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Preface

This volume contains the articles that were presented at the 8th International
Symposium on Foundations of Information and Knowledge Systems (FoIKS
2014), which was held in Bordeaux, France, March 3–7, 2014.

The FoIKS symposia provide a biennial forum for presenting and discussing
theoretical and applied research on information and knowledge systems. The goal
is to bring together researchers with an interest in this subject, share research
experiences, promote collaboration, and identify new issues and directions for
future research.

FoIKS 2014 solicited original contributions on foundational aspects of in-
formation and knowledge systems. This included submissions that apply ideas,
theories, or methods from specific disciplines to information and knowledge sys-
tems. Examples of such disciplines are discrete mathematics, logic and algebra,
model theory, information theory, complexity theory, algorithmics and compu-
tation, statistics, and optimization.

Previous FoIKS symposia were held in Kiel (Germany) in 2012, in Sofia (Bul-
garia) in 2010, Pisa (Italy) in 2008, Budapest (Hungary) in 2006, Vienna (Aus-
tria) in 2004, Schloss Salzau near Kiel (Germany) in 2002, and Burg/Spreewald
near Berlin (Germany) in 2000. FoIKS took up the tradition of the conference
series Mathematical Fundamentals of Database Systems (MFDBS), which initi-
ated East – West collaboration in the field of database theory. Former MFDBS
conferences were held in Rostock (Germany) in 1991, Visegrad (Hungary) in
1989, and Dresden (Germany) in 1987.

The FoIKS symposia are a forum for intense discussions. Speakers are given
sufficient time to present their ideas and results within the larger context of
their research. Furthermore, participants are asked in advance to prepare a first
response to a contribution of another author in order to initiate discussion.

Suggested topics for FoIKS 2014 included, but were not limited to:

– Database Design: formal models, dependencies and independencies
– Dynamics of Information: models of transactions, concurrency control, up-

dates, consistency preservation, belief revision
– Information Fusion: heterogeneity, views, schema dominance, multiple source

information merging, reasoning under inconsistency
– Integrity and Constraint Management: verification, validation, consistent

query answering, information cleaning
– Intelligent Agents: multi-agent systems, autonomous agents, foundations of

software agents, cooperative agents, formal models of interactions, logical
models of emotions

– Knowledge Discovery and Information Retrieval: machine learning, data
mining, formal concept analysis and association rules, text mining, infor-
mation extraction
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– Knowledge Representation, Reasoning and Planning: non-monotonic for-
malisms, probabilistic and non-probabilistic models of uncertainty, graphical
models and independence, similarity-based reasoning, preference modeling
and handling, argumentation systems

– Logics in Databases and AI: classical and non-classical logics, logic program-
ming, description logic, spatial and temporal logics, probability logic, fuzzy
logic

– Mathematical Foundations: discrete structures and algorithms, graphs, gram-
mars, automata, abstract machines, finite model theory, information theory,
coding theory, complexity theory, randomness

– Security in Information and Knowledge Systems: identity theft, privacy,
trust, intrusion detection, access control, inference control, secure Web ser-
vices, secure Semantic Web, risk management

– Semi-Structured Data and XML: data modeling, data processing, data com-
pression, data exchange

– Social Computing: collective intelligence and self-organizing knowledge, col-
laborative filtering, computational social choice, Boolean games, coalition
formation, reputation systems

– The Semantic Web and KnowledgeManagement: languages, ontologies, agents,
adaptation, intelligent algorithms

– The WWW: models of Web databases, Web dynamics, Web services, Web
transactions and negotiations

The call for papers resulted in the submission of 52 full articles. In a rigorous
reviewing process, each submitted article was reviewed by at least three inter-
national experts. The 14 articles judged best by the Program Committee were
accepted for long presentation. In addition, five articles were accepted for short
presentation. This volume contains versions of these articles that were revised
by their authors according to the comments provided in the reviews. After the
conference, authors of a few selected articles were asked to prepare extended
versions of their articles for publication in a special issue of the journal Annals
of Mathematics and Artificial Intelligence.

We wish to thank all authors who submitted papers and all conference par-
ticipants for fruitful discussions. We are grateful to Dov Gabbay, Cyril Gavoille,
and Jeff Wijsen, who presented invited talks at the conference; this volume also
contains articles for two of the three invited talks. We would like to thank the
Program Committee members and additional reviewers for their timely exper-
tise in carefully reviewing the submissions. We want to thank Markus Kirchberg
for his work as publicity chair. The support of the conference provided by the
European Association for Theoretical Computer Science (EATCS) and by CPU
LABEX of the University of Bordeaux is greatfully acknowledged. Special thanks
go to Sofian Maabout and his team for being our hosts and for the wonderful
days in Bordeaux.

March 2014 Christoph Beierle
Carlo Meghini



Conference Organization

FoIKS 2014 was organized by the University of Bordeaux, France.

Program Committee Chairs

Christoph Beierle University of Hagen, Germany
Carlo Meghini ISTI-CNR Pisa, Italy

Program Committee

José Júlio Alferes Universidade Nova de Lisboa, Portugal
Leila Amgoud University of Toulouse, France
Peter Baumgartner NICTA and The Australian National University
Salem Benferhat Université d’Artois, Lens, France
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Attila Sali Alfréd Rényi Institute, Hungarian Academy of

Sciences, Hungary
Francesco Scarcello University of Calabria, Italy
Klaus-Dieter Schewe Software Competence Center Hagenberg,

Austria
Dietmar Seipel University of Würzburg, Germany
Nematollaah Shiri Concordia University, Montreal, Canada
Gerardo I. Simari University of Oxford, UK
Guillermo Ricardo Simari Universidad Nacional del Sur, Argentina
Nicolas Spyratos University of Paris-South, France
Umberto Straccia ISTI-CNR Pisa, Italy
Letizia Tanca Politecnico di Milano, Italy
Bernhard Thalheim University of Kiel, Germany
Alex Thomo University of Victoria, Canada
Miroslaw Truszczynski University of Kentucky, USA



Conference Organization IX
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The Equational Approach to Contrary-to-duty

Obligations

Dov M. Gabbay

Bar-Ilan University, Ramat-Gan, Israel
King’s College London, London, UK

University of Luxembourg, Luxembourg

We apply the equational approach to logic to define numerical equational seman-
tics and consequence relations for contrary to duty obligations, thus avoiding
some of the traditional known paradoxes in this area. We also discuss the con-
nection with abstract argumentation theory. Makinson and Torre’s input output
logic and Governatori and Rotolo’s logic of violation.



Data Structures for Emergency Planing

Cyril Gavoille

LaBRI - University of Bordeaux, Bordeaux, France

We present in this talk different techniques for quickly answer graph problems
where some of the nodes may be turn off. Typical graph problems are such as
connectivity or distances between pair of nodes but not only. Emergency plan-
ing for such problems is achieved by pre-processing the graphs and by virtually
preventing all possible subsequent node removals. To obtain efficient data struc-
tures, the idea is to attach very little and localized information to nodes of the
input graph so that queries can be solved using solely on these information.
Contexts and solutions for several problems will be surveyed.



A Survey of the Data Complexity of Consistent

Query Answering under Key Constraints

Jef Wijsen

Université de Mons, Mons, Belgium

This talk adopts a very elementary representation of uncertainty. A relational
database is called uncertain if it can violate primary key constraints. A repair
of an uncertain database is obtained by selecting a maximal number of tuples
without selecting two distinct tuples of the same relation that agree on their
primary key. For any Boolean query q, CERTAINTY(q) is the problem that takes
an uncertain database db on input, and asks whether q is true in every repair
of db. The complexity of these problems has been particularly studied for q
ranging over the class of Boolean conjunctive queries. A research challenge is
to solve the following complexity classification task: given q, determine whether
CERTAINTY(q) belongs to complexity classes FO, P, or coNP-complete.

The counting variant of CERTAINTY(q), denoted �CERTAINTY(q), asks to
determine the exact number of repairs that satisfy q. This problem is related to
query answering in probabilistic databases.

This talk motivates the problems CERTAINTY(q) and �CERTAINTY(q), sur-
veys the progress made in the study of their complexity, and lists open problems.
We also show a new result comparing complexity boundaries of both problems
with one another.
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The Equational Approach
to Contrary-to-duty Obligations

Dov M. Gabbay

Bar-Ilan University, Ramat-Gan, Israel
King’s College London, London, UK

University of Luxembourg, Luxembourg

Abstract. We apply the equational approach to logic to define numerical equa-
tional semantics and consequence relations for contrary to duty obligations, thus
avoiding some of the traditional known paradoxes in this area. We also discuss
the connection with abstract argumentation theory. Makinson and Torre’s input
output logic and Governatori and Rotolo’s logic of violation.

1 Methodological Orientation

This paper gives equational semantics to contrary to duty obligations (CTDs) and thus
avoids some of the known CTD paradoxes. The paper’s innovation is on three fronts.

1. Extend the equational approach from classical logic and from argumentation [1,2]
to deontic modal logic and contrary to duty obligations [5].

2. Solve some of the known CTD paradoxes by providing numerical equational
semantics and consequence relation to CTD obligation sets.

3. Have a better understanding of argumentation semantics.

Our starting point in this section is classical propositional logic, a quite familiar logic
to all readers. We give it equational semantics and define equational consequence rela-
tion. This will explain the methodology and concepts behind our approach and prepare
us to address CTD obligations. We then, in Section 2, present some theory and problems
of CTD obligations and intuitively explain how we use equations to represent CTD sets.

Section 3 deals with technical definitions and discussions of the equational approach
to CTD obligations, Section 4 compares with input output logic, Section 5 compares
with the logic of violation and and we conclude in Section 6 with general discussion
and future research.

Let us begin.

1.1 Discussion and Examples

Definition 1. Classical propositional logic has the language of a set of atomic propo-
sitions Q (which we assume to be finite for our purposes) and the connectives ¬ and ∧.
A classical model is an assignment h : Q �→ {0, 1}. h can be extended to all wffs by the
following clauses:

C. Beierle and C. Meghini (Eds.): FoIKS 2014, LNCS 8367, pp. 1–61, 2014.
c© Springer International Publishing Switzerland 2014



2 D.M. Gabbay

– h(A ∧B) = 1 iff h(A) = h(B) = 1
– h(¬A) = 1− h(A)

The set of tautologies are all wffs A such that for all assignments h, h(A) = 1.
The other connectives can be defined as usual

a→ b = def. ¬(a ∧ ¬b)
a ∨ b = ¬a→ b = ¬(¬a ∧ ¬b)

Definition 2.

1. A numerical conjunction is a binary functionμ(x, y) from [0, 1]2 �→ [0, 1] satisfying
the following conditions
(a) μ is associative and commutative

μ(x, μ(y, z)) = μ(μ(x, y), z)
μ(x, y) = μ(y, x)

(b) μ(x, 1) = x
(c) x < 1⇒ μ(x, y) < 1
(d) μ(x, y) = 1⇒ x = y = 1
(e) μ(x, 0) = 0
(f) μ(x, y) = 0⇒ x = 0 or y = 0

2. We give two examples of a numerical conjunction

n(x, y) = min(x, y)

m(x, y) = xy

For more such functions see the Wikipedia entry on t-norms [9]. However, not all
t-norms satisfy condition (f) above.

Definition 3.

1. Given a numerical conjunction μ, we can define the following numerical (fuzzy)
version of classical logic.
(a) An assignment is any function h from wff into [0, 1].
(b) h can be extended to hμ defined for any formula by using μ by the following

clauses:
– hμ(A ∧B) = μ(hμ(A),hμ(B))
– hμ(¬A) = 1− hμ(A)

2. We call μ-tautologies all wffs A such that for all h, hμ(A) = 1.

Remark 1. Note that on {0, 1}, hμ is the same as h. In other words, if we assign to the
atoms value in {0, 1}, then hμ(A) ∈ {0, 1} for any A. This is why we also refer to μ as
“semantics”.

The difference in such cases is in solving equations, and the values they give to the
variables 0 < x < 1.

Consider the equation arising from (x→ x)↔ ¬(x→ x). We want

hm(x→ x) = hm(¬(x→ x))
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We get
(1−m(x))m(x) = [1−m(x) · (1−m(x))]

or equivalently
m(x)2 −m(x) + 1

2 = 0.

Which is the same as

(m(x)− 1
2 )

2 +
1

4
= 0.

There is no real numbers solution to this equation.
However, if we use the n semantics we get

hn(x→ x) = hn(¬(x→ x))

or
min(n(x), (1 − n(x)) = 1−min(n(x), 1 − n(x))

n(x) = 1
2 is a solution.

Note that if we allow n to give values to the atoms in {0, 12 , 1}, then all formulas A
will continue to get values in {0, 12 , 1}. I.e. {0, 12 , 1} is closed under the function n, and
the function ν(x) = 1− x.

Also all equations with n can be solved in {0, 12 , 1}.
This is not the case for m. Consider for the example the the equation corresponding

to x ≡ x ∧ . . . ∧ x, (n+ 1 times).
The equation is x = xn+1. We have the solutions x = 0, x = 1 and all roots of unity

of xn = 1.

Definition 4. Let I be a set of real numbers {0, 1} ⊆ I ⊆ [0, 1]. Let μ be a semantics.
We say that I supports μ iff the following holds:

1. For any x, y ∈ I , μ(x, y) and ν(x) = 1− x are also in I .
2. By a μ expression we mean the following

(a) x is a μ expression, for x atomic
(b) If X and Y are μ expressions then so are ν(X) = (1 −X) and μ(X,Y )

3. We require that any equation of the form E1 = E2, where E1 and E2 are μ expres-
sions has a solution in I , if it is at all solvable in the real numbers.

Remark 2. Note that it may look like we are doing fuzzy logic, with numerical conjunc-
tions instead of t-norms. It looks like we are taking the set of values {0, 1} ⊆ I ⊆ [0, 1]
and allowing for assignments h from the atoms into I and assuming that I is closed
under the application of μ and ν(x). For μ = n, we do indeed get a three valued fuzzy
logic with the following truth table, Figure 1.

Note that we get the same system only because our requirement for solving equations
is also supported by {0, 12 , 1} for n.

The case for m is different. The values we need are all solutions of all possible
equations. It is not the case that we choose a set I of truth values and close under m,
and ν.

It is the case of identifying the set of zeros of certain polynomials (the polynomials
arising from equations). This is an algebraic geometry exercise.
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A B ¬A A ∧B A ∨B A → B

0 0 1 0 0 1

0 1
2

1 0 1
2

1

0 1 1 0 1 1
1
2

0 1
2

0 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1 1
2

1
2

1 1

1 0 0 0 1 0

1 1
2

0 1
2

1 1
2

1 1 0 1 1 1

Fig. 1.

Remark 3. The equational approach allows us to model what is considered traditionally
inconsistent theories, if we are prepared to go beyond {0, 1} values. Consider the liar
paradox a↔ ¬a. The equation for this is (both for m for n) a = 1− a (we are writing
‘a’ for ‘m(a)’ or ‘n(a)’ f). This solves to a = 1

2 .

1.2 Theories and Equations

The next series of definitions will introduce the methodology involved in the equational
point of view.

Definition 5

1. (a) A classical equational theory has the form

Δ = {Ai ↔ Bi | i = 1, 2, . . .}

where Ai, Bi are wffs.
(b) A theory is called a B-theory1 if it has the form

xi ↔ Ai

where xi are atomic, and for each atom y there exists at most one i such that
y = xi.

2. (a) A function f: wff → [0, 1] is an μ model of the theory if we have that f is a
solution of the system of equations Eq(Δ).

hμ(Ai) = hμ(Bi), i = 1, 2, . . .

(b) Δ is μ consistent if it has an μ model

1 B for Brouwer, because we are going to use Brouwer’s fixed point theorem to show that
theories always have models.
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3. We say that a theory Δ μ semantically (equationally) implies a theory Γ if every
solution of Eq(Δ) is also a solution of Eq(Γ ).
We write

Δ �μ Γ.

Let K be a family of functions from the set of wff to [0, 1]. We say that Δ �(μ,K) Γ

if every μ solution f of Eq(Δ) such that f ∈ K is also an μ solution of Eq(Γ ).
4. We write

A �μ B

iff the theory � ↔ A semantically (equationally) implies � ↔ B.
Similarly we writeA �(μ,K) B. In other words, if for all suitable solutions f , f(A) =
1 implies f(B) = 1.

Example 1.

1. Consider A ∧ (A→ B) does it m imply B? The answer is yes.
Assume m(A ∧ (A → B)) = 1 then m(A)(1 −m(A)(1 −m(B))) = 1. Hence
m(A) = 1 and m(A)(1 −m(B)) = 0. So m(B) = 1.
We now check whether we always have that m(A ∧ (A→ B)→ B) = 1.
We calculate m(A ∧ (A→ B)→ B) = [1−m(A ∧ (A→ B))(1 −m(B))].

= [1−m(A)(1 −m(A)(1−m(B))x(1 −m(B))]

Let m(A) = m(B) = 1
2 . we get

= [1− 1
2 (1−

1
2 ×

1
2 ) ·

1
2 = 1− 3

16
=

13

16
.

Thus the deduction theorem does not hold. We have

A ∧ (A→ B) � B

but
�� A ∧ (A→ B)→ B.

2. (a) Note that the theory¬a↔ a is not ({0, 1},m) consistent while it is ({0, 12 , 1},
m) consistent.

(b) The theory (x → x) ↔ ¬(x → x) is not ([0, 1],m) consistent but it is
({0, 12 , 1},n) consistent, but not ({0, 1},n) consistent.

Remark 4. We saw that the equation theory x ∧ ¬x ↔ ¬(x ∧ ¬x) has no solutions
(no m-models) in [0, 1]. Is there a way to restrict m theories so that we are assured of
solutions? The answer is yes. We look at B-theories of the form xi ↔ Ei where xi is
atomic and for each x there exists at most one clause in the theory of the form x↔ E.
These we called B theories. Note that if x = �, we can have several clauses for it. The
reason is that we can combine

� ↔ E1

� ↔ E2
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into
� ↔ E1 ∧ E2.

The reason is that the first two equations require

m(Ei) = m(�) = 1

which is the same as

m(E1 ∧ E2) = m(E1) ·m(E2) = 1.

If x is atomic different from �, this will not work because

x↔ Ei

requires m(x) = m(Ei) while x↔ E1 ∧ E2 requires m(x) = m(E1)m(E2).
The above observation is important because logical axioms have the form � ↔ A

and so we can take the conjunction of the axioms and that will be a theory in our new
sense.

In fact, as long as our μ satisfies

μ(A ∧B) = 1⇒ μ(A) = μ(B) = 1

we are OK.

Theorem 1. Let Δ be a B-theory of the form

xi ↔ Ei.

Then for any continuous μ, Δ has a ([0, 1], μ) model.

Proof. Follows from Brouwer’s fixed point theorem, because our equations have the
form

f(x) = f(E(x))

in [0, 1]n where x = (x1, . . . , xn) and E = (E1, . . . , En).

Remark 5. If we look at B-theories, then no matter what μ we choose, such theories
have μ-models in [0, 1]. We get that all theories are μ-consistent. A logic where every-
thing is consistent is not that interesting.

It is interesting, therefore, to define classes of μ models according to some mean-
ingful properties. For example the class of all {0, 1} models. There are other classes of
interest. The terminology we use is intended to parallel semantical concepts used and
from argumentation theory.

Definition 6. Let Δ be a B-theory. Let f be a μ-model of Δ. Let A be a wff.

1. We say f(A) is crisp (or decided) if f(A) is either 0 or 1. Otherwise we say f(A) is
fuzzy or undecided.

2. (a) f is said to be crisp if f(A) is crisp for all A.
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(b) We say that f ≤ g, if for all A, if f(A) = 1 then g(A) = 1, and if f(A) = 0
then g(A) = 0.
We say f < g if f ≤ g and for some A, f(A) �∈ {0, 1} but g(A) ∈ {0, 1}.

Note that the order relates to crisp values only.
3. Define the μ-crisp (or μ-stable) semantics for Δ to be the set of all crisp μ-model

of Δ.
4. Define the μ-grounded semantics for Δ to be the set of all μ-models f of Δ such

that there is no μ-model g of Δ such that g < f .
5. Define the μ-preferred semantics of Δ to be the set of all μ-models f of Δ such that

there is no μ-model g of Δ with f < g.
6. If K is a set of μ models, we therefore have the notion of Δ �K Γ for two theories

Δ and Γ .

1.3 Generating B-theories

Definition 7. Let S be a finite set of atoms and let Ra and Rs be two binary relations
on S. We useA = (S,Ra, Rs) to generate a B-theory which we call the argumentation
network theory generated on S from the attack relation Ra and the support relation Rs.

For any x ∈ S, let y1, . . . , ym be all the elements y of S such that yRax and let
z1, . . . , zn be all the elements z of S such that xRsz (of course m,n depend on x).
Write the theory ΔA.

{x↔
∧

zj ∧
∧
¬yi | x ∈ S}

We understand the empty conjunction as �.
These generate equations

x = min(zj , 1− yi)

using the n function or
x = (Πjzj)(Πi(1 − yi))

using the m function.

Remark 6.

1. If we look at a system with attacks only of the form A = (S,Ra) and consider the
n(min) equational approach for [0, 1] then n models of the correspondingB-theory
ΔA correspond exactly to the complete extensions of (S,Ra). This was extensively
investigated in [1,2]. The semantics defined in Definition 6, the stable, grounded an
preferred n-semantics correspond to the same named semantics in argumentation,
when restricted to B-theories arising from argumentation.
If we look at μ other than n, example we look at μ = m, we get different semantics
and extensions for argumentation networks. For example the network of Figure 2
has the n extensions {a = 1, b = 0} and {a = b = 1

2}
while it has the unique m extension {a = 1, b = 0}.
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ba

Fig. 2.

2. This correspondence suggests new concepts in the theory of abstract argumentation
itself. Let ΔA, ΔB be two B-theories arising from two abstract argumentation sys-
tem A = (S,RA) and B = (S,RB) based on the same set S. Then the notion of
ΔA �K ΔB as defined in Definition 5 suggest the following consequence relation
for abstract argumentation theory.

– A �K B iff any K-extension (K=complete, grounded, stable, preferred) of A
is also a K-extension of B.

So, for example, the network of Figure 3(a) semantically entails the network of
Figure 3(b).

(b)

x

y

x

y

(a)

Fig. 3.

Remark 7. We can use the connection of equationalB-theories with argumentation net-
works to export belief revision and belief merging from classical logic into argumen-
tation. There has been considerable research into merging of argumentation networks.
Classical belief merging offers a simple solution. We only hint here, the full study is
elsewhere [10].

Let Ai = (S,Ri), i = 1, . . . , n, be the argumentation networks to be merged based
on the same S. Let Δi be the corresponding equational theories with the corresponding
semantics, based on n. Let fi be respective models ofΔi and let μ be a merging function,
say μ = m.

Let f = μ(f1, . . . , fn). Then the set of all such fs is the semantics for the merge
result. Each such an f yields an extension.

Remark 8. The equational approach also allows us to generate more general abstract
argumentation networks. The set S in (S,Ra) need not be a set of atoms. It can be a set
of wffs.
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Thus following Definition 7 and remark 6, we get the equations (for each A,Bj and
where Bj are all the attackers of A:

f(A) = μ(f(¬B1), . . . , ).

There may not be a solution.

2 Equational Modelling of Contrary to Duty Obligations

This section will use our μ-equational logic to model contrary to duty (CTD) sets of
obligations. So far such modelling was done in deontic logic and there are difficulties
involved. Major among them is the modelling of the Chisholm set [11].

We are going to use our equational semantics and consequence of Section 1 and view
the set of contrary to duty obligations as a generator for an equational theory. This will
give an acceptable paradox free semantics for contrary to duty sets.

We shall introduce our semantics in stages. We start with the special case of the
generalised Chisholm set and motivate and offer a working semantical solution. Then
we show that this solution does not work intuitively well for more general sets where
there are loops. Then we indicate a slight mathematical improvement which does work.
Then we also discuss a conceptual improvement.

The reader might ask why not introduce the mathematical solution which works right
from the start? The answer is that we do not do this for reasons of conceptual motivation,
so we do not appear to be pulling a rabbit out of a hat!

We need first to introduce the contrary to duty language and its modelling problems.

2.1 Contrary to Duty Obligations

Consider a semi-formal language with atomic variables Q = {p, q, r, . . .} the connec-
tive→ and the unary operator©. We can write statements like

1. ©¬ fence
You should not have a fence

2. fence→© whitefence
If you do have a fence it should be white.

3. Fact: fence

We consider a generalised Chisholm set of contrary to duty obligations (CTD) of the
form

Oq0

and for i = 0, . . . , n we have the CTD is

qi → Oqi+1

¬qi → O¬qi+1

and the facts ±qj for some j ∈ J ⊆ {0, 1, . . . , n+ 1}. Note that for the case of n = 1
and fact ¬q0 we have the Chisholm paradox.
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2.2 Standard Deontic Logic and Its Problems

A logic with modality � is KD modality if we have the axioms

K0 All substitution instances of classical tautologies
K1 �(p ∧ q) ≡ (�p ∧�q)
K2 � A⇒� �A
D ¬�⊥

It is complete for frames of the form (S,R, a) where S �= � is a set of possible
worlds, a ∈ S,R ⊆ S × S and ∀x∃y(xRy).

Standard Deontic Logic SDL is a KD modalityO. We read u � Op as saying p holds
in all ideal worlds relative to u, i.e. ∀t(uRt⇒ t � p). So the set of ideal worlds relative
to u is the set I(u) = {t | uRt}.

The D condition says I(x) �= � for x ∈ S.
Following [8], let us quickly review some of the difficulties facing SDL in formaliz-

ing the Chisholm paradox.

The Chisholm Paradox

A. Consider the following statements:
1. It ought to be that a certain man go to the assistance of his neighbour.
2. It ought to be that if he does go he tell them he is coming.
3. If he does not go then he ought not to tell them he is coming.
4. He does not go.

It is agreed that intuitively (1)–(4) of Chisholm set A are consistent and totally
independent of each other. Therefore it is expected that their formal translation into
logic SDL should retain these properties.

B. Let us semantically write the Chisholm set in semiformal English, where p and q
as follows, p means HELP and q means TELL.
1. Obligatory p.
2. p→ Obligatory q.
3. ¬p→ Obligatory ¬q.
4. ¬p.

Consider also the following:
5. p.
6. Obligatory q.
7. Obligatory ¬q.

We intuitively accept that (1)–(4) of B are consistent and logically independent of each-
other. Also we accept that (3) and (4) imply (7), and that (2) and (5) imply (6). Note
that some authors would also intuitively expect to conclude (6) from (1) and (2).

Now suppose we offer a logical system L and a translation τ of (1), (2), (3), (4) of
Chisholm into L.

For example L could be Standard Deontic Logic or L could be a modal logic with
a dyadic modality O(X/Y ) (X is obligatory in the context of Y ). We expect some
coherence conditions to hold for the translation, as listed in Definition 8.
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Definition 8. (Coherence conditions for representing contrary to duty obligations
set in any logic)
We now list coherence conditions for the translation τ and for L.

We expect the following to hold.

(a) “Obligatory X” is translated the same way in (1), (2) and (3).
Say τ (Obligatory X)=ϕ(X).

(b) (2) and (3) are translated the same way, i.e., we translate the form:
(23): X → Obligatory Y
to be ψ(X,Y ) and the translation does not depend on the fact that we have
(4) ¬p as opposed to (5) p.
Furthermore, we might, but not necessarily, expect ψ(X/�) = ϕ(X).

(c) if X is translated as τ(X) then (4) is translated as ¬τ(X), the form (23) is
translated as ψ(τ(X), τ(Y )) and (1) is translated as ϕ(τ(X)).

(d) the translations of (1)–(4) remain independent in L and retain the connec-
tions that the translations of (2) and (5) imply the translation of (6), and the
translations of (3) and (4) imply the translation of (7).

(e) the translated system maintains its properties under reasonable substitution
in L.
The notion of reasonable substitution is a tricky one. Let us say for the time
being that if we offer a solution for one paradox, say Π1(p, q, r, . . .) and by
substitution for p, q, r, . . . we can get another well known paradox Π2, then
we would like to have a solution forΠ2. This is a reasonable expectation from
mathematical reasoning. We give a general solution to a general problem
which yields specific solutions to specific problems which can be obtained
from the general problem.

(f) the translation is essentially linguistically uniform and can be done item
by item in a uniform way depending on parameters derived from the entire
database. To explain what we mean consider in classical logic the set
(1) p
(2) p→ q.
To translate it into disjunctive normal form we need to know the number of
atoms to be used. Item (1) is already in normal form in the language of {p}
but in the language of {p, q} its normal form is (p ∧ q) ∨ (p ∧ ¬q). If we had
another item
(3) r
then the normal form of p in the language of {p, q, r} would be
(p ∧ q ∧ r) ∨ (p ∧ q ∧ ¬r) ∨ (p ∧ ¬q ∧ r) ∨ (p ∧ ¬q ∧ ¬r).
The moral of the story is that although the translation of (1) is uniform algo-
rithmically, we need to know what other items are in the database to set some
parameters for the algorithm.

Jones and Pörn, for example, examine in [8] possible translations of the Chisholm
(1)–(4) into SDL. They make the following points:

(1) If we translate according to, what they call, option a:
(1a) Op
(2a) O(p→ q)
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(3a) ¬p→ O¬q
(4a) ¬p
then we do not have consistency, although we do have independence

(2) If we translate the Chisholm item (2) according to what they call option b:
(2b) p→ Oq
then we have consistency but not independence, since (4a) implies logically (2b).

(3) If (3a) is replaced by
(3b) O(¬p→ ¬q)
then we get back consistency but lose independence, since (1a) implies (3b).

(4) Further, if we want (2) and (5) to imply (6), and (3) and (4) to imply (7) then we
cannot use (3b) and (2a).

The translation of the Chisholm set is a “paradox” because known translations into
Standard Deontic Logic (the logic with O only) are either inconsistent or dependent.

All the above statements together are logically independent and are consistent. Each
statement is independent of all the others. If we want to embed the (model them) in
some logic, we must preserve these properties and correctly get all intuitive inferences
from them.

Remark 9. We remark here that the Chisholm paradox has a temporal dimension to it.
The ±tell comes before the ±go. In symbols, the ±q is temporally before the ±p. This
is not addressed in the above discussion.

Consider a slight variation:

1. It ought to be that a certain man go to the assistance of his neighbour.
2. It ought to be that if he does not go he should write a letter of explanation and

apology.
3. If he does go, then he ought not write a letter of explanation and apology.
4. He does not go.

Here p = he does go and q = he does not write a letter. Here q comes after p.
It therefore makes sense to supplement the Chisholm paradox set with a temporal

clause as follows:

1. p comes temporally before q.

In the original Chisholm paradox the supplement would be:

1. Tell comes temporally before go.

2.3 The Equational Approach to CTD

We are now ready to offer equational semantics for CTD. Let us summarise the tools
we have so far.

1. We have μ semantics for the language of classical logic.
2. Theories are sets of equivalences of the form E1 ↔ E2.
3. We associate equations with such equivalences.
4. Models are solutions to the equations.
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5. Using models, we define consequence between theories.
6. Axioms have the for � ↔ E
7. B-theories have the form x↔ E, where x is atomic and E is unique to x.
8. We always have solutions for equations corresponding to B-theories.

Our strategy is therefore to associate a B-theory Δ(C) with any contrary to duty set
C and examine the associated μ-equations for a suitable μ. This will provide semantics
and consequence for the CTD sets and we will discuss how good this representation is.

The perceptive reader might ask, if Obligatory q is a modality, how come we hope
to successfully model it in μ classical logic? Don’t we need modal logic of it? This is
a good question and we shall address it later. Of course modal logic can be translated
into classical logic, so maybe the difficulties and paradoxes are “lost in translation”. See
Remark 15.

Definition 9. 1. Consider a language with atoms, the semi-formal → and ¬ and a
semi-formal connective O.
A contrary to duty expression has the form x → Oy where x and y are literals,
i.e. either atoms q or negations of atoms ¬q, and where we also allow for x not to
appear. We might write � → Oy in this case, if it is convenient.

2. Given a literal x and a set C of CTD expressions, then the immediate neighbour-
hood of x in C. is the set Nx of all expressions from C of the form

z → Ox

or the form
x→ Oy.

3. A set F of facts is just a set of literals.
4. A general CTD system is a pair (C,F)
5. A Chisholm CTD set CH has the form

xi → Oxi+1

¬xi → O¬xi+1

Ox1

where 1 ≤ i ≤ m and xi are literals (we understand that ¬¬x is x).

Example 2. Figure 4 shows a general CTD set

C = {a→ Ob, b→ O¬a}

Figure 5 shows a general Chisholm set. We added an auxiliary node x0 as a starting
point.

Figure 6 shows a general neighbourhood of a node x.
We employed in the figures the device of showing, whenever x → Oy is given, two

arrows, x → y and x � ¬y. The single arrow x → y means “from x go to y” and the
double arrow x � ¬y means “from x do not go to ¬y”.
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¬b

¬a

b

a

Fig. 4.

starting point

...
...

x3 ¬x3

x2 ¬x2

x1 ¬x1

x0 x̄0

Fig. 5.

Remark 10. In Figures 4–6 we understand that an agent is at the starting point x0 and
he has to go along the arrows→ to follow his obligations. He should not go along any
double arrow, but if he does, new obligations (contrary to duty) appear.

This is a mathematical view of the CTD. The obligations have no temporal aspect to
them but mathematically there is an obligation progression (±x0,±x1,±x2, . . .).

,. . . ,

x

y1 yk z1 zm

v1 vsu1 ur

,. . . , ,. . . ,

,. . . ,

Fig. 6.
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In the Chisholm example, the obligation progression is (± go,±tell), while the prac-
tical temporal real life progression is (±tell, ±go). We are modelling the obligation
progression.

To be absolutely clear about this we give another example where there is similar pro-
gression. Take any Hilbert axiom system for classical logic. The consequence relation
A � B is timeless. It is a mathematical relation. But in practice to show A � B from
the axioms, there is a progression of substitutions and uses of modus ponens. This is a
mathematical progression of how we generate the consequence relations.

Remark 11. We want to associate equations with a given CTD set. This is essentially
giving semantics to the set. To explain the methodology of what we are doing, let us
take an example from the modal logic S4. This modal logic has wffs of the form �q.
To give semantics for �q we need to agree on a story for “�” which respects the log-
ical theorems which “�” satisfies (completeness theorem). The following are possible
successful stories about “�” for which there is completeness.

1. Interpret � to mean provability in Peano arithmetic.

2. �q means that q holds in all possible accessible situations (Kripke models).

3. � means topological interior in a topological space.

4. � means the English progressive tense:
� eat = “is eating”

5. � means constructive provability.

For the case of CTD we need to adopt a story respecting the requirement we have
on CTD.

Standard deontic logic SDL corresponds to the story that the meaning of OA in a
world is thatA holds in all accessible relative ideal worlds. It is a good story correspond-
ing to the intuition that our obligations should take us to a better worlds. Unfortunately,
there are difficulties with this story, as we have seen.

Our story is different. We imagine we are in states and our obligations tell us where
we can and where we cannot go from our state. This is also intuitive. It is not descriptive
as the ideal world story is, but it is operational , as real life is.

Thus in Figure 6 an agent at node x wants to say that he is a “good boy”. So at x
he says that he intends to go to one of y1, . . . , yk and that he did not come to x from
v1, . . . , vk, where the obligation was not to go to x.

Therefore the theory we suggest for node x is

x↔ (
∧
i

yi ∧
∧
j

¬vj)

We thus motivated the following intuitive, but not final, definition.
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Let C be a CTD set and for each x let Nx be its neighbourhood as in Figure 6.
We define the theory Δ(C) to be

{x↔ (
∧
i

yi ∧
∧
j

¬vj) | for all Nx}. (∗1)

This definition is not final for technical reasons. We have literals “¬q”and we do not
want equivalences of the form ¬q ↔ E. So we introduce a new atom q̄ to represent ¬q
with the theory q̄ ↔ ¬q.

So we take the next more convenient definition.

Definition 10.

1. Let C be a CTD set using the atoms Q. Let Q∗ = Q ∪ {q̄ | q ∈ Q}, where q̄ are
new atoms.

Consider C∗ gained from C by replacing any occurrence of ¬q by q̄, for q ∈ Q.
Using this new convention Figure 5 becomes Figure 7.

starting point

x4 x̄4

x3 x̄3

x2

x1 x̄1

xm+1...
x̄m+1...

x̄2

x0 x̄0

Fig. 7.
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2. The theory for the CTD set represented by Figure 7 is therefore

x0 ↔ �, x̄0 ↔ ⊥
x0 ↔ x1, x̄0 ↔ x̄1

xi ↔ xi+1 ∧ x̄i−1

x̄i ↔ x̄i+1 ∧ xi−1

x̄i ↔ ¬xi
xm+1 ↔ x̄m

x̄m+1 ↔ xm

for 1 ≤ i ≤ m

The above is not a B-theory. The variable x̄i has two clauses associated with it.
(x0 is OK because the second equation is �). So is x̄0.
It is convenient for us to view clause x̄i = ¬xi as an integrity constraint. So we
have a B-theory with some additional integrity constraints.
Note also that we regard all xi and x̄i as different atomic letters. If some of them
are the same letter, i.e. xi = xj then we regard that as having further integrity
constraints of the form xi ↔ xj .

3. The equations corresponding to this theory are

x0 = 1, x̄0 = 0

x0 = x1, x̄0 = x̄1

xi = min(xi+1, 1− x̄i−1)

x̄i = min(x̄i+1, 1− xi−1)

x̄i = 1− xi

xm+1 = 1− x̄m

x̄m+1 = 1− xm

for 1 ≤ i ≤ m

Remember we regard the additional equation

x̄i = 1− xi

as an integrity constraint.
Note also that we regard all xi and x̄i as different atomic letters. If some of them
are the same letter, i.e. xi = xj then we regard that as having further integrity
constraints of the form xi ↔ xj . The rest of the equations have a solution by
Brouwer’s theorem. We look at these solutions and take only those which satisfy
the integrity constraints. There may be none which satisfy the constraints, in which
case the system overall has no solution!

4. The dependency of variables in the equations of Figure 7 is described by the rela-
tion x⇒ y reading (x depends on y), where

x⇒ y = def. (x→ y) ∨ (y � x).
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x4

x3 x̄3

x̄2 x2

x1x̄3 x3 x̄1

x0 x̄2x2 x̄0

x̄4

Fig. 8.

Figure 8 shows the variable dependency of the equations generated by Figure 7 up
to level 3

Lemma 1.

1. The equations associated with the Chisholm set of Figure 7 have the following
unique solution, and this solution satisfies the integrity constraints:

x0 = 1, xi = 1, x̄i = 0, for 0 ≤ i ≤ m+ 1

2. All the equations are independent.

Proof.

1. By substitution we see the proposed solution is actually a solution. It is unique
because x0 = 1 and the variable dependency of the equations, as shown in Figure
8, is acyclic.

2. Follows from the fact that the variable dependency of the equations is acyclic. The
variable xi can depend only on the equations governing the variables below it in
the dependency graph. Since it has the last equation in the tree, it cannot be derived
from the equations below it.

Remark 12. We mentioned before that the theory (*1) and its equations above do not
work for loops. Let us take the set a→©¬a.

The graph for it, according to our current modelling would be Figure 9.
The equations for this figure would be

a = min(1 − a, ā)

a = 1− ā
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a ā

Fig. 9.

which reduces to
a = 1− a

a = 1
2

It does not have a consistent {0, 1} solution.
We can fix the situation by generally including the integrity constraints x̄ = 1− x in

the graph itself.
So Figure 9 becomes Figure 10, and the equations become

āa

Fig. 10.

a = min(ā, 1− a, 1− ā)

ā = 1− a

The two equations reduce to
a = min(a, 1− a)

which has the solution
a = 0, ā = 1

which fits our intuition.
Let us call this approach, (namely the approach where we do not view the equa-

tions x̄ = 1 − x as integrity constraints but actually insert instead double arrow in the
graph itself) the mathematical approach. What we have done here is to incorporate the
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integrity constraints x̄ = 1− x into the graph. Thus Figure 7 would become Figure 11,
and the equations for the figure would become

xi = min(xi+1, 1− x̄i, 1− x̄i−1)

x̄i = min(x̄i+1, 1− xi, 1− xi−1)

x0 = 1, x̄0 = 0

xm+1 = min(1 − x̄m+1, 1− x̄m)

x̄m+1 = min(1− xm+1, 1− xm)

for 1 ≤ i ≤ m.

starting point

x4 x̄4

x3 x̄3

x2

x1 x̄1

xm+1...
x̄m+1...

x̄2

x0 x̄0

Fig. 11.

For the Chisholm set, we still get the same solution for these new equations, namely

x0 = x1 = . . . xm+1 = 1

x̄0 = x̄1 = . . . = x̄m+1 = 0

The discussion that follows in Definition 11 onwards applies equally to both graphs.
We shall discuss this option in detail in Subsection 2.4.
The reader should note that we used here a mathematical trick. In Figure 11, there

are two conceptually different double arrows. The double arrow xi � xi+1 comes from
an obligation xi → ©xi+1, while the double arrows x � x̄ and x̄ � x come from
logic (because x̄ = ¬x). We are just arbitratily mixing them in the graph!
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Definition 11. Consider Figure 7. Call this graph by G(m + 1). We give some defini-
tions which analyse this figure.

First note that this figure can be defined analytically as a sequence of pairs

((x0, x̄0), (x1, x̄1), . . . , (xm+1, x̄m+1)).

The relation → can be defined between nodes as the set of pairs {(xi, xi+1) and
(x̄i, x̄i+1) for i = 0, 1, . . . ,m}. The relation � can be defined between nodes as the
set of pairs {(xi, x̄i+1) and (x̄i, xi+1) for i = 0, 1, . . . ,m}. The starting point is a
member of the first pair, in this case it is x0, the left hand element of the first pair in the
sequence, but we could have chosen x̄0 as the starting point.

1. Let xRy be defined as (x→ y)∨ (x � y) and let R∗ be the transitive and reflexive
closure of R.

2. Let z be either xi or x̄i. The truncation of G(m + 1) at z is the subgraph of all
points above z including z and z̄ and all the arrow connections between them.

Gz = {y|zR∗y} ∪ {z̄}

We take z as the starting point of G(m+ 1)z . Note that G(m+ 1)z is isomorphic
to G(m+ 1− i). It is the same type of graph as G(m+ 1), only it starts at z.
The corresponding equations for Gz will require z = 1.

3. A path in the graph is a full sequence of points (x0, z1, . . . , zm+1) where zi is x̄i
or xi.2

4. A set of “facts” F in the graph is a set of nodes choosing at most exactly one of
each pair {xi, x̄i}.

5. A set of facts F restricts the possible paths by stipulating that the paths contain the
nodes in the facts.

Example 3. Consider Figure 7. The following is a path Π in the graph

Π = (x0, x1, x2, x3, . . . , xm+1)

If we think in terms of an agent going along this path, then this agent committed two
violations. Having gone to x̄1 instead of to x1, he committed the first violation. From
x̄1, the CTD says he should have gone to x̄2, but he went to x2 instead. This is his
second violation. After that he was OK.

Now look at the set of facts = {x̄1, x2}. This allows for all paths starting with
(x0, x̄1, x2, . . .). So our agent can still commit violations after x2. We need more facts
about his path.

2 Note that the facts are sets of actual nodes. We can take the conjunction of the actual nodes
as a formula faithfully representing the set of facts. Later on in this paper we will look at an
arbitrary formula φ as generating the set of facts {y|y is either xi or ¬xi, unique for each i,
such that φ| − y}.

According to this definition, φ = x1 ∨ x2, generates no facts. We will, however, find
it convenient later in the paper, (in connection with solving the Miner’s Paradox, Remark 20
below) to regard a disjunction as generating several possible sets of facts, one for each disjunct.
See also Remark 19 below.
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Suppose we add the fact x̄4.So our set is now F = {x̄1, x2, x̄4}.
We know now that the agent went from x2 onto x̄4. The question is, did he pass

through x̄3? If he goes to x3, there is no violation and from there he goes to x̄4, and
now there is violation.

If he goes to x3, then the violation is immediate but when he goes from x̄3 to x̄4,
there is no violation.

The above discussion is a story. We have to present it in terms of equations, if we
want to give semantics to the facts.

Example 4. Let us examine what is the semantic meaning of facts. We have given se-
mantic meaning to a Chisholm set C of contrary to duties; we constructed the graph, as
in Figure 7 and from the graph we constructed the equations and we thus have equa-
tional semantics for C.

We now ask what does a fact do semantically?
We know what it does in terms of our story about the agent. We described it in

Example 3. What does a fact do to the graph? Let us take as an example the fact x̄3
added to the CTD set of Figure 7. What does it do? The answer is that it splits the figure
into two figures, as shown in Figures 12 and 13.

starting point

x2 x̄2

x1 x̄1

x̄0x0

Fig. 12.

Note that Figure 13 is the truncation of Figure 7 at x̄3, and Figure 12 is the comple-
ment of this truncation.

Thus the semantical graphs and equations associated with (C, {x̄3}) are the two
figures, Figure 12 and Figure 13 and the equations they generate.

The “facts” operation is associative. Given another fact, say z it will be in one of the
figures and so that figure will further split into two.

Definition 12. Given a Chisholm system (C,F) as in Definition 9 we define its se-
mantics in terms of graphs and equations. We associate with it with following system of
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x̄m+1

x4 x̄4

x̄3x3
starting point

...

xm+1

...

Fig. 13.

graphs (of the form of Figure 7) and these graphs will determine the equations, as in
Definition 10.

The set C has a graph G(C). The set F can be ordered according to the relation R
in the graph G(C) as defined in Definition 11. Let (z1, . . . , zk) be the ordering of F.

We define by induction the following graphs:

1. (a) Let G+
k be G(C)zk , (the truncation of G(C) at zk). item Let G−

k be G(C)−G+
k

(the remainder graph after deleting from it the top part G+
k ).

(b) The point zk−1 is in the graph G−
k .

2. Assume that for zi, 1 < i ≤ k we have defined G+
i and G−

i and that G+
i is the

truncation of G−
i+1 at point zi, and that G−

i = G−
i+1 − G+

i . We also assume that
zi−1 is in G−

i .
Let G+

i−1 = (G−
i )z−1 , (i.e. the truncation of G−

i at point zi−1).
Let G−

i−1 = G−
i −G+

i−1.
3. The sequence of graphsG,G−

1 ,G
+
1 ,G

+
2 , . . . ,G

+
k is the semantical object for (C,F).

They generate equations which are the equational semantics for (C,F).

Example 5. Consider a system (C,F) where F is a maximal path, i.e. F is the sequence
(z1, . . . , xm+1). The graph system for it will be as in Figure 14.

starting point zm+1 z̄m+1 graph G+
m+1

...
...

...

starting point z1 z̄1 graph G+
1

starting point x0 x̄0 graph G−
1

Fig. 14.

Remark 13. The nature of the set of facts F is best understood when the set C of
Chisholm CTDs is represented as a sequence. Compare with Definition 12.
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C has the graph G(C). The graph can be represented as a sequence

E = ((x0, x̄0), (x1, x̄1), . . . , (xm+1, x̄m+1))

together with the starting point (x0).
When we get a set of facts F and arrange it as a sequence (z1, . . . , zk) in accordance

with the obligation progression, we can add x0 to the sequence and look at F as

F = (x0, z1, . . . , zk).

We also consider (E,F) as a pair, one the sequence E and the other as a multiple
sequence of starting points. The graph Gi is no more and no less than the subse-
quence Ei, beginning from the pair (zi, z̄i) up to the pair (zi+1, z̄i+1) but not including
(zi+1, z̄i+1).

This way it is easy to see how G is the sum of all the Gi, strung together in the
current progression order. Furthermore, we can define the concept of “the fact zj is in
violation of the CTD of zi”, for i < j. To find out if there was such a violation, we
solve the equations for

Ei = ((zi, z̄i), . . . , (xm+1, x̄m+1))

and if the equation solves with zj = 0 then putting zj = 1 is a violation.

Remark 14. Let us check whether our equational modelling of the Chisholm CTD set
satisfies the conditions set out in Definition 8.

Consider Figure 15 (a) and (b):

(a) Obligatory x must be translated the same way throughout.
This holds because we use a variable x in a neighbourhood generated equation.

(b) The form X → OY must be translated uniformly no matter whether X = q or
X = ¬q.
This is is true of our model.

(c) This holds because “X” is translated as itself.
(d) The translation of the clauses must be all independent.

Indeed this holds by Lemma 1.
It is also true that (see Figure 15(a))
2. p→ Oq

and
5. p

imply
6. Oq

This holds because (5) p is a fact. So this means that Figure 15(b) truncated at the
point p.
The truncated figure is indeed what we would construct for Oq.
A symmetrical argument shows that (4) and (3) imply (7).
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1. Op 5. p

2. p → Oq 6. Oq

3. ¬p → Oq 7. O¬q
4. ¬p

(a)

¬qq

p ¬p

x0 ¬x0
starting point

(b)

Fig. 15.

(e) The system is required to be robust with respect to substitution.
This condition arose from criticism put forward in [7] against the solution to the
Chisholm paradox offered in [8]. [8] relies on the fact that p, q are independent
atoms.
The solution does not work when q � p, e.g. substituting for “q” the wff “r ∧ p”
(like p = fence and q = white fence).
In our case we use equations and if we substitute “r∧p” for “q” we get the equations

r ∧ p = 1− p

p = r ∧ p

Although this type of equation is not guaranteed a solution, there is a solution in
this case;p = r = 1.
If we add the fact ¬p, i.e. 1− p = 1, p = 0, (there is no fence) the equation solves
to ¬q = ¬p ∨ ¬r, which is also = 1 because of ¬p. So we have no problem with
such substitution. In fact we have no problem with any substitution because the
min function which we use always allows for solutions.

(f) The translation must be uniform and it to be done item by item.
Yes. Indeed, this is what we do!

Remark 15. We can now explain how classical logic can handle CTD, even though the
CTD x→ Oy involves a modality. The basic graph representation such as Figure 7 can



26 D.M. Gabbay

be viewed as a set of possible worlds where the variables x and y act as nominals (i.e.
atoms naming worlds by being true exactly at the world they name). x is a world, y is
a world and x → y means y is ideal for x. x � ȳ means that ȳ is sub ideal for x. Let
�1 be the modality for→ and �2 the modality for �. Then we have a system with two
disjoint modalities and we can define

OA ≡ �1A ∧�2¬A.

Now this looks familiar and comparable to [8], and especially to [12]. The perceptive
reader might ask, if we are so close to modal logic, and in the modal logic formula-
tion there are the paradoxes, why is it that we do not suffer from the paradoxes in the
equational formulation?

The difference is because of how we interpret the facts! The equational approach
spreads and inserts the facts into different worlds according to the obligation progres-
sion. Modal logic cannot do that because it evaluates formulas in single worlds. With
equations, each variable is a nominal for a different world but is also is natural to sub-
stitute values to several variables at the same time!

Evaluating in several possible worlds at the same time in modal logic would solve
the paradox but alas, this is not the way it is done.

Another difference is that in modal logic we can iterate modalities and write for
example

O(x→ Oy).

We do not need that in Chisholm sets. This simplifies the semantics.

2.4 Looping CTDs

So far we modelled the Chisholm set only. Now we want to expand the applicability of
the equational approach and deal with looping CTDs, as in the set in Figure 4. Let us
proceed with a series of examples.

Example 6. Consider the CTD set of Figure 4. If we write the equations for this exam-
ple we get

1. a = min(b, 1− b)
2. b = ¬a
3. ¬b = 1− a

and the constants

4. ¬b = 1− b
5. ¬a = 1− a.

The only solution here is a = b = 1
2 . In argumentation and in classical logic terms this

means the theory of Figure 4 is {0, 1} inconsistent.
This is mathematically OK, but is this the correct intuition? Consider the set {b,¬a}.

The only reason this is not a solution is because we have a � ¬b and if a = 0, we get
¬b = 1 and so we cannot have b = 1.
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However, we wrote a � ¬b because of the CTD a → Ob, which required us to go
from a to b (i.e a→ b) and in this case we put in the graph a � ¬b to stress “do not go
to ¬b”.

However, if a = 0, why say anything? We do not care in this case whether the agent
goes from a to b!

Let us look again at Figure 6. We wrote the following equation for the node x

x = min(ui, 1− vj).

The rationale behind it was that we follow the rules, so we are going to ui as our
obligations say, and we came to x correctly, not from vj , because vj → O¬x is required.
Now if vj = 1 (in the final solution) then the equation is correct. But if vj = 0, then we
do not care if we come to x from vj , because vj → O¬x is not activated. So somehow
we need to put into the equation that we care about vj only when vj = 1.

Remark 16. Let us develop the new approach mentioned in Example 6 and call it the
soft approach. We shall compare it with the mathematical approach of Remark 12.

First we need a δ function as follows:

δ(w) = ⊥ if w = ⊥

and
δ(w) = � if w �= ⊥.

δ(w) = w, if we are working in two valued {0, 1} logic. Otherwise it is a projective
function

δ(0) = 0 and δ(w) = 1 for w > 0.

We can now modify the equivalences (*1) (based on figure 6) as follows:
Let 1, . . . , vs be as in Figure 6. Let J,K ⊆ {1, . . . , s} be such that J ∩K = ∅ and

J ∪K = {1, . . . , s} . Consider the expression

ϕJ,K =
∧
j∈J

δ(vj) ∧
∧
k∈K

¬δ(vk).

This expression is different from 0 (or⊥), exactly when K is the set of all indices k for
which vj = ⊥.

Replace (*1) by the following group of axioms for each pair J,K and for each x

x ∧ ϕJ,K ↔ ϕJ,K ∧
∧
r

ur ∧
∧
j∈J

¬vj . (∗2)

Basically what (*2) says is that the value of x should be equal to

min{ur, 1− vj for those j whose value is �= 0}.
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Note that this is an implicit definition for the solution of the equations. It is clear
when said in words but looks more complicated when written mathematically. Solutions
may not exist.

Example 7. Let us now look again at Figure 4.
The soft equations discussed in Remark 16 are

δ(a) ∧ b̄ = δ(a)(1 − a)

δ(b) ∧ a = δ(b)min(b, 1− b)

b = ā

b̄ = 1− b

ā = 1− a.

For these equations ā = 1, b̄ = a = 0, b = 1 is a solution.
Note that ā = b̄ = 1 and a = b = 0 is not a solution!
Let us now examine and discuss the mathematical approach alternative, the one men-

tioned in Remark 12. The first step we take is to convert Figure 4 into the right form
for this alternative approach by adding double arrows between all x and x̄. We get
Figure 16.

ā a

b b̄

Fig. 16.

The equations are the following:

a = min(b, 1− ā, 1− b)

ā = 1− a

b = min(ā, 1− b̄)

b̄ = min(1 − a, 1− b).

Let us check whether a = b̄ = 0 and b = ā = 1 is a solution. We get respectively by
substitution

0 = min(1, 0, 0)

1 = 1− 0

1 = min(1, 1− 0)

0 = min(1− 0, 1− 1).
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Indeed, we have a solution. Let us try the solution b̄ = ā = 1 and a = b = 0. Substitute
in the equations and get

0 = min(0, 0, 1)

1 = 1− 0

0 = min(1, 1− 1)

1 = min(1 − 0, 1− 0).

Again we have a solution.
This solution also makes sense. Note that this is not a solution of the previous soft

approach!

We need to look at more examples to decide what approach to take, and which final
formal definition to give.

Example 8. Consider the following two CTD sets, put forward by two separate security
advisors D and F.

D1: you should have a dog
Od

D2: If you do not have a dog, you should have a fence
¬d→ Of

D3: If you have a dog you should not have a fence
d→ O¬f

F1: You should have a fence
Of

F2: If you do not have a fence you should have a dog
¬f → Od

F3: If you do have a fence you should not have a dog.
f → O¬d

If we put both sets together we have a problem. They do not agree, i.e. {D1, D2, D3,
F1, F2, F3}. However, we can put together both D1, D2 and F1, F2. They do agree, and
we can have both a dog and a fence.

The mathematical equational modelling of D1 and D2 also models D3, i.e. D1, D2 �
D3 and similarly F1, F2 � F3. So according to this modelling {D1, D2, F1, F2} cannot
be consistently together. Let us check this point. Consider Figure 17

The equations for Figure 17 are:

x0 = 1

x0 = d

x̄0 = 1− x0

d = 1− d̄

d̄ = min(1 − d, 1− x0)

d̄ = f

f = 1− f̄

f̄ = min(1− f, 1− d̄)
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f f̄

d̄d

x0 x̄0

Fig. 17.

The only solution is

x0 = d = f̄ = 1

x̄0 = d̄ = f = 0.

The important point is that f̄ = 1, i.e. no fence.
Thus D1,D2 � f̄ .
By complete symmetry beget that F1,F2 � d̄. Thus we cannot have according to the

mathematical approach that having both a dog and a fence is consistent with {D1,D2,
F1,F2}.

Let us look now at the soft approach. Consider Figure 18

x̄0

f f̄

d̄d

x0

Fig. 18.
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The soft equations for Figure 18 are:

x0 = 1

x0 = d

min(x0, d̄) = min(x0, 1− x0)

min(d̄, f̄) = min(d̄, 1− d̄)

There are two solutions

x0 = 1, d = 1, d̄ = 0, f̄ = 1, f = 0

and

x0 = 1, d = 1, d̄ = 0, f̄ = 0, f = 1.

The conceptual point is that since d̄ = 0, we say nothing about f̄ .
Now similar symmetrical solution is available for {F1,F2} Since D1,D2 allow for

f = 1 and F1,F2 allow for d = 1, they are consistent together. In view of this example
we should adopt the soft approach.

Remark 17. Continuing with the previous Example 8, let us see what happens if we put
together in the same CTD set the clauses {D1,D2,E1,E2} and draw the graph for them
all together, in contrast to what we did before, where we were looking at two separate
theories and seeking a joint solution. If we do put them together, we get the graph in
Figure 19.

d̄ f̄

fd

x0 x̄0

Fig. 19.

If we use the mathematical equations, there will be no solution. If we use the soft
approach equations, we get a unique solution

d = f = 1, d̄ = f̄ = 0
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The reason for the difference, I will stress again, is in the way we write the equations
for d̄ and f̄ . In the mathematical approach we write

d̄ = min(f, 1 − f̄)

f̄ = min(d, 1− d̄)

d̄ = 1− d

f̄ = 1− f

In the soft approach we write

min(d̄, f̄) = min(f, d̄, 1− f̄)

min(f̄ , d̄) = min(d, f̄ , 1− d)

This example also shows how to address a general CTD set, where several single
arrows can come out of a node (in our case x0). The equations for x0 in our example
are:

x0 = 1

x0 = min(f, d)

which forces d = f = 1. We will check how to generalise these ideas in the next
section.

2.5 Methodological Discussion

Following the discussions in the previous sections, we are now ready to give general
definitions for the equational approach to general CTD sets. However, before we do
that we would like to have a methodological discussion. We aleady have semantics for
CTD. It is the soft equations option discussed in the previous subsection. So all we need
to do now is to define the notion of a general CTD set (probably just a set of clauses of
the form±x→ O± y) and apply the soft equational semantics to it. This will give us a
consequence relation and a consistency notion for CTD sets and the next step is to find
proof theory for this consequence and prove a completeness theorem.

We need to ask, however, to what extent is the soft semantics going to be intuitive
and compatible with our perception of how to deal with conflicting CTD sets? So let
us have some discussion about what is intuitive first, before we start with the technical
definitions in the next section. Several examples will help.

Example 9. Consider the following CTD set:

1. You should not have a dog
O¬d

2. If you have a dog you must keep it
d→ Od

3. d: you have a dog
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dd̄

x0 x̄0

Fig. 20.

Here we have a problem. Is (1), (2), (3) a consistent set? In SDL we can derive from (2)
and (3) O¬d and get a contradiction Od ∧O¬d.

However, in our semantics we produce a graph and write equations and if we have
solutions, then the set is consistent. Let us do this.

The original graph for clauses (1)–(2) is Figure 20. This graph generates equations.
The fact d splits the graph and we get the two graphs in Figures 21 and 22.

starting point

d̄

x0 x̄0

d

Fig. 21.

The solution of the soft equations for the original graph (without the fact d) is x0 =
d̄ = 1, d = 0.

The solution for the two split graphs, after the fact d gives d = 1 for Figure 21 and
d̄ = 0 for Figure 22.

There is no mathematical contradiction here. We can identify a violation from the
graphs. However we may say there is something unintuitive, as the CTD proposal for a
remedy for the violation O¬d, namely d → Od violates the original obligation O¬d,
and actually perpetuates this violation. This we see on the syntactical level. No problem
in the semantics.
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d̄ d

starting point

Fig. 22.

We can explain and say that since the fact d violates O¬d then a new situation has
arisen and O¬d is not “inherited” across a CTD. In fact, in the case of a dog it even
makes sense. We should not have a dog but if we violate the obligation and get it, then
we must be responsible for it and keep it.

The next example is more awkward to explain.

Example 10. This example is slightly more problematic. Consider the following.

1. You should not have a dog
O¬d

2. you should not have a fence
O¬f

3. If you do have a dog you should have a fence
d→ Of

The graph for (1)–(3) is Figure 23.
The solution is d̄ = f̄ = 1, d = f = 1.
Let us add the new fact

4. d: You have a dog

x̄0

d

d̄

x0

f

f̄

Fig. 23.

The graph of Figure 23 splits into two graphs, Figure 24 and 25.
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starting point

d

d̄

x0

f

f̄

x̄0

Fig. 24.

The equations for Figure 24 solve to d̄ = f̄ = 1, d = f = 0. The equations for
Figure 25 solve to d = f = 1, d̄ = f̄ = 0.

f̄d̄

starting point
d f

Fig. 25.

There is no mathematical contradiction here because we have three separate graphs
and their solutions. We can, and do, talk about violations, not contradictions.

Note that in SDL we can derive Of and O¬f from (1), (2), (3) and we do have a
problem, a contradiction, because we are working in a single same system.

Still, even for the equational approach, there is an intuitive difficulty here. The origi-
nal O¬f is contradicted by d→ Of . The “contradiction” is that we offer a remedy for
the violation d namley Of by violating O¬f .

You might ask, why offer the remedy Of? Why not say keep the dog chained? Oc?
The Oc remedy does not violate O¬f .

The explanation that by having a dog (violating O¬d) we created a new situation is
rather weak, because having a fence is totally independent from having a dog, so we
would expect that the remedy for having a dog will not affect O¬f !

The important point is that the equational approach can identify such “inconsisten-
cies” and can add constraints to avoid them if we so wish.
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Remark 18. Let us adopt the view that once a violation is done by a fact then any type
of new rules can be given. This settles the problems raised in Example 10. However,
we have other problems. We still have to figure out a technical problem, namlely how
to deal with several facts together. In the case of the Chisholm set there were no loops
and so there was the natural obligation progression. We turned the set of facts into a
sequence and separated the original graph (for the set of CTD wihout the facts) into a
sequence of graphs, and this was our way of modelling the facts. When we have loops
there is a problem of definition, how do we decompose the original graph when we have
more than one fact? The next example will illustrate.

Example 11. This example has a loop and two facts. It will help us understand our
modelling options in dealing with facts. Consider the following clauses. This is actually
the Reykjavik paradox, see for example [13]:

1. There should be no dog
O¬d

2. There should be no fence
O¬f

3. If there is a dog then there should be a fence
d→ Of

4. If there is a fence then there should be a dog
f → Od.

The figure for these clauses is Figure 26.

starting point

d

d̄

x0

f

f̄

x̄0

Fig. 26.

The soft equations solve this figure into x0 = d̄ = f̄ = 1. f = d = 0. We now add
the input that there is a dog and a fence.

5. d: dog, f : fence

The question is how to split Figure 26 in view of this input.
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starting point d

d̄

f

f̄

starting point

Fig. 27.

If we substitute d = 1 and f = 1 together and split, we get Figure 27, with two
starting points.

Comparison with the original figure shows two violations of O¬d and O¬f .
Let us now first add the fact d and then add the fact f .
When we add the fact d, Figure 26 split (actually is modified) into Figure 28. This

figure happens to look just like Figure 27 with only d as a starting point. (Remember
that any starting point x gets the equation x = 1.)

starting point d

d̄

f

f̄

Fig. 28.

d

d̄

f

f̄

starting point

Fig. 29.

Adding now the additional fact f changes Figure 28 into Figure 29. In fact we would
have got Figure 29 first, had we introduced the fact f first, and then added the fact d,
we would have got Figure 29.

The difference between the sequencing is in how we perceive the violations.
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The following is a summary.

Option 1. Introduce facts {d, f} simultaneously. Get Figure 27, with two starting points.
There are two violations, one ofO¬f and one ofO¬d. This is recognised by comparing
the solutions for the equations of Figure 26 with those of Figure 27.

Option 2. Introduce the fact d first. Figure 26 changes into Figure 28. Solving the equa-
tions for these two figures shows a violationof O¬d and a vioation of O¬f , because f
also gets f = 1 in the equations of Figure 28.

Option 2df. We now add to option 2d the further fact f . We get that Figure 28 becomes
Figure 29. The solutions of the two figures are the soame, f = d = 1. So adding f
gives no additional violation.

We thus see that adding {d, f} together or first d and then f or (by symmetry) first f
and then d all essentially agree and there is no problem. So where is the problem with
simultaneous facts? See the next Example 12.

Example 12 (Example 11 continued). We continue the previous Example 11:
Let us try to add the facts {d,¬f} to the CTD set of Figure 26. Here we have a

problem because we get Figure 30. In this figure both d and f̄ are starting points. These
two must solve to d = f̄ = 1. This is impossible in the way we set up the system. This
means that it is inconsistent from the point of view of our semantics to add the facts
{d,¬f} simultaneously in the semantics, or technically to have two starting points!

starting point

d

d̄

f

f̄

starting point

Fig. 30.

But we know that it is consisent and possible in reality to have a dog and no fence. So
where did we go wrong in our semantic modelling? Mathematically the problem arises
with making two nodes starting points. This means that we are making two variables
equal to 1 at the same time. The equations cannot adjust and have a solution.3

The obvious remedy is to add the facts one at a time. Option 3d first adds d and then
takes option 3d ¬f and add ¬f and in parallel, option 4¬f first adds the fact ¬f and
then take option 4¬fd and add the fact d. Let us see what we get doing these options
and whether we can make sense of it.

3 Remember when we substitute a fact we split the graph into two and so the equations change.
We are not just substituting values into equations (in which case the order simultaneous or not
does not matter), we are also changing the equations.

Recall what you do in Physics: If we have, for example, the equation y = sin x and we
substitute for x a very small positive value, then we change the equation to y = x.
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starting point

d

d̄

f

f̄

Fig. 31.

Option 3d¬f . Adding the fact d would give us Figure 28 from Figure 26. We now add
fact ¬f . This gives us Figure 31 from Figure 28.

Figure 31 violates Figure 28.

Option 3¬fd. If we add the fact ¬d first, we get Figure 31 from the original Figure 26.

If we now add the fact d, we get Figure 28.
The solution to the equations of this figure is d = 1, f = 1, f̄ = 0, but we already

have the fact ¬d, so the f = 1 part cannot be accepted.
Summing up:

– facts {d,¬f} cannot be modelled simultaneously.
– First d then ¬f , we get that ¬f violates d→ Of .
– first ¬f then d, we get that d→ Of cannot be implemented.

So the differences in sequencing the facts manifests itself as differences in taking a
point of view of the sequencing of the violations.

The two views, when we have as additional data both d and ¬f , are therefore the
following:

we view d→ Of as taking precedent and ¬f is violating it

or

we view O¬f as as taking precedence over d → Of and hence d → Of cannot be
implemented.

3 Equational Semantics for General CTD Sets

We now give general definitions for general equational semantics for general CTD sets.

Definition 13.

1. Let Q be a set of distinct atoms. Let Q̄ be {ā|a ∈ Q}. Let Q∗ = Q ∪ Q̄ ∪ {�,⊥}.
For x ∈ Q̄, let x̄ be x (i.e. ¯̄x = x). Let �̄ = ⊥ and ⊥̄ = �.
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2. A general CTD clause has the form x → Oy, where x, y ∈ Q∗ and x �= ⊥, y �=
⊥,�.

3. Given a set C of general CTD clauses let Q∗(C) be the set {x, x̄|x appears in a
clause of C}.

4. Define two relations on Q∗(C),→ and � as follows:
– x→ y if the clause x→ Oy is in C
– x � y if the clause x→ Oȳ is in C

5. Call the system G(C) = (Q∗(C),→,�) the graph of C.
6. Let x ∈ Q∗(C). Let

E(x→) = {y|x→ y}
E(� x) = {y|y � x}

Definition 14.

1. Let C be a CTD set and let G(C) be its graph. Let x be a node in the graph.
Let f be a function from Q∗(C) into [0,1].
Define

E+(� x, f) = {y|y � x and f(x) > 0}.
2. Let f , x be as in (1). We say f is a model of C if the following holds

(a) f(�) = 1, f(⊥) = 0
(b) f(x̄) = 1− f(x)
(c) f(x) = min({f(y)|x→ y} ∪ {1− f(z)|z ∈ E+(� x, f)})

3. We say f is a {0,1} model of C if f is a model of C andf gives values in {0,1}.
Example 13. Consider the set

1. � → a
2. a→ ā

This set has no models. However (2) alone has a model f(a) = 0, f(ā) = 1. The
equations for (2) are: a = 1− ā, a = min(1 − a, ā).

The graph for (1) and (2) is Figure 32

a ā

�

Fig. 32.

The graph for (2) alone is Figure 32 without the node�.
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Definition 15. Let C be a CTD set. Let G(C) = (Q∗,→,�) be its graph. Let x ∈ Q∗.
We define the truncation graph G(C)x, as follows.

1. Let R∗ be the reflexive and transitive closure of R where

xRy = def(x→ y) ∨ (x � y).

2. Let Q∗
x be the set

{z|xR∗z ∨ x̄R∗z} ∪ {�,⊥}

Let→x= (→� Qx) ∪ {� → x}.
Then

G(C)x = (Q∗
x,→x,�� Q∗

x).

3. In words: the truncation of the graph at x is obtained by taking the part of the graph
of all points reachable from x or x̄ together with � and ⊥ and adding � → x to
the graph.

Example 14. Consider a m level Chisholm set as in Figure 11. The truncation of this
figure at point x̄3 is essentially identicl with Figure 13. It is Figure 33. The difference is
that we write “� → x̄3” instead of “x̄3 starting point”. These two have the same effect
on the equations namely that x̄3 = 1.

�

x4 x̄4

x̄3x3

...

xm+1

...

x̄m+1

Fig. 33.

Definition 16. Let C be a CTD set. Let F be a set of facts. We offer equational semantics
for (C,F).

1. Let Ω be any ordering of F.

Ω = (f1, f2, . . . , fk).
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2. Let G(C) be the graph of C and consider the following sequence of graphs and
their respective equations.

(G(C),G(C)f1 ,G(C)f1f2 , . . . ,G(C)f1,...,fk)

We call the above sequence
G(C)Ω.

We consider Ω as a “point of view” of how to view the violation sequnce arising
from the facts.

3. The full semantics for (C,F) is the family of all sequences {G(C)Ω} for all Ω
orderings of F.

Remark 19. The CTD sets considered so far had the form ±x → O ± y, where x
and y are atomic. This remark expands our language allowing for x, y to be arbitrary
propositional formulas. Our technical machinery of graphs and equations works just
the same for this case. We can write in the graph A, Ā and then write the appropriate
equations, and we use hμ. For example the equation Ā = 1 − A becomes hμ(Ā) =
1− hμ(A). Starting points A must satisfy hμ(A) = 1, all the same as before. The only
difference is that since the equations become implicit on the atoms, we may not have a
solution.

In practice the way we approach such a CTD set is as follows: Let C1 be a set of
CTD obligations of the form {Ai → OBi}. We pretend that Ai, Bi are all atomic. We
do this by adding a new atomic constant y(A), associated with every wff A. The set
C1 = {Ai → OBi} becomes the companion set C2{y(Ai) → Oy(Bi)}. We now
apply the graphs and equational approach to C2 and get a set of equations to be solved.

We add to this set of equations the further constraint equations

y(Ai) = hμ(Ai)

y(Bi) = hμ(Bi).

We now solve for the atomic propositions of the language.
We need to clarify one point in this set-up. What do we mean by facts F? We need

to take F as a propositional theory, it being the conjunction of some of the Ai. If we are
given a set C1 of contrary to duty clauses of the form A→ OB and facts F1, we check
whether F1 � A in classical logic, (or in any other logic we use as a base. Note that if
Ai are all atomic then it does not matter which logic we use as a base the consequence
between conjunctions of atoms is always the same). If yes, then to the companion set
C2 we add the fact y(A). We thus get the companion set of facts F2 and we can carry
on. This approach is perfectly compatible with the previous system where A,B were
already atomic. The theory F is the conjunction of all the ± atoms in F.

There is a slight problem here. When the formulas involved were atomic, a set of
facts was a set of atoms F, obtained by choose one of each pair {+x,−x}. So F was
consistent. When the formulas involved are not atomic, even if we choose one of each
pair {A,¬A}, we may end up with a set F being inconsistent. We can require that
we choose only consistent sets of facts and leave this requirement as an additional
constraint.
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This remark is going to be important when we compare our approach to that of
Makinson and Torre’s input output logic approach.

Example 15. To illustrate what we said in Remark 19, let us consider Figure 17.
The equations are listed in Example 8. Let us assume that in the figure we replace d

by y(D), where D = d ∨ c. We get the equations involving y(D) instead of D and get
the solution as in Example 8, to be

x0 = y(D) = f̄ = 1

x̄0 = ¯y(D) = f = 0.

Now we have the additional equation

y(D) = hμ(D)

= hμ(c ∨ d)
= max(c, d)

So we get max(c, d) = 1 and we do have the solution with d = 1, c = 1, ord = 0, c =
1, ord = 1, c = 0.

Remark 20 (Miner Paradox [21,22]). We begin with a quote from Malte Willer in [22]

Every adequate semantics for conditionals and deontic ought must offer a solu-
tion to the miners paradox about conditional obligations..... Here is the miners
paradox. Ten miners are trapped either in shaft A or in shaft B, but we do not
know which one. Water threatens to flood the shafts. We only have enough sand
bags to block one shaft but not both. If one shaft is blocked, all of the water
will go into the other shaft, killing every miner inside. If we block neither shaft,
both will be partially flooded, killing one miner. [See Figure 34

Action if miners in A if miners in B

Block A All saved All drowned

Block B All drowned All saved

Block neither shaft One drowned One drowned

Fig. 34.

Lacking any information about the miners exact whereabouts, it seems to say
that
1. We ought to block neither shaft.

However, we also accept that
2. If the miners are in shaft A, we ought to block shaft A,
3. If the miners are in shaft B, we ought to block shaft B.
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But we also know that
4. Either the miners are in shaft A or they are in shaft B.

And (2)-(4) seem to entail
5. Either we ought to block shaft A or we ought to block shaft B, which

contradicts (1).
Thus we have a paradox.

We formulate the Miners paradox as follows:

1. � → O¬BlockA
� → O¬BlockB

2. Miners in A→ OBlockA
3. Miners in B → OBlockB
4. Facts: Miners in A∨ Miners in B.

The graph for (1)–(3) is Figure 35

starting point

¬ miners in A ¬ miners in B

miners in A miners in B

Block A Block B

¬ Block A ¬ Block B

� ⊥

Fig. 35.

The Miners paradox arises because we want to detach using (2), (3) and (4) and
get (5).

5. OBlockA ∨OBlockB

which contradicts (1).
However, according to our discussion, facts simply choose new starting points in

the figure. The fact (4) is read as two possible sets of facts. Either the set of the fact
that miner in A or the other possibility, the set containing miner in B. We thus get two
possible graphs, Figure 36 and Figure 37.

We can see that there is no paradox here.
We conclude with a remark that we can solve the paradox directly using H. Re-

ichenbach [24] reference points, without going through the general theory of this paper.
See [23].
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starting point

¬ miners in A ¬ miners in B

miners in A miners in B

Block A Block B

¬ Block A ¬ Block B

Fig. 36.

starting point

¬ miners in A ¬ miners in B

miners in A miners in B

Block A Block B

¬ Block A ¬ Block B

Fig. 37.

4 Proof Theory for CTDs

Our analysis in the previous sections suggest proof theory for sets of contrary to duty
obligations. We use Gabbay’s framework of labelled deductive systems [25].

We first explain intuitively our approach before giving formal definitions. Our start-
ing point is Definition 13. The contrary to duty obligations according to this definition
have the form x → Oy, where x, y are atoms q or their negation ¬q and x may be �
and y is neither� nor⊥.

For our purpose we use the notation x ⇒ y. We also use labels annotating the obli-
gations, and we write

t : x⇒ y.

The label we use is the formula itself

t = (x⇒ y).

Thus our CTD data for the purpose of proof theory has the form

(x⇒ y) : x⇒ y.

Given two CTD data items of the form

t : x⇒ y; s : y ⇒ z
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we can derive a new item
t ∗ s : x⇒ z

where ∗ is a concatenation of sequences. (Note that the end letter of t is the same as the
beginning letter of s, so we can chain them.)

So we have the rule

(x⇒ y) : x⇒ y; (y ⇒ z) : y ⇒ z

(x⇒ y, y ⇒ z) : x⇒ z

It may be that we also have (x⇒ z) : x⇒ z (i.e., the CTD set contains x→ Oy, y →
Oz and x→ Oz), in which case x⇒ z will have two different labels, namely

t1 = (x⇒ y, y ⇒ z)

t2 = (x⇒ z).

We thus need to say that the proof theory allows for lables which are sets of chained
labels (we shall give exact definitions later). So the label for x ⇒ z would be {t1, t2}.
There may be more labels t3, t4, . . . for x⇒ z depending on the original CTD set.

Suppose that in the above considerations x = �. This means that our CTD set
described above has the form {Oy (being � → Oy), y → Oz and Oz}. By using the
chaining rule we just described (and not mentioning any labels) we also get

� ⇒ z,� ⇒ y.

We can thus intuitively detach with� and get that our CTD set proves {y, z}. Notations
� {y, z}.

Alternatively, even if x were arbitrary, not necessarily �, we can detach with x and
write x � {y, z}.

Of course when we use labels we will write

t : x � {s1 : y, s2 : z}

the labels s1, s2 will contain in them the information of how y, z were derived from x.
To be precise, if for example,

C = {(x⇒ y) : x⇒ y, (y ⇒ z) : y ⇒ z, (x⇒ z) : x⇒ z}.

We get

(x) : x �C {(x, x⇒ y, y ⇒ z) : z, (x, x⇒ z) : z, (x, x⇒ y) : y}.

Definition 17. 1. Let Q be a set of atoms. Let ¬ be a negation and let ⇒ be a CTD
implication symbol.
A clause has the form x ⇒ y, where x is either � or atom q or ¬q and y is either
atom a or ¬a.

2. A basic label is either (�) or (q) or (¬q). (q atomic) or a clause (x⇒ y).
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3. A chain label is a sequence of the following form

(x0 ⇒ x1, x1 ⇒ x2, . . . , xn ⇒ xn+1)

where xi ⇒ xi+1 are clauses. x0 is called the initial element of the sequence and
xn+1 is the end element.

4. A set label is a set of chain labels.
5. A labelled CTD dataset C is a set of elements of the form (x⇒ y) : (x⇒ y) where

x⇒ y is a clause and (x⇒ y) is a basic label.
6. A fact has the form (x) : x where x is either atom q or ¬q or �.

A fact set F is a set of facts.

Definition 18. Let C be a CTD dataset. We define the notions of

C �n t : x⇒ y

where n ≥ 0, t a basic or chain label. This we do by induction on n.
We note that we may have C �n t : x⇒ y hold for several different ns and different

ts all depending on C.

Case n = 0
C �0 t : x⇒ y if t = (x⇒ y) and (x⇒ y) : x⇒ y ∈ C.

Case n = 1
C �1 t : x ⇒ y if for some x ⇒ w we have (x ⇒ w) : x ⇒ w in C and (w ⇒ y) :
(w ⇒ y) in C and t = (x⇒ w,w ⇒ y).

Note that the initial element of t is x and the end element is y.

Case n = m+ 1
Assume that C �m t : x ⇒ y has been defined and that in such cases the end element
of t is y and the initial element of t is x.

Let C �m+1 t : x ⇒ y hold if for some t′ : x⇒ w we have C �m t′ : x ⇒ w (and
therefore the end element of t′ is w and the initial element of t is x) and (w ⇒ y) :
w ⇒ y ∈ C and t = t′ ∗ (w ⇒ y), where ∗ is concatenation of sequences.

Definition 19. Let C be a dataset and let (x) : x be a fact. We write C �xn+1 t : y if for
some t : x⇒ y we have C �n t : x⇒ y.

We may also use the clearer notation

C �n+1 (x, t) : y.

Example 16. Let C be the set

(x⇒ y) : x⇒ y

(y ⇒ z) : y ⇒ z

(z ⇒ y) : z ⇒ y
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Then
C �0 (x⇒ y) : x⇒ y

C �2 (x⇒ y, y ⇒ z, z ⇒ y) : x⇒ y

C �x1 (x⇒ y) : y

C �x3 (x⇒ y, y ⇒ z, z ⇒ y) : y

or using the clearer notation

C �1 (x, (x⇒ y)) : y

C �3 (x, (x⇒ y, y ⇒ z, z ⇒ y)) : y.

Note also that y can be proved with different labels in different ways.

Definition 20. Let C be a dataset and let F be a set of facts. We define the notion of
C,F �n (z, t) : x where x, z are atomic or negation of atomic and z also possibly
z = �, as follows:

Case n = 0
C,F �0 (z, t) : x if (x) : x ∈ F and (z, t) = (x).

Case n = m+ 1
C,F �m+1 (z, t) : x if C �n t : z ⇒ x and z = � or (z) : z ∈ F.

Example 17. We continue Example 16. We have

C, {(z) : z} �0 (z) : z

C �2 (z, (z ⇒ y)) : y

C �4 (x, (x⇒ y, y ⇒ z, z ⇒ y)) : y

Example 18. To illustrate the meaning of the notion of C,F � t : x let us look at the
CTD set of Figure 26 (this is the Reykajavic set) with d = dog and f = fence:

1. O¬d
written as (� ⇒ ¬d) : � ⇒ ¬d.

2. O¬f
written as (� ⇒ ¬f) : � ⇒ ¬f .

3. d→ Of
written as (d⇒ f) : d⇒ f .

4. f → Od written as (f ⇒ d) : f ⇒ d.

The above defines C. Let the facts F be (d) : d and (¬f) : ¬f . We can equally write
the facts as

(� ⇒ d) : � ⇒ d)

(� ⇒ ¬f) : � ⇒ ¬f.

(a) CTD point of view
Let us first look at the contrary to duty set and the facts intuitively from the deontic
point of view. The set says that we are not allowed to have neither a dog d nor a
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fence f . So good behaviour must “prove” from C the two conclusions {¬d,¬f}.
This is indeed done by

C �1 (�, (� ⇒ ¬d)) : ¬d
C �1 (�, (� ⇒ ¬f) : ¬f

The facts are that we have a dog (in violation of C) and not a fence

F = {(d) : d, (¬f) : ¬f}.

So we can prove

C,F �0 (d) : d

C,F) �0 (¬f) : ¬f

but we also have
C,F �1 (d, (d⇒ f)) : f.

We can see that we have violations, and the labels tell us what violates what.
Let us take the facts as a sequence. First we have a dog and then not a fence.
Let Fd = {(d) : d} and F¬f = {(¬f) : ¬f}.
then

C,Fd �0 (d) : d

C,Fd �1 (d, (d⇒ f)) : f

which violates
C �0 (�, (� ⇒ ¬f)) : ¬f

but F = Fd ∪ F¬f , and so F viewed in this sequece (first d then ¬f ) gives us a
choice of points of view. Is the addition ¬f a violation of the CTD dog→ O fence
or is it in accordance with the original O¬f?
The problem here is that the remedy for the violation of O¬d by the fact d is
d → Of , which is a violation of another CTD namely O¬f . One can say the
remedy wins or one can say this rememdy is wrong, stick to O¬f .
The important point about the proof system C,F �n t : A is that we can get exactly
all the information we need regarding facts and violations.

(b) Modal point of view
To emphasise the mechanical uniterpreted nature of the proof system let us give it
a modal logic interpretaiton. We regard the labels as possible worlds and regard ∗
as indicating accessibility. We read C,F �n t : A as t � A, in the model m defined
by C,F i.e. m = m(C,F)). The model of (a) above is shown in Figure 38
What holds at node t in Figure 38 is the end element of the sequence t.
The facts give us no contradiction, because they are true at different worlds. At
(�, (� ⇒ d)) we have dog and so at (�, (� ⇒ d, d⇒ f)) we have a fence while
at (�, (� ⇒ ¬f)), we have no fence.
Inconsistency can only arise if we have (x) : z and (x) : ¬z or t : x ⇒ y and
t : x⇒ ¬y but we cannot express that in our language.
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(�, (� ⇒ f, f ⇒ d))

(�)

(�, (� → ¬d)) (�, (� ⇒ ¬f))(�, (� ⇒ d)) (�, (� ⇒ f))

(�, (� ⇒ d, d⇒ f))

Fig. 38.

(c) The deductive view
This is a labelled deductive system view. We prove all we can from the system and
to the extent that we get both A and ¬A with different labels, we collect all labels
and implement a flattening policy, to decide whether to adopt A or adopt ¬A.
Let us use, by way of example, the following flattening policy:
FP1 Longer labels win over shorter labels. (This means in CTD intrepretation

that once an obligation is violated, the CTD has precedence.)
FP2 In case of same length labels, membership in F wins. This means we must

accept the facts!
So according to this policy we have

(�, (� ⇒ d, d⇒ f)) : f wins over (�, (� ⇒ ¬f)) : ¬f

and
(�, (� ⇒ d)) : d wins over (�, (� ⇒ ¬d)) : ¬d.

So we get the result {d, f}.

We can adopt the input-output policy of Makinson-Torre. We regard C as a set of
pure mathematical input output pairs.

We examine each rule in C against the input F. If it yields a contradictory output, we
drop the rule.

The final result is obtained by closing the input under the remaining rules. So let us
check:

Input : {d,¬f}.

Rules in C
� ⇒ ¬f , OK
� ⇒ ¬d, drop rule
d⇒ f , drop rule
f ⇒ d, not applicable.

Result of closure: {d,¬f}.
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The input-output approach is neither proof theory not CTD. To see this add another
rule

¬d⇒ b

where b is something completely different, consistent with ±d,±f . This rule is not
activated by the input {d,¬f}. In the labelled approach we get b in our final set.

Problems of this kind have already been addressed by our approach of compromise
revision, in 1999, see [25].

Example 19. Let us revisit the miners paradox of Remark 20 and use our proof theory.
We have the following data:

1. � ⇒ ¬ Block A
2. � ⇒ ¬ Block B
3. Miners in A⇒ Block A
4. Miners in B ⇒ Block B
5. Fact: Miners in A∨ miners in B

using ordinary logic.
We get from (2), (3) and (4)

5. Block A∨ Block B

(5) contradicts (1).
Let us examine how we do this in our labelled system.
We have

1*. (� ⇒ Block A) : � ⇒ Bock A
(� ⇒ Block B) : � ⇒ Block B

2*. (miners in A⇒ Block A): miners in A⇒ Block A.
3*. (miners in B ⇒ Block B): miners in B ⇒ Block B
4*. (miners in A∨ miners in B)’: miners in A∨ miners in B.

To do labelled proof theory we need to say how to chain the labels of disjunctions.
We do the obvious, we chain each disjunct. So if t is a label with end element x ∨ y

and we have two rules x⇒ z and y ⇒ w then we can chain

(t, (x⇒ z, y ⇒ w))

So we have the following results using such chaining:
(1*), (2*), (3*), (4*) �1 (�, (� ⇒ ¬ Block A)) : ¬ Block A
(1*), (2*), (3*), (4*) �1 (�, (� ⇒ ¬ Block B)) : ¬ Block B
(1*), (2*), (3*), (4*) �3 ((minersA ∨ miners B), ((miners A ⇒ Block A), (miners
B ⇒ Block B))) : Block A ∨ Block B

Clearly we have proofs of ¬ Block A, ¬ Block B and Block A∨ Block B but with
different labels! The labels represent levels of knowledge. We can use a flattening pro-
cess on the labels, or we can leave it as is.
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There is no paradox, because the conclusions are on different levels of knowledge.
This can be seen also if we write a classical logic like proof.
To prove Block A∨ Block B from (2), (3), (4), we need to use subproofs. Whenever

we use a subproof we regard the subproof as a higher level of knowledge. To see this
consider the attempt to prove

(l1.1) A⇒ B

(l1.2) ¬B ⇒ ¬A

We get ¬B ⇒ ¬A from the subproof in Figure 39.
Let us now go back to the miners problem. The proof rules we have to use are

MP
A,A⇒ B

B

definition of the logic.

Assume ¬B, show ¬A

Outer Box

Inner Box

(l 1.2.1.1) Assume A, show ⊥

(l1.2.1.2) We want to reiterate (l1.1)
A⇒ B and bring it here to do
modus ponens and get B

(l 1.2.1.3) We want to reiterate (l 1.2.1)
¬B and bring it here to get a
contradiction.

To do these actions we need

(l1.2.1)

To show ¬A use subproof in Inner Box

proof theoretic permissions
and procedures, because moving
assumptions across levels of
knowledge, from outer box to
inner box
Such procedures are part of the

Fig. 39.
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DE

A ∨B
A proves C

B proves D

C ∨D

RI We can reiterate positive (but not negative) wffs into subproofs.

The following is a proof using these rules:

Level 0

0.1a ¬ Block A. This is a negative assumption
0.1b ¬ Block B, negative assumption
0.2 miners in A⇒ Block A, assumption
0.3 miners in B ⇒ Block B, assumption
0.4 miners in A∨ miners in B
0.5 Block A∨ Block B, would have followed from the proof in Figure 40, if there

were no restriction rule RI. As it is the proof is blocked.

reiterated

Box 1

1.1 Miners in A∨ miners in B,
reiteration of 0.4 into Box 1

1.2 Miners in A⇒ Block A,
reiteration of 0.2 into Box 1.

1.3 Miners in B ⇒ Block B,
reiteration of 0.3 into Box 1

1.4 Block A∨ Block B, from 1.1,
1.2, and 1.3 using DE

1.5 To get a contradiction we need to bring
0.1a ¬ Block A
0.1.b ¬ Block B
as reiterations into Box 1. However, we
cannot do so because these are negative
information assumptions and cannot be

Fig. 40.
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5 Comparing with Makinson and Torre’s Input Output Logic

This section compares our work with Input Output logic , I/O, of Makinson and Torre.
Our starting point is [19]. Let us introduce I/O using Makinson and Torre own words
from [19].

