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Abstract. This paper presents first results toward the extension of possibilistic
logic when the total order on formulas is replaced by a partial preorder. Few works
have dealt with this matter in the past but they include some by Halpern, and Ben-
ferhat et al. Here we focus on semantic aspects, namely the construction of a partial
order on interpretations from a partial order on formulas and conversely. It requires
the capability of inducing a partial order on subsets of a set from a partial order
on its elements. The difficult point lies in the fact that equivalent definitions in the
totally ordered case are no longer equivalent in the partially ordered one. We give
arguments for selecting one approach extending comparative possibility and its
preadditive refinement, pursuing some previous works by Halpern. It comes close
to non-monotonic inference relations in the style of Kraus Lehmann and Magidor.
We define an intuitively appealing notion of closure of a partially ordered belief
base from a semantic standpoint, and show its limitations in terms of expressive-
ness, due to the fact that a partial ordering on subsets of a set cannot be expressed
by means of a single partial order on the sets of elements. We also discuss several
existing languages and syntactic inference techniques devised for reasoning from
partially ordered belief bases in the light of this difficulty. The long term purpose
is to find a proof method adapted to partially ordered formulas, liable of capturing
a suitable notion of semantic closure.

1 Introduction

The basic concept of ordered knowledge base expressing the relative strength of for-
mulas has been studied for more than twenty years in Artificial intelligence. To our
knowledge this concept goes back to Rescher’s work on plausible reasoning [1]. The
idea of reasoning from formulas of various strengths is even older, since it goes back
to antiquity with the texts of Theophrastus, a disciple of Aristotle, who claimed that
the validity of a chain of reasoning is the validity of its weakest link. Possibilistic logic
[2] is a typical example of logic exploiting a totally ordered base and implementing the
weakest link principle. It is an extension of propositional logic, sound and complete
with respect to a semantics in terms of possibility theory, where a set of models is re-
placed by a possibility distribution on the interpretations (which are then more or less
plausible). It enables problems of inconsistency management [3], of revision [4] and of
information fusion [5] to be handled in a natural way.

This simple approach has limitations in expressive power. We may go beyond it in
several respects:

– extending the syntax to give a meaning to negations and disjunctions of weighted
formulas, thus joining the syntactic framework of modal logic [6];
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– improving the treatment of the degrees attached to the formulas via a refinement of
the induced possibility distribution, possibly by means of a partial order [3];

– making the approach more qualitative, by replacing the weights of certainty by the
elements of a lattice, or by a partial order over a finite set of formulas [7].

This paper paves the way to the systematic study of the last two points, based on scat-
tered existing works. Possibilistic logic exploits the equivalence between the deductive
closure of a set of weighted formulas, and a possibility distribution on the interpre-
tations. In case of logical inconsistency, it reasons with the formulas whose certainty
level exceeds the global inconsistency degree, leaving out some highly uncertain for-
mulas not concerned by inconsistency (this is called “the drowning effect”). Our idea is
to preserve this kind of relation between semantics and syntax in the setting of weaker
algebraic frameworks (with partial preorders), while proposing concepts of partially
ordered closure accordingly. The following questions seem natural:

– Is it possible to represent a partially ordered set of formulas by a partially ordered
set of models?

– Is it possible to represent a partially ordered set of models by a partially ordered set
of formulas?

– Is it possible to define inference rules that account for such a semantics?

To address these questions, we first review how to go from a partial ordering on a
set to a partial ordering on its subsets. This point, already reviewed by Halpern [8],
is tricky because equivalent definitions in the case of a total order are no longer so in
the partially ordered setting. Properties of partial orders among sets induced by partial
order on elements are studied in detail. Then these results are applied to the definition
of semantic inference from partially ordered knowledge bases. This definition poses the
problem of representing the semantics of a partially ordered base in terms of a single
partial order of its interpretations. We show that in general the partial order on formulas
cannot be recovered from the partial order on interpretations it induces, contrary to the
totally ordered case. Finally we briefly review existing proposals of syntactic inference
that may be used to reason from partially ordered formulas, in the light of this limitation.

2 Comparing Sets of Totally Ordered Elements

Let (S,≥) be a totally ordered set and let A and B be subsets of S. To extend ≥ to 2S ,
a natural idea is to compare A with B by means of logical quantifiers. So, four kinds of
relations can be defined:

Definition 1.

– Unsafe dominance: A �u B iff ∃a ∈ A, b ∈ B, a ≥ b
– Optimistic dominance: A �o B iff ∀b ∈ B, ∃a ∈ A, a ≥ b
– Pessimistic dominance: A �p B iff ∀a ∈ A, ∃b ∈ B, a ≥ b
– Safe dominance: A �s B iff ∀a ∈ A, ∀b ∈ B, a ≥ b

Strict counterparts of these definitions, namely �u,�o,�p,�s can be similarly de-
fined, replacing (S,≥) by its strict part (S,>)
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Note that relations �x are not the strict parts of �x. The four kinds of weak relations
in this definition can be rewritten by comparing maximal (resp. minimal) elements.
Denoting by max(A) (resp. min(A)) any maximal (resp. minimal) element in A:

– Unsafe dominance: A �u B iff max(A) ≥ min(B)

– Optimistic dominance: A �o B iff max(A) ≥ max(B)

– Pessimistic dominance: A �p B iff min(A) ≥ min(B)

– Safe dominance: A �s B iff min(A) ≥ max(B)

Note that A �u B iff ¬(B �s A). The strict safe dominance �s is a strict partial
order that can compare disjoint sets only; and �s is not even reflexive. The unsafe dom-
inance is not transitive even if reflexive. The optimistic and pessimistic comparisons are
total orders dual to each other in the following sense: A �o B iff B �′

p A where ≥′

denotes the inverse of ≥ on S, defined by a ≥′ b iff b ≥ a. It is interesting to highlight
the point that the latter comparisons can be defined equivalently as:

– Optimistic dominance: A �o B iff ∃a ∈ A, ∀b ∈ B, a ≥ b;
– Pessimistic dominance: A �p B iff ∃b ∈ B, ∀a ∈ A, a ≥ b

