
Guard Independence

and Constraint-Preserving Snapshot Isolation

Stephen J. Hegner

Ume̊a University, Department of Computing Science
SE-901 87 Ume̊a, Sweden

hegner@cs.umu.se

http://www.cs.umu.se/~hegner

Abstract. A method for detecting potential violations of integrity con-
straints of concurrent transactions running under snapshot isolation (SI)
is presented. In contrast to methods for ensuring full serializability under
snapshot isolation, violations of integrity constraints may be detected
by examining certain read-write interaction of only two transactions
at a time. The method, called constraint-preserving snapshot isolation
(CPSI), thus provides greater isolation than ordinary SI in that results
do not violate any integrity constraints, while requiring substantially less
overhead, and involving fewer false positives, than typical for enhance-
ments to SI which guarantee full serializable isolation.

1 Introduction

Over the course of the past few decades, snapshot isolation (SI) has become
one of the preferred modes of transaction isolation for concurrency control in
database-management systems (DBMSs). In SI, each transaction operates on
its own private copy of the database (its snapshot). To implement commit for
concurrent transactions, the results of these individual snapshots must be inte-
grated. If there is a write conflict; that is, if more than one transaction writes the
same data object, then only one transaction is allowed to commit. The others
must abort if they are not naturally terminated in some other way.

On the one hand, SI avoids many of the update anomalies associated with poli-
cies such as read uncommitted (RU) and read (latest) committed (RC), such as
dirty and nonrepeatable reads, respectively [6, p. 61]. On the other hand, with
the now widespread use of multiversion concurrency control (MVCC), it admits
very efficient implementation, avoiding many of the performance bottlenecks as-
sociated with lock-based rigorous two-phase locking (rigorous 2PL) [4], more
commonly called strong strict two-phase locking (SS2PL) nowadays. Neverthe-
less, it does allow certain types of undesirable behavior which do not occur under
view serialization, such as read and write skew [2].

Because true view serializability [14, Sec. 2.4] is the gold standard for iso-
lation of transactions, there has been substantial recent interest in extending
SI to achieve such true serializablity, the idea being to achieve the desirable

C. Beierle and C. Meghini (Eds.): FoIKS 2014, LNCS 8367, pp. 230–249, 2014.
c© Springer International Publishing Switzerland 2014

Guard Independence and Constraint-Preserving Snapshot Isolation 231

properties of true serializablity while exploiting the efficiency of SI. As a con-
sequence, serializable SI (SSI), has been developed [8,5]. In stark contrast to
SS2PL, SSI is an optimistic approach. On top of standard SI, it looks for
dangerous structures, which are sequences of two consecutive read-write edges
of concurrent transactions in the multiversion conflict graph for the transac-
tions. If such a structure is found, one of the participating transactions is re-
quired to terminate without committing its results. The existence of a dan-
gerous structure in the conflict graph is a necessary condition for the nonse-
rializablity of a set of concurrent transactions under SI, but it is not a suf-
ficient one. Thus, the SSI strategy is subject to false positives. To illustrate,

τ0

τ1 τ2

τi

τi+1τn−1

rw〈d1〉
rw〈d2〉

rw〈di+1〉rw〈d0〉
· · ·

· · ·

Fig. 1. An SI rw-conflict cycle of
length n

let n ≥ 2 be a natural number and let E0 be
a database schema which includes n integer-
valued data objects d0, d1, . . ., dn−1. Let τi
be the transaction which replaces the value of
di with the current value of d(i+1)modn; i.e.,
which executes di←d(i+1)modn. Running the
set T0 = {τi | 0 ≤ i < n} of transactions con-
currently under snapshot isolation results in
a permutation of the values of the di’s, with
the new value of di being the old value of
d(i+1)modn, since each transaction sees the
old values of the di’s in its snapshot. However, no serial schedule of T0 can
produce this permutation result. Indeed, if τi is run first and commits before
any other transaction begins, then the old value of di will be overwritten before
τ(i+1)modn is able to read it. Thus, T0 is not view serializable. Formally, there is
a read-write dependency [8, Def. 2.2] (or antidependency [1, 4.4.2]) from τimodn

to τ(i+1)modn for data object d(i+1)modn; these dependencies are represented
using the multiversion serialization graph or multiversion conflict graph as illus-
trated in Fig. 1. As argued above, (and in general since this graph contains a
cycle [1, Sec. 5.3]), no view serialization is possible. However, if any transaction
is removed from T0, the remaining set is serializable. Indeed, if τi is removed,
then execution in the serial order τi+1τi+2 . . . τn−1τ0τ1 . . . τi−1 is equivalent to
concurrent execution under SI. Thus, for any natural number n, there is a set T
of n transactions whose execution under SI is not equivalent to any serial sched-
ule, but execution of any proper subset of T under SI is equivalent to a serial
execution. In other words, to determine whether a set of n transactions run un-
der SI is view serializable, a test involving all n transactions must be performed.
Since a dangerous structure of SSI [5] involves at most three transactions, the
approach must necessarily involve false positives. Nevertheless, benchmarks re-
ported in [5] are impressive, but of course the transaction mix must be taken
into account. Recently, PostgreSQL, as of version 9.1, became the first widely
used DBMS to put SSI into practice, employing a variant for the implementation
of its serializable isolation level [15].

In Precisely SSI (PSSI) [16], the entire multiversion conflict graph is con-
structed. This avoids virtually all false positives, but may involve a high

232 S.J. Hegner

overhead for transaction mixes involving long cycles, although reported bench-
marks are favorable.

Despite the impressive performance statistics in the benchmark results, and
the recent use in a widely used DBMS, it must be acknowledged that SSI and
PSSI are not appropriate for all application domains. In particular, in any setting
which involves long-running and interactive transactions, a policy for enforcing
isolation which requires frequent aborts and/or waits is highly undesirable. In-
teractive business processes are one such domain, and it is in particular the
context of cooperative transactions within that setting [13,11] which motivated
the work of this paper. The central notion is an augmentation of SI, named
constraint-preserving SI (CPSI), which ensures that all integrity constraints will
be satisfied. It is strictly weaker than SSI, in that nonserializable behavior which
does not result in constraint violation is not ruled out. On the other hand, CPSI
involves only a relatively simple check of a property of the conflict graph which,
at least under one definition, is both necessary and sufficient to guarantee con-
straint satisfaction; that is, it does not produce any false positives. To illustrate,
let E1 be identical to E0, save that the constraint ϕ1 =

∑n−1
i=0 di > 100 · n

is enforced. In concrete terms, think of each di as the balance in a bank ac-
count, and the constraint requiring that the average of the balances must exceed
100. Let T1 = {τ ′i | 0 ≤ i ≤ n − 1} be the set of transactions on E1 with τ ′i
defined by di←di − 1. This is a generalization of the write-skew example of [2].

τ ′
j1 τ ′

j2

rw〈dj2〉

rw〈dj1〉

Fig. 2. An SI rw-
conflict cycle of
length 2

In order to determine whether the update to di will pre-
serve the constraint ϕ1, it is necessary for τ ′i to read every
other d′j . This means that there is a read-write conflict be-
tween any two τj1 , τj2 , as illustrated in Fig. 2. As a specific
example, let M10 be the database which has d0 = 101 and
dj = 100 for 1 ≤ j ≤ n − 1. Then any single transaction
from E1, run in isolation, preserves ϕ1, while the concur-
rent execution under SI of any two distinct members of
E1 does not. The main result of this paper is that this two-element character-
ization holds in general; if a set of transactions running under SI results in a
constraint violation, then there is a two-element subset which has this property
when run on some legal database. This may in fact be further refined if trans-
action reads are separated into those required to verify constraints (called guard
reads) and those required for other reasons. If the multiversion conflict graph is
free of two-element cycles consisting of read-write edges when only writes and
guard reads are considered, then the transactions under consideration cannot
cause a constraint violation when run concurrently under SI, regardless of the
initial database to which the transactions are applied.

Although it may seem unacceptable to allow nonserializable results, this is
in fact done all the time. For reasons of efficiency, lack of true serializability is
routinely accepted with lower levels of isolation, such as RU and RC. On the
other hand, results which violate integrity constraints, even those expressed via
triggers or within application programs, are almost never acceptable. Separat-
ing the two, and providing checks for full serializability only when necessary,

Guard Independence and Constraint-Preserving Snapshot Isolation 233

provides an avenue for much more efficient support for long-running and inter-
active transactions.

