teachers continued to express low confi dence in 
this aspect of their practice. Even those individuals who eventually incorporated a 
critical orientation into their planning did so only after exploring and becoming 
comfortable with the other elements of the numeracy model. Perhaps teachers still 
lacked a clear understanding of how a critical orientation could be embedded into 
numeracy teaching, or they may not have felt ready to address this aspect of the 
model until their understanding of other components was secure. Further research 
is needed to explore how teachers can be supported in developing personal 
 conceptions of numeracy, as well as numeracy teaching practices, that value a 
 critical orientation, since this perspective is vital to educating informed and aware 
citizens.     
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    Abstract     In this chapter, we show that mathematical explorations may be integrated 
into the core of the daily classroom mathematics activities instead of just being a 
peripheral activity that is carried out occasionally. Based on two episodes, one on 
the initial learning of the rational number at grade 5 and the other on the learning of 
algebraic language at grade 7, we show how teachers may invite students to get 
involved and interpret such tasks and how they may provide students with signifi cant 
moments of autonomous work and lead widely participated collective discussions. 
Thus, we argue that these tasks provide a classroom setting with innovative features 
in relation to conventional education based on the exposition of concepts and proce-
dures, presentation of examples, and practice of exercises and with much more posi-
tive results regarding learning.  

  Keywords     Explorations   •   Teaching practice   •   Tasks   •   Classroom communication   • 
  Rational numbers   •   Algebraic thinking  

       Introduction 

 In problems and exploration tasks, the students do not have a readymade procedure 
to obtain a solution. Therefore, they need to understand the question, formulate a 
strategy to solve it, carry out this strategy, and review and refl ect on the results. 
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Mathematics problems and explorations have much in common – the main difference 
is that problems indicate what is given and what is asked in a concise way, whereas 
explorations contain elements of uncertainty or openness, requiring students to 
undertake a signifi cant work of interpreting the situation and often of reworking the 
questions (Ponte  2005 ). 

 In this chapter, we argue that these tasks may be used to create a productive 
classroom environment in contrast to the more common classroom based on 
exposition of concepts and procedures, presentation of examples, and practice of 
exercises. Our goal is to show how such tasks can be presented to the students, 
providing signifi cant moments of autonomous work and leading to widely participated 
whole- class or collective discussions, and that such environment has positive impli-
cations for students’ learning. We illustrate these ideas with two situations based 
on exploratory work at grade 5 (on rational numbers) and grade 7 (addressing 
algebraic reasoning).  

   The Exploratory Classroom 

 In an exploratory classroom we identify two key elements: (1) tasks proposed to the 
students and (2) ways of working, with associated roles of teacher and students and 
communication patterns. 

   Tasks 

 The tasks are important, not in themselves, but because of the activity of the stu-
dents while solving them. What students learn in a mathematics classroom mainly 
results from the activities that they undertake and by refl ecting on this activity 
(Christiansen and Walther  1986 ). The development of a rich and productive 
mathematics activity may stand on different kinds of tasks such as problems, inves-
tigations, explorations, and even exercises (Ponte  2005 ). Exercises are tasks with a 
precise formulation of givens, conditions, and questions, aimed at the clarifi cation 
of concepts and consolidation of procedures that the student already knows. 
Problems are tasks aimed at the creative application of knowledge also already held 
by the student. In contrast, explorations are tasks aimed at the construction of new 
concepts, representations, or procedures, and investigations are even more challeng-
ing tasks aimed at the development of new concepts or at a creative use of concepts 
already known by the student. The teacher needs to select the tasks according to the 
objectives set for each class, paying attention to their suitability to the targeted 
students. 

 The nature of the context (mathematical or real life) is a very important aspect 
of a task. Students may fi nd useful hints to solve tasks in aspects of the context. 
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However, as Skovsmose ( 2001 ) points out, many supposedly real-life contexts are 
basically artifi cial – this author calls them “semi-real” contexts. At the same time, 
it should be noted that it makes a signifi cant difference whether we work in 
mathematical contexts with which we have some familiarity or in mathematical 
contexts that are new to us. 

 The representations involved are another important aspect on a task. Bruner 
( 1966 ) distinguishes between enactive (objects, body movements), iconic (pictures), 
and symbolic representations. Often, alongside the formal representations or even 
before these representations, students profi t from working with informal representa-
tions or even from constructing their own representations. Naturally, the teaching 
materials used, including manipulative materials, daily life objects, digital technol-
ogies, etc., determine the representations that students will use to work on a given 
task to a large extent. 

 We must note that problems include moments of exploration. We may formu-
late hypotheses, analyze the given conditions or make conjectures about possible 
solutions, and test their consequences. In many problems, it is possible to generate 
data and explore regularities in such data. However, exploratory tasks are distinc-
tive in that they always require a careful interpretation of the situation, then the 
creation or reformulation of more precise questions to investigate, and, often, the 
construction of new concepts and representations. In this way, besides enabling 
the application of already learned concepts, explorations may promote the devel-
opment of new concepts and the learning of new representations and mathemati-
cal procedures. 

 Problem solving is an important curriculum orientation, especially since the 
publication of  An agenda for action  (NCTM  1980 ). This document proclaimed 
that “problem solving should be the focus of school mathematics” (p. 1). Later, 
other curriculum documents kept emphasizing problem solving (e.g., NCTM 
 2000 ). As a consequence, problem solving won a positive connotation among 
textbook authors and mathematics teachers, as corresponding to a necessary and 
important activity in the mathematics class. However, the place of problem solv-
ing in mathematics teachers’ professional practice proved to be problematic. 
Some teachers hold initiatives such as the “problem of the week” or “problem of 
the month.” The classroom work still went on as before, with the only difference 
being that, from time to time, at a special moment, a problem was proposed, often 
with little relation to the current topic that the class was studying. On the other 
hand, particularly in primary school, teachers kept using traditional word prob-
lems, sometimes feeling that these tasks were just disguised exercises requiring 
students to make a simple computation. The diffi culties in achieving a productive 
classroom implementation led to an impasse, prompting mathematics educators to 
recognize that problem solving as a curriculum orientation was not matching the 
expectation (Schoenfeld  1991 ). Therefore, it becomes necessary to better under-
stand the types of problems that could be useful in the classroom and, most 
especially, how teachers might use them. 

 The increasing availability of digital technology tools, such as computers and 
calculators, is probably the main factor that led to the increasing acceptance of 

Exploratory Activity in the Mathematics Classroom   



106

exploration and investigation tasks. These technologies easily allow the simulation 
of complex situations that would otherwise be diffi cult to study (Papert  1972 ). 
However, even without digital technology, it is possible to explore many situations in 
a mathematical way. In fact, explorations have much to do with modeling – requiring 
the creation of representations that may be used to construct a mathematical model 
of a situation. But they also have important aspects of mathematical work such as 
using defi nitions, classifying objects, and relating properties. The two terms, explo-
rations and investigations, are increasingly used, and it is diffi cult to establish a clear 
dividing line between them – we talk about “investigations” when the tasks involve 
mathematical situations with a considerable degree of challenge for most students 
and talk of “explorations” when the situations allow the easy involvement of most of 
them.  

   Ways of Working, Roles, and Communication Patterns 

 In the classroom, students may work in many different ways. In collective mode, the 
teacher interacts with all students at the same time. In group work and in pairs, the 
students are encouraged to share ideas among themselves. Working individually, 
the students may fi nd the required concentration to deal with abstract ideas. In all 
these cases, the students may participate in two kinds of classroom discourse – 
collective, with all class mates and the teacher, and private, with a few colleagues or 
directly with the teacher. 

 An exploratory class usually unfolds in three phases (Ponte  2005 ): (1) presenta-
tion of the task and its interpretation by students (whole class), (2) development of 
work by students (in groups, pairs, or individually), and (3) discussion and fi nal 
synthesis (whole class). As Bishop and Goffree ( 1986 ) indicate, the last phase is the 
most appropriate occasion to expose connections, allowing students to relate ideas 
on various topics and showing how mathematical ideas are naturally intertwined. In 
addition, discussion moments are opportunities for the negotiation of mathematical 
meanings and the construction of new knowledge. As the NCTM ( 2000 ) indicates, 
“[l]earning with understanding can be further enhanced by classroom interactions, 
as students propose mathematical ideas and conjectures, learn to evaluate their own 
thinking and that of others, and develop mathematical reasoning skills” (p. 21). 
Therefore, each task always ends with a collective discussion in order to allow the 
students to refl ect, contrast ideas, processes, and come to fi nal conclusions. 

 Classroom discourse is univocal, when it is dominated by the teacher, or dia-
logic, when the students’ contribution is valued as important (Brendefur and 
Frykholm  2000 ). Usually, the role of the teacher is to propose the tasks to carry out, 
to establish working modes, and to direct the classroom discourse. However, the 
teacher may assume the role of the single mathematical authority or share it with the 
students, in which case he/she seeks to stimulate their reasoning and argumentation 
ability. The role of the students is always working on the proposed tasks. However, 
this role may vary widely in many respects – for example, as the students assume 
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that they must intervene only when they are asked or, on the contrary, that they must 
intervene, at group or collective level, always when they have a signifi cant contribu-
tion to make. 

 Unlike the conventional collective classroom, which is strongly controlled by the 
teacher and where the students’ possibilities of intervention were very limited, in an 
exploratory classroom, students are provided with signifi cant opportunities for par-
ticipation. In exploratory classes, Lampert ( 1990 ) shows how students are encour-
aged to present their strategies and solutions as well as to question the solutions and 
strategies of others, seeking to understand or to refute them. Also in these classes, 
Wood ( 1999 ) highlights the learning potential in valuing justifi cations and exploring 
disagreements among students, for the construction of shared meanings. 

 For Stein et al. ( 2008 ), the starting point for collective discussions must be the 
students’ work. They state that a productive mathematics discussion has two fun-
damental characteristics: (1) it is based on students’ thinking; and (2) it puts for-
ward important mathematical ideas. These authors underline the complexity of 
the work of the teacher in conducting a mathematical discussion, pointing out that 
the students’ strategies are often very different from each other and largely unpre-
dictable. They indicate that the teacher needs to give coherence to the diversity of 
the students’ ideas, relating them to established mathematical knowledge, at the 
same time that students’ authority and accountability are enhanced. Focusing on 
the conduction of classroom collective discussions, Cengiz et al. ( 2011 ) identify 
a set of instructional actions through which the teacher may seek to create oppor-
tunities to promote pupils’ mathematical thinking: eliciting actions that lead stu-
dents to present their methods, supporting actions to help children to understand 
the mathematical ideas, and extending actions to help students to move forward in 
their thinking. 

 The next two sections present selected episodes taken from teaching experiments 
(Branco  2008 ; Quaresma  2010 ) of students working on tasks and of classroom dis-
cussions, indicating how the features of the exploratory work were important for 
students’ learning. Given the aim of this paper, the episodes are analyzed according 
to four main features of classroom exploratory work: (1) designing tasks and class-
room organization, (2) promoting the involvement of students in interpreting and 
carrying out the tasks, (3) students’ work including and negotiation of meanings, 
and (4) collective discussions.   

   Exploring Representations of Rational Numbers 

   Task and Classroom Organization 

 The fi rst situation is taken from a study aiming to understand how the work on an 
exploratory teaching unit using different representations and different meanings of 
rational numbers, with grade 5 students, may contribute to the understanding of these 
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numbers and of order, comparison, and equivalence of rational numbers (Quaresma 
 2010 ). The task “folding and folding again” is taken from the supporting materials of 
the new mathematics curriculum for grades 5–6 (Menezes et al.  2008 ) and was 
proposed in the fi rst lesson to this class dedicated to the study of rational numbers. 
It should be noted that in grades 3–4, these students had already studied decimal 
numbers as well as fractional operators, but did not use the fraction representation.  

 Folding and Folding Again 

     1.    Find three paper strips geometrically equivalent. Fold them in equal parts: 
the fi rst in two, the second in four, and the third in eight.  
 After you fold each strip, represent in different ways the parts that you got.   

   2.    Compare the parts of the three strips that you got by folding. Record your 
conclusions.   

   3.    In each strip, fi nd the ratio between the length of the parts that you got after 
folding and the length of the strip. Record your conclusions.     

 The purpose of this task is to introduce the language associated with rational numbers 
in different representations and meanings. Specifi cally, the teacher aimed for stu-
dents to learn: (1) to represent a rational number as a fraction, decimal, and percent; 
(2) to understand and use rational numbers as part-whole relations and measures; and 
(3) to compare numbers represented in different forms. The task involves the 
meanings of part-whole, measure, and ratio, with continuous magnitudes (rectangu-
lar segments) and is presented in the context of paper strips. The information is given 
through active representations (paper strips), and the answers may be given in verbal, 
pictorial, decimal, or fraction representations or as percentages. The fi rst question 
gives the “whole,” a strip of paper, and asks the students to represent three different 
parts of it. Question 2 asks the students to compare the three parts thus obtained. The 
students may use whichever representation that they wish; however, it is expected 
that they use the information obtained in the previous question to make the compari-
sons. Question 3 asks the students to determine the ratio between the length of the 
strip and the length of each of the parts obtained by folding. 

 This task provides an opportunity for students to get involved in an exploratory 
activity. Question 1 begins as an exercise asking students to do several folds but then 
assumes a more open nature by asking them to represent it in “different ways,” 
something that most students have diffi culty interpreting as an indication to use 
fractions, decimals, pictorial, verbal, or other representations of rational numbers. 
Question 2 asks them to compare different strips and to “draw conclusions,” which 
is a very open statement, allowing for diverse interpretations. Finally, question 3 
involves a term whose meaning is not obvious for these students (“reason”), as well 
as a new indication to draw further conclusions. 

 The teacher organizes the students in six groups of four to fi ve students and gives 
each of them a sheet of paper with the proposed questions. First, she reads aloud 
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questions 1 and 2, gives about 30 min for the students to work, and then promotes a 
collective discussion for about 25 min. Then, she distributes question 3 and gives 
students about 20 min to solve it. It is then discussed by the whole class for about 
15 min, after which the class ends. In a subsequent class, the teacher promotes a new 
discussion to recall important ideas and to summarize the work carried out. 
Therefore, there are several cycles with three different moments – presentation and 
negotiation of the task, students’ autonomous work, and collective discussion.  

   Getting Involved and Negotiating the Task 

 As the teacher reads aloud questions 1 and 2, the students start working with no dif-
fi culty, folding the strips, and painting the parts that they get. The situation changes 
when they face the indication to “represent in different ways” which they have great 
diffi culty in interpreting. This leads the teacher to promote a moment of collective 
discussion to negotiate the meaning of various terms. In question 1, the teacher 
holds a strip and folds it into two equal parts so that all students can see, thus mak-
ing an active representation. Then, she draws the strip on the board, representing 
pictorially the part to consider and then asks students to state what part of the strip 
is painted. Using the verbal representation, many students say that “half of the strip” 
is painted. Then, the teacher continues to insist on other ways to represent that part, 
and from the verbal representation “half,” some students suggest the decimal repre-
sentation “0.5.” The teacher asks for other forms of representation and two students 
indicate the fraction “one of two.” Finally, as the students do not indicate any further 
representation, the teacher questions: “What if I wanted to represent it as a percent? 
It would be possible?” Immediately, most students say that “it is 50 %.” This whole- 
class discussion represents the fi rst collective negotiation of a part of the fi rst ques-
tion, which allows the continuation of the work.  

   Students’ Work 

 The initial discussion helps the students to get an understanding of the situation. 
They readily engage in working on the remaining points of question 1. The teacher 
moves around the room, observing the work of the different groups, paying atten-
tion to the new discoveries and questions that arise. Taking into account the previ-
ous situation, the students do not show diffi culty in indicating various representations 

of  
1

4  
  of the strip and conclude that  

1

4
0 25= .

 
 . However, they have noticeable diffi -

culty in fi nding a decimal representation for  
1

8  
 , because they have trouble fi nding 

half of 0.25, showing some insecurity in the use of the decimal number system. 
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After the students solved question 1, the teacher asks them to stick their responses 
on the board to present their discoveries to the whole class. Thus, active representations 
(paper strips) become pictorial representations and are the basis for solving 
questions 2 and 3. Solving question 2 also requires an explanation of the work to 
carry out, as students show diffi culty understanding what “compare the parts of the 
three strips that you got by folding” means. The teacher begins by showing the fi rst 

two strips ( 
1

2  
  and  

1

4  
 ) and asks the students to compare them. The visualization 

leads the students to conclude that  
1

4  
  is half of  

1

2  
  and this is the starting point for 

the group work. Later, in question 3, the teacher also feels the need to help students 
to understand the statement. As the paper strips have different measures, she chooses 
to ask them to consider that all measure 20 cm and, from this, the students easily 
come to recognize some relationships.  

   Collective Discussions 

 At the beginning of the whole-class discussion of question 1, to support the partici-
pation of students, the teacher asks each group to post their work on the board. Then 
she asks the fi rst group to present their work to the class. Diana, the spokeswoman, 

says “In Figure B we wrote: fourth part, 1 by  4
1

4
⎡
⎣⎢

⎤
⎦⎥  

 ; 1 divided by 4, 25 %, and 0.4.” 

The students do not realize the error of her colleague when she says “0.4.” The 
teacher decides to go on to the presentation of another group (Fig.  1 ):

     Tiago :    So we have: fourth part, one of four  
1

4
⎡
⎣⎢

⎤
⎦⎥  

 , 1 divided by 4, 25, and 0.25 %.   
   Teacher :    (…) Do you agree Diana?   
   Diana :    Yes…?   
   Class :    No! That is wrong…   
   Teacher :    What is wrong?   
   Rui :    It’s 0.25…   
   Teacher :    Why?   
   Rui :    Because is the fourth part.   
   Daniel :    It is 0.25 because it is a half of the fi rst. The fi rst was 50; if we make half 

is 25.   
   André :    Oh teacher! I think it is because 0.25 is the fourth part of 100. Because 25 

times 4 gives 100.   

   One must note that after the teacher’s question “Why?,” several students (Rui, 
Daniel, André) present successively more refi ned explanations. Out of the six 
groups, only that of Diana makes the mistake of “transforming” the denominator of 
the fraction into a decimal number. The remaining groups obtained the decimal 
number by comparing the previous value and 100 %. 
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 In the third strip, all groups correctly use verbal representations, fractions, 
 quotients, and percent. However, in general, they show diffi culties in the decimal 
representation. There are essentially two types of errors. One, as we saw, appeared 
in Diana’s group that writes the decimal numeral by transforming the denominator 
of the fraction. Another error made by some groups originates in the diffi culty in 
determining one-half of 0.25. The students begin by seeking to determine half of 
25 % and get 12.5 %, but they have diffi culty in obtaining half of 0.25. The students 

know that  
1

4
   is 0.25, but when making half of 0.25, they get 12.5 (Fig.  2 ). This 

result creates a confl ict because they believe that it does not make sense, as the half 
of 0.25 should be a smaller number and, in this case, 12.5 is greater. The students 
also show diffi culty in understanding the decimal number system and do not remem-
ber that they may add a zero to get 0.250 and, from there, easily fi nd 0.125.

   However, during the discussion of the task, the students get the correct answer:

    Daniel :    It is 12.5 % because C is half of B.   
   Teacher :    If B is 25 %, is C…   
   Daniel :    It is the half, that is, 12.   
   Teacher :    It is 12 %?   
   Luís :    No teacher, it is 12.5 %. Because 12.5 + 12.5 is 25.   
   Teacher :    So how is it in decimals?   
   Tiago :    It is 0.125.   
  (…)       
   André :    It is 0.125.   
   Teacher :    Why?   
   André :    It is 0.125 because 0.125 × 8 gives a whole unit.   

   Tiago indicates the right answer, but it is André that justifi es it by establishing the 
relationship with the unit. 

  Fig. 1    Solution of question (1a) by Leonor, Rui, Henrique, and Tiago       

  Fig. 2    Solution of the question (1c) by Leonor, Rui, Henrique, and Tiago       
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 In question 2, all groups establish some relationships between the parts, but only 
a few compare all of the strips. All groups use only verbal language to express these 
relationships. An example is given in Fig.  3 .

   André’s group, besides the simple relationships of “half” and “double,” estab-
lishes more complex relationships such as “quadruple” (based on the “double of the 
double”) and “fourth part” (“fourth half,” as they say, to mean “half of half”). 
Identical formulations were presented by the Mariana’s group. In discussing this 
question, the teacher asks each group to indicate the relationships that they found. 
Since the students only use the verbal representation, the teacher asks them to use 
the mathematics language:

    Daniel :    The relationship between the fi rst and second is that the second is a half 
of the fi rst.   

   Teacher :    How can I write that using numbers? How do I make a half?   
  André:    Divide by 2.   
   Rui :    “One of four” is equal to a half divided by two.   
   André :    b is the double of c.   
   Teacher :    How do I write that?   
   André :    One of four is the double.   
   Teacher :    How is it the double?   
   André :    Two times…   
   Teacher :    Two times what?   
   André :    One dash eight.   
   Teacher :    One-eighth. One-fourth is the double of one-eighth.   
   Alexandre :    The fi rst is the double of the second.   
   Teacher :    How do I write that?   
   Alexandre :    One-half is the double of one over four.   

   One must note that the students use a spontaneous language to speak of fractions 
(“one of four,” “one mark eight”), language that the teacher tries to improve when-
ever possible. 

 Notwithstanding several diffi culties, the students are able to fi nd the main rela-

tionships among  
1

2  
 ,  

1

4  
 , and  

1

8  
  essentially using the strips as active representations. 

The students are able to compare the three fractions presented by themselves, which 
aids them in understanding rational numbers, especially in regard to the meaning of 
part-whole and understanding the magnitude of a rational number. They express 
these relationships in verbal language and show diffi culties in using mathematical 

b) is the half of a).
c) is the fourth “half ” of a)
a) is twice b).
a) is four times c).
c) is half of b)
b) is twice c).

  Fig. 3    Solution of question 4 by André, Francisco, Rodrigo, and Miguel       
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language. This was the fi rst class where they met this topic in a formal way, so it is 
natural that they show diffi culties with the language of fractions. 

 Question 3 aims to develop the students’ understanding of ratio. To facilitate the 
solution the teacher provides a “friendly” size for the strip, 20 cm. The students 
build upon the relationships among the parts of the strip, discussed in the previous 
question, to fi nd the length of each part, which they represent as shown in Fig.  4 .

   Although the students were able to establish relationships between the 
total length of the strips and the length of the parts, they do not use the sym-
bolic representation of a ratio as a fraction. Instead, they express it in verbal 
language:

    Teacher :    So let’s see what conclusions you reached. What relationship did 
you found between the length of the strip and the length of the 
fi rst part?   

   Luís :    The half measures 10 cm. That is, if the strip is 20, the half is 10. 
That is 20 divided by 2.   

   Teacher :    So, what is the relationship between the length of part and whole?   
   Several students :    It’s the half.   

   We must note the teacher’s questioning style in the collective discussion, marked 
by open questions (“come to explain…,” “agree…,” “what is wrong?,” “why?,” 
“and then what happens to the decimal?”). Note, also, that the classroom culture 
integrates the notion that the students may contribute with different responses as 
well as disagree and argue with each other.  

   Synthesis 

 In the fi nal synthesis, the teacher poses several questions to summarize the aspects 
where students showed more diffi culty. Thus, referring to question 1, she points to 
the decimal number system, so that students understand why 0.25:2 = 0.125. It is 
concluded that that fraction bars correspond to the operation of division, in this 

  Fig. 4    Solution of question 3 by Carolina, Diana, and Filipe       
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case,  
1

8
1 8 0 125= =: .

 
 . Based on the students’ work, the teacher asks them to state a 

“rule” for converting a decimal into a percent. The students, analyzing the examples 
discussed, conclude that they may “move” the decimal two “places” to the right, 
which the teacher explains as related to a multiplication by 100. 

 Returning to question 2, some equivalent fractions are analyzed, and it is con-
cluded that a given part may be represented by an infi nite number of fractions. The 
representation of the unit is also discussed and it is concluded that when the numer-
ator and the denominator are the same, there is a unit which we may represent, for 

example, by  
4

4
1=

 
 . A student also verifi es that  

4

8

1

2
=

 
  because 4 is half of 8, leading 

the class to conclude that there are several fractions that represent the same as  
1

2  
 , 

all of them with a numerator that is half of the denominator. Although the equiva-
lence of fractions was not explicitly addressed, this was a fi rst move toward this 
notion. The terms related to fractions (numerator, denominator) and their relation-
ship were also explained, especially in the part-whole meaning. To confirm 
students’ understanding, the teacher asks them to order the three fractions obtained, 

and they easily indicate that  
1

2

1

4

1

8
> >

 
  and conclude that “as we fold the strip, the 

parts become increasingly small.” 
 The work on question 3 confi rmed that students did not know about fractions, 

but had an intuition for fraction relationships. Therefore, the teacher used this 
mainly to collect information and later prepare the approach of the concept 
of ratio.   

   Developing Algebraic Thinking 

   Task and Classroom Organization 

 The second situation arises from a study aiming to understand how a teaching unit 
for grade 7, based on the study of patterns, contributes to the development of stu-
dents’ algebraic thinking, particularly for their understanding of variables and equa-
tions (Branco  2008 ). This is consistent with the curriculum recommendations that 
stress the development of algebraic thinking through promoting students’ general-
izations and representations (Blanton and Kaput  2005 ), working with pictorial and 
numerical sequences, and emphasizing a structural interpretation of equations 
(Kieran  1992 ). The task “crossing the river” (adapted from Herbert and Brown 
 1999 ) was proposed to students after they had already undertaken some work with 
pictorial sequences, supporting a fi rst contact with the algebraic language, and 
before the formal study of equations. 
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  The aims of this task are to promote the students’ ability to (1) fi nd regularities 
and generalize them, (2) use and interpret the algebraic language, and (3) analyze 
how different problem conditions yield different solutions. This section describes 
and analyzes several episodes of students working on the task and moments of 
classroom discussion, indicating how the features of the exploratory class were 
important to promoting their learning. 

 The students had worked previously with pictorial sequences, formulating gen-
eralizations about the underlying rules and representing them algebraically. 
However, this task involves a new kind of situation. In fact, the task is formulated in 
natural language and its solution depends on fi nding an appropriate representation 
to be able to design a suitable strategy and interpret the results obtained. So, this 
task provides an opportunity for an exploration activity. First, it requires a careful 
interpretation of the situation and to carry out simulations satisfying the given 
conditions (How may an adult pass to the other bank? And a child?). During this 
exploration, the regularities may be expressed in different representations. The 
identifi cation of regularities in the movements of adults and children allows 
students to generalize the situation and to represent it algebraically, as they have 
done in previous classes. This situation also requires the students to do a careful 

 Crossing the River 

     1.    Six adults and two children want to cross a river. The small boat available 
may only take an adult or one or two children (that is, there are three 
possibilities: 1 adult in the boat; 1 child in the boat; 2 children in the boat). 
Any person may conduct the boat. How many trips the boat needs to make, 
crossing the river, so that everybody is on the order bank?   

   2.    What happens if the river is to be crossed by:

 –    8 adults and 2 children  
 –   15 adults and 2 children  
 –   3 adults and 2 children      

   3.    Describe in words how you will solve the problem if the group of people is 
constituted by two children and an unknown number of adults? Verify if 
your rule works for 100 adults?   

   4.    Write a formula for a number of  A  adults and two children.   
   5.    A group of adults and two children made 27 trips to cross the river. How 

many adults were in this group?   
   6.    What happens if the number of children changes? In the following exam-

ples, verify what changes in your formula:

 –    6 adults and 3 children  
 –   6 adults and 4 children  
 –   8 adults and 4 children  
 –    A  adults and 7 children        
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interpretation of the results that they obtained. The consideration of a fi xed number 
of children and a variable number of adults leads to the exploration of a sequence 
(1 adult, 2 adults, and so on). The consideration of a variable number of children 
and a variable number of adults gives rise to a family of sequences, making this 
exploration even more complex. 

 As in the previous case, the work on this task involves different patterns of 
classroom work – with presentation of the task and negotiation of ideas, students’ 
autonomous work (in pairs), and collective discussions. Every moment of autonomous 
work is followed by a whole-class discussion, in successive cycles. The realization 
of the task ends with a fi nal synthesis.  

   Getting Involved and Negotiating the Task 

 The teacher organizes the students into pairs to discuss the situation among them and 
to formulate strategies to solve it. As she presents the task, she highlights the condi-
tions given for the trips. The students begin simulating the fi rst trip and discussing 
various possibilities among their groups. However, the situation appears to be quite 
confusing and they pose many questions to the teacher regarding the given condi-
tions and presenting hypotheses. This leads to a somewhat agitated environment. 

 At this point the teacher realizes that a more extended collective discussion is 
necessary to help the students to understand the conditions of the situation. So, she 
requests the students’ attention and, following the suggestion of a student pair, she 
asks what happens if, in the fi rst trip, the boat is driven by an adult. The students 
realize that the fi rst trip must be done by two children in order to allow the boat to 
return to the starting point, driven by a single child. The teacher asks students to 
think about who can go on the boat on the subsequent trips. She alerts students that 
it is sought the minimum number of trips and thus trips back by adults returning 
with the boat must be avoided.  

   Students’ Work 

 The students try several possibilities. Some of them create situations where the adult 
returns with the boat without an adult passing effectively to the other bank. Some 
student pairs try to put an adult and two children on a trip or an adult and a child. 
The following dialogue between Diana and the teacher shows how the students at 
this stage are still struggling to understand the conditions of the problem:

    Diana :    If the two children go to there, then another comes.   
   Teacher :    Yes. Two go to there and then one stay there and the other comes.   
   Diana :    But an adult cannot go with a child?   
   Teacher :    No. An adult has to go it alone, isn’t it?   
   Diana :    I get it. Go two children there, then one comes. Then she stays there and 

an adult comes.   
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   Teacher :    Right.   
   Diana :    Then, the other child comes and goes another adult.   
   Teacher :    Yes. And will stay here two adults. Who will take the boat to there?   
   Diana :    So!?   

   Diana and Mariana simulate the trips and, like other student pairs, they end up 
with a correct indication of the fi rst four trips. However, they suggest that the fi fth 
trip is made by an adult, leading to the situation in which an adult returns with the 
boat. For some time, the students continue their exploration in an autonomous way, 
closely observed by the teacher. After some time, all student pairs fi nd that the fi fth 
trip must be done again by the two children and keep thinking about the trips 
required until everyone is on the other bank. The students use different representa-
tions. Some describe all trips in natural language (Fig.  5 ), while others produce 
schemes or combine iconic and symbolic representations (Fig.  6 ).

    Diana and Mariana identify the regularity in the trips, but they do not indicate the 
total number of trips and they do not say what happens at the end. These students do 
not represent 25 trips but only the 4 trips necessary for each adult to cross the river 
(Fig.  7 ).

1 – first crossing 2 children
2 → 1 childreturns
3 → 1 adult goes
4 → 1 child return
5 → 2 children go
6 → 1 child returns
7 → 1 adult goes
8 → 1 child return
9 → 2 children go

10 → 1 child returns
11 → 1 adult goes
12 → 1 child return
13 → 2 children go
14 → 1 child returns
15 → 1 adult goes
16 → 1 child return
17 → 2 children go
18 → 1 child returns
19 → 1 adult goes
20 → 1 child return
21 → 2 children go
22 → 1 child returns
23 → 1 adult goes
24 → 1 child return
25 → In the end 2 children go

  Fig. 5    Representation of Beatriz and Andreia’s answer for question 1       
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  Fig. 6    Representation of Joana and Catarina in question 1       

  Fig. 7    Representation of Diana and Mariana in question 1 [They write: “Thus this scheme 
successively”]       
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   Discussing with the teacher, Diana and Mariana conclude that this set of four 
trips must be repeated 6 times, with two children staying on the fi rst bank. They fi nd 
that in addition to the 24 trips, a last trip is necessary to move the two children to the 
place where the adults are, making a total of 25 trips. They write this in a rather 
abstract language (Fig.  8 ).

   As the student pairs complete the solution of this fi rst question, the teacher, mov-
ing around the room, fi nds that, although all of the groups found the correct number 
of trips, some did not identify the pattern of trips required for an adult to change to 
the other bank. 

 The students move on to question 2, which involves a constant number of chil-
dren and a varying number of adults. Having found the regularity in the previous 
question, the students easily respond to the three points. With 8 adults and 2 chil-
dren, for example, some students represent the total number of trips by the expres-
sion 8 × 4 + 1 = 33 showing that they understood the regularity and are able to apply 
it to new situations. Other students, like Joana and Catarina, give an answer in a 
mixture of symbolic and natural language: “If there are 8 adults and 2 children, we 
add 2 sets of 4 trips, so we add 8 trips to 25, 25 + 8 = 33; therefore, 33 trips are 
required.” These students arrive at their answer starting from the previous situation 
with 6 adults and 2 children.  

   Collective Discussions 

 When most students fi nish question 2, the teacher promotes a moment of collective 
discussion to assess their understanding of the situation and contrast their different 
representations. Some representations enable a quick identifi cation of the pattern of 
trips, such as those indicated in Figs.  5 ,  6 , and  7 . The presentation and discus-
sion of strategies are important for students to understand the situation in a deeper 
way, clarify meanings, and realize the importance of the effi cient use of representa-
tions. This discussion also creates the conditions for students to make further 
generalizations. 

 In the case of 8 adults and 2 children, Susana shows a rather abstract reasoning 
when she writes the symbolic expression 8 × 4 + 1 = 33. Going to the board, she 
explains its meaning to her colleagues:

  We make eight adults times the number of trips that they have to do in order to take an 
adult to the other bank. And we do one more, that is, the number that the children do 
in returning.    

  Fig. 8    Representation of the number of trips by Diana and Mariana in question 1       
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   Students’ Further Work and Discussions 

 Based on this discussion and on the conclusions that they reached, the students 
continue to work autonomously on Questions 3, 4, and 5, which they solve 
quickly. Question 3 asks that they describe what happens for any number of 
adults. Most students give their answer in natural language. But some associate 
natural and symbolic language like Joana and Catarina who say “It is the number 
of adults × 4 + 1.” During the collective discussion of this question, Susana pres-
ents her rule to determine the total number of trips, using her own words: “It is 
the number of adults times the four trips plus a trip of the children.” She indicates 
once more the meaning that she ascribes to the different elements of the 
expression. 

 In question 4, when the students write the required expression, they give very 
concrete meanings to its terms. In the discussion, they present several algebraic 
expressions, such as  A  × 4 + 1, 4 ×  A  + 1, and 4 A  + 1, promoting a discussion about 
the commutative property of multiplication and the omission of the signal “×.” 
The meanings of terms and coeffi cients are also discussed – the coeffi cient 4 is 
the sequence of 4 trips that is repeated, the term 4 A  indicates the number of trips 
required for an adult to change to the other bank, and the term 1 represents the 
last trip made by two children. The teacher asks the students how they can calcu-
late the number of trips for different numbers of adults, using the algebraic 
expression and taking into account the meaning of the terms and correlation 
coeffi cients:

    Teacher :    If  A  is equal to 26, what does it mean?   
   Joana :    That there are 26 adults.   
   Teacher :    If  A  is equal to 26, I say that there are 26 adults. How must I do?   
   Susana :    It is 26 times 4 plus 1.   

   Question 5 indicates the number of trips and asks the number of adults in the 
group, without any adults repeating a trip. The students suggest carrying out the 
inverse operation, but not everyone is clear on what operation should come fi rst. 
They use an arithmetic approach, which is natural since they had not yet started the 
study of equations. Some divide 27 by 4 but verify that in such a case it does not 
make sense to remove the last trip. During the collective discussion, Joana indicates 
her response “From 27 one subtracts 1 and then divides by 4” and identifi es that this 
cannot be possible because the value of 6.5 is not a natural number. This question 
allows the discussion of the adequacy of the result and of the response to give taking 
into account the context and promoting the interpretation of the mathematical result 
obtained. The teacher proposes the analysis of a new situation that is not indicated 
in the task: trying to verify whether the students understand and solve it and inter-
pret their results. She questions how many adults are in a group that makes 81 trips, 
keeping the 2 children. The students show that they understand the Joana’s strategy 
and can use it in new situations. 

 Question 6 introduces a new issue. The students are asked to explore the infl u-
ence of variation in the number of children in the number of trips. Analyzing this 
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new situation, they note that this does not change the set of 4 trips needed for an 
adult to change to the other bank. With two children, beyond the set of four trips per 
adult, there is a trip at the end to carry a child. If there are three children, they realize 
that only changes the number of trips at the end but note that it is necessary to make 
two more trips for the third child to also change the bank. They answer to each situ-
ation based on the particular schemes, without establishing a generalization. As 
some students show diffi culty in understanding, the teacher promotes a collective 
discussion to solve this last question:

    Teacher :    When I have 2 children, it is this here [8 × 4 + 1]. How many children are 
missing?   

   Batista :    Two.   
   Teacher :    And how many trips I have to do to get them?   
   Susana :    Four more.   
   Teacher :    Every time I get one more child, it is two trips [conclusion of the previous 

questions]. If there are 8 adults and 4 children…say, Filipe.   
   Xico :    Eight times four plus one plus four.   
   Teacher :    And now, if you have  A  adults e 7 children? [No one answers.] For 2 

children, the expression is that [4 A  + 1]. But now I don’t have two, I have 
how many more?   

   Andreia :    Five.   
   Teacher :    I’ll have fi ve more. How many trips do I have to do for each one?   
   Diana :    Two.   
   Andreia :    Five times two.   
   Teacher :    So, how is it? How do I simplify the expression?   
   Susana :    4 A  plus…   
   Diana :    Two times fi ve gives ten.   
   Batista :    Eleven.   

   In the discussion of this last question, the students analyze the infl uence of 
changing the number of children in the expression they initially wrote. They note 
that the sequence of four trips required to put an adult on the other bank is the same 
and that, besides at the end of the trip carried out by the two children, there are two 
trips for each additional child.  

   Synthesis 

 At the end of the lesson, the pattern identifi ed in the fi rst question is made explicit 
and the meaning of the algebraic expression that generalizes the situation whatever 
the number of adults holding two children is revised. The impossibility of simpli-
fying the expression 4 A  + 1 is recognized. The students fi nd that this expression is 
not equivalent to 5 A , both based on the context and in the use of the distributive 
property. The interpretation of the terms of the expression according to the context 
is thus remembered by students that identify its importance for a proper analysis of 

Exploratory Activity in the Mathematics Classroom   



122

the results obtained in the last two questions. In question 5, the students realize that 
a given number may be the number of trips made by a group of adults and two 
children if, after subtracting one to the number obtained, it is divisible by 4. In the 
last question, the fact one may use the answer to question 1 to understand what 
happens when the number of children increases, as well as the use of the expres-
sion 4 A  + 1 to determine the number of trips to  A  adults and different number of 
children, is highlighted.   

   Discussion and Conclusion 

 The classes that we described based on exploration tasks were aimed at promoting 
signifi cant learning. In solving the task “folding and folding again” the students use 
strategies based on visualization and supported on active and pictorial representa-
tions. Doing this task, the students develop their ability to recognize and use various 
types of representations of rational numbers, especially fractions and associated 
verbal language and recall the percent representation. They also use one-half as a 
reference point (Post et al.  1986 ) to relate the different parts of the strip, showing 
they understand the pattern in question and they use that knowledge to reach other 
representations without always starting from the unit. Further, they conclude that, as 
the number of parts increases, the sections become smaller and smaller. Thus, they 

establish various multiplicative relationships between  
1

2  
 ,  

1

4  
 , and  

1

8  
  which sup-

ports them in developing rational number sense. The students recognize multiple 
representations of rational numbers and state rules to convert decimal numerals into 
percents, although sometimes they do not apply them in the subsequent questions. 
They compare rational numbers in various active and pictorial representations and 
establish simple multiplicative relationships (double, half) and more complex rela-
tionships (four times, fourth). They show some sense of equivalent fractions and 
compare the three presented fractions, although, as expected, they did not come to 
represent the ratio as a fraction. 

 The overall results of this teaching experiment (Quaresma  2010 ) show that students 
improved their understanding of fractions and percents, as well as of decimals. In addi-
tion, they developed their understanding of comparing and ordering rational numbers, 
using mainly the decimal representation. The understanding that students show of 
rational numbers, realizing that a rational number can be represented in different ways 
and showing fl exibility in choosing the most appropriate representation with which 
they can solve the proposed tasks, supports the teaching and learning hypothesis. 

 The work developed on the task “crossing the river” also reaches the goals set by 
the teacher. The initial exploration carried out by the students and collective discus-
sions were critical for solving all the questions of the task. This exploitation that 
arises in an informal way provides the emergence of different representations and 
leads them to formulate a generalization and, subsequently, to study the situation 
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more formally. In this way, the students rebuild their representations of the situation 
and make a natural use of letters as variables. The presentation of the fi ndings by the 
students, using their own words, diagrams, and symbols, allows a better understand-
ing of the situation and the ascribing of meaning to the generalization that they later 
express in algebraic language. The students also develop the capacity to interpret 
the algebraic language from their analysis of the different expressions, in particular 
as regards the use of properties of operations. This interpretation of language alge-
braic allows them to reason backward to determine the number of adults given the 
total number of trips. Based on the algebraic expression that gives the total number 
of trips for a group with  A  adults and 2 children, 4 A  + 1, identify the inverse opera-
tions to carry out and the correct order to undertake them. Finally, they analyze the 
effect of varying the number of adults and children in the number of required num-
ber of trips. They generalize this situation by using natural language and mathemati-
cal symbols, identifying the need for two trips per child in addition to a group of  A  
adults and 2 children. The moments of autonomous work of student pairs allow 
them to progress in the interpretation of the situation and in searching for answers 
and in discussing in detail several opportunities. In the interactions with the stu-
dents, the teacher poses questions to ascertain students’ understanding of the con-
cepts and their ability to use them, as well as to help students’ further understanding 
and mastery of concepts. The collective discussions in an early stage of solving the 
task help the students to understand the situation, at an intermediate stage allow for 
the sharing of representations and the identifi cation of regularities so that everyone 
can get along on the following questions, and at the end favor the systematization of 
the results and conclusions obtained and the analysis of more complex situations. 

 The overall results of this teaching experiment (Branco  2008 ) show that the 
students developed some aspects of algebraic thinking, including the ability to 
generalize and use algebraic language to express their generalizations, also sup-
porting the teaching and learning hypothesis. However, the evolution of the stu-
dents is not equally signifi cant in all domains considered. In problem solving 
involving equations, they favor arithmetic strategies that do not always prove effec-
tive and exhibit some diffi culty in using the algebraic language to represent the 
proposed situations. They show development in the understanding of the algebraic 
language concerning the different meanings of the symbols in various contexts and 
the meaning and manipulation of expressions, but in many specifi c aspects, this 
understanding is still fragile, suggesting that they have a long way to go in develop-
ing their algebraic thinking. 

 It should be noted that, in addition to the open nature of exploration tasks that 
require extensive students’ effort in interpreting, representing, and simulating cases, 
such learning also results from the structure of the class and the communication 
style promoted by the teachers. Both classes were held in cycles composed of 
moments for presentation and interpretation of tasks, moments of autonomous work 
in student pairs or groups, and moments of collective discussion. The work was 
completed with a summary of the main ideas. The communication style promoted 
by the teachers sought to value the contributions of students, highlighting the argu-
ments and counterarguments they provided. This kind of exploratory class has been 
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increasingly used in Portugal, under the new basic education mathematics curriculum, 
with a positive infl uence on students’ learning (Ponte  2012 ). 

 The situations presented show that the exploration tasks may form the basis of 
everyday work in the classroom, providing a suitable environment for learning the 
concepts, representations, and procedures that constitute the core of the mathemat-
ics curriculum. Such tasks also constitute a favorable ground for the development 
of transversal skills such as mathematical reasoning and communication. Unlike 
other kinds of tasks that tend to assume a peripheral role in teachers’ practice, we 
fi nd that explorations can be naturally integrated into teaching and learning of 
various mathematical topics. The development of the suitable conditions for imple-
menting them at different educational levels poses interesting challenges to teachers 
and mathematics educators.     
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    Abstract     Group work has become a staple in many progressive mathematics 
 classrooms. These groups are often set objectives by the teacher in order to meet 
specifi c pedagogical or social goals. These goals, however, are rarely the same as 
the goals of the students vis-à-vis group work. As such, the strategic setting of 
groups, either by teachers or by students, is almost guaranteed to create a mismatch 
of goals. But, what if the setting of groups was left to chance? What if, instead 
of strategic grouping schemes, the assignment of groups was done randomly? 
In this chapter, I explore the implementation of just such a strategy and the 
downstream effects that its implementation had on students, the teacher, and the 
way in which tasks are used in the classroom. Results indicate that the use of 
visibly random grouping strategies, along with ubiquitous group work, can lead to: 
(1) students becoming agreeable to work in any group they are placed in, (2) the 
elimination of social barriers within the classroom, (3) an increase in the mobility 
of knowledge between students, (4) a decrease in reliance on the teacher for answers, 
(5) an increase in the reliance on co-constructed intra- and intergroup answers, and 
(6) an increase in both enthusiasm for mathematics class and engagement in 
mathematics tasks.  
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       Introduction 

 Group work has become a staple in the progressive mathematics classroom 
(Davidson and Lambdin Kroll  1991 ; Lubienski  2000 ). So much so, in fact, that it is 
rare to not see students sitting together for at least part of a mathematics lesson. In 
most cases, the formation of groups is either a strategically planned arrangement 
decided by the teacher or self-selected groups decided by the students—each of 
which offers different affordances. The strategically arranged classroom allows the 
teacher to maintain control over who works together and, often more importantly, 
who doesn’t work together. In so doing she constructs, in her mind, an optimal envi-
ronment for achieving her goals for the lesson. Likewise, if the students are allowed 
to decide who they will work with, they will invariably make such decisions strate-
gically in the pursuit of achieving their goals for the lesson. In either case, the specifi c 
grouping of the students offers different affordances in the attainment of these, often 
disparate, goals. 

 But, what if the selection of groups was not made strategically—by either party? 
What if it was left up to chance—done randomly—with no attention paid to the poten-
tial affordances that specifi c groupings could offer either a teacher or a learner? In this 
chapter, I explore a different set of affordances that result from the use of randomly 
assigned collaborative groupings in a high school mathematics classroom.  

   Group Work 

 The goals for strategically assigning groups can be broken into two main categories: 
educational and social (Dweck and Leggett  1988 ; Hatano  1988 ; Jansen  2006 ). Each 
of these categories can themselves be broken into subcategories as displayed in 
Fig.  1 . When a teacher groups her students for pedagogical reasons, she is doing so 
because she believes that her specifi c arrangement will allow students to learn from 
each other. This may necessitate, in her mind, the need to use homogenous group-
ings or heterogeneous groupings where the factor that determines homo- or hetero-
geneous groupings can range from ability to thinking speed to curiosity. When she 
groups students in order to be productive, she is looking for groupings that lead to 
the completion of more work. This may, for example, require there to be a strong 
leader in a group for project work. It may also mean that friends or weak students 
do not sit together, as such pairings may lead to less productivity. Groupings 
designed to maintain peace and order in the classroom would prompt the teacher to 
not put “troublemakers” together, as their antics may be disruptive to the other 
learners in the class. 1  Interestingly, students may self-select themselves into 

1   From a researcher’s perspective, each of these goals, and the accompanying use of group work, may 
be predicated on an underlying theory of learning and the role that peer interaction plays in said 
theory. From the teacher’s perspective, however, these decisions are less likely to be made based on 
theory and more likely to be made according to what they believe about the teaching and learning of 
mathematics in coordination with their beliefs about the utility of group work (Liljedahl  2008 ). 
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groupings for the same aforementioned reasons (Cobb et al.  1992 ; Webb et al.  2006 ; 
Yackel and Cobb  1996 ).

   More commonly, however, students group themselves for social reasons (Urdan 
and Maehr  1995 )—specifi cally to socialize with their friends. Teachers too some-
times form their groups to satisfy social goals. They may feel that a particular group 
of students should work together specifi cally because of the diversity that they bring 
to a setting. Sometimes, this is simply to force a gender mix onto the collaborative 
setting. Other times, it is more complex and involves trying to get students out of 
their comfort zone, to collaborate with, and get to know, students they don’t nor-
mally associate with. A teacher may choose to create a specifi c grouping to force the 
integration of an individual student into a group that they are not yet a part of—for 
example, the integration of an international student into a group of domestic stu-
dents. Finally, and less likely, a teacher may specifi cally wish for their students to 
work with their friends—often as a reward for positive performance or behaviour in 
the classroom. 

 Regardless of the goals chosen, however, there is often a mismatch between the 
goals of the students and the goals of the teacher (Kotsopoulos  2007 ; Slavin  1996 ). 
For example, whereas a teacher may wish for the students to work together for 
pedagogical reasons, the students, wishing instead to work with their friends, may 
begrudgingly work in their assigned groups in ways that cannot be considered col-
laborative (Clarke and Xu  2008 ; Esmonde  2009 ). These sorts of mismatches arise 
from the tension between the individual goals of students concerned with them-
selves, or their cadre of friends, and the classroom goals set by the teacher for 
everyone in the room. Couple this with the social barriers present in classrooms and 

  Fig. 1    Goals for strategic groupings       
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a teacher may be faced with a situation where students not only wish to be with 
certain classmates but also disdain to be with others. In essence, the diversity of 
potential goals for group work and the mismatch between educational and social 
goals in a classroom almost ensures that, no matter how strategic a teacher is in her 
groupings, some students will be unhappy in the failure of that grouping to meet 
their individual goals. How to fi x this? One way would be to remove  any  and  all  
efforts to be strategic in how groups are set.  

   Random Groupings 

 Over the last 6 years, I have done research in a number of classrooms where I have 
encouraged the teachers to make group work ubiquitous, where new groups are 
assigned every class, and where the assignment of these groups is done randomly. In 
every one of these classrooms, the lesson begins with the teacher generating random 
groups for the day. The specifi c method for doing this varies from teacher to teacher. 
Some give out playing cards and have students group themselves according to the 
rank of the card they have drawn. Others have students assigned a permanent number 
and then draw groups of three or four numbered popsicle sticks or numbered disks 
randomly from a jar. In other classes, the students watch the teacher randomly popu-
late a grid with numbers wherein each row of the grid then forms a group. One 
teacher I worked with had this grid placement done automatically by a program dis-
played on an interactive whiteboard. Another teacher I worked with had laminated 
photographs of all of the students and distributed these into groups by shuffl ing and 
then randomly drawing three or four photos at a time. Regardless of the particulars 
of the method, however, the norm that was established in each of the classes that I 
worked in was that the establishment of groups at the beginning of class was not only 
random, but visibly random. Once in groups, students were then universally assigned 
tasks to work on, either at their tables or on the whiteboards around the room. The 
students stayed in these groups throughout the lesson, even if the teacher was leading 
a discussion, giving instructions, or demonstrating mathematics. 

 Although often met with resistance in the beginning, within 3–4 weeks of imple-
mentation, this approach has consistently led to a number of easily observable 
changes within the classroom:

•    Students become agreeable to work in any group they are placed in.  
•   There is an elimination of social barriers within the classroom.  
•   Mobility of knowledge between students increases.  
•   Reliance on the teacher for answers decreases.  
•   Reliance on co-constructed intra- and intergroup answers increases.  
•   Engagement in classroom tasks increases.  
•   Students become more enthusiastic about mathematics class.    

 Ironically, these are often the exact affordances that teachers’ strategic groupings 
of students are meant, but often fail, to achieve. How is this possible? What is it 
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about the use of visibly random groups that allows this to happen? Drawing on data 
from one classroom, this chapter looks more closely at these aforementioned 
observed changes as well as what it is about visibly random groupings that occasion 
these changes.  

   Methodology 

 The data for this study was collected in a grade 10 (ages 15–16) mathematics class-
room in an upper-middle-class neighbourhood in western Canada. The students in 
the class were refl ective of the ethnic diversity that exists within the school at large. 
Although there are students from many different cultures and backgrounds in the 
school, and the class, the majority of students (>90 %) are either fi rst- or second- 
generation immigrants from China or Caucasian Canadians whose families have 
been in Canada for many generations. These two dominant subgroups are almost 
equal in representation. This, almost bimodal, diversity is relevant to the discussion 
that will be presented later. 

 The classroom teacher, Ms. Carley (a pseudonym), has 8 years of teaching 
experience, the last six of which have been at this school. In the school year that 
this study took place, Ms. Carley decided to join a district run learning team facili-
tated by me. This particular learning team was organized around the topic of group 
work in the classroom. As the facilitator, I encouraged each of the 13 members of 
the learning team to start using visibly random groups on a daily basis with their 
classes. Ms. Carley had joined the team because she was dissatisfi ed with the 
results of group work in her teaching. She knew that group work was important to 
learning but, until now, had felt that her efforts in this regard had been unsuccess-
ful. She was looking for a better way, so when I suggested to the group that they try 
using visibly random groups, she made an immediate commitment to start using 
this method in one of her classrooms. This, in turn, prompted me to conduct my 
research in her class. 

 The data was collected over the course of a 3-month period of time from the 
beginning of February to the end of April. The time frame is signifi cant because it 
highlights that this was not something that was implemented at the beginning of a 
school year when classroom norms (Yackel and Cobb  1996 ) are yet to be estab-
lished and students are more malleable. The fact that the change occurred mid-year 
allowed me the unique opportunity to compare classroom discourse, norms, and 
patterns of participation before and after implementation. Initially, I was present for 
every class. This included three classes prior to implementation as well as the fi rst 
3 weeks (eight classes) after initial implementation. After this, I attended the classes 
every 2 or 3 weeks until the end of the project. 

 I became a regular fi xture in the classroom and acted not only as an observer 
but also as a participant (Eisenhart  1988 ), interacting with the students in their 
groups and on the tasks set by the teacher. The data consists of fi eld notes from 
these observations, interactions, and conversations with students during class time 
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interviews with Ms. Carley and interviews with select students. Interviews were 
conducted outside of class time and audio recorded. Over the course of the study, 
Ms. Carley was interviewed, if only briefl y, after every observed lesson. During 
this time frame, 12 students were also interviewed, with two of them being inter-
viewed twice. These data were coded and analysed using the principles of analytic 
induction (Patton  2002 ). “[A]nalytic induction, in contrast to grounded theory, 
begins with an analyst’s deduced propositions or theory-derived hypotheses and is 
a procedure for verifying theories and propositions based on qualitative data” 
(Taylor and Bogdan 1984, p. 127 cited in Patton  2002 , p. 454). In this case, the a 
priori proposition was that the changes that I had observed in other classrooms 
were linked to the use of a visibly random grouping scheme. This proposition 
became the impetus for the collection of data in that it drove what I was looking for 
and how I was looking. It became the lens for my observations and it motivated my 
interview questions. It also pre-seeded the themes that I was looking for in the cod-
ing of the data. 

 This is not to say that my data collection and analysis were blind to the emer-
gence of new themes. As a participant/observer in the classroom, I was aware of, 
and deliberately looking at, a great many things going on around me. During the 
coding and analysis of the data, I was looking for nuances in the relationship 
between visibly random grouping schemes and the changes I had observed. So, 
despite the fact that I had a priori themes in mind, I still coded the data using a con-
stant comparative method (Creswell  2008 ). This recursive coding allowed for the 
emergence of not only nuanced themes but also new themes.  

   Results and Discussion 

 Similar to the other classes wherein I have observed the implementation of random 
grouping schemes, Ms. Carley’s class exhibited the same observable changes. In 
what follows, I explore each of these changes more thoroughly, illuminating the 
nuances of each with results from the data. 

   Students Become Agreeable to Work in Any Group They Are 
Placed In 

 Group work is not something that is foreign to the students in Ms. Carley’s class. 
From time to time, she allows the students to sit in pairs or threes to work on their 
homework, and the class had already done one group project on graphing where the 
students were allowed to self-select who they worked with. When Ms. Carley 
decided to implement a more ubiquitous approach to group work in general and the 
use of random groups in particular, she chose to use a standard deck of playing cards 
to generate the groups. She had 30 students in the class and she had decided to have 
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the students work in groups of three. So, she selected from the deck 3 cards of each 
rank (ace—ten). These were shuffl ed and then the students were allowed to each 
select one card. Although she experimented with the number of students per group, 
and had to make adjustments based on absences, this is a grouping scheme that she 
stayed with for the duration of the study. 

 On the fi rst day, the students were not told what was going on but just presented 
with the cards as described. Later, I learned that many of the students had thought 
that “it was a magic trick”. When every student had a card, Ms. Carley announced 
that these would be the groups that they would be working in and assigned a “station” 
for each group depending on their card. This was an interesting time. Many of the 
students went dutifully to their stations. However, there were a few students who I 
observed were trying to fi x it so that they were with their friends. I will elaborate on 
two of these cases in particular. 

 Hunter, despite his card, went directly to the station where his friend Jackson was 
sitting. This did not go unnoticed as Ms. Carley immediately noticed that this group 
now had four members instead of three. When she dealt with this she immediately 
challenged Hunter to see his card. When I asked her about this later she said that “it 
had to be Hunter. It is always Hunter. He is a bit of a scammer and he likes to be with 
Jackson”. In the fl urry of the fi rst few minutes of class, Ms. Carley had to perform a 
similar check on one other group of four. 

 Unnoticed by Ms. Carley, however, was the situation that unfolded immediately 
in front of me. Jasmine approached a group of three and took the card out of one of 
the group members’ hand replacing it with her own card and said, “you’re over 
there”, gesturing towards one of the corners of the room. From my initial observa-
tions of the class and my conversations with Ms. Carley, I knew that Kim, Samantha, 
and Jasmine are very close friends, are part of the “in” crowd within their grade, and 
tend to stick very close together during free time and when allowed in their other 
classes. The group that Jasmine approached had Samantha in it. 

 In general, this sort of jockeying behaviour was observed for the fi rst three 
classes after implementation. Hunter did try it again but Ms. Carley intervened even 
before he got to Jackson, and on the third day, Hunter and Jackson legitimately 
ended up together—much to the chagrin of Ms. Carley. Jasmine, however, was suc-
cessful each time she tried to switch groups using the same strategy. After the fi rst 
week, however, the behaviour stopped for both Hunter and Jasmine. At this point, I 
interviewed both Hunter and Jasmine about their antics:

   Researcher    So, I noticed that last week you tried a few times to sit with Jackson. 
Are you still trying to do so?   

  Hunter    No.   
  Researcher    Why not?   
  Hunter    At fi rst I thought that the teacher was trying to keep us apart. Then, on 

Friday, we got to work together.   
  Researcher    So, do you still think the teacher is trying to keep you apart?   
  Hunter    No. I don’t think she likes us working together, but when the cards came 

up the way they did she didn’t change it. I guess it’s up to the cards now.   
  Researcher    I saw what you did last week.   
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  Jasmine    What do you mean?   
  Researcher    I saw how you switched groups.   
  Jasmine    Oh that. That’s nothing.   
  Researcher    But you didn’t do it this week. Why not?   
  Jasmine    I guess it doesn’t matter so much. I mean, it is just for one class and 

then the groups change again.   
  Researcher    What does that have to do with it?   
  Jasmine    At fi rst I was worried that I was going to be stuck with that group for a 

long time, like when we worked on the project or in my other classes.   
  Researcher    What happens in the other classes?   
  Jasmine    My English teacher changes the seating plan every month and then 

you’re stuck there forever.   

   For Hunter, the defi ning quality of Ms. Carley’s grouping scheme was the ran-
dom nature of it. Once he came to see that it was both random and that the random 
outcomes would be respected, he became more relaxed about it. For Jasmine, how-
ever, the defi ning quality was the short-term commitment that the grouping strategy 
demanded. When I had fi rst observed Jasmine’s antics, I had assumed that it had to 
do with trying to be close to her friends when, in reality, she was trying to avoid 
being “stuck” with a group she didn’t like. Once she became confi dent that the 
groups were temporary, she stopped trying to manipulate the groups. 

 I also interviewed Jennifer in the third week after implementation. I selected 
Jennifer because she had shown no overt objections to the grouping schemes used 
in the class:

   Researcher    I’m wondering what you think about all this grouping stuff that is 
going on.   

  Jennifer    It’s ok I guess. It doesn’t matter what I think though, it looks like it’s 
here to stay.   

  Researcher    What do you mean by “it’s here to stay”?   
  Jennifer    Well, when the teacher started class last Monday, the same way I knew 

that this is the way it was going to be. When she started class today 
[Monday of the third week], I was sure of it.   

   Jennifer’s observation coincides perfectly with the subsiding of any residual vis-
ible opposition to the random groupings. Although she was not overtly opposed to 
the groupings in the fi rst week, her mention of the practice continuing in the second 
and third weeks and how that was a sign that “it’s here to stay” indicates a resigna-
tion to the new classroom norm (Yackel and Cobb  1996 ) that is likely shared by 
many of her peers. This is a different phenomenon from Hunter, who saw the ran-
domness in the cards, or Jasmine, who focused on the temporariness in each group-
ing. These three themes occurred and reoccurred in many of the conversations I 
overheard, conversations I was part of, and in interviews. Sometimes they occurred 
in isolation as in the excerpts presented above. Other times they were present in 
combination with each other. 

 More interestingly, resignation to a new norm became the only thing commented 
on by the third week. That is, regardless of what the students thought about the 
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introduction of visibly random groups, the residual effect was that “it is how we do 
things in this class”. Even in the last week of the study when I asked specifi c stu-
dents to recall the early days of the use of the playing cards, their recollections of it 
were that it was just the introduction of a new way to do things. That is, although the 
randomization being visible, the cards being respected, and the groups being only 
for one class were of great importance in the fi rst weeks, what endured to the end 
was just the norm. This is in alignment with Yackel and Cobb’s ( 1996 ) observation 
that norms are not something that are imposed on a class, but are negotiated between 
the teacher and the students. The grouping scheme being visibly random and the 
groups being only for one period were important elements in these negotiations.  

   There Is an Elimination of Social Barriers Within the 
Classroom 

 As mentioned earlier, there is an almost bimodal diversity in both the class and the 
school where the study took place. My observations of this “split” are exemplifi ed 
in the conversations that I had with Ms. Carley prior to her implementation of 
random groups:

   Researcher    Can you think of any problematic situations that you think will prevent 
this [random groupings] from being successful?   

  Ms. Carley    The obvious one is the split between the Asian and Caucasian students.   
  Researcher    What do you mean  split ?   
  Ms. Carley    It’s almost as though we have two distinct cultures in this school with 

almost no overlap. The Caucasian students have their own social 
groupings, not all together. And the Asian students have their own. 
And there is almost no mixing between the two. In fact, it’s almost as 
though they aren’t even aware of each other.   

  Researcher    I have noticed that. Is that normal you think?   
  Ms. Carley    I don’t know about normal but it is certainly not unique to this school. 

I have a good friend who teaches in Surrey and she has seen the same 
thing but with different groups of students. We talk about it often and 
what we can do about it.   

   What Ms. Carley describes is a situation that is easily observable in both the 
hallways and in the classroom. When Ms. Carley allowed the students to self-select 
who they wanted to work with, the selections were always guided by this “split”. 
This is not to say that there were any racial tensions in the group. I observed no 
evidence of dislike or disdain for each other. It really was just as Ms. Carley had 
described—two distinct social groupings. We both saw this as a formidable chal-
lenge and were simultaneously anxious and hopeful about how the random group-
ings would play out. 

 It is quite possible that some of Jasmine’s antics (described in the previous sec-
tion) were motivated by this social dichotomy. On both the fi rst and second day of 
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implementation, she was randomly assigned to a group that had two Asian students 
in them. The second time that she “stole” someone else’s card, she took it from the 
sole Asian girl in the group where she wanted to be in. But, as stated in the previous 
section, these sorts of behaviours by Jasmine and others in the class ceased after the 
fi rst 2 weeks of implementation as the students settled into the new norm. This is not 
to say that the social divide had disappeared yet. 

 After 3 weeks of implementing visibly random groups, some interesting phe-
nomena began to emerge. Whereas in the fi rst few days after implementation there 
was an awkwardness present in the fi rst few minutes of group work, now there was 
an “at ease ness ” about the way the students came together. This was more than 
comfort with a process, however. It was more akin to a familiarity between students. 
This can be seen in the interview with Melanie:

   Researcher    Tell me about how your group work went today?   
  Melanie    Fine.   
  Researcher    Who were you with?   
  Melanie    I was with Sam and … um … the guy … I don’t know his name.   
  Researcher    Frank?   
  Melanie    That’s it. Frank!   
  Researcher    Can you tell me a little bit about Sam and Frank?   
  Melanie    Ok. Sam is smart. I worked with her one time before. She really knows 

what is going on so I try to listen carefully to her when she has some-
thing to say. She’s in my Science class as well and her sister is in my 
English class.   

  Researcher    How do you know that Sam’s sister is in your English class.   
  Melanie    Sam told me today.   
  Researcher    What about Frank?   
  Melanie    I don’t know Frank that well, but my friend worked with him last week 

and he said that Frank is a really nice guy.   

   To help orient this conversation, it is useful to know that Melanie is Caucasian 
and that both Sam and Frank are Asian. What is remarkable about this is that 
there is an awareness about each other that is forming. Sam is aware that Melanie 
is in her sister’s English class and Melanie is aware that her friend worked with 
Frank last week. These are both strong indicators that the two groups are now 
seeing each other—aware of each other—in a way that Ms. Carley (and I) had 
observed was not happening prior to implementation. Further, Melanie’s interview 
reveals that the two groups are not only talking to each other, they are talking 
about each other. 

 This is not to say that race was the only social barrier at play within this 
classroom prior to implementation. As in any school, there was also a more 
subtle, but very real, social hierarchy at play. There were students who were 
“in” and students who were “out”. As already mentioned, Jasmine, Kim, and 
Samantha were part of the “in” crowd. Prior to implementation they always sat 
together, and as seen, Jasmine worked hard to maintain this together ness  at ini-
tial implementation. For Jasmine, this was eased by the realization that the 
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groups were short- lived. For Samantha, it was eased by the fact that the nature 
of the group work had changed:

   Researcher    It’s been six weeks now since Ms. Carley started moving you around. 
What do you think about it?   

  Samantha    It’s ok.   
  Researcher    I know that you used to like to sit with Jasmine and Kim a lot. How is 

it being away from them?   
  Samantha    I’m not away from them. I still see them all the time and I did sit with 

Kim and Charles the other day. But it’s different now. Before we would 
just sit and talk. Now we are working on stuff at the boards and stuff. 
There isn’t a lot of time to just socialize anyway.   

  Researcher    How do you think Jasmine and Kim feel?   
  Samantha    Jasmine is ok with it now. She wasn’t at fi rst. And Kim never cared. 

She is really easy going.   

   It is obvious from this transcript that Kim is also at ease, and always was, with 
the random grouping scheme. More subtle, however, is the mention of Charles. 
Charles is an Asian boy defi nitely not in the “in” crowd. I’m pretty sure that prior to 
implementation Samantha did not know his name. Now she mentions him in pass-
ing. This points to what I was observing at this point in the study—Ms. Carley’s 
class had jelled into a cohesive whole, absent of any social divides. 

 There is a lot to be seen and to be discussed in regard to the breaking down of 
social barriers, both racial and non-racial, and my naïve treatment of it is not meant 
to diminish the rich traditions of such research (c.f. DeVries et al.  1978 ). I merely 
wanted to highlight the role that the visibly random grouping scheme played in the 
breaking down of some of these barriers.  

   Mobility of Knowledge Between Students Increases 

 As mentioned, prior to implementation, group work in Ms. Carley’s class was some-
thing students did as they worked on their homework or on a project. After imple-
mentation, group work became ubiquitous. The main activity in these groups was to 
work through a series of tasks that Ms. Carley set during her lessons. These were 
originally “try this one” tasks that followed direct instruction. But as the study went 
on, Ms. Carley began to also use tasks as a way to initiate discussions. The tasks also 
became more challenging, requiring the students to do more than just mimic the 
examples already presented on the boards. This “ramping up” of the use of tasks was 
accompanied by a number of easily observable changes in the way in which the 
groups worked, with the most obvious of which was the way in which the knowledge 
moved around the room. 

 Immediately after implementation, group work looked very much like it did prior 
to implementation—the students worked largely independent of each other, inter-
acting only to check their answers with their group members or to ask one or another 
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to explain how to do something. After 4 weeks, however, group work looked very 
different. Students now spent almost no time working independently. Instead, they 
spent their time working collaboratively on the tasks set by Ms. Carley. This col-
laboration consisted of discussion, debate, and the sharing and demonstration of 
ideas. In part this was due, of course, to the increasing demand and frequency of the 
tasks set by the teacher. But it was also due to the coalescing of the groups into col-
laborative entities:

   Researcher    So, the students seem to be working well together.   
  Ms. Carley    Yes … I’m still amazed at exactly how well.   
  Researcher    We’ve talked a lot about the tasks you are using and how you are using 

them. Do you think the tasks are responsible for the group work we are 
seeing now?   

  Ms. Carley    You know, I’ve thought a lot about that lately. At fi rst I thought it 
was all due to the tasks. In fact, I was talking to a colleague who was 
asking about my class. She was asking for a copy of the tasks so she 
could start using them with her students and that’s when I realized 
that it’s sort of a chicken and egg thing. If we spring the tasks on the 
students before they know how to work in groups, then it won’t 
work. At the same time, if we try to teach them how to work in 
groups without having something to work on, then it won’t work 
either.   

  Researcher    So, how did you manage it in this class? What came fi rst?   
  Ms. Carley    I think the random groups came fi rst. That broke the mould on what 

group work had looked like in the past and gave me room to introduce 
a new way of working.   

   Ms. Carley’s synopsis aligns well with my observations. Prior to implementa-
tion, group work had a well-defi ned set of actions and behaviours associated with it. 
These norms were not conducive to the collaborative skills and affordances neces-
sary to increase the demand on students vis-à-vis the ubiquitous use of tasks. The 
introduction of random groups into the classroom shattered the existing norm and 
allowed for a new set of classroom norms to be established that were more condu-
cive to collaboration. 

 The collaboration now visible in the room went beyond the intra-group activity, 
however. Intergroup collaboration also became a natural and anticipated part of 
every class. This often took one of three forms: (1) members of a group going out to 
other groups to “borrow an idea” to bring back to their group, (2) members of a 
group going out to compare their answer to other answers, (3) two (or more) groups 
coming together to debate different solution or a combination of these as exempli-
fi ed in my observations of Kevin’s group in week four of the study:

   Researcher    Good problem today, huh? I didn’t get a chance to sit with you today. 
Can you tell me how you guys solved it?   

  Kevin    Yeah, that was a tough one. We were stuck for a long time.   
  Researcher    We were too [referring to the group I was working with]. What did you 

eventually fi gure out?   
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  Kevin    Well, we saw that the group next to us was using a table to check out 
some possibilities and we could see that there was a pattern in the 
numbers they were using so we tried that. That sort of got us going and 
we got an answer pretty quickly after that.   

  Researcher    Was it the right answer?   
  Kevin    It was, but we weren’t so sure. The group next to us had a different 

answer and it took a long time working with them before we fi gured out 
which one was correct.   

   Kevin’s recollection of the day’s activities is refl ective of what I observed 
between these two groups and, in fact, many groups on a daily basis. When I asked 
Sam (who was in the other group) about this, she had some interesting insights 
about why this coming together of the two groups worked so seamlessly:

   Researcher    Your group worked pretty closely with another group today. How did 
you feel about the fact that they copied from you?   

  Sam    Did they? I didn’t notice. But it isn’t really copying. We are all just 
working together.   

  Researcher    In other classes I have been in, I don’t see that happening. You know, 
groups sharing with each other.   

  Sam    That’s probably because they don’t work together as much as we have. 
I mean, we are always together with different people. I think I have 
worked with everyone in this room now. If you asked me who I worked 
with yesterday I’m not sure I could tell you. And if you asked the 
teacher to tell you who was in which group today, I don’t think she 
could tell you either. When we were trying to fi gure out which answer 
was correct, we were like one big group.   

   What Sam is describing is what I have come to call the  porosity  of groups. 
Although group boundaries are defi ned for the period, these boundaries are clearly 
temporary and arbitrary. This allows for them to also be seen as open and allowing 
for the free movement of members from one group to another to extend the collab-
orative reach of the group. When asked about this, many students mention that they 
feel that they are free to move around the room as necessary to “get the job done”. 

 Along with this mobility of groups and group members comes  mobility of knowledge—
 the movement of ideas, solution strategies, and solutions around the room. In fact, 
it is the need to move knowledge that prompts the movement of individuals as they 
go out “to borrow an idea”. The free and easy mobility of knowledge results in a 
marked decrease in the students’ reliance on the teacher as the knower:

   Researcher    Have you noticed anything else that has changed over the last fi ve 
weeks?   

  Ms. Carley    I’ve noticed that I’m not answering as many questions anymore.   
  Researcher    Are you not answering them or are you not being asked them?   
  Ms. Carley    Both, I think. I know there was a point where I was deliberately trying to 

not answer questions, trying to push the students back into the groups to 
fi gure it out. But now that is not a problem. They just don’t ask me questions 
as much anymore. It’s like that chicken and egg thing again.   
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   Similar to the relationship between the use of random groups and the use of 
more challenging tasks, the relationship between the teacher not answering 
questions and the students not asking questions seems to be in some sort of 
symbiosis. That is, in order for the group work to become effective and mean-
ingful, the teacher needs to stop answering questions and, as the group work 
becomes effective and meaningful, the students stop needing to ask questions. 
Ms. Carley’s class has become a collective making use of both intra- and inter-
group collaborations. 

 This is not to say that the role of the teacher is diminished. Ms. Carley still sets 
the tasks, the groups, and the expectations. More importantly, however, she moni-
tors the fl ow of knowledge around the room:

   Researcher    I noticed that you were forcing some groups together today. What were 
you trying to achieve?   

  Ms. Carley    It depends. Sometimes I am trying to crash ideas together. Other 
times I am trying to help a group get unstuck. Which groups do you 
mean?   

  Researcher    I mean when you sent one whole group from over there to over here.   
  Ms. Carley    Ah. Well, that group over there had gotten an answer pretty quickly. As 

it turned out, it was the right answer, but I didn’t think they had done 
enough work checking their answer so I sent them over to that group 
to shake their confi dence a little bit.   

  Researcher    How so?   
  Ms. Carley    Well, that group had a different answer and that would force the two 

groups to fi gure out what was going on.   

   Not only is Ms. Carley monitoring the fl ow of knowledge in the room, she is 
manipulating it—forcing it to move in certain directions and moving it for a variety 
of different reasons. In so doing, her role in the classroom has changed.

   Researcher    So, how are you liking your classroom these days?   
  Ms. Carley    I’m loving it. I feel like the students are completely different. I’m 

completely different. It’s like I have a new job and its WAY better than 
my old one.   

      Students Become More Enthusiastic About Mathematics Class 

 Ms. Carley is not the only one who is enjoying her new role, however. Many of the 
students I either talked to as part of my classroom participation or in interviews 
alluded to the fact that Ms. Carley’s mathematics class is  now  an enjoyable place 
to be:

   Frank    I like this class  now .   
  James    Math is  now  my favourite subject.   
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   In the fi fth week of the study, I spoke with Jasmine about how she was enjoying 
this class:

   Researcher    So, it’s been a while since that day where you were trying to switch 
groups. How are you enjoying things now?   

  Jasmine    I love this class. I mean, math isn’t my favourite subject. But I love 
coming here.   

  Researcher    Why is that? What is it about this class that you love?   
  Jasmine    I’m never bored. There is always something going on and time passes 

so quickly.   
  Researcher    I looked at Ms. Carley’s attendance book. For the last four weeks, you 

have never missed a class or even been late. I only looked at four 
weeks, what would I have seen if I looked further back?   

  Jasmine    You would have seen some absences and lots of lates. I mean, it’s not 
like I skipped class. I don’t skip. It’s just that there were reasons to be 
away. I guess I now try not to let there be reasons.   

  Researcher    What about lates?   
  Jasmine    I’m often late for my classes. Not just math.   
  Researcher    But you haven’t been late at all lately.   
  Jasmine    Hmm … I guess I don’t want to be.   

   Jasmine didn’t like mathematics the subject, but she loved mathematics the 
class. The changes that had occurred, which began with the random groupings, 
had transformed the Ms. Carley’s class into something that she didn’t want to 
miss out on. 

 This was a trend that I observed in many students. In terms of attendance, 
absences and lates were down across the board. Prior to implementation, Ms. 
Carley had an average of 3.2 absences per class and an average of 6.7 lates per 
class. Between week 4 and week 7 after implementation, the averages were 1.6 and 
2.2, respectively. Ms. Carley’s class became a place where students wanted to be. 
Conversations with other students echoed Jasmine’s sentiments. In my conversa-
tions with Chad, Stacey, and Kendra, I decided to push a little further by asking 
them to draw comparisons:

   Researcher    So, how is this class different from other classes?   
  Stacey    I like this one.   
  Researcher    Ha … do you not like other classes?   
  Stacey    I do. But not like this one. This one is way more dynamic. We are 

always doing something new and …   
  Kendra    And the beginning of every class is a bit of an adventure when we get 

to fi nd out who we work with.   
  Researcher    It’s been six weeks. Hasn’t it gotten old yet … the thing with the ran-

dom groups?   
  Chad    No. It’s still fun.   
  Researcher    I want to continue with Stacey’s comments. In what ways is this class 

different from other classes?   
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  Chad    Hmm … we need to think in this class. There really is no other way 
around it. In other classes, you can sort of just tune out, but not in here.   

  Kendra    And you have to collaborate. There is no way I could get by just doing 
it on my own, even if Ms. Carley would let us.   

  Researcher    It sounds like a lot of hard work.   
  Stacey    It is, but in a good way. I mean, like I’m never bored.   

   These comments speak not just to enjoyment but also engagement. The students 
need to be engaged in Ms. Carley’s class and they seem to enjoy this engagement. 
The comments of these students confi rm what both Ms. Carley and I had observed 
in the class as a whole.

   Researcher    So, what do you think? How is it going?   
  Ms. Carley    My sense is that it is going really well. This week all of the students really 

seem to be into it. Everyone shows up ready to go, and then we go. There 
are no complaints, everyone is smiling, and we get a lot done.   

       Conclusions 

 I stated at the outset that the changes that I observed in Ms. Carley’s class are refl ec-
tive of the changes I had seen in many of the other classes in which I had been privi-
leged to participate as teachers made the decision to start using visibly random 
grouping schemes. But, in the past, these had just been observations. My more 
focused approach to studying Ms. Carley’s class confi rmed my prior (and subse-
quent) observations and also informed and enlightened them. As in the other class-
room, I had observed that the introduction of random groupings was pivotal in 
producing broad changes in the classroom. However, these changes were more than 
just changes to the way the class was run. The introduction of random groupings led 
to, and allowed for, changes in the students, the teacher, and what was possible in 
this new setting. 

 The students became open to working with anyone. The social barriers that 
existed in the classroom came down and the classroom became a collaborative 
entity that was not defi ned by, or confi ned to, the boundaries set by the teacher. As 
these barriers came down and the class coalesced into a community, their reliance 
on the teacher as the knower diminished and their reliance on themselves and each 
other increased. Their enjoyment of mathematics (the class, if not necessarily the 
subject) increased as well as their engagement. 

 Figure  1  (above) showed how neatly the strategic educational and social goals 
could be partitioned. When nonstrategic grouping methods were used, the result-
ing behaviours cannot be so easily partitioned into educational and social affor-
dances. For example, the increased mobility of knowledge is a direct result from 
the students’ increased reliance on intra- and intergroup generated results. 
However, this cannot be separated out from the fact that social barriers in the 
room have come down. Taken together, the data showed that the use of visibly 
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random groupings produces student behaviour that can be seen as being both 
 educational and social in nature (see Fig.  2 ). As such, the nonstrategic use of vis-
ibly random groupings turned out to be a better strategy than the aforementioned 
strategic grouping schemes.

   Student change aside, Ms. Carley altered the way she used tasks as well as the 
way she answered questions. She found that she no longer needed to be the knower 
or the teller in the room. She changed the timing and the method of her direct 
instruction, and she began to rely much more on her ability to manipulate groups 
and move ideas around the room. Tasks, too, took on a new life in the class. Their 
role changed from “try this one” to objects around which group work was orga-
nized. They increased in frequency and diffi culty, and they became the objects and 
objectives of lessons. 

 The introduction of visibly random groupings was the impetus that both allowed 
for and necessitated the many other changes that I observed. Through the renegotia-
tion of classroom norms (Yackel and Cobb  1996 ), the students could not continue to 
behave as they had earlier, Ms. Carley could not continue being the same teacher 
she had been prior to implementation, and tasks could not have avoided evolving. 
Change begot change.     

  Fig. 2    Results of nonstrategic groupings       
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         Amid a vast array of variations in language, culture, and educational traditions, 
some commonalities pertain to school mathematics across the globe. One is the 
centrality of textbooks to school mathematics teaching and learning. Mathematics 
textbooks vary greatly across countries and grade levels in their organization and 
display of content and the support provided to students or to teachers. Moreover, the 
historical trajectories of curriculum development refl ected in textbooks develop in 
ways that refl ect varying infl uences across countries (Jones  1970 ; Stanic and 
Kilpatrick  1992 ). Yet their pivotal importance to classroom instruction in almost 
all settings of compulsory schooling in the world is undeniable. They serve both 
as teaching/learning tools and as tangible representations of expectations for 
mathematics instruction in the educational context in which they are used. 

 A second commonplace of mathematics instruction is that teachers tend to be 
more successful in assisting students to learn facts and procedures than they are in 
helping students gain profi ciency with mathematical problem solving and reasoning. 
Even in high-performing countries on international comparative assessments of 
mathematics attainment, there is usually dissatisfaction with the performance of 
students on cognitively demanding tasks. 

 The chapters in this part offer fascinating glimpses at the complex interaction 
between curriculum and instruction, with particular attention to the role that 
curriculum might play in nudging mathematics classroom instruction to be more 
ambitious and more effective in helping students become adept with mathematical 
problem solving and reasoning. Complementing the approaches suggested in others 
parts of the volume, these chapters explore the role that curriculum and curriculum 
materials (e.g., textbooks) might play in efforts to reform mathematics instruction. 
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 The examples treated in these chapters come from four different countries—
China, Japan, the Netherlands, and Portugal—with different languages, cultures, and 
education traditions. The examples vary with respect to the scope and complexity of 
the curriculum change undertaken or instructional reform being sought. What the 
chapters have in common is a focus on how curriculum changes might leverage 
changes in instruction, and they provide some measure of hope that this strategy 
might be useful in efforts to promote more ambitious mathematics instruction. 

    Why Curriculum as a Tool for Reform? 

 Derived from the Latin word  currere —meaning “to run”—the word curriculum 
referred initially to the course that runners followed in a competition. Today, it is a 
word with multiple meanings, including the sequence of courses that a student may 
complete, the topics that are contained in a given grade, or the specifi c expectations 
regarding content, skills, competencies, and habits of mind that are deemed necessary 
for educational or societal reasons. These varied meanings all focus on the content 
of the curriculum as it appears in textbooks or offi cial documents such as syllabi, 
frameworks, and catalogues. There are other distinctions pertaining to curriculum 
that may be even more critical for our understanding of how curriculum might play 
a role in instructional reform. 

 More than two decades ago, Travers and Westbury ( 1989 ) suggested an important 
distinction between curriculum as planned and curriculum as enacted. In the Second 
International Mathematics Study (SIMS), the  intended curriculum  (as represented in 
offi cial documents and textbooks) was contrasted with the  implemented curriculum  
(measured through questionnaires given to teachers). These were, in turn, related 
to the  attained  curriculum, as refl ected in students’ performance on SIMS test items. 
The distinction among these three different “versions” of curriculum draws atten-
tion to the variation that was found in SIMS and in many other studies when the 
offi cial curriculum of a country or school system is compared to the topics taught and 
emphasized in classrooms in that country or school system, and then to the profi -
ciency obtained by the students taught in those classrooms. 

 The tripartite distinction offered by Travers and Westbury suggests both the 
promise and peril of pinning one’s hopes for instructional reform on curriculum 
change. Because offi cial curriculum documents and textbooks can be viewed as 
blueprints for school mathematics instruction, they can serve as tools to infl uence 
classroom instruction. If one were intent on making mathematics instruction 
more ambitious, for example, one might alter the offi cial (i.e., intended) curriculum 
or textbooks to place more emphasis on problem solving and reasoning. If the 
offi cial curriculum were deterministic of school mathematics, changes in classroom 
instruction (i.e., the implemented curriculum) would follow directly and lead to 
corresponding changes in student outcomes (i.e., the attained curriculum). Alas, the 
picture is decidedly more complicated and perilous. As we know, teachers are not 
merely obedient servants of other people’s intentions, nor are they superheroes 
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possessing the power to deal effortlessly with the challenges of classroom instruction, 
especially when it is oriented toward more ambitious goals. 

 The effects of curriculum changes are mediated by a number of factors and 
actors, among which are teachers and students. The implemented curriculum is 
largely a function of the actions and reactions of teachers and students in classrooms, 
and it is constrained by a complex array of cultural, historical, political, and social 
factors. Yet, it is the implemented curriculum that affords students’ opportunities to 
learn and thus infl uences quite directly the attained curriculum as refl ected in what 
students actually learn. A reform effort that uses curriculum change to generate 
instructional change requires that teachers, students, and mathematical content 
interact in ways that may run counter to dominant cultural, historical, political, and 
social forces. Because ambitious teaching is diffi cult, and because profi ciency with 
mathematical problem solving, reasoning, and other cognitively demanding per-
formances is also challenging, the probability is small that a change in the intended 
curriculum in the direction of more ambitious practices and outcomes will be 
faithfully and successfully implemented in classroom instruction unless careful 
attention and support are provided to teachers and students. 

 In his chapter, Gravemeijer summarizes a number of reasons for caution in 
expecting curriculum reform to yield instructional innovation, yet he also suggests 
why these might not be fatal fl aws in this strategic approach to the goal of more 
ambitious mathematics instruction. In their chapter, Oliveira and Mestre illustrate 
how teachers and students might be supported to overcome perceived and actual 
obstacles in the enactment of innovative curriculum materials that promote 
ambitious mathematics teaching and learning.  

    Toward More Ambitious Mathematics Teaching: 
Changing Curriculum to Change Instruction 

 Over several decades, a body of research evidence has amassed pointing to the benefi ts 
of ambitious teaching (sometimes called by various other names, including authentic 
instruction, teaching for understanding, higher-order instruction, problem- solving 
instruction, and sense-making instruction) in the mathematics classroom (e.g., Boaler 
 2002 ; Bransford et al.  1999 ; Brownell and Moser  1949 ; Carpenter et al.  1996 ; 
Fawcett  1938 ; Hiebert et al.  1996 ; Newmann and Associates  1996 ; Schoenfeld  2005 ; 
Silver and Lane  1995 ; Stein and Lane  1996 ). Many questions remain unanswered 
about precisely how ambitious teaching practices are linked to students’ learning 
to solve problems and reason mathematically or to exhibit mathematics learning 
with understanding (see, e.g., Hiebert and Grouws  2007 ), but there has been 
increasing interest among mathematics educators in making student engagement 
with cognitively complex mathematics tasks and processes a regular feature of 
classroom instruction (e.g., Fennema and Romberg  1999 ; Hiebert and Carpenter  1992 ). 
In his chapter in this volume, Gravemeijer provides a contemporary line of argument 
for more ambitious mathematics teaching, updating some of the classic themes. 

Preface to Part II



150

 Despite growing evidence of its effi cacy, ambitious instruction has not become 
the norm in mathematics classrooms anywhere in the world, though typical classroom 
teaching in some countries is certainly relatively more oriented toward ambitious 
instruction than in many other countries. Similarly, comparative analyses of the 
intended mathematics curriculum across countries have typically reported that the 
curriculum represented in offi cial documents and in textbooks in some countries is 
more ambitious than in many other countries. Notwithstanding the caveats noted 
above, such fi ndings are suggestive of a reform strategy that would use curriculum 
change as a lever for instructional change. In his chapter, Gravemeijer fi lls in some 
details of this argument as sketched in this chapter. 

 Several of the chapters in this part offer additional evidence that it may be possi-
ble to use curriculum to infl uence mathematics instruction to be more attentive to 
mathematical processes, such as problem solving and communication. For example, 
Watanabe examined Japanese school mathematics textbooks to discern changes over 
time that might be associated with perceived changes in Japanese classroom instruc-
tion. He notes a trend in the treatment of problem solving in the textbooks that appears 
to be consistent with a trend in mathematics teaching in Japan toward more use of 
structured problem solving as a core feature of classroom instruction. He is not able to 
identify a causal relationship from his data, but he does offer a plausible argument for 
a relationship between the curriculum changes and the instructional changes. 

 Another example is provided by Ni and colleagues who report two studies exam-
ining how curriculum changes affected classroom instruction in Chinese mathemat-
ics classrooms. In one study, they contrasted the tasks used in classrooms where a 
reform curriculum was implemented with those used in classrooms where a tra-
ditional curriculum was in place. They reported fi nding greater use of cognitively 
demanding tasks in the classrooms implementing the reform curriculum. In a subse-
quent study, they investigated how the use of such tasks infl uenced classroom dis-
course. The fi ndings of their study mirror those of other similar research, suggesting 
that cognitively demanding tasks are not self-enacting and that teachers may need 
assistance to learn to use them well to orchestrate productive classroom conversa-
tions that advance students’ mathematics learning. 

 Two other chapters focus on the teaching and learning of specifi c content. Oliveira 
and Mestre treat algebraic thinking in grade four mathematics. They describe how 
curriculum revisions were undertaken in Portugal to draw attention to relational 
thinking in the teaching of fourth-grade mathematics topics, such as computation 
strategies and problem solving. They also describe the issues that arose when the 
materials were implemented in a classroom. In another chapter, Huang and Li 
discuss the design features of the so-called exemplary lessons, focusing on an 
example tied to the mathematical topic of algorithms. They trace the learning of the 
teacher who developed the lesson and illustrate how the development of exemplary 
lessons is an approach that appears to be a feasible way to infl uence instruction in 
Chinese secondary schools. 

 Viewed individually, the chapters in this part offer useful cases to assist us in 
understanding the complex space of interaction between curriculum and instruction. 
Taken collectively, these chapters suggest some reasons for optimism that curriculum 

E.A. Silver



151

reform might be a successful strategy to employ as a means to achieve instructional 
change. They also remind us of the myriad issues that need to be considered and 
addressed in any such undertaking.     
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efforts to effectuate a change in mathematics education in that direction have 
not been very successful. This is illustrated by experiences in the Netherlands. 
In relation to this, the limitations of transforming education using textbooks and 
problems with up- scaling are discussed. To fi nd ways to address these problems, an 
inventory is made of what can be learned from decades of experimenting with 
reform mathematics education while trying to achieve the very goals that are 
discerned as crucial for the twenty-fi rst century. On the basis of this inventory, 
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        Introduction 

 The issue of how to transform mathematics education is more urgent than ever. 
In order to prepare the students for the twenty-fi rst century, a transformation of 
mathematics education is needed. This calls for a change towards a form of 
mathematics education that fosters abilities such as critical thinking, problem 
solving, collaborating, and communicating. In this chapter we address how such a 
radical change—which given its scope may truly be called a transformation—can 
be brought about. We will look at the role textbooks can play, and we will argue 
that changing the textbooks will not be suffi cient but will have to be complemented 
with extensive teacher education. We will discuss those issues on the basis of the 
history of RME in the Netherlands. To counter these diffi culties, we will inventory 
what can be learned from decades of experimenting with reform mathematics. 
Next, we will discuss how this can be worked out in textbooks and teacher 
professionalization. We will show that this requires a different kind of textbook; it 
calls for textbooks that offer more information about intended learning processes 
and the means by which these processes can be supported. We will further argue that 
adaptations of the underlying domain-specifi c instruction theory will be called for. 
Still, textbook changes will not be suffi cient. A large part of the critical points for 
successfully enacting reform mathematics will have to be addressed in teacher 
professionalization. Following Fullan ( 2006 ), we will argue that this calls for a 
setup in which teachers collectively work on improving their own practice. This in 
turn calls for a well-considered alignment of textbook design and teacher learning. 
We will start by illuminating the need for transformation by discussing the demands 
of the twenty- fi rst century.  

    The Need to Transform Mathematics Education 

 Today’s schools must prepare their students’ participation in the society of the 
twenty-fi rst century. However, they are currently failing in this endeavor. According 
to Tony Wagner ( 2008 ), there is a gap between what schools (in the USA) teach and 
what students will need to succeed in today’s global knowledge economy. He argues 
that “students are simply not learning the skills that matter most for the twenty-fi rst 
century” (ibid, 8–9). And he goes on to say that “Our system of public education—
our curricula, teaching methods, and the tests we require students to take—were 
created in a different century for the needs of another era. They are hopelessly out-
dated” (ibid, 8–9). The skills that current and future jobs require differ signifi cantly 
from what our current education system offers. New requirements emerge, inter 
alia, from the informatization of our society and the globalization of our economy—
today’s workers have to compete with other workers from all over the world. Wagner 
interviewed numerous CEOs of large companies and he found a strong communality 
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in what they look for in new employees; as one of them phrases it: “First and 
foremost, I look for someone who asks good questions” (ibid, 2). The underlying 
rationale is that these employees will have to function in dynamic organizations. 
Employees today continuously have to learn new things. From this perspective, 
asking the right questions is an important skill. In this respect, there is a huge gap 
between what society demands and what schools offer. Schools, Wagner (ibid) 
goes on to say, are not designed to teach students how to think. The reason for that, 
he argues, is that we as a society never asked schools to teach students to think. 
Prevailing mathematics and language education, for instance, focuses on skills, 
instead of understanding. This is refl ected in national tests that are not designed to 
assess the student’s ability to reason and analyze. Instead there is a tendency to 
limit tests even further to the so-called basics. Such is the case in the No Child 
Left Behind initiative in the USA, with detrimental effects (Ravitch  2010 ). 

 Along with the increase of the dynamics of the modern workplace, there is also 
a shift in the type of work people do. Empirical research by the economists Levy 
and Murnane ( 2006 ) shows that employment involving cognitive and manual rou-
tine tasks in the USA dropped between 1960 and 2000, while employment involv-
ing analytical and interactive nonroutine tasks has grown in the same period. This 
change especially concerned industries that rapidly automatized their production. 
Parallel to the development in industry, similar changes occurred in other areas 
where strong computerization took place. This change happened on all levels of 
education. Jobs with a high routine character are disappearing. Jobs that will be 
offering good prospects for the future are jobs which concern nonroutine tasks: 
tasks that require fl exibility, creativity, problem-solving skills, and complex com-
munication skills. Autor et al. ( 2003 ) refer to examples such as reacting to irregu-
larities, improving a production process, or managing people. The jobs of the future 
are the ones that ask for fl exibility, creativity, lifelong learning, and social skills. 
The latter are jobs that require communication skills, or face-to-face interaction—
such as selling cars or managing people. These changes do not only affect the 
decline or rise specifi c jobs; existing jobs are changing as well. Secretaries and bank 
employees, for instance, have gotten more complex tasks since word processors and 
ATMs have taken over the more simple tasks. 

 The effects of computerization and globalization overlap and reinforce each 
other (Friedman  2005 ). Routine tasks can easily be outsourced, since information 
technology enables a quick and easy worldwide exchange of information. Another 
effect of globalization is that it forces companies to work as effi cient as possible. 
This requires companies to immediately implement computerization and outsourc-
ing when it is economically profi table and strengthens the market position of the 
company. It also demands that the company be on the lookout for opportunities to 
improve effi ciency. As a consequence, working processes will have to be adapted 
continuously. This, in turn, puts high demands on workers, who have to have a cer-
tain level of general and mathematical literacy to be able to keep up. 

 In summary, we may conclude that schools will have to change to comply with 
the requirements imposed by a rapidly changing society. 
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 Wagner ( 2008 ) is not alone in his observations. Many initiatives evolved around 
twenty-fi rst century skills (see Voogt and Pareja Roblin  2010 , for a review 1 ). 
The frameworks that emerged from these projects all appear to strongly agree on 
the need for skills in the areas of communication, collaboration, ICT literacy, and 
social/cultural awareness. We may take Wagner’s ( 2008 ) list of “new survival skills” 
as an example:

    1.    Critical thinking and problem solving   
   2.    Collaborating and leading by infl uence   
   3.    Agility and adaptability   
   4.    Initiative and entrepreneurism   
   5.    Effective oral and written communication   
   6.    Accessing and analyzing information   
   7.    Curiosity and imagination    

  We may also follow Wagner (ibid) in arguing that the twenty-fi rst century skills 
are not just about employability. They will also have to include broader goals, such 
as becoming a responsible, active, and well-informed citizen. Wagner (ibid) typifi es 
this broader goal by asking if the students would eventually be well equipped for 
acting as a member of a jury within the US legal system: “Would they know how to 
distinguish fact from opinion, weigh evidence, listen with both head and heart, 
wrestle with the sometimes confl icting principles of justice and mercy, and work to 
seek the truth with their fellow jurors?” (Wagner  2008 , xvi–xvii).  

    Attempts to Transform Mathematics Education 

 We may observe, however, that calls for more emphasis on critical thinking, prob-
lem solving, collaborating, communicating, and so forth, are not new. Especially 
not in mathematics education (e.g., National Council of Teachers of Mathematics 
 1980 ; Freudenthal  1973 ). But attempts to change educational practices in schools 
in this direction have not been very successful. This also holds for the Netherlands 
and the approach that became known as Realistic Mathematics Education (RME). 
RME appears to offer a worked out theory of how to reconcile problem solving, 
communicating, and so forth with the need to achieve conventional goals in 
mathematics education. 

1   This concerned: the “Partnership for 21st century skills” (Partnership for 21st Century Skills  2008 ), 
“EnGauge” (North Central Regional Educational Laboratory and the Metiri Group  2003 ), 
“Assessment and Teaching of 21st Century Skills” (ATCS) (Binkley et al.  2010 ), “National 
Educational Technology Standards” (NETS) (Roblyer  2000 ), and “Technological Literacy for the 
2012 National Assessment of Educational Progress” (NAEP). 
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 RME came into being as a reaction to the failures of traditional mathematics 
education. In the 1960s, the students mainly learned rules, which they mixed up and 
could not apply properly. As an alternative, Freudenthal’s ( 1973 ) inspiring ideas 
about “mathematics as a human activity” and “guided reinvention” were elaborated 
as a long-term program of design research and educational development—with 
(what later became known as) the Freudenthal Institute at its center. Thanks to 
consistent government funding, the Freudenthal Institute was able to work on a 
coherent educational program for more than three decades. The instruction theory 
of realistic mathematics education, RME, has become well known internationally. 
At the moment, however, there is a critical discussion about the role of RME in 
Dutch schools (see, for instance, van den Heuvel-Panhuizen  2010 ). The discussion 
centers on the “what” and the “how” of mathematics education. Critics claim that 
there is not enough attention to the basic skills. They also disapprove of the guided 
reinvention approach that is employed, which is ineffective and confusing in 
their view. Protagonists of RME and their opponents seem to be trapped in a very 
unproductive deadlock. What is worse, this controversy has turned into a political 
battle, which stands in the way of a much needed discussion about how mathematics 
education should prepare students for the future. 

 How could RME become the object of rather fi erce attacks, after so many years 
of praise? 

 RME gained recognition in the international mathematics education commu-
nity on the basis of both scientifi c publications and the dissemination of prototypi-
cal courses and textbooks. A signifi cant drawback for this innovation in the 
Netherlands, however, was the lack of funding for in-service teacher education 
and the weakening of the position of mathematics education in the institutes for 
teacher education. This resulted in signifi cant discrepancies between RME theory 
and how teachers understood and enacted RME ideas (Gravemeijer et al.  1991 ). 
Over time, some in- service teacher education was granted by the government 
(van den Heuvel- Panhuizen and de Goeij  2007 ) but its scope was limited. Because 
of the limitations in preservice and in-service teacher education, the focus shifted 
towards the textbooks. Design research and professional instructional design 
led to increasingly more refi ned (prototypical) instructional sequences and cor-
responding local instruction theories. These smoother, more refi ned, instructional 
sequences—in which there was less need for problem solving—were worked 
into the textbooks in one form or another. The results of all this was put into 
question when a decline in the results of tests on multiplication and division 
was reported in a national survey at the end of primary school (Janssen et al. 
 2005 ). These results lead to publications in the media which criticized schools, 
today’s mathematics education, and the realistic approach. Then, even though the 
results on other topics in the same survey showed improvement, and Dutch stu-
dents still ranked rather high in international surveys such as TIMSS (Mullis 
et al.  2004 ) and PISA (OECD  2010 ), it must also be acknowledged that we did not 
see the overall improvement which was expected. We may argue that the Dutch 
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experience underscores the fact that there are serious limitations to conveying 
instructional approaches via textbooks, which is an issue that we will explore in 
more detail below.  

    Limits to Transforming Education by Textbooks 

 We may start by observing that there are various limitations to the effectiveness of 
teacher guides. In the 1980s, Westbury ( 1983 ) already pointed to the following 
obstacles:

 –    Teachers have to read the teacher guides.  
 –   They have to understand what they read.  
 –   They have to be willing to do what they understand.  
 –   They have to be able to do what they have understood.    

 In more modern terms, we may say that teacher guides are boundary objects 
(Akkerman and Bakker  2011 ). They are constructed in one community of practice 
(Wenger  1998 ), that of the instructional designers, and are to be used by teachers, 
who are part of a different community of practice. In this sense, the teacher guides 
cross the boundary between these two communities of practice, which have differ-
ent goals, different languages, and different frameworks of reference. The teacher 
guides are to convey knowledge constructed in the community of instructional 
designers, to teachers who are not part of that community and who were not involved 
in its development process. This creates the risk of misinterpretation. 

 We may argue that this problem has become more pressing in recent years. 
Whereas in the past, experienced teachers or headmasters could design textbooks on 
their own, drawing on years of practice, such experience is lacking in reform math-
ematics. Reform mathematics is rooted in the innovative ideas of scholars, which 
are elaborated on in experimental classrooms, or schools. Such experiments often 
form the basis for textbook design, in which teachers may participate but where the 
researchers usually take the lead—as is the case in the Netherlands and with the 
so- called NSF curricula in the USA. Consequently, the design of textbooks has 
become the work of experts, who have their background in educational research or 
teacher education. Moreover, the role of textbooks as boundary objects has become 
more problematic, since teacher guides have become conveyers of curriculum inno-
vation, as the teacher guides have to convey to the teachers how to enact innovative 
ways of teaching. However, the complexity of interactive, problem-centered math-
ematics education, and the corresponding teaching skills, is overwhelming. Teachers 
have to fi nd a way to cope with, and productively use, a variety of solutions and 
other input of students. They have to reconcile the tension between consolidating 
and expanding while keeping an eye on the long-term goals that transcend their own 
classroom. In the light of the above, it may not come as a surprise that the RME 
innovation in Dutch schools was not as successful as one hoped for—especially 
since the necessary teacher education was failing.  
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    Pitfalls of Curriculum Innovation 

 In sum, we may conclude that the innovators at the Freudenthal Institute underesti-
mated the diffi culty of curriculum innovation. In this respect, we may hark back to 
the admonition of Dewey, which was repeated by Ann Brown ( 1992 , 172):

  To say the least, it is a cautionary note for contemporary designers that Dewey ( 1901 ) a 
century ago warned that educational reform would not be easy to engineer. Dewey’s 
description of cycles of innovation and resistance sounds uncannily like Cunban’s ( 1984 , 
 1990 ) contemporary Cassandra bulletins. First comes unrest concerning the schools and 
how they operate, followed by fervent claims and promises from reformers. Intensive 
research by the converted is then carried out in a small set of classrooms rich with human 
and, today, technological resources. “The victory is won and everybody—unless it is some 
already overburdened and distracted teacher—congratulates everybody else that such steps 
can be taken” (Dewey  1901 , p. 334). But then come the frustrated attempts by ordinary 
teachers to adopt the new methods in absence of support, followed by the inevitable decline 
in use, and the eventual abandonment of the program. As Dewey argued, “within a short 
time, complaints are heard that children do not read well,” “or a public outcry calls for the 
reforms to be rescinded in favor of the status quo.” One major question facing contemporary 
designers is how to avoid repeating the Cuban-Dewey cycle: exhilaration, followed by 
scientifi c credibility, followed by disappointment and blame. 

       What Does It Take to Transform Mathematics Education? 

 In refl ecting on the challenge posed by the “Cuban-Dewey cycle,” we may ask 
ourselves what one could do to make the envisioned reform in mathematics education 
more successful. In doing so, we want to broaden the discussion to what we may 
call “reform mathematics.” From the 1970s onwards, we have seen a shift in think-
ing about education in the educational research community, from “instruction” 
towards “construction.” The accepted view today is that knowledge cannot be trans-
mitted but that students have to play an active role in constructing their own knowl-
edge. It is this idea of students constructing their own knowledge that calls for 
problem-centered interactive mathematics education, of which RME is an example 
and which we will refer to as “reform mathematics,” or “inquiry mathematics” in 
the following. 

 When considering the question, “How to make the reform in mathematics educa-
tion more successful?” it may be argued that the research literature on “reform 
mathematics” offers many useful insights. In the following, we will list what we 
believe are the most critical aspects, in order to create a basis for considering 
what role textbooks and teachers may play in transforming mathematics education. 
In this respect, we discern the following critical points concerning the enactment of 
reform mathematics (Gravemeijer  2012 ):

•    Social norms and socio-mathematical norms  
•   Task orientation  
•   Mathematical interest  
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•   Topics for discussion  
•   Hypothetical learning trajectories  
•   Local instruction theories  
•   Symbolizing and modeling  
•   Vertical mathematization    

    Social Norms and Socio-mathematical Norms 

 Research shows that students do not easily engage in problem solving and reasoning 
in regular classrooms (Desforges and Cockburn  1987 ). Cobb and Yackel ( 1996 ) 
argue that this is not surprising, because students are often familiar with a classroom 
culture in which the classroom social norms are that the teacher has the right 
answers, the students are expected to follow given procedures, and correct answers 
are more important than the student’s own reasoning. In this type of classroom, 
teachers usually ask questions to which they already know the answer. Apart from 
being used to this situation, students have learned what to expect and what is 
expected from them. In relation to this, Brousseau ( 1988 ) speaks of an implicit 
“didactical contract.” It is signifi cant, however, that the students have learned this by 
experience, not from a teacher who told them so. The basis of the traditional school- 
math social norms is that the students have to come to grips with knowledge the 
teacher already has. The teacher’s role is to explain and clarify; the students’ role is 
to try to fi gure out what the teacher has in mind. The reform mathematics social 
norms are completely different; here, the students have to fi gure out things for them-
selves, and instead of giving them answers, the teachers may ask them new ques-
tions. Students in these classrooms are expected to work together as a research—annex 
learning—community. To make this happen, the students have to adopt classroom 
social norms that fi t an inquiry-oriented classroom culture. These encompass the 
obligation to explain and justify one’s solutions, to try and understand other stu-
dents’ reasoning, and to ask questions if one does not understand, and challenge 
arguments one does not agree with. 

