
Incremental Maintenance of Aggregate Views

Abhijeet Mohapatra and Michael Genesereth

Stanford University
{abhijeet,genesereth}@stanford.edu

Abstract. We propose an algorithm called CReaM to incrementally maintain
materialized aggregate views with user-defined aggregates in response to changes
to the database tables from which the view is derived. CReaM is optimal and guar-
antees the self-maintainability of aggregate views that are defined over a single
database table. For aggregate views that are defined over multiple database ta-
bles and do not contain all of the non-aggregated attributes in the database tables,
CReaM speeds up the time taken to update a view as compared to prior view
maintenance techniques. The speed up in the time taken to update a materialized
view with n tuples is either n

log n
or log n depending on whether the materialized

view is indexed or not. For other types of aggregate views, CReaM updates the
view in no more time than that is required by prior view maintenance techniques
to update the view.

1 Introduction

In data management systems, views are derived relations that are computed over databa-
se tables (which are also known as extensional database relations or edbs). Views are
materialized in a database to support efficient querying of the data. A materialized view
becomes out-of-date when the underlying edb relations from which the view is derived
are changed. In such cases, the materialized view is either recomputed from the edb
relations or the changes in the edb relations are incrementally propagated to the view to
ensure the correctness of the answers to queries against the view. Prior work presented
in [5, 21, 27] shows that incrementally maintaining a materialized view can be signifi-
cantly faster than recomputing the view from the edb relations especially if the size of
the view is large compared to the size of the changes.

Several techniques [1–6, 10, 14–16, 18, 21–23, 26–28, 30–32, 34] have been prop-
osed to incrementally maintain views in response to changes to the edb relations. How-
ever, only a small fraction of the prior work on incremental view maintenance [10, 14,
15, 21, 24, 27, 28] addresses the maintenance of views that contain aggregates such
as sum and count. The techniques proposed in [10, 14, 21, 24] incrementally maintain
views that have only one aggregation operator. Furthermore, the incremental mainte-
nance algorithms presented in [10, 14, 15, 21, 24, 27, 28] support only a fixed set of
built-in aggregate operators (min, max, sum, and count).

In contrast, we present an algorithm to incrementally maintain views with multiple
aggregates each of which could be user-defined. As our underlying query language, we
extend Datalog using tuples and sets, and express aggregates as predicates over sets. We
note that, in Datalog, predicates are sets of tuples. Therefore, there are no duplicates.

C. Beierle and C. Meghini (Eds.): FoIKS 2014, LNCS 8367, pp. 399–414, 2014.
c© Springer International Publishing Switzerland 2014

400 A. Mohapatra and M. Genesereth

In Section 2, we discuss the specification of user-defined aggregates in our language.
In Section 3, we present differential rules to correctly characterize the changes in edb
relations to aggregate views. In Section 4, we present an algorithm CReaM to optimize
the maintenance of a special class of materialized aggregate views that do not contain
all of the non-aggregated attributes in the underlying edb relations. In Section 5, we
establish the optimality of CReaM and the theoretical results on the performance of
CReaM which are summarized in Table 1. In addition, we show that by materializing
auxiliary views, CReaM guarantees the self-maintainability [17] of aggregate views
that are defined over a single edb relation. This property is desirable when access to
the edb relations is restricted or when the edb relations are hypothetical such as in a
LAV integration scenario [33]. In Section 6, we compare our work to prior work on
incremental maintenance of aggregate views.

Before we discuss our proposed solution, we illustrate the problem of incrementally
maintaining aggregate views using a running example. We use our running example,
which is based on the Star Wars universe, in examples throughout the paper.

Table 1. Performance summary of the CReaM algorithm

Speed up in the time taken to update a materialized aggregate view
with n tuples as compared to prior techniques

Physical design of the database
Non-optimized Optimized

Aggregate view over single edb relation ≥ 1 ≥ 1

Aggregate view over multiple edb relations (single update) log n n
log n

Aggregate view over multiple edb relations (k > 1 updates) log n n
k

Running Example: Suppose that there are tournaments in the Star Wars universe on
different planetary systems. The tournament results are recorded in an edb relation, say
tournament(V,D,L). A tuple (V,D,L) ∈ tournament iff V has defeated D on the
planet L. For instance, if Yoda has defeated Emperor Palpatine at Dagobah then the
tuple (yoda, palpatine, dagobah) is in the extension of the edb relation tournament. We
use the extension of tournament that is presented in Table 2 in examples throughout the
paper.

Table 2. Extension of the edb relation tournament and the view victories in the Star Wars Universe

tournament
Victor Defeated Location
yoda vader dagobah
yoda palpatine dagobah
vader yoda tatooine
yoda palpatine tatooine

victories
Victor Wins
yoda 2
vader 1
yoda 1

We define and materialize a view, say victories(V,W) to record the number of vic-
tories W achieved by a character V on a planet. For instance, Yoda has two victories
in Dagobah and one victory in Tatooine. Therefore the tuples (yoda, 2) and (yoda, 1) ∈
victories. The extension of victories that corresponds to the extension of the edb relation
tournament is presented in Table 2.

Incremental Maintenance of Aggregate Views 401

Suppose that a new tournament match is played in Tatooine and that Darth Vader
defeats Emperor Palpatine in this match. The new tournament match at Tatooine causes
an insert to the tournament relation. In response to the insert to the tournament relation,
the tuple (vader, 1) ∈ victories must be updated to (vader, 2) to ensure the correctness
of the answers to queries against the view. Now, suppose that the previous tournament
match between Yoda and Palpatine at Tatooine is invalidated. In this case, the tuple
(yoda, palpatine, tatooine) is deleted from the tournament relation. In response to this
deletion, the tuple (yoda, 1) must be deleted from the materialized view victories.