2 Schemata, Views, and Updates

Although the ideas surrounding database schemata, views, and updates which
are used in this paper should already be familiar to the reader, the specific nota-
tion and conventions which are used nevertheless need to be spelled out carefully.
While similar in many aspects to those used in previous papers, such as [9], [10],
and [12], the framework employed here also differs in substantial ways. In par-
ticular, database schemata, while still being modelled by their sets of states, are
characterized by both their overall state sets (which need not satisfy the integrity
constraints) and their legal states (which must satisfy the integrity constraints).
Furthermore, for the order and lattice structure of views, the syntactic congru-
ence (on all states, ignoring the integrity constraints) rather than the semantic
congruence (on just the legal states, taking into account equivalences implied
by the integrity constraints), is employed. Therefore, while a notation consistent
with these earlier works has been used wherever possible, it seems best to pro-
vide a self-contained presentation, with an acknowledgment that much has been
drawn from those previous works.

For concepts related to order and lattices, the reader is referred to [7] for
further clarification of notions utilized in this paper.

Summary 2.1 (Database schemata and views). A database schema D is
characterized by two sets: DB(D) is the collection of all databases (or states),
while LDB(D) is the subset of DB(D) consisting of just the legal databases (or
legal states); i.e., those which satisfy the integrity constraints of the schema. In
describing examples, it may be useful to identify explicitly a set Constr(D) of
constraints, with LDB(D) consisting of precisely those members of DB(D) which
satisfy the elements of Constr(D). However, such an explicit representation of
constraints is not essential to the theory.

Given database schemata D1 and D2, a database morphism f : D1 → D2 is a
function f : DB(D1) → DB(D2). The morphism f is semantic if for every M ∈
LDB(D1), f(M) ∈ LDB(D2); i.e., if it maps legal databases to legal databases.
The morphism f is said to be fully surjective if it is semantic, the function
f : DB(D1) → DB(D2) is surjective, and for every M2 ∈ LDB(D2), there is an
M1 ∈ LDB(D1) with f(M1) = M2. In other words, it is fully surjective if it is
surjective as a function on all databases and also when it is restricted to just the
legal databases of both D1 and D2.

A view over the database schema D is a pair Γ = (V, γ) in which V is a
database schema with γ : D → V a fully surjective morphism. The set of all
views on D is denoted Views(D). Full surjectivity is a natural property. By its
very nature, the states (resp. legal states) of a view are determined by the states
(resp. legal states) of the main schema. The notation for states of schemata
extends naturally to views. Given a view Γ = (V, γ), DB(Γ) and LDB(Γ) are
alternate notation for DB(V) and LDB(V) respectively.

234 S.J. Hegner

The syntactic congruence of Γ is SynCongr(Γ) = {(M1,M2) ∈ DB(D) ×
DB(D) | γ(M1) = γ(M2)}. The syntactic preorder �D on Views(D) is defined
by Γ1 �D Γ2 iff SynCongr(Γ2) ⊆ SynCongr(Γ1). The intuitive idea behind this
order is that if Γ1 �D Γ2, then Γ2 preserves at least as much information about
the state of the main schema D as does Γ1.

For Γ1 = (V1, γ1) and Γ2 = (V2, γ2), with Γ2 �D Γ1, Γ2 may be regarded
as a view of Γ1. More precisely, define the relative morphism λ〈Γ1, Γ2〉 : V1 →
V2 to be the unique function λ〈Γ1, Γ2〉 : DB(V1) → DB(V2) which satisfies
λ〈Γ1, Γ2〉 ◦ γ1 = γ2. See [9, Def. 2.3] for a elaboration of this concept.

The identity view 1D of D has schema is D and morphism the identity D →
D. Similarly, a zero view 0D of D has a schema which has only one database,
with the view whose schema is a one element set, with the view morphism sending
every element of DB(D) to the unique element of that set. It is immediate that
for any Γ ∈ Views(D), 0D �D Γ �D 1D .

Summary 2.2 (Updates). An update on D is a pair 〈M1,M2〉 ∈ LDB(D)×
LDB(D). M1 is the current or old state before the update, and M2 is the new
state afterwards. Note that updates always transform legal states to legal states.
The set of all updates on D is denoted Updates(D).

Updates are often identified by name; therefore, it is convenient to have a
shorthand for its components. To this end, if u ∈ Updates(D), then write u(1)

and u(2) for the values of the state before and after the update, respectively; i.e.,
u = 〈u(1), u(2)〉. The composition u1 ◦ u2 of two updates u1, u2 ∈ Updates(D)
is just their composition in the sense of mathematical relations. More precisely,
u1 ◦ u2 = {(M1,M3) | (∃M2 ∈ LDB(D))((M1,M2) ∈ u1 ∧ (M2,M3) ∈ u2)}.

It will also prove useful to be able to select just those updates which apply to
a specific state. For N ∈ LDB(D), define u|N = {u ∈ u | u(1) = N}.

It will sometimes be necessary to map updates from one view to a second,
smaller one. Recall the relative morphism λ〈Γ1, Γ2〉 : V1 → V2 defined in
Summary 2.1 above. Then, for u ∈ Updates(Γ1), define λ〈Γ1, Γ2〉(u) =
〈λ〈Γ1, Γ2〉(u(1)), λ〈Γ1, Γ2〉(u(2))〉, and for u ⊆ Updates(Γ1), define λ〈Γ1, Γ2〉(u) =
{λ〈Γ1, Γ2〉(u) | u ∈ u}. The set u ⊆ Updates(Γ1) is a partial identity on Γ2 if
λ〈Γ1, Γ2〉(u) is a subset of the identity relation on LDB(V2). In this case, it is
said that u holds Γ constant. The single update u ∈ Updates(V1) is a partial
identity on Γ2 if {u} has this property.

Finally the notational conventions which permit view names to be used in
lieu of their components is extended to updates. Specifically, for Γ = (V, γ),
Updates(Γ) will be used as an alternate notation for Updates(V).

Definition 2.3 (Algebras of updateable views). In an investigation of the
interaction of transactions, it is central to be able to model their read-write
interaction; for example, to express succinctly that transaction T1 does or does
not write some data object which T2 reads. Transactions typically read and write
compound data objects (e.g., sets of rows or tuples in the relational context)
rather than just single primitive objects (e.g., single rows or tuples). In order
to express such interaction, it is convenient to model compound data objects as
being built up from simple ones in a systematic way. The natural mathematical

Guard Independence and Constraint-Preserving Snapshot Isolation 235

structure for such a model is the Boolean algebra [7, p. 94]. It is assumed that
the reader is familiar with that notion; only notation will be recalled here. In
the Boolean algebra L = (L,∨,∧, ,�,⊥), L is the underlying set, ∨ and ∧ are
the join and meet operators, respectively, � and ⊥ are the identity and zero
elements, respectively, and is the complement operator, which is written as
an overbar; i.e., the complement of x is x. The join operation induces a partial
order via a ≤ b iff a ∨ b = b, called the underlying partial order. The order with
equality excluded is denoted <. An atom a ∈ L is a minimal element which is
greater than ⊥; i.e., ⊥ < a and for no b ∈ L is it the case that ⊥ < b < a. The
set of all atoms of L is denoted AtomsL. If L is finite, then every a ∈ L has a
unique representation as the join of atoms. In this case, define the basis of a to
be BasisL〈a〉 = {x ∈ AtomsL | x ≤ a} [7, 5.5].

Now, given a database schema D, an algebra of updateable views over D is a
finite Boolean algebra VVV = (V ,∨,∧, ,�,⊥) with V ⊆ Views(D), whose under-
ling partial order is the restriction of �D to V . This requirement on the order
structure has an important consequence. Given a view Γ ∈ V , there is a natural
correspondence between DB(Γ) and {DB(Γ ′) | Γ ′ ∈ BasisV 〈Γ 〉}. Specifically,
each M ∈ DB(Γ) has a unique representation as the set {λ〈Γ, Γ ′〉(M) | Γ ′ ∈
BasisD〈Γ 〉}. There is a bit of notational shorthand, based upon this observation,
which will prove useful. If Γ1 = (V1, γ1), Γ2 = (V2, γ2) ∈ V , with Γ1 ∧ Γ2 = ⊥,
and if M1 ∈ DB(Γ1) and M2 ∈ DB(Γ2), then M1 ∨ M2 ∈ DB(Γ1 ∨ Γ2) de-
notes the unique state with the representation {λ〈Γ, Γ ′〉(M) | Γ ′ ∈ BasisD〈Γ1〉∪
BasisD〈Γ2〉}.