 Since the aforementioned classroom norms are not specifi c to mathematics, the 
teacher also has to establish socio-mathematical norms (Cobb and Yackel  1996 ), 
which relate to what mathematics is. This is expressed in norms about issues such 
as what counts as a mathematical problem, what counts as a mathematical solution, 
and what counts as a more sophisticated solution. In regard to the latter, we may 
argue that socio-mathematical norms lay the basis for the intellectual autonomy of 
the students (Kamii et al.  1993 ), as it enables them to decide for themselves which 
solutions are more sophisticated—and thus represent mathematical progress. Mark 
that this does not mean that the teacher has no authority at all. On the contrary, the 
teacher is the one who determines what it means to learn mathematics in this class-
room. The teacher determines what mathematics is, what mathematical arguments 
are, and so forth. In addition, the teacher guides and supports the process by posing 
tasks, framing topics for discussion, orchestrating discussions, and, when needed, 
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making connections with the mathematical conventions and practices of the wider 
community. 

 The shift from school-math norms towards inquiry-math norms takes some 
conscious effort. Just telling the students that the expectations and obligations 
have changed will not bring the change about. The students have (unconsciously) 
appropriated the school-math norms from experiencing school-math classrooms. 
It is therefore important that they experience that other behaviors are valued 
(Yackel  1992 ). To establish new social norms, the teacher has to convince the 
students that what is valued and what is rewarded has changed. One way to do so is 
to use concrete instances of infringements on the new norms or exemplary behavior 
as opportunities to clarify the norms.  

    Task Orientation 

 In addition to appropriating inquiry-based norms, students also have to be willing to 
invest effort in solving mathematical problems, discussing solutions, and discussing 
the underlying ideas. Students may engage in learning activities for different rea-
sons. The attitude of students in a mathematics classroom can be broadly divided in 
two categories,  ego orientation  and  task orientation  (Jagacinski and Nicholls  1984 ). 
Ego orientation implies that the student is very conscious of the way he or she might 
be perceived by others. Ego-oriented students are afraid to fail, or to look stupid in 
the eyes of their fellow students, or the teacher. As a consequence, they may choose 
not to even try to solve a given problem in order to avoid embarrassment. Task ori-
entation on the other hand implies that the student’s concern is with the task itself 
and on fi nding ways of solving that task. Mark that task orientation and ego orienta-
tion can be infl uenced by teachers. Research done by Cobb et al. ( 1989 ) shows that 
a classroom culture that emphasizes individual growth, on the one hand, and the 
development of mathematical understanding as a collaborative endeavor, on the 
other hand, may foster the task orientation of the students.  

    Mathematical Interest 

 In connection with student motivation, we may add that next to “pragmatic interest,” 
which realistic problems appeal to, students will also have to develop “mathemati-
cal interest” (Gravemeijer and Van Eerde  2009 ). This concerns the preparedness of 
the students to investigate solution procedures, concepts, and so on, from a pure 
mathematical perspective. This is a necessary condition for construing more sophis-
ticated mathematics. Mathematical interest will rarely come naturally but instead 
has to be cultivated by the teacher via questions such as the following: What is the 
general principle here? Why does this work? Does it always work? Can we describe 
it in a more precise manner? We may assume that the teacher can foster the 
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students’ mathematical interest by making mathematical questions a topic of 
conversation and by showing a genuine interest in the students’ mathematical 
reasoning. We may add that mathematical interest is not only a prerequisite for 
reinvention on the part of the students but also is an important goal in and of itself. 
If we succeed in helping students develop mathematical interest, they may be much 
better prepared for further education and for participating in the society of the 
twenty-fi rst century.  

    Topics for Discussion 

 Another essential role of the teacher concerns the orchestration of productive whole- 
class discussions. In doing so, the teacher has to build on the input of the students. 
Cobb ( 1997 ) argues that this should not take the form of working towards the fastest 
or most sophisticated solution. Instead, the teacher has to identify the differences in 
mathematical understanding which underlie the variation in student responses. 
Next, he or she has to frame these underlying mathematical issues as topics for 
whole-class discussions. Then, he or she must orchestrate a productive whole-class 
discussion on those topics in order to foster higher levels of mathematical 
understanding. 2   

    Hypothetical Learning Trajectory 

 Planning instruction in reform mathematics is rather complicated since it is assumed 
that teachers can infl uence their students’ knowledge construction only in an indi-
rect manner. To design instructional activities that may foster the intended learning 
processes, the teacher has to try to anticipate how the students might think. In this 
manner, the teacher can plan instructional activities which may foster the mental 
activities of the students that fi t his or her pedagogical agenda. In relation to this, 
Simon ( 1995 ) speaks of a hypothetical learning trajectory, which encompasses a 
consideration of the mental activities the students might engage in as they participate 
in the envisioned instructional activities and how these mental activities relate to the 
chosen learning goal. Complementary to anticipation, the hypothetical learning 
trajectory also requires evaluation. The teacher has to investigate whether the thinking 

2   In a similar feign, Stein et al. ( 2008 ) discern practices for promoting productive disciplinary 
engagement, which are related to identifying, framing, and discussing mathematical issues. 
Although a difference may be that Stein et al. ( 2008 ) seem to try to address both mathematical 
ideas and the solution strategies of the students, Cobb ( 1997 ) emphasizes the mathematical 
issues that underlie student solutions and tries to steer away from a focus on solution strategies 
as such. 
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of the students actually evolves as the conjectured learning trajectory predicted. 
On the basis of this investigation, the teacher has to decide on the  continuation, 
which may involve adjusting or revising the learning trajectory.  

    Local Instruction Theory 

 To support teachers in designing, evaluating, and adapting HLTs, textbooks may 
offer a set of exemplary instructional activities that can be used to teach a certain 
topic (such as, for instance, fractions, long division, or data analysis) and a ratio-
nale or local instruction theory (Gravemeijer  2004 ) that underpins it. In recent 
years, ideas similar to that of a local instruction theory have received growing 
attention as means for supporting teachers. Simon’s ( 1995 ) notion of a hypotheti-
cal learning trajectory has been expanded by several authors. Nowadays, the 
appellatives, learning trajectory, and learning progressions are used to describe 
the trajectory for a given topic (Clements and Sarama  2004 ; Confrey et al.  2009 ; 
Daro et al.  2011 )—which refl ects the fact that the work on developing learning 
trajectories, learning progressions, or local instruction theories is much broader 
than that of the RME community. The different names come, of course, with sub-
tle differences in meaning, but we will not elaborate upon this here. In this chapter 
we will take the way the idea of a local instruction theory worked out in RME as 
our framework of reference. In this respect, we discern three levels, the level of 
the domain-specifi c instruction theory for a given domain, such as mathematics; 
the level of the local instruction theory for a given topic, such as multiplication of 
fractions or addition and subtraction up to 100; and the level of the hypothetical 
learning trajectory, concerning one or two lessons. The local instruction theory 
then consists of a theory about a possible learning process for a given topic 
and theories about the means of supporting that process. The latter also encom-
passes the required classroom culture. The local instruction theory may be used 
by a teacher as framework of reference when designing HLTs tailored to his or her 
classroom at a given moment in time. Mark that local instruction theories differ 
signifi cantly from the content of conventional teacher guides. The local instruc-
tion theories do not comprise scripted lessons. Instead, local instruction theories 
offer frameworks of reference for designing hypothetical learning trajectories. 
For—even with local instruction theories available—teachers will still have to 
construe their own hypothetical learning trajectories. Each hypothetical learning 
trajectory will have to be tailored to the actual situation of  this  teacher,  these  stu-
dents, and at  this  moment in time. 

 Signifi cant teacher learning will be required to support teachers in getting a 
handle on how to design hypothetical learning trajectories for their own classrooms. 
This was one of the stumbling blocks in the Netherlands; the limited opportunities 
for teacher professionalization pushed textbook authors into trying to translate local 
instruction theories into detailed series of instructional activities and extensive 
teacher guides—which, in effect, impeded the reform.  
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    Symbolizing and Modeling 

 From the perspective of teachers and instructional designers, it makes perfect 
sense to try to develop “transparent” models that make abstract mathematical 
knowledge apprehensible for students. They see their mathematical knowledge 
refl ected in the models. They see their knowledge of the decimal system, for 
instance, refl ected in base-ten MAB blocks. For students, however, the MAB 
blocks are just wooden blocks (see for instance Labinowics  1985 ). We cannot 
expect the students to see more sophisticated mathematics in such concrete models 
than the mathematics they have already acquired. This raises the question of  how  
students are to learn abstract mathematics from concrete external representations. 
This problem is known as the “learning paradox” (Bereiter  1985 ), which Cobb 
et al. describe as:

  (T)he assumption that students will inevitably construct the correct internal representation 
from the materials presented implies that their learning is triggered by the mathematical 
relationships they are to construct before they have constructed them. (…) How then, if 
students can only make sense of their worlds in terms of their internal representations, is it 
possible for them to recognize mathematical relationships that are developmentally more 
advanced than their internal representations? (Cobb et al.  1992 , p. 5) 

   We may try to circumvent the learning paradox by aiming at a dynamic process 
of symbolizing and modeling, within which the process of symbolizing and the 
development of meaning are refl exively related (Meira  1995 ). This approach is 
elaborated in the so-called emergent-modeling design heuristic (Gravemeijer  2004 ). 
The idea is that students start with modeling their own informal mathematical activ-
ity. Then, in the process that follows, the character of the model is meant to change 
for the students. Initially the students think in terms of the context within which the 
problem is posed. Under the guidance of the teacher, their attention should shift 
towards the mathematical relations involved. Then the students may begin to con-
struct a network of mathematical relations, which can give new meaning to the 
model: on the basis of which the model can become a model for more formal math-
ematical reasoning. Mark that the model we are referring to is more an overarching 
concept than one specifi c model. In practice, “the model” in the emergent-modeling 
heuristic is actually shaped as a series of consecutive  sub-models  that can be 
described as a cascade of inscriptions or a chain of signifi cation (Whitson  1997 ). 
From a more global perspective, these sub-models can be seen as various manifesta-
tions of the same model. It may be added that due attention should be given to 
whether the actions with a new sub-model signify earlier activities with earlier sub- 
models for the students. 

 We may observe, however, that advancing learning processes in which symbol-
izing and meaning coevolve is not on the agenda of textbook authors and teachers. 
While we argue such an effort is needed, textbook authors will have to lay out the 
routes along which a dialectic processes of symbolizing and developing meaning 
may be brought about, whereas teachers will have to develop the skills needed to 
guide such processes effectively.  
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    Vertical Mathematization 

 The presumption of reform mathematics is that students will be able to construct more 
abstract, conventional mathematics, when they are supported in building upon their 
informal situated knowledge. In relation to this, we speak of vertical mathematization, 
which may evolve on different levels. Tzur and Simon ( 2004 ) recently showed how 
abstracting new mathematical conceptions can be understood on a microlevel as a 
mental mechanism of refl ection on activity-effect relationships. On a macrolevel, 
we may speak of progressions from informal situated knowledge to more formal 
mathematical knowledge in which mathematical processes are reifi ed (Sfard  1991 ). 

 Recent research in the Netherlands, however, showed that, even though such 
long-term vertical mathematizating processes are a core element of RME, they are 
in fact not supported by Dutch textbooks. A number of studies revealed that infor-
mal solution procedures were treated as end goals in Dutch textbooks in the case of 
subtraction up to 100 (Kraemer  2011 ), multiplication of fractions (Bruin-Muurling 
 2010 ), and linear equations (van Stiphout  2011 ), and the shift towards more formal 
mathematics was neglected. We may take this as a warning that we, as mathematics 
educators, run the risk of taking the progression towards higher levels of mathemat-
ics for granted too easily. Helping students in generalizing over informal solution 
procedures may take substantial effort. On the one hand, informal solution proce-
dures have to be grounded in the students’ experiential reality, while, on the other 
hand, students have to transcend the specifi city of the informal solution procedures 
to construct more general, more formal, ways of thinking. Moreover, students may 
spontaneously generalize in directions which are at odds with the intended mathe-
matization towards more abstract mathematics (Magidson  2005 ). Students will have 
to be supported in refl ecting on the mathematical coherence that underlies the vari-
ous solution procedures. Investigating how they relate mathematically may help 
them to construct mathematical conceptions on a higher level. Surely the aforemen-
tioned strategies such as cultivating mathematical interest and framing mathemati-
cal issues as topics for discussion will come into play here.   

    Revisiting Textbooks as Means of Support 
for Transforming Math. Ed. 

 The critical points we identifi ed above may be addressed in teacher education 
and instructional design. 3  Especially important are establishing inquiry-oriented 
social norms and socio-mathematical norms, fostering task orientation, cultivating 

3   In relation to this we may point to a study by Tarr et al. ( 2008 ), which showed that NCTM 
Standards-based learning environments positively impact achievement on performance assess-
ments tests that measure mathematical reasoning, problem solving, and communication, as well as 
profi ciency in skills and procedures, but only when coupled with a curriculum that is designed to 
embody this pedagogical orientation. In particular, when teachers of NSF-funded curricula were 
enacting the curriculum as intended by the authors, student achievement was compelling. 
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 mathematical interest, identifying and framing topics for discussion, orchestrating 
productive whole-class discussions, and designing and evaluating hypothetical 
learning trajectories, typically belonging to the domain of teacher education. Local 
instruction theories, however, may be addressed in instructional design. This will 
require a new way of arranging textbooks. The scripted character and the ready-
made tasks of conventional textbooks limit teachers in adapting to their students’ 
reasoning. Instead, textbooks will have to inform teachers about local instruction 
theories and explicate what mental activities hypothetical learning trajectories have 
to focus on. Mark that in our conception, local instruction theories are tied to a 
domain-specifi c instruction theory, such as RME. We may add that there is a refl ex-
ive relation between the domain-specifi c instruction theory and the local instruction 
theories. In fact, the RME theory was initially construed on basis of a refl ection on 
many local instructional designs (Treffers  1987 ). Thus, the local instruction theories 
inform the domain-specifi c instruction theory, and the domain-specifi c instruction 
theory informs the design of local instruction theories. This also implies that the 
domain- specifi c instruction theory is dynamic, and we may argue that the original 
RME theory has to be adapted to tailor it to the goals of the twenty-fi rst century—a 
process which is already under way. 

 RME originates from the 1970s and was designed to fi t the then contemporary 
curriculum goals in the Netherlands, in which basic skills and algorithms formed 
the core. The bulk of the design work concerned the reinvention of the written 
algorithms and routines for operations with fractions, decimals, and percentages. 
In relation to this, progressive mathematizing is often transformed into progressive 
schematizing (Treffers  1987 ). A curriculum that is tailored to the twenty-fi rst cen-
tury will not only have to address the so-called twenty-fi rst century skills but will 
also have to aim at other mathematical goals. Flawless execution of the written 
algorithms will be of less importance, since we may leave this kind of work to 
machines. Having a good understanding of how and why these algorithms work will 
stay important, however. Moreover, the students will have to be fl exible with num-
ber relations, approximations, and applications. Furthermore, students will have to 
understand the mathematical processes involved in the way computers transform 
everyday-life phenomena into quantitative information in order to get a handle on 
what computers and computerized appliances do and how they can be put to use. 
What is important here is a conceptual understanding of variables, covariation, 
graphs, measuring, and statistics (Gravemeijer  2010 ; Hoyles et al.  2010 ). Apart 
from the change in content, this also implies a shift from routine, procedural skills 
to mathematical reasoning on a more general level. This has consequences for 
RME theory. 

 We may illustrate this with the view of modeling. In the approach of Treffers 
( 1987 ), the emphasis is on schematizing and stepwise shortening solution proce-
dures. In a twenty-fi rst century approach, more attention will be given to the con-
ceptual aspects of modeling. In this respect, the emergent modeling design heuristic 
may be seen as exemplary (Gravemeijer  2004 ). Here, the goals are cast in terms 
of a framework of mathematical relations. Students are expected to construct 
some new mathematical realities, in a process in which the means of symbolizing 
they use and the meaning of what these symbolizations signify for them coevolve. 
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This implies that, rather than the effi ciency of the solutions, the underlying mathe-
matical issues should be framed as topics for whole-class discussion. 

 It may be noted that this increased emphasis on conceptual aspects, in and of 
itself, calls for textbooks in which more information is given about the underlying 
theories than is common in current textbooks. In addition, textbooks will have to 
contain exemplary instructional activities. In this respect, information technology 
may be used to create tasks which can be adjusted by the teacher. Further, the 
textbooks may be accompanied by computers (and other) tools. 

 Mindful of the warnings of Dewey ( 1901 ), however, we have to acknowledge 
that disseminating new textbooks will surely not be suffi cient. Thus, the introduction 
of new textbooks will have to be accompanied by fi tting preservice or in- service 
teacher education. Given the fact that the infl ow of new teachers is relatively small 
compared to the total number of teachers, the bulk will have to be in in-service 
teacher education, or teacher professionalization. Given what we know of the latter, 
special care will have to be taken on this aspect as well. 

    Enactment and Teacher Professionalization 

 History shows that curriculum innovation is very hard. Fullan ( 2006 ), who spent 
several decades on studying curriculum innovation, observes that most curriculum 
innovations leave very few traces. In his view, the main reason for this lack of effect 
is that in-service teacher education usually does not affect what teachers do in their 
own classrooms. In-service teacher education courses are usually given in classes at 
the university, and teachers may try to enact what they have learned in their own 
classrooms. The problem, however, is that teachers do not get feedback on what 
they do in their own classrooms. Thus, when teachers try to enact what they have 
learned from the in-service courses in their own classroom, there is no way they can 
know if what they do corresponds with what was intended. In Fullan’s (ibid) eyes, 
the lack of feedback is not only a problem with in-service courses but is a more 
broad obstacle for teacher professionalization or innovation. Since, in general, 
teachers are not visited in their classrooms, they do not get feedback on their teaching 
practice. This does not only mean that they are not corrected; it also means that they 
also do not get positive feedback on what they do well.

  “The problem [is that] there is almost no opportunity for teachers to engage in continuous 
and sustained learning about their practice in the settings in which they actually work, 
observing and being observed by their colleagues in their own classrooms and classrooms 
of other teachers in other schools confronting similar problems of practice. This disconnect 
between the requirements of learning to teach well and the structure of teachers’ work 
life is fatal to any sustained process of instructional improvement.” (Elmore cited by 
Fullan  2006 , p. 12) 

   Fullan ( 2006 ) therefore advocates the creation of a culture of collective professional 
learning, within which teachers can individually and collectively work on the process 
of improving their way of working in the classroom. This could be done by creating 
professional communities of teachers that aim to investigate their teaching and 
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improve their instructional practice. Here we may think of the Japanese lesson- 
study model that is promoted by Hiebert and Siegler (Hiebert et al.  2002 ). 

 The professional learning that will be needed encompasses pedagogical content 
knowledge (Shulman  1987 ), beliefs (Thompson  1984 ), and the ability to enact the 
intended pedagogy. In respect to the fi rst, one of the challenges will be to enable 
(prospective and practicing) teachers to design hypothetical learning trajectories on 
the basis of (externally developed) local instruction theories and resource materials. 
Ideally, teachers should be given the opportunity to experience the learning process 
that the designer/researcher of the local instruction theory went through by some 
form of reinvention. Solving sequence related problems, anticipating solutions of 
primary or secondary school students, analyzing student work and teaching epi-
sodes, and such could be the constituents of such a reinvention process (Fosnot 
 2003 ). Moreover, the combination of refl ection on your own solution procedures in 
connection with what Stephan et al. ( 2014 ) call, “engaging in the act of listening 
hermeneutically” to students may have a profound infl uence on their ideas about 
how students learn, which may be a catalyst for infl uencing teachers’ beliefs. 
Building on that, teachers will have to be made familiar with the overall educational 
philosophy that underlies the local instruction theories and come to grips with key 
principles—which for RME concern mathematics as an activity, guided reinvention, 
didactical phenomenology, and emergent modeling (Gravemeijer  2008 ). 

 Following the aforementioned reasoning of Fullan ( 2006 ), it is clear that devel-
oping knowledge and adopting new beliefs will not be suffi cient. In order to reorga-
nize their instructional practices, teachers need feedback when they try to enact 
those practices. If we want to be successful in fostering a substantial innovation of 
the actual educational practice in schools at a scale, we will have to look for ways 
of facilitating and supporting groups of teachers who collectively work at improv-
ing their teaching practice. Here we may build on work that has been done with the 
lesson-study model by Hiebert and Stiegler (Hiebert et al.  2002 ) and on experiences 
with individual approaches, such as cognitive apprenticeship (Stephan et al.  2014 ) 
and coaching (Hoek and Gravemeijer  2011 ). As a last caveat, we want to point to 
another layer of complexity, which concerns the larger scale of schools and school 
systems. Improving the quality of mathematics education on scale requires, among 
others, a shared, coherent vision of high-quality instruction throughout the whole 
system (Cobb and Jackson  2011 ). 

 In light of the above, we may argue that we may have to take the adaptation of 
textbook design even further and start thinking about how resources such as text-
books may function within a professional learning community of teachers and even 
about designing resources for supporting such communities.   

    Conclusion 

 In order to prepare today’s students for the twenty-fi rst century we will have to 
transform mathematics. The change that is needed concerns a shift towards general 
educational goals such as critical thinking, problem solving, collaborating, and 
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communicating, which fi t the changes that are advocated for in mathematics education. 
However, this type of innovation proved to be very hard to achieve, while the power 
of textbooks to support educational change is limited. Thus, a combination of text-
book design and teacher professionalization will have to be employed to achieve the 
necessary transformation of mathematics education. Based on the inventory we 
made of what can be learned from decades of experiments with reform mathemat-
ics, we conclude that textbooks will have to be adapted to include information about 
learning processes and means of supporting those learning processes. That is to say, 
textbooks will have to convey information about local instruction theories, which 
are embedded in a domain-specifi c instruction theory. RME may function as such a 
domain-specifi c instruction theory, although RME theory itself has to evolve to fi t 
the goals of the twenty-fi rst century. These textbooks will have to be accompanied 
by teacher professionalization, in which teachers collectively invest in improving 
their own teaching. Here, the lesson-study model may function as a paradigm. 
Issues that will have to be addressed are establishing inquiry-oriented social norms 
and socio-mathematical norms, fostering task orientation, cultivating mathematical 
interest, identifying and framing topics for discussion, orchestrating productive 
whole-class discussions, designing and evaluating hypothetical learning trajectories 
on the basis of local instruction theories, guiding symbolizing and modeling, and 
carrying vertical mathematization through until the level of more sophisticated 
mathematics is reached. Given the complexity of such an operation, it may be 
argued that textbook design and professionalization will have to be carefully aligned 
to be successful. As a fi nal note, we stress that the teacher has a pivotal role in this 
process and that teacher ownership is crucial to teacher learning. This points to a 
third requirement for transforming mathematics education, getting the teachers on 
board. And given the position of teachers and schools in our society, this means that 
one of the preparatory steps we as mathematics educators will have to take is to try 
to convince the wider society of the need to transform mathematics education.     
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    Abstract     This chapter intends to illustrate and discuss one developmental project 
in the context of basic education curriculum changes concerning the early introduc-
tion of algebraic thinking on classroom instruction in one fourth grade class. From 
a more general point of view, this discussion centers on the relationship between the 
offi cial, planned, enacted, and learned curriculum. Different aspects of these dimen-
sions of the curriculum are exemplifi ed from the analysis of some mathematical 
tasks and instances of the mathematical communication processes that took place in 
the classroom throughout one school year. 

 The progress made by the students reveals that the curricular guidelines have 
several characteristics that altogether contribute to accomplish the general curricu-
lum goal of students’ algebraic thinking development: conceiving early algebra as 
the development of a way of thinking that links arithmetic to algebra, underlying the 
need to work with valuable mathematical tasks in the classroom, and fostering the 
students’ mathematical communication. However, we contend that the learned cur-
riculum was possible by the project characteristics, where the enacted curriculum 
refl ects the specifi city of the class we have been working with.  

  Keywords     Algebraic thinking   •   Curriculum changes   •   Classroom instruction   • 
  Dimensions of the curriculum   •   Mathematical communication   •   Mathematical tasks   
•   Elementary grades  

        Opportunities to Develop Algebraic Thinking 
in Elementary Grades Throughout the School 
Year in the Context of Mathematics 
Curriculum Changes 

              Hélia     Oliveira      and     Célia     Mestre    

        H.   Oliveira      (*) 
  Institute of Education ,  University of Lisbon ,   Alameda da Universidade , 
 1649-013 Lisboa ,  Portugal   
 e-mail: hmoliveira@ie.ulisboa.pt  

    C.   Mestre      
  Research Unity of the Institute of Education ,  University of Lisbon , 
  Alameda da Universidade ,  1649-013 Lisboa ,  Portugal   
 e-mail: celiamestre@hotmail.com  

mailto:hmoliveira@ie.ulisboa.pt
mailto:celiamestre@hotmail.com


174

        Introduction 

 Algebra has been traditionally conceived in the mathematics curriculum of several 
countries as a theme that is introduced to students by the age of 12 or 13. The basic 
education curriculum (grades 1–9) that began to be implemented in some Portuguese 
schools in the 2009/2010 school year and in every school around the country in the 
subsequent year brought different perspectives on what algebra is, how should 
it be taught, and when to start its teaching. This mathematics curriculum (ME 
 2007 ) introduces the idea of algebraic thinking as a main goal for students, favoring 
the connection between arithmetic and algebra, starting in the fi rst 4 years of 
schooling. 

 Another signifi cant innovation in this curriculum (ME  2007 ) is the integration 
of three learning objectives, designated as transversal capacities: problem solv-
ing, mathematical reasoning, and mathematical communication. To develop these 
capacities, the curriculum materials emphasize the need to present challenging 
mathematical tasks and to develop new approaches in the classroom, namely, 
 giving students the opportunity to communicate and discuss their ideas with the 
teacher and with their peers. 

 An important movement in mathematics education has been advocating a 
view of algebra as a strand in the curriculum (NCTM  2000 ) starting in the early 
years. Often referred to as  early algebra , this vision for the curriculum has the 
potential to unify the existing mathematics curriculum into a more connected 
mathematical experience for students (Kaput et al.  2008 ). These ideas stimulated 
us to develop a project with one fourth grade class that seeks to fi nd new ways 
for “students to work with several layers of awareness of generality in all areas 
of their mathematics curriculum prior to any formal introduction to algebra” 
(Britt and Irwin  2011 , p. 153). This project intends to promote the development 
of students’ algebraic thinking, and at the same time to contribute to the improve-
ment of students’ number sense, which is a main learning objective for the fi rst 4 
years of schooling (ME  2007 ). 

 These are important curriculum goals that represent a great challenge to teach-
ers of these grades who are generalists and for whom these are relatively far-
fl ung ideas in contrast to their current practices. In fact, the class in this study had 
supposedly started to work according to these new curriculum perspectives in the 
previous year, and yet, in the beginning of the project, it was evident that the 
promotion of algebraic thinking was not present in students’ previous mathemat-
ical activities. 

 The objective of this chapter is to discuss the impact of the basic education cur-
riculum changes concerning the early introduction of algebraic thinking on class-
room instruction in one fourth grade class, through a collaborative developmental 
project for one school year. From the analysis of the project’s development, cen-
tered on some mathematical tasks’ examples proposed to primary students and the 
subsequent classroom activity, we discuss the relationship between the offi cial, 
planned, enacted, and learned mathematics curriculum.  
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    Different Dimensions of the Curriculum 

 There is a growing interest in mathematics education in understanding the relationship 
between the offi cial curriculum and the implemented curriculum or enacted curricu-
lum: for instance, how teachers interpret and adapt the curriculum materials and its 
implications for students’ learning (Lloyd et al.  2009 ). According to Remillard and 
Heck ( 2010 ), the mathematics curriculum can be regarded “as a plan for the experi-
ences that learners encounter and the actual experiences designed to help them reach 
specifi ed learning goals” (p. 2). When curriculum reforms take place, the “plan” might 
change dramatically, compelling the teachers to design new “actual experiences” for 
students. In effect, the learning that takes place in the classroom is mediated by the 
actions of the teacher and the curricular materials that are provided. 

 In this chapter, we consider the curriculum in a broad sense to include the follow-
ing dimensions: the offi cial or written curriculum as well as other materials that 
have been produced in association with the designated curriculum to assist teachers 
in its implementation; the intended curriculum, which includes the teacher’s plan-
ning (written and/or mental) of the lessons, as well as the resources he/she prepares 
for the class; the  enacted  curriculum, the one that effectively takes place, by the 
interaction between the teacher and the students and between the students and the 
resources; and fi nally, the  learned  curriculum, what the student effectively learns. 

 This way of conceiving the curriculum, which recognizes its different dimen-
sions, brings to the forefront the role of the teachers in relation to the curriculum. In 
particular, we may consider three main perspectives of the teachers’ role: as primary 
“implementers” of the curriculum materials, as experimenters who constantly mod-
ify curriculum materials, and as collaborators who take part in the production and 
testing of curriculum materials (Ziebarth et al.  2009 ). However, these authors recog-
nize that each teacher may assume different roles in the curriculum development 
and that these should be better regarded “as points on a continuum” (p. 173). In fact, 
in different moments or contexts, the teacher may have different levels of participa-
tion in the development of the intended curriculum: for instance, by the type of 
utilization he/she does of curriculum materials. 

 In respect to the recent curriculum in Portugal (ME  2007 ), some materials were 
produced in articulation with the offi cial curriculum, to support teachers in its 
implementation. The materials produced to support the curriculum ideas in algebra 
explain the foundation to the big ideas in this theme and propose mathematical tasks 
to use with students. However, that document does not have a textbook style, as it 
leaves to the teacher the task of defi ning the intended curriculum, especially in a 
transversal theme like algebraic thinking in the fi rst grades. 

 By the other side, in general, there is a strong adherence to textbooks by the teach-
ers. Each textbook entails a particular perspective concerning the program and there-
fore displays different versions of the intended curriculum: but even then it is not clear 
how the teacher will interpret it. The discussion of these issues is relevant for under-
standing the context where the present reform of the Portuguese mathematics curricu-
lum occurred, and the possibilities for a real impact on classroom instruction.  

Opportunities to Develop Algebraic Thinking



176

    The Mathematics Curriculum for Basic Education 

 In different countries such as China, Singapore, Turkey, or the USA, the  mathematics 
curriculum has been changing, establishing new focuses on the mathematical con-
tent to be taught and learned as well as on the instructional approaches to be devel-
oped (Hirsch and Reys  2009 ; Fan and Zhu  2007 ; Kulm and Li  2009 ; Zembat  2010 ). 
This has also happened in Portugal, where the previous mathematics curriculum 
dated back to 1991. The new curriculum (ME  2007 ), introduced as a reformulation 
of the previous, actually presents important new ideas about the teaching and 
learning of algebra, specifi cally the notion of algebraic thinking that is presented as 
a capacity to be developed in students from the early years of schooling. This 
curriculum also presents new perspectives concerning the development of students’ 
capacities, besides the mathematical content knowledge, and suggests metho-
dological approaches to teaching in order to fulfi ll the learning objectives. We will 
expand these ideas in the following Sections. 

    Algebra in the Curriculum 

 The mathematics curriculum for basic education in Portugal (ME  2007 ) presents 
four main axes for mathematics teaching and learning: working with numbers and 
operations, algebraic reasoning, geometric thinking, and working with data. In the 
fi rst 4 years of schooling (First Cycle), there is a big emphasis on the work with 
numbers and operations in the perspective of developing students’ number sense 
and mental computation. There are suggestions for teachers to explore with students 
different computational strategies based on the composition and decomposition of 
numbers, in the properties of the operations and in the relationships between num-
bers and between operations. 

 In close connection with these views about the development of students’ number 
sense and mental computation, the curriculum assumes that students in these grades 
should start to develop algebraic thinking, considering the algebra learning as a 
form of mathematical thinking from the early years of schooling. The document 
assumes that students start to deal with algebraic ideas as they establish general 
relationships between numbers and study certain properties of numbers and opera-
tions. However, the topic Regularities, namely, the study of sequences by investigat-
ing numerical regularities, is explicitly the entry point to the algebraic reasoning in 
the offi cial document: “The work with generalizable regularities, according to rules 
that the students may formulate by themselves, for instance in fi gurative sequences, 
helps them to develop the capacity of abstraction and contributes to the develop-
ment of algebraic reasoning” (ME  2007 , p. 14). 

 Other curriculum materials, produced in articulation with the offi cial curriculum, 
contend that, as students begin to contact with sequences in the First Cycle, there is 
an opportunity to begin to work informally the concept of function, in the fi rst years 
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(Ponte et al.  2009 ). The offi cial curriculum also establishes a link between the work 
on numerical sequences and the early study of proportional reasoning: for instance, 
from tables. Following these curriculum orientations, students should start to 
explore the notion of joint variation in these school grades. In the Second Cycle 
(grades 5 and 6), the curricular goals establish that students should further develop 
those notions, working with them in a more formalized manner, and begin to use 
algebraic symbolism. 

 Therefore, the general orientation for the First Cycle concerning students’ alge-
braic thinking is in some way quite fl uid coming close to the perspective of the 
principles and standards (NCTM  2000 ) which stresses that it should be understood 
as a way of thinking that brings meaning, depth, and coherence to other subjects’ 
learning. The question is: How is this offi cial curriculum interpreted by the teachers 
concerning the development of students’ algebraic thinking since these are news 
perspectives that they are not acquainted to? The curricular materials produced to 
support the process of curriculum transformation develop further these ideas and 
present instances of possible mathematical tasks to propose to students and, in some 
cases, also provide examples from the students’ work. Even then, it may be diffi cult 
to teachers to conceive by their own the intended curriculum to foster the develop-
ment of algebraic thinking, by anticipating how to construct a path that supports 
students in that direction. Without professional experience in this domain, teachers 
will also feel the need to learn from examples of the enacted curriculum that show 
the students’ evolution.  

    Mathematical Communication 

 This mathematics curriculum also presented, as learning goals, the development 
of three transversal capacities: problem solving, mathematical reasoning, and 
mathematical communication (ME  2007 ). Choosing from these, we focus our 
argument on the last point, as it has a strong connection with the work that has been 
done in the project presented in this chapter. The curricular document stresses 
that students’ mathematical communication plays an essential role in mathematics 
learning, since it helps them to organize, clarify, and consolidate their thinking. 
The students develop this capacity as they explain, share, and discuss ideas, 
strategies, and reasoning. This general learning goal is subdivided into four 
more specifi c categories: interpretation, representation, expression, and discussion. 
Among these, representations assume a paramount importance since mathemati-
cal ideas to be understood, explained, or discussed have to be represented in 
some way. For instance, the curriculum refers, for the First Cycle of schooling, that 
the teacher should use different types of representations such as drawings and words 
to represent mathematical ideas and progressively introduce schemes, tables, 
symbols, and graphs, as well as relate the symbols and schemes created by students 
to the conventional notation. These mathematical representations are at the heart 
of algebraic thinking. 
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 This perspective about mathematical communication is fundamental to promote 
students’ algebraic thinking. In fact, the students are able to progress from informal 
language to a more formal one as they express themselves and analyze other forms 
of representation of strategies and generalizing processes. Therefore, they need to 
have opportunities to express their mathematical ideas and exchange their different 
perspectives and ways of conceiving the mathematical ideas.  

    Methodological Approaches 

 The offi cial curriculum makes several suggestions concerning the methodologi-
cal approaches teachers may adopt in their teaching. There are two aspects we 
want to stress: the role of the mathematical tasks and of the classroom environ-
ment or culture in the learning process. In fact, the curriculum assumes an active 
role of the students in mathematics learning and that their work is “signifi cantly 
structured by the tasks the teacher proposes” (ME  2007 , p. 8). Globally, the 
document stresses that the mathematical tasks should provide students one coher-
ent path of learning. Specifi cally for the First Cycle, the document points out the 
importance of the tasks’ contexts, referring that these are models that support the 
student’s thinking. 

 This document also assumes the development of transversal capacities as a main 
goal, as we mentioned before. Accordingly it stresses that the classroom environ-
ment “should be favorable to communication, encouraging students to express 
orally their reasoning and also to express their doubts and diffi culties, to pose 
questions and to comment their own mistakes or those of their colleagues” (p. 30). 
It also recognizes that it is fundamental to create moments for discussion and 
refl ection, since students “learn not only from the activities they develop but mainly 
from the refl ection they do upon those activities” (p. 11). According to this docu-
ment, the teacher has a central role in questioning and stimulating the students for 
these processes.   

    The Developmental Project 

 The developmental project that was prepared and carried out by the authors is based 
on the mathematics curriculum presented (ME  2007 ) and on recent research on 
algebraic thinking in the early grades. Taking into account the novelty of the idea of 
developing students’ algebraic thinking in the early grades, this project intends to 
(1) explore how to construct sequences of mathematical tasks that assist students in 
that goal and (2) investigate how that development takes place. 
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    Rationale: Algebraic Thinking 

 The notion of algebraic thinking adopted in this project follows the one defi ned by 
Blanton and Kaput ( 2005 ) “as a process of generalization of mathematical ideas 
from a set of particular instances, establish those generalizations through the dis-
course of argumentation, and express them in increasingly formal and age- 
appropriate ways” (p. 413). As generalization is at the center of this process, we 
draw on different authors to go deep in this concept (e.g., Britt and Irwin  2011 ; 
Carraher et al.  2008 ; Dörfl er  2008 ; Ellis  2007 ; Mason et al.  2009 ; Russell et al. 
 2011 ). Two key domains of algebraic thinking for the early years are the generalized 
arithmetic and functional thinking (Blanton  2008 ). The fi rst domain has to do with 
the use of arithmetic to develop and express generalizations, and the second one 
with the exploration of numerical and fi gurative patterns to describe functional rela-
tionships. This perspective is in line with the one we fi nd in the Portuguese curricu-
lum, as presented in the previous section. This project intends to show how such 
orientations can be put into practice. 

 These two interrelated aspects of early algebraic thinking (relational and func-
tional thinking) are targeted in the project. We focus especially on tasks and contexts 
that promote the development of quasi-variable thinking (Britt and Irwin  2011 ), as 
these seem to be a promising pathway for students to develop the concept of variation 
and the capacity to generalize (Mestre and Oliveira  2012 ). Following the perspective 
of Warren and Cooper ( 2005 ), functional thinking may be considered as the rela-
tional thinking that focuses on the relations between two or more quantities that 
change simultaneously. As the notions of relation and transformation are fundamen-
tal for the concept of function, the notion of variation should be explored early in 
school (NCTM  2000 ) and that can be accomplished through the work, for instance, 
with numeric and fi gurative sequences.  

    The Project: The Intended Curriculum 

 This project was designed by both authors for one fourth grade class and the lessons 
were taught by the second author (from now on the “teacher-researcher”). As men-
tioned above, the main goal was to develop students’ algebraic thinking, by looking 
transversally to the different mathematical topics in the designated curriculum and 
fi nding ways to promote “awareness of generality” (Britt and Irwin  2011 ). 

 The class has 19 students, 7 girls and 12 boys, with an average age of 9 years. The 
new mathematics curriculum (ME  2007 ) was introduced in this school in the previ-
ous school year, in the third grade, and the class was taught by a different teacher. 
However, in the beginning of the school year, when the teacher-researcher proposed 
the fi rst mathematical tasks from the project to the students, they revealed many 
diffi culties in the questions that involved number sense, exploring regularities, or 
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generalizing processes. They manifested a strong tendency to focus exclusively on 
the use of algorithms for solving the tasks, but revealed some lack of understanding 
in its use. We also observed some frailties in their learning when they were exploring 
numerical relations. For example, when we began to work on numerical sequences 
with the class, several students were very surprised to notice that the expression 
11 × 3 appeared as a part of the multiplication table, arguing that “The three times 
table ends with 10 × 3.” Therefore, these fi rst tasks in the project allowed us to 
understand that the expected number sense and relational thinking were not learned 
curriculum for the class, and consequently neither was algebraic thinking. This 
forced us to go back and work on the fundamental ideas that we expected to be devel-
oped in the previous year. The sequences of tasks were then constructed on the basis 
of what the research team evaluated as being the students’ learned curriculum, 
namely, what they already were able to do, and what aspects of the curriculum 
seemed to us still underdeveloped. 

 Taking into account the potential algebraic treatment of each of the mathematical 
topics of the annual class planning, we created fi ve sequences of tasks (Table  1 ), 
throughout the school year, according to the new curriculum themes, topics, and 
specifi c goals, targeting the aspects of the algebraic thinking that are stressed by the 
research on this theme. 

  The mathematical tasks were introduced in the classroom with an average of two 
per week, lasting from 90 to 120 min. A total of 42 tasks were explored and grouped 
in the fi ve sequences referred in the previous table. 

 The paramount importance of the mathematical tasks, which should be cogni-
tively demanding, and the teacher’s support to “students’ productive engagement 
with them [the tasks]” (Silver  2009 , p. 830) was also present in the project’s 
intended curriculum. The development of the tasks and the way the teacher 
explores them with the students are grounded on the notion of learning as a socio-
cultural activity, adopting a dialogic inquiry stance, and anchored on the follow-
ing perspectives (Wells  2000 ): curriculum is a means, not an end; outcomes are 
both aimed for and emergent; activities must allow diversity and originality; and 
activities are situated and unique. Accordingly, one important aspect of the 
teacher-researcher’s approach is the attention she gives to the moments of whole-
class discussion and systematization, since sense-making and communication 
have been regarded as fundamental mathematical activities (Lloyd  2009 ) and that 
it is also a central orientation of this mathematics curriculum (ME  2007 ), as we 
mentioned before.  

    Research Methods 

 The teacher-researcher has worked in this school for several years as a generalist 
teacher, but as she had a leave to do research during this school year, she developed 
these lessons with a class who had another generalist teacher daily. The 
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   Table 1    Sequences of tasks according to the curriculum goals and the project’s intended 
curriculum   

 Curriculum goals  Project’s intended curriculum 

 Themes  Topics/subtopics  Specifi c goals 
 Algebraic thinking 
aspects 

 Sequences 
of tasks 

 Numbers 
and 
operations 

 Natural numbers 
  Numerical 

relationships 
  Multiples and 

divisors 

 Operations 
with natural 
numbers 

  Multiplication 

 To identify and 
give examples 
of multiples 
and divisors 
of a natural 
number 

 To understand that 
the divisors 
of one number 
are divisors of 
its multiples 
(and that multiples 
of one number 
are multiples 
of its divisors) 

 To use computation 
strategies (mental 
or written) for the 
four operations, 
applying their 
proprieties 

 To understand 
the effects 
of operations 
on numbers  

 To explore: 
  Regularities on 

multiples and 
divisors 

  Numerical relations 
  The relation of equality 
  The proprieties of 

operations 
 To express the 

generalization 
in natural language             

 To explore: 
  Numerical relations 
  The equality relation 
  The proprieties 

of operations 
  The inverse operations 
  Different representations 
 To express the 

generalization 
in different 
representations  

 To explore: 
  The proprieties 

of operations 
  The equality relation 
  The study of variation 
 To express the 

generalization 
in different 
representations  

 I 

 II 

 III 

 Measure  Length and area 
  Perimeter 
  Area 

 To solve problems 
involving 
perimeter 
and area 
concepts 

 To explore: 
  Variation and 

covariation 
  Functional relations 
  Different 

representations 
(natural language, 
tables, diagrams, 
graphs, symbolic 
language) 

 IV 

 Numbers and 
operations 

 Regularities 
  Sequences 

 To investigate 
numerical 
regularities 

 To solve problems 
involving 
proportional 
reasoning 

 To explore: 
  Numerical relations 
  Functional relations 
  Relations using 

different 
representations 
(natural language, 
tables, diagrams, 
symbolic language) 

 V 
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teacher- researcher was present in the classroom from one to three times each week 
and taught most of the project’s lessons. 

 The project unfolds as a teaching experiment in the classroom and adopts a 
research design perspective (Gravemeijer and Cobb  2006 ), involving the planning 
of sequences of mathematical tasks, teaching, and data collection and analyses, 
followed by the planning of a new sequence of tasks that takes into consideration 
the impact of the previous tasks on the students’ learning. All lessons were video-
taped, and the students’ written work on every task was collected. This data 
collection had two purposes: to analyze the students’ progress in order to adjust and 
plan the following tasks (the developmental project) and to understand how students 
develop their algebraic thinking (the research project).   

    Implementing the Project: The Enacted Curriculum 

 In this chapter, we present instances from the students’ activity in three mathematical 
tasks to illustrate the enacted curriculum in two main dimensions from the intended 
curriculum for this class: relational reasoning and functional thinking. The chosen 
tasks focus on important aspects of the algebraic thinking that were explored with 
the students. 

    Exploring Computational Strategies 

 Taking as point of departure for planning the lessons some diffi culties concerning 
students’ number sense, a sequence of tasks on computational strategies was 
developed, targeting the relational thinking. The one we will elaborate on is the 
fourth task of the second sequence (Fig.  1 ). Its intention is that students interpret the 
situation as one where the double and the half relationships were used, explain it, 
and then generalize the strategy.  

 In their strategy explanation, the different pairs of students recognized the 
relations of double and of half between the multiplication tables of four and of eight. 
The fi gure above (Fig.  2 ) shows that these two students were able to identify the 
relation of double used in the computational strategy. They represent the double 
relation through numerical expressions, to each one of the examples presented in 
the task, clearly identifying the products of the eight times table as the double of the 
products of the four times table.  

 The answer of the next pair of students illustrates how they recognize the rela-
tion of double and half used in the computation strategy (Fig.  3 ). These students 
use other examples besides the ones presented in the task, showing the procedure 
they used to obtain the products of the eight times table using the double of the 
products from the four times table, even though they did not register them 
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correctly. The students show that they are able to understand the strategy beyond 
the given examples.  

 In the collective exploration of the task with the class, some particular cases of 
the computational strategy were presented. After that, the teacher-researcher con-
ducts the discussion with the goal of helping the students to generalize the strategy 
beyond the studied cases.

  Fig. 1    Task “Calculating using the double”       

  Fig. 2    António and 
Carolina’s written work       

  Fig. 3    Joana and Gonçalo’s written work       
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   Teacher – Okay. We have three examples, but this strategy only fi ts those examples?  
  Several students – No.  
  Fábio – The strategy we used is good for all computations.  
  Teacher – And how can we synthesize that strategy in a clear way? What strategy 

was that?  
  Diogo – We made the double computation.  
  Teacher – The double of what?  
  Diogo – Double of the result.  
  Teacher – Can you explain better? Develop it a little more…?  
  (Diogo does not answer)  
  Teacher – What was the multiplication table that we want to work with?  
  Several students – The eight.  
  Teacher – And to work with the eight times table, we used which multiplication table?  
  Several students – The fourth’s.  
  Rita – We can use the halves.  
  Teacher –  And what did we fi nd out? I can make the eight times table using 

which one?  
  Several students – The fourth’s.    

 Subsequently, another student, Rita, was able to express the computational strategy 
of generalization beyond the particular cases, but still used confusing and repetitive 
language. With this in mind, the teacher-researcher asks for a simpler but more 
general expression, advancing the students in the process.

   Rita – If we go to the four times table, the multiply four by the number that we 
wanted from the eight times table, if we multiply twice, we will have the 
result from the eight times table.  

  Teacher – How can I say that in a simpler way?  
  Carolina – To know 25 × 8 we do from 25 × 4.  
  Teacher –  You are using a particular example. But what if it’s more general? 

We were talking about the eight times table and the four times Table. 
I can say that in a very simple way. To know the eight times table, what 
do I do?  

  Several students – Double the four times table.    

 From this moment on, one student proposes the generalization of the computation 
strategy in natural language and writes it on the board: “To fi nd the eight times table, 
we do the double (×2) of the four times table.” 

 In these illustrations we can see that students were able to comprehend the 
structure underlying the computational strategy used in the numerical expressions 
presented. Therefore, the students identifi ed the double and half relations in the 
four and the eight times tables from the presented examples. More than that, 
students were able to use that strategy with other examples. During the collective 
exploration of the task, students could express the generalization of that compu-
tational strategy in natural language, in the context of the multiplication tables 
they knew.  

H. Oliveira and C. Mestre



185

    From Quasi-variable Thinking to the Notion of Variation 

 The task to be presented here (adapted from Stephens and Wang  2008 ) also focuses 
on relational thinking and introduces numerical equalities with two unknown 
quantities in relation, in a realistic context with meaning for students (Fig.  4 ). It 
concerns one arithmetic compensation situation, involving addition and subtraction. 
It was the fi fth task of the third sequence that was explored with these students.  

 This situation was created in order for students to explore quasi-variables (Fujii 
 2003 ), as they attend to the structure of the equality, and also to promote algebraic 
generalization, since they are asked to express the relationship between the unknown 
quantities and to extend this kind of reasoning to other expressions involving bigger 
numbers. 

 In the fi rst question, the students were asked to say how many stickers there were 
in boxes A and B so that the equality was kept. In the next question, the students 

  Fig. 4    Task “Ana and Bruno’s stickers”       
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were confronted with the situation of using other possible values for boxes A and B, 
in order to keep the equality. In that answer, every student presented more than one 
pair of possible values that kept the equality. 

 For the third question, regarding the expression of the relation between the 
values used for boxes A and B, fi ve of the nine pairs of students were able to 
show, in a very clear way, the relation between boxes A and B with explicit refer-
ences of the used relationship. For example, one pair of students gave the follow-
ing answer: “The relationship that exists between the numbers that I used in 
boxes A and B is that in box A there is always plus two stickers than in box B. 
Because twenty is two stickers more than eighteen, so it is always plus two stick-
ers.” These students show that they recognize the numerical relationship used in 
the equality, including the numerical value and the direction of the arithmetical 
compensation. They also recognize and explain that the existing relation between 
the values given to boxes A and B was dependent on the relation between the 
initial ones (20 and 18). 

 In the collective discussion, one of the students, Fábio, spontaneously suggested 
that the generalization could also be written in mathematical language and proposed 
the expression “B − 2 = A.” To facilitate the expressions’ discussion presented by 
Fábio, the teacher-researcher proposed that the students build a table on the board 
with possible pairs of values for  A  and  B . After that, another student, Rita, suggested 
that the correct representation should be  A  =  B  + 2 (Fig.  5 ). That representation was 
written on the board, and students experimented with different values of A and B to 
confi rm that the symbolic representation was correct.  

 In the following lesson, one continuity task, “Find A and B,” was explored 
(Fig.  6 ). This task was also adapted from Stephens and Wang ( 2008 ), but without a 
modeling context, and also presented a situation of arithmetical compensation, now 
involving multiplication and division operations.  

 In the second question, eight of the nine pairs were able to identify the rela-
tionship between the numbers in boxes A and B in a very clear way. One pair, 
João and Lawry, wrote it this way: “The relation that exists between numbers that 
I put in the Boxes A and B is that 6 × 2 = 12, and because 12 is the double (×2) of 
the number 6, so every numbers that I put in box A are the double (×2) of [those] 
in box B.” 

 The solution shows that students were able to represent symbolically, through 
two different expressions, the relationship between the values of  A  and  B  (like 
the double or the half) (Fig.  7 ). They also presented a table, evidencing the rec-
ognition of  A  and  B  as variable values and some sense of covariation. However, 
possibly infl uenced by the addictive nature of the compensation present in the 
previous task, they defi ned inaccurately the third pair of values, assuming that 
“the difference is two.”  

  Fig. 5    Exploration of 
the representation suggested 
by Rita during the collective 
discussion       
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 In the collective discussion, the students present, without diffi culty, the relation 
between the numbers of box A and the box B and vice versa. Some students’ 
statements show that, besides comprehending the numerical relation between the 
unknown values, they are able to reach a generalization of the values that satisfy the 
present equality and identify the variable concept. The following excerpts are 
instances of that:

   João – The numbers of the box A will always be the double of what is in the box B.  
  Matilde –  The box A can be any number, but it always has to be the double of the 

box B.    

 Keeping in mind the work done with the symbolic expressions in the previous 
task, the teacher asks for another way to write  A  and  B . Matilde goes to the board 
and correctly writes:  A  = 2 ×  B  and  B  =  A :2. 

 In the last question of this task, involving more complex relations of the triple 
and the third part, all students were able to express the relation between  A  and  B  

  Fig. 6    Task “Find A and B”       

  Fig. 7    António and Fábio’s written work       
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values in a more or less explicit way. None of the pairs used only one form of 
representation, completing the explanation of the relation in natural language with 
another form of representation, like a table or an arrow diagram. For example, in the 
solution of one pair of students (Fig.  8 ), we observe the double use of a structured 
table and of a  proto-table  formed by two columns with two pairs of values. 
These students were able to express the relation between the values given to boxes 
A and B in natural language and in a clear way: “The relationship is that box B is 
the triple of box A and box A is one third of box B.”  

 Another pair of students used different ways to express the relation between the 
numbers in boxes A and B (Fig.  9 ). The arrows diagram shows the kind of relations 
between  A  and  B  values, and also the dependency relation with 15 and 5. These stu-
dents also use the scale representation to illustrate an example of the equality.  

 In the collective discussion, we observed that the majority of students understood 
the numerical relationships portrayed by this question and could also explain it in 

  Fig. 8    João and Marco’s written work       

  Fig. 9    Gonçalo and Joana’s written work       
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natural language, for instance, when they say that “B could be any number, but must 
be the triple of A,” and in symbolic language through mathematical expressions 
such as “B = 3 × A” and “A = B:3.” 

 The analysis of the students’ activity shows that they are able to recognize the 
structure of the numerical equality presented and express the compensation involved, 
attributing correct values and recognizing the direction of that compensation. The 
work developed by students also presents strong evidence of the use of the equal 
sign in a relational mode, an important aspect of relational thinking. The students 
also begin to use the notions of variation and covariation, even in an incipient way, 
and expressing those notions by the use of several forms of representations.  

    Exploring Functional Thinking in Figurative Sequences 

 Our third example comes from one of the last lessons in the project (sequence V), 
illustrating how the work on sequences helped students to consolidate their under-
standings of variation and how symbolizing is becoming a form of communication 
with meaning to them. This task was intended to help students further explore the 
functional thinking by identifying the variables presented in the situation and how 
they relate to each other. Different forms of representations were expected to appear 
in students’ written work. 

 The proposed task “Cubes with Stickers” had two parts, but here we discuss only 
the fi rst one (Fig.  10 ). Students had worked on different numerical or fi gurative 
sequences in other lessons throughout the year, but this one was more diffi cult since 
they had to grasp the pattern in three-dimensional objects.  

 The teacher-researcher used concrete materials to model the situation before 
students started working on the task autonomously. The students, in general, easily 
found the general expression for the sequence, expressing it in words and/or in 
symbols, and some of them also fell back to drawings and tables for depicting the 

Cubes with Stickers

Joana is building a game with cubes and stickers. She connects the cubes through one of its faces 
and forms a queue of cubes. Then she glues a sticker in each of the cube’s faces. The figure shows 
the construction that Joana did with two cubes. In that construction she used 10 stickers. 

1. Find out how many stickers Joana used in a 
construction with: 
1.1. Three cubes; 1.2. Four cubes; 1.3.Ten 
cubes; 1.4. Fifty two cubes.

2. Can you find out what is the rule that allows you to know how many stickers Joana used in a
construction with any given number of cubes? Explain how you thought. 

  Fig. 10    Task “Cubes with Stickers” (Adopted from Moss et al.  2005 )       
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situation. All of the students understood in this moment that what they were 
supposed to do was fi nding a “general rule” (as they expressed it) for the number of 
stickers in any cube. As a matter of fact, when they started to solve the task they 
immediately searched for a relationship between two variables and did not look for 
the relationship between consecutive terms of the sequence, since they no long 
accepted a recursive generalization as a desirable output of their work. 

 Effectively, all groups of students were able to explain the direct relation between 
the general term and its respective order. A few of them expressed that relation just 
in a word sentence, but showed that they know how to determine the number of 
stickers for any required number. In the case of João and Henrique (Fig.  11 ), they 
explained that the rule (“regra”) is obtained by “doing the number of cubes multi-
plied by four and then adding two.” They also drew one fi gure in the sequence to 
explain why they multiply by four.  

 One of the many pairs of students that expressed the direct relation in algebraic 
symbols, writing down a formula, also specialized for a certain number of cubes to 
illustrate how to use that expression (Fig.  12 ). They also explained the meaning of 
the variables they use: “n- any number of cubes” and “T = total of cubes.”  

 The two examples show that students were not only able to understand the 
structure of the sequence – what is constant and what changes – and correctly 
realized the variation of the involved quantities, but also expressed it in a general 
form. The emergence of functional thinking is also evident, since students used 
tables to represent the two variables involved in the situation: the number of cubes 
in each construction and the respective number of stickers. In the following example, 
the students also establish a relationship between each element in the right column 

  Fig. 11    João and Henrique’s 
written work       

  Fig. 12    André, Joana, 
and Gonçalo’s written work       
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and the previous one, which has to do with the direct relation they found for each 
term of the sequence (Fig.  13 ). These different ways of looking at the variation 
between the quantities involved in the situation strengthen the development of 
students’ functional thinking; therefore, the teacher-researcher selected this as one 
of the students’ strategies to be discussed with the whole class.  

 In the moment when students present and discuss their work with the whole 
class, we gather evidence that they are using the algebraic symbolism with personal 
meaning to communicate their mathematical ideas. Students make an effort to 
understand their colleagues’ ideas because they want to verify its correctness and 
also to address the teacher-researcher’s common question for analyzing which of 
those strategies or expressions they consider to be simpler or more effi cient according 
with the task’s purposes. In the next example (Fig.  14 ), when Rita presents her 
group’s solution, some students question their option for the independent variable: 
“na = number of stickers.” 

   João – It’s very complicated because [you use] “na,” number of stickers, [it means 
that] you should already know the number of stickers…  

  Gonçalo – It’s the same thing to know the number of stickers and to do times four.  
  João – But then she already knew the number of stickers!  
  Rita – No, we don’t. For example, we have this square, we have one sticker on top, 

you do one times four, but I don’t know the total number of stickers.  
  Teacher – Explain that using the cubes.  

  Fig. 13    André and 
Carolina’s written work       

  Fig. 14    Beatriz, Diogo, 
and Rita’s written work       
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  Rita – We have all these stickers, we are not counting anything, we only count the 
ones on top that are two … there are two stickers, you do two times four 
plus two.  

  Carolina – But why don’t you put the number of cubes? It’s easier to understand…  
  (…)  

  Teacher – I would like to hear what Matilde thinks about this issue.  
  Matilde –  I think that what Rita said was right. I understood that she was explaining 

that it can be three or four cubes or 100, it can be any number. On top you 
have the stickers, then all you have to do is to multiply those stickers by 
four and then doing plus two.    

 In the class there are two groups of students with different opinions: those who 
think that Rita’s group is correct and that their solution is similar to those presented 
before, as they recognize that the variable is the same and that the apparent difference 
only has to do with the label they used, and those who do not accept their colleagues’ 
choice for the independent variable. After arriving at a consensus mediated by the 
teacher-researcher, the class is further pushed to look carefully into the description 
of the label used by Rita’s group.

   Teacher –  Now I think that… we need to be careful when we use “any given number 
of smiles,” or “any given number of stickers,” I think we need to be espe-
cially careful there…  

  Gonçalo –  In there she said the one on top, but if it is the one on the front it is also 
3 stickers and 3 cubes.  

  Diogo – It’s the same.  
  Teacher – And if it is the total of stickers isn’t it also the number of stickers?  
  Several students – Yes.  
  Teacher – So what is missing to be said there? Number of stickers…  
  Diogo – And cubes.  
  Fábio – No, “Number of stickers on top.”  
  Teacher – “On top, of one cube face…” because if not, I can’t…  
  João – If not it can be any cube face and not the “side” ones…    

 These episodes coming from the last part of this teaching experiment show that 
these students are developing very important aspects of the intended algebraic 
thinking. The level of symbolism that some students used indicates that they are not 
simply reproducing formalized symbols introduced by the teacher but that symbol-
izing is becoming a form of communication with meaning for them.   

    Concluding Remarks 

 Reforms in mathematics curriculum often do not produce the desired outcome in 
the learned curriculum, especially when innovative and challenging ideas are pre-
sented to teachers who have limited knowledge and experience concerning these 
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new perspectives. We consider the development of algebraic reasoning in the early 
grades to be one of those cases, at least in our country. In this chapter we illustrate 
and discuss the impact of basic education curriculum changes concerning the early 
introduction of algebraic thinking on classroom instruction in one fourth grade class 
and refl ect, from a more general point of view, upon the relationship between the 
offi cial, the planned, the enacted, and the learned curriculum. 

 From the implementation of the project, we conclude that according to the 
designated curriculum, it is possible to implement a trajectory for teaching alge-
braic thinking development throughout the school year and that students are starting 
exhibiting that kind of thinking effectively. In line with what has been described, for 
instance, in the case of Chinese or Singaporean elementary students (Cai et al.  2011 ), 
we also found for these Portuguese elementary students that an earlier emphasis on 
algebraic ideas contributes to the development of algebraic thinking. For us, this is 
possible to be done in the context of the mathematics curriculum (ME  2007 ) as it 
integrates three important dimensions:  a developmental perspective of algebraic 
thinking ,  the promotion of mathematical communication , and  valuable mathemati-
cal tasks . 

 One main concern for teachers, in the context of curricular reforms, is the pos-
sibility of the inclusion of new topics in an already crowded curriculum (Russell 
et al.  2011 ). The progress of this project allows us to demystify this obstacle, since 
students have learned the designated curriculum as well as developed new under-
standings and capacities, during 1 year of implementation of the new curriculum. 
Certain characteristics of the curriculum were expanded by the project, according 
to the research in this fi eld, namely, (1) bringing out the generalized character of 
arithmetic, (2) exploring relational thinking in different situations, and (3) using 
the work with regularities and sequences to promote the emergence of students’ 
functional thinking. The link between arithmetic and early algebra is made through 
the generalization of relationships and properties, and the  development of algebraic 
ideas is regarded as a form of thinking.  

 Concerning the development of  students’ mathematical communication  considered 
as a capacity in the mathematics curriculum (ME  2007 ), two main ideas seem very 
promising to the way they were explored and expanded in the project: the promotion 
of the use of different representations and the quest for students to explain and 
discuss their ideas. These provided the means for the further development of 
generalization in the classroom’s discourse and for the students’ progress in the use 
of algebraic symbolism. 

 New methodological approaches recommended by the mathematics curriculum 
included classroom management issues as well as the nature of the mathematical 
tasks proposed to students. The work that has been carried out in the project following 
the curriculum methodological approaches shows evidence of what Murray ( 2010 ) 
describes as being an essential ingredient of early algebraic instruction: “the focus 
on student reasoning and the discourse that allows students to identify connections 
among concepts, and then build on these connections to form generalizations” (p. 73). 
This is possible when the teacher organizes the classroom activities while assuming 
the sharing and discussion of students’ ideas as part of the learning process. For that 
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to happen, the  mathematical tasks  also have to be judiciously chosen in order to 
(1) motivate students to the activity by the challenging them, (2) potentiate relevant 
elements of algebraic thinking, and (3) establish connections with previous work. 
We believe that the tasks in the project possess these characteristics, as the enacted 
and learned curriculum went together. 

 As the mathematics curriculum for basic education in Portugal (ME  2007 ) 
proposed general orientations concerning the development of algebraic thinking, 
this project reveals the possibility of effectively developing an intended and an enacted 
curriculum that serves the purposes of the offi cial one. The enacted curriculum that 
unfolded from this project may help teachers to see how to plan for algebraic thinking 
and how the curriculum can be implemented. This is a very important step since it seems 
to be a challenging goal in mathematics education, one that raises many diffi culties 
even for teachers with a strong mathematical preparation (Oliveira  2009 ). 

 In the context of the implementation of this curriculum (ME  2007 ), several 
initiatives have taken place: for instance, the production of materials according to 
the ideas of the offi cial document, as well as some in-service courses for teachers 
that assume different forms (Ponte  2012 ). Therefore, we envision three important 
dimensions in the implementation of some new big ideas in the context of a curricular 
transformation (in this case, for algebraic thinking): one path for curriculum develop-
ment, supportive curriculum materials, and the envisioned teacher development. 

 Although the fi eld of research on teachers’ use of curriculum materials is 
growing, it is still underdeveloped (Lloyd et al.  2009 ). Therefore, projects as this 
one that seek to integrate the offi cial curriculum and accompanying materials as 
well as the results from the research in the fi eld may bring new understandings 
about this issue. In fact, the present project elucidates the complex relationship 
between the intended and the enacted knowledge in classes where the teacher’s 
instructional approach assumes a dialogic inquiry stance (Wells  2000 ), and conse-
quently the role of the students in defi ning the enacted dimension of the curriculum 
is highly noteworthy. 

 In this context the teacher-researcher assumes an active role in the production of 
the curriculum materials assuming simultaneously the character of experimenter 
and collaborator (Ziebarth et al.  2009 ). In fact, collaboration settings between teachers 
and researchers may be a favorable context to help teachers to have confi dence in 
implementing new approaches (Ponte et al.  2003 ). The work done by the research 
team gave the teacher-researcher the necessary intellectual and emotional confi dence 
to carry on such a demanding endeavor of planning and developing fi ve sequences 
of tasks with one class for 1 year. 

 This project exemplifi es one possible path for primary students’ development of 
algebraic thinking according to the mathematics curriculum (ME  2007 ). We believe 
that the replication of such mathematical experience in other classes with other 
teachers is not a simple endeavor. The discussion of projects that center on the 
development of teaching units may be inspiring for teachers. In this case, we illus-
trate that it was possible to assist students to develop algebraic thinking, even 
when they seemed far from having achieved the intended curriculum when the 
project begun. This is quite promising, because if students start earlier and continue 
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after this school grade to work in this way, they will be in a very good position to 
overcome many of the diffi culties that research has identifi ed in algebra learning. 
The gap between the intended and the learned curricula is most often a matter of the 
enacted curriculum. In this developmental project, at the same time that we adopted 
the curriculum orientations including intended mathematics topics, capacities, and 
ways of working in the classroom, we assume a perspective of learning where out-
comes are both aimed for and emergent and where activities are situated and unique 
(Wells  2000 ). Therefore, the enacted curriculum refl ects the specifi city of the class 
we have been working with. The ecological elements present in each context have 
to be taken into consideration when new curriculum proposals arrive at schools, and 
those include both the students and the teachers.     
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    Abstract     Quality of teaching is a major factor in students’ mathematics learning. 
Stigler and Hiebert (1999) showed that mathematics teaching in Japanese schools is 
signifi cantly different from what is typically observed in US classrooms. However, 
Japanese mathematics educators claim that Japanese mathematics teaching has 
transformed signifi cantly over the last 50 years. Although teaching is infl uenced by 
a variety of factors, textbooks play a signifi cant role in what mathematics is taught 
and how it is taught. In other words, textbooks may signifi cantly infl uence students’ 
opportunities to learn. Thus, six editions of a Japanese elementary school mathe-
matics series since 1958 were analyzed to identify any change that might indicate 
the transformation of mathematics instruction in Japan. The analysis revealed that 
the features included in the series have changed over the years to support more 
explicitly the problem-solving-based mathematics instruction described by Stigler 
and Hiebert (1999).  
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Mathematics teaching is, however, a complex activity and is infl uenced by many 
factors. It is unlikely that changes in one single factor would completely transform 
mathematics teaching either individually or collectively. On the other hand, the 
effects of changes in several factors may not be purely additive – the whole may be 
more than just the simple sum of the parts. Therefore, it is important that we con-
tinue to work on those factors we do know infl uence mathematics teaching. 

 One important factor that has been shown to infl uence teaching is textbooks. 
Shimahara and Sakai ( 1995 ) argued that elementary school teachers in both Japan 
and the United States heavily depend on their textbooks to teach mathematics. 
Textbooks are the essential bridge between the intended curriculum (such as a 
national course of study in Japan and the Common Core State Standards (CCSSI 
 2010 ) in the United States) and the implemented curriculum. Thus, textbooks infl u-
ence both what and how mathematics teachers teach, which in turn infl uence stu-
dents’ opportunities to learn mathematics. 

 Stigler and Hiebert ( 1999 ) characterized Japanese mathematics instruction as 
“structured problem solving” (p. 27). In this form of teaching, a lesson starts with 
a teacher posing a problem without showing students how to solve it. After stu-
dents tackle the problem independently for several minutes, the teacher will have 
them share their solutions, often both correct and incorrect. The teacher will then 
orchestrate a whole class discussion, carefully analyzing the shared ideas to lead 
the class to an understanding of new mathematics. The lesson ends with a brief 
period in which the teacher, often with the students, summarizes what was learned 
in the  lesson. According to a survey conducted by the Japan Society of 
Mathematical Education ( 2001 ), more than 95 % of Japanese teachers surveyed 
felt that this style of mathematics teaching that centers on problem solving is a 
generally effective teaching model. In the same survey, about 60 % of the teachers 
responded that they either regularly or frequently utilize this style of teaching. An 
additional 37 % of the teachers responded that they occasionally implement prob-
lem-solving-based lessons. 

 Watanabe’s ( 2001 ) examination of Japanese elementary school mathematics 
textbooks and the accompanying teacher’s manuals revealed that the textbooks are 
organized to support structured problem solving. In the Japanese elementary math-
ematics textbooks, the beginning of a lesson is signifi ed by a problem. The teacher’s 
manual will often include anticipated students’ responses, including common mis-
conceptions. The manual also provides a mathematical evaluation of some of those 
responses, which may be useful as teachers orchestrate the whole class discussion. 
In addition, the teacher’s manual includes  hatsumon  which are key questions teachers 
can pose to facilitate students’ mathematical explorations. 

 Although the current Japanese elementary mathematics textbooks may be orga-
nized to support structured problem solving, some Japanese mathematics educators 
argue that the shift to the problem-solving-based mathematics instruction is a fairly 
recent event, strongly infl uenced by the publication of the NCTM’s  Agenda for 
Action  in  1980  (e.g., A. Takahashi 2001, personal communication). Several other 
infl uential writings on problem solving, including George Polya’s  How to Solve It , 
were translated and published in Japan in the 1970s and 1980s, which Japanese 
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mathematics educators examined and tested their ideas through lesson study to 
gradually transform their instruction. 

 Therefore, if the shift to structured problem solving is a recent event and 
 textbooks are one of the critical infl uences of mathematics instruction, a natural 
question to ask is how Japanese mathematics textbooks have changed over the 
years. To explore that question, 6 editions of a Japanese elementary mathematics 
textbook series from 1958 to present were analyzed. This chapter reports the fi nd-
ings from the analysis of these editions and discusses the potential implications.  

    Methodology 

    Textbooks 

 Currently, there are six commercial publishers who produce elementary school 
(grades 1 through 6) mathematics textbooks. The textbook series examined for this 
study is published by Tokyo Shoseki. Historically, the series has been one of the two 
most widely used elementary mathematics textbooks in Japan. These two series are 
used in about 70 % of Japanese schools. The 1989 and 2008 editions have been 
translated into English. All textbooks used in Japanese schools must be reviewed 
and approved by the Ministry of Education, Culture, Sports, Science, and Technology 
to ensure their alignment to the national courses of study (COS). Since the original 
COS, which was published after the World War II, the COS has been revised eight 
times. Specifi cally, the editions examined in this study were approved for six different 
revisions – 1958, 1968, 1977, 1989, 1999, and 2008. 1   

    Mathematical Focus of the Analysis 

 Examining the entirety of the textbooks was not feasible. Therefore, the analysis 
focused on two topics: area of triangles and quadrilaterals in grade 5 and multiplica-
tion and division by fractions in grade 6. These two topics were selected because 
they were two of the critical foundations for algebra identifi ed by the National 
Mathematics Advisory Panel ( 2008 ). In addition, the grade-level placement of these 
topics remained constant across all revisions of the COS. By focusing on the topics 
that were consistently discussed at the same grade level, the difference in grade 
placement could be eliminated as a potential reason for modifi cations. Finally, 
these topics remain challenging both for teachers to teach and for students to learn. 
These topics can easily be taught by simply giving students the formulas or the 

1   Because some of the old editions obtained for the analysis did not include the publication years, 
in this manuscript these editions are referenced by the corresponding COS years. 
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algorithms. Yet, such a procedural focus is far from suffi cient in light of recent 
 recommendations and standards (e.g., NCTM  2000 ; CCSSI  2010 ). Therefore, 
understanding how Japanese textbooks transformed the teaching of these topics 
may be informative for teachers from other countries.  

    Textbook Analysis 

 Because the current study is examining the changes in Japanese elementary school 
mathematics textbooks in light of the structured problem-solving approach to math-
ematics teaching, the analysis needed to focus on the important features of this 
teaching approach. Those features include:

•    A lesson focus on one (or a few) problem(s)  
•   An invitation for students to share their own ideas  
•   Critical examination of solution strategies by students to synthesize a new idea 

and/or a procedure (Stigler and Hiebert  1999 ; Takahashi  2011 )   

Thus, even though a lesson centers on a problem, the solution of the problem is not 
the focus. Rather, it is the reasoning process of solution strategies and collective 
critical refl ection on those strategies that are the central features of instruction. 
Furthermore, visual representations play an important role for both teachers and 
students (Nunokawa  2012 ). Therefore, a decision was made to focus the analysis on 
problems and visual representations in these editions. In addition, we attempted to 
identify and examine any other features that might infl uence the way teachers might 
teach mathematics with these textbooks. 

 The analysis of these editions took place in two stages. In stage one, the focus 
was identifying features of the textbook. Thus, during this stage, all problems as 
well as their locations in these editions were marked. The problems were then 
counted and examined to determine their natures – for example, if the question was 
just asking for a specifi c numerical answer or asking for an explanation. The problem 
context for all word problems was also noted. Likewise, all visual representations in 
the units were marked, and their types were recorded. 

 In the second stage of the analysis, the fi ndings identifi ed in the fi rst stage were 
compared and contrasted across different editions. For example, a probe was made 
into the use of the same problems, or problems in the same context but different 
numerical values, in different editions. If a problem found in one edition was not in 
other editions, the body of the textbook in other editions was examined to see if the 
same question, or a similar one, was being discussed in the narrative. Another 
example of the comparison made is the nature of worked-out solutions. If a com-
plete solution to a problem was presented in one edition, the other editions were 
examined to see if a comparable problem was also worked out. As those worked-out 
problems were compared, it was also noted that some editions would attribute those 
solutions to hypothetical elementary school students and ask students who are using 
the textbook to think about the solution strategy. Yet, in another edition, alternative 
solutions were presented, and students were asked to compare them. 
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 Similar comparisons were made with respect to the visual representations identi-
fi ed in the fi rst stage. For example, if a particular type of visual representation was 
used in an edition, the other editions were checked to see if the same type of repre-
sentation was also used with similar problems and what other representations pre-
ceded or followed the representation. For example, most editions used double 
number line diagrams to represent multiplication of fractions, but in some editions, 
the representation was presented later in the unit than in others. Finally, as different 
editions of the series were compared and contrasted, modifi cations of some features 
in these editions were noted.   

    Findings 

    Problems 

 Table  1  summarizes the number of problems in these 6 editions of the textbook 
series. As for the number of problems, the oldest edition (1958) appears to include 
a slightly smaller number of problems than the other fi ve editions, both in terms of 
the total numbers and in terms of the average number per textbook page. This 
difference becomes more distinct when we consider where these problems are 
found. In a textbook chapter, whether we are looking at a Japanese textbook or a US 
textbook, we often fi nd special sections that are composed of collections of 
problems. Those sections are often titled “Exercises,” “Practices,” “Unit Problems,” 
etc. The 1958 edition differs from the other fi ve editions in that it contains many 
more problems proportionally in those special sections than the other 5 editions do. 
Thus, when only the main body of the unit is considered, the 1958 edition contains, 
on the average, only one problem per page, much fewer than the other fi ve editions, 
as it can be seen in Table  1 .

   On the surface, a fewer number of problems may appear to be more consistent with 
the problem-solving teaching often attributed to Japanese mathematics teaching. 
However, there is another difference in where problems appear in the 1958 textbook 

    Table 1    Number of problems and their distributions   

 COS year  1958  1968  1977  1989  2000  2008 

 Area 
 # of problems total  43  64  71  53  60  88 
 # of problems/page  3.1  4.6  4.4  3.3  4.3  4.2 
 # of problems in special sections  26  27  15  13  19  14 
 # of problems in the body/page  1.0  4.1  4.3  3.6  4.1  4.1 

 Fractions 
 # of problems total  68  115  147  80  82  86 
 # of problems/page  3.4  4.4  4.6  3.8  4.3  3.7 
 # of problems in special sections  44  48  45  16  25  19 
 # of problems in the body/page  2  3.7  4.1  3.8  3.8  3.5 
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compared to the other edition. In the 1958 edition, problems often follow explana-
tions. For example, in the area unit, the 1958 textbook opens with an explanation of 
how a parallelogram may be transformed into a rectangle by cutting and rearranging 
a triangular section from one end to the other. Then, the question is posed to fi nd the 
area of this parallelogram. In contrast, starting with the 1968 edition, students are fi rst 
presented with the task, “Let’s think about ways to fi nd the area of this parallelogram.” 
Thus, although the 1958 edition may contain a fewer number of problems, the way 
those problems are posed in the textbook does not appear to be consistent with the 
structured problem-solving approach in which students are asked to tackle a problem 
 without fi rst being shown how such a problem may be solved. 

 Another way the 1958 edition is different from the other editions is the number 
of open-ended problems. Many – in fact, a majority – of the problems in all of these 
editions of the textbook series ask for one specifi c numerical answer, such as the 
area of a triangle with specifi c dimensions or how much 1 m of wire weighs when 
the weight of 1 1/3 m of the same wire is given. However, there are also questions 
that do not have a specifi c numerical answer. For example, in the area unit of the 
1989 edition, students are asked to “explain ways 3 students found the area of the 
given triangle” (see Fig.  1 ).

   In the multiplication of fractions unit of the same edition, students are asked to 
think about ways to calculate 4/5 × 2/3. For the purpose of this analysis, these types 
of problems were labeled “open” problems. As it can be easily seen in Table  2 , the 
number of open problems dramatically increased starting in the 1968 edition. The 
increase in open problems is more drastic in the units on fraction multiplication 

  Fig. 1    Three hypothetical students’ ideas about how to fi nd the area of the triangle ( shaded ) from 
the 1989 edition of the textbook (p. 73)       
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and division. In the 2000 and 2008 editions of the textbook, more than a third of 
problems in the body of the textbook are open problems.

   Although the fi ve editions – 1968, 1977, 1989, 2000, and 2008 – share many 
similarities that contrasted with the 1958 edition, the three most recent editions are 
different from the 1968 and 1977 editions in important ways. Although it is very 
common for textbooks to attribute an idea or a solution of a problem to a hypotheti-
cal student, starting in the 1989 edition, this series also began including cartoon 
drawings of those students. Moreover, for some problems, the textbook includes 
two (or more) students’ ideas and asked students (readers) to examine, compare, 
and contrast those ideas. For example, Fig.  1  above shows a problem from the 1989 
edition (5A p. 73) that asks students to explain how Yuji, Naoko, and Minoru 
thought about fi nding the area of the given triangle. Figure  2  comes from the frac-
tion multiplication unit in the most recent (2008) edition. The textbook poses the 
following problem as the opening problem in the unit (translation is by the author 
throughout this chapter):

   With 1 deciliter of paint, we can paint 4/5 m 2  of boards. How many square meters 
of boards can we paint with 2/3 deciliters of this paint?   

Then, solutions by Yumi and Hiroki are shown, and students are asked to compare 
the fi nal equations in these two solution approaches.

   In the 1958, 1968, and 1977 editions, there are no instances in which the text-
books presented more than one student’s ideas simultaneously to be examined. 
Having students examine multiple solutions to a given problem is a key step in the 
structured problem-solving instruction. Thus, starting with the 1989 edition, this 
series seems to include that step of instruction explicitly.  

    Representations 

 The analysis of representations used in these editions of the textbook focused on the 
fraction multiplication and division units in grade 6. The area units contained many 
drawings, but they are of the fi gures whose area must be determined. Therefore, 
they were not considered “representations.” 

   Table 2    Number of open problems found in the body of the textbooks across the six editions   

 COS year  1958  1968  1977  1989  2000  2008 

 Area 
 # of open problems in the 

body of textbook 
 3 (18 %)  12 (32 %)  13 (23 %)  16 (40 %)  12 (29 %)  16 (22 %) 

 Fractions 
 # of open problems in the 

body of textbook 
 0 (0 %)  12 (18 %)   9 (9 %)  15 (23 %)  20 (35 %)  27 (40 %) 

  % in the parentheses indicates the proportion of open problems in the body of textbooks  
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  Fig. 2    Two hypothetical students’ ideas about how to calculate 4/5 × 2/3 from the 2008 edition of 
the textbook (p. 25)       

 Once again, representations – both in types and how they are used – in the 1958 
edition are different from the other fi ve editions. In the 1958 edition, the unit on 
fraction multiplication and division opens with a story in which students are trying 
to determine the area of a fl owerbed at their school. The rectangular fl owerbed 
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measures 5 m by 3/4 m. The book goes on to describe how a student, Yoshiko, 
thought of this situation as 5 × 3/4, 2  which is multiplying a fraction by a whole 
 number, the idea they studied in grade 5. The textbook carries out the calculation 
and concludes that the area of the fl owerbed is 3 3/4 m 2 . 

 The textbook then presents the reasoning of another student, Tadashi. Tadashi, 
unlike Yoshiko, thought of the situation as 3/4 × 5, multiplication of a whole number 
by a fraction, something they had not yet studied. The book then presents the area 
model shown in Fig.  3  and explains how 3/4 × 5 can be calculated.

   The textbook explains that, from the diagram, we can see that the fl owerbed is 
made up of 15 small rectangles with areas of 1/4 m 2  each. Therefore, the total area 
of the fl owerbed is 3 3/4 m 2 . Thus, the 1958 edition uses the area model to illustrate 
multiplication by fractions, and the diagram is used as a tool for the authors to 
explain the procedure. 

 In the other fi ve editions, unlike the 1958 edition, the unit opens with a problem. 
Although the problems in these fi ve editions all involve area, the mathematical 
nature of the problems is different from the problem in the 1958 edition. The problems 
in the fi ve later editions are as follows:

   A tractor can plow 3/5 ha of fi elds in 1 h. How many hectares of fi elds can you plow 
in 3/4 h? (1968)  

  With 1 deciliter of paint, you can paint 3/5 m 2  of boards. How many m 2  can you 
paint with 3/4 deciliters of this paint? (1977)  

  With 1 deciliter of paint, you can paint 4/5 m 2  of boards. How many m 2  can you 
paint with 2/3 deciliters of this paint? (1989, 2000, and 2008)   

Although these problems involve the area of a rectangular region, the factors are no 
longer the dimensions of the rectangle. Rather, these problems are rate problems. 
Therefore, these fi ve editions use a slightly different representation which is a combi-
nation of the area model with a number line (see Fig.  4 , from the 1977 edition).

2   In the Japanese convention, the fi rst factor in a multiplication expression represents the multiplier. 
In this textbook series, multiplication (and division) of fractions by whole numbers is discussed 
before the unit on multiplication by fractions, sometimes in grade 5 and sometimes in grade 6, 
depending on the COS. This is done so because students can continue to use the equal group inter-
pretation as long as the multiplier is a whole number. When the multiplier becomes something 
other than a whole number, students must expand their interpretation of the multiplication opera-
tion, in addition to thinking about the calculation process. 

  Fig. 3    Area model presented in the opening section of the 1958 unit on fraction multiplication and 
division (p. 5)       
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   Although the end result may be similar to the typical area model representation, 
this combined area-number line representation may be used with partitive division 
problems. For example, in the 1977 edition, the unit on fraction division opens with 
the following problem:

   It took 4/5 min for Akira’s father to paint 3/4 m 2  of boards. How many m 2  can you 
paint in 1 min?   

This problem is then represented as shown in Fig.  5 .
   An area model cannot truly represent this problem situation, as 4/5 is not the dimen-

sion of the rectangle. However, an area model may be used to represent the calculation, 
3/4 ÷ 4/5 by drawing a rectangle with the area of 3/4 m 2  and 4/5 m as one of the dimen-
sions. However, such a drawing is of little help to actually fi nd the quotient. In fact, the 
1958 edition, the division of fraction section starts with the situation in which a student 
cuts out 2/5 m segments from a 4 m tape, a quotitive division situation. The textbook 
then uses a segment model shown in Fig.  6  to represent the situation.

   Another feature that is common in all but the oldest (1958) edition is the use 
of equations with words. In these 5 editions, after the problem is posed to the 
 student, the initial emphasis is that the problem situation can be represented by a 
multiplication equation with a fraction multiplier. In order to help students understand 

  Fig. 4    Representation of the 
opening problem in the frac-
tion multiplication unit in the 
1977 edition (p. 5)       

  Fig. 5    Combined area- number 
line representation for a parti-
tive division problem from the 
1977 edition       

  Fig. 6    The representation of 
the opening division problem 
in the 1958 edition (p. 11)       
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that idea, these 5 editions use an equation with words. The problem situations for 
the 1989, 2000, and 2008 editions are identical, and the textbooks include the 
 following equation:

  

Area of boards that can be painted with deciliter Amount of paint1[ ]× ddeciliter

Area of boards that can be painted

( )⎡⎣ ⎤⎦
= [ ]    

In each of these fi ve editions, the textbook develops the idea that the problem can be 
solved by the calculation 3/5 × 3/4 (in the 1968 and 1977 editions) or 4/5 × 2/3 (in 
the 1989, 2000, and 2008 editions). Then, and only then, the textbook asks stu-
dents to think about how this calculation may be completed. 

 Although the fi ve editions since 1968 use the same combined area-number line 
representation and an equation with words to introduce multiplication and division 
by fractions, the three most recent editions (1989, 2000, and 2008) also use a double 
number line representation (see Fig.  7 ) that does not appear in the 1968 and 1977 
editions. In fact, in these three editions, the double number line representation is 
presented immediately after the problem statement, before the combined area- 
number line model and the equation with words.

   This model, unlike the area model or the combined area-number line model, does 
not necessarily help students fi nd the product. Rather, it represents how the quanti-
ties in the problem situation are related. However, as Watanabe et al. ( 2010 ) noted, 
this form of representation is used to represent the multiplication and division of 
decimal numbers in grade 5. Thus, it appears that the intention of this model is also 
to help students understand the multiplicative nature of the problem situation based 
on the relationships of the quantities. In these three most recent editions, as well as 
the 1968 and 1977 editions, the combined area-number line model is used to illus-
trate how the calculation may be completed. 

 The 1968 and 1977 editions use a similar representation – double-sided number 
line – later in the units. For example, in these editions, after the calculation method 
for fraction multiplication is developed, special cases (e.g., multiplying mixed num-
bers) are considered. Then, the 1977 edition explores the relationship between the 
multiplier and the size of the product in relationship to the multiplicand through the 
following problem:

   1 m of cloth costs 360 yen. What is the price of 1 1/3 m of the same cloth? What is 
the price of 2/3 m?   

  Fig. 7    A double number line representation for the introductory problem on multiplication by 
fractions in the 1989, 2000, and 2008 editions (Taken from the 2000 edition (p. 63))       
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To illustrate this problem situation, the textbook includes the following model 
(Fig.  8 ).

   Readers can easily see that the basic structure of this model is the same as that of 
a double number line. In the 1989 edition of the book, a similar problem (the price 
of 1 m of cloth is 240 yen) is represented as shown below (Fig.  9 ).

   Thus, it is quite possible to include a double-sided number line representation 
with the introductory problem in the 1968 and 1977 editions, as the double number 
line is used in the 1989, 2000, and 2008 editions. However, it is clear that the authors 
of the 1968 and 1977 editions chose not to do so, while the authors of the 1989, 
2000, and 2008 editions intentionally included it as the fi rst model of the problem 
situation.  

    General Features 

 As we examined the general features of these six editions of the series, we noted 
that the three most recent editions (1989, 2000, and 2008) shared some similarities 
that are distinct from the previous three editions. For example, in the 1989 through 
2008 editions, the opening problems in the units (for both area and multiplication 
and division of fractions) appear on the right-hand page of the book. All of these 
problems are worked out; however, because of this layout, the initial pages only 
show the problems, with the solutions on the following pages. The 1989 and 2000 
editions include a 1-page review problem section so that the division of fraction 
units starts on the right-hand page. Since the units start on the left-hand page in the 
previous three editions, this choice appears to be intentional. 

 Another distinct feature of the three most recent editions is the inclusion of 
 cartoonlike characters. The inclusion of cartoon drawings of hypothetical elemen-
tary school students was already discussed above. However, in addition to these 

  Fig. 8    A double-sided number line representation from the 1977 edition (p. 9)       

  Fig. 9    A double number line representation of a similar problem from the 1989 edition (p. 11)       
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cartoon- children characters, these three editions include various avatars offering 
comments and questions. Some of the comments offered by these avatars suggest 
possible ways of reasoning for the given problem. For example, in the fraction mul-
tiplication unit of the 1989 edition, an avatar comments, “What if the amount of the 
paint used were 2 deciliters…” beside the question asking students to write an equa-
tion to represent the problem situation. Thus, the avatar’s comment leads students to 
think about what they have already learned. In the area unit of the 2000 edition, after 
the textbook asks students to consider ways of determining the area of a parallelo-
gram, an avatar comments, “If we change the shape to something for which we 
already know how to calculate the area ….” Once again, the avatar suggests thinking 
about ways to use prior knowledge. 

 Another type of comment offered by these avatars is summaries of mathematical 
explorations. For example, in the 1989 edition, after students explore the relation-
ship between the multiplier and the size of the product in relationship to the multi-
plicand, a different avatar offers the summary in a balloon:

  

Multiplier Product Multiplicand

Multiplier Product Mult

> → >
< → <

1

1 iiplicand    

In the 2000 edition, after students discuss various ways to fi nd the area of the given 
parallelogram by transforming it into rectangles, an avatar comments, “Even though 
the shapes have changed, their areas are the same, aren’t they?”   

    Discussion 

 From these six editions of the series, we get the sense that problem solving has been 
an essential feature of each edition of the textbook. However, problem solving in the 
oldest edition (1958) appears to play a different role than it does in the other fi ve 
editions. In the 1958 edition, each unit opens with an inquiry situation. For example, 
the unit on fraction multiplication begins with a question statement, “How many 
square meters is the area of a fl owerbed at Tadashi’s school if it is a rectangle with 
the length of 3/4 m and the width of 5 m?” However, this question is not marked as 
a question for students. Instead, the textbook immediately states that the area can be 
calculated using 5 × 3/4 (already learned) or 3/4 × 5 (not yet learned). Then, the book 
goes on to explain how 3/4 × 5 can be calculated utilizing the area model. Problems 
that are clearly marked for students follow the explanation. In contrast, in the 1968 
through 2008 editions, each unit opens with a problem that is clearly intended for 
students. Thus, in the 1958 edition, problems are included to help students practice 
the ideas that have been explained. In contrast, in the other fi ve editions, problem 
solving is an important step of mathematics learning. 

 Although each unit opens with a problem in the fi ve more recent editions, the 
way the problem is handled is different in the three most recent editions (1989, 
2000, and 2008) from how it is handled in the 1968 and 1977 editions. In the 1968 
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and 1977 editions, the opening problem is completely worked out and explained. 
For example, in the fraction multiplication unit of the 1977 edition (see above for 
the problem), the textbook explains that even when the amount of paint used 
becomes a fraction, like 3/4, we still use multiplication to fi nd the total area painted. 
Then, they state, “Let’s think about how we can calculate 3/5 × 3/4.” However, this 
statement is immediately followed by an explanation: “We can determine the 
amount of area that can be painted with 3/4 deciliters by tripling the amount that can 
be painted with 1/4 deciliter.” Then, the textbook presents the following two tasks 
to guide students to an answer for the original problem:

   Determine the amount of area that can be painted with 1/4 deciliter by calculating 
3/5 ÷ 4.  

  Based on the amount of area that can be painted with 1/4 deciliter, determine the 
amount of area that can be painted with 3/4 deciliters.    

 The progression in the area unit is similar. After the opening problem, which 
asks students to think about ways to calculate the area of the given parallelogram, 
the book immediately instructs the students to change the given parallelogram to a 
rectangle, as shown in the fi gure. Thus, in the 1968 and 1977 editions, although the 
textbook starts with a problem for students, a solution is clearly specifi ed and 
demonstrated. 

 On the other hand, the opening problems in the 1988, 2000, and 2008 editions 
are followed by another question or a less suggestive comment by an avatar. Thus, 
in these three editions, it is the students who must come up with the multiplication 
expression, 4/5 × 2/3, instead of being given the expression. Moreover, the inquiry 
task “Let’s think about ways to calculate!” is posed clearly as a task to students. 
Similarly, in the area unit of the 1989 edition, an avatar asks, “How can we change 
the parallelogram into a rectangle?” Then, instead of the textbook presenting a way 
to transform the parallelogram into a rectangle, the 1989 edition includes two hypo-
thetical students’ ideas and asks students to explain how those two students might 
have thought about the problem. 

 Thus, the textbook series overall seems to be moving toward the expectation that 
students do more reasoning. Perhaps this trend is part of the reason that the average 
number of problems per page is about the same in the more recent editions com-
pared to the 1968 or 1977 editions, even though the newer editions are dealing with 
fewer problem situations. Some of the questions worked out in the 1968 and 1977 
editions are posed as tasks for students in the newer edition, thus increasing the 
number of problems. 

 Although the differences in the oldest edition to the most recent edition are 
 striking, the changes between two successive editions seem to be relatively small in 
general. The exceptions are between the 1958 and 1968 editions and between the 
1977 and 1989 editions. The shift between the 1958 and 1968 editions seems to 
suggest a signifi cant shift in teaching philosophies. In the 1958 edition, the image of 
instruction presented in the textbook is that of teacher demonstration, followed by 
student practice. However, starting with the 1968 edition, this particular series 
seems to put more emphasis on students’ problem solving as the main mechanism 
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of teaching and learning instead of teacher (or textbook) explanation – an image of 
mathematics instruction more consistent with the structured problem-solving 
approach described by Stigler and Hiebert ( 1999 ). 

 Although the shift between the 1958 and 1968 editions may indicate the begin-
ning of a shift in instruction, the images of mathematics teaching surmised from the 
textbook in the 1968 and 1977 editions are still different from structured problem 
solving. In those two editions, as discussed earlier, a particular approach to solve the 
given problem is often discussed immediately after the problems are presented. 
Although some of the ideas may be attributed to a hypothetical student, a mathemat-
ics lesson illustrated in the textbook does not include critical examination of a variety 
of solution processes, an essential component of the structured problem-solving 
style of teaching. In that perspective, the shift between the 1977 and 1989 editions 
may be more signifi cant. 

 As discussed earlier, starting with the 1989 edition, this series began including 
more than one approach to the opening problem in a unit. Students are then asked to 
explain the reasoning – an important step in comparing and contrasting the various 
approaches. Those solution strategies seem to serve as possible examples of stu-
dents’ reasoning that teachers may expect from their students. Furthermore, sub- 
questions and comments by avatars seem to suggest possible teachers’ questions 
and comments spoken while students are solving the opening problem or during the 
class discussion. Thus, these features in the more recent editions are written just as 
much for teachers as for students, and the newer textbook seems to support the 
structured problem-solving approach to mathematics teaching much more explicitly 
than older editions do. 

 Even what appear to be superfi cial changes, like the presentation of the opening 
problem on the right-hand page, may be signifi cant support for teachers in imple-
menting a problem-solving-based lesson. Although Japanese teachers may rely on 
their textbooks to teach mathematics lessons, we have also witnessed many lessons 
in which teachers tell the students to put their books away at the beginning of the 
lesson. The teachers then present the problem from the textbook for students to 
think about. The presentation of the problem can be easily done with a document 
camera or an enlarged copy of the textbook page. If the page contains the solution, 
the teachers must make sure that the undesired part is covered up. 

 Although the newer edition of the series appears to be in alignment with the 
structured problem-solving approach described by Stigler and Hiebert ( 1999 ), there 
are still some aspects of such a style of teaching that is not fully present in the text-
book series. For example, in a problem-solving-based lesson, students’ incorrect 
reasoning plays a signifi cant role. However, even the most recent edition of the 
series does not include incorrect solutions. For example, we know that many stu-
dents think that the area of a parallelogram may be calculated by multiplying the 
lengths of two adjacent sides. Such a misconception may play an important and 
useful role during an actual lesson. However, because it is not included in the text-
book, teachers are left to determine how to incorporate it productively in a lesson. 
Perhaps the teacher’s editions provide some suggestions; they were, unfortunately, 
not available for this analysis.  
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    Closing Remarks 

 The analysis of the textbook pages presented in this chapter generally supports the 
claim by some Japanese mathematics educators that the transition to more problem-
solving- based mathematics teaching happened gradually over the years. However, 
the current study has several limitations. First, the analysis only examined units on 
area of polygons and fraction multiplication and division. Although these are two 
mathematically signifi cant topics, they occupy only about 10 % of the textbook 
pages in those two grades. 

 Furthermore, both of these topics are discussed in the upper elementary level. 
Might there be differences in the way the textbook is organized in the primary 
grades versus in the upper elementary levels? A cursory glance through the 2008 
edition of the 2nd grade textbook shows that most units start on the right-hand 
pages. Furthermore, there are a number of problems for which multiple ideas from 
hypothetical students are presented. Thus, the general patterns observed in this 
study may indeed be generalized to the whole textbook series. However, a more 
comprehensive analysis might be useful. 

 This chapter addresses the potential infl uences of curriculum, and textbooks in 
particular, on transforming mathematics instruction. However, the study reported in 
this chapter is limited in at least two ways. First, we do not really know whether 
Japanese mathematics instruction transformed over the last half century. The 
Japanese teaching described in Stevenson and Stigler ( 1992 ) was based on observa-
tions in the late 1970s and the 1980s. The description appears to be reasonably 
consistent with the description given in the Stigler and Hiebert ( 1999 ), based on 
the observations made in the 1990s, supporting the idea that teaching is a cultural 
activity and much of it remains constant across generations (Stigler and Hiebert 
 1998 ). Unfortunately, we do not have any data about what Japanese mathematics 
instruction was like in the 1960s, or earlier. However, we have heard from many 
Japanese mathematics educators that mathematics teaching in Japan in the 1960s 
was teacher centered and teacher driven – teaching that is much more consistent 
with the 1958 edition of the series. 

 Another obvious limitation is that this study does not involve analysis of actual 
instruction. Although textbooks may be an important bridge between the intended 
curriculum and the implemented curriculum, it is still not the implemented curricu-
lum. However, we believe that textbooks do present a vision of mathematics instruc-
tion espoused by the authors. We can also anticipate what a lesson might look like 
if a teacher were to teach from the textbook. 

 In spite of these limitations, the fi ndings of the study provide some insights into 
the transformation of mathematics instruction through school curriculum changes, 
particularly changes in textbooks. Although the current study did not examine 
actual instruction incorporating this textbook series, it is safe to conclude that 
the series continues to change to accommodate more and more of the vision of 
 mathematics instruction espoused by Japanese mathematics educators (e.g., 
Takahashi  2011 ). For example, the newer editions include more alternative solu-
tion approaches to be compared and contrasted during the whole class  discussion 
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phase of structured problem solving. Sub-questions following the main problem 
help teachers establish students as, at least, cocreators of new knowledge. Refl ective 
comments and suggestions offered by cartoon characters provide a model of math-
ematical habits of mind. 

 Brown ( 2009 ) points out that textbooks can infl uence teachers’ actions through 
their affordances and constraints. The changes in this Japanese textbook series dem-
onstrate how textbooks can incorporate affordances and constraints to promote a 
particular approach to mathematics teaching – namely, structured problem solving. 
These changes adopted by the publisher may be a contributing factor in the spread 
of this teaching approach, which is now spread to the point that a majority of 
Japanese teachers practice it frequently.     
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    Abstract     This chapter describes two studies that show the impact of China’s new 
mathematics curriculum on classroom instruction. The fi rst study examined the 
cognitive features of instructional tasks implemented in primary-level mathemat-
ics classrooms adopting the new curriculum in comparison to those using the 
conventional curriculum. The results indicated that the reform-oriented class-
rooms used more tasks with  high cognitive demand ,  multiple representations , and 
 multiple solution methods  than the non-reform classrooms did. The second study 
looked into how  cognitive demands ,  multiple representations , and  multiple solution 
methods  were related to the nature of student-teacher discourse in the reformed 
classrooms. It was found that tasks of high cognitive demand were associated 
with teachers’ high-order questioning which, in turn, was related to students’ 
highly participatory responses. It was also found that tasks of high cognitive 
demand as well as teachers’ high-order questions were associated with the 
teacher’s authority in evaluating students’ answers. In contrast, tasks of  multiple 
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solution methods  were showed to be related to teachers’ simple questions, and 
teachers’ simple questions led to more teacher-student joint authority in evaluat-
ing students’ responses. Some implications of the fi ndings from the studies are 
discussed in order to further our understanding of the current instructional prac-
tice in Chinese mathematics classrooms and to help formulate strategies to sustain 
and affect the desirable changes in the classrooms.  

  Keywords     Primary mathematics   •   Instructional tasks   •   Classroom discourse   • 
  Chinese mathematics classrooms   •   Curriculum reform  

     The government of Mainland China put forth new curriculum standards in 2001 for 
their 9-year compulsory education (Ministry of Education  2001a ). Meanwhile, the 
Ministry of Education also introduced and approved designated textbooks and 
teachers’ guides to facilitate the implementation of the new curriculum. In the same 
year, on a voluntary basis, numerous schools in 38 cities (counties) from 27 prov-
inces across the country adopted the new curriculum standards and new textbooks. 
By the fall of 2006, the implementation had become mandatory across the country. 

 The new mathematics standards (Ministry of Education  2001b ) include three 
areas for Chinese students to develop: knowledge and skills, processes and meth-
ods, and affective demeanor and value. The objectives aim for students (1) to acquire 
important knowledge and the basic problem-solving skills in mathematics that are 
important for their lifelong learning; (2) to apply knowledge of mathematics and 
related skills to observe, analyze, and solve problems in daily life and in other sub-
jects by using mathematical methods; and (3) to appreciate the close relationship 
among mathematics, nature, and society. While maintaining the acquisition of basic 
mathematics knowledge and skills as the foundation for the compulsory mathemat-
ics education, the objectives are intended to highlight the goal of mathematics edu-
cation to provide students the learning experience of how mathematics knowledge 
is established and advanced by observation, refl ection, and communication and how 
to use mathematical tools to observe, analyze, and solve problems, which was 
neglected in the previous curricula. 

 To develop the mathematics achievement attributes in students that are desired 
by the new curriculum, a change in the kinds of instructional tasks used for class-
room instruction is required, because instructional tasks serve as the proximal 
source for students to learn from instruction (Doyle  1983 ; Stein et al.  1996 ,  2000 ). 
The nature of instructional tasks, therefore, is considered to potentially affect stu-
dents’ views about the subject matter and their competence in its execution. To align 
with the new curriculum, instructional tasks should be more problem oriented to 
afford students the opportunity to observe, communicate, and reason about mathe-
matics. Also, the instructional tasks should provide students with the opportunity to 
put knowledge and skills to use in solving mathematics problems. Furthermore, the 
instructional tasks should help students develop an interconnected understanding of 
concepts, procedures, and principles through the use of knowledge and skills in 
problem solving (Cai  1995 ; Schoenfeld  1992 ). Finally, the use of such instructional 
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tasks is expected to help create the learning environment in which students are 
guided to engage in a more dialogic classroom discourse and thus to develop their 
sense of authority over learning and knowledge. 

 The new mathematics curriculum had been implemented for 5 years before our 
studies were carried out between 2005 and 2008 (Ni et al.  2009 ). There was a seri-
ous concern about the effi cacy of the new curriculum, as well as a lack of systematic 
empirical studies to evaluate the impact of the new curriculum on classroom instruc-
tion. The focus of our studies was to assess whether or not the new changes were 
taking place in instructional tasks in mathematics classrooms and how the new 
changes in the instructional tasks, if there were any, were related to teacher-student 
discourse in mathematics classrooms. Li and Ni ( 2011 ) reported the results of the 
comparative study of instructional tasks being implemented in reformed classrooms 
and conventional classrooms, respectively. Ni et al. ( 2012 ) then documented the 
way in which task features such  as high cognitive demand ,  multiple representations , 
and  multiple solution strategies  that are promoted by the reformed curriculum might 
infl uence classroom discourse behaviors of Chinese teachers and students in the 
reform classrooms. Below, we fi rst describe the two studies and then discuss some 
implications of the fi ndings to expand our understanding of the current instructional 
practice in Chinese mathematics classrooms and formulate strategies to sustain and 
affect the desirable changes in classrooms. 

    Study 1: Changes in Instructional Tasks 
in Reformed Classrooms 

 A collection of instructional tasks make up a curriculum, and those tasks form 
the basic treatment units in classroom instruction. Doyle ( 1983 ) divides academic 
instructional tasks into three major classes: memory tasks, procedural or routine 
tasks, and comprehension/understanding tasks. By building on Doyle’s framework 
( 1983 ,  1988 ) and the ideas of reformed mathematics curriculum in the USA (NCTM 
 1989 ,  1997 ), Stein and her colleagues (Stein et al.  1996 ,  2007 ) developed a concep-
tual framework to characterize the cognitive features of mathematics instructional 
tasks. The system contains three dimensions: (1) cognitive levels of instructional 
tasks, which refers to whether a learning task requires merely memorization, routine 
procedure, or relating a procedure to its underlying concepts; (2) single or multiple 
representations (e.g., symbolic, visual, hands-on manipulation) involved in the tasks; 
and (3) single or multiple solution methods encouraged in the tasks. Findings in 
cognitive psychology have indicated that the nature of learning tasks infl uences 
learners by directing their attention to particular aspects of content and by specifying 
ways of processing information (Anderson  2000 ; Doyle  1983 ; Marx and Walsh 
 1988 ; Ni and Zhou  2005 ). The three cognitive dimensions of mathematics learning 
tasks as identifi ed by Stein et al. are suggested to infl uence student learning favorably 
in different grade levels (Hiebert and Wearne  1993 ; Stein and Lane  1996 ; Stigler and 
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Hiebert  2004 ). This line of research has provided the impetus for the current mathe-
matics curriculum reform in many countries, including China. Recommendations for 
the curriculum reform emphasize the importance of exposing students to meaningful 
and challenging mathematical tasks, because meaningful and cognitively demanding 
tasks are considered to be more likely provide authentic opportunities for students to 
explore mathematical ideas. As a result of being exposed to more challenging tasks, 
students are expected to become competent in mathematics (e.g., Stein et al.  1996 ; 
Schoenfeld  1992 ). The purpose of this study was to examine whether or not the 
recent curriculum reform in China has infl uenced classroom practice as refl ected in 
the implemented instructional tasks. 