2 Preliminaries

As our underlying language, we use the extension of Datalog that is proposed in [20].
We introduce tuples and sets as first-class citizens in our language. A tuple is an ordered
sequence of Datalog constants or sets. A set is either empty or contains Datalog con-
stants or tuples. For example, the tuple (yoda, vader, dagobah) and the sets {}, {(yoda,
vader, dagobah)} and {(yoda, {1, 2})} are legal in our language. We introduce the setof
operator in our language to represent sets as follows.

Definition 1. Suppose that φ(X̄, Ȳ) is a conjunction of subgoals. For every binding of
values in X̄ , the subgoal setof(Ȳ , φ(X̄, Ȳ), S) evaluates to true on a database D if
S = {Ȳ | φ(X̄, Ȳ)} for D.

We illustrate the construction of sets in our language using the following example.

Example 1. Consider the running example that we presented in Section 1. Suppose we
would like to compute the set of characters who were defeated by Yoda at Dagobah. In
our language, we compute the desired set using the following query.

q1(S) :- setof(D, tournament(yoda, D, dagobah), S)

In query q1, the set S = {D | tournament(yoda, D, dagobah)}. The evaluation of the
query q1 on the extension of tournament that is presented in Table 2 results in the answer
tuple q1({vader, palpatine}).

Construction of Multisets: In Example 1, we computed the set of characters who were
defeated by Yoda at Dagobah. In addition to generating sets, we could leverage the setof
operator to effectively aggregate multisets as illustrated in the following example.

Example 2. Suppose we would like to count the total number of victories achieved
by Yoda. Since Yoda defeats Emperor Palpatine at multiple locations, we would have
to compute the cardinality of the multiset of people who were defeated by Yoda i.e.
{palpatine, vader, palpatine} to compute Yoda’s total number of victories. Consider a
query q2 which is defined as follows.

q2(C) :- setof((D,L), tournament(yoda, D, L), S), count(S,C)

We assume that the predicate count(X,Y) computes the cardinality Y of the set X . We
discuss the representation of user-defined aggregates in our language shortly. In query

402 A. Mohapatra and M. Genesereth

q2, the set S = {(D,L) | tournament(yoda, D, L)}. The evaluation of q2 on the ex-
tension of tournament relation (Table 2) computes the cardinality of the set {(palpatine,
dagobah), (vader, dagobah), (palpatine, tatooine)} thus mimicking the computation of
the cardinality of the multiset {palpatine, vader, palpatine}. As a result, the answer tuple
q2(3) is generated.

We use the ‘|||’ operator in our language to represent the decompositions of a set.
We represent the decomposition of a set S into an element X ∈ S and the subset
S1 = S \ {X} as {X |||S1}. For example, {3 ||| {1, 2}} represents the decomposition
of the set of numbers {1, 2, 3} into 3 and the subset {1, 2}. We define the predicate
member in our language to check the membership of an element in a set. The member
predicate has the signature member(X,S), where X is a Datalog constant or a tuple
and S is a set. If X ∈ S then member(X,S) is true, otherwise it is false. The member
predicate can be defined in our language using the decomposition operator ‘|||’ operator
as follows.

member(X, {X |||Y })
member(Z, {X |||Y }) :- member(Z, Y)

In addition, we use ∪ and \ operators in our language to represent set-union and set-
difference respectively. We note that we can define ∪ and \ operators in our language
using the member predicate and the decomposition operator ‘|||’ although we do not de-
fine them as such in this paper.

Aggregation over sets: In our language, user-defined aggregates are defined as pred-
icates over sets. A user-defined aggregate could either be defined (a) in a stand-alone
manner using the member predicate, the decomposition operator ‘|||’, the set-union ∪
and the set-difference \ operators, and the arithmetic operators or (b) as a view over
other aggregates. For instance, we can compute the cardinality of a set in our language
by inductively defining an aggregate, say count(X,C), as follows.

count({}, 0)
count({X |||Y }, C) :- count(Y,C1), C = C1 + 1

The first rule specifies the base case of the induction i.e. the cardinality of an empty
set is 0. The second rule decomposes a set S into an element X and the subset Y
and computes the cardinality of S by leveraging the cardinality of Y . In addition, we
can define an aggregate such as average modularly by leveraging the definitions of the
aggregates count(X,C) and sum(X,S) as follows.

average(X,A) :- sum(X,S), count(X,C), A =
S

C

3 Maintenance of Aggregate Views

In the previous section, we discussed the specification of aggregates as predicates over
sets in our language. Consider the running example that we presented in Section 1.

Incremental Maintenance of Aggregate Views 403

Suppose we would like to query the number of victories W achieved by a character V
on a planet. We represent this query in our language as follows.

q(V,W) :- setof(D, tournament(V,D,L), S), count(S,W)

For every binding of the variables V and L in the query q, W = cardinality of {D |
tournament(V, D,L)}. In the Star Wars universe, this is equivalent to computing the
number of victories W achieved by a character V on a planet. Since the answers to
queries are computed under set semantics, the distinct numbers of victories are gener-
ated by the query q. To efficiently compute the answer to the query q, we can leverage
the materialized view victories from our running example (in Section 1). The material-
ized view victories(V,W) is defined as follows.

victories(V,W) :- setof(D, tournament(V,D,L), S), count(S,W)

When changes are made to the edb relation tournament, we must maintain the mate-
rialized view victories to ensure the correctness of answers to the query q.