The least element of VVV is formally a zero view 0D , but will frequently be
written as ⊥.

Example 2.4 (The algebra of updateable views of E0 and E1). For
the schema E0 introduced in Sec. 1, let Let Ωdi = (Wdi , ωdi) be the view
which retains just di, discarding all dj for j �= i. Thus, Wdi contains just
the data object di, while the view morphism ωdi : E0 → Wdi retains just di
from DE0 = {dj | 0 ≤ j ≤ n − 1}. {Ωdj | 0 ≤ j ≤ n − 1} forms the set
AtomsVVVE0

of atoms of the algebra VVVE0 = (VE0
,∨,∧, ,�,⊥) of updateable views

associated with E0. Each element of VE0
is of the form

∨
j∈S Ωdj for some

S ⊆ {0, 1, . . . , n− 1}. In other words, the members of VE0
are in bijective corre-

spondence with subsets of DE0 . The zero view corresponds to the empty set ∅,
while the identity view corresponds to the entire set DE0 . Join and meet corre-
spond to union and intersection on {dj | 0 ≤ j ≤ n− 1}, respectively. In short,
VVVE0 = (VE0

,∨,∧, ,�,⊥) is isomorphic to the power-set algebra [7, 4.18(1)] of
DE0 . The algebra for E1 is identical.

Definition 2.5 (The algebra of σ-views of a relational schema). It is
instructive to illustrate the ideas of Definition 2.3 within a framework which
recaptures common usage. Let D be a relational schema, and suppose that row-
level granularity in relational DBMSs, in which the smallest grain of data access
for a transaction is a single row (or tuple or atom), is employed. Let GrAtoms〈D〉
denote the set of all ground atoms of D (tuples not involving variables, the val-
ues for columns/attributes are domain values only). In practice, GrAtoms〈D〉 is

236 S.J. Hegner

always a finite set; this finiteness restriction is assumed to hold here as well.
Further, assume that tuples are tagged with the relations in which they oc-
cur, so that it is not necessary to identify relations explicitly in selections. For
t ∈ GrAtoms〈D〉, define Σt = (Υt, σt) to be the view which selects t from the ap-
propriate relation and discards everything else. DB(Υt) = {∅, {t}}; that is, there
are only two states to the view schema, one representing that t is present in the
main schema, and the other that it is not. On Σt, the only update operations
which are possible are to delete t, to insert t, and to do nothing. The set of all such
selections on a single ground tuple, Σ-GrAtoms〈D〉 = {Σt | t ∈ GrAtoms〈D〉},
forms the set of atoms for the lattice of data objects.

Extending this to compound objects, if S = {t1, t2, . . . , tn} ⊆ GrAtoms〈D〉,
then ΣS = (ΥS , σS) denotes the selection on all of S. The logical operation
connecting the tuples is disjunction; all of the ti’s are selected. A longer but more
descriptive representation might be Σ{t1,t2,...,tn} = (Υ{t1,t2,...,tn}, σt1∨t2∨...∨tn).
The point here is that the view ΣS is the join of a unique set of primitive
selections, namely, {Σti | 1 ≤ i ≤ n}. As a degenerate but nevertheless very
useful case, note also that Σ∅ is a zero view with ∅ as the only view state; no
updates are possible on it.

Define Σ-GrAtoms〈D〉 = {Σt | t ∈ GrAtoms〈D〉}, the set of all selections on
a single ground tuple, and define Σ-Views〈D〉 = {ΣS | S ⊆ Σ-GrAtoms〈D〉}.
Then Σ-GrAtoms〈D〉 is the set of atoms of the lattice of updateable views whose
elements are Σ-Views〈D〉. Join, meet, and complement are given by union, inter-
section, and complement on the underlying sets of tuples: ΣS1 ∨ΣS2 = ΣS1∪S2 ,
ΣS1 ∧ΣS2 = ΣS1∩S2 , and the complement ΣS of ΣS is ΣGrAtoms〈D〉\S .

Notation 2.6 (Notation for views). Views appear frequently in that which
follows, and it is convenient to have a uniform convention for identifying con-
stituent parts. If Γ is the name of a view, possibly with subscripts or other
annotations, then V and γ will be used to denote its schema and morphism,
respectively with the same annotations. Thus, for the views Γ , Γ ′, Γ1, and Γ1,
the full expansions are assumed to be Γ = (V, γ), Γ ′ = (V′, γ′), Γ1 = (V1, γ1),
and Γ1 = (V1, γ1).

Abstract views, as used in definitions and theorems, will always use the (pos-
sibly annotated) Γ = (V, γ) notation. For specific examples, an alternate nota-
tion, using Ω = (W, ω), also with annotations, will be used. In this way, example
views are always clearly distinguished from abstract ones. The same conventions
apply; for example, the full expansion of Ω′

1 is Ω′
1 = (W′

1, ω
′
1).

Notation 2.7 (Some mathematical shorthand). It will often be necessary
to assert that a partial function f is defined on an argument x. The shorthand
f(x) ↓ will be used in this regard. In order to avoid the need to state indepen-
dently that a function is defined on an argument, a statement such as f(x)↓∈ Y
will be used to indicate that both f(x)↓ and f(x) ∈ Y . Similarly, f(x)↑ denotes
that f(x) is undefined on x.

N denotes the set {0, 1, 2, . . .} of natural numbers. For i, j ∈ N, [i, j] denotes
the set {i, i+ 1, . . . , j} of natural numbers between i and j inclusive, while [j, -]

Guard Independence and Constraint-Preserving Snapshot Isolation 237

denotes the set of all natural numbers which are greater than or equal to i. Z
denotes the set of all integers, positive, negative, and zero.

Card(X) denotes the cardinality of the set X .

3 Snapshot Isolation

In this section, an overview of snapshot isolation is presented and the concur-
rency issues surrounding it are summarized. It is assumed that the reader has
a basic understanding of transactions, and in particular serializability, as is pre-
sented in [18], [3], and Chapters 14-15 of the textbook [17].

Summary 3.1 (The transaction model of snapshot isolation). Before
presenting the theory, it is appropriate to sketch the model of snapshot isolation
(hereafter SI) which is used. A transaction performs read and write operations
on data objects. Each transaction has a start time, as well as an end time at
which its writes are committed to the database. Two transactions are concurrent
if the start time of one lies between the start and end times of the other.

In SI, the transaction T always operates on a private copy of the database,
called the snapshot, taken at the start time of the transaction.While it is running,
it does not see updates performed by other transactions, and other transactions
do not see its updates. When T finishes, its updates must be committed to the
global database. Such commits are governed by the first-committer wins (FCW)
rule. If any other transaction T ′ which is concurrent with T , and which has
already committed has written a data object Γ which T has also written, then
T is not allowed to commit.

Summary 3.2 (Variations of SI in practice). In practice, things are not
quite as simple as sketched in Summary 3.1 for at least two reasons. First of
all, the rule for conflict resolution which is used in practice is most often that
which is called first updater wins (FUW). With FUW, if some other concurrent
transaction T ′ writes a data object Γ which T later is to write, then T is blocked
from continuing to operate, even on its private copy, until T ′ commits (in which
case T is aborted) or T ′ aborts (in which case T is allowed to continue). While
FCW and FUW differ in implementation, they are identical in the definition of
a conflict; namely, that concurrent transactions may not both write the same
data object. They furthermore produce identical results when there is no write
conflict. Thus, for a study of conflict and constraint violation, FUW may be
used in lieu of FCW with no loss of generality. It will be used here because it
admits a simpler conceptual model of a transaction which does not involve the
order or points in time at which the transaction performs internal operations on
its private copy.

A second reason why the FCWmodel is somewhat idealistic is that in most im-
plementations of SQL, primary-key and uniqueness constraints are enforced im-
mediately, and unless checking is declared to be deferrable and then deferred,
foreign-key constraints will also be enforced immediately. In this work, which is
of a more foundational nature, this “implementation detail” will be ignored. In

238 S.J. Hegner

any case, for the purposes of this work, integrity constraints include not only the
usual database dependencies (e.g., key and foreign-key dependencies), but also
rules specified in triggers and possibly even application programs. The latter two
are often of central importance in business processes.

4 Constraint Preservation and Its Characterization

Notation 4.1 (Notational conventions). Throughout this section, unless
stated specifically to the contrary, take D to be a database schema and VVV =
(V ,∨,∧, ,�,⊥) a (finite Boolean) algebra of updateable views, as described in
Summary 2.1 and Definition 2.3, respectively.

