

S.M. Thampi, A. Gelbukh, and J. Mukhopadhyay (eds.), Advances in Signal Processing
and Intelligent Recognition Systems, Advances in Intelligent Systems and Computing 264,

203

DOI: 10.1007/978-3-319-04960-1_18, © Springer International Publishing Switzerland 2014

Efficient Hardware Implementation of 1024
Point Radix-4 FFT

Senthilkumar Ranganathan, Ravikumar Krishnan, and H.S. Sriharsha

Abstract. Since FFT algorithm is extremely demanding task and has several ap-
plications in the areas of signal processing and communication systems, it must be
precisely designed to induce an efficient implementation of the parameters involv-
ing area and performance. To fulfill this requirement an optimized architecture is
demonstrated in this paper for computing 1024-point, Radix-4 FFT using FPGA
and is majorly compared with Xilinx LogiCoreTM FFT IP and found that proposed
design is more efficient and effective in terms of area and performance. A novel
architecture referred to as 2-D Vector Rotation and Complex Math Processor has
been proposed in this paper. This single structure rotation helps in effectively
carrying out the complex multiplications. The algorithm implements multiplexor
hardware for computing the complex multipliers, thus consuming the minimal
hardware resources. The entire RTL design is described using Verilog HDL and
simulated using Xilinx ISim[TM]. This experimental result is tested on Spartan-6
XC6SLX150T. The result shows 557 LUT’s, 837 Flip Flops, 3 DSP Slices, Max-
imum Frequency of 215 MHz. This is about 52% improvement in resource usage
and 5% upgrade in the performance.

Keywords: FPGA, FFT, 2-D Vector Rotation, Complex Math Processor.

Senthilkumar Ranganathan
Institution of Engineers (India)
e-mail: r.senthilkumar.in@ieee.org

Ravikumar Krishnan
KCG college of technology, Chennai
e-mail: r.ravikumar.be@gmail.com

H.S. Sriharsha
Asmaitha Wireless Technologies Pvt. Ltd
e-mail: sriharsha.suresh@gmail.com

204 S. Ranganathan, R. Krishnan, and H.S. Sriharsha

1 Introduction

DFT is a very complicated task as it involves huge complex hardware [1]. Fast
Fourier Transform is a tool to travel between the time domain and frequency do-
main that has wide application in the area of Communication, Astronomy, Earth
science and in Optics [2]. So, there’s a need for low cost digital signal processing
device which can compute FFT without negotiating on performance and flexibility
ratio. Of the many interests in the Universal research, the prime is efficient utiliza-
tion of area without compromising performance. There is an endless demand for
FPGA as a result of its simplicity in implementation and low cost compared to
ASIC. FFT can be effectively enforced in FPGA because it is a low volume appli-
cation and cost efficient solution. In recent years, Fast Fourier transform of inter-
est are Split Radix algorithms [3], Twisted Radix algorithms [4], Parallel FFT [5],
Mixed-Radix algorithms [6], Vector-Radix [7]. This paper proposes a design of
1024 sampling point, DIF Radix-4 FFT [12, 13] considering area and power as the
main factors. This design does not imply to any FFT architecture based on pipe-
line design [13, 14, 15, 16, 17], instead a unique architecture for computing the
complex multiplications and additions has been administered using Complex Math
processor and Rotational structures that is mentioned in the further sections. The
design is compared with the prevailing Xilinx LogiCORETM Fast Fourier Trans-
form IP and found that prescribed design is more effectual in terms of resource
utilization and performance for the Spartan-6 for a speed grade of -2 thus making
more appropriate in terms of arithmetic value and power. The rest of the work is
organized as follows, section 2 describes the general architecture of Radix-4 FFT
algorithm, section 3 explains the customised architecture and related optimization
techniques. 4, describes the implementation and verification with FPGA board and
elaborated comparison of results achieved with the Xilinx FFT IP core. The con-
clusion is given in section 5.