Maintenance of Views that Contain Sets: Consider a view v in our language which is
defined over the formula φ(X̄, Ȳ , Z̄) using the aggregation predicate agg as follows.

v(X̄, A) :- setof(Ȳ , φ(X̄, Ȳ , Z̄), W), agg(W,A)

Since aggregates are defined as predicates over sets in our language, we can rewrite the
definition of the view v using the following two rules, one of which contains a setof
subgoal while the other does not.

v(X̄, A) :- u(X̄,W), agg(W,A)

u(X̄,W) :- setof(Ȳ , φ(X̄, Ȳ , Z̄), W)

We note that if the definition of v contains k setof subgoals instead of one, we can
rewrite the definition of v using k+1 rules where only k of the rules contain setof sub-
goals. Since prior view maintenance techniques [13] already maintain views that do not
contain sets, we focus only on the maintenance of views that contain setof subgoals. As
a first step, we leverage differential relational calculus to incrementally propagate the
changes in the edb relations to the views through differential rules. Then, in Section 4,
we propose an algorithm called CReaM that applies these differential rules to optimally
maintain materialized aggregate views.

Differential Rules: In differential relational calculus, a database is represented as a set
of edb relations and views r1, r2, . . . , rk with arities d1, d2, . . . , dk. Each relation ri is
a set of di-tuples [9]. The changes to a relation ri in the database consist of insertions
of new tuples and deletions of existing tuples. The new state of a relation ri after ap-
plying a change is represented as r′i. An update to an existing tuple can be modeled as
a deletion followed by an insertion. The insertion of new tuples into a relation ri and
the deletion of existing tuples from ri are represented as the differential relations r+i
and r−i respectively. Prior work in [23] presents a set of differential rules to compute
the differentials (v+ or v−) of a non-aggregate view v. We extend the framework that
is presented in [23] to compute the differentials of aggregate views.

404 A. Mohapatra and M. Genesereth

There are two possible ways in which a view v can be defined in our language using
the setof operator over the formula φ(X̄, Ȳ , Z̄).

1. The view v is defined as v(X̄, Z̄,W) :- setof(Ȳ , φ(X̄, Ȳ , Z̄), W). In this case, all
of the variables of φ that are bound outside the setof subgoal are passed to the view
v.

2. The view v is defined as v(X̄,W) :- setof(Ȳ , φ(X̄, Ȳ , Z̄), W). In this case, not all
of the variables of φ that are bound outside the setof subgoal are passed to the view
v.

We consider the above two cases separately and present differential rules to compute
the differentials of the view v in each case.
Case 1: Suppose that a view v is defined over a conjunction of subgoals φ(X̄, Ȳ) as
follows.

v(X̄,W) :- setof(Ȳ , φ(X̄, Ȳ), W)

Suppose we define a view u over v(X̄,W) as u(X̄) :- v(X̄,W). The view u can be
maintained using the differential rules that are proposed in [23]. In this case, the fol-
lowing differential rules correctly compute the differential relations v+(X̄,W) and
v−(X̄,W) in response to the changes to φ(X̄, Ȳ).

v+(X̄,W) :- setof(Ȳ , φ+(X̄, Ȳ), W), ¬u(X̄) (Δ1)

v+(X̄,W ∪W ′) :- setof(Ȳ , φ+(X̄, Ȳ), W), v(X̄,W ′) (Δ2)

v+(X̄,W ′ \W) :- setof(Ȳ , φ−(X̄, Ȳ), W), v(X̄,W ′) (Δ3)

v−(X̄,W) :- setof(Ȳ , φ−(X̄, Ȳ), W), v(X̄,W) (Δ4)

v−(X̄,W) :- setof(Ȳ , φ+(X̄, Ȳ),), v(X̄,W) (Δ5)

v−(X̄,W) :- setof(Ȳ , φ−(X̄, Ȳ),), v(X̄,W) (Δ6)

In the above differential rules, ‘ ’ represents don’t care variables. We prove the correct-
ness of the differential rules Δ1– Δ6 in the following theorem.

Theorem 1. The differential rules Δ1– Δ6 correctly maintain a view containing a setof
subgoal where all the variables that are bound outside the setof are passed to the head.

Proof. Consider a view v that is defined over a conjunction of subgoals φ(X̄, Ȳ) as
follows.

v(X̄,W) :- setof(Ȳ , φ(X̄, Ȳ), W)

In the definition of v, the variables that are bound outside the setof subgoal i.e. X̄
are passed to the head. Hence the view v contains exactly one tuple (X̄,W) for every
distinct value of X̄ . Suppose a tuple, say φ(x̄, ȳ), is inserted. Either the view v does not
contain any tuple v(X̄,W) where X̄ = x̄ or v contains a tuple v(x̄, w). For correctly
maintaining the view v, the tuple (x̄, {ȳ}) is inserted into the view v in the former
case. The differential rule Δ1 handles this case. In the latter case, the tuple v(x̄, w)

Incremental Maintenance of Aggregate Views 405

is updated to v(x̄, w ∪ {ȳ}) to correctly update the view v. The differential rules Δ2

and Δ5 capture this update.
Suppose a tuple, say φ(x̄, ȳ), is deleted. Either v contains the tuple v(x̄, {ȳ}) or v

contains the tuple v(x̄,W) where {ȳ} ⊂ W . For correctly maintaining the view v, the
tuple (x̄, {ȳ}) is deleted from the view v in the former case. The differential rule Δ4

captures this deletion. In the latter case, the tuple v(x̄, w) is updated to v(x̄, w \ {ȳ}) to
correctly update the view v. The differential rules Δ3 and Δ6 capture this update. ��
Case 2: Now, suppose that a view v is defined over a conjunction of subgoals
φ(X̄, Ȳ , Z̄) as follows.