Definition 4.2 (Updateable objects). It is useful to combine an updateable
view and the updates which may be applied to it into one package. Formally, an
updateable object over VVV is a pair 〈Γ,u〉 with Γ ∈ V and u ⊆ Updates(Γ). The
set of all updateable objects over VVV is denoted UpdObj(VVV).

Call the updateable object 〈Γ,u〉 functional if for any two u1, u2 ∈ u, u(1)

1 =
u(1)

2 implies u(2)

1 = u(2)

2 . Thus, if 〈Γ,u〉 is functional, there is at most one ap-
plicable update in u for each legal state of the associated view. The set of all
functional updateable objects over VVV is denoted FUpdObj(VVV).

The write view of 〈Γ,u〉 is the largest view Γ (w) ∈ V with Γ (w) �D Γ and the
property that for some u ∈ u, λ〈Γ, Γ (w)〉(u(1)) �= λ〈Γ, Γ (w)〉(u(2)). The read-only
view of 〈Γ,u〉 is the largest view Γ (r) ∈ V with Γ (r) �D Γ and the property
that for all u ∈ u, λ〈Γ, Γ (r)〉(u(1)) = λ〈Γ, Γ (r)〉(u(2)). In other words, Γ (r) is the
largest subview on which u is a partial identity. Clearly {Γ (r), Γ (w)} forms a
decomposition of Γ into disjoint components; i.e., Γ (r) ∧ Γ (w) = ⊥ and Γ (r) ∨
Γ (w) = Γ .

For Γ ∈ V with Γ ′ �D Γ , define the projection of 〈Γ,u〉 onto Γ ′ to be the
updateable object ProjΓ ′〈〈Γ,u〉〉 = 〈Γ ′, λ〈Γ, Γ ′〉(u)〉. In general, such a projec-
tion will not be functional, even if 〈Γ,u〉 is. The projection ProjΓ (w)〈〈Γ,u〉〉 is
called the write object of 〈Γ,u〉.

The restriction of the write object of a functional updateable object to a single
database M ∈ LDB(D) is, however, always functional, since there is at most
one update in u which is applicable to M . Formally, define Proj〈Γ ′|M〉〈Γ,u〉 =
〈Γ ′, λ〈Γ, Γ ′〉(u|M)〉.

Recall that 0D is the zero view on D, and let u0D denote the set containing
just one element, the unique (identity) update u0D on the singleton set LDB(0D).
〈0D ,u0D 〉, the unique updateable object of the zero view 0D , is called the zero
object. By itself, this updateable object is uninteresting, since no nontrivial up-
dates are possible, but it will prove to be useful as a tool to assert succinctly
that two views are disjoint (by asserting that their meet in the algebra VVV of
updateable views is the zero view).

Examples 4.3 (Read views and write views). The decomposition of the
view of an updateable object into its write view and its read view is central,
and deserves a closer look. To begin, consider again the schema E0 and the

Guard Independence and Constraint-Preserving Snapshot Isolation 239

set T0 of transactions introduced in Sec. 1, with the corresponding algebra of
updateable views described in Example 2.4. For the update family defined by
τi; i.e., by di ← d(i+1)modn, the associated view is Ωdi ∨ Ωd(i+1) modn

, with Ωdi

the write view and Ωd(i+1) mod n
the read-only view. The family of updates itself

is υdi = {〈(n1, n2), (n2, n2)〉 | n1, n2 ∈ Z}, with a pair (n1, n2) representing the
values for (di, d(i+1)modn). The updateable object is thus 〈Ωdi∨Ωd(i+1) mod n

,υdi〉.
This simple introductory example does not cover all aspects of the framework.

For a more comprehensive examination of the ideas, let E2 be a database schema
which, for a fixed q ∈ [3, -], includes three sets of data objects {x1, x2, . . . , xq},
{y1, y2, . . . , yq}, and {z1, z2, . . . , zq}, governed by the constraints xi + yi ≥ 500
for each i ∈ [1, q]. Assume that each data object takes integer values, and in
concordance with Definition 2.3, regard each xi (resp. yi) as a view Ωxi (resp.
Ωyi).

Fix i ∈ [1, q], and let υxi be the update set on Ωxi defined by xi←xi−100;
more precisely, υxi = {〈n, n−100〉 | n ∈ Z}. Define υyi on Ωyi similarly by
yi ← yi−1−100. The pairs 〈Ωxi ,υxi〉 and 〈Ωyi ,υyi〉 then form the associated
updateable objects. In these simple cases, Ω(w)

xi
= Ωxi and Ω(w)

yi
= Ωyi , with

Ω(r)
xi

= Ω(r)
yi

= ⊥.
Next, consider the update operation xi←xi−zi on the view Ωxi ∨Ωzi . The set

of associated updates is υxizi = {〈(n1, n2), (n1−n2, n2)〉 | n1, n2 ∈ Z}, with n1

and n2 representing the values of xi and yi, respectively. Here (Ωxi ∨Ωz1)
(w)

=
Ωxi and (Ωxi ∨Ωz1)

(r)
= Ωzi . The projection ProjΩxi

〈〈Ωxi∨Ωzi ,υxizi〉〉 = Z×Z,
since any update is possible on xi by choosing the appropriate value for zi. More
interesting is the projection based upon a particular state of the main schema.
Let M22 ∈ LDB(E2) be any legal state with xi = 300, yi = 300, and zi = 100.
Then Proj〈Ωxi

|M22〉〈〈Ωxi ∨Ωzi ,υxizi〉〉 = {〈n, n−100〉 | n ∈ Z}, which is exactly

υxi . The difference is in how they are realized. With 〈Ωxi ,υxi〉, the parameter
100 is fixed in the update object itself, while in Proj〈Ωxi

|M22〉〈〈Ωxi ∨Ωzi ,υxizi〉〉,
the parameter zi is bound to 100 after reading the value of zi from the state
M22. This distinction will prove to be critical, since the parameter zi is used
only internally, by the transaction, to determine which update it is to apply.
From the point of view of constraint satisfaction, it does not matter how that
parameter was obtained; only the update itself matters.

A similar construction applies for the update yi←yi−zi on Ωyi ∨Ωzi .

Definition 4.4 (Lifting for an updateable data object). A central feature
of updates performed by transactions is that they are localized. If u is an update
to be performed on data object Γ , then the changes are made only to the state
of the data object Γ ; the states of atomic data objects not included in Γ remain
fixed. The extension of a set u of updates to a larger environment, with the
environment which is not part of Γ held constant, is called a lifting. Formally,
let 〈Γ,u〉 ∈ FUpdObj(VVV), and let Γ ′ ∈ V with Γ ∧ Γ ′ = ⊥. Define the lifting of
〈Γ,u〉 to Γ ∨ Γ ′ (with constant Γ ′) as

LiftΓ∨Γ ′〈〈Γ,u〉〉 = {(M,u(2) ∨ λ〈Γ ∨ Γ ′, Γ ′〉(M)) |
(M ∈ LDB(Γ ∨ Γ ′)) ∧ (u ∈ u) ∧ λ〈Γ ∨ Γ ′, Γ 〉(M) = u(1)}

240 S.J. Hegner

In parsing this definition, recall the notation shorthand for joining states of
disjoint views introduced near the end of Definition 2.3.

Thus, LiftΓ∨Γ ′〈〈Γ,u〉〉 is a relation on LDB(Γ ∨ Γ ′) × DB(Γ ∨ Γ ′). Since
〈Γ,u〉 is functional, LiftΓ∨Γ ′〈〈Γ,u〉〉 will be a function in the sense that for
any P ∈ LDB(Γ ∨ Γ ′), there is at most one P ′ ∈ DB(Γ ∨ Γ ′) with (P, P ′) ∈
LiftΓ∨Γ ′〈〈Γ,u〉〉. If such a P exists, it will be denoted LiftΓ∨Γ ′〈〈Γ,u〉〉(P). In other
words, LiftΓ∨Γ ′〈〈Γ,u〉〉 may be regard as a partial function on LDB(Γ ∨ Γ ′).