 In the study, 58 fi fth grade mathematics teachers were randomly recruited from 
20 schools in two school districts in Zhengzhou of the Henan province in central 
China to take part in the study. Thirty-two teachers from ten schools were from one 
district using the new curriculum, whereas the other 26 of them were from ten 
schools in another district using the conventional curriculum. All of the reform 
classes had been taught with the reformed curriculum since the students were in fi rst 
grade, and likewise the conventional classes taught with the conventional curricu-
lum since the fi rst grade. The students were assigned to the schools by the proximity 
of the school to where they lived. The teachers from the two groups were compa-
rable in terms of educational level and teaching experience. The average class size 
for the reform group was 57 students per class and 56 students per class for the 
non-reform group. Such large class sizes were due to the fast urbanization phenom-
enon which has taken place in China since the end of the last century, during which 
more and more families have been migrating from rural areas to cities in the coun-
try. For more details about the characteristics of the teachers and students, see Ni 
et al. ( 2009 ,  2011 ). 

 Each of the 58 classrooms had three mathematics lessons for three consecutive 
school days videotaped. All of the videotaping was completed within 1 month, 
between November and December 2006. The teachers were informed of their respec-
tive observation schedules 1 week before the observation took place. They were told 
that the goal of the study was to see what would typically happen in Chinese math-
ematics classrooms. Therefore, they should teach in the usual way and with no extra 
preparation. Of the obtained 171 valid videotaped lessons, there were 146 lessons on 
new knowledge, 15 review lessons, and 10 exercise lessons. Considering any plau-
sible infl uence of lesson type on types of instructional tasks to be used, our analysis 
was restricted to the 146 lessons on new knowledge. This included 87 lessons from 
the reform classrooms and 58 lessons from the non-reform classrooms. 

 According to Doyle ( 1983 ) and Stein et al. ( 1996 ,  2007 ), a mathematical task is 
defi ned as a classroom activity or a segment of classroom work of which the purpose 
is to focus the attention of students on a particular mathematical idea. In our study, 
any self-contained mathematics problem, activity or exercise that involved the stu-
dents during a lesson was counted as a learning task. Among a total of 986 instruc-
tional tasks that were identifi ed via an observation of the videotaped lessons, 518 
were from the reform group and 478 from the non-reform group (Li and Ni  2011 ). 
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 These identifi ed instructional tasks were then coded along the following three 
dimensions (Stein et al.  1996 ,  2000 ; Renkl and Helmke  1992 ; Stigler and Hiebert 
 1999 ): (1) type of cognitive process that is required for students to engage in solving 
the task, (2) the existence of multiple solution strategies, and (3) the extent to which 
the task lends itself to multiple representations. In terms of cognitive processes, 
“memorization” tasks involve either reproducing or committing to memory previ-
ously learned facts, rules, formulae, or defi nitions. Tasks that are described as “pro-
cedures without connections” are algorithmic, and they have little or no connection 
to the concepts or meaning that underlie the procedures being used. “Procedures 
with connections” are tasks that focus students’ attention on the use of procedures 
for the purpose of developing mathematical concepts. For example, the task  Do 1/4, 
0.25, and 25 % stand for the same amount?  would be an example of a memory task. 
An example of procedural or routine task would be  Transform 3/8 into a decimal 
and percentage.  A task which relates procedure to its underlying concepts would be 
comparable to the following example:

    Shade the area which stands for 3/5 of a 10 × 10 grid and explain.    

Three kinds of presentations were coded, including numerical symbols, graphic illus-
trations, and hands-on manipulations. When a teacher used not only an arithmetical 
form but also a graphic form, other visual illustrations, or hands-on manipulations to 
present an instructional task, it was considered a task of multiple representations. An 
instructional task also was coded based on whether or not the teacher encouraged 
students to think about multiple solution methods toward a given task. 

 The study showed that the reform classrooms implemented more learning tasks of 
 high cognitive demands  than the non-reform classrooms. In the reform classrooms, 
49.9 % of the tasks were  procedure with connections , whereas these accounted for 
only 22.8 % of the tasks in the non-reform classrooms. The reform classes also used 
a higher proportion of  instructional tasks that involved visual illustrations —37.3 % 
of the learning tasks compared to 10.5 % in the non-reform classrooms. In addition, 
the reform classrooms adopted more instructional tasks involving  hands-on manipu-
lation  (10.5 % compared to 5.4 %) and  multiple solution methods  (35.9 % compared 
to 15.7 %). These results suggest that the changes in instructional tasks were taking 
place in the Chinese classrooms adopting the new mathematics curriculum.  

    Study 2: Infl uence of the Instructional Tasks on Classroom 
Discourse in the Reformed Classrooms 

 Instructional tasks and classroom discourse are two of the most important features 
of classroom instruction. These are considered to be key factors that defi ne the links 
between teaching and learning (Hiebert and Wearne  1993 ; Li and Ni  2011 ; Stein 
et al.  1996 ). The use of instructional tasks with  high cognitive demands ,  multiple 
representations , and  multiple solution methods  is expected to help create a more 
dialogic classroom discourse between the teacher and the students. Instructional 
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tasks and classroom discourse usually occur simultaneously and interweave with 
each other in classroom. Consequently, one common assumption is that changes in 
the type of learning tasks would bring about changes in classroom discourse. That 
is, change the substance of what is being taught, i.e., instructional tasks, in order to 
infl uence how teaching and learning occur, i.e., classroom discourse (e.g., Ministry 
of Education  2001a ,  b ; National Council of Teachers of Mathematics  1989 ). 
However, several studies suggest that their links are more complicated than this, 
because the relations between the nature of instructional task and the nature of 
classroom discourse are constrained by various factors. 

 Henningsen, Stein, and their colleagues (Henningsen and Stein  1997 ; Stein et al. 
 1996 ) demonstrated that many other classroom-based factors, such as classroom 
norms, teachers’ instructional dispositions, and students’ learning dispositions, can 
either provide support or, alternatively, inhibit the implementation of the intended 
high cognitive demand tasks. It has been observed that high cognitive demand tasks 
involve more ambiguity and higher levels of personal risk for both teachers and 
students. The mutual constraint of instructional tasks and classroom discourse can 
become more acute and complex with implementation of high cognitive demand 
tasks within the context of Chinese culture and traditions. 

 In Mainland China, the education system is highly centralized and, as such, can 
make changes in instructional tasks mandatory. This can be accomplished by merely 
changing the existing curriculum standards and textbooks. However, the govern-
ment has no effective mechanism with which to bring about mandatory changes to 
classroom discourse. The inherent nature of classroom discourse is determined by 
the behaviors of individual teachers and individual students. Therefore, it was no 
surprise to observe that the Chinese classrooms using the reform curriculum and 
those utilizing a conventional curriculum differed signifi cantly in what kinds of 
instructional tasks were implemented. Nevertheless, the two groups of classrooms 
did not differ very much with regard to the nature of classroom discourse, whether 
dominated by the teacher or shared together by the teacher and the students (Li and 
Ni  2011 ). Therefore, changes in instructional tasks do not necessarily bring about 
changes in classroom discourse, because classroom discourse is also infl uenced by 
other factors, not merely by changes in instructional tasks. 

 Therefore, we conducted Study 2 to examine the way that the new features of 
instructional tasks infl uenced elements of classroom discourse and how the instruc-
tional tasks with the antecedent elements of classroom discourse, e.g., teacher ques-
tions, affected later elements, such as classroom authority in evaluating students’ 
answers. The study (Ni et al.  2012 ) utilized the data of 90 videotaped class sessions 
from the reform classrooms only in Study 1 and examined how the measured fea-
tures of instructional tasks affected the classroom discourse behaviors of the Chinese 
teachers and students. The class lessons were analyzed along the following four 
aspects of classroom discourse:  questions from teachers, answers from students, the 
teachers’ reactions to the responses of students,  and  the nature of authority —teacher 
authority or teacher-student joint authority for evaluating a student’s response. We 
coded the classroom discourse based on the assumption that teachers and students 
contribute to teacher-student and student-student interactions (Cobb et al.  1992 ; 
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Hamm and Perry  2002 ; Li  2004 ; Stigler et al.  1996 ; Stigler and Hiebert  1999 ; 
Williams and Baxter  1996 ). 

 The coding category of  teachers’ questions  refers to the way in which teachers use 
questions to stimulate students’ specifi c mathematical thinking (Perry et al.  1993 ). 
Four types of teacher questions were observed: (1)  Memory recall questions  require 
students to repeat facts, procedures, or mathematical rules that were previously 
taught in the class. (2)  Procedural questions  ask students to describe the procedure 
that leads to an answer. (3)  Explanatory questions  require students to explain their 
contemplations in selecting strategies and procedures for solving problems or why a 
certain procedure works. (4)  Analytic and comparative question s lead students to 
consider the nature of a problem or a certain strategy or ask students to compare two 
students’ solution methods. The last two types of teacher questions require students 
to make reasonable connections of knowledge and skills, and therefore, the questions 
are referred to as “higher-order questions.” In contrast, memory recall questions and 
questions that describe procedures are regarded as “lower-order questions.” 

  Student answers  were coded into these fi ve categories. (1) A  simple answer  is to 
provide just a “Yes” or “No” answer. (2) A  descriptive answer  is to describe a pro-
cedure taken to achieve an answer. (3) An  explanatory answer  is to explain why a 
certain strategy is applied. (4) A  commentary answer  is to evaluate different solu-
tion approaches or comment on others’ answers. (5) A  student raising a new ques-
tion  provides new opportunities to explore a given topic further. In the study,  simple 
answering  and  descriptive answering  were grouped as  simple answers. Students’ 
explanatory answering ,  commentary answering , and  raising new questions  were 
regarded as  highly participatory answers . 

 The coding category of  teachers’ responses  was concerned with how the teach-
ers reacted to students’ answers. According to Hamm and Perry ( 2002 ), a teacher 
may have four different reactions to students’ answers: (1) The teacher abandons or 
ignores the student’s idea. (2) The teacher acknowledges the student’s reply but 
does not follow through to incorporate it into the lesson. (3) The teacher repeats the 
student’s idea to express approbation. (4) The teacher examines, utilizes, and clari-
fi es the student’s idea. 

 The coding category of  the evaluation authority  designates the source of author-
ity in classroom dialogue (Hamm and Perry  2002 ; Li  2004 ). The question remains 
as to whether the correctness of an answer is determined solely by the teacher or by 
both the teacher and the students. (1) Teacher authority is determined by the correct-
ness that is assessed by the teacher through verbal or nonverbal reactions to stu-
dents’ answers. (2) Teacher-student joint authority indicates that the teacher and 
students are working together to establish correctness. 

 Regression analyses were conducted to investigate the relationship between the 
measured features of instructional tasks and the elements of classroom discourse. 
Consistent with the existing literature, the results showed that teachers tended to ask 
more higher-order questions when using instructional tasks high in cognitive 
demand. Students showed a high level of  participatory responses , such as explain-
ing an answer, commenting the other’s response, and raising a question, which 
appeared to be infl uenced directly by teachers’ higher-order questioning, but not 
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directly by the tasks of  high cognitive demand  themselves. However, it was puzzling 
that in teachers’ pursuit of  multiple solution methods  toward a task with their stu-
dents, they were more inclined to ask memorization and procedural lower-order 
questions. Also unexpected was that instructional tasks high in cognitive demand or 
teachers’ higher-order questions were associated more with teacher authority in 
evaluating students’ answers. Also, none of the three cognitive features of instruc-
tional tasks was found to promote teacher-student joint authority in teacher-student 
discourse of the classrooms.  

    Discussion 

    Interpretation of the Findings 

 The fi ndings from Study 1 showed that the Chinese reform classroom used more 
learning tasks with  higher cognitive demand , involving  multiple representations  and 
 multiple solution methods , than the non-reform classrooms did. The differences in 
the examined instructional tasks between the reform classrooms and the conven-
tional classrooms were considered to refl ect more the curricular infl uences than indi-
vidual differences between the two groups of teachers. A further analysis indicated 
that only the curricular factor, not the teachers’ demographic characteristics, showed 
an effect on the observed difference (Li and Ni  2011 ). Also, the teachers of the reform 
classes had different years of experience with using the new curriculum, and the 
years of experience had an effect on the difference in types of instructional tasks 
implemented in their classrooms (Ni et al.  2009 ). These suggest that curriculum 
materials, particularly textbooks and teacher manuals, are the main instructional 
resources that teachers rely on to make decisions concerning content selection and 
teaching methods (Stylianides  2009 ; Tarr et al.  2006 ). While assuming the infl uence 
of the curriculum materials (particularly the textbooks) on the observed differences 
in instruction practice between the groups, we did not directly investigate this source 
and its actual infl uence on the implemented tasks. This was a major limitation of the 
study. Nevertheless, the results about the differences in kinds of instructional tasks 
used between the reform classrooms and the conventional classrooms showed an 
expected effect of the reform curriculum on the classroom instruction. 

 The results of Study 2 reveal a complicated picture depicting the dynamics between 
the features of instructional tasks and the nature of classroom discourse in the Chinese 
classrooms that were in the fi rst 5-year stage of enacting a new mathematics curricu-
lum. The three cognitive features of instructional tasks ( high cognitive demands ,  mul-
tiple representations , and  multiple solution methods ) were shown to have various 
relationships with the sequential elements of classroom discourse. This is consistent 
with the previous fi ndings that high cognitive demand tasks link procedures to under-
lying concepts and elicit higher-order questions from teachers that encourage students 
to provide explanations and analysis (Ball  1993 ; Nystrand et al.  2003 ). However, the 
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task feature of  high cognitive demands  did not display a direct link to students’ highly 
participatory responses, but teachers’ high-order questions did. This observation com-
plements the fi ndings by Stein et al. ( 1996 ) and Henningsen and Stein ( 1997 ) that the 
way a teacher orchestrates classroom  communication constraints intended utilities of 
high cognitive demand tasks. 

 It was unexpected that the task feature of  multiple solution methods  was related 
to teachers’ lower-order questions. A further inspection of the videotaped lessons 
showed that the teachers did encourage students to think about alternative solution 
methods but seldom guided the students to compare the solution methods proposed 
by students. This might in part explain why the task feature of  multiple solution 
methods  was associated with teachers’ lower-order questions. Baxter and Williams 
( 2010 ) made a similar observation in their study of American mathematics class-
rooms. They explained that the teachers asked students to come up with different 
solution methods more for the purpose of social scaffolding, to encourage students 
talk more in classroom, than for the purpose of cognitive scaffolding, to guide stu-
dents for acquiring specifi c mathematics knowledge. To elaborate on this reasoning, 
we consider the association of  multiple solution methods  with a teacher’s lower- order 
questioning to be a refl ection of the dual infl uences on the teacher’s behavior. One 
stems from the teacher’s effort to manage adhering to the new curriculum require-
ment to engage students into a more dialogic classroom discourse. The other stems 
from the challenge posed for the teacher to foster a greater degree of discourse, 
which demands both the skill from the teachers to orchestrate classroom discourse 
and the considerable domain knowledge and pedagogical content knowledge. When 
students present different ideas, or even the same ideas using different expressions, 
the teacher is faced with the task of fi guring out how to assist students in experienc-
ing the regularity, preciseness, and logicality of mathematics without discouraging 
their participation. 

 It was also unexpected that both the task feature of  high cognitive demands  and 
teachers’ higher-order questions tended to be associated with teacher authority in 
evaluating students’ responses. This result suggests that the new features of instruc-
tional tasks do not necessarily result in a shift in the norms of classroom discourse, 
especially in Chinese classrooms where teachers and teaching have been very direc-
tive and students are used to it (Ni et al.  2010 ). On the other hand, the teacher- 
student shared authority over evaluation of student responses was related to students’ 
highly participatory answers. Meanwhile, students’ highly participatory answers 
were predicted by teachers’ higher-order questions that were in turn promoted by 
the task feature of  high cognitive demands . Therefore, it is probable that the task 
feature of  high cognitive demands  indirectly infl uenced students to produce more 
highly participatory answers via teachers’ higher-order questions in classroom 
 discourse and students’ highly participatory responses were then benefi cial to the 
creation of teacher-student joint authority over classroom discourse. 

 These fi ndings support the conceptualization of instructional tasks at the three 
levels, as represented in the curriculum materials, as selected by teachers, and as 
implemented in the classroom (Stein et al.  2007 ). The multiple representations of 
instructional tasks entail no linear relationship between types of instructional tasks 
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and ways of classroom discourse because the factors constraining the different 
 levels are different. Therefore, the specifi c characteristics of instructional tasks 
could not determine the nature of classroom authority, teacher authority, or teacher- 
student shared authority over knowledge (Hamm and Perry  2002 ). Instructional 
tasks with the features of  high cognitive demands ,  multiple representations , and 
 multiple solution methods  certainly provide a richer and more demanding content 
that encourages discussions between teachers and students. However, the discourse 
can either be dominated by the teacher or can evolve in a way that the teacher and 
students all share the authority over knowledge.  

    Implications of Findings for Informing Mathematics 
Classroom Instruction 

 The results of these studies provide evidence-based descriptions of the impact of the 
new curriculum on the features of instructional tasks and classroom discourse in 
Chinese classrooms. They raise expectations and also pose challenges for sustaining 
the desirable changes as a result of curriculum reform. One challenge is to align the 
three levels of unitizing high-level instructional tasks, as they are chosen in curricu-
lum materials, selected by teachers, and implemented in the classroom (Stein et al. 
 2007 ). As the results of the studies demonstrated, at the implementation level, the 
teachers had the diffi culty to guide productive classroom discourse with the high- 
level instructional tasks. The diffi culty lies in the multiple requirements put on the 
teachers, such as (1) to understand how students make senses of the tasks, (2) to 
manage to align students’ disparate ideas and approaches to the disciplined under-
standing of mathematics, and (3) to hold the students accountable to the classroom 
learning community to gain the authority over learning and over knowledge (e.g., 
Ball  2001 ; Engle and Conant  2002 ; Stein et al.  2008 ). The teachers need to be pro-
vided more professional support in this regard. It was understood that Chinese 
teachers were required to attend mandatory training on the new curriculum for a 
minimum of 48 h every year (Guan and Meng  2007 ). One emphasis of the profes-
sional training and development is to assist the Chinese teachers in developing the 
pedagogical expertise and tools to guide whole-class discussions for a more dia-
logic classroom discourse on learning worthwhile and important mathematics. 

 An example of the tools for professional training is the four principles for foster-
ing productive disciplinary engagement that have been proposed by Engle and 
Conant ( 2002 ). The principles are  problematizing subject matter  to encourage stu-
dents to raise questions to the learning tasks,  giving learners the authority  to address 
the questions and to come up with their own ways to solve them,  holding learners 
accountable  to other learners and to shared disciplinary norms by supporting the 
students be responsive to the discussed content, and  providing students with rele-
vant resources , e.g., time and intellectual tools, to carry out the above three. The 
principles are considered an abstract of the underlying regularities to explain and 
inform the moment-by-moment decisions of classroom teachers as they engage stu-
dents in disciplinary learning. 
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 A second example of the tools is the fi ve key classroom practices synthesized by 
Stein and her colleagues (Stein et al.  2008 ) to guide effective whole-classroom discus-
sions and to support the principles of productive disciplinary engagement to be imple-
mented gradually and reliably in classroom. The key practices are  anticipating , 
 monitoring ,  selecting ,  sequencing ,  and connecting . The fi rst practice is for the teacher 
to anticipate likely student responses to a given demanding instructional task based on 
an understanding of the students’ prior knowledge. The second practice is to monitor 
students’ responses to the task in order to identify the mathematical learning potential 
from particular student responses. The third practice, based on the fi rst two, is to select 
the identifi ed strategies or representations provided by the students and present them 
to the class to make it more likely that important mathematical ideas coming from the 
students can be discussed by the class. The fourth is to sequence the selected student 
responses in such a way that can help more effectively illustrate, emphasize, and gen-
eralize the important mathematical ideas. The last practice is to make connections 
between selected student responses and between student responses and the key math-
ematics ideas to be learned. The fi ve practices and the four principles were developed 
to address the challenges to substantialize constructivist pedagogy by incorporating 
instructional content and dialogic interaction in classroom. 

 It is understood that an emphasis on teachers’ training and professional develop-
ment concerning how to guide productive whole-class discussions on learning 
important mathematics cannot be done by merely handing the teachers a set of 
identifi ed tools. Instead, the emphasis can only be realized through an understand-
ing of how the teachers comprehend the new curriculum and through continuous 
professional, dialogic refl ection by individual teachers and the teaching community 
on the tools in relation to their classroom practice. Fortunately, one organizational 
feature of Chinese schools can provide the infrastructure to support such profes-
sional training and development. In most Chinese schools, teachers are organized 
into teaching research groups or lesson preparation groups by school subject and 
grade level. The lesson preparation/teaching research groups have regular meetings 
to discuss general issues of teaching, to study curriculum materials, to make lesson 
and unit plans, and to observe and analyze instruction for one another (Han and 
Paine  2010 ; Paine and Ma  1993 ; Wang and Paine  2003 ). The lesson preparation/
teaching research groups probably need to pay more attention on how to make use 
of and invent the tools of constructivist pedagogy to promote productive disciplin-
ary engagement by students in classroom. 

 Han and Paine ( 2010 ) conducted a fi ne ethnographic documentation of the pro-
cess required to prepare public lessons 1  by a teaching research group of fi rst grade 
mathematics teachers in China. From the documentation, it was observed that the 
teaching research group was studying the textbook and teacher manual intensively 
on how teaching subtraction with word problems such as “There are 10 boys and 

1   Public lessons refer to the lessons that are conducted by the teachers whom are considered by 
respective school districts to be exemplary on teaching and are open to teachers in and outside of 
the schools. Public lessons are a regular part of teacher professional development activity in China. 
It also helps to effi ciently disseminate socially and culturally favored teaching methods. Han and 
Paine ( 2010 ) documented the processes of preparing public lessons by a group of Chinese mathe-
matics teachers. 
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7 girls in a class. How many more boys are there than the number of girls?” The 
group made sure that the lesson would be in line with the teacher manual’s advice 
on the importance of teaching children to use the one-to-one correspondence prin-
ciple, to compare two quantities, and to be able to address and overcome the possi-
ble misconception in students who think 10 minus 7 for the word problem as 
removing seven girls from the group of ten boys. The documentation did not show 
that the teaching group had planned how to make the lesson more open to students’ 
ideas and incorporate them into the lesson. The Chinese teachers’ study of the cur-
riculum materials in an attempt to capture the essence of the mathematics topic to 
be taught refl ects the respectable Chinese school mathematics tradition of teaching 
foundational mathematics knowledge and skills. The analysis of the curriculum 
materials will also provide the content basis for classroom discussion to focus on 
the basic and important mathematics. However, a content analysis of curriculum 
materials is necessary, but not suffi cient, for fostering productive disciplinary 
engagement in mathematics teaching and learning. It is in this connection that tools 
like the four principles and fi ve practices of constructivist pedagogy could be useful 
references for Chinese teachers to complement their command of knowledge for 
teaching mathematics (Ma  1999 ; Han and Paine  2010 ).      
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Abstract In this chapter, we aim to examine a popular approach to improving 
mathematics classroom instruction through exemplary lesson development in 
China. Features of a content-focused exemplary lesson are analyzed in detail, and a 
practicing teacher’s experience participating in the development of the exemplary 
lesson is also examined. The case study suggests that pursuing instruction excellence 
is a process of negotiating culturally valued teaching traditions and reform- oriented 
notions. The process of developing an exemplary lesson is of the features of deliberate 
practice, and the product of developing exemplary lesson forms a type of high-
leverage practice. Finally, the implications of developing exemplary lessons for 
improving mathematics classroom instruction in China are discussed.
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Background

A multitude of reform efforts have occurred in mathematics education in the past
two decades (National Council of Teachers of Mathematics [NCTM] 1991, 2000; 
Martin 2007). One major focus of these efforts is to prompt ambitious instruction,
which includes the following features: (1) cognitively challenging instructional
tasks (Stein and Lane 1996; Stigler and Hiebert 2004; Weiss and Pasley 2004);
(2) task implementation, or opportunities for students to engage in high-level thinking
and reasoning throughout an instructional episode (Stein and Lane 1996; Stigler and
Hiebert 2004); and (3) opportunities for students to explain their mathematical
thinking and reasoning in mathematical discussions (Boaler and Staples 2008; Cobb 
et al. 1997). Despite some success in this endeavor, traditional models of instruction
still dominate the educational landscape (Jacobs et al. 2006; Stigler and Hiebert
1999). Teachers find it very challenging to implement “ambitious teaching” (Silver
et al. 2009). Recently, researchers have emphasized the importance of using high-
leverage practices in helping prospective and novice teachers learn to teach (Ball
and Forzani 2011; Ball et al. 2009; Grossman and McDonald 2008; Hatch and
Grossman 2009). According to Ball and colleagues (2009), high-leverage practices
“are those that, when done well, give teachers a lot of capacity in their work. They
include activities of teaching that are essential to the work and that are used 
frequently, ones that have significant power for teachers’ effectiveness with pupils”
(pp. 460–461). Specifically, they include patterns of students’ thinking in specific
content areas, misconception of particular contents (Ball and Forzani 2011), and
comparison of approaches to teaching of group discussion in different classrooms 
(Hatch and Grossman 2009). Yet, less attention has been given to the development
of those high-leverage practices.

Coincidently, professional developments in China and Japan have focused on
developing public lessons (Han and Paine 2010; Huang and Bao 2006) or study
lessons (Lewis et al. 2006). In particular, one of the latest Chinese efforts to develop
exemplary lessons has demonstrated its power in improving classroom instruction 
and promoting teachers’ expertise growth and developing transferable instructional 
products (Huang and Li 2009; Huang et al. 2011). Some exemplary lessons have
focused on implementing certain teaching strategies (Huang and Bao 2006), while
others have aimed to effectively teach particular contents (e.g., Zhang et al. 2008).
The model carries a focus on teachers’ learning through participating in the process 
of developing an exemplary lesson (Hiebert and Morris 2012). Nevertheless, much
remains to be understood about the characteristics of exemplary lesson instruction 
that are valued and how to pursue such classroom instruction excellence. Thus, this 
study is designed to answer the following questions:

 1. What is the process utilized to develop the exemplary lesson in discussion?
 2. What are the characteristics of the exemplary lessons currently valued in China?
 3. What may the practicing teachers learn from exemplary lesson development?

To address these questions, the paper is organized into four sections. First, the 
characteristics of mathematics classroom instruction currently valued in China will 
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be identified based on a literature review. Then, the approach to pursue mathematics
instruction excellence through exemplary lesson development, as adapted in a 
nationwide research project in China, will be briefly described. After that, a particular
exemplary lesson developed in the project will be examined in great details. 
Finally, some implications of pursuing mathematics instruction excellence through 
exemplary lesson development will be discussed.

Some Features of Mathematics Classroom  
Instruction Valued in China

Although no universal agreement of what effective mathematics teaching is exists
(e.g., Krainer 2005; Li and Shimizu 2009), studies have documented indications of
certain characteristics of effective teaching practices in China. In particular, a number 
of comparative studies on mathematics classroom teaching reveal several key features 
of Chinese mathematics instruction. For example, in contrast to US classrooms,
Stigler and Perry (1988) found that Chinese students were more involved in mathe-
matics tasks posed by the teacher. In addition, Chinese mathematics lessons were 
more polished and structured than mathematics instruction in the USA (Stevenson
and Lee 1995). Recently, Chinese mathematics classroom instruction was found
to have the following features: lecture-dominated whole classroom instruction,
explaining new topics carefully, conducting a lesson coherently, emphasizing 
mathe matical reasoning and connections, and practicing with variation problems 
(e.g., Chen and Li 2010; Huang et al. 2006; Leung 2005).

Through examining the teaching of Pythagoras’ theorem over three decades, 
Tang et al. (2012) found that “two basics” teaching, which emphasizes the develop-
ment of students’ basic knowledge and basic skills, has been evolved in terms of its 
formats and essence. Although some key elements of “two basics” teaching inclu-
ding developing new knowledge based on previous knowledge with small pace incre-
mentally, teachers’ telling dominantly, and practicing with variation problems are 
still prominent, some reform-oriented features such as connections of knowledge, 
multiple perspectives of proof, and students’ engagement (Ministry of Education,
China 2001, 2003) have been incorporated. From a historical perspective, Shao
et al. (2012) confirmed that “laying a sound foundation for all students is the first
priority” in China legitimizes “two basics” teaching. By assimilating some Western
notions of mathematics instruction, the current reform of mathematics classroom 
instruction in China is aimed to make the following balances: extensive practice vs.
conceptual understanding, variant embodiments vs. invariant mathematical essence, 
teacher guidance vs. student self-exploration, explanative analysis vs. exploratory 
trial, and logical deduction vs. inductive synthesis (Shao et al. 2012).

In sum, rooted in Chinese cultural traditions and influenced by Western reform 
notions, Chinese mathematics classroom instruction seem to have the following 
features: (a) developing students’ mathematical knowledge and mathematics
reasoning, (b) emphasizing knowledge connections and instructional coherence,
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(c) strengthening students’ new knowledge acquisition with systematic variation
problems, (d) striving for a balance between the teachers’ guidance and students’
self-explorations, and (e) summarizing key points in due course. These features of
effective teaching in China will be used as references in analyzing instructional 
improvements in this study.

The Case Study of Developing an Exemplary Lesson

In this section, we first introduce a currently used approach to pursue excellent
classroom instruction through joint development of exemplary lessons. Then, a 
particular nationwide project that focuses on the teaching of core concepts through 
exemplary lesson development will be described. Finally, a detailed analysis of an 
exemplary lesson will be presented.

Developing Exemplary Lessons: A Promising Approach  
to Improve Teachers’ Knowledge and Teaching Practices

In China, there is a coherent in-service teachers’ professional system, within which 
teachers have been immersed in observing experienced teachers’ classroom instruc-
tion and being observed by others (Stewart 2006; Wong 2010). Huang, Peng, and
colleagues (2010) further described some other popular practices for teachers’
professional development such as mentorship scheme, school-based and/or city-
based teaching research activities, and municipal and national teaching skill compe-
titions (lesson explaining and lesson teaching). Meanwhile, a teacher promotion
system provides a supporting mechanism and incentive for teachers to engage in 
these activities (Li et al. 2011). Within this promotion system, secondary teachers
can be promoted from primary via intermediate to senior positions through a 
systematic and strict appraisal procedure. It is a critical competence for teachers 
to design and deliver exemplary lessons in order to be promoted to a higher level 
(e.g., Huang et al. 2010).

This teacher promotion system also provides a platform for teachers to value and 
pursue mathematics classroom instruction excellence. Through this promotion 
system, master teachers who hold senior or above positions have played a crucial 
role in fostering teachers’ professional development. Master teachers not only take
responsibility for routinely mentoring junior teachers, but also develop and demon-
strate exemplary lessons for others, particularly in the context of implementing 
reform-oriented curriculum (Li et al. 2011).

Recently, in order to facilitate the implementation of new curriculum, many in-
service teacher-training programs have been introduced. Joint efforts to develop
exemplary lessons to demonstrate how to handle paradoxical teaching problems such 
as how to integrate certain innovative teaching ideas into classroom instruction, or 
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how to teach certain newly added content, are common elements of these various 
programs. Considering the roles played by master teachers (senior or above) during
exemplary lesson development, we will describe how a master teacher develops 
an exemplary lesson within a nationwide project and analyze what unique features the 
exemplary lesson may have and how the master teacher may learn from developing 
the exemplary lesson.

The Content-Focused Lesson Development:  
A Nationwide Research Project

A longitudinal and nationwide project entitled “Structuring Mathematics with Core
Concepts at Secondary School Level and Its Experimental Implementation” has
been in action since early 2006 (Zhang et al. 2008). The aims of this project are to
(1) help teachers recognize and understand the logical development and internal
relationship among the core concepts and demonstrate how to effectively teach 
these core concepts and (2) help students better understand and master mathematics
core concepts and know the mathematical ideas and methods underlying these 
concepts in essence. To achieve these goals, the project suggested a uniform lesson 
design framework, which includes the following aspects: (1) profound understanding
of mathematics concepts, (2) accurate identification of teaching objectives, (3) deep
analysis of student difficulties in understanding the concepts, (4) problem-
oriented teaching procedure, (5) practicing new knowledge effectively and in time,
and (6) assessing students’ achievement.

Developing an instructional design of a core concept usually includes the follow-
ing cyclic procedures: collaborative design of lesson, implementing lesson, reflecting,
and revision and reteaching. The process will end when a satisfactory design is 
achieved within the group of project members. Finally, a case study on the develop-
ment of the exemplary lesson of teaching core concepts (video, lesson design, and
reflection of the development) is constructed for nationwide exchanges and sharing
in journal papers or multiple media materials (see Zhang et al. 2008).

More than 300 team members in different fields, such as mathematics educators
at universities, secondary mathematics textbook developers, secondary mathematics 
teaching researchers, and secondary school teachers from more than seven prov-
inces in China, have participated in this project. This project is organized hierarchi-
cally. At the national level, all of the members are university professors, senior
researchers, and secondary master teachers from different provinces and cities. At
the local (provincial or municipal) level, all of the members are voluntarily recruited
by national members at each setting. These members consist of master teachers and 
junior teachers from different types of schools. Moreover, the project may extend its
influence to other teachers beyond this project through the following ways: One is
to invite all the interested teachers to attend public demonstrating lessons both at 
national and local levels. The other is to distribute exemplary lessons with relevant 
videos and documents for teachers’ scrutiny.
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A sub-team headquartered in a southeastern city, with about ten members,
deve loped a lesson on algorithms, a newly added content topic in high school math-
ematics curriculum. The team members include master teachers and junior teachers 
from both key and normal schools. As one of three teachers who had been taking an
active role in designing and teaching the lesson, Ms. Chen was a senior mathematics
teacher at a key school (a highly prestigious high school at the provincial level) in
the city. She has a bachelor’s degree and a masters’ diploma in mathematics and
about 20 years of teaching experience. She had participated in several teacher
professional development programs, such as the new curriculum training and 
provincial key teacher training. Ms. Chen also won the first-class award of junior
teacher instruction competition and teaching mastery at the municipal level.

Developing a Particular Exemplary Lesson

In this part, we introduce features of the content and the process of developing this 
particular exemplary lesson.

The Content of This Exemplary Lesson

This exemplary lesson focuses on algorithms. Algorithms are part of the newly
added content in compulsory mathematics 3 at grade 11. The reasons for adding this 
content are the importance of algorithmic thinking method, its fundamental role in 
computer science, its broad applications, and its embodiment in many different mathe-
matics contents such as solving systems of equations, finding common factors, etc.
The chapter includes three sections: algorithms and programming flow charts (two
lessons), basic algorithmic sentences (three lessons), algorithmic cases studies (six
lessons), and a summary (one lesson). Through the learning of this chapter, students
are expected to preliminarily experience algorithmic thinking methods, the power 
of using a programming flow chart to solve problems through mathematical cases 
studies, learn how to use a programming flow chart to present the process of solving 
problems, experience the basic thinking method of algorithms and its importance 
and efficiency, and further develop reasoning, thinking, and expression. The content
of the exemplary lesson, introduction to algorithms, is the first lesson of this chapter,
which is arranged for a standard 45-min duration.

The Process of Developing the Exemplary Lesson

First of all, the teacher individually developed a lesson plan of selected topic (several
teachers in this sub-team are requested to design lesson plans for the same content),
and the different designs were reviewed within the team at the city level. Based
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on the comparison and analysis of different designs, and the comments of team 
members, the teacher developed a new design for teaching the content. Then, the 
teacher gave a public lesson in her own class for team members and other experts at 
the city level to observe and comment on. Based on post-lesson feedbacks and self-
reflections, the teacher revised the design of the lesson for further public observa-
tion (referred to as the original design in this study). Then, a public lesson was
conducted in another city for demonstration and study with the team members at the 
national level. Although the teacher was satisfied with her performance in the public
lesson, the experts in the national team gave her many criticisms. Based on this
public lesson and the expert suggestions, she made a fundamental revision of the 
lesson design (called the revised design): giving up previous contextual problems
and only using the mathematical problems provided in the textbook (10 of 11
problems are directly copied from or adapted from the textbook) for introducing
and developing relevant concepts. After that, she gave a public lesson in her own
school, but not with her own class, which was also videotaped for demonstration in 
a teacher-training program at the provincial level. After that, she gave two public
demonstrations of the lesson based on the same design with minor adjustments at 
the provincial and national levels.

Data Source and Analysis

In order to answer research question 2, we collected the following data: two lesson
plans (the original and revised ones) and two videotaped lessons, five master teachers’
(these master teachers were from another city, so they did not know Ms. Chen
personally) written comments on this revised lesson, and Ms. Chen’s reflection
report and a semi-structured interview with her. The five master teachers were asked
to provide their written comments based on the following questions: (1) What
are the main features of the lesson? What parts are most impressive to you? Please 
explain your opinions in detail. (2) If rating this lesson with a five-point scale 
(1 presents the lowest, while 5 presents the highest), please give your rating and
rationale. What kinds of exemplary roles do you think it may have, and why? In 
addition, the five types of questions guided our interviews with Ms. Chen, namely,
background, the topic selection, the process of developing the lesson, experience 
and attainment, and notions of teaching and learning in general.

By analyzing the revised lesson plan and videotaped lesson from different
perspectives, we aim to capture the characteristics of this lesson. With regard to 
master teachers’ comments, we developed a coding system based on previous 
framework (Huang and Li 2008). Two raters coded all the five teachers’ written
comments separately. The inter-rater agreement was 81 %, and all the differences 
were resolved through discussions. On Ms. Chen’s reflection report and interview
transcripts, we identify main stages of changes and gains through participating in 
the process of developing exemplary lesson.
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The Exemplary Lesson Design

In this part, we will describe the main segments of the exemplary lesson which 
includes the following phases: (1) introduction of the topic, (2) introduction to the
concept of algorithms through solving problems, (3) forming the concept through
analyzing and synthesizing, (4) fostering the understanding of the concept and
learning to express with daily language through solving deliberately selected 
problems, and (5) classroom exercise and homework.

Introduction of the topic. Through showing pictures of counting chips, an abacus, 
and computers from the textbook, a common method is induced underlying those 
instruments, namely, algorithm. The background of those pictures is one master-
piece of mathematics developed by Mr. Zhu Shiji in the Song dynasty (960–1279),
which included the great mathematics achievement by ancient Chinese mathemati-
cians. Through posing the question: What are the algorithms, which related to all
these instruments? The topic is induced naturally.

Introduction to algorithms through problem-solving. At this stage, several internally
connected problems are discussed. Problem 1: Can you find the procedures to solve
a system of linear equations with two unknowns, namely, x−2y = −1 and 2x + y = 1?

It is intended that recalling the steps needed to solve a system of linear equations 
will motivate students to explore general methods of solving many systems of linear 
equations, which will further provide foundation and experience for forming 
algorithm concepts.

Problem 2: What are the differences between your answer and the answer in the
textbook? What are the characteristics of the answer provided by the textbook? 
This problem aims to draw students’ attention to the solution procedures in general 
situation, and the logical structure of the solution.

Problem 3: Write the procedures of solving a system of linear equations
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This problem led to students’ further review of the procedures of solving general 
systems of linear equations with two unknowns, which aimed to help students know 
that an algorithm is a method for solving a group of problems that can be generalized. 
This idea is the base for generating the concept of algorithms.

Forming the concept of algorithms through analyzing and summarizing. The teacher 
asked the following questions: What does algorithm mean? How do you express an
algorithm? (Problem 4) This problem led students to acquire preliminary know-
ledge about algorithms, although they are unable to express the concept comprehen-
sively based on previous examples. By questioning and answering, students are
involved in the process of generating the concept.
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Fostering students’ understanding of the concept of algorithms and learning how to 
express algorithms by natural language through solving problems. Three more 
abstract problems were posted for students to solve and discuss. Problem 5: Write
down the procedures to judge whether 7 is a prime number. This problem is intended
to help students realize there is a certain recursive structure in the procedures of 
solving the problem. It provides students with the condition to recognize the 
features of algorithms and to learn how to express an algorithm with natural  
language. Problem 6: Given a whole number n (n>2), can you design an algorithm
to judge whether it is a prime number or not? Students were invited to solve this
problem by themselves on the basis of Problem 5. Thus, they can further understand
algorithms, realize the functions and strengths, and learn how to express algorithms 
with natural language. Meanwhile, students may realize that there is a certain
structure in the algorithms.

Problem 7: Write down algorithms for finding the approximate solution of equation
x2 −2=0 (x>0) by the bisection method. This problem is intended to review the
bisection method, which is a classic method of algorithms, demonstrating the 
sequence and operation clearly. Solving this problem is expected to help students
further recognize the logical structure of algorithms, comprehend the algorithmic 
thinking and characteristics, and further consolidate how to express algorithms by 
natural language.

Summarization. Through thinking about and answering the following questions, 
the content taught was reviewed and summarized. These questions are as follows:
(1) Can you express more algorithm examples? (Problem 8) (2) Compared to 
the process of solving general problems, what are the most important features of 
algorithms? (Problem 9).

Exercise and homework. Exercises and homework were arranged. Two problems
were for classroom exercise. One is from the textbook (Problem 10), and the other
is a counterexample (Problem 11). Moreover, two problems were assigned as the
homework.

Features of This Exemplary Lesson

In this part, we examine and identify some unique features of this exemplary lesson. 
First, we identify what kinds of learning opportunities the teacher created in this 
lesson from a perspective of teaching for understanding (Carpenter and Lehrer 1999).
Then, based on five master teachers’ comments on this lesson, we try to capture
what aspects are valued in this exemplary lesson by master teachers.

An Analysis from the Perspective of Teaching for Understanding

According to the framework by Carpenter and Lehrer (1999), the five forms of
mental activities that are conducive to developing mathematics understanding in 

Improving Mathematics Instruction through Exemplary Lesson Development



240

classrooms include (a) constructing relationships, (b) extending and applying
mathematical knowledge, (c) reflecting about experiences, (d) articulating what one
knows, and (e) making mathematical knowledge one’s own. In this study, construc-
ting relationships refers to building the new knowledge based on previous know-
ledge and building interconnected concepts and representations. Extending and
applying learned knowledge means to apply knowledge to solve problems and build 
a foundation for further study. Reflecting mainly refers to summary. Articulating
includes group discussion and public sharing. Making mathematics knowledge
one’s own refers to making mathematics interesting in the context of daily life and 
exploring knowledge by students themselves. In this lesson, the teacher tried to help 
students construct the concept of algorithms with understanding through presenting 
systematic, interconnected problems for students to explore and share. We can iden-
tify the following evidence that benefits students’ understanding of the concept.

Building the new concept through reviewing and solving problem progressively. 
The teacher paid close attention to building the new concept upon previously learned 
concepts and methods. At the beginning of the lesson, the teacher presented some
pictures on Chinese chips, abacuses, and computers from the textbook. This was 
intended to relate the new topics to those concepts and methods implicitly. Then, the 
teacher deliberately presented two problems with regard to a system of equations 
with two unknowns from numerical coefficients to symbolic ones for students to
explore and discuss. Through this process, some features of the new concept—
algorithm such as general procedures to solve a group of problem, in sequent 
procedures—were progressively exposed. Finally, the formal concept was stated 
explicitly and clearly based on student’s contributions as follows:

T: Please read the expression on blackboard, what are the salient features of this
expression compared to your own?

S: Consecution (tiaoli)
T: What does it mean?
S: Uh
T: Can you use other words?
S: Sequence (shunxue)
T: Expressing in sequence procedures, is it right ?
S: Right
T: Thus, based on the previous problem, can we solve a group of problems? We

project the procedure of solving this group of problems by following sequent 
steps, and these steps consist of an algorithm. Do you agree?

S: (Confirmation with nod)
T: Good. Sit down please (Writing down: the concept of algorithms)
T: Regarding algorithms, there is an expression in the textbook as follows (shown

on the blackboard): In mathematics, algorithms usually refer to definite, finite
procedures by following certain roles for solving a group of problems. 
Nowadays, algorithms can be programmed and implemented on a computer to
solve problems.
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After presenting the definition of algorithm, the teacher reemphasized the
characteristics (definite, finite, and sequent) and its relationship with methods to
solve a particular system equation.

Consolidating the concept through applying the concept systematically. The teacher 
presented two sets of problems for applications. One was to judge whether a whole
number is a prime number or not, and the other was to find the approximate solution
of a set of equations. With regard to the judgment of prime numbers, the teacher 
presented different numbers from 7, to 35, to 1997, and guided students to find and
articulate the procedures of the algorithm. The recursive structure of an algorithm 
was experienced, which is crucial for further programming. Take one episode for 
example. Within this interaction, the teacher guided students to express the algorithm 
to judge whether 7 is a prime number or not:

T: Then, can you design an algorithm to judge whether the whole number 7 is a
prime number or not?

S: (Student’s discussion)
T: Keep silence. Listening to her explanation.
S: First, 7 is divided by 1
T: Can you answer what prime number is?
S: Oh. 7 is divided by 2 first.
T: Right. Do not need to divide by 1. Because a prime number means the number

that does not include any factorization numbers except 1 and itself. Thus, she 
changed to divide 7 by 2 first.

S: If 7 is divided by 2, there is a remainder. Then 7 is divided by 3, there is a
remainder… 7 is divided by 6, there is a remainder. Thus, we can conclude that
7 is a prime number.

T: Very good. She expressed by using first, then, after that. In fact, we replace
these words with first, second, third. So, we can say: first, 7 is divided by 2,
there is a remainder. How can we tell computer to judge a number is divided by
another number?

S: To see the remainder is zero
T: Right. Just see the remainder. Now, can we write these procedures more precisely?

(Write down on the blackboard: First, 7 is divided by 2, what is the remainder?
S: Remainder is 1.
T: First, 7 is divided by 2, the remainder is 1.
T: (Writing down) Because remainder is not zero.
T: (Writing down) Thus, 2 cannot divide 7 completely.
T: Very good. In fact, we have to express each step definitely and clearly. Now, 

I express what she said just now as shown on the screen. She just said: first step,
7 is divided by 2 and the remainder is 1. Because the remainder is not zero, so
7 can’t be divided completely.

T: How about the second step?
S: Second step, 7 is divided by 3, the remainder is 1. Because the remainder is not

zero, so 7 cannot be divided by 3.
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Through questioning and answering, the students developed and expressed the 
algorithm regarding how to judge whether 7 is a prime number or not. Moreover,
students were asked to develop an algorithm to judge whether 1997 is a prime
number or not.

Clarifying the concepts through encouraging student’s articulation. As demon-
strated in previous episodes, during the process of solving problems, the teacher 
tried her best to encourage students to express what they know, as shown in the 
previous episode.

Reflecting on the concept through summarizing. Once they learned something new,
the teacher paid attention to applying this concept and summarizing the key points 
of the concept in due course. Before closing the lesson, the teacher invited students
to summarize the lesson as follows:

T: Class. In this lesson, we have learned the concept of algorithms. You
should realize that we emphasize the definite and finite procedures to
solve a class of problems by following certain rules. Moreover, we can
program to implement the algorithm in a computer. What are the salient 
features of algorithms?

S and T: Sequent, finite, definite.
T: Very good. In fact, an algorithm has three important features: sequence,

definiteness, and finiteness. Through solving different problems, you
should experience there are some structures in algorithms. For example, in 
solving the system of equations, there is main sequence structure. While 
in solving the last two problems, we realize the recursive structure and 
conditional structure. Now, let us look at the next problem.

In summary, according to current particular perspective, the teacher provided 
many opportunities for students to form, consolidate, apply, and express the concept, 
which are conducive to students’ understanding of the concept taught.

An Analysis from Master Teachers’ Perspectives

All five of the master teachers were knowledgeable, with an average of 20 years of
teaching experience (ranging from 11 to 30 years). Four of them [denoted as T1 to
T4] taught mathematics at key high schools, while the last [denoted as T5] was a
teaching researcher at the municipal level and the local coordinator of this project. 
The average rating of this lesson was a 4.5 ranging from 3.5 to 5, which means this
lesson was judged as a good one. Through detailed reading and an analyzation of 
the entirety of the five master teachers’ comments, their opinions were classified
into three broad categories, namely, instruction objectives, instructional designs, 
and instructional processes. Instruction objectives consist of three items concerning 
the intended and achieved goals in knowledge and skills, mathematical thinking, 
and cultural value and attitudes. Instructional designs include the aspects of 
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teaching planning such as focusing on the essence of the concept, dealing with 
important and difficult knowledge points, organizing and developing knowledge
progressively, readiness of students’ knowledge and cognition level, appropriate-
ness of the textbook use, and selection of teaching methods (e.g., problem-based
teaching method). Instructional processes refer to the classroom interactions and 
contributions made by the teacher and students such as the teacher’s guidance, 
students’ participations, student’s self-exploratory learning, and so on. Table 1 
shows the frequency of relevant items used by these teachers.

Table 1 indicates that all five teachers appreciated the lesson’s good organization
and full development of the concept progressively. For example, T2 explained as 
follows:

To achieve teaching objectives, the teacher purposely drew students’ attention from the 
solution of a system of equations to its process and method. Meanwhile, the teacher steered
students to express the process and method using their own language. Thus, the structure of 
solving system of equations and its natural language expression were connected. During the
process, the teacher implicitly emphasized the features of [algorithms] such as, certain
rules, a set of problems, and definite procedures, which makes good preparation for intro-
ducing the concept.

The second set of impressive aspects are how the teacher tried to balance the 
teacher’s guidance and the students’ participations and make comprehensive teach-
ing objectives focus on the mathematical essence of the concept while enlightening 
students’ observations, inductions, and abstractions. Four master teachers gave 
positive comments on the teacher’s guidance and students’ participations. For 
example, T3 appreciated that “the teacher made a proper balance between the
teacher’s guidance [zhudao] and students-centered instruction [zhuti].” Four of them
emphasized the importance of setting and achieving three dimensions of teaching 
objectives (suggested in national curriculum standards), while another four focused

Table 1 Frequency of items used by the master teachers

Category Items

Teacher

TotalT1 T2 T3 T4 T5

Instructional objectives Knowledge and skill 1 1 1 1 4
Mathematical thinking 1 1 1 1 4
Attitude and values 1 1 1 1 4

Instructional designs Focusing the essence of the concept 1 1 1 1 4
Dealing with important and difficult

point
1 1 2

Development of topics progressively 1 1 1 1 1 5
Problem-based teaching methods 1 1 3
Properly using textbook 1 1 2

Instructional processes Students’ participation 1 1 1 1 4
Teacher’ guidance 1 1 1 1 4
Stimulating students’ thinking 1 1 2
Students’ induction and abstract 1 1 1 1 4
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on the mathematical essence of the concept. For example, T5 emphasized the
importance of achieving a comprehensive teaching objective as follows:

This lesson achieves three dimensions of teaching objectives: (1) during the process of forming
the concept of algorithms, students understood what is an algorithm so that the knowledge 
aim was achieved; (2) during the process of achieving knowledge aims, students mastered
several algorithms of solving problems, thus ability objective was achieved; (3) from ancient
abacus to modern computer, algorithm thinking has played a fundamental role, thus, the 
affection, mathematical thinking, and cultural value were reflected to a certain extent.

Four of them appreciated the teacher’s focus on the mathematics content in 
essence. For example, T2 highlighted the salient feature of the lesson as “unfolding
this lesson surrounding the concept of algorithms and focusing on the essence of the 
problem in question.” The critical aspects of the concept are “solving a set of
problems,” “certain rules to follow,” “definite and finite procedures,” and so on.
He further explained the importance of inducing and abstracting as follows: “by
adopting the concept development from special cases to the general situation, the 
teacher continuously enlightens students to induce and abstract.”

Also, three of the five master teachers emphasized the importance of problem-
based teaching and learning. Moreover, two of them mentioned the following
aspects: a problem-based teaching method, the full use of the textbook, and stimu-
lating students’ thinking.

In responding to the question of what kinds of exemplary aspects the lesson may 
have, these master teachers recommended the following aspects: (1) guiding
students in developing and constructing the mathematical concept, (2) achieving
three dimensions of teaching objectives, (3) focusing on the core concept formation
and relevant mathematical thinking, and (4) profound understanding and appropriate
use of the textbook.

In addition, they also provided some improvement suggestions: (1) enlightening
students’ self-learning and thinking, (2) reducing the amount of content, (3) proper
dealing of logical structure difficulties, and (4) using precise teaching language and
less telling.

Taken together, these master teachers agreed that this is a good lesson, and it has 
some demonstration aspects, which include (1) guide students to develop and
construct the mathematical concept progressively, (2) achieve three dimensions of
teaching objectives, (3) focus on core concept formation and relevant mathematical
thinking, (4) have a profound understanding and proper use of the textbook, and
(5) make a balance between the teachers’ guidance and students’ participations.
However, there were some suggestions on the improvements of this lesson which
include paying due attention to students’ self-exploration, the quantity and diffi-
culty of content, and use of classroom instruction language.

The Growth of Ms. Chen

In order to understand Ms. Chen’s changes during the process of developing the
exemplary lesson, we analyze Ms. Chen’s reflection report and a semi-structured
interview. In her reflection report, she revealed her personal journey through 
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developing the exemplary lesson from satisfaction at the first demonstration to some
regrets in the follow-up demonstrations over the five teaching trials for introduction 
to algorithms. The following parts describe her main changes to the development of 
this exemplary lesson.

Daily situation oriented design. She spent 1 month to collect relevant materials,
analyze, and prepare an instructional design after accepting the task to develop a 
study lesson on algorithms, which was a totally new concept for her. Then, she gave 
a public lesson for the members of the research group at the city level at her school. 
Based on an extensive discussion within the research group, she revised the design
for a further demonstration lesson at the city level. In this design, she used two 
interesting problems to introduce the concept. The first problem is as follows:

A farmer wants to bring a wolf, a goat, and a basket of vegetables over a river with a small
ship. On the board, the farmer can only bring each of them one time. When the framer is on
spot, wolf, goat, and vegetable are safe. However, when the framer is not present, the wolf
will eat goat and the goat will eat vegetables. Please give a design for the farmer to bring all 
of them over the river safely.

The second problem is a famous Chinese “chicken and rabbit staying in the same
cage” problem as follows:

There are some chickens and rabbits staying in the same cage. If there are 35 heads and 94
legs, how many chickens and rabbits are there?

With the support of multimedia, there was a warm atmosphere on the surface 
with frequent interactions between the teacher and students, and many practicing 
teachers liked this lesson also. However, during the post-lesson reflection session,
many experts at the nationwide level criticized this design and denied the daily life- 
learning situation that focused on contexts too much and ignored the mathematical 
essence of the concept. She realized that it is crucial to have a deep understanding
of the textbook in terms of its representations, examples, and exercise problems, 
which is fundamental for a good lesson design.

Developing a mathematics concept-oriented design. Once she realized the weak-
ness of the previous design, she developed a new design based on experts’ sugges-
tions and self-reflection, and the teacher gave a third public lesson that was also 
videotaped as a demonstration lesson for teacher training at the provincial level. 
This lesson design, as shown in previous section, paid great attention to forming, 
developing, and consolidating the concept in the essence through exploring a series 
of deliberately selected problems. However, she did not like that lesson. On the one
hand, the classroom she gave the lesson to was not her own class, so the students 
were not willing to participate in the public lesson. Thus, the classroom atmosphere 
was relatively tedious. On the other hand, since she worried about students’ under-
standing of the recursive structure and its expression, she explained more with a lot 
of superfluous words. On the reflection of this lesson, she realized that when deli-
vering a good lesson, a teacher should pay close attention to students’ readiness and 
tries her/his best to fully motivate students’ enthusiasm and initiative. It is crucial 
for a mature teacher to use precise language to enlighten and guide students to focus 
on important and key points of the concept being taught.
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Mathematical concept formation and students’ participation balanced design. After
that, she delivered the public lesson twice, at the provincial and national levels. 
Building on the previous teaching practice and reflections, she was more successful
in formatting a mathematics concept, motivating and engaging students, and achiev-
ing a better classroom instruction performance overall. However, some new regrets
were also created. For example, in the fifth public lesson, an interesting and histori-
cal situation got students excitedly and actively engaged in forming and developing 
the concept, she enjoyed the process so much that she forgot time control. It raised 
other critical issues: How to properly deal with the relationship between students’
self-exploration and teacher’s guidance? How to effectively manage classroom
time? In a well-prepared lesson, if a competent teacher cannot manage the class-
room effectively, how can junior teachers deal with these relationships properly in 
their daily lessons? She has thought and tried to find solutions to these questions in
her subsequent teaching practices.

Multiple effective teaching methods but not a fixed teaching method. In her sum-
mary, she said “through the whole process of developing this exemplary lesson, I’ve
got a considerable gain. I not only have experienced and realized many problems 
and updated my own ideas and learned how to do teaching research but also 
improved my basic classroom teaching skills, reflection ability in and after the 
lesson, and significantly fostered my ability in dealing with teaching problems. 
I realized that there are certain teaching principles but no fixed method to all kinds
of situations and there are endless opportunities to learn.”

In her interview, she confirmed relevant opinions on her feelings and attainment
as follows:

Overall, I had suffered from high stress and heavy workload, but I had learned a lot. So, it is
worthwhile and it really helps me understand the new curriculum. Through this project, I had 
gained in terms of the following aspects: First, it advanced my understanding of the new
curriculum: from repulsion at the beginning to acceptance later on. Second, through the
process of design, implementation, reflection, and revision, it fostered my understanding of 
the textbook and ability in dealing with the textbook properly. Third, it gave me a lot of 
enlightenment through sharing different teaching designs and participating in exchange 
activities, particularly comparing different designs and observing lessons and listening to 
other master teachers’ comments and so on.

The joint development of exemplary lessons reflects some common points 
about how to teach core mathematics concepts. The design and delivery of this 
exemplary lesson lay great emphasis on the following aspects: (1) achieving 
three dimensions of teaching objectives (knowledge, ability and mathematical 
methods, culture value and affection); (2) focusing on the formulation, develop-
ment, and consolidation of the concept through exploring a series of purposely 
selected problems; (3) better understanding and appropriate use of the textbook;
and (4) making a balance between teachers’ guidance and students’ self-learning
and thinking.

Moreover, Ms. Chen learned a lot from participating in the process of developing
an exemplary lesson, including deepening the understanding of content knowledge, 
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optimizing the design of teaching the content, and ability to deal with the textbook 
in general. And most importantly, she learned to pose problems and solve problems
consciously, which enhanced her reflection awareness and ability.

Discussion and Conclusion

Exemplary lesson development has demonstrated its impact on helping teachers not
only to understand new content but also to figure out effective ways of teaching
them. This exemplary lesson shows a problem-based teaching approach. Solving a
series of deliberately selected problems is intended to stimulate students’ learning 
interests, connect the new topic to previous knowledge, form the new concept, clarify 
and consolidate the concept, and apply the concept in different contexts. Particular 
emphasis was placed on forming and understanding the essence of the concept and 
the underlying mathematical ideas, through exploring and solving a series of mathe-
matically worthwhile problems. The lesson successfully exemplified the following
aspects: (1) setting comprehensive and feasible teaching objectives; (2) focusing
on the essence of core concept (connotation and extension); (3) guiding students 
to form, develop, and consolidate the mathematics concept progressively; and  
(4) profound understanding and proper use of the textbook.

In their study, Huang et al. (2012) depicted how a teacher developed an exem-
plary lesson of teaching a topic in geometry. They made quite similar observations 
regarding the improvement of teaching: appropriately identifying comprehensive
instructional objectives, coherently developing knowledge, effectively dealing with 
difficult content points, and strategically organizing problem sequences. Thus, we
are certain that participating teachers have benefited from their efforts to pursue
excellence in mathematics classroom instruction. Through developing exemplary 
lessons, they developed a better understanding of the new curriculum content and 
the process of designing and developing an effective lesson, and more importantly, 
they have learned how to raise paradoxical problems in teaching and find ways to
handle those problems.

Instruction Excellence as a Balance Between Culturally  
Valued Traditions and Reform-Oriented Notions

The characteristics of the exemplary lesson identified in the previous sections partly
reflect certain culturally valued features of mathematics instruction in China, such as 
instruction coherence, well-developed knowledge, practicing knowledge with sys-
tematic problem variations, demonstrating some innovative efforts in exposing math-
ematical thinking and cultural value with regard to the concepts to be learned, and 
encouraging students’ participation and self-exploration. In particular, the flexible 
use of systematic problems with variations for introducing and practicing new 
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content and developing students’ problem-solving ability is a cultural belief of 
mathematics teaching in China (Li 2006) and a popular strategy in effective teaching
(Cai and Nie 2007; Gu et al. 2004; Huang et al. 2006). The national project explicitly
suggested adopting a problem-oriented teaching procedure as one of the principles 
for lesson design. We can see how the team members’ notions on mathematical 
instruction impacted the development of the design of the particular exemplary lesson. 
As a result, the design of the lesson shifted from focusing on the superficially
contextual situations, which were used mainly for motivating students’ interest and 
participation but were not pertinent to developing mathematical concepts in essence, 
to focusing on mathematically worthwhile problems, which were used effectively for 
developing mathematical concepts. It is the deep understanding and proper use of the 
textbook and the joint reflection on experiment teaching that make this shift happen. 
Meanwhile, teachers’ guidance is still in place to a certain extent; although, partici-
pating teachers realized the need to provide students with self-exploratory opportuni-
ties as much as possible. The legitimation of teachers’ guidance is rooted deeply in 
the Chinese conception of teachers, which emphasizes teachers’ roles in transmitting, 
instructing, and disabusing knowledge (Li et al. 2008; Shao et al. 2012).

Pursuing Instruction Excellence as a Participation  
in Deliberate Practice

The dynamic process of developing an exemplary lesson, namely, multiple cycles of 
design, teaching, reflection, and revised design, is crucial. During the process, not
only does understanding of the content to be taught become more and more 
profound, but the ways to teach the content also get more and more feasible and 
effective. There is no doubt that the case presents an important approach that is 
undertaken in China to make good use of master teachers’ experiences and team 
joint efforts. During the past couple of years, the approach has been popularized and
has resulted in extensive influences on in-service teacher professional development 
in China (Huang and Li 2009).

Ericsson and his colleagues (Ericsson 2008; Ericsson et al. 1993) have empha-
sized the importance of participation in special activities, deliberate practice, for 
continued improvement and the attainment of expert performance. A deliberate
practice has the following features: Teachers are given a task with a well-defined
goal, motivated to improve, provided with feedback, and provided with ample 
opportunities for repetition and gradual refinements of their performance (Ericsson
2008). Thus, this study revealed that exemplary lesson development provides a kind
of “deliberative practice” for experienced and senior teachers to continuously
develop their expertise because of “the provision of immediate feedback, time for
problem-solving and evaluation, and opportunities for repeated performance to 
refine behavior” (Ericsson 2008, p. 988). Unlike deliberate practice for musicians 
to practice a piece of “classic music” repeatedly to improve their performance,
delivering a lesson to different students who the teacher does not know is quite 

R. Huang and Y. Li



249

challenging. The teacher has to learn about the students and adjust her/his teaching 
to cater to students’ diversity as soon as possible during the class. Although this
kind of deliberate practice is not comfortable for practicing teachers (as Ms. Chen
said), it may be critical in order to draw teachers’ attention to their students and
persuade them to teach mathematics for all students.

Product of Instruction Excellence as a Kind  
of High-Leverage Practice

Researchers made hypermedia lesson cases that consist of clips of the exemplary
lesson, participant teachers’ reflections, experts’ comments and students’ feedback 
(Bao and Huang 2007). The instructional products based on the development of
exemplary lesson (lesson designs, teachers’ self-reflection report, experts’ comments
on lessons, and videotaped lessons) are practical, insightful, and changeable, which
provide alternative approaches to improving teaching (Morris and Hiebert 2011).
Positive roles of video clips in teachers’ learning have been widely documented 
(Borko et al. 2008; Sherin and Han 2004; Sherin and van Es 2009). Thus, the
instructional products (video case studies) could serve as a kind of high-leverage
practice for teachers learning to teach. Beyond “micro” high-leverage practices
such as effectively dealing with students’ thinking in specific content areas and
misconceptions of particular contents (Ball and Forzani 2011), the Chinese approach
focuses on developing exemplary lessons teaching specific content topics repeatedly
over years (Huang et al. 2012), or even over decades (Tang et al. 2012). As such,
these well-developed exemplary lessons that include “micro” high-leverage practices,
could be adapted for teachers to use or learn.

In summary, the Chinese approach to pursuing instruction excellence has demon-
strated its power and uniqueness. As a process of deliberate practice, exemplary
lesson development provides a mechanism that enables participating teachers to 
improve their teaching continuously; as a product of high-leverage practice, 
exemplary lesson development creates opportunities for others to learn to teach 
from using the instructional products. Compared with the Japanese lesson study
(Lewis et al. 2006), the commonalities are to focus on teachers’ practical needs and
issues, to emphasize reflecting on or being in action, revising design, and enacting 
new action. However, the Chinese model pays much attention to upgrading teaching/
learning notions pertinent to the new curriculum standards and teachers’ joint 
creation of cases of class teaching and sharing of their exemplary lessons (Huang
and Bao 2006; Huang et al. 2011).

Limitations

In this chapter, we examined how a teacher improved her teaching through direct 
involvement in the development of an exemplary lesson. However, developing an
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exemplary lesson is a joint effort made by teachers and teacher researchers. We 
speculate that all those who participate in developing exemplary lessons (teachers
who participate in the process of developing exemplary lessons and/or teachers who 
merely watch public exemplary lessons, and teaching researchers who supervise the 
process of developing exemplary lessons) could learn something. The findings of
this case study should not be applied to those who are not directly involved in teach-
ing exemplary lessons. It would be meaningful to explore how different participants 
benefit from being involved in exemplary lessons development. In addition, it is
important to examine the interactions among teachers and teaching researchers to 
see how they might learn from each other. Nonetheless, this study provides a vivid
description of how practicing teachers can continuously improve their classroom 
instruction through exemplary lesson development in this context. Cross-culturally, 
when reflecting whether the practice in China can be adapted to other education 
systems, it is crucial to note the differences in cultural values, teaching traditions, 
education systems, and teacher preparation systems.
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      In his chapter in this part, Yang reports on Smith and Stein proposing that “if a 
teacher sets up a low level demands task … it has no possibility to be implemented 
as a … doing mathematics task”. This raises an interesting and perhaps challenging 
perspective related to the overall focus and intent of the chapters in this part that are 
grouped under the heading “Transforming Mathematics Instruction with Different 
Approaches in Teacher Education”. 

 One of the delightful aspects of the TIMSS and PISA studies is the development 
among mathematics educators of an orientation to learning about approaches to 
teaching mathematics through examining practices in other countries. The chapters 
in this part are drawn from projects and initiatives in the USA and in China, and it 
is interesting to identify some similarities and differences. There are two reports of 
teacher learning in China: one focusing on school-based and teacher-led Mathematics 
Teaching Research Groups (MTRGs); and the other reporting on teaching com-
petitions. The four reports from US initiatives are all substantial and focused. 
One of the three reports from the USA describes the use of case methods, which are 
widely used in professional education in fi elds other than education, and one uses 
sample student responses to a task as a prompt to teacher learning, while the other 
two draw on data from large and presumably well-funded teaching development 
projects. The following six chapters in this part connect teacher learning with 
refl ective consideration of classroom exemplars, they all use examples of prac-
tice to reinforce or articulate theoretical perspectives, all see teacher improve-
ment as central to enhancing student opportunity to learn mathematics, and all 
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identify the choice of tasks as a critical component of quality teaching. Indeed, it is 
worth reading all the chapters even if just for the task examples and the descriptions 
of ways the tasks can be used and interpreted. 

 There are, though, important differences between the approaches. The chapters 
from the USA rely on substantial input from researchers: for one, it was the creation 
of the cases; for another, it was the gathering and analysis of student work; and for 
the others, it was the development of the resources and teacher learning programmes. 
In contrast, the two examples from China both focus on the work of practitioners 
who are implementing their everyday approaches to teaching. Teacher-driven 
approaches are arguably more sustainable and more readily connected to everyday 
classroom practice. 

 It is interesting to consider underlying cultural factors that may have led to such 
differences. One of these may be the apparent willingness of Chinese teachers to 
allow others not only to observe their practice but also for the observers to “argue” 
with each other about those practices. Another possible cultural difference is that 
both the MTRGs and the teaching competitions illustrate an expectation that teach-
ing approaches of individual teachers can be transformed through studying the prac-
tice of others. In one case, the teaching being observed is expert, with even the 
losing entries in the teaching competition being arguably expert. But in the MTRGs, 
the teachers are classroom practitioners, and there is presumably no expectation that 
the teaching being observed is expert. On the other hand, in the US examples, at 
least some of the cases are written to act as models for the prospective teachers, and 
the tasks and approaches in the two initiatives, the  Implementing the Problem- Solving 
Cycle  and the  Learning and Teaching Geometry  projects, have been developed by 
teams, trialled and presented to teachers with substantial background information. 
These differences in approaches also have implications for the sustainability of 
 initiatives, their potential for transfer to other contexts and the generalisability of the 
approaches to teachers not in the projects. 

 An interesting aspect for me (being neither from the USA nor China) is the lack 
of consideration within the chapters of the differences in readiness of students. 
While the USA and China have quite different profi les, in both contexts, the differ-
ences in achievement of students of the same age are substantial. If students of the 
same age are grouped by their achievement, even noting that there is still a diversity 
of ability with those classes, this has implications for the teaching style adopted. On 
the other hand, if students are not grouped by achievement, the range of achieve-
ment levels within a class may well facilitate rather than inhibit drawing out the 
types of generalisations being sought in all fi ve of the chapters. In other words, the 
nature of class composition has major implications for the approaches to teaching, 
and therefore teacher education, irrespective of how students are grouped. It would 
be helpful if what the approaches have to say about addressing the diversity of student 
readiness to learn is made more explicit. 

 To return to the proposition about the connection between the nature of the 
task and the quality of the teaching, it is arguable that this connection presents some 
sort of paradox. On the one hand, the tasks presented in the US chapters, specifi cally 
the  sticky gum  task,  looking for a square number , the  wheelchair  task, the  apples  
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task and  Frank’s fresh farm produce,  are all innovative, they connect important 
mathematical ideas, they allow students opportunities for decision making, and they 
create the potential for student problem-solving and reasoning. In contrast, the tasks 
presented in the Chinese chapters are everyday exercises by comparison, one dealing 
with well-established approaches to the theorem of Pythagoras and the other to 
index laws. The paradox being that the threat to the US tasks is actions teachers 
might take to minimise the challenge to the students, whereas the Chinese tasks create 
the potential for teachers to extend the tasks beyond the obvious. For example, it is 
arguable that index laws, as explained by Li and Li, offer the fi rst real instances for 
students to generate mathematical results for themselves. Indeed, it seems to have 
been the main characteristic of the prize-winning teacher that he was able to interact 
with students in ways that motivated them to derive the laws from the examples that 
he presented and the patterns in the responses to exercises he set. This seems to be 
an example of how the procedurally focused exercises were turned by the teacher 
into “doing mathematics”. 

 It is clear that we all still have much to learn from each other about approaches to 
transforming mathematics instruction. These chapters make an important contribution 
to that learning.    
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    Abstract     Video has become increasingly popular in professional development 
(PD) to help teachers both learn subject matter for teaching and systematically 
analyze instructional practice. Like other records of practice, video brings the 
central activities of teaching into the PD setting, providing an opportunity for 
teachers to collaboratively study their practice without being physically present in 
the classroom. In this chapter, we explore how video representations of teaching can 
be used to guide teachers’ inquiries into teaching and learning in an intentional and 
focused way. We draw primarily from our experiences developing and fi eld-testing 
two video-based mathematics PD programs, Learning and Teaching Geometry 
(LTG) and the Problem-Solving Cycle (PSC), and preparing PD facilitators using 
those programs to lead video-based discussions. On the basis of evidence from 
these projects, we argue that PD leaders can guide teachers to examine critical 
aspects of learning and instruction through the purposeful selection and use of video 
footage. Furthermore, we use data from the LTG and PSC projects to build a chain 
of evidence demonstrating that video-based PD can support improvements in 
teachers’ mathematical knowledge for teaching, their instructional practices, and, 
ultimately, student learning.  
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     Video has become increasingly popular in professional development (PD) to 
help teachers both learn subject matter for teaching and systematically analyze 
instructional practice. Video—like other records of practice, such as examples of 
student work and instructional materials—brings the central activities of teaching 
into the PD setting, providing an opportunity for teachers to collaboratively study 
their practice without being physically present in the classroom (Ball and Cohen 
 1999 ; Borko et al.  2010 ; Little et al.  2003 ; Putnam and Borko  2000 ). Video records 
capture the complexity of the classroom, including aspects of classroom life 
that a teacher might not notice in the midst of carrying out a lesson. By creating 
a shared experience, video can serve as a focal point for PD participants’ colla-
borative exploration of classroom interactions. Clips from videotaped classroom 
episodes can be viewed repeatedly and from multiple perspectives, enabling 
teachers to closely examine one another’s instructional strategies and students’ 
reasoning, as well as the content addressed in the lessons, and to discuss ideas for 
improvement. 

 As Brophy ( 2004 ) cautioned, however, teachers “usually do not gain many 
new insights or ideas about improving their teaching from simply watching 
classroom videos. If they do not have a clear purpose and agenda for viewing the 
video, they are likely to watch it passively, much as they might watch a television 
program” (p. x). Without skillful guidance, what teachers attend to when they 
watch classroom video and how they interpret what they notice are likely to 
be guided by their existing conceptions of effective instruction. An important 
question, then, is:  How can PD programs capitalize on the power of video rep-
resentations of teaching to guide teachers’ inquiries into teaching and learning 
in an intentional and focused way, so that the video becomes an effective tool for 
their learning ? 

 Our chapter seeks to provide some initial responses to this question. We draw 
primarily from our experiences developing and fi eld-testing two video-based 
mathematics PD programs, Learning and Teaching Geometry (LTG) and the 
Problem- Solving Cycle (PSC), and preparing PD facilitators using those programs 
to lead video-based discussions. On the basis of evidence from these projects, we 
argue that PD leaders can guide teachers to examine critical aspects of learning and 
instruction through the purposeful selection and use of video footage. Furthermore, 
we use data from the LTG and PSC projects to build a chain of evidence demon-
strating that video-based PD can support improvements in teachers’ mathematical 
knowledge for teaching (MKT; Ball et al.  2008 ), their instructional practices and, 
ultimately, student learning. 
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    Planning and Orchestrating Productive Video-Based 
Discussions in Teacher Professional Development 

 Facilitation is a critical factor in the successful use of video in many PD models, 
including the LTG and PSC projects. There are numerous parallels between facili-
tating productive classroom discussions and facilitating productive discussions in 
PD workshops. The literature on facilitating classroom discussions is much more 
extensive than the comparable literature on PD discussions, and we fi nd it to be a 
useful starting point in conceptualizing the work of PD leaders. Orchestrating 
classroom mathematics discussions that build on student thinking in an intentional 
manner is one of the more challenging pedagogical tasks for K-12 teachers. 
To successfully lead such discussions requires that teachers have deep knowledge 
of the relevant content, of student thinking about that content, and of instructional 
moves that are likely to guide the discussion in fruitful directions. They must be 
able to draw upon this knowledge in the moment, in response to specifi c student 
contributions. PD facilitators make similar moment-to-moment decisions as they 
seek to build on teachers’ ideas and guide conversations, while ensuring that the 
environment is supportive and inclusive. 

 Skillful facilitation of classroom discussions has been characterized as disci-
plined improvisation, in which teachers must balance structure and fl exibility in 
order to scaffold student learning (Sawyer  2011 ). This analogy to improvisation 
appears applicable to PD facilitation as well. Like improvisational actors, teachers 
and facilitators need to listen actively, acknowledge ideas that are shared and 
incorporate them into subsequent questions, be open to allowing responses to modify 
the direction of the discourse, and redirect the conversation when appropriate 
(Barker and Borko  2011 ). By using improvisational tenets such as “yes, and,” teachers 
and facilitators can purposefully take up relevant contributions in order to simul-
taneously build on the contributor’s thinking while guiding the class toward a deep 
understanding of important mathematical ideas. Masterful facilitation of discussions, 
like masterful improvisation, requires thoughtful planning. By anticipating the likely 
moves of others and considering possible responses to those moves teachers and 
facilitators, like improvisational actors, can be prepared to guide the conversation in 
directions that they desire. 

 Smith, Stein, and colleagues (Stein et al.  2008 ; Smith and Stein  2011 ) identifi ed 
fi ve pedagogical practices that can help mathematics teachers use students’ 
responses during discussions to further their mathematical agenda for the lesson. 
These practices, designed for leading whole-class discussions that occur after 
students have worked on cognitively challenging mathematics tasks, are intended 
to help teachers manage both what content will be discussed and how it will be 
discussed. The practices are organized in the manner they are likely to occur in the 
classroom and labeled as follows:  anticipating  student responses,  monitoring  their 
thinking,  selecting  approaches for the class to explore,  sequencing  students’ shared 
work, and  connecting  student responses to one another and to key mathematical 
ideas. All fi ve practices can, to some extent, be planned for in advance. Thus, they 
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provide teachers “with some control over what is likely to happen in the discussion 
as well as more time to make instructional decisions by shifting some of the decision 
making to the planning phase of the lesson” (Smith and Stein  2011 , pp. 7–8). 

 Elliott et al. ( 2009 ) proposed that Stein et al.’s ( 2008 ) fi ve practices, understood 
somewhat fl exibly, also have important implications for the work of teacher educators 
and PD leaders. They argued that by applying these practices in their PD work-
shops, facilitators can be more intentional in leading conversations around rich 
mathematical tasks. In a similar vein, we suggest that there are specifi c practices 
facilitators can engage in to purposefully use classroom video during PD, especially 
as they strive to engage teachers in productive conversations around that video. 

 Inspired by the analogy to improvisation and the fi ve practices for successfully 
managing classroom mathematics discussions, in this chapter we posit a framework 
for facilitating video-based discussions during PD workshops. Our framework 
includes three practices for planning discussions and three for orchestrating them. 
These practices are intended to promote high-quality conversations during which 
teachers deeply explore mathematical concepts, students’ mathematical reasoning, 
and teachers’ instructional behaviors. 

 The framework we propose is motivated by our experiences developing and 
studying the LTG and PSC mathematics PD programs. Two features of classroom 
video are central to our conceptualization of this framework—that the video clips 
are minimally edited segments of naturally occurring classroom lessons and that 
they are “examples,” not “exemplars.” That is, we are referring to video that is 
expected to serve as a springboard for analysis and discussion about mathematics 
teaching and learning, not as a model of “expert practice.” The video may come 
from lessons taught by the participating teachers (as in the PSC program) or from 
lessons taught by other teachers (as in the LTG program). Further, although the 
framework may be relevant to other content areas, in this chapter we present it as 
specifi c to mathematics PD efforts, refl ecting our experiences in that content area. 

    Planning Video-Based Discussions 

 Our framework includes three decision points that are central to planning a 
video- based discussion for a mathematics PD workshop: (1) determining the goals 
for the discussion and selecting video clips, (2) identifying features of the video clip 
that are important for meeting the goals, and (3) crafting questions to guide the 
discussion. These planning decisions are specifi c to the use of video and do not 
preclude many other planning decisions that apply to leading mathematics PD in 
general, such as the selection of the mathematics domain and tasks and the develop-
ment and maintenance of a supportive community. 

 Identifying goals for the video-based discussion and selecting appropriate 
video clips are interrelated decisions, and either decision might precede the 
other in the planning process. That is, a decision about the mathematical and 
pedagogical goals for the discussion will naturally impact the choice of video clips. 
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Conversely, facilitators may select a goal for the discussion because they identify 
particularly interesting moments in a videotaped lesson that warrant careful 
unpacking and deep exploration. In either case, the facilitators’ decisions about 
goals for a PD workshop depend on the intended audience and the overall goals of 
the PD program. 

 Video clips used in the LTG and PSC programs are intended to capture teachers’ 
attention, focus them in particular directions, and be both challenging and accessible 
to the participating teachers. They show a period of time during the lesson from 
which the teachers can learn something about the mathematics content, students’ 
thinking, or pedagogy that is valuable and related to the goals for the workshop 
(Borko et al.  2011 ). In the PSC program, we have found that using videos to 
highlight student thinking rather than teachers’ practice helps decrease teachers’ 
initial anxiety over being videotaped or having their videos watched and analyzed 
by their colleagues. Once a supportive community has been established and 
teachers have developed their analytic skills, facilitators typically choose clips that 
capture potentially problematic moments in a classroom or mathematically or 
pedagogically challenging content. 

 A critical component of planning for productive video-based discussions is 
identifying features of the video clip that are important for teachers to notice and 
discuss. By identifying in advance the features of the video clip that they would 
like the group to analyze and crafting questions to focus the teachers’ attention on 
these features, PD leaders can increase the likelihood that they will engage in pro-
ductive discussions about the detailed aspects of student thinking and the effects of 
teachers’ actions on student learning. 

 Once the facilitator has identifi ed these relevant features of the video, the next 
step is crafting questions that will guide the discussion. Coming to the workshop 
with questions to guide the viewing of the videos and launch the discussions is 
essential. Equally important and more likely to be neglected in the planning process 
are “back-pocket questions” that the leader can pull out to enliven the discussion or 
shift its direction. By engaging in a planning process that includes consideration of 
what teachers are likely to notice in the video, what they are likely to miss, and the 
range of comments they might offer, facilitators can more readily craft effective 
launching and back-pocket questions and ensure that the conversation goes down an 
intentional path and remains productive.  

    Orchestrating Video-Based Discussions 

 Our framework also includes three practices that are central to orchestrating 
productive video-based discussions: (1) eliciting teachers’ thinking about the lesson 
segment, (2) probing for evidence of their claims, and (3) helping the group to 
connect their analyses to key mathematical and pedagogical ideas. Together, these 
practices encourage the teachers to focus on key features of the mathematics con-
tent, student thinking, and/or pedagogy portrayed in the video and to analyze these 
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features with respect to the goals of the workshop. Carefully attending to the planning 
practices described above can support PD leaders to more readily engage in these 
three orchestrating practices. For example, by identifying important features of 
the video clip and crafting launching and back-pocket questions, the leader will be 
prepared to elicit teachers’ responses to the clip and probe for evidence in the video 
to support their claims. 

 The initial elicitation of teachers’ thinking about the video clip may produce a 
relatively straightforward description of the events or ideas it contains. However, by 
scaffolding teachers’ responses and probing for evidence-based reasoning, facilitators 
can foster a more in-depth analysis of the mathematics content, student reasoning, 
or instructional practices that are the intended focus of the clip. This process of 
encouraging teachers to move from description to analysis matches the develop-
mental trajectory of “learning to notice” that van Es ( 2011 ) identifi ed. Thus, starting 
off by requesting a descriptive commentary may be a fruitful strategy for making 
the clip accessible, drawing teachers into the conversation, and guiding them to 
elaborate on their ideas and draw inferences from their observations. As teachers 
enter into a richer discussion about the clip, facilitators can gradually prompt them 
to make relevant connections to important mathematical and pedagogical topics. 

 The facilitator’s prepared guiding questions can serve a variety of functions, 
including moving the teachers through a discussion of the clip in a purposeful 
manner and helping the teachers to understand the facilitator’s goals in selecting the 
clip as a learning opportunity. Facilitators may fi nd it useful to share their prepared 
questions with the group, either orally or in writing, prior to showing the video. This 
strategy makes it more likely that teachers will attend to elements that are relevant 
to the focus of the workshop. At the same time, understanding facilitation as skilled 
improvisation suggests that there must be some degree of fl exibility, allowing 
room for the facilitator to listen carefully to teachers’ ideas and adapt questions 
responsively, as well as creating space for teachers to take ownership of the con-
versation within selected boundaries.   

    Illustrating Approaches to Facilitating Video-Based 
Professional Development 

 The following sections of this chapter focus on the two mathematics PD projects in 
which the authors currently are engaged: Learning and Teaching Geometry and the 
Problem-Solving Cycle. The two projects have similar goals of increasing teachers’ 
mathematical knowledge for teaching, improving their instructional practices, and 
promoting student achievement, and as we discuss in the chapter, the projects show 
initial evidence of meeting these goals. Additionally, classroom video plays a central 
role in the PD models used within both projects. 

 One reason we include a discussion of these two projects in the chapter is that 
they illustrate different approaches to the design and enactment of PD, both of 
which make use of the framework we propose. We have described these programs 
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as being located at different places along a continuum of adaptability (Borko et al. 
 2011 ). At one end of the continuum are highly specifi ed approaches to PD, in 
which the goals, resources, and facilitation materials are specifi ed for a particular, 
predetermined set of PD experiences. At the other end are approaches that are 
highly adaptive; that is, they have goals and resources derived from the local context 
and facilitation based on general guidelines. LTG is an example of highly specifi ed 
PD, whereas the PSC is an adaptive PD program. 

 In the following sections, we provide an overview of each PD program and data 
regarding its impact. For both programs, the evidence suggests that they have the 
potential to affect substantial changes in the participating teachers. We also present 
vignettes in our discussions of the two programs, as illustrations of the role that 
video-based conversations can play in fostering teacher learning. The vignettes and 
accompanying analyses highlight how the design of each program incorporated the 
proposed framework for preparing and leading video-based PD discussions.  

    Learning and Teaching Geometry 

    Overview of the LTG Project 

 The Learning and Teaching Geometry 1  (LTG) project is currently creating modular, 
sequenced PD materials for middle school mathematics teachers, with a focus on 
classroom geometry lessons. LTG will produce commercially available materials 
that outline in advance a particular set of goals and activities and will include video 
clips and questions to be used for facilitating those activities. The LTG materials are 
intended to initiate inquiry into key content and pedagogical issues with respect to 
teaching and learning the concept of mathematical similarity. A core component of 
the materials is a set of videocases highlighting teachers’ and students’ experiences 
working with similarity problems in their classrooms.  

    The LTG PD Materials 

 The LTG materials contain 54 h of PD that support the teaching and learning of 
mathematical similarity, in alignment with the Common Core State Standards for 
Mathematics (Seago et al.  2010 ,  2013 ). These materials include a Foundation 
Module and several Extension Modules. The Foundation Module guides teachers 
through a series of ten, 3-hour sessions (see Fig.  1 ). The sessions follow a learning 
trajectory that is designed to enrich teachers’ knowledge as well as their ability to 
support students’ understanding of similarity. The Extension Modules offer options 

1   The LTG project is funded by the National Science Foundation (Award number DRL 0732757). 
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for further exploration of related topics, such as justifying claims related to similarity, 
exploring defi nitions of similarity, using representations and tools in the study 
of similarity, and supporting English Language Learners to learn the language and 
concepts central to similarity.

   The nature of each LTG session is largely predetermined and specifi ed as part 
of the package of materials. These materials contain extensive resources for facili-
tators using the modules with teachers. For example, for each video clip, there is a 
time-coded transcript, a lesson graph, guiding questions to ask, and detailed notes 
related to the clip (e.g., optional “back-pocket” questions to pose, mathematical support, 
and cautionary notes). These materials support facilitators in maintaining the intended 
mathematical and pedagogical storyline, as they lead discussions about the video clips 
that highlight content issues, students’ geometric thinking, and/or instructional moves. 

 The information contained within the session resources refl ects the planning 
practices specifi ed in our framework. A primary planning task for LTG facilitators, 
then, is to gain familiarity with the goals and resources for each session. Planning 
for a given session largely involves reviewing the materials and becoming 
knowledgeable about the content of the videocases, the guiding questions, the 
surrounding mathematical tasks, etc. As is illustrated in the vignette below, gaining 
familiarity with these resources is essential to orchestrating productive video-based 
discussions.  

    Impact of the LTG Materials 

 A fi eld test of the LTG Foundation Module was conducted in eight sites throughout 
the USA in order to generate both formative and summative evaluation data. The fi eld 
test took place over the 2010–2011 and 2011–2012 school years and involved 
126 participants (87 treatment teachers and 39 comparison teachers), 2  including 

2   It is important to note that participants were not randomly assigned to condition. Comparison 
teachers were recruited with the intent of comparability to treatment teachers. 
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  Fig. 1    The foundation module: ten 3-hour sessions       
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in- service and preservice teachers, teacher leaders, and mathematics coaches. 
Three pre/post instruments were used to examine the impact of the Foundation 
Module on teachers’ mathematical knowledge for teaching related to geometric 
similarity: a content assessment and two sets of embedded assessments. 

 The content assessment is a multiple-choice test that includes 25 items related to 
similarity and geometric transformations. The items were compiled and modifi ed 
from released items used by state, national, and international assessment sources. 
On this assessment, teachers in the treatment group demonstrated an average gain of 
8.73 percentage points from the pretest (mean of 63.66) to posttest (mean of 72.39), 
which was signifi cantly larger than the average gain of 1.68 percentage points made 
by comparison group, where the pretest mean was 65.79 and the posttest was 67.47 
( F  = 9.65,  p  < .05). 

 The embedded assessments incorporate tasks and activities that exist within the 
Foundation Module as part of the PD; they include an open-ended mathematics task 
(three questions) and a video analysis task (three questions). Both tasks address 
content knowledge and pedagogical content knowledge related to teaching and 
learning similarity. The mathematics task asks teachers to examine a group of four 
rectangles and describe the ones that are mathematically similar (Question 1), 
generate a different method students might use to solve the problem correctly 
(Question 2), and generate an incorrect method (Question 3). The two administrations 
of the mathematics task were the same, except for the specifi c set of rectangles that 
was given. For the treatment group, on average, there was a signifi cant improvement 
in the scores on Questions 1 and 2 from pre- to posttest (Wilcoxon Signed Ranks 
Tests;  p  values <.05). The comparison group, on average, did not demonstrate 
signifi cant changes on any of the questions. 

 The video analysis task is based on a video clip of a seventh grade student 
who uses dilation to solve a similarity problem. After watching the clip, teachers 
are asked to describe the student’s method (Question 1) and then explain how 
a student might apply that same approach to solve two associated problems 
(Questions 2 & 3). The treatment group, on average, showed signifi cant improve-
ment in their scores for all three questions (Wilcoxon Signed Ranks Tests; 
 p  values <.05). The comparison group, on average, did not demonstrate signifi cant 
changes on any of the questions. 

 The student sample included 266 students (162 treatments and 104 controls) 
across 20 classrooms from two of the fi eld test sites. Students completed a 20-item 
multiple-choice test that covered the same topics and was drawn from the same 
sources as the teacher content assessment. Students of teachers in the treatment 
group, on average, demonstrated greater improvement in the percent of items 
they solved correctly compared to students of teachers in the comparison group 
( t  = 2.31,  p  < .05). 

 Overall, the LTG PD materials were shown to signifi cantly impact the treatment 
teachers’ knowledge as well as their students’ geometry knowledge. Thus the fi eld 
test data offer evidence of the promise of LTG for achieving the intended learning 
outcomes.  
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    Michael’s Pilot of the LTG Materials 

 In this section, we focus on a fi eld test of the Foundation Module facilitated by 
Michael, a codeveloper of the LTG PD materials. Michael worked with a group of 
nine teachers, most of whom were middle school mathematics teachers, during the 
2011–2012 academic year. All of the sessions were attended by another member of 
the project team and videotaped. 

 In the vignette, we draw on a portion of Michael’s facilitation of Session 2, in 
which the teachers are fi rst introduced to a dynamic view of similarity. The goals of 
the session are (1) to explore and represent static and dynamic ways of thinking 
about similar fi gures and (2) to examine students’ conceptions of similarity. In terms 
of planning, Michael relied on the resources in the LTG materials, including the 
videos and the accompanying session agenda. As a codeveloper of the materials, 
Michael was very familiar with these resources; however, he carefully reviewed 
each video and made notes to himself throughout the agenda prior to conducting 
the session. Michael specifi cally considered the session goals, what features of the 
video clips to highlight, the facilitation questions intended to guide the discussion, 
and likely teacher responses. 

    Vignette: Foundation Module Session 2 

 In Session 1, which was held about a month prior to Session 2, the teachers explored 
congruent fi gures and were introduced to the terminology “static” and “dynamic.” 
A static view of similarity refers to a numeric focus on the relationships between 
corresponding parts of similar Figures. A dynamic view of similarity refers to a 
focus on geometric transformations and, in particular, on enlarging or reducing 
fi gures proportionally. In Session 2, the teachers examine students’ conceptions of 
similarity, and they continue to investigate and differentiate static and dynamic views 
of similarity. To this end, Session 2 includes a video clip in which a class of 6th grade 
students discusses their ideas and questions about what makes fi gures similar. 

 In the beginning of the clip, a student, Jenny, tries to clarify a question that her 
classmate, Ryan, just asked. Jenny says, “I think what Ryan was trying to say is that 
if you had two triangles—and one of them was really fat and one of them was 
skinny but really tall—would they both be similar.” The LTG materials encourage 
facilitators to ask a series of questions that unpack Jenny’s statement, along with a 
variety of statements made by other students in the class. The session agenda 
suggests that facilitators ask teachers (1) about the ideas or questions each student 
raises, (2) to create a visual representation of the student’s thinking, and (3) to 
consider whether the students were thinking about similarity from a static or 
dynamic perspective. 

 Armed with an engaging video clip, guiding questions on the session agenda, 
and a deep understanding of both the mathematical content and the central aims of 
the LTG materials, Michael was able to foster a conversation in which the teachers 
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discussed all of the suggested topic areas. In the vignette that follows, we highlight 
portions of this conversation and identify moments where Michael listened atten-
tively, elicited and built on teachers’ ideas, encouraged teachers to provide evidence 
for the claims they wanted to make, and helped the teachers connect their analyses 
of the video clip to key mathematical topics:

    After showing the clip, Michael has the group focus on Jenny’s idea. The teachers 
are still relatively new to the convention of watching and discussing video clips 
in a professional learning environment, and Michael is intentionally casual in 
his demeanor. He starts by asking the teachers what they heard Jenny say. This 
question seems simple enough, and a few teachers provide short answers.   

   One teacher offers that she heard Jenny say they had to be the same shape. Michael 
reiterates, “Okay, so this idea that they’re the same shape.” Another teacher 
claims that Jenny said “same polygon.” Although Jenny was actually talking 
about triangles, Michael reacts in a nonjudgmental but deliberate manner. 
He repeats, “Same polygon. She used the words ‘same polygon’?” At this point, 
a third teacher responds, “No, I heard same triangle.” The teachers all have a 
printed transcript of the video clip in front of them, and they appear to be 
scanning over it, looking back at what Jenny actually said.     

 Launching the discussion of a video clip by asking a non-evaluative, straightfor-
ward question provides time for teachers to process what happened in the clip and 
read over the transcript. It also helps to establish a safe, trusting community by 
establishing that wrong answers are acceptable. Depending on the nature of the clip, 
facilitators may fi nd it helpful to ask questions about what someone in the video 
said (as Michael did in this case) or to restate the idea verbalized (or shown) in the 
video. In some clips, when the students are solving a problem in a unique way, 
facilitators might request that the teachers attempt the problem in the same way as 
the students. While such activities may initially seem simple, they ensure that 
viewers understand precisely what took place in the video, highlight nuances that 
might initially be missed, and promote a more objective and accurate interpretation 
of the ideas and events observed in the video:

    Next Michael moves to a more challenging question, asking, “So is that a static or 
dynamic way of thinking?” Several teachers quickly answer, “static.” Michael 
presses the group to say more about this response, probing for evidence and 
encouraging the teachers to think deeply about some of the key mathematical 
terminology intended to be highlighted in the session.   

   Michael asks, “Why static?” and Teacher 1 responds, “Because she was just 
comparing two static fi gures.” Unsatisfi ed with this answer, Michael continues to 
probe, “What do you mean?” Teacher 1 considers and says somewhat hesitantly, 
“Well, she wasn’t stretching one of them.” Another teacher agrees, noting “that’s 
true.” Here, Michael employs the strategy of repeating the teacher’s answer back 
to the group and he comments, “Ok, so it’s static if there’s no stretching.” Upon 
hearing her argument phrased this way, Teacher 1 laughs and appears uncertain 
about how to respond.   
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   Teacher 2 steps in to make the counter argument that Jenny was, in fact, talking 
about stretching the triangle. This teacher argues, “One [triangle] was really fat 
and one was really skinny. So she must have stretched the skinny one out to make 
it fatter…. There must be some stretching and shrinking going on somewhere.” 
Teacher 3 disagrees, “I thought she was thinking about two distinct fi gures that 
didn’t have anything to do with each other.” Not willing to concede, Teacher 2 
continues to argue that Jenny must have been thinking about stretching and 
repeats, “But one was really fat and one was really skinny.”     

 As they strive to determine whether Jenny’s idea should be classifi ed as a static 
way of thinking, the three teachers are attempting to make sense of both what Jenny 
was saying as well as the mathematical defi nitions of the terms static and dynamic. 
By trying to determine whether Jenny was talking about the corresponding features 
of two distinct triangles, or some sort of geometric transformation taking place 
around one of the triangles, they are hitting on exactly the key distinctions between 
these perspectives. Michael’s rephrasing of Teacher 1’s comment that “It’s static 
if there’s no stretching” was a cause for laughter but, in fact, highlighted the notion 
that “static” implies there is no motion. His rephrasing led Teacher 2 to argue that there 
was indeed motion in Jenny’s idea. Regardless of which teacher was correct, this 
connection of the terms to whether or not there is movement is a critical one math-
ematically and links explicitly to the learning goals of the session:

    Michael uses this disagreement as an opportunity to encourage the teachers to 
visually represent Jenny’s idea, a facilitation move suggested in the session 
agenda. He walks over to an easel prepared with large chart paper and asks the 
group, “What might the picture look like, of what Jenny is referring to?”   

   A teacher responds, “Like an equilateral triangle and a tall isosceles triangle that’s 
not equilateral,” and Michael begins drawing the triangles shown below. 

    

       Several teachers tell him to make sure the base of one triangle is “skinnier” than the 
other. As they sit looking at these two triangles, the teachers begin to clarify what 
they think the terms “static” and “dynamic” mean in this context.   

   The conversation begins when one teacher poses the question, “If static usually 
compares sides, she wasn’t comparing sides. So would that be static?” Michael 
remains silent and several other teachers attempt to answer. One teacher suggests 
that a static view has to involve numbers, whereas a dynamic view involves pictures 
and stretching.   

   Michael listens attentively while the teachers talk, occasionally rephrasing what they 
are saying or adding small pieces of relevant information. When the  conversation 
winds down, he steps in to summarize the group’s understanding of the terms 
static and dynamic, and in doing so, moves them toward a central mathematical 
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concept within the professional development: dilation. Michael’s summary does 
more than revoice what the teachers have already said; he explicitly connects 
Jenny’s idea to relevant terminology, defi nitions, and visual representations. At 
the same time, during his summary, Michael assumes a non-defi nitive manner, as 
if to be sure the teachers understand that the topic is not yet closed.   

   Pointing to the triangles he has drawn Michael remarks, “So this might be static. Like 
[Jenny is] imagining those two triangles sitting there. And maybe they are doing 
something visual, like looking at bases compared to sides. Versus a dynamic 
[approach]… This is starting to get into dilation. [Michael draws a picture like the 
one below of a triangle being dilated or scaled to create a larger triangle.]. It’s 
transforming into the other shape, dynamically. What do we think about that?” 

    

       The session continues with the teachers exploring this idea of shapes transforming 
and constituting a continuous family. As they move into a discussion of what 
other students in the video clip had to say about similar triangles, the teachers 
have more opportunities to revisit and refi ne their ideas about static and dynamic 
ways of thinking.     

 As previously noted, LTG facilitators work within a highly specifi ed PD model. 
They are given all of the materials they will need for each PD session in advance and 
are expected to follow a relatively scripted path. That is, the materials have a defi ned 
mathematical trajectory; there are specifi c goals, video clips, and guiding questions 
within each session. These detailed facilitation resources support the facilitator to 
implement our recommended planning and orchestrating practices. At the same time, 
the analogy of facilitation as improvisation implies there are important “in the moment” 
decisions that PD leaders must make throughout each session. Being mindful of the 
practices we outlined earlier in the chapter and remaining intentional about each facili-
tation move are essential tools for orchestrating productive discussions around video.    

    The Problem-Solving Cycle 

    Overview of the Problem-Solving Cycle and Teacher 
Leadership Preparation 

 The Problem-Solving Cycle (PSC) is an iterative, long-term approach to mathematics 
professional development that entails multiple cycles of three interconnected PD 
workshops, all organized around a rich mathematics task (Jacobs et al.  2007 ; 
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Koellner et al.  2007 ). Each cycle involves a different mathematics task and 
highlights specifi c topics related to student learning and instructional practice. 
Which tasks to use and which topics to address are determined by the facilitator, in 
an effort to best meet the needs and interests of the participating teachers. 

 During Workshop 1 of a given cycle, teachers collaboratively solve the selected 
mathematics task and develop plans for teaching it, taking into consideration the 
needs and mathematical abilities of their students. The goals of this workshop are to 
help teachers develop a deeper knowledge of the subject matter and strong planning 
skills. After the fi rst workshop, each teacher implements the task with his or her 
own students and the lessons are videotaped. The facilitators then carefully choose 
video clips that highlight key moments in the instruction and in students’ thinking 
about the task. Workshops 2 and 3 of the cycle focus on the teachers’ classroom 
experiences and rely heavily on the clips selected from their videotaped lessons. 
The goals of these two workshops are to help teachers learn how to elicit and build 
on student thinking and to explore a variety of pedagogical strategies for teaching 
with rich problems based on targeted learning goals. 

 The Teacher Leader Preparation approach to preparing PSC facilitators was 
developed in our current project,  Toward a Scalable Model of Mathematics 
Professional Development: A Field Study of Preparing Facilitators to Implement 
the Problem-Solving Cycle  (iPSC). 3  The approach is designed to provide ongoing, 
yet gradually decreasing, support to full-time mathematics teachers, to prepare them 
to lead PSC workshops in their schools. The goal of the Teacher Leader Preparation 
is for the teacher leaders to gain the understanding and skills needed to effectively 
plan and lead PSC workshops. That is, by a designated point in time, they should be 
able to engage in the practices for planning and orchestrating PSC workshops 
without external support from the PSC research/development team. 

 As enacted in the iPSC project, the Teacher Leader Preparation involved two 
major components: a summer leadership academy and at least two cycles of struc-
tured guidance for facilitating the PSC. All of the teacher leaders participating in 
the iPSC project attended a summer leadership academy focused on explicating the 
core principles and practices for the facilitation of PSC workshops. During the 
academy, they participated in PSC simulations (mini-cycles) using the mathematics 
tasks selected for the upcoming academic year PSC cycles. In addition, members of 
the project team provided ongoing structured guidance as the teacher leaders began 
facilitating the PSC workshops in their schools. As an initial activity in each 
PSC cycle, the teacher leaders taught the selected task in one of their classes and 
videotaped their lessons. Then, prior to conducting each PSC workshop, teacher 
leaders attended a full-day Mathematics Leader Preparation meeting (MLP) led by 
the project team. These meetings were designed to assist the teacher leaders in 
planning and conducting all aspects of their upcoming PSC workshops. 

 The second and third MLP meetings focused specifi cally on helping the teacher 
leaders prepare to lead video-based discussions during Workshops 2 and 3. With the 

3   The iPSC project is funded by the National Science Foundation (Award number DRL 0732212). 
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support of the MLP leaders (i.e., the PSC research/development team), teacher leaders 
engaged in the practices for planning video-based PD discussions recommended in 
this chapter. MLP leaders worked with the teacher leaders to decide on goals for 
their workshops, select video clips from the available recorded PSC lessons, 
identify examples of instructional moves and students’ mathematical reasoning in 
the video clips, develop launching and back-pocket questions aligned with the 
video clips, and anticipate possible teacher responses to the video and guiding 
questions. Through role-playing, the teacher leaders then practiced the facilitation 
of these discussions and received feedback from their peers and ISM leaders. 
The role- playing simulations enabled them to fi ne-tune their questions and gain 
additional insights into likely teacher responses.  

    Impact of the PSC and Teacher Leadership Preparation 

 In the iPSC project, we collected extensive qualitative and quantitative data on the 
nature of the support provided to the teacher leaders, the quality of their PSC 
workshops, and the impact of the program on the teacher leaders and teachers 
with whom they worked. These data include video records of all MLP meetings 
and PSC workshops, interviews with the teacher leaders conducted at the conclusion 
of each PSC iteration, and a pre/post mathematical knowledge assessment given to 
the teacher leaders and teachers with whom they worked. We used parallel forms 
of the  Mathematical Knowledge for Teaching  (MKT-MS) assessment for middle 
school teachers, developed by the Learning Mathematics for Teaching (LMT) 
Project (Hill et al.  2004 ) in order to document changes in teachers’ mathematical 
knowledge for teaching over the course of their participation in the iPSC study. 
Additionally, we used an observation protocol created by the LMT researchers, 
the  Mathematical Quality of Instruction  (MQI) instrument (Hill et al.  2008 ), to 
analyze the teachers’ classroom instruction over a 1½-year period. Here, we briefl y 
summarize our analyses of changes in teacher leaders’ and teachers’ knowledge 
and instructional practices. 

 We analyzed pre-post differences in the MKT-MS scores to measure the impact 
of the iPSC on teacher leaders’ and teachers’ knowledge of mathematics for 
teaching (Borko  2012 ; Koellner et al.  2011 ). Sixty-two participants (10 teacher 
leaders and 52 teachers) completed both the pre- and post-administration of the 
MKT-MS. The participants overall showed signifi cant knowledge gains, as measured 
by the change in their MKT-MS scores. The teacher leaders had an average pretest 
score of 72.4 % correct and an average posttest score of 78.1 %, whereas the 
teachers had an average pretest score of 65.4 % correct and an average posttest 
score of 70.7 %. Paired  t -tests indicate signifi cant gains for the participants as a 
whole and for the teachers as a subgroup. It is important to note that there was no 
comparison sample of teachers in the iPSC project, so these fi ndings should be 
interpreted with caution. 
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 We applied the MQI to 51 videotaped lessons from 13 participants and analyzed 
the changes in their PSC and typical lessons over a 1½-year period (Jacobs et al. 
 2014 ). The MQI captures four dimensions related to the mathematical quality of 
instruction of a given lesson: (1) richness of the mathematics, (2) working with 
students and mathematics, (3) errors and imprecision, and (4) student participation 
in meaning-making and reasoning. The instrument also includes two overall lesson 
ratings, for “whole-lesson mathematical quality of instruction (overall MQI)” and 
“lesson-based guess at mathematical knowledge for teaching (overall MKT).” 
Teachers who participated in the iPSC study—including both teacher leaders and 
the teachers with whom they worked—experienced increases in instructional 
quality on both their PSC and typical lessons on some of the dimensions included 
in the MQI instrument. Furthermore, their overall MQI and MKT ratings generally 
increased over time. Especially notable were the consistent increases within the 
dimension of “working with students,” suggesting that teachers are more attentive 
to their students’ thinking after participating in PSC workshops. Instructional 
improvements were more often evident in teachers’ PSC lessons as compared to 
their typical lessons. This fi nding suggests that the participants were capable of 
providing increasingly high-quality instruction even if they did not do so on an 
everyday basis (For a more in-depth discussion of the project’s impact on teachers 
and teacher leaders, please see Jacobs et al.  2014 ).  

