
A Survey of the Data Complexity of Consistent

Query Answering under Key Constraints

Jef Wijsen

Université de Mons, Mons, Belgium
jef.wijsen@umons.ac.be

Abstract. This paper adopts a very elementary representation of uncer-
tainty. A relational database is called uncertain if it can violate primary
key constraints. A repair of an uncertain database is obtained by select-
ing a maximal number of tuples without selecting two distinct tuples
of the same relation that agree on their primary key. For any Boolean
query q, CERTAINTY(q) is the problem that takes an uncertain database
db on input, and asks whether q is true in every repair of db. The com-
plexity of these problems has been particularly studied for q ranging over
the class of Boolean conjunctive queries. A research challenge is to solve
the following complexity classification task: given q, determine whether
CERTAINTY(q) belongs to complexity classes FO,P, or coNP-complete.

The counting variant of CERTAINTY(q), denoted �CERTAINTY(q),
asks to determine the exact number of repairs that satisfy q. This problem
is related to query answering in probabilistic databases.

This paper motivates the problems CERTAINTY(q) and �CERTAINTY(q),
surveys the progress made in the study of their complexity, and lists open
problems. We also show a new result comparing complexity boundaries
of both problems with one another.

1 Motivation

Uncertainty shows up in a variety of forms and representations. In this paper, we
consider a very elementary representation of uncertainty. We model uncertainty
in the relational database model by primary key violations. A block is a maximal
set of tuples of the same relation that agree on the primary key of that relation.
Tuples of a same block are mutually exclusive alternatives for each other. In
each block, only one (and exactly one) tuple can be true, but we do not know
which one. We will refer to databases as “uncertain databases” to stress that
such databases can violate primary key constraints.

Primary keys are underlined in the conference planning database of Fig. 1.
Blocks are separated by dashed lines. There is uncertainty about the city of
ICDT 2016 (Rome or Paris), about the rank of KDD (A or B), and about the
frequency of ICDT (biennial or annual).

There can be several reasons why a database is uncertain. On the positive
side, it allows one to represent several possible future scenarios. In Fig. 1, the
relation C represents that there are still two candidate cities for hosting ICDT

C. Beierle and C. Meghini (Eds.): FoIKS 2014, LNCS 8367, pp. 62–78, 2014.
c© Springer International Publishing Switzerland 2014

A Survey of the Data Complexity of CQA under Key Constraints 63

C conf year city country

ICDT 2016 Rome Italy

ICDT 2016 Paris France

KDD 2017 Rome Italy

R conf rank frequency

ICDT A biennial

ICDT A annual

KDD A annual

KDD B annual

DBPL B biennial

BDA B annual

Fig. 1. Uncertain database

2016. On the reverse side, inconsistency may be an undesirable but inescapable
consequence of data integration. The relation R may result from integrating
data from different web sites that contradict one another.

A repair (or possible world) of an uncertain database is obtained by selecting
exactly one tuple from each block. In general, the number of repairs of an uncer-
tain database db is exponential in the size of db. For instance, if an uncertain
database contains n blocks with two tuples each, then it contains 2n tuples and
has 2n repairs.

There are three natural semantics for answering Boolean queries q on an
uncertain database. Under the possibility semantics , the question is whether
the query evaluates to true on some repair. Under the certainty semantics , the
question is whether the query evaluates to true on every repair. More generally,
under the counting semantics , the question is to determine the number of repairs
on which the query evaluates to true. In this paper, we consider the certainty
and counting semantics. The certainty semantics adheres to the paradigm of
consistent query answering [1,3], which introduces the notion of database repair
with respect to general integrity constraints. In this work, repairing is exclusively
with respect to primary key constraints, one per relation.

Example 1. The uncertain database of Fig. 1 has eight repairs. The Boolean
first-order query ∃x∃y∃z∃w (

C(x, y, ‘Rome’, z) ∧R(x, ‘A’, w)
)
(Will Rome host

some A conference?) is true in six repairs.

For any Boolean query q, the decision problem CERTAINTY(q) is the following.

Problem: CERTAINTY(q)
Input: uncertain database db
Question: Does every repair of db satisfy q?

Two comments are in place. First, the Boolean query q is not part of the input.
Every Boolean query q gives thus rise to a new problem. Since the input to
CERTAINTY(q) is an uncertain database, the problem complexity is data com-
plexity. Second, we will assume that every relation name in q or db has a fixed
known arity and primary key. The primary key constraints are thus implicitly
present in all problems.

64 J. Wijsen

The complexity of CERTAINTY(q) has gained considerable research atten-
tion in recent years. A challenging question is to distinguish queries q for which
the problem CERTAINTY(q) is tractable from queries for which the problem is
intractable. Further, if CERTAINTY(q) is tractable, one may ask whether it is
first-order definable. We will refer to these questions as the complexity classifi-
cation task for CERTAINTY(q).

For any Boolean query q, the counting problem �CERTAINTY(q) is defined as
follows.

Problem: �CERTAINTY(q)
Input: uncertain database db
Question: How many repairs of db satisfy q?

The complexity classification task for �CERTAINTY(q) is then to determine the
complexity of �CERTAINTY(q) for varying q.

In this paper, we review known results in the aforementioned complexity clas-
sification tasks. We also contribute a new result relating the complexity clas-
sifications for CERTAINTY(q) and �CERTAINTY(q). We discuss variations and
extensions of the basic problems, and review existing systems that implement
algorithms for consistent query answering under primary keys.