These notions can be applied to the representation of uncertainty. Let S denote a
set of states. Assume π a possibility distribution on S such that π(s) is the plausibil-
ity degree that s is the real world. Let Π the associated possibility measure defined
by Π(A) = maxs∈A π(s) and N the dual necessity measure defined by N(A) =
mins�∈A 1− π(s) = 1−Π(A) [2]. We have:

– Π(A) ≥ Π(B) iff max(A) ≥ max(B) (this is A �o B)
– N(A) ≥ N(B) iff max(B) ≥ max(A) (this is B �o A)

So the optimistic comparison between A and B is a comparative possibility mea-
sure in the sense of Lewis [9] (see also [10]), and the optimistic comparison between
complements A and B, which expresses relative certainty, is related to epistemic en-
trenchment in revision theory [11]. In the uncertainty framework, safe dominance is
never used as it is not representable by a monotonically increasing set function. On the
other hand, the pessimistic ordering is monotonically decreasing with inclusion. In the
following, we thus concentrate on the optimistic comparison �o .

The above definitions also apply to the representation of preferences. Then stating
A � B accounts for an agent declaring that the truth of the proposition whose models
form the set A is preferred to the truth of the proposition whose models form the set B.
Interpreting such a statement requires the knowledge of the attitude of the agent, which
leads to choosing between the four orderings considered above. The safe dominance is
natural in this setting as a very conservative risk-free understanding of A � B, akin
to interval orderings [12]. Pessimistic and optimistic dominance are milder views, and
both make sense, as explored by Benferhat et al. [13], Kaci and van den Torre [14,15],
contrary to the case of representing the plausibility and certainty of formulas. However,
preference modelling is not in the scope of this paper.
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3 Properties of Relative Likelihood Relations Comparing Subsets

Let � be a reflexive relation that compares subsets A and B of S, and � its strict part.
We enumerate different properties that may be satisfied by these relations in the scope
of modeling relative uncertainty.

1. Compatibility with set-theoretic operations (inclusion, intersection, union)
– Compatibility with Inclusion (CI) If B ⊆ A then A�B
– Orderliness (O) If A�B, A ⊆ A′, and B′ ⊆ B, then A′ �B′

– Stability for Union (SU) If A�B then A ∪ C �B ∪ C
– Preadditivity (P) If A ∩ (B ∪C) = ∅ then (B � C iff A ∪B �A ∪ C)
– Self-duality (D) A�B iff B �A

Note that (CI) is never satisfied by a non-reflexive relation while (O) makes sense
for a reflexive relation too. (SU) does not make sense for an asymmetric relation
(take C = S). Preadditivity and self-duality, like (O) make sense for both � and
its strict part. All these properties have been studied in the case of total orders: (CI)
and (O) are expected when A � B expresses a greater confidence in A than in B;
(SU) characterizes possibility relations �o (Lewis[9], Dubois[10]). Preadditivity
and self-duality hold for probability measures [16], but also for the relation A�B
iff A \B �o B \A [17].

2. Properties reflecting a qualitative point of view
– Qualitativeness (Q) If A ∪B � C and A ∪ C �B, then A�B ∪ C
– Negligibility (N) If A�B and A� C, then A�B ∪ C

(Q) is satisfied by strict parts of possibility relations (�o, but not �o) and is found
in non-monotonic logic. Negligibility also works for �o, it says that one cannot
compensate for the low plausibility of a set by adding elements of low plausibility.

3. Properties concerning the deductive closure of partially ordered bases (see Fried-
man and Halpern[18], Dubois and Prade [19] and Halpern [8]):

– Conditional Closure by Implication (CCI) If A ⊆ B and A ∩ C � A ∩ C
then B ∩ C �B ∩C

– Conditional Closure by Conjunction (CCC) If C ∩A�C ∩A and C ∩B�

C ∩B then C ∩ (A ∩B)� C ∩ A ∩B
– Left Disjunction (OR) If A∩C �A∩C and B ∩C �B ∩C then (A∪B)∩
C � (A ∪B) ∩C

– Cut (CUT) If A∩B�A∩B and A∩B∩C�A∩B∩C then A∩C�A∩C
– Cautious Monotony (CM): If A ∩ B � A ∩ B and A ∩ C � A ∩ C then
A ∩B ∩ C �A ∩B ∩ C

These properties are rather intuitive when the relation A�A is interpreted as “A is
an accepted belief”, and A ∩ C �A ∩ C as “A is an accepted belief in the context
C” [20,18,21]. They hold in the total order setting for the optimistic relation �o,
but they are not interesting to consider for reflexive relations (e.g. �o).

Proposition 1. It is easy to see that, for any relation �:

1. (O) implies CCI.
2. If the relation � is qualitative (Q) and orderly (O), then it satisfies Negligibility

(N) and (CCC), and the converse of (SU): If A ∪ C � B ∪ C then A � B.
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Proof:

1. Suppose A ⊆ B and A∩C � A∩C. We have A∩C ⊆ B∩C and B∩C ⊆ A∩C.
Hence from (O), B ∩ C � B ∩ C.

2. Assume that � satisfies (Q) and (O).
Suppose A � B and A � C. Then, by (O), A ∪B � C and A ∪ C � B. Hence
from (Q), A � B ∪ C. So � satisfies (N).
SupposeC∩A � C∩A and C∩B � C∩B. Let A′ = A∩B∩C, B′ = A∩C∩B,
C′ = A ∩ B ∩ C and D′ = C ∩ B ∩ A. So, we have A′ ∪ B′ � C′ ∪ D′

and A′ ∪ C′ � B′ ∪ D′. Hence from (O), A′ ∪ B′ ∪ D′ � C′, then from (Q)
A′ � B′ ∪C′ ∪D′. So, A ∩B ∩C �C ∩ (A ∪B) = C ∩A ∩B. So � satisfies
(CCC).
Suppose A ∪ C � B ∪ C. Then by (O), A ∪ (C ∪ B) � C. Hence from (Q),
A � B ∪ C, then (O) again: A � B. So � satisfies the converse of (SU).