v(X̄,W) :- setof(Ȳ , φ(X̄, Ȳ , Z̄), W)

In addition, suppose that we define a view u over v(X̄,W) as u(X̄) :- v(X̄,W). In the
definition of v, the set W is computed as {Ȳ | φ(X̄, Ȳ , Z̄)} for every binding of X̄ and
Z̄. Since Z̄ is not passed to the view v, a view tuple, say v(x,w), potentially has multiple
derivations. In this case, we compute the differentials v+(X̄,W) and v−(X̄,W) as
follows.

v+(X̄,W) :- setof(Ȳ , φ+(X̄, Ȳ , Z̄), W), ¬u(X̄) (Γ1)

v+(X̄,W ∪W ′) :- setof(Ȳ , φ+(X̄, Ȳ , Z̄), W), setof(Ȳ ′, φ(X̄, Ȳ ′, Z̄), W ′),
¬v(X̄,W ∪W ′)

(Γ2)

v+(X̄,W ′ \W) :- setof(Ȳ , φ−(X̄, Ȳ , Z̄), W), setof(Ȳ ′, φ(X̄, Ȳ ′, Z̄), W ′),
¬v(X,W ′ \W)

(Γ3)

v−(X̄,W) :- setof(Ȳ , φ−(X̄, Ȳ , Z̄), W), v(X̄,W),

¬setof(Ȳ ′, φ′(X̄, Ȳ ′, Z̄), W)
(Γ4)

v−(X̄,W) :- setof(Ȳ , φ+(X̄, Ȳ , Z̄),), setof(Ȳ ′, φ(X̄, Ȳ ′, Z̄), W),

¬setof(Ȳ ′′, φ′(X̄, Ȳ ′′, Z̄), W)
(Γ5)

v−(X̄,W) :- setof(Ȳ , φ−(X̄, Ȳ , Z̄),), setof(Ȳ ′, φ(X̄, Ȳ ′, Z̄), W),

¬setof(Ȳ ′′, φ′(X̄, Ȳ ′′, Z̄), W)
(Γ6)

We prove the correctness of the differential rules Γ1– Γ6 in the following theorem.

Theorem 2. The differential rules Γ1– Γ6 correctly maintain a view containing a setof
subgoal where all the variables that are bound outside the setof are not passed to the
head.

The proof of Theorem 2 is similar to the proof of Theorem 1, except that before deleting
a tuple from the view we check for alternate derivations of the tuple in the updated
subgoals. In addition, a tuple is inserted into the view only if the view does not contain
an alternate derivation of the tuple to be inserted.

4 Efficient Incremental Maintenance

In the previous section, we extended the differential rules that are presented in [23]
to incrementally compute the differentials of views containing setof subgoals. In this

406 A. Mohapatra and M. Genesereth

section, we leverage the differential rules (from Section 3) to optimally maintain views
containing setof subgoals. As a first step, we present an example where the differential
rules are leveraged to incrementally maintain views containing setof subgoals.

Example 3. Consider a materialized view dominates which is defined over the tourna-
ment relation from our running example (in Section 1) as follows.

dominates(V,W) :- setof(D, tournament(V,D,L),W)

The extension of the view dominates that corresponds to the extension of tournament
(in Table 2) is presented below.

dominates
Victor Defeated
yoda {palpatine, vader}
vader {yoda}
yoda {palpatine}

Suppose that Yoda defeats Darth Vader at Tatooine in a new tournament match. This
match results in the insertion of the tuple (yoda, vader, tatooine) into the tournament
relation i.e. (yoda, vader, tatooine) ∈ tournament+. Since the non-aggregated variable
L in tournament is not passed to the view dominates, we apply the differential rules
Γ1– Γ6 to incrementally compute the differentials of the view dominates. By applying
the differential rules Γ2 and Γ5 on the differential tournament+ and the relations tour-
nament and dominates, we derive the differentials dominates−(yoda, {palpatine}) and
dominates+(yoda, {palpatine, vader}). The computed differentials correspond to updat-
ing the tuple (yoda, {palpatine}) ∈ dominates to the tuple (yoda, {palpatine, vader}).

We note that in Example 3, the differential rules Γ2 and Γ5 access tournament’s
extension in addition to the differential tournament+ to maintain the view dominates.
A tuple (V,W) ∈ dominates could potentially have multiple derivations in tournament
because V could defeat the same set of characters W at multiple planetary systems.
Hence, additional accesses to the extensions of edb relations are required to maintain
materialized views using differential rules.

Alternatively, we could maintain the count of the different derivations of tuples to op-
timize the maintenance of aggregate views. The counting algorithm, which is presented
in [14], leverages this idea to optimize the maintenance of views where the tuples in
the view have multiple derivations in the edb relations. Suppose that in Example 3, we
maintain the count of the different derivations of a tuple.

dominates
Victor Defeated Number of Derivations
yoda {palpatine, vader} 1
vader {yoda} 1
yoda {palpatine} 1

Now suppose that we delete a tuple, say (yoda, vader, dagobah) from tournament’s
extension. In this case, we decrease the count of the tuple (yoda, {palpatine, vader}) ∈
dominates from 1 to 0 (thereby deleting it from the view) and increase the count of the

Incremental Maintenance of Aggregate Views 407

dominates
Victor Defeated Number of Derivations
vader {yoda} 1
yoda {palpatine} 2

tuple (yoda, {palpatine}) from 1 to 2.