Define CompatΓ∨Γ ′〈〈Γ,u〉〉 to be the set of all legal states of Γ ∨Γ ′ which are
sent to legal states when lifted to Γ ∨ Γ ′ using 〈Γ,u〉. Formally,
CompatΓ∨Γ ′〈〈Γ,u〉〉 = {M ∈ LDB(Γ ∨ Γ ′) | LiftΓ∨Γ ′〈〈Γ,u〉〉(M)↓
∈ LDB(Γ ∨Γ ′)}. This lifting is said to be legal (or allowed) for P ∈ LDB(Γ ∨Γ ′)
if P ∈ CompatΓ∨Γ ′〈〈Γ,u〉〉; otherwise it is illegal (or disallowed).

A special case occurs when Γ ′ = Γ ; i.e., for liftings to the entire main
schema. Recalling that 1D is the identity view on D, define LiftD〈〈Γ,u〉〉 to
be Lift1D〈〈Γ,u〉〉, and define CompatD〈〈Γ,u〉〉 to be Compat1D

〈〈Γ,u〉〉.
Liftings to D will be used to model the internal operation of database trans-

actions, as described in Definition 4.6 below. The transaction must do some-
thing when the lifting is undefined or disallowed. The most useful solution is
to have it perform the identity update; that is, to do nothing. Formally, for
〈Γ,u〉 ∈ UpdObj(VVV) and M ∈ LDB(D), define

Lift+Γ∨Γ ′〈〈Γ,u〉〉 = (LiftΓ∨Γ ′〈〈Γ,u〉〉 ∩ LDB(Γ ∨ Γ ′)× LDB(Γ ∨ Γ ′))
∪ {(M,M) | LiftΓ∨Γ ′〈〈Γ,u〉〉(M)↓�∈ LDB(Γ ∨ Γ ′)}
∪ {(M,M) | LiftΓ∨Γ ′〈〈Γ,u〉〉(M)↑}

and define Lift+D〈〈Γ,u〉〉 to be Lift+1D
〈〈Γ,u〉〉.

Examples 4.5 (Lifting). As a simple example of a lifting, return to the context
of E0, as presented in Sec. 1, Example 2.4, and Examples 4.3. Let i ∈ [0, n− 1],
let i′ = (i + 1)modn, and let J ⊆ [0, n − 1] with Ω′ denoting

∨
j∈J Ωdj

and Ω′′ denoting Ωdi ∨ Ωdi′ . Represent an N ∈ DB(Ω′′ ∨ Ω′) as a tuple in-
dexed by {i, i′} ∪ J in which the element indexed by j is the value of dj . Then
LiftΩ′′∨Ω′〈〈Ω′′,υdi〉〉 consists of those pairs of ({i, i′}∪J)-indexed tuples (N,N ′)
for which πi(N

′) = πi′ (N), and which agree on all indices other than i. In other
words, υdi is extended to component views of the form Ωdj for j ∈ J \ {i, i′} as
the identity update.

To illustrate the interaction of lifting and constraints, in the context E2 of
Examples 4.3, LiftΩxi

∨Ωyi
〈〈Ωxi ,υxi〉〉 = {〈(n1, n2), (n1− 100, n2)〉 | (n1, n2) ∈

Z × Z}, with the tuple (n1, n2) representing the values (xi, yi). The lifting is
allowed if n1 + n2 − 100 ≥ 500, and disallowed otherwise.

Definition 4.6 (Black-box transactions and snapshot isolation). In a
black-box model, the internal operations are hidden. Rather, just the interaction
with the environment is modelled. A particularly simple version of a black-box
model is appropriate for a theoretical study of snapshot isolation (SI). Indeed,
under FCW, as described in Summary 3.1, the internal sequence of read and

Guard Independence and Constraint-Preserving Snapshot Isolation 241

write operations of which a transaction is composed is not of interest. Rather, it
is only the writes which are to be committed which are of relevance for modelling
violations of integrity constraints. Thus, it is appropriate to regard a transaction
under SI as a single update on an input database, taking that database as input
at the beginning of the transaction and delivering an updated version at its end,
a simplification which retains all necessary features for modelling conflicts.

More precisely, a black-box transaction T over V is represented by a pair
〈ΓT ,uT 〉 ∈ FUpdObj(VVV). For an input state M ∈ LDB(D), the output state
is Lift+D〈〈ΓT ,uT 〉〉(M). This defines a total operation on LDB(D); for any in-

put state M , Lift+D〈〈ΓT ,uT 〉〉(M) ∈ LDB(D) as well. The set of all black-box
transactions over VVV is denoted BBTransVVV .

The notation 〈ΓT , uT 〉 will be used throughout the rest of this paper to denote
the update object which underlies the transaction T . No confusion should result,
because transaction names will always take the form of T or τ , possibly with a
prime and/or subscript. Thus, for example, the update object associated with T ′

i

is 〈ΓT ′
i
,uT ′

i
〉. On the other hand, update objects not associated with a transaction

will never use subscripts involving T or τ .

Definition 4.7 (Schedules of transactions under SI). The usual model
of execution for a transaction T employs a start time tStart〈T 〉 and an end time
tEnd〈T 〉. Concurrency properties are then defined in terms of these parameters.
Specifically, two transactions T1 and T2 run serially if tEnd〈T1〉 < tStart〈T2〉 or
tEnd〈T2〉 < tStart〈T1〉, and they run concurrently otherwise. In the theory presented
here, the end time of a transaction is its commit time. As explained in Definition
4.4, a transaction which fails for some reason is modelled as executing the identity
update.

The actual times do not matter; rather, it is only their ordering relative to each
other which is of interest in terms of behavior. To this end, rather than working
with explicit timestamps, an order-based representation will be employed. Let T
be a finite subset of BBTransVVV . Define SCSet〈T〉 = {T s | T ∈ T}∪{T c | T ∈ T},
in which T s and T c represent the relative start and commit times of transaction
T , respectively. A SI-schedule on T is given by a partial order <T on SCSet〈T 〉
with the property that for each T ∈ T, T s < T c. It is important to understand
that T s and T c are just symbols; the representation is only for the relative
times; no numerical values are specified. In translating from a representation with
explicit timestamps, T s

1 <T T s
2 iff tStart〈T1〉 < tStart〈T2〉, T c

1 <T T c
2 iff tEnd〈T1〉 <

tEnd〈T2〉, T s
1 <T T c

2 iff tStart〈T1〉 < tEnd〈T2〉, and T c
1 <T T s

2 iff tEnd〈T1〉 < tStart〈T2〉.
For any T ∈ T, CSPred<T 〈T 〉 denotes the last transaction to commit before

T starts, when it exists. Thus, (CSPred<T 〈T 〉)c <T T s and for no T ′ ∈ T is it
the case that (CSPred<T 〈T 〉)c <T T ′c <T T c.

Similarly, CCPred<T 〈T 〉 denotes the last T ′ ∈ T which commits before T
does, when it exists. Note that both CSPred<T 〈−〉 and CCPred<T 〈−〉 are partial
functions, since some transactions will not have the required predecessors.

For T1, T2 ∈ T, T1 serially precedes T2 if T c
1 <T T s

2 . If neither T1 serially
precedes T2 nor T2 serially precedes T1, then T1 and T2 execute concurrently
and and {T1, T2} is said to form a concurrent pair.

242 S.J. Hegner

A subset S ⊆ T is said to be nonoverlapping if for any T1, T2 ∈ S, Γ (w)

1 ∧
Γ (w)

2 = ⊥. In other words, the write views do not overlap. The schedule <T is
nonoverlapping if every concurrent pair {T1, T2} is nonoverlapping. In the rest
of this paper, schedules will always be taken to be nonoverlapping.

Definition 4.8 (Semantics of SI-schedules). In order to be able to model
the interaction of transactions and to characterize constraint-preserving proper-
ties, it is necessary to have a formal model of the semantics of an SI-schedule;
that is, to have a way of representing the overall behavior of the execution of a
schedule of transactions, given the semantics of each individual transaction as
described in Definition 4.6.

Let T be a finite subset of BBTransVVV and let <T be an SI-schedule for T. For
the execution of <T , three states in LDB(D) are defined for each transaction
T ∈ T+ and each initial state M ∈ LDB(D) for the entire schedule:

InitSnap〈<T :M〉〈T 〉: The initial state which transaction T reads at the beginning
of its execution. In other words, it is the initial snapshot of T .

BeforeCmt〈<T :M〉〈T 〉: The state of the database immediately before T commits.

AfterCmt〈<T :M〉〈T 〉: The state of the database immediately after T commits.