4 Comparing Sets of Partially Ordered Elements

In this section, we start from a partially ordered set (S,≥) and we consider the con-
struction of a relation � induced by ≥ for comparing subsets of S. In the scope of
representing comparative belief and plausibility, the last section has shown that we can
restrict to the optimistic comparison of sets. In the following, we focus on the general-
ization of optimistic dominance to the case of partially ordered sets. It has been noticed
(see section 2) that there are two possible definitions of the optimistic dominance, that
are equivalent in the total order setting. However they are no longer so in the partial
order setting, as first noticed by Halpern [8]. As a consequence, in order to define a
semantics for partially ordered logical bases, we have to study these different relations
and to choose an appropriate one according to the properties they satisfy.

As usual, given a reflexive and transitive relation on S, denoted by ≥, s′ > s is
an abbreviation for “(s′ ≥ s) and not (s ≥ s′)”. The relation > is the strict partial
order determined by ≥. It is an irreflexive and transitive relation on S. s′ ∼ s is an
abbreviation for “(s′ ≥ s) and (s ≥ s′)”. The relation ∼ is the equivalence relation
determined by ≥. s′ ≈ s is an abbreviation for “(neither (s′ ≥ s) nor (s ≥ s′)”. It is the
incomparability relation determined by ≥. If this relation is empty, the relation ≥ is a
total preorder. On the contrary, given a transitive and asymetric relation >, the relation
s′ ≈ s if and only if neither s′ > s nor s > s′ is its associated incomparability relation
(while s′ ∼ s reduces to the equality relation).

Let (S,≥) a partially ordered set, and X ⊆ S. s ∈ X is maximal for ≥ in X if and
only if we do not have s′ > s for any s′ ∈ X . M(X,≥) (M(X) for short) denotes the
set of the maximal elements in X according to ≥.

The optimistic comparison between A and B is based on the comparison between
M(A) and M(B). In the total order case, it can be defined in two ways, which are
no longer equivalent in the partial case. We call them weak optimistic dominance and
strong optimistic dominance in the following.
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4.1 Weak Optimistic Dominance

Here again, various definitions can be proposed according to whether one starts from a
strict order or not on S.

Definition 2 (Weak optimistic dominance).

1. Weak optimistic strict dominance:
A �wos B iff A = ∅ and ∀b ∈ B, ∃a ∈ A, a > b.

2. Weak optimistic loose dominance: A �wol B iff ∀b ∈ B, ∃a ∈ A, a ≥ b.
3. Strict order determined by �wol: A �wol B iff A �wol B and ¬(B �wol A).

In other words, A �wol B iff ∀b ∈ B, ∃a ∈ A, a ≥ b and ∃a′ ∈ A, ∀b ∈
B, either a′ > b or a′ ≈ b.

These relations are respectively denoted by �s,�s and �′ by Halpern [8]. The re-
lation �wos is a strict partial order (asymetric and transitive) on 2S . We have always
A �wos ∅, except if A is empty. The relation �wol is reflexive and transitive and such
that A �wol ∅, but not ∅ �wol B except if B is empty. Finally, if A �wos B then
A �wol B. The converse is generally false except if ≥ is a complete order.

The following proposition shows that the weak optimistic dominance is appropriate
for representing relative plausibility.

Proposition 2. The weak optimistic strict dominance �wos is a strict partial order
which satisfies Qualitativeness (Q), Orderliness (O), Left Disjunction (OR), (CUT)
and (CM).

The weak optimistic loose dominance�wol satisfies Compatibility with inclusion (CI),
Orderliness (O), Negligibility (N), Stability for union (SU).

The relation �wol satisfies Orderliness (O) and Conditional Closure by Implication
(CCI).

Corollary 1. The weak optimistic strict dominance�wos satisfies the converse of (SU),
Negligibility (N), Conditional Closure by Implication (CCI) and Conditional Closure by
Conjunction (CCC).

Note that, as shown by Halpern [8], the relation �wol is generally not qualitative and
the relation �wol does not satisfy the property of Negligibility. Moreover, the relation
�wol neither satisfies the property OR nor the property CUT as shown below:

Example 1. Let S = {a, b, c, d, e, f, g, h} be a partially ordered set with f ∼ h, e ∼
g, f > a, e > b, a > c and b > d.

OR: Let A = {a, c, e, g}, B = {b, d, f, h} and C = {a, b, e, f} be three subsets of S.
We have A ∩ C �wol A ∩ C and B ∩ C �wol B ∩ C but not (A ∪ B) ∩ C �wol

(A ∪B) ∩C .
CUT: Let A = {a, b, c, d, e, f, g, h}, B = {a, b, c, e, g, h} and C = {a, b, d, g, h} be

three subsets of S.
We haveA∩B �wol A∩B andA∩B∩C �wol A∩B∩C but notA∩C �wol A∩C .

It is clear that as a result, the relation �wos is the richest one to represent relative
plausibility. But note that it has no non trivial associated equivalence relation (but for
A ∼wos B if and only if A = B).
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4.2 Strong Optimistic Dominance

The alternative approach, not considered by [8], consists in assuming, if A � B, that
one element in A dominates all elements in B. As before, various definitions can be
proposed according to whether one uses a strict order or not on S.

Definition 3 (Strong optimistic dominance).

1. Strong optimistic strict dominance: A �Sos B iff ∃a ∈ A, ∀b ∈ B, a > b
2. Strong optimistic loose dominance: A �Sol B iff ∃a ∈ A, ∀b ∈ B, a ≥ b
3. Strict order determined by �Sol: A �Sol B iff A �Sol B and ¬(B �Sol A).

In other words, A �Sol B iff ∃a ∈ A, ∀b ∈ B, a ≥ b and ∀b ∈ B, ∃a ∈
A, either a > b or a ≈ b.