BEGIN QUOTE 1
Input/output logic takes its origin in the study of conditional norms. These may
express desired features of a situation, obligations under some legal, moral
or practical code, goals, contingency plans, advice, etc. Typically they may
be expressed in terms like: In such-and-such a situation, so-and-so should be
the case, or . . . should be brought about, or . . . should be worked towards, or
. . . should be followed — these locutions corresponding roughly to the kinds
of norm mentioned. To be more accurate, input/output logic has its source in
a tension between the philosophy of norms and formal work of deontic logi-
cians. . .

Like every other approach to deontic logic, input/output logic must face the
problem of accounting adequately for the behaviour of what are called ‘contrary-
to-duty’ norms. The problem may be stated thus: given a set of norms to be
applied, how should we determine which obligations are operative in a situa-
tion that already violates some among them. It appears that input/output logic
provides a convenient platform for dealing with this problem by imposing con-
sistency constraints on the generation of output.

We do not treat conditional norms as bearing truth-values. They are not em-
bedded in compound formulae using truth-functional connectives. To avoid all
confusion, they are not even treated as formulae, but simply as ordered pairs
(a,x) of purely boolean (or eventually first-order) formulae.
Technically, a normative code is seen as a set G of conditional norms, i.e. a
set of such ordered pairs (a, x). For each such pair, the body a is thought of as
an input, representing some condition or situation, and the head x is thought
of as an output, representing what the norm tells us to be desirable, obligatory
or whatever in that situation. The task of logic is seen as a modest one. It is
not to create or determine a distinguished set of norms, but rather to prepare
information before it goes in as input to such a set G, to unpack output as it
emerges and, if needed, coordinate the two in certain ways. A set G of condi-
tional norms is thus seen as a transformation device, and the task of logic is to
act as its ‘secretarial assistant’.

Makinson and Torre adapt an example from Prakken and Sergot [4] to illustrate their
use of input/output logic. We shall use the same example to compare their system with
ours.

Example 20. We have the following two norms:

1. The cottage should not have a fence or a dog;
O¬(f ∨ d)
or equivalently
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(a) O¬f
(b) O¬d

2. If it has a dog it must have both a fence and a warning sign.
d→ O(f ∧ w)
or equivalently
(c) d→ Of
(d) d→ Ow
In the notation of input/output logic the above data is written as
(e) (�,¬(f ∨ d))
(f) (d, f ∧w).
Suppose further that we are in the situation that the cottage has a dog, in other
words we have the fact:

3. Fact: d
thus violating the first norm.

The question we ask is: what are our current obligations? or in other words, how are we
going to model this set? We know from our analysis in the previous section that a key
to the problem is modelling the facts and that deontic logic gets into trouble because it
does not have the means to pay attention to what we called the obligation progression.

Figures 41–43 describe our model, which is quite straight forward.
Let us see how Makinson and Torre handle this example.
The input output model will apply the data as input to the input output rules (f) and

(e). This is the basic idea of Makinson and Torre for handling CTD obligations with
facts.

Makinson and Torre realise that, and I quote again

BEGIN QUOTE 2
Unrestricted input/output logic gives

f : the cottage has a fence
and

w: the cottage has a warning sign.
Less convincingly, because unhelpful in the supposed situation, it also gives

¬d: the cottage does not have a dog.
Even less convincingly, it gives

¬f : the cottage does not have a fence,
which is the opposite of what we want. These results hold even for simple-
minded output, . . .

Makinson and Torre propose as a remedy to use constraints, namely to apply to the facts
only those I/O rules which outputs are consistent with the facts. They say, and I quote
again:

BEGIN QUOTE 3
Our strategy is to adapt a technique that is well known in the logic of belief
change cut back the set of norms to just below the threshold of making the
current situation contrary-to-duty. In effect, we carry out a contraction on the
setG of given norms. Specifically, we look at the maximal subsetsG′ ofG such
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that out(G′, A) is consistent with inputA. To illustrate this consider the cottage
example, whereG = {(t,¬(f ∨d), (d, f∧w)}, with the contrary-to-duty input
d. Using just simple minded output, G′ has just one element (d, f ∧w) and so
the output is just f ∧ w.

We note that this output corresponds to our Figure 43.
Makinson and Torre continue to say, a key paragraph showing the difference between

our methods and theirs:

BEGIN QUOTE 4
Although the . . . strategy is designed to deal with contrary-to-duty norms, its
application turns out to be closely related to belief revision and nonmonotonic
reasoning when the underlying input/output operation authorizes throughput
More surprisingly, there are close connections with the default logic of Reiter,
falling a little short of identity. . .

w

d d̄ f̄ f

�

w̄

Fig. 41.

�

d d̄ f̄ f

Fig. 42.

Let us, for the sake of comparison, consider the CTD sets of Figure 26 (this is actu-
ally the Reykajavik set of CTDs) and the facts as considered in Example 12. We have
the following CTD (or equivalently the input output rules):

1. (�,¬(d ∨ f))
2. (d, f)
3. (f, d)

The input is A = d ∧ ¬f .
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f̄

�

d

f

d̄

w

w̄

Fig. 43.

In this example the only rules (x, y) for which A � x are rules (1) and (2), but
neither of their output is consistent with the input. So nothing can be done here. This
corresponds to the lack of solution of our equations where we want to make both d and
¬f the starting points. Our analysis in Example 12 however, gives a different result,
because we first input d then ¬f and in parallel, put ¬f and then d.

So apart from the difference that input output logic is based on classical semantics
for classical logic and we use equational semantics, there is also the difference that input
output logic puts all the input in one go and detaches with all CTD rules whose output
does not contradict it, while we use all possible sequencing of the input, inputting them
one at a time. (To understand what ‘one at a time’ means, recall Remark 19 and Example
15.) There is here a significant difference in point of view. We take into account the
obligation progression and given a set of facts as inputs, we match them against the
obligation progression. In comparison, Input Output logic lumps all CTD as a set of
input output engines and tries to plug the inputs into the engines in different ways and
see what you get. The CTD clauses lose their Deontic identity and become just input
output engines. See our analysis and comparison in part (c) of Example 18, where this
point is clearly illustrated.

Let us do a further comparison. Consider the looping CTD set of Figure 4 which is
analysed in Example 7. This has two input output rules

1. (a, b)
2. (b,¬a)

Consider the two possible inputs

A = ¬a ∧ b

and
B = ¬a ∧ ¬b

A was a solution according to the soft approach option. B was a solution according to
the mathematical approach option.
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Using the input output approach, we can use (b,¬a) for A and we cannot use any-
thing for B.

So there is compatibility here with the soft approach.

Let us summarise the comparison of our approach with the input output approach.

Com 1. We use equational sematics, I/O uses classical semantics.
Com 2. We rely on the obligation progression, breaking the input into sequence and

modelling it using graphs. I/O does not do that, but uses the input all at once
and taking maximal sets of CTDs (x, y) such that the input proves the xs
and is consistent with the ys. The question whether it is possible to define
violation progression from this is not clear. The I/O approach is a conse-
quence relation/consistency approach. Our graph sequences and input facts
sequences can also model action oriented/temporal (real time or imainary
obligation progression ‘time’). So for example we can model something like

f → O¬f

If you have a fence you should take it down.
Com 3. We remain faithful to the contrary to duty spirit, keeping our graphs and

equations retain the CTD structure. I/O brought into their system significant
AGM revision theory and turn I/O into a technical tool for revision theory
and other nonmonotonic systems. See their quoted text 4.

Com 4. The connections are clear enough for us to say we can give equational seman-
tics directly to input output logic, as it is, and never mind its connections with
contrary to duty. Makinson and Torre defined input output logic, we have our
equational approach, so we apply our approach to their logic directly. This is
the subject of a separate paper.

6 Comparing with Governatori and Rotolo’s Logic of Violations

We now compare with Governatori and Rotolo’s paper [13]. This is an important paper
which deserves more attention.

Governatori and Rotolo present a Gentzen system for reasoning with contrary-to-
duty obligations. The intuition behind the system is that a contrary-to-duty is a special
kind of normative exception. The logical machinery to formalise this idea is taken from
substructural logics and it is based on the definition of a new non-classical connective
capturing the notion of reparational obligation.

Given in our notation the following sequence of CTDs

A1, . . . , An ⇒ OB1

¬B1 ⇒ OB2

¬B1 ⇒ OB3

They introduce a substructural connective and consider it as a sub-structural conse-
quence relation without the structural rules of contraction, duplication, and exchange,
and write the above sequence as

A1, . . . , An ⇒ B1, . . . , Bm.
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The meaning is: the sequence A1, . . . , An comports that B1 is the case; but if B1 is
not satisfied, then B2 should be the case; if both B1 and B2 are not the case, then B3

should be satisfied, and so on. In a normative context, this means that the content of
the obligation determined by the conditions A1, . . . , An. The As are the facts and they
are not ordered. So in this respect Governatori and Rotolo approach are like the I/O
approach.

Govenatori and Rotolo give proof theoretical rules for manipulating such sequents.
This approach is compatible with our approach in the sense that it relies on the obli-

gation progression. It is also compatible with our proof theory of Section 4.
For the purpose of comparison, we need not go into details of their specific rules. it

is enough to compare one or two cases.
Consider the CTD set represented by Figure 5. Since this set and figure is acyclic,

Governatori and Rotolo can represent it by a theory containing several of their sequents
. Each sequent will represent a maximal path in the figure. I don’t think however that
they can represent all possible paths. So the graph representation is a more powerful
representation and we could and plan to present proof theory on graphs in a subsequent
paper.

From my point of view , Governatori and Rotolo made a breakthrough in 2005 in the
sense that they proposed to respect what I call the obligation (or violation) progression
and their paper deserves more attention.

They use Gentzen type sequences which are written linearly, and are therefore re-
stricted. We use plannar graphs (think of them as planar two dimensional Gentzen se-
quents) which are more powerful.

I am not sure how Governatori and Rotolo will deal with loops in general. They do
find a way to deal with some loops for example I am sure they can handle the CTD of
Figure 9,or of Figure 4, but I am not sure how they would deal with a general CTD set.

By the way, we used ordered sequences with hierarchical consequents in [18].
Governatori and Rotolo do not offer semantics for their system.
We offer equational semantics.
This means that we can offer equational semantics to their Gentzen system and in-

deed offer equational semantics to substructural logics in general.
This is a matter for another future paper.
Let us quote how they deal with the Chisholm paradox

Chisholm’s Paradox. The basic scenario depicted in Chisholm’s paradox cor-
responds to the following implicit normative system:

{�O h, h �O i,¬h �O ¬i}

plus the situation s = {¬h}. First of all, note that the system does not de-
termine in itself any normative contradiction. This can be checked by making
explicit the normative system. In this perspective, a normative system consist-
ing of the above norms can only allow for the following inference:

�O h, ¬h �O ¬i
�O (h,¬i)
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Thus, the explicit system is nothing but

{h �O i,�O (h,¬i)]}.

It is easy to see that s is ideal (my words: i.e. no violations) wrt the first norm .
On the other hand, while s is not ideal wrt �O (h,¬i), we do not know if it is
sub-ideal (i.e. there are some violations but they are compensated by obeying
the respective CTD) wrt such a norm. Then, we have to consider the two states
of affairs s1 = {¬h, i} and s2 = {¬h,¬i}. It is immediate to see that s1 is non-
ideal (i.e. all violations throughout, no compensation) in the system, whereas
s2 is sub-ideal.

If so, given s, we can conclude that the normative system says that ¬i ought to be the
case.

7 Conclusion

We presented the equational approach for classical logic and presented graphs for Gen-
eral CTD sets which gave rise to equations . These equations provided semantics for
general CTD sets.

The two aspects are independent of one another, though they are well matched.
We can take the graph representation and manipulate it using syntactical rules and

this would proof theoretically model CTD’s. Then we can give it semantics, either equa-
tional semantics or possible world semantics if we want.

We explained how we relate to Makinson and Torre’s input output approach and
Governatory and Rotolo’s logic of violations approach.

The potential “output” from this comparison are the following possible future papers:

1. Equational semantics for input output logic
2. Equational semantics for substructural logics
3. Development of planar Gentzen systems (that would be a special case of labelled

deductive systems)
4. Planar proof theory for input output logic (again, a special case of labelled deduc-

tive systems).
5. Proof theory and equational semantics for embedded CTD clauses of the form x→

O(y → Oz)).
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Abstract. This paper adopts a very elementary representation of uncer-
tainty. A relational database is called uncertain if it can violate primary
key constraints. A repair of an uncertain database is obtained by select-
ing a maximal number of tuples without selecting two distinct tuples
of the same relation that agree on their primary key. For any Boolean
query q, CERTAINTY(q) is the problem that takes an uncertain database
db on input, and asks whether q is true in every repair of db. The com-
plexity of these problems has been particularly studied for q ranging over
the class of Boolean conjunctive queries. A research challenge is to solve
the following complexity classification task: given q, determine whether
CERTAINTY(q) belongs to complexity classes FO,P, or coNP-complete.

The counting variant of CERTAINTY(q), denoted �CERTAINTY(q),
asks to determine the exact number of repairs that satisfy q. This problem
is related to query answering in probabilistic databases.

This paper motivates the problems CERTAINTY(q) and �CERTAINTY(q),
surveys the progress made in the study of their complexity, and lists open
problems. We also show a new result comparing complexity boundaries
of both problems with one another.

1 Motivation

Uncertainty shows up in a variety of forms and representations. In this paper, we
consider a very elementary representation of uncertainty. We model uncertainty
in the relational database model by primary key violations. A block is a maximal
set of tuples of the same relation that agree on the primary key of that relation.
Tuples of a same block are mutually exclusive alternatives for each other. In
each block, only one (and exactly one) tuple can be true, but we do not know
which one. We will refer to databases as “uncertain databases” to stress that
such databases can violate primary key constraints.

Primary keys are underlined in the conference planning database of Fig. 1.
Blocks are separated by dashed lines. There is uncertainty about the city of
ICDT 2016 (Rome or Paris), about the rank of KDD (A or B), and about the
frequency of ICDT (biennial or annual).

There can be several reasons why a database is uncertain. On the positive
side, it allows one to represent several possible future scenarios. In Fig. 1, the
relation C represents that there are still two candidate cities for hosting ICDT

C. Beierle and C. Meghini (Eds.): FoIKS 2014, LNCS 8367, pp. 62–78, 2014.
c© Springer International Publishing Switzerland 2014
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C conf year city country

ICDT 2016 Rome Italy

ICDT 2016 Paris France

KDD 2017 Rome Italy

R conf rank frequency

ICDT A biennial

ICDT A annual

KDD A annual

KDD B annual

DBPL B biennial

BDA B annual

Fig. 1. Uncertain database

2016. On the reverse side, inconsistency may be an undesirable but inescapable
consequence of data integration. The relation R may result from integrating
data from different web sites that contradict one another.

A repair (or possible world) of an uncertain database is obtained by selecting
exactly one tuple from each block. In general, the number of repairs of an uncer-
tain database db is exponential in the size of db. For instance, if an uncertain
database contains n blocks with two tuples each, then it contains 2n tuples and
has 2n repairs.

There are three natural semantics for answering Boolean queries q on an
uncertain database. Under the possibility semantics , the question is whether
the query evaluates to true on some repair. Under the certainty semantics , the
question is whether the query evaluates to true on every repair. More generally,
under the counting semantics , the question is to determine the number of repairs
on which the query evaluates to true. In this paper, we consider the certainty
and counting semantics. The certainty semantics adheres to the paradigm of
consistent query answering [1,3], which introduces the notion of database repair
with respect to general integrity constraints. In this work, repairing is exclusively
with respect to primary key constraints, one per relation.

Example 1. The uncertain database of Fig. 1 has eight repairs. The Boolean
first-order query ∃x∃y∃z∃w

(
C(x, y, ‘Rome’, z) ∧R(x, ‘A’, w)

)
(Will Rome host

some A conference?) is true in six repairs.

For any Boolean query q, the decision problem CERTAINTY(q) is the following.

Problem: CERTAINTY(q)
Input: uncertain database db
Question: Does every repair of db satisfy q?

Two comments are in place. First, the Boolean query q is not part of the input.
Every Boolean query q gives thus rise to a new problem. Since the input to
CERTAINTY(q) is an uncertain database, the problem complexity is data com-
plexity. Second, we will assume that every relation name in q or db has a fixed
known arity and primary key. The primary key constraints are thus implicitly
present in all problems.
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The complexity of CERTAINTY(q) has gained considerable research atten-
tion in recent years. A challenging question is to distinguish queries q for which
the problem CERTAINTY(q) is tractable from queries for which the problem is
intractable. Further, if CERTAINTY(q) is tractable, one may ask whether it is
first-order definable. We will refer to these questions as the complexity classifi-
cation task for CERTAINTY(q).

For any Boolean query q, the counting problem �CERTAINTY(q) is defined as
follows.

Problem: �CERTAINTY(q)
Input: uncertain database db
Question: How many repairs of db satisfy q?

The complexity classification task for �CERTAINTY(q) is then to determine the
complexity of �CERTAINTY(q) for varying q.

In this paper, we review known results in the aforementioned complexity clas-
sification tasks. We also contribute a new result relating the complexity clas-
sifications for CERTAINTY(q) and �CERTAINTY(q). We discuss variations and
extensions of the basic problems, and review existing systems that implement
algorithms for consistent query answering under primary keys.

This paper is organized as follows. Section 2 introduces the basic concepts and
terminology. Section 3 discusses consistent first-order rewriting, which consists
in solving CERTAINTY(q) in first-order logic. Section 4 reviews known dichot-
omy theorems for CERTAINTY(q) and �CERTAINTY(q). Section 5 contains our
new result. From Section 6 on, we present a number of variations and extensions
of the basic framework. Section 6 introduces the notion of nucleus of an uncer-
tain database db relative to a class C of Boolean queries. Intuitively, a nucleus
is a new (consistent) database that “summarizes” all repairs of db such that it
returns certain answers to all queries in C. Section 7 relates �CERTAINTY(q) to
query evaluation in probabilistic databases. Section 9 discusses practical imple-
mentations. Finally, Section 10 lists some questions for future research.

2 Preliminaries

In this section, we first introduce basic notions and terminology. We then recall
a number of complexity classes that will occur in the complexity classification
tasks mentioned in Section 1.

2.1 Data and Query Model

We assume disjoint sets of variables and constants . If x is a sequence containing
variables and constants, then vars(x) denotes the set of variables that occur in
x. A valuation over a set U of variables is a total mapping θ from U to the set
of constants. Such a valuation θ is extended to be the identity on constants and
on variables not in U .
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Atoms and Key-Equal Facts. Each relation name R of arity n, n ≥ 1, has a
unique primary key which is a set {1, 2, . . . , k} where 1 ≤ k ≤ n. We say that R
has signature [n, k] if R has arity n and primary key {1, 2, . . . , k}. Elements of
the primary key are called primary-key positions , while k + 1, k + 2, . . . , n are
non-primary-key positions . For all positive integers n, k such that 1 ≤ k ≤ n, we
assume denumerably many relation names with signature [n, k].

If R is a relation name with signature [n, k], then R(s1, . . . , sn) is called an R-
atom (or simply atom), where each si is either a constant or a variable (1 ≤ i ≤
n). Such an atom is commonly written as R(x,y) where the primary key value
x = s1, . . . , sk is underlined and y = sk+1, . . . , sn. A fact is an atom in which no
variable occurs. Two facts R1(a1, b1), R2(a2, b2) are key-equal if R1 = R2 and
a1 = a2.

We will use letters F,G,H for atoms. For an atom F = R(x,y), we denote by
key(F ) the set of variables that occur in x, and by vars(F ) the set of variables
that occur in F , that is, key(F ) = vars(x) and vars(F ) = vars(x) ∪ vars(y).

Uncertain Database, Blocks, and Repairs. A database schema is a finite
set of relation names. All constructs that follow are defined relative to a fixed
database schema.

An uncertain database is a finite set db of facts using only the relation names
of the schema. We write adom(db) for the active domain of db (i.e., the set of
constants that occur in db). A block of db is a maximal set of key-equal facts of
db. An uncertain database db is consistent if it does not contain two distinct
facts that are key-equal (i.e., if every block of db is a singleton). A repair of db
is a maximal (with respect to set containment) consistent subset of db.

Boolean Conjunctive Query. A Boolean query is a mapping q that associates
a Boolean (true or false) to each uncertain database, such that q is closed under
isomorphism [22]. We write db |= q to denote that q associates true to db, in
which case db is said to satisfy q. A Boolean first-order query is a Boolean query
that can be defined in first-order logic. A Boolean conjunctive query is a finite
set q = {R1(x1,y1), . . . , Rn(xn,yn)} of atoms. By vars(q), we denote the set of
variables that occur in q. The set q represents the first-order sentence

∃u1 · · · ∃uk
(
R1(x1,y1) ∧ · · · ∧Rn(xn,yn)

)
,

where {u1, . . . , uk} = vars(q). This query q is satisfied by uncertain database
db if there exists a valuation θ over vars(q) such that for each i ∈ {1, . . . , n},
Ri(a, b) ∈ db with a = θ(xi) and b = θ(yi).

If q is a Boolean conjunctive query, x = 〈x1, . . . , x�〉 is a sequence of distinct
variables that occur in q, and a = 〈a1, . . . , a�〉 is a sequence of constants, then
q[x �→a] denotes the query obtained from q by replacing all occurrences of xi with
ai, for all 1 ≤ i ≤ .

Computational Problems. The decision problem CERTAINTY(q) and the
counting problem �CERTAINTY(q) have been defined in Section 1.
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2.2 Restrictions on Conjunctive Queries

The class of Boolean conjunctive queries can be further restricted by adding
syntactic constraints.

Acyclicity. A Boolean conjunctive query q is acyclic if it has a join tree [2]. A
join tree for q is an undirected tree whose vertices are the atoms of q such that
for every variable x in vars(q), the set of vertices in which x occurs induces a
connected subtree.

No Self-joins. We say that a Boolean conjunctive query q has a self-join if
some relation name occurs more than once in q. If q has no self-join, then it is
called self-join-free.

Restrictions on Signatures. Let R be a relation name with signature [n, k].
The relation name R is simple-key if k = 1. The relation name R is all-key if
n = k.

We introduce names for some classes of special interest:

– Bcq denotes the class of Boolean conjunctive queries;
– SjfBcq denotes the class of self-join-free Boolean conjunctive queries; and
– AcySjfBcq denotes the class of acyclic self-join-free Boolean conjunctive

queries.

2.3 Complexity Classes

The following complexity classes will occur in the complexity classification tasks
for CERTAINTY(q) and �CERTAINTY(q).

– FO, the class of first-order definable problems. In particular, for a given
Boolean query q, CERTAINTY(q) is in FO if there exists a Boolean first-
order query ϕ such that for every uncertain database db, every repair of
db satisfies q if and only if db satisfies ϕ. Such a ϕ, if it exists, is called a
consistent first-order rewriting of q.

– P, the class of decision problems that can be solved in deterministic poly-
nomial time.

– NP, the class of decision problems whose “yes” instances have succinct cer-
tificates that can be verified in deterministic polynomial time.

– coNP, the class of decision problems whose “no” instances have succinct
disqualifications that can be verified in deterministic polynomial time. In
particular, CERTAINTY(q) is in coNP for every Boolean first-order query q,
because if q is not true in every repair of db, then a succinct disqualification
is a repair of db that falsifies q. Indeed, repair checking (i.e., given rep and
db, check whether rep is a repair of db) is in polynomial time, and so is the
data complexity of first-order queries.
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– FP, the class of function problems that can be solved in deterministic poly-
nomial time. In particular, for a given Boolean query q, �CERTAINTY(q) is
in FP if there exists a polynomial-time algorithm that takes any uncertain
database db on input, and returns the number of repairs of db that satisfy q.

– �P, the class of counting problems associated with decision problems in NP.
Given an instance of a decision problem in NP, the associated counting
problem instance asks to determine the number of succinct certificates of
its being a “yes” instance. The following problem is obviously in NP for
every Boolean first-order query q: given an uncertain database db on input,
determine whether some repair of db satisfies q. Its associated counting
problem, called �CERTAINTY(q), is thus in �P.

Concerning the latter item, notice that the decision variant of �CERTAINTY(q)
is not CERTAINTY(q), which is a decision problem in coNP. The problem
�CERTAINTY(q) might better have been named �POSSIBILITY(q) or so, because
its decision variant asks, given an uncertain database on input, whether some
repair satisfies q.

3 Consistent First-Order Rewriting

The detailed investigation of CERTAINTY(q) was pioneered by Fuxman and
Miller [14,15]. This initial research focused on determining classes of Boolean
conjunctive queries q for which CERTAINTY(q) is in FO, and hence solvable by a
single Boolean first-order query, which is called a consistent first-order rewriting
of q. The practical significance is that such a consistent first-order rewriting can
be directly implemented in SQL. A concrete example is given next.

Example 2. Let q0 be the query ∃zR(‘ICDT’, ‘A’, z) (Is ICDT a conference of
rank A?). Clearly, q0 is true in every repair of some uncertain database db if
and only if db contains an R-fact stating that ICDT has rank A, and contains
no R-fact mentioning a different rank for ICDT. These conditions are expressed
by the following Boolean first-order query (call it ϕ0):

∃zR(‘ICDT’, ‘A’, z) ∧ ∀y∀z (R(‘ICDT’, y, z)→ y = ‘A’) .

If ϕ0 evaluates to true on db, then every repair of db satisfies q0; if ϕ0 evaluates
to false on db, then some repair of db falsifies q0. Thus, ϕ0 a consistent first-order
rewriting of q0, and solves CERTAINTY(q0) without any need for enumerating
repairs.

Fuxman and Miller defined a class Cforest ⊆ SjfBcq such that for every
q ∈ Cforest , CERTAINTY(q) is in FO. Their results were improved by Wijsen [34],
as follows.

Theorem 1 ([34]). Given q ∈ AcySjfBcq, it is decidable (in quadratic time
in the size of q) whether CERTAINTY(q) is in FO. If CERTAINTY(q) is in FO,
then a consistent first-order rewriting of q can be effectively constructed.
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To be precise, the class Cforest contains some conjunctive queries that are cyclic
in some very restricted way (see [9, Theorem 2.4]). On the other hand, there exist
queries q ∈ AcySjfBcq such that CERTAINTY(q) is in FO but q �∈ Cforest . For
Boolean conjunctive queries with self-joins, some sufficient conditions for the
existence of consistent first-order rewritings appear in [32].

4 Complexity Dichotomy Theorems

A further research challenge is to distinguish Boolean conjunctive queries q for
which the problem CERTAINTY(q) is tractable from queries for which the prob-
lem is intractable.

In general, we say that a class P of decision problems exhibits a P-coNP-
dichotomy if all problems in P are either in P or coNP-hard. We say that P
exhibits an effective P-coNP-dichotomy if in addition it is decidable whether a
given problem in P is in P or coNP-hard. Likewise, we say that a class P of
function problems exhibits an FP-�P-dichotomy if all problems in P are either
in FP or �P-hard (under polynomial-time Turing reductions). We say that P
exhibits an effective FP-�P-dichotomy if in addition it is decidable whether a
given problem in P is in FP or �P-hard. We use the term complexity dichotomy
theorem to refer to a theorem that establishes a P-coNP-dichotomy in a class
of decision problems, or an FP-�P-dichotomy in a class of counting problems.
By Ladner’s theorem [21], if P �= NP, or FP �= �P, then no such complexity
dichotomy theorems exist for coNP or �P.

Let C be a class of Boolean queries. We write CERTAINTY[C] to denote the
class of decision problems that contains CERTAINTY(q) for every q ∈ C. Like-
wise, we write �CERTAINTY[C] for the class of counting problems that contains
�CERTAINTY(q) for every q ∈ C.

The following result by Kolaitis and Pema was chronologically the first com-
plexity dichotomy theorem for consistent query answering under primary keys.

Theorem 2 ([17]). Let C be the class of self-join-free Boolean conjunctive que-
ries that contain at most two atoms. Then, CERTAINTY[C] exhibits an effective
P-coNP-dichotomy.

Clearly, every Boolean conjunctive query with at most two atoms, is acyclic.
The following generalization of Theorem 2 was conjectured in both [26] and [35].
What is remarkable is that both works have independently conjectured exactly
the same boundary between tractable and intractable problems in the class
CERTAINTY[AcySjfBcq]. The exposition of this boundary is involved and will
not be given here.

Conjecture 1. The problem class CERTAINTY[AcySjfBcq] exhibits an effective
P-coNP-dichotomy.

Recently, Koutris and Suciu showed the following complexity dichotomy
theorem.
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Theorem 3 ([19,20]). Let C be the class of self-join-free Boolean conjunc-
tive queries in which each relation name is either simple-key or all-key. Then,
CERTAINTY[C] exhibits an effective P-coNP-dichotomy.

In summary, for Boolean conjunctive queries q, the complexity classification
task for CERTAINTY(q) is far from accomplished. More is known about the
complexity classification of �CERTAINTY(q), as becomes clear from the following
two theorems.

Theorem 4 ([24]). The problem class �CERTAINTY[SjfBcq] exhibits an ef-
fective FP-�P-dichotomy.

The following is one of the few complexity dichotomies known for conjunctive
queries with self-joins.

Theorem 5 ([25]). Let C be the class of Boolean conjunctive queries in which
all relation names are simple-key. Then, �CERTAINTY[C] exhibits an effective
FP-�P-dichotomy.

5 Comparing Complexity Boundaries

Theorems 1-5 contribute to the complexity classification tasks for CERTAINTY(q)
and �CERTAINTY(q). These theorems guarantee the existence of effective pro-
cedures to classify problems in different complexity classes. We will not expose
these effective procedures in detail, but provide some examples for queries in
SjfBcq.

1. For q1 = {R(x, y), S(y, z)}, we have that CERTAINTY(q1) is in FO, and
�CERTAINTY(q1) is in FP. A consistent first-order rewriting of q1 is
∃x∃y

(
R(x, y) ∧ ∀y

(
R(x, y)→ ∃zS(y, z)

))
.

2. For q2 = {R(x, y), S(y, a)}, where a is a constant, CERTAINTY(q2) is in FO,
but �CERTAINTY(q2) is already �P-hard. A consistent first-order rewriting
of q2 is ∃x∃y

(
R(x, y) ∧ ∀y

(
R(x, y)→

(
S(y, a) ∧ ∀z

(
S(y, z)→ z = a

))))
.

3. For q3 = {R(x, y), S(y, x)}, we have that CERTAINTY(q3) is in P \FO [33],
and �CERTAINTY(q3) is �P-hard.

4. For q4 = {R(x, y), S(z, y)}, we have that CERTAINTY(q4) is coNP-complete,
and �CERTAINTY(q4) is �P-hard.

We have no example of a query q ∈ SjfBcq such that CERTAINTY(q) is in
P \ FO and �CERTAINTY(q) is in FP. The following theorem implies that no
such query exists unless FP = �P. The proof is in the Appendix.

Theorem 6. For every q ∈ SjfBcq, if CERTAINTY(q) is not in FO, then
�CERTAINTY(q) is �P-hard.

Clearly, the number of repairs of an uncertain database db can be computed
in polynomial time in the size of db, by multiplying the cardinalities of all
blocks. Therefore, for every Boolean query q, if �CERTAINTY(q) is in FP, then
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R′ conf rank frequency

ICDT A �1

KDD �2 annual
DBPL B biennial
BDA B annual
�3 B �1
�4 �2 �1

Fig. 2. Bcq-nucleus for the relation R of Fig. 1. The symbols �1, �2, �3, �4 are new
distinct constants that cannot be used in queries.

CERTAINTY(q) must be in P. That is, tractability of CERTAINTY(q) could in
principle be established from tractability of �CERTAINTY(q). We notice, how-
ever, that Theorem 4 does not give us new tractable cases of CERTAINTY(q) in
this way for q ∈ AcySjfBcq (i.e., Theorem 4 does not help to prove Conjec-
ture 1). By Theorem 1, we can already distinguish in AcySjfBcq the queries q
that have a consistent first-order rewriting from those that have not. If a query
q ∈ AcySjfBcq has no consistent first-order rewriting, then �CERTAINTY(q)
is �P-hard by Theorem 6.

6 Nucleus

Solving CERTAINTY(q) consists in developing an algorithm that takes any un-
certain database db on input, and checks whether every repair of db satisfies
the Boolean query q. As indicated in Section 3, for some q, such an algorithm
can be expressed in first-order logic. A natural question is whether algorithms
for solving CERTAINTY(q) could benefit from some database preprocessing. An
approach proposed in [29] consists in “rewriting” an uncertain database db into
a new database db′ such that for all queries q in some query class, the answer to
CERTAINTY(q) on input db is obtained by executing q on db′. This is formalized
next.

Nucleus. Let C be a class of Boolean queries. A C-nucleus of an uncertain
database db is a database db′ such that for every query q ∈ C, every repair of
db satisfies q if and only if db′ satisfies q.

It follows from [29] that every uncertain database db has a Bcq-nucleus. To
be precise, this result supposes the existence of some special constants, called
labeled nulls , that can occur in uncertain databases, but not in queries.

Example 3. A Bcq-nucleus for the relation R of Fig. 1 is shown in Fig. 2, where
1, 2, 3, 4 are distinct labeled nulls. The atom R′(3,B, 1), for example,
expresses that in every repair, some conference of rank B has the same frequency
as ICDT. The query ∃zR(‘ICDT’, ‘A’, z) evaluates to true on every repair of R,
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R conf rank frequency P

ICDT A biennial 0.3

ICDT A annual 0.6

KDD A annual 0.5

KDD B annual 0.5

DBPL B biennial 0.7

BDA B annual 1.0

Fig. 3. Representation of a BID probabilistic database

and evaluates to true on the Bcq-nucleus. The query ∃yR(‘ICDT’, y, ‘annual’)
evaluates to false on some repair ofR, and evaluates to false on the Bcq-nucleus.

The notion of C-nucleus is closely related to the notion of universal repair
in [28]. Clearly, since CERTAINTY(q) is coNP-hard for some q ∈ Bcq, any
algorithm that takes an uncertain database db on input and computes a Bcq-
nucleus of db, must be exponential-time (unless P = coNP).

7 Probabilistic Databases

For any fixed Boolean query q, the problem �CERTAINTY(q) is a special case of
probabilistic query answering. Let N be the total number of repairs of a given
uncertain database db. If a fact A (or, by extension, a Boolean query) evaluates
to true in m repairs, then its probability, denoted P(A), is m/N . For example, in
Fig. 1, the probability of the fact R(ICDT,A, biennial) is 4/8, because it belongs
to 4 repairs out of 8. It can now be easily verified that for all distinct facts A,B
of db, the following hold:

– If the facts A and B belong to a same block, then P(A ∧B) = 0. In proba-
bilistic terms, distinct facts of the same block represent disjoint (i.e., exclu-
sive) events.

– If the facts A and B belong to distinct blocks, then P(A ∧B) = P(A)·P(B).
In probabilistic terms, facts of distinct blocks are independent .

Probabilistic databases satisfying the above two properties have been coined
block-independent-disjoint (BID) by Dalvi, Ré, and Suciu [6]. BID probabilistic
databases can be represented by listing the probability of each fact, as illus-
trated in Fig. 3. The main differences between uncertain databases and BID
probabilistic databases are twofold:

– In an uncertain database, all facts of a same block have the same probability.
In BID probabilistic databases, facts of a same block need not have the same
probability. For example, in the BID probabilistic database of Fig. 3, the two
facts about ICDT have distinct probabilities (0.3 and 0.6).
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– In an uncertain database, the probabilities of facts in a same block sum up
to 1. In BID probabilistic databases, this sum can be strictly less than 1. The
BID probabilistic database of Fig. 3 admits a possible world with non-zero
probability in which ICDT does not occur.

A detailed comparison of both data models can be found in [35]. The difference
between both data models is further diminished in [23], where some positive
integer multiplicity is associated to every tuple of an uncertain database.

The tractability/intractability frontier of evaluating SjfBcq queries on BID
probabilistic databases has been revealed by Dalvi et al. [7]. Theorem 4 settles
this frontier for uncertain databases. For conjunctive queries with self-joins, no
analogue of Theorem 5 is currently known for BID probabilistic databases.

The situation is different for tuple-independent probabilistic databases. In
such a database, there is no notion of block and all tuples represent independent
events. The tractability/intractability frontier of evaluating unions of conjunctive
queries (possibly with self-joins) on tuple-independent probabilistic databases
has been revealed by Dalvi and Suciu [8].

8 Integrity Constraints on Uncertain Databases

Integrity constraints allow to restrict the set of legal databases. Although uncer-
tainty is modeled by primary key violations in our approach, this does not mean
that constraints should be given up altogether. Some constraints, including some
primary keys, could still be enforced.

Example 4. The uncertain database of Fig. 1 satisfies the functional dependency
R : city→ country, the inclusion dependency C[conf ] ⊆ R[conf ], and the join
dependency C :�� [{conf , rank}, {conf , frequency}]. This join dependency ex-
presses that, given a conference, the uncertainties in rank and frequency are
independent [31].

The problem CERTAINTY(q) has been generalized to account for constraints
that are satisfied by the uncertain databases that are input to the problem [16],
as follows. Let q be a Boolean query, and let Σ be a set of first-order constraints
referring exclusively to the relation names in db. Then CERTAINTY(q,Σ) is the
following decision problem.

Problem: CERTAINTY(q,Σ)
Input: uncertain database db that satisfies Σ
Question: Does every repair of db satisfy q?

Clearly, if Σ = ∅, then CERTAINTY(q,Σ) is the same as CERTAINTY(q).
At another extreme, if Σ contains all primary key constraints, then the input
to CERTAINTY(q,Σ) is restricted to consistent databases without primary key
violations.

Concerning the following theorem, a join dependency R :�� [K1, . . . ,K�] is
called a key join dependency (KJD) if for all 1 ≤ i < j ≤ , the intersection
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Ki ∩Kj is exactly the primary key of R. The join dependency in Example 4 is
a key join dependency.

Theorem 7 ( [16]). Given a query q ∈ AcySjfBcq and a set Σ of functional
dependencies and KJDs containing at most one KJD for every relation name in
q, it is decidable whether CERTAINTY(q,Σ) is in FO. If CERTAINTY(q,Σ) is
in FO, then a first-order definition of it can be effectively constructed.

9 Non-boolean Queries and Implemented Systems

In this section, we discuss some systems that have implemented consistent query
answering under primary key constraints. In practice, non-Boolean queries are
more prevalent than Boolean queries, on which we have focused so far. Never-
theless, most results can be easily extended to non-Boolean queries, as follows.

Henceforth, we will write q(x1, . . . , x�) to indicate that q is a (domain inde-
pendent) first-order query with free variables x1, . . . , x�. The function problem
CERTAINTY(q(x)) takes on input an uncertain database db, and asks to return
all certain answers to q, i.e., all sequences a of constants (of the same length
as x) such that q(a) is true in every repair of db. A first-order formula ϕ(x) is
called a consistent first-order rewriting of q(x) if for every uncertain database
db, for all sequences a of constants, q(a) is true in every repair of db if and
only if ϕ(a) is true in db.

Notice that the number of sequences a that consist exclusively of constants
in db, is polynomially bounded in the size of db. Therefore, the non-Boolean
case is at most polynomially more difficult than the Boolean one. Further, q(x)
has a consistent first-order rewriting if and only if the Boolean query q[x�→c] has
a consistent first-order rewriting, where c is a sequence of new constants.

ConQuer [13] and EQUIP [18] are two systems for solving CERTAINTY(q(x))
where q(x) is a conjunctive query. ConQuer applies to a class of conjunctive
queries q(x) for which CERTAINTY(q(x)) is known to be in FO.1 ConQuer
rewrites such a query q(x) into a new SQL query Q that gives the certain answers
on any uncertain database. The query Q can then be executed in any commercial
DBMS. Notice that Q does not depend on the data.

EQUIP applies to all conjunctive queries q(x). When an uncertain database
db is given as the input of the problem CERTAINTY(q(x)), EQUIP transforms
the database and the query into a Binary Integer Program (BIP) that computes
the certain answers. The BIP can then be executed by any existing BIP solver.
Since the BIP depends on the database db, a new BIP has to be generated
whenever the database changes.

Extensive experiments [18,26] show that if CERTAINTY(q(x)) is in FO, then
encoding the problem in SQL (like in ConQuer) is always preferable to binary
integer programming. This is not surprising, because binary integer program-
ming is NP-hard, while the data complexity of “first-order” SQL is FO. A main

1 ConQuer also deals with aggregation, but we will not consider queries with aggre-
gation here.
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conclusion of [26] is that consistent first-order rewriting should be used when-
ever possible. In this respect, Theorems 1 and 7 are of practical importance,
because they tell us when exactly consistent first-order rewriting is possible, i.e.,
when the problem can be solved in SQL. The viability of consistent first-order
rewriting was also demonstrated in [10].

10 Open Problems

Notwithstanding active research, the complexity classification of CERTAINTY(q)
for Boolean conjunctive queries q is far from completed. The case of self-joins re-
mains largely unexplored. Furthermore, existing research has exclusively focused
on complexity classes FO, P, and coNP-complete. A more fine-grained classifi-
cation could be pursued. For example, can we characterize Boolean conjunctive
queries q for which CERTAINTY(q) is P-complete?

Fontaine [12] has established a number of results relating the complexities of
consistent query answering and the constraint satisfaction problem (CSP). One
result is the following. LetDisBcq be the class of Boolean first-order queries that
can be expressed as disjunctions of Boolean conjunctive queries (possibly with
constants and self-joins). Then, a P-coNP dichotomy in CERTAINTY[DisBcq]
implies Bulatov’s dichotomy theorem for conservative CSP [4]. Since the proof
of the latter theorem is highly involved, it is a major challenge to establish
a P-coNP dichotomy in CERTAINTY[DisBcq]. A further natural question is
whether complexities in �CERTAINTY[DisBcq] can be related to the effective
dichotomy theorem for counting CSP proved in [5,11]. Conversely, can complex-
ity results for CSP be used in the complexity classification of CERTAINTY(q)
and �CERTAINTY(q)?

The concept of nucleus has not yet been studied in depth. Can we determine
a large class of queries C ⊆ Bcq such that a C-nucleus of any uncertain database
db can be computed in polynomial time in the size of db? Some preliminary
results appear in [30].

Currently, no dichotomy is known in the complexity of evaluating conjunctive
queries with self-joins on BID probabilistic databases. Can the dichotomy of
Theorem 5 be extended to BID probabilistic databases?

It remains an open task to gain a better understanding of the role of Σ in
the complexity of CERTAINTY(q,Σ). Currently, we have only studied the case
where Σ is a set of functional dependencies and join dependencies, the latter of
a restricted form. The set Σ of satisfied constraints could be used, for example,
to limit the amount of uncertainty by restricting the number of tuples per block.
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G., Yazici, A., Zadrozny, S., Andreasen, T., Larsen, H.L. (eds.) FQAS 2011. LNCS,
vol. 7022, pp. 25–36. Springer, Heidelberg (2011)

24. Maslowski, D., Wijsen, J.: A dichotomy in the complexity of counting database
repairs. J. Comput. Syst. Sci. 79(6), 958–983 (2013)

25. Maslowski, D., Wijsen, J.: Counting database repairs that satisfy conjunctive que-
ries with self-joins. In: Schweikardt ed. [27]

26. Pema, E.: Consistent Query Answering of Conjunctive Queries under Primary Key
Constraints. PhD thesis, University of California Santa Cruz (2013)



76 J. Wijsen

27. Schweikardt, N. (ed.): 17th International Conference on Database Theory, ICDT
2014, Athens, Greece, March 24-28. ACM (2014)

28. ten Cate, B., Fontaine, G., Kolaitis, P.G.: On the data complexity of consistent
query answering. In: Deutsch, A. (ed.) ICDT, pp. 22–33. ACM (2012)

29. Wijsen, J.: Database repairing using updates. ACM Trans. Database Syst. 30(3),
722–768 (2005)

30. Wijsen, J.: On condensing database repairs obtained by tuple deletions. In: DEXA
Workshops, pp. 849–853. IEEE Computer Society (2005)

31. Wijsen, J.: Project-join-repair: An approach to consistent query answering
under functional dependencies. In: Larsen, H.L., Pasi, G., Ortiz-Arroyo, D.,
Andreasen, T., Christiansen, H. (eds.) FQAS 2006. LNCS (LNAI), vol. 4027, pp.
1–12. Springer, Heidelberg (2006)

32. Wijsen, J.: On the consistent rewriting of conjunctive queries under primary key
constraints. Inf. Syst. 34(7), 578–601 (2009)

33. Wijsen, J.: A remark on the complexity of consistent conjunctive query answering
under primary key violations. Inf. Process. Lett. 110(21), 950–955 (2010)

34. Wijsen, J.: Certain conjunctive query answering in first-order logic. ACM Trans.
Database Syst. 37(2), 9 (2012)

35. Wijsen, J.: Charting the tractability frontier of certain conjunctive query answer-
ing. In: Hull, R., Fan, W. (eds.) PODS, pp. 189–200. ACM (2013)

A Appendix: Proof of Theorem 6

We first expose the tractability/intractability boundary of Theorem 4.

Complex Part of a Boolean Conjunctive Query. Let q be a Boolean
conjunctive query. A variable x ∈ vars(q) is called a liaison variable if x has at
least two occurrences in q.2 The complex part of a Boolean conjunctive query q,
denoted [[q]], contains every atom F ∈ q such that some non-primary-key position
in F contains a liaison variable or a constant.

Example 5. The variable y is the only liaison variable in q = {R(x, y), R(y, z),
S(y, u, a)}, in which a is a constant. The complex part of q is [[q]] = {R(x, y),
S(y, u, a)}. The complex part of {R(y, w), R(x, u), T (x, y)}, where T is all-key,
is empty.

If some atom F = R(x, y1, . . . , y�) of a Boolean conjunctive query q does
not belong to q’s complex part, then y1, . . . , y� are distinct variables that have
only one occurrence in q. Intuitively, such variables can be disregarded when
evaluating the query q, because they do not impose any join condition.

Function IsSafe takes a query q ∈ SjfBcq on input, and always terminates
with either true or false. The function is recursive. The base rules (SE0a and
SE0b) apply if q consists of a single fact, or if the complex part of q is empty.

2 Liaison variables are sometimes called “join variables” in the literature. Notice nev-
ertheless that in the singleton query {R(x, x)}, which is not a genuine join, the
variable x is a liaison variable.
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Function. IsSafe(q) Determine whether q is safe

Input: A query q in SjfBcq.
Result: Boolean in {true, false}.
begin

SE0a: if |q| = 1 and vars(q) = ∅ then
return true;

SE0b: if [[q]] = ∅ then
return true;

SE1: if q = q1 ∪ q2 with q1 �= ∅ �= q2, vars(q1) ∩ vars(q2) = ∅ then
return IsSafe(q1) ∧ IsSafe(q2);

/* a is an arbitrary constant */

SE2: if [[q]] �= ∅ and
⋂

F∈[[q]] key(F ) �= ∅ then

select x ∈ ⋂
F∈[[q]] key(F );

return IsSafe(q[x �→a]);

SE3: if there exists F ∈ q such that key(F ) = ∅ �= vars(F ) then
select F ∈ q such that key(F ) = ∅ �= vars(F );
select x ∈ vars(F );
return IsSafe(q[x �→a]);

if none of the above then
return false;

The recursive rule SE1 applies if q can be partitioned into two subqueries which
have no variables in common. The recursive rule SE2 applies if for some variable
x, all atoms in the complex part of q contain x at some of their primary-key
positions. The recursive rule SE3 applies if all primary-key positions of some
atom are occupied by constants and some non-primary-key position contains a
variable.

A query q ∈ SjfBcq is called safe if Function IsSafe returns true on input
q; otherwise q is unsafe. The following result refines Theorem 4.

Theorem 8 ([24]). For every q ∈ SjfBcq,

1. if q is safe, then �CERTAINTY(q) is in FP; and
2. if q is unsafe, then �CERTAINTY(q) is �P-hard.

We use the following helping lemma.

Lemma 1. For every q ∈ SjfBcq, if q is safe, then CERTAINTY(q) is in FO.

Proof. Let q ∈ SjfBcq such that q is safe. The proof runs by induction on the
execution of Function IsSafe. Some rule among SE0a, SE0b, SE1, SE2, or SE3
must apply to q.

Case SE0a Applies. If q consists of a single fact, then CERTAINTY(q) is obvi-
ously in FO.
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Case SE0b Applies. If [[q]] = ∅, then for any given uncertain database db, we
have that q evaluates to true on every repair of db if and only if q evaluates to
true on db. It follows that CERTAINTY(q) is in FO.

Case SE1 Applies. Let q = q1∪q2 with q1 �= ∅ �= q2 and vars(q1)∩vars(q2) = ∅.
Since q is safe, q1 and q2 are safe by definition of safety. By the induction hy-
pothesis, there exists a consistent first-order rewriting ϕ1 of q1, and a consistent
first-order rewriting ϕ2 of q2. Obviously, ϕ1∧ϕ2 is a consistent first-order rewrit-
ing of q.

Case SE2 Applies. Assume variable x such that for every F ∈ [[q]] �= ∅, x ∈
key(F ). We first show that for every uncertain database db, the following are
equivalent:

1. every repair of db satisfies q; and
2. for some constant a, every repair of db satisfies q[x �→a].

2 =⇒ 1 Trivial. 1 =⇒ 2 Proof by contraposition. Assume that for every con-
stant a, there exists a repair repa of db such that repa �|= q[x �→a]. Assume with-
out loss of generality that [[q]] = {R1(x,x1,y1), . . . , Rn(x,xn,yn)}. For every
a ∈ adom(db), let rep′

a be the subset of repa that contains each Ri-fact whose
leftmost position is occupied by a, for all 1 ≤ i ≤ n. Let db′ be the subset of db
that contains each fact F whose relation name is not among R1, . . . , Rn. Let rep

′

be a repair of db′. It can now be easily seen that rep′ ∪
(⋃

a∈adom(db) rep
′
a

)
is

a repair of db that falsifies q.
By definition of safety, q[x �→a] is safe. By the induction hypothesis, the problem

CERTAINTY(q[x �→a]) is in FO. Let ϕ be a consistent first-order rewriting of
q[x �→c], where we assume without loss of generality that c is a constant that does
not occur in q. Let ϕ(x) be the first-order formula obtained from ϕ by replacing
each occurrence of c with x. By the equivalence shown in the previous paragraph,
∃xϕ(x) is a consistent first-order rewriting of q.

Case SE3 Applies. Assume F ∈ q such that key(F ) = ∅ and vars(F ) �= ∅.
Let x be a sequence of distinct variables such that vars(x) = vars(F ). Let a =
〈a, a, . . . , a〉 be a sequence of length |x|. By definition of safety, q[x�→a] is safe.
By the induction hypothesis, CERTAINTY(q[x �→a]) is in FO. From Lemma 8.6
in [34], it follows that CERTAINTY(q) is in FO. This concludes the proof of
Lemma 1. ��

The proof of Theorem 6 can now be given.

Proof (of Theorem 6). Assume that CERTAINTY(q) is not in FO. By Lemma 1,
q is unsafe. By Theorem 8, �CERTAINTY(q) is �P-hard. ��
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Abstract. We explore an approach to reasoning about causes via argumentation.
We consider a causal model for a physical system, and we look for arguments
about facts. Some arguments are meant to provide explanations of facts whereas
some challenge these explanations and so on. At the root of argumentation here,
are causal links ({A1, · · · , An} causes B) and also ontological links (c1 is a c2).
We introduce here a logical approach which provides a candidate explanation
({A1, · · · , An} explains {B1, · · · , Bm}) by resorting to an underlying causal
link substantiated with appropriate ontological links. Argumentation is then at
work from these various explanation links. A case study is developed: a severe
storm Xynthia that devastated a county in France in 2010, with an unaccountably
high number of casualties.

1 Introduction and Motivation

Looking for explanations is a frequent operation, in various domains, from judiciary to
mechanical fields. We consider the case where we have a (not necessarily exhaustive)
description of some mechanism, or situation, and we are looking for explanations of
some facts. The description contains logical formulas, together with some causal and
ontological formulas (or links). Indeed, it is well-known that, although there are simil-
arities between causation and implication, causation cannot be rendered by a simple
logical implication. Moreover, confusing causation and co-occurrence could lead to
undesirable relationships. This is why we resort here to a causal formalism such that
some causal links and ontological links are added to classical logical formulas. Then,
our causal formalism will produce various explanation links [2].

Each causal link gives rise to explanation links, and each explanation link must ap-
peal to at least one causal link. The ontology gives rise to further explanation links,
although only in the case that these come from explanation links previously obtained:
no explanation link can come only from ontological information. In fact, the ontology
determines a new connective (it can be viewed as a strong implication) which can induce
these further explanation links, whereas classical implication cannot. Indeed, given an
explanation link, logical implication is not enough to derive from it other explanation
links (apart from trivially equivalent ones).
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Despite these restrictions, if the situation described is complex enough, there will be
a large number of explanation links, i.e., possible explanations, and argumentation is
an appealing approach to distinguish between all these explanations.

We introduce in section 2 an explicative model, built from a causal model and an
ontological model. Section 4 shows how the explicative model produces explanations.
Section 5 deals with argumentation about explanations and we conclude in section 6.
Section 3 presents a case study: a severe storm called Xynthia, that resulted in 26 deaths
in a single group of houses in La Faute sur Mer, a village in Vendée during a night in
2010.

2 Explicative Model = Causal Model + Ontological Model

The model that is used to obtain explanations and support argumentation, called the
explicative model, is built from a causal model relating literals in causal links and from
an ontological model where classes (which denote types of object as usual in the liter-
ature about ontology) are related by specialization/generalization links. Data consist of
causal links and “is a” relationships (specifying a hierarchy of classes, see the ontologi-
cal model in section 2.3) and background knowledge (formulae of a sorted logic whose
sorts are the classes of the aforementioned hierarchy).

From these data, tentative explanations are inferred according to principles using the
so-called ontological deduction links obtained in the explicative model.

2.1 Closed Literals

By a closed literal, we mean a propositional literal or a formula

∃ x : class ¬{0,1}P (x) or ∀ x : class ¬{0,1}P (x)

where x is a variable and P is a unary predicate symbol, preceded or not by negation.
Throughout, a closed literal of the form ∃ x : classP (x) is abbreviated as ∃ P (class)
and ∀ x : classP (x) is abbreviated as ∀ P (class) and similarly for ¬P instead of P .
From now on, when we write simply literal, we mean a closed literal.

Lastly, extension to n-ary predicates is unproblematic except for heavy notation.
Henceforth, it is not considered in this paper for the sake of clarity.

2.2 The Causal Model

By a causal model [11], we mean a representation of a body of causal relationships to be
used to generate arguments that display explanations for a given set of facts. Intuitively,
a causal link expresses that a bunch of facts causes some effect.

Notation 1. A causal link is of the form

{α1, α2, · · · , αn} causes β

where α1, α2, · · · , αn, β are literals.
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These causal links will be used in order to obtain explanation links in section 4.

Example 1. My being a gourmet with a sweet tooth causes me to appreciate some cake
can be represented by

{sweet tooth gourmet} causes ∃ X : cake Ilike(X)

Similarly, my being greedy causes me to appreciate all cakes can be represented by

{IamGreedy} causes ∀ X : cake Ilike(X)

In the figures (e.g., part of the causal model for Xynthia in Fig. 2), each plain black
arrow represents a causal link.

2.3 The Ontological Model

Our approach assumes an elementary ontology in which specialization/generalization

links between classes are denoted cn
ISA−→ cm.

Notation 2. An
ISA−→ link has the form c1

ISA−→ c2 where c1 and c2 are sorts in our
logical language that denote classes such that c1 is a subclass of c2 in the ontology.

Thus,
ISA−→ denotes the usual specialization link between classes. E.g., we have

Hurri
ISA−→ SWind and House1FPA

ISA−→ HouseFPA and HouseFPA
ISA−→ BFPA1:

the class Hurri of hurricane is a specialization of the class SWind of strong wing,
the class House1FPA of typical Vendée low houses with a single level in flood-prone
area is a specialization of the class HouseFPA of houses in this area, which itself is a
specialization of the class BFPA of buildings in this area.

In the figures (e.g., part of the ontological model for Xynthia in Fig. 1), each white-

headed arrow labelled with is-a denotes an
ISA−→ link.

The relation
ISA−→ is required to be transitive and reflexive. (1)

Reflexivity is due to technical reasons simplifying various definitions and properties.

2.4 The Explicative Model

The resulting model (causal model + ontological deduction link) is the explicative
model, from which explanation links can be inferred.

Notation 3. An ontological deduction link has the form Φ1
DEDO−→ Φ2 where Φ1 and Φ2

are two sets of literals.

1 FPA stands for some precise flood-prone area, BFPA for the buildings in this area, HouseFPA
for the houses in this area and House1FPA for the one floor low houses in this area.
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If Φ1 = {ϕ1} and Φ2 = {ϕ2} are singletons, we may actually omit curly brackets in

the link {ϕ1} DEDO−→ {ϕ2} to abbreviate it as ϕ1
DEDO−→ ϕ2.

Such a link between literals ϕ1
DEDO−→ ϕ2 actually requires that ϕ1 and ϕ2 are two

literals built on the same predicate, say P . If ϕ1 = ∃ P (c1) and ϕ2 = ∃ P (c2), then

∃ P (c1)
DEDO−→ ∃ P (c2) simply means that ∃ P (c2) can be deduced from ∃ P (c1) due to

specialization/generalization links (namely here, the c1
ISA−→ c2 link in the ontological

model that relate the classes c1 and c2 mentioned in ϕ1 and ϕ2).
Technically, the

DEDO−→ links between literals are generated through a single principle:

If in the ontology is the link class1
ISA−→ class2,

then, in the explicative model is the link ∃ P (class1)
DEDO−→ ∃ P (class2)

as well as the link ∀ P (class2)
DEDO−→ ∀ P (class1)

Also, the following links are added ∀ P (classi)
DEDO−→ ∃ P (classi).

(2)

The same principle holds for P replaced by ¬P . That is, from class1
ISA−→ class2,

both ∃ ¬P (class1)
DEDO−→ ∃ ¬P (class2) and ∀ ¬P (class2)

DEDO−→ ∀ ¬P (class1) ensue,
and the links ∀ ¬P (classi)

DEDO−→ ∃ ¬P (classi) are added whenever necessary.
Let us provide an example from Xynthia, with a predicateOcc so that∃ Occ(Hurri)

intuitively means: some hurricane occurs.

By means of the
ISA−→ link Hurri

ISA−→ SWind,

we obtain the
DEDO−→ link ∃ Occ(Hurri) DEDO−→ ∃ Occ(SWind).

The
DEDO−→ links between literals introduced in (2) are extended to a relation among

sets of literals (as announced in Notation 3), which is done as follows:

Let Φ and Ψ be two sets of literals,

we add to the explicative model Φ
DEDO−→ Ψ

if for each ψ ∈ Ψ, there exists ϕ ∈ Φ such that ϕ
DEDO−→ ψ

and for each ϕ ∈ Φ, there exists ψ ∈ Ψ such that ϕ
DEDO−→ ψ.

(3)

From (1), we obtain that ψ
DEDO−→ ψ is in the explicative model for each literal ψ.

Accordingly,

Ψ
DEDO−→ Ψ is in the explicative model for each set of literals Ψ. (4)

Back to the hurrican illustration (Hurri
ISA−→ SWind), the explicative model contains:

{∃ Occ(Hurri),ItRains} DEDO−→ {∃ Occ(SWind),ItRains}
but it does not contain
{∃ Occ(Hurri),ItRains} DEDO−→ {∃ Occ(SWind)

because, in the latter case, ItRains contributes nothing in the consequent.

Definition 4. Items (2)-(3) give all and only the ontological deduction links Φ
DEDO−→ Ψ

(introduced in Notation 3) comprised in the explicative model.
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Summing up, the explicative model consists of the causal links (in the causal model)
together with the ontological deduction links (obtained from the ontological model).
The explicative model contains all the ingredients needed to derive explanations as is
described in section 4.

2.5 Background Knowledge

In addition to the explicative model, background knowledge is used for consistency
issues when defining explanation links, as will be seen in Section 4, Notation 5. Back-
ground knowledge consists of logical formulas of sorted logic. Part of this knowledge
is freely provided by the user. Moreover, we take causal and ontological deduction links
to entail classical implication:

{α1, · · · , αn} causes β entails (
∧n

i=1αi)→ β.

α
DEDO−→ γ entails α→ γ.

(5)

Consequently, the rightmost logical formulas (
∧n

i=1αi) → β and α → γ from (5),
are necessarily included in the background knowledge.

3 The Xynthia Example

In this section, we consider as an example a severe storm, called Xynthia, which made
26 deaths in a single group of houses in La Faute sur Mer, a village in Vendée during
a night in February 2010. It was a severe storm, with strong winds, low pressure, but
it had been forecast. Since the casualties were excessive with respect to the strength of
the meteorological phenomenon, various investigations have been ordered. This showed
that various factors combined their effects. The weather had its role, however, other
factors had been involved: recent houses and a fire station had been constructed in an
area known as being susceptible of getting submerged. Also, the state authorities did not
realize that asking people to stay at home was inappropriate in case of flooding given the
traditionally low Vendée houses. From various enquiries, including one from the French
parliament2 and one from the Cour des Comptes (a national juridiction responsible for
monitoring public accounts in France)3 and many articles on the subject, we have plenty
of information about the phenomenon and its dramatic consequences. We have extracted
a small part from all this information as an illustration of our approach.

3.1 Classes and Predicates for the Xynthia Example

The classes we consider in the causal model are the following ones: Hurri, SWind,
BFPA, House1FPA, HouseFPA, and BFPA have already been introduced in §2.3,

together with a few
ISA−→ links. Among the buildings in the flood-prone area FPA, there

2 http://www.assemblee-nationale.fr/13/rap-info/i2697.asp
3 www.ccomptes.fr/Publications/Publications/Les-enseignements-
des-inondations-de-2010-sur-le-littoral-atlantique-Xynthia-et-
dans-le-Var
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is also a fire station FireSt. Besides Hurri, we consider two other kinds of natural
disasters NatDis: tsunami Tsun and flooding Flooding. As far as meteorological
phenomena are concerned, we restrict ourselves to very low pressure VLP, together
with the aforementioned Hurri and SWind, and add high spring tide HST to our list
of classes.

Two kinds of alerts Alertmay be given by the authorities, Alert-Evacuate AlertE
and Alert-StayAtHome AlertS. Also, PeopleS expresses that people stay at home.
There exists an anemometer (able to measure wind strength) with a red light, described
by OK Anemo meaning that it is in a normal state and Red Anemo meaning that its
light is on, which is caused by strong wind, while during a hurricane the anemometer is
in abnormal state.

The following predicates are introduced: Flooded and Vict I, applied to a group
of building, respectively meaning that flooding occurs over this group, and that there
were victims in this group (I ∈ {1, 2, 3} is a degree of gravity, e.g. Vict 1, Vict 2
and Vict 3 respectively mean, in % of the population of the group: at least a small
number, at least a significant number and at least a large number of victims).

Remember that Occ means that some fact has occurred (a strong wind, a disaster,
. . . ), similarly a unary predicate Exp means that some fact is expected to occur.

3.2 The Causal and Ontological Models for the Xynthia Example

The classes and the ontological model are given in Fig. 1.

BFPA
(is−a) (is−a)

FireSt HouseFPA

(is−a)

House1FPA

(is−a)
(is−a)

FloodingTsun Hurri

NatDis

(is−a)

SWind

(is−a)
(is−a)

Alert

(is−a)

AlertE AlertS

VLP

OK_Anemo

PeopleS
HST

Red_Anemo

Fig. 1. Ontological model for Xynthia (
ISA−→ links and constants)

Part of the causal model is given in Table 1 and in Fig. 2. It represents causal relations
between (sets of) literals. It expresses that an alert occurs when a natural disaster is
expected, or when a natural disaster occurs. Also, people stay at home if alerted to stay
at home, and then having one level home flooded results in many victims, and even
more victims if the fire station itself is flooded,. . .

3.3 The Explicative Model for the Xynthia Example

The explicative model can be built, which contains various
DEDO−→ links between literals.

For instance, from Hurri
ISA−→ SWind, the links
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Table 1. Part of the causal model for Xynthia

∃ Exp(VLP) causes ∃ Exp(SWind),
∃ Occ(Hurri) causes ¬ OK Anemo,

{∃ Occ(SWind), OK Anemo} causes Red Anemo,
{¬∃ Occ(SWind), OK Anemo} causes ¬ Red Anemo,

∃ Occ(NatDis) causes ∃ Occ(Alert),
∃ Exp(NatDis) causes ∃ Occ(Alert),⎧⎨

⎩
∃ Occ(VLP),

∃ Occ(SWind),
∃ Occ(HST)

⎫⎬
⎭ causes ∃ Occ(Flooding),

∃ Occ(Flooding) causes ∀ Flooded(BFPA),
∀ Flooded(BFPA) causes ∀ Vict 1(BFPA),

∃ Occ(AlertS) causes ∃ Occ(PeopleS),{ ∃ Occ(PeopleS),
∀ Flooded(House1FPA)

}
causes ∀ Vict 2(House1FPA),

{∀ Vict 2(House1FPA),
∀ Flooded(FireSt)

}
causes ∀ Vict 3(House1FPA).

Occ(SWind)
Occ(HST)

Occ(VLP)

E
E

Occ(Flooding)E
E A

Flooded(BFPA) Vict_1(BFPA)

A

3
22

Flooded(FireSt)

Vict_2(House1FPA)

Vict_2(House1FPA)
Occ(AlertS) Occ(PeopleS)

Flooded(House1FPA)

Vict_3(House1FPA)

E E
A

A

A

A
A

Occ(SWind)

E

Red_Anemo
OK_Anemo

Occ(SWind)

E

OK_Anemo

¬
Red_Anemo¬

Exp(VLP)

Exp(NatDis)

Occ(NatDis)

E

Exp(SWind)

E

E

E Occ(Alert)

E

Occ(Hurri)

E _¬ OK_Anemo 

Fig. 2. Part of the causal model for Xynthia

∃ Occ(Hurri) DEDO−→ ∃ Occ(SWind), and
∃ Exp(Hurri) DEDO−→ ∃ Exp(SWind) are obtained.

And similarly, from {HouseFPA ISA−→ BFPA, House1FPA
ISA−→ HouseFPA},

we obtain House1FPA
ISA−→ BFPA by (1), from which we consequently get the link

∀ Flooded(BFPA) DEDO−→ ∀ Flooded(House1FPA).
Fig. 3 represents some causal and

DEDO−→ links which are part of the explicative model.
In the figures, white-headed arrows represent

DEDO−→ links. Remember that each black-
headed arrow represents a causal link, from a literal or, in the case of a forked entry,
from a set of literals.
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Flooded(FireSt)

A

Vict_2(House1FPA)
3Vict_3(House1FPA)

A

Flooded(House1FPA)

A

Occ(SWind)
Occ(HST)

Occ(VLP)

E
E

Occ(Flooding)E
E A

Flooded(BFPA) Vict_1(BFPA)

A

Occ(AlertS) Occ(PeopleS)

E E

Fig. 3. Part of the explicative model: data used to explain why there were numerous victims in
low houses in the flood-prone area House1FPA

4 Explanations

4.1 Introducing Explanation Links

The explicative model (it consists of causal and ontological links) allows us to infer
explanation links. We want to exhibit candidate reasons that can explain a fact by means
of at least one causal link. We disregard “explanations” that would involve only links
which are either classical implications (→) or

DEDO−→ links: some causal information is
necessary for an “explanation” to hold. Here is how causal and ontological links are
used in order to obtain (tentative) explanations in our formalism.

Notation 5. Let Φ,Δ and Ψ be sets of literals. An explanation link

Φ explains Δ unless ¬ Ψ

is intended to mean that Φ explains Δ provided that, given Φ, the set Ψ is possible:
if adding Φ ∪ Ψ to available data (i.e., background knowledge and formulas from (5))
leads to an inconsistency, then the explanation link cannot be used to explain Δ by Φ.
Ψ is called the provision set of the explanation link.
When the set Ψ is empty, we may omit the “ unless ¬ ∅” (i.e., “unless ⊥”) part.

Throughout the text, we write as usual
∧
Φ for

∧
ϕ∈Φ ϕ and ¬Ψ for ¬

∧
Ψ .

We set the following equivalences between explanation links, so that the leftmost
link can under any circumstance be substituted for the rightmost link and vice-versa:

Φ explains Δ is equivalent to Φ explains Δ unless ¬ Φ.
Φ explains Δ unless ¬ Ψ is equivalent to Φ explains Δ unless ¬ (Φ ∪ Ψ). (6)

Let us now describe how explanation links are inferred from the explicative model.
First is the case that Δ is a singleton set.

4.2 Explaining a Singleton from a Set of Literals

The basic case consists in taking it that a direct causal link Φ causes β between a set
of literals Φ and a literal β provides an explanation such that the cause explains the
(singleton set of) effect: see (7a).
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If β = ∃ P (c) or β = ¬ ∃ P (c), a more interesting case arises. Take β = ∃ P (c)
for instance. Since the causal link expresses that the effect of Φ is ∃ P (c), it means that
for any subclass c′ of c, ∃ P (c′) could be caused by Φ (unless a logical inconsistency
would indicate that ∃ P (c′) cannot be the case in the presence of Φ and background
knowledge and all the formulas from (5)). Accordingly, Φ can be viewed as explaining
∃ P (c′). This is the reason for (7b).{

Φ causes β
}

yields: Φ explains {β}. (a){
Φ causes ∃ β
∃ δ DEDO−→ ∃ β

}
yields: Φ explains {∃ δ}, unless ¬ {∃ δ}. (b)

(7)

(5) yields
∧
Φ → β (case (7a)) as well as

∧
Φ → ∃ β and ∃ δ → ∃ β (case (7b)),

hence adding β (case (7a)) or ∃ β (case (7b)) to the provision set makes no difference,
thereby justifying the equivalences in (6).

If Φ = {ϕ} is a singleton set, we may abbreviate Φ explains {β} as ϕ explains β.
Here are a couple of examples from the Xynthia case. First, that flooding occurred

can be explained by the conjunction of very low pressure, strong wind, as well as high
spring tide. In symbols,⎧⎨⎩

∃ Occ(VLP),
∃ Occ(SWind),
∃ Occ(HST)

⎫⎬⎭ causes ∃ Occ(Flooding)

yields ⎧⎨⎩
∃ Occ(VLP),
∃ Occ(SWind),
∃ Occ(HST)

⎫⎬⎭ explains ∃ Occ(Flooding)

Second, expecting a hurricane can be explained from expecting very low pressure:{∃ Exp(VLP) causes ∃ Exp(SWind)
∃ Exp(Hurri) DEDO−→ ∃ Exp(SWind)

}
yields

∃ Exp(VLP) explains ∃ Exp(Hurri)

Third, that all buildings in the flood-prone area are flooded can be explained by flooding:

∃ Occ(Flooding) causes ∀ Flooded(BFPA)

yields
∃ Occ(Flooding) explains ∀ Flooded(BFPA)

In the figures, dotted arrows represent explanation links (to be read explains), these
arrows being sometimes labelled with the corresponding provision set.

We now introduce explanation links between sets of literals, extending the notion of
explanation links from sets of literals to literals presented so far. Since it is an extension,
we keep the same name explanation link.
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{delta}

beta

delta

Phi beta

delta

Phi

Fig. 4. The schema of the explanation link from (7)

4.3 Explaining a Set of Literals from a Set of Literals

The patterns (7) inducing an explanation for a single observation (a singleton set) are
now extended so that they can be used to obtain an explanation for a set of observations:

Let Φ1, Φ2, Δ, Ψ1 and Ψ2 be sets of literals and β be a literal.

If we have Φ1 explains Δ unless ¬ Ψ1, and

Φ2 explains {δ} unless ¬ Ψ2,

then we get Φ1 ∪ Φ2 explains Δ ∪ {δ} unless ¬ (Ψ1 ∪ Ψ2). (8)

Notice that the condition in (8) is that Ψ1 ∪Ψ2 must be possible (it is not enough that
Ψ1 be possible and that Ψ2 be possible —the same applies to (10) below).

Still further explanation links can be generated from these, by following
DEDO−→ links:

If we have

⎧⎪⎨⎪⎩
Φ explains Δ unless ¬ Ψ

Φ0
DEDO−→ Φ

Δ
DEDO−→ Δ1

⎫⎪⎬⎪⎭
then we get Φ0 explains Δ1 unless ¬ Ψ.

(9)

Let us return to our example. Applying (7a), that all the buildings in the flood-prone
area are flooded can be explained by flooding (this is shown at the end of section 4.2).
This explanation link (Φ is {∃ Occ(Flooding)} and Δ is {∀ Flooded(BFPA)})
can be exploited through (9), letting Φ0 = Φ and Δ1 = {∀ Flooded(HouseFPA)}.
I.e., that all houses in the flood-prone area are flooded can also be explained by flooding:{ ∃ Occ(Flooding) causes ∀ Flooded(BFPA)

∀ Flooded(BFPA) DEDO−→ ∀ Flooded(HouseFPA)

}
yields

∃ Occ(Flooding) explains ∀ Flooded(HouseFPA)

The last, but not least, way by which explanation links induce further explanation
links is transitivity (of a weak kind because provision sets are unioned).

If

{
Φ explains Δ unless ¬ Ψ1

Γ ∪Δ explains Θ unless ¬ Ψ2

}
then Φ ∪ Γ explains Θ unless ¬ (Ψ1 ∪ Ψ2).

(10)
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Psi

Psi

Phi

Phi0 Phi0

Phi

Delta

Delta1 Delta1

Delta

Fig. 5. Explanation links follow
DEDO−→ links [cf (9)]

Gamma

Phi

Delta

Gamma

Psi1 U Psi2

Psi2
Theta

Theta

Phi
Psi1

Delta

Fig. 6. Transitivity of explanations among sets of literals (10)

Now, we have defined the notion introduced in Notation 5:

Definition 6. The explanation links Φ explains Δ unless ¬ Ψ introduced in Notation 5
arising from the explicative model are those and only those resulting from applications
of (7), (8), (9) and (10).

The reader should keep in mind that Φ must always be included in the set to be checked
for consistency, as is mentioned in Notation 5 (cf (6)).

Definition 6 is such that we can neither explain Φ by Φ itself nor explain Φ by Φ0 if
all we know isΦ0

DEDO−→ Φ. Intuitively, providing such “explanations” would be cheating,
given the nature of an explanation: some causal information is required.

4.4 More Examples Detailed

Let us start with an example from Xynthia illustrating the use of the patterns (7b) and
(9) depicted in Fig. 4 and 5.

In the causal model for Xynthia, we focus on the causal link

∃ Exp(VLP) causes ∃ Exp(SWind)

In the ontological model for Xynthia, we consider the following ontological links⎧⎨⎩Hurri
ISA−→ SWind

Hurri
ISA−→ NatDis

⎫⎬⎭
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which give rise, in the explicative model, to the
DEDO−→ links below{

∃ Exp(Hurri) DEDO−→ ∃ Exp(SWind)
∃ Exp(Hurri) DEDO−→ ∃ Exp(NatDis)

}
We are looking for Exp(NatDis) to be explained by Exp(VLP)hence we consider{∃ Exp(VLP) causes ∃ Exp(SWind)

∃ Exp(Hurri) DEDO−→ ∃ Exp(SWind)

}
and we apply (7b) in order to obtain, as a first step,

∃ Exp(VLP) explains ∃ Exp(Hurri) unless ¬ ∃ Exp(Hurri)

over which we apply (9) using the ontological deduction link obtained above, that is,

∃ Exp(Hurri) DEDO−→ ∃ Exp(NatDis)

in order to arrive at

∃ Exp(VLP) explains ∃ Exp(NatDis) unless ¬ ∃ Exp(Hurri)

Please observe that applying (9) actually requires ∃ Exp(VLP) DEDO−→ ∃ Exp(VLP)
which is obtained by using (4).

That a natural disaster occurs can be explained from the fact that very low pressure
is expected. However, if ¬∃ Exp(Hurri) holds (it is impossible that some hurricane
be expected), then this explanation no longer stands (because the effect of the causal
link underlying it is strong wind and the explanation chain here identifies hurricane as
the kind of strong wind expected).

Let us now turn to an example showing how a chain of explanations can be con-
structed by means of transitivity (10) applied over explanations already detailed above.
The fact that ⎧⎨⎩

∃ Occ(VLP),
∃ Occ(SWind),
∃ Occ(HST)

⎫⎬⎭ causes ∃ Occ(Flooding)

is in the explicative model allowed us to conclude⎧⎨⎩
∃ Occ(VLP),
∃ Occ(SWind),
∃ Occ(HST)

⎫⎬⎭ explains ∃ Occ(Flooding) (i)

and the fact that{∃ Occ(Flooding) causes ∀ Flooded(BFPA)
∀ Flooded(BFPA) DEDO−→ ∀ Flooded(HouseFPA)

}
is in the explicative model allowed us to conclude

∃ Occ(Flooding) explains ∀ Flooded(HouseFPA). (ii)
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Hence chaining the explanations (i) and (ii) through (10) by letting Γ = ∅ yields⎧⎨⎩
∃ Occ(VLP)
∃ Occ(SWind),
∃ Occ(HST)

⎫⎬⎭ explains ∀ Flooded(HouseFPA) (iii)

Let us now suppose that we have multiple observations

{∀ Flooded(BFPA),Red Anemo}.

From {∃ Occ(SWind), OK Anemo} causes Red Anemo,
we get {∃ Occ(SWind), OK Anemo} explains Red Anemo.

Then, from (iii), using (8) we get⎧⎪⎪⎨⎪⎪⎩
∃ Occ(VLP)
∃ Occ(SWind),
∃ Occ(HST),
OK Anemo

⎫⎪⎪⎬⎪⎪⎭ explains {∀ Flooded(HouseFPA),Red Anemo} (iv)

Also, from Hurri
ISA−→ SWind we get ∃ Occ(Hurri) DEDO−→ ∃ Occ(SWind)

Thus from (iii), using (9), we get⎧⎨⎩
∃ Occ(VLP)
∃ Occ(Hurri),
∃ Occ(HST)

⎫⎬⎭ explains ∀ Flooded(HouseFPA) (v)

However, since ∃ Occ(Hurry) causes ¬ Red Anemo, we do not get

⎧⎪⎪⎨⎪⎪⎩
∃ Occ(VLP)
∃ Occ(Hurri),
∃ Occ(HST),
OK Anemo

⎫⎪⎪⎬⎪⎪⎭ explains {∀ Flooded(HouseFPA),Red Anemo} .

Fig. 7 displays another example from Xynthia of various possible explanations (rep-
resented by dotted lines) labelled as 1, 1a, . . . The sets of literals, from which the ex-
planation links start, are framed and numbered (1) to (4). These sets are not disjoint,
some literals are then duplicated for readability and the copies are annotated with (bis).
Transitivity of explanations is again at work, e.g.,

– set 1 explains ∀ Vict 1(BFPA) (label 1+1a+1b)
It is obtained by transitivity over explanation links 1, 1a and 1b.

– set 4 explains ∀ Vict 2(House1FPA) (label 1+1a+2)
It follows from explanations 1, 1a and 2. The latter results from explanation 1+1a
together with the ∀ Flooded(BFPA) DEDO−→ ∀ Flooded(House1FPA) link.

– set 4 explains ∀ Vict 3(House1FPA) (label 1+1a+2+3)
Explanation 3 results from the ∀ Flooded(BFPA) DEDO−→ ∀ Flooded(FireSt)
link together with explanations 1+1a+2.
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Fig. 7. A few explanations for victims

5 Argumentation

The explicative causal model allows us to infer explanations for a set of statements and
these explanations might be used in an argumentative context [3,4]. Let us first provide
some motivation from our case study, Xynthia.

An explanation for the flooded buildings is the conjunction of the bad weather con-
ditions (very low pressure and strong wind) and high spring tide (see Fig. 2). Let us
take this explanation as an argument. It can be attacked by noticing: a strong wind is
supposed to trigger the red alarm of the anemometer and no alarm was shown. How-
ever, this counter-argument may itself be attacked by remarking that, in the case of a
hurricane, that is a kind of strong wind, the anemometer is no longer operating, which
explains that a red alarm cannot be observed.

Let us see how to consider formally argumentation when relying on an explicative
model and explanations as described in sections 2 and 4. Of course, we begin with
introducing arguments.

5.1 Arguments

An argument is a tuple (Φ,Δ, Ψ,Θ) such that Θ yields that

Φ explains Δ, unless ¬Ψ

is an explanation link according to Definition 6. The components of the argument are:

– Φ, the explanation, a set of literals.
– Δ, the statements being explained, a set of literals.
– Ψ , the provision of the explanation (see Section 4), a set of formulas.
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– Θ, the evidence, comprised of formulas (e.g.,
∧
Φ→ γ), causal links (e.g.,Φcauses

β), and ontological deduction links (e.g., Δ
DEDO−→ {β}).

Back to (iii) in the example from Xynthia in section 4.4, that the FPA houses are
flooded is explained by the set of literals

Φ =

⎧⎨⎩
∃ Occ(VLP)
∃ Occ(SWind)
∃ Occ(HST)

⎫⎬⎭
on the grounds of the following set consisting of two causal links and one ontological
deduction link

Θ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∃ Occ(Flooding) causes ∀ Flooded(BFPA),⎧⎨⎩
∃ Occ(VLP)
∃ Occ(SWind)
∃ Occ(HST)

⎫⎬⎭ causes ∃ Occ(Flooding),

∀ Flooded(BFPA) DEDO−→ ∀ Flooded(HouseFPA)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
That is, (iii) gives rise to the argument (Φ, {δ}, Ψ, Θ) where

– The explanation is Φ.
– There is a single statement being explained, i.e., δ = ∀ Flooded(HouseFPA).
– The provision of the explanation is empty.
– The evidence is Θ.

As for the argumentation part, our approach is concerned with sense-making. I.e.,
there is complex information that needs to be made sense of, and our approach is meant
to provide a way to organize that information so that the key points are identified. This
is a primary task in argumentation, as argumentation (even in computational guise) is
much more than evaluating arguments, and in any case, does not begin with evaluating
arguments [4]. Accordingly, our approach does not aim at evaluating a collection of ar-
guments and counterarguments (as in the sense of determining extensions or identifying
warranted arguments).

5.2 Counter-Arguments

A counter-argument for an argument (Φ,Δ, Ψ,Θ) is an argument (Φ′, Δ′, Ψ ′, Θ′) which
questions

1. either Φ (e.g., an argument exhibiting an explanation for ¬Φ)
2. or Δ (e.g., an argument exhibiting an explanation for ¬Δ)
3. or Ψ (e.g., an argument exhibiting an explanation for ¬Ψ )
4. or any item in Θ (e.g., an argument exhibiting an explanation for the negation of

some θ occurring in Θ)
5. or does so by refutation: i.e an argument exhibiting an explanation for a statement

known to be false and using any of Φ, Θ, Ψ and Δ. In this case, at least one of Φ′,
Θ′, Ψ ′ intersects one of Φ, Δ, Θ, or Ψ .
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Type (5) counter-arguments do not directly oppose an item in the argument being
challenged. They rather question such an item by using it to provide an argument whose
conclusion is wrong. The presence of such an item is ensured by checking that the
challenged argument and the counter-argument indeed share something in common,
i.e., that the intersection is not empty. Otherwise, in the case that the intersection is
empty, then the two arguments have nothing in common, hence none can be viewed as
a counter-argument to the other.

These counter-arguments have the form of an argument. They explain something that
contradicts something in the challenged argument.

Dispute.
Let us consider the illustration at the start of this section: The argument (that the houses
in the flood-prone area are flooded is partly explained by a strong wind) is under attack
on the grounds that the anemometer did not turn red – indicating that no strong wind
occurred. The latter is a counter-argument of type 5 in the above list. Indeed, the state-
ment explained by the counter-argument is Red Anemo that has been observed to be
false. The explanation uses ∃ Occ(SWind), i.e., an item used by the explanation and
then belonging to Φ in the attacked argument.

Taking Red Anemo to be a falsehood, the counter-argument (Φ′, Δ′, ∅, Θ′) results
from Θ′ yielding that{

∃ Occ(SWind)
OK Anemo

}
explains {Red Anemo}

where

– The explanation is

Φ′ = {∃ Occ(SWind),OK Anemo}

– The statement being explained is

Δ′ = {Red Anemo}

– The evidence is

Θ′ =

{{
∃ Occ(SWind)
OK Anemo

}
causes Red Anemo

}
Notice that Φ′ does intersect Φ.

This is a counter-argument because, taking the anemometer being red as falsity, it
is an argument which uses the occurring of a strong wind to conclude the anemometer
being red. As explained above in the general case, such a type (5) counter-argument
uses an item (a strong wind occurring) from the argument being challenged, in order to
conclude a falsity (the anemometer being red).

Dispute (continued)
This counter-argument has in turn a counter-argument (of type 1.). It explains the misbe-
havior of the anemometer by the occurrence of an hurricane (that is a strong wind), and
then explains the negation of an item OK Anemo of the explanation Φ′ of the counter-
argument. The anemoter not getting red, instead of being explained by the absence of a
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strong wind, is explained by the fact that the wind was so strong (an hurricane) that the
anemometer misbehaved.

So, the counter-counter-argument is: (Φ′′, Δ′′, ∅, Θ′′) resulting from Θ′′ yielding
that: {

∃ Occ(Hurri)
}

explains {¬OK Anemo}
where

– The explanation is
Φ′′ = {∃ Occ(Hurri)}

– The statement being explained is

Δ′′ = {¬OK Anemo}
– The evidence is

Θ′′ = {∃ Occ(Hurri) causes ¬OK Anemo}

The dispute can extend to a counter-counter-counter-argument and so on as the pro-
cess iterates.

6 Conclusion

The contribution of our work is firstly to propose a new logic-based formalism where
explanations result from both causal and ontological links. It is important to stress that
our approach reasons from causal relationships which are given, in contrast to a number
of models for causality that aim at finding causal relationships (e.g., [8,9]). This causal-
based approach for explanations, already defended in [1], is relatively different from
other work on explanations that rely on expert knowledge and are considered as useful
functionalities for expert systems and recommender systems (for a synthetic view on
explanations in these domains, see [5,10,14]. We then show how these explanation links
may be interestingly used as building blocks in an argumentative context [3]. It has
similarities with the work by [12], who argue that, in the context of knowledge-based
decision support systems, integrating explanations and argumentation capabilities is a
valuable perspective.

Although explanation and argumentation have long been identified as distinct pro-
cesses [13], it is also recognized that the distinction is a matter of context, hence they
both play a role [7] when it comes to eliciting an answer to a “why” question. This is ex-
actly what is attempted in this paper, as we are providing “possible” explanations, that
thus can be turned into arguments. The argument format has some advantages inasmuch
as its uniformity allows us to express objection in an iterated way: “possible” explana-
tions are challenged by counter-arguments that happen to represent rival, or incom-
patible, “possible” explanations. Some interesting issues remain to be studied. Among
others, comparing competing explanations according to minimality, preferences, and
generally a host of criteria.

We have designed a system in answer set programming that implements the explica-
tive proposal introduced above. Indeed, answer set programming [6] is well fitted for
this kind of problem. One obvious reason is that rules such as (5), (8) or (9) can be trans-
lated literally and efficiently. Also ASP is known to be good for working with graphs
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such as the one depicted in the figures of this text. We plan to include our system in an
argumentative framework and think it will be a good basis for a really practical system,
able to manage with as a rich and tricky example as the Xynthia example.

Acknowledgements. It is our pleasure to thank the reviewers for their detailed and
constructive remarks.

References

1. Besnard, P., Cordier, M.-O., Moinard, Y.: Deriving explanations from causal information.
In: Ghallab, M., Spytopoulos, C.D., Fakotakis, N., Avouris, N.M. (eds.) ECAI 2008, pp.
723–724. IOS Press (2008)

2. Besnard, P., Cordier, M.-O., Moinard, Y.: Ontology-based inference for causal explanation.
Integrated Computer-Aided Engineering 15, 351–367 (2008)

3. Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press, Cambridge (2008)
4. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic rea-

soning, logic programming and n-person games. Artificial Intelligence 77, 321–357 (1995)
5. Friedrich, G., Zanker, M.: A taxonomy for generating explanations in recommender systems.

AI Magazine 32(3), 90–98 (2011)
6. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Syn-

thesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Pub-
lishers (2012)

7. Giboney, J.S., Brown, S., Nunamaker Jr., J.F.: User acceptance of knowledge-based
system recommendations: Explanations, arguments, and fit. In: 45th Annual Hawaii Interna-
tional Conference on System Sciences (HICSS’45), pp. 3719–3727. IEEE Computer Society
(2012)

8. Halpern, J.Y., Pearl, J.: Causes and Explanations: A Structural-Model Approach. Part I:
Causes. In: Breese, J.S., Koller, D. (eds.) 17th Conference in Uncertainty in Artificial In-
telligence (UAI 2001), pp. 194–202. Morgan Kaufmann (2001)

9. Halpern, J.Y., Pearl, J.: Causes and Explanations: A Structural-Model Approach. Part II: Ex-
planations. In: Nebel, B. (ed.) 17th International Joint Conference on Artificial Intelligence
(IJCAI 2001), pp. 27–34. Morgan Kaufmann (2001)

10. Lacave, C., Dı́ez, F.J.: A review of explanation methods for heuristic expert systems. The
Knowledge Engineering Review 19, 133–146 (2004)

11. Mellor, D.H.: The Facts of Causation. Routledge, London (1995)
12. Moulin, B., Irandoust, H., Bélanger, M., Desbordes, G.: Explanation and argumentation ca-

pabilities: Towards the creation of more persuasive agents. Artif. Intell. Rev. 17(3), 169–222
(2002)

13. Walton, D.: Explanations and arguments based on practical reasoning. In: Roth-Berghofer,
T., Tintarev, N., Leake, D.B. (eds.) Workshop on Explanation-Aware Computing at IJCAI
2009, Pasadena, CA, U.S.A, pp. 72–83 (July 2009)

14. Ye, L.R., Johnson, P.E.: The impact of explanation facilities in user acceptance of expert
system advice. MIS Quarterly 19(2), 157–172 (1995)



Reasoning on Secrecy Constraints under

Uncertainty to Classify Possible Actions�

Joachim Biskup, Gabriele Kern-Isberner,
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Abstract. Within a multiagent system, we focus on an intelligent agent
D maintaining a view on the world and interacting with another agent
A . Defending its own interests, D wants to protect sensitive information
according to secrecy constraints in a secrecy policy. Hereby, a secrecy
constraint intuitively expresses the desire that A , seen as attacking these
interests, should not believe some target sentence by reasoning on the
world. For deciding on its actions, D has to interpret secrecy constraints
under uncertainty about the epistemic state of A . To this end, we equip
D with a secrecy reasoner which classifies the agent’s possible actions ac-
cording to their compliance with its secrecy policy. For this classification
task, we introduce principles to guide the reasoning based on postulates
about A . In particular, these principles give guidance on how to deal
with the uncertainty about A and, if in the face of other desires, D con-
siders an action which is potentially violating secrecy constraints, how to
mitigate the effect of potential violations. Moreover, we design a secrecy
reasoner by presenting a constructive approach for the classification task
and verify that the designed reasoner adheres to the principles.