When the tuple (yoda, vader, dagobah) is deleted from tournament’s extension, we
do not have to access tournament’s extension to incrementally maintain the material-
ized view dominates. However, consider a scenario where we delete the tuple (yoda,
palpatine, dagobah) instead of the tuple (yoda, vader, palpatine) from tournament’s ex-
tension. In this scenario, unless we access tournament’s extension, we cannot correctly
update the materialized view dominates because we do not have sufficient information
to determine whether the existing tuple (yoda, {palpatine})∈ dominates is to be deleted
or the tuple (yoda, {palpatine, vader}) ∈ dominates is to be updated.

Incremental Maintenance Using CReaM1: Consider the materialized view dominates
that we presented in Example 3. Suppose we rewrite the definition of dominates using
an auxiliary view va as follows.

dominates(V,W) :- va(V, L,W)

va(V, L,W) :- setof(D, tournament(V,D,L),W)

In addition, suppose that we materialize the auxiliary view va and maintain the counts
of the derivations of a tuple in the view dominates. The extension of the auxiliary view
va is presented below.

va
Victor Location Defeated
yoda dagobah {palpatine, vader}
vader tatooine {yoda}
yoda tatooine {palpatine}

Now, suppose that we delete the tuple (yoda, palpatine, dagobah) from the extension
of tournament. Since all of the non-aggregated variables of tournament are passed to the
auxiliary view va, we can incrementally maintain va using the differential rulesΔ1– Δ6

(from Section 3). We note that Δ1– Δ6 only access the extension of a view and the dif-
ferentials of the edb relations over which the view is defined. Thus, we are able to com-
pute the differentials v−a (yoda, dagobah, {palpatine, vader}) and v+a (yoda, dagobah,
{vader}) without accessing the extension of tournament.

Since the modified definition of the view dominates does not contain setof subgoals,
we use the counting algorithm [14] to incrementally maintain the count of the tuple
derivations in the view dominates in a subsequent step. The updated extension of the
view dominates is presented below.

1 The algorithm has been named CReaM because it Counts the tuple derivations in a view,
Rewrites the view using auxiliary views and Maintains the auxiliary views.

408 A. Mohapatra and M. Genesereth

dominates
Victor Defeated Number of Derivations
vader {yoda} 1
yoda {palpatine} 2

We now propose an algorithm called CReaM to incrementally maintain views con-
taining setof subgoals. The CReaM algorithm is presented in Figure 1. In Step 1 of the
algorithm, the supplied view is rewritten using an auxiliary view which is materialized
in a subsequent step. In Step 3 of the algorithm, the number of derivations of the tuples
in the supplied view is maintained. The incremental maintenance of the view v is car-
ried out in Step 4 of the algorithm by computing the differentials of the auxiliary view
which was created in Step 1 of the algorithm.

CReaM Algorithm
Input: 1. Materialized view v(X̄,W) defined as:

v(X̄,W) :- setof(Ȳ , φ(X̄, Ȳ , Z̄),W),
2. Differentials φ+(X̄, Ȳ , Z̄) and φ−(X̄, Ȳ , Z̄)

Step 1: Rewrite the view v using an auxiliary view va which contains all of the
non-aggregated variables

v(X̄,W) :- va(X̄, Z̄,W)
va(X̄, Z̄,W) :- setof(Ȳ , φ(X̄, Ȳ , Z̄),W)

Step 2: Materialize the auxiliary view va
Step 3: Maintain the count of the tuple derivations in the view v
Step 4: Apply the differential rules Δ1- Δ6 over φ+(X̄, Ȳ , Z̄) and φ−(X̄, Ȳ , Z̄)

to compute v+a (X̄, Z̄,W) and v−a (X̄, Z̄,W)
Use v+a (X̄, Z̄,W) and v−a (X̄, Z̄,W) to incrementally update the counts of v’s tuples
using [9]

Fig. 1. Algorithm to optimally maintain views containing setof subgoals

We note that the CReaM algorithm incrementally maintains a view whose definition
contains a single setof subgoal. However, when the supplied view definition contains
multiple setof subgoals and aggregate predicates, we can incrementally maintain the
view using CReaM as follows. Suppose a materialized view v contains k setof subgoals
{si} and m aggregate predicates {ai}. First, we rewrite the definition of v using k
auxiliary predicates, say {ti} where each ti is defined as ti :- si. Next, we maintain the
counts of the tuple derivations in v and incrementally compute the differentials of ti by
applying CReaM to the extensions of the auxiliary predicates {ti} and the differentials
of the edb relations. Since the modified definition of v does not contain setof subgoals,
we use the counting algorithm that is presented in [14] to incrementally maintain the
materialized view v.

In the following theorem, we establish that CReaM correctly maintains views that
contain setof subgoals.

Theorem 3. CReaM correctly maintains a materialized view containing setof subgoals.

Proof. Consider a view v in our language which is defined using k setof subgoals
s1, s2, . . . , sk as v :- s1, s2, . . . , sk. Suppose that we introduce k auxiliary views va1 ,

Incremental Maintenance of Aggregate Views 409

va2 , . . . , vak
where each vai is defined as vai :- si. In the definition of the auxiliary

view vai , all of the variables that are bound outside the setof subgoal si are passed to
the view. By replacing the setof subgoals using the auxiliary views, we can rewrite the
definition of the view v as v :- va1 , va2 , . . . , vak

. Since the modified definition of the
view v does not contain setof subgoals, we can correctly maintain it by applying the
counting algorithm [14]. In addition, we can leverage the rules Δ1– Δ6 to correctly
compute the differentials of the auxiliary views {vai} by Theorem 1. ��

In the next section, we discuss the performance of CReaM and prove that it optimally
maintains materialized views containing setof subogals.