Note that with the above definitions, if A = ∅, A �Sos ∅ and never ∅ �Sos B.
The relation �Sos is a strict partial order on 2S . Finally, if A �Sos B then A �Sol B.
Obviously, the strong relations are stronger than the weak relations, namely: If A �Sos

B then A �wos B and if A �Sol B then A �wol B. The converse is true only if ≥
is a complete order on S. So, we also have: If A �Sos B then A �wol B. However
there is no entailment between the relations �Sol and �wol as shown by the following
counterexamples:

Example 2. Let S = {a1, a2, b1, b2, b3} with a1 ∼ b1 > b3 and a2 > b2. Then
{a1, a2} �wol {b1, b2, b3}, but it is false that {a1, a2} �Sol {b1, b2, b3}.

Example 3. Let S = {a1, a2, b1, b2, b3} with a1 ∼ b1 > b3, and a1 > b2 > a2. Then
{a1, a2} �Sol {b1, b2, b3}, but it is false that {a1, a2} �wol {b1, b2, b3}.

As indicated by Benferhat, Lagrue, Papini [22], the relation �Sos contains many
incomparabilities, and �Sol does not satisfy Compatibility with Inclusion. Indeed, if
A ⊆ B, it is not obvious that there exists b ∈ B such that b ≥ a, ∀a ∈ A. In fact, �Sol

is thus not even reflexive, even if it is transitive. Finally, A �Sos B implies A �Sol B.
The converse is not true except when ≥ is a complete order on S. As for properties:

Proposition 3. The strong optimistic strict dominance �Sos is a strict order satisfying
Orderliness (O) and Cautious Monotony (CM)

However it fails to satisfy Negligibility, Qualitativeness, CUT and Left Disjunction
(OR), as shown by the following examples.

Example 4. Let S = {a1, a2, b, c} with a1 > b and a2 > c, and the subsets A =
{a1, a2}, B = {b} and C = {c}. We have A �Sos B , A �Sos C but we don’t have
A �Sos (B ∪ C). So (N) is not satisfied.

Due to Proposition 1, the relation �Sos fails to satisfy Qualitativeness as well.

Example 5. Let S = {a, b, c, d}with a > b and c > d, and the subsets A = {a, b, c, d},
B = {a, c, d} and C = {a, c}. We have A∩B �Sos A∩B , A∩B∩C �Sos A∩B∩C
but we do not have A ∩ C �Sos A ∩C . So (CUT) is not satisfied.

Lastly, suppose ∃a ∈ A∩C, ∀x ∈ A∩C a > x, and ∃b ∈ B∩C, ∀x ∈ B∩C b > x
then if a and b are not comparable, there may be no c ∈ (A ∪ B) ∩ C that alone can
dominate all elements in (A ∪B) ∩ C. So (OR) is not satisfied either.

So the weak optimistic dominance is a richer concept than the strong one.
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4.3 Refinement of Partial Preorders Induced between Subsets

None of the relations presented in the above sections satisfies the property of Pread-
ditivity, which considers that the common part of two sets should play no role in the
comparison. A preadditive approach for comparing two sets A and B consists in elim-
inating the common part and then comparing A \ B and B \ A. This is not a new idea
(see [8] for a bibliography). In the following we consider the refinement of the weak
optimistic dominance.

Definition 4 ( Preadditive dominance).

– strict preadditive dominance: A �wos
d B if and only if A = B and A \ B �wos

B \A.
– loose preadditive dominance: A �wol

d B if and only if A \B �wol B \A.
– strict order from �wol

d : A �wol
d B if and only if A �wol

d B and ¬(B �wol
d A).

These relations are respectively denoted by �6,�4 and �5 in Halpern [8]. The two
first relations are thoroughly studied in [23] and [24]. They coincide with �wos and
�wol on disjoint sets. When S is totally ordered, the relations �wol

d and �wos
d coincide.

Neither the relation �wol
d , nor its strict part are transitive, as indicated by the following

counterexample.

Example 6. Let S = {a1, a2, a3, b1, b2, c} with a1 ∼ a2 ∼ b1, a1 > c and a3 > b2.
Let A = {a1, a2, a3}, B = {b1, b2}, C = {a1, a2, c}. We have A �wol

d B but not
B �wol

d A, B �wol
d C but not C �wol

d B but we don’t have A �wol
d C.

The relation �wos
d seems to be more appropriate due to the following properties:

Proposition 4. The relation �wos
d is a strict partial order that satisfies:

– Strict compatibility with Inclusion (SCI): if A ⊂ B then B �wos
d A.

– Self-duality (D) and Preadditivity (P)
– a weak form of Negligibility: If A∩B = A∩C then (If A �wos

d B and A �wos
d C

then A �wos
d (B ∪ C)).

– a weak form of Qualitativeness: If A∩B = A∩C = B∩C then (If A∪C �wos
d B

and A ∪B �wos
d C then A �wos

d (B ∪ C)).

Note that since �wos
d is equal to �wos on disjoint sets, it satisfies (CCI), (CCC), (OR),

CUT and CM as well.
The next property relates the optimistic dominance to the preadditive dominance.

Proposition 5. �wos
d refines �wos and its dual variant:

– If A �wos B then A �wos
d B.

– If B �wos A then A �wos
d B.

– If A �wos
d B then A �wol B and B �wol A.

The preadditive dominance based on the weak optimistic dominance is thus well-
adapted to plausible reasoning with partially ordered knowledge bases. Note that the
properties of Conditional Closure by Implication (CCI) and Conditional Closure by
Conjunction (CCC) are essential to extract a deductively closed set of most plausible
formulae.
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4.4 From Weak Optimistic Dominance to a Partial Order on Elements

Halpern [8] studied the problem to know if a preorder on 2S can be generated by a
preorder on S. The only known result deals with total preorders: If � is a total preorder
on 2S that satisfies the properties of orderliness and qualitativeness, then there exists
a total preorder ≥ on S such that � and �wol coincide on 2S (a similar result where
one replaces these properties by stability for the union is already in [10], because in
this case indeed a comparative possibility measure [9] is characterized by a complete
preorder of possibility on S).