Keywords: action, agent view, a priori knowledge, attacker postulates,
belief, credulity, epistemic state, multiagent system, secrecy constraint,
secrecy reasoner, uncertainty.

1 Introduction

We consider a system of interacting and intelligent agents of the following kind:
the agents are situated in a dynamic, non-deterministic and inaccessible en-
vironment [18]. Each agent maintains views and, based on that, beliefs on its
environment while interpreting observations and deciding on its own actions. An
agent’s environment consists of some non-explicitly represented world and the
other agents. Our long-term goal is to enable an agent to reason on secrecy con-
straints, declared by a security/knowledge engineer in a secrecy policy, in order
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to classify its actions, capturing its secrecy constraints, to the end of decision
making. This reasoning should follow the underlying intention to protect sensi-
tive information against other agents in a best possible way – even under the
uncertainty inherent in the agent’s assumption about another agent and even
under consideration of potential violations of secrecy constraints.

In this article, we first present a model of an intelligent agent for treating
that goal of secrecy reasoning. Thereby, we focus on a scenario of two intelligent
agents – each of them is capable to act as a defending agent D which can choose
to execute an inform-action to its ends, i.e., tell another agent that some sentence
is true; but doing this should comply with its secrecy constraints in its secrecy
policy in a best possible way. In turn, the other agent is postulated as an attacking
agent A with respect to D’s secrecy constraints. This small scenario allows us
to elaborate on a fundamental task to be solved for an agent as defender D:
fixing a point in time, how should D reason on its secrecy constraints to classify
possible inform-actions according to their degree of compliance with D’s secrecy
constraints? We restrict to comparable degrees expressed by natural numbers
where smaller numbers indicate better compliance.

Figure 1 shows the main components of an intelligent agent, both as an at-
tacking and as a defending agent, in the focused scenario. We describe the agent’s
components by abstract concepts, leaving out details that are irrelevant for our
purposes. This way, as we exemplify, our results can be applied to several in-
stances of these concepts. On the one hand, an agent seen as an attacker A
reasons about the world. On the other hand, an agent seen as a defender D
considers the other agent’s reasoning about the world, on the basis of postulates
about the other agent’s capabilities. In the following, we consider that one of
the agents has the fixed role of a defender and the other agent a fixed role of an
attacker.

A secrecy constraint of agent D towards the other agent A roughly expresses
D’s desire that “agent A should not believe the information expressed by some
logical target sentence φ by reasoning with an operator Bel”. To interpret such a
constraint, the defending agent first needs the postulates about A’s capabilities.

Under the uncertainty about A inherent in these postulates, the agent D also
needs guidance by some appropriate norm. In our approach, as further discussed
in Section 5 on related work, such a norm is induced by the specific declarations of
D’s engineer – the secrecy constraints and a belief operator family with credulity
order – together with three principles for the classification task.

The belief operator family with credulity order enables D to compare belief
operators according to the credulity of inferred belief. This way, if D considers
that A believes a target sentence φ using operator Bel and thus considers a
respective secrecy constraint potentially violated, D is enabled to mitigate the
potential violation by considering less credulous reasoning than reasoning with
Bel.

The principles present requirements on the classification in account of the
uncertainty about A and the credulity of A’s reasoning about a target sentence
and for minimality of classification. Minimality should prevent that D’s options
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Fig. 1. Main components of an intelligent agent both as an attacking agent reason-
ing about the world and as a defending agent reasoning on secrecy constraints under
uncertainty, focusing on the classification of actions

to execute inform-actions are unnecessarily restricted to respect other desires of
D such as information sharing.

Our contribution is the specification and design of a reasoner on secrecy con-
straints. First we specify the reasoner declaratively by the formalization of the
principles. Then, we develop an algorithm for the secrecy reasoner. Finally, we
verify that the design and algorithm adheres to the declarative specification. In
the following sections, we proceed as follows. In Section 2, we detail an intelligent
agent’s components essential for secrecy reasoning. In Section 3 we elaborate and
formalize the principles for a secrecy reasoner as declarative requirements on its
classification results. In Section 4, we design a secrecy reasoner and verify its
adherence to the declarative requirements. In Section 5, we relate our contri-
butions to other works. Finally, in the concluding Section 6, we discuss issues
purposely left open in our abstractions and suggest lines for further research.
Proofs of statements are either omitted or shifted to the appendix.
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2 Epistemic Agent Model for Secrecy Reasoning

In this section, we first introduce the components of an epistemic agent being
essential for A’s reasoning about the world as shown in Figure 1. Then, we intro-
duce the essential components for D ′s reasoning on secrecy constraints including
its postulates about A’s means of reasoning to form belief and about the effects
of D’s actions on that belief.

Actual Situation of an Attacking Agent. Common to both agents, there is a
(non-explicitly represented) world saying “what is really the case”. The actual
case is semantically specified by an interpretation of atomic propositions in the
alphabet At which forms the basic vocabulary of both agents. Syntactically, the
agents communicate about the world in the shared propositional language L
over At with the standard propositional connectives, or an appropriate selection
thereof. An attacking agent A has information about some aspects of the world,
resulting in its world view, which may have resulted from a priori knowledge
about the world in general or from observations during interactions. The world
view is syntactically represented as a sequence 〈B;φ1, . . . , φn〉 comprised of two
parts: the background knowledge B as a set of sentences from a language LB ,
which is an extension of L to express rules, and its observations φi ∈ L.

Further, agent A can form belief about a sentence φ ∈ L by means of a
belief operator Bel : 2LB × L∗ → 2L . The agent believes φ using Bel if φ ∈
Bel(〈B;φ1, . . . , φn〉). The operator is chosen by the agent to its ends, depending
on the target φ of its reasoning, out of a family Ξ of such operators. The task
of the belief operator is to derive propositions in L the agent accepts as true by
reasoning on its observations using its background knowledge. Examples of the
language LB for background knowledge are simply L, extended logic programs [9]
or conditionals [12].

Our intent is to consider general families Ξ of belief operators for modeling
different kinds of reasoning such as skeptical and credulous reasoning [16]. Yet,
we want to make sensible restrictions on what A may accept as true by using an
operator from Ξ: A cannot accept as true a formula and its negation at the same
time and it has to accept all propositional consequences in L of any formula it
accepts as true. Moreover, belief operators in Ξ with different kind of reasoning
usually can be compared with respect to the credulity of reasoning. We formalize
this aspect by a credulity order on Ξ with the intuition that a belief operator
is more credulous than another one if with the former the agent accepts more
propositions as its belief.

Definition 1 (Belief Operator Family with Credulity Ordering). A be-
lief operator family with credulity order is a pair (Ξ,�cred) consisting of a set
Ξ of belief operators of the form Bel : 2LB ×L∗ → 2L and a credulity order �cred

on Ξ fulfilling the following properties.
First, for each belief operator Bel ∈ Ξ it holds:

– Consistency: There does not exist φ ∈ L and W ∈ 2LB × L∗

such that φ ∈ Bel(W ) and ¬φ ∈ Bel(W ).
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– Propositional Consequence: For all φ, ψ ∈ L such that ψ is a propositional
consequence of φ, i.e., φ �pl ψ, for all W ∈ 2LB × L∗ it holds
φ ∈ Bel(W ) implies ψ ∈ Bel(W ).

Second, the credulity order �cred satisfies the following credulity property: If
Bel �cred Bel

′, then for all W ∈ 2LB ×L∗ it holds that Bel(W ) ⊆ Bel′(W ). We
read Bel �cred Bel

′ as Bel′ is at least as credulous as Bel.

Example 1. We use an instantiation of the abstract concepts, taking LB = L as
the propositional language with all standard connectives and assuming a finite
alphabet At . Then, we define a set of belief operators ΞRW = {Belp | p ∈
(0.5, 1]} indexed by threshold parameter p. Each operator calculates the agent’s
certainty in the truth of a formula φ ∈ L as the ratio of its models among the
models of the agent’s background knowledge and its observations in its world
view 〈B;φ1, . . . , φn〉 like in the random worlds approach [2]. Then, the agent’s
reasoning can be seen as accepting every formula as true that holds at least in
the “majority” of the considered models, more precisely in at least p ·100 percent
of those models (given by the model operator Mod):

Belp(〈B;φ1, . . . , φn〉) = {φ ∈ L | r(φ, 〈B;φ1, . . . , φn〉) ≥ p}

with r(φ, 〈B;φ1, . . . , φn〉) =
|Mod(φ) ∩Mod(B ∪ {φ1, . . . , φn})|

|Mod(B ∪ {φ1, . . . , φn})|
(1)

The credulity order is given as Belp �RW
cred Belp′ iff p′ ≤ p. We can easily verify

that the pair (ΞRW ,�RW
cred) is a belief operator family with credulity order of

Def. 1. For simplicity, we neglect the cases where B∪{φ1, . . . , φn} is inconsistent
and thus consider only consistent sets in the following examples.

Upon receiving an inform-action inform(φ) ∈ Act := {inform(φ) | φ ∈
L} from D, interpreted by A as conveying the claim of truth of a sentence
φ ∈ L in the world, agent A appends φ to its observations in its world view.
This is formalized by the operator + : 2LB × L∗ × Act → 2LB × L∗ with
〈B;φ1, . . . , φn〉 + inform(φ) := 〈B;φ1, . . . , φn, φ〉. In this context, we treat an
inform-action as an abstraction that only cares about the information conveyed
to A, whether explicitly by communicating a statement φ or implicitly as con-
sequences of some notification. All other aspects of an action, e.g., being a re-
action on some previous request or urging the recipient to activities, are either
abstracted into D’s assumptions about A or simply neglected.

A Defending Agent’s Postulates About an Attacking Agent. Being unable to de-
termine an attacking agent A’s actual situation, a defending agent D has to
make assumptions about that situation to evaluate the effect of a considered
inform-action on A’s belief with respect to D’s secrecy constraints. In partic-
ular, D is challenged by its uncertainty about A’s world view and about A’s
choice of the operator Bel for a particular target sentence φ. We speak of D’s
postulates rather than of assumptions to stress that we do not only express what
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D reasonably assumes about A’s actual situation, but also what D presumes as
a matter of precaution for the sake of secrecy in the face of D’s uncertainty.

In this sense, agent D keeps A’s postulated world views which is a non-empty
set W ⊆ 2LB × L∗ of world views. This way, D postulates that each W ∈ W
could be held by A, but that each W ∈ (2LB × L∗) \W is not held by A.

In this set, agent D might have incorporated a priori assumptions or obser-
vations of A as having been observed by D in turn. For example, D might only
have partially accessed the contents of an inform-action from another agent to
A since that agent might have encrypted parts of the contents for the sake of its
secrecy constraints.

Example 2. Consider that agent A reasons about a particular person P who can
have several properties At = {p1, . . . , p4, s1, s2}. Considering A’s relationship to
P, agent D reasonably assumes that A knows whether P has properties p1 and
p2, whereas D does not know this about P. Moreover, D postulates that A has
the following background knowledge:

B = {p1 ∧ p2 ∧ p4 ⇒ s1, p2 ∧ p3 ⇒ s1, p1 ∧ p3 ⇒ s2}. (2)

Thus, D postulates that the following world views could be held by A: W1 =
(B; p1, p2), W2 = (B; p1,¬p2), W3 = (B;¬p1, p2) and W4 = (B;¬p1,¬p2).

Further, the defending agent postulates which belief operator A would choose
to reason about a target sentence φ in the context of a specific secrecy constraint.
Intuitively, such a secrecy constraint should represent agent D’s desire to avoid
that agent A believes φ when using the belief operator Bel on its world view W ,
i.e., φ ∈ Bel(W ) is undesired.

Definition 2 (Secrecy Policy). A secrecy constraint is a tuple (φ,Bel) ∈
LS = L×Ξ consisting of a target sentence φ ∈ L and a belief operator Bel ∈ Ξ.
Further, a secrecy policy is a set S ⊆ LS of secrecy constraints.

Note that D may have several secrecy constraints with the same target sentence
to account for several possible choices of A.

Example 3. Agent D considers the properties s1 and s2 as target sentences of
secrecy constraints. Concerned with P’s privacy, D thus has the following secrecy
constraints towards A: S = {(s1, Bel0.7), (s2, Bel0.6)}. This way, D postulates
a more credulous reasoning of A about property s2 than A’s reasoning about
property s1 (Bel0.6 �RW

cred Bel0.7).

Taking all this into consideration, we define the epistemic state of a defending
agent D as follows.

Definition 3 (Epistemic State). The epistemic state KD of agent D (for the
given point in time), focused on attacker A, is determined by the following state
operators. The world view is given by VW (KD) ∈ 2LB ×L∗. The set of postulated
world views of A is given by VPW (KD) ⊆ 2LB × L∗ with VPW (KD) �= ∅. The
secrecy policy is given by S(KD ) ⊆ LS.
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Generally, each agent enjoys the same structure, i.e., the state operators can be
applied for any agent. Moreover, generally, the epistemic state contains postu-
lated world views for each other agent in the environment. We denote the set of
all epistemic states by Es .

3 Secrecy Reasoner: Declarative Principles

Agent D’s secrecy policy is interpreted by D’s secrecy reasoner yielding a classifi-
cation of possible actions. This way, a secrecy reasoner defines a formal semantics
of D’s secrecy policy. A low classification of an action indicates that the exe-
cution of that action complies with D’s secrecy policy possibly well. Typically,
D considers a finite subset Act ′ ⊂fin Act of all actions as its options. Thus,
formally, a classification is a function cl : Act ′ → N0 such that cl−1(0) �= ∅ where
a classification rank of 0 means best compliance. The infinite range of classi-
fications should enable the agent to mitigate potential violations as suggested
by [14]. Roughly, the reason is that, if the agent should be enabled to do so, ac-
tions cannot be simply classified into two kinds, one complying with its secrecy
policy and the others not complying. We denote the set of all classifications of
arbitrary finite subsets Act ′ of actions by Cl .

In this section, we define how a secrecy reasoner should classify actions in
a declarative way by principles taking D’s uncertainty about A’s situation into
account. Above all, the classification of an action inform(φ) depends on a runtime
simulation of its effect on D’s postulated world views W . These hypothetically
evolved world views are determined by the operator ⊕ as follows:

⊕(W , inform(φ)) = {W + φ |W ∈ W }. (3)

The principles for a secrecy reasoner are explained in the following and sum-
marized by definitions at the end of this section.

Principle I.1 (Avoid potential violations) intuitively expresses that agent D
desires to avoid that in some of its postulated world views more secrecy con-
straints become violated. We make this precise using the following definition.

Definition 4 (Violation Sets). Let S ⊆ LS be a secrecy policy, W ∈ 2LB ×L∗

a world view, W postulated world views and a ∈ Act an inform-action. Then,
the secrecy constraints in S violated under world view W are defined as the set

vio(S ,W ) = {(φ,Bel) ∈ S | φ ∈ Bel(W )}.

Further, combinations of secrecy constraints from S potentially violated under
postulated world views W after action a are defined by

vioAfter(S ,W , a) = {vio(S ,W ) |W ∈ ⊕(W , a)}.

In words, each of these combinations is a set of constraints that are jointly
violated under one and the same W ∈ W .
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In the context of an epistemic state K , we often use the notation vio(K ,W )
for vio(S(K ),W ) and vioAfter(K , a) for vioAfter(S(K ),VPW (K ), a). Moreover,
we say that D considers a constraint potentially violated after action a if the
constraint occurs in some set in vioAfter(K , a). Furthermore, we base several
definitions on the set-inclusion maximal sets of a set X of sets which we denote
by max⊆X := {S ∈ X | there is no S′ ∈ X such that S ⊂ S′}.

Example 4. Agent D now wants to decide whether to reveal that P has prop-
erty p3; or to reveal less by saying p1 ∨ p2 ∨ p3; or to intentionally lie to A
about p3. Thus, D considers one of the options Act ′ = {inform(p3), inform(p1 ∨
p2 ∨ p3), inform(¬p3)} to inform A, referred to as a1, a2 and a3, respectively.
Concerned with secrecy, D further considers the combinations of its secrecy con-
straints potentially violated after each action resulting in: vioAfter(KD, a1) =
vioAfter(KD, a2) = {{(s2, Bel0.6), (s1, Bel0.7)}, {(s2, Bel0.6)}, {(s1, Bel0.7)}, ∅}
and vioAfter(KD, a3) = {∅}. Hereby, D’s postulated world views and its secrecy
policy are given by Ex. 2 and Ex. 3, respectively. Agent D uses them to eval-
uate the effect of the optional actions on the respective world views as follows
(violations are marked):

r(s1,Wi) r(s2,Wi)

W1 + a2 0.75 0.625

W2 + a2 0.5 0.6

W3 + a2 0.6 0.5
W4 + a2 0.5 0.5

r(s1,Wi) r(s2,Wi)

W1 + a1 1 1

W2 + a1 1 0.5

W3 + a1 0.5 1
W4 + a1 0.5 0.5

The effects of action a3 are not shown in the table since after that action no
secrecy constraint is potentially violated.

In terms of Def. 4, Principle I.1 (Avoid potential violations) instructs the
secrecy reasoner to classify an action b higher (worse) than another action a
given an epistemic state K if after the former action more secrecy constraints are
potentially violated in combination. This is formalized by the following relation:
vioAfter(K , b) � vioAfter(K , a) iff

1. for all Sa ∈ vioAfter(K , a) there exists Sb ∈ vioAfter(K , b) such that Sa ⊆ Sb

and
2. there exists some Sa ∈ max⊆ vioAfter(K , a) such that there exists some

Sb ∈ vioAfter(K , b) with Sa ⊂ Sb.

Example 5. Taking up Ex. 4, we find that
vioAfter(KD, a1) � vioAfter(KD, a3) and vioAfter(KD, a2) � vioAfter(KD, a3)
hold, but vioAfter(KD, a1) and vioAfter(KD, a2) are not ordered by �.

Using �, a secrecy reasoner is not instructed to classify two actions differently if
it lacks the information in K to compare combinations of constraints potentially
violated after these actions. This is the case if in K for neither of two actions
a and b the first condition for the relation � is satisfied. In this case, there
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are constraints potentially violated after a in combination, but which are not
so after b; however, others are, but are not so after a. In such a case, a secrecy
reasoner cannot decide the execution of which action is worse, considering all the
constraints. In the presence of additional information, such as priorities among
secrecy constraints, further decisions might be possible.

Example 6. As examples of the above case, the following pairs of violation sets
are not ordered by �: (1) {{(s1, Bel0.7)}, ∅} and {{(s2, Bel0.6)}, ∅};
(2) {{(s1, Bel0.7)}, ∅} and {{(s2, Bel0.6), (s3, Bel0.5)}, ∅}.

Principle I.2 (Mitigate potential violations) addresses interests of D conflict-
ing with secrecy. An example of such an interest is that D is cooperative and
generally motivated to share information. Pursuing such interests, D may choose
an action which it considers potentially violating more constraints in combina-
tion than other actions. In this case, Principle I.2 says that, if D so chooses, it
should at least mitigate the effect of its action on potentially violated secrecy
constraints. Mitigation means that, if a target sentence could not be protected
against inferences with Bel as desired, it should at least be protected against in-
ferences with operators more skeptical than Bel. To this end, a secrecy reasoner
considers actions with the same effect concerning combinations of potentially
violated constraints in an epistemic state K , i.e., actions a, b ∈ Act ′ such that

vioAfter(K , a) ∼ vioAfter(K , b) defined as

max⊆ vioAfter(K , a) = max⊆ vioAfter(K , b). (4)

Such pairs of actions might mitigate the effect of one another as formalized in
the following relation.

Definition 5 (Mitigation of Potential Violations). Let K be an epistemic
state and a, b ∈ Act ′ such that vioAfter(K , a) ∼ vioAfter(K , b). Action a mit-
igates potential violation of action b, written as a mvio b, if the following two
conditions hold:

1. There exists S ∈ max⊆ vioAfter(K , b) such that there exist (φ,Bel1) ∈ S
and Bel′1 ∈ Ξ with Bel′1 ≺cred Bel1 such that the constraint (φ,Bel′1) is
potentially violated after action b in K , but not after action a.

2. There are no (ψ,Bel2) ∈ S and Bel′2 ∈ Ξ with Bel′2 ≺cred Bel2 such that
the constraint (ψ,Bel′2) is potentially violated after action a in K , but not
after action b.

Example 7. We can see from the table in Ex. 4 that a2 mvio a1, but not
a1 mvio a2. This is the case since vioAfter(KD, a1) ∼ vioAfter(KD, a2) holds on
the one hand. On the other hand, for the constraint (s2, Bel0.6) in {(s2, Bel0.6),
(s1, Bel0.7)} ∈ vioAfter(KD, a1) and the belief operator Bel0.7 we obtain that

vioAfter({(s2, Bel0.7)},VPW (KD), a1) = {{(s2, Bel0.7)}} and
vioAfter({(s2, Bel0.7)},VPW (KD), a2) = {∅}.
Further, for the constraint (s1, Bel0.7) in {(s2, Bel0.6), (s1, Bel0.7)} and the belief
operator Bel0.8 we obtain that



106 J. Biskup et al.

vioAfter({(s1, Bel0.8)},VPW (KD), a1) = {{(s1, Bel0.8)}} and
vioAfter({(s1, Bel0.8)},VPW (KD), a2) = {∅}.

Thus, there are no (ψ,Bel2) ∈ S and Bel′2 ∈ Ξ with Bel′2 ≺cred Bel2 such that
(ψ,Bel′2) is potentially violated after action a2 in K , but not after action a1.

If action a mitigates a potential violation after action b it should be classified
lower at best. However, the relation mvio is not acyclic and if a mvio b is part
of a cycle then there is no justification to classify a lower than b. In this case,
we call a and b conflicting. Principle I.2 demands that if a mitigates potential
violation of b and a and b are not conflicting, then a should be classified lower
than b. If a mvio b and a and b are conflicting, then the principle accounts for
this local mitigation by requiring that a should be classified at least as low as b.

Principle II (Minimize classification) stipulates that a classification should be
as little restrictive as possible with regard to D’s possible other desires such as
cooperative information sharing. The lower the classification rank of an action
the less D is admonished to refrain from executing that action. In particular, a
secrecy reasoner does not pose any restriction on all actions with a rank of 0.

Definition 6 (Secrecy Reasoner For Action Classification). A secrecy
reasoner is a function sr : 2Act

fin × Es → Cl being parameterized with a family
(Ξ,�cred) of belief operators with credulity order. It takes as input a finite subset
Act ′ of Act and an epistemic state K and outputs a classification cl of Act ′.
Moreover, the function sr has to fulfill the following principles:

Principle I.1: Avoid potential violations Let a, b ∈ Act ′ be actions and
K an epistemic state such that vioAfter(K , b) � vioAfter(K , a). Further, let
cl = sr(Act ′,K ) be the reasoner’s classification of Act ′ in K . Then, it follows
cl(b) > cl(a).

Principle I.2: Mitigate potential violations Let K be an epistemic state
and a, b ∈ Act ′ such that a mvio b, then:
1. Conflict Free Mitigation: If there do not exist actions a1, . . . , an ∈ Act ′

such that a1 = b, an = a and ai mvio ai+1 for all i ∈ {1, . . . , n− 1}, then
it follows cl(b) > cl(a) with cl = sr(Act ′,K ).

2. Local Mitigation: Otherwise, it follows cl(b) ≥ cl(a).
Principle II: Minimize classification Given (Ξ,�cred) as parameter, let sr′

be another function sr′ : 2Act
fin × Es → Cl fulfilling Principles I.1 and I.2

Then, for all Act ′ ⊂fin Act , for all K ∈ Es and for all a ∈ Act ′ it holds
cl′(a) ≥ cl(a) with cl′ = sr′(Act ′,K ) and cl = sr(Act ′,K ).

Beside the core Principles I.1, I.2 and II we define two supplemental prin-
ciples that express interesting and desirable properties for a secrecy reasoner.
However, the supplemental principles can be shown to be consequences of the
core principles. Both principles consider the cautiousness of a secrecy reasoner
in classifying an action with best compliance (classification rank 0) and this way
for unrestricted use of D.

Principle III (Be cautious towards credulous reasoners) follows the intuition
that the more credulous A is postulated to reason about a target sentence, the
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easier that sentence might be inferred because A may accept more propositions as
true and believe them. Thus, the more credulous the belief operator is postulated
in a secrecy constraint, the more cautious agent D has to be while acting.

Principle IV (Be more cautious the more uncertain) bases on the general idea
that being uncertain leads to cautious behavior. Here, the more world views
could be held by A according to the postulated world views, the more uncertain
D is about A’s actual situation.

Principle III: Be cautious towards credulous reasoners
Let K and K ′ be epistemic states with equal components possibly except
for the secrecy policies which are of the following form:

S(K ) = {(φ1, Bel1), . . . (φn, Beln)}, S(K ′) = {(φ1, Bel1
′), . . . (φn, Beln

′)}

with Beli #cred Beli
′ for all i ∈ {1, . . . , n}.

If there exist actions a, b ∈ Act ′ such that vioAfter(K , a) = {∅} and
vioAfter(K ′, b) = {∅}, then for the classifications cl = sr(Act ′,K ) and cl′ =
sr(Act ′,K ′) it holds that {a ∈ Act ′ | cl(a) = 0} ⊆ {a ∈ Act ′ | cl′(a) = 0}.

Principle IV: Be more cautious the more uncertain Let K and K ′ be
epistemic states with equal components except for VPW (K ) ⊇ VPW (K ′).
If there exist actions a, b ∈ Act ′ such that vioAfter(K , a) = {∅} and
vioAfter(K ′, b) = {∅}, then for the classifications cl = sr(Act ′,K ) and cl′ =
sr(Act ′,K ′) it holds that {a ∈ Act ′ | cl(a) = 0} ⊆ {a ∈ Act ′ | cl′(a) = 0}.

As we show in the appendix, the supplemental principles are consequences of
the core principles.

Proposition 1. Any function sr : 2Act
fin × Es → Cl that satisfies Principles I.1,

I.2 and II also satisfies Principle III and Principle IV.

4 Secrecy Reasoner: Constructive Design

We present an algorithm, given below in Procedure 1, which implements a secrecy
reasoner as defined in Def. 6. In particular, it implements a function sr : 2Act

fin ×
Es → Cl being parameterized with a family (Ξ,�cred) of belief operators with
credulity order that takes as input a finite subset Act ′ of Act and an epistemic
state K and outputs a classification cl of Act ′.

The main idea of the algorithm is to keep track of all not yet classified actions
unclass while it iteratively assigns the currently considered (classification) rank
to the actions of the input set of actions Act ′. To this end, starting with a
classification rank of 0, all actions for which there is no reason not to classify
them with the current rank are assigned the current rank as their classification.
Intuitively, a reason not to classify an action a with the current rank is given
if more constraints are potentially violated in combination after a than after
another unclassified action b (Principle I.1) or another unclassified action a′

mitigates a potential violation of a without conflict (Principle I.2).

1 We define max(∅) := −1 which is needed in the first iteration only.
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Procedure 1. Secrecy Reasoner

Input: Act ′,K , (Ξ,�cred)
Output: Array cl of classification ranks for actions a ∈ Act ′

1: unclass := Act ′

2: for each a ∈ Act ′ do
3: cl[a] := 0
4: end for
5: repeat
6: best := {a ∈ unclass | there is no b ∈ unclass

such that vioAfter(K , a) � vioAfter(K , b)}
7: eqbest := best/∼
8: for each A ∈ eqbest do
9: rank[A] := max1{ cl[a] | a ∈ Act ′ \ unclass and

there is b ∈ A such that vioAfter(K , b) � vioAfter(K , a)}+ 1
10: end for
11: for each A ∈ eqbest do
12: conflictSets := conflictSets(A,K )
13: repeat
14: classSets := ∅
15: for each CS ∈ conflictSets do
16: if there is no CS′ ∈ conflictSets with CS′ �= CS such that a′ ∈ CS′

and a ∈ CS exist with a′ mvio a then
17: cl(a) := rank[A] for all a ∈ CS
18: classSets := classSets ∪ {CS}
19: end if
20: end for
21: conflictSets := conflictSets \ classSets
22: rank[A] := rank[A] + 1
23: until conflictSets = ∅
24: end for
25: unclass := unclass \ best
26: until unclass = ∅

In addition to the definitions already introduced, the algorithm makes use of
auxiliary sets to test the preconditions of Principle I.2 defined in the following.
For a given epistemic state K the algorithm determines the set of equivalence
classes with respect to the equivalence relation ∼ of (4) for an inspected set of
actions A, formally: A/∼. Only pairs taken from such an equivalence class might
satisfy the precondition of Principle I.2 by definition. Further, the algorithm has
to be able to test conflict free mitigation of a pair of actions a, b with a mvio b.
For this, all (maximal) conflict sets conflictSets(A,K ) are computed for a given
equivalence class A. Formally:

conflictSets(A,K ) = max⊆ {A′ ⊆ A | for all a, b ∈ A′, a �= b exist
a1, . . . , an ∈ A′ such that a1 = a, an = b
and for all i ∈ {1, . . . , n− 1}: ai mvio ai+1.}
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Note that, for any pair of actions a, b ∈ conflictSets(A,K ) for some A and K
with a mvio b the condition conflict free mitigation of Principle I.2 is violated.

Then, roughly speaking, the algorithm consists of two nested repeat-until
loops. The outer one determines in each execution the set of not yet classified
actions for which Principle I.1 does not give a reason not to classify them with
the currently considered classification rank. The inner one determines in each
execution the set of actions out of the selected actions from the outer loop for
which Principle I.2 does not give a reason not to classify them with the currently
considered classification rank and classifies them.

The outer loop first determines the subset of currently unclassified actions
best the effects of which are not worse concerning combinations of potentially
violated constraints than that of other unclassified actions (Principle I.1). Then,
it constructs the auxiliary sets to check of the precondition for Principle I.2.
In particular, it creates a partitioning eqbest of the set best consisting of the
equivalence classes wrt. ∼. Then an array rank[] is created which holds for
each equivalence class its currently considered classification rank. Each rank[A]
is initialized in line 9 by the minimal classification rank for which Principle I.1
does not give a reason to classify any action of A higher than any action which is
already classified. In the for-loop from line 11 to line 24 each current equivalence
class A is first partitioned into its conflict sets.

The for-loop from line 15 to line 20 is intended to determine all actions of
the current equivalence class for which no other action in the same equivalence
class exists such that this pair satisfies the precondition of Principle I.2. This
is done by comparing the conflict sets and either classifying all elements of the
conflict set or none. This way all elements of a conflict set are classified with the
same classification rank. The classified conflict sets of the currently considered
equivalence class are stored in classSets and removed from the current set of
conflict sets after the termination of the for-loop over all conflict sets in line 21.

If all actions in best are classified the condition in line 23 is true and they are
removed from the set of unclassified actions in line 25. If all input actions are
classified the condition in line 26 is true and the algorithm terminates.

Example 8. We consider the execution of Procedure 1 for our running example.
Initially we have unclass := {a1, a2, a3} in line 1. As shown in Ex. 4 it holds that
vioAfter(KD, a1) = vioAfter(KD, a2) and vioAfter(KD, a1) � vioAfter(KD, a3)
such that best := {a3} and therefore also eqbest = {{a3}}. Since Act ′\unclass =
∅ it holds for all A that rank[A] = 0. In line 12 we get conflictSets = {{a3}}.
The conflict set {a3} trivially satisfies the condition in line 16 such that cl(a3) =
0. Then {a3} is removed from conflictSets such that conflictsSets = ∅. In
line 22 rank[{a3}] := 1, which does not have any effect in this special case, and
the inner repeat-until loop terminates.

For the second execution of the outer repeat-until loop unclass = {a1, a2}.
As shown in Ex. 4 best := {a1, a2} and eqbest = {{a1, a2}}. In line 9 we get
rank[{a1, a2}] := 1.

We already showed in Ex. 7 that it holds that a2 mvio a1 and that it does
not hold that a1 mvio a2. Therefore conflictSets = {{a1}, {a2}} in line 12. The
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condition in line 16 is satisfied for {a2} but not for {a1} such that cl(a2) := 1 in
line 17 and conflictSets := {{a1}} in line 21. Then rank[{a1, a2}] := 2.

The next execution of inner repeat-until loop begins. The only remaining
conflict set {a1} trivially satisfies the condition of line 16 such that cl(a1) = 2
and conflictSets := ∅ in line 21. The inner repeat-until loop terminates. In
line 25 unclass := ∅ so that the outer repeat-until loop and thus the algorithm
terminates. The output classification is cl(a1) = 2, cl(a2) = 1, cl(a3) = 0.

Proposition 2. If all elementary operations of Procedure 1 are computable, the
algorithm always terminates and returns a complete classification.

Theorem 1. Procedure 1 satisfies the principles of Def. 6.

5 Related Work

In previous works, e.g. in [4,5], we focus on procedures for the defending agent
D to control its reactions to the attacking agent A’s update/revise-actions and
query-actions to the end of effective preservation of secrecy (there: confiden-
tiality). As an involved task, those procedures prevent implicit conveyance of
information by D’s reactions resulting from A’s reasoning about the cause of
these reactions. The effectiveness of control essentially bases on the postulate
for security engineering that D is certain about A’s epistemic state. The secrecy
reasoning in this work is closely related to normative reasoning as “a norm de-
fines principles of right action binding upon the members of a group and serving
to guide, control, or regulate proper and acceptable behavior” [7]. In our case, a
norm is defined by the semantics of the defending agent’s secrecy policy as being
defined by the declarative requirements on secrecy reasoning in Def. 6.

As one aspect, normative reasoning deals with how an agent’s obligations may
be derived from a norm, in particular, contrary-to-duty (CTD) obligations that
“are in force just in case some other norm is violated” [7]. The idea is that a
CTD obligation mitigates the effects of the violation of another obligation.
Similarly to our focused scenario, the works of [3,14] consider a scenario of an
agent about to choose an action at a fixed point in time while being subject to
obligations and CTD obligations. More specifically, Bartha in [3] advocates that
a CTD obligation should be represented in the form O([X : φ]⇒ [X : ψ]) and dis-
cusses how to derive further obligations from it. Here, the formula [X : φ] means
that agent X ’s choice of an action has the effect that φ (a propositional formula)
becomes true in the world. Thus, the CTD obligation means if X chooses an
action with a “bad” effect φ then it should mitigate that effect by ensuring that
its action also has the effect ψ.2

In our work, with a similar idea, in Principle I.2 of Def. 6 the relation mvio
compares actions with “equivalent” potential violations as defined by the rela-
tion ∼ to mitigate these violations. As suggested by [14], to express different

2 A well-known example in the literature is that φ means “murder” and ψ means
“gentle murder” to be found, e.g., in [14].
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degrees of compliance due to potential violations and their mitigation we use
an infinite range of classification ranks for actions. Other aspects of normative
reasoning such as its relation to defeasible reasoning [15,17] and actions of policy
change [7,1] for the defending agent are worthwhile lines for future research.

Closely related to our goal of secrecy reasoning, the work [1] specifically treats
secrecy (there: privacy) in the context of normative reasoning. A sender can do
inform-actions with a recipient towards whom the sender has obligations for
privacy. These obligations are expressed in a policy language with modalities O
for obligation and K for knowledge. The sender’s aim of privacy is to prevent
the recipient from knowing the truth of target sentences expressed in the modal
language. The major differences to our work are as follows. The semantics of
the policy is defined by Kripke structures with accessibility relations on possible
worlds each for the interpretation of a modality. In particular, the semantic
does not handle the sender’s uncertainty about the recipient. Moreover, target
sentences should only be protected towards the recipient’s knowledge.

6 Conclusion and Issues Left Open

Having in mind our long-term goal of enriching an intelligent agent with sophis-
ticated reasoning on secrecy constraints to support its decision making, in this
work we focused on the fundamental task to define and implement semantics
of secrecy constraints as a classification of possible inform-actions for a fixed
point in time. In this context, a classification rank assigned to an inform-action
expresses a degree of compliance with the constraints, in particular considering
the uncertainty about an attacker’s epistemic state and the possible desire to
perform particular actions although some constraints might be violated. We pre-
sented a list of declaratively expressed principles for the semantics, designed an
enforcement algorithm, and formally verified the satisfaction of the principles.

For the present work, we aimed at being as general as seen by us to be still
meaningful, in order to cover a wide range of more concrete situations in the
future. Moreover, we deliberately left open several issues for deeper and more
refined studies. In the following we briefly discuss some of these issues. (1) An
intelligent agent performs an ongoing loop of observation, reasoning with deci-
sion making and action; thus semantics of secrecy constraints should deal with
sequences of actions rather than a single action for a fixed point in time. (2)
An intelligent agent may dispose of a rich collection of possible actions; thus se-
mantics of secrecy constraints should cover all possible actions rather than only
inform-actions, essentially by identifying the information explicitly or implicitly
conveyed by each of the actions. (3) Considering sequences of diverse actions,
an action might be a reaction in form of an answer or a notification on a previ-
ously perceived request from another agent; thus semantics of secrecy constraints
should seriously consider meta-inferences by the other agent based on the knowl-
edge of the range of the functionally expected reactions. (4) While in this work
a defending agent maintains its own world view and world belief, it does not
consider the actual state of the world; thus we could explore the impact of the
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world on the secrecy reasoning. (5) A multi-agent system might be formed by
several and diverse agents; thus all considerations should be extended to multi-
side communications, then facing many problems known from other contexts to
be highly challenging, like transitive information flows or hidden side channels.
(6) The security/knowledge engineer of an agent must initialize the postulates
about other agents appropriately.

Although each issue is intricate, related works suggest directions how to deal
with issues (3) and (6) as examples for future research. Addressing (3), meta-
inference by A is captured by other notions of secrecy, e.g., in [10,4]. These
notions base on postulates for security engineering referring to A’s reasoning
about D’s internal functionality, contrasting with the postulates in this article
referring to A’s reasoning about the world. In future research, our approach
should be complemented by postulates of the former kind, related notions of
secrecy and appropriate mechanisms of enforcement. It remains a challenging
question whether the strategies of enforcement followed in those works can be
applied to the proposed secrecy reasoning. Such a strategy in the work of con-
trolled interaction execution, e.g., in [4,5,6], is to represent every information
conveyed to A in D’s view of A (here: the postulated world views) and its clo-
sure under an associated entailment relation, e.g., propositional entailment (here:
a belief operator in a respective secrecy constraint). More precisely, the strategy
is to prevent that A acquires any other information than that represented in
D’s view by A’s capabilities postulated for security engineering. Then, a formal
proof is provided that secrecy is enforced by this strategy. A major challenge
is to represent meta-information such as D’s reasoning class [5] or information
conveyed by D’s refusal reactions [6]. Addressing (6), within her initialization
task, the knowledge engineer has to estimate the other agent’s knowledge about
the world and to choose a belief operator for each secrecy constraint. The estima-
tion might benefit from insights in adversarial reasoning [13] while the choice of
an operator depends on several factors such as the treatment of meta-inference
and the definition of the credulity order. Lastly, concrete situations arise from
the requirements of particular applications such as the integration of intelligent
agents into business processes [8] or e-commerce [11].

In conclusion, this work presents an extendible model for the secrecy reasoning
of an intelligent agent and exemplarily studies semantics of secrecy constraints
for a fundamental task. As indicated above, our contributions can be seen as a
first step of a challenging project to be performed in the future.
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A Appendix: Selected Proofs

Proof (of Proposition 1). Assume a secrecy reasoner sr which satisfies Principle
I.1, Principle I.2 and Principle II. Let Act ′ be a finite set of actions and K an
epistemic state. Let cl = sr(Act ′,K ) be the classification determined by sr.

Claim 1. We first show that if there exists b ∈ Act ′ with vioAfter(K , b) = {∅},
then for all actions a ∈ Act ′ it holds cl(a) = 0 iff vioAfter(K , a) = {∅}.

If vioAfter(K , a) = {∅}, then cl(a) = 0:
Let a ∈ Act ′ be an action with vioAfter(K , a) = {∅}.
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1. By the definitions of vioAfter and �, there cannot exist an action a′ ∈ Act ′

such that vioAfter(K , a′) � vioAfter(K , a) holds.
2. Hence, for no a′ ∈ Act ′ the precondition of Principle I.1 is satisfied. There-

fore, there does not exist an action a′ ∈ Act ′ such that cl(a′) < cl(a) is
demanded by this principle.

3. There are no constraint (φ,Bel) ∈ S(K ) and no belief operator Bel′ ∈ Ξ
with Bel′ ≺cred Bel such that the constraint (φ,Bel′) is potentially violated
after action a.
The reason is that, if there was a potential violation of (φ,Bel′) after a,
then by definition there exists W ∈ VPW (K ) ⊕ a such that φ ∈ Bel′(W ).
Since Bel′ ≺cred Bel holds, the credulity property of the order �cred implies
that Bel(W ) ⊇ Bel′(W ) % φ. Hence, it holds (φ,Bel) ∈ vio(K ,W ) and
vio(K ,W ) ∈ vioAfter(K , a) by Def. 4. This cannot happen since
vioAfter(K , a) = {∅} holds.

4. Therefore, for each action a′ ∈ Act ′ by Def. 5 the relation a′ mvio a does not
hold. Hence, for no a′ ∈ Act ′ cl(a′) < cl(a) is demanded by Principle I.2.

5. By Points 2 and 4, there exists a classification cl′ with cl′(a) = 0 which
satisfies Principles I.1 and I.2.

6. From the assumed satisfaction of Principle II by the secrecy reasoner sr, it
indeed outputs a classification cl such that cl(a) = 0.

If cl(a) = 0, then vioAfter(K , a) = {∅}:
We show the implication by contraposition. Let a ∈ Act ′ be an action such that
vio(a,K ) �= {∅} holds.
1. By presupposition of Claim 1 there exists b ∈ Act ′ with vioAfter(K , b) = {∅}.
2. Hence, it holds vioAfter(K , a) � vioAfter(K , b) by definition..
3. By Principle I.1, it follows that cl(a) > cl(b) ≥ 0.

Satisfaction of Principle IV
Let K and K ′ be epistemic states with equal components possibly except for
VPW (K ) ⊇ VPW (K ′). Assume there exist actions a, b ∈ Act ′ such that
vioAfter(K , a) = {∅} and vioAfter(K ′, b) = {∅}.

We show that for each c ∈ Act ′ if cl(c) = 0 holds then cl′(c) = 0 holds with
cl = sr(Act ′,K ) and cl′ = sr(Act ′,K ′). Let c be an action c ∈ Act ′ such that
cl(c) = 0.

1. Since a ∈ Act ′ satisfies vioAfter(K , a) = {∅} it holds that vioAfter(K , c) =
{∅} by Claim 1.

2. From the definition of vioAfter it follows directly that for
VPW (K ) ⊇ VPW (K ′) it holds that

vioAfter(S(K ),VPW (K ), c) ⊇ vioAfter(S(K ),VPW (K ′), c) =

vioAfter(S(K ′),VPW (K ′), c).

3. It follows that vioAfter(S ,VPW (K ′), c) = {∅}.
4. Since action b ∈ Act ′ satisfies vioAfter(K ′, b) = {∅} it follows that cl′(c) = 0

by Claim 1.
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Satisfaction of Principle III
Let K and K ′ be epistemic states with equal components possibly except for
the secrecy policies which are of the following form:

S(K ) = {(φ1, Bel1), . . . (φn, Beln)}, (5)

S(K ′) = {(φ1, Bel1
′), . . . (φn, Beln

′)}
with Beli #cred Beli

′ for all i ∈ {1, . . . , n}.

Assume there exist actions a, b ∈ Act ′ such that vioAfter(K , a) = {∅} and
vioAfter(K ′, b) = {∅}.
We show that for all actions c ∈ Act ′, if cl(c) = 0 holds, then cl′(c) = 0 holds
with cl = sr(Act ′,K ) and cl′ = sr(Act ′,K ′).
Let c be an action c ∈ Act ′ such that cl(c) = 0.

1. Since by assumption, action a ∈ Act ′ satisfies vioAfter(K , a) = {∅} it holds
that vioAfter(K , c) = {∅} by Claim 1.

2. From the definition of vioAfter it follows directly that for all
W ∈ ⊕(VPW (K ), c) and for all (φ,Bel) ∈ S(K ) it holds that φ �∈ Bel(W ).

3. By presupposition, the secrecy policies are of the form in (5) so that for all
W ∈ 2LB ×L∗ it holds Bel′i(W ) ⊆ Beli(W ) by the credulity property of the
order �cred . Hence, it follows that for all W ∈ ⊕(VPW (K ), c) and for all
(φ,Bel′) ∈ S(K ′) it holds that φ �∈ Bel′(W ) by Point 2.

4. It follows that

{∅} = vioAfter(S(K ′),VPW (K ), c) = vioAfter(S(K ′),VPW (K ′), c).

5. Since by assumption, action b ∈ Act ′ satisfies vioAfter(K ′, b) = {∅} it follows
that cl′(c) = 0 by Claim 1. ��

Proof (of Theorem 1, satisfaction of Principle II: Minimize classification). Given
(Ξ,�cred) as parameter, let cl be the classification function as defined by Pro-
cedure 1. Further, let sr′ be another function sr′ : 2Act

fin × Es → Cl fulfilling

Principles I.1 and I.2. We prove that, for all Act ′ ⊆ Act , for all K ∈ Es and for
all a ∈ Act ′ it holds cl′(a) ≥ cl(a) with cl′ = sr′(Act ′,K ).

We proceed by induction on the classification rank r in the range of cl. Thus,
we consider the following induction hypothesis:
For all i ≤ r−1 it holds for all actions a ∈ Act ′ with cl(a) = i that cl(a) ≤ cl′(a).

Let a ∈ Act ′ be an action with cl(a) = r.

– Base case: r = 0.
By definition no lower classification rank is possible. Thus, it follows cl(a) ≤
cl′(a).

– Inductive case: r > 0.
1. Assume indirectly that cl′(a) < r holds.
2. Consider the classification of a by Procedure 1. Action a is treated in one

and only one iteration of the repeat-until loop in line 5. Thus, for later
reference, let A denote the equivalence class with a ∈ A and CSa ⊆ A
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the conflict set of a as determined by the algorithm in this iteration.
We distinguish two cases how the algorithm computes the value of the
classification rank of action a.
Case 1 : The value is set in line 9. Then, there exist b ∈ Act ′ and c ∈ A
such that

vioAfter(K , c) � vioAfter(K , b) and cl(b) = r − 1. (6)

Since actions a, c are in the same equivalence class A, it follows that
vioAfter(K , a) ∼ vioAfter(K , c). Using elementary arguments on the def-
initions of � and ∼, we can show that together with (6) the latter implies
vioAfter(K , a) � vioAfter(K , b). Due to the relation � and Principle I.1,
it holds

cl′(a) > cl′(b). (7)

Now, we apply the induction hypothesis on cl(b), since cl(b) = r − 1
holds by (6) and obtain that cl′(b) ≥ cl(b). By assumption, it holds
r > cl′(a) and thus cl′(b) ≥ cl(b) = r − 1 ≥ cl′(a). This contradicts that
cl′(a) > cl′(b) must hold by (7).
Case 2 : If Case 1 does not apply, the value for the classification of a
in line 17 is set in line 22. Thus, there exists b ∈ A with cl(b) = r − 1
and b ∈ CSb ⊂ A with CSb �= CSa such that there exists c ∈ CSa

with b mvio c. More precisely, in the previous iteration of the for-loop in
line 15 the conflict set CSb must still be in conflictSets as one reason
why a has been not classified with r − 1, but then CSb is removed from
conflictSets in line 21.
Since b, c are in the same equivalence class A, it holds vioAfter(K , c) ∼
vioAfter(K , b). Further, since c ∈ CSa and b ∈ CSb and CSa �= CSb,
by definition of conflictSets, there do not exist actions a1, . . . , an ∈ Act ′

such that a1 = c, an = b and ai mvio ai+1 for all i ∈ {1, . . . , n − 1}.
Hence, the premises of Principle I.2 are satisfied which implies

cl′(c) > cl′(b). (8)

Next, we argue that a, c ∈ CSa implies cl′(a) = cl′(c). This follows
from an inductive argument using the local mitigation requirement of
Principle I.2 and the definition of CSa. By (8), it holds cl′(a) > cl′(b).
Now, we apply the induction hypothesis on cl(b) = r−1 so that it follows
cl′(b) ≥ cl(b). By assumption, it holds r > cl′(a) and thus cl′(b) ≥ cl(b) =
r − 1 ≥ cl′(a). This contradicts that cl′(a) > cl′(b) must hold. ��
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Abstract. Adding meta-level information to the arguments in the form
of labels extends the representational capabilities of an argumentation
formalism, expanding its capabilities. Labels allow the representation of
different features: skill, reliability, strength, time availability, or any other
that might be related to arguments; then, this information can be used
to determine the strength of an argument and assist in the process of
determining argument’s acceptability.

We have developed a framework called Labeled Argumentation Frame-
work (LAF) based in the Argument Interchange Format (AIF), integrat-
ing the handling of labels; thus, labels associated with arguments will
be combined and propagated according to argument interactions, such
as support, conflict, and aggregation. Through this process, we will es-
tablish argument acceptability, where the final labels propagated to the
acceptable arguments provide additional acceptability information, such
as degree of justification, or explanation, among others.

1 Introduction

Argumentation is a human-like reasoning process that follows a commonsense
strategy to obtain support for claims; that is, the formalization of this pro-
cess mimics how humans decide what to believe, particularly in the context of
disagreement. In a general sense, argumentation can be associated with the in-
teraction of arguments for and against claims or conclusions, with the ultimate
purpose of determining which conclusions are acceptable in the context of a given
knowledge base. The argumentation theories are applied in many areas such as
legal reasoning [2], intelligent web search [11,10], recommender systems [11,6],
autonomous agents and multi-agent systems [24,35], and many others [4,5,29,33].

The aim of this work is to introduce the consideration of meta-level informa-
tion in the argumentative reasoning. The meta-information will take the form
of labels attached to arguments to enhance the representational capabilities of
the framework and increase the ability of modeling real-world situations. Fur-
thermore, a reason for this extension is that, besides the all-important property
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of acceptability of an argument, there exist other features to take into account,
for instance, the strength associated with an argument [3], reliability varying on
time [8], possibilistic [13], among others. Labels can be defined to handle a set
of features describing the distinguishing characteristics of an argument and then
the interaction between arguments (such as support, aggregation, and conflict)
can affect these labels appropriately. The introduction of labels will allow the
representation of uncertainty, reliability, possibilistic, strength, or any other rel-
evant feature of the arguments, providing a useful way of improving and refining
the process of determining argument acceptability. The definition of an accept-
ability threshold is among the potential applications for the labels. This feature
will help in determining if a given argument is strong enough to be accepted;
moreover, labels will also help in the specification and manipulation of prefer-
ences associated with the arguments for determining which is more important
in a specific domain [32,34,1].

In this paper we present a framework called Labeled Argumentation Frame-
work (LAF ) which combine the knowledge representation capabilities provided
by the Argument Interchange Format (AIF ) [14], and the treatment and man-
agement of labels proposed by an algebra of argumentation labels developed
for this purpose. The labels associated with arguments will be combined and
propagated according to argument interactions, such as support, aggregation,
and conflict through the operations defined in an algebra associated with each
of these interactions; in particular, aggregation has been studied in the form of
argument accrual [27,36,20]. Through this process, we will establish argument ac-
ceptability, where the final labels propagated to the accepted arguments provide
additional acceptability information, such as degree of justification, restrictions
on justification, explanation, etc.

To facilitate the development of the paper, in Section 2 we will present an
example to motivate and illustrate the objectives of our work. Then, in Section
3 we will introduce a formalism, an Algebra of Argumentation Labels, a particular
abstract algebra for handling labels associated with the arguments. In Section
4, we will give a brief introduction to the Argument Interchange Format (AIF )
containing the elements we need for our development. The main contribution
of the paper is presented in Section 5 as the formalism Labeled Argumentation
Framework (LAF ) together with an example of application. Finally, in Section
6 we will discuss the related work associated with the central issue in this paper,
and in Section 7 we will offer conclusions and propose future development of the
ideas presented.

2 An Initial Example

In this work we aim to contribute to the successful integration of argumenta-
tion to different artificial intelligence applications, such as intelligent web search,
knowledge management, natural language processing, among others. In this sec-
tion we will introduce an example to motivate the usefulness of our formaliza-
tion in the particular context of recommendation systems; more specifically, we
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choose a movie recommender system as an example where the formalism could
help achieve a better performance.

Lets assume we want to develop a movie recommender system and to make
it available on the web, i.e., the system will give advice to users about possible
movies to watch. Its behavior will be based on the particular preferences ex-
pressed by them on previously recommended movies, and it will integrate these
preferences with previous feedback provided by other users of the system cov-
ering different aspects of the movies. Thus, the system should have a represen-
tation of user preferences and of her evaluations, together with a consideration
of the influence of each aspect of a movie that receives an evaluation on the
final recommendation for the movie. Our reasoning mechanism will be based on
argumentation, and the recommendation for the movie will be obtained through
a dispute over which recommendation to give that will decide the matter. For
instance, to determine wether to recommend the film “Oz: The Great And The
Powerful” to the user Brian, the system will consider the following arguments:

A Recommend the film, because the genre is adventure and Brian likes adven-
ture films.

B Recommend the film, because the film has a good rating.

C Recommend the film, because the actors of the film are excellent, and they
are the right actors for the roles they play in the film.

D Do not recommend the film, because the script is bad.

E The script of the film is bad, because it is not faithful to L. Frank Baum’s
original story.

F The script of the film is good, because the story line is interesting.

G Do not recommend the film, because the movie’s soundtrack is poor.

This example illustrates how the knowledge used to make recommendations can
be naturally expressed as arguments, involving interactions such as support be-
tween the arguments (e.g., E and D), aggregation in the form of different ar-
guments for the same conclusion (e.g., A and B), and conflicts represented as
contradictory conclusions (e.g., A and D).

Each aspect of a movie could be evaluated by the users, and could possi-
bly influence the final recommendation with different strength, depending on
the preferences of the particular user. This illustrates the need of representing
meta-information associated with arguments, in this particular case a measure
of strength modeling this additional knowledge.

In many applications of argumentation, particularly in recommender systems,
it’s more natural to analyze together arguments with the same conclusion than
to appraise them individually. That is known as aggregation (or accrual), and it
is based on the intuition that having more reasons (in the form of arguments)
for a given conclusion makes such a conclusion more credible [27,36,20]. In the
example, the three arguments A, B, and C, concluding that the movie should be
recommended must be considered – and weighted – together against the argu-
ments supporting the conclusion against to recommend it (D and G). Another
reason to consider some form of meta-information that is related to the different
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recommendations that could be given is that, in general, several movies could be
recommended, and the meta-information helps in sorting out which one should
be selected.

Finally, as is common in argumentation theories, if two arguments X and Y are
in conflict, and X is stronger than Y, then Y becomes defeated by X, or its attack
is just disregarded, but X remains unaffected by Y attack. Some application
domains need a more complex treatment of conflict evaluation, capturing the
notion that X is in some way affected by the conflict brought about by the
attack of Y. For instance, the strength of the recommendation assigned to a
movie should not be the same in the case that is free of counter-arguments
compared with the case when it is controversial. That is, we need to model
the weakening of an undefeated argument reflecting the effect produced by its
existing counter-arguments.

We will propose a general framework allowing the representation through la-
bels of meta-information associated with arguments, providing the capability of
defining acceptability by combining and propagating labels according to sup-
port, aggregation, and conflict interactions. We will instantiate the proposed
formalization to model the recommendation example presented in this section.

3 Abstract Algebra and Labels

In formal sciences, the process of abstraction is used to focus our interest on
what is relevant for a particular purpose; thus, by abstracting away details we
obtain conceptual generality. Mathematicians have created theories of various
structures that apply to many objects. For instance, mathematical systems based
on sets benefit from the results obtained in set theory, i.e., sets equipped with a
single binary operation form a magma (also known as groupoid), results obtained
studying this structure can be applied to any particular set in which a binary
operation is defined, and all the set theoretic properties also apply to them.

Abstract algebra, evolving from earlier forms of arithmetic, reached its poten-
tial by this process of successive abstraction which has allowed to obtain systems
increasingly more complex without loosing the mathematical purity and inher-
ent beauty. In this sub-area of Mathematics algebraic structures such as groups,
rings, fields, modules, vector spaces, and algebras are studied. The axiomatic
nature of abstract algebra deals with systems which are based on sets whose
elements are of unspecified type, together with certain operations that satisfy
a prescribed lists of axioms. Next, we propose the introduction of an algebraic
structure, called algebra of argumentation labels.

3.1 Algebra of Argumentation Labels

Here, we will present an algebrization of the representation of meta-level infor-
mation through labels attached to arguments. This algebra will consist of a set
of labels equipped with a collection of operators to be used to combine and prop-
agate these labels according to the interactions of arguments of support, conflict
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and aggregation. Below, we formalize our Algebra of Argumentation Labels and
show a particular instantiation of this algebra allowing to model strength mea-
sure of arguments.

Definition 1 (Algebra of Argumentation Labels). An Algebra of Argume-
ntation Labels is described as a 6-tuple A = 〈E,&,⊕,',∅, ε〉 where:

– E is a set of labels called domain of argumentation labels,

– & : E× E→ E, called the argumentation support operator,

– ⊕ : E× E→ E, called the argumentation aggregation operator,

– ' : E× E→ E, called the argumentation conflict operator,

– the support operator & and the aggregation operator ⊕, are commutative and
associative, that is, if α, β, γ ∈ E then:

α & β = β & α, and α & (β & γ) = (α & β) & γ,
α⊕ β = β ⊕ α, and α⊕ (β ⊕ γ) = (α⊕ β)⊕ γ,

– ∅ is the neutral (or identity) element for the argumentation support operator
&, that is, for all α ∈ E then:

α &∅ = α,

– ε is the neutral (or identity) element for the argumentation aggregation op-
erator ⊕ and for the conflict operator ', that is, for all α ∈ E then:

α⊕ ε = α,

α' ε = α.

We will drop the “argumentation” word when referring to the operators when
no confusion can happen.

Note that E, the carrier set of the algebra, is a set of labels associated with
arguments. The support operator will be used to obtain the label associated with
the conclusion of an inference from the labels associated with the premises. The
aggregation operator will be used to obtain the label representing the collective
strengthening of the reasons supporting the same conclusion, reflecting that a
conclusion is more credible by having several reasons behind it. Finally, the
conflict operator defines the label corresponding to a conclusion after considering
the effect of its conflicts with other claims. Also note that the operators remain
undefined for now, we will introduce the corresponding definitions later.

We will show how the labels allow to represent uncertainty, reliability, time
availability, or any other feature concerning arguments, and provide assistance,
by taking this information into account, in the process of determining argument
acceptability. We will now present a core ontology for the Argument Interchange
Format (AIF); then, based on this ontology, we will then develop the Labeled
Argumentation Framework (LAF).

4 Argument Interchange Format (AIF)

The Argument Interchange Format (AIF) is a proposal for an abstract model for
the representation and exchange of data between various argumentation tools
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and agent-based applications (full details can be found in [14]). The AIF core
ontology models a set of argument-related concepts, which can be extended to
capture a variety of argumentation formalisms and schemes, under the assumtion
that argument entities can be represented as nodes in a directed graph described
as an argument network. A particular node can also have a number of internal
attributes, denoting things such as the author, textual details, certainty degree,
acceptability status, etc.
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Fig. 1. AIF Core Ontology

In AIF two types of nodes are defined: information nodes (I-nodes) and
scheme nodes (S-nodes), depicted with boxes and cans respectively in Figure 1.
Information nodes are used to represent passive declarative information con-
tained in an argument, such as a claim, premise, data, etc.; scheme nodes cap-
ture the application of schemes (i.e., patterns of reasoning). Such schemes could
represent domain-independent patterns of reasoning, with the appearance of de-
ductive rules of inference, but also may represent non-deductive inference rules.
The type of schemes that will be possible to represent will also include other re-
lations, and the full set can be classified further into: rule of inference schemes,
conflict schemes, and preference schemes. They respectively yield to three types
of S-nodes: rule application nodes (RA-nodes), which denote applications of an
inference rule or scheme; conflict application nodes (CA-nodes), which denote
a specific conflict; and preference application nodes (PA-nodes), which denote
specific preferences.

Particular nodes have different attributes such as title, creator, type (e.g., de-
cision, action, goal, belief), creation date, evaluation (or strength, or conditional
evaluation table), acceptability, and polarity (e.g., values such as pro or con);
since these attributes correspond to specific applications will not be part of the
core ontology. Some attributes correspond to the node itself, but others are de-
rived. The latter type, derived attributes, of which acceptability is an example,
may be computed from node-specic attributes. Nodes are used to build an AIF
argument network, which is defined as follows.

Definition 2 (Argument Network [30]). An AIF argument network is a
digraph G = (N,E), where:
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– N = I ∪RA∪CA∪PA is the set of nodes in G, where I is a set of I-Nodes,
RA is a set of RA-Nodes, CA is a set of CA-Nodes, and PA is a set of
PA-Nodes; and

– E ⊆ (N ×N) \ (I × I), is the set of the edges in G.

Given an argument network representing argument-based concepts and relations,
a node A is said to support another node B if and only if there is an edge running
from A to B. The edges of the argument network are not necessarily marked,
labelled, or be attached with semantic pointers. There are two types of edges:
Scheme edges that start in S-nodes and they support conclusions following from
the S-node, these conclusions may either be I-nodes or S-nodes; and, Data edges
coming out of I-nodes and they must end in S-nodes, these edges supply data,
or information, to scheme applications. Thus, there exist I-to-S edges (informa-
tion or data supplying edges), S-to-I edges (conclusion edges), and S-to-S edges
(warrant edges). Figure 2 presents a summary of the relations associated with
the semantics of support (as proposed in [14]).
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Fig. 2. Relation Between Nodes in AIF

In this work, we will concentrate only in the relationships that are relevant to
our formalization (these relationships highlighted in figure 2). Note that is not
possible to have two I-nodes connected by an edge, the reason is that I-nodes
need an explanation justifying the connection; that is, always will be a scheme,
justification, inference, or rationale behind a relation between two or more I-
nodes, and that will be represented by an S-node. Furthermore, I-nodes are
unique in the sense that are the only type of node without incoming edges, since
S-nodes relate two or more components: in RA-nodes, at least one antecedent
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should be used to support at least one conclusion; and in CA-nodes, at least one
claim is in conflict with at least another claim.

Given an argument network, it is possible to identify arguments in it. A simple
argument is be represented by linking a set of I-Nodes denoting the necessary
premises of the argument to an I-Node denoting a conclusion or claim of it,
making use of a particular RA-Node representing the inference. Formally, fol-
lowing [28]:

Definition 3 (Simple Argument). Let G = (N,E) be an AIF argument net-
work with N = I ∪RA∪CA ∪PA. A simple argument in G is a tuple (P,R,C)
where P ⊆ I represents the premises, R ∈ RA the inference, and C ∈ I the
claim of the argument, such that for all p ∈ P, there exists (p,R) ∈ E and there
exists (R,C) ∈ E.

The abstract AIF ontology, as presented here, is intended as a language for
expressing arguments. In order to do anything meaningful with such arguments
(e.g., visualize, query, evaluate, or other similar actions), they must be expressed
in a language more concrete to be able of being processed using additional tools
and methods.

5 Labeled Argumentation Framework

Now we will introduce Labeled Argumentation Frameworks (LAF), combining the
knowledge representation features provided by AIF, and the processing of meta-
information using the algebra of argumentation labels. This framework will allow
the representation of special characteristics of claims through labels which are
combined and propagated according to the natural interactions occurring in the
process of argumentation, such as support, conflict, and aggregation. We will use
this propagation of labels to establish acceptability, and the final labels attached
to the acceptable claims will provide additional acceptability information, such
as restrictions on justification, explanation, etcetera.

Definition 4 (Labeled Argumentation Framework). A Labeled Argumen-
tation Framework (LAF) is a tuple represented as Φ = 〈L,R,K,A,F〉, where:

– L is a logical language used to represent claims. L is a set of expressions
possibly involving the symbol “∼” denoting strong negation 1, such that there
is no element in L involving a subexpression “∼∼x”, and L is closed by
complement with respect to “∼”.2

– R is a set of domain independent inference rules R1, R2, . . . , Rn defined in
terms of L, i.e., with premises and conclusion in L.

– K is the knowledge base, a set of formulas of L describing the knowledge
about the domain of discourse.

1 The term strong negation has its roots in Logic and refers to the concept of con-
structible falsity introduced by Nelson in [23] and later presented in the form of an
axiomatic system by Vorob’ev in [37]. Also see [17].

2 if x ∈ L then the complement of x is x, and x ∈ L, where x is ∼x, and ∼x is x.
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– A is an algebra of argumentation labels (Def. 1).

– F is a function that assigns a label to each element of K, i.e., F : K −→ E.

Associated with Φ we have the set of arguments ArgΦ that can be built from K
and R.

Remark: To simplify the definition of conflict between claims, the occurrence
of two or more consecutive “∼” in L expressions is not allowed; this does not
limit its expressive power or generality of the representation.

In this framework, we will use expressions in the language L to represent knowl-
edge about a particular domain, obtaining a knowledge base K from which is
possible to perform inferences through the specification of inference rules in R.
In LAF, inference rules represent domain-independent patterns of reasoning or
inferences, such as deductive inference rules (modus ponens, modus tollens, etc.)
or non-deductive or defeasible inference rules (defeasible modus ponens, defeasible
modus tollens, etc.).

In the application of the algebra of argumentation labels on LAF, the support
operator will be used to obtain the label associated with the conclusion of an
inference from the set of labels associated with the premises, where this set of
premises does not have a specific order. Thus, we define the support operator
as a binary operation satisfying commutativity and associativity, and the justi-
fication for the aggregation operator is analogous to the support operator. Next
we present an instantiation of LAF modeling the running example described in
Section 2.

Example 1. Let Φ = 〈L,R,K,A,F〉 be a LAF, where:

– L is a logical language that allows the construction of literals as described in
Definition 4.

– R= { dMP }, where the inference rule dMP is defined as follows:

dMP :
A1, . . . , An A –≺ A1, . . . , An

A
(Defeasible Modus Ponens)

In the rule A –≺ A1, . . . , An, the first component A is a literal, called the head
of the rule, and the second component A1, . . . , An is a finite non-empty set
of literals called the body of the rule [31,18].

– K is the knowledge base shown below; in these rules, we use ‘rec’ for ‘recom-
mend’. In particular, the values attached to rules represent the strength of
the connection between the antecedent and consequent of the rule.

– A = 〈E,&,⊕,',∅, ε〉 is an Algebra of Argumentation Labels, instantiated to
represent and manipulate argument strengths, where strength of an argument
means how relevant is it for the user,in the following way:

E = N ∪ {0}, represents the strength domain; ε = 0 and ∅ = ∞ are the
neutral elements.
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Let α, β ∈ E be two labels, the operators over labels of support &, aggregation
⊕ (both clearly commutative and associative), and conflict ', are specified
as follows:

α & β = min(α, β), i.e., the support operator reflects that an argument
is as strong as its weakest support.

α ⊕ β = α + β, i.e., the aggregation operator states that if we have
more than one argument for a conclusion, its strength is the sum of the
strengths of the arguments that support it.

α' β = max(α−β, 0), i.e., the conflict operator models that the strength
of a conclusion is weakened by the strength of its counterargument.

– F assigns strength values to each element of K, this value is indicated between
brackets and using a colon to separate it from said element.

Below, after introducing the notion of argumentation graph, we will show some
of the arguments in ArgΦ (see the argumentation graph in Fig. 5 where arguments
are circled with dotted lines).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 : rec(M) –≺ likeGenres(M) : [14] goodRating(oz) : [6]

r2 : rec(M) –≺ goodRating(M) : [9] likeActors(oz) : [15]

r3 : rec(M) –≺ likeActors(M) : [12] likeGenres(oz) : [10]

r4 : ∼rec(M) –≺ ∼goodScript(M) : [17] poorStrack (oz) : [7]

r5 : ∼goodScript(M) –≺ notFaithful(M) : [17] notFaithful(oz) : [15]

r6 : ∼rec(M) –≺ poorSTrack (M) : [6] poorSTrack (oz) : [7]

r7 : goodScript(M) –≺ goodStory : [17] goodStory(oz) : [4]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Next we introduce argumentation graphs, which will be used to represent the
argumentative analysis derived from a LAF. Under our model of knowledge
representation, we assume that in a given graph there are no two nodes which
are labelled with the same sentence of L, so we will use the labeling sentence to
refer to the I-node in the graph.

Definition 5 (Argumentation graph). Let Φ = 〈L,R,K,A,F〉 be a LAF
and ArgΦ the corresponding set of arguments. The argumentation graph GΦ as-
sociated with ArgΦ is an AIF digraph G = (N,E), where N is the set of nodes,
E is the set of the edges and the following conditions hold:

– each element of K is represented in N through an I-node.

– for each application of an inference rule in R, there exists an RA-node R ∈ N
with premises P1, P2, . . . , Pn and conclusion C, and it holds that:
i) the premises P1, P2, . . . , Pn are all I-nodes in N ,

ii) the conclusion C is an I-node in N , and

iii) every I-node in G is either a conclusion of an RA-node, or is an I-node
that is in G because its content belongs to K.

– if Xand ∼X are I-nodes in G, then there exists a CA-node in N such that
connects the I-nodes for X and ∼X.
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– for all X ∈ N , there is no path from X to X in G ( i.e., G is an acyclic
graph).

Condition iv) forbids cycles. This appears as to be too restrictive, but it must
be noted that RA-node and CA-node cycles are mostly generated by fallacious
specifications.

From an argumentation graph, it is possible to identify arguments. A simple
argument, as was defined in AIF (see Def. 3), can be represented by linking a set
of I-nodes denoting premises to an I-node denoting a conclusion via a particular
RA-node. Also, it is possible for two or more arguments to share a conclusion.
This corresponds to the notion of argument accrual developed in [27,21,36,22],
where the strength of the shared conclusion is the aggregation of the strengths
of each individual argument supporting it.

C

R1

P1 Pn. . . 

Fig. 3. Representation of a simple argument

C

R1

P1 Pn

Rk

Q1 Qm

CCCC

. . . . . . 

. . . 

Fig. 4. Representation of argument accrual
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Example 2. From the set of arguments ArgΦ obtained from the knowledge
base K presented in the Example 1, we get the argumentation graph in Fig. 5,
where arguments are shown circled with dotted lines, in the upper group there
are three arguments for the literal rec(oz ). In the group to the right there is
an argument for ∼goodScript(oz ) that feeds one of the premises for one of the
arguments for ∼rec(oz ) being the other one r4, and there is another argument
for the same claim with poorStrack(oz ) and r6 as premises. Finally, on the left
there is an argument for the claim goodScript(oz ). Notice the CA-nodes between
complementary literals.

rec(oz)

C

dMP

likeGenres(oz)

rec(oz)

r1

dMP

goodRating(oz) r2

dMP

likeActors(oz) r3

dMP

goodScript(oz) r4

dMP

poorStrack(oz) r6goodScript(oz)

dMP

goodStory(oz) r7

C

dMP

notFaithful(oz) r5

Fig. 5. Representation of an argumentation graph

Once we obtain a representation of ArgΦ through the argumentative graph GΦ,
we will attach two labels to each I-node in GΦ representing the aggregation
and conflict values respectively. Note that, these labels are obtained through
the operations defined in the algebra of argumentation labels which are applied
considering the relationship between the knowledge pieces. The resulting graph
is called Labeled Argumentation Graph, and the labeling process is captured in
the following definition.

Definition 6 (Labeled argumentation graph). Let Φ = 〈L,R,K,A,F〉 be
a LAF, and ArgΦ be the corresponding Argumentation Graph. A Labeled Argu-
mentation Graph, denoted Arg∗Φ is an argumentation graph where each I-node
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X has two labels (or attributes): μX that accounts for the aggregation of the rea-
sons supporting the claim, and δX that holds the state of the claim after taking
conflict into account. Thus, let X be an I-node, then:

– X has no inputs, then X has a label that corresponds to it as an element of
K, thus it holds that μX = δX = F(X).

– X has inputs from the RA-nodes R1, . . . , Rk, where each Ri has premisses
XRi

1 , . . . , XRi
n , then:

μX = ⊕k
i=1(&n

j=1δ
X

Ri
j )

– X has input from a CA-node C representing conflict with an I-node ∼X,
then:

δX = μX ' μ∼X

Notice that δX represents the support of the I-node X after being affected by a
conflict represented by a C-node.

Property 1. Let Φ = 〈L,R,K,A,F〉 be a LAF, and ArgΦ be the correspond-
ing Argumentation Graph. The label μX associated with an I-node X is always
greater than or equal to the label δX .

Once the labeled argumentative graph is obtained, we are able to define the
acceptability status for each I-node as follows.

Definition 7 (Acceptability status). Let Φ = 〈L,R,K,A,F〉 be a LAF, and
ArgΦ be the corresponding Argumentation Graph. Each I-node X in ArgΦ has
assigned one of three possible acceptability status accordingly to their associated
labels:

– Strictly Accepted iff μX = δX .

– Weakly Accepted iff μX �= δX and δX �= ε.

– Rejected iff μX �= δX and δX = ε.

The following property is self evident from the definition above.

Property 2. The acceptability status for an I-node is unique in an ArgΦ.

Example 3. Going back to Example 2, next we will calculate the labels for each
claim (or I-node) of the argumentation graph, following Definition 6.

μrec(oz) = ((δlikeGenres(oz) � δr1)⊕ (δgoodRating(oz) � δr2))⊕ (δlikeActors(oz) � δr3)

= (min(10, 14) +min(6, 9)) +min(15, 12) = 28

μ∼rec(oz) = min(11, 17) +min(7, 6) = 11 + 6 = 17

δrec(oz) = μrec(oz) � μ∼rec(oz) = max(28− 17, 0) = 11

δ∼rec(oz) = max(17− 28, 0) = 0

μ∼goodScript(oz)= min(15, 17) = 15
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rec(oz)

C
dMP

likeGenres(oz)

rec(oz)

r1

dMP

goodRating(oz) r2

dMP

likeActors(oz) r3

dMP

goodScript(oz) r4

dMP

poorStrack(oz) r6goodScript(oz)

dMP

goodStory(oz) r7
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dMP

notFaithful(oz) r5

10 10 14 14 9 96 6

28 11

15 15 12 12

17 0

4 0 15 11 17 17 7 7 6 6

4 4 15 1517 17 17 17

Fig. 6. A labeled argumentation graph

μgoodScript(oz) = min(4, 17) = 4

δ∼goodScript(oz) = max(15− 4, 0) = 11

δgoodScript(oz) = max(4− 15, 0) = 0

We show the acceptability status for each node in the Labeled argumentation
graph.

– S = SA ∪ SW is the set of accepted claims, where

SA = {goodRating(oz), likeActors(oz), likeGenres(oz), poorSTrack (oz),
goodStory(oz), notFaitful(oz)} is the set of strictly accepted claims,
because μX = δX .

SW = {rec(oz),∼goodScript(oz)} is the set of weakly accepted claims,
because μX �= δX and δX �= ε.

– SR = {∼rec(oz), goodScript(oz)} is the set of defeated claims,
since μX �= δX and δX = ε.

The final recommendation for the movie has a force of 11 over 28 possible, being
weakened by the existence of reasons for not recommending it. Thus, all the infor-
mation was taken into account affecting the acceptability status of the arguments.
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6 Discussion and Related Work

Dov Gabbay’s groundbreaking work on Labeled Deductive Systems [16,15], has
provided a clear motivation for this work. The introduction of a flexible and
rigorous formalism to tackle complex problems using logical frameworks that
include labeled deduction capabilities has permitted to address research prob-
lems in areas such as temporal logics, database query languages, and defeasible
reasoning systems. In labeled deduction, the formulæ are replaced by labeled
formulæ, expressed as L : φ, where L represents a label associated with the log-
ical formula φ. Labels are used to carry additional information that enrich the
representation language. The intuitions attached to labels may vary accordingly
with the system that is necessary to model. The idea of structuring labels as an
algebra was present from the very inception of labeled systems [16].

The full generality of Gabbay’s proposal has been brought to focus on argu-
mentation systems in [12]. In that work, the authors proposed a framework with
the main purpose of formally characterizing and comparing different argument-
based inference mechanisms through a unified framework; in particular, two
non-monotonic inference operators are used to model argument construction and
dialectical analysis, in the form of warrant. Labels were used in the framework
to represent arguments and dialectical trees.

In common with the works mentioned above, our proposal also involves the
use of labels and an algebra of argumentation labels. However, our intention is
entirely different, our purpose is not to unify and formally compare different log-
ics, but to extend the representational capabilities of argumentation frameworks
by allowing them to represent additional domain specific information. Although
it can be argued that, due to its extreme generality, Gabbays framework could
also be instantiated in some way to achieve this purpose, we are proposing a
concrete way in the context of the Argument Interchange Format, advancing in
how to propagate labels in the specific case of argument interactions, such as
aggregation, support, and conflict.

Cayrol and Lagasquie-Schiex in [9], described the argumentation process as
a process which is divided into two steps: a valuation of the relative strength
of the arguments and the selection of the most acceptable among them. They
focused on defining a gradual valuation of arguments based on their interactions,
and then established a graduality in the concept of acceptability of arguments.
In their work, they do not consider argument structure, and the evaluations of
the arguments are based on the interactions between their interaction directly
applying it to them. In our work, we determine the valuation of arguments
through their structures and the different interactions between them. We provide
the ability of assigning more than one value to the arguments depending on
the features associated with them we want to model. Finally, after analyzing
all the interactions between arguments we obtain final values assigned to each
argument; then, through these values theacceptability status (strictly accepted,
weakly accepted and rejected) of the arguments is obtained.

T. J. M. Bench-Capon and J. L. Pollock have introduced systems that
are currently have great influence over the research in argumentation, we will
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discuss them in turn. Bench-Capon [3] argues in his research that oftentimes it
is impossible to conclusively demonstrate in the context of disagreement that ei-
ther party is wrong, particularly in situations involving practical reasoning. The
fundamental role of argument in such cases is to persuade rather than to prove,
demonstrate, or refute. Bench-Capon argues that “The point is that in many
contexts the soundness of an argument is not the only consideration: arguments
also have a force which derives from the value they advance or protect.” [3] He
also cites Perelman [25], and the work on jurisprudence as a source of telling
examples where values become important. Pollock [26] advances the idea that
most semantics for defeasible reasoning ignore the fact that some arguments are
better than others, thus supporting their conclusions more strongly. But once we
acknowledge the fact that arguments can differ in strength and that conclusions
can differ in their degree of justification, things become more complicated. In
particular, he introduces the notion of diminishers, which are defeaters that can-
not completely defeat their target, but instead lower the degree of justification
of that argument. We have consider both contributions in the work presented
here.

S. Kaci and L. van der Torre introduced in [19] a generalization of value-based
argumentation theory, considering that an argument can promote multiple val-
ues, and that preference among these values or arguments can be further speci-
fied. In their work used the minimal and maximal specificity principle to define
a preference relation. To calculate acceptability over a set of arguments they
combine algorithms for reasoning about preferences with algorithms developed
in argumentation theory.

Using the intuitions of these three research lines, we formalized an argumenta-
tive framework, additionally integrating AIF into the system. Labels provide the
way to represent the characteristics of the arguments, completely generalizing
the notion of value. he interaction between arguments can affect the labels they
have associated, so that these changes can cause strengthening (through a form
of accrual) and weakening (accomplishing a form of diminishing) of arguments.
It is important to note that the characteristics or properties associated with an
argument could vary over time and be affected by various characteristics that
influence the real world; for instance, the reliability of a given source [8,7]. Using
this framework, we established argument acceptability, where the final labels
propagated to the accepted arguments provide additional acceptability informa-
tion, such as degree of justification, restrictions on justification, explanation, and
others.

7 Conclusions and Future Work

In argumentation applications, it is interesting to associate meta-information to
arguments to increase the information available with the goal of determining
their acceptability status. For instance, in an agent implementation, it would
be beneficial to establish a degree of the success obtained by reaching a given
objective; or, in the domain of recommender systems, it is interesting to provide
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recommendations together with an uncertainty measure or the reliability degree
associated with it.

Our work has focused on the development of the framework called Labeled
Argumentation Framework (LAF), which combine the knowledge representa-
tion capabilities provided by the Argument Interchange Format (AIF ) and the
treatment and management of labels by an algebra of argumentation labels de-
veloped with this purpose. Various relationships between arguments have as-
sociated operations defined on the algebra of argumentation labels, allowing to
propagate meta-information in the argumentation graph. Through the argumen-
tation graph labeling, it is possible to determine the acceptability of arguments,
and the resulting meta-data associated with them providing extra information
justifying their acceptability status.

We are studying the formal properties of the operations of the algebra of
argumentation labels that we have defined here, and we will analyze the effect of
these notions on the acceptability relation. We will develop an implementation
of LAF instantiating it in the existing DeLP system 3 as a basis; the resulting
implementation will be exercised in different domains requiring to model extra
information associated with the arguments, taking as motivation studies and
analysis of P-DeLP.
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Abstract. This paper presents first results toward the extension of possibilistic
logic when the total order on formulas is replaced by a partial preorder. Few works
have dealt with this matter in the past but they include some by Halpern, and Ben-
ferhat et al. Here we focus on semantic aspects, namely the construction of a partial
order on interpretations from a partial order on formulas and conversely. It requires
the capability of inducing a partial order on subsets of a set from a partial order
on its elements. The difficult point lies in the fact that equivalent definitions in the
totally ordered case are no longer equivalent in the partially ordered one. We give
arguments for selecting one approach extending comparative possibility and its
preadditive refinement, pursuing some previous works by Halpern. It comes close
to non-monotonic inference relations in the style of Kraus Lehmann and Magidor.
We define an intuitively appealing notion of closure of a partially ordered belief
base from a semantic standpoint, and show its limitations in terms of expressive-
ness, due to the fact that a partial ordering on subsets of a set cannot be expressed
by means of a single partial order on the sets of elements. We also discuss several
existing languages and syntactic inference techniques devised for reasoning from
partially ordered belief bases in the light of this difficulty. The long term purpose
is to find a proof method adapted to partially ordered formulas, liable of capturing
a suitable notion of semantic closure.

1 Introduction

The basic concept of ordered knowledge base expressing the relative strength of for-
mulas has been studied for more than twenty years in Artificial intelligence. To our
knowledge this concept goes back to Rescher’s work on plausible reasoning [1]. The
idea of reasoning from formulas of various strengths is even older, since it goes back
to antiquity with the texts of Theophrastus, a disciple of Aristotle, who claimed that
the validity of a chain of reasoning is the validity of its weakest link. Possibilistic logic
[2] is a typical example of logic exploiting a totally ordered base and implementing the
weakest link principle. It is an extension of propositional logic, sound and complete
with respect to a semantics in terms of possibility theory, where a set of models is re-
placed by a possibility distribution on the interpretations (which are then more or less
plausible). It enables problems of inconsistency management [3], of revision [4] and of
information fusion [5] to be handled in a natural way.

This simple approach has limitations in expressive power. We may go beyond it in
several respects:

– extending the syntax to give a meaning to negations and disjunctions of weighted
formulas, thus joining the syntactic framework of modal logic [6];
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– improving the treatment of the degrees attached to the formulas via a refinement of
the induced possibility distribution, possibly by means of a partial order [3];

– making the approach more qualitative, by replacing the weights of certainty by the
elements of a lattice, or by a partial order over a finite set of formulas [7].

This paper paves the way to the systematic study of the last two points, based on scat-
tered existing works. Possibilistic logic exploits the equivalence between the deductive
closure of a set of weighted formulas, and a possibility distribution on the interpre-
tations. In case of logical inconsistency, it reasons with the formulas whose certainty
level exceeds the global inconsistency degree, leaving out some highly uncertain for-
mulas not concerned by inconsistency (this is called “the drowning effect”). Our idea is
to preserve this kind of relation between semantics and syntax in the setting of weaker
algebraic frameworks (with partial preorders), while proposing concepts of partially
ordered closure accordingly. The following questions seem natural:

– Is it possible to represent a partially ordered set of formulas by a partially ordered
set of models?

– Is it possible to represent a partially ordered set of models by a partially ordered set
of formulas?

– Is it possible to define inference rules that account for such a semantics?

To address these questions, we first review how to go from a partial ordering on a
set to a partial ordering on its subsets. This point, already reviewed by Halpern [8],
is tricky because equivalent definitions in the case of a total order are no longer so in
the partially ordered setting. Properties of partial orders among sets induced by partial
order on elements are studied in detail. Then these results are applied to the definition
of semantic inference from partially ordered knowledge bases. This definition poses the
problem of representing the semantics of a partially ordered base in terms of a single
partial order of its interpretations. We show that in general the partial order on formulas
cannot be recovered from the partial order on interpretations it induces, contrary to the
totally ordered case. Finally we briefly review existing proposals of syntactic inference
that may be used to reason from partially ordered formulas, in the light of this limitation.

2 Comparing Sets of Totally Ordered Elements

Let (S,≥) be a totally ordered set and let A and B be subsets of S. To extend ≥ to 2S ,
a natural idea is to compare A with B by means of logical quantifiers. So, four kinds of
relations can be defined:

Definition 1.

– Unsafe dominance: A #u B iff ∃a ∈ A, b ∈ B, a ≥ b
– Optimistic dominance: A #o B iff ∀b ∈ B, ∃a ∈ A, a ≥ b
– Pessimistic dominance: A #p B iff ∀a ∈ A, ∃b ∈ B, a ≥ b
– Safe dominance: A #s B iff ∀a ∈ A, ∀b ∈ B, a ≥ b

Strict counterparts of these definitions, namely �u,�o,�p,�s can be similarly de-
fined, replacing (S,≥) by its strict part (S,>)
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Note that relations �x are not the strict parts of #x. The four kinds of weak relations
in this definition can be rewritten by comparing maximal (resp. minimal) elements.
Denoting by max(A) (resp. min(A)) any maximal (resp. minimal) element in A:

– Unsafe dominance: A #u B iff max(A) ≥ min(B)

– Optimistic dominance: A #o B iff max(A) ≥ max(B)

– Pessimistic dominance: A #p B iff min(A) ≥ min(B)

– Safe dominance: A #s B iff min(A) ≥ max(B)

Note that A #u B iff ¬(B �s A). The strict safe dominance �s is a strict partial
order that can compare disjoint sets only; and#s is not even reflexive. The unsafe dom-
inance is not transitive even if reflexive. The optimistic and pessimistic comparisons are
total orders dual to each other in the following sense: A #o B iff B #′

p A where ≥′

denotes the inverse of ≥ on S, defined by a ≥′ b iff b ≥ a. It is interesting to highlight
the point that the latter comparisons can be defined equivalently as:

– Optimistic dominance: A #o B iff ∃a ∈ A, ∀b ∈ B, a ≥ b;
– Pessimistic dominance: A #p B iff ∃b ∈ B, ∀a ∈ A, a ≥ b

These notions can be applied to the representation of uncertainty. Let S denote a
set of states. Assume π a possibility distribution on S such that π(s) is the plausibil-
ity degree that s is the real world. Let Π the associated possibility measure defined
by Π(A) = maxs∈A π(s) and N the dual necessity measure defined by N(A) =
mins
∈A 1− π(s) = 1−Π(A) [2]. We have:

– Π(A) ≥ Π(B) iff max(A) ≥ max(B) (this is A #o B)
– N(A) ≥ N(B) iff max(B) ≥ max(A) (this is B #o A)

So the optimistic comparison between A and B is a comparative possibility mea-
sure in the sense of Lewis [9] (see also [10]), and the optimistic comparison between
complements A and B, which expresses relative certainty, is related to epistemic en-
trenchment in revision theory [11]. In the uncertainty framework, safe dominance is
never used as it is not representable by a monotonically increasing set function. On the
other hand, the pessimistic ordering is monotonically decreasing with inclusion. In the
following, we thus concentrate on the optimistic comparison#o .

The above definitions also apply to the representation of preferences. Then stating
A # B accounts for an agent declaring that the truth of the proposition whose models
form the set A is preferred to the truth of the proposition whose models form the set B.
Interpreting such a statement requires the knowledge of the attitude of the agent, which
leads to choosing between the four orderings considered above. The safe dominance is
natural in this setting as a very conservative risk-free understanding of A # B, akin
to interval orderings [12]. Pessimistic and optimistic dominance are milder views, and
both make sense, as explored by Benferhat et al. [13], Kaci and van den Torre [14,15],
contrary to the case of representing the plausibility and certainty of formulas. However,
preference modelling is not in the scope of this paper.
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3 Properties of Relative Likelihood Relations Comparing Subsets

Let � be a reflexive relation that compares subsets A and B of S, and � its strict part.
We enumerate different properties that may be satisfied by these relations in the scope
of modeling relative uncertainty.