    Vignette from Mandy’s Fuel Gauge Workshop 3 

 The vignette below is drawn from a video-based discussion that Mandy, one of the 
teacher leaders, facilitated during Workshop 3 of a PSC cycle that used the Fuel 
Gauge task. The Fuel Gauge task is a rate and ratio task, adapted from Jacob and 
Fosnot ( 2008 ) (see Fig.  2 ). A signifi cant feature of this task is that it can be solved 
in multiple ways.

   During Workshop 1 of this PSC cycle, the teachers in Mandy’s group solved 
the Fuel Gauge task using a variety of solution strategies (some working primarily 
with miles and some primarily with fractions of the tank of gas) and shared their 
strategies with the group. Mandy facilitated a discussion in which the teachers 
explored the mathematical connections between the different solution strategies, 
anticipated solution strategies their students were likely to use and errors they 
might make, and identifi ed possible adaptations to the task and questions to 
scaffold students’ learning. Workshop 2 began with the teachers sharing refl ec-
tions on their teaching of the Fuel Gauge task. They then watched and discussed 
a video clip of a small group of students from Mandy’s class working together on 
the problem. 

 During the MLP meeting that preceded her Workshop 3, Mandy identifi ed two 
video clips and two goals that she had for the workshop, and she developed several 
guiding questions to help frame and carry out the discussion about the clips. 
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Mandy’s two distinct but related goals were (1) to help the teachers identify and 
understand the mathematical misconceptions behind a student error and (2) to help 
the teachers identify pedagogical strategies that might enable the videotaped students 
to move to a deeper level of mathematical understanding. 

 The video clips Mandy selected both show a small group of students 
working together to solve the Fuel Gauge task. In the second clip, a student explains 
how she determined the portion of the fuel tank Frank used to travel from Stan’s 
farm to Louisa’s farm. There are two mathematical errors in her explanation. 
The first error is that she incorrectly divided 600 by 120 rather than dividing 
120 by 600. The second is that she “dropped” the zeros from both numbers 
yielding 60 divided by 12, but then she added one zero back to the quotient to 
get 50 miles:

    Mandy begins the video watching activity by providing some context for the teachers 
in her workshop. She tells them that the videotaped class is 7th grade advanced 
Algebra. According to Mandy, “One student is going to have a pretty extreme 
mathematical error.” At this time, Mandy points to the student on the screen to 
whom the group of teachers should pay close attention. Then, she  provides a set 
of questions to guide the video watching: “What are the students’ mathematical 
misconceptions? What are their understandings? What are the teacher’s instruc-
tional moves? Where do we go from here?”     

Frank runs a business called Frank’s Fresh Farm Produce. Once a week he drives north of 
the city to farms where he buys the best possible fresh produce for his customers. Frank 
can travel 600 miles (965.6 km) on a full tank of gas . His truck has a fancy, accurate fuel 
gauge.

Usually Frank has time to visit only one farm on each trip, but one week he decides to 
visit both Stan's and Louisa's farms. When Frank drives from his store to Stan's farm and 
back, he knows he uses 5/12 of a tank of gas. When he drives to Louisa's farm and back, 
he uses 1/3 of a tank. From a map of the area, he learns that there is a road from Stan's 
farm to Louisa's farm that is 120 miles. (193.1 km) long. He realizes that he can drive 
from his store to Stan's farm, then to Louisa's farm, and then back to his store in one 
loop.

Frank can tell by looking at the fuel gauge that he has 5/8 of a tank of gas. Can he drive 
this loop without having to stop for fuel? Or should he buy gas before he starts his trip?

  Fig. 2    The fuel gauge task       
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 In preparing the teachers for watching video, Mandy enacted two especially 
notable facilitation moves. First, she set the goals for the day — as a way of anchoring 
the various activities. Second, by providing guiding questions and asking teachers 
to focus on a particular student, she provided a structure to the video watching. 
Mandy’s guiding questions established a purpose for the activity by specifying a 
mathematical and pedagogical lens through which teachers should view the clips:

    The group watches the fi rst video clip and engages in a brief discussion about the 
students’ mathematical understandings. The teachers agree that the students 
seem to have a good understanding of equivalent fractions. Before they watch the 
second video clip, Mandy provides further context by stating, “The teacher 
leaves the group, the students work alone for about 10 minutes, and they decide 
that they are stuck.”   

   Mandy then shows the second clip, in which a student indicates that she is solving 
for the fraction of the fuel tank required to travel between Stan’s and Louisa’s 
farms. She sets up the problem as 600 divided by 120. She then converts the 
problem to 60 divided by 12 and correctly performs the division. However, she 
adds a zero to the quotient and comes up with the answer 50. Following the video 
clip, Mandy opens the discussion, “We need to fi gure out what she is doing.” One 
teacher says: “She wants to compute 120 divided by 600 but she’s doing 600 
divided by 120.” Another teacher focuses on a second error: “She’s doing 600 
divided by 120 and converting it to 60 divided by 12. But you don’t just magically 
take away the zeros. You divide them out and they don’t come back.” Focusing 
again on the fi rst error, a third teacher explains: “She’s looking for a fraction of 
a gas tank, but she’s coming up with the opposite of that because she’s using the 
numbers in the wrong order, the reciprocal.”   

   At this point in their discussion of the video clip, the teachers have identifi ed the two 
errors. To guide them to focus on one error at a time and to unpack the student’s 
thinking, Mandy places a large sheet of paper in the center of the table and 
suggests that the teachers begin to collaboratively recreate the students’ strategy. 
As they are working, the teachers discuss how the student has set up the ratio in 
the problem and what the numbers in the ratio represent.   

   Mandy asks, “We know the 120 is the miles, so what’s the 600?” Several of the 
teachers respond in unison, “Total miles.” Teacher 1 quickly clarifi es, “Total 
miles in a tank.” Mandy continues, “What’s the 5?” Teacher 1 suggests that the 
student was trying to fi nd 1/5 of a tank of gas. Teacher 2 provides a different way 
of interpreting the 5. She suggests that the student may have been trying to 
determine the number of trips between Stan’s and Louisa’s farms that Frank 
can take on a full tank of gas. Not sure that she understands Teacher 2’s 
interpretation, Mandy asks, “Can you explain that one more time?” Teacher 2 
elaborates, “Frank can make 5 one way trips—2 and a half round trips—if he 
has a full tank of gas.”     

 By asking Teacher 2 to repeat her interpretation of the 5, Mandy is encouraging 
the teachers to carefully unpack and understand the student’s strategy, instead of 
staying focused on the “right way” to solve the problem. This facilitation move 
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places the emphasis on analyzing student thinking rather than critiquing the 
correctness of a given answer:

    The teachers shift their attention to the second error. One teacher speculates that 
the student “took the zeros away to make the division easier…. thinking ‘I know 
I took the zeros away so I need to put them back on.’” Another teacher refl ects, 
"I think that’s one thing that confuses kids is when you start saying add zeros 
or take off zeros, rather than saying you are dividing both numbers by 10. 
The students don’t really know when to do what.” Teacher 2 adds, “I agree. 
Instead of saying ‘drop the zeros’, you have to say ‘divide them both by 10.’”     

 When Mandy is confi dent that each of the teachers understands the mathematical 
strategies the student is using and the misconceptions underlying her errors, she 
pushes the group to think about the pedagogical implications. Mandy’s focus on 
both understanding students’ thinking and considering possible pedagogical moves 
to make in response to students’ misconceptions is typical of her facilitation of 
video-based discussions:

    Mandy questions the group, "What is our concern with them just dropping the 
zeros? How are we going to address that?" Teacher 2 offers, “I would ask, ‘What 
is 50 divided by 10? How many 10s are there in 50? And what is 500 divided by 
100?’ to show that you get the same answer. Then I would ask, ‘So, what happens 
to the zero?’” Teacher 4 proposes another line of questioning related to the 
reasonableness of the student obtaining 50 and 120 as factors of 600. She poses 
the question, “Does it make sense that 120 goes into 600 fi fty times?” Teacher 
1 suggests, “Count by 50s and see how long it takes to get to 600. It is not going 
to be 120 times. “Following up on both comments, Mandy points to the group 
math paper and suggests, “Or just count by 120. That might be faster.”     

 Mandy’s posing of the two related questions, “What is our concern with them 
just dropping the zeros?” and “How are we going to address that?” serves to frame 
the students’ misconception as a teachable moment. Not only is it important for 
teachers to be able to identify what students do and do not understand, it is also 
important that they gain facility in determining appropriate next steps. Lastly, 
Mandy connects the teachers’ discussion to larger pedagogical issues, namely, that 
there may be students in the classroom who have not mastered mathematical con-
cepts that are foundational to the lesson:

    Mandy inquires, “How do we use this information from our kids—the kids we have 
in our classrooms? What do we do as teachers to continue to make sure that this 
student is understanding?” Teacher 3 responds, “I think one thing you have to 
understand is whether the student’s error is a simple mistake or a complete 
misconception. If they write it out and realize ‘Oh, it’s not 50. It’s 5.’ I think that’s 
one place you have to ask yourself, ‘Is this something that they really don’t 
understand?’” Looking back at the student’s paper, Teacher 3 continues, “I don’t 
understand what she did there so I would talk her through that. I would try to 
fi gure that out. Was it that she did this mental math and made the mistake?” 
Another teacher agrees and suggests additional questions that might help to 
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understand the student’s strategy. He says, “I don’t think we’ve listened to her 
enough. I don’t think we know enough about what she was thinking. I mean, we 
know what she [the student] said, but she [the teacher] did not ask, ‘What is the 
600?’ And ‘What is the 120?’ And ‘Why are you dividing it?’ So, I really don’t 
think we know enough to know how far off she is.”     

 Although Mandy provides some opportunity for teachers to speculate about what 
the teacher in the video might have done subsequent to the portion of the lesson 
shown on the video clip, she quickly moves the conversation back to identifying 
pedagogical moves that could be made in response to the student misconception by 
redirecting with questions and statements:

    Mandy agrees, “Yes, and some of that is what we are talking about here. What are 
our instructional moves? What would we do as the teacher? Our goal is to 
understand where the student is in these types of situations. When you are in the 
classroom listening to students, you get those red fl ags. You say to yourself, 
‘I really need to make sure I go back to this student next class or next time or put 
something like this on the test to double-check and see.’”   

   Mandy then summarizes the central themes that her group addressed throughout 
this iteration of the PSC—including instructional moves to encourage students to 
collaborate and explain their mathematical thinking, as well as ways of listening 
to students to assess their mathematical reasoning. Mandy concludes the workshop 
by asking the group to refl ect on how they have been impacted by their partici-
pation in the PSC throughout the year.     

 This vignette and analysis of a portion of a video-based discussion are intended 
to portray the skillful use of video in a PSC workshop. As we have seen, Mandy 
posed two questions to frame teachers’ viewing of the video clips and then used a 
series of probing questions and comments to guide their analysis of the student 
errors, the misconceptions underlying them, and instructional practices that could 
be used to address these errors. Her planning for this discussion during the preceding 
MLP meeting included determining the workshop goals, selecting the video clips, 
and developing launching and probing questions. In addition to using these planned 
questions, Mandy listened carefully to the teachers and, at several points during the 
conversation, asked questions to clarify or extend their ideas. We do not know 
whether Mandy attempted to anticipate teachers’ likely responses when planning 
the workshop, although her skillful use of planned and improvised questions and 
comments suggests that she was very familiar with both the videotaped lesson and 
what the teachers in her group were likely to notice and comment on.   

    Conclusion and Future Directions 

 Ensuring the productivity of video-based conversations in mathematics professional 
development workshops is a tremendously challenging endeavor (e.g., Givvin and 
Santagata  2010 ; Santagata  2009 ). To help manage the complexity of this task, in this 
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chapter we have suggested specifi c practices that are likely to be useful for facilitators 
as they engage in both planning and orchestrating such conversations. We provided 
examples from our experiences developing and fi eld-testing the LTG and PSC PD 
programs to illustrate how these practices look in two different contexts. The LTG and 
PSC projects represent different models of video-based mathematics PD, in which 
the goals and processes range from highly specifi ed (LTG) to much more adaptable 
(PSC). That is, LTG facilitators follow a more scripted approach to PD; they are given 
the video clips to show, along with detailed session agendas containing guiding 
questions and mathematical support. By contrast, PSC facilitators follow a more 
organic path in which they designate their own workshop goals and select video clips 
from their participants’ lessons. In considering facilitation practices to highlight 
in this chapter, our aim was to be broad enough to pertain to a wide range of PD 
models, yet detailed enough to be meaningful, particularly for novice PD facilitators. 

 By presenting some of the data on the positive impact of both the LTG and PSC 
projects, our goal was to demonstrate that video-based mathematics PD efforts can 
be effective, particularly when led by a knowledgeable and well-prepared facilitator 
who engages in the planning and orchestrating practices we have suggested. The 
results from these two projects would, quite likely, have looked very different if the 
facilitation had been less skillful. 

 In the fi eld of mathematics, most PD facilitators are in the beginning stages of 
honing their leadership skills (Zaslavsky and Leikin  2004 ). In order to provide 
high- quality learning opportunities for teachers, there is an urgent need to prepare 
facilitators to successfully carry out PD. The suggestions and illustrations offered 
in this chapter may also be useful for facilitator educators in this relatively new 
line of work. 

 Additional research that includes a close inspection of effective facilitation prac-
tices would be helpful to either refi ne or add to the framework we put forth in this 
chapter. It would also be benefi cial to learn from researchers working outside of 
mathematics about which practices, if any, are applicable to PD facilitation in other 
content areas. More broadly, we encourage researchers to attend to the education of 
PD facilitators, in particular by documenting the knowledge base they draw on, best 
practices for leading effective PD workshops, and the supports they require to 
become increasingly skillful.     
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    Abstract     Organizing teacher learning around the study of mathematical tasks and 
associated student work is a version of practice-based professional development 
that has been used effectively with preservice teachers and inservice elementary 
school teachers of mathematics. In this chapter, we examine the research evidence 
regarding the use of student work in teacher education and professional develop-
ment, and we consider the potential impediments to using such an approach with 
inservice secondary school teachers, given many facets of their work and their 
preparation that appear to mitigate against the effectiveness of such an approach. 
To explore the feasibility of this approach with secondary school mathematics 
teachers, we consider in some detail the use of student work on one mathematics 
task, adapted from the PISA mathematics assessment, within a particular profes-
sional development initiative involving teachers in grades 7–11. Our examination 
of this experience indicates that although student work is not a self-enacting tool 
for teacher learning, professional developers can engage secondary school mathe-
matics teachers with student work in ways that afford powerful and potentially 
transformative learning opportunities.  
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     Teacher educators, professional developers, and researchers have recently shown 
great interest in the design and facilitation of an approach to mathematics teacher 
education that is often called practice-based professional development. Ball and 
Cohen ( 1999 ) suggested that the everyday work of teachers could be a rich source 
for the development of a curriculum for professional learning grounded in the tasks, 
questions, and problems of practice. To accomplish this goal, they argued that 
records of authentic practice (e.g., tasks used in instruction or assessment, samples 
of student work) should become the core of professional education, providing a 
focus for sustained teacher inquiry and investigation. Other scholars have also 
pointed to the potential benefi ts of having teachers learn in and through professional 
practice (e.g., Ball and Bass  2002 ; Lampert  2001 ; Little  1999 ; Smith  2001 ; Stein 
et al.  2000 ; Wilson and Berne  1999 ). Several manifestations of this approach are 
evident in other chapters in this volume, including the use of narrative and video 
cases of teaching practice and the formation of professional learning communities 
of teachers around lesson planning and refl ection on lessons. 

 In this chapter, we consider yet another opportunity for practice-based professional 
learning: examination of student work. Organizing teacher learning around the study 
of mathematical tasks and associated student work is one version of practice- based 
professional development. We begin with a brief overview of some ways that student 
work is used as an element of professional learning, after which we consider what has 
been learned from studies of the use of student work in teacher education and profes-
sional development settings. Next we turn our attention to the challenges of using this 
professional development approach with secondary school mathematics teachers, 
after which we consider in some detail how student work was used in a professional 
development initiative involving teachers of mathematics in grades 7–11. In so doing, 
we draw some observations that may generalize beyond the boundaries of that initia-
tive and that we hope will be useful to others wishing to incorporate into their work 
with secondary mathematics teachers the examination of student work. 

    Examining Student Work 

 The examination of student work is an arguably ubiquitous aspect of mathematics 
teaching practice. In mathematics classrooms across the entire spectrum from 
kindergarten through advanced calculus at the university, teachers examine their 
students’ work—the answers they give, the methods they employ, the justifi cations 
they offer, and the explanations they provide regarding process and product. 
Sometimes the examination involves listening carefully to what students say; 
more often it involves perusing their written responses to textbook exercises or 
problems posed by the teacher. Whether a teacher is engaging in homework 
review, quickly checking for comprehension of a new topic just introduced, or 
evaluating pupil attainment of recently taught ideas through performance on a 
quiz or test, the examination of student work is a robustly evident feature of 
mathematics teaching practice. 
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 Many practice-based approaches to professional development include the 
examination of student work as an embedded component. For example, the exami-
nation of student work is a component of case-based approaches to professional 
development in mathematics (e.g., Schifter et al.  1999 ; Stein et al.  2000 ). Examining 
student work is also a key component of many resources intended to assist teachers 
to improve their knowledge and practices related to assessment of mathematics 
(e.g., Blume et al.  1998 ; Brown and Clark  2006 ; Parke et al.  2003 ; Stylianou et al. 
 2000 ) or to the effective planning and delivery of classroom lessons, as in Japanese 
Lesson Study and its American variants (e.g., Fernandez  2002 ; Fernandez et al. 
 2003 ; Lewis  2002 ; Silver et al.  2006 ). 

 Given the apparent ubiquity of examining student work as a feature of mathematics 
teaching, as well as its centrality to the practice of teaching mathematics for under-
standing, it is not surprising that teacher educators and scholars would view the use 
of student work as a tool for practice-based professional development. Some scholars 
have argued that the use of student work has the potential to infl uence professional 
discourse about teaching and learning, to engage teachers in a cycle of experimenta-
tion and refl ection, and to shift teachers’ focus from one of general pedagogy to one 
that is particularly connected to their own students (e.g., Ball and Cohen  1999 ; 
Little  1999 ). Whether these opportunities are realized, however, depends on how 
student work is used in professional activity. Also implicated is the inherent diffi -
culty of understanding and interpreting appropriately what students are saying in 
their speech or written work (Wallach and Even  2005 ).  

    Research on the Use of Student Work 
in Professional Development 

 In a recent review of more than 25 published reports of empirical research on the use 
of student work in teacher professional development (primarily in the areas of 
literacy, science, and mathematics) in the United States, Little ( 2004 ) concluded:

  The available evidence does provide support for professional development activity in which 
looking at student work occupies a prominent place. Although the body of relevant research 
is small, fi ndings from the available studies indicate that the collective examination of 
student work, where it is designed to focus teachers’ attention closely on children’s learning, 
may have a positive effect on outcomes of interest: teacher knowledge, teaching practice 
and (in some cases) student learning (pp. 104–105). 

   Nevertheless, if student work were an “automatic” source of teacher learning, 
then teachers would be learning all the time and improving their practice with 
great regularity. Alas, that does not appear to be the case. As Ball and Cohen 
( 1999 ) noted, “simply looking at students’ work would not ensure that improved 
ways of looking at and interpreting such work will ensue” (p. 16). Indeed, some 
studies reviewed by Little included detailed observational records of teacher inter-
actions around student work, and they suggest that simply bringing together 
teachers to “look at student work” did not necessarily open up opportunities for 
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teacher learning. Learning appeared to hinge on what the teachers were asked to 
do with the student work and how they were asked to interact with the student 
work and with each other. 

 Some studies have examined the effects of using student work with teachers of 
mathematics, and they offer insights into how this approach might be used effec-
tively to promote teacher professional development. For example, Saxe et al. ( 2001 ) 
(see also Gearhart et al.  1999 ) contrasted the effects of three professional develop-
ment approaches on teachers of upper elementary school mathematics. One 
approach made extensive use of student work to illustrate student thinking and 
conceptual development in the domain of fractions; the other two approaches did not. 
The fi ndings of this study indicated signifi cant effects on teaching practice and 
student performance on assessments of conceptual understanding and problem-
solving profi ciency in the classrooms of the teachers who received the form of 
professional development that included extensive experience with student work. 
The study design, however, did not permit attribution of the effects directly to the 
student work feature of the professional development. 

 Kazemi and Franke ( 2004 ) traced the evolution of 11 teachers at one elementary 
school as they met in monthly workgroups across a 1-year period to examine their 
students’ responses to mathematical tasks and activities. Prior to each workgroup 
meeting, the teachers posed a similar mathematical problem to their students. The 
workgroup discussions centered on the collective scrutiny of the student work those 
problems generated. The researchers used a  transformation of participation  per-
spective to examine  what  teachers learned through collective examination of student 
work and  how  teacher learning was evident in shifts in participation in discussions 
centered on student work. The researchers documented shifts in teachers’ participation 
across the year, and they identifi ed two critical transformative moments. The fi rst 
shift in participation occurred when teachers as a group learned to attend to the 
details of children’s thinking. A second shift in participation occurred as teachers 
began to develop possible instructional trajectories in mathematics. 

 Kazemi and Franke noted that teachers in this study initially seemed comfort-
able making inferences about what students “must have been thinking” from the 
written records of student work. But these inferences were challenged when the 
teachers were encouraged to elicit students’ verbal explanations of what they had 
done and how they were thinking and to report those classroom conversations to 
their colleagues in the workgroup along with the written work that students pro-
duced. Kazemi and Franke report that teachers’ understanding of mathematics 
teaching and learning deepened, and their classroom practices shifted, when they 
attended to the details of student thinking and problem-solving practice as those 
were revealed in a combination of student work samples and narrative accounts of 
classroom interaction. 

 Crespo ( 2000 ) offers another example of using student work for teacher develop-
ment, in this case with individuals preparing to become teachers. She engaged a 
group of 13 preservice elementary school teachers in an exchange of letters with 
grade 4 students to provide a context in which the preservice teachers could investi-
gate students’ ways of thinking and communicating in mathematics. The preservice 
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teachers wrote and received six letters regarding the grade 4 students’ work on three 
mathematics problems. Crespo noted that the preservice teachers initially were 
quick to make conclusive claims about students’ understanding and their interest (or 
lack of interest) in mathematics on the basis of the students’ written work, and they 
focused extensively on correctness of the students’ answers, to the exclusion of 
considerations of nuances in student thinking. Over time the preservice teachers in 
Crespo’s study came to revise their approach to examining student work. In particular, 
they became more open to stating provisional claims and revising them based on 
further consideration of evidence, and they began to focus on the meaning revealed 
in students’ answers rather than simply the correctness. 

 Crespo used Davis’s ( 1994 ,  1996 ,  1997 ) distinction between evaluative and 
interpretive discourse to frame her examination of changes that the preservice 
teachers in her study exhibited. Davis contrasted two distinctive orientations that a 
teacher may have toward listening to her students’ thinking in the classroom. A 
teacher using an evaluative orientation tends to listen to students’ ideas in order to 
judge them correct or incorrect and to diagnose and correct misunderstandings. 
With this orientation, the teacher sees the students’ work in light of how she herself 
would approach the problem or in a manner consistent with the teacher’s hypoth-
esized learning trajectory for her students. In contrast, a teacher using an interpre-
tive orientation tends to listen to students’ ideas in order to understand rather than 
assess them. Teachers who display an interpretive orientation listen to their students’ 
ideas with the aim of accessing their understandings, seeking information through 
more elaborated responses, and asking for demonstrations or explanations. Crespo 
noted that her preservice teachers moved from a predominantly evaluative orienta-
tion to a more interpretive orientation through successive iterations of engaging 
with challenging mathematical tasks, refl ecting on their own ideas, and interacting 
with students’ work. 

 Looking across these and a few other studies examining teachers’ use of student 
work (e.g., Crockett  2002 ; Jansen and Spitzer  2009 ; Krebs  2005 ; Little et al  2003 ), 
we see indications that the use of student work can be a powerful element of effective 
professional development for teachers of mathematics. For example, Crockett 
( 2002 ) worked with teachers of upper elementary grade mathematics in a teacher 
inquiry group and found that analyzing student thinking appeared more infl uential 
than other activities (solving open-ended problems, discussing videos of mathematics 
teaching, and common lesson planning) in provoking teachers to reconsider the 
teaching and learning of mathematics. 

 The research base discussed thus far consists entirely of studies involving pre-
service or inservice teachers of elementary school mathematics. What insights do 
we have into the ways in which examination of student work might be used with 
teachers of secondary school mathematics? Though the use of student work with 
secondary mathematics teachers remains largely unexamined, a few investigations 
have been undertaken. 

 Doerr ( 2006 ) reported a fairly detailed analysis of one teacher’s shift in class-
room practice from evaluator of student ideas to supporting students as self- 
evaluators of their emerging ideas. Doerr attributes this shift to the teacher’s 
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participation in a professional development project that made available extensive 
opportunities for teachers to examine the development of students’ conceptual models 
of exponential growth in the context of their own classrooms. Doerr’s analysis indi-
cated that as the teacher attended to her students’ thinking, she developed a more 
sophisticated schema for understanding the diversity of their ideas. The actions of 
the teacher supported extensive student engagement with the task and supported the 
students to revise and refi ne their own mathematical thinking. 

 Hughes ( 2006 ) studied the planning practices of ten preservice secondary 
mathematics teachers enrolled in a university teacher education program. 
Among her several research questions was ascertaining the extent to which 
attention to students’ mathematical thinking was evident in preservice second-
ary mathematics teachers’ written lesson plans or lesson planning process prior 
to and immediately after participation in a course that emphasized students’ 
mathematical thinking as a key element of planning. Hughes found that the pre-
service teachers demonstrated signifi cant growth on pre- to post-course mea-
sures in their ability to attend to students’ thinking when planning a lesson on 
demand and for a university assignment. Furthermore, teachers continued to be 
able to apply these ideas when planning on demand and for university assign-
ments several months later. 

 When Hughes traced the teachers into their fi rst year of teaching to investigate 
whether they would apply the ideas they had learned when planning in their own 
practice, she found that teachers were more likely to attend to students’ thinking 
when planning a lesson that used a high-level task compared to a lesson that used a 
low-level task, and their attention to students’ thinking when planning lessons in 
their own classrooms around tasks with a high level of cognitive demand was simi-
lar to their preservice planning for lessons. Though the examination of student work 
was a key component of the teacher preparation experiences of the teachers in the 
Hughes study, it was only one of the many formative infl uences on the teachers, and 
so the study design did not permit specifi c attributions regarding the effects of that 
type of experience in comparison to other types (e.g., analyzing narrative and video 
cases of mathematics instruction, reading articles that summarized research on chil-
dren’s thinking and learning). 

 Taken together, the research with preservice elementary teachers, and the two 
examinations of secondary teachers discussed above, suggests the potential value of 
teacher professional development that involves having teachers examine student 
work. Despite this optimistic view, however, there are some good reasons to be 
skeptical that this approach could be successful with secondary mathematics teach-
ers. The need for caution is clear if we examine closely the work of teachers of 
mathematics in secondary schools, their experiences in preparation to do that work, 
and what research has suggested about their views of mathematics, teaching, and 
learning. Some research suggests that secondary school teachers of mathematics 
differ from their elementary school counterparts in ways that might make it less 
likely that the use of student work would be a successful element of professional 
development for secondary teachers.  
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    Secondary Mathematics Teachers and Teaching 

 The fi rst thing that might be noted about secondary school mathematics teachers is 
that they typically have taken many more university mathematics courses than their 
elementary school teacher counterparts. The teaching in those mathematics classes, 
and especially in courses intended for mathematics majors at the college level, is 
likely to have emphasized the  coverage  of mathematics content through teacher 
lecture, textbook exercises, and student memorization and practice (Brown et al. 
 1990 ; Frykholm  1999 ; Thompson  1992 ). Typically in these prior experiences, math-
ematics profi ciency would have been demonstrated through accurate, rapid recall of 
facts and correct execution of rehearsed procedures. Thompson et al. ( 1994 ) charac-
terized this as a  calculational  rather than  conceptual  orientation to teaching. 

 Because secondary school mathematics teachers are likely to have succeeded 
(at least to the extent of passing the courses) in the mathematics classes they took in 
high school and college, they have little reason as individuals to question either the 
appropriateness or effi cacy of the mathematics teaching approach they encountered. 
This so-called apprenticeship of observation and experience supports a reproductive 
stance rather transformative stance toward mathematics instruction (Brown and 
Borko  1992 ; Lortie  1975 ). This situation contrasts with that of most teachers of 
mathematics in elementary school, who are likely both to have taken fewer mathe-
matics courses and to have a less favorable impression of their experiences in the 
courses they have taken. 

 Secondary mathematics teachers are generally organized within a departmental 
structure, so they tend to associate with others who have had similar experiences 
and hold similar views. Thus, an orientation toward reproduction of dominant 
patterns of mathematics instruction—patterns that do not encourage deliberate 
attention to individual student thinking—is likely to prevail among secondary 
school mathematics teachers (Little  2002 ). 

 A heavy emphasis in secondary school on content coverage rather than on the 
development of individual student understanding supports classroom assessment 
practices aimed at quick grading of correctness to assign grades rather than detailed 
examination of responses to uncover individual student ideas. A tendency, noted 
earlier in our discussion of Crespo’s study, for teachers to focus almost exclusively 
on correctness when examining student work is closely associated with what Otero 
( 2006 ) called a “get it or don’t” conception of formative assessment. 

 It is important to note that this tendency among secondary teachers may also 
arise from the demands of the work of teaching secondary school mathematics. 
Whereas an elementary teacher will likely have 20–25 students to whom she teaches 
mathematics as one of multiple subjects across an entire year, a secondary teacher 
of mathematics likely to be responsible for teaching mathematics to more than 100 
students each day and may have twice that number across an academic year if the 
school calendar is organized into semester courses. This striking difference in the 
number of different students encountered in instructional settings makes it likely 
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(and arguably quite reasonable) that secondary teachers would be less inclined than 
elementary teachers toward considering student work in a more nuanced fashion. 

 Research also suggests that high school mathematics teachers tend to view 
 verbal problem solving as a competency that follows mastery of symbolic compu-
tation, which may combine with other features of secondary school mathematics 
teaching—such as reliance on typical textbook presentation of content that places 
 problem solving and applications after the presentation of symbolic rules and 
procedures, a stress on content coverage and “getting through the book,” and a 
tendency to focus on correctness in evaluating student work—to encourage exces-
sive attention on the teaching and learning of symbolic procedures with corre-
spondingly less attention to complex problem-solving tasks that might yield 
insights into student thinking. 

 Nathan and Koedinger ( 2000a ) asked more than 100 elementary, middle, and 
high school mathematics teachers to rank a set of mathematics problems based on 
expectations of their relative problem-solving diffi culty. An earlier analysis of stu-
dents’ problem-solving processes performed by Nathan and Koedinger ( 2000b ) 
showed that verbal problems were easier for students to solve than symbolic prob-
lems because verbal problems were more likely to elicit informal strategies such as 
guess and test. However, the teachers predicted the opposite, based apparently on a 
view that arithmetic reasoning develops prior to algebraic reasoning and symbolic 
problem solving develops prior to verbal reasoning. Nathan and Koedinger found 
that high school teachers were most likely to hold this view that the researchers 
called  symbol-precedence . Secondary school teachers made the poorest predictions 
of students’ performances, whereas middle school teachers’ predictions were most 
accurate. Moreover, Nathan and Koedinger noted:

  Data from the belief instruments indicated that high school teachers in our sample—those 
most centrally charged with algebra instruction—were least aware of the effi cacy of students’ 
invented algebra solution strategies. Because high school teachers tend to have greater 
expertise in their content areas, they are personally more distant from the diffi culties of their 
novice students. This may make high school teachers more susceptible to a kind of “expert 
blindspot” that prevents them from being made aware of certain aspects of learning such as 
alternative interpretations of symbolic equations. (p. 229) 

   Although secondary school mathematics teachers are typically legally autho-
rized through their teacher certifi cate or license to teach any mathematics course 
offered in secondary schools, they usually become specialists in teaching one par-
ticular course (e.g., Geometry or Algebra 2). Such specialization has some 
 advantages to an individual teacher in reducing preparation time and allowing for 
the refi nement of lessons over time. Unfortunately, this tendency also has at least 
one potential defi ciency; namely, a teacher of one course, say Algebra 2, may know 
surprisingly little about what students might have experienced and learned in classes 
taken prior to their arrival in Algebra 2. 

 In an examination of secondary mathematics teachers’ knowledge and beliefs, 
Heid and colleagues ( 1999 ) reported that secondary mathematics “teachers expected 
that students would not know mathematics which they were not explicitly taught” 
(p. 239). On the face of it, this belief may seem quite sensible, but embedded 
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within is a view that appears discordant with the notion of new knowledge being 
constructed by building on prior knowledge. The power of informal and prior 
knowledge in building sound understanding of mathematical ideas is a hallmark of 
decades of research on student learning (Bransford et al.  1999 ). The use of prior 
knowledge in teaching mathematical ideas does appear to have gained some atten-
tion at the elementary school level (Kilpatrick et al.  2001 ). Yet, the view among 
secondary mathematics teachers that students “don’t know it until I teach it” would 
make it unlikely that they would want to inquire into student thinking to satisfy a 
curiosity about what students might already know that could be related to and built 
upon as they learn a subsequent curriculum topic. 

 These observations about secondary school mathematics teachers are intended 
neither to depress the readers of our paper nor to refl ect a deterministic stance on 
our part. Rather they are intended to draw attention to impediments that one 
might reasonably expect to encounter in using student work in professional 
development with inservice secondary school mathematics teachers. To illustrate 
how these challenges might manifest themselves and how they might be over-
come, we discuss next a professional development initiative for teachers of math-
ematics in grades 7–11, paying close attention to how student work was used and 
what happened when it was used.  

    Mathematics Teachers’ Use of Student Work in Professional 
Development: A Close Look at the Apples Task 

 DELTA (Developing Excellence in Learning and Teaching Algebra) was a 3-year, 
multifaceted professional development initiative intended to support teachers of 
mathematics in the middle and secondary grades (grades 7–11) in Oakland County, 
Michigan, with a particular focus on ensuring strong student preparation in algebra. 
DELTA involved approximately 150 teachers from 13 different school districts, 
including 13 high schools and 20 feeder middle schools, serving approximately 
19,000 students. The DELTA participants were drawn from school districts that 
were demographically quite variable; for example, the percent minority enrollment 
in these 13 districts ranged from lows of 3 and 5 % to highs of 84 and 94 %. To 
address the diverse needs of the districts and teachers, DELTA had multiple 
components, including courses for teachers regarding content and teaching strate-
gies for basic algebra, classroom-based coaching, two algebra-related summits for 
administrators, algebra support seminar, administrator training, school improvement 
coaching, and a series of sessions focused on curricular coherence. 

 In this chapter, we draw on a slice of work undertaken during the fi rst 2 years by 
the teachers and professional development specialists involved in DELTA’s curricular 
coherence component ( Who’s On First? Building Coherence and Connections 
Across Grade Levels ). The goal of this component of DELTA was to offer teacher 
teams from participating districts an opportunity to develop a  coherent  vision of 

Using Student Work



292

algebra concepts, skills, and reasoning. The plan was that this would be done by 
drawing their attention to how algebraic profi ciency might develop over several 
years of mathematics instruction rather than viewing it  atomistically  as discrete 
topics taught at specifi c time points. DELTA sought to provide an alternative to the 
atomistic perspective that appeared to be consistent with the array of individual 
curriculum objectives promulgated by the state of Michigan in its Grade Level 
Content Expectations (GLCE for grades K-8) and High School Content Expectations 
(HSCE for grades 9–12). 

 The plan was that teams would work together to cluster and sequence GLCE and 
HSCE expectations into teaching/learning trajectories that depict growth in major 
algebraic themes across grades 7–11. In constructing the trajectories, teachers 
would work to identify what is and is not taught in each grade, where to focus on 
building concepts, and where to build symbolic fl uency by drawing on conceptual 
understanding. Proposed topics for algebra-related trajectories included proportion-
ality, linear (and nonlinear) relations, relative and absolute change, and function. 

 Almost 100 teachers of middle grades and high school mathematics partici-
pated in at least a portion of the curricular coherence component of DELTA dur-
ing the 2-year period of interest in this paper. There were 56 participants in year 1 
and 92 in year 2 (including 26 continuing from year 1 and 66 new participants). 
The teachers were drawn from 13 different school districts. As is typical of such 
professional development, some of the participants enthusiastically volunteered 
their participation, and others attended because they were directed to do so by 
school or district leadership. In a survey administered to project participants during 
year 2, 57 % indicated that they were participating because they wished to learn 
strategies to help their students, and 43 % indicated that they were attending at 
directive of an administrator.  

    The Apples Task 

 The Apples task and related student work used in the DELTA project was an adapted 
version of an item [M136: Apples] that originally appeared on the mathematics 
assessment portion of the Programme for International Student Assessment (PISA) 
and was one of 50 mathematics tasks publicly released in 2006 (OECD  2006 ). PISA 
is a collaborative effort of member countries of the Organisation for Economic 
Co-operation and Development (OECD). The main objective of PISA is to provide 
policy-relevant data on the  yield  of education systems. The assessed population is 
15-year-olds, an age that marks the end of compulsory schooling in most OECD 
member countries. 

 PISA assesses how well 15-year-old youth are able to use the knowledge and 
skills they have acquired in school to meet the literacy-related challenges they are 
likely to face outside of school as adult citizens. PISA focuses on literacy—the ability 
to use and apply knowledge and skills to real-world situations encountered in adult 
life—in the key subject areas of reading, mathematics, and science. The frameworks 
guiding the PISA assessments refl ect a consensus across the OECD countries 
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regarding the skills and abilities that demonstrate literacy in these areas. For the 2003 
assessment, PISA defi ned mathematical literacy as follows:

  Mathematical literacy is an individual’s capacity to identify and understand the role that 
mathematics plays in the world, to make well-founded judgements and to use and engage 
with mathematics in ways that meet the needs of that individuals’ life as a constructive, 
concerned and refl ective citizen. (OECD  2003 , p. 24) 

   Compared to the original Apples task, the DELTA version (see Fig.  1 ) incor-
porated two variations. One was minor: replacing the word conifer with the 

  Fig. 1    The Apples task used in the DELTA project       
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word pine, a substitution thought to be more familiar to students in Michigan. 
The other was a major revision of the wording of Question 3.2 in the original 
Apples task:

  There are two formulae you can use to calculate the number of apple trees and the number 
of conifer trees for the problem described above: 
 Number of apple trees =  n  2  
 Number of conifer trees = 8 n  
 Where  n  is the number of rows of apple trees. 
 There is a value of  n  for which the number of apple trees equals the number of conifer trees. 
Find the value of  n  and show your method of calculating this. 

 The task was modifi ed in this way for use in the DELTA project because the 
project leaders thought that the revised version of question 3.2 would both allow 

Fig. 1 (continued)
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for a more diverse set of solution approaches and be more accessible to middle 
school students.

   The DELTA professional development team viewed PISA items as good candi-
dates for use in the curricular coherence component of the project for several 
 reasons. First, PISA tasks typically call upon the use algebra skills, concepts, and 
processes. The Apples task, for example, involves legitimate algebraic content, 
including both linear and nonlinear relationships, and encompasses a range of 
 algebraic thinking processes, as a solver analyzes, generalizes, and compares two 
different patterns, one linear and one quadratic. 

 Second, PISA tasks often involve multiple forms of representation. The 
Apples task, in particular, involves a verbal representation of a situation, associ-
ated with a corresponding visual representation. Tabular and symbolic represen-
tations are used in questions, and the last question asks students to explain their 
reasoning verbally. 

 Third, because PISA tests the residual, usable knowledge gained by 15-year-
old students, the tasks tend to involve applications of knowledge to problems that 
are embedded in real-world contexts and are not tied to specifi c formats and exer-
cise types associated with particular curriculum topics in mathematics courses. In 
the case of the Apples task, there is a contextual embedding, though it is not as 
interesting or authentic as in many PISA tasks, but the task exemplifi es well the 
way that PISA tasks often step outside curriculum boundaries. In particular, the 
task involves both linear and quadratic relationships, and the third part of task 
moves beyond simple equations to consider rates of change in a manner that 
approaches topics taught in calculus.  

    Occasion 1: Teachers Solve Apples Task 
and Predict Student Solutions 

 The Apples task was fi rst introduced in the fi rst year of the curriculum coherence 
component at the third professional development session for teacher leaders held in 
January 2010. Prior to this session, participants had examined the state curriculum 
objectives (GLCEs and HSCEs) for grades 7–11 with attention to proportionality, 
linear and quadratic relations, and functions. They had also begun to formulate 
teaching/learning trajectories for these topics. 

 Teachers were given the Apples task and the following instructions:

    1.    Individually complete the Apples task.   
   2.    Compare your thinking with a partner from your grade-alike small groups and 

resolve any differences.   
   3.    Work with a grade-alike partner to consider what you would anticipate students 

at your grade level are likely to do in generating an appropriate solution for each 
part of the task.   

   4.    Join others at your grade level to record your predictions on a poster.     
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 After the grade-level groups had completed their work, the posters recording 
their anticipated student solutions were displayed in the room to facilitate a large 
group discussion that ensued. A summary of the information written on the posters 
by the four grade-level groups (grade 7, Algebra 1, and beyond Algebra 1) is shown 
in Fig.  2 .

   In the large group discussion, some high school teachers expressed skepticism 
regarding whether a typical middle school student, especially one in grade 7, would 
be able to solve questions 3.2 and 3.3. In their view, these questions required alge-
braic skills not likely to be available to students prior to Algebra 1 instruction. But 
the middle grades teachers pointed out that question 3.2 could be solved using a 
variety of approaches, including graphing. One middle school teacher referred to 
the graphing approach that some teachers used to solve question 3.2c earlier in the 
session, and she used that as an example to argue that seventh-grade students could 
solve the problem:

  Going back to the place where we were graphing the data points, especially if you did them 
in different colors, the red dots for the apple trees, the dots for the apple trees are going to 
start below the dots for the pine trees. And then pretty soon the red dots are going to be the 
ones that are up above the ones for the pine. So you could even do that in the seventh grade 
when you’re using the data points on a graph rather than the function plots. 

   As a homework assignment following the January session, the participants were 
asked to administer the Apples task to at least one class of students, if that was feasible 
for them; to solicit colleagues who might also be willing to administer the task to one 
of their classes; to examine the solutions produced by the students; and to meet with a 
grade-level colleague to examine the student responses at your grade level and iden-
tify what the responses reveal about what students appear to understand, what they 
appear not to understand, and what the instructional implications appear to be.  

    Student Work on the Apples Task 

 Not all participants collected student work on the task, but many did. More than 30 
participants from 22 schools in 13 different districts administered the Apples task to 
their students, and in some cases also to other classes at their schools, and collected 
the students’ solution attempts. This yielded a set of more than 900 student responses 
from students in classrooms ranging from grades 5 through 12 and enrolled in a 
variety of mathematics courses (e.g., grade 7, Algebra 1, Algebra 2, precalculus). 

 Because the circumstances of task administration were likely quite varied in 
the DELTA case and different from that employed in the PISA assessment, it is 
not  possible to make a valid comparison of performance. Nevertheless, we were 
curious to see how students in the DELTA sample performed, and we expected 
that the DELTA teachers would also want to know. The PISA performance 
information  provided a convenient benchmark. Therefore, a research team 
(including the authors of this paper) working under the auspices of an NSF-
funded project,  Using PISA to Develop Activities for Teacher Education  
( UPDATE ), undertook a careful examination of the student work collected by 
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  Fig. 2    Teachers’ anticipations regarding Apple task student solutions       
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the DELTA teachers. We used the PISA scoring rubric to evaluate the students’ 
responses to questions 3.1 and 3.3. 

 The student work in the DELTA sample compared favorably to the US national 
sample of 15-year-olds for PISA in 2003. On question 3.1, 80 % of the DELTA 
sample received full credit, as opposed to 53 % in the US national sample and an 
average of 49 % for all the countries participating in PISA in 2003. In fact, the 
DELTA sample performance on this question was equivalent to that of Japan, the 
highest performing country in the PISA assessment on this question. On question 
3.3, the performance of the DELTA sample was about 10 % correct, almost identical 
to that of the US national sample on this question in the 2003 PISA assessment.  

    Occasion 2: Teachers Analyze and Discuss Student Work 

 The Apples task was again considered at the next professional development session 
(the fourth of fi ve sessions in year one) held in March 2010. This time, participants’ 
attention was directed to the student work that was collected through their adminis-
tration of the Apples task in their schools. In the portion of the session in which the 
Apples task was used, participants met in grade-alike groups to consider and discuss 
what they noticed when they examined the work produced by students at their grade 
level, with particular attention to what the work suggested about what students 
appear to understand, what they appear not to understand, and what the instructional 
implications appear to be. Their observations were recorded on poster paper and 
displayed in the room to facilitate a large group discussion that ensued. 

 What was striking about the poster displays and the discussions on this occa-
sion, both in grade-alike groups and in whole group, was the almost exclusive 
focus on what the students did incorrectly in their work. The posters recording 
what the work revealed to teachers about what students understood were largely 
blank, whereas posters related to what the work revealed about what students did 
not understand had numerous entries, and at two of the grade levels, there were 
several “don’t understand” posters fi lled with claims. For example, middle school 
teachers noted that few students employed graphical or symbolic representations 
or used the notion of “growth” to describe the patterns in the problem and that 
many appeared to apply the notion of exponential growth erroneously in the case 
of the quadratic. The Algebra 1 teachers observed that many students had diffi culty 
setting up the equation to solve to fi nd the solution in 3.2c, missed 0 as a solution, 
mistakenly rendered the repeated addition of 8 as  n  + 8 rather than as 8 n , and 
confused quadratic and exponential. 

 Some participants noted that many students attempted to use recursive reasoning 
to solve questions 3.2a and 3.2b. This was somewhat surprising to the participants 
given that their predictions, as summarized in Fig.  2 , were that students would 
express generalized patterns using explicit forms. 

 Though the professional development leaders were disappointed in the extensive 
focus on mistakes and misunderstandings, to the near exclusion of attention to 
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students’ understandings or instructional implications, they decided to follow their 
plan for the day, which called for a lunch break and then moving on to another task 
they had planned for the afternoon session. The DELTA leadership was certain that 
the student work would yield much more useful information than had been evident 
in that morning discussion, but they saw that they needed to devise a more produc-
tive way to focus the participants’ attention on the student work.  

    Interlude: Detailed Analysis of Student Work 
on the Apples Task 

 After the year one sessions concluded the UPDATE, research team (including the 
authors of this paper) undertook a careful examination of the student work, paying 
particular attention to student work on questions 3.2 and 3.3. We developed an ana-
lytic coding process that blended and adapted the original PISA scoring guide with 
Lannin’s ( 2005 ) classifi cation scheme used to characterize students’ strategies for 
solving mathematics problems involving pattern generalization. 

 Our goal was to identify in the students’ responses facets of algebraic thinking 
that might provoke a fruitful conversation among teachers. We looked specifi cally 
at students’ use of recursive or explicit approaches to characterizing the generaliza-
tion and the extent to which their generalization was expressed using equations or 
verbal descriptions. Two general observations emerged from our examination of the 
student work that we judged to have potential to engage the DELTA participants:

•    Students in upper grades and more advanced mathematics classes (Algebra 2; 
precalculus) tended to use mathematical symbolism and equations, whereas their 
counterparts in middle school and in lower level mathematics classes relied more 
often on verbal descriptions. Yet, even the students in upper level classes used 
verbal descriptions rather than symbolic expressions fairly often to express a 
generalization.  

•   Some students at all grade levels used recursive strategies to solve questions 
3.2a and 3.2b, with more using recursion for question 3.2b; students using 
recursion used only verbal descriptions rather than symbolic expressions to 
express their generalizations.    

 The fi rst observation was consistent with the predictions of the teachers (see 
Fig.  2 ). That is, students in higher-level courses (e.g., Algebra 2; precalculus) were 
more likely to use mathematical symbolism and equations than were their counter-
parts in lower grades. Students in higher grades were also more successful than those 
in lower grades, which also refl ected a normative expectation. Yet even within this 
predicted and predictable fi nding, there was a surprise: A substantial portion of the 
students in higher grades used verbal descriptions (e.g., about 30 % of the Algebra 2 
and precalculus students used words rather than symbols to express the generalization 
for question 3.2a, and the percent was slightly higher for question 3.2b). 
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 The second observation, however, was defi nitely not anticipated: Students in 
the DELTA sample used recursive reasoning frequently, and they did so at all 
grade levels. For example, on question 3.2a, 15 % of the grade 7 students used 
recursive reasoning in their work, and the same percent of Algebra 2 students used 
recursive reasoning in their work. On question 3.2b, about one-third of the grade 
7 students used recursion, and nearly one-half of the Algebra 1 and Geometry 
students did so! Interestingly,  recursion appeared nowhere in the teachers’ pre-
dictions  noted in Fig.  2  at any grade level. Moreover, students employed verbal 
descriptions almost exclusively to express their recursive generalizations, appar-
ently because they lacked formalisms (e.g., Now/Next notation) to assist in 
expressing recursive generalizations. 

 Following our analysis of the student work, we created packets of student 
responses that contained specifi c examples to refl ect the major strategies and 
representations evident in the full sample of student work: recursive description, 
recursive equation, explicit description, and explicit equation. Then we met with 
the DELTA professional development leaders and discussed with them the fi nd-
ings from our analysis. We also shared the packets of sample student responses 
and discussed how these might be used in a subsequent session with the DELTA 
participants.  

    Occasion 3: Teachers Revisit Student Work on Apples Task 

 The Apples task, particularly the work generated by students in their attempt to 
solve the task, was the focus of attention again during the second year of the 
project. In the March 2011 session, the participants (including some who con-
tinued from the fi rst year and a large number of new participants) began by 
reviewing the Apples task and the predictions generated by participants in year 
1. This allowed the new participants to familiarize themselves with the task and 
the prior work that had been done. 

 Teachers were then given the packets of student responses described above, and 
they were asked to examine the responses to questions 3.2a and 3.2b and to sort 
them into groups. Initially the teachers tended to sort the responses into two piles: 
correct or incorrect. Some had a third pile for responses that might be considered 
partially correct. Then the professional development session leader instructed the 
teachers to sort the responses for each question into the following categories: 
Describe recursive pattern in words, (try to) express a recursive pattern using sym-
bolic notation, describe an explicit pattern using words, and express an explicit 
using symbolic notation (see Fig.  3  for an example of each type). Teachers were also 
asked to predict the percent of students who would be likely to produce each type of 
response at the grade level they teach (i.e., 15 % of grade 8 students will use words 
to describe a recursive pattern in question 3.2a). Teachers worked individually at 
fi rst, then in pairs, and fi nally in grade-level groups to compare and refi ne their sort-
ing and predictions.
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  Fig. 3    Example student responses in the four categories       
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   Grade-level predictions were shared and discussed briefl y in a whole group 
session. In general, the predictions were that, as students progressed across the 
grades and through mathematics courses, they would become far more likely to 
express generalizations explicitly rather than recursively and they would also be 
far more likely to use symbolic expressions and equations rather than verbal 
descriptions. 

 The UPDATE team then explained how it had coded and analyzed the set of 
more than 900 student responses. For questions 3.2a and 3.2b, graphs were 
displayed to depict the frequency of student responses that expressed the gen-
eralization explicitly or recursively and that used verbal descriptions or symbolic 
expressions (see Fig.  4 ).

   The graphical displays made vividly apparent the ways in which the student 
work deviated from the teachers’ predictions. In particular, though the graphs 
revealed a trend toward expressing generalizations explicitly and with symbolic 
expressions, they also showed the surprising persistence of both recursive reasoning 
and verbal descriptions across the grades. 

 The fi ndings of the UPDATE analysis were discussed briefl y in whole group, 
and then the participants met in grade-alike groups to discuss the fi ndings and 
graphs as they pertained to their grade level. Teachers were encouraged to 

  Fig. 4    Graphs depicting student response rates by type and grade       
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identify instructional issues raised by these fi ndings—issues that pertained 
within grade level and issues that might pertain across grade level. The number 
of responses in some groups (e.g., 6th grade, other) was so small that it was not 
possible to determine if the responses were in any sense representative, but 
aggregations of pre-algebra, algebra, and post-algebra tended to support fi rmer 
generalizations. 

 Lively group discussions ensued, as participants discussed and debated the 
fi ndings and possible implications, moving fl uidly between the graphs of general 
fi ndings and the specifi c student responses that were available to them in the pack-
ets examined earlier in the day. Following the discussion in grade-alike groups, 
the participants moved into cross-grade groups that intentionally mixed middle 
school and high school teachers. In these groups, participants discussed what the 
fi ndings of this analysis suggested about what students were and were not learn-
ing from their mathematics instruction at each grade level. The teachers also 
examined the teaching/learning trajectories for proportionality, function, linear 
and quadratic relations, and other topics to see how and where they might be 
revised to address the issues revealed by this examination of student work in order 
to increase curricular coherence. 

 In written refl ections at the end of the session, some teachers noted that the 
examination of student work in that day’s session provoked them to think about 
student work in deeper ways that went beyond right/wrong and multiple strategies. 
Several commented on the value of the Apples task activity in focusing their atten-
tion not only on what they are expected to teach at a grade level but also on how this 
ties to what is taught before and after. Other participants noted that the session had 
highlighted for them the limitations of right/wrong evaluations of student work 
when compared to a more nuanced consideration of strategies and representations. 
Several teachers mentioned recursion as a specifi c strategy that they had not previ-
ously valued, but that they now needed to reconsider in light of the clear tendency 
of students to use recursive reasoning in analyzing patterns. A teacher noted the 
importance of “bridging” recursive and explicit expressions for generalizations to 
help students make a smooth transition, and another teacher pointed to the need to 
provide students with specifi c instruction in using Now/Next notation to express 
their recursive observations.  

    Discussion 

 The Apples task experience described here embodies several points raised earlier 
in this paper in our review on literature regarding the use of student work in 
teacher professional development. The secondary teacher participants in the 
DELTA project exhibited a number of the characteristics identifi ed earlier—an 
evaluative rather than interpretive orientation when examining student work, a 
symbol-precedence view when predicting the trajectory of student performance, a 
skepticism about the ability of students to be able to solve diffi cult problems prior 
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to specifi c instruction regarding those problems, and a corresponding faith that 
students would be apt to use sophisticated solution methods to solve problems 
after receiving instruction in those methods. Each of these was challenged by their 
experience in examining the Apples task student work. In fact, the DELTA profes-
sional development team felt that the participants’ experience with the Apples 
task, particularly the third occasion, was a key point in the project that triggered a 
shift in the orientation of many of the participants. 

 Though our presentation here has been largely descriptive, and our data do not 
allow us to make defi nitive claims regarding effects, several observations appear to 
be in order regarding the way teachers engaged with the Apples task and associated 
student work in the DELTA project context. We discuss here three that may have 
suffi cient generality to be of use to others who wish to use the examination of 
student work as a central feature of teacher professional development. 

    The Mathematical Task 

 The Apples task was a challenging mathematical task that treated concepts and 
skills that were viewed as legitimate by all the teachers from grades 7–11. The 
modifi cation that was made when the task moved from PISA to DELTA appears 
to have been critical for two reasons. First, it made the task more accessible to 
middle school students who had not yet been taught to write and solve algebraic 
equations. Second, the modifi cation opened the door to students’ use of recursive 
reasoning to express the generalization. Our hunch is that recursion would have 
been far less likely to appear in the student work if the original PISA version of 
question 3.2 had been used. In fact, recursive thinking is only mentioned briefl y 
in the PISA scoring rubric as an element of a possible response to question 3.3 
that should receive partial credit. Similarly the DELTA participants did not antici-
pate students’ use of recursive reasoning to express generalizations, and they were 
surprised by its robust appearance in the student work. The salience of recursion 
in the student work turned out to be a source of surprise for the teachers and thus 
an opportunity for their learning. 

 The modifi cation did not, however, reduce or alter the mathematical character 
of the original PISA task. And as a task derived from PISA, the Apples task was 
both accessible to and challenging for the entire range of students from middle 
grades to upper secondary school.  

    The Teacher/Student Grade Span 

 The mixing of middle school and high school teachers in the participant group 
appeared to have several desirable consequences for the work with the Apples task. 
First, a range of perspectives on how students might solve the task were available 
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for consideration. Specifi cally, the Algebra 1 teachers were provoked to consider 
how students might solve such a problem prior to instruction in an Algebra 1 course. 
Second, the range of teachers and grades supported participants’ consideration of 
curricular coherence issues as they considered in cross-grade groups the evidence 
from the student work. The consideration of student work in this case was embed-
ded within a larger project focus on curricular coherence and was undertaken within 
a stream of professional activity related to teaching/learning trajectories that 
refl ected attention to the development of algebraic ideas and understandings across 
the grades. Third, the range of grades taught by the teachers ensured that the student 
work collected on the task would similarly refl ect that range. This allowed the group 
of participants to make predictions regarding typical responses at particular grade 
levels and also regarding trajectories across grades—predictions that were chal-
lenged when the participants examined the student work, thereby creating a learning 
opportunity for the teachers.  

    The Professional Learning Task 

 We have identifi ed desirable aspects of the Apples task and the wide grade span of 
the DELTA participants as important elements in the story. Yet these were not suf-
fi cient to ensure teacher learning from examining the student work. As we saw in 
the account of the second occasion in DELTA when project participants examined 
the student work collected in their schools, the teachers did not move far from a 
right/wrong consideration of student work. It was not until the third occasion when 
a major shift in orientation appeared to occur. 

 What was different about the third occasion? Participants were directed to exam-
ine student responses with particular criteria in mind that drew attention to strategy 
and representation and drew attention away from considerations of correctness. 
Participants attended to specifi c examples of student responses that had been chosen 
in advance to be representative of certain strategies and representations. This careful 
attention to particular examples of student work was juxtaposed in the session with 
the presentation of a comprehensive analysis of student responses with respect to 
key features of strategy and representation, and the depiction of those fi ndings in 
graphical displays that focused participants’ attention on those considerations with 
respect to the totality of responses. 

 These features of the professional learning task on the third occasion appear to 
have been critically important, but the experience of project participants in solv-
ing the tasks and predicting student solutions on prior occasions is also likely to 
have played an important role in creating the learning opportunities that were 
manifested on the third occasion. For example, the predicted solutions seemed to 
be important in provoking surprise (and an opportunity for learning) when they 
were compared to the actual student work. Also, the inadequacy of sorting student 
responses into piles of correct and incorrect responses became more apparent 
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when the participants refl ected on how much more was learned by considering 
strategies and representations. 

 Further affi rmation of the importance of these features of the professional learning 
task is provided by subsequent examples of project activity in which the profes-
sional development team used a similar approach with other tasks, with a transfer of 
responsibility to the teacher participants to perform the analysis of student strategies 
and representations and with careful scaffolding of participants’ analytic work 
through questions designed to draw attention to key issues. Moreover, several of the 
participants adopted a similar approach in their work with colleagues in district- 
level and school-level professional development sessions that they led.   

    Conclusion 

 We began by noting that organizing teacher learning around the study of mathematical 
tasks and associated student work is one version of practice-based professional 
development. Our review of research examining the use of student work in teacher 
education and professional development settings suggested the potential effi cacy of 
such approaches, particularly with preservice teachers and inservice elementary 
school teachers. We asked whether this approach might also work with inservice 
secondary school teachers, especially given many facets of their work and their 
preparation that appear to mitigate against the effectiveness of such an approach. To 
explore the feasibility of this approach with secondary school mathematics teach-
ers, we considered in some detail the use of student work on one mathematics task, 
adapted from the PISA mathematics assessment, within a particular professional 
development initiative involving teachers in grades 7–11. Our examination of this 
experience indicated that student work is not self-enacting as a tool for teacher 
professional learning, but that professional developers can engage secondary school 
mathematics teachers with student work in ways that create powerful and poten-
tially transformative learning opportunities.     
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    Abstract     In this chapter, we describe a practice-based curriculum for the professional 
education of preservice and practicing secondary mathematics teachers that (1) focuses 
on reasoning-and-proving, (2) has narrative cases as an integrated component, and (3) 
supports the development of knowledge of mathematics needed for teaching. We fi rst 
provide an argument for the importance of reasoning-and-proving in the secondary 
 curriculum and the unique role that cases can serve in providing opportunities to 
develop teachers’ knowledge of mathematics, students learning, and teaching prac-
tices. We then provide an overview of the practice-based curriculum and discuss the 
overarching questions that have guided its design and development. We conclude with 
a discussion of what teachers appeared to learn from their experiences with the curricu-
lum, with a particular emphasis on what the narrative cases appear to have contributed 
to their learning.  
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  Reasoning-and-proving  

     Ball and her colleagues ( 2001 ,  2005 ,  2008 ) have argued that mathematics teachers 
are a special class of users of mathematics and that what they need to teach math-
ematics effectively goes beyond what is needed by other well-educated adults, 
including mathematicians. Ball et al. ( 2008 ) describe  domains of knowledge of 
mathematics for teaching  as including subject matter knowledge (common con-
tent knowledge and specialized content knowledge) and pedagogical content 
knowledge (knowledge of content and students and knowledge of content and 
teaching). 

 In addition to identifying the kind of knowledge that teachers need for their 
work, a complimentary and equally important question is how to best foster this 
knowledge. Specifi cally, the more practical question that surfaces is: How can 
opportunities for teacher learning be designed so as to foster a knowledge base for 
teaching mathematics that is broad, integrated, and connected to practice? University 
mathematics courses, designed for professional mathematicians and technical users 
of mathematics, do not seem to meet the needs of teachers (Howe  1999 ). According 
to Ball ( 1990 ), “even successful participation in traditional math classes does not 
necessarily develop the kinds of understanding needed to teach if, as is often the 
case, success in these classes derives from memorizing formulas and performing 
procedures” (p. 27). Such university mathematics courses might support the devel-
opment of common content knowledge for a wide range of mathematics users, but 
are not equipped to support the unique needs of teachers. 

 In a seminal paper, Ball and Cohen ( 1999 ) laid a foundation of a promising 
approach to the professional education of teachers. They argue that “teachers’ 
everyday work could become a source for constructive professional development” 
(p. 6) through the development of a curriculum for professional learning that is 
grounded in the tasks, questions, and problems of practice. Their proposal is that 
teachers’ professional practice be seen both as a site for professional learning and 
also as a stimulus for developing inquiry into practice from which many teachers 
could learn. To accomplish this goal, they argue that records of authentic practice – 
curriculum materials, narrative or video summaries of teachers planning for and/
or engaging in instruction, and samples of student work – should become the 
core of professional education, providing a focus for sustained teacher inquiry 
and investigation. Finally, Ball and Cohen caution designers of professional 
 development experiences to avoid “simply reproducing the kind of fragmented, 
unfocused, and superfi cial work that already characterizes professional develop-
ment” (p. 29). 

 The purpose of this chapter is to provide a detailed description of a practice- 
based curriculum for secondary mathematics teachers and discuss the potential of 
the curriculum for developing knowledge needed for teaching and, ultimately, for 
transforming mathematics instruction. The particular instantiation of a practice- 
based curriculum discussed herein focuses on reasoning-and-proving and has 
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 narrative cases as an integrated component. We begin with an argument for the 
importance of reasoning-and-proving in the secondary curriculum and the unique 
role that cases (which are the centerpiece of the curriculum) can serve in providing 
opportunities to develop teachers’ knowledge of mathematics, students’ learning, 
and teaching practices. We then provide an overview of the curriculum framed 
by the overarching questions that have guided its design and development, with 
particular emphasis on the construction of the narrative cases. We conclude with a 
discussion of what teachers with whom we have worked appeared to learn from 
their experiences with  Case of Reasoning-and-Proving in Secondary Mathematics  
(CORP), with a particular emphasis on what the narrative cases appear to have 
 contributed to their learning. 

    Background 

    Why Reasoning-and-Proving? 

 Although reasoning-and-proving represents a mathematical practice that tran-
scends mathematical content areas (Hanna  1989 ,  1991 ,  1995 ; NCTM  2000 ; 
Schoenfeld  1994 ) in secondary mathematics classrooms, proof has been tradition-
ally conceptualized as a particular type of exercise exemplifi ed by the two-column 
format and found primarily in a single high school geometry course. Research 
shows that proof construction is a diffi cult activity for students (e.g., Bell  1976 ; 
Chazan  1993 ; Healy and Hoyles  2000 ; Lannin  2005 ; Senk  1985 ; Smith  2006 ), 
prospective teachers (e.g. Morris  2002 ; Selden and Selden  2003 ), and practicing 
teachers (e.g. Bieda  2010 ; Furinghetti and Morselli  2009 ; Knuth  2002a ,  b ; 
Kotelawala  2009 ; Martin et al.  2005 ; Steele and Rogers  2012 ). Chazan ( 1993 ) 
reports that the 9th- and 10th-grade students had diffi culty understanding the role 
of proof, particularly in distinguishing between proof and empirical evidence. 
Similar results were noted for secondary teachers (Knuth  2002a ,  b ). Many teach-
ers favored the empirical arguments over the proofs, fi nding them more convinc-
ing or easier to follow (Knuth  2002a ). Secondary mathematics teachers tend to 
view proof largely as a specifi c topic of study rather than as a tool for doing 
mathematics or as a stance toward mathematics in general (Furinghetti and 
Morselli  2009 ; Knuth  2002b ; Kotelawala  2009 ). This view stands in sharp con-
trast with the practice of mathematicians, where proof is used to justify new 
results and verify the results of others (Hanna  1995 ), and is the culmination of a 
series of activities (e.g., Lakatos  1976 ). 

 Teachers’ current understanding of proof and its value in the secondary cur-
riculum are of particular concern in light of the growing consensus that second-
ary mathematics programs need a greater emphasis on mathematical reasoning 
and proof. For example, the Common Core State Standards Initiative (National 
Governors Association Center for Best Practices, Council of Chief State School 
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Offi cers  2010 ) identifi es reasoning abstractly and quantitatively and constructing 
viable arguments as key mathematical practices that students need to develop 
across a breadth of content areas. The authors of  Focus in High School 
Mathematics: Reasoning and Sense Making  (NCTM  2009 ) argue that reasoning 
and sensemaking “should occur in every mathematics classroom everyday” 
(p. 5). Making reasoning-and-proving a central feature of classroom instruction 
will require helping teachers understand both the role these mathematical processes 
can and should play in secondary mathematics and instructional approaches 
for developing their students’ abilities to engage in a broad range of reasoning-
and-proving activities.  

    Why Cases? 

 Materials that can effectively support teachers as they develop their pedagogical 
practice must assist teachers in developing a capacity for connecting the specifi cs of 
real-time, deeply contextualized teaching moments with a broader set of ideas about 
mathematics, about teaching, and about learning. Cases can play a key role by serving 
as prototypes (Shulman  1992 ) that instantiate a larger set of ideas about mathemat-
ics and classroom instruction. As with all good cases, prototype cases provide 
 elaborate detail about a situation, allowing readers to experience its complexity, 
including teachers’ thinking processes and the accompanying affect. In addition, 
prototype cases are theoretically specifi ed; that is, they are situated within a larger 
theoretical framework that teachers can ultimately come to apprehend and utilize to 
make sense of new situations that they encounter. Toward this end, case discussions 
are crucial. They highlight the question, “What is this a case of?,” thus stimulating 
learners “to move up and down, back and forth, between the memorable particulari-
ties of cases and the powerful generalizations and simplifi cations of principles and 
theories” (Shulman  1996 , p. 201). Through reading and discussing cases, teachers 
can connect the events depicted in cases to their knowledge of mathematics, learn-
ing, and teaching and to their own practice. 

 While there is considerable enthusiasm for using cases in teacher education, and 
many claims regarding the effi cacy of this approach (e.g., Merseth  1991 ; Sykes and 
Bird  1992 ), establishing an empirical basis for these claims has been a slow process. 
In  1999 , Merseth noted “the conversations about case-based instruction over the last 
two decades has been full of heat, but with very little light” (p. xiv). Although much 
more work is needed, research on the use of cases does provide evidence that they 
can be used to enhance teachers’ pedagogical thinking and reasoning skills (e.g., 
Barnett  1991 ), reason through dilemmas of practice (e.g., Harrington  1995 ; 
Markovits and Even  1999 ; Markovits and Smith  2008 ), support inquiry into class-
room practices (e.g., Broudy  1990 ), learn key pedagogical practices that support 
student learning (e.g., Hillen and Hughes  2008 ), and facilitate the development of 
content knowledge (e.g., Merseth and Lacey  1993 ).   
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    Cases of Reasoning-and-Proving: A Curriculum 
for Secondary Teacher Learning 

 The development of the curriculum,  Cases of Reasoning-and-Proving in Secondary 
Mathematics  ( CORP ), was guided by three overarching questions: (1) What is 
reasoning-and-proving? (2) How do secondary students benefi t from engaging in 
reasoning-and-proving? (3) How can teachers support the development of students’ 
capacity to reason-and-prove? Across six units (as shown in Table  1 ), teachers 
explore these questions through engagement in a variety of activities that include 
solving and discussing challenging mathematical tasks; analyzing narrative cases 
that make salient the relationship between teaching and learning and the ways in 
which student learning can be supported; examining and interpreting student work 
that features a range of solution strategies, representations, and misconceptions; and 
making connections to their own teaching practice.

   Table 1    Overview of the six units in the CORP curriculum   

 Unit  Title  Description 

 1  Motivating the Need 
for Proof 

 In this unit, we focus on the limitations of empirical 
arguments and create an “intellectual need” (Harel  1998 , 
 2013 ) for proof. Work centers around solving the task 
sequence (shown in Fig.  3 ), developed in a 4-year design 
experiment in an undergraduate mathematics course for 
prospective teachers (see Stylianides and Stylianides 
 2009 ), and analyzing two narrative cases in which high 
school teachers enacted the same task sequence with 
different outcomes. 

 2  Exploring the Nature 
of Reasoning-
and-Proving 

 In this unit, we focus on developing criteria for proof that can 
be used to scrutinize arguments, to make decisions about 
the relative mathematical rigor of arguments, and to decide 
whether or not an argument counts as proof. The reasoning-
and- proving framework (Stylianides  2008 ) is used to make 
salient the range of practices that support the ability to write 
proofs and to classify tasks (in terms of the practices they 
target). Work centers around solving the odd and even task – 
 prove that the sum of two odd numbers is always even  – and 
analyzing a set of student solutions to the task. 

 3  Supporting Students’ 
Development 
of the Capacity 
to Reason-and-Prove 

 In this unit, we focus on how three dimensions of classrooms 
that promote understanding (Carpenter and Lehrer  1999 ; 
Hiebert et al  1997 ) – tasks, tools, and talk – shape 
students’ opportunities to develop the capacity to 
reason-and-prove and how the teacher plays a central role 
in this effort. Work centers around the analysis of two 
narrative cases – one which features the odd and even task 
introduced in unit 2 and the other that focuses on the 
relationships between pairs of angles formed by two 
intersecting lines. 

(continued)
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   The map of a course built around these materials (see Fig.  1  1 ) shows the 
range and sequence of CORP activities. For example, teachers always have an 
opportunity to engage in a mathematical task as a learner (rectangle) before ana-
lyzing either a case (oval) or student work samples (hexagon) based on the same 
task. There are several reasons for this sequencing: (1) teachers go on to read the 
case with much more interest and confi dence; (2) engaging in the tasks allows 
misconceptions that the teachers themselves may have to surface and be 

1   The particular iteration of the course depicted in Fig.  1  was conducted over 12 sessions, each of 
which is represented by a column in the fi gure. Across different iterations of the course, what 
remains constant is the sequence of activities. 

Table 1 (continued)

 Unit  Title  Description 

 4  Modifying Tasks 
to Increase the 
Reasoning-
and-Proving Potential 

 In this unit, we focus on the limited availability of reasoning-
and- proving tasks in typical textbooks (Thompson et al. 
 2012 ) and the ways in which mathematical tasks found 
can be modifi ed in order to increase their reasoning-and-
proving potential. Work centers around analyzing pairs 
of tasks and their modifi cations, abstracting general 
principles that could be used to modify tasks more 
broadly, and using the modifi cation principles to alter 
additional tasks. 

 5  Making Connections:  In this unit, we focus on how the context of the problem can 
help in making sense of mathematics. The fi ve different 
representations of mathematical ideas – pictures, written 
symbols, language, real-world situations (i.e., context), 
and manipulative models (Clements  2004 ; Lesh et al. 
 1987 ) – are introduced as tools for building meaning and 
understanding the connections that can be made between 
the context and other representational forms. Work centers 
on solving the Sticky Gum task (shown in Fig.  2 ), 
analyzing a set of student solutions to the task, and 
analyzing two narrative cases in which teachers enacted 
the same task in their high school classrooms. 

 Using the Problem 
Context to Explain 
a Generalization 

 6  Making Connections:  In this unit, we focus on how pictures or diagrams can be a 
particularly compelling way to represent a proof because 
the visual images can help the viewer gain insight into 
why the conjecture is correct by “seeing” how the idea is 
illustrated geometrically or diagrammatically (Bell  2011 ; 
Knuth  2002c ; Nelson  1993 ). The fi ve representations 
of mathematical ideas discussed in Unit 5 are used again 
here to consider connections between “pictures” and other 
representation forms. Work centers on solving the number 
patterns task –  prove the claim that the difference of the 
squares of two consecutive whole numbers is equal to the 
sum of the two numbers  – and analyzing a narrative case 
in which a teacher enacts the same task in his high school 
classroom. 

 Using Visual 
Representations 
of Proofs to Explain 
Mathematics 
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discussed; and (3) teachers are “primed for” and able to recognize many of the 
solution strategies put forth by students. Finally, Steele ( 2008 ) argues that work-
ing on the task and then engaging in a discussion of the case provide teachers with 
the opportunity to integrate their subject matter and pedagogical content knowl-
edge and “create a more powerful learning experience than either activity might 
have afforded individually” (p. 15). Toward this end, it is critical that teachers 
engage in a mathematical discussion, based on a specifi c mathematical task that is 
connected to a particular case or set of student responses, that serves to support 
 their  learning. The goal of the course is to develop teachers understanding of 
reasoning-and-proving and their capacity to support their students’ engagement in 
these practices.

      Overarching Question 1: What Is Reasoning-and-Proving? 

 Our conceptualization of reasoning-and-proving is based on the view that while 
generalized deductive arguments establishing mathematical truth (i.e., proofs) are 
the ultimate goals of proving in mathematics, there are a number of other mathe-
matical activities in which students can engage that will build their capacity to 
produce proofs. The work in which mathematicians themselves engage that cul-
minates in a proof involves searching mathematical phenomena for patterns, mak-
ing conjectures about those patterns, and providing informal arguments 
demonstrating the viability of the conjecture (e.g., Lakatos  1976 ). These activities 
aid any doer of mathematics in exploring the mathematical landscape associated 
with the phenomenon under examination, connecting the phenomenon to estab-
lished mathematical ideas, and building a foundation for the development of a 
more formalized and general deductive argument. The heavy focus on the fi nished 
product in secondary classrooms (the proof, often in the 2-column form) does 
not afford students the same level of scaffolding used by professional users of 
mathematics to establish mathematical truth (Chazan  1990 ). Thus, we defi ne 
 reasoning-and-proving  to encompass the breadth of the activity associated with 
identifying patterns, making conjectures, providing proofs, and providing non-proof 
arguments (Stylianides  2008 ,  2010 ). Further, we take the stance that proofs can be 
of different types including generic examples and demonstrations (e.g., direct proofs, 
proofs by exhaustion, mathematical induction, counterexample), take different 
forms (e.g., two-column, paragraph, fl ow chart), and use different representations 
(e.g., symbols, pictures, words). 

 The CORP materials provide the opportunity for teachers to explore reasoning-
and- proving tasks, to analyze cases (detailed classroom episodes) in which a teacher 
is enacting the same reasoning-and-proving task with secondary students, and to 
analyze sets of student solutions for a subset of the tasks. While these activities have 
the potential to support the development of teachers’ capacity to construct proofs, 
the main purpose is for teachers to broaden their view of what constitutes reasoning-
and-proving. For example, as the participants solve  A Sticky Gum Problem  in Unit 5 
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(see Fig.  2 ), they are expected to engage in the full range of activities that are 
often part of developing a proof: identifying a pattern, making a conjecture, and 
then developing an argument to justify their conjecture. Other tasks, such as the 
Sum of Two Odds Task in Unit 2 ( prove that when you add any 2 odd numbers your 
answer is always even ), ask participants to engage only in the fi nal activity of 
 providing a proof.

   The tasks also provide an opportunity for teachers to examine strong assump-
tions they may have regarding what counts as proof. For example, the Unit 1 
sequence of three tasks (shown in Fig.  3 ) is intended to make salient that empirical 
arguments are not proofs (i.e., checking a proper subset of all the possible cases in 
a generalization is not enough to show that the generalization is always true), a 
misconception that is held by students and teachers alike (Knuth  2002a ,  b ) and also 
encouraged in many mathematics textbooks. In addition, the analysis of student 
work samples that show a range of proofs and non-proof arguments lead teachers to 
begin to consider that it is the alignment with the criteria needed for proof rather 
than its form that determines its validity. Finally, the cases provide teachers with 
the opportunity to consider what reasoning-and-proving “looks like” in secondary 
classrooms (i.e., what is it students are doing and saying in classrooms where 
reasoning-and-proving is targeted).

A Sticky Gum Problem

Ms. Hernandez came across a gumball machine one day when she was out with her
twins. Of course, the twins each wanted a gumball. What’s more, they insisted on being
given gumballs of the same color. The gumballs were a penny each, and there would be
no way to tell which color would come out next. Ms. Hernandez decides that she will
keep putting in pennies until she gets two gumballs that are the same color. She can see
that there are only red and white gumballs in the machine.

1. Why is three cents the most she will have to spend to satisfy her twins?

2. The next day, Ms. Hernandez passes a gumball machine with red, white, and blue
gumballs. How could Ms. Hernandez satisfy her twins with their need for the same
color this time? That is, what is the most Ms. Hernandez might have to spend that day?

3. Here comes Mr. Hodges with his triplets past the gumball machine in question 2. Of
course, all three of his children want to have the same color gumball.  What is the most
he might have to spend?

4. Generalize this problem as much as you can. Vary the number of colors. What about
different size families? Prove your generalization to show that it always works for any
number of children and any number of gumball colors.

Adapted from “A Sticky Gum Problem” in Aha!  Insight by Martin Gardner, W. H.
Freeman and Company, New York City / San Francisco, 1978.

Interactive Mathematics Program www.mathimp.org

  Fig. 2    A Sticky Gum Problem       
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       Overarching Question 2: How Do Secondary Students Benefi t 
from Engaging in Reasoning-and-Proving? 

 Reasoning-and-proving supports the development of a habit of mind that is useful 
in mathematics and beyond. The authors of  Focus in High School Mathematics: 
Reasoning and Sense Making  (NCTM  2009 ) explain that reasoning and sensemak-
ing (which includes proof) will “enhance students’ development of both content and 
process knowledge they need to be successful in their continued study of mathemat-
ics and in their lives” (p. 7). In particular, reasoning and sensemaking skills support 
informed decision-making, promote quantitative literacy, support civic engagement, 
and position graduates to lead in an increasingly technological economy and work-
force (American Diploma Project  2004 ; NCTM  2009 ). 

 In CORP, teachers have the opportunity to consider the benefi ts of engaging 
secondary students in reasoning-and-proving through two types of activities: (1) 
the analysis of narrative cases that feature secondary school teachers and their 
students engaged in reasoning-and-proving activities and (2) through their imple-
mentation of and refl ection on reasoning-and-proving tasks in their own class-
rooms. In Unit 3, for example, teachers analyze two narrative cases in which 
students are engaged in tasks that are intended to develop their capacity to 

Task 1 – The Squares Problem

1.  How many different 3-by-3 squares are there in the 4-by-4 square below?
2.  How many different 3-by-3 squares are there in a 5-by-5 square?
3.  How many different 3-by-3 squares are there in a 60-by-60 square? Are you sure that

your answer is correct? Why?

Task 2 - The Circle and Spots Problem
Place different numbers of spots around a circle and join each pair of spots by straight
lines. Explore a possible relation between the number of spots and the greatest number of
non-overlapping regions into which the circle can be divided by this means. When there
are 15 spots around the circle, is there an easy way to tell for sure what is the greatest
number of non-overlapping regions into which the circle can be divided?

Task 3 – Looking for a Square Number Problem
Does the expression 1 + 1141n2 (where n is a natural number) ever give a square number?

Stylianides & Stylianides (2009)

  Fig. 3    Sequence of three tasks in Unit 1       
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reason-and-prove. Through their careful analysis of what students are being asked 
to do, how the case teachers support students’ work, and what students appear to 
learn from the experience, teachers come to see the ways in which students can 
grow mathematically and begin to develop useful habits of mind with appropriate 
support and nurturing. In other narrative cases, such as in Unit 1, teachers will 
learn that students engaging in appropriate tasks without suffi cient teacher support 
is not enough to develop reasoning-and-proving skills.  

    Overarching Question 3: How Can Teachers 
Support the Development of Students’ Capacity 
to Reason-and-Prove? 

 In order for students to have increased opportunities to engage in the range of activi-
ties associated with reasoning-and-proving, classrooms must be transformed so that 
understanding and justifying why things work as they do becomes commonplace. 
Reasoning-and-proving cannot be learned in classrooms where teachers demon-
strate how to do procedures and students practice applying learned procedures with 
no emphasis on sensemaking – the current practice in far too many classrooms 
where proof has become a ritual to be performed rather than a process through 
which learning and understanding are developed. 

 The CORP materials identify three dimensions of classrooms as essential to this 
transformation: (a) the set of tasks or activities in which students engage should be 
high level (Stein et al.  1996 ) and provide opportunities for students to look for 
 patterns, make conjectures, and develop arguments (Stylianides  2008 ); (b) tools 
should be available to support students’ reasoning and sensemaking as they engage 
with challenging tasks (Hiebert et al  1997 ); and (c) productive classroom talk must 
support powerful discourse about mathematics and enable students to share and 
refi ne their ideas (Herbel-Eisenmann et al.  2013 ). While tasks, tools, and talk have 
been identifi ed as critical dimensions of classrooms that promote understanding 
(Carpenter and Lehrer  1999 ; Hiebert et al  1997 ), we argue that they are of para-
mount importance in classrooms that promote reasoning-and-proving. Tasks, tools, 
and talk work in concert to create an environment that supports students’ growth 
and development as mathematical thinkers and learners. Across the CORP units, 
teachers have the opportunity to investigate how the tasks, tools, and talk in class-
rooms featured in a set of narrative cases afford and constraint students’ opportuni-
ties to develop the capacity to reason-and-prove and how the teachers play a central 
role in the outcome of this instruction. In particular, the cases provide teachers with 
the opportunity to grapple with the complexities of supporting students’ learning 
and engagement in reasoning-and-proving and to begin to identify ways in which 
teachers can, through their actions and interactions, support and inhibit student 
learning.   
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    Development the CORP Cases and Related Materials 

 The fi rst step in developing the CORP materials was to create a research-based 
framework that identifi ed aspects of reasoning-and-proving and pedagogical strate-
gies that we wanted to target in the materials. In particular, the framework (shown 
in Table  2 ) highlights what teachers need to know and be able to do related to rea-
soning-and-proving in order to transform current classroom practices and pedagogy 
that has been documented as supporting student learning.

   The next step in the process involved identifying tasks that could make salient spe-
cifi c aspects of reasoning-and-proving (shown in Table  2 , column 1) and classrooms in 
which the tasks were being used that would provide instantiations of a subset of the 
pedagogical strategies (shown in Table  2 , column 2). Identifying secondary school 
classrooms where teachers were engaged in enacting high-level reasoning-and-proving 
tasks in their classrooms was a challenge, however, since the practice we were trying to 
capture did not represent the instruction found in most secondary schools (e.g., we were 
trying to document the very nonnormative practice that our materials were trying to 
promote). To address this issue, two different methods were used to generate the cases: 
(1) we selected a reasoning-and-proving task, provided a group of teachers with whom 
we were working with professional development focused on the task and its implemen-
tation (e.g., solving and discussing the task, considering different solution paths students 
might take), video recorded their enactment of the task in teachers’ own classroom, and 
interviewed teachers following the lesson; and (2) we identifi ed teachers implementing 
promising curricula and video recorded a series of instructional episodes over time. The 
video recordings and related material collected from this effort were reviewed and class-
room  episodes that were aligned with the development framework were identifi ed. 

 At this point, the team developed the fi rst drafts of the narrative cases 2 . Each case 
portrays the events that unfolded in a secondary school mathematics classroom as a 
teacher engaged students in solving a challenging mathematical task that requires 
them to use the processes of reasoning-and-proving. Each case begins with a 
description of the teacher, the students, and the school, so as to provide a context for 
understanding and interpreting the portrayed episode. A description of the teacher’s 
goal for the lesson follows this description. The unfolding of the actual lesson is 
next, communicated in a fairly detailed way; this description of the lesson consti-
tutes the largest portion of the case overall. The cases illustrate authentic practice 
– what really happens in a mathematics classroom when teachers endeavor to teach 
mathematics in ways that challenge students to reason-and-prove. As such they are 
not intended as exemplars of the best practice to be emulated, but rather as examples 
to be analyzed so as to better understand the relationship between tasks, tools, and 
talk and students’ opportunities to engage in reasoning-and-proving practices. (See 
Table  3  for details about each of the cases in CORP.)

   In particular, each case highlights the ways in which the teachers’ selection of a 
“task” frames the work students do, the “tools” that they make available to assist 

2   While the cases are based on real events, they have been enhanced at times in order to bring out 
specifi c aspects of instruction we wish to highlight. 
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students in sensemaking, and the classroom “talk.” Specifi cally, while all of the 
teachers featured in the cases selected a task that has the potential to engage 
students in aspects of reasoning-and-proving, they are differentially successful in 
their efforts to develop students’ reasoning-and-proving capacity. For example, in 
the case of Charlie Sanders (Unit 1), students’ use of Geometer’s Sketchpad to 
solve the Circle and Spots Problem (Task 2 of the sequence shown in Fig.  3 ) inter-
fered with the task’s goal of identifying the limitations of extending patterns. Charlie 
Sanders’ students were more concerned about generating examples than looking 
for patterns across examples. By contrast, Nancy Edwards’ (Unit 3) suggestion that 
students use square tiles to model odd numbers – specifi cally what it means to have 
“one left over” when you divide by two – allowed them to make progress on proving 
that the sum of two odd numbers is even. Some of the featured teachers (i.e., Charlie 
Sanders in Unit 1 and Samuel Carlson in Unit 6) did too much of the talking, telling, 
and thinking during the class, thereby providing limited opportunities for students’ 
sensemaking and limiting the teacher’s insight into what students were thinking. 
Other teachers (i.e., Kathy in Unit 1 and Vickie Mansfi eld and Nancy Edwards 
in Unit 3) used tasks, tools, and talk in ways that supported students’ learning. 
The continuum shown in Fig.  4  situates each of the seven case teachers in terms of 
their success in supporting students learning and their ability to engage in 
reasoning-and-proving.

   We fi nd Charlie Sanders and Samuel Carlson at the low end of the continuum. 
Neither of these two teachers attended to student thinking and appeared to be more 
interested in students providing specifi c answers to routine questions. However, Charlie 
did allow time for students to work in groups, and some student groups without 
Charlie’s support were still able to make progress in their understanding of reasoning- 
and-proving. Calvin Jensen and Natalie Boyer both attended more to what their stu-
dents were saying than Charlie and Samuel did, but were unable to make progress in 

      Table 2    The framework used to guide material development   

 Aspects of reasoning-and-proving  Pedagogical strategies 

 •  Identifying a pattern, making a conjecture, 
forming a generalization, proving a claim 
is always true 

 • Using counterexamples to (dis)prove a claim 

 •  Selecting and implementing cognitively 
challenging tasks 

 •  Developing an sequence of instructional tasks 
that moves students along a learning trajectory 

 •  Recognizing the limitations of empirical 
arguments 

 •  Enacting a set of norms and practices 
that facilitate reasoning-and-proving 

 •  Understanding the role of defi nition and 
assumptions in proof 

 • Orchestrating a productive discussion 
 • Using a variety of tools to support learning 

 •  Evaluating a collection of arguments in 
terms of their power to prove 

 •  Asking questions that clarify, probe, 
and extend student thinking 

 •  Using different methods (e.g., mathematical 
induction, contradiction, exhaustion) 
to prove a claim 

 •  Modifying tasks so as to provide more 
opportunities for reasoning-and-proving 

 • Encouraging problem posing 
 •  Representing a proof in different ways 

(e.g., 2-column, visual diagram, fl ow chart) 
 • Assessing student learning 
 • Refl ecting on teaching and learning 
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moving students’ thinking toward the mathematical goals of the lessons, and Calvin 
purposely slowed students’ progress so that every student was at the same part of the 
task at the same time. Finally, Kathy, Nancy Edwards, and Vickie Mansfi eld each facil-
itated their students’ thinking toward the mathematical goal, but it was more evident in 
Nancy’s case how all students were making reasoning-and-proving progress. By 
engaging teachers in the analysis of cases along the continuum, teachers have the 
opportunity to consider effective vs. ineffective pedagogy and what it might take to 
transform an unsuccessful lesson in to one that is more productive. In addition, teachers 
begin to identify with particular teachers in terms of where they are now in their teach-
ing practice vs. where they would ultimately like to be and to consider how to get there. 

 In addition to the cases themselves, we also created professional learning tasks 
in which teachers engage as they explore the cases (see Column 4 of Table  3 ). In 
general, the discussion questions engage teachers in analyzing the particulars of 
each case and the refl ection questions ask teachers to think more broadly about what 
is learned from the case and what it means more generally. Through their analysis 
and discussion of a case, teachers have the opportunity to develop knowledge of 
content and students (e.g., develop ability to predict what students are likely to do 
with specifi c tasks, anticipate student errors) and knowledge of content and teaching 
(e.g., how to sequence instruction, how to support student’s ability to reason about 
mathematical relationships and develop proofs that support their conjectures, how 
to use student’s approaches to advance the mathematics learning of the group). 

 The fi nal step in creating the CORP materials was to sequence the activities 
within each unit and across units so as to ensure that later experiences in the curricu-
lum built on earlier ones, that key ideas were revisited in different times in different 
ways, and that as a whole the ideas articulated in the development framework 
(Table  2 ) were suffi ciently addressed.  

    Discussion 

 The purpose of this chapter was to provide a description of a practice-based curricu-
lum and discuss the potential of the curriculum for developing knowledge needed for 
teaching and, ultimately, for transforming mathematics instruction. Through care-
fully designed sequences of activity (i.e., solving mathematical tasks, analyzing nar-
rative cases, and examining student work samples), teachers have the opportunity to 
better understand what reasoning-and-proving is, the role of reasoning-and-proving 

Charlie Sanders (Unit 1)
Samuel Carlson (Unit 6)

Kathy (Unit 1)
Vickie Mansfield (Unit 3)
Nancy Edwards (Unit 3)

Calvin Jenson (Unit 5)
Natalie Boyer (Unit 5)

Inhibited
Learning

Supported
Learning

  Fig. 4    The continuum of case teachers’ success at supporting student learning       
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in mathematics and the secondary curriculum, and ways to support the development 
of students’ capacity to engage in reasoning-and-proving through the use of appro-
priate tasks, tools, and talk. 

 We argued that the cases at the heart of the CORP play a critical role in support-
ing teacher learning by providing teachers with authentic contexts for considering 
mathematics content, pedagogy, and students as learners  and  how teachers’ actions 
and interactions can support or inhibit what students learn about mathematics. As 
Lee Shulman ( 1992 , p. 28) noted,

  …cases integrate what otherwise remains separated. Content and process, thought and feel-
ing, teaching and learning are not addressed theoretically as distinct constructs. They occur 
simultaneously as they do in real life, posing problems, issues, and challenges for new 
teachers that their knowledge and experiences can be used to discern. 

   Our use of the CORP materials with practicing and preservice teachers to date pro-
vides some evidence to suggest that the materials in general, and the cases in particular, 
can infl uence teachers’ knowledge and beliefs related to reasoning-and-proving, a fi rst 
step in infl uencing classroom practice. For example, the results of an analysis of the 
interview data collected from 18 teachers at the end of a course built around the CORP 
materials (outlined in Fig.  1 ) suggest that cases played an important role in shaping 
teachers understanding of reasoning-and-proving and the ways in which they can sup-
port the development of these practices in their own students. As shown in Table  4 , 
teachers’ responses suggest that their thinking about reasoning-and-proving had been 
infl uenced in important ways. They claimed to have acquired tools that would aid them 

   Table 4    Participants’ responses to interview questions   

 Question  Categories  No. of participants 

 1.  How has the course infl uenced 
your thinking about reasoning- 
and-proving or about teaching 
reasoning-and-proving? 

 Course provided tools for  how  
to support learning of 
reasoning-and-proving 

 13 of 18 

 Students need to learn how to 
construct proofs. Explicit 
attention is needed 

 12 of 18 

 A valid argument does not need 
to follow a particular form 
or structure 

 8 of 18 

 Constructing proofs can build 
students’ understanding 
of mathematics 

 8 of 18 

 2.  What specifi c activities do 
you believe have infl uenced 
your thinking about reasoning- 
and-proving or about teaching 
reasoning-and-proving? 

 Reading and discussing 
the cases 

 12 of 18 

 Modifying tasks in order 
to increase the opportunities 
to reason-and-prove 

 12 of 18 

 Analyzing student solutions 
to reasoning-and-proving 
tasks 

 10 of 18 

 Solving mathematical tasks 
that engaged us in 
reasoning-and-proving 

 9 of 18 

Cases as a Vehicle
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in supporting students learning, and they indicated that they had come to realize that 
explicit instruction regarding proof was needed. As Karen explained,

  I think I just want to start from the beginning of the year, talking about how important it is 
to provide justifi cation and to be thinking about how you can support your answers, so like 
to say, “Is that enough to convince a skeptic?” or whatever. I want to start with that right off 
the bat, saying things like that, to get students in the mindset of “How am I supporting what 
I’m saying? How do I know my answer’s always going to work?” It’s strange because that’s 
something you have to start from at the very, very beginning. I really can’t just start it in the 
middle of the year and expect everything to be perfect. It’s defi nitely a process. 

 In addition, teachers came to understand that valid arguments could take different 
forms and that constructing proofs was not just an end but rather a means for devel-
oping understanding of mathematics more generally. This perspective stands in 
sharp contrast to the fi ndings of earlier research (e.g., Knuth  2002b ).

   Participants’ responses to interview question 2 make salient the activities in 
which teachers engaged that they felt most impacted their thinking about reasoning-
and-proving. Of particular note in this discussion is the fact that 12 of the 18 partici-
pants (67 %) indicated that reading and discussing the cases were a contributing 
factor to their learning. As two participants explained,

  I have to say all of the [case] studies. Like Nancy Edwards…‘Cause that really gave us 
a means to talk about what is good reasoning proving instruction and what isn’t. And 
then like to see like where we are if we are able to like compare ourselves to what we 
thought was good and bad and then help us fi gure out what we might need to do to help 
us. (Brittany) 

 I like the class discussions [in the cases] since they [the students] were thinking on their 
own. It was kind of refreshing to see that because every high school and college class I have 
been in math is just the teacher talking, so I thought it was really cool in these cases the 
students were talking where the teacher was just kind of back seat driver most of the time, 
and I thought that was cool. (Meredith) 

   Further evidence of the potential of the cases to infl uence teachers’ thinking and 
learning comes from the fi nal course activity in which participants were asked to 
refl ect on the seven cases they had read and indicate: (1) the teacher with which they 
most identifi ed and (2) the teacher they most want to emulate. First, all of the course 
participants aspired to be like Kathy, Vickie, and Nancy, the three teachers who we 
identifi ed as best supporting student learning (see Fig.  3 ). Second, 12 of the course 
participants (67 %) indicated that they were currently most like one of the less effec-
tive teachers. These two fi ndings suggest that course participants were able to rec-
ognize good instruction, distinguish from less effective instruction, and recognize 
limitations in their own practices related to reasoning-and-proving. 

 Additional research is needed to confi rm these early fi ndings and to determine 
the extent to which the knowledge gained through experiences with the CORP 
curriculum impacts classroom instruction and, ultimately, improves student 
knowledge and ability with respect to these important mathematical practices. 
Toward this end, members of the CORP development and evaluation teams are 
currently studying a subset of the preservice and practicing teachers who engaged 
with the CORP materials in courses or professional development initiatives to 
determine the impact of their experiences on their actual practice. Research such 
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as this will provide additional support regarding the effi cacy of using cases in 
teacher education and in using the CORP materials to develop teacher knowledge 
related to reasoning-and-proving.     
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    Abstract     Breaking traditional instructional patterns is a notoriously challenging 
endeavor, particularly on a broad scale. However, a number of professional develop-
ment (PD) efforts in mathematics have produced promising results, even within a 
relatively short time frame. In this chapter, we focus on the impact of one such effort 
and report on teachers’ instructional changes after they participated in the Problem- 
Solving Cycle (PSC) model of PD. We discuss quantitative patterns from a dataset 
of 51 videotaped lessons obtained from 13 participants, highlighting changes in 
their PSC and typical lessons over a 1.5-year period. We also present a case study 
analysis to illustrate the specifi c nature of the classroom improvements made by one 
participant. Overall, teachers experienced the most change in their ability to work 
effectively with students’ productions around meaningful mathematics. These fi nd-
ings add to the literature that demonstrates instructional growth potential among 
teachers who take part in PD for less than 2 years.  
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        What Do We Know About Instructional Change? 

 From a historical perspective, instructional change in the United States has taken place 
at what many describe as a frustratingly slow pace. Several decades ago, Hoetker and 
Ahlbrand ( 1969 ) contributed a review of the literature dating back to the late nine-
teenth century that detailed “the persistence of recitation” as the  primary instructional 
script. Teachers following a recitation script are more likely to seek predictable, 
correct answers rather than probing students’ ideas and encouraging them to explain 
their thinking. A more recent review by Hiebert and Grouws ( 2007 ) asserts that, in US 
mathematics classrooms, teachers continue their reliance on a recitation script that 
focuses on the development of routine skills and pays relatively little attention to 
supporting students’ conceptual development of critical ideas and relationships. 

 Gallimore and Santagata ( 2006 ) maintain that it should not be particularly sur-
prising that recitation has dominated US classrooms for more than a century. 
Teaching is a cultural activity and, as such, is highly resistant to change (Gallimore 
 1996 ; Tharp and Gallimore  1988 ). At the same time, reform efforts are currently in 
full force in the United States, which is striving to break traditional instructional 
patterns and replace them with a focus on student engagement and inquiry. The 
Common Core State Standards (NGACBP and CCSS  2010 ) not only suggest what 
content should be taught, but they highlight instructional practices that push strongly 
against a recitation script. For those educators who seek to promote the successful 
implementation of the CCSS and foster instruction more in line with developing 
students’ conceptual understanding, it is essential to keep in mind just how diffi cult 
change can be. 

 Large-scale studies of mathematics instruction show that change is slow and 
largely “at the margins” of the reform movement, rather than at its core. For example, 
Jacobs et al. ( 2006 ) reported results from both the TIMSS 1995 and 1999 datasets 
showing that US teachers more often follow the traditional classroom patterns reported 
by Hoetker and Ahlbrand ( 1969 ) than the type of instruction recommended by the 
NCTM Standards (NCTM  2000 ). Weiss and colleagues (Weiss et al.  2003 ; Weiss 
et al.  2004 ) paint a similar portrait of US mathematics based on a nationally represen-
tative sample of mathematics lessons from the  Inside the Classroom  study. Their 
analyses reveal that the majority of lessons were low in quality, lacked intellectual 
rigor, and did not provide sensemaking appropriate for the needs of the students. Few 
lessons included teacher questioning that was likely to move students’ understanding 
forward. Most commonly, teachers used low-level “fi ll-in-the-blank” questions, asked 
at a rapid pace, with an emphasis on obtaining correct answers and moving on. 

 Recently, Silver and colleagues engaged in an investigation of portfolios submit-
ted by mathematics teachers seeking certifi cation by the National Board for 
Professional Teaching Standards (Silver  2010 ; Silver et al.  2009 ). The researchers 
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found that approximately half of the teachers in their sample submitted portfolios 
without including even one task that was judged to be cognitively demanding (Silver 
et al.  2009 ). In addition, few of the submitted tasks required students to provide 
explanations or reason mathematically, suggesting numerous missed opportunities 
to support students’ conceptual development. The fact that these teachers were 
attempting to showcase their best practice in order to gain certifi cation as highly 
accomplished teachers makes these fi ndings especially disappointing and provides 
further evidence that teaching for understanding is not yet a regular feature of US 
mathematics classrooms.  

    Professional Development as a Vehicle for Promoting Change 

 Having a clear picture of what instructional practices currently look like versus 
what kind of practices are desired, along with a healthy respect for the diffi culty of 
fostering immediate and meaningful change, is critical to the generation of effective 
PD. Professional development that treats teachers as lifelong learners and supports 
them as professionals can offer meaningful learning opportunities (Little  1993 ; 
Putnam and Borko  1997 ). In particular, PD can provide a forum in which teachers 
deeply consider students’ thinking and generate ideas for planning and implement-
ing instruction that supports and builds on students’ knowledge. 

 A number of well-known PD efforts in mathematics have shown signifi cant 
impacts on teachers’ classroom instruction, teacher knowledge, and students’ 
achievement. For example, Bell and colleagues (Bell et al.  2010 ) conducted a large- 
scale evaluation of the widely used Developing Mathematical Ideas (DMI) PD 
materials. They found that across multiple sites with multiple facilitators, participa-
tion in DMI (over a period of time that ranged from an intensive 1-week session to 
a more spread out 1-year period) signifi cantly impacted teachers’ knowledge of 
mathematics for teaching relative to a comparison group of teachers. Similar data 
come from a study of California’s Mathematics Professional Development Institutes, 
which offered intensive summer workshops to elementary school teachers. Based 
on a sample of 398 teachers across 15 institutes, Hill and Ball ( 2004 ) report a 
signifi cant increase in their knowledge of mathematics for teaching as a result of 
their participation. 

 Particularly compelling evidence of the potential of mathematics PD on an even 
larger scale comes from an evaluation of the Local Systemic Change through 
Teacher Enhancement program (LSC). The LSC program involved 88 mathematics 
and science PD projects across the United States, with the goal of providing high- 
quality learning experiences for large numbers of teachers. In-depth analyses of 
these projects suggest that, in aggregate, they positively impacted teachers’ attitudes 
toward reform-oriented teaching, their content knowledge, the quality of the instruc-
tion in their observed lessons, and student achievement (Banilower et al.  2006 ; 
Heck et al.  2008 ). The evaluators concluded that the “LSCs were strong in creating 
a culture conductive to teacher learning, in the quality of preparation of professional 
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development providers, and in preparing teachers to use high quality materials and 
appropriate pedagogy” (Banilower et al.  2006 , p. 89). In another attempt to look at 
a relatively large set of data, Blank and de las Alas ( 2010 ) conducted a meta- analysis 
of 16 studies of PD programs and found that mathematics PD leads to consistent 
positive gains in student mathematics achievement (with a mean effect size of 0.21).  

    How Should We Measure Instructional Change? 

 Although there is a growing pool of instruments to objectively measure the impact of 
PD on pertinent aspects of teachers’ knowledge (e.g., Hill et al.  2004 ,  2007b ; Kersting 
et al.  2012 ), classroom instruction is still commonly measured via teachers’ self-
report (e.g., Boyle et al.  2004 ; Desimone et al.  2002 ; Huffman et al.  2003 ; Ingvarson 
et al.  2005 ; Supovitz et al.  2000 ). However, as Hiebert and Grouws ( 2007 ) caution, 
teachers tend to overreport features of teaching they believe are desired by the 
researchers, calling into question the validity of such reports. 

 Investigating changes in classroom practice through a more objective lens, such as 
from live observations or videotaped records, is a complex and demanding endeavor 
(Desimone  2009 ). We argue that more objective documentation is useful not only in 
determining the precise impact of a PD program but also for gaining an understand-
ing of the specifi c manner in which teachers change their instructional practices over 
time. By gathering more nuanced data on the degree and nature of instructional 
change, researchers can predict the likelihood of changes in specifi c, key instruc-
tional practices. Likewise, future PD efforts could be structured to meet the targeted 
needs of teachers within a realistic time frame for improvements in practice. 

 Contrary to the hopes of researchers, funding agencies, and perhaps even teach-
ers themselves, making dramatic, notable changes in practice requires a consider-
able amount of time (Weinstein et al.  1995 ). Classroom changes for most teachers 
tend to be gradual and accompanied by ideological shifts (Loucks-Horsley et al. 
 2010 ). Even when change does occur, it is often found to be uneven and takes root 
slowly (Richardson  1990 ). Expecting teachers to overhaul their instruction immedi-
ately subsequent to participation in a PD program is generally unrealistic. At the 
same time, certain PD programs hold promise for substantially impacting classroom 
practice within a 1- to 2-year time frame (e.g., Bell et al.  2010 ; Hill and Ball  2004 ).  

    The iPSC Study 

 The project  Toward a Scalable Model of Mathematics Professional Development: 
A Field Study of Preparing Facilitators to Implement the Problem-Solving  (iPSC) is 
investigating the scalability of the Problem-Solving Cycle (PSC) and its impact on 
teachers’ knowledge, instructional practices, and student achievement. As part of 
the iPSC project, teacher leaders (TL) from a large, urban school district in the 
Western United States received several years of focused preparation as they began 
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implementing the PSC in their schools (Koellner et al.  2011a ). The participating 
TLs were all full-time middle school mathematics teachers. Elsewhere, we have 
described the nature and quality of PSC workshops led by the TLs (Borko et al. 
 2014b ). A separate chapter in this book explores the preparation of the TLs, their 
facilitation practices, and the impact of the iPSC on the participants’ knowledge 
(Borko et al.  2014a ). Here, our focus is on the impact of the iPSC on the participat-
ing teachers’ classroom instruction. 

 The PSC is intended to be an iterative, long-term approach to mathematics PD 
(Jacobs et al.  2007 ; Koellner et al.  2007 ). The PSC consists of a series of three inter-
connected workshops in which teachers engage in a common mathematical and 
pedagogical experience, organized around a rich mathematical problem. This com-
mon experience provides a framework upon which the teachers can build a support-
ive community that encourages refl ection on mathematical understandings, student 
thinking, and instructional practices. The model is designed to be implemented by a 
knowledgeable facilitator, typically a teacher at the school who has suitable leader-
ship qualities. 

 During the fi rst workshop in a cycle, teachers collaboratively solve the selected 
mathematical problem and develop plans for teaching it to their students. After the 
workshop, teachers teach the problem to their own students, and the lesson is video-
taped. This lesson is called the “PSC lesson.” The next two workshops in a cycle 
focus on the group’s collective experiences teaching the problem and rely on 
selected video clips from the PSC lessons to foster productive conversations. The 
broad goals of these two workshops are to help teachers learn how to elicit and build 
on student thinking and to explore a variety of instructional strategies to effectively 
respond to student thinking. 