2 Radix-4 FFT Algorithm

The discrete Fourier Transform of a complex time series is given by,

1

0

X(k) () where k = 0,1,2...,N-1
N

kn
N

n

x n W
−

=
=

(1)
According to the Divide and Conquer rule [8], the complex series will be
decimated in time and frequency. In Radix-4 implementation, the problem is
decimated by four time units with period of (N/4) after the twiddle factor

Efficient Hardware Implementation of 1024 Point Radix-4 FFT 205

generation [9]. The figure 1 shows the architecture of fundamental Radix-4
Butterfly unit. The four recurrent results of every butterfly unit is expressed as,

2

3

(0) ((0) (1) (2) (3))

(1) ((0) (1) (3) j (4))* W

(2) ((0) (1) (2) (3))* W

(3) ((0) j (1) (3) j (4))* W

k
N

k
N

k
N

y x x x x

y x jx x x

y x x x x

y x x x x

= + + +
= − − +

= − + −

= + − −

The detailed description of Radix-4 FFT is described in the paper [10].

X(0)

X(1)

X(2)

X(3)

Y(0)

Y(1)

Y(2)

Y(3)

Fig. 1 Radix 4 Butterfly Diagram with 4 samples

3 Proposed Radix 4 Butterfly Architecture

The block diagram of four input sequence, Radix-4 Butterfly unit is shown in
figure 2. This architecture contains the description of all the computations con-
cerned in single Butterfly unit. Two complex Math Processors (CMPs) are used to
perform the real and complex arithmetic’s. Depending on the selector inputs, the
output of CMP is obtained. The same selection lines are used for decisive addition
or subtraction in the add/sub unit. The twiddle factors are multiplied with the out-
put of complex adder by using the standard complex multiplier. The table describ-
ing the selection techniques is as shown below,

Table 1 Selection Technique performed by CMP

Sel[1:0] CMP1 CMP2 ADD / SUB

00 x(0) + x(1) x(2) + x(3) c1 + c2

01 x(0) –jx(1) x(2) –jx(3) c1 – c2

10 x(0)-x(1) x(2)-x(3) c1 + c2

11 x(0)+jx(1) x(2)+jx(3) c1 - c2

Whenever the select line is 00, twiddle factor is considered as unity. Depending on
the least significant bit of select inputs addition or subtraction is performed.

(2)
 (3)

(4)

(5)

206 S. Ranganathan, R. Krishnan, and H.S. Sriharsha

Complex Math
Processor

Complex Math
Processor

Adder / Subtractor

X(0)

X(1)

X(2)

X(3)

S Y(S)

Fig. 2 Proposed Butterfly Architecture

3.1 Complex Math Processor and 2 – D Vector Rotation

This unit describes the methodology to calculate one single output of Radix-4
complex butterfly unit. A common architecture is outlined to compute all Radix-4
butterfly outputs considering just one twiddle factor input at a time. The processor
simply uses the multiplexor, adder and subtractor hardware resources as shown in
figure 3. The multiplication of imaginary term ‘j’ is achieved by the 2-D Vector
Rotation technique. The vector rotation is performed for equation (3) and (5). The
rotation is achieved using the multiplexor. The 2D quadrant is swapped with re-
spect to (+j) and (-j) corresponding to +90 degree and -90 degree rotation. This
sign change technique is incorporated using adder / subtractor circuit.

Fig. 3 Complex Math Processor Architecture

Efficient Hardware Implementation of 1024 Point Radix-4 FFT 207

3.2 1024 Point DIF Radix-4 FFT Processor

The 1024 Radix-4 point FFT uses two Block RAMs for accessing input and output
data. These two Block RAMs acts as a Ping-Pong Buffers. A multiplexor at the
input side selects the source of data and stores it in Block RAM 1. After processing
the sequence, Block RAM 2 holds the output data. Address Generator unit (ADG)
is responsible for generating the address in every stage based on indexing. The
twiddle factors are stored serially in the ROM and accordingly select lines are
chosen. The outputs are generated sequentially from the Block RAM 2. The figure
4 shows the complete FFT Processor design.