For each initial state M ∈ LDB(D), The semantics are defined in a formal way
as follows:

InitSnap〈<T :M〉〈T 〉 =
{
AfterCmt〈<T :M〉〈CSPred<T 〈T 〉〉 if CSPred<T 〈T 〉↓
M otherwise

BeforeCmt〈<T :M〉〈T 〉 =
{
AfterCmt〈<T :M〉〈CCPred<T 〈T 〉〉 if CSPred<T 〈T 〉↓
M otherwise

AfterCmt〈<T :M〉〈T 〉 =
LiftD〈Proj〈Γ (w)|InitSnap〈<T :M〉〈T 〉〉〈〈Γ,u〉〉〉(BeforeCmt〈<T :M〉〈T 〉)

Less formally, for an initial state M , InitSnap〈<T :M〉〈T 〉 is the state of the
global database just after the last commit operation which occurs before T
starts, or the initial state M in the case that no such commit operation has
occurred. BeforeCmt〈<T :M〉〈T 〉 is the state of the global database just after the
last commit operation which occurs before the commit operation of T . Finally,
AfterCmt〈<T :M〉〈T 〉 is the result of lifting, to BeforeCmt〈<T :M〉〈T 〉, the projection
of the update operation of T onto its write view.

It is important to note that it is only the update to the write view Γ (w)

T , and not
the entire update uT to ΓT , which is lifted upon commit. This is critical because
the read view Γ (r)

T may have been updated by another concurrent transaction.
For example, in the context of Examples 4.3, let τxizi be the transaction whose
update object is 〈Ωx1 ∨Ωzi ,υx1zi〉. It is quite possible that another, concurrent
transaction could write zi after τxizi begins but before it commits. In that case,
lifting the entire update υxizi would not produce the correct result, since the
transaction τxizi does not change the value zi, and should not restore its value
to that when the transaction began. The correct approach, as defined above, is

Guard Independence and Constraint-Preserving Snapshot Isolation 243

to lift only the projection of υxizi onto its write view, for the database state
which τxizi acquired for its snapshot. This uses the value of zi at the beginning
of τxizi , as required, to compute the changes on the write view defined by the
update, and then commits only those changes. The value of zi should not be
written as part of the final update of τxizi .

Returning to the general context, call <T constraint preserving if for every
M ∈ LDB(D) and every T ∈ T, AfterCmt〈<T :M〉〈T 〉 ∈ LDB(D). The goal is to
show how to ensure that <T has this property.

Definition 4.9 (Write-commuting pairs). The key abstract property to
be used in guaranteeing constraint-preserving schedules is write commutativity,
Roughly, two transactions T1 and T2 form a write-commuting pair if whenever
they each may be executed concurrently on a given database state, then they
may be executed serially as well, in either order. However, it is only the updates
on their respective write views, and not the entire update of each transactions,
which must obey this commutativity constraint. Thus, each transaction may
overwrite the read-only view of the other with the two still forming a write-
commuting pair.

Formally, call {T1, T2} ⊆ BBTransVVV a write-commuting pair if it is nonover-
lapping and for any M ∈ LDB(D) and any u1 ∈ Proj〈Γ (w)

1 |M〉〈〈Γ1,u1〉〉 and

u2 ∈ Proj〈Γ (w)
2 |M〉〈〈Γ2,u2〉〉, with both LiftD〈〈Γ (w)

T1
, {u1}〉〉(M)↓ ∈ LDB(D) and

LiftD〈〈Γ (w)

T2
, {u2}〉〉(M)↓ ∈ LDB(D), it is the case that both

LiftD〈〈Γ (w)

T1
, {u1}〉〉 ◦ LiftD〈〈Γ (w)

T2
, {u2}〉〉(M)↓∈ LDB(D) and LiftD〈〈Γ (w)

T2
, {u2}〉〉 ◦

LiftD〈〈Γ (w)

T1
, {u1}〉〉(M)↓∈ LDB(D).

A large class of write-commuting pairs will be identified in Proposition 4.19
below. For now, the key property to observe, which justifies the name, is that
such pairs produce the same result in either order of composition, with the
consequence (Theorem 4.11) that SI schedules are constraint preserving.

Observation 4.10 (Write-commuting pairs produce the same result in
either order). If {T1, T2} is a write-commuting pair, M ∈ LDB(D), and
u1 ∈ Proj〈Γ (w)

1 |M〉〈〈Γ1,u1〉〉, u2 ∈ Proj〈Γ (w)
2 |M〉〈〈Γ2,u2〉〉 with both of the liftings

LiftD〈〈Γ (w)

T1
, {u1}〉〉(M)↓∈ LDB(D) and LiftD〈〈Γ (w)

T2
, {u2}〉〉(M)↓∈ LDB(D), then

LiftD〈〈Γ (w)

T1
, {u1}〉〉 ◦ LiftD〈〈Γ (w)

T2
, {u2}〉〉(M) =

LiftD〈〈Γ (w)

T2
, {u2}〉〉 ◦ LiftD〈〈Γ (w)

T1
, {u1}〉〉(M).

Proof. This is immediate, since the updates are nonoverlapping. As long as both
are defined, they must be the same. �

Theorem 4.11 (Write-commuting concurrent pairs guarantee
constraint-preserving SI-schedules). Let T be a finite subset of BBTransVVV ,
and let <T be an SI-schedule for T. If every concurrent pair of <T is write
commuting, then <T is constraint preserving.

Proof. The proof is by induction on the size of T. For zero or one transaction,
the result is immediate. For the inductive step, let n ∈ N and assume that the

244 S.J. Hegner

result is true whenever Card(T) ≤ n. Then let Card(T) = n + 1 (with n ≥ 1),
and let Tn and Tn+1 be the nth and n + 1st transactions to commit in <T ,
respectively (that is, the penultimate and last transactions to commit). If n ≥ 2,
i.e., if n+ 1 ≥ 3, let Tn−1 be the transaction which commits just before Tn. Let
M ∈ LDB(D) be the initial state for the schedule.

If Tn+1 starts after Tn has committed; that is, the two transactions are not
concurrent, then the result is immediate; there cannot be any constraint viola-
tion with serial transactions which operate correctly in isolation. So, assume
that {Tn, Tn+1} forms a concurrent pair. Let un and un+1 be the updates
which Tn and Tn+1 perform on Γ (w)

n and Γ (w)

n+1, respectively, and let Sn−1 =
T \ {Tn, Tn+1}, Sn = T \ {Tn}, and Sn+1 = T \ {Tn+1}, with <Sn−1

, <Sn , and
<Sn+1

be the schedules obtained by restricting <T to the transactions in Sn−1,
Sn, and Sn+1, respectively. Then by the inductive hypothesis, each of <Sn−1

,

<Sn , and <Sn+1
is constraint preserving. If at least one of Lift+D〈〈Γ (w)

Tn
, {un}〉〉

and Lift+D〈〈Γ (w)

Tn+1
, {un+1}〉〉 is the identity update (for example, if one of the

liftings was not defined or did not result in a legal state), then the corre-
sponding transaction may be removed from <T to obtain one of <Sn or <Sn+1

,
without any change in the semantics, since an identity transaction has no ef-
fect. In that case, the result follows from the inductive hypothesis. So, assume
that both LiftD〈〈Γ (w)

Tn
, {un}〉〉(N)↓ and LiftD〈〈Γ (w)

Tn+1
, {un+1}〉〉(N)↓, with N =

AfterCmt〈<T :M〉〈Tn−1〉 if n ≥ 2 and N = M if n = 1. Then

(LiftD〈〈Γ (w)

Tn
, {un}〉〉 ◦ LiftD〈〈Γ (w)

Tn+1
, {un+1}〉〉)(N)↓ ∈ LDB(D), since by assump-

tion {T1, T2} forms a write commuting pair. However, it is easy to see that in that
case the semantics of re-inserting Tn and Tn+1 into <S is just to perform that
composed update, which establishes that AfterCmt〈<T :M〉〈Tn+1〉 ∈ LDB(D), as
required. �

Definition 4.12 (Guard views and guarded black-box transactions).
The property of write commutativity is an abstract one. A useful, concrete class
of transactions with that property may be obtained via the notion of a guard
for an updateable object 〈Γ,u〉. Such a guard is a view Γ ′ with the property
that if, for a given M ∈ LDB(D) and any u ∈ u, the projection λ〈Γ, Γ (w)〉(u)
of u onto Γ (w) restricted to M may be lifted to D iff it may be lifted to Γ (w) ∨
Γ ′. Thus, a guard view reduces the global test for lifting to all of D to the
much more local test of lifting to just the write view and its guard. Formally,
given 〈Γ,u〉 ∈ FUpdObj(VVV), Γ ′ ∈ V is a guard view for 〈Γ,u〉 if Γ (w) ∧ Γ ′ =
⊥ and for every M ∈ LDB(D), M ∈ CompatD〈〈Γ,u〉〉 iff (γ(w) ∨ γ′)(M) ∈
CompatΓ (w)∨Γ ′〈Proj〈Γ (w)∨Γ ′|M〉〈〈Γ,u〉〉〉. The set of all guard views for 〈Γ,u〉 is
denoted GuardsVVV 〈Γ,u〉.