 If we view PD as a career-long endeavor, we can similarly understand the 
improvement of classroom instruction as long-term undertaking. In this chapter, we 
explore instructional changes that were evident over the course of the teachers’ 
participation in the iPSC project. Drawing on both quantitative coding and a qualita-
tive case study analyses, we analyze patterns in the classroom data at two time 
points, looking at both PSC lessons and non-PSC lessons (i.e., typical lessons). Our 
goal is to investigate the nature of teachers’ emerging changes, based on a view of 
instructional improvement as a gradual process, but one that can likely be detected 
within 1 year following an effective PD program.  

    Method 

    Participants 

 The iPSC project began as a university-district partnership, with the expectation that 
the university would provide 2½ years of professional development—using the PSC 
model—to the middle mathematics teachers in the district. The PD involved devel-
oping the leadership capacity of a select group of teachers, such that the researchers 
could eventually decrease their role and the TLs, with the support of the district 
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administration, could continue implementing the PSC in their schools indefi nitely. 
This expectation has, in fact, been met; at the present time, the TLs are implement-
ing the PSC in the vast majority of the middle schools in the participating district 
with no direct involvement by the research team (Jacobs et al.  2012 ). 

 The data reported in this chapter are from the initial 1.5 years of the project, 
during which the research team worked closely with a small group of TLs (see 
Table  1 ). In our fi rst semester working with the district, the participants consisted of 
seven TLs from four schools. The following school year, fi ve of these TLs (from 
three schools) began facilitating PSC workshops with the mathematics teachers at 
their schools. At this time, we recruited two teachers from each PSC group to serve 
as case study teachers. The TLs and case study teachers agreed to have two lessons 
videotaped each semester: their PSC lesson and a “typical lesson.”

   The 13 teachers that are the focus of this chapter (fi ve TLs and eight case study 
teachers) had a range of teaching experience from 1 to 32 years, with a mean of 
approximately 8 years. They were roughly evenly divided as teachers of sixth- 
(46 %), seventh- (46 %), and eighth-grade (54 %) students, with some teaching at 
multiple grade levels. All had completed at least two college-level mathematics 
courses, with a mean of approximately fi ve courses.  

    Data Collection and Measures 

 The analyses presented in this chapter focus on 51 videotaped lessons, as described 
in Table  2 . Specifi cally, we examined the “fi rst” and “last” PSC and typical lesson 
filmed for each teacher (within the first 1.5 years of the iPSC project). As 

   Table 1    Number of teachers who took part in the iPSC during the fi rst 1.5 years   

 Semester 1: 
Spring 2008 

 Semester 2: 
Fall 2008 

 Semester 3: 
Spring 2009 

 Teacher leaders  7  5  5 
 Case study teachers  0  8  8 

   Note : In a school where there were co-teacher leaders, we only recruited one pair of case study 
teachers  

   Table 2    Number of lessons videotaped for the participating teachers   

 PSC lessons  Typical lessons 

 First  Last  First  Last 

 Teacher leaders 
( n  = 5) 

 5 – Spring 2008  5 – Spring 2009  4 a  – Spring 2008  5 – Spring 2009 

 Case study 
teachers ( n  = 8) 

 8 – Fall 2008  8 – Spring 2009  8 – Fall 2008  8 – Spring 2009 

 Total  13  13  12  13 

   a Due to logistical diffi culties, one of the TLs did not have a typical lesson fi lmed in Spring 2008  
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previously noted, the TLs began participating in the project one semester prior to 
the case study teachers. Therefore, while the dates of their last lessons are the same 
(Spring 2009), the dates of their fi rst lessons are a semester apart (Spring 2008 for 
the TLs and Fall 2008 for the case study teachers).

   We analyzed this set of 51 lessons using the  Mathematics Quality in Instruction  
(MQI) instrument (Hill et al.  2008 ) to investigate changes in the quality of the 
teachers’ mathematics lessons. Hill and colleagues ( 2008 ) explain that the math-
ematical quality of instruction refers to “a composite of several dimensions that 
characterize the rigor and richness of the mathematics of the lesson” (p. 431). 
The MQI is derived from and aligned with the NCTM Standards (Hill et al. 
 2007b ; Kilday and Kinzie  2009 ; NCTM  2000 ). Hill and colleagues have used the 
instrument in a number of studies and provided detailed information on its devel-
opment—along with the establishment of its reliability and validity—in several 
published reports (Hill et al.  2007a ,  2008 ; Learning Mathematics for Teaching 
Project  2011 ). 

 The MQI measures fi ve dimensions of instruction: (1) classroom work is con-
nected to mathematics, (2) richness of the mathematics, (3) working with students 
and mathematics, (4) errors and imprecision, and (5) student participation in 
meaning- making and reasoning. These dimensions fi t well with the research goals 
of the iPSC project and the nature of the teaching the project tried to promote. 
Within the latter four dimensions, a series of three to six items are coded on a 
3-point Likert-style rating scale (generally: low, mid, or high) for each 7.5-min 
lesson segment. In addition, there are two items that rate the overall lesson in 
terms of the mathematical quality of instruction and the teacher’s estimated math-
ematical knowledge for teaching. For these two items, we adapted the MQI’s 
3-point rating scale and instead used a 5-point scale (poor, fair, good, very good, 
or excellent). 

 First, a team of four coders achieved inter-rater reliability of at least 80 % for all 
codes in the MQI. Then, members of the research team worked in pairs to code each 
lesson, coding individually and then discussing and reconciling their disagreements. 
Midway through the coding process, the two pairs coded the same two lessons to 
ensure that our application of the instrument remained consistent.   

    Results 

 Quantitative analyses based on the entire dataset of 51 videotaped lessons highlight 
the nature of the participants’ PSC and typical lessons and how they changed over 
time. An illustrative case study analysis then serves to document the changes in 
one teacher’s lessons during the course of her participation in the iPSC project. 
This analysis illustrates what changes in specifi c practices can look like and how the 
MQI ratings play out in particular lessons. 
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    Quantitative Patterns 

    Dimension Averages 

 We provide a general overview of the quantitative data by examining the average 
ratings within the four main dimensions captured by the MQI. 1  The  math richness  
dimension includes a series of items that capture the depth of mathematics offered 
to students, such as the degree to which there are accurate explanations, multiple 
solution methods, and fl uent mathematical language in the lesson. The  working with 
students  dimension includes items that capture the degree to which teachers build 
on their students’ mathematical productions or conceptually remediate their errors. 
Items in the  errors and imprecision  dimension capture the extent to which there are 
teacher errors, including language and notation errors, as well as the degree of 
 clarity in the teacher’s presentation of the content. The dimension  student participa-
tion  includes items that measure the extent to which students provide explanations, 
reason, and contribute to meaning-making. 

 Figure  1  shows the average ratings within each of the four dimensions for the 
teachers’ fi rst and last PSC and typical lessons. The largest improvement can be 
seen in the  working with students  dimension, for both the PSC and typical lessons. 
This fi nding suggests that, over time, the teachers were better able to build on their 
students’ ideas and help them work through their errors in a conceptual manner. 

1   The vast majority of lessons videotaped as part of the iPSC study were entirely or almost entirely 
“connected to mathematics”; therefore, our presentation of results does not include that dimension 
of the MQI. 
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The  math richness  dimension increased slightly for the PSC lessons (while remaining 
constant for the typical lessons), indicating that the teachers included more oppor-
tunities for students to engage in rich mathematics in their later PSC lessons. The 
 errors and imprecision  dimension decreased slightly for the typical lessons (while 
remaining constant for the PSC lessons), which means the error ratings for the later 
typical lessons fell to approximately the level of the PSC lessons. The  student 
participation  dimension decreased somewhat for both the PSC and typical lessons, 
suggesting that the teachers were less focused on ensuring that their students 
 contributed to meaning-making in the lesson.

   Looking at these patterns in another way, one might notice that  student participa-
tion  is actually the dimension that was consistently rated the highest across the 
lessons and time periods. Although the ratings did drop, it is possible that teachers 
were increasingly focused on ensuring that their lessons contained suffi cient 
mathematical richness and conceptual work for students and they became somewhat 
less attuned to ensuring the same high levels of student participation. 

 Another pattern of interest is the fact that the teachers’ PSC lessons were 
 consistently rated higher than their typical lessons. This fi nding is not especially 
surprising, given the extensive PD work that teachers engaged in around the PSC 
problems prior to using them in their classrooms. In addition, the PSC problems 
were intentionally selected to be rich, open-ended tasks, and as such they are likely 
to be different from the tasks participants routinely used in their everyday practice. 
Furthermore, rich tasks can more readily lead to higher ratings on the MQI instru-
ment, assuming that teachers implement them in the desired manner. At the same 
time, the fact that the PSC and typical lessons are not widely discrepant suggests 
that teachers are generally consistent in their instructional styles, and changes 
either within a time period (comparing PSC to typical lessons) or across time 
periods (comparing the fi rst and last lessons) are relatively small on average.  

    Working with Students 

 We now take a closer look at the dimension that consistently showed the greatest 
improvement,  working with students . There are three items within this dimension: 
(1) remediation of student errors and diffi culties, (2) responding to students’ math-
ematical productions, and (3) overall working with students and mathematics. As 
Fig.  2  shows, all three items increased to some extent over time, for both the PSC 
and typical lessons. Similar to the pattern in Fig.  1 , the PSC lessons were almost 
always rated higher than the typical lessons. Teachers generally received the highest 
ratings for responding to students, indicating that they were attentive to students’ 
productions and responded in mathematically appropriate ways, such as by weaving 
their ideas into the development of the lesson. Although their ratings for conceptual 
remediation were a bit lower, teachers were making strides in improving this aspect 
of their instruction. Higher ratings for conceptual remediation indicate that teachers 
addressed students’ misunderstandings or diffi culties with the mathematics in a 
conceptual manner, as opposed to addressing them procedurally or not at all.
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       Overall Mathematical Quality of Instruction 

 As previously noted, the MQI instrument includes an overall lesson rating for the 
mathematical quality of instruction. This rating captures the degree to which the 
lesson included elements such as productive teacher-student interactions around 
the content, errors, mathematical richness, and a sharp mathematical focus that 
allowed students to develop the important ideas under consideration. Figure  3  shows 
that all of the PSC lessons were judged to be either “good” or “very good,” with a 
pronounced increase in “very good” ratings over time. There was a wider range in 
the ratings of the typical lessons. The baseline typical lessons ranged from “poor” 
to “excellent.” In Spring 2009, the typical lessons ranged from “fair” to “very good,” 
with a notable increase in the number of “good” and “very good” lessons. In gen-
eral, the PSC lessons were rated higher on overall quality of instruction relative to 
the typical lessons. At both time points, more PSC lessons were rated as “very 
good”; close to one third of the PSC baseline lessons and one half of the PSC Spring 
2009 lessons were rated as “very good.”

        Qualitative Patterns: A Case Study Analysis of Yasmin 

 In this section, we illustrate the nature of classroom changes made by one iPSC 
participant, Yasmin, with a specifi c focus on changes in the  working with students  
dimension of the MQI. Yasmin was selected for our case study analysis because she 
exhibited some of the largest increases in ratings on this dimension. Our aim, there-
fore, is to document what changes in practice in this area can look like, rather than 
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to suggest that they are typical. While we can only speculate as to why Yasmin was 
willing to change her practice in a relatively dramatic manner, based on a series of 
interviews, we hypothesize that she was highly infl uenced by her involvement in the 
iPSC project and became increasingly motivated to provide deeper learning experi-
ences for her students. 

 Yasmin was in her third year of teaching when the iPSC project began. Yasmin 
was teaching eighth grade at a relatively new middle school, built in a growing 
 suburb in a predominantly middle class neighborhood. She was identifi ed by her 
principal as willing and able to become a PSC facilitator, along with another math-
ematics teacher from her school. In her initial interview, Yasmin stated that she 
hoped participating in the iPSC would lead her mathematics department to use 
their PD time more productively. She lamented that the math teachers at her school 
rarely met as a department, and when they did they generally engaged in logistical 
endeavors, such as managing their budgets. She was especially interested in taking 
a leadership role to ensure they would become more cohesive as a department, 
focus on mathematics teaching and learning, and share ideas aimed at improving 
their instruction. 

 As a teacher leader and co-facilitator of the PSC workshops, Yasmin encouraged 
her colleagues to pursue the topic of teachers’ questions, including brainstorming 
“good questions” and refl ecting on how to use questioning as an alternative to telling 
students the answer. These topics were covered in the facilitator preparation work-
shops that Yasmin attended, where numerous strategies were discussed both with 
respect to leading PSC workshops that highlighted questioning and to improving 
classroom instruction by being mindful of one’s questioning techniques. A focus on 
teacher questioning carried over into Yasmin’s refl ections on her own classroom 
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practice. Prior to her participation in the iPSC project, Yasmin described her teaching 
style as mostly lecturing and then reviewing, with a strong emphasis on preparing 
students for their in-class exams. Approximately 1.5 years later, when she discussed 
her Spring 2009 PSC lesson, Yasmin refl ected, “My whole goal was not to give 
away too much information. I didn’t want to tell them, ‘This is how you do it….’ 
I was trying to have kids do critical thinking to come up with their own conclusions, 
rather than to have mine.” During this same interview, Yasmin remarked that even 
when covering new material in her “typical” lessons, she is more careful not to give 
away too much information, striving instead for her students to determine how to 
solve a given problem by using their background knowledge. 

 Below we provide a case study analysis based on portions of two of Yasmin’s 
videotaped lessons, her fi rst typical lesson and her last PSC lesson. These two les-
sons depict notably different instructional styles and speak to Yasmin’s growth as a 
teacher, particularly in the area of working with students. In her baseline lesson, 
Yasmin taught what would be considered a “traditional” textbook-based lesson, 
with an emphasis on procedures and following a prescribed strategy to obtain the 
correct answer. In this lesson, the students produced few “substantive productions” 
for Yasmin to build upon, there were no attempts to provide conceptual remediation, 
and the few errors that occurred were addressed quickly and procedurally. By contrast, 
during Yasmin’s last PSC lesson, she encouraged her students to pursue multiple 
solution paths by building on the ideas they generated, pushing them to think 
conceptually, and using the students’ own errors to guide their learning. 

    Yasmin’s Baseline Typical Lesson 

 Yasmin’s fi rst videotaped lesson was an algebra lesson in which students were solv-
ing absolute value equations. They appeared to be practicing what they learned from 
a previous lesson, as there was no direct instruction and students were expected to 
know how to solve these equations with little guidance from the teacher. The lesson 
largely consisted of seatwork, and although Yasmin was attentive to her students’ 
mathematical work, she offered little in the way of mathematical support, instead 
encouraging the students to turn to their peers when they requested assistance. 

  As they enter the classroom, Yasmin directs her students’ attention to the review 
problems she has written on the overhead projector. While they work on these prob-
lems, Yasmin walks around the classroom and checks their homework. After this 
routine 10-minute opening, Yasmin introduces the main component of the lesson: 
working in designated groups of three to solve problems 19–22 on page 223 of their 
algebra textbook. Yasmin directs the students to talk in their groups about what they 
need to do and how to do it. Correspondingly, one student comments to her group of 
peers, “We need to solve the equation. First, we solve it regular and then we solve 
it using a negative.”  

 Most students seemed to know how to go about solving the assigned problems. 
They were supposed to treat the absolute value component within each equation as 
two possible cases, one being positive and one being negative. However, the specifi c 
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procedures for working with absolute values within equations appeared more 
solidifi ed for some students than others. Due to the nature of the tasks, there were 
few opportunities for students to think conceptually or to pursue unique solution 
methods. 

  Yasmin walks over to a group that has their hands raised. When they ask her to 
confi rm that their answer is correct Yasmin responds, “Why did you do it that way?” 
One student counters with a smile, “Because you said to.” Yasmin continues to push 
him, “Why did I say to do it that way?” The student states that he combined like 
terms. Yasmin replies, “You need to fi rst combine like terms, but only those terms 
that are not included in the absolute value sign. Here, the x is part of the absolute 
value so you will solve for x in both part one, which is positive, and part two, which 
is negative.”  

 In the above episode, like many throughout the lesson, Yasmin’s focus was on 
ensuring that her students approached equations containing an absolute value by 
obtaining two solutions. She called the positive solution “part one” and the negative 
solution “part two.” By breaking down the mathematical procedures in this way, 
Yasmin’s apparent goal was mastery and effi ciency. As we see here, although 
Yasmin occasionally asked “why” questions of her students, they were not expected 
to produce true mathematical explanations, and, in general, the classroom dialogue 
never moved beyond statements of the steps that would lead to a correct solution. 

  Toward the end of the lesson, Yasmin tells the students to move out of their groups 
and go back to their original seats. She explains that she will call on one student at 
a time to come to the SMART board and share their responses to each of the four 
assigned equations. Dylan volunteers to do the fi rst equation. Yasmin goes over her 
expectations for what students are to do when they come to the board, “When you 
are up there, you are not just writing the answer down. You need to explain what you 
did step by step.” Dylan writes the equation on the board, [3x + 6] − 7 = 3, and 
begins talking through his solution method, “First, you need to get all of the num-
bers not in the absolute value sign over to one side. So fi rst, you add 7 to both sides, 
and 7 + 3 is 10.” Yasmin steps in and reminds Dylan that he is only going to share 
the positive solution and the next person will share the negative solution. This inter-
jection confuses Dylan and he asks, “What do I do?” Yasmin repeats, “Just the 
positive,” but Dylan is now uncertain about how to proceed. A classmate tells Dylan 
that he should subtract 6 from each side and then solve for x. Dylan hesitates and 
asks, “Did I do it wrong?” Neutrally, Yasmin replies, “Ask the class.” The class tells 
Dylan that he was doing it right but he was not done and to keep going. Someone 
says, “You still need to solve for x.” Reassured, Dylan fi nishes the problem and 
states his solution, “x = 4/3.”  

 The classroom discussion continued in this manner, with students coming up to the 
front of the room and sharing their answers to the remainder of the equations. It is 
perhaps not surprising that even after a long practice session, some students still strug-
gled to recall what they were expected to do and did not fully understand why they set 
the equation fi rst to a positive number and then to a negative number. Yasmin main-
tained a low profi le throughout the lesson and often refl ected questions back to the 
students or their classmates. Although this strategy appeared aimed at encouraging the 
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students to be more self-reliant, it meant that errors or misconceptions did not drive 
the instruction in any way and they were never tackled in a mathematically insightful 
or conceptual manner.  

   Yasmin’s Spring 2009 PSC Lesson 

 Yasmin began her lesson by discussing the task, entitled wheelchair ramps (adapted 
from Lobato and Siebert  2002 ; See Fig.  4 ). She told the students that they were 
going to help a company that makes ramps for wheelchairs improve their upcoming 
catalog. Customers were complaining that the old catalog was confusing because 
they were not able to determine the steepness of each ramp. The new catalog would 
feature 8 models of wheelchair ramps and lists not only their dimensions of length, 
height, and width but also their steepness. Yasmin explained to her students that 
they needed to determine the steepness of each ramp and then order them from the 
least to most steep. After this introduction to the problem, the students started work-
ing in groups, sorting out their thinking regarding steepness. In the remainder of this 
vignette, we describe several excerpts from the lesson that illustrate how Yasmin 
remediated errors and responded to students’ mathematical productions as they 
worked on the task.

Height

Length of Base Width of Base 

Here is your task:
Compare each pair of ramps.
Make an ordered list using all models (1−8), from the least steep to most steep.
Provide a mathematical justification for how you ordered your list.
Describe any patterns you notice in the data.

Ramp
Model #

Height Length Width Base

A1 18 72 32
A2 19 73 34
B3 12 60 37
B4 18 90 41
C5 24 120 36
C6 28 215 36
D7 37 181 26
D8 43 215 38

  Fig. 4    The wheelchair ramps problem ( Note : These fi gures do not conform to actual construction 
codes for wheelchair ramps)       
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   A company that makes wheelchair ramps needs to revise their catalog to include 
the steepness of each ramp. Your company was given a subcontract to do this work. 
Within the current catalog of wheelchair ramps, there are eight models. You need to 
determine the steepness of each ramp and order them from the least steep to most 
steep in the catalog. 

  Yasmin comes over to a group and asks what they have fi gured out so far. One 
student asserts, “The lowest number is going to be the steepest ramp.” Yasmin 
presses her for clarifi cation, “You need to be clear on why a ramp is the most steep 
or the least steep and tell us how you are going to prove it.” Other students in the 
group explain that they are multiplying the lengths and widths together to determine 
steepness. Taking up this (incorrect) line of thinking, Yasmin asks, “How does multi-
plying help?” One student responds, “If the ramp has a smaller number [i.e., product], 
then it means it would be the least [steep]. Yasmin challenges the group to prove their 
theory by trying more examples.  

 In this excerpt, Yasmin is engaging in brief conceptual remediation. After eliciting 
the students’ thinking, she was able to understand their misconception and consider 
how the students might explore their idea further in a productive manner. Rather than 
telling the students that they were incorrect, Yasmin suggested a specifi c way for 
them to test their conjecture, with the expectation that they would be able to see for 
themselves the error in the strategy. 

  Yasmin moves to another group with their hands raised. One student says, “I am 
confused because, for fi nding the steepness, don’t you just multiply the length and 
height and divide by 2?” Yasmin responds, “How is that steepness?” Another group 
member states, “That is area, not slope.” Yasmin continues the conversations by 
asking, “So is area the same as slope?” “No,” the group answers together. Yasmin 
probes to see if they really understand whether slope and area are different: “So, 
you are saying slope, but then you are doing the formula for area?” One boy 
declares, “What we are doing doesn’t make sense.” Yasmin pursues a line of ques-
tioning to ensure the students understand slope: “Then what is slope?” The boy 
replies, “Division.” Yasmin prods him, “Division of what?” When she is greeted by 
silence, Yasmin gestures to the “word wall” which includes the term “slope,” along 
with a defi nition and several examples. The students then answer cautiously, “Rise 
over run.” Yasmin continues her questioning, “What is the rise?” After one student 
explains that rise would be the height, she asks, “What is the run?” “Length,” the 
group says in unison.  

 Here, we see Yasmin continuing to support students in their initial stages of 
engaging in the task. She does not provide procedures or even suggestions for how 
to solve the task. Rather she helps the students determine whether they are on the 
right track by having them explain their mathematical ideas. As she went around to 
each group, Yasmin paid careful attention to where the students were in their math-
ematical thinking. Based on their oral and written productions, Yasmin encouraged 
the students to persist in the task, face their own misconceptions, and move forward 
in more productive ways. 

 As the lesson progressed, some students continued to struggle and groups explored 
various approaches to solve the problem. In the following excerpt, Yasmin returns to 
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a group of students who are using a difference model to determine steepness 
(i.e., they are subtracting the heights from the lengths). Yasmin had encouraged this 
group to graph the ramps with the same differences to see if they also had the same 
steepness. Graphing the ramps—that is, plotting the given points (length, height) 
and connecting them to the origin (0,0)—allows for a visual inspection and compari-
son of steepness. Engaging in this suggestion challenged the students and provided 
enough cognitive dissonance that they began to consider other strategies. Producing 
a graph also provided some new opportunities for the students to conceptually 
grasp how height and length are related in the determination of steepness. 

  Yasmin asks the group what numbers they used in their graphs. One student 
replies, “4 and 8, and 3 and 6.” Yasmin quickly counters, “I thought you were going 
to use two numbers with a difference of three to see if they had the same slope. Using 
those numbers, one has a difference of three and one has a difference of four. I 
wanted you to look at [ramps with] the same difference.” Yasmin reminds the group, 
“You told me before that the smaller the difference, the steeper the ramp. If you are 
graphing this and you have two ramps that have the same difference [but different 
dimensions], do they have the same steepness too?” When she gets no response, 
Yasmin clarifi es her request, “So this has a difference of three. Find two ramps that 
both have a difference of three, and see if you can tell if they are the same steepness.” 
Yasmin waits while the students create the graph she requested. Yasmin then asks 
them to interpret the lines they have drawn: “Do they have the same steepness?” 
Pointing to one of the lines a student answers, “No, this one is more steep.” Yasmin 
pushes them to reason through this fi nding, “But your theory says that they should 
have the same steepness, right?” When the students have diffi culty answering, 
Yasmin encourages them to pursue the idea further. She points out two more ramps 
that have the same difference, but different slopes, and encourages them to think 
about how to modify their theory. As she leaves the table, one boy comments, “You 
are challenging us!” To which Yasmin replies, “Good!”  

 In the above excerpt, Yasmin initially notices that the group of students did not 
engage in the careful analysis of their subtraction method that she had anticipated. 
Yasmin uses this opportunity to help her students begin engaging in just such an 
analysis. She restates the question they were asking, watches as they graph the 
ramps, and then ensures that they recognize what the issue is. Yasmin’s choice to 
push this group of students to graph the problem is especially interesting as a means 
of providing conceptual remediation. In creating the graph, the students are able to 
accurately apply the relationship between height and length to generate the slope of 
the ramp. This visual depiction of the problem helps to convince the students that 
their original method contains a critical fl aw. 

  Yasmin comes back to this same group approximately fi ve minutes later to check 
on their progress. She asks, “What did you fi nd out? Are they the same steepness?” 
At fi rst the students jokingly say the ramps are the same steepness, but then admit 
they are not and that their subtraction strategy does not work. One student wonders, 
“What should we do?” to which Yasmin responds, “I don’t know. What do you 
think?” Another boy suggests, “Well, we could use fractions and reduce them, and 
the smallest fraction would be the steepest, right?” Yasmin remains neutral about 
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this suggestion, but encourages the group to consider whether it would work. One 
of the boys notes that, in reduced form, one ramp is ¾ and another is 1/6. 1/6 is 
smaller so that ramp should be less steep. Agreeing with this approach, another 
student explains two more times how they could generate fractions, reduce them, 
and identify which ramp was less steep.  

 As this excerpt depicts, the students eventually generated an accurate strategy for 
determining steepness based on fractions. In fact, these “fractions” should be under-
stood as ratios of height to length, but regardless of their label, it is clear that the 
students were beginning to think of the numbers in relative terms. Yasmin encour-
aged the students to work systematically down their own solution path. For exam-
ple, she directed them to examine number pairs that had a difference of three and 
then make a graph to visually inspect the slopes. Analyzing the graph—a represen-
tation frequently used in their algebra class—eventually led the students to abandon 
their subtraction strategy and to consider creating “fractions” from the given mea-
surements. Yasmin supported her students by building on their ideas, maintaining 
an appropriate level of mathematical challenge, and ensuring that they could claim 
ownership of the fi nal solution.    

    Discussion 

 The fi ndings presented in this chapter corroborate and expand on our earlier work 
examining the impact of the PSC on instructional practice (Koellner et al.  2011b ) 
and further demonstrate the potential for growth among teachers who take part in 
the PSC. Teachers in the iPSC study experienced the most dramatic classroom 
improvements in the domain  working with students . This domain, generally speak-
ing, captures teachers’ efforts to attend to their students’ thinking and provide con-
ceptual remediation. We hypothesize that strengthening teachers’ capabilities in this 
area of teaching may be a fi rst step toward improving the overall quality of their 
instruction on an everyday basis. In other words, the ability to work effectively with 
students’ productions around meaningful mathematics may be an initial and robust 
change for teachers participating in the PSC. Longer-term investigations are needed 
to determine whether other aspects of instructional change, such as improvements 
in the richness of the mathematics and the students’ participation in meaning- 
making, occur later in time and coincide with continued participation in the PSC. 

 Even within a group of teachers who participate in the same PD, their experi-
ences as learners may vary greatly. Just as there are a myriad of conditions that 
mediate the effects of teaching on student learning (Hiebert and Grouws  2007 ), 
there are also numerous factors likely to mediate the effects of PD on teaching. 
Among those who are motivated to change their classroom teaching due to their PD 
experiences, the exact nature and time frame around such changes can infl uenced by 
a large number of individual and contextual factors (Farmer et al.  2003 ; Franke et al. 
 2001 ). For example, Yasmin may have been especially motivated to change not only 
due to her participation in the PSC but due to her experiences preparing for and 
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facilitating PSC workshops. Perhaps linked to her newly established leadership role, 
Yasmin carefully attended to the impact that teachers’ questioning can have on 
students’ thinking and strove to modify her teaching so that student-generated ideas 
would play a greater role. 

 Kazemi and Hubbard ( 2008 ) argue that knowledge gained in PD should be 
understood as a tool that can help teachers think about instruction in new ways. Due 
to teachers’ unique circumstances, including the nature of their resources, the school 
context, their students, and their own identity as teachers, the impact of any given 
PD is likely to play out in a variety of ways on the participants. Franke et al. ( 1998 ) 
propose that “teacher change may not be captured in the [professional development] 
experiences the teachers have engaged in but in the meanings they have constructed” 
(p. 68). Future research on this topic should further investigate the degree to which 
there are individual differences related to the impact of PD on classroom instruction 
and more clearly delineate the factors that underlie such differences.     
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    Abstract     In mainland China, a school-based teaching research system has been in 
place since 1952, and a Teaching Research Group exists in every school. In this 
paper, three of the teacher’s lessons and the changes in each lesson are described, 
which might show how the lessons were continuously developed in the Teaching 
Research Group. The Mathematical Tasks Framework, the Task Analysis Guide, 
and the Factors Associated with the Maintenance and Decline of High-level 
Cognitive Demands developed in the  Quantitative Understanding: Amplifying 
Student Achievement and Reasoning  project (Stein and Smith, Maths Teach Middle 
School 3(4):268–275, 1998; Stein et al. Implementing standards-based mathematics 
instruction. Teachers College Press, New York, pp 1–33, 2000) were employed in this 
study. Based on the mathematical task analysis, the changes in three lessons were 
described, and the author provided a snapshot for understanding how a Chinese 
teacher gradually improved his/her lessons in the TRG’s activities.  

  Keywords     Case study   •   Mathematical lessons   •   Pythagoras Theorem   •   Mathematical 
tasks   •   Teaching research activities  

       Introduction 

 Unlike western culture, the classroom instruction of Chinese mathematics teachers 
is open for colleagues’ observation, studies, and discussion. A Mathematical Teaching 
Research Group (TRG) exists in each school in mainland China because of the 
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requirement at the system level. The three-level teaching research network 
(province-level Teaching Research Offi ce (TRO), county-level TRO, and school- level 
TRG) has more than 50 years of tradition behind it. 

 The TRG is the basic unit in the network, and its main responsibility is to carry 
out studies on teaching in order to solve the practical problems of teachers. Early in 
1952, the Ministry of Education stipulated in the  Provisional Regulation for 
Secondary School (draft)  that “Teaching research groups should be set up in all 
subjects in secondary schools.” A Teaching Research Group is formed by teachers 
who teach the same subject. In general, a teacher is often assigned to teach one 
subject for 2–3 classes of the same age group in a school in mainland China. The 
duty of the TRG is “to study and improve the way of teaching” (MOE  1952 ). 

 The  Pythagoras Theorem  is a diffi cult topic for teachers to cope with, especially 
younger teachers. In fact, in the following study, a young teacher’s lessons experienced 
the improvement process in the TRG’s activities. The TRG’s activities are organized 
by the leader of the TRG. What changes occurred when a teacher developed his/her 
lesson in the TRG’s activities? How did the TRG’s activities infl uence a teacher’s 
instruction? In this paper, a young teacher’s three lessons and the changes in each 
lesson were described, which might show how classroom instruction was continuously 
developed by the TRG. Considering the unique educational background in mainland 
China, though the Shanghai case was very representative, the author wanted to point 
out that the discussion and conclusions in this paper only fi t to the concrete Shanghai 
teacher and Shanghai lessons and it could not be arbitrarily generalized in all lessons 
or teachers in mainland China.  

    Background for Chinese Classrooms 

 Mathematical teaching in China emphasizes basic knowledge and skills (Zhang 
et al.  2004 ), which results in students’ high achievements in certain large-scale 
international comparisons (Fan and Zhu  2004 ). As some scholars mentioned (Lopez-
Real et al.  2004 ), the Chinese classroom has several typical characters, i.e., large 
classes, whole class teaching, examination-driven teaching, content rather than 
process oriented, emphasis on memorization, etc. Some scholars criticized that this 
overexercising and over-drilling ignored the learning of mathematical essence 
(Tsatsaroni and Evans  1994 ; Partners in Change Project  1997 ; Romberg and Kaput 
 1999 ; Uhl and Davis  1999 ). Likewise, some experts in China advocated that the 
teaching of mathematics should de-emphasize its appearance, reinforce its substance 
(Song and Chen  1996 ), and distinguish the educational mathematics from the 
academic mathematics (Zhang  2001 ; Zhang and Wang  2002 ). The  exploring  styles 
of learning and teaching have been advocated by Teaching Research Offi cers since 
the National Mathematics Curriculum Standards for Compulsory Education 
(Ministry of Education  2001 ) was issued. 

 Based on the current situation in China, mathematics teaching has placed more 
emphasis on mathematics essence (Yang and Li  2005 ). Instead of overemphasizing 
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the acquisition of mathematics skills, teaching should be rooted in students’ common 
sense and experience and go deep into the problems’ mathematical substance. 
In this way, teachers should let students experience mathematics activities as 
mathematicians do, such as mathematical conjecturing, plausible reasoning, 
exploring, validating, and justifying. Then, students will be able to reorganize their 
new common sense and experiences progressively. For what mathematics students 
experience in school infl uences their recognition of mathematics in their future life 
(Dossey  1992 ).  

    Methodology 

    A Theoretical Perspective for Mathematical Task Analysis 

 Stein and Smith ( 1998 ) used the Mathematical Tasks Framework to analyze hundreds 
of teaching cases in the  Quantitative Understanding: Amplifying Student Achievement 
and Reasoning  (QUASAR) project from 1990 to 1995, which showed how a 
mathematical task was changed when it was carried out in three stages: (1) when a 
task appeared in curricular or instructional materials, it was an ideal task set up by 
a curriculum expert or textbook editor; (2) when a task appeared in classroom teaching, 
it was an operational task set up by teachers; (3) when a task appeared in students’ 
learning, it was an implemented task worked by students. From stage 1 to stage 3, the 
mathematical task would not necessarily stay on the same level, and some changes 
occurred in the continuous process. What students achieved relied on these three stages. 

 In their analysis of hundreds of teaching cases, Stein and Smith found that a 
higher cognitive task was always translated as a lower cognitive task by teachers in 
classroom teaching. Only when a task was set up by teachers on a high cognitive 
level did it have the possibility to be implemented on a high cognitive level by 
students. Furthermore, they defi ned four types of tasks in two levels:  memorization 
tasks  and  procedures-without-connection tasks  were defi ned as low-level demands 
in cognition by a description of their features;  procedures-with-connection tasks  
and  doing-mathematics tasks  were defi ned as high-level demands in cognition by a 
description of their features. These can be found in the  Task Analysis Guide  structured 
by Stein and Smith ( 1998 ). 

 Stein and Smith ( 1998 ; Stein et al.  2000 ) found that a high-level demands task 
might be kept on the same level or dropped to a lower level when implemented by 
students, but a lower-level task had no possibility to be implemented on a higher 
level by students. For example, when doing a mathematics task (which is a high- level 
demands task) after it was set up by a teacher in classroom teaching, it might yield 
one of the four kinds of results. It might be implemented by the students on the same 
level as a doing-mathematics task or might be implemented by the students as a 
procedures-with-connection task, or a procedures-without-connection task, or 
even a memorization task. However, if a teacher sets up a low-level demands task 
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(e.g., a procedure-without-connection task), it has no possibility to be implemented 
as a procedure-with-connection task or a doing-mathematics task. Stein and Smith 
concluded that the Factors Associated with the Maintenance and Decline of High- 
Level Cognitive Demands are as shown in Table  1 .

   The theoretical framework of this mathematical task analysis constructed by 
Stein and Smith ( 1998 ; Stein et al.  2000 ) will be used in this paper to show what is 
changed in each lesson and how mathematical tasks are set up by the teacher as well 
as how they are implemented by students.  

    Source of Data 

    The School and the Teacher 

 The school was an ordinary junior high school with a mid-level economy in the 
Qingpu District, which is located in west suburb of Shanghai city. The mathematics 
TRG consisted of seven full-time mathematics teachers employed by the school. 
Two of them had more than 15 years’ mathematics teaching experience (T1 and T2 
are used to substitute their names), three of them had 5–10 years’ mathematics 
teaching experience (T3, T4, and T5 are used to substitute their names), and two of 
them had less than 5 years’ teaching experience (T6 is used to substitute one of them). 

     Table 1    Factors associated with maintenance and decline of high-level cognitive demands (Stein 
and Smith  1998 ; Stein et al.  2000 )   

 Factors of maintenance 
or decline  Explanations 

 Factors Associated with 
the  Maintenance  of 
High-level Cognitive 
Demands 

  M1   Scaffolding of students’ thinking and reasoning is provided 
  M2   Students are given the means to monitor their own progress 
  M3   Teacher or capable students model high-level performance 
  M4   Teacher presses for justifi cations, explanations, and 

meaning through questioning, comments, and feedback 
  M5   Tasks build on students’ prior knowledge 
  M6   Teacher draws frequent conceptual connections 
  M7   Suffi cient time is allowed for exploration—not too little, 

not too much 
 Factors Associated with 

the  Decline  of 
High-level Cognitive 
Demands 

  D1   Problematic aspects of the task become routinized 
  D2   The teacher shifts the emphasis from meaning, concepts, 

or understanding to the correctness or completeness of 
the answer 

  D3   Not enough time is provided to wrestle with the 
demanding aspects of the task 

  D4   Classroom-management problems prevent sustained 
engagement in high-level cognitive activities 

  D5   Task is inappropriate for a given group of students 
  D6   Students are not held accountable for high-level products 

or processes 
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Ms N was the youngest teacher in the mathematics TRG. She had graduated from 
Shanghai Teachers University and had 2 years and 3 months of teaching experience. 
In this paper, we will study three of her lessons on the Pythagoras Theorem. 

 In Shanghai, mathematics TRGs exist in every primary and high school. 
Mathematics, Chinese language, and English language are the main subjects in every 
school, and the teachers in these three TRGs usually teach 2 or 3 classes of the same 
age group. Every teacher in these three TRGs only teaches one subject: mathematics, 
Chinese language, or English language. Ms N, after her 4-year study of Mathematics 
Education at the Shanghai Teachers University, taught mathematics in 3 parallel 
classes from grade 6 to grade 8. When the lesson data was collected, Ms N had just 
been through 3 months of her third year’s teaching journey.  

    The Lessons 

 Three lessons on Pythagoras Theorem that were taught by Ms N in three grade 8 
classes were videotaped, and the related TRG’s activities were also videotaped. 
In China, the TRG’s activities are mainly pre-lesson discussion on lesson plans and 
post-lesson discussion on lesson contents and instruction methods. 

 The fi rst lesson was prepared solely by Ms N, so there was no pre-lesson discussion. 
After the fi rst lesson, all members of the TRG discussed the problems of the lesson. 
Then, the members of the TRG discussed how to improve the lesson next time, and 
Ms N made a new lesson plan after the post-lesson discussion. Similar discussion 
procedures happened after the second and third lessons. This improving process is 
a typical procedure in TRGs in Shanghai.   

    Data Analysis 

    Analysis of the Lessons 

 In Shanghai, most of the lessons were teacher centered and most of the mathematics 
instruction kept to a basic model for historical reasons. Review of old knowledge 
was usually the fi rst part of a lesson, and summarization of what had been learned 
was always the last part of a lesson. For a theorem-instruction lesson, the middle 
part often had three steps: producing the theorem, justifying the theorem, and applying 
the theorem. However, different teachers emphasized different steps in the middle 
part of the lesson, which showed their different aims in teaching the same topic. 
So, in the analysis of the lessons, fi rstly the structure of the lesson is identifi ed in 
order to show a whole picture of the lesson. Then, two key tasks are focused on 
in this paper: producing the theorem and justifying the theorem. Applying the theorem 
often involved doing exercises, which will not be analyzed in this paper. 

 The mathematical tasks that appeared in textbooks were set up by teachers and 
then implemented by students in lessons. In this paper, tasks set up by teachers 
and implemented by students are/were checked in detail. 
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 The  Task Analysis Guide  (Stein and Smith  1998 ) was used to defi ne the cognitive 
level of the tasks set up by teachers and the tasks actually implemented by students . 
Memorization tasks  and  procedures-without-connection tasks  were defi ned as low- 
level demands, and  procedures-with-connection tasks  and  doing-mathematics tasks  
were defi ned as high-level demands. By this analysis guide, the tasks which really 
happened in classrooms would be judged if they were high cognitive demands tasks 
or not, and the result would show us how the tasks should be changed among textbook, 
teacher, and students. 

 The  Factors Associated with the Maintenance and the Decline of High-level 
Cognitive Demands  (Table  1 ) was used to recognize the main factors that infl uenced 
the teacher’s implementation of tasks in her instruction. In Table  1 , seven common 
factors associated with the maintenance of high-level cognitive demands and six 
common factors associated with the decline of high-level cognitive demands are 
described. In this study, the maintenance factors were coded as M1–M7, and the 
decline factors were coded as D1–D6 in the key task analysis of the lessons.  

    Analysis of the Interview of the Teacher 

 After each of Ms N’s lessons and the post-lesson discussion, an interview with 
the teacher was carried out. So there were three interviews to collect the teacher’s 
opinions on the lesson and the discussion in the TRG’s activity. There were two 
focuses in analyzing these three interviews: (1) what did the teacher see as important 
in the lesson? (2) What did the teacher feel about others’ opinions during the discussion 
of the lesson in the TRG’s activity?  

    Analysis of the TRG’s Discussion 

 After the on-the-spot observation on each of Ms N’s lessons, the TRG members 
talked about the problems in the lesson and the possible improvements in the next 
lesson, which was facilitated by the leader of the TRG. All of the discussions were 
videotaped and transcribed. The transcript’s analysis focused on two questions: 
(1) what did the other teachers in the TRG see as important in the lesson? (2) What 
kind of opinions infl uenced Ms N’s next lesson?    

    Results 

 The results of the three lessons’ analysis are presented as three parts, and then the 
three lessons are analyzed by comparison in summary. In each analysis of the lesson, 
the lesson structure, two key tasks, and discussion are presented. 
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    The First Lesson 

    The Lesson Structure 

     1.    Producing the proposition by questions (8 min and 15 s). After asking students 
to draw two right-angled triangles and measure their sides, Ms N gave out the 
proposition: a 2  + b 2  = c 2 .   

   2.    Justifying the proposition by explaining and asking students to read the related 
content in the textbook (15 min and 51 s)   

   3.    Applying the Pythagoras Theorem to solve four questions in the textbook 
(21 min and 2 s)   

   4.    Summarizing what was learned in this lesson briefl y (43 s)      

    The Two Key Tasks 

   Producing the Proposition 

  How did Ms N set up the task?  Firstly, Ms N asked a question to inspire students: “if 
we know the two edges of a right angle in a triangle, how can we get the hypotenuse?” 
After introducing a history about Gou 3, Gu 4, and Xian 5, Ms N let the students 
draw the triangle. She then let the students draw another triangle (5, 12, 13) and 
calculate the three edges’ square. From these two sets of data, she asked: “what is 
the relationship among [the] three sides of the triangle?” From the Task Analysis 
Guide, it was a very open question for students. It needed complex, non-arithmetic 
thinking to come up with a proposition, and there was not an exact way to achieve 
the answer. It also needed students’ hard cognitive efforts to answer the question 
which had the characteristic of a doing-mathematics task. So, the task was set up by 
the teacher as a task with high cognitive demands. 

  How did the students implement the task?  In Table  2 , seven factors which infl u-
enced students’ high cognitive implementation of the task are shown.

   From the lesson segment in Table  2 , the whole process of producing propositions 
had very limited cognitive demands. According to the characteristic of mathematical 
tasks described in the Task Analysis Guide, the task of producing propositions 
implemented by students was a procedures-without-connection task.  

   Justifying the Proposition 

  How did Ms N set up the task?  Ms N didn’t give students the chance to try to justify 
the proposition by themselves, but directly wrote the algebraic formula [a 2  + b 2  = (a + b) 2  − 
2ab = (a + b) 2  − 4 × 1/2ab] on the blackboard. Then Ms N asked students to read the 
proving process in the textbook and gave some explanations on how the proposition 
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    Table 2    The associated factors infl uenced students’ implementing   

 Segments of the lesson  Factors 

 T:  In a triangle, if the two right-angled edges are 
3 cm and 4 cm, then the hypotenuse is 5 cm. 
Right? This is a conclusion. Well, now use 
your ruler to measure them to check. Ok, use 
your own paper. Draw a triangle; its two 
right-angled edges are 3 cm and 4 cm. Well, 
let us see if the hypotenuse is 5 cm. Right? 

 D1 (Ms N “took over” the 
thinking and told students 
how to validate the fi gure) 

 (Students began to draw pictures) 
 T:  Ok, one edge is 3 cm, the other one is 4 cm, and 

then you can see how long the hypotenuse is 
 D2 (Ms N only took care of the 

correctness of the expected 
answer)  S (choral):  5 cm 

 T:  Well, next triangle, please draw it. One of the 
right-angled edge is 5 cm (stop fi ve seconds 
to wait for students’ drawing), and the other 
right-angled edge is 12 cm, which is much 
longer. How long is the hypotenuse? 

 D1 (Ms N “took over” the 
thinking and told students 
how to validate the fi gure) 

 (Students drew the triangle and measured the hypotenuse) 
 T:  How long? 
 S1:  13 
 T:  Ok, we got two sets of data just now: one is 3, 4, 

and 5; one is 5, 12, and 13. Let us guess, 3 
and 4 are right-angled edges, and 5 is the 
hypotenuse, right? Here 5 and 12 are 
right-angled edges, and 13 is the hypotenuse. 
Then what is the relationship among three 
sides of the triangle? Please discuss the 
question in your group and guess what kind 
of conclusion that we may get 

 D5 (only 2 sets of data, students 
learning without scaffold) 

 (Every 4 students as a group talked for 2 minutes, and 
Ms N patrolled) 

 D3 (not enough time to fi nish a 
high cognitive demands task) 

 T:  If the two right-angled edges are 3 and 4, 
correspondently, we can fi nd that 3 2  plus 4 2  is 
equal to 5 2 , isn’t it? 

 S (choral):  Yes 
 T:  Well, let’s see the second set of data. Is 5 2  plus 

12 2  equal to 13 2 ? 
 D1 (the high cognitive demands 

task has been transferred as a 
computational question)  (No answer, in silence) 

 T:  5 2  = ? 
 S (choral):  25 
 T:  12 2  = ? 
 S (choral):  144 
 T:  The sum? 
 S (choral):  169 
 T:  Right? It is 5 2  + 12 2  = 13 2  
 S (choral):  Yes 

(continued)
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was justifi ed in the textbook. Therefore, the task of justifying the proposition was 
set up in a “telling” way, which had the characteristics of a procedures-without- 
connection task:

•    The procedures of justifying the proposition had been arranged by the teacher 
(directly told students how to operate the algebraic formula).  

•   The cognitive challenge for students was much less, because the textbook stated 
everything about the justifying process.  

•   The teacher emphasized the outcome of justifying a correct proposition, but 
didn’t care to develop students’ ideas on how to justify the proposition.    

  How did the students implement the task?  As Stein and Smith’s study pointed out 
( 1998 ; Stein et al.  2000 ), only if the teacher sets up a task with a high cognitive 
demands level is there a possibility for students to implement it on a high cognitive 
demands level. That is to say, there is no possibility for students to implement a task 
in a high cognitive demands level if a task was set up by the teacher on a low cogni-
tive demands level. It was obvious that the task set up by Ms N in the lesson was a 
low cognitive demands task, and so it is unnecessary to discuss whether students 
implemented the task in a low or high cognitive demands level.   

    The Discussion in the TRG 

   What Should Be Taught in the Lesson? 

 From Ms N’s lesson structure, applying the theorem was seen as the most important 
part of the teaching, but some teachers questioned this.

Table 2 (continued)

 Segments of the lesson  Factors 

 T:  Ok, now I noticed someone had found 
something. Well, who would like to tell what 
you’ve found? 

 D1 (by the computational tasks 
above, the thinking process 
of producing a proposition 
had been suggested by the 
teacher’s two sets of data: 
3 2  + 4 2  = 5 2  and 5 2  + 12 2  = 13 2 ) 

 S2:  The fi rst right edge’s square plus the second right 
edge’s square is equal to the bevel edge’s 
square 

 T:  Then we have such a conclusion. If we generalized 
the conclusion, what would we get? (Stopped 
for about 6 seconds, Ms N pointed the 
blackboard.) If we know the three edges in the 
right-angled triangle, a, b, and c, then what will 
we get according to the conclusion mentioned 
just now? 

 S (choral):  a 2  + b 2  = c 2  
 T:  Good, a 2  + b 2  = c 2 . That is to say, the sum of the 

two right edges’ square is equal to the bevel 
edge’s square, isn’t it? Ok, the proposition we 
have guessed out, now let’s justify it 
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   Ms N:  In my lesson plan, the key segment is applying the theorem. In my opinion, 
justifying the theorem is too diffi cult for students. Well, I think there are 
diffi culties for students to fi nd a way to justify it, so I let them read the 
justifying process in the textbook and I gave some explanations.   

  T1:  The Pythagoras Theorem seemed very simple, and even some students 
knew it when they were in the primary school. But how such a theorem was 
found and how it was proved, few one can speak it out. So I think the key 
tasks should be reconsidered: what should students learn in the lesson?   

  T4:  According to the new curriculum standard, mathematical teaching should 
pay attention to make students experience the mathematical activities as a 
mathematician. So the process of producing a proposition should be 
redesigned.   

  T2:  In mathematical lessons, logical thinking is very important, which is the 
core of mathematics. Justifying the theorem should be fi nished by students 
in teacher’s enlightening.     

 From the above discussion, we can see how they gradually reached a consensus 
as to what should be taught.  

   How Should the Process of Producing Propositions Be Reasonable? 

 When the TRG reached a consensus on what should be taught in the lesson, their 
discussion shifted to how Ms N produced the Pythagoras Theorem.

   T2:  Just by the two sets of data, (3, 4, 5) and (5, 12, 13), students smoothly 
“found” the theorem. That was because of Ms N’s questions about these 
numbers’ square. It was almost equal to telling students the outcome.   

  T3:  We cannot ignore that maybe some students have read the textbook before 
Ms N’s lesson and they have known the theorem.   

  T1:  What is a reasonable supposal in mathematics? It should be based on enough 
supportive data. Mathematical supposal doesn’t mean guess a riddle.   

  Ms N:  Yes. After the lesson, a boy came to the dais and asked me, “Ms N, in the 
triangle of (3, 4, 5), may I get a relationship among three edges: (3 + 5) ÷ 2 = 4 
?” At that time I was thinking maybe it was too arbitrary to get the 
Pythagoras Theorem just by two special right-angled triangles.     

 Then, the subsequent discussion moved on to how to redesign the scaffolds 
to support students’ production of propositions. They decided to use graph paper to 
build the connections between a 2  + b 2  = c 2  and the corresponding squares’ areas.  

   Should the Thinking Way of Justifying the Proposition Be Explored by 
Students Themselves? 

    T2:  Ms N directly gave students the operation of algebraic formula that was 
not appropriate. Why the algebraic formula was operated like that? 
The thinking way of justifying the proposition hasn’t been revealed but just 
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let students do formula operation without any reasons. Well, that is to say, the 
key algebraic formula (a + b)   2    = 4 · 1/2ab + c   2    was just given, maybe students 
just knew how to prove the proposition, but they didn’t know why it was 
proved like that.   

  Ms N:  Indeed, that was the diffi culty for me. How can I make students naturally 
bethink of a   2    + b   2    = (a + b)   2    − 4 · 1/2ab? In the reference book for teachers, 
it was designed to use four right-angled triangles to make up, but it was 
hard to be implemented by students. I don’t know how to enlighten stu-
dents; I don’t know. Hope miracle happened? How to make students catch 
it? That’s the most diffi cult point for me in my preparation of the lesson.     

 The follow-up discussion then moved ahead to how to overcome the diffi cult 
points in teaching. The members of the TRG gave some suggestions on how 
to relate the justifying process to the meaning of the fi gures of a 2 , b 2 , and c 2  on the 
graph paper.    

    The Second Lesson 

   The Lesson Structure 

     1.    Reviewing the method of area calculation (12 min and 32 s). By asking students 
to calculate a catty-cornered square (Fig.  1 ), the method of replenishing or parti-
tioning four right-angled triangles to calculate the area was clarifi ed.

       2.    Producing propositions by fi lling in a table (12 min and 57 s). Ms N asked 
 students to fi ll in the values of four right-angled triangles (Fig.  2 ) in a datasheet 
(Fig.  3 ). When students fi nish fi lling in the datasheet, Ms N asked students to 
observe the datasheet and put forward what they’ve found and students found the 
proposition a 2  + b 2  = c 2 .

        3.    Justifying the proposition by students themselves on the worksheet (27 min and 34 s)   
   4.    Doing jigsaw games to verify the Pythagoras Theorem visually (10 min and 13 s)   
   5.    Summarizing what was learned in this lesson briefl y (37 s)      

  Fig. 1    Calculating the area of 
a catty-cornered square       
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   The Two Key Tasks 

   Producing the Proposition 

  How did Ms N set up the task?  When Ms N set up the task, she fi rstly drew the 
squares of three edges of a right-angled triangle on the blackboard and gave some 
explanations on the geometrical meaning of a 2 , b 2 , and c 2 . Then, she asked the students 
to calculate the value of a 2 , b 2 , ab, and c 2  and fi ll in the datasheet on the worksheet. 
Lastly, she asked the students to observe the datasheet and look for rules that might 
be there. Judging from the Task Analysis Guide, to fi nd a rule needed students’ 
complex and non-algorithmic thinking, though the datasheet was a scaffold. This task 
needed students to observe the datasheet and to understand the relationship of 
several algebraic values. Using these observations, it can be concluded that Ms N set 
up a doing-mathematics task. 

  How did the students implement the task?  In Table  3 , the factors which infl u-
enced students’ implementation are coded.

   From Table  3 , the task implemented by students was high in cognitive demands. 
Firstly, the students’ calculations and observations were built on the methods of area 
calculation and students’ understanding of a 2 , b 2 , and c 2 . Secondly, the datasheet 
was a scaffold which made the process of producing propositions reasonable for 
students. Thirdly, Ms N gave students enough time for the process of producing 
propositions. Though sometimes Ms N took over students’ thinking and reasoning, 
the task was mostly implemented as a doing-mathematics task.  

  Fig. 2    Four right-angled triangles in the graph paper       

  Fig. 3    The datasheet       
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    Table 3    The associated factors infl uenced students’ implementing   

 Segments of the lesson  Factors 

 T:  Now there are four such fi gures on the No 2 
worksheet; please calculate the value of a 2 , b 2 , c 2 , 
and ab in each fi gure. Don’t forget to fi ll the value 
in the data table 

 M1 (the teacher scaffold 
students’ thinking and 
reasoning) 

 (Ms N walked around while students were doing the task) 
 T:  Well, when you fi nished the data table, please observe 

the data table and do some comparisons to look for 
some rules. If you fi nd something, write them down 
on the worksheet 

 (Lasted 4 minutes and 38 seconds)  M7 (the teacher gave 
students proper 
exploration time) 

 T:  Ok. Now every four persons as a group to discuss what 
you’ve found. Firstly you should be sure that the 
values are correct. Then you may talk with your 
partners about the rules which you have found 

 (Group discussion lasted 3 minutes and 26 seconds)  M7 (the teacher gave 
students proper 
exploration time) 

 T:  Ok, just now you’ve done calculation. Now let’s see 
what you have found by observation of the data 
table. Who would like to tell us? Yang Ming, 
please 

 M5 (the teacher built 
the task on students’ 
prior work) 

 S1:  a 2  + b 2  = c 2  (Ms N wrote it on the blackboard) 
 T:  a 2  + b 2  = c 2 . Something else? Li Hua? 

 S2:   ab ab( ) =
2

 
  

 T:   ab ab( ) =
2

 
 . Well, sit down please. Anything else? 

 S3:  when a = 1, (ab) 2  = b 2  
 T:  Ok, anything else? 
 T:  No more. Let’s see the outcome here. When 

a = 1, (ab) 2  = b 2 , this is a special outcome. From the 
fi gure, it seemed there is no meaning. Let’s see the 
formula,  ab ab( ) =

2

 
 . In fact, no matter what the 

values of a and b are, it is always right. It seemed 
no relationship with the fi gure which we are 
learning today. And then the formula a 2  + b 2  = c 2 , 
what does a 2  mean? 

 D1 (without explanation 
from the students, the 
teacher took over the 
students’ thinking and 
reasoning) 

 S (choral):  One of right edges’ square 
 T:  a means a right-angled edge, so is b. And a 2  + b 2  means 

the sum of two right-angled edges’ square. How 
about c 2 ? 

 S (choral):  The hypotenuse’s square 
 T:  This is the very topic what we will learn today. In a 

right-angled triangle, the sum of two right-angled 
edges’ square is equal to the hypotenuse’s square 
(while speaking, Ms N wrote it down on the 
blackboard) 
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   Justifying the Proposition 

  How did Ms N set up the task?  When Ms N set up the task of justifying the proposition, 
she clued students “to use the method of calculating area to justify the proposi-
tion” which suggested a pathway to be followed explicitly. So it was a typical 
procedures-with-connection task. 

  How did the students implement the task?  In Table  4 , the factors which infl uenced 
students’ implementation are given.

   As can be seen from Table  4 ’s analysis of the factors that infl uenced students’ 
implementation, the task implemented by students was a procedures-without- 
connection task. Ms N reduced the complexity of the task by telling students to answer 
the question by “using the method of area calculation.” So, the process of justifying 
was declined as a computational task, and the students focused on the correct calcu-
lation of the area of c 2  rather than mathematical understanding of the whole process 
of justifying a proposition.   

   The Discussion in the TRG 

   Do Students Need to Understand the Necessity of Justifying the Proposition? 

    T2:   When students got the proposition,  a 2  + b 2  = c 2  , Ms N directly came to justify the 
proposition. If I were a student, I would have such a question: why does it need 
to be justifi ed? The outcome is absolutely right according to the datasheet.   

  Ms N:   Actually, I felt a little uncomfortable when I transferred to prove the theorem. 
But I didn’t recognize that was a problem at that time.   

  T4:   I think, as a teacher, we should explain it to the students: in mathematics a 
potentially correct proposition should be proved generally. But what I am 
thinking is that, can students understand it?   

  T1:   It is necessary and important to create chances for students to understand 
the necessity of justifying a proposition. As you know, that’s the very 
mathematical ideas in geometrical learning. You may ask students the 
question when they verifi ed the proposition in the datasheet: how do you 
know it is always right in every right-angled triangle? Can you verify it by 
listing all examples of right-angled triangles?     

 By discussion, the members of the TRG began to talk more on how to redesign the 
lesson to guide students’ understanding of the necessity of justifying propositions.  

   Should the Logical Proof Be Done Strictly in Reasoning? 

    T5:   I have a doubt. Why didn’t Ms N take a tolerant way to admit student’s reasoning 
in justifying the proposition? When the four congruent right-angled triangles 
were replenished or partitioned, why the big or small quadrangle was square 
hasn’t been explained .  
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    Table 4    The associated factors infl uenced students’ implementing   

 Segments of the lesson  Factors 

 T:  Now think it over. May we use the method of 
calculating area of c 2  to prove the proposition, 
a 2  + b 2  = c 2 ? That is to say the catty-cornered 
square. Try it on your worksheet 

 D1 (the teacher reduced the 
complexity of the task 
by telling how to do 
the problem) 

 (Students did it for 10 minutes and 30 seconds)  M7 (suffi cient time is allowed 
for exploration)  T:  How did we calculate c 2 ? You may talk 

about it with your partners 
 T:  Well, I noticed someone has fi nished it. 

Who would like to introduce your work? 
Li Yumin! 

 M3 (a capable student modeled 
high-level performance) 

 S1:  Draw a big square in which CB is an edge 
 T:  Does it mean drawing a big square outside the 

right-angled triangle? Well, extend CB, and 
like this (Ms N draw the fi gure). Then how 
did you justify the proposition? (Fig.  4 )  

 D6 (the teacher accepted 
students’ unclear 
explanation) 

 S1:  Because of BC = AZ… 
 T:  Because of BC = AZ, so the four right-angled 

triangles are congruent, right? And then? 
 D2 (the teacher took over 

the student’s reasoning) 
 S1:  The area of quadrangle XYZC = (AC + AZ) 2  
 T:  Using lowercase, it will be (a + b) 2  (Ms N wrote 

it down) 
 S1:  The area of square ABDE = (a + b) 2  − 4 * 1/2ab =

 (a + b) 2  − 2ab = a 2  + b 2  
 T:  And then? 
 S1:  Because of the area of square ABDE = c 2  
 T:  Yes, because the edge of square ABCD is c, 

its area is c 2 . So we get a 2  + b 2  = c 2 . 
Sit down please 

 D2 (the teacher took over the 
student’s reasoning) 

 T:  Just now we justifi ed the proposition by 
replenishing method. And the other method 
of calculating area, partitioning method, 
who would like to use it to justify the 
proposition? Zhang Wei! 

 D1 (the teacher reduced 
the complexity of the task 
by telling how to do 
the problem) 

 S2:  Intercept four congruent triangles in the square 
ABDE, and the area of each is equal to △BCA 

 M3 (a capable student modeled 
high-level performance) 

 T:  Intercept? How to intercept (drew fi gures while 
speaking)? In the square ABDE, we partitioned 
it as four RtΔ and one small square. 
And then? (Fig.  5 )  

 D2 (the teacher took over 
the student’s reasoning) 

 S2:  The area of square ABDE is equal to the area 
of square HIJK plus 4SΔBHA (while S2 was 
speaking, Ms N wrote it down on 
the blackboard) 

 T:  Ok, and then? 
 S2:  It is (b − a) 2  + 4*1/2ab 

(continued)
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Table 4 (continued)

  Fig. 4    Ms N’s fi gure on the 
blackboard       

  Fig. 5    Ms N’s fi gure on the 
blackboard       

 Segments of the lesson  Factors 

 T:  Well, the edge is b, and this edge is a. So the area 
of the small square is (b − a) 2 . And then? 

 D2 (the teacher took over 
the student’s reasoning) 

 S2:  = b 2  − 2ab + a 2  + 2ab = b 2  + a 2 . And because the area 
of square ABDE is c 2 , c 2  = a 2  + b 2  (while S2 was 
speaking, Ms N wrote it down on the 
blackboard) 

 T:  c 2  = a 2  + b 2 , right? Yes, by these two methods, 
may we justify the proposition? 

 S (choral):  Yes 
 T:  Ok, here we got a very important theorem called 

the Pythagoras Theorem 
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  Ms N:   I thought it was too diffi cult for students. That was the reason why in my 
fi rst lesson I didn’t expect my students to prove the proposition. For exam-
ple, when you replenished four congruent right-angled triangles on the 
catty-cornered square, you must explain why the three points are in the 
same line. That’s too diffi cult for my students.   

  T2:   As geometrical reasoning, the key steps should be explained by students.   
  T1:   I don’t think so. When students came to replenish four triangles, it was 

natural for them to “see” a big square. If the teacher stopped here and 
asked them to do explanations, fi rstly, maybe it might block students’ 
wholly reasoning process in justifying the proposition, and secondly there 
is not enough time. The lesson overspent too much time.   

  T2:   If it is too diffi cult for your students, I think at least the teacher should do 
explanations.   

  T1:   Maybe, but for most students, they just began to learn geometrical reason-
ing, and the strict requirement may destroy their interest of further 
learning.     

 This topic was quite controversial and the six teachers in the TRG quarreled 
about it for a long time. At last, considering the limited time in one lesson, most 
teachers consented that the strict reasoning should be required in the future learning. 
For the justifi cation of the proposition, they thought the replenishing method should 
be communicated to in the whole class, because it was more understandable for 
most of the students. The partitioning method, though useful for a handful of stu-
dents, would not be introduced to the whole class, and the teacher should instead 
encourage more students to try it after the lesson.    

    The Third Lesson 

   The Lesson Structure 

     1.    Reviewing the method of area calculation (6 min and 36 s)   
   2.    Producing propositions by fi lling in a table (20 min and 16 s). Ms N asked 

students to fi ll in the values of four right-angled triangles (same as Fig.  2  in 
the 2nd lesson) to a datasheet (Fig.  6 ). When students fi nished the datasheet, 
Ms N asked students to observe the datasheet and put forward some 
propositions.

       3.    Justifying of the proposition by students themselves on the worksheet (10 min 
and 21 s). Because of the hint of calculating a catty-cornered square on graph 
paper and Ms N’s emphasis on the replenishing method, even with the blackout 
of the graph paper (Fig.  7 ), the students found the way to justify c 2  = (a + b) 2  −4 × 
1/2ab = (a + b) 2  −2ab = a 2  + b 2 .

       4.    Doing jigsaw games to verify the Pythagoras Theorem visually (10 min and 49 s)   
   5.    Summarizing what was learned in this lesson briefl y (55 s)      
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   The Two Key Tasks 

   Producing the Proposition 

  How did Ms N set up the task?  Ms N fi rstly drew the squares of the three edges 
of a right-angled triangle on the blackboard and gave some explanations on the 
geometrical meaning of a 2 , b 2 , and c 2 . Then, she asked students to calculate the valuesv 
of a 2 , b 2 , 2ab, and c 2  and fi ll them into the datasheet. Later, she asked students to 
observe the datasheet and look for rules that might be there. Judging from the Task 
Analysis Guide, the task needed students’ complex and non-algorithmic thinking, 
though the datasheet was a scaffold. This task needed students to observe the datasheet 
and to understand the relationship between several algebraic values. Ms N set up a 
doing-mathematics task. 

  How did the students implement the task?  In Table  5 , the factors which infl u-
enced students’ implementation are coded.

   From the process of the students’ production of propositions, students were 
required to access relevant knowledge and experiences and considerable cognitive 
effort to support or disprove what they have found. It was implemented by students 
as a typical doing-mathematics task.  

  Fig. 6    The datasheet       

  Fig. 7    Blackout of the graph paper       
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   Justifying the Proposition 

  How did Ms N set up the task?  When Ms N set up the task of justifying the proposi-
tion, like in the second lesson, she clued students to “think of the method to calcu-
late the area of catty-cornered square,” which suggested a pathway to follow 
explicitly. So it was a typical procedures-with-connection task. 

  How did the students implement the task?  In Table  6 , the factors which infl u-
enced students’ implementation are coded.

   From the process of implementing the task by students in Table  6 , Ms N kept 
questioning and building connections between calculation and fi gures. Though it 
was not justifi ed very strictly, students did get a whole understanding of the thinking 
way to justify the proposition. It was kept as a procedures-with-connection task.   

   Table 5    The associated factors infl uenced students’ implementing   

 Segments of the lesson  Factors 

 T:  Ok, no problem with the data? Then carefully observe the data 
in the table please, and think about what inference we might 
get from the data. Well, see it. If you fi nd one, don’t stop 
there and try to fi nd more 

 M1 (scaffolding 
students’ 
thinking and 
reasoning) 

 (Students observed and discussed the datasheet for about 1 and a half 
minutes) 

 M7 (appropriate 
exploration 
time) 

 T:  Then please tell me what inference you have found? Li Dan! 
 S1:  In my group, we found two conclusions: 2ab + 1 = c 2  and 

a 2  + b 2  = c 2  (Fig.  8 )  
 T:  Oh? (S2 raised his hand) Well, Liu Yuyin, what do you think?  M4 (pressing 

explanation by 
questioning) 

 S2:  Ms N, I just drew a right-angled triangle, a = 2, b = 4. 
2ab = 16 and c 2  = 20, so c 2  ≠ 2ab + 1 

 T:  Pretty good! Liu Yuyin disproved it by a special example. It 
seemed that was very persuasive. So the proposition 
c 2  = 2ab + 1 doesn’t come into existence. Oh, do you want 
to speak something? 

 M4 (pressing for 
meaning by 
comments and 
feedback) 

 S1:  We just found when a − b = 1, 2ab + 1 = c 2  could come into 
existence 

 T:  Sit down please. What you thought is reasonable and it seemed 
c 2  = 2ab + 1 was a conclusion with some conditions. Well, 
how about c 2  = a 2  + b 2 ? You, please 

 M4 (pressing for 
meaning by 
comments and 
feedback)  S3:  It is always right judging by all the examples in the worksheet. 

But I am thinking, if I give more examples… Even if one 
hundred of examples are right, but the one hundred and fi rst 
example does not match it, how can I do? So if I want to be 
sure of its correctness, I must know that all of its examples 
are right. If there is only one example which doesn’t match 
it, it would be still a conclusion with some conditions 

 T:  Sit down please. If we want to know if it is a theorem, judging 
by several examples is not enough. Then what we 
should do? 

 M4 (pressing 
explanation by 
questioning) 

 S (choral):  Justifi cation 
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  Fig. 8    One of the datasheets       

    Table 6    The associated factors infl uenced students’ implementing   

 Segments of the lesson  Factors 

 T:  Think of the method to calculate the area of the catty-cornered 
square to justify a 2  + b 2  = c 2 . What is c 2  equal to? 

 D1 (telling how to do 
the problem) 

 (Students did it independently for 4 minutes and 50 seconds)  M7 (appropriate 
exploration time) 

 T:  Well, let me ask somebody to tell us. Zhang Wen, try it  M3 (a capable student 
modeled high-level 
performance) 

 S1:  Replenish three right-angled triangles around the 
catty-cornered square 

 T:  Replenish three right-angled triangles around the catty-cornered 
square (Ms N drew them on the blackboard). Next step? 
(Fig.  9 )  

 D6 (the teacher 
accepted students’ 
unclear explanation) 

 S1:  The area of the biggest square is (a + b) 2  
 T:  What does c 2  mean? … What is c 2  equal to?  M6 (keeping 

questioning the 
meaning) and M4 
(building 
connection 
between fi gures 
and formula) 

 S1:  So the biggest square subtracts four right-angled triangles. 
It is (a + b) 2  − 4 × 1/2ab 

 T:  Subtract 4 × 1/2ab and the area of each small right-angled triangle 
is 1/2ab. Then we have got c 2 ; how do we justify the proposition? 

 S1:  Calculate out the square 
 T:  Well, let’s calculate it 
 S1:  It is equal to a 2  + 2ab + b 2  − 2ab = a 2  + b 2  
 (S1 said it and Ms N wrote it on the blackboard) 
 T:  We get c 2  = a 2  + b 2 ? May you explain the thinking way to justify it?  M4 (building 

connection 
between 
calculation and 
fi gures) 

 S:  Yes. c 2  is the catty-cornered triangle and it is equal to that, the 
biggest square subtract four congruent right-angled triangles 

 T:  Good, sit down please. From the process of justifi cation, we got the 
conclusion: the sum of two right-angled edges’ square is equal 
to the hypotenuse’s square. Now we verifi ed its correctness 
and it is a true proposition, called Pythagoras Theorem 

   The Discussion in the TRG 

   How Do the Teacher Deal with Students’ Other Propositions? 

    T5:   When I observed the lesson in the classroom, I noticed that several 
students produced other propositions in their worksheet. Like these: 
c   2    = (a + b)   2    − 2ab, c   2    = (a − b)   2    + 2ab and a + b + a   2    = b   2   . Though the fi rst 
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two could be simplifi ed as  a 2  + b 2  = c 2  , the last one wasn’t understandable. 
So I think Ms N should give such students chances to speak them out .  

  T2:   Yes, I noticed them, too. The last one was created by one set of special 
numbers. I suggest that Ms N should collect all the students’ worksheets 
to analyze students’ thinking.   

  T1:   After Ms N dealt with 2ab + 1 = c   2   , she should have asked such a question: 
anybody else has other fi ndings? Such question may inspire students’ more 
thoughts.   

  Ms N:   Yes, I hurried up to move the lesson ahead. The second lesson overtimed 
too much, so I felt that I did not have enough time.     

 These teaching suggestions came from the teachers’ classroom observations. 
Ms N received some useful information which she hadn’t noticed during the whole 
class teaching process.  

   Is the Jigsaw Game Necessary for Students? 

 Though there was no possibility to have the fourth lesson, another new topic for the 
redesign of the lesson was brought up.

   T4:   For the jigsaw game, I don’t understand its value in the lesson. The theo-
rem has been justifi ed by logical reasoning. Is it necessary for students to 
manipulate it? To verify the theorem visually?  (Fig.  10 )

     Ms N:   I had the same doubt from the second lesson. Is the jigsaw game counted 
as another kind of justifi cation? Students have proved the theorem before 
the game, so it is at most as a verifying activity. If I had the fourth lesson, 
I would like use some problems to apply the theorem.   

  T2:   The theorem has been justifi ed. So the jigsaw game could be seen as an 
applying problem. Students needed to change places of the four right-
angled triangles and presented that the area of the catty-cornered square 
was the sum of two small squares. I think it was an applying problem.     

  Fig. 9    Ms N’s fi gure on the 
blackboard       
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 In fact, the discussion on this topic refl ected teachers’ usual way of thinking: in 
the limited lesson time, what was the important part to be arranged in the lesson?     

    Summary and Discussion 

    What Was Changed? 

 If each lesson was divided into five common parts, reviewing the method of 
area calculation (segment A), producing propositions (segment B), justifying the 
proposition (segment C), applying the theorem/doing jigsaw games (segment D), 
and summarizing the learning (segment E), then the three lessons’ segments could 
be compared. Figure  11  shows what the most important part of the lesson was, judg-
ing by the percentage of teaching time spent on each segment.

   Ms N’s three lesson structures (Fig.  11 ) refl ected the change in her teaching 
behaviors. In the fi rst lesson, applying the theorem was emphasized; in the second 
lesson, justifying the proposition; and in the third lesson, producing propositions. 

 The three lesson plans were also checked, and the change was listed in Table  7 . 
From Ms N’s lesson plans done by herself, what the teacher saw as important in the 
lesson might be refl ected, too.

  Fig. 10    Jigsaw game       

  Fig. 11    Time percentage of segments in each lesson       
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   In the three lessons, two key topics were focused on and analyzed in this study: 
how the task was set up by the teacher and how it was implemented by students. 
The maintenance or decline of one high cognitive demand-type task per lesson is 
summarized in Tables  8  and  9 .

    Comparing the three lessons (Table  8 ), the task of producing propositions which 
was set up by the teacher and implemented by students declined to a low cognitive 
level in the 1st lesson, but maintained a high cognitive level in the 2nd and the 3rd 
lessons. Also, the maintenance factors increased and decline factors decreased grad-
ually from the 1st lesson to the 3rd lesson. 

 As can be seen from Table  9 , the tasks of justifying the proposition in these three 
lessons were set up by the teacher and implemented by students differently. In the 
1st lesson, the task set up by the teacher was not a high cognitive one. In the 2nd 
lesson, the task set up by the teacher was a high cognitive one, but declined to 
become low cognitive. In the 3rd lesson, the task maintained high cognitive 
demands. Also, the maintenance factors increased and decline factors decreased 
gradually from the 2nd lesson to the 3rd lesson. 

 The change that took place in the three lessons might be contributed to the TRG’s 
activities, which infl uenced Ms N’s teaching behavior. The main topics in the three 
TRG’s activities are summarized in Table  10 .

   Looking back on the three post-lesson discussions, which were often started by 
the problems in former lessons and ended with suggestions for the next lesson, some 

   Table 7    The tasks set up by Ms N in each lesson plan   

 Tasks set up by Ms N 
in each lesson plan  Features 

 The 1st lesson  To justify the theorem  Emphasis on the content of the theorem 
and its application  To apply it in exercises 

 The 2nd lesson  To produce propositions  Emphasis on the process of producing 
propositions and the method of justifying it  To justify it and become 

a theorem 
 The 3rd lesson  To produce propositions  Emphasis on the whole process of producing 

propositions, its justifying way, 
and understand it visually 

 To understand the way of 
justifying it 

 To verify the theorem 
visually by jigsaw games 

    Table 8    Producing propositions in three lessons   

 As set up by teacher 
 As implemented 
by students 

 Maintenance 
or decline 

 Factors associated with 
maintenance or decline 

 The 1st 
lesson 

 Doing- mathematics 
task 

 Procedures-without- 
connection task 

 Decline  7 decline factors (4 D1, 
D2, D3, D5) 

 The 2nd 
lesson 

 Doing- mathematics 
task 

 Doing-mathematics 
task 

 Maintenance  4 maintenance factors 
(M1, M5, 2 M7) and 
1 decline factor (D1) 

 The 3rd 
lesson 

 Doing- mathematics 
task 

 Doing-mathematics 
task 

 Maintenance  6 maintenance factors 
(M1, 4 M4, M7) 
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common features were noticed: the discussions were all teaching aim centered, 
focusing on key tasks, and fi nally caring of students’ actual learning in lessons.  

    How Lessons Were Improved? 

   Learn from Other Teachers and Himself/Herself in the TRG 

 Because of the school-based teaching research system, it is very common for Chinese 
teachers to learn others’ experience in the TRG’s activities, which is called peer 
coaching. The value of peer coaching for teachers’ professional development has 
been pointed out by various scholars (Anderson and Pellicer  2001 ; Lin et al.  1999 ). 

  After the study of teaching, especially the discussion, I think the way of teaching 
is clearer than that in the textbooks. I have known it well. Where a question should 
be given to students and where an emphasis is arranged, and the teaching details 
guided by master teacher in discussion, are more useful compared to my own lesson 
design (from Ms N’s interview).  

    Table 9    Justifying the proposition in three lessons   

 As set up 
by teacher 

 As implemented 
by students 

 Maintenance 
or decline 

 Factors associated 
with maintenance 
or decline 

 The 1st 
lesson 

 Procedures-without- 
connection task 

 (No possibility to be 
implemented in a 
high cognitive level) 

 –  – 

 The 2nd 
lesson 

 Procedures-with- 
connection task 

 Procedures-without- 
connection task 

 Decline  3 maintenance 
factors (2 M3, 
M7) and 7 
decline factors 
(2 D1, 4 D2, D6) 

 The 3rd 
lesson 

 Procedures-with- 
connection task 

 Procedures-with- 
connection task 

 Maintenance  5 maintenance 
factors (M3, 
2 M4, M6, M7) 
and 2 decline 
factors (D1, D6) 

   Table 10    Discussion topics in the TRG   

 Main topics in the TRG discussion  Features 

 The 1st lesson  What should be taught  Teaching aim centered 
 Reasonable process of producing propositions  Focusing on key tasks 
 Students’ understanding of thinking a way 

of justifi cation 
 Caring of students’ 

actual learning 
 The 2nd lesson  Students’ understanding of the necessity 

in justifying 
 Strictly logical proof in reasoning 

 The 3rd lesson  Caring of students’ other propositions 
 Jigsaw game’s necessity for manipulation 
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 In Chinese school-based teaching research activities, teachers usually experience 
his/her own routine lesson and then the improved lesson, which integrates sugges-
tions from the TRG’s activity. When the research lesson teacher had a chance to 
teach three lessons repeatedly in parallel classrooms, he/she actually had a good 
opportunity to compare his/her own three lessons, which allowed him/her to learn 
from himself/herself. 

  After the second lesson, I thought it over a lot. Though I thought a lot about the 
design before the lesson, I cannot help thinking it again and again. If I restarted 
the lesson, I would rethink the conjunction among the four worksheets, the language 
to express every question, and the summarization after each activity (From Ms N’s 
interview).  

   Construct Profound Understanding of Mathematics in the TRG 

 In Ma’s study ( 1999 ), Chinese teachers didn’t have high-level educational certifi cates, 
but they had a more profound understanding of mathematics than their US counter-
parts. In fact, the TRG members were teachers who taught the same subject and usu-
ally always taught that subject in 2–3 parallel classes in schools. So, the discussion in 
the TRG often related to their opinions on mathematics. When they talked about what 
should be taught and what should be learned, these kinds of questions were closely 
connected with their understanding of mathematics, and these teachers had con-
structed their understanding of mathematics gradually over a long teaching career. 

  A big idea about mathematics gave me deep impression. Let the students experi-
ence the process of justifi cation and disproval. In my usual lesson I never thought 
about it. The mathematics examples, exercises, how to deal with them had been 
thought a lot before. From the discussion this time, I knew how to have such kind of 
lessons (From Ms N’s interview).   

   Learn Teaching Theory in Actions 

 Since Chinese curriculum reform was carried out in the 1990s, teachers have faced 
more and more challenges from new ideas and teaching theories, and they have been 
required to attend many training courses. In these training courses, teachers learned 
new information and ideas from experts’ lectures, but teaching theory is hard to 
practice in classrooms. Rather than that kind of “learning in listening,” the TRG’s 
activity was “learning in doing,” in which teachers got grassroots professional 
development in their teaching practice (Paine and Fang  2006 ). In the three post- lesson 
discussions, the teachers tried to use graph paper as a scaffold to help students 
experience doing mathematics: from producing propositions to disproving or 
justifying them. 

  In my fi rst lesson, I put emphasis on applying theorem to answer questions for 
I thought the theorem was too diffi cult to be justifi ed. Actually, after I introduced the 
justifi cation in the textbook, I myself felt guilty. Is that counted as a justifi cation 
teaching? Now I knew the Scaffold Theory and understand how to use it in the teaching. 
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I never thought of graph paper and never expected it could be used in teaching a 
theorem (From Ms N’s interview).  

 Though this was a single case from Shanghai, the three lessons’ improving process 
was very representative, because the TRG’s network generally exists on mainland 
China. Of course, not every lesson developed in a TRG can get honors in a nationwide 
competition of lessons. Actually, when a teacher’s lesson wins a prize in China, it 
has often pooled a lot of collective wisdom, and all the members of the TRG see it 
as a boost for their team’s reputation. This paper simply shows how a lesson was 
transformed, step by step, in the Shanghai case. In many Chinese teachers’ minds, a 
good lesson is always a process and never an outcome.        
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    Abstract     In this study, we focused on some of the teaching contests and features of 
mathematics classroom instruction excellence identifi ed through teaching contests 
in the Chinese mainland. By taking a case study approach, we examined a prize-
winning exemplary lesson that was awarded the top prize in a teaching contest at 
both the district and the city levels. The analyses of the exemplary lesson revealed 
important features of the lesson’s content treatment, students’ engagement, and the 
use of multiple methods to facilitate students’ learning. These features are consistent 
with what the contest evaluation committees valued and what seven other mathe-
matics expert teachers focused on in their comments. The Chinese teaching culture 
in identifying and promoting classroom instruction excellence through teaching 
contests is then discussed.  

  Keywords     Chinese classroom   •   Classroom instruction analysis   •   Exemplary lesson   
•   Instructional excellence   •   Mathematics instruction   •   Teaching contest  

       Introduction 

 It is commonly acknowledged that classroom teaching is key to the improvement of 
students’ mathematics learning. Efforts to improve the quality of classroom instruc-
tion have led to the formation of diverse approaches and activities to improve the 
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quality of teachers in terms of their knowledge, skills, and performance (e.g., Li and 
Even  2011 ). Cross-nationally, such differences in approaches and activities can be 
dramatic, especially when teaching is viewed differently across cultural contexts 
(e.g., Li and Even  2011 ; Li and Li  2009 ). Li and Li specifi ed such differences between 
the East and West in viewing and improving teaching as a professional practice. In the 
West, teaching is seen more as a professional activity that is unique to each classroom, 
and few teachers would sit in other’s classrooms to observe and then discuss their class-
room instruction. In contrast, China has a much different culture of teaching, where 
mathematics teaching is taken as a professional activity that is open to public scrutiny 
and evaluation (Li et al.  2011 ). It is a common practice for Chinese mathematics 
teachers not only to sit in others’ classrooms and discuss teaching with fellow teachers 
but also to develop and polish lesson instruction together. Such cross- cultural differ-
ences suggest a special cultural context in China that promotes the development of 
different professional activities for the improvement of teachers and their teaching. 

 Mathematics classroom teaching in China has been a topic of interest to mathe-
matics educators and researchers in many education systems over the years (Li and 
Huang  2013 ). Cross-cultural differences and similarities in viewing what contrib-
utes to high-quality classroom instruction call for a better understanding of Chinese 
classroom instruction that goes beyond the surface features. Because teaching is 
seen as a professional activity that is open to public scrutiny and evaluation in 
China, it becomes possible to learn what has been evaluated as exemplary mathe-
matics classroom instruction through teaching contests, a unique professional 
activity that also helps promote teacher professional development in China. 

 In this chapter, we will thus focus on teaching contests, a popular yet singular 
professional activity that is often organized at different levels by the Chinese educa-
tion administration and various professional organizations. Through teaching con-
tests, excellent mathematics classroom instruction is identifi ed and awarded, and 
participating teachers are given great opportunities to develop and improve their 
classroom teaching. Thus, teaching contests serve as a platform to promote mathe-
matics classroom instruction excellence in China. In particular, we aim to present 
and discuss the teaching contest as an organized professional activity in China, the 
features of mathematics classroom teaching excellence identifi ed and valued 
through the teaching contest, and the cultural values embedded in judging and 
 promoting mathematics classroom instruction excellence in China.  

    Teaching Contest as a Professional Activity in China 

    General Description of Teaching Contest 

 Teaching contests are often organized by the education administration with different 
participation scopes in China. It can be a nationwide, province-wide, citywide, 
district- wide, or school-wide contest. A high-level teaching contest is often organized 
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with contestants who were winners of the low-level contests. For example, the 
secondary mathematics education committee of the China Education Academy 
organizes one contest every 2 years on excellent mathematics classroom instruction 
(now called the national exemplary lesson demonstration). Participation in this 
nationwide contest (or exemplary lesson demonstration) requires one to fi rst partici-
pate in a sequence of bottom-up contests that are organized at different administration 
levels. In general, the sequence of contests starts at the district level, which will 
select winning teachers to participate in the contest organized at the city or county 
level. Participants who are eligible to join the city or county level contest will all get 
an award, but the awards differ based on their performance in the contest at this 
level. The same process will be repeated for selecting contestants to join the contests 
organized at the provincial and then national levels. 

 In China, the teaching contest is a well-organized formal professional activity. 
It is organized and carried out with pre-specifi ed procedures. The following is a 
sample procedure for organizing this type of teaching contest in a large southern 
city of China:

    1.    Form an organizing committee that will decide participants’ eligibility, con-
test content and scope, organization format, general criteria, and ratio for 
prize winning.   

   2.    Prepare the contest notice, then put an offi cial stamp on the fi nalized notice, and 
distribute the notice to the districts and schools under direct administration of the 
city education bureau. 1    

   3.    Based on the offi cial notice, every district will organize its own initial contest. 
Then the districts will submit the names of their contest winners together with 
their contest results, in a descending order of quality evaluated, to the city orga-
nizing committee for participation in the city-level contest.   

   4.    For the schools that are under direct administration of the city’s education bureau, 
participating contestants can join the city-level contest directly.   

   5.    Within a predetermined period of time, the city organization committee will 
organize the city-level contest with contestants selected from its districts or 
schools. It is often organized into several subgroups. When the city-level con-
test is about halfway done, the evaluation committees for contest subgroups 
will exchange one or two members for the rest of the contest in each subgroup. 
The membership of the evaluation committee consists of three groups of pro-
fessionals: mathematics instruction coordinators of the city education bureau, 
members of the standing committee of the city’s school mathematics education 
association, and key mathematics teachers of the city’s central groups for dif-
ferent grade levels.   

   6.    All members of the evaluation committee then meet to exchange and discuss 
contest information and results. A consensus will be reached about contestants’ 
performance and evaluation.   

1   In China, most schools are public schools. A few private schools have been established over the 
past years that are not administrated by the government. 
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   7.    Based on what is stated in the offi cial notice and contest results, the organizing 
committee will decide the awards and then organize a ceremony to present the 
awards to contest winners.     

 Although there are some variations across different teaching contests in terms of 
contest focus and organization specifi cs, these contests are alike in that they view 
teaching as a professional activity that is open to public examination and evaluation. 
The detailed organization procedure, as presented above, reveals not only the formality 
of the teaching contests established by Chinese education administration but also 
the broad support and participation from teachers themselves. 

 Current teaching contests are often organized in different formats, including 
the traditional classroom instruction, as well as instructional design and lesson 
explaining. While instructional design is provided in a written form, the lesson-
explaining contest is commonly carried out as an on-site oral presentation. 
Initiated about 20 years ago, lesson explaining was formally developed out of 
teacher group analysis of textbooks in China (Peng  2007 ). It has since devel-
oped into a popular professional activity that helps Chinese teachers to explain 
important features of their classroom instruction and their thinking, which may 
otherwise be unclear to others. Lesson explaining commonly contains a teach-
er’s analysis of the textbook content, instructional objectives, consideration and 
design of teaching methods and procedure, and the teacher’s consideration of 
students and their learning. Because lesson explaining promotes teacher refl ec-
tive practice and discussion, it is used as an important activity in many schools 
in China to help improve teachers’ mathematics knowledge and classroom 
instruction (Peng  2007 ). 

 Teaching contests can also be organized in conjunction with other professional 
contests for selecting key teachers. The selected key teachers are often required to 
provide instructional training to other teachers in the subject content area. For 
example, in a large southern city of China, a teaching contest is organized once 
every 3 years who’s only participants are young mathematics teachers who are 
under the age of 40. The contest focuses on teachers’ classroom teaching skills and 
is organized as part of a process to identify and select the ten best middle school 
mathematics teachers and ten best high school mathematics teachers in that city. In 
particular, contestants are required to be winners of at least the second-class awards 
in two other relevant contests: the mathematics teachers’ problem solving contest 
and the mathematics teachers’ education articles evaluation. In general, there are 
about 20 contestants for each level. The teaching contest will then generate the top 
ten winners for each school level. There are also some other contests that are orga-
nized with no regular schedule. For example, this same city once organized a com-
petition of classroom instruction and lesson refl ection under the new mathematics 
curriculum. This competition was also restricted to the winners selected or recom-
mended from the district level. 

 In the following section, we will further discuss how the participating teachers’ 
instructional competence is typically examined in the teaching contests in China.  

Y. Li and J. Li



387

    Examining Videotaped Mathematics Classroom Instruction 
and Teaching Contests as Cultural Activities: A Case Study 

 Because the video captures well what goes on in classrooms, videotaped  lessons 
have been widely used in China since the 1980s. At the beginning, video was mainly 
used to record master teachers’ lesson instruction. Now, it is widely used in teacher 
education in order to demonstrate and discuss lesson instruction. In fact, videotaped 
lessons have also been used in teaching contests in China, especially in selecting 
good teachers at the district or city/county level. This method is different from the 
traditional, yet still commonly used approach in which contestants are asked to 
teach an unknown group of students with his/her planned lesson. Being aware of the 
possible limitations that a videotaped lesson instruction may carry, the teaching 
contest organizers often add additional requirements as parts of the contest. 
Depending on the theme of a contest, contestants may also be required to take part 
in mathematical problem solving contest, lesson instruction design contest, and/or 
lesson-explaining contest. Thus, results from other parts of the contest can provide 
a rich picture of a contestant’s competence in focus. 

 In this study, we focused on a prize-winning videotaped lesson as an exemplary 
lesson from Mainland China. Through taking the case study approach, we aimed to 
examine the exemplary lesson that was identifi ed and selected through several 
teaching contests. Moreover, it is also necessary for this study to go beyond the 
analysis of the videotaped exemplary mathematics lesson alone. In particular, by 
taking mathematics classroom teaching and teaching contests as cultural activities, 
we intended to collect rich data around the videotaped exemplary mathematics 
lesson and the teaching contest. Relevant documents were thus collected, and inter-
views with the prize-winning teacher and contest organizers were carried out to 
examine the process of the prize-winning lesson development and the contest evalu-
ation. Finally, the prize-winning videotaped lesson was also shown to some other 
mathematics education experts and teachers in China to get their evaluation and 
views about excellence in mathematics classroom instruction. 

 To develop a better understanding of the exemplary classroom instruction that 
was identifi ed and selected through the process of teaching contests, we will use 
both holistic and analytic approaches to describe and analyze the exemplary lesson 
in focus. While the holistic approach is used to depict a coherent picture of what 
was happening in the exemplary mathematics lesson, the analytic approach aims to 
provide a closer look at several different aspects of the lesson. As classroom instruc-
tion is a process that involves many different agents, cultural artifacts, and their 
interactions in the classroom setting, we thus focus on the aspects of content, student, 
and instruction. In particular, they include:

    1.    Content aspects: tasks used and connections made   
   2.    Student aspects: students motivated to learn and students encouraged to reason, 

conjecture, and prove mathematical ideas carefully in a community of learners 
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and to conceptualize and solve mathematical problems through fl exible use of 
various mathematical ideas and their connections   

   3.    Instruction aspects: content introduction and activity arrangement, the use of 
 different materials and class time and the teacher’s instructional skills and his/
her interactions with students     

 The specifi cations of these aspects also provide a framework for examining the 
interviews with the teacher, contest organizers, and other mathematics education 
experts and teachers in China.   

    Research Questions 

 In this study, we will examine features of mathematics classroom teaching excel-
lence that are valued and were identifi ed through the teaching contest and the 
cultural values embedded in judging and promoting such excellence in mathematics 
classroom instruction in China. In particular, we plan to take a case study approach 
to focus on a prize-winning mathematics lesson as an exemplary lesson. Through 
collecting data around the lesson case, this study is designed to address the following 
three questions:

    1.    What are the characteristics of the exemplary mathematics classroom instruction 
that was awarded through teaching contests in China?   

   2.    What features in the exemplary lesson were valued and focused in the teaching 
contests in China?   

   3.    What features in the exemplary lesson were identifi ed and valued by other 
mathematics teachers and educators in China?      

    Methodology 

    Participants and Context of the Case 

 This study focused on a prize-winning exemplary lesson taught by a Chinese middle 
school mathematics teacher, Mr. Zhang. 2  We chose this lesson partly due to the 
convenience of obtaining this prize-winning videotaped lesson and the collabora-
tions of the teacher and teaching contest organizers. 

 Like many other mathematics teachers in China, Mr. Zhang obtained a bache-
lor’s degree in mathematics from a teacher preparation program at a normal uni-
versity. He began to teach at a middle school in a large city of southern China 
upon his completion of the 4-year teacher preparation program study. According 

2   All the names used here or in the other places of this article are pseudonyms. 
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to Mr. Zhang, he also obtained the second-class instructor certifi cate of International 
Mathematical Olympiad issued in China right before he began to teach middle 
school. This suggests that Mr. Zhang had strong mathematical content preparation 
and was good at solving mathematics problems. At the time when he developed 
and taught this prize-winning mathematics lesson, Mr. Zhang was a junior teacher 
who had less than 3 years’ teaching experience. Mr. Zhang, like other teachers in 
the school, was also a member of two different teaching research organizations in 
that school: (1)  the teaching research group  that is often a content subject-based 
organization contrived in a school and (2)  the lesson preparation group  for teachers 
teaching at the same grade level as a sub-organization of the teaching research 
group (e.g., Ma  1999 ; Wang and Paine  2003 ; Yang and Ricks  2013 ). According to 
Mr. Zhang, he received a lot of help and suggestions from his colleagues, especially 
from his mentor: who happened to be the head of the teaching research group that 
he belonged to. 

 Mr. Zhang participated in two teaching contests, one at the district level and the 
other at the city level. The school district that Mr. Zhang belonged to was a large 
school district, with 56 middle schools. The contest was organized as a two-level 
contest. The fi rst level was carried out as an initial contest within the sub-districts of 
middle schools that were grouped in terms of geographical areas. In principle, all 
teachers were eligible to participate in the initial contest. The No. 1 winner at the 
sub-district level would be eligible to join the fi nal contest at the whole district level. 
For the fi nal contest, the contestant did not need to teach a lesson again, but simply 
let the district’s evaluation committee watch the videotaped lesson made for the 
initial contest. Moreover, the fi nal contest required the contestants to participate in 
the lesson-explaining contest in front of the district’s evaluation committee and the 
instructional design contest. The contestants’ performances were then evaluated in 
terms of these three different contests and summarized for an overall judgment. The 
contestants’ performance summaries resulted in awards for three classes. There 
were two winners awarded for the fi rst class and four winners awarded for each of 
the second and the third classes. Mr. Zhang won the fi rst-class award at the whole 
district level and was actually the winner with the highest overall score in three 
contests of classroom teaching, lesson explaining, and instructional design. 

 The contests organized at the city level contained a “lesson-explaining contest” 
and a “videotaped lesson instruction contest under the new curriculum.” The contest 
results from different school districts formed the base for the competition at the city 
level. With his contest result at the district level, Mr. Zhang joined these two 
contests at the city level. Similar to the fi nal contest organized at the district level, 
the city-level contest also resulted in three classes of awards, with a ratio of awardees 
of 2:3:5. Mr. Zhang won a fi rst-class award for the videotaped lesson instruction, as 
well as a second-class award for his lesson explaining at the city level. 

 Based on Mr. Zhang’s own explanation, the process of generating the lesson was 
a process of continuous refi nement that involved many others’ help. Mr. Zhang 
developed the fi rst version of the lesson plan and used it in teaching one of his two 
classes. As Mr. Zhang indicated, he was not happy with the instructional effects. 
After consulting with other members of his lesson preparation group, especially his 
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mentor, he revised the lesson plan substantially and taught it again with another 
class that was not his own. He was almost satisfi ed the second time but felt that 
some minor changes were needed. Thus, he further revised the lesson plan through 
the next three versions and eventually had the fi fth version as the fi nal one. Based 
on the last version of the lesson plan, Mr. Zhang then taught the lesson with his one 
remaining class and also videotaped it for the teaching contest.  

    Types of Data Collected 

 The prize-winning lesson was a public lesson that was made available through 
the teaching contest organizers at the city level. After obtaining consent from all 
participants (including Mr. Zhang, two contest organizers at the district and the 
city levels, and other seven mathematics educators), further data collection was 
carried out to get relevant information concerning the lesson and teaching 
contests. All participants were informed that the data collection was for research 
purposes only. Because all of the participants were spread out across the country, 
it was almost impossible to collect all the data through face-to-face interviews. 
Moreover, we tended to provide participants ample time to think about relevant 
questions. In this way, the participants were able to write up detailed responses 
when they had free time. Thus, the method of mail surveys (Berends  2006 ) was 
used to collect relevant data in this study. When clarifi cations became necessary, 
we contacted the teacher and contest organizers again and collected all the informa-
tion that was needed for the study. In particular, the following three types of data 
were collected in this study:

    1.    The mail survey from the teacher who designed and taught the prize-winning 
lesson in focus. A questionnaire was designed to collect relevant information 
about the prize-winning lesson directly from the teacher himself. In particular, 
we obtained the background information about the teacher himself, his thinking 
when he selected and structured the content topic for the lesson, the process of 
developing the prize-winning lesson, his lesson refl ections, and his views about 
the value of teaching contests.   

   2.    The mail surveys of the two contests’ organizers who also served on evaluation 
committees. A questionnaire was also designed to collect information about 
the teaching contests at both the district and the city levels. The information 
collected included the procedure of organizing the teaching contest, any 
requirements for teachers’ participation, evaluation components and criteria 
used in teaching contests, committee’s evaluation of the prize-winning lesson 
in focus, and their views about the value of teaching contest in promoting 
classroom instruction excellence.   

   3.    The mail survey of seven mathematics educators and expert teachers to obtain 
their views of the prize-winning lesson in focus. The videotaped lesson was pro-
vided to seven other mathematics educators and expert teachers in different cities 
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who were not part of the teaching contests. Without telling them that the videotaped 
lesson was a prize-winning lesson, these mathematics educators and teachers 
were asked to watch the videotaped lesson and then share their views about the 
lesson by fi lling out a specifi cally designed questionnaire. In particular, these 
mathematics educators and teachers were asked to comment on the lesson in 
terms of its strengths, weaknesses, and possible changes for improvement, if any. 
We intended to use open-ended questions in the questionnaire so that the respon-
dents could comment on the lesson based on what they value. In this way, the 
respondents’ comments help reveal not only their lesson evaluations but also the 
focal aspects in their evaluation. Moreover, the respondents were also asked to 
provide an overall evaluation score for the lesson (with 1 as the lowest score and 
5 as the highest score) and explain their rationale.    

      Method of Data Analysis 

 All the data for this study was analyzed in the original language of Chinese. 
Selected data were translated to English to provide evidence in the later sections 
of this chapter. In particular, the lesson is transcribed verbatim, along with some 
contextual information and time recording for all the conversations that happened 
in the class. To address our fi rst research question directly, we analyzed Mr. Zhang’s 
prize- winning lesson both holistically and analytically (see, Stigler et al.  1996 ). 
While the holistic approach was used to provide an overview of what was happen-
ing in the exemplary mathematics lesson (see section “ Overview of the exemplary 
lesson ”), the analytic approach aimed to provide a closer look at several different 
aspects. Because the classroom instruction is a complex process that involves dif-
ferent agents, cultural artifacts, and their interactions in the classroom setting, we 
took a similar lens as the 1999 TIMSS video study to focus on the aspects of 
content, students, and instruction (Hiebert et al.  2003 ). In particular, they include 
(1) content aspects, the lesson’s content treatment, tasks used, and connections 
made; (2) student aspects, students’ learning and engagement in lesson activity; 
and (3) instruction aspects, the teacher’s use of instructional methods and dis-
course in content introduction and activity arrangement, lesson coherence, and 
activity variations. The mail survey with the teacher was examined to supplement 
and triangulate the lesson analysis. 

 The mail surveys with the teaching contest organizers and seven other math-
ematics teachers were analyzed to highlight what features were identifi ed and 
valued in the exemplary lesson. While the survey data were examined holisti-
cally, particular attention was also given to these three aspects: the mathematics 
content, students’ learning and participation, and the teacher’s classroom instruc-
tion. Through this analysis, we attempted to identify cultural values that were 
embodied in the contest evaluations and other mathematics teachers’ views. 
Finally, the teacher and contest organizers’ comments about teaching contest and 
its value were also discussed. 
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 The following three sections are organized in an order corresponding to the 
three research questions. At fi rst, we provide an overview of Mr. Zhang’s prize-
winning lesson and analyze its main features. Then, we discuss how the lesson 
was evaluated in the teaching contests. In the second section, we analyze and 
report the survey data collected from seven other mathematics educators and 
expert teachers to further our understanding of any possible cultural values that 
were embedded in judging the merit of mathematics classroom instruction in 
China. In the fi nal section, we synthesize our fi ndings and discuss the implica-
tions of this study.   

    The Exemplary Mathematics Lesson: 
The Computation of Powers 

 Because the contest organized in his district allowed the contestants to select their 
own content topics, Mr. Zhang selected the lesson’s content topic for himself. When 
he learned about the initial teaching contest at the district level, Mr. Zhang was fi n-
ishing a chapter on one-variable linear inequalities. The next chapter in the textbook 
was about the multiplication of integral expressions that include powers. Students 
had been introduced the concept of power, but not its computations. The fi rst section 
of the chapter was “the computation of powers,” and Mr. Zhang chose this as his 
content topic for the teaching contest. 

 In Mr. Zhang’s class, 32 students were sitting in pairs at desks arranged in six 
rows facing a teaching podium at the front. The class was organized so as to have 
eight groups for possible group discussion when needed, with each group having 
two pairs of students seated in proximity to each other. Some teachers were also 
sitting in the classroom to observe the lesson. 

     Overview of the Exemplary Lesson 

 Taking a similar segmentation approach to the one used in the TIMSS video study 
(Hiebert et al.  2003 ), we identifi ed and divided the lesson into three segments (see 
Table  1 ): (1) introducing the topic, presenting a problem in real-world context 
together with reviewing previous content that relates to solving the new problem; 
(2) developing rules of power computation, letting students solve sample prob-
lems and discussing their solutions; and (3) reinforcing and practicing, solving 
various sets of problems and sharing solutions. This sequence of lesson activity is 
common in China for lessons that introduce new content. The teacher often begins 
the lesson with a problem and/or content review, and the rest of the lesson is ori-
ented toward developing new content and reinforcing students’ learning through 
varying problems and the discussion of various solutions (e.g., Gu et al.  2004 ; 
Li and Huang  2013 ).
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   By showing the video clip of a Chinese rocket launching, Mr. Zhang began the 
lesson by recalling the event of launching the Chinese rocket, Shenzhou No. 6, into 
space and posing the problem “the rocket had fl own at the speed of 7.9 × 10 3  m/s for 
almost 5 days; adding up about 4.1 × 10 5  s, how many meters had it fl own in total?” 
After deliberating with the entire class, Mr. Zhang provided the formula on a com-
puter’s monitor in the form of PowerPoint slides for solving this problem and stated 
“We can write the expression for this problem, but it seems new for us to do the 
computations. In order to compute the distance that Shenzhou No. 6 traveled, we 
will need to learn the computation of powers today.” Then, Mr. Zhang asked students 
to review how to write number multiplications using exponents. One is to write 2 as 
multiplied by itself 5 times; the other is to write  a  multiplied by itself  m  times. Then, 
Mr. Zhang reviewed the defi nition of power, base, and exponent. 

 After reviewing, Mr. Zhang asked students to try to solve two sets of computation 
problems (see problem groups A and B in Fig.  1 ) using previous knowledge by 
themselves fi rst and then to discuss their solutions within their own groups.

   One and half minutes later, Mr. Zhang chose one group’s answers and showed 
their answers on an overhead projector for the whole class discussions, together 
with some explanations provided by that group. Then, Mr. Zhang asked the students 
to observe these answers and posed the following question: “Now we know that 
these answers are correct; please observe these two sets of the problem; can you tell 
me what changed and what did not change after the computations?” After getting 
responses from the class by chorus, Mr. Zhang concluded the students’ answers: 
“Yes, we noticed that for both group A and group B, the base did not change and the 
exponents changed after the computation, right? How did they change? Group A is 

   Table 1    Overview of the exemplary lesson on the computation of powers   

 Segment  Length  Description 

 1  6 min  Introducing the topic – showing a video clip to present a problem 
of computing a rocket traveling distance that involves power 
computations (4.5 min) and reviewing concepts of power, base, 
and exponent (1.5 min) 

 2  15 min  Developing rules of power computation – letting students solve several 
problems and the class discussing their solutions that lead to the 
formation of power computation rules (a combination of individual 
efforts and group sharing) 

 3  24 min  Reinforcing and practicing – letting students practice new content through 
solving problems that vary in several different ways and discussing 
their solutions (23 min) and having a summary (a bit less than 1 min) 

Computing and giving your result in the form of power:

Group A: Group B:

1. 53×52 = 4. (53)2 = 
2. b5 ⋅ b4 = 5. (b5)4 =
3. a6 ⋅ a2 = 6. (a6)2 =

  Fig. 1    First two sets of 
computation problems       
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(with the class) to add the exponents together, and group B is (with the class) to 
multiply the two exponents.” 

