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Abstract. The need for generating samples that approximate statistical distributions
within reasonable error limits and with less computational cost, necessitates the
search for alternatives. In this work, we focus on the approximation of Gaussian dis-
tribution using the convolution of integer sequences. The results show that we can
approximate Gaussian profile within 1% error. Though Bessel function based dis-
crete kernels have been proposed earlier, they involve computations on real numbers
and hence increasing the computational complexity. However, the integer sequence
based Gaussian approximation, discussed in this paper, offer a low cost alternative
to the one using Bessel functions.

1 Introduction

Lindberg, in his work, [1], presents a family of kernels, which are the discrete ana-
logue of the Gaussian family of kernels. The discrete Gaussian kernel in [1] uses
modified Bessel function of integer order. It is well known that Bessel function
evaluation is a computationally demanding process. This necessitates the need for
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looking at computationally less-demanding alternatives to approximate Gaussian
profiles. Interestingly, while exploring the use of integer sequences [2] for generat-
ing window functions for digital signal processing applications [3], [4], we found
that the convolution of symmetrised integer sequences resulted in a Gaussian like
profile. This made it worth to explore the degree, to which, a single convolution
of two symmetrised integer sequences, approximate a Gaussian profile. It is well
known that the computations on integers and integer sequences are less demanding
in terms of power and complexity. The aim of this paper is to throw light on the use
of non-decreasing integer sequences to approximate discrete Gaussian profile. In
this regard, we provide two techniques, based on convolution of integer sequences,
to approximate Gaussian distribution, as listed below:

• Symmetrising the integer sequences, followed by their linear convolution.
• Linear convolution of non decreasing integer sequences and symmetrising the

resulting sequence about its maximum.

These techniques result in mean squared error, between the estimated probability
density function and the obtained density function, of the order of 10−8 or equiv-
alently about 1% error. We use some of the sequences listed in the Online Ency-
clopedia of Integer Sequences [2]. The following notations are used throughout this
paper:

• N : Sequence Length
• xi[n], x j[n]: Sequences used in linear convolution, of length L and M respectively
• y[n]: Sequence resulting from the linear convolution of two integer sequences,

given by

y[n] =
L−1

∑
k=0

xi[k]x j[n− k] n = 0,1,2, . . . ,L+M− 1 (1)

• Xsc
1, Xcs

2: Random variable that can assume values from the set {1,2,3, . . . ,N},
such that, the probability

P(X = n) =
y[n]

N

∑
k=1

y[k]

∀n = 1,2, . . . ,N (2)

In this paper, we restrict ourselves to integers, for the well known reason that, the
computations on integers are much less complex than those on fixed point or floating
point numbers. However, the comparison of complexity issues with regard to non-
integer but fixed point methods with integers is beyond the scope of this paper.

1 (.)sc : Non decreasing input sequences are first symmetrized and then convolved
2 (.)cs : Non decreasing input sequences are first convolved and then symmetrized
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2 Approximating Discrete Gaussian by Symmetrising
the Integer Sequences, Followed by Convolution

2.1 Convolution of Symmetrized Arithmetic Progression
Sequence

Consider, the arithmetic progression sequence p[n] = a+ nd, where a, d, n are all
integers. This sequence is labeled as A000027 in [2]. For a finite length, N,of the
sequence, we symmetrize the sequence at N/2 or (N +1)/2, depending on whether
the length is even or odd. Let us denote this symmetrized sequence by xs[n]. This
sequence is then convolved with itself to obtain y[n]. Let XN be the random variable
that can assume one of the values in the set {1,2,3, . . . ,2N − 1}. The probability
that XN can take a specific value, n, is given by

P(Xsc = n) =
y[n]

2N−1

∑
k=1

y[k]

, for all n = 1, 2, 3, . . . , 2N-1 (3)

The plot given in fig.1 illustrates that one can indeed approximate Gaussian distribu-
tion by the sequence obtained by convolution of symmetrized arithmetic progression
sequence, with a mean squared error of the order of 10−8. The obtained density func-
tion, in fig.1 is same as the convolution profile. For the profile obtained, we compute
the mean, μ , and variance, σ2. For this mean and variance, we then fit a Gaussian
distribution, using the MATLAB inbuilt function normpdf. This corresponds to the
estimated density function mentioned in fig.1.
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2.2 Convolution of n2 and Higher Powers of n