5 Performance of CReaM

Previous aggregate view maintenance algorithms [10, 14, 15, 21, 24, 27, 28] do not
materialize and maintain additional views. Instead, the algorithms leverage differential
relational algebra [10, 14, 15, 27, 28] or maintain the count of tuple derivations [10,
14, 15, 21, 24] to efficiently maintain aggregate views. In this section, we show that by
rewriting, and maintaining additional auxiliary views, CReaM speeds up the time taken
to incrementally maintain a view containing setof subgoals in comparision to previous
view maintenance algorithms. As our underlying cost model, we assume that the time
taken by an algorithm to incrementally maintain a view is proportional to the number
of tuple accesses that are required by the algorithm to maintain the view. As a first step,
we discuss the performance of CReaM when a single tuple is changed in the underlying
edb relations. We then discuss the performance of CReaM with respect to multiple tuple
updates.

Consider a view v which is defined as v(X̄,W) :- setof(Ȳ , φ(X̄, Ȳ , Z̄),W). Sup-
pose that the extensions of v and φ consist of nv and nφ tuples respectively. The exten-
sion of the view v and the differential φ+ and φ− are provided as inputs to the CReaM
algorithm (see Figure 1). In Steps 1 and 2, CReaM rewrites the definition of v using an
auxiliary view va and materializes va. Suppose that the number of tuples in va is nva .
Then, nv ≤ nva ≤ nφ. In Step 3, CReaM materializes the count of the tuple derivations
in v. Steps 1, 2, and 3 of the CReaM algorithm are pre-processing steps that are exe-
cuted before φ is updated. Therefore, in our analysis, we only consider the time taken
to execute Step 4 of CReaM as the time that is required to incrementally maintain v.

In Step 4, CReaM maintains va using the differential rules Δ1– Δ6. The time re-
quired to update va using Δ1– Δ6 is equal to the time required to compute the join of
the view va and the differentials φ+ and φ−. When the materialized view va is indexed
on the attributes X̄ and Z̄, the time required to compute the join is O(lognva), other-
wise it is O(nva). In a subsequent step, CReaM leverages the differentials v+a and v−a
that were previously computed using Δ1– Δ6 to update the extension of the view v us-
ing the counting algorithm [14]. Since the view v is a projection of the view va, the time
required to incrementally maintain v in response to the differentials v+a and v−a is either
O(lognv) or O(nv) depending on whether the attribute X̄ in the view v is indexed or
not. Therefore, the time taken by CReaM to update a view v with nv tuples in response
to a single tuple update in the underlying edb relations is either O(lognva) or O(nva)
depending on whether the physical design of the database is optimized or not.

410 A. Mohapatra and M. Genesereth

Suppose that we did not materialize the auxiliary view va. In this case, we cannot
update v without accessing the extension of φ. Suppose that the differential of φ consists
of a single tuple φ(x̄, ȳ, z̄). We need to recompute the set Sx̄,z̄ = {Ȳ | φ(x̄, Ȳ , z̄)} to
incrementally update v. We analyze the time required to update v under two possible
scenarios depending on whether φ consists of a single edb relation or φ is a conjunction
of edb relations. In the first case, the time required to incrementally compute Sx̄,z̄ is
either O(lognφ) or O(nφ) depending on whether an index exists on the attributes X̄
and Z̄ in φ or not. However, in the second case, when φ is a conjunction of edb relations,
we need to recompute φ and update it before recomputing the set Sx̄,z̄ . In this case, the
cost of recomputing and updating φ is dominated by the cost of computing the join of
the edb relations which is either O(nφ) or O(n × lognφ) depending on whether the
physical design of the database is optimized or not.

When there are multiple (say k) changes to φ, the time required by CReaM to incre-
mentally update the view v(X̄,W) :- setof(Ȳ , φ(X̄, Ȳ , Z̄),W) with nv tuples is either
O(k×lognv) or O(k×nv) depending on whether the views va and v are indexed or not.
However, when va is not materialized and φ is a conjunction of multiple edb relations,
we have to recompute the sets over φ. This requires O(n × logn) time. Therefore, the
speed up in the time to update v using CReaM in comparison to previous view mainte-
nance algorithms is by a factor of n

k when va and v are indexed.
We note that if the view v is defined as v(X̄, Z̄,W) :- setof(Ȳ , φ(X̄, Ȳ , Z̄),W), we

can update v without accessing or computing the extension of φ. In this case, the time
taken to update v is the same as is required by CReaM. The summary of CReaM’s
performance is presented in Table 1.

Next, we show that when the supplied materialized view and the auxiliary views that
are materialized by CReaM are indexed, the time taken by CReaM to incrementally
maintain a view is optimal.

Theorem 4. The time taken by CReaM to maintain a materialized view containing a
setof subgoal is optimal when the supplied materialized view and the auxiliary views
are indexed.

Proof. Suppose that a materialized view v containing a setof subgoal is supplied as
an input to CReaM. In addition, suppose that v consists of n tuples. When v and the
auxiliary view (that is materialized by CReaM) are indexed, CReaM maintains v in
O(logn) time. If we prove that Ω(logn) time is required to incrementally maintain an
extension of a view with n tuples, then we would establish the optimality of CReaM.