 Now, Mr. Zhang posed two other problems on a big screen using the symbolic 
representation (i.e.,  a   m  ⋅ a   n   = ? ( a   m  )  n   = ?). He worked together with the students to 
come up with  a   m  ⋅ a   n   =  a   m + n   on the blackboard, and called it  multiplying two powers 
with the same base.  After providing this guidance, Mr. Zhang asked students to use 
the same process to fi nd the computation formula for another problem ( a   m  )  n  . 
Students worked individually or in their groups for a few minutes. Mr. Zhang later 
chose an answer from one group and put it on the OHP for discussion. Then, Mr. 
Zhang summarized the process to the students: “In this case, the base is  a   m  , and we 
have a total of  n  times of  a   m  . We can use  two powers with the same base  to add the 
powers together. There are  n  of  m ; therefore, it should be  a   mn  .” Mr. Zhang then asked 
whether there is another way to solve this problem. Another group of students 
brought their answer to the platform and one student explained to the whole class. 
The answer is ( a  ⋅  a  ⋯  a )( a  ⋅  a  ⋯  a )( a  ⋅  a  ⋯  a ) ⋯ ( a  ⋅  a  ⋯  a ). Mr. Zhang then summarized 
the rule for computing  the power of powers . He further pointed out that “we can 
see the computation here; if it is to multiply the powers with the same base, we 
change the multiplication to addition, and if it is the power of powers, we change the 
power to the multiplication. This refl ects a transforming thinking in mathematics. 
That is, we transform a high-level computation to a lower-level one.” 

 For the next 24 min, Mr. Zhang provided three more sets of computation prob-
lems that vary in performance requirements (see Fig.  2 ). For the fi rst set of com-
putation problems, Mr. Zhang asked each group in turn to answer one of these 
questions. The second set of problems was to fi nd errors and Mr. Zhang asked 
students to compete with each other for speed ( qiangda ) in providing their 

I. Computing and giving your result in the form of power:
1. a ⋅ a5 = 2. (y2)5 =
3. (33)4 = 4. b3 ⋅ b3 =
5. 102004×102005= 6. (x3)3 =
7. cx ⋅ c2 = 8. (by)3 =

II. Judging whether the following computations are
    correct, and explaining why. 

1. a4 ⋅ a4 = a16 2. a2 + a2 = a4 
3. (a3)5 = a8 4. 4a2 – a2 = 4
5. a + a2 = a3

III. Computing:
1. a2 ⋅ a ⋅ a4 2. (y3)2 ⋅ (y2)3

3. (m2)3 ⋅ (m2)2 4. (a3)3 + a8 ⋅ a

Two open-ended problems
1. Fill-in blanks:

a12 = a ⋅ a(  ) ⋅ a5 = (a2)4 ⋅ a(  ) = (a3)2 ⋅ (a2)(  )

2. Please use what you have learned today to write out 
multiple expressions of a6  Fig. 2    Problems used 

during the third segment       
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answers with explanations. Moving on to the third activity, Mr. Zhang showed 
four computation problems as written on the blackboard and asked four students 
to work on the blackboard and the rest of the class to do it on their own worksheets. 
The teacher then led the class to solve the rocket traveling problem presented 
at the beginning of the lesson. With some practice and discussion of power 
 computation, the class fi nished the computation quite quickly. The teacher then 
provided two more open-ended problems (see Fig.  2 ), and students’ trials and 
discussions helped push them to think beyond the case of  positive integers for 
power computations. Finally, Mr. Zhang fi nished the lesson by reviewing the 
power computation formulas (as shown on PowerPoint) with students and asked 
students to complete their worksheet.

       The Lesson’s Main Features 

 On the surface, it seems that the lesson itself is straightforward. It shows a young 
and energetic teacher who made good uses of information technology to teach an 
otherwise purely mathematical content topic. Much of the class time was spent 
either on the teacher’s explanation or students’ solving problems. However, if we 
look further beyond the surface, our analyses of its three aspects (content, student, 
and instruction) indicate that the lesson contains several features that contributed to 
this lesson’s success (see Li and Li  2009  for detailed analyses). 

 First, this is a goal-oriented lesson with its outcomes positively demonstrated 
throughout the lesson, especially at the end. The students were able not only to 
respond actively and correctly to most questions posted along the instruction process 
but also to differentiate these two computation rules and use them with possible 
extensions at the end. The lesson shows a clear and focused dealing of the mathemat-
ics content that emphasizes knowledge connections and differentiations, as well as 
its applications in solving real-world problems. Students’ positive learning suggests 
that content requirements and its treatment were suitable to students’ situation. 

 Second, students in the lesson were motivated to explore, deduct, compare, and 
use the rules for two power computations. Students’ interest and engagement were 
cultivated through the teacher’s careful design and use of different tasks and exer-
cise problems, as well as his questioning and timely praises, for example, the design 
and use of the rocket launching video clip at the beginning and the sets of sequenced 
exercise problems solved by students in small groups. Students were kept on tasks 
through solving and discussing these exercise problems with adequate diffi culty 
level to them. Multiple solutions to the same problem were greatly encouraged and 
shared in the class. Students were assumed responsibilities to come up as well as 
justify their solutions. They enjoyed these activities even more when experiencing 
success with their own efforts along the way. 

 Finally, the lesson’s success also relied on the teacher’s design and capability to 
carry out the lesson. The teacher did not simply tell students the power computation 
rules. Rather, he provided students opportunities to explore, share, and discuss 
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different solutions to generate knowledge. He also employed multiple methods to 
facilitate frequent and various interactions with students that helped keep them on 
task and obtain feedback for adjusting the instruction progress. The teacher not only 
used the common methods of questioning, discussions, and having individual stu-
dents come to share their solutions on the blackboard but also adopted small group 
collaborations, group competitions, and the adequate use of information technol-
ogy. Although the teacher used multiple methods in teaching, overall the lesson is 
coherent and focused in content. The teacher tried to bring the lesson full circle 
at the end by solving the problem posed at the beginning. The class presented a 
harmonious atmosphere which shows that the teacher did well in piecing together 
different aspects to reach good instructional effects. 

 This exemplary lesson embodies the many features that were revealed by others 
in previous studies about Chinese mathematics classroom instruction (e.g., Li and 
Huang  2013 ). Even more, the lesson also shows the importance of instructional 
content dealing. While the design and use of challenging tasks and exercise prob-
lems are important as also pointed out by others (e.g., Fan et al.  2004 ; Stigler and 
Stevenson  1991 ), our analyses of this lesson suggest that the task design and use 
need to be based on the teacher’s in-depth understanding of the content topic in rela-
tion to students. The tasks and exercise problems were not randomly chosen, nor 
were they chosen simply because they are fun or interesting. In fact, Mr. Zhang 
mentioned that he received other teachers’ help in selecting and revising tasks and 
exercise problems. Task design and selection as shown in this lesson were deliber-
ated to serve the needs of achieving the lesson’s objectives.  

    The Teacher’s Lesson Explaining and Refl ection 

 Mr. Zhang’s lesson explaining covers eight main sections: textbook analyses, 
instructional design ideas, analyses of students’ situation, methods for dealing the 
important and diffi cult points of teaching, instructional methods and learning meth-
ods, instructional segments, after-lesson refl ections, and an appendix of excerpts 
from students’ great work. His lesson explaining fi ttingly presents what Mr. Zhang 
thought about the lesson in its multiple aspects. In particular, Mr. Zhang paid great 
attention to the content and textbook treatment. For example, the teacher went to 
great details in explaining what he perceived as the important and diffi cult content 
points as well as his proposed methods of teaching. 

 Mr. Zhang stated two important content points of teaching for this lesson: (1) 
knowing the process of deriving the computational formulas of “the multiplication 
of powers with the same base” and “the power of powers” and (2) the applications 
of these two computation formulas. In order to teach these important content points 
well, Mr. Zhang proposed the use of two instructional methods. The fi rst is to use 
problem comparison, let students solve new problems, and then derive the computa-
tion formulas under the teacher’s guidance. This approach aims to address the fi rst 
important content point of teaching. The second approach is to design and use three 
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sets of exercise problems with gradually increasing diffi culty and let students solve 
these exercise problems as to stress the second important point of teaching. 

 Mr. Zhang also indicated two diffi cult content points of teaching for this lesson: 
(1) the induction of the computational formulas of “the multiplication of powers 
with the same base” and “the power of powers” and (2) the differentiations between 
these two computations. Correspondingly, Mr. Zhang put forward two methods for 
addressing these two diffi cult points. The fi rst method is to take the induction of 
these two computation formulas one by one. He proposed to guide students to derive 
the computation formula of “the multiplication of powers with the same base” fi rst 
and then let students have group explorations and model the process to derive the 
formula for computing “the power of powers.” This method also tends to foster 
students’ participation and collaboration and let them experience success through 
explorations. The second method is to design and use three sets of exercise prob-
lems, with the fi rst set on simple applications of these two different computation 
formulas, the second on differentiating and judging the correctness of given compu-
tations, and the third on the mixed use of these computation formulas. 

 The two important content points and two diffi cult points of teaching refer to two 
different aspects of the same mathematical knowledge. The following fi gure shows 
their connections and differences. 

 Figure  3  shows that Mr. Zhang was able to identify and articulate the important 
and diffi cult points of teaching with the same content as placed in the center oval. 
The teacher put a great deal of thought in differentiating the closely related aspects 
of the mathematics content from the curriculum perspective (i.e., the two impor-
tant points of teaching at the left side), as well as from the students’ perspective 
(i.e., the two diffi cult points of teaching at the right side). The two important 
points of teaching are also related along the process of lesson instruction (shown 
as a dotted arrow line); the same goes for the case of the two diffi cult points of 
teaching. Moreover, Mr. Zhang came up with specifi c methods to address these 
important and diffi cult points of teaching. As described above, the methods he 

Important points of teaching Difficult points of teaching

“the multiplication of powers 
with the same base” and “the 
power of powers”

Inducing these two
computation formulas

The differentiations between
these two computations

Knowing the process of
inducing the computations

The applications of these
two computations

  Fig. 3    Relationships between the important and diffi cult content points of teaching       
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proposed for addressing the fi rst important and diffi cult points of teaching do not 
refer to the same thing. Whereas the methods proposed for addressing the second 
important and diffi cult points of teaching refer to the design and use of the same 
three sets of exercise problems, they differ on the aspects being focused. For 
addressing the second important point of teaching, the design and use of these three 
sets of exercise problems as a whole are proposed as a method. In contrast, it is the 
nature of these three different sets of exercise problems that are specifi cally designed 
to help address the second diffi cult point of teaching. Here, students’ four common 
mistakes in power computations were all addressed:  a  ⋅  a  3  =  a  3 ,  a  +  a  2  =  a  3 ,  a  3  ⋅  a  3  =  a  9 , 
and ( a  3 ) 5  =  a  8 . The teacher’s content treatment and proposed instructional methods 
show his in-depth thinking about the content, students, and what he can do through 
classroom teaching.

   Mr. Zhang also wrote an after-lesson refl ection. He thought by himself that this 
was a successful lesson in many ways. Specifi cally, he elaborated on his refl ections 
of what he did while introducing the content topic at the beginning of the lesson, his 
lesson preparation, and his rationale behind the use of specifi c teaching methods in 
the classroom. At the same time, Mr. Zhang pointed out that he needed to further 
improve his capability to lead the class. For instance, he thought that he did not 
manage well when he mistakenly wrote ( m  2 ) 3 ⋅( m  3 ) 2  instead of ( m  2 ) 3 ⋅( m  2 ) 2 . During 
the lesson, he confessed that he had written it incorrectly, but he refl ected that this 
could be turned into an opportunity to teach the students to read the problem 
carefully or to use them as two different problems and let students explore the 
possibility of using two different solution methods. Given his less than 2 years’ 
teaching experiences at that time, Mr. Zhang’s refl ections suggest that he knew his 
weakness and tended to improve his own teaching skills.  

    The Lesson’s Quality as Evaluated Through Teaching Contests 

    Main Components of Evaluation Used in the Teaching Contests 

 Based on the specifi c requirements of a contest, different components of teaching 
evaluation were developed and used to judge the quality of the contested aspects. It 
should be noted here that the evaluation criteria, refl ecting new and updated instruc-
tion ideology, evolve over time. The contestants knew what aspects were commonly 
evaluated in teaching contests during that period, although they might not have the 
exact criteria used in the contest evaluation. The contest announcement specifi ed the 
purpose, scope, and the timeline of the contest and what the contestants needed to 
prepare and/or submit for joining the contest. 

 At the district level, the contest was organized to focus on the teaching skills. 
The contest consisted of three parts: lesson instruction design, lesson explaining, 
and classroom lesson instruction. For each part, a specifi c evaluation chart was used 
for rating. These three parts bore different weights, in this case 20, 20, and 40 points, 
respectively. The contest results were then based on the contestants’ summary points 
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earned from these three parts plus the contestants’ self-refl ections (20 points) on the 
lesson that was submitted. 

 The evaluation form for rating classroom lesson instruction places great empha-
ses on the design of instructional content and students’ learning. It is expected that 
the teacher needs to have an accurate analyses and understanding of the textbook, 
identify and handle the important and diffi cult content points of teaching well, and 
set up adequate instructional objectives. At the same time, the evaluation form 
highlights the importance of considering students’ reality and motivating them 
to learn. It also contains specifi c aspects related to the teacher’s use of instructional 
methods, classroom environment, and instructional effects. 

 The contest that Mr. Zhang joined at the city level was a contest of videotaped 
classroom instruction under the new curriculum. An independent evaluation chart 
was also developed and used for judging the quality of the submitted videotaped 
lessons. The evaluation sheet shows an equally distributed emphasis on six aspects 
(i.e., instructional objectives, lesson-type characteristics and content design, 
instructional methods, students’ activity, interactions and feedback, and classroom 
organization), plus one aspect with a slightly less weight (i.e., instructional effects). 
These seven aspects together present a broad coverage of classroom instruction 
components that can contribute to the lesson quality.  

    Committee’s Evaluation 

 For the fi nal contest at the district level, the evaluation committee provided a written 
evaluation of Mr. Zhang’s videotaped lesson, his written lesson instruction design, 
and his performance in lesson explaining. The following is the committee’s evaluation 
of Mr. Zhang’s lesson instruction:

   For the classroom lesson instruction : Can develop a problem situation based on a novel task 
that is of interest to students; have natural and effective teacher-students interactions, refl ect 
well the student-centered instructional concept in every instructional segment, can follow the 
eighth graders’ development characteristics to satisfy their psychological needs of expressing 
themselves actively to demonstrate their capability of pattern discovery as well as to be 
acknowledged, have a harmonious classroom atmosphere, the teacher has a relatively strong 
capability in leading the class learning and structuring the textbook content for teaching; the 
teacher’s language use is concise and encouraging, and the teacher can effectively use modern 
instructional technology; the teacher uses an analogical approach in handling the textbook 
content, which helps students to better understand the connections and differences between the 
two computations and thus overcome the diffi cult content point of teaching fairly well; the 
instruction stresses the important content points of teaching, and has good instructional effects. 

   The committee’s evaluations basically follow the aspects provided in the evalua-
tion form. In particular, the evaluation committee was happy with the way that Mr. 
Zhang introduced the content topic with a novel problem and approach, motivated 
students to learn through continuous interactions, and generated and followed the 
class’s group dynamics. The committee also praised Mr. Zhang’s understanding and 
treatment of the textbook content and his handling of the important as well as diffi cult 
content points in teaching. 
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 For the contests at the city level, the evaluation committee did not generate a 
written evaluation, but formed oral evaluative comments. Because the evaluation 
was done more than a year ago, the contest organizer was only able to recall some 
of the evaluative comments made at that time. In general, the city-level evaluation 
committee’s comments were consistent with the evaluation that Mr. Zhang received 
at the district level, except for the lesson-explaining competition. The consistent 
evaluative comments suggest an emphasis on the teacher’s understanding and 
handling of the instructional content as related to the specifi c group of students’ 
learning, as well as the teacher’s capability in employing different methods to make 
students’ learning of such content effective.    

    Other Experts’ Evaluation of the Exemplary Lesson: 
Views and Comments 

 In October 2007, seven mathematics educators and teachers were asked to watch 
the prize-winning videotaped lesson and provide their comments via a prede-
signed mail survey. Although some of these educators and teachers knew each 
other professionally, they were invited separately for this survey. Table  2  sum-
marizes the general background information about these seven educators and 
teachers.

   All of these interviewees are either experienced mathematics educators or 
mathematics teachers. Because China practices a professional ranking and pro-
motion system, the senior rank is the highest professional rank for teachers and 
“exceptional teacher” is an honorary title awarded to some senior-rank teachers 
who are exceptionally good (e.g., Li et al.  2011 ). “Teaching researcher” ( jiaoy-
anyuan ) is a special position similar to the instructional coordinator or supervisor 

   Table 2    Background information of the seven mathematics educators and teachers   

 Code  Professional rank 
 Highest 
degree 

 Years 
of teaching  Job nature 

 T1  Professor  Bachelor  40  University professor in math 
education, also in charge 
of editing the textbook 

 T2  Senior-rank teacher  Bachelor  27  High school teacher 
 T3  Exceptional teacher  Bachelor  30  Teaching researcher for middle 

school 
 T4  Exceptional teacher  Bachelor  25  Teaching researcher for middle 

school 
 T5  Professor and 

exceptional teacher 
 Bachelor  32  Professor at a teacher training 

school, also the writer of the 
chapter taught by Mr. Zhang 

 T6  Senior-rank teacher  Bachelor  20  Middle school teacher 
 T7  Senior-rank teacher  Bachelor  26  Middle (and high) school teacher 
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in the United States. Every school district, county, and city in China establishes 
such a teaching research offi ce for every school subject, including mathematics. 
Teaching researchers are normally recruited and selected from teachers who have 
exceptional teaching performance and/or leadership. All teaching researchers 
interviewed in this study had a designated focus on middle school mathematics in 
different cities. 

 Among the seven experts, four gave 4 out of 5 points, one 4.6 points, and two 5 
points. These present an average evaluation score of 4.4 out of 5 points. If taking the 
full credit of 5 points as excellent, the numerical evaluation results suggest that all 
these interviewees rated this lesson as very good or excellent. The result is consis-
tent with the teaching contest committee’s evaluation in general. 

 While the numerical result presents an overall picture of these experts’ evalua-
tions, their comments show their thinking and the rationale behind their ratings. 
In particular, we found that the teachers who gave the highest ratings focused more 
on the instruction. They especially like Mr. Zhang’s use of the novel problem and 
information technology for introducing the content topic, his approach of gradually 
unpacking the knowledge for students’ learning, and his fostering of students’ interest 
in exploration and their thinking. For example, the following are part of two expert 
teachers’ comments:

  I like this lesson. This lesson adapted an entertainment format that is attractive to modern 
middle school students. It focused on the knowledge exploration, understanding, summari-
zation, and reinforcement. The lesson made its progress gradually from one level to next 
and it was embedded in students’ competitions among small groups. The lesson resulted in 
very good effects, and brought the teacher and students as well as students themselves 
closer. [T6] 

   In dealing the exercise problem of (m 2 ) 3 (m 2 ) 2 , the teacher paid attention to different 
methods. He kept leading and encouraging students to go on blackboard to show these 
two different methods. [T4] 

   In contrast, the more critical mathematics educators and teachers seemed to 
focus on the content and somewhat on the student. In fact, the two experts who also 
developed the textbook gave their evaluation point of 4 and questioned the teacher’s 
treatment of the textbook content. For example, the following is part of the textbook 
editor’s comments about the teacher’s restructuring of the textbook content:

  Of course, the content treatment needs further considerations. The problem is that although 
these two computation rules have a close and logical connection, they stay at different levels. 
The fi rst rule (the multiplication of powers with the same base) should be the base for the 
second rule (the power of exponents), and the second rule is the application and further 
development of the fi rst rule. If taking a methodological view, the fi rst rule is the base for 
all the computations of powers. It is also the starting point for learning power computations, 
thus it is important to emphasize its learning and should not share its emphasis with the 
learning of other rules. … Finally, putting these two rules together for students to learn, the 
teacher paid special attention to relevant exercises on comparisons, diagnoses and analyses, 
correcting errors, and syntheses. Thus, it seems that not enough practices and reinforcement 
was given to each individual rule. [T1] 

   In fact, T1’s comments were in sharp contrast to Mr. Zhang’s design idea in 
restructuring the textbook content for teaching. While Mr. Zhang wanted to 
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emphasize these knowledge connections, the textbook editor believed that these 
knowledge points deserve different instructional attentions. Interestingly, the 
 textbook chapter writer (T5) also voiced his concerns about Mr. Zhang’s content 
treatment, albeit in a different way:

  This lesson used the rocket traveling distance as the initial problem context, then reviewed 
basic concepts of power. This content arrangement may not be adequate, and lack clear 
requirements. For this lesson’s content, it is not necessary to fi nd and use a real-world 
problem as the initial context. [T5] 

   In addition to the concerns about the content treatment, there were some other 
 suggestions related to students. For example, T2, T5, and T7 suggested that the 
teacher could encourage and engage students more. Those experts provided not 
only detailed comments about the lesson strengths and weakness but also specifi c 
suggestions for making alternative changes to the lesson (e.g., T1 and T7). Their 
comments and suggestions refl ect their thinking about the content and different 
ways of designing and arranging the content to benefi t students’ learning.  

    Discussion and Conclusion 

    What Can We Learn from This Exemplary Lesson 
About Mathematics Classroom Instruction Excellence 
Valued in China? 

 This study examined the features of an exemplary mathematics lesson that was 
identifi ed and awarded through teaching contests. In particular, we took the case 
study approach. Our analysis of a prize-winning lesson suggests that the lesson 
contained many features that were also praised and identifi ed by other researchers 
in previous studies about Chinese mathematics classroom instruction. The lesson 
progressed smoothly with the use of well-designed and structured computation 
problems. One key feature related to the lesson’s content treatment is the teacher’s 
clear identifi cation and handling of both important and diffi cult points of teaching 
the content topic, which refl ects the teacher’s careful and intensive study of the 
textbook. By comparing with the textbook, we found that the teacher selected and 
used only three computation problems from the textbook. Basically, the teacher 
either re-designed or added most of the lesson’s computation problems to address 
these important and diffi cult points of teaching. 

 Moreover, the teacher also made a good use of multiple methods to engage 
students, such as solving several sets of problems with variations, discussions, mul-
tiple solutions to one problem, individual seatwork in conjunction with small group 
collaborations, and group competition. The teacher tried to transfer the knowledge 
development and justifi cation responsibilities to students. In particular, the students 
were given opportunities to explore, discuss, share, and justify solutions. Students’ 
knowledge development process were guided by the teacher and his use of problem 
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sets. The lesson shows frequent and various interactions between the teacher and 
students, in addition to students’ own efforts individually and in groups. Overall, the 
lesson is coherent, polished, and focused. 

 Importantly, the lesson’s features as summarized above are consistent with what 
was commonly valued in the two teaching contests in China. The emphases of these 
features in teaching contests support the perception that these features are not 
unique to the particular lesson focused on in this study. In fact, our survey of seven 
other mathematics educators and teachers also suggests that the lesson’s quality is 
commonly acknowledged in China. Although there were some variations across 
these seven experts in terms of the lesson’s design and strengths, their comments are 
all about some of these features. The variations presented mainly focus on alterna-
tive ways of content treatment. The diversity in Chinese teachers’ thinking about 
the lesson’s content treatment actually suggests that a lesson’s content focus and 
organization deserve great attention and thought. 

 Although the study focused on a specifi c lesson, what we aimed to learn from 
the case is not just about this particular lesson. Rather, what we wanted to learn is 
what features made this particular lesson gain high evaluations. We also tried to 
verify whether these features are commonly recognized by different entities and 
individuals in China. The consistency in recognizing and valuing the features, as 
presented in this specifi c lesson, supports our assumption of what we can learn 
from the case study about excellent mathematics classroom instruction identifi ed 
through teaching contests in China.  

    Teaching Contest as a Platform to Promote Mathematics 
Classroom Instruction Excellence and Teacher 
Professional Development 

 It was indicated at the beginning of this chapter that China has a different cultural 
view of teaching as a professional practice than the West. This study provided 
detailed information about one particular aspect of the Chinese teaching culture: 
teaching contests. In a way, the study helped reveal how mathematics teaching can 
be competed and compared and what features Chinese teachers may focus on, a 
seemingly unrealistic undertaking in the West. In fact, the prize-winning lesson 
made it possible for us to learn beyond what can possibly be learned from experts’ 
teaching in the West (e.g., Borko and Livingston  1989 ; Leinhardt  1989 ). While 
experts’ teaching is commonly analyzed in terms of aspects specifi ed by a researcher, 
the nature of the prize-winning lesson identifi ed through teaching contests in China 
allowed us to learn, not only about the lesson itself, but also about the cultural val-
ues embodied through the identifi cation process. At the same time, it should also be 
noted that ranking is not the only purpose, and sometimes not even the main  purpose, 
for teaching contests – especially at the national level. The event organizers also aim 
to provide a platform for teachers to display exemplary lesson instruction, to 
exchange their experiences in solving teaching problems, or to identify excellent 
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young teachers. In fact, the national teaching contests are now termed the national 
exemplary lesson demonstration contests (Li and Li  2013 ). 

 The teaching contest, as a platform valued in China, also helps promote mathe-
matics teachers’ professional development. Surveys with Mr. Zhang and the contest 
organizers revealed that teaching contests promote mathematics instruction excel-
lence mainly in two ways:

    1.    One way is to promote discussions about the quality of classroom instruction and 
to identify high-quality classroom instruction for possible broad sharing and dis-
semination. For example, the nationwide teaching contests’ organizers published 
and distributed selected prize-winning lesson videos after the contests. Some of 
the prize-winning instructional designs were also posted on the Internet. According 
to the contest organizers, however, more efforts would be needed to promote 
mathematics classroom instruction excellence identifi ed through teaching  contests 
at both the district and the city levels.   

   2.    Another way is to motivate teachers’ participations and to further their profes-
sional development, especially for junior teachers. According to Mr. Zhang, 
the process of joining a teaching contest was a great learning experience. 
Participating teachers usually tried their best to make efforts in understanding 
mathematics, teaching, and students as learners. They spent a lot of time 
before the lesson instruction to identifying important content points and dif-
fi cult points through studying the textbook and looking for effective teaching 
methods to stress the important points and help the learners overcome possi-
ble diffi culties. They often consulted with their colleagues for possible 
improvement and tried to use new technology innovatively to help the lesson 
instruction. The process of preparing and improving demonstration lesson 
itself provides a great learning opportunity for participating teachers. 
Certainly, participating teachers also need to be psychologically prepared to 
accept possible failures in a teaching contest.     

 In addition to these two ways, teaching contests have also been used implicitly or 
explicitly to identify and promote innovative classroom instruction, such as those 
valued in current school mathematics reform (Liu and Li  2010 ). 

 Our recent study of the exemplary lesson demonstrations at the national level 
in China also identifi ed multiple merits of this professional activity (Li and Li 
 2013 ). They include (1) promoting curriculum development and teachers’ 
 professional development, (2) helping “produce” a large number of young 
exemplary teachers, (3) helping propel teaching research activity to go further 
in the entire country, and (4) providing a great opportunity for young excellent 
teachers to develop and showcase their teaching skills. These merits are consis-
tent with what are identifi ed in this study, but are larger in terms of their scopes 
and effects. Although some of these merits may also be available in many top-
down training models often provided in the West, teaching contests in China 
present a unique type of professional activity that stems from teachers’ daily 
instructional activity and promotes teachers’ innovation, discussion, sharing, 
and improvement of classroom teaching.      
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         In comparison with the millennia in which mathematics has existed as a distinct 
branch of knowledge,  mathematics education  as a fi eld of study in its own right is 
young indeed (Sierpinska and Kilpatrick  1998 ). Based at fi rst on a psychological 
model of teaching and learning, this fi eld started having its own dedicated associa-
tions, conferences, and journals (as opposed to being an offshoot of psychology or 
mathematics) in the 1970s, as refl ected in names such as  International Group for the 
Psychology of Mathematics Education  (PME) ,  which had its origins at a meeting of 
mathematicians and mathematics educators in 1976. At that stage in its evolution, 
mathematics education research emulated the scientifi c disciplines involving 
psychometric research. The drive for  rigor  resulted in controlled experiments, 
hypothesis testing using statistical methods, aptitude-treatment interaction studies, 
and time sampling, as the acme of scientifi c research, even in venues as complex, 
and as human, as classrooms in which mathematics was being taught and learned. 
There were some exceptions to this trend, which was particularly strong in the USA. 
For instance, in the USSR, Krutetskii ( 1976 ) deplored the waste of the “riches”—in 
much Western research—of the information that became available for analysis in 
clinical interview methodologies such as those he used in his studies of “capable” 
mathematics students: studies that were no less stringent in quality criteria than 
those involving statistical methods of analysis. 

 During the 1980s and 1990s, a much-needed swing of the pendulum brought 
qualitative methodologies to the fore in mathematics education research, accompanied 
by a recognition that much learning of mathematics takes place in social settings 
within institutions and therefore that theories based on sociology were perhaps just 
as relevant, if not more so, than psychological theories of learning by individuals. 
It was during this period that the International Committee of PME contemplated 
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changing the name of this association from the  Psychology  of Mathematics 
Education to something more amenable to the changed nature of the questions being 
investigated in the fi eld. (The membership voted to retain the name of PME, largely 
for historical reasons.) The 2000s saw a swing away again from the predominant 
qualitative research methodologies to a more balanced perception that qualitative 
and quantitative designs may be complementary, having different strengths and 
omissions. They may be suited to different research questions, and one of the 
various  mixed methods  designs may provide a richer view of a phenomenon of 
teaching and learning than either type independently. 

 Against this introductory backdrop, the following six chapters in this part of the 
book provide an interesting medley of questions investigated, theoretical perspec-
tives adopted or implied, and methodologies designed to study these questions. It is 
useful to consider a grid, in comparing and contrasting these chapters, in which 
theory and methods are juxtaposed against designs that aim to assess, and designs 
that aim to study, various issues of teaching and learning mathematics in classroom 
situations (Fig.  1 ).

   Various chapters in this part place different emphases on the elements of the four 
cells in Fig.  1 . In each case, the research question being investigated determines this 
emphasis, at least in part. All of these chapters address questions that concern 
aspects of the teaching and learning mathematics in group settings, and all place an 
emphasis on particular methodologies that are suited to the various topics of inves-
tigation. Thus, all would have a check mark in cell D of the grid in Fig.  1 . However, 
with regard to cells A, B, and C, the similarities end, and each of these chapters has 
thus a unique contribution to make in this part of the book. 

 The chapter by Harel, Fuller, and Soto has a strong theoretical orientation. The 
question of focus is as follows: “What does an implementation of DNR look like in a 
classroom?” The investigation concerns the potential effect of teaching actions on 
 student learning, where the acronym DNR stands for the three principles involved, 
namely, the duality principle, the necessity principle, and the repeated-reasoning 
principle. The investigation is less about  assessing  the effect of such teaching than on 
 studying  it: the “teacher researcher” is characterized as an expert in implementation of 
DNR from the outset, and this expertise is taken for granted throughout the chapter. 
For this chapter, I would place check marks in cells C and D of the grid. As in all of 
the chapters, the authors emphasize the results of the investigation of their particular 
question: within the complex endeavor of such teaching, these authors conclude that 
DNR provides one theoretical framework with the potential to transform instruction. 

Theoretical issues Methodological issues

Design that aims to assess
classroom instruction

A B

Design that aims to study
classroom instruction

C D

  Fig. 1    Grid for analysis of foci of chapters in Part V       
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 The chapter by Jaworski is also designed to address the complexity of mathematics 
classroom processes, in particular the teaching of fi rst year engineering students at 
university level. Because studying and assessing such processes are aims of the inves-
tigation, the chapter addresses all four of the cells of the grid in Fig.  1 . The emphasis 
is on theoretical formulations of  inquiry ,  community , and  critical alignment , based on 
developmental processes including  documentational genesis  and  instrumentation 
theory.  The overarching framework is taken from Vygotskian activity theory. The 
assessment component of the research is guaranteed by the presence of an external 
researcher, the “research offi cer (RO),” in addition to the researchers studying the 
topic in the internal research team. Thus, the analysis was carried out at two levels that 
were interrelated, each addressing aspects of the inherent “overwhelming complex-
ity” in studying and promoting development of mathematics teaching and learning in 
such a setting. 

 In contrast to the strong theoretical orientation of the chapter by Jaworski, the 
chapter by Even concentrates on the methodological aspects of investigating key fac-
tors involved in shaping students’ opportunities to learn mathematics in classroom 
settings. Thus, for this chapter, check marks are in cells B and D in Fig.  1 . Theoretical 
aspects are implicit in the “carefully designed conceptual frameworks” of the two 
studies reported, but the emphasis is on the novel methodology, in which the same 
teacher is observed teaching different classes, or teachers in different schools are 
observed teaching the same algebra curriculum, with some unexpected results. 

 Community college trigonometry is the setting for the research by Mesa and 
Land, in which they study and assess different elements of teaching where a lec-
ture mode is the primary means of instruction. One could place checkmarks in all 
the cells of the grid in Fig.  1 , but the emphasis is on B and D, the methodology. 
The “Novelty of Mathematical Questions” posed by the lecturers gives an indica-
tion of levels of diffi culty, whereas the analysis of “Teacher Moves” addresses the 
ways that the teachers manage the dialogue that occurs. The complexity of the 
data analysis that results from the methodology causes the researchers to use color 
coding as a means of managing this complexity; the fl exibility of the methods and 
decisions “in the moment” rather than planned beforehand is reminiscent of some 
aspects of grounded theory research. The effectiveness of the methodology is 
illustrated in the results that emerge, which would not have been apparent in less 
fi ne-grained research. 

 The chapter by Boston is again primarily concerned with methods of assess-
ing and studying instructional quality (cells B and D in the grid), in this case by 
means of collections of student work. The methodology involves both parametric 
and nonparametric statistical analysis. The emphasis on assessment is stronger 
than in the other chapters of this part of the book: in fact,  evaluation  (in which 
numerical scores are assigned to assess quality) is a focus. The usefulness of 
rubrics in studying collections of student work to assess instructional quality is 
illustrated in classroom teaching in schools, as well as in professional develop-
ment initiatives. 

 Examples are the focus of the chapter by Zaslavsky and Zodik, both in the context 
of example generation by teachers and in the investigation of example-based 
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reasoning in classrooms. A convincing case is made for the importance of research 
on generation and use of examples in mathematics classrooms, from the perspec-
tives of both teaching and learning. Although theoretical elements are implicit in the 
conceptual formulation, the emphasis is on studying these topics through the meth-
odology described (cell D in the grid in Fig.  1 ). The richness of the research is 
illustrated in two carefully chosen generic tasks addressing two different mathemat-
ical concepts, namely, irrational numbers and periodic functions. 

 From this brief synopsis, it may be seen that the chapters in this part are diverse 
and unique in the ways that they address the investigation of issues in classroom 
mathematics instruction. The complexity of this endeavor comes through in most of 
the chapters. The endeavor to “transform mathematics instruction” (the focus of the 
title of this book) is matched by the advances that have taken place in theoretical 
formulations and in research methodologies in the last few decades. The journey is 
by no means complete, but these chapters give glimpses of ways that may be taken 
in research that seeks to address the complexity of issues in the classroom teaching 
and learning of mathematics.    
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Abstract This chapter examines the classroom implementation of a theoretical 
framework for the teaching and learning of mathematics—called DNR-based 
instruction in mathematics—focusing on characteristics of the implementation of 
DNR to help learners transition between proof schemes. Three episodes from a pro-
fessional development program for middle and high school teachers are analyzed to 
reveal the teaching behaviors of an expert DNR instructor. Complexities highlighted 
include (1) how the instructor balanced the intended mathematical content with the 
learners’ current understandings, (2) the interplay of the questions whether a result 
holds and why it holds, and (3) how the instructor created intellectual need for new 
ideas. As a by-product, learning outcomes of this effort are also examined.

Keywords DNR-based instruction • Proof • Proof schemes • Theoretical frame-
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 Introduction

This chapter examines the classroom implementation of DNR-based instruction in 
mathematics (DNR). DNR is a theoretical framework for the teaching and learning 
of mathematics, whose objective is to provide language and tools to formulate and 
address critical curricular and instructional concerns. The question of focus in this 
paper is: what does an implementation of DNR look like in the classroom? The 
structure of DNR makes the mathematical setting important, so we look at an 
especially relevant setting: helping learners transition between proof schemes. In exam-
ining DNR, we will analyze the instructional aspects of the transition between proof 
schemes: from the external conviction and empirical proof schemes to the transfor-
mational proof schemes, focusing, in particular, on the transition from result pattern 
generalization (RPG, a form of empirical reasoning) to process pattern generalization 
(PPG, a form of deductive reasoning). These italicized terms are discussed at length 
elsewhere (see, e.g., Harel 2001). We briefly outline the DNR framework, along 
with these terms, in the next section.

 Selected DNR Constructs

DNR can be thought of as a system consisting of three categories of constructs: 
premises, concepts, and claims. These claims include instructional principles—
assertions about the potential effect of teaching actions on student learning, which 
are subsumed under three foundational principles: the duality principle, the necessity 
principle, and the repeated-reasoning principle, hence, the acronym DNR. For a 
fuller discussion of DNR, see Harel (2008a, b). Of relevance to this chapter is the 
necessity principle: for students to learn what we intend to teach them, they must 
see a need for it, where “need” refers to intellectual need.

The Knowing-Knowledge Linkage Premise, one of the DNR’s eight premises, 
asserts that problem solving is the means—the only means—to learn. When one 
encounters a problematic situation, one necessarily experiences phases of disequi-
librium, often intermediated by phases of equilibrium. Disequilibrium, or perturbation, 
is a state that results when one encounters an obstacle. Its cognitive effect is that it 
“forces the subject to go beyond his current state and strike out in new directions” 
(Piaget 1985, p. 10). Equilibrium is a state when one perceives success in removing 
such an obstacle. In Piaget’s terms, it is a state when one modifies her or his view-
point (accommodation) and is able, as a result, to integrate new ideas toward the 
solution of the problem (assimilation).

DNR defines perturbation in terms of two types of human needs: intellectual 
need and affective need. Intellectual need is different from affective need. 
Intellectual need has to do with disciplinary knowledge being born out of people’s 
current knowledge through problematic situations. Affective need, on the other 
hand, has to do with people’s desire, volition, interest, self-determination, and the 
like. Before one immerses oneself in a problem, one must desire, or at least be 
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willing, to engage in the problem, and once one has engaged in a problem, often 
persistence and perseverance are needed to continue the engagement. These char-
acteristics are manifestations of affective needs: motivational drives to initially 
engage in a problem and to pursue its solution. The existence of these needs is 
implied from another DNR premise, the Epistemophilia Premise, which asserts 
that people desire to solve problems and look for problems to solve—they do not 
passively wait for disequilibrium!

This brings us to DNR’s definition of learning: learning is a continuum of 
disequilibrium- equilibrium phases manifested by (a) intellectual and affective needs 
that instigate or result from these phases and (b) ways of understanding or ways of 
thinking that are utilized and newly constructed during these phases.

The terms way of understanding and way of thinking have a special, technical 
meaning in DNR. For this paper’s purposes, it is sufficient to think of ways of 
understanding (WoU) as one’s particular conceptualizations of definitions, theorems, 
proofs, problems and their solutions, and so on. Ways of thinking (WoT), on the 
other hand, are the conceptual tools that are necessary for an individual to construct 
these conceptualizations. WoT are classified into three categories: problem- solving 
approaches, proof schemes, and beliefs about mathematics. Of particular interest in 
this chapter are proof schemes.

Harel and Sowder (1998) offered a taxonomy of proof schemes consisting of 
three classes: external conviction, empirical, and deductive. Proving within the 
external conviction class depends on (a) an authority such as a teacher or a book 
(the authoritative proof scheme), (b) strictly the appearance of the argument (the 
ritual proof scheme, e.g., proofs in geometry must have a two-column format), or 
(c) symbol manipulations, with the symbols or the manipulations having no 
coherent system of referents in the eyes of the student (the non-referential symbolic 
proof scheme).

The empirical class is marked by reliance on either (a) evidence from examples 
of direct measurements of quantities, substitutions of specific numbers in algebraic 
expressions, and so forth (the inductive proof scheme) or (b) visual perceptions 
(the perceptual proof scheme).

The deductive class consists of two categories. Relevant to this paper is the trans-
formational proof scheme category. Its essential characteristics are generality, 
operational thought, and logical inference. The generality characteristic has to do 
with an individual’s understanding that the goal is to justify a “for all” argument, not 
isolated cases, and that no exception is allowed. The operational thought characteristic 
manifests itself when an individual forms goals and subgoals and attempts to anticipate 
their outcomes during the proving process. Finally, when an individual understands 
that justifying in mathematics must ultimately be based on logical inference rules, 
the logical inference characteristic is being employed.

Empirical reasoning is a common and robust WoT among many students and 
even among teachers (Healy and Hoyles 2000; Blanton et al. 2009). A special case 
of this WoT is result pattern generalization (RPG). Its counterpart, process pat-
tern generalization (PPG), belongs to the deductive proof schemes category. 
Observing that the sum of the first n consecutive odd natural numbers is n2 because 
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the value checks for n = 1, 2, 3, 4 is RPG. Proving this fact by looking at the effect 
of adding the next odd number (e.g., informal mathematical induction) is PPG. 
Thus, process pattern generalization is a WoT in which one’s proving is based on 
regularity in the process (though it might be initiated by regularity in the result), 
whereas result pattern generalization is a WoT in which one’s proving is based 
solely on regularity in the result—obtained by substitution of numbers, for 
instance. The question of how to help learners transition from RPG to PPG has 
been the focus of our research for some time.

 Teaching Behaviors and Related Literature

Our characterizations of DNR-based instruction consider both teaching actions 
(what the teacher actually does in particular instances) and teaching behaviors 
(conceptual patterns that these many actions provide evidence for). One immedi-
ate implication of DNR for instruction is that teachers must seek out and make use 
of students’ ideas as the basis for class discussion while simultaneously consider-
ing institutionally desirable mathematics. Given DNR’s definition of learning, it 
is incumbent upon the teacher to create models of students’ mathematics and 
select suitable problematic situations for the purposes of advancing students’ 
WoU and WoT toward particular goals. The teacher formulates these goals and 
problematic situations in advance and reformulates them on the fly as he gathers 
more evidence from students.

Several studies have analyzed pedagogical practices using similar lenses to our 
pairing of teaching action and behavior. Sherin (2002) used a case study of middle 
school teachers to examine pedagogical tensions involved in trying to use students’ 
ideas as the basis for class discussion while also ensuring that the discussion is 
mathematically productive. Sherin’s idea of filtering, “used to emphasize that any 
new content raised by the teacher is based on a narrowing of ideas raised already by 
the students” (p. 200), raises a concern similar to our question (below) about how 
TR chose what aspects of participant contributions to focus on.

Reid and Zack (2009) examined the teaching of proof by looking for commonali-
ties between Zack’s 5th grade teaching and two teaching experiments in grades 5 
and 8 conducted by Lampert and Boero, respectively. They found that encouraging 
students to state their conjectures and prove them is an important teaching action 
common to the three experiments. This teaching action also plays a role in our 
analysis below.

Lehrer et al. (2013) constructed models for the evolving state of students’ 
ways of thinking by carefully examining the kinds of questions students asked 
during the course of instruction. They analyzed the extent to which a question 
by a student created opportunities for exploring new “mathematical terrain” and 
used the results of these analyses to create new problems that would potentially 
intellectually necessitate higher levels of questions oriented toward more 
advanced ways of thinking.
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Mehan’s (1979) reproducible patterns of initiation, reply, and evaluation point to 
the crucial role the use of authority plays in a teacher’s practice. The use of authority 
is an important aspect of DNR as well.

 Methods

To illustrate aspects of DNR-based instruction in mathematics, we analyze data that 
was collected in a sequence of teaching experiments (in the sense of Steffe and 
Thompson 2000), where the lead researcher was the teacher (hereafter, referred to 
as TR for teacher-researcher). These experiments took place during two intensive 
month-long summer professional development institutes for middle and high school 
algebra teachers (referred to as participants).

Three teaching episodes—each related to a single problem, the discussion of 
which spanned multiple days—were chosen based on (1) instances where TR 
attempted to promote the transition between RPG and PPG WoT, (2) our desire to 
include a wide spectrum of time across both summer institutes, and (3) space limita-
tions. Each problem involved substantial time spent on group work to solve the 
problem, as well as public presentation and discussion of solutions. The  mathematical 
context and purposes of the problem being worked on were taken into account at all 
times. The analysis of the participants’ behaviors led to models for the mathematics 
of the learners at different times.

During the data analysis, video and transcripts of the institutes were reviewed 
by each team member. Research team members continually generated questions 
about TR’s teaching practices and attempted to find evidence that could help 
answer them. Each teaching episode begins with a set of main questions that will 
be addressed by the data, and our analysis of each episode focuses on these ques-
tions. From this process, a large number of teaching actions emerged and were 
classified into several themes, some of which match existing literature (e.g., 
Mehan’s (1979) reproducible patterns of initiation, reply, and evaluation and 
Sherin’s (2002) idea generation, comparison and evaluation, filtering, and seed-
ing the discussion with new ideas). Our themes concern Whether, When, and 
How issues are treated. Whether concerns teaching decisions in which TR 
chooses whether to focus on something that comes up, such as an aspect of a 
participant solution (e.g., an error). When concerns sequencing of classroom 
activities, such as when TR raises questions or shifts the direction of the discus-
sion. How concerns details of the implementation of decisions on Whether and 
When, such as the way in which TR requests evaluation of presented solutions. In 
the analysis below, each question is labeled with its theme (Whether, When, or 
How). The themes are not disjoint, but they do emphasize different aspects of 
teaching behaviors.

We emphasize that this chapter does not intend to show evidence that the participants 
held particular proof schemes at points in time. First, there is not enough space here 
to do so. Second, this would detract from the primary goal of our analysis—to 
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examine an expert implementation of DNR. This implementation begins with the 
premise—based on prior experiences with participants—that learners held primar-
ily external convictions and empirical proof schemes. Although we build models for 
students’ mathematics, these models are incomplete and used to contextualize the 
teaching actions, rather than to test TR’s assumptions. We ask that the reader keep 
this important point in mind throughout the remainder of this chapter.

 Episode 1: Investment Problem

The following problem was the first problem given to participants (on the first day 
of the first summer institute):

Jill and Jack invested money in a mutual fund for 1 year. Jill invested $23,000 and 
Jack $22,950. Their broker deducted a 5.5 % commission before turning the rest 
of the money over to the mutual fund. During the year, the value of each share of 
the mutual fund increased by 11.85 %. What percentage return on their investment 
did Jill and Jack realize?

 Main Questions

• How does TR choose what aspects of participant contributions to focus on? 
(Whether)

• When does TR present his own solutions? (When)
• What governs TR’s treatment of errors? (Whether)

 Purpose of the Problem

The context was chosen to be concrete and about a concept—percentage—that the 
participants, as teachers, deem important. The following are a priori objectives 
stated by TR (to the research team):

 1. Intellectually necessitate the question of whether the rate of return would be 
dependent or independent of the initial investment. The difference between the 
investment quantities was only $50.

 2. Generate surprise that the rate of return is independent of the initial investment. 
The problem does not ask participants to explain the fact that the percent return 
is independent of the investment. Had the problem included such a question, it 
would have weakened the element of surprise. More important, the aim was that 
participants develop the WoT of raising questions about relationships between 
different quantities on their own.
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 3. Begin to develop the WoT of utilizing the power of algebra to ascertain,  persuade, 
and explain. This WoT, dubbed referential symbolic,1 is one by which a solver 
sets the problem in algebraic terms and applies algebraic rules to determine a 
solution.

 4. Use participants’ responses as objects of debate, whereby they become cogni-
zant of their own justifications—a necessary step toward comparing RPG justifi-
cations with PPG justifications. Based on prior experience, TR anticipated heavy 
use of RPG by the participants for this problem.

The computation of the percentage return quantity is a process that starts with the 
initial investment quantity and, through a sequence of arithmetic operations, leads 
to the percentage return quantity. It was assumed by TR—based on his prior knowl-
edge of a similar population of participants—that this computational process, in and 
of itself, constitutes evidence for the participants that the percentage return is depen-
dent on the investment, since the value of the percentage return was determined by 
operations on the value of the investment. Hence, the realization that the percentage 
return does not change when the investment is different is likely to lead to a sur-
prise—an intellectual perturbation. The teacher could have chosen a large differ-
ence between the values of the investments, which might have made the perturbation 
more pronounced. The choice of the small difference was intentional, to create a 
debate within the small working groups as to whether the equal values for the per-
centage return are due to the closeness between the investment values—a debate 
that might create a sequence of perturbation-equilibration stages such as this:

 A. Equal percentage returns (perturbation).
 B. Attributed to a “small” difference between the investment values (equilibration).
 C. Checking other values with “large” differences (perturbation).
 D. Conjecture: the return will always be the same (equilibration).
 E. Checking a few other cases (further equilibration, since the empirical proof 

scheme is common).
 F. What makes the return always be the same? (perturbation).

 Question Analysis and Teaching Actions

 How Does TR Choose What Aspects of Participant Contributions  
to Focus On? (Whether)

We correctly expected TR to focus on aspects of conviction and causality.2 There is 
evidence to indicate that the problem was successful in creating disequilibrium 
about whether the percentages being the same was due to the small difference in 

1 This is the counterpart to the aforementioned non-referential symbolic proof scheme.
2 A detailed discussion of causality is beyond the scope of this chapter. Here, it suffices to think of 
causality as a strong understanding of why a result holds.
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Jack’s and Jill’s investments. Carly3 said, “But just to double check we went back 
and did a really easy number that, cause we were so close, we went back and did 
1,000.” After Carly’s group and one other had presented their solutions, in which the 
returns were the same, TR asked something to the effect4:

Is getting the same percentage a surprising fact? … How are we so sure that the 
percentage return is independent of the initial investment?

Participants displayed RPG (e.g., trying other numbers) and PPG reasoning (one 
participant observed that the calculations involve multiplying then later dividing by 
the principal, so this amount cancels out). TR continued by probing causality 
(addressed to a particular group, but during a public discussion):

… in all of these cases the percentage return came out the same. That gives us 
conviction. But what makes the result to be the way it is?

Overall, TR did not focus on particular calculations, but rather on general (PPG) 
reasoning that makes the return be independent of the initial investment.

 When Does TR Present His Own Solutions? (When)

In response to TR’s question above (what makes the result to be the way it is), 
Randy presented the only PPG solution. There is evidence that TR wished to postpone 
this solution until late in the discussion, and we believe the reason for this was to 
have participants consider his question for a significant amount of time before 
resolving it. TR only called on Randy when another participant pointed out that TR 
cannot see Randy’s hand raised, and TR responds that he had already seen it.

After Randy’s presentation, TR presented his own version of Randy’s solution, 
in which the initial investment is denoted by A—rather than a number. He also spent 
a fair amount of time discussing how algebra showed why the percentage increase 
was independent of the initial investment. This seemed to be a first step in having 
students appreciate PPG reasoning and the power of algebra, and it fits with his 
stated goal of beginning to develop the referential symbolic WoT.

 What Governs TR’s Treatment of Errors? (Whether)

Carly’s group calculated the yield by looking only at the gain on the investment, not 
subtracting the commission. This could be argued to be an error in modeling the 
problem situation. Indeed, Donna challenged their step. In this case, TR did not treat 
what was done as an error. He explicitly chose to focus on the fact that the found 
percentages are the same, not the actual values found. TR thus put attention on the 

3 All names are pseudonyms.
4 Here and elsewhere, quotes from TR are modified slightly for clarity and brevity.
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conjecturing and proving acts, at the expense of the modeling act. We would expect 
this decision based on the problem goals.

There is an additional computational error that was not mentioned by anyone. 
When Randy presented his calculations, he obtained an incorrect amount for the 
increase in value of Jack and Jill’s combined investments. We have no evidence for 
whether TR noticed this error and let it pass or did not realize there was an error, 
but TR focused on generic features of Randy’s argument rather than the particular 
values.

 Episode 2: Quilt Problem

On the 13th day of the first summer institute, the following problem was posed:

A company makes square quilts. Each quilt is made out of small congruent squares, 
where the squares on the main diagonals of the quilt are black and the rest of the 
squares are white. The cost of a quilt is calculated as follows:

Materials: $1 for each black square, $0.50 for each white square
Labor: $0.25 for each square

April, Bonnie, and Chad ordered three identical quilts. Each of the three filled 
out a different order form. April entered the number of black squares in the 
black cell. The other two entered the same number as April’s, but accidentally 
Bonnie entered her number in the whites cell, and Chad entered his number in 
the total cell. April was charged $139.25. How much money were Bonnie and 
Chad charged?5

Number of black squares Number of white squares Total of squares

 Main Questions

• How does TR’s request for evaluation of solutions delineate empirical and deductive 
approaches? (How)

• When and why does TR use his authority to shift attention? (When)
• When does TR raise issues of certainty and causality? (When)
• How does TR model desirable behaviors? (How)

5 Although this problem has some depth, the reader can understand the discussion merely by con-
sidering how many squares are white versus black on an n × n quilt.
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 Purpose of the Problem

The problem had many purposes, but the one most central to this analysis was to 
delineate empirical and deductive approaches. TR’s model6 of participant WoU and 
WoT had changed as follows. Initially, participants had strong empirical proof 
schemes. At this point, the class as a whole saw empirical reasoning as manifested 
in tables. They were at a preliminary disequilibrium in that they began to realize a 
need to step away from empirical reasoning, because deductive proofs give more: an 
understanding of why. TR believed that presenters now felt intrinsic pressure to go 
beyond empirical solutions. Thus, a major purpose of this problem was to further 
encourage the transition away from empirical solutions, by inducing participants to 
compare solutions in the hope they will prefer deductive ones.

In addition, TR’s experience in past summer institutes was that participants 
confused empirical proofs with iterative searches: a sequential examination of 
mathematical objects to find one satisfying certain properties (here, a quilt was the 
object, and the property was a total cost of $139.25). Previous participants rejected 
iterative searches and exhaustive proofs7 at a certain stage, perhaps because exhaustive 
proofs do not appear sufficiently causal or because they confused empirical proofs 
and iterative searches. This year, TR hoped to use the quilt problem to explicitly 
bring up the difference between empirical proofs and exhaustive proofs or iterative 
searches, in particular leading participants to understand that the latter are mathe-
matically acceptable.

 Question Analysis and Teaching Actions

 How Does TR’s Request for Evaluations of Solutions Delineate  
Empirical and Deductive Approaches? (When)

TR asked Julie to present first, because her solution could help address the differ-
ence between empirical proofs and solutions that use a table but are essentially 
deductive. Julie’s presented solution seemed to have been influenced by other par-
ticipant’s comments (rather than being a faithful reproduction of what she had 
done). Julie drew the 1 × 1, 2 × 2, 3 × 3, 4 × 4, and 5 × 5 cases, indicating how many 
more black squares than the previous case were present. She decided to also look at 
costs, and TR asked her to show her original table, which she drew as in Fig. 1.

Although these did not all appear on the board, she claimed that her original table 
had been filled in for all sizes up to a 13 × 13 quilt, where she found that the 

6 Recall that we do not make and substantiate claims about the actual transition between proof 
schemes; rather, we report TR’s model (as reported or inferred).
7 Proving a statement by showing that it holds in different cases, whose union is the whole set under 
consideration.
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purchase price was equal to $139.25, fulfilling the constraints of the first quilt in the 
problem. Julie claimed to have used a geometric pattern to determine the cost of the 
second quilt in the problem, but she was not able to do anything for the third quilt.

After Julie finished her presentation, without any prompting from TR, Carly 
asked “…did you draw pictures up to the 13 to get those numbers for the chart?” 
Julie’s response was rather vague: she claimed to have observed a pattern for the 
increase in the number of black squares from quilt to quilt when she generated her 
table: adding 3, 1, 3, 1 and so on. When pushed, she acquiesced to Carly’s sugges-
tion that she figured out whites and total from the pattern.

After this exchange, TR asked “What do you think of this solution? Is it an 
acceptable solution? [participants say yes] Is this [an] empirical solution? … Did she 
generalize from several examples?” This teaching action of asking for evaluation is 
expected and plays an important role in delineating empirical and deductive solutions. 
It appears that TR intended Julie’s solution to be viewed as elementary but mathemati-
cally legitimate (i.e., not empirical). In particular, there is evidence (beyond his self-
report) that TR expected to convince participants that Julie’s solution was not 
empirical. When the class responded that she did empirically generalize, he asked 
what she generalized, and numerous participants responded simultaneously, mostly 
citing the 3-1-3-1 pattern (see Fig. 1). TR countered, “but she didn’t use that pat-
tern,” while participants insisted she did. This prompted TR to shift from his plan of 
evaluating the solution back to understanding what was done in the solution.

 When and Why Does TR Use His Authority to Shift Attention? (When)

In this instance, TR had observed Julie working and was confident that he knew 
what she had done, expecting to make a point about her WoT. However, several 
vocal participants argued that she had empirically generalized her 3-1-3-1 pattern 

Fig. 1 Julie’s work for quilt problem
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to fill in her table. Presumably, these participants were convinced of this by Julie’s 
response to Carly and the structure of her presentation: presenting the pattern 
early and drawing only the first five cases—with only the first two shaded. After 
some back and forth, TR used his authority to focus on the case-by-case process 
of counting the number of blacks in a quilt rather than the issue of whether the 
pattern was used: he presented long monologues without seeking feedback and 
talked over a couple quiet comments by Julie and another participant. Such use of 
authority would be condemned by constructivism but was necessary in order to 
shift toward the intended issue: distinguishing empirical proofs from general use 
of a table. We note that participants were vocal in talking about the pattern but 
quiet on other issues. Thus, it might be argued that they only partly accepted the 
shift in attention. At the end of the monologue, TR returned to the 3-1-3-1 pattern 
and proceeded to prove it.8 Based on TR’s observation of participant reactions, 
he felt that they would continue to dwell on the pattern, and he thus chose to 
address it explicitly and provide a clear example of deductive reasoning.

 How Does TR’s Request for Evaluation of Solutions Delineate  
Empirical and Deductive Approaches? (Continued)

After completing his proof, TR asked Melody, “what have we done here? … From 
a teaching point of view.” Sometimes, TR summarized. Other times, such as this 
case, TR asked participants to summarize. There are several reasons that having a 
participant summarize can be helpful:

 (a) It helps TR determine the extent to which participants are following.
 (b) It gives participants a chance to participate in the community and to solidify 

their understanding.
 (c) It allows TR time to construct and reflect on participants’ current WoU and 

WoT.

We conjecture that (a) and (b) are the primary reasons for this teaching action, 
based partly on some participant questions about the proof shortly before. TR built 
on Melody’s summary to provide his own. In particular, Melody mentioned that 
they were testing whether the pattern works, and TR said that they utilized the 
power of algebra to show that the pattern works all the time. TR also said, “we 
learned that this solution is an exhaustive one.” This relates back to the teaching 
action of asking for evaluation, which was interrupted by disagreement over what 
Julie did.

8 The proof involved directly counting the number of black squares in a generic even or odd quilt 
and then taking the difference for successive quilts.
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 When Does TR Raise Issues of Certainty and Causality? (When)

The next presenter, Donna, drew a table with the side dimension and the number 
of black squares in a quilt. Donna claimed that, due to the 25 cent ending in the 
price of the quilt, it could not have even dimensions, so she didn’t derive the equa-
tion for even quilts. TR then asked the class “Do you buy this?” and they provided 
guttural confirmation.

As a teaching action, questioning the validity of a claim seems to serve the 
 purpose of destabilizing a participant by raising doubt. Donna had only vaguely 
justified her claim, so TR asked for further justification. Although the class was 
willing to accept the claim, TR said, “I am not convinced. I don’t know why.” TR 
(retrospectively reported) was acting and knew why he was not convinced but 
thought it was within the grasp of some participants to both find what is lacking in 
the explanation and provide further justification. One participant asked whether 
Donna charted the cost in each case like Julie, to which Donna responded that she 
calculated a few costs. TR latched onto this and suggested that she derived her claim 
from a few examinations, to which she agreed. He asked, “How do we know that the 
even [quilt] will not work beyond the several examinations?” Donna said she knows 
there isn’t going to be, and TR responded, “…that’s not the point I’m focusing on…
I’m dying to know why,” thus shifting the focus to causality.

Questioning the validity of Donna’s claim and shifting the focus to causality are 
quite important to the goal of moving participants toward deductive proof schemes. 
Previous teaching experiments had suggested that questioning the validity of 
participants’ claims is generally ineffective at creating intellectual need to advance 
proof schemes, raising the question of why TR tried it.

TR’s experience is that formulas are self-supporting and it is more difficult to 
destabilize participants’ certainty in a (correct) formula. Although Donna’s lit-
eral wording that labor cost on an even quilt always “comes out to be an even 
number” is mathematically incorrect (we believe she intended “even” to be 
“whole”), the issue addressed by the class is why “You never have 25 cents left-
over,” which is a true assertion but one for which no formula has been pro-
duced—leaving a chance for destabilization. He thus attempted to perturb Donna 
with regard to both the validity and the cause of her assertion. Part of the reason 
for this dual focus is that he wanted participants to eventually recognize that 
assertions for which only a few examples have been checked not only lack 
explanatory power but also can be incorrect.

We saw no evidence that participants felt intellectual need to justify Donna’s 
claim that an even quilt cannot provide a solution. However, the classroom was set 
up so that TR was a participant in the mathematical community. As such, he had the 
right to check claims or ask for more explanation. All participants respected his 
right to question the assertion, although Donna seemed to think that her initial 
explanation was sufficient until pushed further by TR. She then attempted a 
symbolic proof that built on her initial reasoning, but she was unable to complete it, 
even with the help of other participants. Nevertheless, TR’s attention to causality led 
Donna to attempt a deductive argument.
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 How Does TR Model Desirable Behaviors? (How)

Through an exchange with other participants, Donna attempted to formalize her 
reasoning to support the claim “you never have 25 cents leftover with an even quilt.” 
After several minutes, TR put the discussion on hold. He said that it is common to 
encounter a problem but leave it for the moment and come back to it later, and that’s 
what is being done. Part of the reason for this teaching action was to preserve the 
flow of Donna’s solution, which was being interrupted by this issue. However, it 
also served to clarify and model a deductive WoT that every claim in an argument 
must be justifiable, but it does not need to be proven at that moment. TR could have 
quickly presented his own deductive argument for the claim. In our retrospective 
discussion with TR, he indicated that he did not do so because he felt creating such 
an argument was within the grasp of most participants. Indeed, later that day (not 
analyzed in this chapter), a participant provided a correct deductive proof that the 
side length must be odd to result in 25 cents leftover.

Donna continued her solution by writing an expression for the price of an odd 
quilt in terms of its side dimension x. A participant asked her to explain where she 
got (x − 1)2 for the number of whites, which she agreed to do. She presented a table, 
whose entries she obtained by counting white squares on drawn quilts (Fig. 2).

She explained that she found a relationship: for a given odd side dimension, the 
number of whites could be found by subtracting 1 from the side dimension, dividing 
the result by 2, squaring this, and then multiplying it by 4. She illustrated this for the 
5 × 5 quilt and, at the request of TR, also the 7 × 7 (Fig. 3).

This was how she found that the number of white squares could be represented 

as 4
1

2

2
x −






  or (x − 1)2.

This work is clear evidence of RPG reasoning: Donna found the pattern by 
examining a few cases in her table. Nevertheless, she also showed a sophisticated 
ability to deal with numerical expressions that are not in a closed form. Overall, 

Fig. 2 Donna’s initial  
quilt table
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Donna displayed evidence of a referential symbolic proof scheme: she used her own 
symbol system and variables, exhibiting comfort with fractions.

Donna attempted to relate her expression 4
1

2

2
x −






  back to the geometry of the 

problem, possibly with the goal (conscious or unconscious) of making the solution 
more deductive: “…the 4 stands for those 4 sides.” However, Donna did not explain 
the meaning of subtracting 1 or dividing by 2. TR stopped her with the following 
exchange.

TR: …as teachers, what do you think about this process? [11 second 
pause] You don’t think about it? Is everything ok? You accept that. 
Beautiful reasoning, right? She made tremendous intellectual effort to 
bring this into a general form. We all agree upon that? Are we 100 % 
happy? Mathematically speaking. Yes or no? There are 2 possibilities: 
either you are happy or not.

Participant: Are you?
Class: [Laughs].
TR: Who cares about me?
Participant: We do.

This is another example of TR asking for evaluation of a solution. The request for 
evaluation was open-ended. Participants’ slow response and question “are you 
[happy]?” suggest that participants wanted to know what TR thought rather than 
judging based on their own criteria. We also note that the way TR asked for evalua-
tion praised the solution. This is important because TR did not want participants to 
throw out empirical reasoning as a conjecturing tool. Instead, they should ask each 
time: how do I know it always works and what makes it work? In this case, the few 
participant responses were positive (e.g., “we asked for her to explain that and that 
explains it so yes, in that sense I’m happy”) and no participant raised issues of 

Fig. 3 Donna’s further  
quilt calculations
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certainty or causality. TR asked how we know that the formula will work for a very 
large odd number and then had the class take a break.

 When Does TR Raise Issues of Certainty and Causality? (Continued)

After the break, TR made an explicit shift from certainty to causality: “you are so 
certain that this is always going to happen … We are also interested in what makes 
it happen all the time.” Without giving participants further time to respond, he 
shared his own insight regarding a (PPG) proof of the pattern.

TR began by considering a generic x × x quilt, where x is odd. His proof involved 
finding a geometric interpretation for Donna’s formula. He explained that, if we 
remove the center row and column of squares (containing the black square shared 

by both diagonals), the quilt would have four square corners with 
x −








1

2

2

 cells 

each. So, excluding the removed row and column, there would be 4
1

2

2
x −






  

squares in the four square corners (see Fig. 4). He went on to explain that each black 
square along the diagonal corresponded to a square that had been removed by elimi-
nating the row and column containing the center black square (arrows in figure 
indicate the correspondence). Finally, he claimed that his explanation constituted a 
reason for Donna’s expression to hold in all cases.

Fig. 4 TR’s quilt diagram
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 How Does TR Model Desirable Behaviors? (Continued)

We note that providing his own deductive solution contrasts with what TR did for 
Donna’s claim about the dimension needing to be odd. We suspect that the differ-
ence is that TR believed participants were capable of appreciating a deductive 
explanation for Donna’s formula but not of finding such an explanation them-
selves. TR thus modeled the kind of deductive explanation he hoped participants 
would start producing. At least one participant clapped when TR finished the 
proof, and the whole class seemed to take pleasure in it. This response suggests 
that at least some participants were ready for a PPG solution and appreciated it. 
In DNR, the teacher can present a proof from beginning to end when students are 
ready to appreciate it.

When presenting his proof, TR emphasized that his solution depended on 
Donna’s work and that he could not have created it without her insights. He shared 
his struggle: while she explained her solution, he was wondering why it would work 
all the time and how it related to the structure of the quilt—searching for a reason 
for the pattern to hold and eventually finding it. Sharing his own struggle demon-
strated that TR is also reasoning and promotes the WoT that doing mathematics 
takes time and struggle. Building upon students’ current WoU and WoT is critical in 
DNR, and one obvious way to do this is to present a solution that builds on student 
ideas. Thus, TR modeled DNR principles and tried to catalyze the empirical/
deductive transition by showing participants how they could build on their own or 
each other’s reasoning. He emphasized the pleasure derived from the fact that they 
are now both certain and understand a source of the pattern, with the implication 
that they should seek this kind of pleasure in the future.

 Episode 3: Stair-Like Structure Problem

On the first day of the second summer institute,9 the following problem was posed:

A figure such as the one below is called a stair-like structure. You have 1,176 identical 
square pieces. Can you use all the pieces to construct a stair-like structure?

 

9 One year after the first, with a few follow-up sessions in between.
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 Main Questions

• How does TR model desirable behaviors? (How)
• When does TR raise issues of certainty and causality? (When)
• How does TR reinforce desirable reasoning? (How)

 Purpose of the Problem

We see the major goal of the problem to be distinguishing between RPG and PPG 
approaches by attending to the difference between certainty and causality. Thus, it 
had similar purposes to the Quilt Problem, with an expectation that participants’ 
WoT would have advanced.

 Question Analysis and Teaching Actions

 How Does TR Model Desirable Behaviors? (How)

Donna presented the first solution to this problem. She drew a table of x, “level” or 
“number of flights of stairs,” versus y, “number of blocks needed in order to build 
that staircase.” She filled in the first 4 rows of this table and said she saw a pattern. 
She looked at changes between successive y values, then changes between those 
changes (see Fig. 5), which she found to be constant. This told her that she had a 
quadratic pattern.

TR paused to see if anyone had questions, and Jenny said she did not see how 
Donna’s observation “tells her” that the pattern is quadratic. TR fleshed out this 
question as two conjectures that he wrote on the board:

 1. If the difference between any two consecutive elements in a pattern is constant, 
then that pattern is linear. Why?

 2. If the second difference between any two consecutive elements in a pattern is 
constant, then that pattern is quadratic. Why?

We conjecture that TR had Donna pause at this point both because he perceived 
some confusion from other participants and because she used a fact that was not 

Fig. 5 Donna’s stair table
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known to the class. The pause communicated that participants should raise a 
question, thus reinforcing or modifying the didactical contract.

Jenny’s question to Donna seemed to be about how to know that the pattern is 
quadratic, rather than a justification of this fact. However, TR used this opportunity 
to address a WoT that is part of his agenda: the problem-solving approach of recog-
nizing conjectures as not truly known, but using them for now. He is explicit about 
this WoT: “…we’ll put it aside. We’ll raise a question and in this way, we’ll enrich 
our knowledge about the mathematics that we know.” Thus, we see the teaching 
behavior of purposely interpreting student statements and questions in a broader 
context. That is, when a participant raises a question that provides an indirect avenue 
for addressing some important issue, TR will reinterpret the question in a way he 
suspects was not intended by the participant in order to get at the issue he wants.

It was intentional for TR to raise the two conjectures written on the board but not 
resolve them. TR chose to accept this mathematical “error” partly because he wanted 
to maintain the flow of the mathematics. Moreover, TR believed that participants 
were capable of appreciating the conjectures but not yet proving them.

Donna continued her solution by drawing an extended table (Fig. 6).

From this table, she found the pattern 2y = x2 + x, so y
x x

=
+2

2
.

She then wrote 1 176
2

2

, =
+x x

 and got x = 48, which meant the answer to the 

problem is “yes.”

 When Does TR Raise Issues of Certainty and Causality? (When)

After Donna’s solution, TR asked “So, are there questions here or comments?… 
If this were in your class and Donna produced this solution, what would be 

Fig. 6 Donnas extended stair table
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your reaction?” After some responses, he asked “what will be your response to 
Donna as a teacher?” and finally “within this problem, are we happy? Is this 
complete mathematically?”

We expect TR to advance his goal of distinguishing RPG and PPG approaches by 
asking for evaluation. In this case, TR began with more neutral and open-ended 
questions. When TR asked if the solution was mathematically complete, participants 
seemed happy and no participant objected to the RPG nature of the solution. Next, 
a lengthy exchange occurred. First, at TR’s prompting, Donna shared that she based 
her solution “on just these four cases.” TR raised the question, “does this relation-
ship hold for every x?” and then asked if it would be artificial for students. Donna 
responded “you’re going to get a lot of blank stares” and Reginald mentioned that 
recognizing and accepting patterns is encouraged. After repeatedly asking whether 
the pattern will continue, TR shifted to asking why it works, e.g., “Fine. This is 
going always to happen, but what causes this to be so?” TR asked if participants 
appreciate the latter question. It is not clear how many of them do, but no one 
attempts an answer.

It is important that TR questioned the validity of a claim and shifted the focus to 
causality in the same exchange. We wondered why so much time was spent on the 
former, when it was previously noted that formulas can be self-supporting, so that 
TR is unlikely to destabilize participants’ certainty regarding Donna’s formula. The 
question of whether the pattern will continue to hold did not come up naturally. It 
appears that participants did not appreciate it, and TR himself recognized that it “is 
artificial” and “you do not seem to be very impressed by that question.”

TR explicitly said to participants that the question of whether the pattern will 
continue is meaningful to him, and we believe that he is trying to make it meaningful 
to them by connecting it to the question of why the pattern holds. DNR states that 
the goals are to lead participants toward institutionalized WoU and WoT, which 
require that they understand the difference between deductive and empirical justifi-
cations. At the same time, TR could not (according to DNR principles) simply tell 
them the difference between RPG and PPG. Thus, TR persisted in asking questions. 
There is a tension between wanting participants to think you share their understand-
ing and wanting them to appreciate issues you consider important. Despite TR 
labeling the question as artificial for the participants, his repetition of it might indicate 
to participants that they should be asking such a question. The nature of TR’s inter-
action with Donna shows that the institute is an environment in which participants 
can disagree with the instructor but still be persuaded of the value in his approach. 
One of TR’s goals in persisting with this question was to show participants that it 
may be necessary at times to help students address questions that seem artificial to 
them; ideally, this would be done by asking other questions or problems to provide 
intellectual necessity for the original question.

Stepping back from this particular case, part of our goal in this research was 
to look at subtle teaching actions that were used to help participants transition 
from RPG to PPG. The espoused approach of TR is to emphasize causality for a 
long time and then try to help participants start to ask the question of whether a 
result holds. However, we see that the actual implementation involves a more 
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consistent relationship between whether and why a pattern holds. We saw TR 
raise the question of whether a pattern continues to hold during the Quilt 
Problem, and here he persisted with this question longer because he thought 
participants were closer to appreciating it. The relationship between certainty 
and causality has not been definitively established yet, and TR was proceeding 
without complete information. He felt a tension between wanting to be persuasive 
and not wanting to preach. In general, he tried to encourage independent reason-
ing by controlling overall goals of the institute but not forcing participants to 
follow a particular path toward them.

 How Does TR Reinforce Desirable Reasoning? (How)

After raising the question of why Donna’s pattern holds, TR presented his own 
proof of this fact in a similar manner as he did for the Quilt Problem—one of many 
similarities. In his extension of Donna’s solution, TR asked what it means to double 
y and then added a rotated version of the stair-like structure to the existing diagram 
of an 8-step stair-like structure on the overhead, forming a rectangle (see Fig. 7).  
He emphasized that it can be any number of steps and this will still work. Then, he 
asked what it means to take away x2 and drew a square of side 8 in red. TR noted 
that what is left is a single column with x squares, so “we explained the cause of that 
conjecture to happen.”

During and after his proof, TR repeatedly emphasized the importance of 
Donna’s work: “she very beautifully identified and established a very nice con-
jecture…her work there was indispensable” and “[his proof] doesn’t count [for] 
anything if you don’t have the conjecture.” The teaching behavior of emphasiz-
ing empirical work as a starting point is a consistent feature of ATI, and we saw 
a similar emphasis for the Quilt Problem. TR’s message is not that empirical 

Fig. 7 TR’s doubled staircase
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reasoning should be avoided, but that it represents only a starting point and not 
a complete solution.

After finishing his proof, TR asked students to compare the conjecture with the 
proof. In this case, the comparison is between Donna’s preliminary work and his 
completion of her solution. A few participants said it is powerful to have the 
diagram explain the symbols. TR emphasized that his proof did not come easily, 
but that he had to think about how to put meaning into the symbols (echoing what 
he said for the Quilt Problem). One WoT being reinforced here is that finding 
solutions often requires time and thought, not just quick answers. Another is the 
referential symbolic WoT, which he demonstrated by showing how useful it was 
for him: “…what is the meaning of 2y? Remember, we attend to the meaning of 
the symbols all the time.”

We conjecture that TR hoped to elicit some comment that his solution was more 
complete. Although participants express positive regard, no one suggests that TR’s 
solution was more mathematically appropriate, correct, or complete. They appeared 
to see it as complementing Donna’s solution because it explains more, but they do 
not yet appreciate that Donna’s solution was not a valid proof.

 Conclusion

 Themes from the Three Episodes

Whether

A central aspect of DNR (though not unique to DNR) is attention to each learners’ 
current state of mathematics understanding. TR had preconceived expectations 
regarding participants’ mathematics knowledge going into the institute (e.g., he 
expected most to exhibit RPG reasoning), but he continually refined his models of 
participants’ mathematics based on what he observed. These models guide all 
aspects of instruction, such as what questions are asked (problems or discussion 
questions), which participants are called on, and what TR presents to the class.

We noted an instance in the investment problem where TR did not address a 
modeling error because he wanted to keep attention focused on the conjecturing 
and proving acts. Also, when a computational error occurred, TR continued dis-
cussing the form of the argument instead of dealing with the error—although it is 
not clear if he noticed the computational error or not, this still indicates a focus 
away from the computations and result. During the stair-like structure problem, 
TR chose to leave a mathematical “error” unattended in order to maintain the flow 
of an argument and to model a problem-solving approach. Overall, TR focused on 
issues concerning the primary WoT that he wanted to address at the time, and 
other aspects were often set aside. He refrained from pointing out some errors that 
he might have considered important, in order to maintain the flow of a solution or 
keep participants’ attention.
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When

All three episodes involved TR raising questions about first certainty and then cause. 
However, the time spent pushing these issues increased from each episode to the 
next, in keeping with the presumed increased comfort participants had with these 
questions—although we note that they did not display an appreciation for certainty 
questions by the third episode.

TR chose to sequence his own deductive arguments in the flow of class discus-
sions about the solutions to problems, and he did so when participants seemed to 
feel an intellectual need for understanding why a solution worked. We noted in the 
analysis that implementation of DNR necessarily entails building onto participants’ 
WoU and WoT. In one case, a participant’s generic argument was used to model 
how algebraic symbolism—with meaning—could be used to show a general result. 
In other cases, TR took advantages of situations when he had evidence to believe the 
participants cared a lot about a particular question (e.g., the 3-1-3-1 pattern), so that 
the discussion could not move on without a resolution. In a different case, TR noted 
retrospectively that when he felt creating a deductive argument was within the grasp 
of most participants, he chose not to present one.

DNR strikes a balance between considerations of the mathematical content (as is 
primary in traditional college instruction) and the mind of the learner (as is primary 
in constructivism). Thus, TR was willing to make small compromises in either 
direction to further his goals. We might characterize his style as opportunistic: he 
had clear goals and took advantage of any opportunity to create intellectual need 
that would help advance these goals.

How

Requesting an evaluation of solutions is an important teaching action in TR’s 
practice. By requesting evaluations TR sought to determine how participants felt 
about the solution and what (if anything) they felt was lacking. His goal was to 
help participants delineate empirical and deductive solutions and determine what 
each provides: only certainty in the former but causality also in the latter. However, 
this had to be carefully implemented, as he did not wish to characterize participant 
solutions as incorrect or not useful. Thus, the nature of the evaluation involved 
mainly greater positive attention on PPG solutions, rather than negative attention 
on RPG solutions.

Two of the episodes involved TR demonstrating the power of algebra to help address 
questions, thus promoting referential symbolic reasoning, an important goal of the 
institute and part of deductive reasoning. Two episodes involved geometric patterns 
that were very amenable to RPG/PPG, and both times TR built upon an RPG solution 
to provide his own PPG proof, thus attempting to promote this action as desirable rea-
soning. It is important that TR did not simply present a PPG solution (e.g., his favorite 
one) after eliciting a participant’s RPG one. Instead, he expended effort to create a new 
PPG solution that would use the same structure as the participant solution.
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 General Conclusions

As mentioned earlier, TR is a DNR expert. Moreover, the setting for this instruction 
is unusual: a full-time professional development institute, with few of the con-
straints that are a part of school or university instruction. Nevertheless, since our 
goal is not to find generalizable results, but rather to characterize DNR, this ideal 
setting is appropriate.

Teachers often have a great deal of uncertainty about what to do, and TR is no 
exception. His goal was to destabilize participants and create intellectual need 
whenever possible. We contend that, by examining a few situations where TR 
was uncertain about what to do or deviated from his plan, this chapter illuminates 
aspects of DNR that remain hidden when reading a theoretical description of its 
constructs.

Despite understanding the key determinants of teacher behavior within DNR, 
other members of the research team had trouble predicting what TR would do 
next at various points. Thus, learning to teach according to DNR is a complex 
endeavor that cannot be reduced to a set of guidelines. Our analysis in this chap-
ter has demonstrated some of these complexities and how they can be negoti-
ated. We do not expect this to provide a practical guide to implementing DNR, 
nor do we expect many readers to implement DNR. Rather, we believe that math 
educators can gain general insights by examining issues that arise when teach-
ing by means of one theoretical framework with the potential to transform 
instruction. We hope that instructors of all types have benefited from the eluci-
dation of these issues.
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    Abstract     This chapter addresses theory in relation to mathematics teaching 
and learning development, drawing on a research study to exemplify theoretical 
perspectives. In particular it addresses diffi culties and issues which arise in a 
developmental process, from both theoretical and practice-based points of view. 
The areas of theory are those of  inquiry, community and critical alignment , which 
address developmental processes in mathematics learning and teaching;  documen-
tational genesis and instrumentation theory , which address the development of 
knowledge in teaching; and fi nally the use of a framework from  activity theory , which 
addresses issues and tensions that emerge from observation and analysis in the 
research. The illustrative research study addresses perceptions of learning and its 
outcomes between a teaching team and a cohort of engineering students learning 
mathematics in a university system. Overall the chapter seeks to address complexity 
in the developmental process and important synergies between theory, practice and 
research.  

  Keywords     Mathematics teaching development   •   Inquiry communities in learning 
and teaching mathematics   •   Documentational genesis   •   Activity theory   •   University 
mathematics teaching  

        Introduction 

 In the teaching and learning of mathematics, it has been observed frequently that 
students’ mathematical learning does not accord with what society and the educa-
tional establishment would like to see (e.g. Artigue et al.  2007 ; Hawkes and Savage 
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 2000 ; Romberg and Carpenter  1986 ). Perceived reasons for this differ according to 
those making the judgement. One area of theory suggests that students (at school or 
university) engage with mathematics at instrumental, operational or procedural 
levels in which concepts are touched on only superfi cially and learning is by rote 
memorisation rather than in-depth engagement (Brown  1979 ; Hiebert  1986 ; Skemp 
 1976 ). Research has shown that the nature of teaching rooted in social practice 
within schools and classrooms can promote comfortable ways of being rather than 
the struggle to deal with concepts more rigorously (Brown and McIntyre  1993 ; 
Doyle  1988 ). Further, research into students’ transition from school to university 
reveals diffi culties for students in dealing with the expectations of formality and 
abstraction at the higher levels without adequate preparation at the school level 
(Hawkes and Savage  2000 ; Hernandez-Martinez et al.  2011 ; Nardi  2008 ). 

 The teaching-learning process in mathematics is complex. Although mathematics 
can be argued to be central to many other disciplines and to aspects of everyday life, 
mathematics is nevertheless an abstract subject whose very abstraction challenges 
the teaching-learning process. In order for students to develop mathematical under-
standings, teachers have to create opportunities for students to engage mathematically; 
to learn to express mathematical ideas; to make, justify and prove mathematical 
conjectures; and to use mathematics to solve problems. The developmental research 
process inquires into the design of mathematical tasks and their impact on students, as 
well as exploring approaches to engaging students and evaluating their outcomes. 

 This chapter addresses theoretical perspectives relating to the use of develop-
mental research both in studying the development of teaching and learning in math-
ematics and in promoting such development. Teachers seek to develop their teaching 
in order to provide better learning opportunities in mathematics for their students. 
Research documents this process and the issues it raises. In addition, the nature of 
developmental research is such that the research process provides stimulation and 
feedback to teachers seeking to improve their practice, so that the research itself 
becomes a tool for teaching development (Jaworski  2003 ). In this work, theory and 
practice are dialectically integrated: theory informs the design of teaching and its 
approaches to learning, and refl ections of and analyses from practice enable 
theoretical development. This integration results in the growth of knowledge  in  
practice and  about  practice: we learn, as practitioners (teachers), within our practice 
(teaching) and, as researchers, we are able to synthesise from local fi ndings for 
more general applicability. I provide examples below. 

 In this developmental activity, we (the teams of researchers with whom I have 
worked) take a sociocultural position rooted in the work of Vygotsky and his followers 
in order to try to make sense of the complex issues involved. This position suggests that 
learning and teaching cannot be separated from the total social context of which they 
are a part. Any mathematics classroom, lecture theatre or seminar room forms a social 
setting in which learners engage with each other, with the teacher and with mathe-
matics. 1  Learning is regarded as participation in social practice within cultural 

1   Relevant here is a special issue of the journal ZDM ( ZDM , Vol. 4, Issue 5) which focuses on the 
didactical triangle of teacher, student and mathematics and important relations between mathematics 
teaching and learning. 
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worlds with the mediation of elements of community, systems, tools and actions. 
Vygotsky’s central claim that learning takes place on two planes in which the social 
plane is pre-eminent is interpreted through Wertsch’s ( 1991 ) perspective of ‘goal-
directed action’ such that ‘human action typically employs ‘mediational means’ 
such as tools and language’ and ‘the relationship between action and mediational 
means is so fundamental that it is more appropriate, when referring to the agent 
involved, to speak of ‘individual(s)-acting-with-mediational-means’ than to speak 
simply of ‘individual(s)” (p. 12). From these theoretical starting points, the chapter 
focuses on theory as follows:

    (a)    Theory of  community of inquiry , which is central to a developmental research 
approach, and the important construct of  critical alignment  (e.g. Jaworski 
 2008a ): these areas of theory are central to promoting the learning of mathe-
matics and the learning of mathematics teaching.   

   (b)    Theory of documentational genesis (e.g. Gueudet and Trouche  2011a ,  b ), linked 
to instrumentation theory: these areas of theory address the development of 
teaching and of knowledge in teaching, with particular focus on a teacher’s use 
of tools and resources including technological tools, and the corresponding 
growth of knowledge in teaching.   

   (c)    Activity theory (e.g. Leont’ev  1979 ; Engeström  1999 ) as an analytical tool: 
this develops directly from our sociocultural basis set out briefl y above and 
seeks to make sense of complexity in the process of analysis in relating 
teaching to learning, particularly where fi ndings/results/outcomes appear to 
be in tension.    

  Although theoretically focused, the chapter draws on recent research to exem-
plify and illuminate theoretical ideas and their use. This research focused on an 
innovation in the teaching to fi rst year engineering students at university level 2  and 
involved teachers as researchers in collaboration between research and practice. 
The project (Engineering Students Understanding Mathematics – ESUM) was 
funded by the Royal Academy of Engineering in the UK National HE STEM 3  pro-
gramme. Here a teaching team designed an innovation (involving a new teaching 
approach) to an established, introductory mathematics module for engineering 
students in order to promote students’ more conceptual understandings of mathe-
matics. The innovation was researched through practitioner inquiry and outsider 
researcher observation and analysis; research revealed issues and tensions between 
teaching goals and students’ perspectives and approaches to learning. 

2   Space here has not allowed a  dual  focus on the development of teaching at both school and 
university levels. Developmental research  at school level  focusing on inquiry approaches to 
developing teaching, used by teachers and didacticians, with activity theory analyses can be found 
in Jaworski and Goodchild ( 2006 ) and Jaworski ( 2008a ). 
3   HE STEM has been a major government-sponsored programme in higher education focusing on 
the subjects science, technology, engineering and mathematics. Funding has been available for 
projects promoting teaching and learning development within this programme. 
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 Overall, the chapter expands on the elements mentioned briefl y above and seeks to 
provide a rationale to demonstrate how this combination of theory and methodology 
allows us to address the complexity of developing teaching and learning in mathe-
matics and mathematics teaching. In order to do this, the chapter begins in the 
section “ Developmental research and introduction of the research study ” with an 
exposition of developmental research and some relevant details of the ESUM study. 
In the section “ Theories of inquiry community and critical alignment ”, I go on to 
introduce the key theories of inquiry community and critical alignment, illuminating 
these in the section “ Exemplifying theory through the research study ” with refer-
ences to ESUM. The section “ Tools, tasks and resources: instrumentation theory and 
documentational genesis ” discusses the use of the theory of documentational genesis 
through a need to analyse teaching development and its relations to the use of tools, 
tasks and resources in the ESUM study. The section “ Tackling complexity: activity 
theory as an analytical tool ” shows how activity theory has been used to provide a 
framework for analyses in order to address the overall complexity in the research 
studies. Finally, the section “ Discussion ” draws together these elements.  

     Developmental Research and Introduction 
of the Research Study  

 Developmental research is research which has the intention not only to chart, monitor 
or evaluate the developmental process but also to contribute to that development 
(Jaworski  2003 ). It is

  research which both studies the developmental process and, simultaneously, promotes 
development through engagement and questioning. … Not only are research questions 
defi ned and explored … but the whole research process is subject to question and exploration. 
We look critically at our research activity while engaging in and with it. (Jaworski and 
Goodchild  2006 , p. 353) 

   The goals of such research are:

•    To promote the development of teaching in mathematics, and teachers’ better 
understandings of teaching for students’ mathematical development;  

•   To document any issues and tensions in the developmental process and its 
outcomes, particularly in relation to the situations and cultures in which teaching 
and learning take place;  

•   To develop knowledge both in local practice and for more generalised under-
standings of teaching for learning in mathematics.    

 In the ESUM study, a team of three mathematics educators in a UK university 
designed and implemented an innovation in teaching a mathematics module for fi rst 
year engineering students (e.g. Jaworski and Matthews  2011 ). The entire process 
was researched, aided by an external researcher (research offi cer, RO) employed 
for the purpose. The innovation was designed to improve mathematical learning 
outcomes for the students and, specifi cally, to promote more  conceptual  learning of 
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mathematics, based on observations that teaching and learning had, in the past, 
taken rather instrumental forms (Hiebert  1986 ; Jaworski  2008b ; Skemp  1976 ). 
The developmental nature of this research was interpreted through our use of 
 inquiry . We sought ways of bringing inquiry into our practices at differing levels in 
order to promote developments in practice and associated growth of knowledge in 
practice –  insider research  – and we also collected data from activity in order to 
perform rigorous analyses related to clearly defi ned research questions –  outsider 
research  (Bassey  1995 ; Jaworski  2004a ). In the ESUM project, the teaching team 
(insider researchers) designed and taught the module (one was the  lecturer ); the 
research offi cer (outsider researcher) collected data from events and joined members 
of the teaching team in analysing this data. Thus, some members of the teaching 
team acted as both insider and outsider researchers. 

 We collected data from our activity through observations of lectures and tutorials 
(with audio recording), lecturer refl ections, student surveys and audio-recorded 
interviews and focus groups, together with documentation from the design and 
planning. The innovation included the use of inquiry-based tasks in a setting involving 
small group activities, use of a GeoGebra environment (  http://www.geogebra.org/
cms/en/    ) and assessment through a small group project. Teachers refl ected on teach-
ing design and implementation as these progressed and made modifi cations to their 
practice in response to fi ndings from the observations and refl ection. 

 The ‘lecturer’ offered lectures and tutorials to the cohort of students and worked 
closely with the RO who attended and observed all these events. The refl ections of 
the lecturer, either in written form or in oral form through ‘conversations’ with the 
RO and a graduate tutorial assistant, formed important data. The lecturer thus acted 
as a practitioner-researcher at the teaching-learning interface in close collaboration 
with the RO who was able, through her comments and questions, to help objectify 
the lecturer’s more subjective observations. Meetings with other members of the 
team allowed such observations to be considered at an even more critical level. 
For example, when it seemed to the lecturer that questioning in lectures was having a 
positive effect in student engagement, the researcher pointed out certain students who 
rarely responded and who seemed less engaged. The lecturer was then challenged to 
fi nd ways of engaging these students while avoiding confrontation. When this was 
discussed with the team, the suggestion to offer a task for discussion in pairs and, 
over time, to develop an expectation that the lecturer might ask any pair for their 
response was made. This new suggestion could then be tested in practice. Thus, the 
team formed a small ‘inquiry community’. Development can be seen in growth of 
knowledge in practice deriving from these stages of critical refl ection. The whole 
developmental process was documented through analysis of collected data against 
research questions. 

 The focus of analysis was the teaching and its development. Thus the unit of 
analysis was the teaching event and student responses to that event. No fi ne-grained 
study was made of student learning. It can be seen that analysis took place at two 
levels, roughly the insider and outsider levels, although there was close synergy 
between the levels. At the insider level it was less formal and more immediate, feed-
ing back into practice and promoting ongoing development.  
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     Theories of Inquiry Community and Critical Alignment 

 Established ‘ways of being’ in schools or university might be characterised as 
 communities of practice  in the terms of Lave and Wenger ( 1991 ) or of Wenger 
( 1998 ) in which the  practice  is the interaction of teachers and students, with its 
own norms and expectations related to learning mathematics. These communities 
operate with elements of  mutual engagement, joint enterprise  and  shared repertoire  
(Wenger  1998 ). For example, teachers and students  work together  in classrooms or 
lecture theatres (mutual engagement); they have required goals and outcomes such 
as completion of tasks, success in assessment and appropriate behaviour (joint 
enterprise), and they follow established routines such as use of textbooks, classroom 
groupings, homework or coursework (shared repertoire). Wenger suggests that to 
 belong  to a community of practice, or to have  identity  within a community of 
practice, requires  engagement, imagination  and  alignment . One has to take part in 
the practice, be overtly a member of the community and ‘join in’ (engagement); 
developing a personal trajectory within the practice requires participants to visualise 
their role (imagination); it is necessary to participate according to the norms and 
expectations the community has developed within the practice, to  align  with them 
(alignment). Being a student in a classroom or a university or being a teacher or 
lecturer involves having identity in the community of practice and hence engaging 
with the practice, using imagination to have a role in the practice and aligning with 
its norms and expectations. However, alignment with existing norms and expecta-
tions of ongoing practice can result in perpetuation of undesirable outcomes from 
that practice. This is particularly relevant to established practices in schools and 
higher education in which instrumental forms of teaching and learning (e.g. Hiebert 
 1986 ; Skemp  1976 ) result in ‘impoverished’ mathematical environments (Pring 
 2004 , p. 18) in which students practice mathematical techniques but rarely gain 
deeper insights to mathematical concepts. 

 An inquiry approach is designed explicitly to address these issues. Inquiry 
involves asking questions and seeking answers, addressing problems and seeking 
solutions, exploring, investigating and looking critically at what we are doing and 
achieving (Cochran Smith and Lytle  1999 ; Mason et al.  1982 ; Schoenfeld  1985 ). 
The theory is that, through such engagement, through a critical questioning approach 
to what we do, we can gain knowledge that enables us to do it better and more 
knowledgeably. The ‘better’ here implies a way of being (Jaworski  2004b ) or seeing 
rather than an objectively better form of practice (since the latter depends on the 
nature of judgement). Wells ( 1999 ) refers to this as ‘metaknowing’, knowing about 
knowing: we become more aware, more knowledgeable, about what we do as we 
do it. Mason ( 2002 ) calls it the ‘discipline of noticing’: by overtly noticing what 
we are doing, we have the possibility to do it differently, to inquire into new possi-
bilities. With inquiry, the community of practice is transformed into a  commu-
nity of inquiry,  belonging to which requires engagement and imagination and, of 
course, alignment. However, with inquiry we do not engage uncritically; we notice 
and question what we do, so that alignment becomes  critical . Therefore, identity 
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within a community of inquiry requires engagement, imagination and  critical align-
ment ; it involves working within established norms and expectations while ques-
tioning their provenance and exploring alternatives (Jaworski  2006 ). It is the 
concept of critical alignment which distinguishes a community of inquiry from a 
community of practice.  

     Exemplifying Theory Through the Research Study 

 In the research study, inquiry was operational at three levels:

    1.     Inquiry in mathematics : First we introduced inquiry in mathematics, seeking 
to promote students’ conceptual engagement with mathematics through an 
inquiry- based approach. This involved our design of inquiry-based tasks, for use 
in lectures or tutorials, in which students’ exploratory activity would promote 
engagement with mathematics and in which questioning between teachers and 
students would reveal relationships and alternative ways of expressing mathe-
matical ideas. An aim was to link formality and abstraction with conceptual 
insight.   

   2.     Inquiry in mathematics teaching : Second, it was a fundamental goal to promote 
development in teaching. Therefore we undertook inquiry into teaching: the 
‘innovation’ was predesigned by the teaching team and put into practice by the 
lecturer with ongoing inquiry into the teaching process as described above. We 
demonstrated our use of inquiry cycles as shown in the fi gure below.

 Plan/design for teaching 
 Teach: act and observe (collect data) 
 Refl ect and analyse 
 Feedback to future planning 

      

 The developmental 
process 

     With the inclusion of elements of ‘observe’ and ‘analyse’, the inquiry cycle 
extends beyond a normal teaching cycle (of plan → teach → refl ect → feedback). 
Such cycles refl ect a  systematic  approach to development and have elements in 
common with iterative cycles in action research and design research (Elliott 
 1991 ; Kelly  2003 ). As in action research, the cycles are intended to have action 
outcomes in terms of development of practice and learning through develop-
ment; as in design research, there is often some design of tasks, or process, and 
this is evaluated and developed through successive cycles. Through such cycles, 
teachers learn about approaches to teaching and their outcomes. However, the 
developmental process here is fl uid and adaptable to context, experience and 
circumstance; rather than describing it as systematic in an objective sense, it 
might be seen more as  evolutionary  over time (Jaworski  1998 ). Participants grow 
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into inquiry ways of being: they start by using inquiry as a tool: for example, by 
using an inquiry-based task or by introducing some form of questioning approach 
and developing this over time, often lengthy periods of time.    

   3.     Inquiry in the research process : If we see research as ‘systematic inquiry made 
public’ (Stenhouse  1984 , p. 77), then it is clear that inquiry is central to research. 
So the third level at which inquiry was operational was in developmental research 
itself. The roles of insider and outsider were very important here, both involving 
inquiry into the developmental process, the fi rst promoting development in 
practice and the second analysing that development and contributing to theory. 
It was important to communicate and disseminate fi ndings. In the ESUM project, 
our funders, the Royal Academy of Engineering, organised dissemination 
meetings, and we were asked to publish case studies on their website (  http://
www.hestem.ac.uk/resources/case-studies    ) and in a dedicated book (The Royal 
Academy of Engineering  2012 ). We have also made presentations at interna-
tional conferences and published in refereed journals.    

  I continue this section with a short vignette to illustrate our development of 
inquiry processes at these three levels. 

    Impact of Inquiry-Based Tasks on Students 

 The principal aim of the ESUM project was to promote students’ more conceptually 
based (less instrumental) learning of mathematics. In discussion with colleagues in 
the Department of Materials Engineering, we agreed that developing students’ 
engagement with mathematical concepts in exploratory ways would be consistent 
with their development as engineers. We worked from the premise that (suitably 
designed) inquiry-based tasks would engage students in deeper levels of thinking 
about mathematical concepts than might be the case with more traditional tasks. We 
designed an innovation with four key elements and put this into practice within the 
normal constraints of the university system. These constraints included the size of 
the student cohort, a programme of lectures and tutorials in line with other modules, 
a module specifi cation (curriculum) to which we were obliged to work and the usual 
forms of university accommodation for teaching sessions. The four elements of our 
innovation were:

    1.    Use of inquiry-based questions and tasks   
   2.    Use of an electronic medium juxtaposing algebraic and graphical representations 

(GeoGebra)   
   3.    Small group activity in tutorials   
   4.    An assessed small group project including a peer assessment process     

 We were given two lectures (in regular lecture theatres) and one tutorial (in a 
computer laboratory environment) per week for 14 weeks. In lectures, material 
was presented and GeoGebra used, in dynamic mode, as a demonstration tool. 

B. Jaworski

http://www.hestem.ac.uk/resources/case-studies
http://www.hestem.ac.uk/resources/case-studies


447

The lecturer asked many questions, in order to involve students, some of which were 
explicitly open ended or inquiry based. For example, in the topic area of real-valued 
functions of one variable, we posed the task:

   Consider the function  f ( x ) =  x  2  + 2 x  ( x  is real).  
  (a) Give an equation of a line that intersects the graph of this function:  
     (i) Twice (ii) Once (iii) Never (Adapted from Pilzer et al.  2003 , p. 7)  
  (b) If we have the function  f ( x ) =  ax  2  +  bx  +  c . 
     What can you say about lines which intersect this function twice?  
  (c) Write down equations for three straight lines and draw them in GeoGebra.  
  (d)  Find a (quadratic) function such that the graph of the function cuts one of your 

lines  twice , one of them  only once  and the third  not at all  and show the result in 
GeoGebra.  

  (e) Repeat for three  different  lines (what does it mean to be different?).    

 Part (a) was used in a lecture, where it was judged that students could engage 
quickly with the task and provide feedback to the lecturer. Students were expected 
to be familiar with this function and able to imagine or sketch a graph readily. Thus, 
imagining lines which would intersect the graph was seen not to be a diffi cult task 
for these students. Thus they could talk to each other about possible lines. Their 
initial responses expressed equations of horizontal lines (e.g. (i)  y  = 2 (ii)  y  = −1 (iii) 
 y  = −3). They found it harder to think about non-horizontal lines. When the lecturer 
asked for non-horizontal lines, examples were forthcoming from just a few students. 
The lecturer used GeoGebra to show these lines and to encourage students’ visuali-
sation. This allowed for some quick discussion across the lecture theatre to involve 
students, help them to see that different answers are possible and discuss the quality 
of the answers and what we can learn from them. 

 This activity and discussion should not delay the progress of the lecture 
extensively – it was always a balance between promoting students’ engagement 
and dealing with a suitable range of topics to cover the syllabus. The lecturer 
experimented with tasks such as this to gain insight into students’ perspectives 
and to encourage their active participation. Lecturer refl ection raised issues such 
as the value of outcomes versus the time factors involved. An issue that became 
visible was that of students’ perceptions of mathematical representation and 
formality. In their A level studies, 4  students had used notation in procedural ways to 
specifi c ends. For example, they could quickly invert a simple function (such as 
 f ( x ) = (5 x  − 3)/2) to fi nd the ‘inverse’ function ( f  − 1 ( x ) = (2 x  + 3)/5), usually by writing 
 y  =  f ( x ) (e.g.  y  = (5 x  − 3)/2) and rearranging an equation involving y and  x  to get 
 x  =  f  −1 ( y ) (e.g.  x  = (2 y  − 3)/5). They extended this liberally to non-linear and many-
one functions without consideration of the  meanings  of function and inverse. 
However, when given defi nitions of function and inverse, some were unable to see the 

4   A level GCE (Advanced Level General Certifi cate of Education) is a national examination (at 16+) 
with high stakes outcomes for higher-level study. Many UK universities require the highest grade 
in A level to qualify for university study in mathematics. 
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distinctions being made and therefore did not see the importance of the defi nitions 
and associated notations. Their perceptions of graphical representations were simi-
larly instrumental: where tasks sought to develop connections between the algebraic 
and the graphical, students’ focus on ‘plotting’ a graph detracted from seeing the 
generality of a function in its graph and the value of being able to vary parameters 
quickly to generate families of graphs and provide insight into the represented 
functions. The lecturer had to balance time factors, with quality time in lectures 
spent on tasks to shift these perceptions; inquiry-based tutorial tasks were designed 
and used with such aims in mind. 

 Thus, parts (b) to (e) of the above task were designed for use in a tutorial where 
students could work fl exibly in their small groups with access to GeoGebra on their 
computers; the lecturer and a graduate assistant would circulate, engaging groups 
in discussion and trying to discern the quality of students’ engagement and under-
standing. For example, in part (b) GeoGebra ‘sliders’ would allow students to vary 
a, b and c for a quadratic function and explore a variety of lines crossing the 
functions in order to visualise a line and relate to its algebraic equation, thus 
enabling them to make some (algebraic) form of general statement about such lines. 
GeoGebra supports quick experimentation. Parts (d) and (e) offered a more serious 
challenge, which was designed to be especially valuable for students who thought 
they knew all about quadratic functions. Thus, students should be drawn into 
mathematical inquiry and enabled to gain more familiarity with functions, graphs, 
functional notation and relationships between all of these. Further analysis of such 
inquiry- based tasks, relating to mathematical competencies, is presented in Jaworski 
( in press ). 

 The lectures were intended to introduce mathematical material and start an inquiry 
process demonstrated in the use of GeoGebra. Small group work in tutorials allowed 
more fl exibility of engagement with an emphasis on conceptual understanding. 
It was here that an inquiry community was envisaged and sought. Observations 
showed a range of differences across groups, with some groups engaging well with 
inquiry-based tasks and demonstrating in-depth mathematical understanding, 
particularly in discussion with the lecturer or graduate assistant. Others seemed to 
engage only when the lecturer was within earshot, and networking media proved 
to be a distraction. Some students fi lled their screen with graphs so that it was 
hard to see differences or discern features. Some used the sliders without stopping 
to question what they saw to be happening. Perceived commitment on the part of 
students was very variable with certain students seeming to believe they had not 
much to learn beyond their A level studies, seeing the graphical work as boring 
because they did not engage with deeper questions. For the teaching team, this was 
an important recognition which had to be fed into design and planning and was thus 
a practical instantiation of critical alignment in insider research. As a result of such 
critical recognition, the lecturer has been able to modify the approach to (try to) 
interact more effectively with such students. 

 After completion of the module, the RO and one of the teaching team conducted 
one-one and focus group interviews with the students. It was expected that, though 
students were no longer immersed in module tasks, they were still reasonably close 
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enough to the events to refl ect on their experiences. Analyses showed that despite 
inquiry approaches, some students maintained highly instrumental views on what it 
means to learn mathematics and ways in which the module supported this (or not!). 
For example, in one focus group, a student made the following remark:

  I found GeoGebra almost detrimental because it is akin to getting the question and then 
looking at the answer in the back of the book. I fi nd I can understand the graph better if 
I take some values for x and some values for y, plot it, work it out then I understand it … if 
you just type in some numbers and get a graph then you don’t really see where it came from. 
(Focus group 1) 

   For the lecturer who had tried hard to help students see values in GeoGebra use, 
such a comment was salutary! Such fi ndings fed back into subsequent deliveries of 
this module (e.g. see Jaworski and Matthews  2011 ). We used activity theory to draw 
attention to differences in perspective between students and the teaching team, as 
discussed further below (Jaworski et al.  2012 ).   

     Tools, Tasks and Resources: Instrumentation 
Theory and Documentational Genesis 

 The inherent complexity here of inquiry community within inquiry community 
(e.g. inquiry in mathematics in tutorials within teaching team inquiry into suitable 
approaches to working with students) leads to research questions about the mediating 
roles of the tasks, tools and other resources that are central to innovation in develop-
ing teaching, as well as to the ways in which teachers develop their use. The use of 
inquiry-based tasks is essential to the inquiry approach; the use of GeoGebra as a 
medium for representation and experimentation was important for promoting 
students in-depth engagement with mathematics in coordination with inquiry-based 
tasks. We see the tasks and GeoGebra as  mediational tools  central to creating an 
inquiry community and to fostering critical alignment. The developmental of teaching 
depended on our use and knowledge of such tools. 