Initially, at the input stage of the computation, Block RAM 1 is used for read-
ing and Block RAM 2 will be idle. After computing the first stage of Butterfly
unit, Block RAM 2 is used for writing the output sequences. The cycle of opera-
tion of two Block RAMs switches in every FFT stage as showed in the below
table 2.

Table 2 Block RAM usage in every stage of computation

Stages Block RAM 1 Block RAM 2

Input Write -

Stage 0 Read Write

Stage 1 Write Read

Stage 2 Read Write

Stage 3 Write Read

Stage 4 Read Write
Output - Read

4 Implementation Results

The submitted novel design involving the Complex Math Processor and 2-D Vector
Rotation is described in Verilog HDL and has been functionally verified. The
timing simulations are carried out in Xilinx ISimTM as shown in figure 6. The entire
RTL has been successfully synthesized using Spartan -6 XC6SLX150T FPGA.

The presented design is compared with Xilinx LogiCORETM IP Fast Fourier
Transform (v8.0) [11] and with [12] which is based on pointer FIFO embedded
with gray code counters and found a major difference in performance and resource
usage. The following table presents the architectural implementations when
compared to the Xilinx LogiCoreTM FFT IP synthesized for specific Spartan-6
architecture with speed grade of -2. The slice count, block RAM count, and
XtremeDSP slice count are listed. The maximum clock frequency is also listed
with the transform latency.

208 S. Ranganathan, R. Krishnan, and H.S. Sriharsha

MUX Butterfly UNIT

ADDRESS GENERATOR UNIT

Block RAM 2
Block RAM 1

MUX
MUX

INPUT

Implementation resources, as reported by Xilinx® ISE 14.5 synthesis tool, are
summarized in table 3 for the proposed FFT Processor. The performance of the
FFT core can be estimated by the clock cycle number, required to compute a full
1024-point input signal. There are 5 Butterfly stages containing 256 individual
complex Butterflies. 1039 Clock cycle are required for the computation of each
stage and then be schematized as shown in Figure 5. FFT processor runs at 215
MHz with the latency of 24.16μS as indicated in below table.

Fig. 4 Radix -4 FFT Processor

Table 3 Implementation Results of Xilinx LogiCORE IP and proposed design

Parameter Xilinx LogiCORE FFT IP Our Design
Channel 1 1
Point Size 1k 1k
Implementation R4 R4
Configurable Point Size NO 1024
Input Data Width 16 16

Phase factor Width 16 16
Scaling type S S
Rounding Mode C C
Output Ordering N N
Memory Type B B
Xilinx Part XC6SLX150T XC6SLX150T
LUT/FF Paris 1750 837
LUTs 1438 557
FFs 1608 837
9k Block RAMs 10 6
XtremeDSP slices 9 3
Max clock frequency 206 215
Latency (clock cycles) 3453 5195
Latency(Micro Sec) 18.27 24.16

Efficient Hardware Implementation of 1024 Point Radix-4 FFT 209

Fig. 5 RTL Design of 1024 Point DIF FFT Processor

Fig. 6 Xilinx ISim[TM] Simulation Result of FFT Processor

5 Conclusion

The cumulative work of this paper is to formulate an FFT algorithm that would
consume less area and achieve the greater frequency of operation than the Xilinx
LogiCoreTM FFT IP. This paper illustrates the custom designed Complex Math
Processor and 2 – D Vector Rotation approach for multiplying the imaginary

210 S. Ranganathan, R. Krishnan, and H.S. Sriharsha

terms. This architecture uses very minimal resource for complex manipulations
thus creating the low power and optimized design of 1024 point Radix-4 FFT.
Finally the Place and Route (PAR) report were compared as indicated in the Table
3, where a significant difference in engaged resource and performance is noted.
The comparison study shows that around 52% resource minimization and 5%
increase in throughput with a little change rate in latency clock cycle is achieved.