To prove the lower bound, we reduce the problem of incrementally maintaining the
partial sums of an array of n numbers to the problem of incrementally maintaining an
extension of a view with n tuples. Prior work in [7, 8, 25] have independently proven
that the maintenance of partial sums of an array of n numbers requires Ω(logn) time.
Consider an array of n numbers {ai}. The partial sums problem maintains the sum
∑k

i=0 ai for every k (1 ≤ k ≤ n) subject to updates of the form ai = ai + x, where x
is a number. We reduce the instance of the partial sums problem over the array {ai} to
an instance of the view maintenance problem in time that is polynomial in n as follows.
Consider an instance of the view maintenance problem where we have two edb relations
r(A,B) and s(B,C). The extension of r(A,B) consists of the set of n×(n−1) tuples,

Incremental Maintenance of Aggregate Views 411

{(i, j) | 1 ≤ j ≤ i ≤ n}. The extension of s(A,B) consists of the set of n tuples,
{(i, ai) | 1 ≤ i ≤ n}. Suppose that we materialize n views v1, v2, . . . , vn over r(A,B)
and s(B,C) where each vi is defined as vi(S) :- setof((B,C), r(i, B)& s(B,C),W),
sum(W,S, 2). In the definition of vi, the aggregate sum(W,S, 2) computes the sum of
the 2nd component of the tuples ∈ W .

When an array value ai is updated to ai+x, we update the tuple (i, ai) ∈ s(B,C) to
the tuple(i, ai+x). Since we can compute the partial sum

∑k
i=0 ai by finding the value

s which is in the extension of vk, the problem of maintaining the partial sums of the ar-
ray {ai} reduces to the problem of incrementally maintaining the views v1, v2, . . . , vk.
Therefore, if the number of tuples in an extension of a view that contains a setof subgoal
is O(n), then Ω(log n) time is required to incrementally maintain the view. ��

Self-maintenance of Aggregate Views: In Theorem 4, we prove that CReaM optimally
maintains views containing setof subgoals. Now, we show that by materializing auxil-
iary views, CReaM guarantees the self-maintainability [17] of aggregate views that are
defined over single edb relations. In other words, the extension of an edb relation does
not have to be accessed to incrementally maintain an aggregate view that is defined
over the relation. The property of self-maintainability is desirable when access to the
edb relations is restricted or when the edb relations themselves are hypothetical (such
as in a LAV integration scenario [33]).

Consider a view v which is defined over an edb relation φ using the aggregation pred-
icate agg as v(X̄, A) :- setof(Ȳ , φ(X̄, Ȳ , Z̄),W), agg(W,A). To incrementally main-
tain v, CReaM rewrites the definition of v using an auxiliary view va as follows.

v(X̄, A) :- va(X̄, Z̄,W), agg(W,A)

va(X̄, Z̄,W) :- setof(Ȳ , φ(X̄, Ȳ , Z̄),W)

CReaM materializes the view va and incrementally computes the diffentials v+a and v−a
by applying the differential rules Δ1– Δ6. The differential rules Δ1– Δ6 compute the
join of the extension of the view va and the differentials of φ i.e., φ+ and φ−. In a
subsequent step, CReaM leverages the differentials of va to incrementally maintain the
view v using the algorithm presented in [14]. By materializing the auxiliary view va,
CReaM is able to maintain v without accessing the extension of φ, thereby, making the
view v self-maintainable.

6 Related Work

The problem of incrementally maintaining views has been extensively studied in the
database community [1–6, 10, 14–16, 18, 21–23, 26–28, 30–32, 34]. A survey of the
view maintenance techniques is presented in [13]. The view maintenance algorithms
proposed in [2, 10, 14, 15, 18, 23, 26, 27] leverage differential relational algebra to
incrementally maintain views in response to changes to the underlying edb relations.
For instance, the prior work presented in [23] incrementally computes the differentials
(or changes) of views by applying a set of differential rules over the extensions of edb
relations and their differentials.

412 A. Mohapatra and M. Genesereth

However, only a small fraction of the prior work on incremental view maintenance
[10, 14, 15, 21, 24, 27, 28] addresses the maintenance of aggregate views. The tech-
niques proposed in [10, 14, 21, 24] incrementally maintain views having only one
aggregation operator. Furthermore, the incremental maintenance algorithms presented
in [10, 14, 15, 21, 24, 27, 28] can support only a fixed set of built-in aggregate operators
(such as min, max, sum, and count).

The problem of incremental view maintenance is closely related to the problem of
self-maintainability [11, 12, 17, 19]. A view is self-maintainable if it can be incremen-
tally maintained using the extension of the view and the changes to the edb relations.
The view maintenance algorithms that are presented in [14, 15, 19] derive efficient self-
maintenance expressions as well for certain types of updates to edb relations. Our view
maintenance algorithm, CReaM, guarantees the self-maintenance of an aggregate view
that is derived over a single edb relation by materializing auxiliary views.

Our work differs from prior work on incrementally maintaining aggregate views in
two ways. First, we propose an algorithm called CReaM that optimally maintains ag-
gregate views. For the special class of aggregate views where all of the non-aggregated
attributes of the underlying edb relations are passed to the view, CReaM speeds up the
time taken to incrementally update the view in comparison to previous view mainte-
nance algorithms [10, 14, 15, 21, 24] by a factor that is at least logarithmic in the size
of the extension of the view. Second, we can extend the CReaM algorithm to main-
tain views that contain user-defined aggregates. To maintain views with user-defined
aggregates we rewrite the supplied view definitions using auxiliary views that contain
setof subgoals and apply the CReaM algorithm to maintain the auxiliary views. Then,
we apply prior maintenance algorithms [13] to maintain views whose definitions do not
contain sets.