 The theory of documentational genesis focuses on resources and their ‘schemes 
of utilisation’ in tracing teachers’ knowledge of teaching (Gueudet and Trouche 
 2011a ,  b ). It is based on theory of instrumentation which is concerned with the rela-
tionship between an instrument and a person’s use of that instrument. The theory of 
instrumentation (e.g. Trouche and Drijvers  2010 ) is concerned with learning that 
takes place as the user of the tool, the learner, interacts with the tool: it links a user 
with the tools he or she uses in a two-directional appropriation. From user to tools is 
a process of  instrumentalisation  in which the user appropriates the tool (instrument) 
to his or her use of it. In the opposite direction, a process of  instrumentation  involves 
the user in learning the idiosyncrasies of the tool in order to use it effectively. So, for 
example, with GeoGebra, instrumentation can be seen in the user learning what 
GeoGebra has to offer (such as the facility of using sliders to vary parameters) and 
its modes of use, becoming fl uent with use in order to be able to achieve a desired 
purpose. Instrumentalisation involves the user in utilising the tool according to his 
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or her explicit aims and requirements, that is, turning the tool to the user’s desired 
purpose. It seems clear that both are needed for effective use of the tool. We learned 
that instrumentalisation took very different forms for the student (taking a strategic 
approach) and the teaching team (taking a conceptual approach). 

 Documentational genesis is a process through which teaching develops, and 
the teacher becomes a more knowledgeable practitioner. The teacher, as user of 
resources, tasks and tools (instruments in the teaching process), develops a 
repertoire through this use and associated ‘schemes of utilisation’ (Gueudet and 
Trouche  2011a ,  b ) seen to develop through the instrumentation process. The teacher 
has a reason for using any tool related to her didactical purposes. Thus, she needs to 
know the tool and how to use it effectively (instrumentation). Didactical purpose 
will be interpreted through an instrumentalisation process, bending the tool to her 
own use of it. Through a repertoire of resource use, the teacher develops knowledge 
in teaching, related to the use of tools to promote students’ learning. Thus, in her 
use of resources, the teacher becomes a more knowledgeable practitioner, this 
knowledge being the developing  document  in documentational genesis. 

 As an example, consider the use of inquiry-based questions and tasks in the 
ESUM project. We see these tasks as tools mediating students’ engagement and 
mathematical understanding. Effective use of the tool means that we see the kinds 
of engagement and understanding that we seek as teachers. Our process of instru-
mentation involves seeking out inquiry-based questions, exploring their nature and 
becoming skilled in their design. Instrumentalisation involves our use of lectures 
and tutorials, fi tting the questions or tasks to the constraints of university context 
and adapting them to achieve our goals for students’ learning. Where we are 
dissatisfi ed with the outcomes of use, our inquiry into their use develops a feedback 
cycle through which we learn and which enables us to adapt the instrument for 
future use. The document that emerges from such a process refl ects the knowledge 
we have gained through our use and adaptation of the tool (i.e. in the tasks we have 
(re)designed). 

 Alternatively, we might consider the contribution of GeoGebra as a tool. Feedback 
from students at the end of the module suggested that many had found the use of 
GeoGebra in dynamic mode to demonstrate functional relationships in a lecture as 
too slow, delaying the progress of the lecture. They suggested that static mode 
would be better because it would be quicker. This made clear that their focus was on 
the (procedural) outcomes of GeoGebra use, rather than on the relationships revealed 
through graphs drawn in dynamic mode. The challenge for the teaching team here 
was to design approaches which would make clearer the relational focus and draw 
students’ attention away from the delays within the electronic system. This required 
teacher attention to the affordances and demands of GeoGebra, the mathematics in 
focus at a crucial time and the encompassing orchestration of the teacher. Through 
critical alignment, such considerations led to teachers making changes locally, to 
gaining new awarenesses in practice and more knowledge in teaching generally. 
These are essential ingredients of the documentational process. 

 The theory of documentational genesis is valuable because it focuses our attention 
specifi cally on the processes of teaching in relation to the resources we use, our 
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specifi c uses of them and our learning through this use. For example, it was a 
signifi cant recognition that instrumentalisation with GeoGebra was fundamentally 
different for students and teachers that allowed us to reconceptualise its use.  

     Tackling Complexity: Activity Theory as an Analytical Tool 

 The theories outlined above enable us to consider learning at a range of levels within 
developmental practice (e.g. engineering students learning mathematics, teachers 
learning about the use of resources in teaching, teachers learning to promote 
students’ more conceptual understandings of mathematics). Within a sociocultural 
frame, learning is seen as participation within social and cultural worlds, conceptu-
alised, as indicated, in terms of communities of practice and inquiry. Here, practice 
is seen as mathematical practice and as practice in the teaching and learning of 
mathematics, and an inquiry community involves a fundamental inquiry basis for 
engagement in practice. However, it is impossible to consider such practices without 
regard for the broader frames in which they are situated: the institutional and the 
societal. Teachers work within schools and classrooms or in university environments; 
they are people with social and political infl uences and perspectives; the same is 
true of students who are motivated by a range of factors and infl uenced by student 
culture. A. N. Leont’ev makes the following point, ‘in a society, humans do not 
simply fi nd external conditions to which they must adapt their activity. Rather these 
social conditions bear with them the motives and goals of their activity, its means 
and modes. In a word, society produces the activity of the individuals it forms’ 
( 1979 , pp. 47–48). According to Wertsch ( 1991 , p. 27), rather than ‘the idea that 
mental functioning in the individual derives from participation in social life’, ‘the 
specifi c structures and processes of intramental processing can be traced to their 
genetic precursors on the intermental plane’. The key idea here is that human activity 
is motivated within the sociocultural and historical processes of human life and 
comprises (mediated) goal-directed action. We might see this as relating strongly to 
the formation of students of mathematics within the cultures and systems in which 
mathematics learning and teaching take place. For example, students learn mathe-
matics within school culture; this includes working towards and being successful in 
A level examinations as a prerequisite for university study. School cultures are very 
different from university cultures. The expectations of students learning mathematics 
in the university include higher degrees of abstraction and formalism than they have 
encountered in schools (Hernandez-Martinez et al.  2011 ; Nardi  2008 ). 

 Activity theory offers perspectives of activity in a holistic sense – according to 
Leont’ev, ‘Activity is the non-additive, molar unit of life … it is not a reaction, or 
aggregate of reactions, but a system with its own structure, its own internal transfor-
mations, and its own development’ ( 1979 , p. 46). We cannot divorce mathematics 
learning from the totality of its situation and the context in which it is rooted. 
The theories set out above help us to conceptualise inquiry communities, to defi ne 
critical alignment and to make sense of teaching development. However, in our 
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analyses of/during the project, we have been faced with issues, tensions or 
contradictions which these theories have not been helpful in addressing. These 
include tensions between teachers’ ways of conceptualising teaching and learning 
in a university environment and the more strategic goals of students in learning 
mathematics. For this purpose we have used activity theory as a tool in the ana-
lytical process, thus including such complexity of factors in a unifying whole 
in which tensions and issues can be both accommodated and addressed. In the 
following, I draw on what Simon Goodchild and I wrote in our PME paper in 2006 
in which we referred to tensions and contradictions in our activity with teachers in 
developmental research relating to school classrooms (Jaworski and Goodchild 
 2006 , pp. 3–355). The ESUM project has used activity theory in a similar way.

  Leont’ev ( 1979 ) proposed a three-tiered explanation of activity. First, human activity is 
always energised by a motive. Second, the basic components of human activity are the 
actions that translate activity motive into reality, where each action is subordinated to a 
conscious goal. Activity can be seen as comprising actions relating to associated goals. 
Thirdly, operations are the means by which an action is carried out, and are associated with 
the conditions under which actions take place. Leont’ev’s three tiers or levels can be 
summarised as:

  activity motive actions goals operations conditio<--> <--> <-->; ; nns.    
  Leont’ev writes emphatically about the movement of the elements between the ‘levels’ 

within an activity system: activity can become actions and actions develop into activity, 
goals become motives and vice-versa, similarly with operations and conditions. The crucial 
differences seem to be: fi rst, goals are conscious, if the motive of activity becomes 
conscious it becomes a motive-goal; second, motive is about an energizing force for the 
activity and the actions, it is not something that is attained but rather drives the activity 
forward; on the other hand goals are results that can be achieved. Leont’ev writes 
“The basic ‘components’ of various human activities are the actions that translate them 
into reality, We call a process an action when it is subordinated to the idea of achieving a 
result, i.e. a process that is subordinated to a conscious goal”. (Leont’ev  1979 , pp. 59–60; 
Jaworski and Goodchild  2006 ) 

   This conceptualisation of activity is useful in providing a framework for analysis. 
We have done this in the ESUM project, and it has allowed us to deal with issues 
and tensions revealed in analyses – fi rst of all through  recognition  and then through 
 juxtapositioning , allowing us to see ways through the apparent contradictions. Here 
we juxtapose teaching perspectives with student perspectives, as revealed through 
our analyses, at each of the three levels. 

 Table  1  illustrates  recognition  and  juxtapositioning , summarised as follows: fi rst, 
aspects of activity revealed (recognised) in analysis and, second, through the two-
column structure, positioning them so that apparent contradictions stand out. These 
allow us, forcefully, to be aware of the issues that we have to address in working 
towards more desirable outcomes in our project.

   Juxtapositioning here shows two activity systems, two cultures acting side by 
side. The teaching position and the student position are as different  worlds  (Holland 
et al.  1998 ). For example, for teachers, the use of resources, inquiry-based tasks and 
a GeoGebra environment exists to create opportunities for students to conceptualise 
mathematics; teachers operate from within this world. For students, use of these 
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resources is what is required of them to reach their own ‘strategic’ goals: their world 
involves doing what is required to be successful in their academic programme and 
get high grades. Their vision of what this does or can involve is different from the 
teachers’ vision. 

   Table 1    Juxtaposing activity in teaching and for students in the ESUM project according to 
Leont’ev’s three levels   

 Level  Teaching  Students 

 1   Activity  is mathematics teaching-
learning. For the teacher(s) it is 
 motivated  by the desire for students 
to gain a deep conceptual-relational 
understanding of mathematics. 
We might in this case call it ‘teaching 
for learning’ 

 For students the  activity  is learning 
within the teaching environment and 
with respect to many external factors 
(youth culture, school-based expectations 
of university, etc.) and is (probably) 
 motivated  by the desire to get a degree 
in the most student-effective way possible 

 2  Here,  actions  are design of tasks and 
inquiry-based questions – with  goals  
of student engagement, exploration 
and getting beyond a superfi cial and/
or instrumental view of mathematics. 
 Actions  include use of GeoGebra with 
the  goal  of providing an alternative 
environment for representation of 
functions offering ways of visualising 
functions and gaining insights into 
function properties and relationships. 
 Actions  include forming students into 
small groups and setting group tasks 
with the  goals  to provide opportunity 
for sharing of ideas, learning from 
each other and articulating 
mathematical ideas 

 For students,  actions  involve taking part 
in the module: attending lectures and 
tutorials, using the LEARN page, using 
the HELM books, etc. with  goals  related 
to student epistemology. So  goals  might 
include attending lectures and tutorials 
because this is where you are offered 
what you need to pass the module; clear 
views on what ought to be on offer and 
what you expect from your participation; 
wanting to know what to do and how 
to do it; wanting to do the minimum 
amount of work to succeed; wanting 
to understand; wanting to pass 
the year’s work 

 3  Here we see operations such as the kinds 
of interactions used in lectures to get 
students to engage and respond, the 
ways in which questions are used, 
the operation of group work in 
tutorials and the interactions between 
teachers and students. The conditions 
include all the factors of the 
university environment that condition 
and constrain what is possible – for 
example, if some tutorials need to 
be in a computer lab, then they all 
have to be; lectures in tiered lecture 
theatres constrain conversations 
between lecturer and students 
when tasks are set 

  Operations  include degrees of participation – 
listening in a lecture, talking with 
other students about mathematics, 
reading a HELM book to understand 
some bit of mathematics, using the 
LEARN page to access a lecture, 
PowerPoint, etc. The conditions 
in which this takes place include 
timetable pressure, fi tting in pieces 
of coursework from different modules 
around given deadlines, balancing 
the academic and the social, getting up 
late and missing a lecture. They also 
include the organisation of lectures 
and tutorials and participating within 
modes of activity which do not fi t 
with your own images of what 
should be on offer 

  Adapted from Jaworski et al. ( 2012 , p. 151)  
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 I have suggested above that the use of resources – tasks and tools – has an 
important mediating function in the learning of students of mathematics or of 
teachers in developmental activity. However, the complexity in activity systems is 
such that we cannot isolate particular mediational infl uences. Tensions and contra-
dictions can arise due to parts of the activity system as a whole working against each 
other in infl uencing learning outcomes.  

     Discussion 

 Here, I refl ect on the three areas of theory and their contribution to teaching devel-
opment and end with some thoughts on their value for future practice. 

 Rooted in signifi cant documented developmental research, the inquiry approach 
sets out overtly to introduce new ways of teaching according to explicit goals for 
students’ learning and to inquire into the practices that result. The designed innovation 
uses inquiry-based approaches to learning, seeking to engage students in working 
with mathematics at deeper, more conceptual levels than the instrumental approaches 
which are common. Those who teach have to do so within the affordances and con-
straints of the university system. An inquiry approach affords possibilities to work 
within the existing system while looking critically at ways of being and doing. New 
approaches sit alongside traditional ones, and teacher inquiry focuses on the extent 
to which goals seem to be achieved in relation to approaches used. This is critical 
alignment. For example, in the traditional lecture, inquiry- based tasks for students 
seek to engage students more overtly. We see that some students are not engaged, 
and this raises further questions for the lecturer with regard to interpretation of the 
theory of inquiry within the traditional lecture mode. The curriculum has to be 
‘covered’: so the lecturer has to decide how much time can be spent on small group 
activity within a lecture. A compromise is to maintain the more traditional lecture 
and make small group activities more effective within the tutorials. Here, we see 
choices for the lecturer and the teaching team. The research activity of the RO, 
collecting data, acting as a sounding board, feeding back to the teaching and, 
ultimately, synthesising from analyses, provides a more global perspective. 

 The use of resources is crucial to the teaching approach. We have seen above the 
teaching goals surrounding the use of inquiry-based tasks and GeoGebra. Research 
has shown also the very different perspectives of students towards these resources. 
The resources are only effective to the extent that they are used in alignment with 
their intentions. One important outcome of this research has been the recognition 
of ways in which students have used and perceived their use of the resources. 
The teacher has to work with students’ perspectives, which are embedded within 
students’ own cultures, deriving from school, friends, family and social life, and 
succeed in developing an academic culture conducive to achieving teaching goals. 
If we take GeoGebra as an example, the teacher has fi rst to learn to use GeoGebra 
herself in order to see how it can  afford  (Gibson  1977 ) what she wants for student 
activity: this is her own instrumentation and instrumentalisation. She introduces the 
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resources to students in ways intended to enable them to become fl uent with the 
resource and use it in the ways the teaching team has designed. Students then 
undertake their own instrumentation and instrumentalisation. They are quick to 
appreciate the technical affordances of the resource (instrumentation). It is in their 
instrumentalisation that issues arise. For example, they see the resource as giving 
them the answer to how the graph of a given function (algebraic representation) 
should look, rather than as a means of varying parameters to enable inquiry into the 
nature of given functions. Perceiving this, the teacher has to use her skills in 
questioning (in a tutorial) to engage students in using the resource in inquiry mode. 
The interview feedback at the end of the module showed the extent to which this had 
been (un)successful for some students. Thus, for the teacher, inquiry into utilisation 
of the resource leads to a deeper knowledge of the teaching-learning interface 
surrounding the contribution of the resource to teaching goals. This growth of 
knowledge for the teaching team is their documentational genesis: it is essentially 
valuable for the local (in the moment) and more global (planning for the future) 
design of teaching. Thus, we see that innovation and inquiry, in relation to the develop-
ment of resource utilisation, are central to a growth of knowledge in teaching. 

 I come fi nally to the complexity of the system as a whole and the use of activity 
theory. Analysis of data had involved in-depth study of end-of-project interviews 
with the fi ndings linked to data from lectures, tutorials, student surveys and 
project writing, and teacher refl ections. It was clear that we were being shown 
distinct differences between how we had perceived students’ involvement with tasks 
and their actual involvement. This led us to various levels of thinking: ways in which 
interactions with students in tutorials might have achieved a deeper engagement with 
mathematical concepts, how the lecture mode afforded (or not) the possibility to 
frame a deeper conceptual focus and how we might use resources differently. 

 These are local instantiations of an inquiry approach and our (local) growth 
of knowledge, encompassing new awarenesses at a number of levels as exampled 
above. More signifi cantly, we recognise deeper levels of awareness and under-
standing. Teachers engage from teacher perspectives and students from student 
perspectives – it seems trite to write this. However, the weight of infl uence of these 
different perspectives underpins the diffi culties we perceive within the mathematical 
learning outcomes for our students. The seminal report from Hawkes and Savage 
and colleagues ( 2000 ) pointed to ‘The Mathematics Problem’. Artigue et al. ( 2007 ) 
drew attention to a range of problems highlighted in their extensive literature review. 
I am not pretending that the insights presented above provide ‘ the  answers’ to these 
problems. However, I do believe that, through developmental research within an 
inquiry approach, activity theory enables us to gain insight to the deeper nature of 
the problems, which then affords the awarenesses (knowledge) that allow us to 
make changes. Such changes require new ways of being, new ways of seeing the 
educational environment in which we work in relation to who our students are and 
how we can work with them to achieve the mathematical outcomes we seek. 

 In conclusion, I point to the overwhelming complexity in studying the develop-
ment of teaching and learning in mathematics while promoting such development, 
with important emphasis on relations between those participating. The several areas 
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of theory all make a contribution to the overall approaches to, conceptualisations of 
and outcomes from these complex processes or activity systems. There is, of course, 
much more that could be said.     
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    Abstract     This chapter examines the interplay of several key factors involved in 
shaping students’ opportunities to learn mathematics. It draws on studies conducted 
as part of the research program  Same Teacher—Different Classes , all of which use 
the same novel research methodology: multiple case studies, where each case 
includes a teacher who teaches mathematics using the same curriculum program or 
syllabus in two classes. The fi rst three sections examine ways by which the interplay 
between class characteristics and the characteristics of its teacher shapes students’ 
opportunities to learn mathematics, revealing different kinds of interactions between 
these two factors. The fourth section brings another factor into play by examining 
the interplay among class characteristics, characteristics of the teacher, and charac-
teristics of the mathematics topic (a central component of the curriculum) and how 
they shape students’ opportunities to learn mathematics. The interplay of factors 
involved in shaping students’ opportunities to learn mathematics is examined in two 
different settings: (1) teaching the same probability syllabus in high-school classes 
having different matriculation levels and (2) teaching the same algebra curriculum 
program in 7th grade classes in different schools.  
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        Introduction 

 In many countries, a common response to calls to improve mathematics teaching 
and learning is developing new curricula (e.g., the massive waves of “new math” 
curricula in the 1960s and various curriculum development projects of the 1990s). 
This includes adapting principles and standards for school mathematics, revising 
the mathematical content to be studied, and developing new curriculum programs 
(e.g., textbooks, teacher guides, and other learning and teaching materials). 

 However, the curriculum is only one factor that infl uences students’ opportunities 
to learn mathematics. Accumulating research suggests that students’ opportunities 
to learn mathematics vary across different classes, even when they use the same 
textbook (e.g., Manouchehri and Goodman  2000 ; Remillard and Bryans  2004 ; 
Tirosh et al.  1998 ). The differences found are often attributed to teacher-related 
factors, such as teacher knowledge and beliefs. These studies highlight the promi-
nent and indispensable role that teachers play in infl uencing how the curriculum is 
enacted in the classroom, and they underscore teachers’ central role in determining 
the nature of the learning experiences provided to students—a role that no curricu-
lum program by itself can fulfi ll. 

 Nevertheless, research reveals that aspects not directly or solely related to the 
curriculum or the teacher are also involved in shaping students’ opportunities to 
learn mathematics. Some are class-related aspects (i.e., aspects related to the 
group of students), such as students and parents’ expectations and demands, students’ 
profi les, classroom norms, and learning environments (e.g., Chazan  2000 ; Herbel- 
Eisenmann et al.  2006 ; Lloyd  2008 ; Tarr et al.  2008 ). 

 The curriculum, the teacher, and the class are therefore key factors in shaping 
students’ opportunities to learn mathematics. Yet, not much is known about how 
these factors interact. To date, the interplay of these factors has received little 
research attention and is often considered “noise” by researchers. This chapter 
centers on the interplay of those factors. It draws on the research program  Same 
Teacher—Different Classes  (Even  2008 ), which focuses purposely on studying the 
interactions among curricula, teachers, and classes in different situations. To study 
these interactions, we compare teaching and learning mathematics in different 
classes of the same teacher as well as of different teachers and examine the enacted 
curricula (e.g., the mathematical ideas addressed in class), the teaching practices 
(e.g., teachers’ response to, and use of, students’ talk and actions), the classroom 
culture (e.g., the nature of argumentation), etc. All studies that belong to the 
 Same Teacher—Different Classes  research program use the same novel research 
methodology: multiple case studies in which each case includes a teacher who 
teaches mathematics using the same curriculum program or syllabus in two classes. 
In this way, some aspects are kept relatively constant; this enables careful examina-
tion of the interactions among curricula, teachers, and classes, which are not easily 
otherwise detectable. 

 The main part of this chapter includes four sections that illustrate what might be 
gained and what the challenges might be when using this methodology for assessing 
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or studying mathematics classroom instruction. The fi rst three sections examine the 
ways by which the interplay between characteristics of the class and characteristics 
of the teacher shape students’ opportunities to learn mathematics, revealing different 
kinds of interactions between these two factors. The fourth section brings another 
factor into play: It examines the ways by which the interplay among characteristics 
of the class, characteristics of the teacher, and the mathematics topic shapes students’ 
opportunities to learn mathematics. The interplay of these factors is examined in 
different settings. The fi rst two sections are based on case studies of teaching the 
same probability syllabus in high-school classes having different matriculation 
levels (conducted in collaboration with Tova Kvatinsky—for more information 
about this set of studies, see Even and Kvatinsky ( 2009 ,  2010 )). The last two sections 
are based on case studies of teaching the same algebra curriculum program in 7th 
grade classes in different schools (conducted in collaboration with Tammy 
Eisenmann and Michal Ayalon—for more information about this set of studies, see 
Eisenmann and Even ( 2009 ,  2011 ) and Ayalon and Even ( 2010 ,  in press )).  

    Teaching Approaches and Classes Having Different 
Achievement Levels 

 In what ways does the achievement level of the class shape students’ opportunities 
to learn mathematics? The prevalent view, as well as the research literature, 
suggests a rather straightforward answer to this question: In low-achieving classes 
mathematics teachers tend to focus less on developing understanding, thinking, and 
problem solving and more on mechanistic answer fi nding, memorizing, and rule- 
following (e.g., Raudenbush et al.  1993 ; Zohar et al.  2001 ). These fi ndings imply 
that the achievement level of the class directly determines the degree of emphasis on 
students’ understanding in class. 

 However, the differences reported in the literature between mathematics teach-
ing in high- and in low-achieving classes are based mainly on teachers’ self-reports 
(questionnaires and interviews), that is, teachers’ views and conceptions, and not on 
detailed analyses of teaching practices and classroom interactions in high- and 
low- achieving classes. Research also shows that, usually, the more competent teach-
ers teach classes of high-achieving students, whereas the less competent ones teach 
the low-achieving students (Yair  1997 ). Thus, it is not clear whether the differences 
reported in the literature between emphasis on students’ understanding during 
mathematics teaching in high- and in low-achieving classes are related to differ-
ences between the teachers teaching in the respective classes and are not necessarily 
directly associated with the achievement level of the class. 

 In addressing this shortcoming of current research, we investigated whether 
teachers tend to adopt the teaching for the mechanistic answer-fi nding approach 
more when teaching classes of low-achieving students by analyzing actual practices 
of teaching mathematics and classroom interactions in classes having different 

The Interplay of Factors



462

levels taught by the same teacher (Even and Kvatinsky  2009 ). We focused on two 
aspects that are associated in the literature with the development of understanding 
(e.g., Cobb et al.  2001 ; Even and Lappan  1994 ; Wood et al.  2006 ): (1) students’ 
opportunities to play a signifi cant and infl uential role in the class discourse and 
(2) students’ opportunities to make decisions about ways of solving mathematics 
problems in class. 

 The participants were Betty and Gloria (pseudonyms), two high-school teachers 
teaching in the same school. Both teachers had many years of experience in teach-
ing mathematics and in preparing students for the matriculation examination 1  in 
mathematics, and both had a reputation of being competent and responsible teach-
ers. Each teacher taught the topic of probability in two classes—one class of lower- 
achieving students and another class of higher-achieving students. No differences 
were noted between the compositions of the two same-level classes (each taught by 
a different teacher), which was in line with the school policy. All four classes were 
preparing for the matriculation examination in mathematics at the time of the study, 
and they followed the same syllabus. The same-level classes used the same textbooks. 
Moreover, the two teachers often collaborated in planning which tasks—all taken 
from the textbooks they were using—they would use in their teaching, and as a 
result, about half of the tasks worked on in class were identical in the two same- 
level classes. The teachers also jointly prepared identical exams for their same-level 
classes throughout the school year. 

 The main data source was derived from observing all probability lessons in each 
class for one school year (except for one topic taught only at the higher level)—a 
total of 46 lessons. An individual semi-structured interview was also conducted 
with each teacher, focusing on the teachers’ views of teaching probability in 
different- level classes and whether they thought there were differences in how they 
taught the two classes. 

 A detailed data analysis included the whole-class work, using two units of analysis: 
(1) utterances, for examining students’ opportunities to play a signifi cant and 
infl uential role in the class discourse, and (2) activity (i.e., the whole-class works on 
one probability problem), for examining students’ opportunities to make decisions 
about ways of solving mathematics problems in class. Using utterances, we employed 
the coding system developed in the TIMSS-Video Study (Hiebert et al.  2003 ; 
Stigler et al.  1999 ; Stigler and Hiebert  1999 ) for class talk, with some modifi cations. 
The coding included six categories for teachers’ talk (e.g., elicitation, answering 
one’s own questions) and fi ve categories for students’ talk (e.g., student response, 
student elicitation). Teacher elicitation was then coded in more detail using fi ve 
categories; among them is content elicitation, again coded in detail, depending on 
whether the focus was on elicitation of factual information or on students’ ideas. 
Six whole-class activities and two full lessons were analyzed using utterances as the 
unit of analysis in each class. The activities analyzed in the two same-level classes 
(different teachers) consisted of classwork on identical probability problems, chosen 
randomly from the common problems on which both same-level classes worked. 

1   High-school graduation national exams, a prerequisite for higher education in Israel. 
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The sampled activities were validated by randomly selecting two full lessons from 
each class and analyzing all activities included in each lesson. Statistical analyses 
of utterances were performed on (a) quantitative measurements (e.g., the number of 
teacher utterances and the number of elicitation utterances) and (b) percentages 
of some totals (e.g., the percentage of elicitation utterances out of the total number 
of teacher’s utterances and the percentage of response utterances out of the total 
number of students’ utterances). Using an activity as the unit of analysis, we 
analyzed the whole-class work on all the problems solved during the observed 
lessons—a total of 193 activities. We focused on decisions related to choosing 
methods of solving problems and solutions to present and share with the whole 
class. (More details can be found in Even and Kvatinsky ( 2009 ).) 

 Analysis revealed that the teachers did not always behave similarly in the two 
classes they taught. Although rather small, these differences were consistently of the 
same nature for each teacher. Betty’s teaching was generally characterized by 
greater use of a teaching for mechanistic answer-fi nding approach in her lower- 
achieving class than in her higher-achieving class (e.g., asking students to memorize 
and follow rules in order to get correct fi nal answers; rarely allowing students to 
present their work to the whole class, and then, only if it was correct and done in the 
way she desired). However, in contrast, Gloria’s teaching was generally characterized 
by greater use of a teaching for understanding approach, emphasizing thinking, 
understanding, and problem solving in her lower-achieving class than in her 
higher- achieving class (e.g., encouraging students to propose and justify alternative 
solutions and to present and discuss their work with the whole class). 

 Yet, the analysis also revealed that Betty and Gloria’s teaching approaches were 
fundamentally different from each other. Betty’s teaching was not only character-
ized by a greater use of various characteristics of the mechanistic answer-fi nding 
approach in her lower-achieving class than in her higher-achieving class—in both of 
her classes, Betty emphasized mechanistic answer fi nding. In contrast, Gloria’s 
teaching was characterized by a greater use of various features of a teaching for 
understanding approach in her lower-achieving class than in her higher-achieving 
class—and in both of her classes, she emphasized thinking, understanding, and 
problem solving. Thus, apparently both Betty and Gloria’s teaching approaches 
were amplifi ed to some degree in their lower-level class. 

 Betty’s amplifi ed teaching approach in the lower-achieving class is in agreement 
with the literature, which suggests that teachers tend to adopt a teaching for mecha-
nistic answer-fi nding approach more when teaching in classes of lower-achieving 
students. However, Gloria’s amplifi ed teaching approach in the lower-achieving 
class, namely, of adopting more extremely a teaching for understanding approach, 
is contrary to this prevalent view. 

 One way to resolve this irregularity in fi ndings from other studies is to argue that 
Gloria is the exception; that is, like Betty, teachers tend to adopt characteristics of a 
teaching for a mechanistic answer-fi nding approach more when they teach in lower- 
achieving classes. However, based on the detailed analysis conducted and supported 
by the views about desired mathematics teaching explicitly expressed by the teach-
ers in their respective interviews, we proposed another way to resolve this 
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inconsistency: As caring teachers, although very different from each other, both 
Betty and Gloria used the resources available to them and drew on their preferred 
instructional strategies—their teaching approach—in attempting to meet the 
demands of the students, which they perceived to be more challenging. Hence, it 
may not be surprising that each teaching approach was amplifi ed to some degree 
in the lower-level class. In their own way, each teacher tried to help more those 
students who had encountered more diffi culties—the low-achieving students—and 
they did so by using the resources available to them: enhancement of their teaching 
approaches. 

 These fi ndings suggest that in contrast to the prevalent view, teachers like Gloria, 
whose teaching approach is characterized mainly by emphasis on understanding, 
may not emphasize understanding less in low-achieving classes. Thus, to a large 
extent, it is the fundamental teaching approach of the classroom teacher that may 
determine students’ opportunity to learn mathematics with a focus on understanding, 
and not solely or directly the achievement level of the class.  

    Teaching Approaches and the Mathematics Addressed 
in Classes Having Different Achievement Levels 

 In a follow-up study, we continued to explore ways by which the teaching approach 
of the classroom teacher shapes students’ opportunities to learn mathematics, by 
comparing the mathematical content that Betty and Gloria addressed in class (Even 
and Kvatinsky  2010 ). One way to examine this is to compare the coverage of chap-
ters, units, or topics (e.g., Cueto et al.  2006 ; Porter  2002 ; Tarr et al.  2006 ). The use 
of this measure showed that Betty and Gloria followed the same national syllabus 
and covered the same mathematical topics. Moreover, the same-level classes (taught 
by different teachers) used the same textbooks and worked on many identical text-
book problems. However, such measures are not suitable for examining more com-
plex aspects of the mathematics taught in class. 

 For this study we developed a framework especially for analyzing the mathematics 
addressed in probability lessons. The framework is comprised of fi ve interconnected 
aspects: (1) essential features and the strength of probability theory, (2) approaches 
to probability, (3) probability representations and models, (4) basic repertoire, and 
(5) the nature of probability theory. We examined references related to each of the 
193 probability problems worked on in class. When noteworthy, we also counted 
the number of problems where specifi c references were made and performed a 
statistical analysis in order to compare the respective percentages of problems 
between the two classes of each teacher and between the two teachers. (More details 
can be found in Even and Kvatinsky ( 2010 ).) 

 Our analysis revealed that differences in the mathematics that was addressed in 
the probability lessons were considerably more substantial between the two teach-
ers than between the two classes of each teacher and that, basically, mathematical 
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ideas associated with probability theory were addressed similarly in the two classes 
of each teacher but somewhat differently in the classes of different teachers. 
For example, although both teachers referred to uncertainty—a fundamental 
characteristic of probability theory—Gloria did so much more often than Betty 
did. Similarly, Gloria’s classes were exposed to additional representations of formal 
notation, such as graphs, pictures, tree diagrams, and tables, signifi cantly more 
than Betty’s classes were. Moreover, only Gloria introduced the experimental 
approach, extending the narrow view of probability commonly presented in text-
books using only the classical approach. Furthermore, Betty made available to 
learn a basic repertoire of examples of different rules, and probability was presented 
in her classes as a domain that deals with fi nal results where every problem has 
only one correct solution, reached by memorizing and following rules developed 
by experts. In contrast, Gloria made available to learn a basic repertoire of examples 
of important ideas and concepts, and probability was presented in her classes as a 
domain that deals with the construction and examination of various ways of solving 
problems. 

 The fi nding that differences in the mathematics that was addressed in the proba-
bility lessons were considerably more substantial between the two teachers than 
between the classes of each teacher is somewhat surprising at fi rst, because the two 
classes of each teacher were at different achievement levels. Consequently, even 
though all classes followed the same syllabus, the two classes of each teacher used 
different textbooks and worked on different textbook problems, whereas the same- 
level classes (taught by different teachers) used the same textbooks and worked on 
many identical textbook problems. Likewise, the teachers jointly prepared identical 
exams for their same-level classes throughout the school year, which were different 
for different-level classes of each teacher, taking into consideration the different 
nature of the matriculation exam for each level. 

 Hence, the differences in the mathematics that was addressed in the probability 
lessons appeared to be mainly related to differences between teachers, which 
prevailed over the difference between the achievement levels of their two classes. 
A major difference between Betty and Gloria lies in their teaching approaches. 
And, indeed, the differences in the mathematics that was addressed in the proba-
bility lessons seem to be linked to the teachers’ different teaching approaches. 
The mathematics that Betty addressed in class fi t her mechanistic answer-fi nding 
teaching approach and the different mathematics that Gloria addressed in class fi t 
her emphasis on thinking, understanding, and problem solving. Consequently, 
students of the two teachers did not only study the topic of probability differently—
they also studied different mathematical ideas associated with probability theory. 
These fi ndings suggest that teachers who adopt different teaching approaches, to 
some extent, make available to learn different mathematics even when they use the 
same textbooks. Thus, again, apparently it is the main teaching approach that the 
classroom teacher adopts that largely shapes students’ opportunity to learn particu-
lar mathematical ideas, rather than solely or directly the achievement level of the 
class or the textbook chosen.  
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    Teaching Approaches and the Mathematics Addressed 
in Classes That Use the Same Textbook 

 Are students that have the same teacher and use the same textbook but are in different 
classes offered the same opportunities to learn mathematics? The previous section 
suggests that this might be the case. The fi ndings of the probability research studies 
presented previously indicated that students’ opportunities to learn mathematics 
were similar in both of Betty’s classes, even though the students studied at different 
achievement levels, using different textbooks (although they followed the same 
syllabus). Similarly, in both of Gloria’s classes, students’ opportunities to learn 
mathematics were similar, yet different from those of Betty’s students. Unfortunately, 
the literature provides little information about the enacted curriculum in different 
classes of the same teacher using the same textbook. To study this matter more 
thoroughly, we examined students’ opportunities to learn mathematics when the 
same algebra textbook was used in four beginning algebra classes, where two 
classes were taught by one teacher, Sarah, and the other two by another teacher, 
Rebecca (pseudonyms) (Ayalon and Even  2010 ; Eisenmann and Even  2009 ,  2011 ). 

 Both teachers followed rather closely the lesson plans suggested in the textbook, 
characterized by work on investigation tasks for much of the class time, recom-
mended for small-group work, followed by whole-class work aimed at advancing 
students’ mathematical understanding and conceptual knowledge. Yet Sarah and 
Rebecca exhibited different teaching approaches during the whole-class work 
component of the lessons. Sarah incorporated aspects of direct teaching and provided 
explicit explanations of central mathematical ideas and solutions of key tasks. 
She was responsive to students’ contributions only when they fi t her lesson plan. 
In contrast, Rebecca adopted aspects of inquiry-based teaching. She rarely provided 
explicit explanations of central ideas or solutions of tasks. Moreover, she seldom 
explicitly appraised students’ work. Instead, Rebecca encouraged students to propose 
their own ideas during whole-class work. This was followed up by additional questions. 
She was responsive in her teaching to students’ mathematical class behavior and 
performance. 

 Analysis of classroom students’ participation indicated that each of the respec-
tive teachers’ two classes exhibited distinctive characteristics. One of Sarah’s 
classes was characterized by active participation of most students. In contrast, 
Sarah’s other class was characterized by a lack of student participation and frequent 
disciplinary problems. One of Rebecca’s classes was cooperative, with highly 
motivated students. In Rebecca’s other class, most students actively participated, 
although at times they experienced diffi culties in learning the mathematics. 

 Examination of the mathematical content offered to students, by measuring the 
extent of coverage of chapters, units, or topics, indicated that both Sarah and 
Rebecca followed the teaching sequence suggested by the textbook, and generally 
covered the same textbook units, and based classwork almost entirely on textbook 
tasks. Thus, the teaching sequence in each of the four classes was basically identical, 
and all classes largely covered the same mathematics subtopics. 
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 However, in-depth analyses of the mathematics addressed in class portrayed a 
somewhat different picture. For the in-depth analysis, we used a framework developed 
by Kieran ( 2004 ) that distinguishes among three types of school algebra activities, 
classifi ed by Kieran as the core of school algebra. These include (1) generational 
activities, which involve the forming of expressions and equations that are the 
objects of algebra (e.g., writing a rule for a geometric pattern); (2) transformational 
activities, which are “rule-based” activities (e.g., collecting like terms, simplifying 
expressions, factoring, and substituting); and (3) global/meta-level activities, which 
include general mathematical processes that are not exclusive to algebra (e.g., problem 
solving, modeling, generalizing, predicting, justifying, and proving). 

 The main data source for this study was derived from observing the teaching of 
two beginning algebra topics— forming and investigating algebraic expressions  and 
 equivalence of algebraic expressions —in each of the four classes (15–19 lessons in 
each class; a total of 67 lessons). An individual semi-structured interview was also 
conducted with each teacher, focusing on the ways the teachers perceived the 
curriculum program and the differences in teaching it in the two classes. Using an 
activity (i.e., classwork on one algebra task) as the unit of analysis, we coded all 
class activities into one or more of the following categories: generational, transfor-
mational, and global/meta-level algebraic activity. We also recorded the time spent 
on each activity. The number of activities in each category and the time devoted to 
them, in each of the classes, were then compared. (More details can be found in 
Eisenmann and Even ( 2009 ,  2011 ).) 

 A comparison of the distributions of these three types of algebraic activity 
revealed similarities as well as differences between the two teachers and between 
the two classes of each teacher. In Sarah’s case, the distributions of each type of 
algebraic activity were nearly similar in the two classes, although the class with 
disciplinary problems had fewer opportunities than did the class with active students’ 
participation to engage during whole-class work in global/meta-level algebraic 
activities, such as hypothesizing, justifying, and proving. Examination of Sarah’s 
use of the textbook revealed that some of the global/meta-level textbook tasks were 
enacted only in the class with active students’ participation. Moreover, there were 
also several cases in which the same textbook task was enacted in the class with 
active students’ participation as a global/meta-level activity but not so in the class 
with disciplinary problems. This was done by transforming global/meta- level 
textbook tasks into non-global/meta-level tasks. 

 In Rebecca’s case, the differences between her two classes were more profound. 
Rebecca’s highly motivated class had more opportunities to engage in global/meta- level 
algebraic activities than the class that had experienced diffi culties, whereas the class 
that had experienced diffi culties had more opportunities to engage in transforma-
tional activities, such as collecting like terms, simplifying expressions, factoring, 
and substituting numerical values into expressions. Examination of Rebecca’s use 
of the textbook revealed that, like in Sarah’s case, some of the global/meta-
level textbook tasks were enacted only in the highly motivated class. Also, there 
were times when the same textbook task was enacted in the highly motivated class 
as a global/meta-level activity by transforming non-global/meta-level textbook 
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tasks into global/meta-level tasks, but not so in the class that had experienced 
diffi culties. 

 These fi ndings suggest that the two classes of each teacher were offered a some-
what different type of mathematics. In both teachers’ cases, the decline of global/
meta-level activities in one class appeared to be related to the interplay between the 
teaching approach of the teacher and the students’ classroom participation and con-
tribution to the mathematics discourse in class. In Sarah’s case, the decline of global/
meta-level activities in one of her classes seemed to be largely related to the lack of 
students’ cooperation and to the many discipline problems that caused interruptions 
in the class mathematics activity. Furthermore, students in this class, in contrast to 
the other class, often did not complete the assigned small-group work, which was 
planned as a basis for the more advanced whole-class activities. This situation made 
it diffi cult to enact global/meta-level activities during the whole-class work, and 
consequently, Sarah implemented fewer thinking-related activities and more basic 
and practice activities during this component of the lesson. However, Sarah’s strict 
adherence to the lesson plans recommended in the textbook, coupled with her use of 
direct teaching during whole-class work, contributed to a small gap between her two 
classes regarding students’ opportunities to engage in global/meta-level algebraic 
activities. 

 In Rebecca’s case, the decline of global/meta-level activities in the class that 
had experienced diffi culties seemed to be mainly related to the nature of students’ 
contribution to the mathematical discourse in class, coupled with Rebecca’s ongoing 
responsiveness to students’ contribution and participation in class. With the students 
in the class that readily cooperated with her in global/meta-level activities and even 
initiated them, Rebecca emphasized this type of algebraic activities, even beyond 
what was available in the textbook. However, in the class that had experienced 
diffi culties, students seldom cooperated with her when she tried to work on global/
meta-level activities. Instead, they often wanted to make sure that they knew how to 
reach the correct result and encouraged her to emphasize transformational (rule- based) 
activities.  

    Mathematical Topics, Teaching Approaches, 
and the Mathematics Addressed in Classes 
That Use the Same Textbook 

 In a follow-up study, we examined how students’ opportunities to learn mathematics 
are shaped by the interplay of the class, the teacher, and the mathematical topic—
an important component of the curriculum (Ayalon and Even  2010 ,  in press ). The 
fi nding that, of Rebecca’s two classes, the class that had experienced diffi culties 
had more opportunities to engage in transformational activities than did the highly 
motivated class, whereas no such difference occurred in Sarah’s two classes, 
intrigued us. Thus, we conducted our investigation in the context of transforma-
tional  algebraic activity in Sarah and Rebecca’s classes. 
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 For this purpose, we categorized transformational activities into different roles, 
uses, and characteristics, as revealed during work in the four classes—some of 
which represent invalid mathematical ideas that were suggested by students 
(e.g., substituting numerical values into expressions as a means of developing a 
sense about the behavior of expressions, substituting numerical values into expres-
sions as a means of proving non-equivalence, substituting numerical values into 
expressions as a means of proving equivalence (mathematically invalid), expanding 
and simplifying expressions as a means of maintaining/proving equivalence, and 
technical practice in simplifying expressions). We then compared the percentage of 
time and the distribution of each kind of transformation-related work in the teaching 
sequence between two classes taught by the same teacher and also across two topics: 
 forming and investigating algebraic expressions  and  equivalence of algebraic 
expression.  These topics were chosen because transformational algebraic activity 
plays different roles in each topic. With  equivalence of algebraic expressions , trans-
formational algebraic activity (i.e., manipulating expressions using properties of 
real numbers and substituting numerical values into expressions) is central to 
proving the equivalence or non-equivalence of expressions. With  forming and 
investigating algebraic expressions , transformational algebraic activity (i.e., substi-
tuting numerical values into expressions) is a useful means for developing a sense 
of the behavior of expressions (Even  1998 ). Each of those different roles of trans-
formational algebraic activity requires a different kind of reasoning—deductive 
with  equivalence of algebraic expressions  and inductive with  forming and investi-
gating algebraic expressions . Deductive reasoning is known to be diffi cult for 
students (Harel and Sowder  2007 ), whereas inductive reasoning is considered to be 
the simplest and most pervasive form of everyday problem-solving activities 
(Nisbett et al.  1983 ) and, as research suggests, is often students’ preferred way to 
form and test mathematical conjectures (e.g., Harel and Sowder  2007 ). (For more 
details, see Ayalon and Even ( 2010 ,  in press ).) 

 Analysis of the whole-class work that was associated with transformational 
algebraic activity during the teaching of the two topics revealed that the opportunities 
to engage in transformational activity related to the topic  forming and investigating 
algebraic expressions  were similar in Sarah’s two classes as well as in Rebecca’s 
two classes. In fact, they were similar in all four classes. However, substantial dif-
ferences were found between Rebecca’s classes—but not between Sarah’s classes—
with regard to the opportunities to engage in transformational activities related to 
the topic  equivalence of algebraic expressions . In this regard, Rebecca’s highly 
motivated class was similar to Sarah’s two classes. Conversely, the class that had 
experienced diffi culties, unlike Rebecca’s other class, repeatedly engaged in substi-
tuting numerical values into expressions as a means of proving equivalence—a 
method that is often used by students to (invalidly) prove equivalence (e.g., Smith 
and Phillips  2000 ). Moreover, this class had considerably fewer opportunities than 
did the other class to engage in simplifying and expanding expressions as a means 
of maintaining or proving equivalence. Instead, this class extensively engaged in the 
technical practice of simplifying expressions. Based on the detailed analysis of the 
classroom discourse in each class, we proposed that these fi ndings (the similarities 
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as well as the differences) are related to the interplay among the nature of the specifi c 
mathematical topic, the specifi c teacher, and the specifi c class. 

 As mentioned earlier, work associated with the topic  equivalence of algebraic 
expressions  involves extensive deductive reasoning, which is known to be diffi cult 
for students, and counteracts students’ tendency to use inductive reasoning 
(e.g., Harel and Sowder  2007 ). And indeed, our analysis revealed that both of 
Rebecca’s classes, who, in line with her teaching approach, were encouraged to 
propose their own ideas about how to prove equivalence, indeed suggested ideas 
that resembled inductive reasoning, involving substituting numerical values into 
expressions. Yet the two classes proposed different ways of using substitution of 
numerical values into expressions as a means of proving equivalence. In the highly 
motivated class, the ideas that resembled inductive reasoning had a valid mathematical 
fl avor. For example, students proposed substituting all numbers—then added that 
this could not be realized—and therefore suggested substituting “representative” 
numbers. Although adhering to the idea of substituting numbers, students in this 
class understood that substituting numerical values into expressions is a useful 
means of examining the potential of equivalence but is not appropriate in proving 
equivalence. In contrast, in the class that had experienced diffi culties, the prevailing 
idea was that substituting a few numbers per se is an appropriate means of proving 
the equivalence of given expressions. The different mathematical discourses that 
developed in her classes led Rebecca, who was attentive to her students’ mathematical 
performance, to provide each of her classes with different experiences related to 
simplifying and expanding expressions. The class that had appeared to understand 
the concept of equivalence was given more opportunities to simplify and expand 
expressions as a means of maintaining or proving equivalence, an idea known to be 
diffi cult for students (Kieran  2007 ). However, to address the recurring usage of 
substitution as a means of proving equivalence by the other class, while avoiding 
overloading the students with additional challenging ideas, and in line with her 
teaching approach of not providing explicit explanations of central ideas or explicit 
appraisal of students’ work, Rebecca chose to devote a considerable amount of time 
in this class to the technical practice of simplifying expressions. 

 Unlike Rebecca, and in accordance with her direct teaching approach, when 
teaching the topic  equivalence of algebraic expressions , Sarah simply explicated in 
both classes that substitution could not be used to prove that two given expressions 
are equivalent because there might be a number that has not yet been substituted, but 
its substitution in the two given expressions would result in different values. In both 
classes Sarah presented this idea to motivate students to look for a different method 
to show equivalence. She then directly introduced the use of properties of real numbers 
to manipulate expressions as a means of proving equivalence. When, later, a student 
once suggested substituting numerical values into expressions as a means of proving 
equivalence, Sarah immediately rejected it and repeated the above explanation. 
By providing explicit explanations of how to prove equivalence, and by not allowing 
students to alter her lesson plans, there was little opportunity for students to suggest 
their own (valid or invalid) ideas during whole-class work about ways of proving 
equivalence (e.g., the use of substitution). Consequently, students’ opportunities to 

R. Even



471

engage in transformational activities related to the topic  equivalence of algebraic 
expressions  were similar in Sarah’s two classes. 

 In contrast to the nature of the transformation-related work associated with the 
topic  equivalence of algebraic expressions , transformation-related work associated 
with the topic  forming and investigating algebraic expressions  basically involves 
inductive reasoning. Consequently, the transformation-related work associated with 
developing meaning for expressions, such as substituting numerical values into 
expressions to learn about the behavior of expressions, was well suited to the students’ 
preferences. Therefore, both Sarah and Rebecca could follow rather closely the 
lesson plans suggested in the textbook, as they often did, without dealing with 
students’ major diffi culties. Consequently, Sarah and Rebecca’s contrasting teaching 
approaches did not appreciably infl uence students’ opportunities to engage in trans-
formational activity related to the topic  forming and investigating algebraic expres-
sions , and thus these opportunities were generally similar in all four classes.  

    Conclusion 

 The fact that when using the same curriculum materials, different teachers teach 
mathematics differently, as was shown in our studies, is not entirely surprising and 
has been documented by empirical research (e.g., Manouchehri and Goodman  2000 ; 
Remillard and Bryans  2004 ; Tirosh et al.  1998 ). However, by using carefully designed 
conceptual frameworks that enabled us to examine fundamental aspects of the 
mathematics taught in class, beyond textbook or topic coverage, our studies revealed 
that students of different teachers did not only study mathematics differently but 
there were also differences in the mathematics addressed in those classes. The differ-
ences found appeared to be linked to the teacher’s teaching approach. These fi ndings 
suggest that teachers who adopt different teaching approaches, to some extent, tend 
to teach different mathematics even when they use the same curriculum materials. 

 Noteworthy information was revealed when, instead of focusing solely on the 
comparison between teachers, different classes taught by the same teacher were also 
compared. For example, the detailed information about actual teaching practices and 
classroom interactions in different classes with the same teacher allowed us to detect 
a rather surprising fi nding, which is contrary to the prevalent view portrayed in 
modern literature about teachers’ tendency to focus less on developing understand-
ing and more on mechanistic answer fi nding when teaching low-achieving classes. 
Furthermore, our studies showed that differences in the mathematics addressed 
occurred not only between classes of different teachers but also between different 
classes of the same teacher who used the same curriculum materials. For example, 
careful examination of the types of the algebraic activities enacted in different classes 
of the same teacher allowed us to detect differences in the classes’ opportunities to 
engage in global/meta-level algebraic activities. These fi ndings highlight the indis-
pensable role that the class (i.e., the group of students), and not only the teacher, 
plays in determining students’ opportunities to learn mathematics. 
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 However, the fi ndings from the research program  Same Teacher—Different 
Classes  suggest additional important implications. Our fi ndings clearly exemplify 
how the interplay among the teacher, the class, and the curriculum shapes students’ 
opportunities to learn mathematics. For example, it was the interplay among the 
following factors: Rebecca’s fundamental teaching approach, the specifi c character-
istics of each of her classes, and the unique characteristics of the topic  equivalence 
of algebraic expressions  that greatly contributed to differences between her two 
classes, regarding students’ opportunities to engage in a transformational activity 
related to this topic. Likewise, it was the interplay among the following factors: her 
fundamental teaching approach, the specifi c class characteristics, and the unique 
characteristics of the topic  forming and investigating algebraic expressions  that 
contributed to the similarity between her two classes and in students’ opportunities 
to engage in a transformational activity related to this topic. 

 Although research revealed important, though limited information about factors 
involved in shaping students’ opportunities to engage in argumentative activity, the 
interplay of these factors has received little research attention, and not much is 
known about how these factors interact with each other. The unique methodology 
of the research program  Same Teacher—Different Classes , which examines teach-
ing and learning mathematics in different classes with the same teacher and with 
different teachers, enabled us to carefully examine interactions among curricula, 
teachers, and classes that are not easily detectable, and it revealed the complex 
ways in which they shape students’ opportunities to learn mathematics. As this 
chapter suggests, attending to the interplay among teachers, the curriculum, and 
classes has great potential to contribute to sophisticated understanding of teaching 
and learning in the classroom in general and to curriculum enactment in particular. 
Our fi ndings help explain discrepancies between the written and the enacted 
curriculum, among the ways different teachers enact the same curriculum materials, 
and among the ways the same teacher enacts the same curriculum materials in 
different classes. 

 We previously described what might be gained when using the unique methodology 
of the research program  Same Teacher—Different Classes , which is based on multiple 
case studies, where each case includes a teacher who teaches mathematics using the 
same curriculum program or syllabus in two classes. The fi ndings obtained from using 
this methodology laid the groundwork for follow-up studies by revealing new research 
questions that are important to pursue. For example, what roles does the achievement 
level of the class or disciplinary problems play in curriculum enactment and in 
students’ opportunities to learn mathematics? Is there a teaching approach that is 
suitable for all classes and for all mathematical topics? However, one of the challenges 
we now face lies in moving from small-scale to large-scale research studies. Similarly, 
our initial work on designing and adopting conceptual frameworks that can be used to 
examine the mathematics addressed in class is a promising tool for analyzing complex 
aspects of the mathematics addressed in different classes. However, suitable conceptual 
frameworks that can be used to examine the mathematics taught in class are sparse, and 
therefore this is another area that could benefi t from stronger and more systematic work 
in the future.     
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    Abstract     We report analyses of classroom interaction in trigonometry classes taught 
at an American community college focusing on two dimensions: the mathematical 
novelty of questions that instructors and students ask and the interactional moves 
that the instructors use to encourage student involvement in the lesson. The analyzed 
lessons were particularly challenging because existing frameworks for analyzing 
classroom behavior did not account for the cases in which the delivery mode was 
lecture. We discuss the analytical strategies we used and show data to illustrate how 
they help us in capturing the complexity of classroom interaction and differences 
between instructors when lecture is the primary mode of instructional delivery. 
We conclude with suggestions for further work.  

  Keywords     Classroom interaction   •   Lecture   •   Trigonometry   •   Teacher Moves   • 
  Questions  

     Since the publication of the  Professional Standards for Teaching Mathematics  
(National Council of Teachers of Mathematics  1991 ), research in mathematics 
education has focused on how instructors and students manage interactions in the 
classroom. Attention to classroom interaction has long been of paramount importance 
in education, but the NCTM publication brought to light the need for creating 
different interaction dynamics in mathematics classes. Increased student participation 
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in math classes has been heralded as an important element of good teaching practice 
at the postsecondary level (Blair  2006 ), but the extent to which these practices are 
common in tertiary education is unknown. 

 Community colleges in the United States offer an important setting to investigate 
postsecondary teaching practice. Community colleges are a type of postsecondary 
institution that provides the fi rst 2 years of baccalaureate degrees and vocational, 
technical, and enrichment education. These institutions are typically open access 
and nonresidential, and they serve the communities in which they are located. 
In addition, they are less expensive relative to other postsecondary institutions. 
Community colleges are an attractive option to students for all these reasons. 
Courses are offered at many hours during the day and on weekends, allowing 
students to keep full-time jobs while they take classes. Community college classes 
are usually small (under 40 students), thereby allowing more opportunities for 
instructor- student interaction. Community colleges enroll a signifi cant number of 
undergraduate students each year: in 2006, 50 % of the total undergraduate popula-
tion and nearly 49 % of all undergraduate students taking a mathematics course 
were enrolled at the community college (Dowd et al.  2006 ; Rodi  2007 ). An important 
feature of these mathematics classes is the prominence of lecture as a preferred mode 
of instructional delivery. In 2-year colleges, for example, 74 % of class sections in 
college algebra, 81 % in trigonometry, and 93 % in differential equations used 
predominantly lecture (Lutzer et al.  2007 , p. 146). 

 The impetus of this chapter comes from dissatisfaction with existing frame-
works that investigate classroom interaction, as such frameworks are mostly geared 
towards  standards - based  mathematics education. These frameworks leave large 
portions of interaction unexamined, because they are grouped under a single label 
(e.g., lecture, initiation-response- evaluation/feedback [IRE/F]). In lessons in which 
the teacher lectures most of the time, the frameworks generally do not provide 
enough detail about what happens in any given class and do not differentiate across 
instructors. And although using open-ended activities that students explore in small 
groups and discuss as a large group may lead to the development of important math-
ematical competencies, our sense is that most of the mathematics classes in postsec-
ondary education do not use this type of teaching. Our own experience working with 
instructors considered outstanding by their institutions is that student participation is 
usually initiated by the teacher and is mostly centered around memorizing and practic-
ing routine procedures (Mesa  2010 ,  2011 ; Mesa et al.  2014 ). If we want to change 
how students engage with mathematics, and increase their opportunities to learn 
authentic mathematics, a better characterization of the complexity of classroom 
interactions that are happening in this setting is fundamental. 

 In this chapter, we describe what we have learned from the analyses of 21 trigo-
nometry lessons taught at a community college by fi ve different instructors. In these 
analyses, we describe the novelty of the mathematical questions that were posed 
and how the instructors managed interactions in the classroom over time. 

 The chapter is organized into three sections. We start by briefl y stating the theo-
retical grounding for this work and relevant prior research on classroom interaction. 
We then describe the methodology and the two analyses we conducted with the 
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trigonometry lessons. In the fi nal section, we discuss the affordances and challenges 
of the analyses, the ways in which they complement each other, and the areas for 
further investigation. 

    Theoretical Background 

 We defi ne instruction as the shared work on mathematical content between teachers 
and students within environments (the classroom, the school, and the community); 
this work changes over time (Cohen et al.  2003 ). This defi nition gives us a point of 
entry into the complexity of any given classroom and also the ability to shift atten-
tion from the teacher, the student, or the content to the interactions between them, 
through which teaching, learning, and knowledge are manifested. By  content , we 
specifi cally refer to knowledge, skills, and dispositions that instructors, institutions, 
or society deem appropriate for students to learn. This defi nition acknowledges that 
learning happens all the time, even in cases in which an observer judges the teaching 
as leading to “impoverished” learning. 

 Many scholars have established, both theoretically and empirically, that 
classroom interactions matter for student learning. Social constructivist theories of 
learning acknowledge that learning does not happen in a vacuum, it is mediated by 
the interactions and the tools (e.g., language) available to learners at any given 
time (Bakhtin  1981 ; Vygotsky  1986 ). Seminal work in elementary mathematics 
classrooms in the late 1980s and early 1990s based on this theory highlighted that 
the ways in which teachers and students interact with mathematical content in their 
classrooms shape what children believe mathematics is about (Yackel and Cobb 
 1996 ; Yackel et al.  1990 ). In response to this change in thinking, the community 
shifted its attention from teachers and students and their beliefs, attitudes, or 
knowledge (e.g., Fennema and Sherman  1986 ; Secada  1995 ; Thompson  1992 ) to 
classroom processes (e.g., Moschkovich  1996 ) and to the way in which those 
processes evolved and developed in real classrooms (Cobb et al.  2001 ). Driven also 
by a desire to improve instruction, this work promoted a vision of classroom 
mathematical activity centered on complex mathematical tasks and questions, 
which would allow students to struggle with mathematics in the same way as 
mathematicians would (Schoenfeld  1992 ). 

 A comparable interest exists in postsecondary education. Observational studies 
in college classrooms have characterized student learning as a “spectator sport”: 
“little participation occurs, few students are involved, and teacher questions focus 
on recall rather than critical thinking” (Nunn  1996 , p. 245). Scholars have advo-
cated shifting from a “teaching” to a “learning” paradigm (Bass  1999 ), in which 
student participation and engagement with the content during classrooms becomes 
central. Although there is an important body of work promoting the use of “active 
learning” strategies in higher-education classrooms (e.g., Frederick  1987 ; Johnson 
et al.  1998 ; Prince  2004 ), very few faculty actually use them in their lectures 
(e.g., Dancy and Henderson  2009 ). Likewise, teaching approaches such as 
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inquiry-based learning in mathematics (Coppin et al.  2009 ) have been confi ned to a 
few faculty members within math departments. 

 In reviewing the literature, we found two areas that were important in analyzing 
the interaction between the teacher, the students, and the content. One was the 
nature of the questions asked by the teachers and students, and the other was the 
extent to which instructors used strategies that opened the dialogue and invited 
students into the mathematical conversation. 

    The Nature of Questions Matters 

 There is a substantial agreement among scholars about the importance of questions 
and tasks for promoting students’ learning. Scholars in cognitive psychology 
(e.g., Anderson et al.  2001 ) highlight the importance of organizing instruction using 
questions that address different types of knowledge (factual, procedural, con-
ceptual, and metacognitive) and that engage different levels of cognitive processes 
(remembering, understanding, applying, analyzing, creating, and evaluating). 
Ideally, instruction is such that all types of knowledge and all different processes are 
addressed, yet some studies report that recall questions are the most common type 
used in college classrooms (Barnes  1983 ; Nunn  1996 ; Pollio  1989 ). 

 A meta-analysis of the parameters of discourse present in nine well-known 
strategies for text discussion in small groups revealed that the quality of teacher and 
student questions (specifi cally novel questions), uptakes, the presence of elaborated 
explanations, and the density of reasoning words were features of discussions that were 
deemed productive (i.e., they developed high-level thinking and comprehension) 
“despite the highly situated nature of small group discussions” (Soter et al.  2008 , 
p. 373). Interestingly, Soter and colleagues’ analysis of who spoke the most (either 
students or teachers, using number of words as a metric) did not support the idea that 
approaches dominated by teacher talk were less productive than approaches dominated 
by student talk, but rather that the nature of the questions was more important. 

 Research on tasks used in mathematics classrooms also indicates that tasks 
addressing novel mathematical questions are preferred over tasks focusing on 
routine or repetitive activities (Doyle  1984 ,  1988 ). In addition, the way in which the 
tasks are enacted in the classroom matters. Students of teachers who tend to reduce 
the cognitive complexity of tasks by asking simpler, more routine questions perform 
worse on standardized tests than students of teachers who tend to maintain or 
increase the cognitive complexity of the tasks they work on (e.g., Silver and Stein 
 1996 ; Stein et al.  1996 ).  

    How Teachers Invite Students into the Conversation Matters 

 Work in linguistics, specifi cally with the engagement system (Martin and White 
 2005 ), has highlighted that speakers use language to engage others by way of 
the interplay between two major discursive voices,  monogloss  and  heterogloss . 
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A monogloss voice seeks to give facts that ostensibly concede no room for the 
negotiation of meaning. For example, to attempt to persuade an audience to the 
speaker’s side, he or she can skillfully use assertive discourse devices to elicit con-
fi dence in the statement he or she is making. On the other hand, a heterogloss voice 
seeks to engage the audience using a variety of linguistic resources and to open up 
or close down options for dialogue, each of these conveying a varied strength of 
engagement (Martin and White  2005 ). 

 It would be erroneous to classify any lecture as strictly monoglossic. Instructors 
can use language to open up the conversation, via heteroglossic moves. Some of 
these devices have been identifi ed as having the potential for increasing students’ 
involvement in the classroom and for changing their own positioning towards 
doers of mathematics (Males et al.  2010 ; Mesa and Chang  2010 ). Smith and 
Higgins ( 2006 ) have proposed that more than the types of questions that teachers 
ask, the manner in which they react to students’ responses can make a difference in 
the classroom, specifi cally in creating more interactive learning environments. 
In college classrooms, Nunn ( 1996 ) found that behaviors that create a supportive 
atmosphere (i.e., praising students, indicating that an answer is right, and using 
students’ names) were signifi cantly correlated to the amount of time a student par-
ticipated (p. 258). Thus, both the type of questions asked and the teacher’s responses 
to the questions can signal that student participation is welcome, and facilitate 
student engagement with the content. 

 Given the predominant role of lecture as a preferred delivery method in post-
secondary mathematics, and the scarcity of existing frameworks to capture what 
happens in lectures, we sought to use these two criteria, the Novelty of Mathematical 
Questions posed during class and the Teacher (linguistic) Moves observed during 
lecture, to characterize mathematics lectures. One of our main purposes was to 
see whether we could use these two attributes to characterize instruction (i.e., the 
interaction between students, teachers, and the content, over time, and within a 
particular environment) when the primary delivery mode is lecture. Also, we sought 
to determine whether this process allowed us to differentiate across instructors 
who lecture.   

    Method 

 The setting for this study is a large suburban community college in Michigan with 
an approximate enrollment of 12,000 students and an average yearly retention rate 
of 50 %. At the time of data collection (2008–2009), the mathematics department 
had 16 full-time and 75 part-time instructors and offered an average of 22 different 
courses per term, including remedial math courses (e.g., fundamental math, begin-
ning and intermediate algebra), college courses for professional and liberal arts 
degrees (e.g., business, health, and education), STEM preparatory courses (college 
algebra, college trigonometry, and precalculus), and college courses for STEM 
degrees (e.g., calculus, linear algebra, and differential equations). Like other 
community colleges across the United States, students may also obtain their general 
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education diploma (GED) at this college. This particular college was chosen because 
students’ evaluation of teaching in the mathematics department was high (above 4.2 
on a scale from 1 to 5), which suggests high student satisfaction with instruction in 
the department. In addition, the department had recently appointed a very dynamic 
department chair, committed to investing time in improving teaching. Moreover, 
like other colleges in the state, the faculty felt pressure to increase passing rates 
in their courses. The department received substantial support from the adminis-
tration to engage in activities that would address the low passing rate problem 
(e.g., support for a faculty development group, time off for periodic evaluation of 
curriculum and syllabi, incentives for managing the coordination of the large number 
of part-time instructors, a college-wide program to address students’ orientations 
towards learning). 

 As part of a larger study, we had been interviewing and observing 12 instructors 
teaching college algebra, trigonometry, and precalculus (over 80 lessons). For this 
particular paper, we analyzed 21 lessons that were on the same subject, trigonometry, 
which gave us the most variation in terms of teachers’ characteristics and therefore 
gave us interesting differences to capture when teaching the same content. During 
the 2008–2009 school year, we observed seven trigonometry sections taught by fi ve 
instructors (Table  1 ). After producing our initial descriptions, we met with each 
instructor to share our views of their interactions in the classroom (who participates, 
number of questions, use of IRE/F patterns, cognitive demand of tasks). In these 
meetings, we sought to identify whether what we have captured was refl ective of 
instructors’ standard practices and their rationale for organizing the interaction in 
the way they did. All teachers confi rmed that our descriptions were accurate and 
provided further insights about their practices.

   Each section met 2 days a week for 85 min per class. Each section was observed 
three times on consecutive days; we avoided exams in order to maximize the time 
that students and instructors interacted with each other and with the content. One 
instructor, Emmett was observed in three different sections, for a total of nine 
times. The lessons were audiotaped, and extensive fi eld notes were taken that 
included the work on the board and other observations not captured by the audiotape 
(e.g., students leaving or entering the room, overall class mood, teacher movement 
in the room, where the students sat, and who asked or answered questions). After 

   Table 1    Instructor characteristics   

 Instructor  Academic background 
 Years of college teaching 
experience  Status 

 Ed  Mathematics, BS, MS  3  Part-time 
 Elizabeth  Mathematics, BS, MA  7  Full-time 
 Elliot  Economics, BS  6  Part-time 
 Emmett a   Physics, PhD  16  Full-time 
 Evan  Physics, BS; Mathematics, 

BS; Mathematics, MA 
 8  Part-time 

   a Emmett taught three sections of the course  
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each class, instructors commented on events that happened during the lesson, or that 
departed from other lessons observed (e.g., calling students by name to answer 
questions, sending students to the board, assigning seatwork), and about how 
representative of other lessons in the semester the observed class was. The purpose 
was to determine what counted as “common” or “standard” practice and what was 
considered extraordinary. The audio recordings of the lessons were transcribed, with 
the length of pauses 3 s or more in speech noted; the transcripts were augmented 
with the work done on the board. 

    Analyses 

 The analyses of the classroom transcripts attended to two dimensions of the interac-
tion: the Novelty of Mathematical Questions posed during class and the Teacher 
Moves we observed during the lecture. These afforded us several units of analysis: 
the questions posed, the turns in which teachers initiated an interaction, and the time 
that was allotted to certain Teacher Moves. We also contextualized these by the 
different types of activities (introducing New Material, doing Review, and Other—
e.g., test-taking, discussing class logistics) that were evident in the lessons. 
Whereas the Novelty of Mathematical Questions analysis seeks to give an indica-
tion of the diffi culty of the questions asked by both students and teachers, the 
Teacher Moves analysis attends solely to the way in which the teachers manage 
the dialogue that occurs in the classroom.  

    Novelty of Mathematical Questions 

 We see mathematical questions as opportunities that instructors create to engage 
students in mathematical activities. With this framework, we sought to characterize 
the opportunities that are created by describing how novel the questions are. 
We developed this scheme by drawing from frameworks that analyze questions 
in classrooms (Nystrand et al.  2003 ; Wells and Arauz  2006 ), specifi cally in mathe-
matics (Nathan and Kim  2009 ; Truxaw and DeFranco  2008 ), and augmenting the 
frameworks based on our data. We started by synthesizing features of these various 
frameworks (e.g., cognitive demand, authenticity, uptake, teacher evaluation) and 
then created a categorization of questions that we applied to several of our transcripts, 
attending to content, intention, execution, and novelty. First, we identifi ed all ques-
tions that both instructors and students asked. Next, we took each teacher question 
and determined whether the question was mathematically oriented or not (content) 
and whether the instructor expected to obtain an answer from the students 
(intention). Those questions that were mathematically oriented and for which the 
instructor expected to obtain an answer became the focus of the analysis. We refer 
to these questions as the mathematical questions asked by the teacher. We further 
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categorized these questions, indicating if the students answered the question or if 
the teacher paused and gave the students an opportunity to answer the question 
(execution) and if students were expected to know the answer or how to procedurally 
fi gure out the answer given what had been covered in the class (novelty). 

 The questions that were not mathematically oriented were questions about 
classroom procedures (e.g., “So how’s it going? Questions on the trig?”), discourse 
management (e.g., “Could you repeat that?”), and rhetorical questions, including a 
type of question that we called statement-right (e.g., “Let’s see, from 0 to 180°, 
that’s the window we’re looking for, right?”). We did not include statement-right 
questions because they were not usually open to discussion—the teachers were 
only looking for the listener’s agreement. 

 In terms of execution, mathematical questions asked by the teachers could be 
aborted. This occurred when the question was not followed by a student response, 
either because the teacher did not provide enough pause time for the students (3 s or 
more) or because he or she reworded or answered the question himself or herself 
(e.g., “And what’s cosine of − x ? That’s just cosine of  x  itself”). In terms of novelty, 
mathematical questions asked by teachers or students were  Routine  when students 
were expected to know the answer or to know how to procedurally fi gure out the 
answer using information given in the class, or in previous classes or courses 
(e.g., “If I’m talking about negative pi over 2, which direction am I going fi rst of 
all?” “What’s the result?”). They were  Novel  when students were not expected to 
already know the answer or the procedure to fi gure out the answer. Novel questions 
included those that required students to explain new connections between mathe-
matical notions or connections to real-world scenarios (e.g., “Why is it sometimes 
that if the light is getting old that you’re able to see it fl icker?”), to fi gure out some-
thing new using information that had not been discussed in the class (e.g., “And 
what’s cosine of − x ?”), or that encouraged students to think about a new mathematical 
notion (e.g., “ b  approaches 1, and  a  approaches 0. What do you think is going to 
happen to the ratio?”). Student questions that inquired about the how or why of the 
mathematics (e.g., “Doesn’t shifting affect whether it would be sine or cosine?”) 
were considered Novel, whereas student questions seeking for a specifi c, direct 
answer (e.g., “It needs to be in radians right, not in degree mode?”) were considered 
Routine. We made the classifi cation taking into account the talk and content that 
preceded and followed the question. A team of fi ve researchers using NVivo coded 
the mathematical questions. Cohen’s κ, used to determine pair-wise agreement of 
the coding of teacher questions, ranged from .62 to .80.  

    Teacher Moves 

 For the second analysis, we used a framework for describing teacher moves in 
primary and secondary English and mathematics lessons developed by Mary Kay 
Stein and colleagues (Scherrer and Stein  2012 ). This framework attends speci-
fi cally to the ways in which teachers initiate interaction and how they sustain it. 
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Although developed for helping teachers enact standards-based practice, this 
framework contained moves that could account for actions that are seen in lecture-
based lessons in ways that other frameworks did not. An earlier version of this 
framework had two categories of moves, those that initiate the discussion (initiating 
moves) and those that invite more participation from students (rejoinder moves). 
We added three codes to this framework: Statement of Problem, an initiating 
move, to indicate when a new problem started; Response Right; and Response 
Wrong—rejoinder moves—to mark moves in which the instructor explicitly states 
that a student response is correct or incorrect. The Statement of Problem code was 
important for us because, unlike the context in which Stein and colleagues were 
working, we did not have many open-ended tasks that were posed to the students; 
instead, the instructors brought many examples and solved many problems on the 
board that were an important feature of the lessons. Likewise, Response Right and 
Response Wrong appeared frequently in the data, and we agreed that it was an 
important feature to capture (see also Nunn  1996 ). 

 We also made two modifi cations to this framework as we applied it to our data. 
First, rather than coding at the turn level as Scherrer and Stein did, we coded by 
groups of clauses that conveyed the meaning proposed by the codes in the framework. 
We called these clauses or groups of clauses, moves. This allowed the initiating 
moves to be mutually exclusive, and the rejoinder moves to be “added on” to an 
initiating move, thus allowing us to tease out the type of invitations that teachers 
used to engage students in the dialogue. Second, and because we wanted to have a 
group of codes that were mutually exclusive and would allow us to code all possi-
bilities of dialogue in the classroom (reform oriented or not), we reclassifi ed the 
code  Collect  as an initiating move (see Table  2 ).

   To facilitate discussion of the moves, we further categorized them into the 
two main voices, monogloss and heterogloss. Heterogloss moves were further 
classifi ed depending on whether the move sought to expand or contract the con-
versation or whether it was possible, in context, for the move to be used either 
way. We classifi ed one code,  Provide Information , as Monogloss; eight codes, 
 Think Aloud, Literal, Lot, Repeat, Response Right, Response Wrong, Terminal,  
and  Uptake-Literal,  as Heterogloss-Contract; three codes,  Launch, Collect,  and 
 Pushback , as Heterogloss- Expand; and four codes,  Re-Direct, Re-Initiate, Connect,  
and  Uptake , as Heterogloss moves that could be either contracting or expanding the 
conversation depending on the context. The Statement of Problem code was not 
included in this classifi cation because it was not considered germane to the analysis 
(see Fig.  1 ). In Table  3 , we provide examples of this classifi cation. In some of these 
examples, we include additional text that was used in making the classifi cation; the 
underlined text was coded as the specifi c move.

    A two-person team, including one who participated in the Novelty of Mathematical 
Question analysis team, coded the Teacher Moves. They coded 30 min of a lesson 
independently using the code descriptions. Agreement on the initiating codes was 
78 and 76 % on the rejoinder moves. The discrepant cases were discussed, allowing 
us to make our defi nitions clearer. With the revised system, one person coded the 
rest of the lessons.  
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    Episode Parsing 

 We contextualized these two analyses by parsing the transcripts into three mutually 
exclusive episodes that occurred in the classroom, namely,  New Material ,  Review , 
and  Other . In  New Material  episodes, teacher and students discussed material that 
had not been presented previously in the course. In  Review  episodes, teachers and 
students discuss material covered in a previous class, solutions to past assignments 
(e.g., homework, quizzes, or examinations), or topics or examples that would be 
covered on a future examination. Episodes classifi ed as  Other  included discussions 
that were independent of mathematical content (e.g., providing dates for upcoming 

   Table 2    Framework for analyzing Teacher Moves   

  Initiating Moves (mutually exclusive assignment)  
  1. Collect: Teacher seeks to gather more responses to a question from more studentsa 
  2. Launch: Teacher asks an open-ended question meant to invite student thinking 
  3. Literal: Teacher asks a question seeking retrieval of factual information. The teacher often is 

looking for a specifi c answer 
  4. Provide Information: Teacher gives information (answer or method) related to the 

instructional task at hand. Teacher reviews or reveals relevant information from prior work. 
  5. Re-direct: Teacher asks a question that invites student thinking in a different direction from a 

preceding question. The initial question was never fully answered. 
  6. Re-initiate: Teacher asks a question that repeats the same or slightly reworded question. 
  7.  Statement of Problem: Teacher poses the problem to be worked on.  
  8. Think Aloud: Teacher talks about how she or he is thinking about a passage or a problem. 

  Rejoinder Moves (assigned individually or in addition to initiating moves)  
  9. Connect: Teacher asks a question or makes a statement so the students make an explicit connection. 
 10. (parking-)Lot: Teacher acknowledges student responses and states that the class will deal 

with them later. 
 11. Pushback: The teacher challenges a student response in order to encourage students to rethink 

or defend their responses. 
 12. Repeat: Teacher echoes a student response. 
 13.  Response Right: Teacher tells the student that his or her response or contribution is correct.  
 14.  Response Wrong: Teacher tells the student that his or her response or contribution is 

incorrect.  
 15. Terminal: An utterance that discontinues a student’s response and often implicitly or 

explicitly evaluates students’ responses. 
 16. Uptake-Literal: Teacher asks a question for retrieving factual information building on a 

student response. 
 17. Uptake: Teacher uses a student response to extend, deepen, clarify, or elaborate the discussion. 

  Other  
 18. No Code: A move cannot be categorized using one of the codes above. These included 

classroom management comments, administrative announcements, references to the textbook, 
and personal stories unrelated to the content. 

  Adapted from Scherrer and Stein ( 2012 ) 
  Notes : Italicized text corresponds to codes added to the original framework proposed by Scherrer 
and Stein. a. This category was a Rejoinder move in the Scherrer and Stein paper  
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monogloss provide information

contract
literal
lot
repeat
response right
response wrong
terminal
think aloud
uptake-literal

heterogloss

contract or
expand

connect
re-direct
re-initiate
uptake

expand collect
launch
pushback

  Fig. 1    Classifi cation of Teacher Moves according to monogloss-heterogloss voices       

   Table 3    Examples of Teacher Moves from the corpus   

  Monogloss  
 Provide Information   T:  Today we’re gonna wrap up section 3.1 on graphing [six basic] trig 

functions, remember we got through sine, cosine and tangent [on 
Tuesday] and we’re going wrap up doing the other three which actually 
follow uh, pretty easily from the graphs of sine, cosine, and tangent.  

  Heterogloss Contract  
 Literal   T: so in this example,   y   =   x   2   , what’s the range?  
 Lot  T:  Well that’s, yeah, and that actually will not give rise to ‘cannot defi ne,’ 

 let’s hold off on that for a second . Where are the places where we 
would be dividing by zero, for cotangent? 

 Repeat  M: Arbitrarily small. 
  T: Arbitrarily small . Does everyone see that? 

 Response Right  M:  And you kind of do this for anything with a negative because if you add 
a full period it shouldn’t change anything, right? 

  T:  Correct . So anytime you get a negative radian answer you know that it’s 
supposed to be positive, you start adding periods, however many periods 
you need. 

 Response Wrong  T: But where would the 120 be? What letter would be 120? 
 M: [B] 
  T: Not B . Sorry? 

(continued)
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Table 3 (continued)

 Terminal  T: Then can I write the function now? 
 M: Um, no. 
  T: Heck yeah, we got it. right?  So we can now say  y  is 30 sin pi over seven 
 T. Ok. Cool 

 Think Aloud  T:  Ok, I want to draw the graph for this function, so  x  is between 0 and 
2π. The way I’m going to do it, so let’s see. Just base this of off what 
I know about this regular sine. Let’s draw the graph of, say, sine  x.  
(Pause 10 seconds) This is, well,  y  = sin  x  

 Uptake-Literal  T: What effect, what would this pi over two affect? 
 M: Period. 
  T:  Period, right? It would affect period. And, we know something about 

period, don’t we?  
 M: It’s fourteen seconds. 

  Heterogloss Expand  
 Collect  T: I’ll get what? 

 M: Sine squared. 
 T: (writes on board)  What else?  
 M: Minus 2 sine cosine. 

 Launch  T:  We found the  A  and  B  and we wrote this. So now let’s talk about well 
what’s that mean. What’s does that mean? This thirty. Well what are 
we answering fi rst? 

 Pushback  T: What’s our  y -axis? 
 M: Uhh. 
 M2: [it is] feet. 
  T: Oh, really? Hmm, why is this feet? Does that help or no?  Ok. 
 M: Why would it be the y-axis if  x  can measure the amplitude? 

  Heterogloss Contract or Expand  
 Connect   Contract:  

 T:  .0125. So it’s 1/100 of a second roughly. That’s the time it takes for 
one wave, that’s the time it takes to complete one wave.  This is the 
lowest frequency of a male speech. Now the highest for a male is 240 
and the lowest for a female is 140. The range they’re giving you from 
80 to 240, that’s the range of male speech. 140 to 500 is the range of 
female speech. Compact disc is from 0 to 22,050. It makes sense 
because it has all kinds of sounds coming from a compact disc. Piano 
is from 28 to 4,186. And human hearing is from 20 to 20,000 hertz. 
Ok. Any questions? There are more applications that have to do with 
electricity, we’re running out of time so we’ll get to these applications 
next time. I do have your quizzes.  

  Expand:  
 T:  So, I’m going to back up over here,  I just want to try and draw some 

parallels. What do we know about this?  
 Re-Direct   Contract:  

 T:   And how do we fi nd   C   from that number? What do we do to it? If sine  
 C   equals this number here, what would   C   be?  (pause 6 sec) Let me 
calculate that number. We need 5 divided by 7.6. 5 divided by 7.6 is 
.65789. 

  Expand:  
 T: What’s the unit of the phase shift? (pause 5 sec) First of all what is a phase? 

(continued)
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tests, taking an in-class examination, returning graded work). Each transcript was 
parsed into these three mutually exclusive episodes. The parsing was done prior to 
the coding of questions and moves. A team of three researchers, the two authors 
and a graduate student, parsed the lesson transcripts, with weekly discussions to 
determine fi nal episodes.   

    Results 

 We present the results of the two main analyses performed, the Novelty of 
Mathematical Questions and the Teacher Moves. We present these results as they 
unfold over time and relative to the type of episodes. 

    Novelty of Mathematical Questions 

 Table  4  shows the frequency of mathematical questions and the proportion of Novel 
questions asked by the teachers over the three lessons observed including the pro-
portion of those questions that were aborted.

   In Table  4  we see that instructors asked a large number of mathematical ques-
tions in each 85-min class period (average = 55, min = 38, max = 85). Most of these 
questions were Routine (70 %), which suggests that students were more frequently 
expected to give answers they already knew rather than answers they did not. In 
other words, students were not asked to struggle with the content that was being 
presented very often, a key characteristic of these lectures. This percentage is 
lower than what Nunn ( 1996 ), citing Barnes ( 1983 ), reported: 80 % of questions 
that faculty ask in mathematics classes are of the lowest cognitive level (recall of 

Table 3 (continued)

 Re-Initiate   Contract:  
  T: But where would the 120 be? What letter would be 120?  
  Expand:  
 T:  For this particular frequency,  how do we fi nd the time? What do we do 

to frequency to fi nd the time?  
 Uptake   Contract:  

  M: It’s going to shrink  
  T: It shrinks by a factor of  
 M: One-third. 
 T: Yeah. 
  Expand:  
 T: Ok. Any suggestions on that? 
  M2: (laughs) The rate.  
  T: We could look at a rate! That’s a good idea!  

    Note : Underlined text was used to make the classifi cation  

Methodological Considerations in the Analysis of Classroom Interaction



488

facts, p. 245). In addition, on average, 33 % of Novel questions were aborted com-
pared to 26 % of Routine questions aborted ( χ  2 (1) = 5.94,  p  < .05). Thus, these 
instructors were more likely to abort Novel questions than Routine questions, and 
the number of Novel questions that students were engaged in was small (aver-
age = 11, min = 4, max = 20). 

 Table  4  also presents the frequencies and proportions of questions students asked 
by type over the three lessons observed. Overall, about one third of the questions 
students asked were coded as Novel, but there is substantial variation in the 
amount of questions students asked (mean = 13, min = 4, max = 41) and in the 
number and proportion of Novel questions asked (mean = 4, min = 2, max = 8). It is 
also notable that there is variation for the instructor who taught three sections of the 
same course.  

    Teacher Moves 

 We coded in total 5,094 Teacher Moves across all the lessons. Among the initiating 
moves,  Provide Information ,  Literal , and  No Code  accounted for the majority of these 
moves (46 %, 33 %, and 13 %, respectively; see Table  5 ). Thus, consistent with images 
of lectures, the teachers in these classes delivered the content at hand and asked the 
students very specifi c, pointed questions. The 658 moves that were categorized as 
 No Code  corresponded to classroom management comments (238, 34 %), references 

     Table 4    Average frequency per 85-min class period of mathematical questions: frequency and 
percent of teacher and student Novel questions, Novel and Routine teacher questions aborted, and 
Novel teacher questions not aborted   

 Teacher mathematical questions 
 Student mathematical 
questions 

 Instructor   N  

 Novel 
questions  Aborted questions 

 Novel questions 
not aborted 

  N  

 Novel 
questions 

  n   % a   % b  Novel  % c  Routine   n   % a    n   % d  

 Ed  85  24  29  18  17  20  23  14  7  54 
 Elizabeth  73  25  35  30  24  18  24  8  2  25 
 Elliot  52  10  19  24  7  7  14  41  8  20 
 Emmett 1  55  14  25  37  38  9  16  5  3  57 
 Emmett 4  39  11  29  38  40  7  18  12  6  49 
 Emmett 5  38  19  50  34  23  13  33  9  2  27 
 Evan  46  12  26  66  43  4  9  4  2  45 

 Average  55  16  30  33  26  11  20  13  4  32 

   a Percent calculated out of all mathematical questions asked in the lessons 
  b Percent calculated out of all Novel questions asked in the lessons 
  c Percent calculated out of all Routine questions asked in the lessons 
  d The percentage of Novel student questions is calculated before rounding the average number of 
student mathematical and Novel questions  
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to the textbook (202, 28 %), administrative announcements (201, 28 %), personal 
stories unrelated to the content (59, 7 %), and inaudible text (32, 3 %).

   Figure  2  shows the distribution of these moves in terms of the Heterogloss- 
Monogloss classifi cations. The fi gure excludes the  No Code  moves ( n  = 658) and the 
 Statement of Problem  moves ( n  = 93).

   In general, the fi gure shows remarkable similarities across teachers in the absence 
of Heterogloss-Expand initiating moves (only 4 moves in all by Ed) and limited use 
of moves that may be considered Heterogloss-Expand (Heterogloss-Expand/Contract 
moves). We see differences across the teachers, however, in terms of the  number  of 
moves they used. Three teachers—Ed, Elizabeth, and Elliot—used over 750 moves, 
whereas Emmett and Evan used less than 500 moves. It is also remarkable that 
Elliot had almost three times as many Monogloss moves ( Provide Information ) as 
Emmett or Evan and almost 1.5 times as many as Ed or Elizabeth, indicating that the 
length of each Monogloss move is shorter in Elliot’s class. Proportionally, there is 

   Table 5    Frequency of initiating Teacher Moves by instructor across all observed lessons   

 Initiating moves 

 COL  LAU  LIT  NC  PIn  ReD  ReI  SoP  ThA 

 Ed ( n  = 913)  1  3  278  137  415  5  25  12  37 
 Elizabeth ( n  = 958)  0  0  318  155  384  4  33  11  53 
 Elliot ( n  = 1,158)  0  0  340  155  612  1  10  18  22 
 Emmett 1 ( n  = 528)  0  0  202  50  232  2  20  19  3 
 Emmett 4 ( n  = 523)  0  0  190  48  252  0  14  19  0 
 Emmett 5 ( n  = 526)  0  0  200  42  239  5  29  8  3 
 Evan ( n  = 488)  0  0  168  71  213  2  16  6  12 

 Total ( N  = 5,094)  1  3  1,696  658  2,347  19  147  93  130 
 Percent (%)  0  0  33  13  46  0  3  2  3 

   COL  Collect,  LAU  Launch,  LIT  Literal,  NC  No Code,  PIn  Provide Information,  ReD  Re-Direct, 
 ReI  Re-Initiate,  SoP  Statement of Problem,  ThA  Think Aloud  

315 371
362

205 190 203 180

415 384
612 232 252 239 213
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  Fig. 2    Average distribution of heterogloss versus monogloss initiating moves by instructor 
( N  = 4,436, excludes No Code,  n  = 658 and Statement of Problem moves,  n  = 93)       
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consistency across teachers in their use of Heterogloss- Contract moves (around 40 %). 
In general, this classifi cation suggests that about half of the Teacher Moves are 
Monogloss; while teachers do use Heterogloss moves, these tend to be contracting, 
thus closing the conversation rather than expanding it. 

 The rejoinder moves were assigned concurrently with initiating moves, but could 
be assigned independently or concurrently with other rejoinder moves. Rejoinder 
moves were used less frequently than initiating moves—they only accounted for 
17 % of all the moves the teachers used. Among the rejoinder moves,  Repeat , 
 Uptake , and  Response Right  were the most frequently assigned (respectively, 40 %, 
20 %, and 17 % of the total; see Table  6 ).

   Figure  3  represents the distribution of these moves in terms of the Heterogloss- 
Monogloss classifi cation (see Fig.  1 ) over the three lessons observed per instructor.

   Table 6    Frequency of rejoinder Teacher Moves by instructor across all observed lessons   

 Rejoinder moves 

 CON  Lot  PBK  REP  RR  RW  TRM  U  UL 

 Ed ( n  = 165)  19  2  2  64  44  5  6  20  3 
 Elizabeth ( n  = 184)  15  3  5  74  27  3  18  34  5 
 Elliot ( n  = 220)  5  1  4  85  47  0  26  49  3 
 Emmett 1 ( n  = 75)  3  0  0  40  6  0  7  18  1 
 Emmett 4 ( n  = 64)  10  0  0  29  2  0  4  18  1 
 Emmett 5 ( n  = 82)  11  0  2  32  10  2  4  20  1 
 Evan ( n  = 67)  12  1  1  22  12  3  5  11  0 

 Total ( N  = 857)  75  7  14  346  148  13  70  170  14 
 % a   9  1  2  40  17  2  8  20  2 
 % b   2  0  0  8  3  0  2  4  0 

   CON  Connections,  PBK  Pushback,  REP  Repeat,  RR  Response Right,  RW  Response Wrong,  TRM  
Terminal,  U  Uptake,  UL  Uptake-Literal 
  a Percent taken out of the rejoinder moves only 
  b Percent taken out of all moves, excluding No Code  

39 49 54 21
28 31 23

124 130 162 54
36 49 43
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  Fig. 3    Distribution of heterogloss versus monogloss rejoinder moves by instructor ( N  = 857)       
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   We see some variation across teachers in their use of rejoinder moves. 
Proportionally, Emmett 4, Emmett 5, and Evan use Heterogloss-Contract moves 
about 60 % of the time, whereas for the other instructors, this proportion is 
nearly 70 %. Again, there is variation in the number of rejoinder moves: three 
teachers—Ed, Elizabeth, and Elliot—used these moves over 150 times across the 
three lessons observed, whereas Emmett and Evan used these types of moves less 
than 100 times. Again, this analysis corroborates that, in general, even with 
Heterogloss moves, which seek students’ engagement in the conversation, these 
instructors tended to use contracting rather than expanding moves.  

    Episodes 

 Regarding the episodes, on average, 70 % of the class time was devoted to presenting 
 New Material  (min = 40 %, max = 88 %), 24 % was devoted to  Review  (min = 2 %, 
max = 53 %), and 6 % (min = 0 %, max = 17 %) was devoted to  Other  activities 
(assessment, discussions before or after class).  

    Representing the Novelty of Mathematical Questions 
and Teacher Moves Analyses Simultaneously 

 The previous analyses portray similar enactments of lessons, with some variation 
across teachers regarding the ways in which the teachers used questions and moves 
in their lessons, but do not provide an idea of how these questions and moves are 
deployed over time. To get a view of this process, we mapped the two codings over 
the duration of the lesson and accounted for the different class episodes. These maps 
show a very detailed, yet complicated view of these lessons. 

 For representation purposes, we used different shadings to differentiate the 
Novelty of Mathematical Questions and the types of Teacher Moves: black repre-
sents Novel questions, moves that are Heterogloss-Expand ( Collect, Launch , and 
 Pushback ), and those moves that could be either Heterogloss-Expand or Contract 
( Connect, Re-Direct, Re-Initiate , and  Uptake ); dark gray represents Heterogloss-
Contract moves ( Think Aloud, Literal, Lot, Repeat, Response Right, Response 
Wrong, Terminal,  and  Uptake-Literal ); and light gray represents Routine questions 
and Monogloss moves ( Provide Information ). We used the same shading scheme 
for student questions and dark-gray dots to represent when students otherwise inter-
acted—either in responding to a teacher question or providing other utterances, 
such as volunteering information. To better represent the Teacher Moves, we divided 
them into two categories: (a) those best represented as an instance in time ( Collect, 
Launch, Pushback, Connect, Re-Direct, Re-Initiate, Uptake, Literal, Lot, Repeat, 
Response Right, Response Wrong, Terminal,  and  Uptake-Literal ) and (b) those best 
represented as an interval of time ( Provide Information  and  Think Aloud ). We used 
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dots and Xs to make it easier to visualize the data. The representations also include 
the type of activities that were done in the lesson, mainly presenting  New Material  
(black) and doing homework or exam  Review  (light gray). Elliot’s 2nd lesson is an 
example of what this representation looks like (Fig.  4 ).

   To make evident the affordances, specifi cally the differences that can be captured 
with these representations, we present 20 min of a lesson from Elizabeth, Elliott, 
Emmett, and Evan (Fig.  5 ). These four segments were taken from episodes in which 
 New Material  was being discussed. Each segment was chosen because it illustrates 
possible differences between classrooms, as well as the complexity of interaction 
within a classroom. The representation shows that the relationship between the 
types of questions asked, teacher moves, and student participation is not a simple 
one. In addition, adding the time component within and across lessons provides a 
richer picture of the dynamics of the classroom interaction.

   In the 20-min segment of Elizabeth’s lesson, we can see that she uses both Novel 
and Routine questions at about the same frequency, the Teacher Moves are mostly 
Heterogloss-Contract, and the intervals of providing information are frequent, but 
relatively short. The students are quite engaged in this class both in asking and 
responding to questions or volunteering information. In the 20-min segment of 
Elliot’s lesson, students are also quite engaged and frequently ask questions, even 
though he asks questions much less frequently and uses less Heterogloss moves 
than Elizabeth. The 20-min segments from Emmett’s and Evan’s lessons show cases 
in which the students are not very active. In both of these segments, the total 
amount of time  providing information  and the length of each occurrence is greater 
than in Elizabeth’s and Elliot’s, and the use of Heterogloss moves is infrequent and 
mostly contracting. The segment of Emmett’s class has no teacher questions, 
whereas Evan’s segment includes quite a few Novel questions but very few Routine 
questions. Evan’s representation illustrates a phenomenon that we observed 
frequently—instructors asking Novel questions that were not answered, either 
because the teacher rephrased the question to make it simpler for the student or 
because the teacher answered it. 

 A representation 1  of the full lessons from our seven sections illustrates the 
different ways in which instructors interacted with the students. The representa-
tions are similar in that they show an infrequent use of Novel questions and of 
Heterogloss- Expand moves. The full-lesson representation reveals other interesting 
features, such as the differences in student participation and the Novel questions 
teachers asked between Monogloss moves. When the three diagrams of the three 
consecutive lessons are put side by side, we notice an interesting consistency, 
suggesting, perhaps unsurprisingly, that the individual teachers follow a similar 
pattern as they teach their lessons day in and day out. This consistency is useful 
in characterizing what teachers do with their lessons, and it suggests that teachers 
have  signatures , or particular ways of organizing instruction that are recognizable 
and predictable.   

1   Available from the authors. 
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    Discussion 

 While the two analyses emphasize the complexity of teaching mathematics and 
the importance of both mathematical questions and teaching moves, combining 
them gives a richer picture of classroom interactions. These two analyses sepa-
rately show regular patterns in the classroom interaction of these trigonometry 
lessons. The analysis of the mathematical questions shows a consistent pattern; 
the level of mathematics students are expected to engage with is low—the ques-
tions are mostly Routine and teachers interrupt the thinking process by aborting 
a sizable proportion of questions posed. The analysis of the Teacher Moves 
reveals how instructors use various additional ways to engage students beyond 
asking questions, although this is also limited. For the most part, teachers use 
 Provide Information  and rarely use Heterogloss-Expand moves, such as  Collect  
or  Pushback . 

 By representing the two analyses together, we see that even with the commonali-
ties of interaction seen in the tables and fi gures, there are visible differences in how 
the questions and moves unfold over time. While some instructors use moves that 
limit the amount of student participation, others use moves that seek it. We see with 
these combined representations, however, that in these lessons which would have 
been rated “traditional” or “lecture” instructors provide many opportunities for 
student engagement with the material and that the way in which these instructors 
use these devices varies. 

 Before discussing the affordances and challenges of using this methodology to 
understand the classroom interaction, we give some interpretations of why we see 
these behaviors. 

    Interpreting the Findings 

 Part of the reason for instructors offering mostly Routine questions at the same time 
that they provide opportunities for student engagement might be rooted in their 
belief that students who attend community college have experienced failure in pre-
vious mathematics courses, which has left them with low confi dence in their ability 
to do mathematics. Thus, instructors, in an effort to help them gain confi dence, will 
ask questions that they think students can answer without risking failure. As a result, 
the questions they ask tend to be of a routine nature, thus creating a situation in which 
students are rarely exposed, or expected to answer diffi cult questions, therefore con-
straining opportunities for the students (Mesa  2010 ,  2012 ). Another possibility is 
that teachers fear that students might not be able to take on Novel questions on their 
own or without the appropriate scaffolding. This was partially confi rmed in a later 
study with Elliot (not reported here), in which we suggested that he engage students 
in a group activity that involved solving a problem that they had not seen before 
(graphing inverse tangent, after seeing how inverse sine was graphed using values 
from the unit circle). During the planning sessions, Elliot disagreed with the idea of 
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asking students to do something he had not modeled for them before (doing at least 
a few of the key values for tangent), and although he agreed to give the task to the 
students, during the lesson, he stepped into the solution process, providing the 
information he felt was necessary for a successful completion of the task and effec-
tively reducing the complexity of the activity for the students. His concerns for 
the well-being of the students and his doubts that they would be able to generate the 
graph greatly impacted how the task unfolded. 

 Part of the reason teachers do not use Novel questions and Heterogloss-Expand 
moves ( Uptake ,  Pushback ,  Collect ) more frequently might be that teachers do not 
know how to use them in the classroom or may not be aware of their benefi ts for 
student learning. In general, community college instructors have little time or 
opportunity to participate in faculty development programs, and when available, 
these programs may not be geared specifi cally towards mathematics or towards 
managing classroom discourse (Sowder  2007 ). While some colleges have programs 
for faculty, their teaching load (fi ve courses per term) may impede their participa-
tion (Grubb and Associates  1999 ). We can argue that teachers’ lack of knowledge 
about the role of language in opening or closing mathematical discussions may 
explain some of these results; it is also possible that the instructors’ perception of 
the nature of trigonometry may suggest that Monogloss and Heterogloss-Contract 
moves are more appropriate. Trigonometry is perceived as a course with an 
extensive amount of information that students need to be exposed to and achieve 
competency in using. Instructors indicate that the most effi cient way to make this 
content available to students is by providing that information directly, illustrating 
how to solve the problems, and providing a template for students to repeat the process. 
Given the limited amount of time in a semester to accomplish this task, instructors 
may see engaging in explorations (e.g.,  Launches  and  Uptakes  with Novel questions) 
as working against their responsibility to make sure that students have seen all the 
content of the course.  

    Affordances and Challenges in Using This Methodology 

 The analyses of the Novelty of Mathematical Questions and Teacher Moves, both 
individually and together, show the importance of attending to these two aspects 
when describing classroom interaction. While this is not necessarily new, representing 
both the Novelty of Mathematical Questions and Teacher Moves over time reveals 
various patterns across teachers that otherwise would go unnoticed. Only after we 
represented the results of these analyses together could we corroborate the differences 
that we experienced while observing these classes. Thus, these representations 
allow for a better description of the nature of the classroom interaction that occurred 
in these classes. 

 As we indicated earlier, one advantage of combining these two ways of looking 
at classroom data is that it provides richer descriptions for how teaching actions 
unfold in the classroom, particularly in cases which other analyses would simply 
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classify the teachers’ work as “traditional.” Our methodology seeks to understand 
from the perspective of the local system how instruction happens and the value that 
teachers give to this form of interaction. Assuming that lecturing or providing 
information is uniformly “bad” is problematic because we fail to see what exists in this 
context that promotes student confi dence and learning of the material. We argue that 
there is a role for researchers in making visible how instructors manage instruction 
and in fi nding ways to represent and describe their work that captures the complexity 
of what they do. This analysis allows us to observe important differences in how 
interaction in the classroom is organized, differences that would not have been 
possible to describe with one of the analyses alone. Another important benefi t of our 
analyses is that they allow us to see how lessons unfold over time and to understand 
the back and forth interactions between teachers and students in ways that might not 
be apparent by using transcripts or one of the analyses alone. 

 A major challenge of this methodology lies in managing the level of detail that it 
seeks to achieve. What is the appropriate unit of analysis that one needs to attend to? 
In our case, we have several units of analysis: the questions, the utterances, and 
time. Coordinating these into a single representation was a challenge. Whereas see-
ing these images side by side shows different patterns or signatures in these teach-
ers’ lessons (especially when their three lessons are put together), the amount of 
information presented can be overwhelming. We have spent a great deal of energy 
in looking for ways to convey the richness of the analyses and at the same time seek-
ing to synthesize the patterns that we observe. No representation can be good 
enough to approach reality, but the ones that we proposed give us a good idea of 
how lessons evolved over time and how teachers managed interaction in the 
classroom.   

    Future Research 

 Whereas these analyses and representations are revealing, they are also limited in 
several ways. Attempting to characterize what teachers do from these three lessons 
alone could be misleading. However, we believe that the analyses capture important 
characteristics of lectures that current frameworks don’t examine. These analyses 
can be easily replicated and can produce reliable information about the activities in 
the classroom. 

 One major task that lies ahead is developing a system that would allow a 
comparison, numerical or qualitative, that can account for the differences observed 
in these lessons. The representations we use provide an account for these differ-
ences by contrasting how questions and moves unfold over time. Another task that 
lies ahead is proposing ways to measure the differences that are observed in these 
representations that better capture the differences over the fi ve teachers and seven 
sections and take into account all the lessons observed. 

 We could then use such measures to answer questions such as follows: Are 
Heterogloss-Expand moves more likely to be used in tandem with Novel or with 
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Routine questions? Are there particular patterns in the use of Heterogloss-Expand, 
Heterogloss-Contract, or Monogloss moves and questions? Are there differences 
between the use of these moves and use of Novel questions when teachers conduct 
a Review or when they present New Material? Making these representations 
highlights that time is an important aspect of the analysis; how these activities 
unfold over time can shed light on the complexity of teachers’ work. 

 An important feature of lectures is the preponderance of providing information, 
which is the core of such a teaching methodology. Further research is needed in 
order to determine the conditions under which this mode of instruction, augmented 
with the Heterogloss moves that we see and with the Novel questions posed, is 
benefi cial to students. Does this mode of instruction combined with students’ 
practice and individual work produce sustained learning and good outcomes in the 
course? This seems to be a strongly held belief of community college mathematics 
instructors, yet we have not been able to establish whether this is the case or not. 

 Repeating these analyses with other courses (e.g., basic algebra, calculus) would 
allow us to see the extent to which these fi ndings depend on the course content and 
to explore the role of teachers’ perceptions of their students’ abilities on these 
fi ndings. It would be important, for example, to determine whether instructors 
teaching courses beyond trigonometry would ask more Novel questions and use 
more engaging moves with their students, under the assumption that the content is 
more interesting or that their students are more capable. Contrasting these results 
with courses for honor students would also be useful in testing the hypothesis that 
teachers’ perceptions of their students determine the extent to which they ask more 
Novel questions or use more engaging moves with the students. Such information 
can be used to design programs for faculty development that increases instructors’ 
knowledge of ways to use Novel questions and interactional moves that engage 
students with mathematics in ways that preserve its depth and complexity.     
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    Abstract     This chapter explores the use of collections of students’ work as a refl ection 
of instructional quality. Sets of students’ written work can provide indicators of the 
 conditions  of learning, representing the norms and instructional practices impacting 
students’ mathematical thinking as they produced the work. I present a methodology 
for analyzing sets of students’ written work using the Instructional Quality Assessment 
(IQA) Mathematics Assignment rubrics. I will summarize research validating the use 
of students’ work as an indicator of instructional quality, provide examples to illus-
trate how to use the IQA rubrics to evaluate collections of students’ work, describe 
ways of analyzing IQA data, and share research projects in which student-work col-
lections and the IQA rubrics were used to (1) assess instructional quality in mathemat-
ics at the district level and (2) evaluate the effectiveness of professional development 
initiatives. The chapter will close with a discussion of the strengths and limitations of 
the IQA specifi cally and the use of students’ work as a data source more broadly.  

  Keywords     Students’ work   •   Instructional quality   •   Professional development 
research   •   Task implementation   •   Cognitive demand  

     As schools across the country begin to implement the Common Core State Standards 
in Mathematics (Common Core State Standards Initiative [CCSSI]  2011 ), school 
leaders will need methods of assessing the progress of mathematics teaching and learn-
ing in their schools, particularly in the direction of the Standards for Mathematical 
Practice. While students’ achievement on standardized tests or the analysis of value-
added measures provide indirect representations of teaching quality, direct assess-
ments of instructional quality based on classroom observations and collections of 
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instructional artifacts (e.g., tasks and students’ work) can supplement and explain 
 student achievement data and indicate pathways for instructional improvement (Pianta 
and Hamre  2009 ; Stein and Matsumura  2008 ). Lesson observations, instructional 
tasks, and samples of students’ work provide windows into the practices in which 
teachers and students engage in the process of teaching and learning mathematics. In 
addition to providing data on students’ learning, sets of students’ written work can 
also provide an indicator of the  conditions  of learning, representing the norms and 
instructional practices impacting students’ mathematical thinking as they produced 
the work (Matsumura et al.  2002 ). Through collections of student work, researchers 
and school administrators can analyze the quality of mathematics instruction at the 
scale of an entire school or district, between different districts, or between schools 
within the same district. Collections of students’ work can aid researchers in analyz-
ing the effectiveness of professional development initiatives or curriculum implemen-
tations and can provide school leadership with internal assessments of teaching quality 
to serve both diagnostic and evaluative purposes. 

 This chapter explores the use of collections of students’ work in research on 
instructional quality. I present a methodology for analyzing sets of students’ written 
work using the Instructional Quality Assessment (IQA) Mathematics Assignment 
rubrics. This set of rubrics is part of the larger IQA toolkit, a validated measure 
developed to assess instruction in mathematics and reading/language arts through 
lesson observations and collections of students’ work (Boston  2012 ; Matsumura 
et al.  2008 ). I will summarize research validating the use of students’ work as an 
indicator of instructional quality and describe research projects using the rubrics to 
(1) assess instructional quality in mathematics at the district level and (2) evaluate 
the effectiveness of a professional development initiative. The chapter will close with 
a discussion of the strengths and limitations of the IQA specifi cally and the use of 
students’ work as a data source more broadly. 