This paper is organized as follows. Section 2 introduces the basic concepts and
terminology. Section 3 discusses consistent first-order rewriting, which consists
in solving CERTAINTY(q) in first-order logic. Section 4 reviews known dichot-
omy theorems for CERTAINTY(q) and �CERTAINTY(q). Section 5 contains our
new result. From Section 6 on, we present a number of variations and extensions
of the basic framework. Section 6 introduces the notion of nucleus of an uncer-
tain database db relative to a class C of Boolean queries. Intuitively, a nucleus
is a new (consistent) database that “summarizes” all repairs of db such that it
returns certain answers to all queries in C. Section 7 relates �CERTAINTY(q) to
query evaluation in probabilistic databases. Section 9 discusses practical imple-
mentations. Finally, Section 10 lists some questions for future research.

2 Preliminaries

In this section, we first introduce basic notions and terminology. We then recall
a number of complexity classes that will occur in the complexity classification
tasks mentioned in Section 1.

2.1 Data and Query Model

We assume disjoint sets of variables and constants . If x is a sequence containing
variables and constants, then vars(x) denotes the set of variables that occur in
x. A valuation over a set U of variables is a total mapping θ from U to the set
of constants. Such a valuation θ is extended to be the identity on constants and
on variables not in U .

A Survey of the Data Complexity of CQA under Key Constraints 65

Atoms and Key-Equal Facts. Each relation name R of arity n, n ≥ 1, has a
unique primary key which is a set {1, 2, . . . , k} where 1 ≤ k ≤ n. We say that R
has signature [n, k] if R has arity n and primary key {1, 2, . . . , k}. Elements of
the primary key are called primary-key positions , while k + 1, k + 2, . . . , n are
non-primary-key positions . For all positive integers n, k such that 1 ≤ k ≤ n, we
assume denumerably many relation names with signature [n, k].

If R is a relation name with signature [n, k], then R(s1, . . . , sn) is called an R-
atom (or simply atom), where each si is either a constant or a variable (1 ≤ i ≤
n). Such an atom is commonly written as R(x,y) where the primary key value
x = s1, . . . , sk is underlined and y = sk+1, . . . , sn. A fact is an atom in which no
variable occurs. Two facts R1(a1, b1), R2(a2, b2) are key-equal if R1 = R2 and
a1 = a2.

We will use letters F,G,H for atoms. For an atom F = R(x,y), we denote by
key(F) the set of variables that occur in x, and by vars(F) the set of variables
that occur in F , that is, key(F) = vars(x) and vars(F) = vars(x) ∪ vars(y).

Uncertain Database, Blocks, and Repairs. A database schema is a finite
set of relation names. All constructs that follow are defined relative to a fixed
database schema.

An uncertain database is a finite set db of facts using only the relation names
of the schema. We write adom(db) for the active domain of db (i.e., the set of
constants that occur in db). A block of db is a maximal set of key-equal facts of
db. An uncertain database db is consistent if it does not contain two distinct
facts that are key-equal (i.e., if every block of db is a singleton). A repair of db
is a maximal (with respect to set containment) consistent subset of db.

Boolean Conjunctive Query. A Boolean query is a mapping q that associates
a Boolean (true or false) to each uncertain database, such that q is closed under
isomorphism [22]. We write db |= q to denote that q associates true to db, in
which case db is said to satisfy q. A Boolean first-order query is a Boolean query
that can be defined in first-order logic. A Boolean conjunctive query is a finite
set q = {R1(x1,y1), . . . , Rn(xn,yn)} of atoms. By vars(q), we denote the set of
variables that occur in q. The set q represents the first-order sentence

∃u1 · · · ∃uk

(
R1(x1,y1) ∧ · · · ∧Rn(xn,yn)

)
,

where {u1, . . . , uk} = vars(q). This query q is satisfied by uncertain database
db if there exists a valuation θ over vars(q) such that for each i ∈ {1, . . . , n},
Ri(a, b) ∈ db with a = θ(xi) and b = θ(yi).

If q is a Boolean conjunctive query, x = 〈x1, . . . , x�〉 is a sequence of distinct
variables that occur in q, and a = 〈a1, . . . , a�〉 is a sequence of constants, then
q[x �→a] denotes the query obtained from q by replacing all occurrences of xi with
ai, for all 1 ≤ i ≤ �.

Computational Problems. The decision problem CERTAINTY(q) and the
counting problem �CERTAINTY(q) have been defined in Section 1.

66 J. Wijsen

2.2 Restrictions on Conjunctive Queries

The class of Boolean conjunctive queries can be further restricted by adding
syntactic constraints.

Acyclicity. A Boolean conjunctive query q is acyclic if it has a join tree [2]. A
join tree for q is an undirected tree whose vertices are the atoms of q such that
for every variable x in vars(q), the set of vertices in which x occurs induces a
connected subtree.

No Self-joins. We say that a Boolean conjunctive query q has a self-join if
some relation name occurs more than once in q. If q has no self-join, then it is
called self-join-free.

Restrictions on Signatures. Let R be a relation name with signature [n, k].
The relation name R is simple-key if k = 1. The relation name R is all-key if
n = k.

We introduce names for some classes of special interest:

– Bcq denotes the class of Boolean conjunctive queries;
– SjfBcq denotes the class of self-join-free Boolean conjunctive queries; and
– AcySjfBcq denotes the class of acyclic self-join-free Boolean conjunctive

queries.

2.3 Complexity Classes

The following complexity classes will occur in the complexity classification tasks
for CERTAINTY(q) and �CERTAINTY(q).

– FO, the class of first-order definable problems. In particular, for a given
Boolean query q, CERTAINTY(q) is in FO if there exists a Boolean first-
order query ϕ such that for every uncertain database db, every repair of
db satisfies q if and only if db satisfies ϕ. Such a ϕ, if it exists, is called a
consistent first-order rewriting of q.