A guarded black-box transaction is represented by a pair 〈〈Γ,u〉, Γ ′〉 in which
〈Γ,u〉 ∈ FUpdObj(V) and Γ ′ ∈ V is a guard for 〈Γ,u〉. It is convenient to have
a notation for guarded black-box transactions which extends that of Definition
4.6. To that end, if T is such a transaction, then its guard will be denoted
Γ (g)

T . Thus, T is represented by 〈〈ΓT ,uT 〉, Γ (g)

T 〉. The set of all guarded black-box
transactions over V is denoted GBBTransVVV .

Guard Independence and Constraint-Preserving Snapshot Isolation 245

Examples 4.13 (Guards). Returning to the context E2 of Examples 4.3, a
guard for 〈Ωxi ,υxi〉 is Ωyi . Indeed, to verify that an update to xi is legal, only
the value of yi need be checked; the state of the rest of the database is irrelevant.
Similarly, a guard for 〈Ωyi ,υyi〉 is Ωxi . It is only the write view of an update,
and not its read-only view, which affects the definition of a guard. Thus, a guard
of 〈Ωxi ∨Ωzi ,υxizi〉 is Ωyi , and a guard of 〈Ωyi ∨Ωzi ,υyizi〉 is Ωxi .

The guard view need not be disjoint from the read-only view. For example,
given the update set υxiyi on Ωxi ∨Ωyi defined by the update rule xi←xi−yi,
the view Ωyi is a guard for 〈Ωxi ∨Ωyi ,υxiyi〉. However, Ω(r)

xiyi
= Ωyi as well, so

the guard and the read-only view are the same in this case.

Observation 4.14 (Guards always exist). Given 〈Γ,u〉 ∈ UpdObj(V), the
complement Γ (w) of the associated write view is always a guard view for Γ . Thus,
every updateable object has a guard. �

Definition 4.15 (Minimal and least guards). Let 〈Γ,u〉 ∈ FUpdObj(VVV).
Then Γ ′ ∈ GuardsVVV 〈Γ,u〉 is is a minimal guard view for 〈Γ,u〉 if for any guard
Γ ′′ for 〈Γ,u〉, if Γ ′′ �D Γ ′, then Γ ′′ = Γ ′. A unique minimal guard view is least.

It is always desirable to choose a minimal guard, because it will be the inde-
pendence of the guard view of one transaction from the write view of another
which will prove to be the critical property in characterizing schedules which are
constraint preserving.

Example 4.16 (Least guards need not exist). While a minimal guard may
always be chosen, it is not the case that least guards always exist. For example,
if the constraint yi = zi is added to the schema E2 of Examples 4.3, then
both Ωyi and Ωzi are guards for 〈Ωxi ,υxi〉. Of course, these are effectively the
same. In general, it can be shown that the choice of a minimal guard does not
matter. Roughly, the reason is that if a transaction T1 writes a guard of another
transaction T2 in way which affects which updates T2 may perform legally, then
it must write all guards of T2. Otherwise, some guards would allow updates
which others would not, which is not consistent with the definition of guard.

Definition 4.17 (Independent and conflicting pairs of guarded trans-
actions). Two transactions are guard independent if at least one does not write
the guard of the other. In other words, they do not each have a read-write depen-
dency on the other, with respect to reading the guard view only. More formally,
the two element set {T1, T2} ⊆ GBBTransVVV forms a guard-independent pair if
{T1, T2} is nonoverlapping and at least one of Γ (w)

T2
∧Γ (g)

T1
= ⊥ and Γ (w)

T1
∧Γ (g)

T2
= ⊥

holds. A pair {T1, T2} which is not guard independent is guard-conflicting, and
T1 and T2 are then said to be in guard conflict with each other.

Examples 4.18 (Independent and conflicting pairs). Continuing with
Examples 4.13, {τxi , τyi} form a guard-conflicting pair, since each reads the
guard of the other. On the other hand, for distinct i and j, τxi and τxj are
guard independent, since neither writes the guard of the other. To illustrate the
interesting middle ground, define τx′

i
to be the transaction on Ωxi which imple-

ments the update rule xi←xi + 50. Then {τx′
i
, τyi} forms a guard independent

246 S.J. Hegner

pair, since the least guard of τx′
i
is ⊥; i.e., its update is always legal. As will be

shown next, guard independence implies write commutativity, and this example
illustrates the intuition behind this. Even though τx′

i
writes the guard of τyi ,

which is Ωxi itself, it does so in a “harmless” way. Because τx′
i
does not read yi,

it cannot make any updates whose legality depends upon the value of yi.

Proposition 4.19 (Guard independence ⇒ write commutativity). Ev-
ery {T1, T2} ∈ GBBTransVVV which is guard independent forms a write-commuting
pair.

Proof. Let {T1, T2} ⊆ GBBTransVVV . Without loss of generality, assume that
Γ (w)

T2
∧ Γ (g)

T1
= ⊥. Let M ∈ LDB(D) and let any u1 ∈ Proj〈Γ (w)

1 |M〉〈〈Γ1,u1〉〉,
u2 ∈ Proj〈Γ (w)

2 |M〉〈〈Γ2,u2〉〉, with both LiftD〈〈Γ (w)

T1
, {u1}〉〉(M)↓ ∈ LDB(D) and

LiftD〈〈Γ (w)

T2
, {u2}〉〉(M)↓ ∈ LDB(D). It is immediate that LiftD〈〈Γ (w)

T2
, {u2}〉〉 ◦

LiftD〈〈Γ (w)

T1
, {u1}〉〉(M)↓∈ LDB(D), since {T1, T2} is nonoverlapping and T2 does

not write the guard of T1, so the update which T2 performs does not affect the
legality of the update which T1 performs.

For the opposite direction, first note that it is the case that
LiftD〈〈Γ (w)

T1
, {u1}〉〉 ◦ LiftD〈〈Γ (w)

T2
, {u2}〉〉(M) ↓∈ DB(D) since the write views are

nonoverlapping; i.e., Γ (w)

1 ∧ Γ (w)

2 = ⊥. The only question is whether the result is
in LDB(D). However, again since Γ (w)

1 ∧Γ (w)

2 = ⊥, the two compositions must be
identical; i.e., LiftD〈〈Γ (w)

T1
, {u1}〉〉 ◦ LiftD〈〈Γ (w)

T2
, {u2}〉〉(M) = LiftD〈〈Γ (w)

T2
, {u2}〉〉 ◦

LiftD〈〈Γ (w)

T1
, {u1}〉〉(M). This shows that the composition LiftD〈〈Γ (w)

T1
, {u1}〉〉 ◦

LiftD〈〈Γ (w)

T2
, {u2}〉〉(M) ∈ LDB(D), as required. Hence {T1, T2} forms a write

commuting pair. �

The main theorem of this paper may now be established.

Theorem 4.20 (Guard independence guarantees constraint preserva-
tion). Let T be a finite subset of GBBTransVVV , and let <T be an SI-schedule for
T. If every concurrent pair of <T is guard independent, then <T is constraint
preserving.

Proof. The proof follows immediately from Theorem 4.11 and Proposition
4.19. �

Discussion 4.21 (Constraint-Preserving Snapshot Isolation (CPSI)).

In an SI-schedule <T , there is an rw-dependency from T1 to T2, written T1
rw−→

T2, if T2 writes the read set of T1. Within the context of the formalism of this
paper, this translates to Γ (w)

T1
∧ (Γ (r)

T2
∨ Γ (g)

T2
) �= ⊥, since to operate correctly,

a transaction T must read both its update view ΓT (in order to know which
update to execute) and its guard view Γ (g)

T (in order to determine whether that
update is legal). In the implementation of SSI, as described in [5], the critical
notion is the dangerous structure, which consists of two consecutive read-write
dependencies of concurrent pairs in the conflict graph; that is, two dependencies
of the form T1

rw−→ T2 and T2
rw−→ T3 with {T1, T2} and {T2, T3} concurrent pairs.