We note that even though CReaM optimally maintains aggregate views, we could
further optimize the maintenance of views that contain monotonic aggregates [29] when
new tuples are inserted to the edb relations. When new elements are inserted to a set
that is aggregated by a monotonic aggregate, the aggregate value either always increases
or decreases. For example, the aggregate sum is monotonic over the domain of postive
numbers. Therefore, if we have a view v that is defined as v(A) :- setof(B, r(A,B),W),
sum(W,S), S > 10 and a tuple t ∈ extension of v, the tuple t can never be changed by
insertions into the relation r(A,B).

7 Conclusion

We propose an algorithm called CReaM that incrementally maintains materialized ag-
gregate views in response to changes to edb relations by materializing auxiliary views.
By materializing auxiliary views, CReaM guarantees the self-maintainability of aggre-
gate views that are defined over a single database table. CReaM optimally maintains
views containing setof subgoals and speeds up the time taken to update materialized
aggregate views with n tuples that are defined over multiple edb relations and do not
contain all of the non-aggregated attributes in the edb relations either by a factor of
n

logn
or logn depending on whether the supplied materialized view is indexed or not.

For other types of aggregate views, CReaM updates the view in no more time than that
is required by prior view maintenance techniques to update the view.

Incremental Maintenance of Aggregate Views 413

References

1. Blakeley, J.A., Coburn, N., Larson, P.A.: Updating derived relations: Detecting irrelevant and
autonomously computable updates. ACM TODS (1989)

2. Blakeley, J.A., Larson, P.A., Tompa, F.W.: Efficiently updating materialized views. SIGMOD
(1986)

3. Buneman, O.P., Clemons, E.K.: Efficiently monitoring relational databases. ACM TODS
(1979)

4. Ceri, S., Widom, J.: Deriving production rules for incremental view maintenance. VLDB
(1991)

5. Colby, L.S., Kawaguchi, A., Lieuwen, D.F., Mumick, I.S., Ross, K.A.: Supporting multiple
view maintenance policies. SIGMOD (1997)

6. Dong, G., Topor, R.W.: Incremental evaluation of datalog queries. ICDT (1992)
7. Fredman, M.L.: A lower bound on the complexity of orthogonal range queries. J. ACM

(1981)
8. Fredman, M.L.: The complexity of maintaining an array and computing its partial sums. J.

ACM (1982)
9. Gallaire, H., Minker, J., Nicolas, J.M.: Logic and databases: A deductive approach. ACM

Computing Surveys (1984)
10. Griffin, T., Libkin, L.: Incremental maintenance of views with duplicates. SIGMOD (1995)
11. Gupta, A., Jagadish, H.V., Mumick, I.S.: Data integration using self-maintainable views.

EDBT (1996)
12. Gupta, A., Jagadish, H.V., Mumick, I.S.: Maintenance and self-maintenance of outerjoin

views. NGITS (1997)
13. Gupta, A., Mumick, I.S.: Maintenance of materialized views: Problems, techniques, and ap-

plications. In: Materialized Views (1999)
14. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally. SIGMOD

(1993)
15. Gupta, H., Mumick, I.S.: Incremental maintenance of aggregate and outerjoin expressions.

Information Systems (2006)
16. Harrison, J.V., Dietrich, S.W.: Maintenance of materialized views in a deductive database:

An update propagation approach. In: Workshop on Deductive Databases, JICSLP (1992)
17. Huyn, N.: Efficient view self-maintenance. Views (1996)
18. Kuchenhoff, V.: On the efficient computation of the difference between consecutive database

states. DOOD (1991)
19. Mohania, M., Kambayashi, Y.: Making aggregate views self-maintainable. ACM TKDE 32

(1999)
20. Mohapatra, A., Genesereth, M.: Reformulating aggregate queries using views. SARA (2013)
21. Mumick, I.S., Quass, D., Mumick, B.S.: Maintenance of data cubes and summary tables in

a warehouse. SIGMOD (1997)
22. Nicolas, J.M.: Yazdanian: An outline of bdgen: A deductive dbms. Information Processing

(1983)
23. Orman, L.V.: Differential relational calculus for integrity maintenance. ACM TKDE (1998)
24. Palpanas, T., Sidle, R., Cochrane, R., Pirahesh, H.: Incremental maintenance for non-

distributive aggregate functions. VLDB (2002)
25. Păatraşcu, M., Demaine, E.D.: Tight bounds for the partial-sums problem. SODA (2004)
26. Qian, X., Wiederhold, G.: Incremental recomputation of active relational expressions. ACM

TKDE (1991)
27. Quass, D.: Maintenance expressions for views with aggregation. Views (1996)

414 A. Mohapatra and M. Genesereth

28. Quass, D., Mumick, I.S.: Optimizing the refresh of materialized view. Technical Report
(1997)

29. Ross, K.A., Sagiv, Y.: Monotonic aggregation in deductive databases. PODS (1992)
30. Shmueli, O., Itai, A.: Maintenance of views. SIGMOD (1984)
31. Stonebraker, M.: Implementation of integrity constraints and views by query modification.

SIGMOD (1975)
32. Tompa, F.W., Blakeley, J.A.: Maintaining materialized views without accessing base data.

Information Systems (1988)
33. Ullman, J.D.: Principles of Database and Knowledge-Base Systems: Volume II (1989)
34. Wolfson, O., Dewan, H.M., Stolfo, S.J., Yemini, Y.: Incremental evaluation of rules and its

relationship to parallelism. SIGMOD (1991)

	Incremental Maintenance of Aggregate Views
	1 Introduction
	2 Preliminaries
	3 Maintenance of Aggregate Views
	4 Efficient Incremental Maintenance
	5 Performance of CReaM
	6 Related Work
	7 Conclusion
	References