– P, the class of decision problems that can be solved in deterministic poly-
nomial time.

– NP, the class of decision problems whose “yes” instances have succinct cer-
tificates that can be verified in deterministic polynomial time.

– coNP, the class of decision problems whose “no” instances have succinct
disqualifications that can be verified in deterministic polynomial time. In
particular, CERTAINTY(q) is in coNP for every Boolean first-order query q,
because if q is not true in every repair of db, then a succinct disqualification
is a repair of db that falsifies q. Indeed, repair checking (i.e., given rep and
db, check whether rep is a repair of db) is in polynomial time, and so is the
data complexity of first-order queries.

A Survey of the Data Complexity of CQA under Key Constraints 67

– FP, the class of function problems that can be solved in deterministic poly-
nomial time. In particular, for a given Boolean query q, �CERTAINTY(q) is
in FP if there exists a polynomial-time algorithm that takes any uncertain
database db on input, and returns the number of repairs of db that satisfy q.

– �P, the class of counting problems associated with decision problems in NP.
Given an instance of a decision problem in NP, the associated counting
problem instance asks to determine the number of succinct certificates of
its being a “yes” instance. The following problem is obviously in NP for
every Boolean first-order query q: given an uncertain database db on input,
determine whether some repair of db satisfies q. Its associated counting
problem, called �CERTAINTY(q), is thus in �P.

Concerning the latter item, notice that the decision variant of �CERTAINTY(q)
is not CERTAINTY(q), which is a decision problem in coNP. The problem
�CERTAINTY(q) might better have been named �POSSIBILITY(q) or so, because
its decision variant asks, given an uncertain database on input, whether some
repair satisfies q.

3 Consistent First-Order Rewriting

The detailed investigation of CERTAINTY(q) was pioneered by Fuxman and
Miller [14,15]. This initial research focused on determining classes of Boolean
conjunctive queries q for which CERTAINTY(q) is in FO, and hence solvable by a
single Boolean first-order query, which is called a consistent first-order rewriting
of q. The practical significance is that such a consistent first-order rewriting can
be directly implemented in SQL. A concrete example is given next.

Example 2. Let q0 be the query ∃zR(‘ICDT’, ‘A’, z) (Is ICDT a conference of
rank A?). Clearly, q0 is true in every repair of some uncertain database db if
and only if db contains an R-fact stating that ICDT has rank A, and contains
no R-fact mentioning a different rank for ICDT. These conditions are expressed
by the following Boolean first-order query (call it ϕ0):

∃zR(‘ICDT’, ‘A’, z) ∧ ∀y∀z (R(‘ICDT’, y, z) → y = ‘A’) .

If ϕ0 evaluates to true on db, then every repair of db satisfies q0; if ϕ0 evaluates
to false on db, then some repair of db falsifies q0. Thus, ϕ0 a consistent first-order
rewriting of q0, and solves CERTAINTY(q0) without any need for enumerating
repairs.

Fuxman and Miller defined a class Cforest ⊆ SjfBcq such that for every
q ∈ Cforest , CERTAINTY(q) is in FO. Their results were improved by Wijsen [34],
as follows.

Theorem 1 ([34]). Given q ∈ AcySjfBcq, it is decidable (in quadratic time
in the size of q) whether CERTAINTY(q) is in FO. If CERTAINTY(q) is in FO,
then a consistent first-order rewriting of q can be effectively constructed.

68 J. Wijsen

To be precise, the class Cforest contains some conjunctive queries that are cyclic
in some very restricted way (see [9, Theorem 2.4]). On the other hand, there exist
queries q ∈ AcySjfBcq such that CERTAINTY(q) is in FO but q ∈ Cforest . For
Boolean conjunctive queries with self-joins, some sufficient conditions for the
existence of consistent first-order rewritings appear in [32].

4 Complexity Dichotomy Theorems

A further research challenge is to distinguish Boolean conjunctive queries q for
which the problem CERTAINTY(q) is tractable from queries for which the prob-
lem is intractable.

In general, we say that a class P of decision problems exhibits a P-coNP-
dichotomy if all problems in P are either in P or coNP-hard. We say that P
exhibits an effective P-coNP-dichotomy if in addition it is decidable whether a
given problem in P is in P or coNP-hard. Likewise, we say that a class P of
function problems exhibits an FP-�P-dichotomy if all problems in P are either
in FP or �P-hard (under polynomial-time Turing reductions). We say that P
exhibits an effective FP-�P-dichotomy if in addition it is decidable whether a
given problem in P is in FP or �P-hard. We use the term complexity dichotomy
theorem to refer to a theorem that establishes a P-coNP-dichotomy in a class
of decision problems, or an FP-�P-dichotomy in a class of counting problems.
By Ladner’s theorem [21], if P = NP, or FP = �P, then no such complexity
dichotomy theorems exist for coNP or �P.

Let C be a class of Boolean queries. We write CERTAINTY[C] to denote the
class of decision problems that contains CERTAINTY(q) for every q ∈ C. Like-
wise, we write �CERTAINTY[C] for the class of counting problems that contains
�CERTAINTY(q) for every q ∈ C.

The following result by Kolaitis and Pema was chronologically the first com-
plexity dichotomy theorem for consistent query answering under primary keys.

Theorem 2 ([17]). Let C be the class of self-join-free Boolean conjunctive que-
ries that contain at most two atoms. Then, CERTAINTY[C] exhibits an effective
P-coNP-dichotomy.

Clearly, every Boolean conjunctive query with at most two atoms, is acyclic.
The following generalization of Theorem 2 was conjectured in both [26] and [35].
What is remarkable is that both works have independently conjectured exactly
the same boundary between tractable and intractable problems in the class
CERTAINTY[AcySjfBcq]. The exposition of this boundary is involved and will
not be given here.