1. Compatibility with set-theoretic operations (inclusion, intersection, union)
– Compatibility with Inclusion (CI) If B ⊆ A then A�B
– Orderliness (O) If A�B, A ⊆ A′, and B′ ⊆ B, then A′ �B′

– Stability for Union (SU) If A�B then A ∪ C �B ∪ C
– Preadditivity (P) If A ∩ (B ∪C) = ∅ then (B � C iff A ∪B �A ∪ C)
– Self-duality (D) A�B iff B �A

Note that (CI) is never satisfied by a non-reflexive relation while (O) makes sense
for a reflexive relation too. (SU) does not make sense for an asymmetric relation
(take C = S). Preadditivity and self-duality, like (O) make sense for both � and
its strict part. All these properties have been studied in the case of total orders: (CI)
and (O) are expected when A � B expresses a greater confidence in A than in B;
(SU) characterizes possibility relations #o (Lewis[9], Dubois[10]). Preadditivity
and self-duality hold for probability measures [16], but also for the relation A�B
iff A \B �o B \A [17].

2. Properties reflecting a qualitative point of view
– Qualitativeness (Q) If A ∪B � C and A ∪ C �B, then A�B ∪ C
– Negligibility (N) If A�B and A� C, then A�B ∪ C

(Q) is satisfied by strict parts of possibility relations (�o, but not #o) and is found
in non-monotonic logic. Negligibility also works for #o, it says that one cannot
compensate for the low plausibility of a set by adding elements of low plausibility.

3. Properties concerning the deductive closure of partially ordered bases (see Fried-
man and Halpern[18], Dubois and Prade [19] and Halpern [8]):

– Conditional Closure by Implication (CCI) If A ⊆ B and A ∩ C � A ∩ C
then B ∩ C �B ∩C

– Conditional Closure by Conjunction (CCC) If C ∩A�C ∩A and C ∩B�

C ∩B then C ∩ (A ∩B)� C ∩ A ∩B
– Left Disjunction (OR) If A∩C �A∩C and B ∩C �B ∩C then (A∪B)∩
C � (A ∪B) ∩C

– Cut (CUT) If A∩B�A∩B and A∩B∩C�A∩B∩C then A∩C�A∩C
– Cautious Monotony (CM): If A ∩ B � A ∩ B and A ∩ C � A ∩ C then
A ∩B ∩ C �A ∩B ∩ C

These properties are rather intuitive when the relation A�A is interpreted as “A is
an accepted belief”, and A ∩ C �A ∩ C as “A is an accepted belief in the context
C” [20,18,21]. They hold in the total order setting for the optimistic relation �o,
but they are not interesting to consider for reflexive relations (e.g. #o).

Proposition 1. It is easy to see that, for any relation):

1. (O) implies CCI.
2. If the relation ) is qualitative (Q) and orderly (O), then it satisfies Negligibility

(N) and (CCC), and the converse of (SU): If A ∪ C ) B ∪ C then A) B.
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Proof:

1. SupposeA ⊆ B andA∩C ) A∩C. We haveA∩C ⊆ B∩C and B∩C ⊆ A∩C.
Hence from (O), B ∩ C ) B ∩ C.

2. Assume that) satisfies (Q) and (O).
Suppose A) B and A) C. Then, by (O), A ∪B ) C and A ∪ C ) B. Hence
from (Q), A) B ∪ C. So ) satisfies (N).
SupposeC∩A) C∩A andC∩B ) C∩B. LetA′ = A∩B∩C,B′ = A∩C∩B,
C′ = A ∩ B ∩ C and D′ = C ∩ B ∩ A. So, we have A′ ∪ B′ ) C′ ∪ D′

and A′ ∪ C′ ) B′ ∪ D′. Hence from (O), A′ ∪ B′ ∪ D′ ) C′, then from (Q)
A′ ) B′ ∪C′ ∪D′. So, A ∩B ∩C �C ∩ (A ∪B) = C ∩A ∩B. So) satisfies
(CCC).
Suppose A ∪ C ) B ∪ C. Then by (O), A ∪ (C ∪ B) ) C. Hence from (Q),
A) B ∪ C, then (O) again: A) B. So) satisfies the converse of (SU).

4 Comparing Sets of Partially Ordered Elements

In this section, we start from a partially ordered set (S,≥) and we consider the con-
struction of a relation � induced by ≥ for comparing subsets of S. In the scope of
representing comparative belief and plausibility, the last section has shown that we can
restrict to the optimistic comparison of sets. In the following, we focus on the general-
ization of optimistic dominance to the case of partially ordered sets. It has been noticed
(see section 2) that there are two possible definitions of the optimistic dominance, that
are equivalent in the total order setting. However they are no longer so in the partial
order setting, as first noticed by Halpern [8]. As a consequence, in order to define a
semantics for partially ordered logical bases, we have to study these different relations
and to choose an appropriate one according to the properties they satisfy.

As usual, given a reflexive and transitive relation on S, denoted by ≥, s′ > s is
an abbreviation for “(s′ ≥ s) and not (s ≥ s′)”. The relation > is the strict partial
order determined by ≥. It is an irreflexive and transitive relation on S. s′ ∼ s is an
abbreviation for “(s′ ≥ s) and (s ≥ s′)”. The relation ∼ is the equivalence relation
determined by ≥. s′ �≈ s is an abbreviation for “(neither (s′ ≥ s) nor (s ≥ s′)”. It is the
incomparability relation determined by ≥. If this relation is empty, the relation ≥ is a
total preorder. On the contrary, given a transitive and asymetric relation >, the relation
s′ �≈ s if and only if neither s′ > s nor s > s′ is its associated incomparability relation
(while s′ ∼ s reduces to the equality relation).

Let (S,≥) a partially ordered set, and X ⊆ S. s ∈ X is maximal for ≥ in X if and
only if we do not have s′ > s for any s′ ∈ X . M(X,≥) (M(X) for short) denotes the
set of the maximal elements in X according to ≥.

The optimistic comparison between A and B is based on the comparison between
M(A) and M(B). In the total order case, it can be defined in two ways, which are
no longer equivalent in the partial case. We call them weak optimistic dominance and
strong optimistic dominance in the following.
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4.1 Weak Optimistic Dominance

Here again, various definitions can be proposed according to whether one starts from a
strict order or not on S.

Definition 2 (Weak optimistic dominance).

1. Weak optimistic strict dominance:
A �wos B iff A �= ∅ and ∀b ∈ B, ∃a ∈ A, a > b.

2. Weak optimistic loose dominance: A #wol B iff ∀b ∈ B, ∃a ∈ A, a ≥ b.
3. Strict order determined by #wol: A �wol B iff A #wol B and ¬(B #wol A).

In other words, A �wol B iff ∀b ∈ B, ∃a ∈ A, a ≥ b and ∃a′ ∈ A, ∀b ∈
B, either a′ > b or a′ �≈ b.

These relations are respectively denoted by �s,#s and �′ by Halpern [8]. The re-
lation �wos is a strict partial order (asymetric and transitive) on 2S . We have always
A �wos ∅, except if A is empty. The relation #wol is reflexive and transitive and such
that A #wol ∅, but not ∅ #wol B except if B is empty. Finally, if A �wos B then
A �wol B. The converse is generally false except if ≥ is a complete order.

The following proposition shows that the weak optimistic dominance is appropriate
for representing relative plausibility.

Proposition 2. The weak optimistic strict dominance �wos is a strict partial order
which satisfies Qualitativeness (Q), Orderliness (O), Left Disjunction (OR), (CUT)
and (CM).

The weak optimistic loose dominance#wol satisfies Compatibility with inclusion (CI),
Orderliness (O), Negligibility (N), Stability for union (SU).

The relation �wol satisfies Orderliness (O) and Conditional Closure by Implication
(CCI).

Corollary 1. The weak optimistic strict dominance�wos satisfies the converse of (SU),
Negligibility (N), Conditional Closure by Implication (CCI) and Conditional Closure by
Conjunction (CCC).

Note that, as shown by Halpern [8], the relation#wol is generally not qualitative and
the relation �wol does not satisfy the property of Negligibility. Moreover, the relation
�wol neither satisfies the property OR nor the property CUT as shown below:

Example 1. Let S = {a, b, c, d, e, f, g, h} be a partially ordered set with f ∼ h, e ∼
g, f > a, e > b, a > c and b > d.

OR: Let A = {a, c, e, g}, B = {b, d, f, h} and C = {a, b, e, f} be three subsets of S.
We have A ∩ C �wol A ∩ C and B ∩ C �wol B ∩ C but not (A ∪ B) ∩ C �wol

(A ∪B) ∩C .
CUT: Let A = {a, b, c, d, e, f, g, h}, B = {a, b, c, e, g, h} and C = {a, b, d, g, h} be

three subsets of S.
We haveA∩B �wol A∩B andA∩B∩C �wol A∩B∩C but notA∩C �wol A∩C .

It is clear that as a result, the relation �wos is the richest one to represent relative
plausibility. But note that it has no non trivial associated equivalence relation (but for
A ∼wos B if and only if A = B).
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4.2 Strong Optimistic Dominance

The alternative approach, not considered by [8], consists in assuming, if A � B, that
one element in A dominates all elements in B. As before, various definitions can be
proposed according to whether one uses a strict order or not on S.

Definition 3 (Strong optimistic dominance).

1. Strong optimistic strict dominance: A �Sos B iff ∃a ∈ A, ∀b ∈ B, a > b
2. Strong optimistic loose dominance: A #Sol B iff ∃a ∈ A, ∀b ∈ B, a ≥ b
3. Strict order determined by #Sol: A �Sol B iff A #Sol B and ¬(B #Sol A).

In other words, A �Sol B iff ∃a ∈ A, ∀b ∈ B, a ≥ b and ∀b ∈ B, ∃a ∈
A, either a > b or a �≈ b.

Note that with the above definitions, if A �= ∅, A �Sos ∅ and never ∅ �Sos B.
The relation �Sos is a strict partial order on 2S . Finally, if A �Sos B then A �Sol B.
Obviously, the strong relations are stronger than the weak relations, namely: If A �Sos

B then A �wos B and if A #Sol B then A #wol B. The converse is true only if ≥
is a complete order on S. So, we also have: If A �Sos B then A �wol B. However
there is no entailment between the relations �Sol and �wol as shown by the following
counterexamples:

Example 2. Let S = {a1, a2, b1, b2, b3} with a1 ∼ b1 > b3 and a2 > b2. Then
{a1, a2} �wol {b1, b2, b3}, but it is false that {a1, a2} �Sol {b1, b2, b3}.
Example 3. Let S = {a1, a2, b1, b2, b3} with a1 ∼ b1 > b3, and a1 > b2 > a2. Then
{a1, a2} �Sol {b1, b2, b3}, but it is false that {a1, a2} �wol {b1, b2, b3}.

As indicated by Benferhat, Lagrue, Papini [22], the relation �Sos contains many
incomparabilities, and #Sol does not satisfy Compatibility with Inclusion. Indeed, if
A ⊆ B, it is not obvious that there exists b ∈ B such that b ≥ a, ∀a ∈ A. In fact, #Sol

is thus not even reflexive, even if it is transitive. Finally, A �Sos B implies A �Sol B.
The converse is not true except when ≥ is a complete order on S. As for properties:

Proposition 3. The strong optimistic strict dominance�Sos is a strict order satisfying
Orderliness (O) and Cautious Monotony (CM)

However it fails to satisfy Negligibility, Qualitativeness, CUT and Left Disjunction
(OR), as shown by the following examples.

Example 4. Let S = {a1, a2, b, c} with a1 > b and a2 > c, and the subsets A =
{a1, a2}, B = {b} and C = {c}. We have A �Sos B , A �Sos C but we don’t have
A �Sos (B ∪ C). So (N) is not satisfied.

Due to Proposition 1, the relation �Sos fails to satisfy Qualitativeness as well.

Example 5. Let S = {a, b, c, d}with a > b and c > d, and the subsetsA = {a, b, c, d},
B = {a, c, d} andC = {a, c}. We haveA∩B �Sos A∩B , A∩B∩C �Sos A∩B∩C
but we do not have A ∩ C �Sos A ∩C . So (CUT) is not satisfied.

Lastly, suppose ∃a ∈ A∩C, ∀x ∈ A∩C a > x, and ∃b ∈ B∩C, ∀x ∈ B∩C b > x
then if a and b are not comparable, there may be no c ∈ (A ∪ B) ∩ C that alone can
dominate all elements in (A ∪B) ∩ C. So (OR) is not satisfied either.

So the weak optimistic dominance is a richer concept than the strong one.
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4.3 Refinement of Partial Preorders Induced between Subsets

None of the relations presented in the above sections satisfies the property of Pread-
ditivity, which considers that the common part of two sets should play no role in the
comparison. A preadditive approach for comparing two sets A and B consists in elim-
inating the common part and then comparing A \ B and B \ A. This is not a new idea
(see [8] for a bibliography). In the following we consider the refinement of the weak
optimistic dominance.

Definition 4 ( Preadditive dominance).

– strict preadditive dominance: A �wos
d B if and only if A �= B and A \ B �wos

B \A.
– loose preadditive dominance: A #wol

d B if and only if A \B #wol B \A.
– strict order from #wol

d : A �wol
d B if and only if A #wol

d B and ¬(B #wol
d A).

These relations are respectively denoted by �6,�4 and �5 in Halpern [8]. The two
first relations are thoroughly studied in [23] and [24]. They coincide with �wos and
#wol on disjoint sets. When S is totally ordered, the relations�wol

d and�wos
d coincide.

Neither the relation #wol
d , nor its strict part are transitive, as indicated by the following

counterexample.

Example 6. Let S = {a1, a2, a3, b1, b2, c} with a1 ∼ a2 ∼ b1, a1 > c and a3 > b2.
Let A = {a1, a2, a3}, B = {b1, b2}, C = {a1, a2, c}. We have A #wol

d B but not
B #wol

d A, B #wol
d C but not C #wol

d B but we don’t have A #wol
d C.

The relation �wos
d seems to be more appropriate due to the following properties:

Proposition 4. The relation �wos
d is a strict partial order that satisfies:

– Strict compatibility with Inclusion (SCI): if A ⊂ B then B �wos
d A.

– Self-duality (D) and Preadditivity (P)
– a weak form of Negligibility: If A∩B = A∩C then (If A �wos

d B and A �wos
d C

then A �wos
d (B ∪ C)).

– a weak form of Qualitativeness: If A∩B = A∩C = B∩C then (IfA∪C �wos
d B

and A ∪B �wos
d C then A �wos

d (B ∪ C)).

Note that since �wos
d is equal to �wos on disjoint sets, it satisfies (CCI), (CCC), (OR),

CUT and CM as well.
The next property relates the optimistic dominance to the preadditive dominance.

Proposition 5. �wos
d refines �wos and its dual variant:

– If A �wos B then A �wos
d B.

– If B �wos A then A �wos
d B.

– If A �wos
d B then A #wol B and B #wol A.

The preadditive dominance based on the weak optimistic dominance is thus well-
adapted to plausible reasoning with partially ordered knowledge bases. Note that the
properties of Conditional Closure by Implication (CCI) and Conditional Closure by
Conjunction (CCC) are essential to extract a deductively closed set of most plausible
formulae.
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4.4 From Weak Optimistic Dominance to a Partial Order on Elements

Halpern [8] studied the problem to know if a preorder on 2S can be generated by a
preorder on S. The only known result deals with total preorders: If � is a total preorder
on 2S that satisfies the properties of orderliness and qualitativeness, then there exists
a total preorder ≥ on S such that � and #wol coincide on 2S (a similar result where
one replaces these properties by stability for the union is already in [10], because in
this case indeed a comparative possibility measure [9] is characterized by a complete
preorder of possibility on S).

In the partial order case, if a strict order� on 2S is generated by a strict order> on S,
one must have {a}�{b}whenever a > b. Conversely, suppose� satisfies the properties
of orderliness and negligibility and define the relation a >� b by {a} � {b}. Then,
A �wos B means ∀b ∈ B, ∃a ∈ A, a >� b that is to say ∀b ∈ B, ∃a ∈ A, {a}� {b}.
We have:

– If A �wos B then A�B.
– Conversely, if A�B, it is easy to prove that ∀b ∈ B,A� {b}. But nothing proves

that ∃a ∈ A such that {a}� {b}.

So, the situation of partial orders is strikingly different from the case of total orders.
Even equipped with the properties of orderliness and negligibility, a partial order on
subsets is generally NOT characterized by its restriction on singletons.

Another way to induce a partial order on 2S from a partial order> on S is to consider
the partial order > as a family of total orders >i extending (or compatible with) this
partial order. LetA andB be two subsets of S, and let �i denote the ordering relation on
2S induced by >i. Then two methods for building a partial order on 2S can classically
be proposed [25]:

Cautious principle considering all the total orders on S compatible with >: A�B iff
∀i = 1, . . . , n, A�i B

Bold principle considering at least one total order on S compatible with >: A�B iff
∃i, A�i B

It turns out that if we consider the family of total orders >i extending a partial order >
on S, the cautious principle enables the weak optimist dominance�wos to be recovered:

Proposition 6. Let A,B two subsets of S. We have:

A �wos B ⇐⇒ ∀i = 1..n A �i
o B

As a consequence, a weak optimistic strict order on subsets is characterised by sev-
eral total orderings on elements, not by a single partial order on elements. Given the
properties satisfied by �wos, this result clearly bridges the gap between the weak opti-
mistic dominance and the partially ordered non-monotonic inference setting of Kraus,
Lehmann and Magidor [20] interpreting the dominance A �wos B when A ∩ B = ∅
as the default inference of A from A ∪B.
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Example 7. Let (S,>) = {a, b, c, d, e} be the partially ordered set defined by e >
c > a > d, c > b > d. Let >1, >2 be the two linear orders that extend the partial
order > defined by e >1 c >1 b >1 a >1 d and e >2 c >2 a >2 b >2 d. Let
A = {e, c}, B = {b, d} and C = {a, d}:

– ∀i = 1, 2,max(A) >i max(B), and it holds that A �wos B.
– max(C) >2 max(B), max(B) >1 max(C). Neither C �wos B nor B �wos C.

5 Representations of an Epistemic State

Let us first formalize the concept of epistemic state based on the notion of partial or-
der, from a syntactic and semantic point of view. In the following, V will denote a
set of propositional variables, L a propositional language on V , and K a finite base of
formulas built on L.

5.1 Syntactic Representation

From the syntactic point of view, we can view an epistemic state as a finite set of propo-
sitional formulas equipped with a partial preorder. Let (K, >) be a partially ordered
base of formulas. If φ and ψ are two formulas of K, ψ > φ is interpreted by “ψ is
more likely than φ” (typically the first one is more certain or plausible as the second
one). It can more generally be interpreted in terms of “priority”. If ψ > φ is viewed
as a constraint, the presence of the likelihood relation can be a cause of inconsistency.
For instance, it seems irrational to assert φ > ψ when φ |= ψ. It can be regarded as a
semantic contradiction.

In the particular case where the preorder is total, there is a alternative representation
by means of a stratified base (K1, · · · ,Kn) where all the elements of Ki are set at
the same priority level, and those of Ki are strictly preferred to those of Kj if i >
j. However, possibilistic logic [2] does not consider stratification as a strict ordering
constraint. It interprets φ ∈ Ki as assigning a minimal absolute level to φ, that may
fail to be its final one, i.e. φ can end up at some level j > i in the totally ordered
deductive closure (which represents an epistemic entrenchment relation). Therefore, the
stratification of the base is never an additional source of inconsistency. On the contrary,
if when ψ ∈ Ki and φ ∈ Kj , j > i is understood as a constraint ψ > φ, it means that
the stratified knowledge base is viewed as a fragment of a likelihood relation (epistemic
entrenchment or necessity measure). The complexity of finding the deductive closure
is higher in the last situation due to the possibility of a semantic contradiction between
the likelihood relation at the syntactic level and logical entailment.

5.2 Semantic Representation

Let Ω be the set of interpretations of L. At the semantic level, suppose that an epistemic
state is modelled by a partial preorder on the interpretations of a propositional language,
(Ω,�). If ω and ω′ represent two elements of Ω, the assertion ω′ � ω is interpreted
as ω′ being more plausible than ω. In the knowledge representation literature, the main
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concern is often to extract the closed set of accepted beliefsK� (or belief set) associated
with (Ω,�). It is often defined as the deductively closed set of formulas whose models
form the set M(Ω,�) of most plausible models. Our aim is to go further and to define
a deductive closure which is a partial order induced by (Ω,�) on the language, (Ω,�)
being itself induced by a partially ordered base (K, >). The idea is to attach a semantics
to φ > ψ in terms of a partial order on the interpretations, and then to build a partial
order on L which is, as much as possible, in agreement with (K, >). The question is
thus to go from (K, >) to (Ω,�) and back, namely:

From (K, >) to (Ω,�): Starting from a partially ordered base, the problem is to build
a partial preorder on the set of interpretations of K. A natural approach is to compare
two interpretations ω and ω′ by comparing subsets of formulas of K built from these
interpretations.

A first proposal is to compare two interpretations ω and ω′ by comparing the two
subsets of formulas of K respectively satisfied by each of these interpretations. That is
to say: ω′ is more plausible than ω if for each formula φ satisfied by ω, there exists a
formula preferred to φ and satisfied by ω′.

A dual proposal consists in comparing ω and ω′ by comparing the two subsets of
formulas of K respectively falsified by each of these interpretations. That is to say: ω′

is more plausible than ω if for each formula φ′ falsified by ω′, there exists a formula
falsified by ω preferred to φ′.

From (Ω,�) to (L,�): Starting from a partial preorder on Ω, the problem is to build
a partial preorder on the set of the formulas of the language L. To this end, it is natural
to compare two formulas φ and φ′ by comparing subsets of interpretations built from
these formulas. In the same way as above, a first proposal is to compare φ and ψ by
comparing the sets of models of these formulas. One can alternatively compare φ and
ψ by comparing their sets of counter-models, that is the models of ¬ψ and ¬φ.

In fact the choice between the two alternative approaches must be guided by the
meaning of the relations on the families of sets. If (K, >) is interpreted in terms of
relative certainty as in possibilistic logic, it is natural to compare the subsets of falsi-
fied formulas of K for assessing the relative plausibility of interpretations. Indeed, an
interpretation ω is all the less plausible as it violates more certain propositions.

In the same way, starting from a plausibility relation on the interpretations (Ω,�),
we can express the idea of relative certainty φ � ψ on the language, by comparing
sets of models of ¬ψ and ¬φ; for instance, in the case of a total order, a relation of
comparative necessity, dual to comparative possibility, can be defined by φ �N ψ iff
¬ψ �o ¬φ 1.

This approach was thoroughly studied within the possibilistic framework for com-
pletely ordered bases [2], but much less often in the partially ordered case [22].

Some questions will arise naturally from this research program:

– Is the partial preorder � built on L from (Ω,�) compatible with (K, >)? A strict
meaning of compatibility would require that > is preserved and refined. Note that

1 Relation �o is introduced in Definition 1.
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this is not the case in possibilistic logic if the lower bounds on certainty weights
are not in conformity with classical deduction. Here again, it may happen that the
relation � on formulas induced from � does not preserve the original ordering
(K, >), since the latter can be in conflict with semantic entailment, if supplied by
some expert.

– Is the preorder built on Ω from (K, >) unique? The answer is almost obviously no,
as it depends on how the ordering > is understood in terms of a relation between
sets of models of formulas appearing in K .

– Is it still possible to use a principle of minimal commitment in order to select a
complete preorder on Ω in a non arbitrary way? In possibilistic logic [2], this is the
principle of minimal specificity that yields the least informative possibility distri-
bution on Ω (akin to the most compact ranking in system Z [26]).

The two transformations: from (K, >) to (Ω,�) and from (Ω,�) to (L,�) can be
reduced to the problem of extending a partial order on a set S to a partial order on the
set of the subsets of S, discussed in Section 4.

6 Optimistic Dominance on Partially Ordered Belief Bases

As in possibilistic logic, we assume that the relation > expresses relative certainty,
therefore we use the definitions based on falsified formulas. According to the previous
sections, two approaches can be followed, using the weak optimistic dominance and its
preadditive refinement. In the following, we consider both approaches consecutively.
We do not consider the strong optimistic dominance as it allows to compare much less
subsets, and we restrict here to strict dominance.

6.1 Weak Optimistic Dominance Semantics

Let (K, >) be a finite partially ordered set of formulas of the propositional language
L build on V . K(ω) (resp. K(ω)) denotes the subset of formulas of K satisfied (resp.
falsified) by the interpretation ω ∈ Ω. [φ] denotes the set of the models of φ, a subset
of Ω.

Definition 5. [From (K, >) to (Ω,�)] ∀ω, ω′ ∈ Ω, ω �wos ω
′ iff K(ω′) �wos K(ω)

In the spirit of possibilistic logic, it defines the dominance on interpretations in terms
of the violation of the most certain formulas. But here these formulas may be incompa-
rable.

Definition 6. [From (Ω,�) to (L,�N )] ∀φ, ψ ∈ L, φ �N ψ iff [ψ]�wos [φ].

In the case of a total order, it would define a necessity relation on the language. The
partially ordered deductive closure of (K, >) is then defined by

C(K, >)�N = {(φ, ψ) ∈ L2 : φ �N ψ}.

And we denote (φ, ψ) ∈ C(K, >)�N by K |=wos φ �N ψ. Besides, in agreement with
[21], one may extract from C(K, >)�N the set of accepted beliefs when φ is known to
be true asAφ(K, >)�N = {ψ : (φ→ ψ, φ→ ¬ψ) ∈ C(K, >)�N }. Note that these are
generic definitions that make sense for any variant of the optimistic strict order on K.
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Proposition 7.

– the relation �wos respects inclusion: If K(ω) ⊆ K(ω′) then ω �wos ω
′ does not

hold; and �wos is orderly too.
– If the relation > is the strict part of a total preorder, possibilistic logic is recovered

(order “best out ” in [3]).
– If φ is a logical consequence of ψ, it does not hold that ψ �N φ.
– �N verifies the converse of the stability for intersection: if φ ∧ χ �N ψ ∧ χ, then
φ �N ψ.

As a consequence, if the partial order on K violates the partial order induced by
classical inference,�N will not refine it, but will correct it.

Example 8. (K, >) = {x > x ∧ y}. As usual, the four interpretations are denoted by
xy, xȳ, x̄y, x̄ȳ.

Clearly K(xy) = ∅,K(xȳ) = {x ∧ y},K(x̄y) = K(xy) = K. Hence, xy �wos

{xȳ, x̄y, x̄ȳ} and xȳ�wos {x̄y, x̄ȳ}. Then it is easy to see that K |=wos x �N y (since
[¬y] = {xȳ, x̄ȳ} �wos [¬x] = {x̄y, x̄ȳ} but K �|=wos y �N x ∧ y, since it does not
hold that [¬x ∨ ¬y] = {x̄y, xȳ, x̄ȳ}�wos [¬y] = {xȳ, x̄ȳ}.

If (by mistake) we set (K′, >) = {x ∧ y > x}, note that we still have that xy �wos

{xȳ, x̄y, x̄ȳ} but not xȳ �wos {x̄y, x̄ȳ}. Then
K′ �|=wos x ∧ y �N x, that is, we correct this inconsistency via the semantics.

However, the fact, pointed out in Section 2, that a partial order over a power set can-
not be characterized by a single partial order on the set of elements may cause some
available pieces of knowledge in (K, >) to be lost in C(K, >)�N , as shown thereafter.

Example 9. Let (K, >) = {x,¬x∨ y, x∧ y,¬x} be a partially ordered base, where >
is the strict partial order given as follows: ¬x ∨ y > x ∧ y > ¬x and x > ¬x.
Let us apply the definitions 5 and 6:

– From (K, >) to (Ω,�): we obtain xy �wos {x̄y, xȳ, x̄ȳ}
– From (Ω,�) to (L,�N ): we obtain x �N ¬x, x ∧ y �N ¬x and ¬x ∨ y �N ¬x

but not ¬x ∨ y �N x ∧ y

We notice that, in the final order over formulas, ¬x ∨ y and x ∧ y become incom-
parable. The reason is that some information has been lost when going from (K, >) to
(Ω,�). Indeed, if the strict partial order > of the baseK is interpreted as the strict part
�N of a necessity ordering, applying Definition 6 enables the following constraints to
be obtained:

– Due to ¬x ∨ y �N x ∧ y we must have x̄y � xȳ or x̄ȳ � xȳ
– Due to x∧ y �N ¬x we must have xy� xȳ and xy� x̄y or xȳ� x̄y and xy� x̄ȳ

or xȳ � x̄ȳ
– Due to x �N ¬x we must have xy � x̄y or xȳ � x̄y and xy � x̄ȳ or xȳ � x̄ȳ

It is easy to see that these constraints imply that xy � {x̄y, xȳ, x̄ȳ} and (x̄y � xȳ
or x̄ȳ � xȳ). That is stronger than the partial order �wos and not representable by a
single partial order.
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One observes that the impossibility of representing the partial order (K, >) by a
partial ordering on interpretations is the cause for losing the piece of information ¬x ∨
y �N x ∧ y. It suggests that the partially ordered deductive closure C(K, >)�N is too
weak to account for semantic entailment in partially ordered knowledge bases.

6.2 Preadditive Semantics

Under the preadditive semantics, the weak optimistic semantics in Definitions 5 and 6
is strengthened as follows:

Definition 7. Let ω, ω′ be two interpretations:

– From (K, >) to (Ω,�): ω �wos
d ω′ iff K(ω) �wos

d K(ω′).
– From (Ω,�) to (L,�d): φ �d ψ iff [φ]�wos

d [ψ].

The notion of semantic consequence and deductive closure are defined similarly,
replacing�N by �d. The following results hold:

Proposition 8. It is clear that:

– the relation �wos
d strictly respects inclusion: If K(ω) ⊂ K(ω′) then ω′ �wos

d ω.
– If φ is a proper logical consequence of ψ, then φ �d ψ.
– if χ ∧ (φ ∨ ψ) = ⊥ then φ �d ψ implies φ ∧ χ �d ψ.
– φ ∧ χ �d ψ ∧ χ implies φ �d ψ

Example 9 (continued)

– From (K, >) to (Ω,�): xy �wos
d {x̄y, xȳ, x̄ȳ};

– From (Ω,�) to (L,�d):
• x �d x ∧ y �d ¬x
• ¬x ∨ y �d x ∧ y �d ¬x

We notice that the relation �d has preserved and extended the initial strict partial
order.

However, the relation �d does not always preserve the initial strict partial order as
shown thereafter.

Example 10. Let (K, >) = {x,¬x∨¬y, x∧y,¬x} be a partially ordered base, where
> is the strict partial order given as follows: ¬x ∨ ¬y > x ∧ y > ¬x and x > ¬x.

– From (K, >) to (Ω,�): we obtain xȳ �wos
d {x̄y, xy, x̄ȳ}

– From (Ω,�) to (L,�d): we obtain¬x∨¬y �d x∧y, ¬x∨¬y �d ¬x, x �d x∧y
but not x ∧ y �d ¬x.

Finally, let us consider the particular case of flat bases, interpreted as containing
formulas that are all equivalent or all incomparable. The former case corresponds to
classical logic. Suppose formulas in K are either incomparable or equivalent (for no
φ, ψ ∈ K do we have φ > ψ). Then the set of logical consequences is no longer flat.
The induced orderings are as follows.

– From (flat) K to (Ω,�): ω′ �wos
d ω iff K(ω′) ⊃ K(w)

– From (Ω,�) to (L,�d): φ �d ψ iff ∀ω′ ∈ [ψ] \ [φ], ∃w ∈ [φ] \ [ψ] such that
K(ω) ⊃ K(ω′).

Thus it is easy to see that, for flat bases, φ �d ψ if and only if φ is a proper logical
consequence of ψ, which enriches the semantics of classical logic.
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7 Towards Syntactic Inference with Partially Ordered Belief Bases

Once the semantics of partially ordered belief bases and their deductive closure are
well-defined, the next step is to devise a syntactic inference relation � that enables
to directly build the ordered deductive closure C(K, >)� from (K, >) (for a suitable
choice of �) in agreement with the semantics, namely (K, >) � φ � ψ, whenever
(φ, ψ) ∈ C(K, >)�. It appears that this question has been little discussed in the partially
ordered case, except by Halpern [8] and more recently by Benferhat and Prade [7], with
very different approaches.

Several methods of inference from a partially ordered belief base have been pro-
posed. Is is possible to:

1. map (K, >) to a partially ordered set (LK, >) of absolute levels of certainty, and
replace (K, >) by a possibilistic knowledge base B made of pairs (φ, λ), λ ∈ LK,
such that whenever φ > ψ, (φ, λ), (ψ, μ) ∈ B and λ > μ. Then we can adapt the
techniques of possibilistic logic to this setting.

2. consider a partial order as a family of total orders that extend it. So, a partially
ordered base is seen as a set of (virtual) stratified bases.

3. reason directly with formulas φ > ψ in a suitable language.
4. reason in a classical way with consistent subsets of formulas extracted using the

partial order.

The first approach was studied by Benferhat and Prade [7]. Let (LK, >) be a finite
ordered set associated with K by a homomorphism ι : K → LK such that φ ≥ ψ ∈ K
iff ι(φ) ≥ ι(ψ). Let us denote {μ : μ ≥ λ} by λ↑. The inequality λ1 ≥ λ2 in (LK,≥)
is encoded by A2 ∨¬A1 with Ai = λ↑i , and the pair (φ, λ) is encoded by ¬A∨ φ, with
A = λ↑. Then classical propositional deduction can be used.

Actually, there is a more direct way to apply possibilistic logic to the partially ordered
case. It is well-known that in standard possibilistic logic B � (φ, λ) ⇐⇒ Bλ � φ
where Bλ is the set of formulas with weights at least λ. In the partially ordered case,
we could define, when ψ ∈ K, K � φ � ψ by K>

ψ � φ where K>
ψ = {α ∈ K : α > ψ}

and likewise K � φ # ψ by K≥
ψ � φ where K≥

ψ = {α ∈ K : ψ �> α}. For instance

if statements φi > ψi in (K,>) are interpreted on the set 2Ω by [ψi] � [φi] where the
relation � satisfies Negligibility and Orderliness, it does hold that [ψ] � [φ] whenever
K>

ψ � φ. A particular case occurs when � is �wos.
However, as shown in Example 9, if the consequenceφ � ψ is interpreted as φ �N ψ

using Definitions 5 and 6 (that is,via a partial order on interpretations derived from
(K,>)) it may fail to hold that φ �N ψ whenever K>

ψ � φ (in Example 9, φ >
ψ appears in (K,>), and is absent from the semantic closure). This fact indicates a
weakness in the semantics based on a partial order on interpretations, as opposed to
a more complex semantics based on the partial ordering on subsets of interpretations
reflecting (K,>).

The second approach is described by Yahi et al. [25]. (K, >) is viewed as a set of
possible stratifications of K. So ψ ≥ φ of (K, >) means that ψ is more certain than
φ (in the sense of possibilistic logic) in all the stratified bases compatible with (K, >).
Results in the previous section indicate the strong link between this view and the weak
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optimistic relation �wos (hence its dual�N and their preadditive refinement�d). Note
that in the first approach [7], the partial order on LK is actually viewed as a set of
possible total orders. The weights are symbolic in the sense of being partially unknown
quantities on a totally ordered scale. To use this approach in practice may turn out to be
difficult, because the set of total extensions of a given partial order may be large.

In the third approach, the key idea is to consider expressions of the form φ � ψ as
the basic syntactic entities of the language encoding the preferences. It requires a higher
order language for handling atomic propositions of the form φ � ψ, their conjunctions,
disjunctions and negations, with specific axioms for describing properties of the relation
�. For instance, with the axiom: if ψ |= φ then ¬(ψ � φ), semantical contradictions
will be found, thus enabling to repair the partially ordered base. This approach, which
is the most natural one, goes back to Lewis [9] conditional logics (see also Hájek [27],
p. 212) in the case of total preorders, for possibility theory). Halpern [8] has outlined
such a logic to handle the relation �wos. This is certainly the most general approach
with the richest language. Especially it would readily allow for a semantics in terms of
a partial order over the set of subsets of interpretations of the language, which would
obviate difficulties pointed out by Examples 9 and 10 when we use a partial ordering on
interpretations. However only a subset of the consequences (K,>) from a set of φ � ψ
statements will correspond to the (properly defined) semantic closure C(K, >) (since,
for instance, the latter does not contain disjunctions of such statements).

In the fourth approach [22], the partial order on K is just used to select preferred
consistent subsets of formulas, and the deductive closure is a classical set of accepted
beliefs. So, as pointed out in Benferhat and Yahi [28], the deductive closure of a par-
tially ordered base (K, >) is just a deductively closed set (in the classical sense), ob-
tained from preferred subbases. Then the inference (K, >) � φ is defined by: φ is
consequence of all the preferred subsets of formulas. The notion of preference can be
defined in various ways based on the partial order. This order between formulas is to
some extent lost by the process of inference. In particular this kind of approach reduces
to classical inference when K is classically consistent. By construction, this approach
does not enable to deduce preferences between formulas, but essentially extracts ac-
cepted beliefs.

In the future, we plan to investigate whether or not the above syntactic inference
schemes are sound (and if possible complete) with respect to our notion of partial-
order-driven semantic closure. We have already noticed that a semantics based on a
single partial ordering over interpretations may be problematic as seen in Example 9.
This result motivates the use of a modal-like language with formulas of the form φ > ψ,
φ ≥ ψ, or φ ∼ ψ with relational semantics on the powerset of the set of interpretations
of the language where φ, ψ are expressed, whereby φ > ψ is viewed as a relation
between [ψi] and [φi], etc. Then the properties of the semantic relation can be used as
inference rules at the syntactic level. However, one may wish to restrict the inference
machinery to consequences of the form φ � ψ and φ # ψ.

8 Conclusion

The issue addressed in this paper concerns the extension of possibilistic logic when
formulas weighted by certainty levels are replaced by a partial order on the belief base.
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Defining proper semantics for such partially ordered bases requires the study of how
to go from a partial order on elements to a partial order on subsets of such elements
and conversely. Some preliminary results are offered in this paper. They indicate that
many important concepts in the case of complete orders have several non equivalent
definitions in the partial case. When going from a partial order on a set to a partial order
on its subsets, it seems that the weak optimistic relation possesses the best properties.
Moreover it seems that a straightforward adaptation of possibilistic logic to the partial
order setting is not possible.

The question then becomes the one of finding the most natural understanding of a
base partially ordered in terms of relative certainty. Our paper explains how to go from
formulas to models and back, thus defining a semantic notion of deductive closure.
We indicate that the expressive power of a partial order on the set of interpretations
is limited, and one must stick to a partial order on its power set, or alternatively a
set of total orders on the set of interpretations, to be on the safe side. Existing works
proposing proof methods have been reviewed, but they all consider different points of
view on the definition of inference in the partially ordered context, sometimes with
unclear semantics. In contrast, our purpose is to eventually define a semantic closure
that preserves and extends the partial order onK to the whole language, while correcting
the initial assessment to make it comply with the classical deduction. Once this issue
has been clarified, we have to choose an appropriate syntax, an axiomatization and a
syntactic inference method. Some hints are provided above, but this is left for further
research.

This work has potential applications for the revision and the fusion of beliefs, as well
as preference modeling [29].

References

1. Rescher, N.: Plausible Reasoning. Van Gorcum, Amsterdam (1976)
2. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Gabbay, D., Hogger, C., Robinson, J.,

Nute, D. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3,
pp. 439–513. Oxford University Press (1994)

3. Benferhat, S., Cayrol, C., Dubois, D., Lang, J., Prade, H.: Inconsistency management
and prioritized syntax-based entailment. In: Bajcsy, R. (ed.) Proc. of the 13th IJCAI, pp.
640–645. Morgan-Kaufmann, Chambéry (1993)
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d’Intelligence Artificielle 26, 773–793 (2012)

7. Benferhat, S., Prade, H.: Encoding formulas with partially constrained weights in a
possibilistic-like many-sorted propositional logic. In: Kaelbling, L.P., Saffiotti, A. (eds.)
IJCAI, pp. 1281–1286. Professional Book Center (2005)

8. Halpern, J.Y.: Defining relative likelihood in partially-ordered preferential structures. Journal
of Artificial intelligence Research 7, 1–24 (1997)

9. Lewis, D.: Counterfactuals and comparative possibility. Journal of Philosophical Logic 2,
418–446 (1973)



On the Semantics of Partially Ordered Bases 153

10. Dubois, D.: Belief structures, possibility theory and decomposable confidence measures on
finite sets. Computers and Artificial Intelligence (Bratislava) 5, 403–416 (1986)

11. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet
contraction and revision functions. Journal of Symbolic Logic 50, 510–530 (1985)

12. Fishburn, P.: Interval Orderings. Wiley, New-York (1987)
13. Benferhat, S., Dubois, D., Prade, H.: Towards a possibilistic logic handling of preferences.

Appl. Intell. 14, 303–317 (2001)
14. Kaci, S., van der Torre, L.: Reasoning with various kinds of preferences: Logic, non-

monotonicity and algorithms. Annals of Operations Research 163, 89–114 (2008)
15. Kaci, S.: Working With Preferences: Less Is More. Springer (2012)
16. Fishburn, P.C.: The axioms of subjective probability. Statistical Science 1, 335–358 (1986)
17. Dubois, D., Fargier, H., Prade, H.: Possibilistic likelihood relations. In: Proceedings of 7th

International Conference on Information Processing and Management of Uncertainty in
Knowledge-based Systems (IPMU 1998), Paris, Editions EDK, pp. 1196–1202 (1998)

18. Friedman, N., Halpern, J.Y.: Plausibility measures: A user’s guide. In: Proc. of the Eleventh
Annual Conference on Uncertainty in Artificial Intelligence, Montreal, Quebec, August 18-
20, pp. 175–184 (1995)

19. Dubois, D., Prade, H.: Numerical representations of acceptance. In: Proc. of the Eleventh
Annual Conference on Uncertainty in Artificial Intelligence, Montreal, Quebec, August 18-
20, pp. 149–156 (1995)

20. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and
cumulative logics. Artificial Intelligence 44, 167–207 (1990)

21. Dubois, D., Fargier, H., Prade, H.: Ordinal and probabilistic representations of acceptance. J.
Artif. Intell. Res. (JAIR) 22, 23–56 (2004)

22. Benferhat, S., Lagrue, S., Papini, O.: Reasoning with partially ordered information in a pos-
sibilistic logic framework. Fuzzy Sets and Systems 144, 25–41 (2004)

23. Cayrol, C., Royer, V., Saurel, C.: Management of preferences in assumption-based reasoning.
In: Bouchon-Meunier, B., Valverde, L., Yager, R.R. (eds.) IPMU 1992. LNCS, vol. 682, pp.
13–22. Springer, Heidelberg (1993)

24. Geffner, H.: Default reasoning: Causal and Conditional Theories. MIT Press (1992)
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Abstract. Rough set theory (RST) and formal concept analysis (FCA)
are two formal settings in information management, which have found
applications in learning and in data mining. Both rely on a binary re-
lation. FCA starts with a formal context, which is a relation linking a
set of objects with their properties. Besides, a rough set is a pair of
lower and upper approximations of a set of objects induced by an in-
distinguishability relation; in the simplest case, this relation expresses
that two objects are indistinguishable because their known properties
are exactly the same. It has been recently noticed, with different con-
cerns, that any binary relation on a Cartesian product of two possibly
equal sets induces a cube of oppositions, which extends the classical Aris-
totelian square of oppositions structure, and has remarkable properties.
Indeed, a relation applied to a given subset gives birth to four subsets,
and to their complements, that can be organized into a cube. These four
subsets are nothing but the usual image of the subset by the relation,
together with similar expressions where the subset and / or the relation
are replaced by their complements. The eight subsets corresponding to
the vertices of the cube can receive remarkable interpretations, both in
the RST and the FCA settings. One facet of the cube corresponds to the
core of RST, while basic FCA operators are found on another facet. The
proposed approach both provides an extended view of RST and FCA,
and suggests a unified view of both of them.

Keywords: rough set, formal concept analysis, square of oppositions,
possibility theory.

1 Introduction

Rough set theory (RST) [31,32,33,36,35,34] and formal concept analysis (FCA)
[2,41,18,17] are two theoretical frameworks in information management which
have been developed almost independently for thirty years, and which are of
particular interest in learning and in data mining. Quite remarkably, both rely
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on a binary relation. In FCA, the basic building block is a relation that links
a set of objects with a set of properties, called a formal context. A rough set
is a pair of lower and upper approximations of a set of objects induced by an
indistinguishability relation, objects being indistinguishable in particular when
they have exactly the same known properties.

Besides, in a recent paper dealing with abstract argumentation [1], it has been
noticed that in fact any binary relation is associated with a remarkable and rich
structure, called cube of oppositions, which is closely related to the Aristotelian
square of oppositions. The purpose of this paper is to take advantage of this cube
for revisiting both RST and FCA in a unified manner. The expected benefit is
twofold. On the one hand, it may provide an enriched view of each framework
individually, on the other hand it should contribute to a better understanding
of the relations and complementarities between the two frameworks.

The paper is organized as follows. In the next section, we present a detailed
account of the structure of oppositions associated with a binary relation, which
is represented by a cube laying bare four different squares of oppositions, each
of which may be completed into hexagons in a meaningful way. This systematic
study substantially extends preliminary remarks made in [10,1]. Then, Sections
3 and 4 respectively restate RST and FCA in the setting of this cube and its
hexagons, providing an extended view of their classical frameworks. This leads
to new results on the rough set cube and hexagons, which are then related
to previous results on oppositions in rough sets [6]. Similarly this leads to a
renewed presentation of results in FCA. Section 5, after surveying the various
attempts in the literature at bridging or mixing RST and FCA in one way or
another, suggests new directions of research which can benefit from the unified
view presented in this paper, before concluding.

2 Structure of Oppositions Induced by a Binary Relation

Let us start with a refresher on the Aristotelian square of opposition [30]. The
traditional square involves four logically related statements exhibiting universal
or existential quantifications: it has been noticed that a statement (A) of the
form “every x is p” is negated by the statement (O) “some x is not p”, while
a statement like (E) “no x is p” is clearly in even stronger opposition to the
first statement (A). These three statements, together with the negation of the
last one, namely (I) “some x is p”, give birth to the Aristotelian square of
opposition in terms of quantifiers A : ∀x p(x), E : ∀x ¬p(x), I : ∃x p(x),
O : ∃x ¬p(x), pictured in Figure 1. Such a square is usually denoted by the letters
A, I (affirmative half) and E, O (negative half). The names of the vertices come
from a traditional Latin reading: AffIrmo, nEgO). As can be seen, different
relations hold between the vertices. Namely,

- (a) A and O are the negation of each other, as well as E and I;
- (b) A entails I, and E entails O (we assume that there are some x);
- (c) A and E cannot be true together, but may be false together;
- (d) I and O cannot be false together, but may be true together.
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Fig. 1. Square of opposition

Another well-known instance of this square is in terms of the necessary (�)
and possible (�) modalities, with the following reading A : �p, E : �¬p, I : �p,
O : �¬p, where �p =def ¬�¬p (with p �= ⊥,�).

2.1 The Square of Relations

Let us now consider a binary relation R on a Cartesian product X×Y (one may
have Y = X). We assume R �= ∅. Let xR denote the set {y ∈ Y |(x, y) ∈ R},
and we write xRy when (x, y) ∈ R holds, and ¬(xRy) when (x, y) �∈ R. Let Rt

denote the transpose relation, defined by xRty if and only if yRx, and yRt will
be also denoted as Ry = {x ∈ X |(x, y) ∈ R}.

Moreover, we assume that ∀x, xR �= ∅, which means that the relation R is
serial, namely ∀x, ∃y such that xRy; this is also referred to in the following as
the X-normalization condition. In the same way Rt is also supposed to be serial,
i.e., ∀y, Ry �= ∅. We further assume that the complementary relation R (xRy iff
¬(xRy)), and its transpose are also serial, i.e. ∀x, xR �= Y and ∀y, Ry �= X .

Let S be a subset of Y . The relation R and the subset S, also considering its
complement S, give birth to the two following subsets of X , namely the (left)
images of S and S by R

R(S) = {x ∈ X |∃s ∈ S, xRs} = {x ∈ X | S ∩ xR �= ∅} (1)

R(S) = {x ∈ X |∃s ∈ S, xRs}

and their complements

R(S) = {x ∈ X |∀s ∈ S,¬(xRs)}

R(S) = {x ∈ X |∀s ∈ S,¬(xRs)} = {x ∈ X | xR ⊆ S} (2)

The four subsets thus defined can be nicely organized into a square of op-
position. See Figure 2. Indeed, it can be checked that the set counterparts of
the relations existing between the logical statements of the traditional square of
oppositions still hold here. Namely,

- (a) R(S) and R(S) are complements of each other, as R(S) and R(S); they
correspond to the diagonals of the square;

- (b) R(S) ⊆ R(S), and R(S) ⊆ R(S),
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Fig. 2. Square of oppositions induced by a relation R and a subset S

thanks to the X-normalization condition ∀x, xR �= ∅. These inclusions are re-
presented by vertical arrows in Figure 2;

- (c) R(S) ∩R(S) = ∅ (this empty intersection corresponds to a thick line in

Figure 2), and one may have R(S) ∪R(S) �= Y ;
- (d) R(S) ∪ R(S) = X (this full union corresponds to a double thin line in

Figure 2), and one may have R(S) ∩R(S) �= ∅.
Conditions (c)-(d) hold also thanks to the X-normalization of R.

Note that one may still have a modal logic reading of this square where R is
viewed as an accessibility relation, and S as the set of models of a proposition.

2.2 The Cube of Relations

Let us also consider the complementary relation R, namely xRy if and only if
¬(xRy). We further assume that R �= ∅ (i.e., R �= X × Y ). Moreover we have
also assumed the X-normalization of R, i.e. ∀x, ∃y ¬(xRy). In the same way as
previously, we get four other subsets of X from R. Namely,

R(S) = {x ∈ X |∃s ∈ S,¬(xRs)} = {x ∈ X |S ∪ xR �= X} (3)

R(S) = {x ∈ X |∃s ∈ S,¬(xRs)}

and their complements

R(S) = {x ∈ X |∀s �∈ S, xRs}

R(S) = {x ∈ X |∀s ∈ S, xRs} = {x ∈ X |S ⊆ xR} (4)

The eight subsets involving R and its complement can be organized into a
cube of oppositions [7] (see Figure 3). Similar cubes have been recently exhib-
ited as extending the traditional square of oppositions in terms of quantifiers
[10], or in the particular setting of abstract argumentation (for the complement
of the attack relation) [1]. As can be seen, the front facet of the cube in Figure 3
is nothing but the square in Figure 2, and the back facet is a similar square asso-
ciated with R. Neither the top and bottom facets, nor the side facets are squares
of opposition in the above sense. Indeed, condition (a) is violated: Diagonals do
not link complements in these squares. More precisely, in the top and bottom
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squares, diagonals change R into R and vice versa; there is no counterpart of
condition (b), and either condition (c) holds for the pairs of subsets associated
with vertices A-E and with vertices a-e, while condition (d) fails (top square),
or conversely in the bottom square, condition (d) holds for the pairs of subsets
associated with vertices I-O and with vertices i-o while condition (c) fails. For
side facets, condition (b) clearly holds, while both conditions (c)-(d) fail. In side
facets, vertices linked by diagonals are exchanged by changing R into R (and vice
versa) and by applying the overall complementation. These diagonals express set
inclusions: R(S) = {x ∈X |∀s ∈ S,¬(xRs)} ⊆ {x ∈X |∃s ∈ S,¬(xRs)} = R(S).

In the same way, we have R(S) ⊆ R(S), R(S) ⊆ R(S), and R(S) ⊆ R(S), as
pictured in Figure 3.

i: R(S)

I: R(S) O: R(S)

o: R(S)

a: R(S)

A: R(S) E: R(S)

e: R(S)

Fig. 3. Cube of oppositions induced by a relation R and a subset S

Moreover, the top and bottom facets exhibit other empty intersection re-
lationships and full union relationships respectively. Indeed in the top facet,

e.g. R(S) ∩ R(S) = ∅, since R(S) = {x ∈ X | S ⊆ xR} and R(S) = {x ∈
X | S ∩ xR = ∅}. Similarly in the bottom facet, e.g. R(S) ∪ R(S) = X , since
R(S) = {x ∈ X |∃s ∈ S,¬(xRs)} and R(S) = {x ∈ X |∃s ∈ S, xRs}. This is
pictured in Figure 4 (in order not to overload Figure 3).

Thus, while diagonals in front and back facets express complementations, they
express inclusions in side facets, empty intersections in top facet, and full union
in bottom facets.
It is important to keep in mind that the 4 subsets R(S), R(S), R(S), and R(S)
(or their complements R(S), R(S), R(S), and R(S)) constitute distinct pieces
of information in the sense that one cannot be deduced from the others. Indeed
the conditions xR ⊆ S, S ∩ xR = ∅, S ⊆ xR, and S ∪ xR = X express the four
possible inclusion relations of xR wrt S or S and define distinct subsets of X .

The 8 subsets corresponding to the vertices of the cube of oppositions can
receive remarkable interpretations, both in the RST and FCA settings. As we
shall see in Sections 3 and 4, the front facet of the cube corresponds to the core of
RST, while basic FCA operators are on the left-hand side facet. However, before
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i: R(S)

I: R(S) O: R(S)

o: R(S)

a: R(S)

A: R(S) E: R(S)

e: R(S)

Fig. 4. Top and bottom facets of the cube of oppositions

moving to RST and FCA, it is interesting to complete the different squares
corresponding to the facets of the cube into hexagons, as we are going to see.

2.3 From Squares to Hexagons

As proposed and advocated by Blanché [4,5], it is always possible to complete a
classical square of opposition into a hexagon by adding the verticesY =def I∧O,
and U =def A ∨ E. It fully exhibits the logical relations inside a structure of
oppositions generated by the three mutually exclusive situations A, E, and Y,
where two vertices linked by a diagonal are contradictories, A and E entail U,
while Y entails both I and O. Moreover I = A∨Y and O = E∨Y. Conversely,
three mutually exclusive situations playing the roles of A, E, and Y always give
birth to a hexagon [10], which is made of three squares of opposition: AEOI,
AYOU, and EYIU, as in Figure 5. The interest of this hexagonal construct
has been rediscovered and advocated again by Béziau [3] in the recent years in
particular for solving delicate questions in paraconsistent logic modeling.

Applying this idea to the front facet of the cube of oppositions induced by a
relation and a subset, we obtain the hexagon of Figure 5, associated with the tri-

partition {R(S), R(S), R(S) ∩R(S)}. Note that indeed R(S) = R(S) ∪ (R(S) ∩
R(S)) (since R(S) ⊇ R(S)). Similarly, R(S) = R(S) ∪ (R(S) ∩R(S)). In Figure
5, arrows (→) indicate set inclusions (⊆). A similar hexagon is associated with
the back facet, changing R into R.

Another type of hexagon can be associated with side facets. The one corre-
sponding to the left-hand side facet is pictured in Figure 6. Now, not only the
arrows of the sides of the hexagon correspond to set inclusions, but also the diag-

onals (oriented downwards). Indeed R(S) ⊆ R(S) and R(S) ⊆ R(S). Moreover,
since R(S) ⊆ R(S) and using the inclusions corresponding to the vertical edges
of the cube, we get

R(S) ∪R(S) ⊆ R(S) ∩R(S),
and for the right-hand side square, by De Morgan duality, we have

R(S) ∪R(S) ⊆ R(S) ∩R(S).
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A: R(S)

U: R(S) ∪R(S)

E: R(S)

O: R(S)

Y: R(S) ∩R(S)

I: R(S)

Fig. 5. Hexagon associated with the front facet of the cube

A: R(S)

R(S) ∪R(S)

a: R(S)

i: R(S)

R(S) ∩R(S)

I: R(S)

Fig. 6. Hexagon induced by the left-hand side square

One may wonder if one can build useful hexagons from the bottom and top
squares of the cube. It is less clear. Indeed, if we consider the four subsets involved
in the bottom square, namely R(S), R(S), R(S) and R(S) (the top square has
their complements as vertices), they are weakly related through R(S) ∪R(S) =
X ,R(S)∪R(S) = X ,R(S)∪R(S) = X andR(S)∪R(S) = X . Still R(S)∪R(S) or

R(S)∪R(S) (or their complements in the top square,R(S)∩R(S) or R(S)∩R(S))
are compound subsets that may make sense for some particular understanding
of relation R. Note that similar combinations changing ∩ into ∪ and vice versa
already appear in the hexagons associated with the side facets of the cube, while
R(S)∩R(S) and R(S)∩R(S) are the Y-vertices of the hexagons associated with
the front and back facets of the cube of oppositions. Besides, it would be also
possible to complete the top facet into yet another type of hexagon by taking

the complements of R(S) ∪ R(S) or of R(S) ∪ R(S), which clearly have empty
intersections with the subsets attached to vertices A and a and to vertices E
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and e respectively. However, the intersection of the two resulting subsets, namely
R(S) ∩R(S) and R(S) ∩R(S) is not necessarily empty. A dual construct could
be proposed for the bottom facet.

In the cube of oppositions, three negations are at work, the usual outside one,
and two inside ones respectively applying to the relation and to the subset -
this gives birth to the eight vertices of the cube - while in the front and back
squares (but also in the top and bottom squares) only two negations are at work.
Besides, it is obvious that a similar cube can be built for the transpose relation
Rt and a subset T ⊆ X , then inducing eight other remarkable subsets, now, in

Y . This leads us to assume the X-normalizations of Rt and Rt (= R
t
), which is

nothing but the Y-normalizations of R and R (∀y, ∃t, tRy, and ∀y, ∃t′,¬(t′Ry)),
as already announced. We now apply this setting to rough sets.

3 The Cube in the Rough Set Terminology

Firstly defined by Pawlak [32], rough set theory is a set of tools to represent and
manage information where the available knowledge cannot accurately describe
reality. From an application standpoint it is used mainly in data mining, machine
learning and pattern recognition [34].

At the basis of the theory, there is the impossibility to accurately give the
intension of a concept knowing its extension. That is, given a set of objects
S we cannot characterize it precisely with the available features (attributes)
but, on the other hand, we can accurately define a pair of sets, the lower and
upper approximations L(S), U(S), which bound our set: L(S) ⊆ S ⊆ U(S). The
interpretation attached to the approximations is that the objects in the lower
bound surely belong to S and the objects in the boundary region U(S) \ L(S)
possibly belong to S. As a consequence we have that the objects in the so-called
exterior region U(S) do not belong to S for sure.

The starting point of the theory are information tables (or information sys-
tems) [31,36], which have been defined to represent knowledge about objects in
terms of observables (attributes).

Definition 1. An information table is a structure K(X) = 〈X, A, val, F 〉 where:
the universe X is a non empty set of objects; A is a non empty set of condi-
tion attributes; val is the set of all possible values that can be observed for all
attributes; F (called the information map) is a mapping F : X ×A→ val which
associates to any pair object–attribute, the value F (x, a) ∈ val assumed by a for
the object x.

Given an information table, the indiscernibility relation with respect to a set
of attributes B ⊆ A is defined as

xRBy iff ∀a ∈ B, F (x, a) = F (y, a)

This relation is an equivalence one, which partitions X in equivalence classes
xRB. Due to a lack of knowledge we are not able to distinguish objects inside



162 D. Ciucci, D. Dubois, and H. Prade

the granules, thus, it can happen that not all subsets of X can be precisely
characterized in terms of the available attributes B. However, any set S ⊆ X can
be approximated by a lower and an upper approximation, respectively defined
as:

LB(S) = {x : xRB ⊆ S} (5a)

UB(S) = {x : xRB ∩ S �= ∅} (5b)

The pair (LB(S), UB(S)) is called a rough set. Clearly, omitting subscript B, we
have, L(S) ⊆ S ⊆ U(S), which justifies the names lower/upper approximations.
Moreover, the boundary is defined as the objects belonging to the upper but not
to the lower: Bnd(S) = U(S) \L(S) and the exterior is the collection of objects
not belonging to the upper: E(S) = U(S). The interpretation attached to these
regions is that the objects in the lower approximation surely belong to S, the
objects in the exterior surely do not belong to S and the objects in the boundary
possibly belong to S.

Several generalizations of this standard approach are known, here we are inter-
ested in weakening the requirements on the relation. Indeed, in some situations
it seems too demanding to ask for a total equality on the attributes and more
natural to investigate the similarity of objects, for instance to have only a certain
amount of attributes in common or to have equal values up to a fixed tolerance
[39,38]. Thus, we are now considering a general binary relation R ⊆ X ×X in
place of the indiscernibility (equivalence) one. Instead of the equivalence classes,
we have the granules of information xR = {y ∈ X : xRy} and as a consequence,
we no longer have a partition of the universe, but, in the general case, a partial
covering, that is the granules can have non-empty intersection and some object
can be outside all the granules. The lower and upper approximations are defined
exactly as in Equations 5.

The normalization condition about the seriality of the relation R, nicely re-
flects in this framework. Indeed, we have that if the relation is serial then the
covering is total and not partial (all objects belong to at least one granule) and
also the following result [45]:

The relation R is serial iff ∀S, L(S) ⊆ U(S)

Given these definitions, a square of oppositions naturally arises from approx-
imations:

– R(S) = UR(S) is the upper approximation of S wrt the relation R;

– R(S) = LR(S) is the lower approximation of S wrt the relation R;
– R(S) = LR(S) = UR(S) = E(S) is the exterior region of S;
– R(S) = UR(S) = LR(S).

With respect to the cube of oppositions, it is the front face with the corners
involving R in a positive way. To capture also the corners involving the negation
of R, we have to consider other operators we can find in the rough set litera-
ture. Namely, the sufficiency operator (widely studied by Orlowska and Demri
[14,28,15]), defined as:
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[[S]]R = {x ∈ X |xR ⊆ S};

and the dual operator <<S>>R= {x ∈ X |xR ∩ S �= ∅} = {x ∈ X |S ∪ xR �= X}.
So, we have

– R(S) = [[S]] = {x : S ⊆ xR}, that can be interpreted as the set of all x
which are in relation to all y ∈ S;

– R(S) =<<S>>, that represents the set of objects which are not in relation
to at least one object in S;

– R(S) = [[S]] and R(S) =<<S>>.

Let us notice that in case of an equivalence relation the sufficiency operator
[[S]] is trivial, since it gives either the empty set or the set S itself if S is one of
the equivalence classes. Dually, <<S>> is either the universe or S.

In Figure 7, all these rough set operators are put into the cube. The normal-
ization condition on R requires that also R is serial, that is, also in the rough
set cube, we have to require that xR is not the entire set of objects X .

i: <<S>>

I: U(S) O: U(S)

o: <<S>>

a: [[S]]

A: L(S) E: E(S)

e: [[S]]

Fig. 7. Cube of oppositions induced by rough approximations

Remark 1. Often, the operators [[S]] and <<S>> are introduced together with
a more general definition of information table. Indeed, it is considered that
to each pair attribute-object we can associate more than one value, i.e. we
have a many-valued table. For instance, if the attribute a is color with range
V ala = {white, green, red, blue, yellow, black}, an object can have both values
{blue, yellow} ⊂ V ala whereas classically each object can assume only a single
value in V ala. In this way, we can define also several forms of generalized in-
discernibility relation. For instance, we can ask that two objects are similar if
a(x) ∩ a(y) �= ∅ (in the classical setting, it would be: a(x) = a(y)). Different
relations of this kind are considered in [28] both of indistinguishability (based
on R) and distinguishability (based on R) type.
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Let us note that the front square of the cube was already defined in [6],
but considering only the equivalence relations and all the rest of the cube is a
new organization of rough set operators. Indeed, a cube of opposition was also
studied in [6] (see Figure 8) but it is of a different kind. In this last case, it is
supposed that L and U are not dual, that is L(S) �= U(S). This is true in some
generalized models such as variable precision rough sets (VPRS) [22]. VPRS are
a generalization of Pawlak rough sets obtained by relaxing the notion of subset.
Indeed, the lower and upper approximations are defined as lα(H) = {y ∈ X :
|H∩[y]|
|[y]| ≥ 1−α} and uα(H) = {y ∈ X : |H∩[y]|

|[y]| > α}. That is, we admit an error

α in the subsethood relation [y] ⊆ H and if α = 0 we recover classical rough set
approximations.

U(X)

U(X) L(X)

L(X)

L(X)

L(X) U(X)

U(X)

Fig. 8. Cube of opposition induced by generalized approximations

So, an open issue concerns the operators [[]] and <<>> in these generalized
contexts. By applying them in variable precision rough sets we can expect to
obtain another cube of R approximations and more interestingly, it should be
investigated if this new setting has some practical application.

3.1 Hexagon

As we have seen, the front face contains the main operators in rough set theory.
Also the hexagon, built in the standard way from the front square, is related
to rough set operators. This hexagon has been built in [6] and it is reported in
Figure 9.

So, on the top we have the set of objects on which we have a clear view: either
they belong or not to the set S. On the contrary, on the bottom we have the
boundary, that is the collection of unknown objects.

If we consider the back face, then [[S]] ∪ [[S]] is the set of objects which are
similar to all objects in the universe, whereas <<S>> ∩ << S >> is the set of
objects which are different from at least one object in S and one object in S.

Considering the face AaIi (the face EeOo is handled similarly), which corre-
sponds to the FCA framework, from the top of the square, one may build
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L(X)

L(X) ∪E(X)

E(X)

L(X)

Bnd(X)

U(X)

Fig. 9. Hexagon induced by Pawlak approximations

L(S) ∩ [[S]] = {x ∈ X |S ⊆ xR} ∩ {x ∈ X |xR ⊆ S} = {x ∈ X |xR = S}

That is, this intersection defines the set of objects which are in relation to all
and only the objects in S. So, if R is an equivalence relation, it is either the
empty set or the set S. On the contrary, in more general situations (when we
have a covering, not a partition), it can be a non-empty subset of S.

With the bottom of the square, we may consider dually

U(S) ∪ <<S>> = {x ∈ X |xR ∩ S �= ∅} ∪ {x ∈ X |xR ∪ S �= X}

that corresponds to the set of objects that are in relation with at least one object
in S or that are not in relation with at least one object in S.

The counterpart of the hexagon of Fig. 6 makes also sense, and we have

L(S) ∪ [[S]] ⊆ U(S) ∩ <<S>> .

3.2 Other Sources of Oppositions

Let us notice that up to now we have considered oppositions arising from op-
erators L,U, [[]], <<>> definable in rough sets starting from a binary relation
R. Other oppositions can be put forward based on other sources. First of all,
relations. On the same set of data we can consider several relations besides the
standard indiscernibility one, which can be in some kind of opposition among
them. In [6], we have defined a classical square of oppositions based on four rela-
tions: equivalence (A), similarity (I), preclusivity (E), discernibility (O). More-
over, if we want to aggregate any two of this four relations (for instance, they
can represent two agents point of view), we have 16 ways to do it and so we get
a tetrahedron of oppositions.

Another source of opposition is given by attributes of an information table.
Indeed, they can be characterized as useful or useless with respect to a classifi-
cation task. More precisely, Yao in [47], defines a square of opposition classifying
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attributes as Core (A), Useful (I), NonUseful (E), NonCore (I). The Core con-
tains the set of attributes which are in all the reducts1, Useful attributes are
those belonging to at least one reduct, NonUseful attributes are in none of the
reducts and finally, NonCore attributes are not in at least one reduct.

4 The Cube in Formal Concept Analysis

In formal concept analysis [18], the relation R is defined between a set of objects
X and a set of properties Y , and is called a formal context. It represents a
data table describing objects in terms of their Boolean properties. In contrast
with the data tables mentioned in the previous section on rough sets, we only
consider binary attributes here, whose values correspond to the satisfaction or
not of properties. As such, no particular constraint is assumed on R, except
that it is serial. Indeed, let xR be the set of properties possessed by object x,
and Ry is the set of objects having property y. Then, it is generally assumed
in practice that xR �= ∅, i.e. any object x should have at least one property
in Y . It is also assumed that xR �= Y , i.e., no object has all the properties in
Y (i.e., xR cannot be empty). This is the bi-normalization of R assumed for
avoiding existential import problems in the front and back facets of the cube of
oppositions. Similarly, the bi-normalization of Rt means here that no property
holds for all objects, or none object. In other words, the data table has no empty
or full line and no empty or full column.

Given a set S ⊆ Y of properties, four remarkable sets of objects can be defined
in this setting (corresponding to equations (1)-(4)):

– RΠ(S) = {x ∈ X |xR ∩ S �= ∅} = ∪y∈SRy, which is the set of objects having
at least one property in S;

– RN(S) = {x ∈ X |xR ⊆ S} = ∩y 
∈SRy, which is the set of objects having no
property outside S;

– RΔ(S) = {x ∈ X |xR ⊇ S} = ∩y∈SRy, which is the set of objects sharing all
properties in S (they may have other ones).

– R∇(S) = {x ∈ X |xR ∪ S �= Y } = ∪y 
∈SRy, which is the set of objects that
are missing at least one property outside S.

With respect to the notations of the cube of oppositions in Figure 3, we

have RΠ(S) = R(S), RN(S) = R(S), RΔ(S) = R(S), R∇(S) = R(S). They
constitute, as already said, four distinct pieces of information. The names given
here refer to the four possibility theory set functions Π , N , Δ, and ∇ [9] that
are closely related to ideas of non-empty intersection, or of inclusion. The four
formal concept analysis operators have been originally introduced in analogy
with the four possibility theory set functions [8]. They correspond to the left
side facet of the cube of oppositions. The full cube is recovered by introducing
the complements, giving birth to the right side facet. Since RΠ(S) = RN(S), and

1 A reduct is a minimal subset of attributes which generates the same partition as the
whole set.
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RΔ(S) = R∇(S), the classical square of oppositions AEOI is given by the four
corners RN(S), RN(S), RΠ(S), and RΠ(S), whereas the square of oppositions
aeoi on the back of the cube is given by RΔ(S), RΔ(S), R∇(S), and R∇(S). See
Figure 10.

i: R∇(S)

I: RΠ(S) O: RΠ(S)

o: R∇(S)

a: RΔ(S)

A: RN(S) E: RN(S)

e: RΔ(S)

Fig. 10. Cube of oppositions in formal concept analysis

The counterpart of the hexagon of Figure 6 is given in Figure 11 where all
edges are uni-directed, including the diagonal ones, and express inclusions. In-
deed, as already directly established [8], under the bi-normalization hypothesis,
the following inclusion relation holds: RN(S) ∪RΔ(S) ⊆ RΠ(S) ∩R∇(S).

RN(S)

RN(S) ∪ RΔ(S)

RΔ(S)

R∇(S)

RΠ(S) ∩R∇(S)

RΠ(S)

Fig. 11. Hexagon induced by the 4 operators underlying formal concept analysis

In fact, standard formal concept analysis [18] only exploits the third set func-
tion RΔ. This function is enough for defining a formal concept as a pair made
of its extension T and its intension S such that RΔ(S) = T and RtΔ(T ) = S,
where (T, S) ⊆ X × Y . Equivalently, a formal concept is a maximal pair (T, S)
in the sense of set inclusion such that T × S ⊆ R. Likewise, it has been recently



168 D. Ciucci, D. Dubois, and H. Prade

established [11] that pairs (T, S) such that RN (T ) = S and RtN(T ) = S are char-
acterizing independent sub-contexts which are such that R ⊆ (T × S)∪ (T × S).
Indeed the two sub-contexts of R contained respectively in T × S and in T × S
do not share then any object or property. The other connections RΘ(S) = T
and RtΛ(T ) = S where Θ,Λ ∈ {Π,N,Δ,∇} are worth considering. The cases
Θ = Λ = Π and Θ = Λ = ∇ redefine the formal sub-contexts, and the formal
concepts respectively [11], but the other mixed connections with Θ �= Λ have
still to be investigated systematically.

5 Towards Integrating RST and FCA

In FCA, one starts with an explicit relation between objects and properties, from
which one defines formal concepts. This gives birth to a relation between objects
(two objects are in relation if they belong together to at least one concept) and
similarly to a relation between properties. RST starts with a relation between
objects, but implicitly comes from an information table as in FCA linking objects
and attribute values. The classical FCA setting identifies, in the information ta-
ble, formal concepts from which association rules can be derived. RST, which is
based on the idea of indiscernible sets of objects (note also that in the context of
the intent properties, the objects in a formal concept are indiscernible as well),
focuses on the ideas of reducts and core for identifying important attributes.
Besides as we have shown, the structure of the cube of oppositions underlying
both RST and FCA provides a richer view of the two frameworks. Thus, for in-
stance, FCA extended with new operators has enabled us to identify independent
sub-contexts inside an information table.

In the following, we both provide a synthesis of related works aiming at re-
lating or hybridizing RST and FCA, and indicate various directions for further
research taking advantages of the unified view we have introduced in this paper.

5.1 Related Works

Several authors have investigated the possibility of mixing the two theories or
finding common points (see [25,48]), e.g. relating concept lattices and partitions
[20], or the place of Galois connections in RST [43], or computing rough concepts
[19]. In this section we intend to point out relationships of these works with our
approach. Indeed, some of these works are linked to the operators provided by
our cubes and to the ideas presented in the previous sections. At first, we consider
the works that, more or less explicitly, put forward some of the relations between
the two theories that we discussed before. Then, we will give some hint on the
possibility to mix the two theories, this discussion will lead us to the next section
about the possibility of integrating RST and FCA.

At first, let us note that Aristotelean oppositions are explicitly mentioned by
Wille in [42]. With the aim of defining a concept logic, he generalizes the idea of
formal concept and introduces two kinds of negation, one named weak opposition
to model the idea of “contrary”. Given a formal concept (T, S) its opposition
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is the pair (RΔ(S), RtΔRΔ(S)). Clearly, the set RΔ(S) is the contrary of the
(standard) extent of RΔ(S), as outlined in the FCA cube.

In several studies, it has been pointed out that the basic operators in the two
theories are the four modal-like operators of the FCA square of oppositions and
that the basic FCA operator is a sufficiency–like operator [12,13,48]. This fits
well with our setting where it is possible to see that RΔ (the sufficiency in FCA)
and [[]] (the sufficiency in RST) are on the same corner of the two cubes. We
will better develop this issue in the following section. See also [44] for a modal
logic reading of FCA and RST.

Also Pagliani and Chakraborty [29] consider three of the basic operators of
the FCA square: RN , RΠ , RΔ. Of course, they point out that RΔ is the usual
operator in FCA and moreover they show that in modified versions of FCA,
(RΠ(RtN(X)), RtN(X)) is an “object oriented concept” [46] and (RN(RtΠ(X)),
RtΠ(X)) a “property oriented concept” [12]. Further, generalized upper and
lower approximations are introduced on the set of objects as U(X) = RN(RtΠ(X))
and L(X) = RΠ(RtN(X)). Finally, the special case X = Y is discussed, provid-
ing interpretation of the operators (similarly as we do in Section 3) and showing
that in case of an equivalence relation, classical rough sets are obtained.

In the attempt at mixing the two theories, several authors considered rough
approximations of concepts in the FCA settings [16,25,37,48]. The basic idea is
(see for instance p.205 of [25]) that given any set of objects T , the lower and
upper approximations are

LL(T ) = RΔ(RtΔ(
⋃
{X |(X,Y ) ∈ L, X ⊆ T )) (6a)

UL(T ) = RΔ(RtΔ(
⋃
{X |(X,Y ) ∈ L, T ⊆ X)) (6b)

where L is the concept lattice of all formal concepts. Clearly, definable sets (i.e.,
not rough) coincide with the extents of formal concepts.

A different approach to use RST ideas in FCA is given in [27]. Li builds a
covering of the universe as the collection RΔ({a}) for all attributes a. Then,
he shows that one of the possible upper approximations on coverings (there are
more than twenty ones available [49]) is equal to RΔ(RtΔ(X)) for all set of objects
X . Once established this equality, rough sets ideas such as reducts are explored
in the FCA setting.

In the other direction, that is from FCA to RST, Kang et al. [21] introduce a
formal context from the indiscernibility relation of an information table and then
re-construct rough sets tools (approximations, reducts, attribute dependencies)
using formal concepts.

Finally, the handling of many-valued (or fuzzy) formal contexts has been a
motivation for developing rough approximations of concepts [23,24,26].

5.2 Some Possible Directions for the Integration of RST and FCA

If we try to articulate the FCA cube with the RST one, the necessity of making
explicit the role of attributes in the RST case is evident. In turn this requires
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to fix a relation. For the moment, let us consider the usual equivalence relation
on attributes. As outlined in the previous section, the standard FCA operator
RΔ is a sufficiency operator and the corresponding corner of the RST cube is
[[T ]]. In FCA, RΔ(S) is the set of objects sharing all properties in S. In RST,
[[T ]] is the set of objects which are equivalent to all the objects y ∈ T . Using
the attributes point of view: x ∈ [[T ]] iff ∀y ∈ T, ∀a, F (x, a) = F (y, a). So, once
fixed a formal concept (T, S) we have that [[T ]]S = RΔ(S), where [[]]S means
that the equivalence relation is computed only with respect to attributes in S.

If we do not fix a formal concept then it is not so straightforward to obtain
all the formal concepts using rough set constructs. The problem is that the set
of attributes used to compute [[T ]]S depends on S which differs from concept
to concept. An idea could be to collect all the equivalence classes generated
by all subsets S ⊆ A, as well as all operators [[T ]]S and the ones given by
other corners of the cube. Among all these [[T ]]S (or, it is the same, among all
the equivalence classes) we have all the formal concepts. If among this (huge)
collection of operators and equivalence classes, we could pick up exactly the
formal concepts then we would have a new common framework for the two
theories. In this direction it can be useful to explore the ideas presented in [40],
where it is shown that the extents of any formal context are the definable sets
on some approximation space.

A different approach in order to obtain formal concepts from rough constructs
is to consider the covering made by extents of formal concepts and then consider
on it the covering-based rough set lower and upper approximations (as already
said more than twenty approximations of this kind are known). Then, we may
wonder if any of these rough approximations coincides with the A, I corners of
the FCA cube. Let us remark that Li’s approach [27] previously described, is
different from this idea, since based on a different covering.

Further, Li’s scope is to use RST constructs such as reducts in FCA. Another
issue is to explore the possibility of using the constructs in the FCA cube in order
to express the basic notions of RST (besides approximations) such as reducts
and cores. We may think that something more is needed, in order to define
the notion of “carrying the same information” (at the basis of reducts), where
“same information” may mean same equivalence classes, or same covering, or
same formal concepts, etc...

The last line of investigation we would like to put forward, is related to ideas
directly connected to possibility theory, in particular to a generalization of FCA
named approximate formal concept outlined in [11]. Indeed, we may think of
such approximate concept as a rough concept, which we want to approximate.
Different solutions can be put at work. At first, we can suppose that definable (or
exact) concepts coincide with the extent of formal concepts and that any other
set of objects should be considered as rough. In this case, we can approximate a
rough concept with a pair of formal concepts using equations 6.

On the other hand, given an approximate formal concept (T, S), we may think
of it as representing an “approximate set” of objects which share an “approx-
imate set” of properties. So it makes sense to ask which objects in T surely/
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possibly have properties in S (and dually, which properties are surely/possibly
shared by T ). This means to try to define a pair of lower-upper approximation
of the approximate formal concept. For instance, we could consider the pair
(RΔ(S), RΔ,l(S)) where RΔ,k(S) is a tolerant version of RΔ admitting up to k
errors. Of course, this framework should be further analyzed and put at work on
concrete examples, to understand the potential of approximating formal concepts
and of their approximations.

6 Conclusion

In this paper, we have shown that both RST and FCA share the same type of
underlying structure, namely the one of a cube of oppositions. We have pointed
out how having in mind this structure may lead to substantially enlarge the
theoretical settings of both RST and FCA. Finally, this has helped us to provide
an organized view of the related literature and to suggest new directions worth
investigating. In the long range, it is expected, that such a structured view,
which also includes possibility theory (and modal logic), may contribute to the
foundations of a basic framework for information processing.
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Abstract. Place types taxonomies tend to have a shallow structure,
which limits their predictive value. Although existing place type tax-
onomies could in principle be refined, the result would inevitably be
highly subjective and application-specific. Instead, in this paper, we pro-
pose a methodology to enrich place types taxonomies with a ternary be-
tweenness relation derived from Flickr. In particular, we first construct
a semantic space of place types by applying dimensionality reduction
methods to tag co-occurrence data obtained from Flickr. Our hypothesis
is that natural properties of place types should correspond to convex
regions in this space. Specifically, knowing that places P1, ..., Pn have a
given property, we could then induce that all places which are located
in the convex hull of {P1, ..., Pn} in the semantic space are also likely to
have this property. To avoid relying on computationally expensive con-
vex hull algorithms, we propose to derive a ternary betweenness relation
from the semantic space, and to approximate the convex hull at the sym-
bolic level based on this relation. We present experimental results which
support the usefulness of our approach.

1 Introduction

Taxonomies encode which categories exist in a given domain and how these
categories are related. Often they are restricted to is-a relations (also called hy-
ponym/hypernym relations or subsumption), although other relations may be
considered as well. Taxonomies feature perhaps most prominently in biology,
where their purpose is to group organisms with common characteristics. In in-
formation systems, taxonomies are often used to organise content. For example,
online shops such as Amazon1 use taxonomies of products to let users browse
their site. Similarly, web sites may use taxonomies of music genres2, movie gen-
res3 or place types4 to allow for easier navigation. In this paper, we will focus on
place types, although similar considerations apply to music and movie genres,
research areas, apps, and many other domains.

1 http://www.amazon.co.uk
2 http://www.bbc.co.uk/music/genres
3 http://dvd.netflix.com/AllGenresList
4 http://aboutfoursquare.com/foursquare-categories/
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Whereas biological taxonomies are closely tied to evolution, taxonomies of
place types merely reflect a perceived similarity between natural language labels.
As a result, such taxonomies are usually application-specific. For example, in
the Foursquare taxonomy, bakery, ice cream shop and steakhouse are all found
in the same category, grouping venues related to food. Wordnet5, on the other
hand, classifies bakery as a hyponym of shop and steakhouse as a hyponym of
restaurant, with shop and restaurant both being direct hyponyms of building.
The vagueness of many natural language labels further complicates the problem
of designing suitable taxonomies. For example, on Tripadvisor6, ice cream shops
tend to be listed under the category restaurant, while we may consider it more
natural to consider ice cream shops under the category shopping.

When place type taxonomies are used for organising content, the aforemen-
tioned issues are inevitable: even though place types can be grouped in many
meaningful ways, one particular hierarchy needs to be selected. However, one
other important reason why taxonomies are important in biology is because
they have predictive value. Taxonomies are used, for instance, to predict which
species will become invasive [15] or which species are likely to be ecologically
similar [16]. Similarly, place type taxonomies could potentially be valuable to
support various forms of inductive reasoning. For example, consider a user who
is looking for recommendations about places to visit on a day out with chil-
dren. Current place recommendation system such as Foursquare or Yelp7 do not
support such queries. By analysing user reviews, however, we may discover that
zoos, theme parks and beaches are suitable places for a day out with children. In
principle, a sufficiently fine-grained place type taxonomy should then allow us to
identify places which are taxonomically close to zoos, theme parks and beaches,
and these places are likely to be suitable as well.

Current place type taxonomies are too shallow to support such predictive
inferences. One solution would be to refine existing taxonomies, either manually
or using automated methods [11,17,35]. However, this would only partially solve
the problem, as the resulting taxonomy would still be application-dependent. For
example, beach may be grouped with other sea-related places such as harbour
and oil platform, with other coastal features such as cape, cliff and polder, or with
other sand-related types of land cover such as desert. We therefore argue that
to support inductive reasoning about place types, a richer structure is needed to
model relatedness of place types, which can take account of the fact that place
types can be categorised in many meaningful ways.

To derive information about the relatedness of place types, we propose the
following methodology. First, from Flickr8, a popular photo-sharing website, we
derive a vector-space representation for all places of interest, for which we can
exploit the fact that photos on Flickr often have a number of tags (i.e. short
textual descriptions). Previous work [30,31] has already indicated that Flickr

5 http://wordnet.princeton.edu
6 http://www.tripadvisor.co.uk
7 http://www.yelp.com
8 http://www.flickr.com

http://wordnet.princeton.edu
http://www.tripadvisor.co.uk
http://www.yelp.com
http://www.flickr.com


176 J. Derrac and S. Schockaert

tags can be successfully used for discovering places of a given type, suggesting
that Flickr tags indeed have potential for modelling place types. Specifically,
we first represent each place type as a vector based on its associated tags on
Flickr and then use a dimensionality reduction method such as Singular Value
Decomposition (SVD), MultiDimensional Scaling [5] or Isomap [28] to obtain
a representation of each place type, either as a point or as a convex region in
a lower-dimensional Euclidean space. Gärdenfors’ theory of conceptual spaces
[10] posits that natural properties tend to correspond to convex regions in some
suitable metric space. Our assumption is that a similar property will hold for
the representation we obtain from Flickr, i.e. we assume that this representation
can be viewed as the approximation of a conceptual space. Knowing that place
types P1, ..., Pn satisfy a given natural property (e.g. being suitable places for
a day out with children), we could then induce that place types which are in
the convex hull of the representations of P1, ...Pn are also likely to satisfy this
property9. However, from an application point of view, this is still not fully
satisfactory since it requires checking the convex hull membership of a potentially
large number of place types, every time an inductive inference is made. As an
alternative, we propose to extract a ternary betweenness relation from the vector-
space representations of the place types, e.g. encoding that a tapas bar is between
a restaurant and a pub. Note that this notion of betweenness at the same time
corresponds to a geometric notion of betweenness in a Euclidean space and to the
conceptual notion of having intermediate properties. In summary, the research
questions we address in this paper are the following:

1. To what extent is Flickr a useful source for acquiring information about the
relatedness of place types?

2. To what extent is a ternary betweenness relation useful to identify natural
cateogories of place types?

The paper is structured as follows. After reviewing related work in the next
section, Section 3 describes how the vector-space representations of the place
types has been obtained. Subsequently, Section 4 discusses different ways of
measuring betweenness. Section 5 reports the results of our experiments, after
which we conclude.

2 Related Work

2.1 Vector-Space Models of Meaning

Vector-space models are widely used to represent the meaning of natural lan-
guage concepts in fields such as information retrieval [22,6], natural language
processing [19,20,9], cognitive science [14], and artificial intelligence [10,26].

9 It should be noted that this notion of convex hull relates to the representations of the
meanings of these place types in a conceptual space; it is unrelated to the geographic
locations of instances of the place types.
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Most approaches represent natural language terms as points (or vectors) in a
Euclidean space. One notable exception is the work of Gärdenfors on conceptual
spaces [10], where properties and concepts are represented using convex regions.
While computationally more demanding, using regions instead of point has a
number of advantages. First, it allows us to distinguish borderline instances of
a category from more prototypical instances, by taking the view that instances
which are closer to the center a region are more typical [10]. A second advantage
of using regions to represent the meaning of natural language terms is that it
makes it clear whether one concept subsumes another (e.g. every pizzeria is a
restaurant), whether two concepts are mutually exclusive (e.g. no restaurant
can also be a beach), or whether they are overlapping (e.g. some bars serve wine
but not all, some establishments which serve wine are bars but not all). Region-
based models have been shown to outperform point-based models in some natural
language processing tasks [8], although point-based remain more popular.

In information retrieval, it is common to represent documents as vectors with
one component for every term occurring in the corpus. In many other applica-
tions (as well as sometimes in information retrieval) some form of dimensionality
reduction is used to obtain vectors whose components correspond to concepts.
One of the most popular techniques, called latent semantic analysis (LSA [6]),
uses singular value decomposition (SVD) for this purpose. Apart from many
applications in natural language processing, LSA has proven useful for com-
mon sense reasoning. For example, [26] applies LSA on vector representations
obtained from ConceptNet10 to identify properties that concepts are likely to
have, even if they are not explicitly mentioned in the knowledge base. A method
inspired by LSA, called latent relational analysis, is used in [29] to discover anal-
ogous pairs of words such as cat:meow and dog:bark. Multi-dimensional scaling
(MDS [5]) is another popular method for dimensionality reduction, which builds
a vector-space representation from pairwise similarity judgements. It is among
others used in cognitive science to interpret pairwise similarity judgements ob-
tained from human assessors. It is also possible to reduce the dimensionality of
document-term matrices by selecting the most informative terms, and omitting
the remaining dimensions. We refer to [36] for a survey of such term selection
methods. Finally, note that all of the aforementioned methods for dimensionality
reduction correspond to a linear mapping from a high-dimensional space to a
lower-dimensional space. Isomap [28] is an extension of MDS which essentially
preprocesses the dissimilarity matrix used by MDS to obtain a non-linear map-
ping which is supposed to be a more faithful embedding of the original space.
Another popular non-linear dimensionality reduction method is Locally Linear
Embedding (LLE [21]).

2.2 Similarity Based Reasoning

Similarity based reasoning is a form of common sense reasoning which is based
on the assumption that similar concepts tend to have similar properties [27,7].

10 http://conceptnet5.media.mit.edu

http://conceptnet5.media.mit.edu
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Applying similarity based reasoning in practice first of all requires access to a
similarity relation. This task of estimating the similarity of natural language
terms is strongly related to the problem of dimensionality reduction. In fact, one
of the main reasons why e.g. LSA is used in practice is to obtain better esti-
mates of the similarity between terms. There are, however, two further problems
with the principle of similarity based reasoning: similarity degrees are context-
sensitive and the principle does not make clear how similar two concepts need
to be to obtain meaningful conclusions.

It is common to model changes in context by rescaling the dimensions of a
semantic space [13,10]. When an explicit representation of the context is avail-
able, for example as a set of terms, an appropriate similarity relation can thus be
obtained. Another solution has been proposed in [24], which is based on the idea
of replacing numerical similarity by qualitative spatial relations which remain
invariant under linear transformations such as rescaling dimensions. One of the
most important examples of such a qualitative spatial relation is betweenness.
If tapas bar is between restaurant and pub in a semantic space, it will remain
so regardless of how the dimensions of that space are rescaled. Given access to
a ternary betweenness relation, the principle of similarity based reasoning could
be replaced by the assumption that intermediate concepts have intermediate
properties. The resulting form of commonsense reasoning is called interpolation,
due to its similarities with numerical interpolation. In [23], a methodology was
proposed to learn a betweenness relation (as well as analogical proportions) for
music genres from the music recommendation web site last.fm11, although the
result was not formally evaluated. The methodology we use in this paper extends
this previous work and we compare our method with the method from [23] in
Section 5.3. Numerical similarity degrees can also be avoided by using a compar-
ative similarity relation (“a is more similar to b than to c”), where needed [25].
However, in contrast to betweenness, comparative similarity is not invariant un-
der linear transformations and is thus context-dependent. For example, whether
beach is more similar to zoo than to polder depends on the application. Indeed,
it is this context-dependent nature of comparative similarity that prevents us
from constructing a single application-independent taxonomy of place types.