    Using Student Work as a Refl ection on Instruction 

 Sets of students’ written work on mathematical tasks have been used successfully in 
professional development settings to provide windows into students’ thinking, 
enabling teachers to consider the variety of strategies and reasoning students may 
use to solve a given task, identify the range of understanding across a set of students, 
and plan ways to provide support or ask questions that build and develop students’ 
mathematical thinking (Cobb et al.  2009 ; Kazemi and Franke  2004 ; Smith  2001 ). 
Analyzing sets of students’ work can also provide data and initiate conversations 
about the  nature of instruction  that supported students to produce the mathemati-
cal work and thinking. For example, consider the refl ection on instruction when 
(a) students solved the task in more than one way even though the directions did not 
specifi cally request multiple strategies, (b) all or most students did not complete the 
cognitively challenging parts of the task, or (c) many student-work samples look 
“template” (Boston  2008 ; Matsumura and Boston  2006 ; Steele and Boston  2012 ). 
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Sets of students’ written work can provide insight into the teacher’s expectations for 
what “counts” as a written explanation or whether the teacher’s instructional prac-
tices maintained or diminished opportunities for cognitively challenging work 
(Boston and Steele  in press ). 

 Matsumura and colleagues’ research (e.g., Matsumura  2003 ; Matsumura et al. 
 2002 ) validated the collection and analysis of students’ work as a refl ection of teach-
ers’ instructional practice. In comparison to classroom observations, collections of 
students’ work are harder to manipulate in ways that please researchers and encapsu-
late longer periods of instructional time and more activities in a classroom (Clare and 
Aschbacher  2001 ). As an alternative or supplement to classroom observations, col-
lecting student work is less invasive to the instructional process and requires fewer 
resources than conducting observations (live, audiotaped, or videotaped). Collections 
of students’ work also provide artifacts of the instructional episode that can be shared 
and discussed amongst researchers, school leaders, professional development pro-
viders, and/or mathematics teachers. In this way, collections of students’ work (and 
the tools or rubrics used to analyze students’ work) can serve as  boundary objects , 
tools used together by different stakeholders in the educational system to improve 
instruction at scale (Stein and Coburn  2007 ). While the actual collections of students’ 
work serve as resources to promote discussion and refl ection on instruction, the tools 
used to analyze students’ work identify what is important and valued in students’ 
outcomes  and  the type of instruction that supported students to reach those outcomes. 
Ideally, these tools also indicate pathways for instructional improvement and provide 
a means of assessing improvement, thereby communicating a vision of quality math-
ematics instruction and setting benchmarks for effective instructional practice. The 
following section describes the vision of and benchmarks for high-quality mathemat-
ics instructional set forth by the IQA Mathematics Assignment rubrics.  

    Vision of Instructional Quality in Mathematics 

 The vision of high-quality mathematics instruction at the foundation of the IQA 
Mathematics Assignment rubrics is consistent with the recommendations by 
the National Council of Teachers of Mathematics ( 2000 ) and the Common Core 
State Standards Initiative’s Standards for Mathematical Practice (CCSSI  2011 ). 
Specifi cally, components of quality mathematics instruction identifi ed by the IQA 
include the following: (1) the teacher presents students with a cognitively challeng-
ing mathematical task (e.g., as defi ned by Stein et al. ( 2009 )); (2) in completing the 
task, students engage in high-level thinking (e.g., problem-solving, justifying or 
proving claims or conjectures,  identifying and generalizing patterns, or making 
sense of or connecting mathematical ideas, procedures, or representations), with the 
teacher providing enough support to maintain students’ engagement in high-level 
processes without taking away students’ opportunities for thinking and reasoning 
(e.g., see Henningsen and Stein’s ( 1997 ) factors for maintenance of high-level 
 cognitive demands); (3) students’ written work (in the student-work collection) 
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or discussion following the task (in lesson observations) includes complete and 
 thorough explanations, justifi cations, or representations of mathematical ideas; and 
(4) teachers maintain and publically express expectations for high-level thinking, 
specifi c to the mathematical and cognitive demands of the task. Research has con-
sistently confi rmed that these four aspects of classroom instruction impact student 
achievement (Boaler and Staples  2008 ; Cobb et al.  1997 ; Hufferd-Ackles et al. 
 2004 ; Stein and Lane  1996 ; Stigler and Hiebert  2004 ; Tarr et al.  2008 ). 1  Hence, the 
IQA Mathematics Assignment rubrics assess the quality of a mathematics lesson 
using a small number of indicators empirically associated with students’ learning. 
Figure  1  describes the fi ve dimensions 2  of the IQA Mathematics Assignment 
rubrics:  Potential of the Task, Implementation, Rigor of Teacher’s Expectations, 
Clarity and Detail of Teacher’s Expectations , and  Students’ Access to Teacher’s 
Expectations.  Through these rubrics, the IQA provides data to address the following 
research questions:

     1.    What is the rigor of the mathematical tasks in the collection of students’ work?   
   2.    What is the rigor of task implementation, as evidenced in the students’ work? 

Were high-level task demands maintained or reduced?   
   3.    What is the rigor of teachers’ expectations for students’ work? Did teachers’ 

expectations align with the cognitive demands of the task(s)? To what extent did 
the rigor of task implementation align with the rigor of teachers’ expectations?   

   4.    To what extent were the teachers’ expectations clear and accessible?    

1   Thorough descriptions of the conceptual underpinnings of the IQA rubrics are provided in Boston 
( 2012 ). 
2   A sixth rubric,  Rigor of Students’ Written Responses , was developed but is no longer used due to 
high correlation with the  Implementation  rubric. 

Potential of the Task

The highest level of thinking required to successfully complete the instructional task(s) in the samples
of students’ work and identified by the teacher on the cover sheet. For assignments with multiple
tasks, the score received by the largest number of tasks is used; average score is used in a tie.

Implementation 

The highest level of engagement evidenced in the majority of student work samples.

Rigor of Teacher’s Expectations

The highest level of cognitive demand expected of students, as indicated on the cover sheet, including
copies of any rubrics or criteria sheets used to assess students’ work.

Clarity and Detail of Teacher’s Expectations

The clarity and detail of teachers’ expectations for high-quality work, as indicated on the cover sheet,
including copies of any rubrics or criteria sheets given to students for their work on the task.

Students’ Access to Teacher’s Expectations

Ways in which expectations for students’ work are communicated to all students, as described on the
cover sheet.

  Fig. 1    IQA Mathematics Assignment rubrics       
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  The next section describes how to use the IQA Mathematics Assignment rubrics 
to analyze collections of students’ work.  

    The IQA Mathematics Assignment Rubrics 

 The collection and analysis of students’ work in the IQA Mathematics Assignment 
rubrics is grounded in a body of research indicating that collections of students’ 
work provide stable indicators of classroom practice highly correlated with observed 
instruction (Borko et al.  2003 ; Clare and Aschbacher  2001 ; Matsumura et al.  2002 ). 
Specifi c to the IQA rubrics, scores on lesson observation and student-work collec-
tions exhibit signifi cant correlations ( r  = .68,  p  < .01) (Matsumura et al.  2008 ). 
Design and generalizability studies conducted on the IQA Mathematics Assignment 
rubrics indicate that four sets of student-work per teacher, with 4–6 samples in each 
set, can serve as a valid indicator of classroom practice (Matsumura et al.  2008 ). 
This research also indicated that the IQA Mathematics Assignment scores were 
signifi cantly correlated with students’ scores on all subscales (i.e., total mathemat-
ics, procedures, problem-solving) of the Stanford Achievement Test, 10th Edition 
(SAT-10). 

 The protocol for the IQA student-work collection was also informed by the afore-
mentioned design studies (e.g., Matsumura et al.  2008 ). Each teacher was asked 
to provide four assignments with six samples of students’ work per assignment. To 
minimize sampling variability, teachers were explicitly asked to submit students’ 
work on instructional tasks that require students to “show written mathematical work 
and explanations.” Teachers completed a cover sheet for each assignment, identify-
ing the task(s) students were asked to solve, directions given to students, and the 
expectations for students’ work. Teachers were also asked to submit copies of the 
instructional task(s) and any rubrics, criteria sheets, or scoring guides used with 
the task(s). Raters utilize these artifacts to score the Mathematics Assignment rubrics 
listed in Fig.  1  .  Each rubric is rated on a scale of 0–4 (0 indicates the construct 
was absent), with score levels representing a continuum of quality  and  discrete cat-
egories of performance. This allows for quantitative analysis and for descriptive 
interpretations of the results (i.e., what each score level “looks like” for a given con-
struct). Stein and colleagues’ levels of cognitive demand (Stein et al.  1996 ,  2009 ) 
informed the development of the score levels for  Potential of the Task, Implementation,  
and  Rigor of Teacher’s Expectations . 

 Each set of student work was scored by two raters. For the IQA Mathematics 
Assignment rubrics, raters participate in a 2-day training session and are provided with 
a scoring manual containing samples of tasks, sets of students’ work, and cover sheets 
(with teacher’s expectations) illustrating the score levels for each rubric. Rater pairs 
must achieve at least 80 % exact-point agreement on sample packets of student work 
prior to rating student-work collections for research. Similarly, rater pairs should 
achieve at least 80 % exact-point agreement on a subset of at least 20 % of the sets 
of students’ work in a data collection before rating sets of student work individually. 
In rater-training experiences, newly trained raters without mathematics education 
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backgrounds (e.g., graduate students in initial certifi cation elementary education 
 programs) achieved poor levels of reliability (63.5 % exact-point agreement), IQA 
project members in mathematics and reading comprehension exhibited acceptable 
 levels of reliability (76.3 % exact-point agreement), and “expert raters” (mathematics 
education researchers and doctoral students) exhibited excellent levels of reliability 
(exact-point agreements of 85 % and higher). 

    Scoring the Potential of the Task and Implementation Rubrics 

 As indicated in Fig.  1 , the  Potential of the Task  rubric is rated based on the instruc-
tional task identifi ed by the teacher on the “Student Work Collection Cover Sheet.” 
An instructional task is defi ned as “a mathematical problem, exercise, or set of 
problems/exercises with the purpose of focusing students’ attention on a particular 
mathematical idea” (Stein et al.  2009 ). Excerpts from the  Potential of the Task  and 
 Implementation  rubric are provided in Fig.  2 . When scoring  Potential of the Task , 
raters reference a set of sample criteria and characteristics to supplement the rubric 
description. Once they have identifi ed the elements of the task that contribute to the 
 Potential of the Task  score, scoring  Implementation  merely requires raters to deter-
mine whether or not those elements materialized in students’ work. Three examples 
are provided to illustrate the scoring of these rubrics.

      Example 1: Place Value Fractions and Decimals 

 Figure  3  provides two samples of student work from a 6th grade classroom. The 
task “Re-write the decimals as fractions… Re-write the fractions as decimals…” 
scores a 1 for  Potential of the Task . All of the given fractions (except the Bonus) 
have denominators that are powers of 10, and rewriting them as decimals requires 
students’ knowledge of place value (i.e., no computation is necessary to success-
fully change 6/100 into a decimal, as might be required for 3/14, for instance). 
Students are asked to “rewrite” decimals as fractions and vice versa, which does 
not imply the use of a procedure (i.e., there is no indication that students are 
to divide the numerator by denominator). The task does not score a 2 because no 
computation is necessary to successfully complete the task.  Implementation  also 
receives a score of 1, since (as demonstrated in the sample) the majority of students 
“provide answers only.”

       Example 2: Shading Squares 

 Figure  4  provides two student-work samples from a 6th grade classroom working on 
the Shading Squares task. In the part of the task featured in Fig.  4 , students are asked 
to shade in 6 of 40 grid squares and to use the diagram to explain the percent of the 
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area that is shaded. The task scores a 4 for  Potential of the Task , since “the task has the 
potential to engage students in exploring and understanding the nature of mathemati-
cal concepts, procedures, and/or relationships” (e.g., percent as “per 100,” a visual 
representation of percent using an area model and the relationship between fractions 
and percents), and the task explicitly prompts for evidence of students’ thinking and 
reasoning. The majority of student-work samples include explicit evidence of stu-
dents’ thinking and reasoning, in a way that explains the meaning of percent as “per 
100”; hence, the  Implementation  also scores a 4. Across the set of student work, stu-
dents use a variety of strategies and provide unique explanations. If the majority of 
students had provided inadequate explanations, the  Implementation  score would have 
fallen to a 3. If the majority of student-work samples used the same strategy or com-
putation, looked “template,” or provided similarly worded explanations, the 
 Implementation  score would have fallen to a 2 (as an indication that a set procedure 
was provided at some point during students’ work on the task).

Potential of the Task rubric Implementation rubric

4 The task has the potential to engage students in exploring and understanding
the nature of mathematical concepts, procedures, and/or relationships, such 
as (from Stein, etal., 2009):

• Doing mathematics: using complex and non-algorithmic thinking (i.e., 
there is not a predictable, well-rehearsed approach or pathway explicitly 
suggested by the task, task instructions, or a worked-out example); or

• Procedures with connections: applying a broad general procedure that 
remains closely connected to mathematical concepts.

The task must explicitly prompt for evidence of students’ reasoning and 
understanding. For example, the task MAY require students to:  

• solve a genuine, challenging problem for which students’ reasoning is 
evident in their work on the task;

• develop an explanation for why formulas or procedures work; 

• identify patterns;…justify generalizations based on these patterns;…

Student-work indicates the use of
complex and non-algorithmic thinking,
problem solving, or exploring and
understanding the nature of
mathematical concepts, procedures,
and/or relationships (i.e., there is
evidence of at least one of the
descriptors of a “4” in the Potential of
the Task rubric.)

3 The task has the potential to engage students in complex thinking or in 
creating meaning for mathematical concepts, procedures, and/or 
relationships. However, the task does not warrant a “4” because: 

• the task does not explicitly prompt for evidence of students’ reasoning 
and understanding.

• students may need to identify patterns but are not pressed to form or 
justify generalizations;

students may be asked to use multiple strategies or representations but 
the task does not explicitly prompt students to develop connections 
between them;…

Student work indicates that students 
engaged in problem-solving or in 
creating meaning for mathematical 
procedures and concepts BUT student 
work lacks explicit evidence of 
complex thinking required for “4” (i.e.,
the Potential of the Task was rated as 
3 or 4,  …and there is a lack of
evidence of the appropriate descriptors 
for a 4, but there is evidence of at least 
one descriptor of a 3).

2 The potential of the task is limited to engaging students in using a
procedure that is either specifically called for or its use is evident based on
prior instruction, experience, or placement of the task…. The task does not
require students to make connections to the concepts or meaning underlying
the procedure being used… (e.g., practicing a computational algorithm).

Students engage with the task at a 
procedural level. Students apply a 
demonstrated or prescribed procedure. 
Students show or state the steps of their
procedure, but do not explain or 
support their ideas. ..

1 The potential of the task is limited to engaging students in memorizing or
reproducing facts, rules, formulae, or definitions…

Students engage with the task at a 
memorization level… (e.g., provide 
answers only),  OR even though a 
procedure is required or implied by the 
task, only answers are provided in 
students’ work; there is no evidence of 
the procedure used by students.

  Fig. 2    Excerpts of the IQA Mathematics Assignment rubrics for  Potential of the Task  and 
 Implementation        
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       Example 3: Grouping Flowers 

 Figure  5  provides two samples of students’ work from a 4th grade classroom. 
The “Grouping Flowers” task provides students with a situation involving equal 
groups of fl owers, as a context for multiplication (part a) and division (part b). The 
task explicitly asks students to “show all of your work,” “explain your thinking” 
(part a), and “explain why you did each step” (part b). For these reasons, the 
 Potential of the Task  score is a 4. However, most samples of student work do not 

  Fig. 3    Two samples of students’ work from the Place Value Fractions and Decimals task       

  Fig. 4    Two samples of student work from the Shading Squares task       
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provide evidence of students’ understanding of the connection between equal 
groupings and multiplication/division. In the majority of students’ work, students 
applied a random procedure that does not refl ect the action in the problem. 
Because “students show or state the steps of their procedure, but do not explain or 
support their ideas,” and the majority of students’ work does not indicate “that stu-
dents engaged in … creating meaning for mathematical procedures and concepts,” 
 Implementation  scores a 2. If the majority of student-work samples provided 
implicit evidence of students’ connections between equal groups and multiplication 
or division, even with inadequate explanations,  Implementation  would score a 3. If 
the majority of student-work samples featured explanations that explicitly described 
the connection between equal groups and multiplication or division (i.e., “I multi-
plied because you have 5 bunches 24 in each”),  Implementation  would score 4.

   In summary, a set of students’ work receives one score for  Potential of the Task  
and one score for  Implementation . In the analysis, comparing  Potential of the Task  
scores with  Implementation  scores (as paired values) helps determine whether stu-
dents’ opportunities to engage in thinking and reasoning were maintained during 
the instructional episode.  Implementation  scores can be higher than  Potential of the 
Task  scores. For example, student-work collections with a  Potential of the Task  
score of 3 sometimes receive an  Implementation  score of 4 when students provide 
explanations in their work even though not explicitly prompted by the task. However, 
we rarely see a student-work collection with a  Potential of the Task  score of 1 or 2 
(tasks with low-level cognitive demand) receive an  Implementation  score of 3 or 4 
(evidence of high-level thinking and reasoning). More frequently,  Implementation  
scores fall lower than  Potential of the Task  scores, as tasks that begin with high-level 
demands ( Potential of the Task  scores of 3 or 4) frequently receive a 2 for 

  Fig. 5    Two samples of student work from the Grouping Flowers task       
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 Implementation  when the student-work indicates the use of a common, prescribed 
procedure. Tasks that receive a 4 for  Potential of the Task  can also fall to an 
 Implementation  of 3 when the student-work lacks high-quality explanations.   

    Scoring the Teachers’ Expectations Rubrics 

 The IQA Mathematics Assignment rubrics assessing teachers’ expectations are 
 provided in Fig.  6 . Teachers submit “Student Work Collection Cover Sheets” 
(informed by Clare  2000 ), identifying the instructional tasks, explaining their 

Rigor of Teacher’s Expectations Clarity and Detail of
Teacher’s Expectations

Students’ Access to Teacher’s
Expectations

4 The majority of the teacher’s expectations 
are for students to engage with the high-
level demands of the task, such as using 
complex thinking and/or exploring and 
understanding   mathematical concepts,
procedures, and/or relationships.

The expectations are very 
clear and explicit regarding 
the quality of work expected. 
The criteria for quality work 
are appropriately detailed. 
The expectations and levels 
of quality are task-specific.

Teacher provides and discusses the 
expectations or criteria for student 
work (e.g., scoring guide, rubric, etc.)
with students in advance of their
completing the assignment and
includes a model of high-quality
work.

3 At least some of the teacher’s expectations 
are for students to engage in complex 
thinking or in understanding important 
mathematics…

• the expectations are appropriate for a 
task that lacks the complexity to be a 
“4”; 

• the expectations do not reflect the 
potential of the task to elicit complex 
thinking…

• the teacher expects complex thinking, 
but the expectations do not reflect the 
mathematical potential of the task.  

The expectations are clear 
regarding the quality of work 
expected. Expectations are 
task-specific. However, there 
is no elaboration of what 
level of quality is expected 
for each criterion.

Teacher provides and discusses the 
expectations or criteria for student 
work (e.g., scoring guide, rubric, etc.)
with students in advance of their 
completing the assignment.

2 The teacher’s  expectations focus on  skills 
that are germane to student learning, but 
these are not complex thinking skills (e.g., 
expecting use of a specific problem solving 
strategy, expecting  short answers based on 
memorized facts, rules or formulas; 
expecting accuracy or correct application of   
procedures rather than on understanding 
mathematical concepts).

The expectations for the 
quality of student’s work are 
broadly stated and 
unelaborated (i.e., a standard 
rubric).

Teacher provides a copy of the 
expectations or criteria for assessing 
student work (e.g., scoring guide, 
rubric, etc.) to students in advance of 
their completing the assignment, but 
does not publicly discuss the 
expectations or criteria with the 
entire class.

1 The teacher’s expectations do not focus on 
substantive mathematical content (e.g., 
activities or classroom procedures such as 
following directions, effort, producing neat 
work, or following rules for cooperative 
learning).   

The teacher’s expectations 
for the quality of student’s 
work are unclear OR the 
expectations for quality work 
are not shared with students.  

Teacher does not share the criteria 
for assessing students’ work with the 
students in advance of their 
completing the assignment…

  Fig. 6    Excerpts from IQA Mathematics Assignment rubrics for  Rigor of Teacher’s Expectations , 
 Clarity and Detail of Teacher’s Expectations , and  Students’ Access to Teacher’s Expectations        

 

M.D. Boston



511

expectations, and providing any rubrics or grading criteria for each set of students’ 
work. When scoring the teacher’s expectations rubrics, raters use information pro-
vided by the teacher on the cover sheet, particularly question 4. For the  Rigor of 
Teacher’s Expectations , raters look for expectations or criteria that align with high- 
level cognitive demands and refl ect the main mathematical ideas in the task. For 
 Clarity and Detail of Teacher’s Expectations , raters identify whether the expecta-
tions are task specifi c and provide enough information to discern high-, medium-, 
and low-quality work. In scoring  Students’ Access to Teacher’s Expectations , raters 
consider the extent to which the grading criteria, levels of quality, and examples of 
high-quality work are shared with the class. Any reference to students’ prior engage-
ment in high-level thinking and reasoning (e.g., the use of multiple representations 
or strategies) or to examples of high-quality explanations in students’ prior work 
can count as models. The examples of completed cover sheets in Fig.  7a ,  b  will be 
used to describe the scoring of the teachers’ expectations rubrics.

       Hexagon Pattern Cover Sheet 

 Figure  7a  provides the cover sheet for the Hexagon Pattern student-work collection 
(grade 6). The teacher expected students to generalize a pattern, to describe the “general 
rule of fi nding the perimeter” in “sentence form” and by using “a variable formula,” and 
to relate their descriptions to the diagram of the train. The teacher indicates that high-
quality work requires “a good explanation of how they came up with the variable expres-
sion. Especially relating it to the diagrams they draw.” These descriptors for students’ 
work align with score level 4 on the  Potential of the Task  rubrics and capture the thinking 
skills and mathematical purpose of the patterning task. Hence, the  Rigor of Teacher’s 
Expectations  scores a 4. Without the push for an explanation or for the connection 
between the descriptions, variable expressions, and diagram of the pattern, the  Rigor of 
Teacher’s Expectations  would score a 3. The expectations are also task specifi c and 
delineate different levels of quality, so the  Clarity and Detail of Teacher’s Expectations  
also receives a 4. If the teacher did not provide specifi c indicators of the different levels 
of quality (e.g., instead indicated “all criteria are met” for high quality), or indicated that 
a general rubric was used to guide and assess students’ work on the task (e.g., “students 
used their problem- solving rubric”) without connection to the specifi c mathematical 
ideas in the task, the  Clarity and Detail  would receive a score of 3 or 2, respectively. 
Note that the rubric provided by the teacher (not provided here) was specifi c to pattern-
ing tasks and contained the criteria identifi ed by the teacher. Because the teacher indi-
cates that “Expectations were discussed in class and related to the rubric criteria which 
were developed by combined classes” and “We went over the previous problem we had 
done before doing this one,”  Students’ Access to Teacher’s Expectations  also receives a 
4, as the previous problem was also a pattern-generalizing problem. Without reference 
to the class discussion of a previous [patterning] problem or connection to the rubric 
criteria (i.e., a model and criteria for high-quality work),  Students’ Access  would score a 
3. Without reference to a class discussion of the teacher’s expectations (e.g., “directions 
were printed on the handout” or “students have a rubric that they can use for reference”), 
 Students’ Access  would score a 2.  
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  Fig. 7a    Hexagon pattern cover sheet       
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  Fig. 7b    Graphing inequalities cover sheet       

    Graphing Inequalities Cover Sheet 

 Figure  7b  provides a cover sheet from the Graphing Inequalities student-work col-
lection (grade 7). The   Rigor of Teacher’s Expectations  scores a 2, since students 
were expected to neatly and accurately “solve and graph inequalities using multipli-
cation and division properties,” skills germane to students’ learning of mathematics 
but not complex thinking skills. The teacher’s response to item 5, “Grading criteria 
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is an ongoing process in my class. I constantly encourage and praise completeness, 
neatness, and accuracy,” provides no indication that any criteria, levels of quality, or 
models of high-level work were shared or discussed with students prior to students’ 
work on the task. Thus, both  Clarity and Detail of Teacher’s Expectations  and 
 Students’ Access to Teacher’s Expectations  score a 1. If the teacher had indicated 
that he/she had posted the criteria on the board, both scores would increase to a 2. 
In this example, the teacher’s expectations as written cannot advance beyond a 2 for 
 Clarity and Detail , but different actions by the teacher could result in a 3 (e.g., 
reviewing the grading scale with the class) or 4 (e.g., reviewing the grading scale 
and providing a model of an accurate response) for  Students’ Access . 

 In summary, in addition to the scores for  Potential of the Task  and  Implementation , 
a collection of students’ work also receives scores for each of the three teacher’s 
expectations rubrics.    

    Analyzing IQA Scores 

 As described in the previous sections, each collection of students’ work receives 5 
scores, one for each of the rubrics identifi ed in Fig.  1 . The scores can be interpreted as 
a continuous scale of increasing quality from 0 to 4, or they can be considered discrete 
categories of performance. If perceived as a continuous scale, mean scores and t-tests 
can be used to describe and analyze the data. Sets of student work can be analyzed 
individually (where n is the number of sets of students’ work), or they can be grouped 
by teacher (where n is the number of teachers). When grouped by teacher, each teach-
er’s score from their four individual collections of student work was averaged for each 
rubric (i.e., the four scores for the  Potential of the Task  are averaged into one  Potential 
of the Task  mean score for each teacher). Then, across teachers, an overall mean score 
is obtained for each rubric. Since scores of 1 and 2 represent low levels of quality and 
scores of 3 and 4 represent high levels of quality for each rubric, a mean of 2.5 is con-
sidered to be the demarcation line between consistently high-quality and consistently 
low-quality constructs for each teacher and overall. A composite or “overall” student-
work score is useful for correlating student-work performance to student achievement 
data, but not recommended for formative assessments of instructional quality as com-
bining the rubric scores diminishes their interpretive value. 

 If scores are considered to be discrete categories of performance, medians and 
modes are used for descriptive purposes, and nonparametric tests and tests for 
 frequency and proportions are used for the analyses. Frequencies of high (3 or 4) vs. 
low (1 or 2) scores in each construct are important to report and analyze when com-
paring data over time, because a variety of changes in scores can affect the mean in 
ways that would not necessarily indicate an increase in teachers’ selection or imple-
mentation of cognitively challenging tasks or in teachers’ expectations. For exam-
ple, a 1-point increase from a mean score close to 1 to a mean score close to 2 could 
be statistically signifi cant but would not indicate a shift in instructional practices 
from low-level to high-level tasks, implementation, or expectations. 
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 Frequencies of high vs. low scores are also particularly helpful in identifying 
pathways for improvement. Frequencies with important interpretive value between 
 Potential of the Task  and  Implementation  include (1) the percent of student-work 
collections with high scores for  Potential of the Task  that were maintained as 
high- level  Implementation  vs. fell to low-level  Implementation ; (2) the percent of 
student- work collections with  Potential of the Task  scores of 4 that received a 3 for 
 Implementation , often indicating low-quality explanations; and (3) the percent of 
student-work collections with high scores for  Potential of the Task  that received a 
2 for  Implementation , indicating that the tasks became proceduralized. For the set 
of rubrics assessing teachers’ expectations, insightful frequencies to analyze and 
report include (1) the percent of high-level tasks ( Potential of the Task  at a 3 or 4) 
with high scores vs. low scores for  Rigor of Teachers’ Expectations , indicating the 
extent to which teachers’ expectations refl ected the cognitive demands of the 
task), and (2) similarly, the percentages of high-level  Implementation  with high 
vs. low scores for the  Rigor of Teachers’ Expectations , indicating the level of 
consistency in the rigor of mathematical work and thinking that a teacher expected 
vs. the level of rigor actually evident in the students’ work. Note that high scores 
for the  Clarity and Detail of Teacher’s Expectations  and  Students’ Access to 
Teacher’s Expectations  can be deceiving, as sets of student work can receive high 
scores on these rubrics with tasks having low-level cognitive demands and task 
implementation that reduce the cognitive demands of the task (e.g., providing 
modeling that is too explicit). Hence, as a supplement to interpreting only overall 
rubric means, separately analyzing descriptive statistics for student-work collec-
tions containing high-level tasks (e.g., the  Potential of the Task  scores of 3 or 4) 
from student-work collections containing low-level tasks (e.g., the  Potential of the 
Task  scores of 1 or 2) may provide greater insight into instructional quality and 
highlight areas for instructional improvement. For example, if sets of scores for 
a teacher or school indicate a consistent decline from high-level tasks (e.g., 
the  Potential of the Task  scores of 3 or 4) to low-level implementation (e.g., 
 Implementation  scores of 1 or 2), high scores for the  Clarity and Detail of 
Teacher’s Expectations  and  Students’ Access to Teacher’s Expectations  may sig-
nal a need for teachers to consider how to communicate clear expectations with-
out over-structuring students’ mathematical work and thinking. 

 Statistical tests (parametric or nonparametric) provide additional insights into 
instructional quality. For example, comparing scores for the  Potential of the Task  
and  Implementation  as paired values for each set of student work can indicate 
whether high-level task demands were maintained during implementation (no sig-
nifi cant differences) or declined during implementation (if  Implementation  is 
 signifi cantly lower than the  Potential of the Task) . The  Potential of the Task  and the 
 Rigor of Teacher’s Expectations  should not to be signifi cantly different and, beyond 
that, should be highly correlated. This would indicate that teachers recognized the 
main mathematical ideas in the task and the potential of the task to elicit students’ 
thinking. Similarly,  Implementation  and the  Rigor of Teacher’s Expectations  
should be correlated and not signifi cantly different, indicating that student work 
provides evidence of the level of rigor expected by the teacher. Whether using 
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discrete or continuous analyses, descriptive statistics on the overall collection of 
students’ work can indicate the success of teachers as a group in selecting and 
implementing cognitively challenging tasks, holding expectations for students to 
engage in  high- level mathematical work and thinking, and communicating these 
expectations clearly and publicly to students. 

    Ethics of Using the IQA for Evaluative and Diagnostic Purposes 

 In school systems where the use of cognitively challenging instructional tasks is a 
clear criterion for high-quality instruction, the analysis of student-work collec-
tions using the IQA Mathematics Assignment rubrics can provide an assess-
ment of teachers’ best efforts to select and implement cognitively challenging 
instructional tasks, for evaluative or diagnostic purposes. Recall that teachers 
are explicitly asked to provide samples of students’ work that illustrate students’ 
mathematical work and explanations. Hence, across a school or district, teachers’ 
opportunities to have formed an understanding of what “counts” as high-quality 
work and explanations, of the type of instructional tasks and instructional prac-
tices identifi ed by the IQA as supporting students’ learning in mathematics, are 
necessary in order for IQA results to have value. Evaluating teachers on compo-
nents of instruction of which they are unaware or have not been given an opportu-
nity to develop would be unethical. The IQA, and any tool or rubric, should only 
be used in an evaluative capacity when (1) teachers are aware of and understand 
the criteria on which their instructional practices are being assessed (e.g., through 
district statements of expectations for instructional quality, goals for district- or 
school-wide reform, professional development opportunities, etc.), (2) teachers 
are supported to develop the instructional practices identifi ed in the assessment 
(e.g., through professional development or curricular resources), and (3) only 
school- or district-level data are reported (not teacher-level data). In this way, the 
IQA (or other tool) would provide an evaluation of teaching, not an evaluation of 
teachers, describing key elements of the instructional practices in mathematics in 
a school or district. 

 As a diagnostic tool, teacher- or school-level data from the IQA can provide 
insight into the success of professional development initiatives or curriculum imple-
mentations, particularly those designed specifi cally to facilitate teachers’ selection 
and implementation of cognitively challenging instructional tasks. However, 
depending on the research design and the number of student-work collections, gen-
eralizations to teachers’ everyday practice may not be appropriate, and the use of 
teacher-level data is appropriate for diagnostic purposes or formative assessments 
only. In the next sections, I describe specifi c studies in which subsets of the research 
questions were explored through collections of students’ work to assess district- 
wide reform efforts and to evaluate the effectiveness of a university-based profes-
sional development initiative.   
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    Using the IQA Mathematics Assignment Rubrics in Research 

 The IQA Mathematics Assignment rubrics are useful in a variety of research 
 settings, such as (1) assessing instructional quality at the scale of a school or district, 
(2) evaluating the effectiveness of professional development initiatives, or (3) moni-
toring the implementation of  Standards -based curricula. Herein, I will discuss 
 studies of the fi rst two types; see Boston and Steele ( in press ) for use of the IQA in 
a curriculum implementation study. 

    School- or District-Level Assessment 

 The IQA Mathematics Assignment rubrics were used to compare elementary stu-
dents’ opportunities to learn mathematics in two mid-sized urban school districts 
(Districts A and B), similar demographically but different in their use of a  Standards - 
based  vs. traditional curriculum and in the nature and extent of professional devel-
opment opportunities provided to mathematics teachers. District A had implemented 
a long-standing professional development (PD) program specifi c to the teaching of 
mathematics with  Standards -based curricula at the elementary and middle school 
level and very closely aligned with the constructs measured by the IQA. For District 
A, the IQA served to assess teachers’ instructional practices following the PD and 
curriculum implementation efforts to identify successes and areas of improvement. 
District B was just beginning to implement reform-based initiatives in PD and cur-
riculum; hence, in District B, the IQA provided a baseline assessment of teachers’ 
instructional practices to inform the direction of the PD and curriculum reform 
efforts. The districts consisted of a diverse population of students (16 % African 
American, 8 % Asian, 63 % Latino, 11 % white, 2 % others), 19 % of whom were 
English language learners. Two procedures were used to minimize sampling vari-
ability. First, data collection was limited to 2nd and 4th grade classrooms only, with 
seven teachers from each district providing students’ work. Second, in each district, 
teachers were asked to submit four sets of student work where “students demon-
strate their mathematical work and thinking.” One teacher in District A provided 
only three student-work sets, resulting in an overall data set of 55 sets of student 
work from 14 teachers. 

 Table  1  provides the descriptive data for both districts. Statistically signifi cant dif-
ferences, favoring the district utilizing the  Standards -based curriculum and providing 
content-specifi c professional development (District A), existed in each dimension of 
the IQA Mathematics Assignment rubrics (Boston and Wolf  2006 ). This fi nding pro-
vided the IQA team with construct validity; the IQA Mathematics Assignment rubrics 
were capable of differentiating mathematics instruction between districts and hence 
were measuring what was intended. Most importantly, the IQA rubrics provided data 
to inform instructional improvements in both districts. The district with lower scores 
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(District B) realized the value of a  Standards -based curriculum, as the  Potential of the 
Task  mean score of 1.93 indicated that the sample of instructional tasks provided stu-
dents opportunities to engage primarily in procedural and memorization tasks. Lack 
of high-quality tasks effectively limited  Implementation  to a mean of 1.61 and the 
 Rigor of Teacher’s Expectations  to a mean of 1.96, as teachers’ expectations for stu-
dents’ work and the student-work samples provided evidence of low-level cognitive 
demands consistent with the level of the tasks. Means from the collection of student 
work from District A were above the demarcation line of 2.5 in each construct (with a 
 Potential of the Task  mean of 3.15,  Implementation  mean of 2.63, and  Rigor of 
Teachers’ Expectations  mean of 3.07), indicating that students in the sample were 
consistently presented with cognitively challenging tasks and rigorous expectations 
and produced high-quality mathematical work. The student-work collection from 
District A was signifi cantly higher than District B, with differences in means greater 
than one point in each dimension. However, low percentages of tasks, task implemen-
tations, and teachers’ expectations at a level 4 indicate that the sample of students’ 
work from District A did not indicate that students were prompted to explain their 
thinking by the instructional tasks or by teachers’ expectations, nor did the student 
work provide evidence of high-quality written mathematical explanations. This fi nd-
ing might suggest a pathway for professional development efforts, both with this 
sample of teachers and perhaps across the district more broadly.

       Evaluating Professional Development Initiatives 

 The analysis of collections of students’ work provides a methodology for evaluat-
ing the effectiveness of professional development (PD) initiatives, if the instruc-
tional practices advocated by the PD are aligned with the constructs assessed by the 
IQA. Collections of students’ work can be analyzed before and after teachers’ 

   Table 1    Descriptive data on elementary mathematics assignments in Districts A and B   

 Number (%) of student-work sets at each score level a  

 Low-level demands  High-level demands 

 Mean (SD)  1  2  3  4 

 District A ( n  = 27 assignments; 7 teachers) 
 Potential of the Task  *3.15 (.53)  0 (0 %)  2 (8 %)  19 (70 %)  6 (22 %) 
 Implementation  *2.63 (.79)  4 (15 %)  3 (11 %)  19 (70 %)  1 (4 %) 
 Rigor of Teachers’ Expectations  *3.07 (.39)  0 (0 %)  1 (4 %)  23 (85 %)  3 (11 %) 

 District B ( n  = 28 assignments; 7 teachers) 
 Potential of the Task  1.93 (.72)  8 (29 %)  14 (50 %)  6 (21 %)  0 (0 %) 
 Implementation  1.61 (.69)  14 (50 %)  11 (39 %)  3 (11 %)  0 (0 %) 
 Rigor of Teachers’ Expectations  1.96 (.58)  5 (18 %)  19 (68 %)  4 (14 %)  0 (0 %) 

  *Signifi cantly higher than District B at  p  < .05 
  a No scores of 0 were received for any rubric dimension  
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participation in a professional development workshop, to identify instructional 
change consistent with the workshop’s goals and purposes. Alternatively, when the 
logistics of a PD initiative inhibit the collection of pre-workshop data (i.e., summer 
workshops or other circumstances where researchers do not have access to teachers’ 
classroom prior to the start of the workshop), post-workshop collections of stu-
dents’ work can indicate whether teachers are able to enact instruction consistent 
with the intent of the PD. Collections of students’ work can also be utilized as data 
on teachers’ instructional practices when participants or school districts are not 
amenable to classroom observations or when a project lacks the resources to con-
duct classroom observations. 

 With their focus on tasks and task implementation, the IQA Mathematics 
Assignment rubrics were ideally suited to assess instructional change in secondary 
mathematics teachers participating in the Enhancing Secondary Mathematics Teacher 
Preparation (ESP) project (Boston  2006 ; Boston and Smith  2009 ,  2011 ). The ESP 
project selected 19 teachers from different school districts (within the same urban-
suburban region) to participate in a 2-year initiative focused on the selection and 
implementation of cognitively challenging tasks in their own classrooms (Year 1) and 
as the teachers served as mentors to preservice teachers (Year 2). The Year 1 work-
shop consisted of six full-day sessions, held monthly on Saturdays throughout the 
2004–2005 school year. The primary workshop activities included solving cognitively 
challenging tasks, refl ecting on task demands and task implementation, analyzing epi-
sodes of instruction (video and written cases) and sets of students’ work, and sharing 
personal successes and challenges in implementing cognitively challenging tasks in 
their own classrooms. 

 ESP teachers submitted data collections consisting of fi ve consecutive days of 
instructional tasks and three sets of students’ work (from within the 5-day period) at 
three points throughout the school year, coinciding with the beginning, middle, and 
end of their participation in the Year 1 workshop. Teachers were also observed once 
within each 5-day period. Instructional tasks, lesson observations, and collections of 
students’ work were analyzed using the IQA Mathematics Assignment rubrics for 
 Potential of the Task  and  Implementation , consistent with the focus of the ESP pro-
fessional development initiative. The teachers’ expectations rubrics were not uti-
lized in the assessment, since those constructs were not prominent aspects of 
teachers’ professional learning experiences in the ESP workshop. Sixteen ESP 
teachers submitted complete student-work collections in the fall (resulting in 48 sets 
of students’ work), and 13 teachers submitted complete student-work collections in 
the spring (39 sets of students’ work). Two raters individually scored a subset of 
20 % of the student-work sets, reaching exact-point agreement of 85 %; the remain-
ing student-work sets were then scored by an individual rater. 

 Analysis of students’ work indicated signifi cant improvement in teachers’ selection 
and implementation of cognitively demanding mathematical tasks over the course 
of the workshop. Mann-Whitney tests for nonparametric data indicated that the 
 Potential of the Task  means increased signifi cantly from 2.63 at the beginning (fall) 
to 3.03 at the end (spring) of the Year 1 workshop ( z  = 2.35;  p  < .01[one tailed]), 
and  Implementation  means increased signifi cantly ( z  = 2.94;  p  = .002 [one tailed]) 
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from 2.27 to 2.86. More critically, student-work data also indicated a signifi cant 
improvement in the teachers’ ability to maintain the cognitive demands of high- 
level tasks. In fall, low-level tasks (i.e.,  Potential of the Task  scores of 1 or 2) present 
52 % vs. 48 % of the time over high-level tasks (i.e.,  Potential of the Task  scores of 
3 or 4), but by spring, this ratio had shifted to 77 % vs. 23 % in favor of high-level 
tasks. Similarly,  Implementation  increased from 25 % (12 out of 48) high-level in 
fall to 67 % (26 out of 39) high-level in spring. Chi-squared tests indicated that the 
increases in the number of high-level instructional tasks ( χ 2(2) = 16.18;  p  < .01) and 
the number of high-level implementations ( χ 2(2) = 16.11;  p  < .001) in students’ 
work were signifi cant from fall to spring. These statistics also suggest that fewer 
high-level tasks in the student-work collection declined during implementation in 
the spring data collection than in the fall, and a chi-squared test indicated that the 
change was signifi cant ( χ 2(2) =7.96;  p  = .02). In other words, signifi cantly more 
tasks at a score of 3 or 4 for the  Potential of the Task  were maintained at a score 
level of 3 or 4 for  Implementation . This is a valuable fi nding regarding change in 
teachers’ instructional practices following their participation in the ESP profes-
sional development workshop, as students’ engagement with cognitively  challenging 
tasks signifi cantly impacts their mathematical learning, and US teachers’ inability 
to maintain high-level cognitive demands was a signifi cant factor differentiat-
ing instruction in US classrooms from higher-performing countries on the Third 
International Mathematics and Science Study (TIMSS) (Stigler and Hiebert  2004 ). 
Of course, not all teachers participating in the same PD initiative exhibit the same 
level of change in instructional practices. The student-work analysis also provided 
teacher-level data for diagnostic purposes and enabled the ESP researchers to con-
sider “cases” of teachers who did or did not exhibit change in their selection and 
implementation of cognitively challenging instructional tasks. Interestingly, we 
were able to identify three distinct groups of teachers according to their level of 
instructional change across the set of 18 ESP teachers: (1) no change (two teachers) 
or improving tasks only (three teachers); (2) improving tasks and task implementa-
tion (eight teachers); and (3) enhancing preexisting practices in implementing high- 
level tasks (fi ve teachers). The cases are reported in Boston and Smith ( 2009 ,  2011 ).   

    Conclusion: Affordances and Constraints of Using the IQA 

 Using collections of students’ work as data on instructional quality is important to 
mathematics education research for several reasons. Assessing the quality of math-
ematics instruction continues to increase as an area of public concern. Currently, 
student achievement tests, value-added measures, and classroom observations serve 
as the primary sources of data on instructional quality. The use of student achieve-
ment data and value-added data as indicators of teacher quality can be misleading, 
as students’ performance on standardized tests can be impacted by numerous   factors 
beyond teachers and teaching (McCaffrey et al.  2003 ). While classroom  observations 
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are ideal for assessing instructional quality, and a number of validated classroom 
observation instruments exist (in general and specifi c to mathematics), classroom 
observations require resources in time, money, and personnel (Borko et al.  2003 ; 
Matsumura et al.  2008 ). 

 Collections of student work provide an accessible source of data on instruc-
tional quality for researchers from small projects to projects working at the scale 
of large school systems. Collections of student work can supplement classroom 
observations by providing additional windows into teachers’ instructional prac-
tices and students’ opportunities for learning. Alternatively, they can also serve as 
data on instructional practices when classroom observations are not feasible due 
to constraints in time, resources, or district permission. Collections of student 
work may be considered preferable to classroom observations in that they are less 
intrusive and less resource intensive. Sampling variability can be minimized by 
specifying mathematical topics or types of tasks. While this is also true of lesson 
observations, collections of student work do not require instruction to be altered 
so that a particular task or mathematical topic is presented on a specifi c day and 
time, as would be required for a lesson observation. Finally, collections of stu-
dents’ work fi lter out distractions that occur throughout a lesson that do not per-
tain to the constructs being assessed on the rubrics (i.e., warm-up activities, 
checking homework, classroom discipline). 

 Certain constraints exist in using collections of students’ work to assess instruc-
tional quality. Student work does not portray teacher questioning, whole group dis-
cussions, or the nature of teacher-student and student-student interactions within the 
classroom, all of which are important elements of classroom instruction that impact 
students’ opportunities for learning mathematics. The IQA Mathematics Assignment 
rubrics are designed to assess instructional quality through a specifi c lens, which 
may limit their broad application. For example, samples of students’ work from a 
series of tasks designed to improve students facility with specifi c procedures would 
not score highly on the IQA, though the instructional activities may be appropriate 
for the given context and goals (i.e., preparing students to take AP tests). When the 
IQA is not aligned with the goals of instructional practice in a school or district, 
professional development initiative, or curriculum implementation, researchers or 
school administrators may need to fi nd or develop rubrics to assess collections of 
students’ work consistent with their specifi c goals and outcomes. 

 In closing, the analysis of collections of students’ work can serve as a valuable 
methodology for mathematics education research. Specifi c to the use of the IQA 
Mathematics Assignment rubrics, collections of student work can bridge research 
and practice by informing instructional improvements or enhancements to pro-
fessional development workshops by providing descriptive, diagnostic data at the 
teacher, school, and district level. In current work with colleagues (e.g., Boston 
et al.  2011 ; Boston and Steele  in press ), collections of students’ work and the 
IQA Mathematics Assignment rubrics are being used to enhance school leaders’ 
ability to support ambitious mathematics instruction, aligned to the CCSS-M, in 
their schools.     
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Abstract This chapter examines the activities of example-generation and example- 
verification from both the teaching and learning perspectives. We closely examine 
how engaging learners in generating and verifying examples of a particular mathe-
matical concept as a group activity serves both as an indicator of learners’ under-
standings and a catalyst for enhancing their understanding and expanding their 
example space that is associated with the particular concept. We present two cases 
that illustrate how the mathematics instruction may look when classroom activities 
and discussions build on example-generation and example-verification – the first 
case focuses on the concept of an irrational number and the second on the notion of 
a periodic function. The learners in these cases are in-service secondary mathematics 
teachers (MTLs), and the teacher is a mathematics teacher educator (MTE). We show 
how this kind of learning environment lends itself naturally to genuine opportunities 
for learners to engage in meaningful mathematics, to share and challenge their think-
ing, and to sense the need for unpacking mathematical subtleties regarding defini-
tions and ideas. For practicing and prospective mathe matics teachers, engaging in 
such activity and experiencing the potential learning opportunity that it offers is also 
likely to convince them to implement this approach in their classrooms.
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The significant role of examples in learning and teaching mathematics stems from 
the central role that examples play in mathematics and mathematical thinking. 
Examples are an integral part of mathematics and a critical element of expert 
know ledge (Rissland 1978). In particular, examples are essential for generalization,
abstraction, analogical reasoning, and proof. In addition to the central role examples
play in mathematics, examples constitute a fundamental part of a good explanation, 
which is considered a building block for good teaching (Leinhardt 2001). According 
to Leinhardt (2001, p. 347), “For learning to occur, several examples are needed,
not just one; the examples need to encapsulate a range of critical features; and 
examples need to be unpacked, with the features that make them an example clearly 
identified.”

The task of choosing an example to illustrate a mathematical idea is a nontrivial 
one (Zaslavsky 2008, 2010). The choice of an example for teaching is often a trade-
off between one limitation and another. Choosing examples for teaching mathemat-
ics entails many complex and even competing considerations, some of which can be 
made in advance and others only come up during the actual teaching (Zodik and 
Zaslavsky 2008, 2009).

The choice of examples presents the teacher with a challenging responsibility, 
especially since the specific choice and treatment of examples may facilitate or 
hinder learning (Zaslavsky and Zodik 2007). The knowledge teachers need for 
meeting this challenge by judiciously constructing and selecting mathematical 
examples is a special kind of knowledge. It can be seen as core knowledge needed
for teaching mathematics. In addition, engaging in generating or choosing instruc-
tional examples can be a driving force for enhancing teachers’ knowledge (Zodik 
and Zaslavsky 2009). This process builds on and facilitates teachers’ knowledge of 
pedagogy, mathematics, and student epistemology. In Ball et al.’s (2008) terms, it 
encompasses knowledge of content and students and knowledge of content and 
teaching, as well as “pure” content knowledge unique to the work of teaching.

As mentioned above, teachers’ specific choices of examples shape students’ 
learning. Thus, by examining the quality of the instructional examples that a teacher 
uses, we may learn much about the quality of the mathematics classroom instruc-
tion. Moreover, teachers’ use of examples often leads to learning opportunities for 
themselves through which they gain pedagogical and/or mathematical insights 
(Zodik and Zaslavsky 2009).

In examining the quality of instructional examples, there are two main attributes
that make an example pedagogically useful according to Bills et al. (2006). First, 
an example should be “transparent” to the learner, that is, it should be relatively
easy to direct the learner’s attention to the features that make it exemplary.  
It should also foster generalization, that is, it should highlight the critical features
of an example of the illustrated case and at the same time point to its arbitrary and 
changeable features.

This notion of transparency is consistent with Mason and Pimm’s (1984) notion 
of generic examples that are transparent to the general case, allowing one to see the 
general through the particular, and with Peled and Zaslavsky’s (1997) discussion of 
the explanatory nature of examples. Examples with some or all of these qualities 
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have the potential to serve as a reference or model example (Rissland 1978), with 
which one can reason in other related situations and can be helpful in clarifying and 
resolving mathematical subtleties. Generally, an example should be examined in 
context. Any example carries some attributes that are intended to be exemplified and 
others that are irrelevant. Skemp (1987) refers to the irrelevant features of an example 
as its “noise,” while Rissland (1991) suggests that “one can view an example as a set
of facts or features viewed through a certain lens” (p. 190).

We hereby examine the activity of example-generation and example-verification 
from both teaching and learning perspectives (which are tightly related). By 
example- verification we refer to the act of examining whether and justifying why a 
certain example satisfies its intended requirements (e.g., the definition of the 
exemplified concept). In this process it is possible that the learners articulate certain
criteria that are useful in the verification stage. From a teaching perspective, we look 
at a mathematics teacher educator’s (MTE, mathematics teacher educator) example 
use in professional development workshops for in-service secondary mathematics 
teachers. In this context, the participants of these workshops are mathematics teachers
who are learners of both mathematics and pedagogy (MTL, mathematics teacher 
as learner). The MTE’s example use includes the following (interconnected) instruc-
tional moves: (1) the opportunities that the MTE offers the learners to engage in 
example-generation and example-based reasoning; (2) specific examples that the 
MTE brings in order to illustrate or expand a mathematical concept or idea; and  
(3) ways in which the MTE responds to the participants’utterances and actions during
the workshop, in order to help them better understand some mathematical subtleties 
(in particular utterances and actions that reflect a misconception or limited concept 
image or example space). From a learning perspective, we examine example- 
generation and example-verification by MTLs, the participants of these workshops, 
and how these shape their mathematical and pedagogical understandings.

According to Bills et al. (2006), the collection of examples to which an individual 
has access at any moment and the richness of interconnection between those 
examples constitute his or her accessible example space. A personal example space 
is defined as what is accessible in response to a particular situation and to particular 
prompts and propensities. Example spaces are not just lists, but have internal 
idiosyncratic structure in terms of how the members and classes in the space are 
interrelated. Example spaces can be explored or extended by searching for peculiar 
examples as doorways to new classes or by being given further constraints in order 
to focus on particular characteristics of examples. In our work, we consider an
example space as the collection of examples one associates with a particular 
concept at a particular time or context. According to Mason and Goldenberg (2008), 
what determines the use of a concept is the example space one associates with it. 
This notion is closely related to Vinner and Tall’s idea of concept image (Vinner 
1983; Tall and Vinner 1981). Vinner and Tall use the term concept image to describe 
the total cognitive structure that is associated with a particular concept, which 
includes all the mental pictures and associated properties and processes. “It is built
up over the years through experiences of all kinds, changing as the individual meets 
new stimuli and matures… Different stimuli can activate different parts of the 
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concept image, developing them in a way which need not make a coherent whole” 
(Tall and Vinner 1981, p. 152). Example spaces also are dynamic and evolving. 
Thus, in orchestra ting learning it is important that the teacher identifies (limited) 
concept images and prototypical views of certain concepts, which the learners hold, 
and facilitates the expansion beyond “more of the same” examples. According to
Mason and Goldenberg (2008), some parts of an example space may be more acces-
sible at a given time than others. The less accessible parts await an appropriate trig-
ger to be used (Watson and Mason 2005). Sometimes one has a general sense of 
examples without the specifics of an example, while at other times some specific 
examples come to mind readily. In a group activity or discussion, an example sug-
gested by one member may trigger access to a further class of examples for other 
members. When learners compare their examples, they often extend and enrich their 
example space. Moreover, once a connection is made, it is strengthened and more 
likely to come to mind in the future (Mason and Goldenberg 2008).

Learners’ example spaces play a major role in what sense they can make of the 
tasks they are offered, the activities they engage in, and how they interpret what the 
teacher says and does. Zaslavsky and Peled (1996) point to the possible effects of 
limited example spaces that teachers hold with respect to a binary operation on their 
ability to generate examples of binary operations that are commutative but not 
associative or vice versa. Watson and Mason (2005) regard the notion of a personal 
example space as a tool for helping learners and teachers become more aware of the 
potential and limitations of experience with examples. Experiencing extensions of 
one’s example space (if sensitively guided) contributes to flexibility of thinking and 
empowers the appreciation and adoption of new concepts.

In our work, we closely examine how engaging learners in generating and
verifying examples of a particular mathematical concept during a group activity 
serves both as an indicator of learners’ understandings as well as a catalyst for 
enhancing their understanding and expanding their example space associated with 
the particular concept. This type of activity can be seen as a rich open-ended task 
(Hazzan and Zazkis 1999; Zaslavsky 1995), for which a teacher needs to be able 
to act in the moment (Mason and Spence 1999). This implies that it is likely to 
create a learning opportunity not only for the learners but also for the teacher. 
Moreover, on the one hand the demands on the teacher require a special kind 
of knowledge, and on the other hand these demands may lead to the expansion of 
this knowledge.

It follows that examples serve both as indicators of and catalysts for teaching 
and learning. These interconnected roles that can be triggered by learners’ gener-
ated examples are presented in Fig. 1. Note that in this framework we include exam-
ple-verification as part of the act of example-generation, although the verification 
part can be addressed separately and applied also for examples that are given with-
out engaging in the generation stage. The act of example-verification is closely con-
nected to Vinner and Tall’s notion of concept definition. Mostly, the verification 
requires checking whether the example satisfies the concept definition – whether it 
is the mathematical agreed upon definition or the definition the individual holds and 
operates with.

O. Zaslavsky and I. Zodik



529

The above framework suggests that mathematical and pedagogical knowledge can 
both be reflected and enhanced by (well designed) processes of example- generation 
and example-verification (e.g., Zaslavsky and Peled 1996); these processes may reveal 
(mis)conceptions, limitations/strengths in accessing appropriate examples, the scope 
of examples associated with a particular concept, the degree of fluency in giving an 
appropriate example, and the ability to reason with examples and verify that an 
example satisfies the conditions it should. At the same time, these processes may 
enhance the mathematical and pedagogical example spaces teachers and learners hold.

In this chapter, we focus on two rich cases that illustrate how mathematics
instruction may look, when classroom activities and discussions include example- 
generation and example-based reasoning. We illustrate how this kind of learning 
environment lends itself naturally to genuine opportunities for learners to engage in 
meaningful mathematics, to share and challenge their thinking, and to sense the 
need for unpacking mathematical subtleties regarding definitions and ideas. This 
approach satisfies the necessity principle and raises an intellectual need to delve 
deeper into and beyond existing knowledge (Harel 2013). For practicing and 
prospective mathematics teachers, engaging in such activity and experiencing the 
potential learning opportunity that it offers is also likely to convince them to 
implement this approach in their classrooms.

Design Considerations for Eliciting Learners’   
Example- Generation and Example-Verification Reasoning

As described earlier, the teacher in our study was an MTE (the first author of this 
chapter) who worked with in-service secondary mathematics teachers (MTLs). 
Thus, the learners in this group were practicing secondary mathematics teachers. 

MTLs’ 
Engagement in 

Example-
Generation

Catalyst for
Enhancing MTE’s/MTLs’
Mathematical/Pedagogical

Knowledge

MTE’s use of 
rich tasks that 
foster Example-

Generation

Indicator of MTE’s/MTLs’
Mathematical/Pedagogical

Knowledge

Fig. 1 A framework for examining the potential of rich tasks that foster example-generation as 
indicators and catalysts
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The goals for the workshops were twofold: from a pedagogical viewpoint, the goal 
was to facilitate the participants’ appreciation of the act of generating and verifying 
examples in the course of learning mathematics; from a mathematical viewpoint, 
the goal was to challenge the participants’ existing example spaces (or concept 
images) with respect to some mathematical concepts; the intention was to enhance 
their understandings and expand their example spaces beyond prototypical and 
familiar/common instances to include more sophisticated examples. These two goals 
are interrelated, as by experiencing in person how one expands his or her example 
space through this activity, it is likely that one will attribute this growth to the activity 
and the learning environment and gain appreciation of this type of activity.

We used the generic task of “Give an example of …, and another one …, and
now another one, different from the previous ones …” Note that a version of this 
type of task appears in several publications (e.g., Hazzan and Zazkis 1999; Mason 
and Goldenberg 2008; Watson and Shipman 2008). In this type of task, the learner
is required to give an appropriate example of a given mathematical concept sponta-
neously, one by one, while making notable variations from one example to the other. 
By asking for “notable variations,” we expect the learner to move beyond repetition
of similar and closely related examples. The task calls for mathematical fluency and 
for moving from common and familiar (often prototypical) examples to more 
sophisticated ones. It also requires constant comparisons between similarities and
differences that facilitate mathematical connections between objects, which are 
considered an indication of understanding (NCTM 2000). For (in-service) teachers 
this kind of task may be seen as a simulation of real classroom situations that call for 
teachers’ example-generation. It also provides the teachers with a less familiar type of
learning experience that may encourage them to implement with their own students.

The choice of the above generic task was just the first stage. The second stage 
was to choose mathematical concepts for this task. We considered concepts like an 
irrational number, a trapezoid, a periodic function, an odd function, and a pair of 
congruent triangles. For each concept we anticipated some mathematical and peda-
gogical insights that the MTLs might gain through this activity. For example, with 
respect to an irrational number, we hoped to expand beyond the common view that 
an irrational number is either a root of a prime number (e.g., 5 ) or a transcendental 
number (e.g., π). For a periodic function, we hoped to expand beyond the common 
view that periodic functions are solely or mostly trigonometric functions (Van 
Dormolen and Zaslavsky 2003). We were aware that this kind of task may  
provoke additional mathematical subtleties and unforeseen claims and ideas raised 
by the learners.

In this chapter, we focus on two (rich) cases that convey the learning opportu-
nities that this type of task may provide. We argue that this task may equally be 
implemented with practicing/prospective mathematics teachers (MTLs) as well as 
with K-12 students.

Each session began by asking for a teacher (MTL) to volunteer to take a leading 
role in this activity. The volunteer was asked to give an example of a certain con-
cept, and then another one different than the previous, and so on. Case 1 focused on
the notion of an irrational number, while Case 2 on a periodic function. The rest of
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the group were asked to verify each example that was proposed by the volunteering 
teacher, that is, to check whether it was indeed an example of the concept in question 
(i.e., satisfies its definition), or to take part in proposing different examples in the 
event that the volunteer ran out of examples.

Overview of Two Cases

Below, we provide accounts of the two cases that illustrate how the activity of 
generating examples can be both an indicator of the learners’ understandings of 
irrational numbers and periodic functions and a catalyst for refining and crystalli-
zing some understandings. We include excerpts that convey the thought processes 
involved in the example-generation and example-verification activities and discus-
sions that accompanied these activities.

For each case, we examined the actual examples that were suggested by the 
MTLs, the order in which they were generated, and the time that elapsed between 
one generated example and the next. The time intervals indicate the level of fluency 
in generating new examples, which reflects the learner’s example space and concept 
image. (We use the notions of concept image and example space interchangeably). 
We also looked at the discussions that were orchestrated by the MTE in response to 
MTLs’ examples and tried to capture the kinds of understandings that were 
enhanced. Similar to Zaslavsky and Shir (2005) and Zodik and Zaslavsky (2007), 
we traced MTLs’ shifts in acceptance or rejection of examples, as indication of their 
learning. These discussions, triggered by MTLs’ example-generation, were regarded 
as learning events.

For Case 1, there were two main events that we call learning events (LE) that 
were evoked by certain examples. Both were triggered by two different incorrect 
examples. These two LEs (LE-1.1 and LE-1.2) addressed disagreements and uncer-
tainty in the group, helped move beyond prototypical examples, and led to unpacking 
some mathematical subtleties related to differences between an acceptable example 
and an unacceptable one. For Case 2 there were three main learning events (LE-2.1,
LE-2.2, and LE-2.3) that were triggered by shifts from a set of familiar/accessible
examples to less familiar and more sophisticated ones.

Case 1: Generating Examples of an Irrational Number

As mentioned above, we chose the concept of an irrational number, in order to 
examine the concept images teachers held and to push them to expand their example 
spaces of irrational numbers. We relied on our own personal experiences as well as 
the experiences of colleagues. More specifically, as Mason and Goldenberg (2008) 
claim, “most learners think first of 2 or π. If there is no further discussion, these
may constitute their accessed example space (accessed at that time, even though 

Example-Generation as Indicator and Catalyst



532

other examples may be accessible at other times)” (p. 186, ibid.). As shown in
Table 1, indeed, these two examples were included in the initial set of examples that 
were offered.

The task called not only for example-generation but also for example- verification, 
i.e., checking that a suggested number is indeed irrational. The process of verifica-
tion calls for an examination of the definition of an irrational number. As indicated 
in the flow and utterances of Case 1, relying on the definition of an irrational number
in order to verify that a number is irrational was particular challenging, as it requires 
showing that a number cannot be represented as a quotient of two integers (the 
denominator of which is nonzero). Thus, logically, it is much easier to show that a 
number is rational than that it is irrational. Even so, showing that 0 333.  is a rational 
number was a nontrivial task for the MTLs.

Table 1 presents the examples in the order that they were given.
As shown in the above Table 1, after giving the most accessible examples rather 

quickly/automatically, generating a less familiar example was more difficult and 
required more time. In terms of indication of the understanding of the learner, there
were two instances in which the examples that were given did not satisfy the neces-
sary conditions (for a number to be an irrational number): 0 333.  and log(x). These 
incorrect examples led to two learning events, LE-1.1 and LE-1.2.

LE-1.1

Prior to LE-1.1 the examples that were suggested were closely related to those antici-
pated by Mason and Goldenberg (2008). As shown in Table 1, these examples were 
suggested rather fluently (by one of the MTLs), taking from 1 to 14 s. For each
example, the rest of the group members had to verify that it is indeed an irrational 
number. For the first five examples, this was not an issue, as there appeared to be a 
shared knowledge that roots of a prime number and transcendental numbers are 

Table 1 The sequence of examples generated by teachers for an irrational number

Part 1

Example no. 1 2 3 4 5 6 LE-1.1
The example 2 53 π 34 e 0 3. Addressing a misconception

Moving beyond prototypical examples
Time (in seconds) 2 2 1 1 14 8 900 (15 min.)

Part 2

Example no. 7 8 LE-1.2
The example sin 64° log(x) Back to infinite decimals and beyond repeating decimals
Time (in seconds) 16 39 180 (3 min.)

Note: LE stands for a learning event. Time was measured between each two consecutive examples, 
except for examples 1 and 7. For example 1, the time was measured from the moment they were 
asked to give an example of an irrational number until they came up with the first one; for example 
7, the time was measured from the moment they were asked again, after LE-1.1, to give another 
example of an irrational number till they came up with one
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always irrational numbers. Thus, there was no need to rely on a formal definition. 
However, 0 333. , the sixth example suggested by Hassan, the MTL, reflected a mis-
conception of his. In response, Noa, another MTL, said that 0 333.  is not irrational

because 0 333
1

3
.  = . This caused disagreement between the group members: some 

(incorrectly) agreed with Hassan that it was irrational, some thought like Noa that it
was rational, and some were indecisive. In terms of Zaslavsky (2005), this was an 
authentic conflict that created uncertainty and evoked discussion that constituted a 
meaningful learning event; the uncertainty called for example-verification. It appeared
that the participants knew the definition of an irrational number, but weren’t sure 

how to apply it to 0 333.  , namely, whether or not 0 333
1

3
.  = . Note that this was a 

spontaneous event that the MTE did not anticipate; it set the grounds for addressing 
the question of whether repeating decimals are always rational numbers. The follow-
ing is an excerpt of the discussion.

Hassan: 0 333.  cannot be precisely 
1

3
 because 

1

3
 is something else; it is one over 

three but not 0 333. .
MTE: Does anyone think differently?
Ella: I recall teaching this topic to my 9th grade students several years ago. 

I taught them a procedure that appeared in the textbook, which transformed

0 333.  back to a proper fraction, 
1

3
.

MTE: Did you actually write the equal sign?

Ella: Yes. We also showed that 0 4999
1

2
.  =  and that 0 999 1.  = .

Noa: 0 999.  is not 1 because it does not come from a fraction, but 0 333.  is 

equal to 
1

3
.

Without specifying the procedure, Ella knew it was possible to transform 0 333.  

into a proper fraction 
1

3






. Thus, she was convinced that the two numbers, 0 333.  

and 
1

3
, were equal. Note that the procedure that Ella referred to is probably the 

common procedure of multiplying the number 0 333.   by 10 and then subtracting 
0 333.   from the product 3 333.  . This procedure applies to 0 4999.   as well as to 0 999.  .

Noa made the distinction between the two cases; she agreed that 0 333
1

3
.  = , but 

pointed out that the related case of 0 999.   differed from the previous one, as in her 
mind 0 999 1.  ≠ . To justify this contradicting statement, she explained that the crite-
rion for determining whether a repeating decimal is rational or not is by checking 
whether it could be obtained as a result of the long division algorithm. Thus, accor ding 

to Noa, 0 333
1

3
.  =  because 0 333.  is a result of dividing 1 into 3, while 0 999 1.  ≠  

because 0 999.   cannot be obtained by dividing two integers.
Rachel articulated a different conflict stemming from Noa’s assertion, by showing 

that if we agree that 0 333
1

3
.  = , then it follows that 0 666

2

3
.  = ; then on the one hand, 

1

3

2

3
1+ = ; yet on the other hand, 0 333 0 666 0 999. . .  + = ; so if 0 999 1.  ≠ , then we get 

a contradiction. Rachel concluded by saying that this means that 0 333
1

3
.  ≠  (see 

Fig. 2).
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At this point Benny felt he needed to remind the group what the formal definition 
of a rational number is. In response, Ilan questioned the definition, by arguing that

on the one hand we know that π is irrational; however, π =
22

7
. This appeared to 

him as a contradiction. To resolve this conflict, Hanna made the distinction between

an approximation and an equality: “π is not exactly 
22

7
 although we use this fraction 

to calculate (an approximation of) π, while 
1

3
 is exactly 0 333.  .”

In response to the MTE’s probe for more views on these issues, Hassan
suggested looking at 0 333.   as the sum of a converging geometric sequence 

3

10

3

10

3

102 3
+ + +





 . Yet, looking at it this way did not seem to help him decide 

whether or not 0 333
1

3
.  = . He was missing the idea that this infinite sum is defined

as the limit of the geometric series, and it can be shown that this limit is exactly 
1

3
.

This event ended with the MTE inviting them to continue contemplating the 
issues that were raised in this session over the next week and to try resolving some 
of the conflicts they had encountered. As an additional tool to compare two num-
bers, she suggested considering the difference between the two numbers; that is, in 
order to compare the numbers a and b, we can look at the difference a-b. In the
meeting on the following week, time was devoted to resolve the issue of whether 
any repeating decimal is a rational number and why 0 999 1.  = .

At the end of this part, the MTE returned to the main task and asked for addi-
tional examples of irrational numbers. The first reaction by Reli was “let’s take
sinus.” It appeared that she was trying to search in a totally different domain for an
example that would be different than the previous ones. Following a long silence, 
the MTE asked whether she thought sin 30° would be an appropriate example. This 
was immediately rejected by several participants, who acknowledged that it is a 

rational number, 
1

2
.

Thus, Reli suggested the next example (Example 7, sin 64°). Everyone seemed to 
agree that this was an irrational number, as they recalled that with the formulae for 

Fig. 2 Case 1, Rachel’s
conflict
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the sine of the sum and difference of angle measures, they could calculate the values 
of the sine function, where there are only very few integer angle measures for which 
the sine value is rational, e.g., sin  0°, sin 30°, sin  90°, sin  150°. Inspired by Reli’s
shift to trigonometric functions, Noa suggested looking at the logarithm function 
log(x). Here too they recalled that only specific values are rational (e.g., for values of
x that are rational powers of 10) and realized that without specifying the value of x in 
log(x), it is not an example at all. Noa’s example triggered the next learning event.

LE-1.2

The formal definition of an irrational number does not convey the full scope of 
the irrational number concept. One of the MTE’s goals was to facilitate a concept 
image that includes any infinite non-repeating decimal number as an irrational 
number (while accepting any repeating decimal as a rational number). Even 
when it was established that an infinite non-repeating decimal number is irratio-
nal, the question of how to construct an example of such a number remained 
open. None of the MTLs was able to suggest one (we did get such an example in 
a similar workshop where leading secondary mathematics teachers participated). 
Thus, at this stage the MTE put forth the following example for discussion: 
0.10110111011110… (the MTE explained that this pattern of increasing the 
number of 1 s between two 0 s continues indefinitely). Clearly, this (type of)
example was not part of the MTLs’ example spaces. This too created a learning 
opportunity facilitated by the MTE, through which the example spaces of the 
learners gradually expanded.

One issue that came up was the limitation of representing a non-repeating infinite 
decimal. Another one was the connection between knowing that any rational 
number can be represented as either a repeating decimal or a finite one and knowing 
that any non-repeating decimal must be irrational. The big question MTLs raised 
was “how can we be sure whether a number is an irrational number?” These were
questions that they admitted that they had not been thinking of before. The issues 
discussed were new to them. Some felt that having examined the previous example 
(0.10110111011110…) opened to them a whole collection of non-repeating 
decimals that they could construct. This was a manifestation of the expansion of 
their example spaces.

Case 2: Generating Examples of a Periodic Function

Similar to our considerations for irrational numbers, we chose the concept of a 
periodic function in order to examine the current concept images teachers held and 
push them to expand their example spaces associated with periodicity (Shama 1998). 
Van Dormolen and Zaslavsky (2003) discuss the meta-concept of a mathematical 
definition and illustrate it with the notion of a periodic function. They suggest the 
following pseudo-definition (p. 92, ibid. see Fig. 3).
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Although the above definition is not a valid mathematical definition, it is a 
useful “definition” from a pedagogical standpoint. This type of (often overlooked)
example construction conveys the essence of the notion of a periodic function. 
Inspired by this work, it appeared that the notion of a periodic function would
lend itself well to generating and verifying examples; it was anticipated that the 
MTLs would mainly think of trigonometric functions as examples of periodic 
functions; thus, there would be many learning opportunities to expand their 
example spaces.

Table 2 presents the examples of periodic functions in the order that they were 
given.

Table 2 conveys the turning points in how the participants viewed a periodic func-
tion. For this task, Benny was the MTL who volunteered to give a range of examples 
of a periodic function. After giving 3 familiar, rather prototypical, and highly acces-
sible examples (examples 1, 2, and 3 in Table 2), all drawn from the domain of trigo-
nometric functions, Benny ran out of examples. This led to LE-2.1, in which Reli took 
a leading role by suggesting moving from the domain of trigonometric functions to 
special kinds of sequences. Based on Reli’s idea, the group members helped her con-
struct a specific example. This learning event triggered the first shift from regarding peri-
odic functions as mostly (or even solely) combinations of trigonometric functions to 

A periodic function is a function that can be constructed in the following way: 
divide the x-axis into equal-length segments, such as, for example, … , 
[−39,−26], [−26,−13], [−13, 0], [0, 13], [13, 26], [26, 39], … Take any of
these segments, no matter which one, and define a function on it, no matter 
how (e.g., as in Fig. 1). 

Then define another function on the whole x-axis, such that on each segment 
it behaves in the same way as the first function (as in Fig. 2).

Then the new function is a periodic function. Its values are repeated regularly.

Fig. 1 

Fig. 2 

Fig. 3 A constructive “definition” of a periodic function, taken from Van Dormolen and 
Zaslavsky (2003)
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including as periodic functions also certain non-trigonometric functions. Example 4
(which was constructed at this stage) (LE-2.1) can be seen as a breakthrough in partici-
pants’ views on periodic functions. It led to the construction of examples 5 and 6, by
Hassan and Mary, respectively. These examples triggered the next learning event (LE-
2.2), as several participants, including Hanna, questioned the extent to which examples
4, 5, and 6 are essentially different. Following the discussions in LE-2.2, a more
sophisticated example emerged (example 7), involving a floor function (by Hassan).
This example led to a long discussion including group work surrounding ways to verify 
that example 7 is indeed a periodic function. Some verified this based on the symbolic 
representation of the function and some used its graphical representation. These 
different approaches evoked a comparison between these representations and set 
the grounds for the originally intended approach described in Van Dormolen and 
Zaslavsky (2003), as cited earlier. Interestingly, while periodicity lends itself naturally
to visual representations, this idea did not occur spontaneously. However, at a certain
point, the MTE suggested approaching the examples of a periodic function graphi-
cally (in the spirit of Van Dormolen and Zaslavsky 2003).

We now turn to the three learning events, LE-2.1, LE-2.2, and LE-2.3.

LE-2.1

After establishing that the familiar trigonometric functions, as well as certain 
combinations of them (in this case, a product of two trigonometric functions), are also 
periodic functions, Reli volunteered to continue Benny’s role and shared her consid-
erations with the entire group. It took some iterations until she was able to come up
with a specific example that followed her reasoning. This discussion helped the group 
to shift to a less familiar type of periodic function – Example 4 (see Fig. 5).

Reli: I am thinking of a geometric sequence, something discrete. not continuous.
MTE: Why not continuous?
Reli: I’m looking for a collection of points.
MTE: Why?
Reli: Because a sequence is not continuous.
MTE:  OK. So indeed a geometric sequence is a discrete function. But where is the 

period? Can anyone help Reli find a geometric sequence that is periodic?
Hassan: 1,−1,1,−1,…
Dave: Oh, this reminds me of a sine.
Noa: How can we express this symbolically? That is, with a formula?
Hanna: a = 1, q = − 1.
MTE: So what is the power of −1?
Hassan: 2n − 1
MTE: Does everyone agree?
Galit: 2n + 1
MTE: Does everyone agree?
Ella: n + 1
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MTE: Does everyone agree?
[Several MTLs say yes; no one expresses disagreement]

MTE:  OK, so we have f(n) = an = (−1)n + 1, for any natural number n. Now, what 
is the period?

Hanna: What do you mean by the period?
MTE:  A number p that satisfies f(x) = f(x + p), for any value of x in the domain of 

f. The main idea is that if we add the period to x we will reach “the same
place,” that is, the function will have the same value.

Hassan: So the period is 2 (see Fig. 4).
MTE:  Look how long it took us to jointly construct and verify an example that 

was not part of your “toolbox,” according to Reli’s guidelines. The only
examples that were readily accessible to all of you were the trigonometric 
ones.

LE-2.2

Following Example 4 (i.e., f(n) = (−1)n + 1), Hassan suggested Example 5, and 
Mary suggested Example 6. As a consequence, Hanna questioned the difference
between examples 4, 5, and 6. She actually argued that all three examples are very
similar to the example discussed in LE-2.1. She did not articulate why she thought 
so. To support her claim, the MTE sketched the graphs of Examples 4 and 6 
(see Fig. 5).

Hanna: Now, with these graphs, I see why these examples are basically the
same; for f(n) = (−1)n + 1 [Example 4], there are two “rows,” one above the

x-axis and one below; and for f x
x

x
( ) = 



2

3

,

,

when is even

when is odd
, [Example 

6], there are similar “rows,” both above the x-axis.

Fig. 4 Case 2, Example 4 on
the white board at the end of 
LE-2.1
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MTE:  Note the connection between representations and the fact that one  
representation highlighted certain features that the other one did not.

Hanna: Noa said before that instead of writing the example as f(n) = (−1)n + 1, we 

could have written it as f n
n

n
( ) = −




1

1

,

,

when is even

when is odd
. This would 

convey how similar these two examples are, even without the graphs.

These observations led naturally to considering the case of a constant function 
and then to the next example, Example 7, which was dramatically different than the 
previous ones.

LE-2.3

In response to the MTE’s invitation to give another example of a periodic function,
distinct from the ones suggested up to this stage, Hassan suggested example 7. This
came as a surprise to the other members of the group (except for Benny, who had con-
templated the idea of examining floor functions but wasn’t sure how to verify them).

The MTE asked everyone to concentrate on verifying that f(x) = x − [x] is a valid
example of a periodic function. Some chose an analytic approach and others moved 
to a graphical representation.

Edna volunteered to come to the board and sketch the graph of example 7.  
At first she sketched the graph only for positive numbers. Edna shared her 
reluctance to graph the part for negative numbers, as she was not certain about the 
way the function behaves for negative numbers. To help her, the MTE asked what 
the value of the function is for (−1.3). This helped Edna see the behavior of the

Fig. 5 Case 2, the graphs of
Examples 4 and 6
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graph for this domain, and thus she was able to complete it and observe its pro-
perties (see Fig. 6).

The participants who approached the question by a graphical representation at 
the end of the discussion (as on the right part of Fig. 6), as well as those who ana-
lyzed the analytic representation of the function, in order to verify that this was 
indeed an example of a periodic function, all reached an agreement that it satisfied 
the definition of a periodic function. Some noticed that this periodic function is the 
difference between two nonperiodic functions. Moreover, they were able to see and 
justify that the period of this function is 1.

Following this discussion (LE-2.3), and in response to the MTE’s invitation to
give another example of a periodic function, two MTLs suggested simultaneously 
very similar examples (8 and 9). The MTE probed for verification of these exam-
ples. It was previously established for Example 7 that if f is the floor function 
f(x) = [x] and g is the identity function g(x) = x, then h = g − f is a periodic function, 
even though g and f are not periodic.

It appears that following a similar line of thought, the MTLs anticipated that the

two quotient functions h
g

f
=  and h

f

g
= would also be periodic. However,

Examples 8 and 9 do not satisfy the necessary conditions for a periodic function.
Figure 7 illustrates this graphically.

To conclude the activities related to a periodic function, after the participants 
came up with the rest of the examples (Examples 8 and 9), the MTE introduced the
idea of constructing an example of a periodic function without knowing, or even 
being able to know, its analytic representation. Basically, it was similar to the “copy-
ing” approach of Van Dormolen and Zaslavsky (2003) presented earlier.

Fig. 6 Case 2, the graph of Example 7 before (on the left) and after the discussion (on the right)
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Discussion and Conclusion

In this chapter we presented an example-generation/example-verification eliciting
learning environment. The two cases described above share the rich, open-ended, 
generic task on which they are built, yet address two different mathematical con-
cepts. By reflecting on these cases, we hope to shed light on the affordances and 
limitations of this kind of learning environment and characterize the kind of 
teaching it requires.

This learner-centered environment is characterized by generating examples of a 
given concept followed by the naturally evolving need to verify that the proposed 
examples satisfy the definition of the given concept or other sufficient conditions of 
the concept. The teacher’s main roles are choosing the focal mathematics concept 
and orchestrating the discussions; it is critical that the teacher persists and pushes 
the learners to continue generating more and more examples that are different than 
the previous ones. As we see in Fig. 8, the learning occurs once we go beyond the 
familiar and the accessible. It is also important that the teacher encourages genuine
discussions and debates with minimal interference and at the same time offers useful 
prompts when learners face an impasse or when there is an opportunity to draw 
learners’ attention to a mathematical subtlety that may otherwise be overlooked. When 
learners seem to have run out of examples, the teacher may offer ideas for generating 
additional examples that could serve to push learners beyond their existing/current 
concept images and example spaces, as appears in the teacher- generated example in 
Fig. 8. This kind of teaching requires constant in-the- moment decision-making, 
which is a serious challenge for teachers (Mason and Spence 1999).

Figure 8 captures the essence of this form of instruction. The first five examples 
that were generated by the learners serve as indicators of how they think about 
irrational numbers, that is, what comes first to their mind. This serves as important 
information for the teacher – a way to assess and get at the learners’ current thinking 
or more specifically – the learners’ current example spaces.

Fig. 7 Case 2, the graph of Example 8
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It appears from these examples that the MTLs’ example spaces of irrational
numbers included any root of a prime number as well as transcendental numbers or 
at least the “famous” ones – π and e. These examples are straightforward, taken as 
shared, and do not raise the need for verification. The teacher’s role at this stage is 
to encourage the learners to continue generating more, yet different, examples. As 
indicated in Fig. 8, this led to less accessible examples, or examples that have not 
yet been considered – some correct and some incorrect. All of the examples that 
were given at this stage raised some degree of uncertainty (see the question marks 
in the diagram), in particular 0 333.   (followed by 0 999.  ). This example was an 
indicator that some MTLs (wrongly) included repeating decimals in their example 
space of irrational numbers. The teacher’s role at this stage is to facilitate discussion 
that addresses this perplexity and fosters the learners’ need to justify and convince 
each other, as well as themselves.

Note that the teacher offered several prompts along the way. For example, when 
Reli suggested to take the sinus function as an example of an irrational number, 
the teacher responded with an example to consider – sin 30°. With no further 

Example Space of
Irrational Numbers

immediate/accessible
no need for verification

shared , in agreement

less accessible
more time to generate

correct 
learner-generated
need verification

incorrect 
learner-generated
need falsification

0.101101110…
teacher-generated
“break through”

Fig. 8 The learning cycle fostered by engaging in a group activity of example-generation of irra-
tional numbers
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interference by the teacher, Reli realized that she needed to think more carefully 
about an appropriate example and generated sin 64°. Verifying that this is indeed an 
irrational number is not a trivial task that remained open.

As mentioned above, another role of the teacher is to put forth more sophisticated 
and unfamiliar examples for discussion. In the case of the irrational numbers, the
example the teacher offered for discussion, 0.1011011101111…, came as a surprise 
to the entire group, which not only realized that this was another (very different) 
example of an irrational number but at the same time provided a tool for constructing 
a whole new family of non-repeating decimals. In Case 2, the teacher also ended the
meeting with an example that created a “breakthrough” in the group’s current
thinking by constructing a function similar to the one cited from Van Dormolen and 
Zaslavsky (2003), which uses the copying approach. The idea that one can construct 
a periodic function graphically without knowing its analytic representation was new 
to the group and allowed the expansion of the ways in which they think of a periodic 
function and tools to construct other periodic functions.

In terms of example-generation as a catalyst for learning, Fig. 8 indicates that all 
the examples that were offered at the less accessible stage led to expansion and 
refinement of the group’s example space. Some examples helped expand the 
example space by adding new examples and new verification tools, and some led to 
its refinement by eliminating examples that should not be part of the example space. 
In terms of the work on concept image, we can say that 0 333.   was now regarded a 
non-example rather than an example of an irrational number. Similarly, after more 
extensive discussions and debates, 0 999.   too was accepted as a rational number, 
that is, a non-example of an irrational number. Note that understanding that 
0 999 1.  = is a deep and cognitively demanding task (Conner 2013; Tall 1977). 
Dubinsky et al. (2005) discuss the difficulty with this equality compared to a similar 

one: 0 333
1

3
.  = . In our work, this phenomenon was manifested in a spontaneous 

way, as a result of engaging in example-generation.
Interestingly, we can easily substitute the examples in Fig. 8 that were drawn 

from Case 1 with the examples of Case 2. This supports the generality of the process
described in Fig. 8. In Case 2 there were also immediate examples (the first three)
followed by attempts to construct less familiar examples – some correct and some 
incorrect. In both cases, there were attempts to search for examples in domains that
were not initially associated with the focal concept (in the case of irrational num-
bers, there was an attempt to look for examples that relate to trigonometric and loga-
rithmic functions, while in the case of the periodic function, there was an attempt to 
look for sequences and floor functions).

It should be noted that different examples are available at different times according
to what triggers them, and what comes to mind in the moment is situated and 
dependent on many factors. “In a group, one person’s example can trigger access to
a further class of examples for someone else. Furthermore, each time a connection 
is made it is strengthened and more likely to come to mind in the future” (Mason and 
Goldenberg 2008, p. 188). “We acknowledge, that absence of evidence is not evidence
of absence and that, when asking learners to reveal their grasp of a concept, the fact 
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that they don’t display an example does not necessarily imply that it is not within 
their accessible space; it could be that they have not yet perceived a reason to express 
it” (ibid., p. 189).

Although our learners were in-service secondary mathematics teachers, and the 
teacher was a mathematics teacher educator (MTE), depending on the mathematical 
concept, this kind of learning environment may equally be suitable for various 
learners, including preservice mathematics teachers and secondary school students. 
In fact, several teachers who encountered (as learners) the affordances of this learning
environment expressed the appreciation they gained and their intention to imple-
ment a similar approach with their students.
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    Abstract     Transforming mathematics instruction is an ambitious aim and requires 
careful attention to the interactions among teachers, students, and content in class-
rooms. The authors of this volume have, in a variety of ways, attended to this crucial 
dynamic, whether through a focus on professional learning, curricular innovation, 
or other levers to change the quality and outcomes of mathematics instruction. 
They have also sought to focus on ways in which the work of teaching contributes 
to these interactions and, in doing so, have innovated with approaches for studying 
and understanding teaching practice. In refl ecting on their work, we highlight 
challenges to the development of research on teaching and ways in which the 
projects and studies discussed in the volume contribute to the advancement of the 
fi eld and suggest next steps for its development.  

  Keywords     Research on teaching   •   Instructional improvement   •   Instructional 
interactions   •   Theory of teaching   •   Methods for studying teaching  

     This book comprises a collection of projects and studies aimed at transforming 
mathematics instruction, using curriculum and teacher professional development 
to leverage change. With an eye on improved student learning of mathematics, the 
chapters’ authors navigate the complex environments of teaching and learning. 
Doing this requires infl uencing the primary interactions that shape students’ learning 
opportunities—namely, the interactions among teachers and students around content 
in classrooms. The relationship between levers for change—such as curriculum 
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materials and professional development—and instructional interactions is complex. 
In order for such efforts to succeed, understanding these dynamics is vital. 

 In describing the relationship between curriculum and instruction in his 
chapter in Part II, Silver writes about the importance of understanding instructional 
interactions:

  The effects of curriculum changes are mediated by a number of factors and actors, among 
which are teachers and students. The implemented curriculum is largely a function of the 
actions and reactions of teachers and students in classrooms, and it is constrained by a 
complex array of cultural, historical, political, and social factors. 

   The projects and research reported in this volume focus on these “actions and 
reactions of teachers and students.” From this perspective, the choice of the term 
“instruction” in the title of this volume stands out. Although, in common usage, 
“instruction” is often taken to refer to what teachers do, the knowledge they 
impart when they teach, or the giving of directions, education researchers have 
increasingly used the term to refer to the deliberate interactions of instruction 
(see, e.g., Cohen et al.  2003 ). The chapters in this volume are in varying ways 
centering mathematics education improvement research on the nexus through which 
transformation must happen— instructional interactions in classrooms . 

 The centrality of these interactions for improving teaching and learning has 
been written about elsewhere. In brief, improvement in educational outcomes 
depends on changes in what teachers and students do with content in classrooms, 
and teaching is the deliberate activity responsible for those interactions. We 
frame our comments on the contributions of the research reported in this volume 
by considering three challenges of attending to instructional interactions in suf-
fi ciently nuanced ways:

•    Diffi culties in gaining analytic traction on instruction and teaching  
•   Still nascent methods available for studying instruction and teaching  
•   Confounding of the notion of a theory of teaching with specifi c approaches 

to teaching   

We use these challenges to highlight the progress this volume represents and key 
issues for ongoing progress in our fi eld. 

 One persistent challenge is that instructional interactions and the work of 
teaching that shapes them tend to remain relatively invisible. There are several 
explanations for this. First, instructional interactions tend to be under-conceptualized. 
Descriptions of classroom learning often focus more on student contributions or 
behaviors than on those of the teacher. This is particularly true in classrooms in 
which students are actively engaged in ideas and discourse. Accounts of such 
“student- centered” classrooms often refer admiringly to the teacher as merely 
“facilitating” or “standing off to the side”; classroom activity is often attributed to 
the task or the environment more than to the active structuring and work of the 
teaching. The pervasive dichotomization of “teacher-centered” and “student-centered” 
classrooms pulls analytic attention away from the instructional interactions of 
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teachers and students around content and tasks which are inherent in all classrooms 
(Cohen et al.  2003 ). 

 A second explanation for the tendency to under-notice teaching is rooted in the 
aptly named “apprenticeship of observation” (Lortie  1975 ). This refers to the idea 
that we have all been exposed to extensive hours of teaching, yet the perspective 
gained on teaching is from the “student’s side of the desk.” Although active agents 
in instruction, students are not usually attuned to the work of teaching that shapes 
classroom life. Even when invested in learning, students are not responsible for the 
learning of others in the ways that teachers are. They are not in a position to be 
refl ective or analytic about what they see. Indeed, students often resist engagement 
and seek to minimize effort and work actively against the efforts of teaching and 
learning as commonly construed. As former students, both teachers and researchers 
come to the practice and study of teaching with taken-for-granted views as well as 
strong convictions born of familiarity. For example, we think we know whether 
students are interested or engaged based on visual cues, which are often quite far off. 
We think we know what students understand and often fall prey to both excessive 
generosity and over-criticism. We infer teachers’ motives and miss signifi cant actions 
and talk. Researchers, like others, are susceptible to overconfi dent judgments about 
teaching that follow from student-based impressions. We have experienced this in 
our own work and see it as complicating research efforts in the fi eld. 

 Disciplined study of instruction can open new perspectives on the work of teach-
ing and its relation to the work of learning. What makes this far from straightforward, 
however, is the relatively under-theorized state of research on instruction and teach-
ing. Learning is well theorized—indeed, many are inclined to assume that a theory of 
learning is a theory of teaching (e.g., consider how often one hears of “constructivist 
teaching”). This fails to attend to the difference between a focus on individuals when 
considering learning—sociocultural theories acknowledged—and the need to focus 
on interactions among groups of individuals when considering instruction. Research 
on learning has a comfortable theoretical home within the discipline of psychology. 
In contrast, research on teaching lacks a similar theoretical base (Ball and Forzani 
 2007 ). It has no clear disciplinary home and little established professional knowl-
edge and language on which to draw (Jackson  1968 ; Lortie  1975 ). Thus, analytic 
tools for research on teaching, including language, concepts, and categories, are 
limited. This limitation extends to representations of teaching (Lampert  2001 ), to 
the parsing of teaching (Grossman et al.  2009 ), and to technical knowledge and 
language for talking about teaching or its improvement (Hiebert et al.  2002 ). 

 A new fi eld of research often must bootstrap itself into existence; conceptual tools 
may need to be posited just to provide a foothold for initial research. Early- stage 
research of an under-theorized phenomenon may require extensive investment in 
developing, testing, and synthesizing analytic tools essential for disciplined study. 
A new fi eld is also susceptible to a tendency to identify features, without adequately 
addressing the need to ensure that the features being identifi ed contribute to an 
understanding of how the phenomenon works and what is involved in improving it. 
Research on teaching has been slow to develop and still requires signifi cant 
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conceptual work as it frames its core questions, methods, and theoretical foundations. 
As we argue below, this volume refl ects important progress being made in the fi eld 
to address this challenge. 

 A related part of the challenge is the underdevelopment of methods for studying 
instruction and teaching. As Ball and Forzani ( 2007 ) argue, research that focuses 
on instructional dynamics probes not only activities and features of teachers, 
students, and content but also the “mutual adjustment that shapes student learning, 
instructional practice, or policy implementation” (p. 531). Instruction is a form of 
human interaction, but it is a very distinctive form and may call for distinctive 
methods. In addition, methods for probing these interactions might be drawn from 
psychology, sociology, anthropology, or elsewhere, but such research may require 
the development of methods specifi cally suited for documenting and investigating 
the distinctive nature of instructional interaction, with its distinctive distribution of 
responsibility, object of focus for social interaction (viz., a subject area), and goal of 
effecting student learning. Methods drawn from other disciplines may be better 
suited for addressing the driving questions of those disciplines, rather than the 
core problems of instructional practice, and may bring with them native orientations 
to theory inherent in those disciplines. These concerns arise for us from our 
impression that research studies concerned with improving teaching and learning 
have a tendency to veer away from the direct study of instructional dynamics and 
their role in the improvement of teaching and learning. This happens in the formulation 
of research questions, the design of methods that strategically address instructional 
dynamics, and the formulation of results so that they actually contribute to under-
standing instructional dynamics (Thames and Van Zoest  2013 ). In the end, methods 
for analyzing interactions often fl ounder or become indirect. The chapters of this 
volume explore a variety of novel methods that address this underlying challenge. 

 Not all of the chapters involve the study of instruction or teaching, yet those that 
do include a wide range of novel approaches for studying it. For example, Boston 
uses the examination of student work as a basis for making (actionable) inferences 
about teaching practice; Zaslavsky and Zodik trace backward from specifi c learning 
events to infer what teachers did to facilitate that learning; Ni, Li, Zhou, and Li use 
questions from teachers, responses from students, and teachers’ reactions to students’ 
responses to analyze the quality of instructional interaction; and Liljedahl perturbs 
instruction (with random group assignments) and then observes interactions as a 
way to conceptualize what might be important for shaping those interactions. 

 In addition, several chapters discuss methods that might be used, and several 
propose novel methods for making practice study-able in the context of professional 
education. For instance, in thinking about the study of instruction in the context of 
professional education, Jacobs, Koellner, John, and King describe a  problem- solving 
cycle  design that embeds the learning of teaching in facilitated analysis of instruc-
tion. As do others, they use a rotating analytic attention to content, students, and 
teaching to bring discipline to the examination of instruction. Huang and Li describe 
the use of exemplary lesson development, critically reviewed using publically 
available standards, as one component of a coherent national in-service professional 
system that includes exemplary lesson development, teaching research activities, 
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and skill competitions, all of which involve forms of public teaching and professional 
commentary. In this case, methods for analyzing practice have been institutionalized 
and are part of professional practice. We are struck by the extent to which approaches 
to the professional education of teachers are investing in layered designs that directly 
include teaching, artifacts of teaching, and the study of teaching as components of 
the teaching and learning of teaching. In doing so, these efforts are contributing to 
research on teaching and to the development of suitable methods. Our impression is 
that the wide variety of methods for analyzing mathematics instruction visible in 
this volume refl ects the need in the fi eld to develop useful methods for the study of 
instructional practice. 

 The current lack of established methods and exploration of novel methods for 
analyzing instruction is also visible in the prominence of what might be considered 
indirect approaches to the study of instruction and the absence of direct studies of 
teaching or instructional interactions. For instance, most of the chapters in Part I, 
which focuses on instructional practice, are structured in relation to the nature and 
substance of the curriculum. For example, Vorhölter, Kaiser, and Ferri advance a 
modeling curriculum in tandem with their discussion of instructional practice, and 
da Ponte, Branco, and Quaresma argue that exploration tasks provide an important 
setting for changing instructional interactions in classrooms. In addition, while 
focusing on professional education, many of the chapters in Part III invest signifi -
cantly in articulating the instructional practice or the curriculum targeted by the 
professional education discussed, and several use professional education as a 
vehicle for engaging in the study of instruction. 

 In part, this refl ects the interrelationships among instruction, curriculum, and 
the learning of teaching. Artifacts, data, and methods overlap and overrun one 
another across the parts. In Part III on professional education, Smith et al. argue for 
“reasoning-and-proving” as important curricular content for transforming instruc-
tion, and they use their cases as much to articulate an understanding of the instruc-
tional practice that they have been developing as to serve as materials for professional 
education. A more unusual instance of this crossover dynamic is Watanabe’s historical 
account of Japanese curricular changes, where in several places he suggests that an 
analysis of curriculum materials may provide information about common teaching 
practices and where learning about practice over time in a professional community may 
have led to changes in textbooks, rather than the more common reverse relationship 
where curricula are used to effect changes in practice, which he also discusses. 

 Several factors might contribute to this crossover dynamic among the parts of 
this volume. One is the complex interrelationships among curriculum, teaching, 
teacher learning, and instructional improvement. Another is the lack of established 
analytic tools that would allow researchers to treat factors in a modular way. Third, 
an exploration of method is needed to get at the instructional dynamics and use of 
factors such as curriculum or teacher learning to create identifi able and study-able 
change in instructional interactions. 

 A fi nal challenge for research that accounts for dynamics of instruction is the 
need to disentangle two distinct aims of scholarship on teaching. Research on 
teaching might contribute to a  theory  of teaching—that is, an explanatory 
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conceptualization or model of the work of teaching. Alternatively, researchers might 
seek to specify an  approach  to teaching—that is, describe a specifi c way of teaching, 
not to conceptualize tasks inherent to instruction. Research of the fi rst type might 
aim to create a general model of teachers’ actions across the board, such as 
Schoenfeld’s ( 2010 ) theory of goal-oriented decision making. Or it might aim to 
identify core practices that are defensible in a broad professional community and 
can be effectively taught and learned in professional education, such as Grossman 
et al.’s ( 2009 ) characterization of decompositions of teaching into learnable, 
re-composable practices. Such research attempts to be ecumenical with regard to 
preferred methods of teaching. It approaches the problem of how to teach from the 
standpoint of understanding inherent demands and core components. In contrast, 
research of the second type might aim to identify a particular approach, without 
suggesting that the approach is the only defensible alternative, such as Cohen and 
Lotan’s research on complex instruction and its use of product evaluation criteria 
and equal-status role assignments in small-group problem solving (see, e.g., Cohen 
and Lotan  2003 ; Cohen et al.  2002 ). Research of this type approaches the problem 
of how to teach from the standpoint of positing a particular strategy and arguing for 
its effectiveness. 

 We acknowledge that these different aims are interrelated and are often combined 
within a single program of work. In Lampert’s ( 2001 ) analysis of teaching practice, 
she identifi es endemic “problems of teaching,” such as “covering the curriculum” 
and achieving “closure.” As she writes,

  The problems in teaching are many. Teachers face some students who do not want to learn 
what they want to teach, some who already know it, or think they do, and some who are 
poorly prepared to study what is taught. They must fi gure out how to teach each student 
while working with a class of students who are all different from one another. (p. 1) 

 She goes on to name other problems—dealing with multiple policy signals about 
what to teach, managing time and interruptions, and solving these many different 
problems at the same time. Here Lampert is articulating a theory of the work of 
instruction. But she also focuses her work on what she calls “teaching with 
problems”—that is, “a particular kind of teaching” (p. 3) advocated by reformers 
who seek more intellectually challenging and complex learning opportunities 
and outcomes. 

 As Lampert’s careful analysis demonstrates, the design of any high-quality 
specifi c approach is based on general principles and implies a set of foundational 
demands and core components of teaching. In her work, over time she has devel-
oped a theory of instruction; what was at fi rst a specifi c approach can thus be used 
to explain fundamental aspects of the work of teaching. Cohen and Lotan’s 
“complex instruction” also began by developing a specifi c approach to teaching, 
with particular aims. Although complex instruction has not yet become a theoretical 
lens for understanding the work of teaching in general, it may develop into one. 
The interconnections of general theory and defi nition of specifi c approaches can be 
seen in the need to illustrate the theory with concrete images of enactment, which 
then involve particular choices in approach. For instance, the core tasks of teaching 
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proposed by Grossman and others, as they are more and more fully specifi ed, can 
easily be interpreted as representing preferred approaches to teaching. At some 
point in its rendering in practice, a theory becomes an approach, or a collection of 
approaches, however universal its conception or widespread its application. A theory’s 
use to guide practice ends up being shaped by preferred forms of implementation. 
Furthermore, any theory is, after all, only one alternative theory among many. 
We acknowledge that the distinction we make here between a theory of teaching 
and an approach is a matter of describing two sides of the same coin. 

 However, we suggest that inadequate attention to this distinction weakens 
research on teaching and that increased attention would improve the overall quality 
of research in two important ways. It would improve quality and it would coordinate 
different work in the fi eld. One issue that has plagued education research for over a 
century has been a tendency to slip into ideological advocacy by using research 
to argue (whether overtly or not) for approaches to teaching that embed specifi c 
political and social values. We recognize that our view on this is not universally 
shared—that many researchers see education research as an important form of 
social and political action. Although sympathetic to this view, and struggling with it 
in our own work, we see this as creating a signifi cant challenge for making actual, 
cumulative progress on core problems of education. Research reports that are couched 
as being research on general principles when they actually (or also) advocate for a 
particular approach with embedded, unexamined commitments complicate the 
research process. We suggest that having clearer language for describing the focus 
of a piece of research with regard to where it falls on the spectrum from specifi c 
approach to theoretical principle would reduce the chances of slipping unnoticed 
into advocacy being passed off as disciplined research. 

 A second issue that has plagued education research, in particular research on 
teaching, is the challenge of orchestrating research studies that together, across 
researchers and over time, accumulate knowledge and understanding of teaching. 
Research on learning has built robust theories of learning in the past century. 
Research on teaching has not. To do so, as with any theory-building effort, requires 
orchestration between research on general theories and the development of well- 
understood techniques. Analogous to the ways that funding agencies might use a 
cycle of discovery, innovation, and application to consider the portfolio of research 
they fund, mathematics education researchers might benefi t from clearer articula-
tion of a cycle between approach development and theory building as it designs and 
communicates research on teaching. 

 This volume takes up these different challenges and suggests potential for 
future progress. Many of the chapters put forward a vision of teaching seen as 
“good,” where judgment about what counts as good is drawn from a range of 
sources—reform calls and policy documents (e.g., Goos, Geiger, and Dole; Ni, Li, 
Zhou, and Li; or Oliveira and Mestre), past programs of research or syntheses of 
such programs (e.g., Stephan, Underwood-Gregg, and Yackel; Gravemeijer; or 
Jaworski), existing large-scale efforts deemed relatively successful (e.g., Watanabe; 
Huang and Li; Borko, Jacobs, Seago, and Mangram; Yang; or Li and Li), or novel 

Transforming Research



556

approaches informed by extensive background and experience (e.g., Leikin; 
Liljedahl; or Zaslavsky and Zodik). Each paints its own picture, using overlapping 
yet unique language and categories. Even ones that share signifi cant historical roots, 
such as Stephan, Underwood-Gregg, and Yackel’s chapter on guided reinvention 
and Gravemeijer’s synthesis of inquiry-oriented practices, both of which draw from 
 Realistic Mathematics Education  as developed in the Netherlands, weave in and out 
of using the same and different terms. The relationship between them is often 
intriguing, yet not easy to discern clearly. Jaworski’s chapter on communities of 
inquiry and the use of activity theory to make sense of the teacher’s unique role 
is situated in sociocultural theory, but the characterization of critical alignment in 
a community of inquiry has a certain resonance with the characterizations of 
instruction provided by Gravemeijer and by Stephan, Underwood-Gregg, and 
Yackel. It is not clear to us what to make of these similarities and differences, 
but we are struck and intrigued by them. Similarly, several chapters identify the 
cognitive demand of tasks and support for mathematical talk as key. Yet, trying to 
make sense of the intersections in language, meaning, and principles across different 
scholars is not easy. 

 Reading across all of the chapters, we are impressed by an intriguing sense of 
convergence in the many different visions put forward. The three chapters we just 
mentioned (each appearing in a different part of the volume) have great resonance 
and connection, but the convergence is not limited to these. Many of the chapters 
that advance particular kinds of tasks or curricula include many of the same themes, 
identifying similar features of certain tasks and talk. While trying to neatly capture 
these themes is certainly beyond our intellectual dexterity, we wonder if the rather 
striking similarity in visions of “good” mathematics teaching across such disparate 
chapters—analyzing Japanese textbooks, case-based professional education 
focused on reasoning-and-proving, state curriculum mandates in Portugal, and 
teaching contests in China—attests to a bridging between the approaches and 
converging principles in research on mathematics instruction. In light of our 
comments above, we propose that being more explicit about theory, investing in 
building common language and framing, and eschewing the tendency to advocate 
for preferred approaches might facilitate even greater convergence, and greater 
clarity in emerging principles, and might support the production of useful theory in 
research on teaching. 

 Although we note signifi cant common ground in the research refl ected in this 
volume, we would be remiss not to mention several chapters that point clearly at 
how much further we have to go in our efforts to understand teaching and the inter-
actions of instruction. For instance, Liljedahl explores a somewhat paradoxically 
naive, intriguing, practical, and self-aware proposal for using visibly random daily 
group assignments in secondary mathematics classes as a way to manage the impor-
tant different threads in the dynamics of instruction, such as different agendas of 
students and teachers and the goal of focusing on academic work. Among other 
things, his analysis draws attention to how much we do not yet understand regarding 
even how to think about the most basic factors infl uencing the dynamics in mathe-
matics instruction. Likewise, Even’s report on the  Same Teacher—Different Classes  
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research program, which uses a comparative method across cases that hold some of 
the key factors in the dynamics of instruction constant while others vary, exposes in 
a different way the extensive work ahead in developing theoretical work on teaching 
that provides leverage for understanding the role and interplay of different factors in 
the dynamics of instruction. Different yet, Zaslavsky and Zodik’s exploration of 
example generation and example-based reasoning exposes a small but important 
aspect of mathematical practice that in all likelihood matters for the work of teaching. 
Understanding how and where it arises in the work of teaching is an important topic 
that will contribute much to conceptualizing and theorizing about instructional 
interactions and the work of teaching. This valuable research additionally helps 
to point out that there are other similar important pieces of the puzzle waiting to 
be addressed. 

 We thank all of the scholars contributing to this volume for the opportunity to 
refl ect on the many important programs of work being conducted in the fi eld today 
and on the progress being made and needing to be made to reach the shared goal of 
transforming mathematics instruction into the dynamic and effective professional 
practice that we know it can be.    
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