Conjecture 1. The problem class CERTAINTY[AcySjfBcq] exhibits an effective
P-coNP-dichotomy.

Recently, Koutris and Suciu showed the following complexity dichotomy
theorem.

A Survey of the Data Complexity of CQA under Key Constraints 69

Theorem 3 ([19,20]). Let C be the class of self-join-free Boolean conjunc-
tive queries in which each relation name is either simple-key or all-key. Then,
CERTAINTY[C] exhibits an effective P-coNP-dichotomy.

In summary, for Boolean conjunctive queries q, the complexity classification
task for CERTAINTY(q) is far from accomplished. More is known about the
complexity classification of �CERTAINTY(q), as becomes clear from the following
two theorems.

Theorem 4 ([24]). The problem class �CERTAINTY[SjfBcq] exhibits an ef-
fective FP-�P-dichotomy.

The following is one of the few complexity dichotomies known for conjunctive
queries with self-joins.

Theorem 5 ([25]). Let C be the class of Boolean conjunctive queries in which
all relation names are simple-key. Then, �CERTAINTY[C] exhibits an effective
FP-�P-dichotomy.

5 Comparing Complexity Boundaries

Theorems 1-5 contribute to the complexity classification tasks for CERTAINTY(q)
and �CERTAINTY(q). These theorems guarantee the existence of effective pro-
cedures to classify problems in different complexity classes. We will not expose
these effective procedures in detail, but provide some examples for queries in
SjfBcq.

1. For q1 = {R(x, y), S(y, z)}, we have that CERTAINTY(q1) is in FO, and
�CERTAINTY(q1) is in FP. A consistent first-order rewriting of q1 is
∃x∃y (R(x, y) ∧ ∀y (R(x, y) → ∃zS(y, z))).

2. For q2 = {R(x, y), S(y, a)}, where a is a constant, CERTAINTY(q2) is in FO,
but �CERTAINTY(q2) is already �P-hard. A consistent first-order rewriting
of q2 is ∃x∃y (R(x, y) ∧ ∀y (R(x, y) → (

S(y, a) ∧ ∀z (S(y, z) → z = a
))))

.
3. For q3 = {R(x, y), S(y, x)}, we have that CERTAINTY(q3) is in P \FO [33],

and �CERTAINTY(q3) is �P-hard.
4. For q4 = {R(x, y), S(z, y)}, we have that CERTAINTY(q4) is coNP-complete,

and �CERTAINTY(q4) is �P-hard.

We have no example of a query q ∈ SjfBcq such that CERTAINTY(q) is in
P \ FO and �CERTAINTY(q) is in FP. The following theorem implies that no
such query exists unless FP = �P. The proof is in the Appendix.

Theorem 6. For every q ∈ SjfBcq, if CERTAINTY(q) is not in FO, then
�CERTAINTY(q) is �P-hard.

Clearly, the number of repairs of an uncertain database db can be computed
in polynomial time in the size of db, by multiplying the cardinalities of all
blocks. Therefore, for every Boolean query q, if �CERTAINTY(q) is in FP, then

70 J. Wijsen

R′ conf rank frequency

ICDT A �1

KDD �2 annual
DBPL B biennial
BDA B annual
�3 B �1
�4 �2 �1

Fig. 2. Bcq-nucleus for the relation R of Fig. 1. The symbols �1, �2, �3, �4 are new
distinct constants that cannot be used in queries.

CERTAINTY(q) must be in P. That is, tractability of CERTAINTY(q) could in
principle be established from tractability of �CERTAINTY(q). We notice, how-
ever, that Theorem 4 does not give us new tractable cases of CERTAINTY(q) in
this way for q ∈ AcySjfBcq (i.e., Theorem 4 does not help to prove Conjec-
ture 1). By Theorem 1, we can already distinguish in AcySjfBcq the queries q
that have a consistent first-order rewriting from those that have not. If a query
q ∈ AcySjfBcq has no consistent first-order rewriting, then �CERTAINTY(q)
is �P-hard by Theorem 6.

6 Nucleus

Solving CERTAINTY(q) consists in developing an algorithm that takes any un-
certain database db on input, and checks whether every repair of db satisfies
the Boolean query q. As indicated in Section 3, for some q, such an algorithm
can be expressed in first-order logic. A natural question is whether algorithms
for solving CERTAINTY(q) could benefit from some database preprocessing. An
approach proposed in [29] consists in “rewriting” an uncertain database db into
a new database db′ such that for all queries q in some query class, the answer to
CERTAINTY(q) on input db is obtained by executing q on db′. This is formalized
next.

Nucleus. Let C be a class of Boolean queries. A C-nucleus of an uncertain
database db is a database db′ such that for every query q ∈ C, every repair of
db satisfies q if and only if db′ satisfies q.

It follows from [29] that every uncertain database db has a Bcq-nucleus. To
be precise, this result supposes the existence of some special constants, called
labeled nulls , that can occur in uncertain databases, but not in queries.

Example 3. A Bcq-nucleus for the relation R of Fig. 1 is shown in Fig. 2, where
�1, �2, �3, �4 are distinct labeled nulls. The atom R′(�3,B, �1), for example,
expresses that in every repair, some conference of rank B has the same frequency
as ICDT. The query ∃zR(‘ICDT’, ‘A’, z) evaluates to true on every repair of R,

A Survey of the Data Complexity of CQA under Key Constraints 71

R conf rank frequency P

ICDT A biennial 0.3

ICDT A annual 0.6

KDD A annual 0.5

KDD B annual 0.5

DBPL B biennial 0.7

BDA B annual 1.0

Fig. 3. Representation of a BID probabilistic database

and evaluates to true on the Bcq-nucleus. The query ∃yR(‘ICDT’, y, ‘annual’)
evaluates to false on some repair ofR, and evaluates to false on the Bcq-nucleus.