The k-nearest neighbours algorithm (k-NN [4]) can be seen as the counterpart
of similarity based reasoning in machine learning. While it often works well in
practice, its performance also depends on the availability of a similarity rela-
tion which is appropriate for the application context [34,1] . Some approaches
have been studied which are similar in spirit to the idea of using betweenness
in knowledge representation. These approaches are based on the idea that natu-
ral categories are convex regions, and include methods which represent training
examples of a given class by their convex hull [33,18]. Analogical classifiers [3]
avoid similarity degrees in a different way, based on the assumption that analog-
ical changes in the features of an item to be classified should lead to analogical
changes in their class labels. From a geometric point of view, the basic relation
here is parallelism, which is also invariant under linear transformations. Yet an-

11 http://www.last.fm

http://www.last.fm
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other way of avoiding similarity degrees is proposed in [12], where Markov logic
is used to learn clusters of objects and clusters of properties such that member-
ship of an object in a given cluster determines whether it satisfies the properties
in a given cluster, with high probability. This essentially corresponds to learn-
ing a particular Boolean similarity relation where two objects or properties are
either related (i.e. in the same cluster) or not. To deal with context-dependence,
the approach from [12] learns multiple clusterings (i.e. multiple Boolean similar-
ity relations). Hence beach and zoo could be in the same cluster in one of the
clusterings but in different clusters in another. This is similar in spirit to our
proposal of learning a betweenness relation instead of a hiearchical clustering of
place types. However, while our method is unsupervised, the method from [12]
requires all relevant properties to be known in advance.

3 Constructing a Semantic Space of Place Types

Our approach revolves on representing place types as either points or regions in
a semantic space. In this section we detail how such spaces can be constructed
using the meta-data of a large collection of photos.

3.1 Data Acquisition

The initial data set was constructed by analyzing the meta-data of a database
of more than 105 million photos, which was introduced in [32]. This database
was originally obtained using a publicly available API from Flickr 12. Every
photo in the database is associated with a set of tags, a pair of coordinates and
information about the accuracy of these coordinates, among others. Photos with
inaccurate locations (viz. those with an accuracy level lower than 12) and photos
with too many (more than 100) or too few (less than 2) tags were discarded.
The resulting photos are treated as lists of tags. Photos taken at the same place
by the same user are combined and treated as a single list, containing the union
of the tags associated with these photos. In this way, no tag is counted more
than once per user/place pair, which is important to limit the extent to which
a single user can influence the representation of a place. This resulted in more
than 20 million tag lists. Two existing place type taxonomies 13 have been used
as reference throughout the experiments:

– GeoNames14 organises place types in 9 categories, encompassing both man-
made features such as buildings or railroads and natural features such as
mountains or forests.

12 http://www.flickr.com/services/api/
13 Other available place type taxonomies include those of Google Places

API https://developers.google.com/places/documentation/supported_types,
WordNet http://wordnetweb.princeton.edu, DBpedia
http://mappings.dbpedia.org/server/ontology/classes/ or Yago
http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html

14 http://www.geonames.org/export/codes.html

http://www.flickr.com/services/api/
https://developers.google.com/places/documentation/supported_types
http://wordnetweb.princeton.edu
http://mappings.dbpedia.org/server/ontology/classes/
http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html
http://www.geonames.org/export/codes.html
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– Foursquare15 also uses 9 top-level categories, but focuses mainly on urban
man-made places such as restaurants, bars and shops. Although a few of
these categories include sub-categories, the taxonomy is mostly flat, and we
will only consider the top-level categories in this paper.

We associate each place type from these taxonomies with the corresponding
set of photos, that is, the photos whose tags include the name of the place type.
For composite names such as “football stadium”, photos with the tags football
and stadium were accepted, in addition to those including the concatenation of
the whole name, footballstadium. Then, the place types with fewer than 1000
associated photos were discarded. This left the final version of the GeoNames
taxonomy with 238 of the initial 667 place types, from 7 categories 16, whereas
the final version of the Foursquare taxonomy included 354 of the initial 435 place
types, from all 9 categories. The average number of (combined) photos that was
thus associated with each place type is 20767. The total number of (combined)
photos associated with any of the place types is 7350443 for the GeoNames
taxonomy and 4943648 for the Foursquare taxonomy.

3.2 Point-Based and Region-Based Representations

We will consider two different ways to represent place types in a semantic space:
as points and as convex regions. For the point-based representation, we encode
each place type as a single vector, with one component for each tag in the
collection. The corresponding component is the number of times that tag occurs
in a photo associated with the place type. To reduce noise, the frequency of tags
with fewer than 4 occurrences is set to 0. As a result of these steps, 354 and 238
vectors have been obtained for Foursquare and Geonames, respectively.

For the region-based representation, we will identify a set of vectors for each
place type, from which a convex region can then be obtained (e.g. by taking
the convex hull of the points). To this end, the photos of each place type are
clustered based on the cosine similarity between their tag sets. We have used
the K-Means clustering algorithm, establishing the number of clusters as K =
max(10, μ · log10 n), where n is the number of photos of the place type and μ is
an equalizing factor, established as μ = 5 for GeoNames place types and μ = 10
for Foursquare place types 17. We have also considered clustering the photos
based on their coordinates using mean-shift clustering, but because the initial
results were not encouraging we do not consider this option in this paper. As
a cleaning step, we merge clusters with fewer than 5 photos with their nearest
cluster. Finally, every remaining cluster is encoded as a frequency vector, in the
same way as for the point-based representation. In this way, the 238 GeoNames
place types are represented as 4379 points (using 6-28 points per place type),

15 http://aboutfoursquare.com/foursquare-categories/
16 The categories A: country, state, region,. . . and P: city, village,. . . did not include

any well-represented place type name.
17 The values for μ are chosen so the average number of clusters per place type is

approximately the same in both problems.

http://aboutfoursquare.com/foursquare-categories/
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whereas the 354 Foursquare place types are described by 6593 points (using 5-56
points per place type). On average, about 18 points are used to represent each
place type.

3.3 Dimensionality Reduction

Although in principle we could use the vector representations obtained in Section
3.2 to encode place types, such a representation has several disadvantages: many
of the components in these vectors are correlated, the vectors tend to be sparse
(i.e. tags which are relevant to a place type may have a frequency count of 0),
and they do not take into account the fact that some tags are more relevant
than others to encode the meaning of a place type. A common solution to this
problem is to use a dimensionality reduction method. In this paper, we consider
three such methods: SVD, MDS and Isomap.

The input to SVD is a matrix with a row for each considered vector. In this
context, this means that we have one row for each place type (in the point-based
representation) or one row for each cluster of places (in the region-based repre-
sentation). SVDLIBC18 was used to compute the singular value decomposition.

MDS requires a dissimilarity matrix between the points. Given that all the
terms in the vectors (tag count) are positive, such dissimilarities can be obtained
as 1 minus their cosine similarity. We have used the implementation of classical
multidimensional scaling of the MDSJ java library19.

Finally, the idea of Isomap is to preprocess the dissimilarity matrix and apply
MDS on the resulting matrix. In this step, a fully connected weighted graph
is constructed using as edge weights the values of the dissimilarity matrix. The
graph is then pruned, removing those edges whose length (dissimilarity) is higher
than a predefined threshold (the minimum value such that no region of the graph
could be isolated). Missing edges are then recomputed as the shortest path be-
tween the nodes in the pruned graph (computed using Dijkstra’s algorithm).
Because the last step requires summing dissimilarities, instead of using the com-
plement of the cosine similarity, we instead use the normalised angular distance:

d(a,b) =
2 · arccos(a,b)

π
The three methods allow to obtain an n-dimensional embedding of a set of

high-dimensional data points. The initial high-dimensional points encode specific
instances of the considered place types. Intuitively, by applying dimensionality
reduction, the instances are generalised to obtain a better representation of the
actual place type. The usefulness of these representations will depend on the
chosen number of dimensions. Using too few dimensions limits the discrimina-
tive power of the representations. On the other hand, when using too many
dimensions, the representations may not be sufficiently generalised.

Finally, to further clean the representations in the region based model, for
each place type, outliers have been removed as follows. First, the medoid among

18 http://tedlab.mit.edu/~dr/SVDLIBC/
19 http://www.inf.uni-konstanz.de/algo/software/mdsj/

http://tedlab.mit.edu/~dr/SVDLIBC/
http://www.inf.uni-konstanz.de/algo/software/mdsj/
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Fig. 1. Comparison of the three betweenness measures

the set of points corresponding to a given place type was determined as the vec-
tor m minimising the total distance

∑
n d(n,m) to the other vectors associated

with that place type. Then, of the points associated with that place type, the
10% that are furthest away from the medoid are interpreted as outliers and are
discarded. Euclidean distance over the constructed spaces was used throughout
this procedure.

4 Using betweenness

We propose to enrich taxonomies of place types with a ternary betweenness
relation, which implicitly encodes different ways in which natural clusters of
place types may be defined. The intuition is that a place type c is between
place types a and b iff c has all the (important features) that a and b have in
common. In what follows, we show how the semantic space representations from
the previous section can be used to assign a score of how in-between place type
c is with respect to place types a and b and we discuss in more detail how such
betweenness relations could be used.

4.1 Measuring betweenness

Geometrically, a point c can only be between points a and b if a, b and c are
collinear. In practice, the points corresponding to any three place types are un-
likely to be exactly collinear, which means that we need a more flexible approach,
measuring a degree of betweenness. The general idea is that a point c is consid-
ered between a and b to the degree that c is near the line segment connecting
a and b. A first way to formalise this is as follows. Let p be the orthogonal
projection of c on the line connecting a and b. We define:

Btw1(a, c, b) = ‖−→cp‖

Note that higher scores correspond to weaker betweenness relations, and in par-
ticular that a score of 0 denotes perfect betweenness. This measure is illustrated
in Figure 1(a). As the figure shows, the shorter the distance between c and p,
the more c will be between a and b. Note that Btw1 is actually quite naive as
a measure of betweenness, as there is no guarantee that the point p is actually
between a and b. Figure 1(b) shows an example of this situation. We define a
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second betweenness measure, in which we explicitly require the point p to be
between a and b:

Btw2(a, c, b) =

{
Btw1(a, c, b) if cos〈−→ab,−→ac〉 ≥ 0 and cos〈−→ba,−→bc〉 ≥ 0

+∞ otherwise
(1)

based on the fact that cos〈−→ab,−→ac〉 ≥ 0 and cos〈−→ba,−→bc〉 ≥ 0 iff p lies on the line
segment between a and b.

Our last betweenness measure is based on the rationale that c is exactly

between a and b iff ‖−→ab‖ = ‖−→ac‖+ ‖−→bc‖:

Btw3(a, c, b) =
‖−→ab‖

‖−→ac‖+ ‖−→bc‖
(2)

In contrast to the previous two meaures, higher values in the case of Btw3 repre-
sent a stronger betweenness relation, with a score of 1 denoting perfect between-
ness. This alternative definition (see Figure 1(c)) has the advantage that points
near a or b will get some degree of betweenness, even if their projection p is not
between a and b.

When using a point-based representation of place types, the aforementioned
measures could be used as such. In the case of region-based representations, we
have several options. Let P , Q and R be the sets of points corresponding to the
place types P , Q and R. One option to assess the degree btw(P,R,Q) to which
R is between P and Q, adopted in [23], is to use linear programming to check
how many of the points in R are (perfectly) between a point in the convex hull
of P and a point in the convex hull of Q. While this method works well in very
low-dimensional spaces, we found that when using more than a few dimensions,
often no points of Q are perfectly between points in the convex hulls of P and
Q. An alternative would be to check how far the points in R are from the convex
hull of P ∪Q, which can be done using quadratic programming, but this method
is computationally expensive. Moreover, in preliminary experimental results, we
found that the following method tends to outperform both of the aforementioned
alternatives, despite being the cheapest in computational terms:

BtwR
1 (P,R,Q) =

1

|R|
∑
r∈R

min
p∈P

min
q∈Q

Btw1(p, r, q)

By replacing Btw1 by Btw2 we obtain the measure BtwR
2 , and by replacing the

minima by maxima and Btw1 by Btw3 we obtain the measure BtwR
3 .

4.2 Betweenness for Categorisation and Identification Problems

In principle, the sub-category structure in a place type taxonomy should encode
hyponym/hypernym relationships, such as italtian restaurant is-a restaurant. In
practice, there are at least two problems with this view of place type taxonomies.
First, many categories are vague, and is-a hierarchies are ill-equipped to deal with
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this, e.g. it is not clear whether we should consider tapas bar is-a restaurant
or tapas bar is-a bar. Second, in existing taxonomies, many categories merely
group place types in thematic way, e.g. Foursquare has a category food which
covers both restaurants and food-related shops. The problem with such thematic
categories is that while they may be useful within the boundaries of a single
application, they tend to be very context-sensitive.

To obtain a more generic conceptual model of place types, we propose to enrich
an is-a hierarchy of place types with a graded betweenness relation, which can
naturally handle vagueness due to its graded nature and implicitly encodes many
alternative ways in which the considered set of place types can be clustered. This
betweenness relation would also facilitate problems such as merging different
taxonomies and detecting and repairing likely errors. Formally, we are interested
in the following two tasks:

– Categorisation: Given a number of categories C1, ..., Cn, each being repre-
sented as a set of place types, and a new place type p, decide to which of
the categories Ci the place type p most likely belongs.

– Identification: Given a categegory C and a set of place types p1, ..., pn which
are known to belong to that category, decide which other place types are
likely to belong to that category.

The categorisation problem can be tackled using the betweenness relation as
follows: find the category Ci and the place types q1, q2 ∈ Ci which maximise the
degree to which p is between q1 and q2. To tackle the identification problem,
we can consider all places q which are between places qi and qj from C to a
sufficiently large extent.

5 Experimental Study

In this section, we experimentally evaluate the usefulness of the semantic space
of place types we derived from Flickr, and the effectiveness of the proposed
betweenness measures in solving the categorisation and identification problems.
First, the experimental set-up is detailed (Section 5.1) and then the results are
reported for both the point-based (Section 5.2) and region-based (Section 5.3)
schemes. We conclude with a comparison to a human gold standard.

5.1 Experimental Set-Up

We compare the semantic spaces obtained using MDS, Isomap and SVD. Each
time we let the number of dimensions vary between 2 and 50. For the categori-
sation problem, a 10-folds cross validation procedure was used. The result is
evaluated using the classification accuracy, i.e. the percentage of all items which
have been assigned to the correct category. For the identification problem, each
category is considered individually and we report the average result we obtained
over all categories. To evaluate the performance for a given category, we use a
random sample of 25% of the places in that category as reference data. The task
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we consider is to rank the remaining places, which include 75% of the places in
the considered category as well as all places belonging to the other categories.
We then use Mean Average Precision (MAP) to measure the extent to which
places from the considered category appear at the top of the ranking. MAP is
computed as the mean of the average precision (AP) obtained for each of the
categories, where AP is defined as:

AP =
1

n

n∑
i=1

Prec@posi =
1

n

n∑
i=1

i

posi

with pos1, ..., posn the positions in the ranking where the place types from the
considered category occur and Prec@k the precision of the first k elements.

For each configuration, we compare our betweenness-based methods with a
nearest neighbour classifier (k-NN). Euclidean distance was considered as the
dissimilarity measure. In experiments where k > 1, the final categorisation was
obtained with a majority vote. For region-based representations, we also compare
our results to the method described in [23], which we will refer to as CHRegion.
This method evaluates the degree to which c is between a and b as the ratio of
points of c which are between a point in the convex hull of a and a point in the
convex hull of b.

In terms of computation time, the CHCRegion baseline is by far the most
demanding method, requiring several hours or even days to complete a single
run for problems of 30 to 50 dimensions. In contrast, all of the other methods
complete a single run in less than a minute on a standard workstation.

5.2 Results Obtained: Point-Based Encoding

Table 1 shows the results obtained for the categorisation problem for the GeoN-
ames and Foursquare taxonomies. The best result for each method is highlighted.
The results show that the betweenness based approaches outperform 1-NN (only
Btw3 is outperformed by 1-NN, in some specific configurations). Somewhat sur-
prisingly, there is no consistent difference between Btw1 and Btw2. For both
GeoNames and Foursquare, MDS outperforms Isomap, which outperforms SVD.
Finally, the best results obtained overall are 0.6134 for GeoNames (Btw1, MDS,
30-D) and 0.7288 for Foursquare (Btw1, MDS, 10-D).

While only the case k = 1 is considered in Table 1, similar results were
obtained for other values of k, with k = 1 being an optimal or near-optimal choice
in most cases. Figures 2(a) and 2(b) illustrate the result for different values of
k obtained when using the best performing configuration of each method. For
the betweeness approaches, a majority vote among the k-highest betweenness
triples for each test place was used. From these figures, it can be seen that Btw1

and Btw2 for k = 1 outperform k-NN for any value of k. Note that while k-NN
method performs considerably better for k = 5 than for k = 1 in the case of
GeoNames, this result is very sensitive to the value of k and choosing an optimal
k would therefore be difficult in practice.
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Table 1. Classification accuracy for k = 1 for the point-based encoding

GeoNames Foursquare

SVD 2-D 5-D 10-D 30-D 50-D 2-D 5-D 10-D 30-D 50-D

Btw1 0.4034 0.4118 0.4454 0.5168 0.5000 0.2175 0.2881 0.4661 0.6102 0.6186
Btw2 0.3908 0.4370 0.4328 0.5210 0.5210 0.2260 0.3531 0.4774 0.6045 0.6243
Btw3 0.3908 0.4286 0.4328 0.4874 0.4454 0.2260 0.2260 0.2429 0.4859 0.5113
1-NN 0.2773 0.3235 0.3950 0.4412 0.4748 0.2119 0.3418 0.3277 0.5537 0.5819

MDS 2-D 5-D 10-D 30-D 50-D 2-D 5-D 10-D 30-D 50-D

Btw1 0.3866 0.5000 0.5504 0.6134 0.5756 0.3729 0.5847 0.7288 0.6921 0.6780
Btw2 0.4580 0.5210 0.5546 0.6092 0.5798 0.5141 0.6384 0.7203 0.7175 0.6723
Btw3 0.4622 0.5420 0.5462 0.5672 0.5588 0.5000 0.5960 0.6667 0.7006 0.6780
1-NN 0.3571 0.5168 0.4790 0.5336 0.5504 0.4915 0.6130 0.6780 0.6695 0.6469

Isomap 2-D 5-D 10-D 30-D 50-D 2-D 5-D 10-D 30-D 50-D

Btw1 0.4160 0.3908 0.4370 0.4496 0.5000 0.2542 0.4492 0.5904 0.6186 0.6102
Btw2 0.4286 0.4538 0.4958 0.4412 0.5000 0.4350 0.5650 0.6356 0.6271 0.6299
Btw3 0.4370 0.4370 0.4748 0.4706 0.4748 0.4294 0.5282 0.5424 0.5593 0.5141
1-NN 0.3950 0.3950 0.4160 0.4202 0.4454 0.4718 0.5791 0.5932 0.5847 0.6045
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Fig. 2. Influence of k on the classification accuracy for the point-based encoding

Table 2 shows the results obtained for the identification problem. The be-
tweenness based approaches show a better performance than 1-NN in most cases,
with Btw2 performing slightly better than the other methods. MDS again out-
performs the other dimensionality reduction methods. The best results found
overall are 0.3137 (Btw2, MDS, 50-D) for GeoNames and 0.5565 (Btw2, MDS,
30-D) for Foursquare.
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Table 2. Identification results (MAP) for the point-based encoding

GeoNames Foursquare

SVD 2-D 5-D 10-D 30-D 50-D 2-D 5-D 10-D 30-D 50-D

Btw1 0.1445 0.1370 0.1393 0.1405 0.1305 0.1083 0.1182 0.1512 0.2099 0.1846
Btw2 0.1634 0.1532 0.1749 0.1525 0.1331 0.1331 0.1383 0.1555 0.3030 0.2244
Btw3 0.1671 0.1575 0.1769 0.1844 0.1474 0.1287 0.1280 0.1613 0.2497 0.2156
1-NN 0.1184 0.1513 0.1346 0.1328 0.1262 0.1074 0.1193 0.1473 0.1921 0.1989

MDS 2-D 5-D 10-D 30-D 50-D 2-D 5-D 10-D 30-D 50-D

Btw1 0.1419 0.2033 0.2568 0.2746 0.3024 0.1861 0.3812 0.4511 0.5199 0.5257
Btw2 0.1558 0.2296 0.2623 0.2680 0.3137 0.3402 0.4880 0.5372 0.5565 0.5390
Btw3 0.1625 0.2299 0.2599 0.2579 0.3057 0.3415 0.4613 0.4862 0.5094 0.5149
1-NN 0.1491 0.2008 0.2187 0.2525 0.3073 0.3218 0.3982 0.4452 0.5043 0.5192

Isomap 2-D 5-D 10-D 30-D 50-D 2-D 5-D 10-D 30-D 50-D

Btw1 0.1528 0.1801 0.2485 0.2629 0.2636 0.1549 0.2613 0.3547 0.3457 0.3478
Btw2 0.1607 0.2187 0.2160 0.2438 0.2666 0.2707 0.3947 0.4449 0.3723 0.3462
Btw3 0.1510 0.1967 0.2432 0.2343 0.2648 0.2894 0.4136 0.4160 0.3575 0.3516
1-NN 0.1679 0.2020 0.2031 0.2447 0.2440 0.2947 0.4121 0.3743 0.3253 0.3325

Table 3. Classification accuracy for the region-based encoding

GeoNames Foursquare

MDS 2-D 5-D 10-D 30-D 50-D 2-D 5-D 10-D 30-D 50-D

BtwR
1 0.4370 0.5252 0.5630 0.5714 0.5798 0.3079 0.6017 0.6384 0.6582 0.6554

BtwR
2 0.4538 0.5168 0.5588 0.5798 0.5714 0.4661 0.6102 0.6384 0.6582 0.6723

BtwR
3 0.4244 0.5210 0.5672 0.5420 0.5672 0.4124 0.5565 0.6328 0.6582 0.6469

1-NN 0.3655 0.3908 0.5210 0.5630 0.4622 0.3950 0.4454 0.4706 0.4958 0.5042
CHRegion 0.4748 0.4538 0.4286 0.0084 0.0084 0.4407 0.5198 0.4407 0.0480 0.0480

Isomap 2-D 5-D 10-D 30-D 50-D 2-D 5-D 10-D 30-D 50-D

BtwR
1 0.4580 0.5000 0.5714 0.5672 0.5588 0.2910 0.6045 0.6554 0.6864 0.6921

BtwR
2 0.4244 0.5210 0.5798 0.5714 0.5588 0.5452 0.6356 0.6328 0.6723 0.6949

BtwR
3 0.4496 0.5126 0.4622 0.5084 0.5294 0.5226 0.5367 0.5706 0.5904 0.5678

1-NN 0.3950 0.4454 0.4706 0.5042 0.5210 0.4774 0.5876 0.6554 0.6328 0.6497
CHRegion 0.4496 0.4958 0.1849 0.0084 0.0084 0.5028 0.5056 0.4972 0.0480 0.0480

5.3 Results Obtained: Region-Based Encoding

Table 3 shows the results obtained for the categorisation problem. Only MDS
and Isomap were considered for these experiments, since they outperformed SVD
for the point-based encoding and SVD is computationally more expensive. In
Table 3 it can be observed that BtwR

1 and BtwR
2 clearly outperform the other

methods, while BtwR
3 outperforms 1-NN in all cases, except when Isomap is

used for the Foursquare taxonomy. Also, for the CHRegion method, it can be
observed that, although its performance is competitive in very low dimensional
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Table 4. Identification results (MAP) for the region-based encoding

GeoNames Foursquare

MDS 2-D 5-D 10-D 30-D 50-D 2-D 5-D 10-D 30-D 50-D

BtwR
1 0.1446 0.1768 0.1696 0.1740 0.1899 0.1562 0.2312 0.2521 0.2948 0.3117

BtwR
2 0.1690 0.1770 0.1734 0.1768 0.1897 0.2073 0.2916 0.3042 0.3138 0.3079

BtwR
3 0.1786 0.2166 0.2116 0.2248 0.2164 0.2154 0.3328 0.3756 0.3799 0.3697

1-NN 0.1477 0.1330 0.1473 0.1529 0.1789 0.1803 0.2710 0.3023 0.2847 0.2892

Isomap 2-D 5-D 10-D 30-D 50-D 2-D 5-D 10-D 30-D 50-D

BtwR
1 0.1985 0.3225 0.3205 0.3080 0.3152 0.1898 0.4312 0.4726 0.4625 0.4426

BtwR
2 0.2176 0.2648 0.3107 0.3072 0.3148 0.2960 0.4680 0.4913 0.4697 0.4463

BtwR
3 0.2108 0.2440 0.2761 0.2662 0.2985 0.2939 0.4261 0.4573 0.4676 0.4439

1-NN 0.1554 0.2506 0.2843 0.2455 0.2421 0.2550 0.4477 0.4736 0.4847 0.4592

Table 5. Comparison with human-based categorisation

GeoNames Foursquare

Humans (average): 0.5716 Humans (average): 0.7667

Point-based Region-based Point-based Region-based

Btw1 0.5957 0.6383 BtwR
1 0.7571 0.7714

Btw2 0.5957 0.6170 BtwR
2 0.7714 0.7571

Btw3 0.5957 0.5957 BtwR
3 0.7714 0.7429

k-NN 0.5957 0.5957 k-NN 0.7286 0.7000

spaces (up to 10-D), it quickly degrades if the dimensionality of the data is
increased, the reason being that the method relies on finding points in the three
regions which are in a perfect betweenness relation and such triples tend to be
very rare in higher-dimensional spaces. Note that the best results for MDS are
slightly inferior to the ones obtained with the point-based approaches, while the
performance of Isomap is better.

Table 4 shows the results obtained for the identification problem. The be-
tweenness based approaches outperform 1-NN in all cases, except when Isomap
is used for the Foursquare taxonomy. Note that in contrast to the results dis-
cussed previously, when MDS is used, BtwR

3 outperforms both BtwR
1 and BtwR

2 .
Isomap results are slightly better than those for the point-based approach, but
MDS results are worse.

5.4 Comparison with a Human Gold Standard

While the accuracy scores in Tables 1 and 3 are relatively low at first glance,
there are many place types in the GeoNames and Foursquare taxonomies whose
categorisation is debatable. For example, in Foursquare, piano bar is in the
same category as aquarium and bowling alley (category: arts & entertainment)
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but in a different category as juice bar, café and gastropub (category: food),
which are in turn in a different category as lounge, wine bar or pub (category:
nightlife spot). To enable a better interpretation of the results, we compared our
methods with how humans perform on the same task. This experiment consisted
of a single hold-out instance of the categorisation problem. Specifically, we asked
three people to categorise 20% of the Foursquare place types, being given the
remaining 80% of the instances of each of the categories (but not the names of the
categories). Three different people were asked to categorise 20% of the Geonames
place types. The same conditions were fixed for the betweenness-based methods
and k-NN. Only the best configuration of each method was considered.

Table 5 shows the results of the comparison. For the GeoNames taxonomy, the
betweenness methods and k-NN obtain a better accuracy than the humans, in
both the point-based and region-based schemes. For the Foursquare taxonomy,
BtwR

2 and BtwR
3 of the point-based scheme, and BtwR

1 of the region-based scheme
outperform the humans, while k-NN performed slightly worse. The fact that
the betweenness methods are capable of outperforming humans on this task is
remarkable, and strongly supports our hypothesis that betweenness relations
obtained from Flickr may indeed be a usuful addition to is-a hierarchies.

Cohen’s kappa [2] was used to measure the agreement among the humans and
between humans and the considered methods. In GeoNames, average human
agreement was 0.3981 on average, whereas agreement among the four point-
based methods was 0.7061 and agreement among the region-based methods was
0.6227. Also, the average agreement between all possible ways in which a hu-
man can be paired with one of the methods was 0.3720. In Foursquare, aver-
age agreement was 0.6457 among humans, 0.8249 for point-based methods, and
0.8313 for region-based methods. An average agreement of 0.6152 was found
between humans and the methods. The higher values in the latter case suggest
that the Foursquare taxonomy is more intuitive than the GeoNames taxonomy.
Both point-based and region-based methods can be considered stable since they
show more agreement than humans. It is notable that agreement among hu-
mans is only slightly higher than agreement between humans and the considered
methods. This suggests that our methods could be useful to improve existing
taxonomies, adapting them to a representation which is nearer to human per-
ception.

6 Conclusions

We have proposed a method to obtain information about the conceptual be-
tweenness of place types, where a place type r is said to be between place types
p and q if r has all the properties which are shared by p and q. Specifically,
we first induce a semantic space of place types by applying a dimensionality
reduction method to frequency vectors obtained from Flickr, and then derive a
betweenness relation from the resulting geometric representation. By augment-
ing classical place type taxonomies with a (graded) betweenness relation, a more
flexbile and robust representation is obtained. This betweenness relation could
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be used to merge, repair, or extend existing taxonomies in an automated way.
Moreover, it implicitly encodes many alternative ways in which place types could
be grouped, which is useful in applications where taxonomies are used for their
predictive value. Our experimental results show that using betweenness outper-
forms similarity-based methods such as k-NN on a number of place type clas-
sification tasks. Surprisingly, using betweenness was also shown to outperform
humans (when they are not shown the names of the categories). Although we
have specifically focused on place types in this paper, the idea of augmenting
taxonomies with a betweenness relation is likely to be useful in other domains,
such as movie genres, music genres or research areas. Furthermore, our method
could easily be applied to improve or enrich multi-level hierarchical taxonomies,
by repeatedly applying the same strategy at each of the levels of the taxonomy.
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Hintikka-Style Semantic Games for Fuzzy Logics
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Abstract. Various types of semantics games for deductive fuzzy logics,
most prominently for �Lukasiewicz logic, have been proposed in the liter-
ature. These games deviate from Hintikka’s original game for evaluating
classical first-order formulas by either introducing an explicit reference
to a truth value from the unit interval at each game state (as in [4]) or
by generalizing to multisets of formulas to be considered at any state (as,
e.g., in [12,9,7,10]). We explore to which extent Hintikka’s game theoret-
ical semantics for classical logic can be generalized to a many-valued set-
ting without sacrificing the simple structure of Hintikka’s original game.
We show that rules that instantiate a certain scheme abstracted from
Hintikka’s game do not lead to logics beyond the rather inexpressive,
but widely applied Kleene-Zadeh logic, also known as ‘weak �Lukasiewicz
logic’ or even simply as ‘fuzzy logic’ [27]. To obtain stronger logics we
consider propositional as well as quantifier rules that allow for random
choices. We show how not only various extensions of Kleene-Zadeh logic,
but also proper extensions �Lukasiewicz logic arise in this manner.

1 Introduction

Fuzzy logics “in Zadeh’s narrow sense” [34,15], i.e. truth functional logics with
the real unit interval as set of truth values, nowadays come in many forms and
varieties. (We refer to the Handbook of Mathematical Fuzzy Logics [3] for an
overview.) From an application oriented point of view, but also with respect to
foundational concerns, this fact imparts enhanced significance to the problem of
deriving specific logics from underlying semantic principles of reasoning. Among
the various models that have been proposed in this vein are Lawry’s voting
semantics [22], Paris’s acceptability semantics [28], re-randomising semantics
[21], and approximation semantics [2,29]. Of particular importance in our context
is Robin Giles’s attempt, already in the 1970s [12,13] to justify �Lukasiewicz
logic, one of the most fundamental formalizations of deductive fuzzy logic, with
respect to a game that models reasoning about dispersive experiments. While
Giles explicitly acknowledged the influence of Paul Lorenzen’s pioneering work on
dialogical foundations for constructive logic [23,24], he did not refer to Hintikka’s
game theoretic semantics [18,20]. However, with the benefit of hindsight, one can
classify Giles’s game for �Lukasiewicz logic as a semantic game, i.e. a game for
evaluating a formula with respect to a given interpretation, guided by rules

� Supported by FWF grant P25417-G15.

C. Beierle and C. Meghini (Eds.): FoIKS 2014, LNCS 8367, pp. 193–210, 2014.
© Springer International Publishing Switzerland 2014
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for the stepwise reduction of logically complex formulas into their subformulas.
While this renders Giles’s game closer to Hintikka’s than to Lorenzen’s game,
Giles deviates in some important ways from Hintikka’s concept, as we will explain
in Section 2. Semantic games for �Lukasiewicz logic that, arguably, are closer in
their mathematical form to Hintikka’s semantic game for classical logic have been
introduced by Cintula and Majer in [4]. However, also these latter games exhibit
features that are hardly compatible with Hintikka’s motivation for introducing
game theoretic semantics [18,19] as foundational approach to logic and language.
In particular, they entail an explicit reference to some (in general non-classical)
truth value at every state of a game. The just presented state of affairs triggers
a question that will guide the investigations of this paper: To what extent can
deductive fuzzy logics be modeled by games that remain close in their format, if
not in spirit, to Hintikka’s classic game theoretic semantics?

The paper is organized as follows. In Section 2 we present (notational vari-
ants) of the mentioned semantic games by Hintikka, Cintula/Majer, and Giles
in a manner that provides a basis for systematic comparison. In particular, we
observe that so-called Kleene-Zadeh logic KZ, a frequently applied fragment of
�Lukasiewicz logic �L, is characterized already by Hintikka’s classic game if one
generalizes the set of possible pay-off values from {0, 1} to the unit interval [0, 1].
In Section 3 we introduce a fairly general scheme of rules that may be added to
Hintikka’s game in a many-valued setting and show that each connective speci-
fied by such a rule is already definable in logic KZ. Adapting an idea from [8,10],
we then show in Sections 4 and 5 how one can go beyond KZ, while retaining
essential features of Hintikka’s original game format. In particular, we introduce
in Section 4 a propositional ‘random choice connective’ π by a very simple rule.
We show that this rule for π in combination with a rule for doubling the pay-off
for the player who is currently in the role of the ‘Proponent’ leads to a proper
extension of propositional �Lukasiewicz logic. In Section 5 we indicate how, at
the first-order level, various families of rules that involve a random selection of
witnessing domain elements characterize corresponding families of fuzzy quan-
tifiers. We conclude in Section 6 with a brief summary, followed by remarks on
the relation between our ‘randomized game semantics’ and the ‘equilibrium se-
mantics’ for IF-logic [25,32] arising from considering incomplete information in
Hintikka’s game.

2 Variants of Semantic Games

Let us start by reviewing Hintikka’s classic semantic game [18,20]. There are two
players, called Myself (or simply I) and You, here, who can both act either in the
role of the Proponent P or of the Opponent O1 of a given first-order formula F ,
augmented by a variable assignment θ. Initially I act as P and You act as O.

1 Hintikka uses Nature and Myself as names for the players and Verfier and Falisifer
for the two roles. To emphasize our interest in the connection to Giles’s game we use
Giles’s names for the players and Lorenzen’s corresponding role names throughout
the paper.
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My aim — or, more generally, P’s aim at any state of the game — is to show
that the initial formula is true in a given interpretation M with respect to θ.
The game proceeds according to the following rules. Note that these rules only
refer to the roles and the outermost connective of the current formula, i.e. the
formula, augmented by an assignment of domain elements to free variables, that
is at stake at the given state of the game. Together with a role distribution of
the players, this augmented formula fully determines any state of the game.

(RH
∧ ) If the current formula is (F ∧ G)[θ] then O chooses whether the game
continues with F [θ] or with G[θ].

(RH
∨ ) If the current formula is (F ∨ G)[θ] then P chooses whether the game
continues with F [θ] or with G[θ].

(RH
¬ ) If the current formula is ¬F [θ], the game continues with F [θ], except that
the roles of the players are switched: the player who is currently acting as P,
acts as O at the the next state, and vice versa for the current O.

(RH
∀ ) If the current formula is (∀xF (x))[θ] then O chooses an element c of the
domain of M and the game continues with F (x)[θ[c/x]]2.

(RH
∃ ) If the current formula is ∃xF (x)[θ] then P chooses an element c of the
domain of M and the game continues with F (x)[θ[c/x]].

Except for (RH
¬ ), the players’ roles remain unchanged. The game ends when an

atomic (augmented) formula A[θ] is hit. The player who is currently acting as P
wins and the other player, acting as O, loses if A is true with respect to θ in the
given model M. We associate pay-off 1 with winning and pay-off 0 with losing.
We also include the truth constants � and ⊥, with their usual interpretation,
among the atomic formulas. The game starting with formula F and assignment θ
is called the H-game for F [θ] under M.

Theorem 1 (Hintikka). A formula F is true in a (classical) interpretationM
with respect to the initial variable assignment θ (in symbols: vθM(F ) = 1) iff I
have a winning strategy in the H-game for F [θ] under M.

Our aim is to generalize Hintikka’s Theorem to deductive fuzzy logics. As
already mentioned in the introductions, contemporary mathematical fuzzy logic
offers a plethora of logical systems. Here we focus on (extensions of) a system
simply called ‘fuzzy logic’, e.g., in the well known textbook [27]. Following [1],
we prefer to call this logic Kleene-Zadeh logic, or KZ for short. KZ is mostly con-
sidered only at the propositional level, where its semantics is given by extending
an assignment M of atomic formulas to truth values in [0, 1] as follows:

vM(F ∧G) = min(vM(F ), vM(G)),
vM(F ∨G) = max(vM(F ), vM(G)),
vM(¬F ) = 1− vM(F ),
vM(⊥) = 0,
vM(�) = 1.

2 θ[c/x] denotes the variable assignment that is like θ, except for assigning c to x.
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At the first-order level an interpretation M includes a non-empty set D as
domain. With respect to an assignment θ of domain elements to free variables,
the semantics of the universal and the existential quantifier is given by

vθM(∀xF (x)) = infd∈D(v
θ[d/x]
M (F (x))),

vθM(∃xF (x)) = supd∈D(v
θ[d/x]
M (F (x))).

It is interesting to observe that neither the rules nor the notion of a state in
an H-game have to be changed in order to characterize logic KZ. We only have
to generalize the possible pay-off values for the H-game from {0, 1} to the unit
interval [0, 1]. More precisely, the pay-off for the player who is in the role of P
when a game underM ends with the augmented atomic formula A[θ] is vθM(A).

If the pay-offs are modified as just indicated and correspond to the truth
values of atomic formulas specified by a many-valued interpretationM, we will
speak of an H-mv-game, where the pay-offs match M . A slight complication
arises for quantified formulas in H-mv-games: there might be no element c in

the domain of M such that v
θ[c/x]
M (F (x)) = infd∈D(v

θ[d/x]
M (F (x))) or no domain

element e such that v
θ[e/x]
M (F (x)) = supd∈D(v

θ[d/x]
M (F (x))). A simple way to deal

with this fact is to restrict attention to so-called witnessed models [17], where
constants that witness all arising infima and suprema are assumed to exist. In
other words: infima are minima and suprema are maxima in witnessed models.
A more general solution refers to optimal payoffs up to some ε.

Definition 1. Suppose that, for every ε > 0, player X has a strategy that guar-
antees her a pay-off of at least w − ε, while her opponent has a strategy that
ensures that X’s pay-off is at most w+ ε, then w is called the value for X of the
game.

This notion, which corresponds to that of an ε-equilibrium as known from
game theory, allows us to state the following generalization of Theorem 1.

Theorem 2. A formula F evaluates to vθM(F ) = w in a KZ-interpretation M
with respect to the variable assignment θ iff the H-mv-game for F [θ] with pay-offs
matching M has value w for Myself.

A proof of Theorem 2 can (essentially3) be found in [10].
From the point of view of continuous t-norm based fuzzy logics, as pop-

ularized by Petr Hájek [15,16], Kleene-Zadeh logic KZ is unsatisfying: while
min is a t-norm, it’s indicated residuum, which corresponds to implication
in Gödel-Dummett logic is not expressible. Indeed, defining implication by
F ⊃ G =def ¬F ∨ G (in analogy to classical logic) in KZ, entails that F → F
is not valid, i.e. vM(F → F ) is not true in all interpretations.4 In fact, formulas
that do not contain truth constants are never valid in KZ. The most impor-
tant fuzzy logic extending KZ arguably is �Lukasiewicz logic �L. The language

3 A variant of H-games is used in [10] and KZ is called ‘weak �Lukasiewicz logic’ there.
4 We suppress the reference to a variable assignment θ when referring to propositional
connectives.
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of �L extends that of KZ by implication →, strong conjunction ⊗, and strong
disjunction ⊕. The semantics of these connectives is given by

vM(F → G) = min(1, 1− vM(F ) + vM(G)),
vM(F ⊗ G) = max(0, vM(F ) + vM(G)− 1),
vM(F ⊕G) = min(1, vM(F ) + vM(G)).

In fact all other propositional connectives could by defined in �L, e.g., from →
and ⊥, or from ⊗ and ¬, alone. However, neither → nor ⊗ nor ⊕ can be defined
in KZ.5 The increased expressiveness of �L over KZ is particularly prominent at the
first-order level: while in KZ there are only trivially valid formulas (which involve
the truth constants in an essential manner), the set of valid first-order formulas
in �L is not even recursively enumerable, due to a classic result of Scarpellini [31].

It seems to be impossible to characterize full �Lukasiewicz logic �L by trivial
extensions of theH-game, comparable to the shift fromH-games toH-mv-games.
Before investigating, in Sections 4 and 5, how one can nevertheless generalize the
H-game to extensions of KZ, including �L, without changing the concept of a game
state as solely determined by an (augmented) formula and a role distribution,
we review two types of semantic games for �L that deviate more radically from
Hintikka’s classic game theoretical semantics: explicit evaluation games, due to
Cintula and Majer [4], and Giles’s dialogue and betting game [12,13].

In [4] Cintula and Majer present a game for �L that conceptually differs from
the H-mv-game by introducing an explicit reference to a value ∈ [0, 1] at every
state of the game. They simply speak of an ‘evaluation game’; but since all
games considered in this paper are games for evaluating formulas with respect
to a given interpretation, we prefer to speak of an explicit evaluation game, or
E-game for short. Like above, we call the players Myself (I) and You, and the
roles P and O. In the initial state I am in the role of P and You are acting as O.
In addition to the role distribution and the current (augmented) formula6, also
a current value ∈ [0, 1] is included in the specification of a game state. We will
not need to refer to any details of E-games, but present the rules for ⊕, ⊗, ¬,
and ∃ here, to assist the comparison with other semantic games:

(RE⊗) If the current formula is (F ⊗ G)[θ] and the current value7 is r then P
chooses a value r̄ ≤ 1− r and O chooses whether to continue the game with
F [θ] and value r + r̄ or with G[θ] and value 1− r̄.

(RE⊕) If the current formula is (F ⊕ G)[θ] and the current value is r then P
chooses r̄ ≤ 1− r and O chooses whether to continue with F [θ] and value r̄
or with G[θ] and value r − r̄.

(RE¬) If the current formula is ¬F [θ] and the current value is r, then O chooses
r̄, where 0 < r̄ ≤ r, and the game continues with F [θ] and value (1− r) + r̄
after a role switch.

5 Therefore KZ is sometimes called the ‘weak (fragment of) �Lukasiewicz logic’.
6 I.e., the current formula, now over the language of �L, augmented by an assignment
of domain elements to free variables.

7 All values mentioned here have to be in [0, 1].
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(RH
∃ ) If the current formula is ∃xF (x)[θ] and the current value is r then O
chooses r̄ > 0 and P picks an element c of the domain of M and the game
continues with F (x)[θ[c/x]] and value r − r̄.

The rules for ∧, ∨, ∀ are analogous to the corresponding rules for the H-mv-
game: the current value remains unchanged. Cintula and Mayer [4] do not specify
a rule for implication. However such a rule can be synthesized from the other
rules, given the definability of→ from the other connectives. As soon as the game
reaches an augmented atomic formula A[θ] the game under interpretation M
ends and the player in the current role ofP wins (and the opposing player loses) if
vθM(A) ≥ r. Otherwise the currentO wins and the current P loses. Compared to
Theorems 1 and 2, the adequateness theorem for the E-game shows a somewhat
less direct correspondence to the standard semantics of �L.

Theorem 3 (Cintula/Mayer). I have a winning strategy in the E-game under
M starting with F [θ] and value r iff vθM(F ) ≥ r.

A game based interpretation of �L that arguably deviates even more radically
from H-games than E-games was presented by Giles already in the 1970s [12,13].
In fact Giles did not refer to Hintikka, but rather to the dialogue games suggested
by Lorenzen [23,24] as a foundation for constructive reasoning. Initially Giles
proposed his game as a model of logical reasoning within theories of physics;
but later he motivated the game explicitly as an attempt to provide “tangible
meaning” for fuzzy logic [14]. We briefly review the essential features of Giles’s
game, in a variant called G-game, that facilitates comparison with the other
semantic games mentioned in this paper. Again we use Myself (I) and You as
names for the players, and refer to the roles P and O. Unlike in H-, H-mv- or
E-games, a game state contains more that one current formula, in general. More
precisely a state of a G-game is given by

[F1[θ1], . . . , Fm[θm] | G1[θ
′
1], . . . , Gn[θ

′
n]] ,

where {F1[θ1], . . . , Fm[θm]} is the multiset of augmented formulas currently as-
serted by You, called your tenet, and {G1[θ

′
1], . . . , Gn[θ

′
n]} is the multiset of

augmented formulas currently asserted by Myself, called my tenet. At any given
state an occurrence of a non-atomic augmented formulaH [θ] is picked arbitrarily
and distinguished as current formula.8 If H [θ] is in my tenet then I am acting
as P and You are acting as O. Otherwise, i.e. if H [θ] is in your tenet, I am O
and You are P. States that only contain atomic formulas are called final. At
non-final states the game proceeds according to the following rules:

(RG
∧) If the current formula is (F ∧ G)[θ] then the game continues in a state
where the indicated occurrence of (F ∧ G)[θ] in P’s tenet is replaced by
either F [θ] or by G[θ], according to O’s choice.

8 It turns out that the powers of the players of a G-game are not depended on the
manner in which the current formula is picked at any state. Still, a more formal
presentation of G-games will employ the concepts of a regulation and of so-called
internal states in formalizing state transitions. We refer to [7] for details.
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(RG
∨) If the current formula is (F ∨ G)[θ] then the game continues in a state
where the indicated occurrence of (F ∨ G)[θ] in P’s tenet is replaced by
either F [θ] or by G[θ], according to P’s choice.

(RG
→) If the current formula is (F → G)[θ] then the indicated occurrence of
(F → G)[θ] is removed from P’s tenet and O chooses whether to continue
the game at the resulting state or whether to add F [θ] to O’s tenet and G[θ]
to P’s tenet before continuing the game.

(RG
∀ ) If the current formula is (∀xF (x))[θ] then O chooses an element c of the
domain of M and the game continues in a state where the indicated occur-
rence of (∀xF (x))[θ] in P’s tenet is replaced by F (x)[θ[c/x]].

(RG
∃ ) If the current formula is (∃xF (x))[θ] then P chooses an element c of the do-
main ofM and the game continues in a state where the indicated occurrence
of (∃xF (x))[θ] in P’s tenet is replaced by F (x)[θ[c/x]].

No rule for negation is needed if ¬F is defined as F → ⊥. Likewise, rules for
strong conjunction ⊗ and ⊕ can either be dispensed with by treating these con-
nectives as defined from the other connectives or by introducing corresponding
rules. (See [5,7] for a presentation of rules for strong conjunction.) If no non-
atomic formula is left to pick as current formula, the game has reached a final
state

[A1[θ1], . . . , Am[θm] | B1[θ
′
1], . . . , Bn[θ

′
n]] ,

where the Ai[θi] and Bi[θ
′
i] are atomic augmented formulas. With respect to an

interpretation M (i.e, an assignment of truth values to all atomic augmented
formulas) the pay-off for Myself at this state is defined as

m− n+ 1 +
∑

1≤i≤n

vθM(Bi)−
∑

1≤i≤m

vθM(Ai).

(Empty sums are identified with 0.) These pay-off values are said to match M .
Just like for H-mv-games, we need to take into account that suprema and

infima are in general not witnessed by domain elements. Note that Definition 1
does not refer to any particular game. We may therefore apply the notion of the
value of a game to G-games as well. A G-game where my tenet at the initial
state consists of a single augmented formula occurrence F [θ], while your tenet
is empty, is called a G-game for F [θ]. This allows us to express the adequateness
of G-games for �Lukasiewicz logic in direct analogy to Theorem 2.

Theorem 4 (essentially Giles9). A formula F evaluates to vθM(F ) = w in a
�L-interpretation M with respect to the variable assignment θ iff the G-game for
F [θ] with pay-offs matching M has value w for Myself.

At this point readers familiar with the original presentation of the game
in [12,13] might be tempted to protest that we have skipped Giles’s interesting

9 Giles [12,13] only sketched a proof for the language without strong conjunction. For
a detailed proof of the propositional case, where the game includes a rule for strong
conjunction, we refer to [7].
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story about betting money on the results of dispersive experiments associated
with atomic assertions. Indeed, Giles proposes to assign an experiment EA to
each atomic formula A10. While each trial of an experiment yields either “yes” or
“no” as its result, successive trials of the same experiment may lead to different
results. However for each experiment EA there is a known probability 〈A〉 that
the result of a trial of EA is negative. Experiment E⊥ always yields a negative
result; therefore 〈⊥〉 = 1. Similarly 〈�〉 = 0. For each occurrence (‘assertion’) of
an atomic formula in a player’s final tenet, the corresponding experiment is run
and the player has to pay one unit of money (say 1€) to the other player if the
result is negative. Therefore Giles calls 〈A〉 the risk associated with A. For the
final state [A1, . . . , Am | B1, . . . , Bn] the expected total amount of money that I
have to pay to You (my total risk) is readily calculated to equal( ∑

1≤i≤m

〈Ai〉 −
∑

1≤i≤n

〈Bi〉
)
€.

Note that the total risk at final states translates into the pay-off specified above
for G-games via vθM(A) = 1 − 〈A〉. To sum up: Giles’s interpretation of truth
values as inverted risk values associated with bets on dispersive experiments is
totally independent from the semantic game for the stepwise reduction of com-
plex formulas to atomic sub-formulas. In principle, one can interpret the pay-off
values also for theH-mv-game as inverted risk values and speak of bets on disper-
sive experiments at final states also there. The only (technically inconsequential)
difference to the original presentation is that one implicitly talks about expected
pay-off (inverted expected loss of money), rather than of certain pay-off when
the betting scenario is used to interpret truth values.

Table 1 provides a summary of the general structure of the games reviewed in
this section (where ‘formula’ means ‘augmented formula’ in the first-order case).

Table 1. Comparison of some semantic games

game state determined by pay-offs

H-game single formula + role distribution bivalent

H-mv-game single formula + role distribution many-valued

E-game single formula + role distribution + value many-valued

G-game two multisets of formulas many-valued

3 Generalized Propositional Rules for the H-mv-game

At a first glimpse the possibilities for extending H-mv-games to logics more
expressive than KZ look very limited if, in contrast to E-games and G-games, we
insist on Hintikka’s principle that a state of the game is fully determined by a

10 Giles ignores variable assignments, but stipulates that there is a constant symbol for
every domain element. Thus only closed formulas need to be considered.
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formula11 and a distribution of the two roles (P and O) to the two players. One
can come up with a more general concept of propositional game rules, related
to those described in [6] for connectives defined by arbitrary finite deterministic
and non-deterministic matrices. In order to facilitate a concise specification of
all rules of that type, we introduce the following technical notion.

Definition 2. An n-selection is a non-empty subset S of {1, . . . , n}, where each
element of S may additionally be marked by a switch sign.

A game rule for an n-ary connective 0 in a generalized H-mv-game is specified
by a non-empty set {S1, . . . , Sm} of n-selections. According to this concept, a
round in a generalized H-mv-game consists of two phases. The scheme for the
corresponding game rule specified by {S1, . . . , Sm} is as follows:

(Phase 1): If the current formula is 0(F1, . . . , Fn) thenO chooses an n-selection
Si from {S1, . . . , Sm}.

(Phase 2): P chooses an element j ∈ Si. The game continues with formula Fj ,
where the roles of the players are switched if j is marked by a switch sign.

Remark 1. A variant of this scheme arises by letting P choose the n-selection Si

in phase 1 and O choose j ∈ Si in phase 2. But note that playing the game for
0(F1, . . . , Fn) according to that role inverted scheme is equivalent to playing the
game for ¬ 0 (¬F1, . . . ,¬Fn) using the exhibited scheme.

Remark 2. The rules RH
∧ , RH

∨ , and RH
¬ can be understood as instances of the

above scheme:
– RH

∧ is specified by {{1}, {2}},
– RH∨ is specified by {{1, 2}}, and
– RH

¬ is specified by {{1∗}}, where the asterisk is used as switch mark.

Theorem 5. In a generalized H-mv-game, each rule of the type described above
corresponds to a connective that is definable in logic KZ.

Proof. The argument for the adequateness of all semantic games considered in
this paper proceeds by backward induction on the game tree.

For (generalized) H-mv-games the base case is trivial: by definition P receives
pay-off vM(A) andO receives pay-off 1−vM(A) if the game ends with the atomic
formula A.

For the inductive case assume that the current formula is 0(F1, . . . , Fn) and
that the rule for 0 is specified by the set {S1, . . . , Sm} of n-selections, where
Si = {j(i, 1), . . . , j(i, k(i))} for 1 ≤ i ≤ m and 1 ≤ k(i) ≤ n. Remember that
the elements of Si are numbers ∈ {1, . . . , n}, possibly marked by a switch sign.
For sake of clarity let us first assume that there are no switch signs, i.e. no
role switches occur. Let us say that a player X can force pay-off w if X has
a strategy that guarantees her a pay-off ≥ w at the end of the game. By the

11 Since we focus on the propositional level, we will drop all explicit reference to variable
assignments in Sections 3 and 4. However all statements remain valid if one replaces
‘formula’ by ‘formula augmented by a variable assignment’ throughout these sections.
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induction hypothesis, P can force pay-off vM(G) for herself and O can force pay-
off pay-off 1 − vM(G) for himself if G is among {F1, . . . , Fn} and does indeed
occur at a successor state to the current one; in other words, if G = Fj(i,�) for
some i ∈ {1, . . . ,m} and  ∈ {1, . . . , k(i)}. Since O chooses the n-selection Si,
while P chooses an index number in Si, P can force pay-off

min
1≤i≤m

max
1≤�≤k(i)

vM(Fj(i,�))

at the current state, while O can force pay-off

max
1≤i≤m

min
1≤�≤k(i)

(1 − vM(Fj(i,�))) = 1− min
1≤i≤m

max
1≤�≤k(i)

vM(Fj(i,�)).

If both players play optimally these pay-off values are actually achieved. There-
fore the upper expression corresponds to the truth function for 0. Both expres-
sions have to be modified by uniformly substituting 1−vM(Fj(i,�)) for vM(Fj(i,�))
whenever j(i, ) is marked by a switch sign in S1 for 1 ≤ i ≤ m and 1 ≤ k(i) ≤ n.

To infer that the connective 0 is definable in logic KZ it suffices to observe
that its truth function, described above, can be composed from the functions
λx(1−x), λx, ymin(x, y), and λx, ymax(x, y). But these functions are the truth
functions for ¬, ∧, and ∨, respectively, in KZ. �

4 Random Choice Connectives

In Section 2, following Giles, we have introduced the idea of expected pay-offs in
a randomized setting. However, Giles applied this idea only to the interpretation
of atomic formulas. For the interpretation of logical connectives and quantifiers
in any of the semantic games mentioned in Section 2 it does not matter whether
the players seek to maximize expected or certain pay-off or, equivalently, try to
minimize either expected or certain payments to the opposing player. In [8,10] we
have shown that considering random choices of witnessing constants in quantifier
rules for Giles-style games, allows one to model certain (semi-)fuzzy quantifiers
that properly extend first-order �Lukasiewicz logic. In this section we want to
explore the consequences of introducing random choices in rules for propositional
connectives context of Hintikka-style games.

The results of Section 3 show that, in order to go beyond logic KZ with
Hintikka-style games, a new variant of rules has to be introduced. As already
indicated, a particularly simple type of new rules, that does not entail any change
in the structure of game states, arises from randomization. So far we have only
considered rules where either P or O chooses the sub-formula of the current
formula to continue the game with. In game theory one often introduces Nature
as a special kind of additional player, who does not care what the next state looks
like, when it is her time to move and therefore is modeled by a uniformly random
choice between all moves available to Nature at that state. As we will see below,
introducing Nature leads to increased expressive power of semantic games. In
fact, to keep the presentation of the games simple, we prefer to leave the role
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of Nature only implicit and just speak of random choices, without attributing
them officially to a third player. The most basic rule of the indicated type refers
to a new propositional connective π and can be formulated as follows.12

(RR
π ) If the current formula is (FπG) then a uniformly random choice deter-
mines whether the game continues with F or with G.

Remark 3. Note that no role switch is involved in the above rule: the player
acting as P remains in this role at the succeeding state; likewise for O.

We call the H-mv-game augmented by rule (RR
π ) the (basic) R-game . We claim

that the new rule gives raise to the following truth function, to be added to the
semantics of logic KZ:

vM(FπG) = (vM(F ) + vM(G))/2.

KZ(π) denotes the logic arising from KZ by adding π. To assist a concise formu-
lation of the adequateness claim for the R-game we have to adapt Definition 1
by replacing ‘pay-off’ with ‘expected pay-off’. In fact, since we restrict attention
to the propositional level here, we can use the following simpler definition.

Definition 3. If player X has a strategy that leads to an expected pay-off for her
of at least w, while her opponent has a strategy that ensures that X’s expected
pay-off is at most w, then w is called the expected value for X of the game.

Theorem 6. A propositional formula F evaluates to vM(F ) = w in a KZ(π)-
interpretation M iff the basic R-game for F with pay-offs matching M has
expected value w for Myself.

Proof. Taking into account that vM(F ) coincides with the value of the H-mv-
game matchingM if F does not contain the new connective π, we only have to
add the case for a current formula of the form GπH to the usual backward induc-
tion argument. However, because of the random choice involved in rule (RR

π ), it
is now her expected pay-off that P seeks to maximize and O seeks to minimize.

Suppose the current formula is GπH . By the induction hypothesis, at the
successor state σG with current formula G (the player who is currently) P can
force13 an expected pay-off vM(G) for herself, while O can force an expected
pay-off 1− vM(G) for himself. Therefore the expected value for P for the game
starting in σG is vM(G) for P. The same holds for H instead of G. Since the
choice between the two successor states σG and σH is uniformly random, we
conclude that the expected value for P for the game starting with GπH is the
average of vM(F ) and vM(G), i.e. (vM(F )+vM(G))/2. The theorem thus follows
from the fact that I (Myself) am the initial P in the R-game for F . �

Since the function λx, y(x+y)/2 cannot be composed solely from the functions
λx(1 − x), λx, ymin(x, y), λx, ymax(x, y) and the values 0 and 1, we can make
the following observation.

12 A similar rule is considered in [33] in the context of partial logic.
13 We re-use the terminology introduced in the proof of Theorem 5, but applied to

expected pay-offs here.
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Proposition 1. The connective π is not definable in logic KZ.

But also the following stronger fact holds.

Proposition 2. The connective π is not definable in �Lukasiewicz logic �L.

Proof. By McNaughton’s Theorem [26] a function f : [0, 1]n → [0, 1] corresponds
to a formula of propositional �Lukasiewicz logic iff f is piecewise linear, where
every linear piece has integer coefficients. But clearly the coefficient of (x+ y)/2
is not an integer. �

Remark 4. We may also observe that, in contrast to �L, not only 0.5 =def ⊥π�,
but in fact every rational number in [0, 1] with a finite (terminating) expansion
in the binary number system is definable as truth constant in logic KZ(π).

Conversely to Proposition 2 we also have the following.

Proposition 3. None of the connectives ⊗, ⊕, → of �L can be defined in KZ(π).

Proof. Let Ψ denote the set of all interpretations M, where 0 < vM(A) < 1
for all propositional variables A. The following claim can be straightforwardly
checked by induction.

For every formula F of KZ(π) one of the following holds:
(1) 0 < vM(F ) < 1 for all M∈ Ψ , or
(2) vM(F ) = 1 for all M ∈ Ψ , or
(3) vM(F ) = 0 for all M ∈ Ψ .

Clearly this claim does not hold for A ⊗ B, A ⊕ B, and A → B. Therefore the
connectives ⊗, ⊕, → cannot be defined in KZ(π). �

In light of the above propositions, the question arises whether one can come
up with further game rules, that, like (RR

π ), do not sacrifice what we above called
Hintikka’s principle, i.e., the principle that game state is determined solely by
a formula and a role distribution. An obvious way to generalize rule (RR

π ) is to
allow for a (potentially) biased random choice:

(RR
πp) If the current formula is (FπpG) then the game continues with F with
probability p, but continues with G with probability 1− p.

Clearly, π coincides with π0.5. But for other values of p we obtain a new con-
nective. However, it is straightforward to check that Proposition 3 also holds if
replace π by πp for any p ∈ [0, 1].

Interestingly, there is a fairly simple game based way to obtain a logic that
properly extends �Lukasiewicz logic by introducing a unary connective D that
signals that the pay-off values for P is to be doubled (capped to 1, as usual) at
the end of the game.

(RR
D ) If the current formula is DF then the game continues with F , but with
the following changes at the final state. The pay-off, say x, for P is changed
to max(1, 2x), while the the pay-off 1−x for O is changed to 1−max(1, 2x).
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Remark 5. Instead of explicitly capping the modified pay-off for P to 1 one may
equivalently give O the opportunity to either continue that game with doubled
pay-off for P (and inverse pay-off for O herself) or to simply end the game at
that point with pay-off 1 for P and pay-off 0 for O herself.

Let us use KZ(D) for the logic obtained from KZ by adding the connective D
with the following truth function to KZ:

vM(DF ) = min(1, 2 · vM(F )).

Moreover, we use KZ(π,D) to denote the extension of KZ with both π and D
and call the R-game augmented by rule (RR

D ) the D-extended R-game .

Theorem 7. A propositional formula F evaluates to vM(F ) = w in a KZ(π,D)-
interpretation M iff the D-extended R-game for F with pay-offs matching M
has expected value w for Myself.

Proof. The proof of Theorem 6 is readily extended to the present one by consid-
ering the additional inductive case of DG as current formula. By the induction
hypothesis, the expected value for P of the game for G (under the same interpre-
tation M) is vM(G). Therefore rule (RR

D ) entails that the expected value for P
of the game for DG is max(1, 2 · vM(G)). �

Given Proposition 3 and Theorem 7 the following simple observation is of
some significance.

Proposition 4. The connectives ⊗, ⊕ and → of �L are definable in KZ(π,D).

Proof. It is straightforward to check that the following definitions in KZ(π,D)
match the corresponding truth functions for �L: G⊕F =def D(GπF ), G⊗F =def

¬D(¬Gπ¬F ), G→ F =def D(¬GπF ). �
Remark 6. Note that Proposition 4 jointly with Theorem 7 entails that one
can provide game semantics for (an extension of) �Lukasiewicz without dropping
“Hintikka’s principle” as done in E-games and in G-games.

Remark 7. The definitions mentioned in the proof of Proposition 4 give rise
to corresponding additional rules for the D-extended R-game. E.g., for strong
disjunction we obtain:

(RR⊕ ) If the current formula is G⊕F then a random choice determines whether
to continue the game with F or with G. But in any case the pay-off for P is
doubled (capped to 1), while the pay-off for O remains inverse to that for P.

By further involving role switches similar rules for strong conjunction and for
implications are readily obtained.

It remains to be seen whether these rules can assist in arguing for the plausi-
bility of the corresponding connective in intended application scenarios. But in
any case, it is clear that, compared to the sole specification of truth functions, the
game interpretation provides an additional handle for assessing the adequateness
of the �Lukasiewicz connectives for formalizing reasoning with graded notions and
vague propositions.
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Like (RR
π ), also rule (RR

D ) can be generalized in an obvious manner:

(RR
Mc

) If the current formula is McF then the game continues with F , but with
the following changes at the final state. The pay-off, say x, for P is changed
to max(1, c·x), while the the pay-off 1−x for O is changed to 1−max(1, c·x).

Adding further instances of πp and Mc to KZ(π,D) leads to more expressive
logics, related to Rational �Lukasiewicz Logic and to divisible MV-algebras [11].14

5 Random Witnesses for Quantifiers

The idea of allowing for random choices of witnessing elements in quantifier
rules — beyond O’s choice of a witness for a universally quantified statement
and P’s choice of a witness for an existentially quantified statement — has been
introduced in [8,10]. But the rules there refer to Giles’s game, not the H-game;
consequently a game state may comprise more than one formula. Moreover,
attention has been restricted to so-called semi-fuzzy quantifiers in a two-tiered
language variant of �Lukasiewicz logic, where the predicates in the scope of such a
quantifier are crisp. Here, we lift that restriction and moreover retain Hintikka’s
principle of game states as being determined by a single (augmented) formula
and a current role distribution.

In picking a witness element randomly, we may in principle refer to any given
distribution over the domain. However, as convincingly argued, e.g., in [30],
the meaning of a quantifiers should remain invariant under isomorphism, i.e.,
under permutations of domain elements, if that quantifier is to be conceived
as a logical particle. This principle entails that the random choice of witnessing
elements has to refer to the uniform distribution over the domain. However, as is
well known, only finite domains admit uniform distributions. The restriction to
finite domains is moreover well justified by the intended applications that model
linguistic phenomena connected to gradedness and vagueness. As a welcome side
effect of this restriction, we may drop the more involved notion of a value of a
game as arising from approximations of pay-offs (Definition 1) and define the
value of a game as in Definition 3, i.e., without involving ε.

The rule for the simplest quantifier (denoted by Π) that involves a random
witness element is as follows.

(RR
Π) If the current formula is (ΠxF (x))[θ] then an element c from the (finite)
domain ofM is chosen randomly and the game continues with F (x)[θ[c/x]].

In analogy to case of (RR
π ) a truth function for Π can be extracted from this

rule (where |D| is the cardinality of the domain D of M):

vθM(ΠxF (x)) =
∑
c∈D

v
θ[c/x]
M (F (x))

|D|

14 As pointed out by a referee, the following observation by Hájek is relevant here:
If one adds the truth constant 0.5 to �L then all rational numbers are expressible.
Therefore KZ(π,D) extends not only �L, but also Rational Pavelka Logic, where all
rationals truth constants are added to �L (see [15]). On the other hand, neither (e.g.)
π1/3 or M3 seem to be expressible in KZ(π,D).
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By KZ(Π) we refer to the logic KZ augmented by the quantifier Π . The proof
of the corresponding adequateness statement is analogous to that of Theorem 6
and is therefore left to the reader.

Theorem 8. A formula F evaluates to vM(F ) = w in a KZ(Π)-interpre-
tationM iff the R-game for F , extended by rule (RR

Π), with pay-offs matchingM
has expected value w for Myself.

Remark 8. Like the propositional connective π, the quantifier Π can be seen as
an ‘averaging operator’, that provides explicit access to the (uniform) average
of the values of the sub-formulas or instances of a formula FπG or ΠxF (x),
respectively.

Remark 9. Obviously one may extend not just KZ, but also the extensions of
KZ discussed in Section 3 with the random choice quantifier Π . This leads to
first-order logics that are strictly more expressive than �Lukasiewicz logic �L.

In [10] it is demonstrated how random choices of witness elements allow for
the introduction of different (infinite) families of semi-fuzzy quantifiers that are
intended to address the problem to justify particular fuzzy models of informal
quantifier expressions like ‘few’, ‘many’, or ‘about half’. As already mentioned
above, the corresponding quantifier rules in [10] (like those in [8]) employ Giles’s
concept of referring to multisets of formulas asserted by P and byO, respectively,
at any given state of the game. However, even without sacrificing Hintikka’s
principle by moving to G-games or to E-games, one can come up with new
quantifier rules. For example, one may introduce a family of quantifiers Π̂n by
the following parameterized game rule:

(RR
Π̂n

) If the current formula is (Π̂nxF (x))[θ] then n elements c1, . . . , cn from

the domain ofM are chosen randomly. P then chooses some c ∈ {c1, . . . , cn}
and the game continues with F (x)[θ[c/x]].

A dual family of quantifiers is obtained by replacing P by O in rule (RR
Π̂n

).Yet
another type of quantifiers arises by the following rule:

(RR
Π̃n

) If the current formula is (Π̃xF (x))[θ] then an element c1 from the do-
main of M is chosen randomly. P decides whether to continue the game
with F (x)[θ[c1/x]] or to ask for a further randomly chosen element c2. This
procedure is iterated until an element ci, where 1 < i ≤ n is accepted by P.
(cn has to be accepted if none of the earlier random elements was accepted.)
The game then continues with F (x)[θ[ci/x]].

Again, variants of this rule are obtained by replacingP withO in (RR
Π̃n

), possibly

only for certain i ∈ {1, . . . , n}.
Truth functions corresponding to the above rules are readily computed by

applying elementary principles of probability theory. We will not work out these
examples here and leave the systematic investigation of logics arising from en-
riching the H-mv-game or the R-game in the indicated manner to future work.
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6 Conclusion and Future Research

We began our investigations by observing (in Section 2) that Hintikka’s well
known game semantics for classical first-order logic (here referred to as H-game)
can be straightforwardly generalized to the H-mv-game, where the pay-off values
are taken from the unit interval [0, 1] instead of just {0, 1}. Following [1], we call
the resulting basic fuzzy logic Kleene-Zadeh logic KZ. At least two alternative
types of semantic games, called E-game and G-game here, can be found in the
literature (see, e.g., [4,12,5,9,7] ). These games provide alternative semantics for
�Lukasiewicz logic �L, which is considerably more expressive than KZ. Both, the
E-game and the G-game, deviate quite drastically from the H-mv-game (and
therefore also from the H-game) in their underlying concept of a game state.
In this paper, we have explored the power of semantic games that adhere of
‘Hintikka’s principle’, by which we mean the principle that each state of a game
is determined by a single formula (possibly augmented by a variable assignment)
and a role distribution (telling us who of the two players is currently acting as
Proponent P and who is currently acting as Opponent O). In Section 3 we have
shown that adding rules that instantiate a fairly general scheme of possible rules
to the H-game does not give rise to logics that are more expressible than KZ.
However introducing random choices in game rules, either as an alternative or
in addition to choices made by P or by O, leads to various proper extensions
of KZ, as we have seen in Section 4 for propositional logics and in Section 5 for
the first-order level. In particular, the combination of the basic random choice
connective π with a unary connective that signals doubling of pay-offs for P
(capped to 1) allowed us to characterize a logic, in which all connectives of �L
are definable. A more complete and systematic exploration of the rich landscape
of new connectives and quantifiers that can be defined for ‘randomized’ H-mv-
games is an obvious topic for future research.

A further open question is to what extend Hintikka-style games can be for-
mulated for fuzzy logics that, unlike �Lukasiewicz logic, do not extend logic KZ.
In particular the two other fundamental t-norm based logics, Gödel logic and
Product logic are obvious candidates for corresponding investigations. Another
important direction for further research concerns the relation to proof theory.
In [7] a direct correspondence between the logical rules of a hypersequent system
for propositional �Lukasiewicz logic and the rules of the G-game has been estab-
lished. In principle, a similar correspondence between game rules and logical
rules should also hold for other games and certain analytic proof systems.

We conclude with a brief remark on the relation between our ‘randomized
game semantics’ and ‘equilibrium semantics’ for H-games with imperfect infor-
mation. We have only considered games of perfect information in this paper:
the players always know all previous moves and thus have full knowledge of
the current state of the game. However, the full power of Hintikka’s game se-
mantics arises from admitting that players may not be aware of all previous
moves. This leads to Independence Friendly logic (IF-logic), where occurrences
of quantifiers and connectives in a formula may be ‘slashed’ with respect to
other such occurrences to indicate that the moves in the game that refer to
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those slashed occurrences are unknown to the current proponent. E.g., the for-
mula F = (G∨/{∧}H)∧(H∨/{∧}G) refers to an H-game, where the choice by P
of either the conjunct G ∨/{∧} H or H ∨/{∧} G is unknown to O when O has
to choose either the right or the left disjunct of the remaining current formula.
In [25] and in [32], Sandu and his colleagues present so-called equilibrium seman-
tics for IF-logic, where mixed strategies forH-games with incomplete information
induce intermediate expected pay-off values in [0, 1], even if each atomic formula
is evaluated to either 0 or 1. It is readily checked that the corresponding value
for the above formula F is (vM(G) + vM(H))/2, where vM(G) and vM(H) are
the values for G and H , respectively. In other words, we can simulate the effect
of the random choice that induces our new connective π by the IF-formula F ,
and vice versa: π simulates effects of imperfect knowledge in games with classical
pay-offs. Clearly, the connections between equilibrium semantics and (extended)
R-games deserves to be explored in more detail in future work.

Finally, we suggest that the results of this paper — in addition to the ear-
lier results of Giles [12,13,14], Cintula/Majer [4], as well as Fermüller and co-
authors [5,7,8,10] — may serve as a basis for discussing to what extent and in
which manner the game semantic approach to fuzzy logic addresses the impor-
tant challenge of deriving truth functions for fuzzy connectives and quantifiers
from basic semantic principles and thus to guide the fuzzy modeler’s task in
many application scenarios.
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Abstract. We present a complete finite axiomatization of the unre-
stricted implication problem for inclusion and conditional independence
atoms in the context of dependence logic. For databases, our result im-
plies a finite axiomatization of the unrestricted implication problem for
inclusion, functional, and embedded multivalued dependencies in the
unirelational case.

1 Introduction

We formulate a finite axiomatization of the implication problem for inclusion and
conditional independence atoms (dependencies) in the dependence logic context.
The input of this problem is given by a finite set Σ∪{φ} consisting of conditional
independence atoms and inclusion atoms, and the question to decide is whether
the following logical consequence holds

Σ |= φ. (1)

Independence logic [1] and inclusion logic [2] are recent variants of dependence
logic the semantics of which are defined over sets of assigments (teams) rather
than a single assignment as in first-order logic. By viewing a teamX with domain
{x1, . . . , xk} as a relation schema X [{x1, . . . , xk}], our results provide a finite
axiomatization for the unrestricted implication problem of inclusion, functional,
and embedded multivalued database dependencies over X [{x1, . . . , xk}].

Dependence logic [3] extends first-order logic by dependence atomic formulas

=(x1, . . . , xn) (2)

the meaning of which is that the value of xn is functionally determined by the
values of x1, . . . , xn−1. Independence logic replaces the dependence atoms by
independence atoms

y⊥xz,

the intuitive meaning of which is that, with respect to any fixed value of x, the
variables y are totally independent of the variables z. Furthermore, inclusion
logic is based on inclusion atoms of the form

x ⊆ y,
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with the meaning that all the values of x appear also as values for y. By view-
ing a team X of assignments with domain {x1, . . . , xk} as a relation schema
X [{x1, . . . , xk}], the atoms =(x), x ⊆ y, and y⊥xz correspond to functional,
inclusion, and embedded multivalued database dependencies. Furthermore, the
atom =(x1, . . . , xn) can be alternatively expressed as

xn⊥x1...xn−1xn,

hence our results for independence atoms cover also the case where dependence
atoms are present.

The team semantics of dependence logic is a very flexible logical framework
in which various notions of dependence and independence can be formalized.
Dependence logic and its variants have turned out to be applicable in various
areas. For example, Väänänen and Abramsky have recently axiomatized and
formally proved Arrow’s Theorem from social choice theory and, certain No-Go
theorems from the foundations of quantum mechanics in the context of inde-
pendence logic [4]. Also, the pure independence atom y⊥z and its axioms has
various concrete interpretations such as independence X ⊥⊥ Y between two sets
of random variables [5], and independence in vector spaces and algebraically
closed fields [6].

Dependence logic is equi-expressive with existential second-order logic (ESO).
Furthermore, the set of valid formulas of dependence logic has the same com-
plexity as that of full second-order logic, hence it is not possible to give a com-
plete axiomatization of dependence logic [3]. However, by restricting attention
to syntactic fragments [7,8,9] or by modifying the semantics [10] complete ax-
iomatizations have recently been obtained. The axiomatization presented in this
article is based on the classical characterization of logical implication between
dependencies in terms of the Chase procedure [11]. The novelty in our approach
is the use of the so-called Lax team semantics of independence logic to simulate
the chase on the logical level using only inclusion and independence atoms and
existential quantification.

In database theory, the implication problems of various types of database de-
pendencies have been extensively studied starting from Armstrong’s axiomatiza-
tion for functional dependencies [12]. Inclusion dependencies were axiomatized
in [13], and an axiomatization for pure independence atoms is also known (see
[14,5,15]). On the other hand, the implication problem of embedded multival-
ued dependencies, and of inclusion dependencies and functional dependencies to-
gether, are known to be undecidable [16,17,18]. Still, the unrestricted implication
problem of inclusion and functional dependencies has been finitely axiomatized
in [19] using a so-called Attribute Introduction Rule that allows new attribute
names representing derived attributes to be introduced into deductions. These
new attributes can be thought of as implicitly existentially quantified. Our In-
clusion Introduction Rule is essentially equivalent to the Attribute Introduction
Rule of [19]. It is also worth noting that the chase procedure has been used to
axiomatize the unrestricted implication problem of various classes of dependen-
cies, e.g., Template Dependencies [20], and Typed Dependencies [21]. Finally we
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note that the role of inclusion atom in our axiomatization has some similarities
to the axiomatization of the class of Algebraic Dependencies [22].

2 Preliminaries

In this section we define team semantics and introduce dependence, indepen-
dence and inclusion atoms. The version of team semantics presented here is the
Lax one, originally introduced in [2], which will turn out to be valuable for our
purposes due to its interpretation of existential quantification.

2.1 Team Semantics

The semantics is formulated using sets of assignments called teams instead of
single assignments. LetM be a model with domainM . An assignment s ofM is
a finite mapping from a set of variables into M . A team X overM with domain
Dom(X) = V is a set of assignments from V to M . For a subset W of V , we
write X � W for the team obtained by restricting all the assignments of X to
the variables in W .

If s is an assignment, x a variable, and a ∈ A, then s[a/x] denotes the assign-
ment (with domain Dom(s)∪ {x}) that agrees with s everywhere except that it
maps x to a. For an assignment s, and a tuple of variables x = (x1, ..., xn), we
sometimes denote the tuple (s(x1), ..., s(xn)) by s(x). For a formula φ, Var(φ)
and Fr(φ) denote the sets of variables that appear in φ and appear free in φ,
respectively. For a finite set of formulas Σ = {φ1, . . . , φn}, we write Var(Σ) for
Var(φ1)∪. . .∪Var(φn), and define Fr(Σ) analogously. When using set operations
x ∪ y and x \ y for sequences of variables x and y, then these sequences are
interpreted as the sets of elements of these sequences.

Team semantics is defined for first-order logic formulas as follows:

Definition 1 (Team Semantics). Let M be a model and let X be any team
over it. Then

– If φ is a first-order atomic or negated atomic formula, then M |=X φ if and
only if for all s ∈ X, M |=s φ (in Tarski semantics).

– M |=X ψ ∨ θ if and only if there are Y and Z such that X = Y ∪ Z and
M |=Y ψ and M |=Z θ.

– M |=X ψ ∧ θ if and only if M |=X ψ and M |=X θ.
– M |=X ∃vψ if and only if there is a function F : X → P(M)\{∅} such that
M |=X[F/v] ψ, where X [F/v] = {s[m/v] : s ∈ X,m ∈ F (s)}.

– M |=X ∀vψ if and only if M |=X[M/v] ψ, where X [M/v] = {s[m/v] : s ∈
X,m ∈M}.

The following lemma is an immediate consequence of Definition 1.

Lemma 1. Let M be a model, X a team and ∃x1 . . . ∃xnφ a formula in team
semantics setting where x1, . . . , xn is a sequence of variables. Then

M|=X ∃x1. . .∃xnφ iff for some function F :X→P(Mn)\{∅},M |=X[F/x1...xn]φ

where X [F/x1 . . . xn] := {s[a1/x1] . . . [an/xn] | (a1, . . . , an) ∈ F (s)}.



214 M. Hannula and J. Kontinen

IfM |=X φ, then we say that X satisfies φ inM. If φ is a sentence (i.e. a formula
with no free variables), then we say that φ is true in M, and write M |= φ, if
M |={∅} φ where {∅} is the team consisting of the empty assignment. Note that
{∅} is different from the empty team ∅ containing no assignments.

In the team semantics setting, formula ψ is a logical consequence of φ, written
φ⇒ ψ, if for all models M and teams X , with Fr(φ) ∪ Fr(ψ) ⊆ Dom(X),

M |=X φ⇒M |=X ψ.

Formulas φ and ψ are said to be logically equivalent if φ⇒ ψ and ψ ⇒ φ. Logics
L and L′ are said to be equivalent, L = L′, if every L-sentence φ is equivalent
to some L′-sentence ψ, and vice versa.

2.2 Dependencies in Team Semantics

Dependence, independence and inclusion atoms are given the following seman-
tics.

Definition 2. Let x be a tuple of variables and y a variable. Then =(x, y) is a
dependence atom with the semantic rule

– M |=X=(x, y) if and only if for any s, s′ ∈ X with s(x) = s′(x), s(y) =
s′(y).

Let x, y and z be tuples of variables. Then y ⊥x z is a conditional independence
atom with the semantic rule

– M |=X y ⊥x z if and only if for any s, s′ ∈ X with s(x) = s′(x) there is a
s′′ ∈ X such that s′′(x) = s(x), s′′(y) = s(y) and s′′(z) = s′(z).

Furthermore, we will write x ⊥ y as a shorthand for x ⊥∅ y, and call it a pure
independence atom.

Let x and y be two tuples of variables of the same length. Then x ⊆ y is an
inclusion atom with the semantic rule

– M |=X x ⊆ y if and only if for any s ∈ X there is a s′ ∈ X such that
s(x) = s′(y).

Note that in the definition of an inclusion atom x ⊆ y, the tuples x and y may
both have repetitions. Also in the definition of a conditional independence atom
y ⊥x z, the tuples x, y and z are not necessarily pairwise disjoint. Thus any
dependence atom =(x, y) can be expressed as a conditional independence atom
y ⊥x y. Also any conditional independence atom y ⊥x z can be expressed as a
conjunction of dependence atoms and a conditional independence atom y∗ ⊥x z∗

where x, y∗ and z∗ are pairwise disjoint. For disjoint tuples x, y and z, inde-
pendence atom y ⊥x z corresponds to the embedded multivalued dependency
x � y|z. Hence the class of conditional independence atoms corresponds to
the class of functional dependencies and embedded multivalued dependencies in
database theory.
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Proposition 1 ([23]). Let y ⊥x z be a conditional independence atom where
x, y and z are tuples of variables. If y∗ lists the variables in y− x∪ z, z∗ lists
the variables in z − x ∪ y, and u lists the variables in y ∩ z − x, then

M |=X y ⊥x z ⇔M |=X y∗ ⊥x z∗ ∧
∧
u∈u

=(x, u).

The extension of first-order logic by dependence atoms, conditional indepen-
dence atoms and inclusion atoms is called dependence logic (FO(=(. . .))), inde-
pendence logic (FO(⊥c)) and inclusion logic (FO(⊆)), respectively. The fragment
of independence logic containing only pure independence atoms is called pure in-
dependence logic, written FO(⊥). For a collection of atoms C ⊆ {=(. . .),⊥c,⊆},
we will write FO(C) (omitting the set parenthesis of C) for first-order logic with
these atoms.

We end this section with a list of properties of these logics.

Proposition 2. For C = {=(. . .),⊥c,⊆}, the following hold.

1. (Empty Team Property) For all models M and formulas φ ∈ FO(C)

M |=∅ φ.

2. (Locality [2]) If φ ∈ FO(C) is such that Fr(φ) ⊆ V , then for all models M
and teams X,

M |=X φ⇔M |=X�V φ.

3. [2] An inclusion atom x ⊆ y is logically equivalent to the pure independence
logic formula

∀v1v2z((z �= x∧z �= x)∨ (v1 �= v2∧z �= y)∨ ((v1 = v2∨z = y)∧z ⊥ v1v2))

where v1, v2 and z are new variables.
4. [24] Any independence logic formula is logically equivalent to some pure in-

dependence logic formula.
5. [3,1] Any dependence (or independence) logic sentence φ is logically equiva-

lent to some existential second-order sentence φ∗, and vice versa.
6. [25] Any inclusion logic sentence φ is logically equivalent to some positive

greatest fixpoint logic sentence φ∗, and vice versa.

3 Deduction System

In this section we present a sound and complete axiomatization for the implica-
tion problem of inclusion and independence atoms. The implication problem is
given by a finite set Σ∪{φ} consisting of conditional independence and inclusion
atoms, and the question is to decide whether Σ |= φ.

Definition 3. In addition to the usual introduction and elimination rules for
conjunction, we adopt the following rules for conditional independence and in-
clusion atoms. Note that in Identity Rule and Start Axiom, the new variables
should be thought of as implicitly existentially quantified.
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1. Reflexivity:

x ⊆ x.

2. Projection and Permutation:

if x1 . . . xn ⊆ y1 . . . yn, then xi1 . . . xik ⊆ yi1 . . . yik ,

for each sequence i1, . . . , ik of integers from {1, . . . , n}.
3. Transitivity:

if x ⊆ y ∧ y ⊆ z, then x ⊆ y.

4. Identity Rule:

if ab ⊆ cc ∧ φ, then φ′,

where φ′ is obtained from φ by replacing any number of occurrences of a by
b.

5. Inclusion Introduction:

if a ⊆ b, then ax ⊆ bc,

where x is a new variable.
6. Start Axiom:

ac ⊆ ax ∧ b ⊥a x ∧ ax ⊆ ac

where x is a sequence of pairwise distinct new variables.

7. Chase Rule:

if y ⊥x z ∧ ab ⊆ xy ∧ ac ⊆ xz, then abc ⊆ xyz.

8. Final Rule:

if ac ⊆ ax ∧ b ⊥a x ∧ abx ⊆ abc, then b ⊥a c.

In an application of Inclusion Introduction, the variable x is called the new
variable of the deduction step. Similarly, in an application of Start Axiom, the
variables of x are called the new variables of the deduction step. A deduction
from Σ is a sequence of formulas (φ1, . . . , φn) such that:

1. Each φi is either an element of Σ, an instance of Reflexivity or Start Axiom,
or follows from one or more formulas of Σ ∪ {φ1, . . . , φi−1} by one of the
rules presented above.

2. If φi is an instance of Start Axiom (or follows from Σ ∪ {φ1, . . . , φi−1} by
Inclusion Introduction), then the new variables of x (or the new variable x)
must not appear in Σ ∪ {φ1, . . . , φi−1}.

We say that φ is provable from Σ, written Σ � φ, if there is a deduction
(φ1, . . . , φn) from Σ with φ = φn and such that no variables in φ are new
in φ1, . . . , φn.



A Finite Axiomatization of Conditional Independence 217

4 Soundness

First we prove the soundness of these axioms.

Lemma 2. Let (φ1, . . . , φn) be a deduction from Σ, and let y list all the new
variables of the deduction steps. Let M and X be such that M |=X Σ and
Var(Σn) \ y ⊆ Dom(X) where Σn := Σ ∪ {φ1, . . . , φn}. Then

M |=X ∃y
∧

Σn.

Proof. We show the claim by induction on n. So assume that the claim holds
for any deduction of length n. We prove that the claim holds for deductions of
length n+1 also. Let (φ1, . . . , φn+1) be a deduction from Σ, and let y and z list
all the new variables of the deduction steps φ1, . . . , φn and φn+1, respectively.
Note that φn+1 might not contain any new variables in which case z is empty.
Assume that M |=X Σ for some M and X , where Var(Σn+1) \ yz ⊆ Dom(X).
By Proposition 2.2 we may assume that Var(Σn+1) \ yz = Dom(X). We need
to show that

M |=X ∃y∃z
∧

Σn+1.

By the induction assumption,

M |=X ∃y
∧

Σn

when by Lemma 1 there is a function F : X → P(M |y|) \ {∅} such that

M |=X′
∧

Σn (3)

where X ′ := X [F/y]. It suffices to show that

M |=X′ ∃z
∧

Σn+1.

If φn+1 is an instance of Start Axiom, or follows from Σn by Inclusion Introduc-
tion, then it suffices to find a G : X ′ → P(M |z|) \ {∅}, such that M |=X′[G/z]

φn+1 (note that in the first case this is due to Lemma 1). For this note that no
variable of z is in Var(Σn), and hence by Proposition 2.2M |=X′[G/z] Σn follows
from (3). Otherwise, if z is empty, then it suffices to show that M |=X′ φn+1.

The cases where φn+1 is an instance of Reflexivity, or follows from Σn by
a conjunction rule, Projection and Permutation, Transitivity or Identity are
straightforward. We prove the claim in the cases where one of the last four rules
is applied.

– Inclusion Introduction: Then φn+1 is of the form ax ⊆ bc where a ⊆ b
is in Σn. Let s ∈ X ′. Since M |=X′ a ⊆ b there is a s′ ∈ X ′ such that
s(a) = s′(b). We let G(s) = {s′(c)}. Since x �∈ Dom(X ′) we conclude that
M |=X′[G/x] ax ⊆ bc.
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– Start Axiom: Then φn+1 is of the form ac ⊆ ax ∧ b ⊥a x ∧ ax ⊆ ac. We
define G : X ′ → P(M |x|) \ {∅} as follows:

G(s) = {s′(c) | s′ ∈ X ′, s′(a) = s(a)}.

Again, since x does not list any of the variables in Dom(X ′), it is straight-
forward to show that

M |=X′[G/x] ac ⊆ ax ∧ b ⊥a x ∧ ax ⊆ ac.

– Chase Rule: Then φn+1 is of the form abc ⊆ xyz where

y ⊥x z ∧ ab ⊆ xy ∧ ac ⊆ xz ∈ Σn.

Let s ∈ X ′. Since M |=X′ ab ⊆ xy ∧ ac ⊆ xz there are s′, s′′ ∈ X ′

such that s′(xy) = s(ab) and s′′(xz) = s(ac). Since s′(x) = s′′(x) and
M |=X′ y ⊥x z, there is a s0 ∈ X ′ such that s0(xyz) = s(abc) which shows
the claim.

– Final Rule: Then φn+1 is of the form b ⊥a c where

ac ⊆ ax ∧ b ⊥a x ∧ abx ⊆ abc ∈ Σn.