We now look at integer sequences generated by higher powers of n, say n2, n3 etc.
Fig. 2 gives the profiles obtained by convolving symmetrized integer sequences gen-
erated by various powers of n. The distributed square error, is given in fig. 3. We find
that, the sequence n2, after symmetrization and convolution, approximates discrete
Gaussian with an error of the order of 10−9 or even less. The sequence, n3, does a
poor approximation of discrete Gaussian. Thus, it appears that there is an optimal
value of the exponent, k, between 2 and 3. However, for 2 < k < 3, the sequence nk

ceases to be an integer sequence.
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Fig. 2 Approximating Discrete Gaussian by sequences of the form nk

Also, from fig. 4, we observe that, for higher powers of n, the variance saturates.
Moreover, the lowest exponent with which we can obtain an integer sequence in the
interval (2,3) is 2. Thus it appears that, it may not be possible to obtain discrete
Gaussian with different variance values, with integer sequences generated by nk,
for k > 2. We conjecture that the highest power k for which we can use nk to ap-

proximate discrete Gaussian is related to the golden ratio, ϕ = 1+
√

5
2 . However, this

sequence will not be an integer sequence. Therefore, it is necessary to look at other
integer sequences which are slow growing and are referred to as the metafibonacci
sequences [5]. In the subsections to follow, we look at the convolution of other sym-
metrized integer sequences. The sequences investigated include Golomb sequence
[2], A005229 sequence [2], apart from those discussed in the paper. We present the
simulation results for some of the integer sequences in the following subsections.
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2.3 Convolution of Symmetrized Hofstadter-Conway (HC)
Sequence

The next sequence that we look at is the Hofstadter-Conway sequence [2], generated
by the recurrence relation,

a[n] = a[a[n− 1]]+ a[n−a[n−1]] a[1] = a[2] = 1; (4)
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Fig. 5 Obtained PDF vs Estimated PDF

Fig.5 gives the profile obtained by the convolution of symmetrized Hofstadter
Conway sequence with itself. A plot of the estimated density function is given in
fig.5. This shows that a Gaussian density function can be approximated very closely
by convolving symmetrized HC sequence with itself.

2.4 Convolving Hofstadter-Conway Sequence and Sequence
A006158

We also found that convolving two different symmetric integer sequences also re-
sulted in a profile similar to Gaussian.

Now, we look at the convolution of symmetrized HC sequence and another se-
quence labelled as A006158, in the OEIS [2], generated by the recurrence relation,

a[n] = a[a[n− 3]]+ a[n−a[n−3]] a[1] = a[2] = 1; (5)

Both the sequences were considered to be equal in length and the length was
taken to be 100. From fig.5, we find that Gaussian distribution with a desired vari-
ance can be obtained by varying the length of the sequences to be convolved. Inter-
estingly, from fig.6, we can infer that, to approximate a Gaussian distribution with
a desired variance, using integer sequences, and with minimal mean squared error,
there are two options, namely,

• varying the lengths, N1 and N2, of the two symmetric sequences
• choice of the sequences.

The plots indicate that one can closely approximate a Gaussian distribution of a
specific variance by convolving symmetrized integer sequences. Fig.7 compares the
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Fig. 7 Variance versus Sequence Length for Different Sequences

manner in which the variance, of distributions generated by convolving symmetrized
integer sequences, depends on the length of the sequence.

From fig. 7 it is clear that we can obtain the length of the sequence required for
any particular variance of the Gaussian PDF. However, this automatically fixes the
mean. At present, it appears that only one of the two parameters - variance or mean,
can be realised by the choice of the lengths of the sequences.



220 A. Rajan et al.

3 Approximating Gaussian Distribution by Convolving Integer
Sequences and Symmetrizing

In this approach, we convolve two finite length, non-decreasing sequences. Once
the convolution is done, we symmetrize the result at that N∗, where the convolution
result has its absolute maximum. The resulting sequence is used as the probability
density function of the discrete random variable, X .

3.1 Integer Sequence in Arithmetic Progression (AP)

Consider an arithmetic progression p[n] = a+nd, where a, d, n are all integers. We
then define a truncated sequence x[n] with N terms as

x[n] = p[n](u[n]− u[n−N]) (6)

where u[n] is the unit step function. Consider the convolution of this truncated se-
quence,(of length N) with itself. This results in a sequence, y[n], of length 2N − 1
and is defined by

y[n] =
N−1

∑
k=0

x[k]x[n− k] (7)

y[n] =
N−1

∑
k=0

p[k]p[n− k](u[n− k]− u[n− k−N]) (8)