Acknowledgements. The authors would like to thank Prof. Chandrasekaran Subramaniam,
Jaraline Kirubavathy, Subhashini Vaidyanathan for their valuable technical support and
making it success.

References

1. Burrus, C.S., Perks, T.W.: DFUFFT and Convolution Algorithms. Wiley Interscience,
New York (1985)

2. Cooley, J.W., Lewis, P.A.W., Welch, P.D.: Historical notes on the fast Fourier
transform. Proc. IEEE 55, 1675–1677 (1967)

3. Shu, C.J., Peng, X.: Dept. of Electron. & Eng. Tsinghua Univ., Beijing
4. Mateer, T.: Ph.D. dissertation, Dept. Mathematical Science., Clemson Uni., Clemson.,

SC
5. Silvia, M., Giancarlo, R., Gaetano, S.: A parallel fast Fourier transform. Mod.

Phy. C 10, 781–805 (1999)
6. Grioryan, A.M., Agaian, S.S.: Split mangeable efficient algorithm for Fourier and

Hadamard transform. IEEE Trans. Signal Processs. 48(1), 172–183 (2000)
7. Chan, I.C., Ho, K.L.: Split vector-radix fast Fouriet transform. IEEE Trasn. Signal

Process. 40, 2029–2040 (1992)
8. Cooley, J.W., Tukey, W.: An Algorithm for the Machine Calculation of Complex

Fourier Series. Math. of Computations 19, 297–301 (1965)
9. Knight, W.R., Kaiser, R.: A Simple Fixed-Point Error Bound for the Fast Fourier

Transform. IEEE Trans. Acoustics, Speech and Signal Proc. 27(6), 615–620 (1979)
10. Saidi, A.: Decimation-in-Time-Frequency FFT Algorithm. In: Proc. IEEE International

Conf. on Acoustics, Speech, and Signal Processing, vol. 3, pp. 453–456 (1994)
11. Xilinx® Logic coreTM, Fast Fourier Transform V8.0, Xilinx® (2012)
12. Zhong, G., Zheng, H., Jin, Z., Chen, D., Pang, Z.: 1024-Point Pipeline FFT Processor

with Pointer FIFOs based on FPGA. In: 2011 IEEE/IFIP 19th International Conference
on VLSI and System-on-Chip (2011)

13. He, H., Guo, H.: The Realization of FFT Algorithm based on FPGA Co-processor. In:
Second International Symposium on Intelligent Information Technology Application,
vol. 3, pp. 239–243 (December 2008)

14. Oh, J.-Y., Lim, M.-S.: Area and power efficient pipeline FFT algorithm. In: IEEE
Workshop on Signal Processing Systems Design and Implementation, November 2-4,
pp. 520–525 (2005)

Efficient Hardware Implementation of 1024 Point Radix-4 FFT 211

15. Wang, H.-Y., Wu, J.-J., Chiu, C.-W., Lai, Y.-H.: A Modified Pipeline FFT Architec-
ture. In: 2010 International Conference on Electrical and Control Engineering
(ICECE), pp. 4611–4614 (June 2010)

16. Sukhsawas, S., Benkrid, K.: A high-level implementation of a high performance pipe-
line FFT on Virtex-E FPGAs. In: Proceedings of the IEEE Computer society Annual
Symposium on VLSI, February 19-20, pp. 229–232 (2004)

17. He, S., Torkelson, M.: Design and implementation of a 1024-point pipeline FFT pro-
cessor. In: Proceedings of the IEEE 1998 Custom Integrated Circuits Conference, May
11-14, pp. 131–134 (1998)

	Efficient Hardware Implementation of 1024 Point Radix-4 FFT
	1 Introduction
	2 Radix-4 FFT Algorithm
	3 Proposed Radix 4 Butterfly Architecture
	3.1 Complex Math Processor and 2 – D Vector Rotation
	3.2 1024 Point DIF Radix-4 FFT Processor

	4 Implementation Results
	5 Conclusion
	References