Let s, s′ ∈ X ′ be such that s(a) = s′(a). Since M |=X′ ac ⊆ ax there is a
s0 ∈ X ′ such that s′(ac) = s0(ax). Since M |=X′ b ⊥a x and s(a) = s0(a)
there is a s1 ∈ X ′ such that s1(abx) = s(ab)s0(x). And since M |=X′

abx ⊆ abc there is a s′′ ∈ X ′ such that s′′(abc) = s1(abx). Then s
′′(abc) =

s(ab)s′(c) which shows the claim and concludes the proof. ��

This gives us the following soundness theorem.

Theorem 1. Let Σ ∪ {φ} be a finite set of conditional independence and inclu-
sion atoms. Then Σ |= φ if Σ � φ.

Proof. Assume that Σ � φ. Then there is a deduction (φ1, . . . , φn) from Σ such
that φ = φn and no variables in φ are new in φ1, . . . , φn. Let M and X be such
that Var(Σ ∪ {φ}) ⊆ Dom(X) and M |=X Σ. We need to show that M |=X φ.
Let y list all the new variables in φ1, . . . , φn, and let z list all the variables
in Var(Σn) \ y which are not in Dom(X). We first let X ′ := X [0/z] for some
dummy sequence 0 when by Theorem 2.2, M |=X′ Σ. Then by Theorem 2,
M |=X′ ∃y

∧
Σn implying there exists a F : X ′ → P(M |y|) \ {∅} such that

M |=X′′ φ, for X ′′ := X ′[F/y]. Since X ′′ = X [0/z][F/y] and no variables of y
or z appear in φ, we conclude by Theorem 2.2 that M |=X φ. ��

5 Completeness

In this section we will prove that the set of axioms and rules presented in Def-
inition 3 is complete with respect to the implication problem for conditional
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independence and inclusion atoms. For this purpose we introduce a graph char-
acterization for the implication problem in Sect. 5.1. This characterization is
based on the classical characterization of the implication problem for various
database dependencies using the chase procedure [11]. The completeness proof
is presented in Sect. 5.2. Also, in this section we will write X |= φ instead of
M |=X φ, since we will only deal with atoms, and the satisfaction of an atom
depends only on the team X .

5.1 Graph Characterization

We will consider graphs consisting of vertices and edges labeled by (possibly
multiple) pairs of variables. The informal meaning is that a vertice will corre-
spond to an assignment of a team, and an edge between s and s′, labeled by
uw, will express that s(u) = s′(w). The graphical representation of the chase
procedure is adapted from [26].

Definition 4. Let G = (V,E) be a graph where E consists of directed labeled
edges (u,w)ab where ab is a pair of variables, and for every pair (u,w) of vertices
there can be several ab such that (u,w)ab ∈ E. Then we say that u and w are
ab-connected, written u ∼ab w, if u = w and a = b, or if there are vertices
v0, . . . , vn and variables x0, . . . , xn such that

(u, v0)ax0 , (v0, v1)x0x1 , . . . , (vn−1, vn)xn−1xn , (vn, w)xnb ∈ E∗

where E∗ := E ∪ {(w, u)ba | (u,w)ab ∈ E}.

Next we define a graph GΣ,φ in the style of Definition 4 for a set Σ ∪ {φ} of
conditional independence and inclusion atoms.

Definition 5. Let Σ∪{φ} be a finite set of conditional independence and inclu-
sion atoms. We let GΣ,φ := (

⋃
n∈N

Vn,
⋃

n∈N
En) where Gn = (Vn, En) is defined

as follows:

– If φ is b ⊥a c, then V0 := {v+, v−} and E0 := {(v+, v−)aa | a ∈ a}. If φ is
a ⊆ b, then V0 := {v} and E0 := ∅.

– Assume that Gn is defined. Then for every v ∈ Vn and x1 . . . xk ⊆ y1 . . . yk ∈
Σ we introduce a new vertex vnew and new edges (v, vnew)xiyi , for 1 ≤ i ≤ k.
Also for every u,w ∈ Vn, u �= w, and y ⊥x z ∈ Σ where u ∼xx w, for x ∈ x,
we introduce a new vertex vnew and new edges (u, vnew)yy, (w, vnew)zz, for
y ∈ xy and z ∈ xz. We let Vn+1 and En+1 be obtained by adding these new
vertices and edges to the sets Vn and En.

Note that GΣ,φ = G0 if Σ = ∅.

The construction of GΣ,φ can be illustrated through an example. Suppose φ =
b ⊥a c and Σ = {c ⊥a d, c ⊥b c, ab ⊆ bc}. Then, at level 0 of the construction of
GΣ,φ, we have two nodes v+ and v− and an edge between them labeled by the
pair aa.
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v+ v−
aa

At level 1, four new nodes v1, . . . , v4 and the corresponding edges are intro-
duced: v1 and v2 for c ⊥a d, and v3 and v4 for ab ⊆ bc. The dashed node v5 is an
example of a new node introduced at level 2, due to c ⊥b c ∈ Σ and v3 ∼bb v4.

v2

v+ v− v4v3

v1

v5

aa
cc

aa

aa
cc

aa

dd

aa

dd

ba

cb

ab

bc

bb
cc

bb
cc

We will next show in detail how GΣ,φ yields a characterization of the impli-
cation problem Σ |= φ.

Theorem 2. Let Σ ∪ {φ} be a finite set of conditional independence and inclu-
sion atoms.

1. If φ is a1 . . . ak ⊆ b1 . . . bk, then Σ |= φ ⇔ ∃w ∈ VΣ,φ(v ∼aibi w for all 1 ≤
i ≤ k).

2. If φ is b ⊥a c, then Σ |= φ⇔ ∃v ∈ VΣ,φ(v
+ ∼bb v and v− ∼cc v for all b ∈

ab and c ∈ ac).

Proof. We deal with cases 1 and 2 simultaneously. First we will show the direc-
tion from right to left. So assume that the right-hand side assumption holds. We
show that Σ |= φ. Let X be a team such that X |= Σ. We show that X |= φ. For
this, let s, s′ ∈ X be such that s(a) = s′(a). If φ is b ⊥a c, then we need to find
a s′′ such that s′′(abc) = s(ab)s′(c). If φ is a1 . . . ak ⊆ b1 . . . bk, then we need to
find a s′′ such that s(a1 . . . ak) = s′′(b1 . . . bk). We will now define inductively, for
each natural number n, a function fn : Vn → X such that fn(u)(x) = fn(w)(y)
if (u,w)xy ∈ En. This will suffice for the claim as we will later show.



A Finite Axiomatization of Conditional Independence 221

– Assume that n = 0.
1. If φ is a1 . . . ak ⊆ b1 . . . bk, then V0 = {v} and E0 = ∅, and we let

f0(v) := s.
2. If φ is b ⊥a c, then V0 = {v+, v−} and E0 = {(v+, v−)aa | a ∈ a}. We

let f0(v
+) := s and f0(v

−) := s′. Then f(v+)(a) = f(v−)(a), for a ∈ a,
as wanted.

– Assume that n = m+1, and that fm is defined so that fm(u)(x) = fm(w)(y)
if (u,w)xy ∈ Em. We let fm+1(u) = fm(u), for u ∈ Vm. Assume that vnew ∈
Vm+1 \ Vm and that there are u ∈ Vm and x1 . . . xl ⊆ y1 . . . yl ∈ Σ such that
(u, vnew)xiyi ∈ Em+1 \ Em, for 1 ≤ i ≤ l. Since X |= x1 . . . xl ⊆ y1 . . . yl,
there is a s0 ∈ X such that fm+1(u)(xi) = s0(yi), for 1 ≤ i ≤ l. We let
fm+1(vnew) := s0 when fm+1(u)(xi) = fm+1(vnew)(yi), for 1 ≤ i ≤ l, as
wanted.
Assume then that vnew ∈ Vm+1 \ Vm and that there are u,w ∈ Vm, u �= w,
and y ⊥x z ∈ Σ such that (u, vnew)yy, (w, vnew)zz ∈ Em+1 \Em, for y ∈ xy
and z ∈ xz. Then u ∼xx w in Gm, for x ∈ x. This means that there are
vertices v0, . . . , vn and variables x0, . . . , xn, for x ∈ x, such that

(u, v0)xx0 , (v0, v1)x0x1 , . . . , (vn−1, vn)xn−1xn , (vn, w)xnx ∈ E∗
m,

where E∗
m := Em ∪ {(w, u)ba | (u,w)ab ∈ Em}. By the induction assumption

then
fm(u)(x) = fm(v0)(x0) = . . . = fm(vn)(xn) = fm(w)(x).

Hence, since X |= y ⊥x z, there is a s0 such that s0(xyz) =
fm(u)(xy)fm(w)(z). We let fm+1(vnew) := s0 and conclude that
fm+1(u)(y) = fm+1(vnew)(y) and fm+1(w)(z) = fm+1(vnew)(z), for y ∈ xy
and z ∈ xz. This concludes the construction.

Now, in case 2 there is a v ∈ VΣ,φ such that v+ ∼bb v and v− ∼cc v for all b ∈ ab
and c ∈ ac. Let n be such that each path witnessing this is in Gn. We want to
show that choosing s′′ as fn(v), s′′(abc) = s(ab)s′(c). Recall that s = fn(v

+)
and s′ = fn(v

−). First, let b ∈ ab. The case where v = v+ is trivial, so assume
that v �= v+ in which case there are vertices v0, . . . , vn and variables x0, . . . , xn
such that

(v+, v0)bx0 , (v0, v1)x0x1 , . . . , (vn−1, vn)xn−1xn , (vn, v)xnb ∈ E∗
n

when by the construction, fn(v
+)(b) = fn(v)(b). Analogously fn(v

−)(c) =
fn(v)(c), for c ∈ c, which concludes this case.

In case 1, s′′ is found analogously. This concludes the proof of the direction
from right to left.

For the other direction, assume that the right-hand side assumption fails in
GΣ,φ. Again, we deal with both cases simultaneously. We will now construct a
team X such that X |= Σ and X �|= φ. We let X := {su | u ∈ VΣ,φ} where each
su : Var(Σ ∪ {φ})→ P(VΣ,φ)

|Var(Σ∪{φ})| is defined as follows:

su(x) :=
∏

y∈Var(Σ∪{φ})
{w ∈ VΣ,φ | u ∼xy w}.
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We claim that su(x) = sw(y) ⇔ u ∼xy w. Indeed, assume that u ∼xy w. If
now v is in the set with the index z of the product su(x), then u ∼xz v. Since
w ∼yx u, we have that w ∼yz v. Thus v is in the set with the index z of the
product sw(y). Hence by symmetry we conclude that su(x) = sw(y). For the
other direction assume that su(x) = sw(y). Then consider the set with the index
y of the product sw(y). Since w ∼yy w by the definition, the vertex w is in this
set, and thus by the assumption it is in the set with the index y of the product
su(x). It follows by the definition that u ∼xy w which shows the claim.

Next we will show that X |= Σ. So assume that y ⊥x z ∈ Σ and that
su, sw ∈ X are such that su(x) = sw(x). We need to find a sv ∈ X such that
sv(xyz) = su(xy)sw(z). Since u ∼xx w, for x ∈ x, there is a v ∈ GΣ,φ such that
(u, v)yy, (w, v)zz ∈ EΣ,φ, for y ∈ xy and z ∈ xz. Then su(xy) = sv(xy) and
sw(xz) = sv(xz), as wanted. In case x1 . . . xl ⊆ y1 . . . yl ∈ Σ, X |= x1 . . . xl ⊆
y1 . . . yl is shown analogously.

It suffices to show that X �|= φ. Assume first that φ is b ⊥a c. Then sv+(a) =
sv−(a), but by the assumption there is no v ∈ VΣ,φ such that v+ ∼bb v and
v− ∼cc v for all b ∈ ab and c ∈ ac. Hence there is no sv ∈ X such that
sv(ab) = sv+(ab) and sv(ac) = sv−(ac) when X �|= b ⊥a c. In case φ is
a1 . . . ak ⊆ b1 . . . bk, X �|= φ is shown analogously. ��

Let us now see how to use this theorem with our concrete example (see the
paragraph after Definition 5). First we notice that v5 witnesses v+ ∼bb v

−. Also
v+ ∼aa v

− since (v+, v−)aa ∈ EΣ,φ, and v− ∼xx v
− for any x by the definition.

Therefore, choosing v as v−, we obtain Σ |= b ⊥a c by the previous theorem.

5.2 Completeness Proof

We are now ready to prove the completeness. Let us first define some notation
needed in the proof. We will write x = y for syntactical identity, x ≡ y for
an atom of the form xy ⊆ zz implying the identity of x and y, and x ≡ y
for an conjunction the form

∧
i≤|x| pri(x) ≡ pri(y). Let x be a sequence listing

Var(Σ ∪ {φ}). If xv is a vector of length |x| (representing vertex v of the graph
GΣ,φ), and a = (xi1 , . . . , xil) is a sequence of variables from x, then we write
av for

(pri1(xv), . . . , pril(xv)).

Also, for a deduction d from Σ, we write Σ �d ψ if ψ appears as a proof step in
d. Note that then new variables of the proof steps are allowed to appear in ψ.

We will next prove the completeness by using the following lemma (which will
be proved later). Recall that (Vn, En) refers to the nth level of the construction
of GΣ,φ.

Lemma 3. Let n be a natural number, Σ ∪ {φ} a finite set of conditional inde-
pendence and inclusion atoms, and x a sequence listing Var(Σ∪{φ}). Then there
is a deduction d = (φ1, . . . , φN ) from Σ such that for each u ∈ Vn, there is a
sequence xu of length |x| (and possibly with repetitions) such that Σ �d xu ⊆ x,
and for each (u,w)xixj ∈ E∗

n, Σ �d pri(xu) ≡ prj(xw). Moreover,
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– if φ is of the form a ⊆ b, then φ1 = xv ⊆ x (obtained by Reflexivity), for
xv defined as x,

– if φ is of the form b ⊥a c, then φ1 = ac ⊆ ac∗ ∧ b ⊥a c∗ ∧ ac∗ ⊆ ac
(obtained by Start Axiom), for av+bv+cv− = abc∗.

Theorem 3. Let Σ ∪ {φ} be a finite set of conditional independence and inclu-
sion atoms. Then Σ � φ if Σ |= φ.

Proof. Let Σ and φ be such that Σ |= φ. We will show that Σ � φ.
We have two cases: either

1. φ is xi1 . . . xim ⊆ xj1 . . . xjm and, by Theorem 2, there is a w ∈ VΣ,φ such
that v ∼xik

xjk
w for all 1 ≤ k ≤ m, or

2. φ is b ⊥a c and, by Theorem 2, there is a v ∈ VΣ,φ such that v+ ∼xixi v
and v− ∼xjxj v for all xi ∈ ab and xj ∈ ac.

Assume now first that φ is a ⊆ b where a := xi1 . . . xim and b := xj1 . . . xjm .
Then there is a w ∈ VΣ,φ such that v ∼xik

xjk
w, for 1 ≤ k ≤ m. Let n be such

that all the witnessing paths are in Gn, and let d = (φ1, . . . , φN ) be a deduction
from Σ obtained by Lemma 3, for Σ ∪ {φ}, n and x listing Var(Σ ∪ {φ}). For
Σ � φ, it now suffices to show that Σ ∪ {φ1, . . . , φN} � φ since, by Lemma 3,
the variables that appear in φ appear already in φ1 (as not new) and therefore
cannot appear as new in any step of (φ1, . . . , φN ).

Let first 1 ≤ k ≤ m. We show that from Σ ∪ {φ1, . . . , φN} we may derive

prik(xv) ≡ prjk(xw). (4)

If w = v and ik = jk, then (4) is obtained by Reflexivity. If w �= v or ik �= jk,
then there are vertices v0, . . . , vp ∈ Vn and variables xl0 , . . . , xlp such that

(v, v0)xik
xl0

, (v0, v1)xl0
xl1

, . . . , (vp−1, vp)xlp−1
xlp

, (vp, w)xlpxjk
∈ E∗

n.

Then by Lemma 3,

Σ �d prik(xv) ≡ prl0(xv0) ∧ . . . ∧ prlp(xvp) ≡ prjk(xw) (5)

from which we obtain prik(xv) ≡ prjk(xw) by Identity Rule. Hence, we may now
derive

av ≡ bw. (6)

Since Σ �d xw ⊆ x by Lemma 3, then by Permutation and Projection we obtain

bw ⊆ b. (7)

Note that by Lemma 3, xv = x when av = a. Thus we obtain a ⊆ b from (6)
and (7) using repeatedly Identity Rule. Since none of the steps above introduce
any new variables, we get Σ ∪ {φ1, . . . , φN} � φ which concludes case 1.

Assume then that φ is b ⊥a c when there is a v ∈ VΣ,φ such that v+ ∼xixi v
and v− ∼xjxj v for all xi ∈ ab and xj ∈ ac. Analogously to the previous case,
by Lemma 3, we obtain a deduction d = (φ1, . . . , φN ) from Σ for which

Σ �d xv ⊆ x (8)
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and
Σ �d avbv ≡ av+bv+ ∧ avcv ≡ av−cv− . (9)

Again, for Σ � φ, it suffices to show that Σ ∪ {φ1, . . . , φN} � φ. By Projection
and Permutation we first deduce

avbvcv ⊆ abc (10)

from (8), and using repeatedly Projection and Permutation and Identity Rule
we get

av+bv+cv− ⊆ abc (11)

from (9) and (10). Note that by Lemma 3, av+bv+cv− = abc∗ and Σ �d ac ⊆
ac∗ ∧ b ⊥a c∗. Therefore we can derive b ⊥a c with one application of Final
Rule. Since none of the steps above introduce any new variables, we have Σ ∪
{φ1, . . . , φN} � φ which concludes case 2 and the proof. ��

We are left to prove Lemma 3.

Proof (Lemma 3). Let n be a natural number, Σ∪{φ} a finite set of conditional
independence and inclusion atoms, and x a sequence listing Var(Σ ∪ {φ}). We
show the claim by induction on n. Note that at each step n it suffices to consider
only edges (u,w)xixj ∈ En, since for (w, u)xjxi ∈ E∗

n, prj(xw) ≡ pri(xu) can be
deduced from pri(xu) ≡ prj(xw) (using Reflexivity for pri(xu)pri(xu) and then
Identity Rule).

– Assume that n = 0. We show in two cases how to construct a deduction d
from Σ such that it meets the requirements of Lemma 3.
1. Assume that φ is a ⊆ b when V0 := {v} and E0 := ∅. Then we let xv := x

in which case we can derive xv ⊆ x as a first step by Reflexivity.
2. Assume that φ is b ⊥a c when V0 := {v+, v−} and E0 := {(v+, v−)xixi |

xi ∈ a}. As a first step we use Start Axiom to obtain

ac ⊆ ac∗ ∧ b ⊥a c∗ ∧ ac∗ ⊆ ac (12)

where c∗ is a sequence of pairwise distinct new variables. Then using
Inclusion Introduction and Projection and Permutation we may deduce

ab∗c∗d∗ ⊆ abcd (13)

from ac∗ ⊆ ac where d lists x\abc and b∗c∗d∗ is a sequence of pairwise
distinct new variables. By Projection and Permutation and Identity Rule
we may assume that ab∗c∗d∗ has repetitions exactly where abcd has.
Therefore we can list the variables of ab∗c∗d∗ in a sequence xv− of length
|x| where

ab∗c∗d∗ = (pri1(xv−), . . . , pril(xv−)),

for abcd = (xi1 , . . . , xil). Then av−bv−cv−dv− = ab∗c∗d∗, and we can
derive xv− ⊆ x from (13) by Projection and Permutation. We also let
xv+ := x when xv+ ⊆ x is derivable by Reflexivity and av+bv+cv− =
abc∗. Moreover, av+ ≡ av− is derivable by Reflexivity because av+ =
av− . This concludes the case n = 0.
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– Assume that n = m + 1. Then by the induction assumption, there is a
deduction d such that for each u ∈ Vm there is a sequence xu such that
Σ �d xu ⊆ x, and for each (u,w)xixj ∈ Em also Σ �d pri(xu) ≡ prj(xw).
Assume that vnew ∈ Vm+1\Vm is such that there are u ∈ Vm and xi1 . . . xil ⊆
xji . . . xjl ∈ Σ for which we have added new edges (u, vnew)xik

xjk
to Vm+1, for

1 ≤ k ≤ l. We will introduce a sequence xvnew and show how to extend d to a
deduction d∗ such that Σ �d∗

xvnew ⊆ x and Σ �d∗
prik(xu) ≡ prjk(xvnew),

for 1 ≤ k ≤ l.
By Projection and Permutation we deduce first

pri1(xu) . . . pril(xu) ⊆ xi1 . . . xil (14)

from xu ⊆ x. Then we obtain

pri1(xu) . . . pril(xu) ⊆ xji . . . xjl (15)

from (14) and the assumption xi1 . . . xil ⊆ xji . . . xjl by Transitivity.
Then by Reflexivity we may deduce pri1(xu) ⊆ pri1(xu) from which we
derive by Inclusion Introduction

pri1(xu)y1 ⊆ pri1(xu)pri1(xu) (16)

where y1 is a new variable. Then from (15) and (16) we derive by Identity
Rule

y1pri2(xu) . . . pril(xu) ⊆ xj1 . . . xjl . (17)

Iterating this procedure l times leads us to a formula∧
1≤k≤l

prik(xu) ≡ yk ∧ y1 . . . yl ⊆ xj1 . . . xjl (18)

where y1, . . . , yl are pairwise distinct new variables. Let xjl+1
, . . . , xjl′ list

x \ {xj1 , . . . , xjl}. Repeating Inclusion Introduction for the inclusion atom
in (18) gives us a formula

y1 . . . yl′ ⊆ xj1 . . . xjl′ (19)

where yl+1, . . . , yl′ are pairwise distinct new variables. Let y now denote the
sequence y1 . . . yl′ when∧

1≤k≤l

prik(xu) ≡ prk(y) ∧ y ⊆ xj1 . . . xjl′ (20)

is the formula obtained from (18) by replacing its inclusion atom with (19).
By Projection and Permutation and Identity Rule we may assume that
prk(y) = prk′(y) if and only if jk = jk′ , for 1 ≤ k ≤ l′. Analogously to
the case n = 0, we can then order the variables of y as a sequence xvnew of
length |x| such that prjk(xvnew) = prk(y), for 1 ≤ k ≤ l′. Then∧
1≤k≤l

prik(xu) ≡ prjk(xvnew)∧prj1(xvnew ) . . . prjl′ (xvnew) ⊆ xj1 . . . xjl′ (21)
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is the formula (20). By Projection and Permutation we can now deduce
xvnew ⊆ x from the inclusion atom in (21). Hence xvnew is such that xvnew ⊆
x and prik(xu) ≡ prjk(xvnew ) can be derived, for 1 ≤ k ≤ l. This concludes
the case for inclusion.
Assume then that vnew ∈ Vm+1 \ Vm is such that there are u,w ∈
Vm, u �= w, and q ⊥p r ∈ Σ for which we have added new edges
(u, vnew)xixi , (w, vnew)xjxj to Vm+1, for xi ∈ pq and xj ∈ pr. We will
introduce a sequence xvnew and show how to extend d to a deduction
d∗ such that Σ �d∗

xvnew ⊆ x, and Σ �d∗
pri(xu) ≡ pri(xvnew ) and

Σ �d∗
prj(xw) ≡ prj(xvnew ), for xi ∈ pq and xj ∈ pr. The latter means

that

Σ �d∗
puqu ≡ pvnewqvnew ∧ pwrw ≡ pvnewrvnew .

First of all, we know that u ∼xkxk
w in Gm for all xk ∈ p. Thus there are

vertices v0, . . . , vn ∈ Vm and variables xi0 , . . . , xin such that

(u, v0)xkxi0
, (v0, v1)xi0xi1

, . . . , (vn−1, vn)xin−1
xin

, (vn, w)xinxk
∈ E∗

m.

Hence by the induction assumption and Identity Rule, there are xu and xw

such that Σ �d xu ⊆ x and Σ �d xw ⊆ x, and Σ �d prk(xu) ≡ prk(xw), for
xk ∈ p. In other words,

Σ �d pu ≡ pw. (22)

By Projection and Permutation we first derive

puqu ⊆ pq (23)

and
pwrw ⊆ pr (24)

from xu ⊆ x and xw ⊆ x, respectively. Then we derive

purw ⊆ pr (25)

from pu ≡ pw and (24) by Identity Rule. By Chase Rule we then derive

puqurw ⊆ pqr (26)

from the assumption q ⊥p r, (23) and (25). Now it can be the case that
xi ∈ pq and xi ∈ r, but pri(xu) �= pri(xw). Then we can derive

pri(xu)pri(xw) ⊆ xixi (27)

from (26) by Projection and Permutation, and

puqurw(pri(xu)/pri(xw)) ⊆ pqr (28)

from (27) and (26) by Identity Rule. Let now r∗ be obtained from rw by
replacing, for each xi ∈ pq ∩ r, the variable pri(xw) with pri(xu). Iterating
the previous derivation gives us then

r∗ ≡ rw ∧ puqur
∗ ⊆ pqr. (29)
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Let s list the variables in x\pqr. From the inclusion atom in (29) we derive
by Inclusion Introduction

puqur
∗s∗ ⊆ pqrs (30)

where s∗ is a sequence of pairwise distinct new variables. Then puqur
∗s∗

has repetitions at least where pqrs has, and hence we can define xvnew as
the sequence of length |x| where

puqur
∗s∗ = (pri1(xvnew ), . . . , pril(xvnew)), (31)

for pqrs = (xi1 , . . . , xil). Then pvnewqvnewrvnewsvnew = puqur
∗s∗, and we

can thus derive
xvnew ⊆ x (32)

from (30) by Projection and Permutation. Moreover,

pvnewqvnew ≡ puqu (33)

can be derived by Reflexivity, and

pvnewrvnew ≡ pwrw (34)

is derivable since (34) is the conjunction of pu ≡ pw in (22) and r∗ ≡ rw in
(29). Hence, for xvnew we can derive

xvnew ⊆ x ∧ pvnewqvnew ≡ puqu ∧ pvnewrvnew ≡ pwrw

which concludes the case n = m+ 1 and the proof. ��
By Theorem 1 and Theorem 3 we now have the following.

Corollary 1. Let Σ ∪{φ} be a finite set of conditional independence and inclu-
sion atoms. Then Σ � φ if and only if Σ |= φ.

The following example shows how to deduce b ⊥a c � c ⊥a b and b ⊥a cd � b ⊥a c.

Example 1.

– b ⊥a c � c ⊥a b:
1. ab ⊆ ab′ ∧ c ⊥a b

′ ∧ ab′ ⊆ ab (Start Axiom)
2. ac ⊆ ac (Reflexivity)
3. b ⊥a c ∧ ab′ ⊆ ab ∧ ac ⊆ ac � ab′c ⊆ abc (Chase Rule)
4. ab′c ⊆ abc � acb′ ⊆ acb (Projection and Permutation)
5. ab ⊆ ab′ ∧ c ⊥a b

′ ∧ acb′ ⊆ acb � c ⊥a b (Final Rule)
– b ⊥a cd � b ⊥a c:

1. ac ⊆ ac′ ∧ b ⊥a c′ ∧ ac′ ⊆ ac (Start Axiom)
2. ac′d′ ⊆ acd (Inclusion Introduction)
3. ab ⊆ ab (Reflexivity)
4. b ⊥a cd ∧ ab ⊆ ab ∧ ac′d′ ⊆ acd � abc′d′ ⊆ abcd (Chase Rule)
5. abc′ ⊆ abc (Projection and Permutation)
6. ac ⊆ ac′ ∧ b ⊥a c′ ∧ abc′ ⊆ abc � b ⊥a c (Final Rule)

Our results show that for any consequence b ⊥a c of Σ there is a deduction
starting with an application of Start Axiom and ending with an application of
Final Rule.
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Abstract. A method for detecting potential violations of integrity con-
straints of concurrent transactions running under snapshot isolation (SI)
is presented. In contrast to methods for ensuring full serializability under
snapshot isolation, violations of integrity constraints may be detected
by examining certain read-write interaction of only two transactions
at a time. The method, called constraint-preserving snapshot isolation
(CPSI), thus provides greater isolation than ordinary SI in that results
do not violate any integrity constraints, while requiring substantially less
overhead, and involving fewer false positives, than typical for enhance-
ments to SI which guarantee full serializable isolation.

1 Introduction

Over the course of the past few decades, snapshot isolation (SI) has become
one of the preferred modes of transaction isolation for concurrency control in
database-management systems (DBMSs). In SI, each transaction operates on
its own private copy of the database (its snapshot). To implement commit for
concurrent transactions, the results of these individual snapshots must be inte-
grated. If there is a write conflict; that is, if more than one transaction writes the
same data object, then only one transaction is allowed to commit. The others
must abort if they are not naturally terminated in some other way.

On the one hand, SI avoids many of the update anomalies associated with poli-
cies such as read uncommitted (RU) and read (latest) committed (RC), such as
dirty and nonrepeatable reads, respectively [6, p. 61]. On the other hand, with
the now widespread use of multiversion concurrency control (MVCC), it admits
very efficient implementation, avoiding many of the performance bottlenecks as-
sociated with lock-based rigorous two-phase locking (rigorous 2PL) [4], more
commonly called strong strict two-phase locking (SS2PL) nowadays. Neverthe-
less, it does allow certain types of undesirable behavior which do not occur under
view serialization, such as read and write skew [2].

Because true view serializability [14, Sec. 2.4] is the gold standard for iso-
lation of transactions, there has been substantial recent interest in extending
SI to achieve such true serializablity, the idea being to achieve the desirable
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properties of true serializablity while exploiting the efficiency of SI. As a con-
sequence, serializable SI (SSI), has been developed [8,5]. In stark contrast to
SS2PL, SSI is an optimistic approach. On top of standard SI, it looks for
dangerous structures, which are sequences of two consecutive read-write edges
of concurrent transactions in the multiversion conflict graph for the transac-
tions. If such a structure is found, one of the participating transactions is re-
quired to terminate without committing its results. The existence of a dan-
gerous structure in the conflict graph is a necessary condition for the nonse-
rializablity of a set of concurrent transactions under SI, but it is not a suf-
ficient one. Thus, the SSI strategy is subject to false positives. To illustrate,

τ0

τ1 τ2

τi

τi+1τn−1

rw〈d1〉
rw〈d2〉

rw〈di+1〉rw〈d0〉
· · ·

· · ·

Fig. 1. An SI rw-conflict cycle of
length n

let n ≥ 2 be a natural number and let E0 be
a database schema which includes n integer-
valued data objects d0, d1, . . ., dn−1. Let τi
be the transaction which replaces the value of
di with the current value of d(i+1)modn; i.e.,
which executes di←d(i+1)modn. Running the
set T0 = {τi | 0 ≤ i < n} of transactions con-
currently under snapshot isolation results in
a permutation of the values of the di’s, with
the new value of di being the old value of
d(i+1)modn, since each transaction sees the
old values of the di’s in its snapshot. However, no serial schedule of T0 can
produce this permutation result. Indeed, if τi is run first and commits before
any other transaction begins, then the old value of di will be overwritten before
τ(i+1)modn is able to read it. Thus, T0 is not view serializable. Formally, there is
a read-write dependency [8, Def. 2.2] (or antidependency [1, 4.4.2]) from τimodn

to τ(i+1)modn for data object d(i+1)modn; these dependencies are represented
using the multiversion serialization graph or multiversion conflict graph as illus-
trated in Fig. 1. As argued above, (and in general since this graph contains a
cycle [1, Sec. 5.3]), no view serialization is possible. However, if any transaction
is removed from T0, the remaining set is serializable. Indeed, if τi is removed,
then execution in the serial order τi+1τi+2 . . . τn−1τ0τ1 . . . τi−1 is equivalent to
concurrent execution under SI. Thus, for any natural number n, there is a set T
of n transactions whose execution under SI is not equivalent to any serial sched-
ule, but execution of any proper subset of T under SI is equivalent to a serial
execution. In other words, to determine whether a set of n transactions run un-
der SI is view serializable, a test involving all n transactions must be performed.
Since a dangerous structure of SSI [5] involves at most three transactions, the
approach must necessarily involve false positives. Nevertheless, benchmarks re-
ported in [5] are impressive, but of course the transaction mix must be taken
into account. Recently, PostgreSQL, as of version 9.1, became the first widely
used DBMS to put SSI into practice, employing a variant for the implementation
of its serializable isolation level [15].

In Precisely SSI (PSSI) [16], the entire multiversion conflict graph is con-
structed. This avoids virtually all false positives, but may involve a high
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overhead for transaction mixes involving long cycles, although reported bench-
marks are favorable.

Despite the impressive performance statistics in the benchmark results, and
the recent use in a widely used DBMS, it must be acknowledged that SSI and
PSSI are not appropriate for all application domains. In particular, in any setting
which involves long-running and interactive transactions, a policy for enforcing
isolation which requires frequent aborts and/or waits is highly undesirable. In-
teractive business processes are one such domain, and it is in particular the
context of cooperative transactions within that setting [13,11] which motivated
the work of this paper. The central notion is an augmentation of SI, named
constraint-preserving SI (CPSI), which ensures that all integrity constraints will
be satisfied. It is strictly weaker than SSI, in that nonserializable behavior which
does not result in constraint violation is not ruled out. On the other hand, CPSI
involves only a relatively simple check of a property of the conflict graph which,
at least under one definition, is both necessary and sufficient to guarantee con-
straint satisfaction; that is, it does not produce any false positives. To illustrate,
let E1 be identical to E0, save that the constraint ϕ1 =

∑n−1
i=0 di > 100 · n

is enforced. In concrete terms, think of each di as the balance in a bank ac-
count, and the constraint requiring that the average of the balances must exceed
100. Let T1 = {τ ′i | 0 ≤ i ≤ n − 1} be the set of transactions on E1 with τ ′i
defined by di←di − 1. This is a generalization of the write-skew example of [2].

τ ′
j1 τ ′

j2

rw〈dj2〉

rw〈dj1〉

Fig. 2. An SI rw-
conflict cycle of
length 2

In order to determine whether the update to di will pre-
serve the constraint ϕ1, it is necessary for τ ′i to read every
other d′j . This means that there is a read-write conflict be-
tween any two τj1 , τj2 , as illustrated in Fig. 2. As a specific
example, let M10 be the database which has d0 = 101 and
dj = 100 for 1 ≤ j ≤ n − 1. Then any single transaction
from E1, run in isolation, preserves ϕ1, while the concur-
rent execution under SI of any two distinct members of
E1 does not. The main result of this paper is that this two-element character-
ization holds in general; if a set of transactions running under SI results in a
constraint violation, then there is a two-element subset which has this property
when run on some legal database. This may in fact be further refined if trans-
action reads are separated into those required to verify constraints (called guard
reads) and those required for other reasons. If the multiversion conflict graph is
free of two-element cycles consisting of read-write edges when only writes and
guard reads are considered, then the transactions under consideration cannot
cause a constraint violation when run concurrently under SI, regardless of the
initial database to which the transactions are applied.

Although it may seem unacceptable to allow nonserializable results, this is
in fact done all the time. For reasons of efficiency, lack of true serializability is
routinely accepted with lower levels of isolation, such as RU and RC. On the
other hand, results which violate integrity constraints, even those expressed via
triggers or within application programs, are almost never acceptable. Separat-
ing the two, and providing checks for full serializability only when necessary,
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provides an avenue for much more efficient support for long-running and inter-
active transactions.

2 Schemata, Views, and Updates

Although the ideas surrounding database schemata, views, and updates which
are used in this paper should already be familiar to the reader, the specific nota-
tion and conventions which are used nevertheless need to be spelled out carefully.
While similar in many aspects to those used in previous papers, such as [9], [10],
and [12], the framework employed here also differs in substantial ways. In par-
ticular, database schemata, while still being modelled by their sets of states, are
characterized by both their overall state sets (which need not satisfy the integrity
constraints) and their legal states (which must satisfy the integrity constraints).
Furthermore, for the order and lattice structure of views, the syntactic congru-
ence (on all states, ignoring the integrity constraints) rather than the semantic
congruence (on just the legal states, taking into account equivalences implied
by the integrity constraints), is employed. Therefore, while a notation consistent
with these earlier works has been used wherever possible, it seems best to pro-
vide a self-contained presentation, with an acknowledgment that much has been
drawn from those previous works.

For concepts related to order and lattices, the reader is referred to [7] for
further clarification of notions utilized in this paper.

Summary 2.1 (Database schemata and views). A database schema D is
characterized by two sets: DB(D) is the collection of all databases (or states),
while LDB(D) is the subset of DB(D) consisting of just the legal databases (or
legal states); i.e., those which satisfy the integrity constraints of the schema. In
describing examples, it may be useful to identify explicitly a set Constr(D) of
constraints, with LDB(D) consisting of precisely those members of DB(D) which
satisfy the elements of Constr(D). However, such an explicit representation of
constraints is not essential to the theory.

Given database schemata D1 and D2, a database morphism f : D1 → D2 is a
function f : DB(D1)→ DB(D2). The morphism f is semantic if for every M ∈
LDB(D1), f(M) ∈ LDB(D2); i.e., if it maps legal databases to legal databases.
The morphism f is said to be fully surjective if it is semantic, the function
f : DB(D1) → DB(D2) is surjective, and for every M2 ∈ LDB(D2), there is an
M1 ∈ LDB(D1) with f(M1) = M2. In other words, it is fully surjective if it is
surjective as a function on all databases and also when it is restricted to just the
legal databases of both D1 and D2.

A view over the database schema D is a pair Γ = (V, γ) in which V is a
database schema with γ : D → V a fully surjective morphism. The set of all
views on D is denoted Views(D). Full surjectivity is a natural property. By its
very nature, the states (resp. legal states) of a view are determined by the states
(resp. legal states) of the main schema. The notation for states of schemata
extends naturally to views. Given a view Γ = (V, γ), DB(Γ ) and LDB(Γ ) are
alternate notation for DB(V) and LDB(V) respectively.
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The syntactic congruence of Γ is SynCongr(Γ ) = {(M1,M2) ∈ DB(D) ×
DB(D) | γ(M1) = γ(M2)}. The syntactic preorder �D on Views(D) is defined
by Γ1 �D Γ2 iff SynCongr(Γ2) ⊆ SynCongr(Γ1). The intuitive idea behind this
order is that if Γ1 �D Γ2, then Γ2 preserves at least as much information about
the state of the main schema D as does Γ1.

For Γ1 = (V1, γ1) and Γ2 = (V2, γ2), with Γ2 �D Γ1, Γ2 may be regarded
as a view of Γ1. More precisely, define the relative morphism λ〈Γ1, Γ2〉 : V1 →
V2 to be the unique function λ〈Γ1, Γ2〉 : DB(V1) → DB(V2) which satisfies
λ〈Γ1, Γ2〉 ◦ γ1 = γ2. See [9, Def. 2.3] for a elaboration of this concept.

The identity view 1D of D has schema is D and morphism the identity D →
D. Similarly, a zero view 0D of D has a schema which has only one database,
with the view whose schema is a one element set, with the view morphism sending
every element of DB(D) to the unique element of that set. It is immediate that
for any Γ ∈ Views(D), 0D �D Γ �D 1D .

Summary 2.2 (Updates). An update on D is a pair 〈M1,M2〉 ∈ LDB(D)×
LDB(D). M1 is the current or old state before the update, and M2 is the new
state afterwards. Note that updates always transform legal states to legal states.
The set of all updates on D is denoted Updates(D).

Updates are often identified by name; therefore, it is convenient to have a
shorthand for its components. To this end, if u ∈ Updates(D), then write u(1)

and u(2) for the values of the state before and after the update, respectively; i.e.,
u = 〈u(1), u(2)〉. The composition u1 ◦ u2 of two updates u1, u2 ∈ Updates(D)
is just their composition in the sense of mathematical relations. More precisely,
u1 ◦ u2 = {(M1,M3) | (∃M2 ∈ LDB(D))((M1,M2) ∈ u1 ∧ (M2,M3) ∈ u2)}.

It will also prove useful to be able to select just those updates which apply to
a specific state. For N ∈ LDB(D), define u|N = {u ∈ u | u(1) = N}.

It will sometimes be necessary to map updates from one view to a second,
smaller one. Recall the relative morphism λ〈Γ1, Γ2〉 : V1 → V2 defined in
Summary 2.1 above. Then, for u ∈ Updates(Γ1), define λ〈Γ1, Γ2〉(u) =
〈λ〈Γ1, Γ2〉(u(1)), λ〈Γ1, Γ2〉(u(2))〉, and for u ⊆ Updates(Γ1), define λ〈Γ1, Γ2〉(u) =
{λ〈Γ1, Γ2〉(u) | u ∈ u}. The set u ⊆ Updates(Γ1) is a partial identity on Γ2 if
λ〈Γ1, Γ2〉(u) is a subset of the identity relation on LDB(V2). In this case, it is
said that u holds Γ constant. The single update u ∈ Updates(V1) is a partial
identity on Γ2 if {u} has this property.

Finally the notational conventions which permit view names to be used in
lieu of their components is extended to updates. Specifically, for Γ = (V, γ),
Updates(Γ ) will be used as an alternate notation for Updates(V).

Definition 2.3 (Algebras of updateable views). In an investigation of the
interaction of transactions, it is central to be able to model their read-write
interaction; for example, to express succinctly that transaction T1 does or does
not write some data object which T2 reads. Transactions typically read and write
compound data objects (e.g., sets of rows or tuples in the relational context)
rather than just single primitive objects (e.g., single rows or tuples). In order
to express such interaction, it is convenient to model compound data objects as
being built up from simple ones in a systematic way. The natural mathematical
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structure for such a model is the Boolean algebra [7, p. 94]. It is assumed that
the reader is familiar with that notion; only notation will be recalled here. In
the Boolean algebra L = (L,∨,∧, ,�,⊥), L is the underlying set, ∨ and ∧ are
the join and meet operators, respectively, � and ⊥ are the identity and zero
elements, respectively, and is the complement operator, which is written as
an overbar; i.e., the complement of x is x. The join operation induces a partial
order via a ≤ b iff a ∨ b = b, called the underlying partial order. The order with
equality excluded is denoted <. An atom a ∈ L is a minimal element which is
greater than ⊥; i.e., ⊥ < a and for no b ∈ L is it the case that ⊥ < b < a. The
set of all atoms of L is denoted AtomsL. If L is finite, then every a ∈ L has a
unique representation as the join of atoms. In this case, define the basis of a to
be BasisL〈a〉 = {x ∈ AtomsL | x ≤ a} [7, 5.5].

Now, given a database schema D, an algebra of updateable views over D is a
finite Boolean algebra VVV = (V ,∨,∧, ,�,⊥) with V ⊆ Views(D), whose under-
ling partial order is the restriction of �D to V . This requirement on the order
structure has an important consequence. Given a view Γ ∈ V , there is a natural
correspondence between DB(Γ ) and {DB(Γ ′) | Γ ′ ∈ BasisV 〈Γ 〉}. Specifically,
each M ∈ DB(Γ ) has a unique representation as the set {λ〈Γ, Γ ′〉(M) | Γ ′ ∈
BasisD〈Γ 〉}. There is a bit of notational shorthand, based upon this observation,
which will prove useful. If Γ1 = (V1, γ1), Γ2 = (V2, γ2) ∈ V , with Γ1 ∧ Γ2 = ⊥,
and if M1 ∈ DB(Γ1) and M2 ∈ DB(Γ2), then M1 ∨ M2 ∈ DB(Γ1 ∨ Γ2) de-
notes the unique state with the representation {λ〈Γ, Γ ′〉(M) | Γ ′ ∈ BasisD〈Γ1〉∪
BasisD〈Γ2〉}.

The least element of VVV is formally a zero view 0D , but will frequently be
written as ⊥.
Example 2.4 (The algebra of updateable views of E0 and E1). For
the schema E0 introduced in Sec. 1, let Let Ωdi = (Wdi , ωdi) be the view
which retains just di, discarding all dj for j �= i. Thus, Wdi contains just
the data object di, while the view morphism ωdi : E0 → Wdi retains just di
from DE0 = {dj | 0 ≤ j ≤ n − 1}. {Ωdj | 0 ≤ j ≤ n − 1} forms the set
AtomsVVVE0

of atoms of the algebra VVVE0 = (VE0
,∨,∧, ,�,⊥) of updateable views

associated with E0. Each element of VE0
is of the form

∨
j∈S Ωdj for some

S ⊆ {0, 1, . . . , n− 1}. In other words, the members of VE0
are in bijective corre-

spondence with subsets of DE0 . The zero view corresponds to the empty set ∅,
while the identity view corresponds to the entire set DE0 . Join and meet corre-
spond to union and intersection on {dj | 0 ≤ j ≤ n− 1}, respectively. In short,
VVVE0 = (VE0

,∨,∧, ,�,⊥) is isomorphic to the power-set algebra [7, 4.18(1)] of
DE0 . The algebra for E1 is identical.

Definition 2.5 (The algebra of σ-views of a relational schema). It is
instructive to illustrate the ideas of Definition 2.3 within a framework which
recaptures common usage. Let D be a relational schema, and suppose that row-
level granularity in relational DBMSs, in which the smallest grain of data access
for a transaction is a single row (or tuple or atom), is employed. Let GrAtoms〈D〉
denote the set of all ground atoms of D (tuples not involving variables, the val-
ues for columns/attributes are domain values only). In practice, GrAtoms〈D〉 is
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always a finite set; this finiteness restriction is assumed to hold here as well.
Further, assume that tuples are tagged with the relations in which they oc-
cur, so that it is not necessary to identify relations explicitly in selections. For
t ∈ GrAtoms〈D〉, define Σt = (Υt, σt) to be the view which selects t from the ap-
propriate relation and discards everything else. DB(Υt) = {∅, {t}}; that is, there
are only two states to the view schema, one representing that t is present in the
main schema, and the other that it is not. On Σt, the only update operations
which are possible are to delete t, to insert t, and to do nothing. The set of all such
selections on a single ground tuple, Σ-GrAtoms〈D〉 = {Σt | t ∈ GrAtoms〈D〉},
forms the set of atoms for the lattice of data objects.

Extending this to compound objects, if S = {t1, t2, . . . , tn} ⊆ GrAtoms〈D〉,
then ΣS = (ΥS , σS) denotes the selection on all of S. The logical operation
connecting the tuples is disjunction; all of the ti’s are selected. A longer but more
descriptive representation might be Σ{t1,t2,...,tn} = (Υ{t1,t2,...,tn}, σt1∨t2∨...∨tn).
The point here is that the view ΣS is the join of a unique set of primitive
selections, namely, {Σti | 1 ≤ i ≤ n}. As a degenerate but nevertheless very
useful case, note also that Σ∅ is a zero view with ∅ as the only view state; no
updates are possible on it.

Define Σ-GrAtoms〈D〉 = {Σt | t ∈ GrAtoms〈D〉}, the set of all selections on
a single ground tuple, and define Σ-Views〈D〉 = {ΣS | S ⊆ Σ-GrAtoms〈D〉}.
Then Σ-GrAtoms〈D〉 is the set of atoms of the lattice of updateable views whose
elements are Σ-Views〈D〉. Join, meet, and complement are given by union, inter-
section, and complement on the underlying sets of tuples: ΣS1 ∨ΣS2 = ΣS1∪S2 ,
ΣS1 ∧ΣS2 = ΣS1∩S2 , and the complement ΣS of ΣS is ΣGrAtoms〈D〉\S .

Notation 2.6 (Notation for views). Views appear frequently in that which
follows, and it is convenient to have a uniform convention for identifying con-
stituent parts. If Γ is the name of a view, possibly with subscripts or other
annotations, then V and γ will be used to denote its schema and morphism,
respectively with the same annotations. Thus, for the views Γ , Γ ′, Γ1, and Γ1,
the full expansions are assumed to be Γ = (V, γ), Γ ′ = (V′, γ′), Γ1 = (V1, γ1),
and Γ1 = (V1, γ1).

Abstract views, as used in definitions and theorems, will always use the (pos-
sibly annotated) Γ = (V, γ) notation. For specific examples, an alternate nota-
tion, using Ω = (W, ω), also with annotations, will be used. In this way, example
views are always clearly distinguished from abstract ones. The same conventions
apply; for example, the full expansion of Ω′

1 is Ω′
1 = (W′

1, ω
′
1).

Notation 2.7 (Some mathematical shorthand). It will often be necessary
to assert that a partial function f is defined on an argument x. The shorthand
f(x) ↓ will be used in this regard. In order to avoid the need to state indepen-
dently that a function is defined on an argument, a statement such as f(x)↓∈ Y
will be used to indicate that both f(x)↓ and f(x) ∈ Y . Similarly, f(x)↑ denotes
that f(x) is undefined on x.

N denotes the set {0, 1, 2, . . .} of natural numbers. For i, j ∈ N, [i, j] denotes
the set {i, i+ 1, . . . , j} of natural numbers between i and j inclusive, while [j, -]
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denotes the set of all natural numbers which are greater than or equal to i. Z
denotes the set of all integers, positive, negative, and zero.

Card(X) denotes the cardinality of the set X .

3 Snapshot Isolation

In this section, an overview of snapshot isolation is presented and the concur-
rency issues surrounding it are summarized. It is assumed that the reader has
a basic understanding of transactions, and in particular serializability, as is pre-
sented in [18], [3], and Chapters 14-15 of the textbook [17].

Summary 3.1 (The transaction model of snapshot isolation). Before
presenting the theory, it is appropriate to sketch the model of snapshot isolation
(hereafter SI ) which is used. A transaction performs read and write operations
on data objects. Each transaction has a start time, as well as an end time at
which its writes are committed to the database. Two transactions are concurrent
if the start time of one lies between the start and end times of the other.

In SI, the transaction T always operates on a private copy of the database,
called the snapshot, taken at the start time of the transaction.While it is running,
it does not see updates performed by other transactions, and other transactions
do not see its updates. When T finishes, its updates must be committed to the
global database. Such commits are governed by the first-committer wins (FCW)
rule. If any other transaction T ′ which is concurrent with T , and which has
already committed has written a data object Γ which T has also written, then
T is not allowed to commit.

Summary 3.2 (Variations of SI in practice). In practice, things are not
quite as simple as sketched in Summary 3.1 for at least two reasons. First of
all, the rule for conflict resolution which is used in practice is most often that
which is called first updater wins (FUW). With FUW, if some other concurrent
transaction T ′ writes a data object Γ which T later is to write, then T is blocked
from continuing to operate, even on its private copy, until T ′ commits (in which
case T is aborted) or T ′ aborts (in which case T is allowed to continue). While
FCW and FUW differ in implementation, they are identical in the definition of
a conflict; namely, that concurrent transactions may not both write the same
data object. They furthermore produce identical results when there is no write
conflict. Thus, for a study of conflict and constraint violation, FUW may be
used in lieu of FCW with no loss of generality. It will be used here because it
admits a simpler conceptual model of a transaction which does not involve the
order or points in time at which the transaction performs internal operations on
its private copy.

A second reason why the FCWmodel is somewhat idealistic is that in most im-
plementations of SQL, primary-key and uniqueness constraints are enforced im-
mediately, and unless checking is declared to be deferrable and then deferred,
foreign-key constraints will also be enforced immediately. In this work, which is
of a more foundational nature, this “implementation detail” will be ignored. In
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any case, for the purposes of this work, integrity constraints include not only the
usual database dependencies (e.g., key and foreign-key dependencies), but also
rules specified in triggers and possibly even application programs. The latter two
are often of central importance in business processes.

4 Constraint Preservation and Its Characterization

Notation 4.1 (Notational conventions). Throughout this section, unless
stated specifically to the contrary, take D to be a database schema and VVV =
(V ,∨,∧, ,�,⊥) a (finite Boolean) algebra of updateable views, as described in
Summary 2.1 and Definition 2.3, respectively.

Definition 4.2 (Updateable objects). It is useful to combine an updateable
view and the updates which may be applied to it into one package. Formally, an
updateable object over VVV is a pair 〈Γ,u〉 with Γ ∈ V and u ⊆ Updates(Γ ). The
set of all updateable objects over VVV is denoted UpdObj(VVV).

Call the updateable object 〈Γ,u〉 functional if for any two u1, u2 ∈ u, u(1)

1 =
u(1)

2 implies u(2)

1 = u(2)

2 . Thus, if 〈Γ,u〉 is functional, there is at most one ap-
plicable update in u for each legal state of the associated view. The set of all
functional updateable objects over VVV is denoted FUpdObj(VVV).

The write view of 〈Γ,u〉 is the largest view Γ (w) ∈ V with Γ (w) �D Γ and the
property that for some u ∈ u, λ〈Γ, Γ (w)〉(u(1)) �= λ〈Γ, Γ (w)〉(u(2)). The read-only
view of 〈Γ,u〉 is the largest view Γ (r) ∈ V with Γ (r) �D Γ and the property
that for all u ∈ u, λ〈Γ, Γ (r)〉(u(1)) = λ〈Γ, Γ (r)〉(u(2)). In other words, Γ (r) is the
largest subview on which u is a partial identity. Clearly {Γ (r), Γ (w)} forms a
decomposition of Γ into disjoint components; i.e., Γ (r) ∧ Γ (w) = ⊥ and Γ (r) ∨
Γ (w) = Γ .

For Γ ∈ V with Γ ′ �D Γ , define the projection of 〈Γ,u〉 onto Γ ′ to be the
updateable object ProjΓ ′〈〈Γ,u〉〉 = 〈Γ ′, λ〈Γ, Γ ′〉(u)〉. In general, such a projec-
tion will not be functional, even if 〈Γ,u〉 is. The projection ProjΓ (w)〈〈Γ,u〉〉 is
called the write object of 〈Γ,u〉.

The restriction of the write object of a functional updateable object to a single
database M ∈ LDB(D) is, however, always functional, since there is at most
one update in u which is applicable to M . Formally, define Proj〈Γ ′|M〉〈Γ,u〉 =
〈Γ ′, λ〈Γ, Γ ′〉(u|M )〉.

Recall that 0D is the zero view on D, and let u0D denote the set containing
just one element, the unique (identity) update u0D on the singleton set LDB(0D).
〈0D ,u0D 〉, the unique updateable object of the zero view 0D , is called the zero
object. By itself, this updateable object is uninteresting, since no nontrivial up-
dates are possible, but it will prove to be useful as a tool to assert succinctly
that two views are disjoint (by asserting that their meet in the algebra VVV of
updateable views is the zero view).

Examples 4.3 (Read views and write views). The decomposition of the
view of an updateable object into its write view and its read view is central,
and deserves a closer look. To begin, consider again the schema E0 and the
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set T0 of transactions introduced in Sec. 1, with the corresponding algebra of
updateable views described in Example 2.4. For the update family defined by
τi; i.e., by di← d(i+1)modn, the associated view is Ωdi ∨ Ωd(i+1) modn

, with Ωdi

the write view and Ωd(i+1) mod n
the read-only view. The family of updates itself

is υdi = {〈(n1, n2), (n2, n2)〉 | n1, n2 ∈ Z}, with a pair (n1, n2) representing the
values for (di, d(i+1)modn). The updateable object is thus 〈Ωdi∨Ωd(i+1) mod n

,υdi〉.
This simple introductory example does not cover all aspects of the framework.

For a more comprehensive examination of the ideas, let E2 be a database schema
which, for a fixed q ∈ [3, -], includes three sets of data objects {x1, x2, . . . , xq},
{y1, y2, . . . , yq}, and {z1, z2, . . . , zq}, governed by the constraints xi + yi ≥ 500
for each i ∈ [1, q]. Assume that each data object takes integer values, and in
concordance with Definition 2.3, regard each xi (resp. yi) as a view Ωxi (resp.
Ωyi).

Fix i ∈ [1, q], and let υxi be the update set on Ωxi defined by xi←xi−100;
more precisely, υxi = {〈n, n−100〉 | n ∈ Z}. Define υyi on Ωyi similarly by
yi ← yi−1−100. The pairs 〈Ωxi ,υxi〉 and 〈Ωyi ,υyi〉 then form the associated
updateable objects. In these simple cases, Ω(w)

xi
= Ωxi and Ω(w)

yi
= Ωyi , with

Ω(r)
xi

= Ω(r)
yi

= ⊥.
Next, consider the update operation xi←xi−zi on the view Ωxi∨Ωzi . The set

of associated updates is υxizi = {〈(n1, n2), (n1−n2, n2)〉 | n1, n2 ∈ Z}, with n1

and n2 representing the values of xi and yi, respectively. Here (Ωxi ∨Ωz1)
(w)

=
Ωxi and (Ωxi ∨Ωz1)

(r)
= Ωzi . The projection ProjΩxi

〈〈Ωxi∨Ωzi ,υxizi〉〉 = Z×Z,
since any update is possible on xi by choosing the appropriate value for zi. More
interesting is the projection based upon a particular state of the main schema.
Let M22 ∈ LDB(E2) be any legal state with xi = 300, yi = 300, and zi = 100.
Then Proj〈Ωxi

|M22〉〈〈Ωxi ∨Ωzi ,υxizi〉〉 = {〈n, n−100〉 | n ∈ Z}, which is exactly

υxi . The difference is in how they are realized. With 〈Ωxi ,υxi〉, the parameter
100 is fixed in the update object itself, while in Proj〈Ωxi

|M22〉〈〈Ωxi ∨Ωzi ,υxizi〉〉,
the parameter zi is bound to 100 after reading the value of zi from the state
M22. This distinction will prove to be critical, since the parameter zi is used
only internally, by the transaction, to determine which update it is to apply.
From the point of view of constraint satisfaction, it does not matter how that
parameter was obtained; only the update itself matters.

A similar construction applies for the update yi←yi−zi on Ωyi ∨Ωzi .

Definition 4.4 (Lifting for an updateable data object). A central feature
of updates performed by transactions is that they are localized. If u is an update
to be performed on data object Γ , then the changes are made only to the state
of the data object Γ ; the states of atomic data objects not included in Γ remain
fixed. The extension of a set u of updates to a larger environment, with the
environment which is not part of Γ held constant, is called a lifting. Formally,
let 〈Γ,u〉 ∈ FUpdObj(VVV), and let Γ ′ ∈ V with Γ ∧ Γ ′ = ⊥. Define the lifting of
〈Γ,u〉 to Γ ∨ Γ ′ (with constant Γ ′) as

LiftΓ∨Γ ′〈〈Γ,u〉〉 = {(M,u(2) ∨ λ〈Γ ∨ Γ ′, Γ ′〉(M)) |
(M ∈ LDB(Γ ∨ Γ ′)) ∧ (u ∈ u) ∧ λ〈Γ ∨ Γ ′, Γ 〉(M) = u(1)}
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In parsing this definition, recall the notation shorthand for joining states of
disjoint views introduced near the end of Definition 2.3.

Thus, LiftΓ∨Γ ′〈〈Γ,u〉〉 is a relation on LDB(Γ ∨ Γ ′) × DB(Γ ∨ Γ ′). Since
〈Γ,u〉 is functional, LiftΓ∨Γ ′〈〈Γ,u〉〉 will be a function in the sense that for
any P ∈ LDB(Γ ∨ Γ ′), there is at most one P ′ ∈ DB(Γ ∨ Γ ′) with (P, P ′) ∈
LiftΓ∨Γ ′〈〈Γ,u〉〉. If such a P exists, it will be denoted LiftΓ∨Γ ′〈〈Γ,u〉〉(P ). In other
words, LiftΓ∨Γ ′〈〈Γ,u〉〉 may be regard as a partial function on LDB(Γ ∨ Γ ′).

Define CompatΓ∨Γ ′〈〈Γ,u〉〉 to be the set of all legal states of Γ ∨Γ ′ which are
sent to legal states when lifted to Γ ∨ Γ ′ using 〈Γ,u〉. Formally,
CompatΓ∨Γ ′〈〈Γ,u〉〉 = {M ∈ LDB(Γ ∨ Γ ′) | LiftΓ∨Γ ′〈〈Γ,u〉〉(M)↓
∈ LDB(Γ ∨Γ ′)}. This lifting is said to be legal (or allowed) for P ∈ LDB(Γ ∨Γ ′)
if P ∈ CompatΓ∨Γ ′〈〈Γ,u〉〉; otherwise it is illegal (or disallowed).

A special case occurs when Γ ′ = Γ ; i.e., for liftings to the entire main
schema. Recalling that 1D is the identity view on D, define LiftD〈〈Γ,u〉〉 to
be Lift1D〈〈Γ,u〉〉, and define CompatD〈〈Γ,u〉〉 to be Compat1D

〈〈Γ,u〉〉.
Liftings to D will be used to model the internal operation of database trans-

actions, as described in Definition 4.6 below. The transaction must do some-
thing when the lifting is undefined or disallowed. The most useful solution is
to have it perform the identity update; that is, to do nothing. Formally, for
〈Γ,u〉 ∈ UpdObj(VVV) and M ∈ LDB(D), define

Lift+Γ∨Γ ′〈〈Γ,u〉〉 = (LiftΓ∨Γ ′〈〈Γ,u〉〉 ∩ LDB(Γ ∨ Γ ′)× LDB(Γ ∨ Γ ′))
∪ {(M,M) | LiftΓ∨Γ ′〈〈Γ,u〉〉(M)↓�∈ LDB(Γ ∨ Γ ′)}
∪ {(M,M) | LiftΓ∨Γ ′〈〈Γ,u〉〉(M)↑}

and define Lift+D〈〈Γ,u〉〉 to be Lift+1D
〈〈Γ,u〉〉.

Examples 4.5 (Lifting). As a simple example of a lifting, return to the context
of E0, as presented in Sec. 1, Example 2.4, and Examples 4.3. Let i ∈ [0, n− 1],
let i′ = (i + 1)modn, and let J ⊆ [0, n − 1] with Ω′ denoting

∨
j∈J Ωdj

and Ω′′ denoting Ωdi ∨ Ωdi′ . Represent an N ∈ DB(Ω′′ ∨ Ω′) as a tuple in-
dexed by {i, i′} ∪ J in which the element indexed by j is the value of dj . Then
LiftΩ′′∨Ω′〈〈Ω′′,υdi〉〉 consists of those pairs of ({i, i′}∪J)-indexed tuples (N,N ′)
for which πi(N

′) = πi′ (N), and which agree on all indices other than i. In other
words, υdi is extended to component views of the form Ωdj for j ∈ J \ {i, i′} as
the identity update.

To illustrate the interaction of lifting and constraints, in the context E2 of
Examples 4.3, LiftΩxi

∨Ωyi
〈〈Ωxi ,υxi〉〉 = {〈(n1, n2), (n1− 100, n2)〉 | (n1, n2) ∈

Z × Z}, with the tuple (n1, n2) representing the values (xi, yi). The lifting is
allowed if n1 + n2 − 100 ≥ 500, and disallowed otherwise.

Definition 4.6 (Black-box transactions and snapshot isolation). In a
black-box model, the internal operations are hidden. Rather, just the interaction
with the environment is modelled. A particularly simple version of a black-box
model is appropriate for a theoretical study of snapshot isolation (SI). Indeed,
under FCW, as described in Summary 3.1, the internal sequence of read and
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write operations of which a transaction is composed is not of interest. Rather, it
is only the writes which are to be committed which are of relevance for modelling
violations of integrity constraints. Thus, it is appropriate to regard a transaction
under SI as a single update on an input database, taking that database as input
at the beginning of the transaction and delivering an updated version at its end,
a simplification which retains all necessary features for modelling conflicts.

More precisely, a black-box transaction T over V is represented by a pair
〈ΓT ,uT 〉 ∈ FUpdObj(VVV). For an input state M ∈ LDB(D), the output state
is Lift+D〈〈ΓT ,uT 〉〉(M). This defines a total operation on LDB(D); for any in-

put state M , Lift+D〈〈ΓT ,uT 〉〉(M) ∈ LDB(D) as well. The set of all black-box
transactions over VVV is denoted BBTransVVV .

The notation 〈ΓT , uT 〉 will be used throughout the rest of this paper to denote
the update object which underlies the transaction T . No confusion should result,
because transaction names will always take the form of T or τ , possibly with a
prime and/or subscript. Thus, for example, the update object associated with T ′

i

is 〈ΓT ′
i
,uT ′

i
〉. On the other hand, update objects not associated with a transaction

will never use subscripts involving T or τ .

Definition 4.7 (Schedules of transactions under SI). The usual model
of execution for a transaction T employs a start time tStart〈T 〉 and an end time
tEnd〈T 〉. Concurrency properties are then defined in terms of these parameters.
Specifically, two transactions T1 and T2 run serially if tEnd〈T1〉 < tStart〈T2〉 or
tEnd〈T2〉 < tStart〈T1〉, and they run concurrently otherwise. In the theory presented
here, the end time of a transaction is its commit time. As explained in Definition
4.4, a transaction which fails for some reason is modelled as executing the identity
update.

The actual times do not matter; rather, it is only their ordering relative to each
other which is of interest in terms of behavior. To this end, rather than working
with explicit timestamps, an order-based representation will be employed. Let T
be a finite subset of BBTransVVV . Define SCSet〈T〉 = {T s | T ∈ T}∪{T c | T ∈ T},
in which T s and T c represent the relative start and commit times of transaction
T , respectively. A SI-schedule on T is given by a partial order <T on SCSet〈T 〉
with the property that for each T ∈ T, T s < T c. It is important to understand
that T s and T c are just symbols; the representation is only for the relative
times; no numerical values are specified. In translating from a representation with
explicit timestamps, T s

1 <T T s
2 iff tStart〈T1〉 < tStart〈T2〉, T c

1 <T T c
2 iff tEnd〈T1〉 <

tEnd〈T2〉, T s
1 <T T c

2 iff tStart〈T1〉 < tEnd〈T2〉, and T c
1 <T T s

2 iff tEnd〈T1〉 < tStart〈T2〉.
For any T ∈ T, CSPred<T 〈T 〉 denotes the last transaction to commit before

T starts, when it exists. Thus, (CSPred<T 〈T 〉)
c
<T T s and for no T ′ ∈ T is it

the case that (CSPred<T 〈T 〉)
c
<T T ′c <T T c.

Similarly, CCPred<T 〈T 〉 denotes the last T ′ ∈ T which commits before T
does, when it exists. Note that both CSPred<T 〈−〉 and CCPred<T 〈−〉 are partial
functions, since some transactions will not have the required predecessors.

For T1, T2 ∈ T, T1 serially precedes T2 if T c
1 <T T s

2 . If neither T1 serially
precedes T2 nor T2 serially precedes T1, then T1 and T2 execute concurrently
and and {T1, T2} is said to form a concurrent pair.
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A subset S ⊆ T is said to be nonoverlapping if for any T1, T2 ∈ S, Γ (w)

1 ∧
Γ (w)

2 = ⊥. In other words, the write views do not overlap. The schedule <T is
nonoverlapping if every concurrent pair {T1, T2} is nonoverlapping. In the rest
of this paper, schedules will always be taken to be nonoverlapping.

Definition 4.8 (Semantics of SI-schedules). In order to be able to model
the interaction of transactions and to characterize constraint-preserving proper-
ties, it is necessary to have a formal model of the semantics of an SI-schedule;
that is, to have a way of representing the overall behavior of the execution of a
schedule of transactions, given the semantics of each individual transaction as
described in Definition 4.6.

Let T be a finite subset of BBTransVVV and let <T be an SI-schedule for T. For
the execution of <T , three states in LDB(D) are defined for each transaction
T ∈ T+ and each initial state M ∈ LDB(D) for the entire schedule:

InitSnap〈<T :M〉〈T 〉: The initial state which transaction T reads at the beginning
of its execution. In other words, it is the initial snapshot of T .

BeforeCmt〈<T :M〉〈T 〉: The state of the database immediately before T commits.

AfterCmt〈<T :M〉〈T 〉: The state of the database immediately after T commits.

For each initial state M ∈ LDB(D), The semantics are defined in a formal way
as follows:

InitSnap〈<T :M〉〈T 〉 =
{
AfterCmt〈<T :M〉〈CSPred<T 〈T 〉〉 if CSPred<T 〈T 〉↓
M otherwise

BeforeCmt〈<T :M〉〈T 〉 =
{
AfterCmt〈<T :M〉〈CCPred<T 〈T 〉〉 if CSPred<T 〈T 〉↓
M otherwise

AfterCmt〈<T :M〉〈T 〉 =
LiftD〈Proj〈Γ (w)|InitSnap〈<T :M〉〈T 〉〉〈〈Γ,u〉〉〉(BeforeCmt〈<T :M〉〈T 〉)

Less formally, for an initial state M , InitSnap〈<T :M〉〈T 〉 is the state of the
global database just after the last commit operation which occurs before T
starts, or the initial state M in the case that no such commit operation has
occurred. BeforeCmt〈<T :M〉〈T 〉 is the state of the global database just after the
last commit operation which occurs before the commit operation of T . Finally,
AfterCmt〈<T :M〉〈T 〉 is the result of lifting, to BeforeCmt〈<T :M〉〈T 〉, the projection
of the update operation of T onto its write view.

It is important to note that it is only the update to the write view Γ (w)

T , and not
the entire update uT to ΓT , which is lifted upon commit. This is critical because
the read view Γ (r)

T may have been updated by another concurrent transaction.
For example, in the context of Examples 4.3, let τxizi be the transaction whose
update object is 〈Ωx1 ∨Ωzi ,υx1zi〉. It is quite possible that another, concurrent
transaction could write zi after τxizi begins but before it commits. In that case,
lifting the entire update υxizi would not produce the correct result, since the
transaction τxizi does not change the value zi, and should not restore its value
to that when the transaction began. The correct approach, as defined above, is
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to lift only the projection of υxizi onto its write view, for the database state
which τxizi acquired for its snapshot. This uses the value of zi at the beginning
of τxizi , as required, to compute the changes on the write view defined by the
update, and then commits only those changes. The value of zi should not be
written as part of the final update of τxizi .

Returning to the general context, call <T constraint preserving if for every
M ∈ LDB(D) and every T ∈ T, AfterCmt〈<T :M〉〈T 〉 ∈ LDB(D). The goal is to
show how to ensure that <T has this property.

Definition 4.9 (Write-commuting pairs). The key abstract property to
be used in guaranteeing constraint-preserving schedules is write commutativity,
Roughly, two transactions T1 and T2 form a write-commuting pair if whenever
they each may be executed concurrently on a given database state, then they
may be executed serially as well, in either order. However, it is only the updates
on their respective write views, and not the entire update of each transactions,
which must obey this commutativity constraint. Thus, each transaction may
overwrite the read-only view of the other with the two still forming a write-
commuting pair.

Formally, call {T1, T2} ⊆ BBTransVVV a write-commuting pair if it is nonover-
lapping and for any M ∈ LDB(D) and any u1 ∈ Proj〈Γ (w)

1 |M〉〈〈Γ1,u1〉〉 and

u2 ∈ Proj〈Γ (w)
2 |M〉〈〈Γ2,u2〉〉, with both LiftD〈〈Γ (w)

T1
, {u1}〉〉(M)↓ ∈ LDB(D) and

LiftD〈〈Γ (w)

T2
, {u2}〉〉(M)↓ ∈ LDB(D), it is the case that both

LiftD〈〈Γ (w)

T1
, {u1}〉〉 ◦ LiftD〈〈Γ (w)

T2
, {u2}〉〉(M)↓∈ LDB(D) and LiftD〈〈Γ (w)

T2
, {u2}〉〉 ◦

LiftD〈〈Γ (w)

T1
, {u1}〉〉(M)↓∈ LDB(D).

A large class of write-commuting pairs will be identified in Proposition 4.19
below. For now, the key property to observe, which justifies the name, is that
such pairs produce the same result in either order of composition, with the
consequence (Theorem 4.11) that SI schedules are constraint preserving.

Observation 4.10 (Write-commuting pairs produce the same result in
either order). If {T1, T2} is a write-commuting pair, M ∈ LDB(D), and
u1 ∈ Proj〈Γ (w)

1 |M〉〈〈Γ1,u1〉〉, u2 ∈ Proj〈Γ (w)
2 |M〉〈〈Γ2,u2〉〉 with both of the liftings

LiftD〈〈Γ (w)

T1
, {u1}〉〉(M)↓∈ LDB(D) and LiftD〈〈Γ (w)

T2
, {u2}〉〉(M)↓∈ LDB(D), then

LiftD〈〈Γ (w)

T1
, {u1}〉〉 ◦ LiftD〈〈Γ (w)

T2
, {u2}〉〉(M) =

LiftD〈〈Γ (w)

T2
, {u2}〉〉 ◦ LiftD〈〈Γ (w)

T1
, {u1}〉〉(M).

Proof. This is immediate, since the updates are nonoverlapping. As long as both
are defined, they must be the same. �

Theorem 4.11 (Write-commuting concurrent pairs guarantee
constraint-preserving SI-schedules). Let T be a finite subset of BBTransVVV ,
and let <T be an SI-schedule for T. If every concurrent pair of <T is write
commuting, then <T is constraint preserving.

Proof. The proof is by induction on the size of T. For zero or one transaction,
the result is immediate. For the inductive step, let n ∈ N and assume that the
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result is true whenever Card(T) ≤ n. Then let Card(T) = n + 1 (with n ≥ 1),
and let Tn and Tn+1 be the nth and n + 1st transactions to commit in <T ,
respectively (that is, the penultimate and last transactions to commit). If n ≥ 2,
i.e., if n+ 1 ≥ 3, let Tn−1 be the transaction which commits just before Tn. Let
M ∈ LDB(D) be the initial state for the schedule.

If Tn+1 starts after Tn has committed; that is, the two transactions are not
concurrent, then the result is immediate; there cannot be any constraint viola-
tion with serial transactions which operate correctly in isolation. So, assume
that {Tn, Tn+1} forms a concurrent pair. Let un and un+1 be the updates
which Tn and Tn+1 perform on Γ (w)

n and Γ (w)

n+1, respectively, and let Sn−1 =
T \ {Tn, Tn+1}, Sn = T \ {Tn}, and Sn+1 = T \ {Tn+1}, with <Sn−1

, <Sn , and
<Sn+1

be the schedules obtained by restricting <T to the transactions in Sn−1,
Sn, and Sn+1, respectively. Then by the inductive hypothesis, each of <Sn−1

,

<Sn , and <Sn+1
is constraint preserving. If at least one of Lift+D〈〈Γ

(w)

Tn
, {un}〉〉

and Lift+D〈〈Γ
(w)

Tn+1
, {un+1}〉〉 is the identity update (for example, if one of the

liftings was not defined or did not result in a legal state), then the corre-
sponding transaction may be removed from <T to obtain one of <Sn or <Sn+1

,
without any change in the semantics, since an identity transaction has no ef-
fect. In that case, the result follows from the inductive hypothesis. So, assume
that both LiftD〈〈Γ (w)

Tn
, {un}〉〉(N)↓ and LiftD〈〈Γ (w)

Tn+1
, {un+1}〉〉(N)↓, with N =

AfterCmt〈<T :M〉〈Tn−1〉 if n ≥ 2 and N = M if n = 1. Then

(LiftD〈〈Γ (w)

Tn
, {un}〉〉 ◦ LiftD〈〈Γ (w)

Tn+1
, {un+1}〉〉)(N)↓ ∈ LDB(D), since by assump-

tion {T1, T2} forms a write commuting pair. However, it is easy to see that in that
case the semantics of re-inserting Tn and Tn+1 into <S is just to perform that
composed update, which establishes that AfterCmt〈<T :M〉〈Tn+1〉 ∈ LDB(D), as
required. �

Definition 4.12 (Guard views and guarded black-box transactions).
The property of write commutativity is an abstract one. A useful, concrete class
of transactions with that property may be obtained via the notion of a guard
for an updateable object 〈Γ,u〉. Such a guard is a view Γ ′ with the property
that if, for a given M ∈ LDB(D) and any u ∈ u, the projection λ〈Γ, Γ (w)〉(u)
of u onto Γ (w) restricted to M may be lifted to D iff it may be lifted to Γ (w) ∨
Γ ′. Thus, a guard view reduces the global test for lifting to all of D to the
much more local test of lifting to just the write view and its guard. Formally,
given 〈Γ,u〉 ∈ FUpdObj(VVV), Γ ′ ∈ V is a guard view for 〈Γ,u〉 if Γ (w) ∧ Γ ′ =
⊥ and for every M ∈ LDB(D), M ∈ CompatD〈〈Γ,u〉〉 iff (γ(w) ∨ γ′)(M) ∈
CompatΓ (w)∨Γ ′〈Proj〈Γ (w)∨Γ ′|M〉〈〈Γ,u〉〉〉. The set of all guard views for 〈Γ,u〉 is
denoted GuardsVVV 〈Γ,u〉.

A guarded black-box transaction is represented by a pair 〈〈Γ,u〉, Γ ′〉 in which
〈Γ,u〉 ∈ FUpdObj(V) and Γ ′ ∈ V is a guard for 〈Γ,u〉. It is convenient to have
a notation for guarded black-box transactions which extends that of Definition
4.6. To that end, if T is such a transaction, then its guard will be denoted
Γ (g)

T . Thus, T is represented by 〈〈ΓT ,uT 〉, Γ (g)

T 〉. The set of all guarded black-box
transactions over V is denoted GBBTransVVV .



Guard Independence and Constraint-Preserving Snapshot Isolation 245

Examples 4.13 (Guards). Returning to the context E2 of Examples 4.3, a
guard for 〈Ωxi ,υxi〉 is Ωyi . Indeed, to verify that an update to xi is legal, only
the value of yi need be checked; the state of the rest of the database is irrelevant.
Similarly, a guard for 〈Ωyi ,υyi〉 is Ωxi . It is only the write view of an update,
and not its read-only view, which affects the definition of a guard. Thus, a guard
of 〈Ωxi ∨Ωzi ,υxizi〉 is Ωyi , and a guard of 〈Ωyi ∨Ωzi ,υyizi〉 is Ωxi .

The guard view need not be disjoint from the read-only view. For example,
given the update set υxiyi on Ωxi ∨Ωyi defined by the update rule xi←xi−yi,
the view Ωyi is a guard for 〈Ωxi ∨Ωyi ,υxiyi〉. However, Ω(r)

xiyi
= Ωyi as well, so

the guard and the read-only view are the same in this case.

Observation 4.14 (Guards always exist). Given 〈Γ,u〉 ∈ UpdObj(V), the
complement Γ (w) of the associated write view is always a guard view for Γ . Thus,
every updateable object has a guard. �

Definition 4.15 (Minimal and least guards). Let 〈Γ,u〉 ∈ FUpdObj(VVV).
Then Γ ′ ∈ GuardsVVV 〈Γ,u〉 is is a minimal guard view for 〈Γ,u〉 if for any guard
Γ ′′ for 〈Γ,u〉, if Γ ′′ �D Γ ′, then Γ ′′ = Γ ′. A unique minimal guard view is least.

It is always desirable to choose a minimal guard, because it will be the inde-
pendence of the guard view of one transaction from the write view of another
which will prove to be the critical property in characterizing schedules which are
constraint preserving.

Example 4.16 (Least guards need not exist). While a minimal guard may
always be chosen, it is not the case that least guards always exist. For example,
if the constraint yi = zi is added to the schema E2 of Examples 4.3, then
both Ωyi and Ωzi are guards for 〈Ωxi ,υxi〉. Of course, these are effectively the
same. In general, it can be shown that the choice of a minimal guard does not
matter. Roughly, the reason is that if a transaction T1 writes a guard of another
transaction T2 in way which affects which updates T2 may perform legally, then
it must write all guards of T2. Otherwise, some guards would allow updates
which others would not, which is not consistent with the definition of guard.

Definition 4.17 (Independent and conflicting pairs of guarded trans-
actions). Two transactions are guard independent if at least one does not write
the guard of the other. In other words, they do not each have a read-write depen-
dency on the other, with respect to reading the guard view only. More formally,
the two element set {T1, T2} ⊆ GBBTransVVV forms a guard-independent pair if
{T1, T2} is nonoverlapping and at least one of Γ (w)

T2
∧Γ (g)

T1
= ⊥ and Γ (w)

T1
∧Γ (g)

T2
= ⊥

holds. A pair {T1, T2} which is not guard independent is guard-conflicting, and
T1 and T2 are then said to be in guard conflict with each other.

Examples 4.18 (Independent and conflicting pairs). Continuing with
Examples 4.13, {τxi , τyi} form a guard-conflicting pair, since each reads the
guard of the other. On the other hand, for distinct i and j, τxi and τxj are
guard independent, since neither writes the guard of the other. To illustrate the
interesting middle ground, define τx′

i
to be the transaction on Ωxi which imple-

ments the update rule xi←xi + 50. Then {τx′
i
, τyi} forms a guard independent
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pair, since the least guard of τx′
i
is ⊥; i.e., its update is always legal. As will be

shown next, guard independence implies write commutativity, and this example
illustrates the intuition behind this. Even though τx′

i
writes the guard of τyi ,

which is Ωxi itself, it does so in a “harmless” way. Because τx′
i
does not read yi,

it cannot make any updates whose legality depends upon the value of yi.

Proposition 4.19 (Guard independence ⇒ write commutativity). Ev-
ery {T1, T2} ∈ GBBTransVVV which is guard independent forms a write-commuting
pair.

Proof. Let {T1, T2} ⊆ GBBTransVVV . Without loss of generality, assume that
Γ (w)

T2
∧ Γ (g)

T1
= ⊥. Let M ∈ LDB(D) and let any u1 ∈ Proj〈Γ (w)

1 |M〉〈〈Γ1,u1〉〉,
u2 ∈ Proj〈Γ (w)

2 |M〉〈〈Γ2,u2〉〉, with both LiftD〈〈Γ (w)

T1
, {u1}〉〉(M)↓ ∈ LDB(D) and

LiftD〈〈Γ (w)

T2
, {u2}〉〉(M)↓ ∈ LDB(D). It is immediate that LiftD〈〈Γ (w)

T2
, {u2}〉〉 ◦

LiftD〈〈Γ (w)

T1
, {u1}〉〉(M)↓∈ LDB(D), since {T1, T2} is nonoverlapping and T2 does

not write the guard of T1, so the update which T2 performs does not affect the
legality of the update which T1 performs.

For the opposite direction, first note that it is the case that
LiftD〈〈Γ (w)

T1
, {u1}〉〉 ◦ LiftD〈〈Γ (w)

T2
, {u2}〉〉(M) ↓∈ DB(D) since the write views are

nonoverlapping; i.e., Γ (w)

1 ∧ Γ (w)

2 = ⊥. The only question is whether the result is
in LDB(D). However, again since Γ (w)

1 ∧Γ (w)

2 = ⊥, the two compositions must be
identical; i.e., LiftD〈〈Γ (w)

T1
, {u1}〉〉 ◦ LiftD〈〈Γ (w)

T2
, {u2}〉〉(M) = LiftD〈〈Γ (w)

T2
, {u2}〉〉 ◦

LiftD〈〈Γ (w)

T1
, {u1}〉〉(M). This shows that the composition LiftD〈〈Γ (w)

T1
, {u1}〉〉 ◦

LiftD〈〈Γ (w)

T2
, {u2}〉〉(M) ∈ LDB(D), as required. Hence {T1, T2} forms a write

commuting pair. �

The main theorem of this paper may now be established.

Theorem 4.20 (Guard independence guarantees constraint preserva-
tion). Let T be a finite subset of GBBTransVVV , and let <T be an SI-schedule for
T. If every concurrent pair of <T is guard independent, then <T is constraint
preserving.

Proof. The proof follows immediately from Theorem 4.11 and Proposition
4.19. �

Discussion 4.21 (Constraint-Preserving Snapshot Isolation (CPSI)).

In an SI-schedule <T , there is an rw-dependency from T1 to T2, written T1
rw−→

T2, if T2 writes the read set of T1. Within the context of the formalism of this
paper, this translates to Γ (w)

T1
∧ (Γ (r)

T2
∨ Γ (g)

T2
) �= ⊥, since to operate correctly,

a transaction T must read both its update view ΓT (in order to know which
update to execute) and its guard view Γ (g)

T (in order to determine whether that
update is legal). In the implementation of SSI, as described in [5], the critical
notion is the dangerous structure, which consists of two consecutive read-write
dependencies of concurrent pairs in the conflict graph; that is, two dependencies
of the form T1

rw−→ T2 and T2
rw−→ T3 with {T1, T2} and {T2, T3} concurrent pairs.

The absence of such a pair of dependencies is sufficient, but not necessary, for
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an SI-schedule to be serializable. Necessity requires that it be part of a cycle in
the conflict graph. Working with this same model, the results of this paper show
that for such a dangerous structure to lead to a constraint violation, it must
be the case that T1 = T3. Thus, a much simpler test suffices if only constraint
violation is to be flagged.

An approach with fewer false positives may be obtained by working only with
guard reads. More precisely, say that there is a gw-dependency from T1 to T2

if T2 writes the guard of T1; i.e., Γ (w)

2 ∧ Γ (g)

T1
�= ⊥, and write T1

gw−→ T2 to
denote this. Call {T1, T2} a dangerous gw-pair if it forms a concurrent pair for

which both T1
gw−→ T2 and T2

gw−→ T1 hold. Theorem 4.20 guarantees that an SI-
schedule will be constraint preserving in the absence of such pairs. This strategy,
called constraint-preserving snapshot isolation (CPSI), has false positives only
to the extent that two transactions could each write the guard of the other
without causing a constraint violation. This is of course possible, but the general
assumption in transaction management is that the manager only knows which
objects are read and written, not how they are written or how the writes are
used. With that understanding, there would be no false positives, since there is
always some update to the guard which would cause a constraint violation.

A correct implementation would of course require that the system be able to
identify which reads of a transaction are to the guard. This could be done, for
example, in a context of fixed transactions for business processes by having such
guards known to the transaction manager.

Example 4.22 (Dangerous structures which do not result in constraint
violations). To illustrate the ways that the multiversion conflict graph may con-
tain dangerous structures yet be free of dangerous gw-pairs, return to the context
of E2, as described in Examples 4.3, and consider three concurrent transactions:
τ1 operates on Ωx1 ∨Ωx2 via the rule x1←x1−x2, τ2 operates on Ωx1 ∨Ωx2 via
the rule x2←x2 − x1, and τ3 operates on Ωx2 ∨Ωy1 via the rule y1←y1 + |x2|.
It is assumed that each transaction performs the given update if it would not
result in a constraint violation (when run in isolation), and performs the identity
update otherwise. The multiversion conflict graph for these three transactions
is shown in Fig. 3. Note in particular that although τ3 reads x2, it uses only its
absolute value in the computation of the new value for y1, and so Ωx2 is not in
its guard.

Observe that this graph contains two cycles. The first, between τ1 and τ2,
involves only rw-edges. The second, between τ2 and τ3, involves one gw-edge and
one rw-edge. Although both of these cycles define dangerous structures, as do the

sequences τ1
rw−→ τ2

gw−→ τ3 and τ3
rw−→ τ2

rw−→ τ1, none represents a dangerous
gw-pair. Since a constraint violation can occur only if there is a (two-vertex)
cycle consisting of gw-edges, no constraint violation is possible when running
under SI, provided that each transaction individually respects all constraints.
even though the result need not be serializable. Thus, while SSI and even PSSI
would force at least one of these transactions to terminate, with CPSI all may
run to completion.
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τ1 τ2 τ3

rw〈x1〉

rw〈x1〉

gw〈y1〉

rw〈y1〉

Fig. 3. An SI conflict graph with dangerous structures but no dangerous gw-pairs

5 Conclusions and Further Directions

A method for identifying conflicts leading to violations of integrity constraints
in transactions whose concurrency is governed by snapshot isolation has been
presented. In contrast to methods for ensuring full serializability, the method of
identification involves only pairs of transactions, and may be tested fully. without
concern for false positives. It promises to have application in settings in which
aborting and or delaying the execution of transactions is not a viable option.

There are several key areas for further work on this subject.

Strategies for revising transactions: The motivation for this work arose
from earlier studies on cooperative updates [13,11]. The focus there is partic-
ularly upon interactive, long-running business processes in which abort and
restart for transactions is not an option. Rather, the best strategy in such set-
tings would seem to be to identify methods for cooperative revision of updates
in the case of conflict. The current work is constitutes a substantial step in
that direction, in that the conflicts which are considered are between pairs of
transactions, rather than large sets. The goal of exploiting the current work in
that context is a subject for further study.

Integration with work on independence and overlap: In [10], the
foundations for a theory of structured data objects for transactions is devel-
oped. These structured objects have both writeable parts and read-only parts,
with the read-only parts allowed to overlap, even for writeable objects. As that
work was also motivated by work on cooperative updates, an integration of
those results with the ideas of this paper would likely prove a fruitful area for
study.
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Abstract. Akhtar et al. introduced equality-generating constraints and
functional constraints as an initial step towards dependency-like integrity
constraints for RDF data [1]. Here, we focus on functional constraints.
The usefulness of functional constraints is not limited to the RDF data
model. Therefore, we study the functional constraints in the more gen-
eral setting of relations with arbitrary arity. We show that a chase algo-
rithm for functional constraints can be normalized to a more specialized
symmetry-preserving chase algorithm. This symmetry-preserving chase
algorithm is subsequently used to construct a sound and complete ax-
iomatization for the functional constraints. This axiomatization is in par-
ticular applicable in the RDF data model, solving a major open problem
of Akhtar et al.

Keywords: functional constraints, chase algorithm, axiomatization.

1 Introduction

Usually, data is subject to integrity constraints implied by the semantics of the
data. Formalizing these constraints can help reasoning over the data and help
identifying inconsistencies in the data. As such, formal constraints play a major
role in database management systems that automatically maintain integrity of
the data and optimize query evaluation.

For the relational data model, many types of constraints have been inves-
tigated. Among the simplest constraints are the functional dependencies [2].
Functional dependencies play an important role in the well-known Boyce-Codd
normal form [3] and in relational schema normalization in general. Besides the
functional dependencies, many other dependencies have been investigated (see,
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e.g., [4,5]). One of these, the equality-generating dependencies [4], is a natural
generalization of the functional dependencies.

For the RDF and XML graph data models, a large body of work on the
integrity of data focuses on the schema of the data. Examples are RDF Schema
and, for the XML data model, DTDs and XSDs. The usage of dependency-like
constraints is less common for these data-models although initial steps have been
made (e.g. [1,6,7,8,9,10,11,12,13]).

An example of dependency-like constraints for the RDF data model are
the equality-generating constraints and the functional constraints of Akhtar et
al. [1,14]. Equality-generating constraints specify patterns that can occur in RDF
data, together with equalities that should hold on these patterns. As such, the
equality-generating constraints are similar to the equality-generating dependen-
cies of Beeri and Vardi [4], to the equality-generating fragment of the implica-
tion dependencies of Fagin [15], and to the full equality-generating dependencies
of Wijsen [16]. In these dependencies, the generality of patterns, which allow
constants and are untyped, is only matched by the full equality-generating de-
pendencies of Wijsen.