In the partial order case, if a strict order� on 2S is generated by a strict order> on S,
one must have {a}�{b}whenever a > b. Conversely, suppose� satisfies the properties
of orderliness and negligibility and define the relation a >� b by {a} � {b}. Then,
A �wos B means ∀b ∈ B, ∃a ∈ A, a >� b that is to say ∀b ∈ B, ∃a ∈ A, {a}� {b}.
We have:

– If A �wos B then A�B.
– Conversely, if A�B, it is easy to prove that ∀b ∈ B,A� {b}. But nothing proves

that ∃a ∈ A such that {a}� {b}.

So, the situation of partial orders is strikingly different from the case of total orders.
Even equipped with the properties of orderliness and negligibility, a partial order on
subsets is generally NOT characterized by its restriction on singletons.

Another way to induce a partial order on 2S from a partial order> on S is to consider
the partial order > as a family of total orders >i extending (or compatible with) this
partial order. Let A andB be two subsets of S, and let �i denote the ordering relation on
2S induced by >i. Then two methods for building a partial order on 2S can classically
be proposed [25]:

Cautious principle considering all the total orders on S compatible with >: A�B iff
∀i = 1, . . . , n, A�i B

Bold principle considering at least one total order on S compatible with >: A�B iff
∃i, A�i B

It turns out that if we consider the family of total orders >i extending a partial order >
on S, the cautious principle enables the weak optimist dominance�wos to be recovered:

Proposition 6. Let A,B two subsets of S. We have:

A �wos B ⇐⇒ ∀i = 1..n A �i
o B

As a consequence, a weak optimistic strict order on subsets is characterised by sev-
eral total orderings on elements, not by a single partial order on elements. Given the
properties satisfied by �wos, this result clearly bridges the gap between the weak opti-
mistic dominance and the partially ordered non-monotonic inference setting of Kraus,
Lehmann and Magidor [20] interpreting the dominance A �wos B when A ∩ B = ∅

as the default inference of A from A ∪B.
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Example 7. Let (S,>) = {a, b, c, d, e} be the partially ordered set defined by e >
c > a > d, c > b > d. Let >1, >2 be the two linear orders that extend the partial
order > defined by e >1 c >1 b >1 a >1 d and e >2 c >2 a >2 b >2 d. Let
A = {e, c}, B = {b, d} and C = {a, d}:

– ∀i = 1, 2,max(A) >i max(B), and it holds that A �wos B.
– max(C) >2 max(B), max(B) >1 max(C). Neither C �wos B nor B �wos C.

5 Representations of an Epistemic State

Let us first formalize the concept of epistemic state based on the notion of partial or-
der, from a syntactic and semantic point of view. In the following, V will denote a
set of propositional variables, L a propositional language on V , and K a finite base of
formulas built on L.

5.1 Syntactic Representation

From the syntactic point of view, we can view an epistemic state as a finite set of propo-
sitional formulas equipped with a partial preorder. Let (K, >) be a partially ordered
base of formulas. If φ and ψ are two formulas of K, ψ > φ is interpreted by “ψ is
more likely than φ” (typically the first one is more certain or plausible as the second
one). It can more generally be interpreted in terms of “priority”. If ψ > φ is viewed
as a constraint, the presence of the likelihood relation can be a cause of inconsistency.
For instance, it seems irrational to assert φ > ψ when φ |= ψ. It can be regarded as a
semantic contradiction.

In the particular case where the preorder is total, there is a alternative representation
by means of a stratified base (K1, · · · ,Kn) where all the elements of Ki are set at
the same priority level, and those of Ki are strictly preferred to those of Kj if i >
j. However, possibilistic logic [2] does not consider stratification as a strict ordering
constraint. It interprets φ ∈ Ki as assigning a minimal absolute level to φ, that may
fail to be its final one, i.e. φ can end up at some level j > i in the totally ordered
deductive closure (which represents an epistemic entrenchment relation). Therefore, the
stratification of the base is never an additional source of inconsistency. On the contrary,
if when ψ ∈ Ki and φ ∈ Kj , j > i is understood as a constraint ψ > φ, it means that
the stratified knowledge base is viewed as a fragment of a likelihood relation (epistemic
entrenchment or necessity measure). The complexity of finding the deductive closure
is higher in the last situation due to the possibility of a semantic contradiction between
the likelihood relation at the syntactic level and logical entailment.

5.2 Semantic Representation

Let Ω be the set of interpretations of L. At the semantic level, suppose that an epistemic
state is modelled by a partial preorder on the interpretations of a propositional language,
(Ω,�). If ω and ω′ represent two elements of Ω, the assertion ω′ � ω is interpreted
as ω′ being more plausible than ω. In the knowledge representation literature, the main



146 C. Cayrol, D. Dubois, and F. Touazi

concern is often to extract the closed set of accepted beliefsK� (or belief set) associated
with (Ω,�). It is often defined as the deductively closed set of formulas whose models
form the set M(Ω,�) of most plausible models. Our aim is to go further and to define
a deductive closure which is a partial order induced by (Ω,�) on the language, (Ω,�)
being itself induced by a partially ordered base (K, >). The idea is to attach a semantics
to φ > ψ in terms of a partial order on the interpretations, and then to build a partial
order on L which is, as much as possible, in agreement with (K, >). The question is
thus to go from (K, >) to (Ω,�) and back, namely:

From (K, >) to (Ω,�): Starting from a partially ordered base, the problem is to build
a partial preorder on the set of interpretations of K. A natural approach is to compare
two interpretations ω and ω′ by comparing subsets of formulas of K built from these
interpretations.

A first proposal is to compare two interpretations ω and ω′ by comparing the two
subsets of formulas of K respectively satisfied by each of these interpretations. That is
to say: ω′ is more plausible than ω if for each formula φ satisfied by ω, there exists a
formula preferred to φ and satisfied by ω′.

A dual proposal consists in comparing ω and ω′ by comparing the two subsets of
formulas of K respectively falsified by each of these interpretations. That is to say: ω′

is more plausible than ω if for each formula φ′ falsified by ω′, there exists a formula
falsified by ω preferred to φ′.

From (Ω,�) to (L,�): Starting from a partial preorder on Ω, the problem is to build
a partial preorder on the set of the formulas of the language L. To this end, it is natural
to compare two formulas φ and φ′ by comparing subsets of interpretations built from
these formulas. In the same way as above, a first proposal is to compare φ and ψ by
comparing the sets of models of these formulas. One can alternatively compare φ and
ψ by comparing their sets of counter-models, that is the models of ¬ψ and ¬φ.