The notion of C-nucleus is closely related to the notion of universal repair
in [28]. Clearly, since CERTAINTY(q) is coNP-hard for some q ∈ Bcq, any
algorithm that takes an uncertain database db on input and computes a Bcq-
nucleus of db, must be exponential-time (unless P = coNP).

7 Probabilistic Databases

For any fixed Boolean query q, the problem �CERTAINTY(q) is a special case of
probabilistic query answering. Let N be the total number of repairs of a given
uncertain database db. If a fact A (or, by extension, a Boolean query) evaluates
to true in m repairs, then its probability, denoted P(A), is m/N . For example, in
Fig. 1, the probability of the fact R(ICDT,A, biennial) is 4/8, because it belongs
to 4 repairs out of 8. It can now be easily verified that for all distinct facts A,B
of db, the following hold:

– If the facts A and B belong to a same block, then P(A ∧B) = 0. In proba-
bilistic terms, distinct facts of the same block represent disjoint (i.e., exclu-
sive) events.

– If the facts A and B belong to distinct blocks, then P(A ∧B) = P(A)·P(B).
In probabilistic terms, facts of distinct blocks are independent .

Probabilistic databases satisfying the above two properties have been coined
block-independent-disjoint (BID) by Dalvi, Ré, and Suciu [6]. BID probabilistic
databases can be represented by listing the probability of each fact, as illus-
trated in Fig. 3. The main differences between uncertain databases and BID
probabilistic databases are twofold:

– In an uncertain database, all facts of a same block have the same probability.
In BID probabilistic databases, facts of a same block need not have the same
probability. For example, in the BID probabilistic database of Fig. 3, the two
facts about ICDT have distinct probabilities (0.3 and 0.6).

72 J. Wijsen

– In an uncertain database, the probabilities of facts in a same block sum up
to 1. In BID probabilistic databases, this sum can be strictly less than 1. The
BID probabilistic database of Fig. 3 admits a possible world with non-zero
probability in which ICDT does not occur.

A detailed comparison of both data models can be found in [35]. The difference
between both data models is further diminished in [23], where some positive
integer multiplicity is associated to every tuple of an uncertain database.

The tractability/intractability frontier of evaluating SjfBcq queries on BID
probabilistic databases has been revealed by Dalvi et al. [7]. Theorem 4 settles
this frontier for uncertain databases. For conjunctive queries with self-joins, no
analogue of Theorem 5 is currently known for BID probabilistic databases.

The situation is different for tuple-independent probabilistic databases. In
such a database, there is no notion of block and all tuples represent independent
events. The tractability/intractability frontier of evaluating unions of conjunctive
queries (possibly with self-joins) on tuple-independent probabilistic databases
has been revealed by Dalvi and Suciu [8].

8 Integrity Constraints on Uncertain Databases

Integrity constraints allow to restrict the set of legal databases. Although uncer-
tainty is modeled by primary key violations in our approach, this does not mean
that constraints should be given up altogether. Some constraints, including some
primary keys, could still be enforced.

Example 4. The uncertain database of Fig. 1 satisfies the functional dependency
R : city → country, the inclusion dependency C[conf] ⊆ R[conf], and the join
dependency C :�� [{conf , rank}, {conf , frequency}]. This join dependency ex-
presses that, given a conference, the uncertainties in rank and frequency are
independent [31].

The problem CERTAINTY(q) has been generalized to account for constraints
that are satisfied by the uncertain databases that are input to the problem [16],
as follows. Let q be a Boolean query, and let Σ be a set of first-order constraints
referring exclusively to the relation names in db. Then CERTAINTY(q,Σ) is the
following decision problem.

Problem: CERTAINTY(q,Σ)
Input: uncertain database db that satisfies Σ
Question: Does every repair of db satisfy q?

Clearly, if Σ = ∅, then CERTAINTY(q,Σ) is the same as CERTAINTY(q).
At another extreme, if Σ contains all primary key constraints, then the input
to CERTAINTY(q,Σ) is restricted to consistent databases without primary key
violations.

Concerning the following theorem, a join dependency R :�� [K1, . . . ,K�] is
called a key join dependency (KJD) if for all 1 ≤ i < j ≤ �, the intersection

A Survey of the Data Complexity of CQA under Key Constraints 73

Ki ∩Kj is exactly the primary key of R. The join dependency in Example 4 is
a key join dependency.

Theorem 7 ([16]). Given a query q ∈ AcySjfBcq and a set Σ of functional
dependencies and KJDs containing at most one KJD for every relation name in
q, it is decidable whether CERTAINTY(q,Σ) is in FO. If CERTAINTY(q,Σ) is
in FO, then a first-order definition of it can be effectively constructed.

9 Non-boolean Queries and Implemented Systems

In this section, we discuss some systems that have implemented consistent query
answering under primary key constraints. In practice, non-Boolean queries are
more prevalent than Boolean queries, on which we have focused so far. Never-
theless, most results can be easily extended to non-Boolean queries, as follows.

Henceforth, we will write q(x1, . . . , x�) to indicate that q is a (domain inde-
pendent) first-order query with free variables x1, . . . , x�. The function problem
CERTAINTY(q(x)) takes on input an uncertain database db, and asks to return
all certain answers to q, i.e., all sequences a of constants (of the same length
as x) such that q(a) is true in every repair of db. A first-order formula ϕ(x) is
called a consistent first-order rewriting of q(x) if for every uncertain database
db, for all sequences a of constants, q(a) is true in every repair of db if and
only if ϕ(a) is true in db.