Functional constraints are a generalization of functional dependencies on
ternary RDF relations and have the form

(P ,L→ R),

where P specifies a pattern in the RDF data and L and R are sets of variables
occurring in this pattern. Their semantics is comparable to that of the functional
dependencies: if two parts of the RDF data match the pattern and are equal on
L, then they must also be equal on R.

Example 1. Consider the family tree visualized in Figure 1.

Alexis

Alexia

Alexander

fatherOf

motherOf

Alexandra

fatherOf

motherOf

Fig. 1. Simplified visualization of an RDF representation of a small family tree

On this data, the constraint “a child only has one biological father and
mother” holds. This constraint can be expressed by the functional constraints
({($p, fatherOf, $c)}, $c→ $p) and ({($p,motherOf, $c)}, $c→ $p). The stronger
constraint “children have only one biological parent”, which can be expressed by
({($p, $t, $c)}, $c→ $p), does not hold on this data.

The functional constraints are subsumed by the equality-generating constraints
of Akhtar et al. [1]. Although we shall sometimes refer to equality-generating
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constraints to describe the general context of this research, the focus here is on
functional constraints. We shall consider functional constraints on relations of ar-
bitrary arity, as the restriction to ternary patterns, as used in the RDF datamodel,
is non-essential.

Functional constraints allow the expression of several types of integrity con-
straints; these include traditional functional dependencies [2], context-dependent
functional dependencies, and constraints on the structure of graphs (described
by an edge relation), as illustrated by the following examples.

Example 2. Consider the following relation schema for storing personal informa-
tion: PI(name, ssn, address, number, city, postal-code, country), where ssn is the
social security number. It is natural to add the functional dependency ssn →
name to this scheme. We can express this functional dependency by the func-
tional constraint ({($na, $s, $a, $nu, $ci , $p, $co)}, $s→ $na).

Many integrity constraints are context-dependent. The functional constraints
can use patterns and constants in patterns to restrict the context of a standard
functional dependency to a subset of the relation.

Example 3. The information represented by postal codes is context-dependent.
In the Netherlands, the postal code and house number uniquely identify an
address, but this is not the case in Belgium. We thus use a constant for the
country to make the functional dependency postal-code, number → address, city
context-dependent: ({($na, $s, $a, $nu, $ci , $p, NL)}, $p$nu → $a$ci).

Observe that functional constraints are not the only generalization of the func-
tional dependencies which allow the expression of context-dependent functional
dependencies. Other examples include conditional functional dependencies [17]
and qualified functional dependencies [18]. The conditional functional dependen-
cies define functional dependencies over a tableau with constants and blanks. The
qualified functional dependencies allow the specification of views in which func-
tional dependencies should hold. Patterns are conceptually related to tableaux
and to views as tableau queries. Even though functional constraints, conditional
functional dependencies, and qualified functional dependencies are related in
this way, functional constraints on the one hand and conditional and qualified
functional dependencies on the other hand are incomparable, as is argued next.

Example 4. The constraint “Ireland does not have postal codes” can obviously
not be expressed as a functional constraint. By using constants in the right-
hand side, however, we can express it as the conditional functional dependency
({($na, $s, $a, $nu, $ci , $p, IE)}, ∅ → [$p = null]).1

The use of free variables and constants in patterns cannot be simulated by
the tableaux or views used in conditional and qualified functional dependencies,
however.

1 We adapted the original notation of conditional functional dependencies to better
match our notation of functional constraints.
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Because of the use of free variables and constants in patterns, patterns may
also match specific structures in the relation. This is particularly useful if the
underlying relation represents a graph. In this setting, functional constraints
may impose structural constraints.

Example 5. Let Edge(from, to) be a binary relation schema representing the edge
relations of a graph. The functional constraint ({($n, $n)}, ∅ → $n) expresses
that there is at most one node with a self-loop. The pattern {($n, $m), ($m, $n)}
in the functional constraint ({($n, $m), ($m, $n)}, $n → $m) matches cycles
(closed paths) of length 2 (including self-loops). Consider two pairs of such cycles
starting in node v. By the constraint, the second node in both cycles must be
equal, and thus the latter constraint expresses that every node v is part of at
most one cycle of length 2.

For the functional dependencies in the relational data model, a sound and
complete axiomatization is long known [19]. Akhtar et al. presented a sound
and complete axiomatization for the equality-generating constraints in the RDF
data model [1]. As functional constraints are subsumed by equality-generating
constraints, this axiomatization can also be used for the inference of functional
constraints only. In this case, intermediate inference steps can generate equality-
generating constraints that are not necessarily equivalent to functional con-
straints, unfortunately. Akhtar et al. identified the existence of a sound and
complete axiomatization of functional constraints (not including other types of
constraints) as a major open problem. On the one hand, the Armstrong ax-
iomatization for the functional dependencies [19] can be generalized to the set-
ting of functional constraints. This generalization, however, lacks the reasoning
power over patterns necessary for a complete axiomatization. On the other hand,
there is no straightforward way to specialize the axiomatization of the equality-
generating constraints to functional constraints only.

In this paper, we present a sound and complete axiomatization for the func-
tional constraints over relations of arbitrary arity. In particular, the case of
ternary relations yields a sound and complete axiomatization for the functional
constraints in the RDF data model, thereby positively solving the open problem
of Akhtar et al. [1].

The key insight that led to the breakthrough is that the chase algorithm for
equality-generating constraints [1]—which is a variation of the standard chase al-
gorithm [20,21]—can be normalized to a more specialized, symmetry-preserving,
chase algorithm when applied to functional constraints only. The main idea be-
hind the symmetry-preserving chase algorithm is that, due to their semantics,
chases for functional constraints always start with tableaux that are symmetric.
We prove that during such chases one can always maintain this symmetry in the
tableau. Such a symmetry-preserving chase can be described as a sequence of in-
ferences of functional constraints, which in turn leads to the sound and complete
axiomatization.

Organization. In Section 2, we present the necessary definitions used through-
out this paper. In Section 3, we introduce generalized functional constraints and
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equality-generating constraints. In Section 4, the chase algorithm for equality-
generating constraints is specialized to functional constraints and subsequently
normalized to the symmetry-preserving chase algorithm. In Section 5, we present
a sound axiomatization for the functional constraints which suffices to simulate
every symmetry-preserving chase, and which is therefore also complete. In Sec-
tion 6, we conclude on our findings and discuss directions for future work.

2 Preliminaries

Functional and equality-generating constraints [1] have originally been intro-
duced in the context of the RDF data model. In this model, RDF data are
usually represented by a single ternary relation. In the Introduction, we have
already argued that functional and equality-generating constraints are useful in
a wider range of data models. We therefore generalize functional and equality-
generating constraints to relations of arbitrary arity. The following notations and
definitions will be used throughout the paper.

We consider disjoint infinitely enumerable sets U and V of constants and
variables, respectively. For distinction, we usually prefix variables by “$”. A
term is either a constant or a variable. Hence, the set T of all terms equals
U ∪ V. A tuple of arity n is a sequence (t1, . . . , tn) of terms. A pattern of arity n
is a finite set of tuples of arity n. If P is a pattern, then VP denotes the set of
all variables in P . A relation R of arity n is a pattern of arity n with VR = ∅.

We define the domain, range, and inverse of a function f in the usual way
and denote these by domain(f), range(f), and f−1, respectively. Two functions
f and g agree on a set S, denoted by f =S g, if f(x) = g(x) for all x ∈ S. The
restriction of a function f to a set S is defined as f |S = {(x, y) | x ∈ S, y = f(x)}.
The identity on a set S is defined as idS = {(s, s) | s ∈ S}. The extension with
identity of a function f to a set S, S ∩ domain(f) = ∅, is f ∪ idS .

The term-based renaming function φa1←↩b1,...,ai←↩bi , a1, b1, . . . , ai, bi ∈ T , is
the function on T for which φa1←↩b1,...,ai←↩bi(bj) = aj , j = 1, . . . , i, and which
is the identity elsewhere. Likewise, the function-based renaming function Φf←↩g,
with f a function and g an injective function on the same set of variables, is the
function on T for which Φf←↩g(g($v)) = f($v), $v ∈ domain(g) = domain(f),
and which is the identity elsewhere. Notice that this function is well defined due
to the injectivity of g.

A function f on terms is extended to tuples, patterns, and sets in the following
natural way: for a tuple (t1, . . . , tn), f((t1, . . . , tn)) = (f(t1), . . . , f(tn)), and, for
a set S, f(S) = {f(s) | s ∈ S}.

For two patterns P and Q, a function e : VP ∪ U → T is an embedding of P
into Q if e|U = idU and e(P) ⊆ Q.

We finally review some notation and terminology that can be applied to any
type of constraint. “Relation R satisfies constraint C” is denoted by R |≡ C .
A relation R satisfies a set of constraints C, denoted by R |≡ C, if, for every
C ∈ C, R |≡ C . If C1 and C2 are sets of constraints then C1 implies C2, denoted
by C1 |= C2, if, for every relation R with R |≡ C1, we have R |≡ C2. For a set
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of constraints C and a single constraint C , we write C |= C for C |= {C}. The
sets of constraints C1 and C2 are equivalent, denoted by C1 ≡ C2, if C1 |= C2 and
C2 |= C1. If, in this notation, Ci, i = 1 and/or i = 2, is a singleton set {Ci}, we
write Ci for Ci, as before. “Constraint C can be derived from set of constraints
C using the set of axioms R” is denoted by C �R C . We usually omit R if R is
clear from the context. The set R is sound if, for all sets of constraints C and
for all single constraints C , C �R C implies C |= C ; it is complete if, for all sets
of constraints C and for all single constraints C , C |= C implies C �R C . A set
of axioms is an axiomatization if it is sound, complete, and recursive.

3 Functional Constraints

We formally define functional constraints on n-ary relations.

Definition 1. A functional constraint is a pair (P ,L → R), where P is a
nonempty pattern and L,R ⊆ VP .

If C = (P ,L→ R) is a functional constraint, then P is the pattern of C , L is
the left-hand side of C , and R is the right-hand side of C .

Definition 2. Let R be a relation and let C = (P ,L → R) be a functional
constraint. Then R satisfies C if, for every pair of embeddings e1 and e2 of P
into R with e1 =L e2, we have e1 =R e2.

As already mentioned, the functional constraints are a strict subclass of the
equality-generating constraints, and the functional constraints are a generaliza-
tion of the functional dependencies. Below, we formalize these relationships in
our setting. This allows us to apply results for equality-generating constraints
to functional constraints, and to generalize results for functional dependencies
to functional constraints.

3.1 Equality-Generating Constraints

We formally define equality-generating constraints on n-ary relations.

Definition 3. An equality-generating constraint is a pair (P ,E ), where P is a
nonempty pattern and E is a set of equalities of the form t1 = t2 with t1, t2 ∈
VP ∪ U .
Definition 4. Let R be a relation and let C = (P ,E ) be an equality-generating
constraint. Then R satisfies C if, for every embedding e of P into R and every
equality (t1 = t2) ∈ E, we have e(t1) = e(t2).

Akhtar et al. [1] already showed that every functional constraint can be writ-
ten as an equality-generating constraint. Adopted to our setting, their result is
as follows:

Proposition 1. Let Cfc = (P ,L → R) be a functional constraint. Let f1, f2 :
VP → V be injections with f1 =L f2 and range(f1|VP\L) ∩ range(f2|VP\L) = ∅.
Let Cegc = ((f1 ∪ idU)(P) ∪ (f2 ∪ idU)(P), {f1($r) = f2($r) | $r ∈ R}). Then
Cfc ≡ Cegc.



256 J. Hellings et al.

3.2 Functional Dependencies

We assume familiarity with the functional dependencies of Codd [2,5].

Proposition 2. Let C = L → R be a functional dependency over the relation
schema R = (A1, . . . , An) with L,R ⊆ {A1, . . . , An}. Consider the functional
constraint Cfc = ({(A1, . . . , An)},L → R), in which the attribute names are
assumed to be variables. Then C ≡ Cfc.

The functional dependencies have a well-known axiomatization in the form
of Armstrong’s axioms, consisting of the three axioms reflexivity, augmentation,
and transitivity [19]. We generalize Armstrong’s axioms to our setting of the
functional constraints.

Proposition 3 (Reflexivity). Let P be a pattern. If R ⊆ L ⊆ VP , then
(P ,L→ R).

Proof (soundness). Let e1 and e2 be embeddings of P into a relation R with
e1 =L e2. We have R ⊆ L and hence also e1 =R e2. ��

Proposition 4 (Augmentation). If (P ,L → R) and V ⊆ VP , then (P ,L ∪
V → R ∪ V ).

Proof (soundness). Let e1 and e2 be embeddings of P into a relationR satisfying
(P ,L → R). If we have e1 =L∪V e2, then we have e1 =L e2 and e1 =V e2. By
e1 =L e2 and (P ,L→ R), we also have e1 =R e2 and hence e1 =R∪V e2. ��

Proposition 5 (Transitivity). If (P , V1 → V2) and (P , V2 → V3), then (P , V1
→ V3).

Proof (soundness). Let e1 and e2 be embeddings of P into a relationR satisfying
(P , V1 → V2) and (P , V2 → V3). If e1 =V1 e2, then, by (P , V1 → V2), we have
e1 =V2 e2, and, by (P , V2 → V3), we have e1 =V3 e2. ��

Since Armstrong’s axioms also hold for functional constraints, it follows that
the well-known decomposition and union rules also hold for functional con-
straints.

Lemma 1. Let Cfc = (P ,L→ R) be a functional constraint. Then

Cfc ≡ {(P ,L→ $r) | $r ∈ R}.

From now on, we assume that every functional constraint has at most one
variable in its right-hand side. By Lemma 1, all our results generalize to arbitrary
functional constraints.
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4 Chasing Functional Constraints

For equality-generating constraints, a chase-based algorithm is known to de-
cide implication [1]. We use the relationship between functional and equality-
generating constraints described in Proposition 1 to construct a chase-based al-
gorithm that decides implication of functional constraints, shown as Algorithm 1.

The entries in the tableau constructed in Algorithm 1 can be either constants
of U or dedicated tableau variables, which we shall denote by capitals. These
tableau variables intuitively correspond to the variables in the pattern of the
target constraint. To this purpose, we assume the existence of an infinitely enu-
merable set V of tableau variables. Further, we assume that V is disjoint from
both U and V.2 We generalize embeddings in a straightforward way to also allow
embeddings from and to tableaux.

Algorithm 1. Chase for functional constraints

Input: A set of functional constraints C = {(Pi,Li → $ri) | 1 ≤ i ≤ n}
A functional constraint Cfc = (P ,L → $r)

Output: C |= Cfc

1: let f1, f2 : VP → V be injections with f1 =L f2 and
range(f1|VP\L) ∩ range(f2|VP\L) = ∅

2: T ← (f1 ∪ idU )(P) ∪ (f2 ∪ idU )(P)
3: while there exist functional constraint (Pi,Li → $ri) ∈ C and

embeddings e1, e2 of Pi into T with e1 =Li e2 and e1($ri) �= e2($ri) do
4: /∗ equalize e1($ri) and e2($ri) in T ∗/
5: if e2($ri) ∈ V then
6: replace all occurrences of e2($ri) in T by e1($ri)
7: else if e1($ri) ∈ V then
8: replace all occurrences of e1($ri) in T by e2($ri)
9: else /∗ e1($ri), e2($ri) ∈ U and e1($ri) �= e2($ri) ∗/
10: return true
11: end if
12: end while
13: return T |≡ Cfc

In Algorithm 1, we refer to lines 5–8 as equalization steps, to lines 9–10 as
inconsistency termination, and to line 13 as regular termination. Inconsistency
termination indicates that the pattern P is inconsistent with the functional con-
straints in C, and, hence, that the implication under consideration is voidly true.
The following example illustrates the case of inconsistency termination.

Example 6. Consider the set of functional constraints C = {({($a, $b)}, $a →
$b)}. If the functional constraints in this set C hold on a relation R, then no em-
bedding of the pattern P = {($a,Constant1), ($a,Constant2)} with Constant1 �=
2 The distinction between V and V is not necessary, as these sets of variables are not
used in the same context. For clarity, however, we use different sets of variables.
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Constant2 into relation R is possible, and, hence, every functional constraint on
the pattern P holds. This is reflected by Algorithm 1: if a functional constraint
on P is chased by C, then inconsistency termination results and true is returned.

Theorem 1. Algorithm 1 is correct: it returns true if and only if C |= Cfc

holds.

Proof (sketch). Algorithm 1 implicitly translates the target functional constraint
Cfc to an equality-generating constraint. Indeed, at line 2, a tableau for the
pattern Pegc = (f1 ∪ idU )(P) ∪ (f2 ∪ idU)(P) is constructed. By Proposition 1,
Pegc is the pattern used by the equality-generating constraint equivalent to Cfc.

At line 3, considering two embeddings e1 and e2 of Pi into T with e1 =Li e2 is
equivalent to considering one embedding of the pattern of the equality-generating
constraint equivalent to (Pi,Li → $ri). Hence, Algorithm 1 can be interpreted
as a chase for an equality-generating constraint with equality-generating con-
straints. Therefore the correctness of Algorithm 1 follows directly from the cor-
rectness of the chase algorithm for equality-generating constraints [1]. ��

So, Algorithm 1 is essentially a chase algorithm for equality-generating con-
straints. As a consequence, it is to be expected that intermediate tableaux pro-
duced by this algorithm do not always correspond to non-trivial functional con-
straints. Hence, the corresponding functional constraints are not always relevant
to answering C |= Cfc. Example 7, below, shows that this is indeed not always
the case.

Example 7. We apply Algorithm 1 to the set of functional constraints

C = {({($a, $b, $c)}, $a→ $c), ({($a, $b, $c), ($a, $d, e)}, $b→ $a)}

and the target functional constraint Cfc = ({($a, $b, $c), ($a, $b, e)}, $b → $a).
We initially have the tableau

{(A1, B, C1), (A1, B, e), (A2, B, C2), (A2, B, e)} .

We can apply ({($a, $b, $c)}, $a → $c) to the first two tuples in this tableau,
yielding the tableau

{(A1, B, e), (A2, B, C2), (A2, B, e)} .

We can use Proposition 1 to search for a functional constraint with such a
pattern when translated to an equality-generating constraint. Let C = (P ,L→
R) be such a functional constraint. It is easily verified that the only way to
achieve this is by relating A1, A2, B, C2 to distinct variables $a1, $a2, $b, $c2 ∈ VP
for which L = {$a1, $a2, $b, $c2}. Since L contains all variables present in the
pattern, it follows that C must be trivial. Hence, the tableau we obtained does
not correspond to a functional constraint relevant to answering C |= Cfc.

Example 7 also illustrates the main problem of Algorithm 1. While the initial
chase tableau exhibits a certain symmetry, this symmetry is lost after perform-
ing the equalization. As a consequence, only trivial functional constraints can be
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associated with the resulting tableau. Luckily, Algorithm 1 is non-deterministic
in the equalization steps it performs. We shall take advantage of this to show
the existence of a symmetry-preserving chase, which we define formally in Defi-
nition 7. The steps performed by symmetry-preserving chases are closely related
to sound derivation steps for functional constraint in a way that shall be made
precise in Section 5. Before we can introduce symmetry-preserving chases, we
need some additional terminology.

Definition 5. Let T be a tableau. A tableau state of T is a 4-tuple consisting
of a pattern P ′, a set of variables L′ ⊆ VP ′ , and injections g1, g2 : VP ′ → V
with g1 =L′ g2, range(g1|VP′\L′)∩range(g2|VP′\L′) = ∅, and T = (g1 ∪ idU )(P ′)∪
(g2 ∪ idU )(P ′).

Given a tableau T , we denote a tableau state of T such as in Definition 5
by ST (P

′,L′, g1, g2), this to emphasize the relationship between the tableau and
the corresponding tableau state.

We can easily construct tableau states ST (P
′,L′, g1, g2) for every tableau T .

We simply map every tableau variable from V used in T to a unique variable,
yielding the pattern P ′, and pick L′ = VP ′ . Finally, g1 = g2 maps each variable
in VP ′ to the tableau variable in V it represents.

Example 8. A tableau state for the tableau {(A1, B, e), (A2, B, C2), (A2, B, e)} of
Example 7 is ST(P

′,L′, g1, g2) with P ′ = {($a1, $b, e), ($a2, $b, $c2), ($a2, $b, e)},
L′ = {$a1, $a2, $b, $c2}, and g1 = g2 the injective functions mapping $a1 to A1,
$a2 to A2, $b to B, and $c2 to C2.

Tableau states enjoy the following useful properties.

Lemma 2. Let ST (P
′,L′, g1, g2) be a state of tableau T . Then

1. The pattern (g1 ∪ idU)(P ′) is isomorphic to the pattern (g2 ∪ idU )(P ′).
2. For any tuple t ∈ T , also Φg1←↩g2(t) ∈ T and Φg2←↩g1(t) ∈ T .
3. ST (P

′,L′, g2, g1) is also a tableau state of T .

Proof. We have Lemma 2(1) as g1 and g2 are injections. Lemma 2(2) follows from
Lemma 2(1), g1 =L′ g2, and range(g1|VP′\L′)∩range(g2|VP′\L′) = ∅. Lemma 2(3),
finally, follows immediately from Definition 5. ��

Observe that the initial tableau in Algorithm 1 has state ST(P ,L, f1, f2). We
already noted that this initial tableau exhibits some symmetry due to the seman-
tics of functional constraints. We would like that, after a sequence of equalization
steps, the resulting tableau exhibits a similar symmetry. What we mean by this
is made precise in Definition 6, minding that a sequence of equalization steps
can be viewed as a mapping on tableau entries that maps a tableau into the
tableau resulting from the equalization steps.

Definition 6. Let m be a mapping on tableau entries, mapping a tableau T into
a tableau m(T ). The mapping m is symmetry-preserving on T if there exists a
tableau state ST (P

′,L′, g1, g2) of T and Sm(T )(P
′′,L′′, g′1, g′2) of m(T ) such that

m((g1 ∪ idU)(P ′)) = (g′1 ∪ idU )(P ′′) and m((g2 ∪ idU )(P ′)) = (g′2 ∪ idU)(P ′′).
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Definition 6 is visualized in Figure 2. By Lemma 2(1), (g1 ∪ idU )(P ′) and
(g2 ∪ idU )(P ′) are isomorphic, and so are (g′1 ∪ idU)(P ′′) = m((g1 ∪ idU)(P ′))
and (g′2 ∪ idU )(P ′′) = m((g2 ∪ idU )(P ′)). Hence, we can say that m preserves
the isomorphism between (g1 ∪ idU )(P ′) and (g2 ∪ idU )(P ′), explaining why we
call m “symmetry-preserving”.

T m(T )

P ′ P ′′g1 ∪ idU

g2 ∪ idU

g′1 ∪ idU

g′2 ∪ idU

m

Fig. 2. Visualization of Definition 6

Example 7 shows that not all sequences of equalization steps preserve sym-
metry. However, if an equalization step is possible in Algorithm 1, then also a
sequence of at most two equalization steps is possible which does preserve sym-
metry. Moreover, all equalization steps concerned use the same constraint. This
is shown next.

Theorem 2. Let T := T be the tableau of Algorithm 1 at line 3. If it is possible
to perform an equalization step using the functional constraint Ci ∈ C, then
it is also possible to perform a sequence of at most two equalization steps, both
using Ci, such that the composition of these equalization steps yields a symmetry-
preserving mapping on T .

Proof (sketch). Let ST (P
′,L′, g1, g2) be a tableau state of T .

If it is possible to perform an equalization with Ci = (Pi,Li → $ri), then,
by Lemma 2(3), we may assume, without loss of generality, that there exist
terms t1, t2 ∈ VP ′ ∪ U such that e1($ri) = (g1 ∪ idU)(t1), and either e2($ri) =
(g1 ∪ idU )(t2) or e2($ri) = (g2 ∪ idU )(t2). Observe that t1 and t2 cannot both
be constants. We now distinguish a number of cases. In each case, we suffice
with providing the required sequence of at most two equalization steps and the
resulting tableau T := T ′, together with a tableau state ST ′(P ′′,L′′, g′1, g′2).3

Using the provided tableau states for T and T ′, it is straightforward to verify
that the composition of the equalization steps is a symmetry-preserving mapping.

First, we consider all the cases where one of t1 and t2 is a variable, and
the other a constant. Since the roles of e1 and e2 are interchangeable, we may
assume, without loss of generality, that t1 = $v1 is a variable and t2 = u2 is a
constant. From the above, it follows that, in all these cases, e1($ri) = g1($v1)
and e2($ri) = u2.

3 From the provided tableau state ST ′(P ′′,L′′, g′1, g
′
2), it follows implicitly what P ′′,

L′′, g′1, and g′2 are.
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1. $v1 ∈ L′. Performing the equalization step using Ci, e1, and e2 results in the
tableau T ′ = φu2←↩g1($v1)(T ) with state

ST ′
(
φu2←↩$v1(P

′),L′ \ {$v1}, g1|VP′\{$v1}, g2|VP′\{$v1}
)
.

2. $v1 �∈ L′. By Lemma 2(2), the functions ε1 = Φg2←↩g1◦e1 and ε2 = Φg2←↩g1◦e2
are embeddings of Pi into T . Since (g1 ∪ idU )($v1) = g1($v1) = e1($ri) �=
e2($ri) = u2 = (g1 ∪ idU )(u2), we have, by Lemma 2(1), that ε1($ri) =
g2($v1) = (g2 ∪ idU )($v1) �= (g2 ∪ idU )(u2) = u2 = ε2($ri). The equalization
step using Ci, e1, and e2 on T only affects tuples in (g1 ∪ idU )(P ′) as e1($ri) �∈
range(g2). Hence, after the equalization step, ε1 and ε2 are embeddings of
Pi into the resulting tableau with ε1($ri) �= ε2($ri), and, by construction,
we have ε1 =L′ ε2. Therefore, we can perform a second equalization step
using Ci, ε1, and ε2. Performing this second equalization step results in the
tableau T ′ = φu2←↩g1($v1),u2←↩g2($v1)(T ) with state

ST ′
(
φu2←↩$v1(P

′),L′, g1|VP′\{$v1}, g2|VP′\{$v1}
)
.

Next, we consider all the cases where t1 = $v1 and t2 = $v2 are both variables,
and where e2($ri) = g1($v2). Observe that $v1 �= $v2 since e1($ri) �= e2($ri).

3. Both $v1 and $v2 are in L′. Performing the equalization step with Ci, e1,
and e2 results in the tableau T ′ = φg1($v1)←↩g2($v2)(T ) with state

ST ′
(
φ$v1←↩$v2(P

′),L′ \ {$v2}, g1|VP′\{$v2}, g2|VP′\{$v2}
)
.

4. At least one of $v1 and $v2 is not in L′. Since the roles of e1 and e2 are inter-
changeable, we may assume, without loss of generality, that $v2 �∈ L′. As in
Case 2, we can perform a second equalization step following the equalization
step with Ci, e1, and e2. Performing this second equalization step results in
the tableau T ′ = φg1($v1)←↩g1($v2),g2($v1)←↩g2($v2)(T ) with state

ST ′
(
φ$v1←↩$v2(P

′),L′, g1|VP′\{$v2}, g2|VP′\{$v2}
)
.

Finally, we consider all the cases where t1 = $v1 and t2 = $v2 are both variables,
and where e2($ri) = g2($v2).

5. $v1 = $v2 = $v. As g1 =L′ g2 and e1($ri) �= e2($ri), we must have $v �∈
L′. The equalization step using Ci, e1, and e2 results in the tableau T ′ =
φg1($v)←↩g2($v)(T ) with state

ST ′
(
P ′,L′ ∪ {$v}, φg1($v)←↩g2($v) ◦ g1, φg1($v)←↩g2($v) ◦ g2

)
.

6. $v1 �= $v2. By Lemma 2(2), ε1 = Φg1←↩g2 ◦ e1 and ε2 = Φg1←↩g2 ◦ e2 are
embeddings of Pi into T . By construction and the injectivity of g1, we have
ε1($ri) = (g1 ∪ idU)($v1) �= (g1 ∪ idU)($v2) = ε2($ri) and ε1 =L′ ε2. Instead
of performing the equalization using Ci, e1, and e2, we perform the equal-
ization using Ci, ε1, and ε2. Hence, Case 6 has been reduced to Cases 3
and 4. ��
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We refer to each sequence of at most two equalization steps from tableau T
to tableau T ′, considered in the proof of Theorem 2, as a symmetry-preserving
step. We refer to the symmetry-preserving step in Case i, 1 ≤ i ≤ 5, in the proof
of Theorem 2 as the symmetry-preserving step of type i.4

Definition 7. Executions of Algorithm 1 consisting of a sequence of symmetry-
preserving steps and in which inconsistency termination occurs if no equalization
steps can be performed, are called symmetry-preserving chases.

Based on Definition 7 and on Theorem 2 we specialize Algorithm 1 to a
symmetry-preserving chase algorithm, shown as Algorithm 2. Notice that we use
the non-deterministic nature of Algorithm 1 to delay inconsistency termination
to the latest-possible moment. By delaying inconsistency termination, we are
able to perform equalization steps until no such step is possible anymore, and
only then, when necessary, perform inconsistency termination.

Algorithm 2. Symmetry-preserving chase for functional constraints

Input: A set of functional constraints C = {(Pi,Li → $ri) | 1 ≤ i ≤ n}
A functional constraint Cfc = (P ,L → $r)

Output: C |= Cfc

1: let f1, f2 : VP → V be injections with f1 =L f2 and
range(f1|VP\L) ∩ range(f2|VP\L) = ∅

2: T ← (f1 ∪ idU )(P) ∪ (f2 ∪ idU )(P)
3: /∗ ST(P ,L, f1, f2) is a tableau state of T ∗/
4: while an equalization step can be performed using functional constraint

(Pi,Li → $ri) ∈ C and embeddings e1, e2 of Pi into T with
e1 =Li e2 and e1($ri) �= e2($ri) do

5: perform the corresponding symmetry-preserving step
(cf. the proof of Theorem 2)

6: end while
7: if inconsistency termination then
8: return true
9: else
10: return T |≡ Cfc

11: end if

Theorem 2 now immediately yields the following.

Corollary 1. Algorithm 2 is correct: it returns true if and only if C |= Cfc

holds.

5 Axiomatization for the Functional Constraints

Let C be a set of functional constraints and let Cfc = (P ,L → $r) be a single
functional constraint for which C |= Cfc. By simulating a symmetry-preserving

4 We have no symmetry-preserving step of type 6, as Case 6 in the proof of Theorem 2
has been reduced to Cases 3 and 4.
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chase for C |= Cfc (Algorithm 2), by a derivation of functional constraints us-
ing sound derivation rules, we construct an axiomatization for the functional
constraints which must be complete by Corollary 1.

First, we consider the (base) cases where the chase terminates immediately
without performing symmetry-preserving steps. By the restricted reflexivity ax-
iom, below, we mean the specialization of the reflexivity axiom in which only
functional constraints are derived with at most one variable in the right-hand
side.

Lemma 3. If only regular termination is possible in a symmetry-preserving
chase for C |= Cfc, then Cfc can be derived using the restricted reflexivity axiom.

Proof. Consider a symmetry-preserving chase for C |= Cfc. If initially only
regular termination is possible, then this chase is also a successful symmetry-
preserving chase for ∅ |= Cfc. It follows that T |≡ Cfc, with T the initial tableau
constructed in lines 1–2 of Algorithm 2. This implies f1($r) = f2($r), which in
turn implies $r ∈ L. Hence, Cfc can be derived using the restricted reflexivity
axiom. ��

For the case where initially only inconsistency termination is possible, we
introduce the inconsistency axiom, of which we prove the soundness next.

Proposition 6 (Inconsistency). If (P ′,L′ → $r′), if there exist two embed-
dings of P ′ into a pattern P which agree on L′ ∈ VP ′ and map $r′ to different
constants of U , and if $r ∈ VP , then (P ,L→ $r).

Proof (soundness). Let e be an embedding of P into a relation R satisfying
(P ′,L′ → $r′). Let h1 and h2 be two embeddings of P ′ into P satisfying the
conditions of Proposition 6. Then, clearly, ε1 = e ◦ h1 and ε2 = e ◦ h2 are
embeddings of P ′ into R with ε1 =L′ ε2 and ε1($ri) �= ε2($ri). Hence, if there is
an embedding of P into R, then there exist two embeddings e1 and e2 of P ′ into
R that agree on L′, but not on $r′. Hence, embeddings e1 and e2 show that R
violates the functional constraint (P ′,L′ → $r′), a contradiction. We conclude
that there is no embedding of P into R, as a consequence of which R voidly
satisfies (P ,L→ $r). ��

We observe that the inconsistency axiom can be used in Example 6 to derive
(P ,L→ $r) from C. We now generalize this observation.

Lemma 4. If initially only inconsistency termination is possible in a symmetry-
preserving chase for C |= Cfc, then Cfc can be derived from C using the incon-
sistency axiom.

Proof. Consider a symmetry-preserving chase for C |= Cfc. If inconsistency ter-
mination is possible, then there exists a functional constraint Ci = (Pi,Li →
$ri) ∈ C and embeddings e1, e2 of Pi into T with e1 =Li e2, e1($ri) �= e2($ri),
and e1($ri), e2($ri) ∈ U . The embeddings e1 and e2 map Pi into T and the
function (f1

−1 ∪ f2
−1 ∪ idU ), which is well defined, maps T into P . Hence,
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h1 = (f1
−1 ∪ f2

−1 ∪ idU) ◦ e1 and h2 = (f1
−1 ∪ f2

−1 ∪ idU) ◦ e2 are embed-
dings of Pi into P with h1 =Li h2, h1($ri) �= h2($ri), and h1($ri), h2($ri) ∈ U .
Hence, Cfc can be derived from Ci using the inconsistency axiom. ��

Next, consider the case where the chase for C |= Cfc initially performs a
symmetry-preserving step. We introduce the axioms pattern-modification and
left-modification to deal with this case.

Proposition 7 (Pattern-modification). Let P be a pattern, L ⊆ VP , t ∈
VP ∪ U , and $r, $v ∈ VP . If (P ′,L′ → $r′), and (φt←↩$v(P), φt←↩$v(L) ∩ VP →
{φt←↩$v($r)} ∩ VP ), and if there exists two embeddings of P ′ into P which agree
on L′ and map $r′ to t and $v, respectively, then (P ,L→ $r).

Proof (soundness). Let e be an embedding of P into a relation R satisfying
(P ′,L′ → $r′) and (φt←↩$v(P), φt←↩$v(L)∩VP → {φt←↩$v($r)} ∩VP ). Let h1 and
h2 be two embeddings of P ′ into P satisfying the conditions of Proposition 7.
Then, ε1 = e ◦ h1 and ε2 = e ◦ h2 are embeddings of P ′ into R with ε1 =L′ ε2.
By (P ′,L′ → $r′), we have ε1($r

′) = ε2($r
′), and hence e(t) = e($v). Hence,

e|domain(e)\{$v} is an embedding of φt←↩$v(P) into R.
Now, let e1 and e2 be two embeddings of P into R with e1 =L e2. From

the above, ε1 = e1|domain(e1)\{$v} and ε2 = e2|domain(e2)\{$v} are embeddings of
φt←↩$v(P) into R satisfying ε1 =φt←↩$v(L) ε2, and hence, also ε1 =φt←↩$v(L)∩VP

ε2.
By (φt←↩$v(P), φt←↩$v(L)∩VP → {φt←↩$v($r)}∩VP ), we have ε1 ={φt←↩$v($r)}∩VP

ε2, and, hence, we have ε1 ={φt←↩$v($r)} ε2. As e1(t) = e1($v) and e2(t) = e2($v),
we also have e1($r) = e2($r), even if $r = $v. ��

Generally speaking, the pattern-modification axiom modifies the pattern of a
functional constraint. More specifically, the axiom generalizes the pattern of a
constraint due to constraints imposed by other functional constraints.

Example 9. Consider the set of functional constraints

C = {({($a, $b, $c)}, $a→ $c), ({($a, $b, $c), ($a, $b, e)}, $b→ $a)}

and the target functional constraint Cfc = ({($a, $b, e)}, $b → $a). We can
derive Cfc from C by using the the embeddings h1 and h2 mapping {($a, $b, $c)}
to {($a, $b, $c)} and {($a, $b, e)}, respectively, and by picking t = e and $v = $c.
Indeed, due to the constraint imposed by ({($a, $b, $c)}, $a → $c), we are able
to generalize ({($a, $b, $c), ($a, $b, e)}, $b→ $a) to Cfc.

Proposition 8 (Left-modification). Let P be a pattern, L ⊆ VP , $v ∈ VP ,
and let i1, i2 : VP → V be injective functions with i1($v) �= i2($v), i1 =L i2, and
range(i1|VP\L) ∩ range(i2|VP\L) = ∅. If (P ′,L′ → $r′), and (P ,L ∪ {$v} → $r),
and if there exist two embeddings from P ′ into (i1 ∪ idU )(P)∪(i2 ∪ idU )(P) which
agree on L′ and map $r′ to i1($v) and i2($v), respectively, then (P ,L→ $r).

Proof (soundness). Let e1 and e2 be two embeddings of P into a relation R
satisfying (P ′,L′ → $r′), (P ,L ∪ {$v} → $r), and e1 =L e2. Let h1 and h2 be
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two embeddings of P ′ into (i1 ∪ idU )(P)∪ (i2 ∪ idU ) satisfying the conditions of
Proposition 8. Since i1 =L i2, e1 =L e2, and i1 ∪ idU and i2 ∪ idU are injections
whose range only overlap on L∪ U , the function f = Φe1←↩i1∪idU ◦Φe2←↩i2∪idU is
well-defined. Hence, the functions ε1 = f ◦ h1 and ε2 = f ◦ h2 are embeddings
of P ′ into R with ε1 =L′ ε2. By construction, we have ε1($r

′) = e1($v) and
ε2($r

′) = e2($v). Hence, by (P ′,L′ → $r′), we have e1($v) = e2($v), and thus
e1 =L∪{$v} e2. By (P ,L ∪ {$v} → $r) and e1 =L∪{$v} e2, we conclude e1($r) =
e2($r). ��

The left-modification axiom generalizes a functional constraint by removing
a variable from its left-hand side. This as a consequence of constraints imposed
by other functional constraints.

Example 10. Consider the set of functional constraints

C = {({($a, $b, $c), (d, $e, $f )}, $c→ $f ),

({($a, $b, $c), (d, $e, $f )}, {$a, $f } → $b)}

and the target functional constraint Cfc = ({($a, $b, $c), (d, $e, $f )}, $a → $b).
We pick i1 and i2 such that:

(i1 ∪ idU )({($a, $b, $c), (d, $e, $f )}) = {($a, $b1, $c1), (d, $e1, $f1)}
(i2 ∪ idU )({($a, $b, $c), (d, $e, $f )}) = {($a, $b2, $c2), (d, $e2, $f2)}.

We can derive Cfc from C by picking the embeddings h1 and h2 such that:

h1({($a, $b, $c), (d, $e, $f )}) = {($a, $b1, $c1), (d, $e1, $f1)}
h2({($a, $b, $c), (d, $e, $f )}) = {($a, $b1, $c1), (d, $e2, $f2)}.

Indeed, due to the constraint imposed by ({($a, $b, $c), (d, $e, $f )}, $c → $f ),
we are able to generalize ({($a, $b, $c), (d, $e, $f )}, {$a, $f } → $b) to Cfc. We
notice that there is a relation between the left-modification axiom and the well-
known multivalued dependencies [22]. In this example, the possible embeddings
of the pattern {($a, $b, $c), (d, $e, $f )} can be represented by a relational table
T with schema R(A,B,C,E, F ). Due to C, the functional dependencies C → F
and AF → B hold on T . Due to the construction of T , also the multivalued
dependency A � EF holds. Indeed, by using well-known derivation rules for
functional dependencies and multivalued dependencies, we conclude A→ B.

We claim that the pattern-modification axiom simulates the symmetry-pre-
serving steps of type 1–4, and the left-modification axiom the symmetry-preserv-
ing steps of type 5. Before proving that this is indeed the case, we introduce
an auxiliary derivation rule. We emphasize that this rule is not part of our
axiomatization. We shall only use its soundness to simplify the proof of Lemma 6.

Lemma 5 (Embedding). If (P ′,L′ → $r′) and h is an embedding from P ′

into P, then (P , h(L′) ∩ VP → {h($r′)} ∩ VP).
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Proof (soundness). Let e1 and e2 be embeddings of P into a relationR satisfying
(P ′,L′ → $r′). Then, ε1 = e1 ◦ h and ε2 = e2 ◦ h are embeddings of P ′ into R.
If e1 =h(L′)∩VP

e2, then e1 =h(L′) e2 and ε1 =L′ ε2, as embeddings always agree
on constants. By (P ′,L′ → $r′), we have ε1($r

′) = ε($r′). As a consequence, we
have e1 =h({$r′}) e2 and, hence, also e1 =h({$r′})∩VP

e2. ��
The embedding rule explicitly maps functional constraints to different pat-

terns, whereas the chase algorithm implicitly uses embeddings to deal with dif-
ferent patterns.

Example 11. If ({($a, $b)}, $a → $b) holds, then trivially also ({($c, $d)}, $c →
$d) holds. We can derive ({($c, $d)}, $c → $d) from ({($a, $b)}, $a → $b) by
using the embedding rule with the embedding that maps $a to $c and $b to $d.

We now prove that symmetry-preserving steps can indeed be simulated by
the pattern-modification and left-modification axioms.

Lemma 6. Consider a successful symmetry-preserving chase for C |= Cfc. If
the chase starts with a symmetry-preserving step, using the functional constraint
Ci ∈ C and resulting in tableau T ′ with tableau state ST ′(P ′,L′, g1, g2), then there
exists a functional constraint C = (P ′,L′ → $r′) such that

1. the remainder of the chase starting from tableau T ′ is a successful symmetry-
preserving chase for C |= C.

2. we can derive Cfc from Ci and C using the pattern-modification and left-
modification axioms.

Proof. Let T := T be the initial tableau in Algorithm 2. We assume that the
initial symmetry-preserving step using Ci = (Pi,Li → $ri) equalizes with the
embeddings e1 and e2 satisfying e1 =Li e2 and e1($ri) �= e2($ri). The embed-
dings e1 and e2 map Pi into T and the function (f1

−1 ∪ f2
−1 ∪ idU ), which

is well defined, maps T into P . Hence, h1 = (f1
−1 ∪ f2

−1 ∪ idU) ◦ e1 and
h2 = (f1

−1 ∪ f2
−1 ∪ idU ) ◦ e2 are embeddings of Pi into P with h1 =Li h2.

Since the roles of f1 and f2 are interchangeable, we may assume, without loss of
generality, that e1($r1) = (f1 ∪ idU )(t1) and either e2($r1) = (f1 ∪ idU )(t2) or
e2($r1) = (f2 ∪ idU )(t2). Here, t1 and t2 are terms of VP ∪U which are not both
constants. We now distinguish two cases.

1. The symmetry-preserving step is of type 1–4. Without loss of generality, we
may assume that t2 = $v2 ∈ VP . The symmetry-preserving step results in a
tableau T := T ′ = φ(f1∪idU )(t1)←↩f1($v2),(f2∪idU )(t1)←↩f2($v2)(T ) with state

ST ′
(
φt1←↩$v2(P),L \ {$v2}, f1|VP\{$v2}, f2|VP\{$v2}

)
.

Let C = (φt1←↩$v2(P), φt1←↩$v2(L) ∩ VP → {φt1←↩$v2($r)} ∩ VP ). Clearly,
T ′ is an initial tableau for the symmetry-preserving chase for C |= C . It
follows that the remainder of the chase for C |= Cfc is a successful chase
for C |= C , as C can be derived from Cfc using the embedding rule with
embedding φt←↩$w. By construction of h1 and h2, we have h1($ri) = t1 and
h2($ri) = $v2. Hence, Cfc can be derived from Ci and C using the pattern-
modification axiom.
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2. The symmetry-preserving step is of type 5. Then t1 = t2 = $v ∈ VP . The
symmetry-preserving step results in a tableau T = T ′ = φf1($v)←↩f2($v)(T )
with state

ST ′
(
P ,L ∪ {$v}, φf1($v)←↩f2($v) ◦ f1, φf1($v)←↩f2($v) ◦ f2

)
.

Let C = (P ,L ∪ {$v} → $r). Clearly, T ′ is an initial tableau for the
symmetry-preserving chase for C |= C . It follows that the remainder of
the chase for C |= Cfc is a successful chase for C |= C as C can be derived
from Cfc using a straightforward application of the reflexivity and transi-
tivity axioms. Observe that t1 = f1($v) and t2 = f2($v) together with the
embeddings e1 and e2 satisfy the conditions of Proposition 8, which allows
the derivation of Cfc from Ci and C using the left-modification axiom. ��

As a consequence of Corollary 1, Lemmas 3–6 yield a sound and complete
axiomatization of the functional constraints.

Theorem 3. The restricted reflexivity, inconsistency, pattern-modification, and
left-modification axioms constitute an axiomatization for the functional con-
straints with at most one variable in their right-hand side.

Proof. We have already proven soundness of the axioms and it is straightforward
that the axioms are recursive, hence we only need to verify that the axioms
are complete. Let C be a set of functional constraints and Cfc be a functional
constraint with C |= Cfc. By Corollary 1, there exists a successful symmetry-
preserving chase for C |= Cfc. We must prove, which we shall do by induction on
the number of symmetry-preserving steps performed in this chase, that C � Cfc.
The base case is that no symmetry-preserving steps are performed, i.e., that the
chase terminates immediately. Then C � Cfc follows from Lemma 3 and 4.

As inductive hypothesis, we assume that the existence of a successful symme-
try-preserving chase for C′ |= C ′

fc with i ≥ 0 symmetry-preserving steps (C′ a set
of functional constraints and C ′

fc a single functional constraint) yields C′ � C ′
fc.

For the inductive step, assume that the successful symmetry-preserving chase for
C |= Cfc has i+ 1 symmetry-preserving steps. Assume that the first symmetry-
preserving step uses Ci ∈ C. By Lemma 6, there exists a functional constraint
C = (P ′,L′ → $r′) such that {Ci,C} � Cfc and such that the remainder of the
chase is a successful symmetry-preserving chase for C |= C . As this chase has
only i symmetry-preserving steps, the inductive hypothesis yields C � C . We
thus conclude that C � Cfc, which completes the proof. ��

Using Lemma 1 we generalize Theorem 3 to functional constraints with arbi-
trary sets of variables in their right-hand side.

Corollary 2. The inconsistency, pattern-modification, and left-modification ax-
ioms together with the reflexivity, augmentation, and transitivity axioms consti-
tute an axiomatization for the functional constraints.

Moreover, we have the following (proof omitted).
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Theorem 4. The axiomatization of the functional constraints is no longer com-
plete if one of the axioms reflexivity, augmentation, transitivity, inconsistency,
pattern-modification, or left-modification is removed.

6 Conclusions and Directions for Future Work

Starting from functional and equality-generating constraints for the RDF data
model, we studied functional constraints on arbitrary relations. As our first re-
sult, we proved the existence of a symmetry-preserving chase for the functional
constraints. Using the symmetry-preserving chase, we derived a sound and com-
plete axiomatization for the functional constraints. This solves a major open
problem in the work on functional constraints for the RDF data model.

We believe that our work provides a promising formal basis for reasoning
about functional constraints. As for future work, one remaining open problem
is the existence of Armstrong relations [15,19] for the functional constraints.
Another avenue of research concerns generalizations of functional constraints.
In particular, adding constants to the right-hand side of functional constraints
would result in a very powerful class of constraints that generalizes both the
functional constraints and the conditional functional dependencies [17]. Finally,
it is unknown what the complexity of working with functional constraints is, as
compared with the functional dependencies and equality-generating constraints.
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Abstract. We study query rewriting using views (QRV) for XML. Our
queries and views are regular tree languages (RTLs) represented by tree
automata over marked alphabets, where the markers serve as “node se-
lectors”. We formally define query rewriting using views for RTLs and
give an automata-based algorithm to compute the maximally contained
rewriting. The formalism we use is equal in power with Monadic Sec-
ond Order (MSO) logic, and our algorithm for computing QRV is the
first to target this expressive class. Furthermore we prove a tight lower
bound, thus showing that our algorithm is optimal. Another strength of
our automata-based approach is that we are able to cast computing QRV
into executing a sequence of intuitive operations on automata, thus ren-
dering our approach practical as it can be easily implemented utilizing
off-the-shelf automata toolboxes. Finally, we generalize our framework
to account for more complex queries in the spirit of the FOR clause in
XQuery. For this generalization as well, we give an optimal algorithm for
computing the maximally contained rewriting of queries using views.

Keywords: XML, View-Based Rewriting, Tree Automata.

1 Introduction

Query rewriting using views (QRV) is a fundamental problem that finds wide
applications in query optimization, data integration, data warehousing, secu-
rity, and other critical database services. In this paper we study QRV for node-
selecting queries and views, over XML trees. As there are several variants of
views for answering queries we begin by illustrating the classical QRV problem
we focus on in this paper.

Example 1. Suppose we have a very large collection of movies such as imdb.com,
organized in a super-tree, with each movie being a sub-tree containing title, year,
and characters. Suppose the character nodes branch out into actors playing the
character. Sometimes, a movie contains characters played by more than one
actor. We call these characters “multi-actor characters (MAC)”. Consider a
query which returns all the movie sub-trees having a MAC. Such movies are a
small minority; their number is about 50. Assume that the result of this query is
materialized into a view. Obviously this view is of tremendous help in answering
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some new queries, such as “find all the actors playing a MAC”. We can rewrite
this new query into “find all the actors playing a MAC in a movie having a MAC”
and answer it on the view-extension instead of accessing the original database.
The difference in performance is huge; using the view materialization takes 50
accesses, whereas using the original database takes hundreds of thousands of
accesses (there are about 700,000 movies as per imdb.com).

Due to its importance, QRV has been explored for fragments of XPath
(cf. [5,31,16,8,2,30]) and fragments of XQuery (cf. [32,24,4]). In this paper, we
study the problem for queries and views represented by tree automata, which
provide for a more general approach that can elegantly capture fine grained
structure along vertical and horizontal axes. These queries can be easily speci-
fied using a DTD-like syntax, rendering them user-friendly devices for querying
XML. While the techniques and tools introduced in the aforementioned works
are interesting and well-founded for computing QRV for XPath and XQuery,
they do not seem to extend to dealing with the more general setting of queries
and views represented by tree automata, which have desirable properties with
respect to expressivity in querying XML. In regard to expressivity, Neven and
Schwentick [20,21] and Schwentick [26] argue for formalisms as expressive as
monadic second order logic (MSO) for specifying node-selecting queries. This is
sometimes called a “golden standard” against which query formalisms should be
measured up.

In this paper, we study the QRV problem for queries and views represented
by automata equivalent in power to MSO. It is worth pointing out that being
able to handle this target expressivity is one of the strengths of our approach to
QRV. Another strength is the fact that computing QRV is cast into executing
a sequence of intuitive operations on automata. This makes our solution quite
practical, as it can be easily implemented on top of the readily available automata
toolboxes (e.g. [12,9]).

Our queries and views are first described as sets of tree-position pairs in
order to facilitate the definitions and understanding of rewritings. In practice
the queries and views are specified by finite tree automata over alphabets with
marked symbols that serve the purpose of selecting nodes in XML trees. More
specifically, for our constructions we use colors as markers, which makes the
development easier. This formalism is equivalent to the formalism of querying
trees using automata with boolean markings (ABM) [cf. [28], further developed
in [23]].

Automata over colored alphabets provide us with critical advantages in com-
puting QRV. The first advantage is the ability to express and construct a series
of intermediate languages for obtaining query rewritings. Being able to use mul-
tiple colors for marking regions of interest in the trees of these intermediate
languages is crucial to our approach. Our language constructions are also facil-
itated by the one-way nature of the automata we use. The second advantage is
the ability to determinize the automata. This is key to our main construction
for query rewriting.
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Summarizing, we provide an algorithm for QRV for the general case where
queries and views are implemented in an automata framework equal in power
to MSO, to our knowledge, for the first time. Our algorithm runs in singly-
exponential time. We show that QRV in our case is EXPTIME-hard, thus show-
ing the optimality of our algorithm. Additionally, we show how to extend our
results to reasoning about QRV for the more general case of queries returning
a forest of trees as an answer in the spirit of the FOR clause in XQuery. For
this generalization as well, we provide an optimal algorithm to compute query
rewritings using views.

We make the following contributions.

1. We define tree-pattern operators to cleanly express view-based rewriting as
the solution to a view-query equation (Section 4).

2. Next, we present an algorithm for computing query rewritings using views.
We define languages over colored alphabets and present a series of interme-
diate automata constructions, which we believe are of independent interest.
We prove an EXPTIME lower bound for QRV, and show that our algorithm
is optimal (Section 5).

3. We generalize our results to the case where queries select more than one
subtree and produce a set of forests as output. We show that we are still
able to compute view-based rewritings in singly-exponential time, thus being
again optimal with respect to the above lower bound (Sections 6, 7, and 8).

2 Related Works

Automata theory has long been recognized as a useful tool for providing elegant
solutions to challenging problems on XML (cf. [19,21,14,22,26,17,7]).

Two prominent automata-based approaches for querying XML data that have
been proposed are (bottom-up) finite tree automata with selecting states (FTAS)
introduced by Neven ([19], p. 128) and Frick et al. ([14]), and query automata
(QA) introduced by Neven and Schwentick ([21]). Both formalisms are shown
to capture precisely the queries definable in MSO and thus are the natural can-
didates for us to study the QRV problem in. However, two important issues
prevent us from using either of these formalisms directly for our study of QRV:
(1) Deterministic FTAS are too weak to express all queries expressible by non-
deterministic FTAS; determinism is a key property that our techniques and
algorithms rely on. (2) On the other hand, QA are deterministic, but two-way,
and thus can go up and down a target tree multiple times, a feature that makes
reasoning about QRV difficult.

Another nice standard for querying XML is Propositional Dynamic Logic
(PDL) for trees ([1,6]), which corresponds to Regular XPath. The latter was
shown by ten Cate and Segoufin ([27]) to be not expressively complete for MSO.
Regular XPath was extended later to μXPath by Calvanese et al. ([7]) to obtain
the full power of MSO. It may be possible to use automata formalisms, such the
one in [7] capturing μXPath, for QRV–this is an avenue we leave open for future
exploration.
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We close this section by briefly discussing two other works on query rewriting.
Fan et al. ([11]) study rewritings of regular XPath queries defined over virtual
views. This is a different problem from QRV that we consider here. The views
in our case are materialized and the queries are over the original database. It
would be interesting to see how our techniques could be used for the problem
studied by Fan et al., considering an alternate query formalism such as the one
we propose that is complete for MSO.

Thomo and Venkatesh ([29]) use Visibly Pushdown Automata to model and
rewrite (XML) schemas by using other schemas. Again, this problem is different
from the problem we study in this paper.

3 Automata

We consider finite ordered trees – simply called trees. Also, we consider the trees
to be unranked, which is to say that the nodes of the tree have an arbitrary
(but finite) arity (cf. [10], p. 200). The nodes of the trees are labeled by symbols
drawn from a fixed alphabet Σ. We denote by Υ the set of all trees over Σ.
We use a, b, . . . , e to denote labels in Σ and x, y, . . ., possibly with subscripts, to
denote tree nodes. We denote by rt the root of tree t, by σx the label of node x,
and by Nt the set of nodes of a tree t ∈ Υ .

Definition 1. A non-deterministic, bottom-up, finite tree automaton (FTA)
over Σ is a quadruple A = (S, Σ, F, Δ), where S is a finite set of states,
F ⊆ S is a set of final states, and Δ is a finite set of transition rules of the form
H

a−→ s, where H ⊆ S∗ is a regular language over S, a ∈ Σ, and s ∈ S.

Here, H is called a horizontal language. For simplicity, we blur the distinction
between regular languages over S and the regular expressions used to specify
them.

Definition 2. A tree t is accepted by an FTA A if there exists a mapping μ :
Nt → S such that:

1. If μ(x) = s, then there is a transition rule H
σx−→ s in Δ with

μ(x1) . . . μ(xn) ∈ H, where x1, . . . , xn are all the children of x in t in order.

2. If x is a leaf and μ(x) = s, then there is a transition rule H
σx−→ s in Δ with

ε ∈ H.
3. μ(rt) ∈ F .

A mapping μ as above specifies an accepting run of A on t. An accepting run
can be considered to be a tree of the same shape as t whose nodes are labeled
by states given by the mapping μ.

We denote by L(A) the set (language) of trees accepted by A. A tree language
L is said to be accepted (or recognized) by an FTA A if L = L(A). Tree languages
recognized by FTAs are called regular tree languages (RTLs).
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Example 2. Consider a collection of trees representing movies having, among
other elements, one or more characters, each played by one or more actors. Let
us use m, t, y, c, and a to abbreviate movie, title, year, character, and actor,
respectively.

An FTA accepting movies having at least one character played by two or more
actors is

A = ({s, sm, sc, sa}, Σ, {sm}, Δ)

where Σ ⊃ {m, t, y, c, a} and Δ has the following transition rules:

s∗scs∗
m−→ sm

s∗sasas∗
c−→ sc

s∗ a−→ sa

s∗ Σ−→ s.

The last transition rule is a shorthand for saying that “we can go from s∗ to s
on any symbol of Σ.”

Let now t be the movie tree given in Figure 1, left. Clearly, t is accepted by A.
We assume that all the textual (unstructured data) have been identified (labeled)
with a special symbol, say d ∈ Σ. An accepting run of A on t is given in the
same figure, right.

We describe in Section 4 how to modify A to query for those movies having
a character played by two or more actors. ��

Eve Archer
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aSean ArcherFace/Off 1997

John Travolta Nicolas Cage Joan Allen
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s s s
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Fig. 1. A tree t and an accepting run of A on t

It is worth noting that an FTA can be specified using extended DTDs
(EDTDs), a syntax that may be more familiar to a user (cf. [10], p. 233).

Consider again Definition 1. The FTA A is called deterministic if H1∩H2 = ∅
for all transitions H1

a−→ s1 and H2
a−→ s2, where s1 �= s2. In such a case, for

any tree t, there can be at most one accepting run of A on t.
FTAs that never get “stuck” are called complete. Given an FTA, it can be

verified that the determinization procedure of [10] (p. 204) produces a determin-
istic FTA that is complete. Given a tree t, a complete and deterministic FTA
(CDFTA) A can read t in only one way, i.e., there is exactly one run of A on t.
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An FTA is normalized if for each symbol-state pair (a, s), there is at most one

transition H
a−→ s. Each FTA can be transformed into a normalized FTA by

unioning the left-hand sides of the transition rules labeled by the same symbol
and having the same state on the right-hand side. If the FTA is deterministic,
then it will remain so after this transformation.

Intersection. It is a well known fact that if L1 and L2 are RTLs, so is L1∩L2.
However, the proof is typically done by encoding unranked trees into binary ones
(cf. [10], p. 209). We can instead use a direct construction which preserves com-
pleteness and determinism. Given FTAs A1 and A2 for L1 and L2, respectively,
we can construct an FTA A which recognizes L1 ∩ L2. Furthermore, if A1 and
A2 are complete and deterministic, so is A (see [15]).

Targetedness. Here we also introduce our notion of “targeted” FTAs. Targeted
FTAs turn out to be important in computing rewritings of queries using views.

Definition 3. A normalized FTA is targeted if each state is the target (right
side) of at most one transition rule.

We present the following result, whose proof can be found in [15].

Theorem 1. For each FTA A we can obtain an equivalent targeted FTA A ↑
in PTIME.

Furthermore, the procedure preserves determinism, i.e. we have that if A is
deterministic, then so is A ↑.

4 Queries, Views, and Rewritings

We consider here (tree node) positions given by Dewey-style strings in N∗. If t
is a tree, we denote by pos(t) the set of all t’s positions. pos(t) is prefix-closed
and contains ε as the root position. Given a position x ∈ pos(t), we define tx to
be the subtree of t rooted at x.

Definition 4. A pattern is a tree-position pair (p, x), where x ∈ pos(p).

Let Υx = {(p, x) | p ∈ Υ, x ∈ pos(p)}.

Definition 5. A tree query (TQ) Q is a subset of Υx.

When a query has only one pattern (p, x), we will blur the distinction between
{(p, x)} and (p, x).

Recall that Υ is the set of all trees over Σ. We call them target trees. Let t ∈ Υ
be a target tree.

Definition 6. The answer to Q on t ∈ Υ is ans(Q, t) = {tx : (t, x) ∈ Q}.

For two queries Q1, Q2, we define containment and equivalence as follows.
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Definition 7.

1. Q1 6 Q2 if ans(Q1, t) ⊆ ans(Q2, t) for each t ∈ Υ .
2. Q1 ≡ Q2 if Q1 6 Q2 and Q2 6 Q1.

We show that

Theorem 2. If Q1 ⊆ Q2 then Q1 6 Q2.

Corollary 1. If Q1 = Q2 then Q1 ≡ Q2.

Regular TQs. Let Σ̂ = {â : a ∈ Σ} be an alphabet of marked symbols. Given
(p, x), consider p̂ on Σ ∪ Σ̂ that is the same as p, but with the node at position
x being marked by the corresponding symbol in Σ̂. Now a query Q is a regular
tree query (RTQ) if set {p̂ | (p, x) ∈ Q} is regular, i.e. given by a tree automaton.

Example 3. Let us revisit Example 2. Assume that the collection of movie trees
is organized into a super-tree t with a root labeled by r, and the movie trees as
sub-trees of the root. Now let Q be a query that asks for all the movie sub-trees
having at least one character played by two or more actors. It can be verified
that this query can be given by the following automaton.

A = ({s, st, sm, sc, sa}, Σ ∪ Σ̂, {st}, Δ)

where Δ has the following transition rules

s∗sms∗
r−→ st

s∗scs∗
m̂−→ sm

s∗sasas∗
c−→ sc

s∗ a−→ sa

s∗ Σ−→ s.��

Views and Rewritings. First we give a simple example to build up the intu-
ition.

Example 4. Consider a view definition containing only the pattern tree given in
Figure 2 [left] and a query containing only the pattern tree given in the same
figure [middle]. Clearly, the view is useful in answering the query. Intuitively, the
pattern tree we need to use to extract the answer to the query using the view is
shown in the same figure [right]. This is nothing else but the “rewriting” of the
query using the view in this example.

We now make precise a rewriting of a query Q using a view V .
Recall sets Υ , Υx. Furthermore, let Υx,y be the set of all tree-position-position

triples (p, x, y), such that x, y ∈ pos(p), and x is a proper prefix of y, i.e. x is
a proper ancestor of y. We restrict x to be a proper prefix of y because, as we



View-Based Tree-Language Rewritings for XML 277

g

c

d e

f g

a

b c

d e

f g

a

b c

d e

f

Fig. 2. A simple view, a simple query, and the rewriting. Pattern positions are given
by .̂

show in the full version [15], the queries and views can be transformed so that
their specified positions (markings) never coincide in matching patterns.

Let (p, x), (q, y) ∈ Υx. We define

(p, x) ✩ (q, y) =

{
(p, xy) if px = q and y �= ε
undefined otherwise

and

(p, x) ★ (q, y) =

{
(p, x, xy) if px = q and y �= ε
undefined otherwise.

where xy is the concatenation of x and y.
In simple words, for (p, x) ✩ (q, y) and (p, x) ★ (q, y) to be defined, the sub-

tree of p rooted at x must be identical to q structure-wise. Also, structure-wise,
(p, x) ✩ (q, y) and (p, x) ★ (q, y) are the same as (p, x).

We note that, when defined, (p, x) ✩ (q, y) ∈ Υx and (p, x) ★ (q, y) ∈ Υx,y.
Referring to Figure 2 from the previous example, let the view be the tree on
the left and the query be the tree in the middle. Then the tree on the right is a
rewriting. If we regard the view on the left as (p, x) and the query in the middle
as (p, x) ✩ (q, y), then the rewriting needed to answer the query is (q, y), which
is indeed the tree on the right. Therefore, finding the rewriting is solving a ✩

equation with the rewriting as the unknown.

For two sets L1, L2 ⊆ Υx, we define L1 ✩ L2 and L1 ★ L2 in the natural way.
Also, we blur the distinction between a set of one element and the element itself.
We note that L1 ✩ L2 ⊆ Υx and L1 ★ L2 ⊆ Υx,y.

We will use ✩ to define the rewriting and ★ to reason about some steps in
the construction for the rewriting.

In the following we use Greek letters υ and ξ to denote tree-position pairs.
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Definition 8. The maximally contained rewriting (MCR) of Q ⊆ Υx using
V ⊆ Υx is

R = {ξ ∈ Υx : V ✩ ξ ⊆ Q}.

We also define set X of “bad” patterns as

X = {ξ ∈ Υx : there exists υ ∈ V such that υ ✩ ξ ∈ Qc}

where Qc = Υx \Q. Set X will be crucial in our construction. Observe that X
is not equal to Υx \ R. The latter also contains patterns that cannot be ✩ -ed
with V ’s patterns. Now let us define

Y = {ξ ∈ Υx : there exists υ ∈ V such that υ ✩ ξ ∈ Q}.

We have that

Proposition 1. R = Y \X.

Example 5. Consider the following queries and views on chain trees, where the
positions have been represented as ˆ over the corresponding nodes. The chains
should be read backwards to simulate a bottom-up processing.

1. Let Q = {aacd̂e, bbcd̂e, cccd̂e} and V = {aaĉde, bbĉde}. We have cd̂e ∈ R

because V ✩ cd̂e = {aacd̂e, bbcd̂e} ⊆ Q. In fact cd̂e is the only chain in R.

2. Let Q = {aacd̂e, cccd̂e} and V = {aaĉde, bbĉde}. We have cd̂e �∈ R because

bbcd̂e ∈ V ✩ cd̂e, but bbcd̂e �∈ Q. Notice, cd̂e is in X and Y . ��

Let TV ,t be the materialized answer (MA) to V on t ∈ Υ , i.e., TV ,t = ans(V, t).
We answer Q using V by computing

ans(R, TV ,t) =
⋃

v∈TV ,t

ans(R, v)

where R is the MCR of Q using V . We have that

Theorem 3. ans(R, TV ,t) ⊆ ans(Q, t) for each t ∈ Υ .

Proof. From Definition 8 and Theorem 2, we have ans(V ✩ R, t) ⊆ ans(Q, t).
Now the claim follows from this equality which we prove next

ans(V ✩ R, t) = ans(R, TV ,t).

“⊇”: Let z ∈ ans(R, TV ,t). Then there exists (q, y) ∈ R and q ∈ TV ,t such that
qy = z. Since q ∈ TV ,t, there exists (t, x) ∈ V such that tx = q. Clearly, qy = z ∈
ans((t, x) ✩ (q, y), t). By (t, x) ∈ V and (q, y) ∈ R we obtain z ∈ ans(V ✩ R, t)
as required.

“⊆”: Let z ∈ ans(V ✩ R, t). There exists (t, xy) = (t, x) ✩ (q, y) ∈ V ✩ R,
where (t, x) ∈ V and (q, y) ∈ R, such that ans((t, xy), t) = txy = z. Conse-
quently, tx ∈ TV ,t and z ∈ ans(R, TV ,t). ��
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5 Computing the MCR

The previous section refers to general queries and views. In this section we show
that when they are RTQs, we can effectively compute QRV and show that it is
an RTQ as well.

First we define the inverse of the ✩ operation. Let υ, υ′ ∈ Υx. We define

υ ✪ υ′ =
{
ξ if υ′ = υ ✩ ξ
undefined otherwise

This definition is lifted to subsets of Υx in the natural way. Now, it can be
verified that

Proposition 2. X = V ✪ Qc and Y = V ✪ Q.

Once we obtain X and Y , we can obtain R as Y \X (see Proposition 1). In the
rest of the section, we present an automata-based solution for computing

K = J ✪ J ′

when J and J ′ are RTQs.
Tree-position pair-sets facilitate the definitions of queries and rewritings. How-

ever, when we work with automata, we need to talk in terms of languages that
the automata recognize. Here, we introduce colors for marking the positions in
pattern trees. Colors are similar to Boolean markings of [28] and [23] (or to our
previousˆmarking), however, they make the presentation easier.

Thereto, we consider the “red” and “blue” alphabets Σr = {ar : a ∈ Σ} and
Σb = {ab : a ∈ Σ} in addition to the alphabet Σ. We refer to the elements of Σ
as being “black” and to Σ as the “black” alphabet. We refer to nodes as black,
red, or blue nodes if their symbol is black, red, or blue.

We define b as a (unary) operator that given (p, x) ∈ Υx returns a tree over
Σ ∪Σb that is isomorphic to p with the node at position x colored blue.

Likewise, we define r as a (unary) operator that given (p, y) ∈ Υy returns a
tree over Σ ∪Σr that is isomorphic to p with the node at position y colored red.
[Υy is the same as Υx and is used for notation parallelism.]

Furthermore, we define br as a (unary) operator that given (p, x, y) ∈ Υx,y

returns a tree over Σ∪Σb∪Σr that is isomorphic to p with the node at position
x colored blue and the node at the position y colored red.

Based on these operators, we define

Υb = {b(p, x) : (p, x) ∈ Υx}
Υ r = {r(p, y) : (p, y) ∈ Υy}

Υb,r = {br(p, x, y) : (p, x, y) ∈ Υx,y}.

Υb, Υ r, Υb,r are languages of trees over Σ ∪ Σb, Σ ∪ Σr, Σ ∪ Σb ∪ Σr,
respectively.
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Clearly, there is a one-to-one correspondence between the elements of Υx, Υy,
Υx,y, and the elements of Υb, Υ r, Υb,r, respectively. Therefore, we will blur the
distinction between elements and subsets of Υx, Υy, Υx,y, and elements and
subsets of Υb, Υ r, Υb,r, respectively.

We will use (sans-serif) p, q to refer to colored patterns of Υb, Υ r, Υb,r.
Let p ∈ Υb and q ∈ Υ r with their corresponding (p, x) ∈ Υx and (q, y) ∈ Υy.

We define

p ✩ q = r((p, x) ✩ (q, y))

p ★ q = br((p, x) ★ (q, y)).

We have p ✩ q ∈ Υ r and p ★ q ∈ Υb,r (when they are defined). We extend ✩

and ★ to languages in the natural way.
In particular, from now on, we will consider J ⊆ Υb, J ′ ⊆ Υ r, K ⊆ Υ r,

J ✩ K ⊆ Υ r, and J ★ K ⊆ Υb,r.
In order to aid us in the development, we also define

Φr to be the set of all trees having all nodes black, except for the root which is
red, and

Φb,r to be the set of all trees having all nodes black, except for the root which
is blue and another node which is red.

It can be verified that the languages we defined so far, Υ r, Υb, Υb,r, Φr, and
Φb,r are all RTLs. Also observe that from the definition of the ✪ operation,
K ⊆ Υ r \ Φr.

If p is a tree over Σ ∪ Σr ∪ Σb, we denote by p¬b the tree over Σ ∪ Σr that
is the same as p, but with the blue nodes turned black. For a language L over
Σ ∪Σr ∪Σb, we define

L¬b = {p¬b : p ∈ L}.
If L is an RTL, we can construct an FTA for L and then an FTA for L¬b by
changing all the blue symbols in the transitions of the FTA for L to black. We
define similarly p¬r and L¬r.

5.1 Auxiliaries

In our construction we will need the following items

BL = {p ∈ Υb,r : p¬b ∈ L} for L ⊆ Υ r

B′
L = {p ∈ Υb,r : p¬r ∈ L} for L ⊆ Υb

CL = {p ∈ Φb,r : p¬b ∈ L} for L ⊆ Υ r \ Φr.

These languages are easy to construct when L is RTL. We show how to do
that for BL. The other ones are similar. Let A = (S,Σ ∪ Σr, F,Δ) be an FTA
for L. We construct FTA B = (S,Σ ∪Σb ∪Σr, F,ΔB), where

ΔB = Δ ∪ {H ab

−→ s : H
a−→ s in Δ and a ∈ Σ}.
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Proposition 3. Given an FTA for L, an FTA for BL can be constructed in
polynomial time. Furthermore, if the FTA for L is a complete and deterministic
FTA (CDFTA), then a CDFTA for BL can be constructed in polynomial time
as well.

Proof. The statements follow from the observation that L(B) ∩ Υb,r = BL, and
the facts that (1) B is constructed in polynomial time from A and is a CDFTA
when A is such, (2) an intersection CDFTA is computable in polynomial time
when supplied with CDFTAs as input. ��

We also get exactly the same facts for B′
L and CL as those stated for BL in

the above proposition.

5.2 The Algorithm

Here we construct an FTA for CK [K, we are interested in, is C¬b
K , easily com-

puted once we have an automaton for CK ].
Consider BJ and B′

J′ . From FTAs for BJ and B′
J′ , we construct an FTA for

BJ ∩B′
J′ . Let D = (S,Σ ∪Σb ∪Σr, F,Δ) be this FTA. We also transform it to

be targeted. Observe that L(D) ⊆ Υb,r.
Now, we construct FTA E = (S,Σ ∪Σb ∪Σr, FE , Δ), where

FE = {s ∈ S : there exists H
ab

−→ s in Δ}.

Clearly, L(E) ⊆ Φb,r. This is true because D is targeted. We have

Theorem 4. L(E) = CK .

Proof. “⊆”: Let q ∈ L(E) ⊆ Φb,r. By the construction of E , there exists p ∈
BJ ∩B′

J′ ⊆ Υb,r, with the blue node at a position x, such that px = q.
Since p ∈ BJ ∩ B′

J′ , p¬r ∈ J and p¬b ∈ J ′. Also, since p ∈ Υb,r, (p¬b)x ∈
Υ r \ Φr. We have p¬r

✩ (p¬b)x = p¬b, i.e. (p¬b)x ∈ J ✪ J ′ = K, which means
px = q ∈ CK.

“⊇”: Let q ∈ CK ⊆ Φb,r. We have q¬b ∈ K ⊆ Υ r \Φr. By the definition of K,
there exists p ∈ J such that p ✩ q¬b is defined and p ✩ q¬b ∈ J ′. This, coupled
with the fact that q¬b ∈ Υ r \ Φr, implies p ★ q¬b ∈ BJ . By the definition of
“ ★ ” and B′

J′ , p ★ q¬b ∈ B′
J′ , too, therefore, p ★ q¬b ∈ BJ ∩B′

J′ , i.e., p ★ q¬b is
accepted by D. By the construction of E , we have that q is accepted by E . ��

5.3 Complexity

Let J and J ′ be given by non-deterministic FTAs. It can be verified that

Proposition 4. K = J ✪ J ′ can be computed in polynomial time.

Therefore, Y = V ✪ Q can be computed in polynomial time. However, we also
need to compute X = V ✪ Qc, and then Xc, in order to compute R as Y \X .
If we are not careful, we can incur a double-exponential penalty. Here we show
that it can be done instead in single-exponential time.
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For this let us refer to the steps of computing CK . Suppose J and J ′ are
given by CDFTAs. By Proposition 3 we can obtain CDFTAs for BJ and B′

J′ in
polynomial time. From these CDFTAs we obtain a CDFTA D for BJ ∩ B′

J′ in
polynomial time as well. Automaton E (representing CK) is the same as D, but
with a different set of final states, so E is a CDFTA as well.

Since E is a CDFTA we can compute (CK)
c from it in polynomial time.

Now, we have that for X and Y

1. CX , CY ⊆ Φb,r

2. Y \X = (CY \ CX)
¬b = (CY ∩ (CX)

c)¬b.

Clearly, ∩ and ¬b are polynomial.

Let a query Q and a view V be specified as non-deterministic FTAs. We have
the following theorems.

Theorem 5. The MCR R of Q using V can be computed in exponential time.

Proof. The proof follows from the above reasoning and the fact that to construct
CDFTAs for Q (and then Qc), and V takes exponential time. ��

Theorem 6. Computing the MCR of Q using V is EXPTIME-hard.

Proof. We present a reduction from the problem of inclusion for RTLs (rep-
resented by non-deterministic FTAs with horizontal languages represented by
NFAs) which is EXPTIME-complete (cf. [10], Th. 8.5.9). Let L1 and L2 be such
RTLs over some alphabet Σ. Let # �∈ Σ. We construct V from L1 by adding
to the rightmost leaf of trees in L1 a subtree #b(#). Similarly, we construct Q
from L2 by adding to the rightmost leaf of trees in L2 a subtree #(#r). Now,
we have that L1 ⊆ L2 if and only if the MCR of Q using V contains the single
node pattern #r. The latter can be checked in time polynomial in the size of an
FTA for the rewriting.

In conclusion, if computing the MCR of Q using V were not EXPTIME-hard,
then we would be able to decide the language inclusion for RTLs in less than
EXPTIME, which is not possible in the worst case. ��

6 k-ary Queries

So far, our attention has been focused on unary queries. In this section, we
consider k-ary queries, for k ≥ 1. Miklau and Suciu [18] motivate the study of
containment for k-ary tree pattern queries by observing that the results can be
applied in the context of optimizing the FOR clause of XQuery expressions, where
multiple variables can be defined using XPath variables. The idea is that they can
be captured in a single tree pattern1 whose distinguished variables correspond to
the variables bound in the FOR clause. Inspired by this, we consider tree-position
vector queries whose vector contains k positions, for some arbitrary, but fixed
k ≥ 1. Such queries return a tuple (forest) of sub-trees from a target tree.

1 Patterns considered in [18] have child and descendant edges, wildcards, and no order.
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On the theoretical side, it has been shown that k-ary queries can be encoded
by unary queries (see [25] and [3]). However, this is done by going through MSO
formulas. Therefore, going from a k-ary query represented by an automaton
to an encoding by unary queries and then back to (combination of) automata
would incur non elementary complexity. Even if the complexity were not so, we
still would be left with a combination of unary queries for which we needed to
compute QRV in terms of another combination of unary queries which corre-
sponds to the view. This is something that does not follow from the rewriting
mechanism we developed in the previous part of the paper. The latter comment
also applies to other k-ary query formalisms, defined in terms of compositions
of unary queries such as the formalism introduced in [13].

Definition 9. A k-pattern is a tree-position vector pair (p, [x1, . . . , xk]), where

1. x1, . . . , xk ∈ pos(p)
2. x1 < . . . < xk
3. �i, j ∈ [1, k], such that xi is a prefix of xj .

We also write a pattern as (p,x), where x = [x1, . . . , xk]. A position vector
possessing the three properties in above definition is called proper. Whenever we
refer to a position vector, we assume it to be proper. We let Υ kx denote the set
of all k-patterns.

Given a tree t and x = [x1, . . . , xk], we define tx = (tx1 , . . . , txk
) as the tuple

(forest) of sub-trees of t rooted at the positions in x. We call a forest of k trees
a k-forest, and denote by Ξk the set of all k-forests.

Definition 10. A k-tree query (k-TQ) is a subset of Υ kx. If {p̂ : (p,x) ∈ Q}2
is in addition regular, we say that Q is a regular tree query (RTQ).

When a query has only one pattern (p,x), we blur the distinction between
{(p,x)} and (p,x).

Definition 11. The answer to a k-query Q on t is ans(Q, t) = {tx : (t,x) ∈ Q}.
As for unary queries, it can be shown that for k-tree queries, set containment

implies query containment.

Example 6. Let us recall the movie example in Section 4. Now let Q be a query
given by A = ({s, st, sm, sc, sa}, Σ ∪ Σ̂, {st}, Δ), where Δ has the following
transition rules

s∗sms∗
r−→ st

s∗scs∗
m−→ sm

s∗sas∗sas∗
c−→ sc

s∗ â−→ sa

s∗ Σ−→ s.
2 Similarly as for unary queries, p̂ denotes the pattern on Σ ∪ Σ̂ that is the same as
p, but with the nodes at positions of x being marked by the corresponding symbols
in Σ̂.
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Clearly, Q ⊆ Υ 2x, and ans(Q, t) consists of all 2-forests of (sub)tree pairs for
actors who have played the same character together in some movie. ��

7 k-ary Views and Rewritings

We define a k,my-forest to be a tuple ((q1,y1), . . . , (qk,yk)) of patterns, such
that |y1| + . . . + |yk| = m, where |yi|, for i ∈ [1, k], is the dimension of vector
yi. We let Ξk,my be the set of all k,my-forests.

Furthermore, we define a kx,my-pattern to be a tuple of the form

(p, [(x1,y1), . . . , (xk,yk)])

where |y1| + . . . + |yk| = m, and xi is a proper3 prefix of positions in yi, for
i ∈ [1, k]. We let Υ kx,my be the set of all kx,my-patterns.

Now, let (p, [x1, . . . , xk]) ∈ Υ kx and ((q1,y1), . . . , (qk,yk)) ∈ Ξk,my. We define

(p, [x1, . . . , xk]) ✩ ((q1,y1), . . . , (qk,yk)) ={
(p, [x1y1, . . . , xkyk]) if pxi = qi and yi �= ε, ∀i ∈ [1, k]
undefined otherwise

and

(p, [x1, . . . , xk]) ★ ((q1,y1), . . . , (qk,yk)) =⎧⎨⎩
(p, [(x1, x1y1), . . . , (xk, xkyk)])

if pxi = qi and yi �= ε, ∀i ∈ [1, k]
undefined otherwise

where xiyi, for i ∈ [1, k], is the tuple obtained from yi by prepending xi to each
of its positions.

We note that, when defined

(p, [x1, . . . , xk]) ✩ ((q1,y1), . . . , (qk,yk)) ∈ Υmy

(p, [x1, . . . , xk]) ★ ((q1,y1), . . . , (qk,yk)) ∈ Υ kx,my.

[For ease of exposition we are using Υmy instead of Υmx.]
For L1 ⊆ Υ kx, L2 ⊆ Ξk,my we define L1 ✩ L2 and L1 ★ L2 in the natural

way. Again we blur the distinction between a set of one element and the element
itself.

Definition 12. The maximally contained rewriting (MCR) of Q ⊆ Υmy using
V ⊆ Υ kx is

R = {ξ ∈ Ξk,my : V ✩ ξ ⊆ Q}.
3 By assuming properly transformed query and view (as we show in the full ver-
sion [15]), we do not need to consider the case when some xi coincides with some
position in yi.
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(ξ being in Ξk,my is of the form ((q1,y1), . . . , (qk,yk)).)
We also define set X of “bad” patterns as

X = {ξ ∈ Ξk,my : there exists υ ∈ V s.t. υ ✩ ξ ∈ Qc}

where Qc = Υmy \ Q. (υ being in Υ kx is of the form (p, [x1, . . . , xk]).) Now we
define

Y = {ξ ∈ Ξk,my : there exists υ ∈ V s.t. υ ✩ ξ ∈ Q}.
Notice that R, X , and Y are subsets of Ξk,my. We have that

Proposition 5. R = Y \X.

Dummy roots. We turn forests into trees by introducing a “dummy” root
labeled by a special symbol ♦ �∈ Σ.

Given (t1, . . . , tk) ∈ Ξk, we define

♦(t1, . . . , tk)

to be the tree obtained by making the roots of t1, . . . , tk to be children of a
dummy new root labeled by ♦.

Likewise, given ((q1,y1), . . . , (qk,yk)) ∈ Ξk,my, we define

♦((q1,y1), . . . , (qk,yk))

to be the tree obtained by making the roots of q1, . . . , qk to be children of a
dummy new root labeled by ♦.

If L is a subset of Ξk or Ξk,my, we define ♦L in the natural way by turning
each forest in L into a tree as described.

Let F ⊆ Ξk and L ⊆ Ξk,my. We define

ans(L, F ) =
⋃
v∈F

ans(♦L,♦v).

Let FV ,t = ans(V, t) ⊆ Ξk be the materialization of V on t ∈ Υ , We answer
Q using V by ans(R,FV ,t). Now, by generalizing the reasoning in the proof of
Theorem 3 it can be verified that

Theorem 7. ans(R,FV ,t) ⊆ ans(Q, t) for each t ∈ Υ .

8 Computing the MCR of an m-ary Query Using a k-ary
View

Analogus to the case of unary queries, we first define the inverse of the ✩

operation.
Let υ ∈ Υ kx and υ′ ∈ Υmx. We define

υ ✪ υ′ =
{
ξ if υ′ = υ ✩ ξ
undefined otherwise

This definition is lifted to subsets of Υx in the natural way. Now, it can be
verified that as in the case of unary queries
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Proposition 6. X = V ✪ Qc and Y = V ✪ Q.

Once we obtain X and Y , we can obtain R as Y \X . In the rest of the section,
we present an automata-based solution for computing

K = J ✪ J ′

when J and J ′ are RTQs.
Here we again use colors in order to work with languages and automata. We

define b as a (unary) operator that given (p,x) ∈ Υ kx returns a tree over Σ∪Σb

that is isomorphic to p with the nodes at the positions of x colored blue.
Likewise, we define r as a (unary) operator that given (p,y) ∈ Υmy returns

a tree over Σ ∪ Σr that is isomorphic to p with the nodes at the positions of y
colored red.

Furthermore, we define br as a (unary) operator that given (p, (x1,y1), . . . ,
(xk,yk)) ∈ Υ kx,my returns a tree over Σ ∪Σb ∪Σr that is isomorphic to p with
the nodes at positions x1, . . . , xk colored blue and the nodes at the positions of
y1, . . . ,yk colored red.

Based on these operators, we define

Υ kb = {b(p,x) : (p,x) ∈ Υ kx}
Υmr = {r(p,y) : (p,x) ∈ Υmy}

Υ kb,mr = {br(p, (x1,y1), . . . , (xk,yk)) :

(p, (x1,y1), . . . , (xk,yk)) ∈ Υ kx,my}
Ξk,mr = {(r(q1,y1), . . . , r(qk,yk)) :

((q1,y1), . . . , (qk,yk)) ∈ Ξk,my}.

Clearly, there is a one-to-one correspondence between the elements of Υ kx,
Υmy, Υ kx,my, Ξk,my and the elements of Υ kb, Υmr, Υ kb,mr, Ξk,mr, respectively.
Therefore, we will blur the distinction between elements and subsets of Υ kx,
Υmy, Υ kx,my, Ξk,my and elements and subsets of Υ kb, Υmr, Υ kb,mr, Ξk,mr,
respectively.

We will use (sans-serif) p, q to refer to colored patterns of Υ kb, Υmr, Υ kb,mr,
and q = (q1, . . . , qk) to refer to colored forests of Ξk,mr.

Let p ∈ Υ kb and q = (q1, . . . , qk) ∈ Ξk,mr with their corresponding (p,x) ∈
Υ kx and ((q1,y1), . . . , (qk,yk)) ∈ Ξk,my. We define

p ✩ q = r((p,x) ✩ ((q1,y1), . . . , (qk,yk)))

p ★ q = br((p,x) ★ ((q1,y1), . . . , (qk,yk))).

We extend ✩ and ★ to languages and forests in the natural way.
In particular, from now on, we will consider J ⊆ Υ kb, J ′ ⊆ Υmr, K ⊆ Ξk,mr,

J ✩ K ⊆ Υmr, and J ★ K ⊆ Υ kb,mr.
We further define a few more notions. Let

Φk,mr be the subset of Ξk,mr forests having at least one tree that has its root
red.
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Φkb,mr be the set of all k-forests over Σ ∪Σb ∪Σr, such that: (1) the roots of
all patterns in the forest are blue, (2) exactly m nodes in total are red, and
(3) all the other nodes are black.

Observe that from the definition of the ✪ operation, K ⊆ Ξk,mr \ Φk,mr.
We define the operators (.)¬b and (.)¬r, for patterns, sets of patterns, forests,

and sets of forests, over Σ ∪Σb ∪Σr, in a manner similar to Section 5.

8.1 Auxiliaries

In our construction we will need the following items

BL = {p ∈ Υ kb,mr : p¬b ∈ L} for L ⊆ Υmr

B′
L = {p ∈ Υ kb,mr : p¬r ∈ L} for L ⊆ Υ kb

CL = {q ∈ Φkb,mr : q¬b ∈ L} for L ⊆ Ξk,mr \ Φk,mr.

In plain language CL is the set of all forests in Φkb,mr obtained from the forests
of L after making the root of their trees blue.

The above languages are easy to construct when L (♦L in the third definition)
is RTL. For instance, for BL, we first construct an automaton B exactly as in
Subsection 5.1, and then compute BL as L(B) ∩ Υ kb,mr. Similar statements as
those made in Proposition 3 can be made here as well.

8.2 The Algorithm

In order to be compatible with the framework of FTAs (which work on trees,
not forests), here we construct a CDFTA for ♦CK . Set ♦K (we are interested
in) is easily computed once we have an automaton for ♦CK .

Consider BJ and B′
J′ . From CDFTAs for BJ and B′

J′ , we construct a CDFTA
for BJ ∩ B′

J′ . Let D = (SD, Σ ∪ Σb ∪ Σr, FD, ΔD) be this CDFTA. We also
transform it to be targeted. Observe that L(D) ⊆ Υ kb,mr. Let

Sb = {s ∈ SD : there exists H
ab

−→ s in ΔD}.

We denote (Sb)k by Skb. Next, we construct FTA E = (SE , Σ ∪ Σb ∪ Σb ∪
{♦}, FE , ΔE) where

SE = SD ∪ {sfinal, sgarbage}
FE = {sfinal}

ΔE = ΔD ∪ {Skb ♦−→ sfinal} ∪ {S∗
E \ Skb ♦−→ sgarbage} ∪

{(sgarbage)
∗ a−→ sgarbage : a ∈ Σ ∪Σb ∪Σr}.

Since k is fixed, an automaton for S∗
E \ Skb can be constructed in polynomial

time in the size of Skb and SE . We can show that the FTA E constructed above
is a CDFTA.

Clearly, L(E) ⊆ ♦Φkr,mr. This is true because D is targeted. Now, by gener-
alizing the reasoning in the proof of Theorem 4, we can show that
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Theorem 8. L(E) = ♦CK . Furthermore, E is complete and deterministic.

Complexity. It can be verified that, similarly as in the case of unary queries
(Subsection 5.3), computing R can be done in singly-exponential time when
starting with non-deterministic FTAs for for Q and V . By Theorem 6, which
applies to the case of k = m = 1, it follows that our constructions are optimal.