The absence of such a pair of dependencies is sufficient, but not necessary, for

Guard Independence and Constraint-Preserving Snapshot Isolation 247

an SI-schedule to be serializable. Necessity requires that it be part of a cycle in
the conflict graph. Working with this same model, the results of this paper show
that for such a dangerous structure to lead to a constraint violation, it must
be the case that T1 = T3. Thus, a much simpler test suffices if only constraint
violation is to be flagged.

An approach with fewer false positives may be obtained by working only with
guard reads. More precisely, say that there is a gw-dependency from T1 to T2

if T2 writes the guard of T1; i.e., Γ (w)

2 ∧ Γ (g)

T1
�= ⊥, and write T1

gw−→ T2 to
denote this. Call {T1, T2} a dangerous gw-pair if it forms a concurrent pair for

which both T1
gw−→ T2 and T2

gw−→ T1 hold. Theorem 4.20 guarantees that an SI-
schedule will be constraint preserving in the absence of such pairs. This strategy,
called constraint-preserving snapshot isolation (CPSI), has false positives only
to the extent that two transactions could each write the guard of the other
without causing a constraint violation. This is of course possible, but the general
assumption in transaction management is that the manager only knows which
objects are read and written, not how they are written or how the writes are
used. With that understanding, there would be no false positives, since there is
always some update to the guard which would cause a constraint violation.

A correct implementation would of course require that the system be able to
identify which reads of a transaction are to the guard. This could be done, for
example, in a context of fixed transactions for business processes by having such
guards known to the transaction manager.

Example 4.22 (Dangerous structures which do not result in constraint
violations). To illustrate the ways that the multiversion conflict graph may con-
tain dangerous structures yet be free of dangerous gw-pairs, return to the context
of E2, as described in Examples 4.3, and consider three concurrent transactions:
τ1 operates on Ωx1 ∨Ωx2 via the rule x1←x1 −x2, τ2 operates on Ωx1 ∨Ωx2 via
the rule x2←x2 − x1, and τ3 operates on Ωx2 ∨Ωy1 via the rule y1←y1 + |x2|.
It is assumed that each transaction performs the given update if it would not
result in a constraint violation (when run in isolation), and performs the identity
update otherwise. The multiversion conflict graph for these three transactions
is shown in Fig. 3. Note in particular that although τ3 reads x2, it uses only its
absolute value in the computation of the new value for y1, and so Ωx2 is not in
its guard.

Observe that this graph contains two cycles. The first, between τ1 and τ2,
involves only rw-edges. The second, between τ2 and τ3, involves one gw-edge and
one rw-edge. Although both of these cycles define dangerous structures, as do the

sequences τ1
rw−→ τ2

gw−→ τ3 and τ3
rw−→ τ2

rw−→ τ1, none represents a dangerous
gw-pair. Since a constraint violation can occur only if there is a (two-vertex)
cycle consisting of gw-edges, no constraint violation is possible when running
under SI, provided that each transaction individually respects all constraints.
even though the result need not be serializable. Thus, while SSI and even PSSI
would force at least one of these transactions to terminate, with CPSI all may
run to completion.

248 S.J. Hegner

τ1 τ2 τ3

rw〈x1〉

rw〈x1〉

gw〈y1〉

rw〈y1〉

Fig. 3. An SI conflict graph with dangerous structures but no dangerous gw-pairs

5 Conclusions and Further Directions

A method for identifying conflicts leading to violations of integrity constraints
in transactions whose concurrency is governed by snapshot isolation has been
presented. In contrast to methods for ensuring full serializability, the method of
identification involves only pairs of transactions, and may be tested fully. without
concern for false positives. It promises to have application in settings in which
aborting and or delaying the execution of transactions is not a viable option.

There are several key areas for further work on this subject.

Strategies for revising transactions: The motivation for this work arose
from earlier studies on cooperative updates [13,11]. The focus there is partic-
ularly upon interactive, long-running business processes in which abort and
restart for transactions is not an option. Rather, the best strategy in such set-
tings would seem to be to identify methods for cooperative revision of updates
in the case of conflict. The current work is constitutes a substantial step in
that direction, in that the conflicts which are considered are between pairs of
transactions, rather than large sets. The goal of exploiting the current work in
that context is a subject for further study.

Integration with work on independence and overlap: In [10], the
foundations for a theory of structured data objects for transactions is devel-
oped. These structured objects have both writeable parts and read-only parts,
with the read-only parts allowed to overlap, even for writeable objects. As that
work was also motivated by work on cooperative updates, an integration of
those results with the ideas of this paper would likely prove a fruitful area for
study.

References

1. Adya, A., Liskov, B., O’Neil, P.E.: Generalized isolation level definitions. In: Lomet,
D.B., Weikum, G. (eds.) Proceedings of the 16th International Conference on Data
Engineering, San Diego, California, USA, February 28-March 3, pp. 67–78 (2000)

2. Berenson, H., Bernstein, P.A., Gray, J., Melton, J., O’Neil, E.J., O’Neil, P.E.: A
critique of ANSI SQL isolation levels. In: Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data, San Jose, California, May 22-25,
pp. 1–10 (1995)

3. Bernstein, P., Newcomer, E.: Principles of Transaction Processing, 2nd edn. Mor-
gan Kaufmann (2009)

Guard Independence and Constraint-Preserving Snapshot Isolation 249

4. Breitbart, Y., Georgakopoulos, D., Rusinkiewicz, M., Silberschatz, A.: On rigorous
transaction scheduling. IEEE Trans. Software Eng. 17(9), 954–960 (1991)

5. Cahill, M.J., Röhm, U., Fekete, A.D.: Serializable isolation for snapshot databases.
ACM Trans. Database Syst. 34(4) (2009)

6. Date, C.J.: A Guide to the SQL Standard. Addison-Wesley (1997); (with Hugh
Darwen)

7. Davey, B.A., Priestly, H.A.: Introduction to Lattices and Order, 2nd edn. Cam-
bridge University Press (2002)

8. Fekete, A., Liarokapis, D., O’Neil, E.J., O’Neil, P.E., Shasha, D.: Making snapshot
isolation serializable. ACM Trans. Database Syst. 30(2), 492–528 (2005)

9. Hegner, S.J.: An order-based theory of updates for closed database views. Ann.
Math. Art. Intell. 40, 63–125 (2004)

10. Hegner, S.J.: A model of independence and overlap for transactions on database
schemata. In: Catania, B., Ivanović, M., Thalheim, B. (eds.) ADBIS 2010. LNCS,
vol. 6295, pp. 204–218. Springer, Heidelberg (2010)

11. Hegner, S.J.: A simple model of negotiation for cooperative updates on database
schema components. In: Kiyoki, Y., Tokuda, T., Heimbrger, A., Jaakkola, H.,
Yoshida, N. (eds.) Frontiers in Artificial Intelligence and Applications XX 2011,
pp. 154–173. IOS Press (2011)

12. Hegner, S.J.: Invariance properties of the constant-complement view-update strat-
egy. In: Schewe, K.-D., Thalheim, B. (eds.) SDKB 2011. LNCS, vol. 7693, pp.
118–148. Springer, Heidelberg (2013)

13. Hegner, S.J., Schmidt, P.: Update support for database views via cooperation. In:
Ioannidis, Y., Novikov, B., Rachev, B. (eds.) ADBIS 2007. LNCS, vol. 4690, pp.
98–113. Springer, Heidelberg (2007)

14. Papadimitriou, C.: The Theory of Database Concurrency Control. Computer Sci-
ence Press (1986)

15. Ports, D.R.K., Grittner, K.: Serializable snapshot isolation in PostgreSQL. Proc.
VLDB Endowment 5(12), 1850–1861 (2012)

16. Revilak, S., O’Neil, P.E., O’Neil, E.J.: Precisely serializable snapshot isolation
(PSSI). In: Proceedings of the 27th International Conference on Data Engineering,
ICDE 2011, Hannover, Germany, April 11-16, pp. 482–493 (2011)

17. Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts, 6th edn.
McGraw Hill (2011)

18. Weikum, G., Vossen, G.: Transactional Information Systems. Morgan Kaufmann
(2002)

	Guard Independence
and Constraint-Preserving Snapshot Isolation

	1 Introduction
	2 Schemata, Views, and Updates
	3 Snapshot Isolation
	4 Constraint Preservation and Its Characterization
	5 Conclusions and Further Directions
	References