Clearly y[n] = 0 for n < 0 and is defined differently for different regions namely
0 ≤ n ≤ N − 1 and N ≤ n ≤ 2N − 1. Thus

y[n] =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 n < 0
n

∑
k=0

p[k]p[n− k] 0 ≤ n ≤ N − 1

N−1

∑
k=n−N+1

p[k]p[n− k] N ≤ n ≤ 2N − 1

(9)

Evaluating the summations we get

y[n] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 n < 0

a2(n+ 1)+ ad(n(n+ 1))+d2

[
n(n2 − 1)

6

]

0 ≤ n ≤ N − 1
a2(2N − n− 1)+ ad[n(2N− n− 1)]+ d2t1

N ≤ n ≤ 2N − 1

(10)
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where

t1 =

[
N(N − 1)(3n− 2N+ 1)− (n−N)(n−N+ 1)(n+ 2N− 1)

6

]

(11)

The closed form of convolution of arithmetic progression is given in eq.10. The
convolution plot is given in fig.8
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Fig. 8 Convolution of AP Sequences and Reflection about the index of maximum value

From fig.8, we find that, to get a Gaussian-like profile, we need to truncate the
convolved sequence at the point of its absolute maximum and employ symmetry.
To do so, it is necessary to obtain the point at which the absolute maximum occurs.
Let us denote this point as N∗, the point at which, y[n], defined by eq.10, attains its
absolute maximum. It can be shown that the maxima is obtained at

N∗ ≈ (2N − 1)√
2

− (2−√
2)a

d
(12)

Thus we get, from eq.12, the point at which the result of convolution of an AP
sequence with itself has its maximum value. At this N∗ we symmetrize the result
of convolution. This results in a sequence, y1[n], which closely approximates the
Gaussian curve. The length of y1[n] is 2N∗. In this case, where we convolve first and
then employ symmetry about the point of absolute maximum, the values that the
random number X can assume is from the set {1,2,3, . . . ,N∗, . . . ,2N∗}. Hence, the
probability that the random variable X can take is defined by

P(Xcs = n) =
y1[n]

2N∗

∑
k=1

y1[k]

(13)
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where y1[n] is the sequence obtained by the convolution of the AP sequence and em-
ploying symmetry at N∗. The following were the values taken for the AP sequence:
a = 1; d = 1; N = 100.
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Fig. 9 Comparison between the obtained and estimated PDF

Fig.9 compares the obtained density function with the estimated one. Further in-
vestigations show that convolution of various other metafibonacci sequences indeed
result in very close approximation of a Gaussian profile.

3.2 Validation Using Fourier Fit

To validate that the two techniques, presented in the previous sections, a four term
Fourier fit was done. This involved the following steps:

• Step 1: The integer sequences were symmetrized and then convolved or vice-
versa.

• Step 2: The mean and variance of the resulting sequence were obtained.
• Step 3: For that mean and variance, a discrete Gaussian distribution was obtained.

The mean squared error was found out.
• Step 4: Assuming that it is a continuous distribution, a four term Fourier fit was

obtained at random points. The number of points were the same as the length of
the sequence resulting from step 1. However, the sample points were randomly
chosen.

• Step 5: For this distribution, the mean and variance were obtained.
• Step 6: With this as the mean and variance, a Gaussian PDF was estimated.
• Step 7: The mean square error was obtained as the absolute difference between

the profile obtained in step 4 and step 6.
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The mean square error was found to be of the order of 10−8. This clearly shows
that the sequence obtained by convolution of integer sequences or the sequence
obtained by convolution of integer sequences and symmetrization, indeed, approx-
imated discrete Gaussian distribution with 1% error. Fig.10 illustrates the same,
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using sequence A006161, of length 100, convolved and symmetrized, while fig.11
compares the error distribution. The Fourier series coefficients, in this case, are:

a0 = 0.004277;a1 =−0.005424;a2 = 0.001288;a3 =−0.0002101;a4 = 9.588×10−5;

b1 =−0.0006025;b2 = 0.000289;b3 =−7.239×10−5 ;b4 = 4.543×10−5;w = 0.02688;

It can be seen from fig.10 that the sampling points are different from the ones used
in step 2 and step 3.

4 Conclusion

In this paper, we proposed two techniques to approximate discrete Gaussian distribu-
tion with integer sequences. We found that convolution of slow-growing sequences
can approximate a 4 term cosine fit within 1% error, which in turn approximates a
Gaussian distribution with very low approximation error of about 1%. We also found
that discrete Gaussian distribution with a specific variance and mean can be con-
trolled by varying the length of the integer sequences or by choosing the sequences
or both. Also, as operations on integers are known to be less demanding in terms of
computations, we find that the integer sequences can indeed be used as alternatives
to approximate probability distributions.
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