Notice that the number of sequences a that consist exclusively of constants
in db, is polynomially bounded in the size of db. Therefore, the non-Boolean
case is at most polynomially more difficult than the Boolean one. Further, q(x)
has a consistent first-order rewriting if and only if the Boolean query q[x�→c] has
a consistent first-order rewriting, where c is a sequence of new constants.

ConQuer [13] and EQUIP [18] are two systems for solving CERTAINTY(q(x))
where q(x) is a conjunctive query. ConQuer applies to a class of conjunctive
queries q(x) for which CERTAINTY(q(x)) is known to be in FO.1 ConQuer
rewrites such a query q(x) into a new SQL query Q that gives the certain answers
on any uncertain database. The query Q can then be executed in any commercial
DBMS. Notice that Q does not depend on the data.

EQUIP applies to all conjunctive queries q(x). When an uncertain database
db is given as the input of the problem CERTAINTY(q(x)), EQUIP transforms
the database and the query into a Binary Integer Program (BIP) that computes
the certain answers. The BIP can then be executed by any existing BIP solver.
Since the BIP depends on the database db, a new BIP has to be generated
whenever the database changes.

Extensive experiments [18,26] show that if CERTAINTY(q(x)) is in FO, then
encoding the problem in SQL (like in ConQuer) is always preferable to binary
integer programming. This is not surprising, because binary integer program-
ming is NP-hard, while the data complexity of “first-order” SQL is FO. A main

1 ConQuer also deals with aggregation, but we will not consider queries with aggre-
gation here.

74 J. Wijsen

conclusion of [26] is that consistent first-order rewriting should be used when-
ever possible. In this respect, Theorems 1 and 7 are of practical importance,
because they tell us when exactly consistent first-order rewriting is possible, i.e.,
when the problem can be solved in SQL. The viability of consistent first-order
rewriting was also demonstrated in [10].

10 Open Problems

Notwithstanding active research, the complexity classification of CERTAINTY(q)
for Boolean conjunctive queries q is far from completed. The case of self-joins re-
mains largely unexplored. Furthermore, existing research has exclusively focused
on complexity classes FO, P, and coNP-complete. A more fine-grained classifi-
cation could be pursued. For example, can we characterize Boolean conjunctive
queries q for which CERTAINTY(q) is P-complete?

Fontaine [12] has established a number of results relating the complexities of
consistent query answering and the constraint satisfaction problem (CSP). One
result is the following. LetDisBcq be the class of Boolean first-order queries that
can be expressed as disjunctions of Boolean conjunctive queries (possibly with
constants and self-joins). Then, a P-coNP dichotomy in CERTAINTY[DisBcq]
implies Bulatov’s dichotomy theorem for conservative CSP [4]. Since the proof
of the latter theorem is highly involved, it is a major challenge to establish
a P-coNP dichotomy in CERTAINTY[DisBcq]. A further natural question is
whether complexities in �CERTAINTY[DisBcq] can be related to the effective
dichotomy theorem for counting CSP proved in [5,11]. Conversely, can complex-
ity results for CSP be used in the complexity classification of CERTAINTY(q)
and �CERTAINTY(q)?

The concept of nucleus has not yet been studied in depth. Can we determine
a large class of queries C ⊆ Bcq such that a C-nucleus of any uncertain database
db can be computed in polynomial time in the size of db? Some preliminary
results appear in [30].

Currently, no dichotomy is known in the complexity of evaluating conjunctive
queries with self-joins on BID probabilistic databases. Can the dichotomy of
Theorem 5 be extended to BID probabilistic databases?

It remains an open task to gain a better understanding of the role of Σ in
the complexity of CERTAINTY(q,Σ). Currently, we have only studied the case
where Σ is a set of functional dependencies and join dependencies, the latter of
a restricted form. The set Σ of satisfied constraints could be used, for example,
to limit the amount of uncertainty by restricting the number of tuples per block.

References

1. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent
databases. In: PODS, pp. 68–79. ACM Press (1999)

2. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic
database schemes. J. ACM 30(3), 479–513 (1983)

A Survey of the Data Complexity of CQA under Key Constraints 75

3. Bertossi, L.E.: Database Repairing and Consistent Query Answering. In: Synthesis
Lectures on Data Management. Morgan & Claypool Publishers (2011)

4. Bulatov, A.A.: Complexity of conservative constraint satisfaction problems. ACM
Trans. Comput. Log. 12(4), 24 (2011)

5. Bulatov, A.A.: The complexity of the counting constraint satisfaction problem. J.
ACM 60(5), 34 (2013)

6. Dalvi, N.N., Ré, C., Suciu, D.: Probabilistic databases: diamonds in the dirt. Com-
mun. ACM 52(7), 86–94 (2009)

7. Dalvi, N.N., Re, C., Suciu, D.: Queries and materialized views on probabilistic
databases. J. Comput. Syst. Sci. 77(3), 473–490 (2011)

8. Dalvi, N.N., Suciu, D.: The dichotomy of probabilistic inference for unions of con-
junctive queries. J. ACM 59(6), 30 (2012)

9. Decan, A.: Certain Query Answering in First-Order Languages. PhD thesis, Uni-
versité de Mons (2013)

10. Decan, A., Pijcke, F., Wijsen, J.: Certain conjunctive query answering in SQL. In:
Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012. LNCS, vol. 7520,
pp. 154–167. Springer, Heidelberg (2012)

11. Dyer, M.E., Richerby, D.: An effective dichotomy for the counting constraint sat-
isfaction problem. SIAM J. Comput. 42(3), 1245–1274 (2013)