In fact the choice between the two alternative approaches must be guided by the
meaning of the relations on the families of sets. If (K, >) is interpreted in terms of
relative certainty as in possibilistic logic, it is natural to compare the subsets of falsi-
fied formulas of K for assessing the relative plausibility of interpretations. Indeed, an
interpretation ω is all the less plausible as it violates more certain propositions.

In the same way, starting from a plausibility relation on the interpretations (Ω,�),
we can express the idea of relative certainty φ � ψ on the language, by comparing
sets of models of ¬ψ and ¬φ; for instance, in the case of a total order, a relation of
comparative necessity, dual to comparative possibility, can be defined by φ �N ψ iff
¬ψ �o ¬φ 1.

This approach was thoroughly studied within the possibilistic framework for com-
pletely ordered bases [2], but much less often in the partially ordered case [22].

Some questions will arise naturally from this research program:

– Is the partial preorder � built on L from (Ω,�) compatible with (K, >)? A strict
meaning of compatibility would require that > is preserved and refined. Note that

1 Relation �o is introduced in Definition 1.
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this is not the case in possibilistic logic if the lower bounds on certainty weights
are not in conformity with classical deduction. Here again, it may happen that the
relation � on formulas induced from � does not preserve the original ordering
(K, >), since the latter can be in conflict with semantic entailment, if supplied by
some expert.

– Is the preorder built on Ω from (K, >) unique? The answer is almost obviously no,
as it depends on how the ordering > is understood in terms of a relation between
sets of models of formulas appearing in K .

– Is it still possible to use a principle of minimal commitment in order to select a
complete preorder on Ω in a non arbitrary way? In possibilistic logic [2], this is the
principle of minimal specificity that yields the least informative possibility distri-
bution on Ω (akin to the most compact ranking in system Z [26]).

The two transformations: from (K, >) to (Ω,�) and from (Ω,�) to (L,�) can be
reduced to the problem of extending a partial order on a set S to a partial order on the
set of the subsets of S, discussed in Section 4.

6 Optimistic Dominance on Partially Ordered Belief Bases

As in possibilistic logic, we assume that the relation > expresses relative certainty,
therefore we use the definitions based on falsified formulas. According to the previous
sections, two approaches can be followed, using the weak optimistic dominance and its
preadditive refinement. In the following, we consider both approaches consecutively.
We do not consider the strong optimistic dominance as it allows to compare much less
subsets, and we restrict here to strict dominance.

6.1 Weak Optimistic Dominance Semantics

Let (K, >) be a finite partially ordered set of formulas of the propositional language
L build on V . K(ω) (resp. K(ω)) denotes the subset of formulas of K satisfied (resp.
falsified) by the interpretation ω ∈ Ω. [φ] denotes the set of the models of φ, a subset
of Ω.

Definition 5. [From (K, >) to (Ω,�)] ∀ω, ω′ ∈ Ω, ω �wos ω
′ iff K(ω′) �wos K(ω)

In the spirit of possibilistic logic, it defines the dominance on interpretations in terms
of the violation of the most certain formulas. But here these formulas may be incompa-
rable.

Definition 6. [From (Ω,�) to (L,�N )] ∀φ, ψ ∈ L, φ �N ψ iff [ψ]�wos [φ].

In the case of a total order, it would define a necessity relation on the language. The
partially ordered deductive closure of (K, >) is then defined by

C(K, >)�N = {(φ, ψ) ∈ L2 : φ �N ψ}.
And we denote (φ, ψ) ∈ C(K, >)�N by K |=wos φ �N ψ. Besides, in agreement with
[21], one may extract from C(K, >)�N the set of accepted beliefs when φ is known to
be true as Aφ(K, >)�N = {ψ : (φ → ψ, φ → ¬ψ) ∈ C(K, >)�N }. Note that these are
generic definitions that make sense for any variant of the optimistic strict order on K.
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Proposition 7.

– the relation �wos respects inclusion: If K(ω) ⊆ K(ω′) then ω �wos ω
′ does not

hold; and �wos is orderly too.
– If the relation > is the strict part of a total preorder, possibilistic logic is recovered

(order “best out ” in [3]).
– If φ is a logical consequence of ψ, it does not hold that ψ �N φ.
– �N verifies the converse of the stability for intersection: if φ ∧ χ �N ψ ∧ χ, then

φ �N ψ.

As a consequence, if the partial order on K violates the partial order induced by
classical inference, �N will not refine it, but will correct it.

Example 8. (K, >) = {x > x ∧ y}. As usual, the four interpretations are denoted by
xy, xȳ, x̄y, x̄ȳ.

Clearly K(xy) = ∅,K(xȳ) = {x ∧ y},K(x̄y) = K(xy) = K. Hence, xy �wos

{xȳ, x̄y, x̄ȳ} and xȳ�wos {x̄y, x̄ȳ}. Then it is easy to see that K |=wos x �N y (since
[¬y] = {xȳ, x̄ȳ} �wos [¬x] = {x̄y, x̄ȳ} but K |=wos y �N x ∧ y, since it does not
hold that [¬x ∨ ¬y] = {x̄y, xȳ, x̄ȳ}�wos [¬y] = {xȳ, x̄ȳ}.

If (by mistake) we set (K′, >) = {x ∧ y > x}, note that we still have that xy �wos

{xȳ, x̄y, x̄ȳ} but not xȳ �wos {x̄y, x̄ȳ}. Then
K′ |=wos x ∧ y �N x, that is, we correct this inconsistency via the semantics.

However, the fact, pointed out in Section 2, that a partial order over a power set can-
not be characterized by a single partial order on the set of elements may cause some
available pieces of knowledge in (K, >) to be lost in C(K, >)�N , as shown thereafter.