12. Fontaine, G.: Why is it hard to obtain a dichotomy for consistent query answering?
In: LICS, pp. 550–559. IEEE Computer Society (2013)

13. Fuxman, A., Fazli, E., Miller, R.J.: ConQuer: Efficient management of inconsistent
databases. In: Özcan, F. (ed.) SIGMOD Conference, pp. 155–166. ACM (2005)

14. Fuxman, A.D., Miller, R.J.: First-order query rewriting for inconsistent databases.
In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 337–351. Springer,
Heidelberg (2005)

15. Fuxman, A., Miller, R.J.: First-order query rewriting for inconsistent databases. J.
Comput. Syst. Sci. 73(4), 610–635 (2007)

16. Greco, S., Pijcke, F., Wijsen, J.: Certain query answering in partially consistent
databases. PVLDB 7(5) (2014)

17. Kolaitis, P.G., Pema, E.: A dichotomy in the complexity of consistent query an-
swering for queries with two atoms. Inf. Process. Lett. 112(3), 77–85 (2012)

18. Kolaitis, P.G., Pema, E., Tan, W.-C.: Efficient querying of inconsistent databases
with binary integer programming. PVLDB 6(6), 397–408 (2013)

19. Koutris, P., Suciu, D.: A dichotomy on the complexity of consistent query answering
for atoms with simple keys. CoRR, abs/1212.6636 (2012)

20. Koutris, P., Suciu, D.: A dichotomy on the complexity of consistent query answering
for atoms with simple keys. In: Schweikardt [27]

21. Ladner, R.E.: On the structure of polynomial time reducibility. J. ACM 22(1),
155–171 (1975)

22. Libkin, L.: Elements of Finite Model Theory. Springer (2004)
23. Maslowski, D., Wijsen, J.: Uncertainty that counts. In: Christiansen, H., De Tré,

G., Yazici, A., Zadrozny, S., Andreasen, T., Larsen, H.L. (eds.) FQAS 2011. LNCS,
vol. 7022, pp. 25–36. Springer, Heidelberg (2011)

24. Maslowski, D., Wijsen, J.: A dichotomy in the complexity of counting database
repairs. J. Comput. Syst. Sci. 79(6), 958–983 (2013)

25. Maslowski, D., Wijsen, J.: Counting database repairs that satisfy conjunctive que-
ries with self-joins. In: Schweikardt ed. [27]

26. Pema, E.: Consistent Query Answering of Conjunctive Queries under Primary Key
Constraints. PhD thesis, University of California Santa Cruz (2013)

76 J. Wijsen

27. Schweikardt, N. (ed.): 17th International Conference on Database Theory, ICDT
2014, Athens, Greece, March 24-28. ACM (2014)

28. ten Cate, B., Fontaine, G., Kolaitis, P.G.: On the data complexity of consistent
query answering. In: Deutsch, A. (ed.) ICDT, pp. 22–33. ACM (2012)

29. Wijsen, J.: Database repairing using updates. ACM Trans. Database Syst. 30(3),
722–768 (2005)

30. Wijsen, J.: On condensing database repairs obtained by tuple deletions. In: DEXA
Workshops, pp. 849–853. IEEE Computer Society (2005)

31. Wijsen, J.: Project-join-repair: An approach to consistent query answering
under functional dependencies. In: Larsen, H.L., Pasi, G., Ortiz-Arroyo, D.,
Andreasen, T., Christiansen, H. (eds.) FQAS 2006. LNCS (LNAI), vol. 4027, pp.
1–12. Springer, Heidelberg (2006)

32. Wijsen, J.: On the consistent rewriting of conjunctive queries under primary key
constraints. Inf. Syst. 34(7), 578–601 (2009)

33. Wijsen, J.: A remark on the complexity of consistent conjunctive query answering
under primary key violations. Inf. Process. Lett. 110(21), 950–955 (2010)

34. Wijsen, J.: Certain conjunctive query answering in first-order logic. ACM Trans.
Database Syst. 37(2), 9 (2012)

35. Wijsen, J.: Charting the tractability frontier of certain conjunctive query answer-
ing. In: Hull, R., Fan, W. (eds.) PODS, pp. 189–200. ACM (2013)

A Appendix: Proof of Theorem 6

We first expose the tractability/intractability boundary of Theorem 4.

Complex Part of a Boolean Conjunctive Query. Let q be a Boolean
conjunctive query. A variable x ∈ vars(q) is called a liaison variable if x has at
least two occurrences in q.2 The complex part of a Boolean conjunctive query q,
denoted [[q]], contains every atom F ∈ q such that some non-primary-key position
in F contains a liaison variable or a constant.

Example 5. The variable y is the only liaison variable in q = {R(x, y), R(y, z),
S(y, u, a)}, in which a is a constant. The complex part of q is [[q]] = {R(x, y),
S(y, u, a)}. The complex part of {R(y, w), R(x, u), T (x, y)}, where T is all-key,
is empty.

If some atom F = R(x, y1, . . . , y�) of a Boolean conjunctive query q does
not belong to q’s complex part, then y1, . . . , y� are distinct variables that have
only one occurrence in q. Intuitively, such variables can be disregarded when
evaluating the query q, because they do not impose any join condition.

Function IsSafe takes a query q ∈ SjfBcq on input, and always terminates
with either true or false. The function is recursive. The base rules (SE0a and
SE0b) apply if q consists of a single fact, or if the complex part of q is empty.

2 Liaison variables are sometimes called “join variables” in the literature. Notice nev-
ertheless that in the singleton query {R(x, x)}, which is not a genuine join, the
variable x is a liaison variable.