Example 9. Let (K, >) = {x,¬x∨ y, x∧ y,¬x} be a partially ordered base, where >
is the strict partial order given as follows: ¬x ∨ y > x ∧ y > ¬x and x > ¬x.
Let us apply the definitions 5 and 6:

– From (K, >) to (Ω,�): we obtain xy �wos {x̄y, xȳ, x̄ȳ}
– From (Ω,�) to (L,�N ): we obtain x �N ¬x, x ∧ y �N ¬x and ¬x ∨ y �N ¬x

but not ¬x ∨ y �N x ∧ y

We notice that, in the final order over formulas, ¬x ∨ y and x ∧ y become incom-
parable. The reason is that some information has been lost when going from (K, >) to
(Ω,�). Indeed, if the strict partial order > of the base K is interpreted as the strict part
�N of a necessity ordering, applying Definition 6 enables the following constraints to
be obtained:

– Due to ¬x ∨ y �N x ∧ y we must have x̄y � xȳ or x̄ȳ � xȳ
– Due to x∧ y �N ¬x we must have xy� xȳ and xy� x̄y or xȳ� x̄y and xy� x̄ȳ

or xȳ � x̄ȳ
– Due to x �N ¬x we must have xy � x̄y or xȳ � x̄y and xy � x̄ȳ or xȳ � x̄ȳ

It is easy to see that these constraints imply that xy � {x̄y, xȳ, x̄ȳ} and (x̄y � xȳ
or x̄ȳ � xȳ). That is stronger than the partial order �wos and not representable by a
single partial order.
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One observes that the impossibility of representing the partial order (K, >) by a
partial ordering on interpretations is the cause for losing the piece of information ¬x ∨
y �N x ∧ y. It suggests that the partially ordered deductive closure C(K, >)�N is too
weak to account for semantic entailment in partially ordered knowledge bases.

6.2 Preadditive Semantics

Under the preadditive semantics, the weak optimistic semantics in Definitions 5 and 6
is strengthened as follows:

Definition 7. Let ω, ω′ be two interpretations:

– From (K, >) to (Ω,�): ω �wos
d ω′ iff K(ω) �wos

d K(ω′).
– From (Ω,�) to (L,�d): φ �d ψ iff [φ]�wos

d [ψ].

The notion of semantic consequence and deductive closure are defined similarly,
replacing �N by �d. The following results hold:

Proposition 8. It is clear that:

– the relation �wos
d strictly respects inclusion: If K(ω) ⊂ K(ω′) then ω′ �wos

d ω.
– If φ is a proper logical consequence of ψ, then φ �d ψ.
– if χ ∧ (φ ∨ ψ) = ⊥ then φ �d ψ implies φ ∧ χ �d ψ.
– φ ∧ χ �d ψ ∧ χ implies φ �d ψ

Example 9 (continued)

– From (K, >) to (Ω,�): xy �wos
d {x̄y, xȳ, x̄ȳ};

– From (Ω,�) to (L,�d):• x �d x ∧ y �d ¬x
• ¬x ∨ y �d x ∧ y �d ¬x

We notice that the relation �d has preserved and extended the initial strict partial
order.

However, the relation �d does not always preserve the initial strict partial order as
shown thereafter.

Example 10. Let (K, >) = {x,¬x∨¬y, x∧y,¬x} be a partially ordered base, where
> is the strict partial order given as follows: ¬x ∨ ¬y > x ∧ y > ¬x and x > ¬x.

– From (K, >) to (Ω,�): we obtain xȳ �wos
d {x̄y, xy, x̄ȳ}

– From (Ω,�) to (L,�d): we obtain ¬x∨¬y �d x∧y, ¬x∨¬y �d ¬x, x �d x∧y
but not x ∧ y �d ¬x.

Finally, let us consider the particular case of flat bases, interpreted as containing
formulas that are all equivalent or all incomparable. The former case corresponds to
classical logic. Suppose formulas in K are either incomparable or equivalent (for no
φ, ψ ∈ K do we have φ > ψ). Then the set of logical consequences is no longer flat.
The induced orderings are as follows.

– From (flat) K to (Ω,�): ω′ �wos
d ω iff K(ω′) ⊃ K(w)

– From (Ω,�) to (L,�d): φ �d ψ iff ∀ω′ ∈ [ψ] \ [φ], ∃w ∈ [φ] \ [ψ] such that
K(ω) ⊃ K(ω′).

Thus it is easy to see that, for flat bases, φ �d ψ if and only if φ is a proper logical
consequence of ψ, which enriches the semantics of classical logic.
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7 Towards Syntactic Inference with Partially Ordered Belief Bases

Once the semantics of partially ordered belief bases and their deductive closure are
well-defined, the next step is to devise a syntactic inference relation � that enables
to directly build the ordered deductive closure C(K, >)� from (K, >) (for a suitable
choice of �) in agreement with the semantics, namely (K, >) � φ � ψ, whenever
(φ, ψ) ∈ C(K, >)�. It appears that this question has been little discussed in the partially
ordered case, except by Halpern [8] and more recently by Benferhat and Prade [7], with
very different approaches.

Several methods of inference from a partially ordered belief base have been pro-
posed. Is is possible to:

1. map (K, >) to a partially ordered set (LK, >) of absolute levels of certainty, and
replace (K, >) by a possibilistic knowledge base B made of pairs (φ, λ), λ ∈ LK,
such that whenever φ > ψ, (φ, λ), (ψ, μ) ∈ B and λ > μ. Then we can adapt the
techniques of possibilistic logic to this setting.

2. consider a partial order as a family of total orders that extend it. So, a partially
ordered base is seen as a set of (virtual) stratified bases.

3. reason directly with formulas φ > ψ in a suitable language.
4. reason in a classical way with consistent subsets of formulas extracted using the

partial order.

The first approach was studied by Benferhat and Prade [7]. Let (LK, >) be a finite
ordered set associated with K by a homomorphism ι : K → LK such that φ ≥ ψ ∈ K
iff ι(φ) ≥ ι(ψ). Let us denote {μ : μ ≥ λ} by λ↑. The inequality λ1 ≥ λ2 in (LK,≥)

is encoded by A2 ∨¬A1 with Ai = λ↑
i , and the pair (φ, λ) is encoded by ¬A∨ φ, with

A = λ↑. Then classical propositional deduction can be used.
Actually, there is a more direct way to apply possibilistic logic to the partially ordered

case. It is well-known that in standard possibilistic logic B � (φ, λ) ⇐⇒ Bλ � φ
where Bλ is the set of formulas with weights at least λ. In the partially ordered case,
we could define, when ψ ∈ K, K � φ � ψ by K>

ψ � φ where K>
ψ = {α ∈ K : α > ψ}

and likewise K � φ � ψ by K≥
ψ � φ where K≥

ψ = {α ∈ K : ψ > α}. For instance

if statements φi > ψi in (K,>) are interpreted on the set 2Ω by [ψi] � [φi] where the
relation � satisfies Negligibility and Orderliness, it does hold that [ψ] � [φ] whenever
K>

ψ � φ. A particular case occurs when � is �wos.
However, as shown in Example 9, if the consequenceφ � ψ is interpreted as φ �N ψ

using Definitions 5 and 6 (that is,via a partial order on interpretations derived from
(K,>)) it may fail to hold that φ �N ψ whenever K>

ψ � φ (in Example 9, φ >
ψ appears in (K,>), and is absent from the semantic closure). This fact indicates a
weakness in the semantics based on a partial order on interpretations, as opposed to
a more complex semantics based on the partial ordering on subsets of interpretations
reflecting (K,>).

The second approach is described by Yahi et al. [25]. (K, >) is viewed as a set of
possible stratifications of K. So ψ ≥ φ of (K, >) means that ψ is more certain than
φ (in the sense of possibilistic logic) in all the stratified bases compatible with (K, >).
Results in the previous section indicate the strong link between this view and the weak
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optimistic relation �wos (hence its dual �N and their preadditive refinement �d). Note
that in the first approach [7], the partial order on LK is actually viewed as a set of
possible total orders. The weights are symbolic in the sense of being partially unknown
quantities on a totally ordered scale. To use this approach in practice may turn out to be
difficult, because the set of total extensions of a given partial order may be large.

In the third approach, the key idea is to consider expressions of the form φ � ψ as
the basic syntactic entities of the language encoding the preferences. It requires a higher
order language for handling atomic propositions of the form φ � ψ, their conjunctions,
disjunctions and negations, with specific axioms for describing properties of the relation
�. For instance, with the axiom: if ψ |= φ then ¬(ψ � φ), semantical contradictions
will be found, thus enabling to repair the partially ordered base. This approach, which
is the most natural one, goes back to Lewis [9] conditional logics (see also Hájek [27],
p. 212) in the case of total preorders, for possibility theory). Halpern [8] has outlined
such a logic to handle the relation �wos. This is certainly the most general approach
with the richest language. Especially it would readily allow for a semantics in terms of
a partial order over the set of subsets of interpretations of the language, which would
obviate difficulties pointed out by Examples 9 and 10 when we use a partial ordering on
interpretations. However only a subset of the consequences (K,>) from a set of φ � ψ
statements will correspond to the (properly defined) semantic closure C(K, >) (since,
for instance, the latter does not contain disjunctions of such statements).

In the fourth approach [22], the partial order on K is just used to select preferred
consistent subsets of formulas, and the deductive closure is a classical set of accepted
beliefs. So, as pointed out in Benferhat and Yahi [28], the deductive closure of a par-
tially ordered base (K, >) is just a deductively closed set (in the classical sense), ob-
tained from preferred subbases. Then the inference (K, >) � φ is defined by: φ is
consequence of all the preferred subsets of formulas. The notion of preference can be
defined in various ways based on the partial order. This order between formulas is to
some extent lost by the process of inference. In particular this kind of approach reduces
to classical inference when K is classically consistent. By construction, this approach
does not enable to deduce preferences between formulas, but essentially extracts ac-
cepted beliefs.

In the future, we plan to investigate whether or not the above syntactic inference
schemes are sound (and if possible complete) with respect to our notion of partial-
order-driven semantic closure. We have already noticed that a semantics based on a
single partial ordering over interpretations may be problematic as seen in Example 9.
This result motivates the use of a modal-like language with formulas of the form φ > ψ,
φ ≥ ψ, or φ ∼ ψ with relational semantics on the powerset of the set of interpretations
of the language where φ, ψ are expressed, whereby φ > ψ is viewed as a relation
between [ψi] and [φi], etc. Then the properties of the semantic relation can be used as
inference rules at the syntactic level. However, one may wish to restrict the inference
machinery to consequences of the form φ � ψ and φ � ψ.

8 Conclusion

The issue addressed in this paper concerns the extension of possibilistic logic when
formulas weighted by certainty levels are replaced by a partial order on the belief base.
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Defining proper semantics for such partially ordered bases requires the study of how
to go from a partial order on elements to a partial order on subsets of such elements
and conversely. Some preliminary results are offered in this paper. They indicate that
many important concepts in the case of complete orders have several non equivalent
definitions in the partial case. When going from a partial order on a set to a partial order
on its subsets, it seems that the weak optimistic relation possesses the best properties.
Moreover it seems that a straightforward adaptation of possibilistic logic to the partial
order setting is not possible.

The question then becomes the one of finding the most natural understanding of a
base partially ordered in terms of relative certainty. Our paper explains how to go from
formulas to models and back, thus defining a semantic notion of deductive closure.
We indicate that the expressive power of a partial order on the set of interpretations
is limited, and one must stick to a partial order on its power set, or alternatively a
set of total orders on the set of interpretations, to be on the safe side. Existing works
proposing proof methods have been reviewed, but they all consider different points of
view on the definition of inference in the partially ordered context, sometimes with
unclear semantics. In contrast, our purpose is to eventually define a semantic closure
that preserves and extends the partial order onK to the whole language, while correcting
the initial assessment to make it comply with the classical deduction. Once this issue
has been clarified, we have to choose an appropriate syntax, an axiomatization and a
syntactic inference method. Some hints are provided above, but this is left for further
research.

This work has potential applications for the revision and the fusion of beliefs, as well
as preference modeling [29].
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