A Survey of the Data Complexity of CQA under Key Constraints 77

Function. IsSafe(q) Determine whether q is safe

Input: A query q in SjfBcq.
Result: Boolean in {true, false}.
begin

SE0a: if |q| = 1 and vars(q) = ∅ then
return true;

SE0b: if [[q]] = ∅ then
return true;

SE1: if q = q1 ∪ q2 with q1 �= ∅ �= q2, vars(q1) ∩ vars(q2) = ∅ then
return IsSafe(q1) ∧ IsSafe(q2);

/* a is an arbitrary constant */

SE2: if [[q]] �= ∅ and
⋂

F∈[[q]] key(F) �= ∅ then

select x ∈ ⋂
F∈[[q]] key(F);

return IsSafe(q[x �→a]);

SE3: if there exists F ∈ q such that key(F) = ∅ �= vars(F) then
select F ∈ q such that key(F) = ∅ �= vars(F);
select x ∈ vars(F);
return IsSafe(q[x �→a]);

if none of the above then
return false;

The recursive rule SE1 applies if q can be partitioned into two subqueries which
have no variables in common. The recursive rule SE2 applies if for some variable
x, all atoms in the complex part of q contain x at some of their primary-key
positions. The recursive rule SE3 applies if all primary-key positions of some
atom are occupied by constants and some non-primary-key position contains a
variable.

A query q ∈ SjfBcq is called safe if Function IsSafe returns true on input
q; otherwise q is unsafe. The following result refines Theorem 4.

Theorem 8 ([24]). For every q ∈ SjfBcq,

1. if q is safe, then �CERTAINTY(q) is in FP; and
2. if q is unsafe, then �CERTAINTY(q) is �P-hard.

We use the following helping lemma.

Lemma 1. For every q ∈ SjfBcq, if q is safe, then CERTAINTY(q) is in FO.

Proof. Let q ∈ SjfBcq such that q is safe. The proof runs by induction on the
execution of Function IsSafe. Some rule among SE0a, SE0b, SE1, SE2, or SE3
must apply to q.

Case SE0a Applies. If q consists of a single fact, then CERTAINTY(q) is obvi-
ously in FO.

78 J. Wijsen

Case SE0b Applies. If [[q]] = ∅, then for any given uncertain database db, we
have that q evaluates to true on every repair of db if and only if q evaluates to
true on db. It follows that CERTAINTY(q) is in FO.

Case SE1 Applies. Let q = q1∪q2 with q1 = ∅ = q2 and vars(q1)∩vars(q2) = ∅.
Since q is safe, q1 and q2 are safe by definition of safety. By the induction hy-
pothesis, there exists a consistent first-order rewriting ϕ1 of q1, and a consistent
first-order rewriting ϕ2 of q2. Obviously, ϕ1∧ϕ2 is a consistent first-order rewrit-
ing of q.

Case SE2 Applies. Assume variable x such that for every F ∈ [[q]] = ∅, x ∈
key(F). We first show that for every uncertain database db, the following are
equivalent:

1. every repair of db satisfies q; and
2. for some constant a, every repair of db satisfies q[x �→a].

2 =⇒ 1 Trivial. 1 =⇒ 2 Proof by contraposition. Assume that for every con-
stant a, there exists a repair repa of db such that repa |= q[x �→a]. Assume with-
out loss of generality that [[q]] = {R1(x,x1,y1), . . . , Rn(x,xn,yn)}. For every
a ∈ adom(db), let rep′

a be the subset of repa that contains each Ri-fact whose
leftmost position is occupied by a, for all 1 ≤ i ≤ n. Let db′ be the subset of db
that contains each fact F whose relation name is not among R1, . . . , Rn. Let rep

′

be a repair of db′. It can now be easily seen that rep′ ∪
(⋃

a∈adom(db) rep
′
a

)
is

a repair of db that falsifies q.
By definition of safety, q[x �→a] is safe. By the induction hypothesis, the problem

CERTAINTY(q[x �→a]) is in FO. Let ϕ be a consistent first-order rewriting of
q[x �→c], where we assume without loss of generality that c is a constant that does
not occur in q. Let ϕ(x) be the first-order formula obtained from ϕ by replacing
each occurrence of c with x. By the equivalence shown in the previous paragraph,
∃xϕ(x) is a consistent first-order rewriting of q.

Case SE3 Applies. Assume F ∈ q such that key(F) = ∅ and vars(F) = ∅.
Let x be a sequence of distinct variables such that vars(x) = vars(F). Let a =
〈a, a, . . . , a〉 be a sequence of length |x|. By definition of safety, q[x�→a] is safe.
By the induction hypothesis, CERTAINTY(q[x �→a]) is in FO. From Lemma 8.6
in [34], it follows that CERTAINTY(q) is in FO. This concludes the proof of
Lemma 1. ��

The proof of Theorem 6 can now be given.

Proof (of Theorem 6). Assume that CERTAINTY(q) is not in FO. By Lemma 1,
q is unsafe. By Theorem 8, �CERTAINTY(q) is �P-hard. ��

	A Survey of the Data Complexity of ConsistentQuery Answering under Key Constraints
	1 Motivation
	2 Preliminaries
	2.1 Data and Query Model
	2.2 Restrictions on Conjunctive Queries
	2.3 Complexity Classes

	3 Consistent First-Order Rewriting
	4 Complexity Dichotomy Theorems
	5 Comparing Complexity Boundaries
	6 Nucleus
	7 Probabilistic Databases
	8 Integrity Constraints on Uncertain Databases
	9 Non-boolean Queries and Implemented Systems
	10 Open Problems
	References
	A Appendix: Proof of Theorem 6