9 Conclusions

In this paper, we studied the problem of rewriting queries using views for XML
data, focusing on tree-selecting queries equal in power to MSO. Colored tree
languages and automata provided us a critical ground for implementing rewriting
queries using views. We developed a singly-exponential algorithm for deriving
the maximally contained rewriting of a query using a view, and then extended it
to an algorithm for the general case where the query can be an m-ary query and
the view can be a k-ary view. The latter class of queries is useful in optimizing
the FOR clause of XQuery expressions. We showed the problem is EXPTIME-
hard, thus showing our algorithms are optimal. Allowing our query formalism
to also involve selection, join and restructuring is an avenue worth exploring.
Extending the reasoning about QRV for this wider class is an interesting open
problem.
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Tison, S., Tommasi, M.: Tree automata techniques and applications (2007)

11. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Rewriting regular XPath queries
on XML views. In: ICDE (2007)

12. Filiot, E.: Ranked and unranked tree automata libraries (grappa),
http://www.grappa.univ-lille3.fr/$\sim$filiot/tata

13. Filiot, E., Niehren, J., Talbot, J.-M., Tison, S.: Composing monadic queries in
trees. In: PLAN-X (2006)

14. Frick, M., Grohe, M., Koch, C.: Query evaluation on compressed trees (extended
abstract). In: LICS (2003)

15. Lakshmanan, L.V.S., Thomo, A.: View-based tree-language rewritings for XML
(2013), http://webhome.cs.uvic.ca/~thomo/tarewfull.pdf

16. Lakshmanan, L.V.S., Wang, H., Zhao, Z.J.: Answering tree pattern queries using
views. In: VLDB (2006)

17. Libkin, L., Sirangelo, C.: Reasoning about XML with temporal logics and au-
tomata. J. Applied Logic 8(2), 210–232 (2010)

18. Miklau, G., Suciu, D.: Containment and equivalence for a fragment of XPath.
JACM 51(1), 2–45 (2004)

19. Neven, F.: Design and Analysis of Query Languages for Structured Documents–A
Formal and Logical Approach. PhD thesis. Limburgs Universitair Centrum (1999)

20. Neven, F., Schwentick, T.: Expressive and efficient pattern languages for tree-
structured data. In: PODS (2000)

21. Neven, F., Schwentick, T.: Query automata over finite trees. TCS 275(1-2), 633–674
(2002)

22. Neven, F., Schwentick, T.: On the complexity of XPath containment in the presence
of disjunction, DTDs, and variables. Logical Methods in Computer Science 2(3)
(2006)

23. Niehren, J., Planque, L., Talbot, J.-M., Tison, S.: N-ary queries by tree automata.
In: DBPL (2005)

24. Onose, N., Deutsch, A., Papakonstantinou, Y., Curtmola, E.: Rewriting nested
XML queries using nested views. In: SIGMOD Conf. (2006)

25. Schwentick, T.: On diving in trees. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000.
LNCS, vol. 1893, pp. 660–669. Springer, Heidelberg (2000)

26. Schwentick, T.: Automata for XML - a survey. J. Comput. Syst. Sci. 73(3), 289–315
(2007)

27. ten Cate, B., Segoufin, L.: XPath, transitive closure logic, and nested tree walking
automata. In: PODS (2008)

28. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an appli-
cation to a decision problem of second-order logic. Mathematical Systems The-
ory 2(1), 57–81 (1968)

29. Thomo, A., Venkatesh, S.: Rewriting of VPLs for XML data integration. In: CIKM
(2008)

30. Wang, J., Li, J., Yu, J.X.: Answering tree pattern queries using views: A revisit.
In: EDBT (2011)
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Abstract. Editing is a crucial data mining task in the context of k-
Nearest Neighbor classification. Its purpose is to improve classification
accuracy by improving the quality of training datasets. To obtain such
datasets, editing algorithms try to remove noisy and mislabeled data
as well as smooth the decision boundaries between the discrete classes.
In this paper, a new fast and non-parametric editing algorithm is pro-
posed. It is called Editing through Homogeneous Clusters (EHC) and is
based on an iterative execution of a clustering procedure that forms clus-
ters containing items of a specific class only. Contrary to other editing
approaches, EHC is independent of input (tuning) parameters. The per-
formance of EHC is experimentally compared to three state-of-the-art
editing algorithms on ten datasets. The results show that EHC is faster
than its competitors and achieves high classification accuracy.

Keywords: k-NN classification, clustering, editing, noisy items.

1 Introduction

Classification is a traditional data mining problem that has attracted the in-
terest of many researchers in the past decades [11]. Classification algorithms (or
classifiers) attempt to assign unclassified items to a class from a set of predefined
classes. Classifiers can be divided into eager and instance-based (or lazy) classi-
fiers. Contrary to eager classifiers, lazy classifiers do not build any classification
model that is then used to classify new items. Instead they use the training set
(TS) as the classification model.

A popular lazy classification method is k-Nearest Neighbor (k-NN) classi-
fier [5]. It is simple, very easy to implement and has many applications. The
k-NN classifier works as follows: for each new item x, it searches TS and re-
trieves the k nearest items to x according to a distance metric. The class of x is
determined by a majority vote, i.e., the most common class among the classes
of the k nearest neighbors. Possible ties during voting can be resolved either
randomly or by assigning x to the class of the nearest neighbor.
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k-NN classifier is considered to be an effective classifier. However, it has some
weaknesses. The first one is high computational cost since it must compute
all distances between each unclassified item and all items in TS. In cases of
large datasets, this drawback renders its use a time-consuming procedure and in
some cases even prohibitive. Another weakness is large storage requirements for
storing TS. A third weakness is that k-NN classifier is a noise-sensitive method.
Classification accuracy depends on the level of noise in TS. Usage of high k
values extend the examined neighbourhood and thus can partially remedy this
drawback. However, this implies a high number of trial-and-error executions to
determine the appropriate k value and that noise is uniformly distributed in TS
(otherwise, dynamic determination of k should be adopted [19]).

Data Reduction Techniques (DRTs) [26,8,15,25,28,13,10,4,17] can effectively
deal with the aforementioned weaknesses. They can be divided into Prototype Se-
lection (PS) [8] and Prototype Abstraction (PA) [26] algorithms. PS algorithms
select items from TS whereas PA algorithms generate items by summarizing
similar items from TS and use them as prototypes.

PS algorithms are divided into condensing and editing algorithms. PA and
PS-condensing algorithms aim to built a small representative set (condensing
set) of the initial TS. Usage of a Condensing Set (CS) has the benefits of low
computational cost and storage requirements while accuracy remains at high
levels. PS-editing algorithms aim to improve accuracy rather than achieve high
reduction rates. To achieve this, they remove noisy and mislabelled items and
smooth the decision boundaries (see Figure 1). Ideally, a PS-editing algorithm
builds an Edited training Set (ES) without overlaps between the classes.

The reduction rates of many PA and PS-condensing algorithms depend on the
level of noise in TS. The higher the level of noise, the lower the reduction rates
achieved. Therefore, effective application of such algorithms implies removal of
noise from the data, i.e., application of an editing algorithm beforehand [6,15].
Hence, editing has a double goal: accuracy improvement and effective application
of PA and PS-condensing algorithms. We should mention that some condensing
algorithms, such as IB3 [1], integrate the idea of editing into their reduction
procedures. These algorithms are called hybrid (see [8,26] for details).

Although PS-editing algorithms contribute in obtaining high quality training
data, they constitute a costly preprocessing step. Moreover, most PS-editing al-
gorithms are parametric, i.e., the user defines the values of certain input (tuning)
parameters. This implies time-consuming trial-and-error procedures to tune the
parameters. These observations are behind the motivation of this paper. The
contribution is the development and evaluation of a fast, non-parametric PS-
editing algorithm that is based on a k-means clustering [16] procedure that
forms homogeneous clusters. The proposed algorithm is called Editing through
Homogeneous Clusters (EHC), leads to accurate k-NN classifiers and has low
preprocessing cost.

The rest of the paper is organized as follows: Section 2 reviews the most
well-known editing algorithms. Section 3 presents the proposed EHC algorithm.
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(a) Initial training set (b) Edited set

Fig. 1. Smoothing decision boundaries and removing noisy items

Performance evaluation experiments are presented in Section 4 and, finally, Sec-
tion 5 concludes the paper.

2 Editing Algorithms

2.1 The Edited Nearest Neighbor (ENN) Rule

The reference editing algorithm is Wilson’s Edited Nearest Neighbor (ENN)
rule [29]. It constitutes the base of all other editing algorithms. ENN-rule is
very simple. Algorithm 1 contains the pseudocode of the algorithm. Initially,
the edited set (ES) is set to be equal to the TS (line 1). For each item x of
TS, the algorithm scans TS and retrieves its k nearest neighbors (line 3). If
x is misclassified by the majority vote of the retrieved nearest neighbors, it is
removed from ES (lines 4–7). ENN-rule considers wrongly classified items to be
noisy or close-border items and, thus, they must be removed. Note that, in each
algorithm iteration, ENN-rule searches for nearest neighbors in the original TS
and not in the “under construction” ES.

Algorithm 1. ENN-rule

Input: TS, k
Output: ES

1: ES ← TS
2: for each x ∈ TS do
3: NNs ← find the k nearest to x neighbors in TS − {x}
4: majorClass ← find the most common class of NNs
5: if xclass �= majorClass then
6: ES ← ES − {x}
7: end if
8: end for
9: return ES

Obviously, the cost of editing depends on the size of TS. In cases of large
datasets, ENN-rule is a time-consuming algorithm. ENN-rule must compute all
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distances between the items of TS. Therefore, N∗(N−1)
2 distances must be esti-

mated, where N is the number of items in TS.
A crucial issue that should be addressed is the determination of the value of k

that defines the size of the examined neighborhood. [28,9,17] consider k = 3 to be
a typical value. This is adopted in many papers (e.g. [20]), whereas, other papers
use k = 3 and additional k values (e.g., [23,12]). In some cases, researchers deter-
mine the value of k that achieves the best performance through trial-and-error
procedures (e.g., [27]). In [29], the impact of k is discussed in detail. Further-
more, in [12], a large number of k values are experimentally evaluated. It turns
out that the best value of k depends on the dataset at hand and should be de-
termined by considering the distribution of items in the multidimensional space.
Even the best value of k may not be optimal and it may remove non-noisy items
(see [9]) or keep noisy items. This happens because ENN-rule uses a unique k
value for the entire TS. Different k values may be optimal for different regions
in space.

2.2 All k-NN

All-kNN [24] is a popular variation of ENN-rule. It iteratively executes ENN-
rule with different k values (see Algorithm 2). All-kNN adopts kmax as an upper
limit for the value of k. Initially, ES is set to be the whole TS (line 1). For each
item x in TS (line 2), All-kNN applies k-NN classifier on the items of TS (lines
6–7), initially, with k = 1 and tries to remove x from ES in a way similar to
ENN-rule. If x is misclassified, it is removed and the procedure continues with
the next item (lines 8–11). Otherwise, k is incremented by one (line 12) and the
algorithm retries to remove x. If the item is not removed after kmax iterations
(line 5), x remains in the final ES and All-kNN continues with the next item.

Since All-kNN uses more than one values for k, it removes more items than
ENN-rule. Although All-kNN is an iterative version of ENN-rule, an efficient
implementation of it does not re-compute the same distances again and again.
Therefore, All-kNN computes as many distances as ENN-rule and is parametric,
too. The value of kmax must be defined by the user. This usually implies tuning
through a trial-and-error procedure. M. Garcia-Borroto et al. consider kmax = 7
or kmax = 9 to be appropriate values [9].

2.3 Multiedit

Multiedit [7] is another well-known editing approach (see Algorithm 3). Initially,
ES is set to be equal to TS (line 1). Then, TS is divided into n random subsets,
s1, s2, . . . , sn (line 5). The algorithm continues by applying ENN-rule over each
item x ∈ si (line 7) of each subset si (line 6), but searching for the single nearest
neighbor (1-NN) in the module n following subset, i.e., s(i+1)modn (line 8). The
misclassified items are removed from ES (line 10). Then, TS is set to be ES
(line 20) and the whole process is repeated. Multiedit continues until the last R
iterations produce no editing (lines 15–19, line 21).



294 S. Ougiaroglou and G. Evangelidis

Algorithm 2. All-kNN

Input: TS, kmax
Output: ES

1: ES ← TS
2: for each x ∈ TS do
3: k ← 1
4: flag ← FALSE
5: while (k ≤ kmax) and (flag == FALSE) do
6: NNs ← find the k nearest to x neighbors in TS − {x}
7: majorClass ← find the most common class in NNs
8: if xclass �= majorClass then
9: ES ← ES − {x}
10: flag ← TRUE
11: end if
12: k ← k + 1
13: end while
14: end for
15: return ES

Here, parameter k is not used since multiedit utilizes 1-NN classifier during
editing. However, parameters n and R influence the resulting ES. Parameter
n ≥ 3 defines the number of subsets. In many papers (e.g., [9,23]), n = 3 is
either adopted or proposed. Parameter R defines the number of non-editing
iterations. In [9], R = 2 is suggested as an appropriate value. Nevertheless, the
best values for these parameters can not be determined without tuning through
a trial-end-error procedure.

Multiedit usually achieves higher reduction rates than ENN-rule. It can suc-
cessfully remove noisy, outlier and close-border items. However, it may also re-
move non-noisy items. If items of two or more classes are close to each other,
multiedit may eliminate entire classes [9]. Another drawback of multiedit is that
it is based on a random formation of subsets, i.e., repeated applications may
build a completely different ES from the same TS.

Multedit is usually more time-consuming than ENN-rule. However, it may

compute even fewer than N∗(N−1)
2 distances. An efficient implementation of mul-

tiedit does not compute a distance more than once. However, since the distances
that have been already computed should be available until the end of the ex-
ecution, such an implementation requires more memory. In cases where each
distance is computed more than once, the computational cost of the algorithm
highly depends on the value of R.

2.4 Other Editing Algorithms

Subsections 2.1, 2.2 and 2.3 presented in detail three state-of-the-art editing
algorithms that we use for comparison purposes in our experimental study in
Section 4. Many more editing approaches have been proposed in the literature.



EHC: Non-parametric Editing by Finding Homogeneous Clusters 295

Algorithm 3. Multiedit

Input: TS, n,R
Output: ES

1: ES ← TS
2: r ← 0
3: repeat
4: flag ← FALSE
5: S ← set of n random subsets, s1, s2, . . . , sn of TS
6: for each si ∈ S do
7: for each x ∈ si do
8: nn ← find the nearest neighbor in s(i+1)modn

9: if xclass �= nnclass then
10: ES ← ES − {x}
11: flag ← TRUE
12: end if
13: end for
14: end for
15: if flag = FALSE then
16: r ← r + 1
17: else
18: r ← 0
19: end if
20: TS ← ES
21: until r == R {until the last R iterations do not edit data}
22: return ES

EENProb and ENNth [27] are extensions of ENN-rule. Both retrieve the k
nearest neighbors, and then perform editing based on probability estimations.
Repeated ENN (RENN) rule [24] is also a variation of ENN-rule. Actually, it is
quite similar to All-kNN. RENN-rule applies ENN-rule in an iterative way until
each item’s majority of k nearest items have the same class. In [12], another
simple variation of ENN is proposed. It places an item in ES, if all its k nearest
neighbors have the same class label with it (distance ties increase the value
of k).

Sanchez et al. proposed two editing algorithms that are based on geometric
information provided by proximity graphs [23]. They are also based on the con-
cept of removal of misclassified items. To the best of our knowledge, they are
the only non-parametric editing algorithms. Nevertheless, the type of proximity
graphs used influence the resulting ES. In [23], two types of proximity graphs
were used. Consequently, four editing approaches were obtained and evaluated.
From this point of view, even these algorithms can be characterized to be para-
metric methods.
k-NCN editing and its iterative version [20] are also based on ENN-rule.

Particularly, they use k nearest centroid neighborhood classifier [22] instead of
k-NN classifier. Both are based on the following simple idea: the appropriate
neighborhood that should be examined for each item is defined by taking into
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consideration not only its nearest neighbors but also the symmetrical distribu-
tion of neighbors around it.

In [3,20] a depuration algorithm is proposed for editing training data. In addi-
tion to removing some items from TS, the algorithm also changes the class labels
of some items. To achieve this, it uses two input parameters (see [3] or [20] for de-
tails). [14] considers and evaluates editing approaches based on the depuration
algorithm and proposes the Neural Network Ensemble Editing (NNEE). This
method is also parametric. NNEE trains a neural network ensemble that is then
used to relabel some items. Last by not least, a recent paper [21] proposes the
use of local support vector machines for noise reduction. Like the other methods,
its performance depends on parameter tuning.

3 Editing through Homogeneous Clusters (EHC)
Algorithm

As we already mentioned in Section 2, PS-editing algorithms either extend ENN-
rule or are based on the same idea. The proposed EHC algorithm follows a com-
pletely different, non-parametric strategy in order to remove noisy, mislabeled
and close-border data items. Actually, it is based on RHC [18], a PA algorithm
we have recently proposed. EHC iteratively applies k-means clustering on TS
until all constructed clusters contain items of a specific class only, i.e., they are
homogeneous. In the process, EHC removes all the clusters that contain only
one item. We call these clusters one-item clusters.

Initially, EHC considers TS to be a non-homogeneous cluster. The algorithm
computes a mean item for each class (class-mean) by averaging the corresponding
items in the non-homogeneous cluster. If the cluster contains items from c classes,
EHC computes c means. Then, it applies k-means clustering on the cluster, using
the class-means as initial means, and builds c clusters. k-means clustering is
recursively applied on the items of each non-homogeneous cluster built. One-
item clusters are removed.

Two examples that demonstrate the operation of EHC are depicted in Fig-
ures 2 and 3. More specifically, Figure 2 demonstrates how EHC identifies and
removes a close-border item, while Figure 3 demonstrates how the algorithm
removes a noisy item. Note that non-homogeneous clusters are depicted with
dashed borders. EHC identifies and removes outliers in a similar way.

Of course, EHC may assign a typical data item (non-noisy, non-close-border)
to an one-item cluster and remove it. For instance, suppose that a non-
homogeneous cluster with two items is built. EHC will remove both items even
when one of them belongs to the major class of the region.

Algorithm 4 describes a possible implementation of EHC. It utilizes a queue
data structure Q in order to hold the unprocessed clusters. Initially, ES is set
to be TS (line 1) and Q includes the whole TS as one unprocessed cluster (lines
2–3). In each algorithm iteration, cluster C is taken from the head of Q and is
examined (line 5). If C is homogeneous (line 6), the algorithm counts the items
in C and if C is a one-item cluster, its item is removed from ES (lines 7–9). If C
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(a) initial data (b) means of classes

(c) k-Means on initial data (d) means of classes in cluster A

(e) k-Means on
non-homogeneous cluster A

(f) final edited set

Fig. 2. EHC: Smoothing decision boundaries
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(a) initial data (b) means of classes (c) k-Means on initial
data

(d) means of classes in
cluster A

(e) k-Means on
non-homogeneous clus-
ter A

(f) final edited set

Fig. 3. EHC: Removing noisy items

is a non-homogeneous cluster, the class means for all the classes present in it are
computed and added to set R (lines 11–14). Set R and cluster C are the input
parameters to k-means clustering (line 15). The returned clusters are enqueued
in Q (lines 16–18). The loop continues as long as there are non-homogeneous
clusters (line 20).

Concerning the computational cost, we can easily conclude that EHC is a
fast algorithm. It uses the fast k-means clustering algorithm that is also sped-
up by considering as initial means the means of the classes that are present in
each cluster. One expects that the resulting clusters are quickly consolidated and
the cost is lower than when opting for random means initialization. It is worth
mentioning that contrary to all other editing methods, EHC does not compute
distances between “real” items. It computes distances between items and mean
items. Moreover, contrary to ENN-rule and some of its variations that compute
a fixed number of distances regardless the item distribution in the multidimen-
sional space, the number of distances computed by EHC is difficult to predict in
advance. It exclusively depends on the item distribution in the data space. Fi-
nally, the main advantage of the proposed method is that it is non-parametric.
Therefore, there is no need for time-consuming trial-end-error procedures. Fi-
nally, note that EHC builds the same ES regardless of data ordering.
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Algorithm 4. EHC

Input: TS
Output: ES

1: ES ← TS
2: Q ← ∅
3: Enqueue(Q, TS)
4: repeat
5: C ← Dequeue(Q)
6: if C is homogeneous then
7: if |C| = 1 then
8: ES ← ES − C
9: end if
10: else
11: R ← ∅ {R is the set of class means}
12: for each class M in C do
13: R ← R ∪mean of(M)
14: end for
15: Clusters ← K-MEANS(C, R)
16: for each cluster Cl ∈ Clusters do
17: Enqueue(Q, Cl)
18: end for
19: end if
20: until IsEmpty(Q) {until all constructed clusters are homogeneous}
21: return ES

4 Performance Evaluation

4.1 Experimental Setup

The proposed EHC algorithm was coded in C and evaluated on ten datasets.
We downloaded eight datasets from KEEL dataset repository1 [2]. Their main
characteristics are shown in Table 1. Initially, we did not know the level of noise
in each dataset. After our experimentation, we realized that LIR is an almost
noise-free dataset and LS and PH have low levels of noise. Since, we wanted
to test how editing behaves on noise-free datasets, we decided to include these
datasets in our experimentation. Moreover, we built two additional datasets by
adding 10% random noise in LS and PH. We refer to these datasets as LS-n
and PH-n respectively. Practically, we changed the class label of each item with
a probability of 0.1. No other data transformation was performed. No dataset
included missing values. Finally, euclidean distance was adopted as the distance
metric.

For comparison purposes, we coded the three state-of-the-art algorithms pre-
sented in detail in Section 2 (ENN-rule [29], All-kNN [24], Multiedit [7]). We
coded and used a non-optimized implementation of multiedit that may re-
compute same distances more than once.

1 http://sci2s.ugr.es/keel/datasets.php

http://sci2s.ugr.es/keel/datasets.php
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Table 1. Dataset details

Dataset Size (items) Attributes Classes

Magic Gamma Telescope (MGT) 19020 10 2

Landsat Satellite (LS) 6435 36 6

Phoneme (PH) 5404 5 2

Letter Image Recognition (LIR) 20000 16 26

Banana (BN) 5300 2 2

Ecoli (ECL) 336 7 8

Pima (PM) 768 8 2

Yeast (YS) 1484 8 10

An important issue that we had to address was the tuning of the parameters of
the aforementioned methods. For all of them, we adopted the settings proposed
in [9]. In particular, we used k = 3 for ENN-rule, k = 7 and k = 9 for All-
kNN and n = 3 and R = 2 for multiedit. These settings are very common in
many experimental studies in the literature. In addition, we used k = 5 for
ENN-rule and n = 5 for multiedit. Of course, we also measured and present the
performance of the conventional 1-NN classifier (classification without editing).

The four editing algorithms were compared to each other in terms of two
main criteria: classification accuracy and preprocessing (editing) cost. The lat-
ter was estimated by counting the distances computed by each algorithm. Ac-
curacy measurements were estimated by executing 1-NN classifier on the edited
sets. For each algorithm and dataset, we report the average accuracy and cost
measurements obtained via a five-fold cross validation. We used the pairs of
training/testing sets distributed by KEEL repository. Although the reduction
rates achieved by each method do not indicate the best performing algorithm,
they reveal the percentage of data that is considered as noise by each algorithm.
Therefore reduction rates were estimated and are reported.

4.2 Comparisons

The performance measurements of our experimental study are presented in Ta-
ble 2. Each table cell contains three measurements that correspond to the exe-
cution of an editing approach on a particular dataset. The three measurements
are: accuracy (Acc), reduction rate (RR) and preprocessing cost (PC). The best
measurements are in bold.

As we expected, EHC is the fastest approach. It achieves very low average
PC measurements compared to its competitors (see the last row of the table).
EHC computes the fewest distances in nine out of ten datasets. Furthermore, we
observe that the cost gains are very high for large datasets. Finally, as we men-
tioned in Section 3, EHC computes a completely different number of distances
for LS, LS-n and PH, PH-n. Here, we should mention that multiedit would have
computed as many distances as ENN-rule and All-kNN had we used a more
efficient implementation.
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Table 2. Experimental measurements Accuracy (Acc(%)), Reduction Rate (RR(%))
and Preprocessing Cost (PC (millions of distance computations))

Dataset 1-NN
ENN ENN Multiedit Multiedit AllkNN AllkNN

EHC
(k=3) k=5) (n=3, R=2) (n=5, R=2) (k=7) (k=9)

MGT
Acc 78.144 80.44 80.57 76.75 75.26 80.76 80.86 79.52
RR - 20.08 19.20 39.98 42.36 29.67 30.38 10.70
PC - 115.76 115.76 2,839.55 1,447.93 115.76 115.76 4.08

LS
Acc 90.60 90.30 90.43 86.79 86.03 90.12 90.16 90.55
RR - 9.07 9.27 24.13 26.17 13.92 14.51 3.11
PC - 13.25 13.25 266.22 139.53 13.25 13.25 1.69

PH
Acc 90.10 88.14 87.53 80.77 79.72 86.55 86.23 89.06
RR - 11.25 11.93 34.14 36.91 17.92 19.30 7.36
PC - 9.35 9.35 166.22 53.71 9.35 9.35 0.66

LIR
Acc 95.83 94.98 94.87 70.94 58.35 94.28 94.00 95.23
RR - 4.33 4.44 43.43 56.59 7.31 7.97 3.95
PC - 127.99 127.99 7,214.38 2,900.53 127.99 127.99 41.85

BN
Acc 86.906 89.36 89.55 89.83 90.38 89.509 89.79 88.60
RR - 11.53 10.98 20.12 21.64 17.10 17.51 10.65
PC - 8.99 8.99 106.69 60.26 8.99 8.99 0.56

ECL
Acc 79.781 81.57 81.86 63.10 46.11 81.26 80.66 82.16
RR - 20.45 20.45 47.29 60.15 28.63 30.48 17.01
PC - 0.036 0.036 0.100 0.055 0.036 0.036 0.035

PM
Acc 68.358 71.87 71.75 71.36 68.89 72.65 73.30 70.32
RR - 30.16 29.43 53.07 58.96 45.56 46.24 16.59
PC - 0.19 0.19 0.51 0.26 0.19 0.19 0.06

YS
Acc 52.156 56.47 57.07 52.90 50.54 58.29 58.42 54.45
RR - 45.73 43.89 74.34 80.93 59.90 61.25 29.58
PC - 0.70 0.70 1.19 0.58 0.70 0.70 0.84

LS-n
Acc 82.067 89.96 90.13 86.70 85.86 89.74 89.79 89.67
RR - 20.21 18.08 37.90 40.25 30.01 30.57 13.80
PC - 13.25 13.25 131.95 94.98 13.25 13.25 8.06

PH-n
Acc 81.884 87.71 87.25 80.63 79.66 86.20 85.83 88.40
RR - 21.78 20.21 34.14 36.91 32.36 33.46 22.29
PC - 9.35 9.35 166.22 53.71 9.35 9.35 4.35

AVG
ACC 80.23 83.08 83.10 75.98 72.08 82.93 82.90 82.80
RR - 19.46 18.79 40.85 46.09 28.24 29.17 13.50
PC - 29.89 29.89 1,089.30 475.15 29.89 29.89 6.22

Concerning accuracy measurements, we observe that the proposed algorithm
is comparable to ENN-rule and All-kNN. Multiedit has the worst accuracy, es-
pecially for LIR and ECL, where its accuracy is unacceptable. This happens
because multiedit removes data that should not be removed. Although the dif-
ferences in accuracy between EHC, ENN and All-kNN are not statistically sig-
nificant, we observe that EHC has the highest Acc measurements in half the
datasets. However, ENN-rule has the highest average Acc measurement.

For LIR, LS and PH that contain low levels of noise, all editing approaches
seem to negatively affect accuracy since conventional 1-NN classifier achieves the
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highest Acc measurements. However, in all these cases, EHC is the most accurate
editing algorithm. In contrast, in the rest seven datasets, most of the editing
approaches achieve higher Acc measurements than conventional-1NN classifier.
Therefore, it appears that editing constitutes a necessary preprocessing step.

The proposed algorithm has the lowest reduction rate. EHC removes items
by using the strict criterion of one-item clusters. For datasets with extremely
high levels of noise (e.g. 30% or more), it is not certain that EHC will improve
classification accuracy like ENN-rule with an appropriate k value does. On the
other hand, EHC is not expected to negatively affect classification accuracy as
much as the other methods do.

5 Conclusions

Classification accuracy achieved by k-NN classifier strongly depends on the qual-
ity of the available training data. Noisy and mislabeled data as well as outliers
and overlaps between regions of different classes are the reasons of bad classifi-
cation performance for the particular classifier. Editing algorithms can improve
classification accuracy by removing such data. In this paper, we presented a
short review of editing algorithms. Then, we proposed a non-parametric algo-
rithm, called Editing through Homogeneous Clusters (EHC), which follows a
completely different strategy than the other editing approaches. EHC is based
on a clustering procedure that forms homogeneous clusters in the training data.
The clusters that contain only one item are considered redundant (they contain
noisy, outlier or close-border items) and are removed. An experimental study
with ten datasets showed that the proposed algorithm is very fast and achieves
comparable classification accuracy to the state-of-the-art methods.
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Abstract. We present a logic inspired by partially observable Markov
decision process (POMDP) theory for specifying agent domains where
the agent’s actuators and sensors are noisy (causing uncertainty). The
language features modalities for actions and predicates for observations.
It includes a notion of probability to represent the uncertainties, and the
expression of rewards and costs are also catered for. One of the main
contributions of the paper is the formulation of a sound and complete
decision procedure for checking validity of sentences: a tableau method
which appeals to solving systems of equations. The tableau rules elimi-
nate propositional connectives, then, for all open branches of the tableau
tree, systems of equations are generated and checked for feasibility. This
paper presents progress made on previously published work.

1 Introduction

Imagine a robot that is in need of an oil refill. There is an open can of oil on the
floor within reach of its gripper. If there is nothing else in the robot’s gripper, it
can grab the can (or miss it, or knock it over) and it can drink the oil by lifting
the can to its mouth and pouring the contents in (or miss its mouth and spill).
The robot may also want to confirm whether there is anything left in the oil-can
by weighing its contents with its ‘weight’ sensor. And once holding the can, the
robot may wish to replace it on the floor. In situations where the oil-can is full,
the robot gets five units of reward for gabbing the can, and it gets ten units of
reward for a drink action.

In order for robots and intelligent agents in stochastic domains to reason
about actions and observations, they must first have a representation or model
of the domain over which to reason. For example, a robot may need to represent
available knowledge about its grab action in its current situation. It may need
to represent that when ‘grabbing’ the oil-can, there is a 5% chance that it will
knock over the oil-can. As another example, if the robot has access to information
about the weight of an oil-can, it may want to represent the fact that the can
weighs heavy 90% of the time in ‘situation A’, but that it is heavy 98% of the
time in ‘situation B’.

C. Beierle and C. Meghini (Eds.): FoIKS 2014, LNCS 8367, pp. 305–323, 2014.
© Springer International Publishing Switzerland 2014
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The oil-drinking domain is (partially) formalized as follows. The robot has
the set of (intended) actions A = {grab, drink, weigh, replace} with expected
meanings. The robot can make observations only from the set Ω = {obsNil,
obsLight, obsMedium, obsHeavy}. Intuitively, when the robot performs a weigh

action (i.e., it activates its ‘weight’ sensor) it will perceive either obsLight,
obsMedium or obsHeavy; for other actions, it will perceive obsNil. The robot
experiences its world (domain) through three Boolean features: F = {full,
drank, holding} meaning respectively that the oil-can is full, that the robot has
drunk the oil and that it is currently holding something in its gripper. Given a
formalization BK of our scenario, the robot may have the following queries:

– If the oil-can is empty and I’m not holding it, is there a 0.9 probability that
I’ll be holding it after grabbing it, and a 0.1 probability that I’ll have missed
it? That is, does (¬full ∧ ¬holding) → ([grab]0.9(¬full ∧ holding) ∧
[grab]0.1(¬full ∧ ¬holding)) follow from BK ?

– If the oil-can is not full, I’ve drunk the oil and I’m holding the can, is there a
0.7 probability of perceiving the can is light, given I weighed it? That is, does
(¬full ∧ drank ∧ holding)→ (obsLight | weigh : 0.7) follow from BK ?

Modal logic is considered to be well suited to reasoning about beliefs and
changing situations [6,14]. Partially observable Markov decision process
(POMDP) theory [30,17] has proven to be a good general framework for formal-
izing dynamic stochastic systems. Our goal is to integrate logic with stochastic
actions and observations, taking the semantics of POMDPs in particular. To our
knowledge, there exists no such logic; see the discussion of related work below.
This paper though, concerns work that is a step towards that goal. Here we
present the Specification Logic of Actions and Observations with Probability
(SLAOP). With SLAOP, POMDP models can be represented compactly.

The present version of SLAOP is an extension of the Specification Logic of
Actions with Probability (SLAP) [24,27], but with an improved completeness
proof due to a new decision procedure. SLAP is extended with (i) notions of
rewards and action costs, (ii) a notion of equality between actions and observa-
tions and (iii) observations for dealing with perception/sensing. To establish a
correspondence between POMDPs and SLAOP, SLAOP must view observations
as objects at the same semantic level as actions. We make use of the results of
[26] to add observations as first-class objects.

A preliminary version of SLAOP has been presented at a doctoral consortium
[23]. Since then, significant progress has been made. We mention only some of the
major changes. Firstly, the present version of SLAOP inherits the � operator
from SLAP, which is important for marking sentences as globally applicable
axioms. The preliminary version of SLAOP had no � operator. Another change
is, instead of the predicate (ς | α : q) used in the present version, a modal
operator [ς | α]qϕ with a slightly different definition was used in the ‘old’ SLAOP.
[ς | α]qϕ can be read ‘The probability of perceiving ς in a world in which ϕ holds
is equal to q, given α was performed.’ It turned out that specifying ϕ creates
unwanted interactions with the modal operator [α]qϕ for specifying transition
probabilities. Moreover, we have determined that (ς | α : q) (with the given
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meaning; cf. § 3.2) is sufficient for specifying perception probabilities (cf. § 5).
Last and most importantly, the decision procedure of the preliminary version
relied on many intricate tableau rules; relying on the solvability of systems of
inequalities (as in the present version) is much cleaner and the decidability of
such systems carries over to help prove the decidability of SLAOP. The decision
procedure for the previous version of SLAOP was not proven complete. The
current version is proved complete and terminating.

A formal approach how to specify probabilistic transition models with SLAP
has been published [24], and there, a solution to the frame problem for SLAP
is also presented. That frame solution can easily be employed for SLAOP. A
decision procedure for validity checking in SLAP is presented in a journal article
[27]. The procedure for SLAP is simpler than for SLAOP because it does not use
the ‘label assignment’ approach (cf. § 4.3). We opted for a decision procedure
with label assignments for SLAOP because the proof of completeness is then
easier to understand (see the accompanying technical report [25]), and sentences
of a certain form which are not allowed in SLAP are allowed in SLAOP (see
§ 4.3).

Related work is discussed next. Then Section 3 presents the syntax and seman-
tics of SLAOP. Section 4 presents the two-phase decision procedure. Section 5
provides examples of application of the decision procedure. Some concluding
remarks are made in Section 6.

2 Related Work

Several frameworks exist for reasoning about probabilistic inference in static
domains [1,9,13,16,29,33]. Here, a “static domain” is a domain in which the
physical state of the system does not change, although the state of information
of various agents in the system may change. In SLAOP, the focus is more on how
stochastic actions change the physical state of a system. Some of these logics are
concerned with how knowledge changes as new information is gained, however,
the information received is not seen as an observation object. Moreover, they do
not express the probability with which the received information was expected in
the current situation. That is, they take the new information as certain. SLAOP
can express the fact that information (in the form of observation objects) may be
incorrect to some degree. This ability of SLAOP is carried over from the SLAP
logic [24,27].

Poole’s Independent Choice Logic using the situation calculus (ICLSC ) [20]
is a relatively rich framework, with acyclic logic programs which may contain
variables, quantification and function symbols. For certain applications, SLAOP
may be preferred due to its comparative simplicity. And because SLAOP’s se-
mantics is very close to that of standard POMDP theory, it may be easier to
understand by people familiar with POMDPs. Finally, decidability of inferences
made in the ICLSC are, in general, not guaranteed.

Bonet and Geffner [3] present a framework with heuristic search algorithms
for modeling and solving MDPs and POMDPs. It seems similar to the ICLSC
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in its application area. Their framework uses high-level logical representations,
but it is not presented as a logic, nor does it empoy logical entailment.

DTGolog [5] is a programming language, rather than a logic, and it does not
deal with stochastic observations.

PODTGolog [22] is another logic programming framework which does deal
with stochastic observations, but it does not have a well defined semantics.

Many popular frameworks for reasoning about action, employ or are based
on the situation calculus [22]. Reified situations make the meaning of formu-
lae perspicuous. However, the situation calculus seems too rich and expressive
for our purposes, and it would be desirable to remain decidable, hence the re-
striction to a propositional modal framework. The validity problem for SLAOP
is decidable, which sets it apart from first-order logics for reasoning about ac-
tion (including the situation calculus) or reasoning with probabilities (including
BHL’s approach [2] and ESP [11]). In other words, having a decidable formalism
to reason about POMDP’s is considered an asset and would set us apart from
other more expressive logical formalisms addressing action and sensing under
uncertainty.

Iocchi et al. [15] present a logic called E+ for reasoning about agents with
sensing, qualitative nondeterminism and probabilistic uncertainty in action out-
comes. Planning with sensing and uncertain actions is also dealt with. Noisy
sensing is not dealt with, that is, sensing actions are deterministic. They men-
tion that although they would like to be able to represent action rewards and
costs as in POMDPs, E+ does not yet provide the facilities.

There are some logics that come closer to what we desire [8,34,11,33], that is,
they incorporate notions of probability, but they were not created with POMDPs
in mind and typically do not take observations as first-class objects. On the
other hand, there are formalisms for specifying POMDPs that employ logic-
based representation [4,35,28], but they are not defined entirely as logics. Our
work is to bring the representation of and reasoning about POMDPs totally into
the logical arena. One is then in very familiar territory and new opportunities
for the advancement in reasoning about POMDPs may be opened up.

Systems of linear inequalities are at the heart of Nilsson’s probabilistic logic
[19], which has been extended with stochastic actions by Thiébaux et al. [32].
Fagin, Halpern and Megiddo [10] use a similar idea to prove that the axiomati-
zation of their logic for reasoning about probabilities is complete. None of these
deals with observations.

3 Specification Logic of Actions and Observations with
Probability

First we present the syntax of SLAOP, then we state its semantics.

3.1 Syntax

The vocabulary of our language contains six sorts of objects of interest:



A Logic for Specifying Stochastic Actions and Observations 309

1. a finite set of fluents (alias, propositional atoms) F = {f1, . . . , fn},
2. a finite set of names of atomic actions A = {α1, . . . , αn},
3. a finite set of names of atomic observations Ω = {ς1, . . . , ςn},
4. all real numbers R,1

5. a countable set of action variables VA = {vα1 , vα2 , . . .},
6. a countable set of observation variables VΩ = {vς1, vς2, . . .}.

From now on, we denote R ∩ [0, 1] as R[0,1]. We shall refer to elements of A∪Ω
as constants. We are going to work in a multi-modal setting, in which we have
modal operators [α]q , one for each α ∈ A and q ∈ R[0,1], and predicates (ς | α : q),
one for each pair in Ω ×A and q ∈ R[0,1].

Definition 1. Let f ∈ F , α ∈ (A∪VA), ς ∈ (Ω∪VΩ), v ∈ (VA∪VΩ), q ∈ R[0,1]

and r ∈ R. The language of SLAOP, denoted LSLAOP , is the least set of Ψ
defined by the grammar:

ϕ ::= f | � | ¬ϕ | ϕ ∧ ϕ.
Φ ::= ϕ | α = α | ς = ς | Reward(r) | Cost(α, r) | [α]qϕ | (ς | α : q) |

(∀v)Φ | ¬Φ | Φ ∧ Φ.
Ψ ::= Φ | �Φ | ¬Ψ | Ψ ∧ Ψ.

The scope of quantifier (∀v) is determined in the same way as is done in first-
order logic. A variable v′ appearing in a formula Ψ is said to be bound by quan-
tifier (∀v) if and only if v′ is the same variable as v and is in the scope of (∀v).
If a variable is not bound by any quantifier, it is free. In LSLAOP , variables are
not allowed to be free; they are always bound.

(For SLAP, Φ ::= ϕ | [α]qϕ | ¬Φ | Φ∧Φ.) Note that formulae with nested modal
operators of the form ��Φ, ���Φ, [α]q [α]qϕ and [α]q[α]q [α]qϕ et cetera are not
in LSLAOP . ‘Single-step’ or ‘flat’ formulae are sufficient to specify action transi-
tions probabilities, that is, for specifying a transition model. To reason about the
effects of sequences of actions, nesting may be appropriate, but SLAOP is not
for reasoning at that level. As usual, we treat ⊥,∨,→ and ↔ as abbreviations.
→ and ↔ have the weakest bindings and ¬ the strongest; parentheses enforce
or clarify the scope of operators conventionally.

The definition of a POMDP reward function R(a, s) may include not only the
reward value of state s, but it may deduct the cost of performing a in s. It will
be convenient for the person specifying a POMDP using SLAOP to be able to
specify action costs independently from the rewards of states, because these two
notions are not necessarily connected. To specify rewards and execution costs
in SLAOP, we require Reward and Cost as special predicates. Reward(r) can
be read ‘The reward for being in the current situation is r units’ and we read
Cost(α, c) as ‘The cost for executing α is c units’.

1 In SLAP [27] and the previous version of SLAOP [23], rational numbers were used.
Due to our completeness proof relying on Tarski’s quantifier elimination method [31]
which involves real numbers, we use real numbers here.
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[α]qϕ is read ‘The probability of reaching a ϕ-world after executing α, is equal
to q’. [α] abbreviates [α]1. (ς | α : q) is read ‘The probability of perceiving ς ,
given α was performed, is q’.
〈α〉ϕ abbreviates ¬[α]0ϕ and is read ‘It is possible to reach a world in which

ϕ holds after executing α’. Note that 〈α〉ϕ does not mean ¬[α]¬ϕ. [α]qϕ and
¬[α]qϕ are referred to as dynamic literals. (ς | α : q) and ¬(ς | α : q) are referred
to as perception literals.

One reads �Φ as ‘Φ holds in every possible world’. We require the � opera-
tor to mark certain information (sentences) as holding in all possible worlds—
essentially, the axioms which model the domain of interest. (∀vα) is to be read
‘For all actions’ and (∀vς) is to be read ‘For all observations’. (∀v)Φ (where
v ∈ (VA ∪ VΩ)) can be thought of as a syntactic shorthand for the finite con-
junction of Φ with the variables replaced by the constants of the right sort (cf.
Def. 3 for the formal definition). (∃v)Φ abbreviates ¬(∀v)¬Φ.

3.2 Semantics

SLAOP extends SLAP. SLAP structures are non-standard: They have the form
〈W,R〉, where W is a finite set of worlds such that each world assigns a truth
value to each atomic proposition, and R is a binary relation on W . Moreover,
SLAP is multi-modal in that there are multiple accessibility relations. Intuitively,
when talking about some world w, we mean a set of features (propositions) that
the agent understands and that describes a state of affairs in the world or that
describes a possible, alternative world. Let w : F �→ {0, 1} be a total function
that assigns a truth value to each fluent. Let C be the set of all possible functions
w. We call C the conceivable worlds.

SLAP structures are comparable to Markov decision processes (MDPs)
[21] without reward functions, whereas SLAOP structures are compara-
ble to POMDPs (with reward functions). A POMDP model is a tuple
〈S,A, T,R,Ω,O, b0〉; S is a finite set of states the agent can be in; A is a fi-
nite set of actions the agent can choose to execute; T is the function defining
the probability of reaching one state from another for each action; R is a func-
tion giving the expected immediate reward gained by the agent for any state
and agent action; Ω is a finite set of observations the agent can experience of
its world; O is a function giving a probability distribution over observations for
any state and action performed to reach that state; b0 is the initial probability
distribution over all states in S.

A SLAOP structure is a ‘translation’ of a POMDP model, except for the
initial belief-state b0.2

Definition 2. A SLAOP structure is a tuple S = 〈W,R,O,N,Q,U〉 such that

1. W ⊆ C a non-empty set of possible worlds.

2 Specification of the initial belief-state is required at a higher level of reasoning. It is
left for future work.
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2. R : A �→ Rα, where Rα : (W ×W ) �→ R[0,1] is a total function from pairs of
worlds into the reals; That is, R is a mapping that provides an accessibility
relation Rα for each action α ∈ A; For every w− ∈ W , it is required that
either

∑
w+∈W Rα(w

−, w+) = 1 or
∑

w+∈W Rα(w
−, w+) = 0.

3. O is a nonempty finite set of observations;
4. N : Ω �→ O is a bijection that associates to each name in Ω, a unique

observation in O;
5. Q : A �→ Qα, where Qα : (W × O) �→ R[0,1] is a total function from

pairs in W × O into the reals; That is, Q is a mapping that provides a
perceivability relation Qα for each action α ∈ A; For all w−, w+ ∈ W : if
Rα(w

−, w+) > 0, then
∑

o∈O Qα(w
+, o) = 1, that is, there is a probability

distribution over observations in a reachable world; Else if Rα(w
−, w+) = 0,

then
∑

o∈O Qα(w
+, o) = 0;

6. U is a pair 〈Re,Co〉, where Re : W �→ R is a reward function and Co is a
mapping that provides a cost function Coα : C �→ R for each α ∈ A.

Note that the set of possible worlds may be the whole set of conceivable worlds.
Rα defines the transition probability pr ∈ R[0,1] between worlds w+ and world

w− via action α. If Rα(w
−, w+) = 0, then w+ is said to be inaccessible or not

reachable via α performed in w−, else if Rα(w
−, w+) > 0, then w+ is said

to be accessible or reachable via action α performed in w−. If for some w−,∑
w+∈W Rα(w

−, w+) = 0, we say that α is inexecutable in w−.
Qα defines the observation probability pr ∈ R[0,1] of observation o perceived

in world w+ after the execution of action α. Assuming w+ is accessible, if
Qα(w

+, o) > 0, then o is said to be perceivable in w+, given α, else ifQα(w
+, o) =

0, then o is said to be unperceivable in w+, given α. The definition of perceiv-
ability relations implies that there is always at least one possible observation in
any world reached due to an action.

Because N is a bijection, it follows that |O| = |Ω|. (We take |X | to be the
cardinality of set X .) The value of the reward function Re(w) is a real number
representing the reward an agent gets for being in or getting to the world w. It
must be defined for each w ∈ C. The value of the cost function Co(α,w) is a real
number representing the cost of executing α in the world w. It must be defined
for each action α ∈ A and each w ∈ C.

Definition 3 (Truth Conditions). Let S be a SLAOP structure, with α, α′ ∈
A, q, pr ∈ R[0,1] and r ∈ R. Let f ∈ F and let Φ be any sentence in LSLAOP .
We say Φ is satisfied at world w in structure S (written S, w |= Φ) if and only
if the following holds:

S, w |= � for all w ∈ W ;
S, w |= f ⇐⇒ w(f) = 1 for w ∈W ;
S, w |= ¬Ψ ⇐⇒ S, w �|= Ψ ;
S, w |= Ψ ∧ Ψ ′ ⇐⇒ S, w |= Ψ and S, w |= Ψ ′;
S, w |= (α = α′) ⇐⇒ α, α′ ∈ A are the same element;
S, w |= (ς = ς ′) ⇐⇒ ς, ς ′ ∈ Ω are the same element;
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S, w |= Reward(r) ⇐⇒ Re(w) = r;
S, w |= Cost(α, r) ⇐⇒ Coα(w) = r;
S, w |= [α]qϕ ⇐⇒

∑
w′∈W,S,w′|=ϕRα(w,w

′) = q;

S, w |= (ς | α : q) ⇐⇒ Qα(w,N(ς)) = q;
S, w |= �Φ ⇐⇒ for all w′ ∈W,S, w′ |= Φ;
S, w |= (∀vα)Φ ⇐⇒ S, w |= Φ|vα

α1
∧ . . . ∧ Φ|vα

αn
;

S, w |= (∀vς)Φ ⇐⇒ S, w |= Φ|vς

ς1 ∧ . . . ∧ Φ|v
ς

ςn ,

where we write Φ|vc to mean the formula Φ with all variables v ∈ (VA ∪ VΩ)
appearing in it replaced by constant c ∈ A ∪Ω of the right sort.

A formula ϕ is valid in a SLAOP structure (denoted S |= ϕ) if S, w |= ϕ for
every w ∈ W . ϕ is SLAOP-valid (denoted |= ϕ) if ϕ is true in every structure
S. If |= θ ↔ ψ, we say θ and ψ are semantically equivalent (abbreviated θ ≡ ψ).
ϕ is satisfiable if S, w |= ϕ for some S and w ∈ W . A formula that is not

satisfiable is unsatisfiable or a contradiction. The truth of a propositional formula
depends only on the world in which it is evaluated. We may thus write w |= ϕ
instead of S, w |= ϕ when ϕ is a propositional formula.

Let K be a finite subset of LSLAOP . We say that ψ is a local semantic con-
sequence of K (denoted K |= ψ) if for all structures S, and all w ∈ W of S, if
S, w |=

∧
θ∈K θ then S, w |= ψ. We shall also say that K entails ψ whenever

K |= ψ. If {θ} |= ψ then we simply write θ |= ψ. In fact, K |= Ψ if and only if
|=

∧
θ∈K θ → Ψ (i.e., K entails Ψ iff

∧
θ∈K θ → Ψ is SLAOP-valid).

If there exists a world w ∈ C such that w |= δ, where δ is a propositional
formula, and for all w′ ∈ C, if w′ �= w then w′ �|= δ, we say that δ is definitive
(then, δ defines a world; δ is a complete propositional theory). Let Def (ϕ) be
all the definitive formulae which entail ϕ, that is, Def (ϕ) = {δ ∈ LSLAOP |
δ is definitive and δ |= ϕ}.

4 Decision Procedure for SLAOP Entailment

In this section we describe a decision procedure which has two phases: creation of
a tableau tree (the tableau phase) which essentially eliminates propositional con-
nectives, then a phase which checks for inconsistencies given possible mappings
from ‘labels’ (of the tableau calculus) to worlds (the label assignment phase).
Particularly, in the label assignment phase, solutions for systems of inequalities
(equations and disequalities) are sought.

4.1 The Tableau Phase

The necessary definitions and terminology are given next.
A labeled formula is a pair (x, Ψ), where Ψ ∈ LSLAOP is a formula and x is

an integer called the label of Ψ . A node Γ j
k with superscript j (the branch index)

and subscript k (the node index), is a set of labeled formulae. The initial node,
that is, Γ 0

0 , to which the tableau rules must be applied, is called the trunk.
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Definition 4. A tree T is a set of nodes. A tree must include Γ 0
0 and only nodes

resulting from the application of tableau rules to the trunk and subsequent nodes.
If one has a tree with trunk Γ 0

0 = {(0, Ψ)}, we’ll say one has a tree for Ψ .

When we say ‘...where x is a fresh integer’, we mean that x is the smallest
positive integer of the right sort (formula label or branch index) not yet used in
the node to which the incumbent tableau rule will be applied.

A tableau rule applied to node Γ j
k creates one or more new nodes; its child(ren).

If it creates one child, then it is identified as Γ j
k+1. If Γ

j
k creates a second child,

it is identified as Γ j′
0 , where j′ is a fresh integer. That is, for every child created

beyond the first, a new branch is started.
A node Γ is a leaf node of tree T if no tableau rule has been applied to Γ in

T . A branch is the set of nodes on a path from the trunk to a leaf node. Note
that nodes with different branch indexes may be on the some path.

Definition 5. Γ is higher on a branch than Γ ′ if and only if Γ is an ancestor
of Γ ′.

A node Γ is closed if (x,⊥) ∈ Γ for any x ≥ 0. It is open if it is not closed. A
branch is closed if and only if its leaf node is closed. A tree is closed if all of its
branches are closed, else it is open.

A preprocessing step occurs, where all (sub)formulae of the form (∀vα)Φ and
(∀vς)Φ are replaced by, respectively, (Φ|vα

α1
∧ . . . ∧ Φ|vα

αn
) and (Φ|vς

ς1 ∧ . . . ∧ Φ|v
ς

ςn).
The occurrence of (∃vς)¬(vς | α : 0) in rule obs (below) is only an abbreviation
for the semantically equivalent formula without a quantifier and variables.

The tableau rules for SLAOP follow. A rule may only be applied to an
open leaf node. To constrain rule application to prevent trivial re-applications
of rules, a rule may not be applied to a formula if it has been applied to
that formula higher in the tree, as in Definition 5. For example, if rule �

were applied to {(0,�p1), (1,¬[go]0p2)} ⊂ Γ 2
3 , then it may not be applied to

{(0,�p1), (1,¬[go]0p2)} ⊂ Γ 2
4 .

Let Γ j
k be a leaf node.

– rule ⊥: If Γ j
k contains (n,Φ) and (n,¬Φ), then create node Γ j

k+1 = Γ j
k ∪ {(n,⊥)}.

– rule ¬: If Γ j
k contains (n,¬¬Φ), then create node Γ j

k+1 = Γ j
k ∪ {(n, Φ)}.

– rule ∧: If Γ j
k contains (n,Φ ∧ Φ′), then create node Γ j

k+1 = Γ j
k ∪ {(n,Φ), (n, Φ′)}.

– rule ∨: If Γ j
k contains (n,¬(Φ ∧ Φ′)), then create node Γ j

k+1 = Γ j
k ∪ {(n,¬Φ)} and

node Γ j′
0 = Γ j

k ∪ {(n,¬Φ′)}, where j′ is a fresh integer.
– rule =: If Γ j

k contains (n, c = c′) and c and c′ are distinct constants, or if Γ j
k

contains (n,¬(c = c′)) and c and c′ are identical constants, then create node
Γ j
k+1 = Γ j

k ∪ {(n,⊥)}.
– rule �ϕ: If Γ j

k contains (0,¬[α]0ϕ) or (0, [α]qϕ) for q > 0, then create node Γ j
k+1 =

Γ j
k ∪ {(n, ϕ)}, where n is a fresh integer.

– rule obs: If Γ j
k contains (x,¬[α]0ϕ) or (x, [α]qϕ) for q > 0 and some x, then create

node Γ j
k+1 = Γ j

k ∪ {(0,�(δ1 → (∃vς)¬(vς | α : 0)) ∨ �(δ2 → (∃vς)¬(vς | α :
0)) ∨ · · · ∨�(δn → (∃vς)¬(vς | α : 0)))}, where δi ∈ Def (ϕ).

– rule �: If Γ j
k contains (0,�Φ) and (n,Φ′) for any n ≥ 0, and if it does not yet

contain (n,Φ), then create node Γ j
k+1 = Γ j

k ∪ {(n, Φ)}.
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– rule �: If Γ j
k contains (0,¬�Φ), then create node Γ j

k+1 = Γ j
k ∪ {(n,¬Φ)}, where n

is a fresh integer.

One might wonder why there is not a rule to deal with the case when Γ j
k

contains (x, [α]qϕ) and (x,¬[α]qϕ), or no rule for when Γ j
k contains (x, (ς | α : r))

and (x, (ς | α : r′)) where r �= r′. As will be seen in Section 4.2, these and similar
cases are dealt with.

Definition 6. A branch is saturated if and only if any rule that can be applied
to its leaf node has been applied. A tree is saturated if and only if all its branches
are saturated.

Once the tableau phase is completed, inconsistencies are sought for each open
branch of the saturated tree. Depending on the results, certain branches may
become closed. Depending on the final structure and contents of the tree, the
sentence for which the tree was created can be determined as valid or not. Be-
fore the second phase can be explained, we need to explain how a system of
inequalities (SI) can be generated from a set of dynamic and perception literals.

4.2 Systems of Inequalities

Definition 7. W (Γ, n)
def
= {w ∈ C | w |=  for all (n, ) ∈ Γ where  is a

propositional literal}. W (Γ )
def
=

⋃
x∈{0,1,...,n′}W (Γ, x), where n′ is the largest

label mentioned in Γ .

Let n = |W (Γ )|. Let W (Γ )# = (w1, w2, . . . , wn) be an ordering of the worlds in
W (Γ ). With each world wk ∈ W (Γ )#, we associate a real variable prαk ∈ R[0,1].
One can generate

ci,1pr
α
1 + ci,2pr

α
2 + · · ·+ ci,npr

α
n = qi and ci,1pr

α
1 + ci,2pr

α
2 + · · ·+ ci,npr

α
n �= qi,

for a formulae (x, [α]qiϕi) ∈ Γ , respectively, (x,¬[α]qiϕi) ∈ Γ such that ci,k = 1
if wk |= ϕi, else ci,k = 0, where x represents a label.

Adding an equation

prα1 + prα2 + · · ·+ prαn = 7prα1 + prα2 + · · ·+ prαn8

will ensure that either
∑

w+∈W (Γ )Rα(w
−, w+) = 1 or

∑
w+∈W (Γ )Rα(w

−, w+) =
0, as stated in Definition 2 on page 311.

Let m = |Ω|. Let Ω# = (ς1, ς2, . . . , ςm) be an ordering of the observations in
Ω. With each observation in ςj ∈ Ω#, we associate a real variable prςj .

One can generate
prσj = qj and prσj �= qj

for a formula (x, (σj | α : qj)) ∈ Γ , respectively, (x,¬(σj | α : qj) ∈ Γ , where
σj ∈ Ω# and prσj ∈ {prς1, . . . , prς2, . . . , prςm}.

Adding an equation

prς1 + prς2 + · · ·+ prς2 + · · ·+ prςm = 7prς1 + prς2 + · · ·+ prς2 + · · ·+ prςm8.
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ensures that either
∑

o∈O Qα(w
+, o) = 1 or

∑
o∈O Qα(w

+, o) = 0, as stated in
Definition 2 on page 311.

Let Δ(α) be a set of dynamic literals mentioning α and let Ω(α) be a set of
perception literals involving α. Let S(Δ(α)) and S(Ω(α)) be the systems formed
from Δ(α), respectively, Ω(α). Let v be the vector of all variables mentioned in
S(Δ(α)) or S(Ω(α)). Z(Δ(α)) and Z(Ω(α)) denote the solution set for S(Δ(α)),
respectively, S(Ω(α)). It is the set of all solutions of the form (sα1 , s

α
2 , . . . , s

α
n),

respectively, (sς1, s
ς
2, . . . , s

ς
m), where assigning sαi to prαi ∈ v for i = 1, 2, . . . , n,

respectively, assigning sςj to pr
ς
j ∈ v for j = 1, 2, . . . ,m solves all the (in)equalities

in S(Δ(α)), respectively, S(Ω(α)) simultaneously. An SI is feasible if and only
if its solution set is not empty.

Suppose Δ(replace) contains [replace]0.43(full ∧ ¬holding) and
¬[replace]0.43(full ∧ ¬holding). Then S(Δ(replace)) will contain

0 + prα2 + 0 + prα4 + 0 + 0 + 0 + 0 = 0.43
0 + prα2 + 0 + prα4 + 0 + 0 + 0 + 0 �= 0.43.

This system is clearly infeasible, and the whole system S(Δ(replace)) of which
this one is a subsystem is, by extension, also infeasible. As will be seen in the
next subsection, a node for which an infeasible system can be generated will be
recognized as closed.

Suppose Ω(weigh) contains (obsHeavy|weigh : 0.56) and (obsHeavy|weigh :
0.55). Then S(Ω(weigh)) will contain

prς4 = 0.56

prς4 = 0.55,

where Ω# = {obsNil, obsLight, obsMedium, obsHeavy}. This system is clearly
infeasible, and thus also S(Δ(replace)).

The interested reader can refer to the technical report [25] for a more thorough
explication of the generation of SIs.

4.3 The Label Assignment Phase

Given two formulae (x, Φ), (x′, Φ′) ∈ Γ such that Φ contradicts Φ′, if x and x′

represent the same world, then Γ should close. But if x �= x′, one must determine
whether x and x′ can be made to represent different worlds. In other words, one
must check whether there is a ‘proper’ assignment of worlds to labels such that
no contradictions occur.

In SLAP, sentences of the form ¬�Φ are not in the language. The reason is
that the decision procedure for SLAP [27] would not notice certain contradictions
which may occur due to such sentences being allowed. In SLAOP, sentences of the
form ¬�Φ are in the language, because the label assignment procedure described
below picks up the contradictions which may occur.

Informally, xmentioned in Γ could represent any one of the worlds inW (Γ, x).
Now suppose (x, Φ), (x′, Φ′) ∈ Γ such that Φ contradicts Φ′ and W (Γ, x) =
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{w1, w2} and W (Γ, x′) = {w2, w3}. Assuming that Φ and Φ′ do not involve
the � operator, it is conceivable that there exists a structure S such that (i)
S, w1 |= Φ and S, w2 |= Φ′, (ii) S, w1 |= Φ and S, w3 |= Φ′ or (iii) S, w2 |= Φ and
S, w3 |= Φ′. But to have S, w2 |= Φ and S, w2 |= Φ′ is inconceivable. Hence, if it
were the case that, for example, W (Γ, x) = {w2} and W (Γ, x′) = {w2}, then we
would have found a contradiction and Γ should be made closed.

To formalize the process, some more definitions are required:

– SoLA(Γ )
def
= {(0:w0, 1:w1, . . . , x′:wx′

) | wx ∈ W (Γ, x)}, where 0, 1, . . ., x′

are all the labels mentioned in Γ . We shall call an element of SoLA(Γ ) a
label assignment. LA(Γ ) denotes an element of SoLA(Γ ).

– E(Γ, x)
def
= {(x, Φ) ∈ Γ | Φ is Reward(r) or ¬Reward(r) or Cost(α, c) or

¬Cost(α, c) for some/any constants r and c and some/any action α}.
– E(Γ,LA, w)

def
=

⋃
x:w∈LA(Γ )E(Γ, x).

– F (Γ, α, x)
def
= {[α]qϕ | (x, [α]qϕ) ∈ Γ} ∪ {¬[α]qϕ | (x,¬[α]qϕ) ∈ Γ}.

– F (Γ, α,LA, w)
def
=

⋃
x:w∈LA(Γ ) F (Γ, α, x).

– G(Γ, α, x)
def
= {(ς | α : q) | (x, (ς | α : q)ϕ) ∈ Γ} ∪ {¬(ς | α : q) | (x,¬(ς | α :

q)) ∈ Γ}.
– G(Γ, α,LA, w)

def
=

⋃
x:w∈LA(Γ )G(Γ, α, x).

After the tableau phase has completed, the label assignment phase begins.
For each leaf node Γ j

k of an open branch, do the following.

Do the following for every LA ∈ SoLA(Γ j
k ). If one of the following two cases

holds, then mark LA as “unsat”.

– For some w ∈W (Γ j
k ), E(Γ j

k ,LA, w) contains
• Reward(r) and Reward(r′) such that r �= r′, or
• Reward(r) and ¬Reward(r), or
• Cost(α, c) and Cost(α, c′) (same action α) such that c �= c′, or
• Cost(α, c) and ¬Cost(α, c) (same action α).

– For some action α ∈ A and some w ∈ W (Γ j
k ), Z(F (Γ j

k , α,LA, w)) = ∅
or Z(G(Γ j

k , α,LA, w)) = ∅.

If every LA ∈ SoLA(Γ j
k ) is marked as “unsat”, then create new leaf node

Γ j
k+1 = Γ j

k ∪ {(0,⊥)}.

That is, if for all logically correct ways of assigning possible worlds to labels
(i.e., for all the label assignments in SoLA(Γ j

k )), no assignment (LA) satisfies all

formulae in Γ j
k , then Γ j

k is unsatisfiable.

Definition 8. A tree is called finished after the label assignment phase is
completed.
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Definition 9. If a tree for ¬Ψ is closed, we write � Ψ . If there is a finished tree
for ¬Ψ with an open branch, we write �� Ψ .

Theorem 1 (Decidability). Determining whether a sentence is SLAOP-valid
is decidable.

Proof. The proof is sketched; an accompanying technical report [25] presents the
full proof. The proof shows that the decision procedure is sound, complete and
terminating, thus decidable.

Soundness. If � Ψ then |= Ψ . (Contrapositively, if �|= Ψ then �� Ψ .) Let ψ = ¬Ψ .
Then �� Ψ if and only if the tree for ψ is open. And

�|= Ψ ⇐⇒ not (∀S) S |= Ψ

⇐⇒ not (∀S, w) S, w |= Ψ

⇐⇒ (∃S, w) S, w |= ψ.

For the soundness proof, it thus suffices to show that if there exists a structure
S and w in it such that S, w |= ψ, then the tree rooted at Γ 0

0 = {(0, ψ)} is open.
This is shown using induction on the height of a node in a tableau tree, and
looking at each tableau rule and the label assignment phase.

Completeness. If |= Ψ then � Ψ . (Contrapositively, if �� Ψ then �|= Ψ .) Let
ψ = ¬Ψ . Then �� Ψ means that there is an open branch of a finished tree for ψ.
And

�|= Ψ ⇐⇒ (∃S) S �|= Ψ

⇐⇒ (∃S, w) S, w �|= Ψ

⇐⇒ (∃S, w) S, w |= ψ.

For the completeness proof, it thus suffices to construct for some open branch of
a finished tree for ψ ∈ LSLAOP , a SLAOP structure S = 〈W,R,O,N,Q,U〉 in
which there is a world w ∈W in S such that ψ is satisfied in S at w. That is, we
show (i) how to construct a structure S from the information contained in the
leaf node Γ of any open branch of a finished tree and (ii) that for all (x, Φ) ∈ Γ ,
S, w |= Φ for x:w ∈ LA, for the label assignment LA which is known to exist.
Point (ii) relies on induction on the structure of the formulae in Γ .

Termination. Finally, by showing that all trees will become saturated and that
the label assignment phase always terminates, it follows that the whole proce-
dure terminates. In particular, rule obs cannot cause cycles because �(δ1 →
(∃vς)¬(vς | α : 0))∨�(δ2 → (∃vς)¬(vς | α : 0))∨· · ·∨�(δn → (∃vς)¬(vς | α : 0))
is not dynamic; it can thus not make rule obs applicable again. That is, rule obs
can only cause other rules to become applicable; rules which add ⊥ to the new
node, and rules with the subformula property.
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Γ 0
0 = {(0,∧Φ∈BK �Φ ∧ ¬(¬f ∧ d ∧ ¬h → [g]0.9(¬f ∧ h))}

(0,¬¬(¬f ∧ d ∧ ¬h) ∧ ¬[g]0.9(¬f ∧ h)) ∈ Γ 0
1

nf

(0,¬¬(¬f ∧ d ∧ ¬h)), (0,¬[g]0.9(¬f ∧ h)) ∈ Γ 0
2

∧

(0,¬f ∧ d ∧ ¬h) ∈ Γ 0
3

¬

(0,¬f), (0, d), (0,¬h) ∈ Γ 0
4

∧

(0,¬(¬f ∧ ¬h) ∨ ([g]0.9h ∧ [g]0.1¬h ∧ [g]¬f)) ∈ Γ 0
5

�

(0, ([g]0.9h ∧ [g]0.1¬h ∧ [g]¬f) ∈ Γ 3
0

∨

(0, [g]0.9h), (0, [g]0.1¬h), (0, [g]¬f) ∈ Γ 3
1

∧

(1, h), (2,¬h), (3,¬f) ∈ Γ 3
2

�ϕ

(1, f ∨ h∨ ([g]0.9h∧ [g]0.1¬h)), (1, f ∨ h ∨ [g]¬f), (2, f ∨ h∨ ([g]0.9h∧ [g]0.1¬h)),
(2, f ∨ h ∨ [g]¬f), (3, f ∨ h ∨ ([g]0.9h ∧ [g]0.1¬h)), (3, f ∨ h ∨ [g]¬f) ∈ Γ 3

3

�

(1, [g]0.9h), (1, [g]0.1¬h), (1, [g]¬f), (2, [g]0.9h), (2, [g]0.1¬h), (2, [g]¬f),
(3, [g]0.9h), (3, [g]0.1¬h), (3, [g]¬f) ∈ Γ 8

0

∨

Fig. 1. One branch of a tree for proving that {�Φ | Φ ∈ BK} entails ¬f ∧ d ∧ ¬h →
[g]0.9(¬f ∧ h)

5 Examples

The following abbreviations for constants will be used: grab := g, weigh := w,
full := f , drank := d, holding := h, obsHeavy := oH , obsMedium := oM and
obsLight := oL.

In Figures 1 and 2, the vertices represent nodes and the arcs represent the
application of tableau rules. Arcs are labeled with the rule they represent, except
when branching occurs, in which case, the ∨ rule was applied. The figures show
how the vertices relate to the corresponding nodes. The reader should keep in
mind that the node corresponding to a vertex v contains all the labeled formulae
in vertices above v on the same branch—the vertices show only the elements of
nodes which are ‘added’ to a node due to the application of some rule. An
exception is the top vertex of a tree, which is the trunk and not the result of
any rule application.

In order to show the development of the tree, some liberties were taken with
respect to rule application: In some cases, rule application is not shown, that
is, from parent node to child node, a formula may be ‘processed’ more than is
possible by the application of the rule represented by the arc from parent to
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Γ0
0 = {(0, ∧Φ∈BK �Φ ∧ ¬((oH | w : 0.1) ∧ d ∧ h → (oL | w : 0.7)))}

(0, (oH | w : 0.1) ∧ d ∧ h ∧ ¬(oL | w0.7) ∈ Γ0
1

nf

(0, (oH | w : 0.1)), (0, d), (0, h), (0, ¬(oL | w : 0.7) ∈ Γ0
2

∧

(0, ¬f ∧ d ∧ h → (oL | w : 0.7) ∧ (oH | w : 0.1)) ∈ Γ0
3

�

(0, (f ∨ ¬d ∨ ¬h) ∨ ((oL | w : 0.7) ∧ (oH | w : 0.1))) ∈ Γ0
4

nf

(0, f)) ∈ Γ0
5 (0, ¬d)) ∈ Γ1

0 (0, ¬h)) ∈ Γ2
0 (0, (oL | w : 0.7) ∧ (oH | w : 0.1))) ∈ Γ3

0

(0, ⊥) ∈ Γ1
1

⊥

(0, ⊥) ∈ Γ2
1

⊥

(0, f ∧ d ∧ h → (∀vς )(vς | w : 0.3̄)) ∈ Γ0
6

�

(0, (oL | w : 0.7)), (0, (oH | w : 0.1))) ∈ Γ3
1

∧

(0, ⊥) ∈ Γ3
2

⊥

(0, ¬f ∨ ¬d ∨ ¬h ∨ ((oL | w : 0.3̄) ∧ (oM | w : 0.3̄) ∧ (oH | w : 0.3̄))) ∈ Γ0
7

nf

(0, ¬f) ∈ Γ0
8 (0, ¬d) ∈ Γ4

0 (0, ¬h) ∈ Γ5
0 (0, (oL | w : 0.3̄)),

(0, (oM | w : 0.3̄)),

(0, (oH | w : 0.3̄)) ∈ Γ6
0

(0, ⊥) ∈ Γ0
9

⊥

(0, ⊥) ∈ Γ4
1

⊥

(0, ⊥) ∈ Γ5
1

⊥

(0, ⊥) ∈ Γ6
1

label assig. phase

Fig. 2. A tree for proving that {�Φ | Φ ∈ BK} entails (oH | w : 0.1) ∧ d ∧ h → (oL |
w : 0.7)

child in the figure. The arc labeled “nf” denotes normal forming: translating
abbreviations into symbols in the language.

Suppose the following domain axioms3 are part of the robot’s background
knowledge BK for the oil-drinking scenario.

f ∧ d ∧ h→ (∀vς)(vς | w : 0.3̄)

f ∧ ¬d ∧ h→ (oL | w : 0.1) ∧ (oH | w : 0.7)

((f ∧ ¬d) ∨ (¬f ∧ d)) ∧ h→ (oM | w : 0.2)

¬f ∧ d ∧ h→ (oL | w : 0.7) ∧ (oH | w : 0.1)

¬f ∧ ¬d ∧ h→ (oL | w : 0.5) ∧ (oM | w : 0.3) ∧ (oH | w : 0.2)

¬f ∧ ¬h→ [g]0.9h ∧ [g]0.1¬h ∧ [g]¬f.

For the first example, we claim that {�Φ | Φ ∈ BK } |= ¬f ∧d∧¬h→ [g]0.9(¬f ∧
h). Figure 1 shows only one branch of a tree for∧

Φ∈BK

�Φ ∧ ¬(¬f ∧ d ∧ ¬h→ [g]0.9(¬f ∧ h)). (1)

3 Only the last of these sentences can be expressed in SLAP. Notice the compact rep-
resentation of the perception probabilities in the first sentence, due to quantification.
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For the claim to hold, the tree for (1) must close. We’ll only show that the
branch in Figure 1 closes. The leaf node of the branch is open and must thus be
considered in the label assignment phase.

For clarity, denote w1 as 111 where w1 |= f ∧ d ∧ h, w2 as 110 where
w2 |= f ∧ d∧¬h, . . . , w8 as 000 where w8 |= ¬f ∧¬d∧¬h. We shall refer to the
leaf node as Γ . Observe that W (Γ, 0) = {010}, W (Γ, 1) = {111, 101, 011, 001},
W (Γ, 2) = {110, 100, 010, 000} and W (Γ, 3) = {011, 010, 001, 000}, and that
W (Γ ) = {111, 101, 011, 001, 110, 100, 010, 000}= C. Observe that 0:010 is in ev-
ery label assignment in SoLA(Γ ). Note that F (Γ, grab, 0) ⊆ F (Γ, grab,LA, 010)
for all LA ∈ SoLA(Γ ). And note that F (Γ, grab, 0) equals

{[grab]0.9holding, [grab]0.1¬holding, [grab]¬full,¬[grab]0.9(¬full ∧ holding)}.

The system generated from F (Γ, grab, 0) is

0 + 0 + 0 + 0 + prα5 + 0 + prα7 + 0 = 0.9
0 + prα2 + 0 + prα4 + 0 + prα6 + 0 + prα8 = 0.1
0 + 0 + 0 + 0 + prα5 + prα6 + prα7 + prα8 = 1
prα1 + 0 + prα3 + 0 + prα5 + 0 + prα7 + 0 �= 0.9
prα1 + prα2 + prα3 + prα4 + prα5 + prα6 + prα7 + prα8 = 1.

Due to prα5 +prα6 +prα7 +prα8 = 1 (3rd equation), it must be the case that prα5 +
prα7 �= 0.9 (4th inequation). But it is required by the first equation that prα5 +
prα7 = 0.9, which forms a contradiction. Thus, for every label assignment, there
exists an action and a world w—that is, 010—for which Z(F (Γ, grab,LA, w) = ∅
and the branch closes.

For the second example, we claim that {�Φ | Φ ∈ BK} |= (oH | w : 0.1)∧ d∧
h→ (oL | w : 0.7). Figure 2 shows the closed tree for∧

Φ∈BK

�Φ ∧ ¬((oH | w : 0.1) ∧ d ∧ h→ (oL | w : 0.7)).

The arc labelled “label assig. phase” means that for all label assignments, the
SI generated for a set of formulae will include (oH | w : 0.1) and (oH | w : 0.3̄),
which will cause all SIs to be infeasible. Hence, the label assignment phase will
create a new node containing (0,⊥) at the end of the branch.

6 Conclusion

A decidable logic with a semantics closely related to partially observable Markov
decision processes (POMDPs) was presented. The logic a step towards the defi-
nition of a logic for reasoning about an agent’s belief-states and expected future
rewards, where the agent’s actions and observations are stochastic.

Two examples were provided in this paper, which give an indication of how
SLAOP-validity is computed. In a sequent paper, we would like to explain the
formal approach of how SLAOP is used to give a complete specification of a
domain.
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Predicate (ς | α : q) is useful for specifying the probability of perceiving an
observation in the ‘current’ world. However, it would be useful to query the
probability q of ending in a ϕ-world after executing action α in the ‘current’
world and then perceiving ς in the ϕ-world. To make such queries possible, one
could add a modal operator with the following definition. S, w |= [α+ς : q]ϕ ⇐⇒∑

w′∈W,S,w′|=ϕRα(w,w
′)×Qα(w

′, N(ς)) ≥ q.

Informally, sentences of the form [α]qϕ and (ς | α : q) have a meaning ‘proba-
bility is exactly q.’ In future, to make the language more expressive, the syntax
and semantics of these kinds of sentences can be replaced with sentences which
have a meaning ‘probability is less that, less than or equal to, etc. q.’

An important next step for SLAOP would be to add the ability to express
sequences of actions, and then evaluate the part of the sentence occurring after
the sequence.

For specifying a domain in SLAOP, the question of what world an agent is in
does not arise. But due to partial observability, after the agent has executed a
few actions, the agent will only have an (uncertain) belief about which world it is
in, as opposed to (certain) knowledge of where it is. For an agent to reason with
beliefs, the notion of an epistemic or belief state needs to be added to SLAOP.

We would also like to add a notion of the expected value of a sequence of
actions, and then be able to determine whether the expected value is less than,
less than or equal to, etc. some given value. Generating POMDP policies is also
on the cards for the future of SLAOP.

The complexity of the decision procedure has not been analysed. Our focus
for SLAOP is mainly decidability. Evaluation of the systems of equations in the
SI phase has the potential for being very expensive. These are linear systems of
equations; one could thus investigate Linear Programming methods [7,18,12] to
optimize the evaluation of the systems.

We feel that presenting a decidability result for a new class of logics is not
trivial. Even though the entailment problem in SLAOP—as presented in this
paper—may be intractable, it is important to have a decision procedure as
a launchpad for tackling the computational complexity. We would like to im-
plement some extended version of SLAOP. Determining the complexity of an
optimized entailment decision procedure may be attempted before an imple-
mentation, though.
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Abstract. In real-world applications, knowledge bases consisting of all
the information at hand for a specific domain, along with the current
state of affairs, are bound to contain contradictory data coming from
different sources, as well as data with varying degrees of uncertainty
attached. Likewise, an important aspect of the effort associated with
maintaining knowledge bases is deciding what information is no longer
useful; pieces of information (such as intelligence reports) may be out-
dated, may come from sources that have recently been discovered to be
of low quality, or abundant evidence may be available that contradicts
them. In this paper, we propose a probabilistic structured argumentation
framework that arises from the extension of Presumptive Defeasible Logic
Programming (PreDeLP) with probabilistic models, and argue that this
formalism is capable of addressing the basic issues of handling contradic-
tory and uncertain data. Then, to address the last issue, we focus on the
study of non-prioritized belief revision operations over probabilistic Pre-
DeLP programs. We propose a set of rationality postulates – based on
well-known ones developed for classical knowledge bases – that charac-
terize how such operations should behave, and study a class of operators
along with theoretical relationships with the proposed postulates, includ-
ing a representation theorem stating the equivalence between this class
and the class of operators characterized by the postulates.

1 Introduction and Related Work

Decision-support systems that are part of virtually any kind of real-world ap-
plication must be part of a framework that is rich enough to deal with several
basic problems: (i) handling contradictory information; (ii) answering abduc-
tive queries; (iii) managing uncertainty; and (iv) updating beliefs. Presumptions
come into play as key components of answers to abductive queries, and must be
maintained as elements of the knowledge base; therefore, whenever candidate an-
swers to these queries are evaluated, the (in)consistency of the knowledge base
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together with the presumptions being made needs to be addressed via belief
revision operations.

In this paper, we begin by proposing a framework that addresses items (i)–
(iii) by extending Presumptive DeLP [1] (PreDeLP, for short) with probabilistic
models in order to model uncertainty in the application domain; the resulting
framework is a general-purpose probabilistic argumentation language that we
will refer to as Probabilistic PreDeLP(P-PreDeLP, for short).

In the second part of this paper, we address the problem of updating beliefs –
item (iv) above – in P-PreDeLP knowledge bases, focusing on the study of non-
prioritized belief revision operations. We propose a set of rationality postulates
characterizing how such operations should behave – these postulates are based
on the well-known postulates proposed in [2] for non-prioritized belief revision in
classical knowledge bases. We then study a class of operators and their theoretical
relationships with the proposed postulates, concluding with a representation
theorem.

Related Work. Belief revision studies changes to knowledge bases as a response
to epistemic inputs. Traditionally, such knowledge bases can be either belief sets
(sets of formulas closed under consequence) [3,4] or belief bases [5,2] (which are
not closed); since our end goal is to apply the results we obtain to real-world
domains, here we focus on belief bases. In particular, as motivated by require-
ments (i)–(iv) above, our knowledge bases consist of logical formulas over which
we apply argumentation-based reasoning and to which we couple a probabilis-
tic model. The connection between belief revision and argumentation was first
studied in [6]; since then, the work that is most closely related to our approach
is the development of the explanation-based operators of [7].

The study of argumentation systems together with probabilistic reasoning has
recently received a lot attention, though a significant part has been in the combi-
nation between the two has been in the form of probabilistic abstract argumen-
tation [8,9,10,11]. There have, however, been several approaches that combine
structured argumentation with models for reasoning under uncertainty; the first
of such approaches to be proposed was [12], and several others followed, such
as the possibilistic approach of [13], and the probabilistic logic-based approach
of [14]. The main difference between these works and our own is that here we
adopt a bipartite knowledge base, where one part models the knowledge that is
not inherently probabilistic – uncertain knowledge is modeled separately, thus
allowing a clear separation of interests between the two kinds of models. This
approach is based on a similar one developed for ontological languages in the
Semantic Web (see [15], and references within).

Finally, to the best of our knowledge, this is the first paper in which the com-
bination of structured argumentation, probabilistic models, and belief revision
has been addressed in conjunction.
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Table 1. Examples of the kind of information that could be represented in the two
different models in a cyber-security application domain

Probabilistic Model (EM) Analytical Model (AM)

“Malware X was compiled on a system “Malware X was compiled on a system in
using the English language.” English-speaking country Y.”

“County Y and country Z are “Country Y has a motive to launch a
currently at war.” cyber-attack against country Z

“Malware W and malware X were created “Malware W and malware X are related.
in a similar coding style.”

2 Preliminaries

The Probabilistic PreDeLP (P-PreDeLP, for short) framework is composed of
two separate models of the world. The first is called the environmental model
(referred to as “EM”), and is used to describe the probabilistic knowledge that
we have about the domain. The second one is called the analytical model (referred
to as “AM”), and is used to analyze competing hypotheses that can account for
a given phenomenon – what we will generally call queries. The AM is composed
of a classical (that is, non-probabilistic) PreDeLP program in order to allow for
contradictory information, giving the system the capability to model competing
explanations for a given query.

Two Kinds of Uncertainty. In general, the EM contains knowledge such as
evidence, uncertain facts, or knowledge about agents and systems. The AM, on
the other hand, contains ideas that a user may conclude based on the informa-
tion in the EM. Table 1 gives some examples of the types of information that
could appear in each of the two models in a cyber-security application. Note that
a knowledge engineer (or automated system) could assign a probability to state-
ments in the EM column, whereas statements in the AM column can be either
true or false depending on a certain combination (or several possible combina-
tions) of statements from the EM. There are thus two kinds of uncertainty that
need to be modeled: probabilistic uncertainty and uncertainty arising from de-
feasible knowledge. As we will see, our model allows both kinds of uncertainty to
coexist, and also allows for the combination of the two since defeasible rules and
presumptions (that is, defeasible facts) can also be annotated with probabilistic
events.

In the rest of this section, we formally describe these two models, as well as
how knowledge in the AM can be annotated with information from the EM –
these annotations specify the conditions under which the various statements in
the AM can potentially be true.

Basic Language. We assume sets of variable and constant symbols, denoted
with V and C, respectively. In the rest of this paper, we will use capital letters
to represent variables (e.g., X,Y, Z), while lowercase letters represent constants.
The next component of the language is a set of n-ary predicate symbols; the
EM and AM use separate sets of predicate symbols, denoted with PEM,PAM,
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respectively – the two models can, however, share variables and constants. As
usual, a term is composed of either a variable or constant. Given terms t1, ..., tn
and n-ary predicate symbol p, p(t1, ..., tn) is called an atom; if t1, ..., tn are con-
stants, then the atom is said to be ground. The sets of all ground atoms for EM
and AM are denoted with GEM and GAM, respectively.

Given set of ground atoms, a world is any subset of atoms – those that be-
long to the set are said to be true in the world, while those that do not are
false. Therefore, there are 2|GEM| possible worlds in the EM and 2|GAM| worlds
in the AM. These sets are denoted with WEM and WAM, respectively. In or-
der to avoid worlds that do not model possible situations given a particular
domain, we include integrity constraints of the form oneOf(A′), where A′ is a
subset of ground atoms. Intuitively, such a constraint states that any world where
more than one of the atoms from set A′ appears is invalid. We use ICEM and
ICAM to denote the sets of integrity constraints for the EM and AM, respec-
tively, and the sets of worlds that conform to these constraints is denoted with
WEM(ICEM),WAM(ICAM), respectively.

Finally, logical formulas arise from the combination of atoms using the tradi-
tional connectives (∧, ∨, and ¬). As usual, we say a world w satisfies formula
(f), written w |= f , iff: (i) If f is an atom, then w |= f iff f ∈ w; (ii) if f = ¬f ′

then w |= f iff w �|= f ′; (iii) if f = f ′ ∧ f ′′ then w |= f iff w |= f ′ and w |= f ′′;
and (iv) if f = f ′ ∨ f ′′ then w |= f iff w |= f ′ or w |= f ′′. We use the notation
formEM , formAM to denote the set of all possible (ground) formulas in the EM
and AM, respectively.

2.1 Probabilistic Model

The EM or environmental model is largely based on the probabilistic logic of [16],
which we now briefly review.

Definition 1. Let f be a formula over PEM, V, and C, p ∈ [0, 1], and ε ∈
[0,min(p, 1− p)]. A probabilistic formula is of the form f : p± ε. A set KEM of
probabilistic formulas is called a probabilistic knowledge base.

In the above definition, the number ε is referred to as an error tolerance. Intu-
itively, probabilistic formulas are interpreted as “formula f is true with proba-
bility between p− ε and p+ ε” – note that there are no further constraints over
this interval apart from those imposed by other probabilistic formulas in the
knowledge base. The uncertainty regarding the probability values stems from
the fact that certain assumptions (such as probabilistic independence) may not
be suitable in the environment being modeled.

Example 1. Consider the following set KEM:

f1 = a : 0.8± 0.1 f4 = d ∧ e : 0.7± 0.2 f7 = k : 1± 0
f2 = b : 0.2± 0.1 f5 = f ∧ g ∧ h : 0.6± 0.1
f3 = c : 0.8± 0.1 f6 = i ∨ ¬j : 0.9± 0.1

Throughout the paper, we also use K′
EM = {f1, f2, f3} �
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A set of probabilistic formulas describes a set of possible probability distri-
butions Pr over the set WEM(ICEM). We say that probability distribution Pr
satisfies probabilistic formula f : p± ε iff: p− ε ≤

∑
w∈WEM(ICEM) Pr(w) ≤ p+ ε.

We say that a probability distribution over WEM(ICEM) satisfies KEM iff it
satisfies all probabilistic formulas in KEM.

Given a probabilistic knowledge base and a (non-probabilistic) formula q, the
maximum entailment problem seeks to identify real numbers p, ε such that all
valid probability distributions Pr that satisfy KEM also satisfy q : p ± ε, and
there does not exist p′, ε′ s.t. [p− ε, p+ ε] ⊃ [p′− ε′, p′+ ε′], where all probability
distributions Pr that satisfy KEM also satisfy q : p′ ± ε′. In order to solve this
problem we must solve the linear program defined below.

Definition 2. Given a knowledge base KEM and a formula q, we have a variable
xi for each wi ∈ WEM(ICEM).

– For each fj : pj ± εj ∈ KEM, there is a constraint of the form:

pj − εj ≤
∑

wi∈WEM(ICEM) s.t. wi|=fj
xi ≤ pj + εj .

– We also have the constraint:
∑

wi∈WEM(ICEM) xi = 1.

– The objective is to minimize the function:
∑

wi∈WEM(ICEM) s.t. wi|=q xi.

We use the notation EP-LP-MIN(KEM, q) to refer to the value of the objective
function in the solution to the EM-LP-MIN constraints.

The next step is to solve the linear program a second time, but instead maxi-
mizing the objective function (we shall refer to this as EM-LP-MAX) – let  and
u be the results of these operations, respectively. In [16], it is shown that ε = u−�

2
and p = + ε is the solution to the maximum entailment problem. We note that
although the above linear program has an exponential number of variables in
the worst case (i.e., no integrity constraints), the presence of constraints has the
potential to greatly reduce this space. Further, there are also good heuristics (cf.
[17,18]) that have been shown to provide highly accurate approximations with
a reduced-size linear program.

Example 2. Consider KB K′
EM from Example 1 and a set of ground atoms re-

stricted to those that appear in that program; we have the following worlds:

w1 = {a, b, c} w2 = {a, b} w3 = {a, c} w4 = {b, c}
w5 = {b} w6 = {a} w7 = {c} w8 = ∅

and suppose we wish to compute the probability for formula q = a∨ c. For each
formula in KEM we have a constraint, and for each world above we have a vari-
able. An objective function is created based on the worlds that satisfy the query
formula (in this case, worlds w1, w2, w3, w4, w6, w7). Solving EP-LP-MAX(K′

EM, q)
and EP-LP-MIN(K′

EM, q), we obtain the solution 0.9± 0.1. �
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3 Argumentation Model

For the analytical model (AM), we choose a structured argumentation frame-
work [19] due to several characteristics that make such frameworks highly appli-
cable to many domains. Unlike the EM, which describes probabilistic informa-
tion about the state of the real world, the AM must allow for competing ideas.
Therefore, it must be able to represent contradictory information. The algorith-
mic approach we shall later describe allows for the creation of arguments based
on the AM that may “compete” with each other to answer a given query. In this
competition – known as a dialectical process – one argument may defeat another
based on a comparison criterion that determines the prevailing argument. Re-
sulting from this process, certain arguments are warranted (those that are not
defeated by other arguments) thereby providing a suitable explanation for the
answer to a given query.

The transparency provided by the system can allow knowledge engineers to
identify potentially incorrect input information and fine-tune the models or,
alternatively, collect more information. In short, argumentation-based reasoning
has been studied as a natural way to manage a set of inconsistent information – it
is the way humans settle disputes. As we will see, another desirable characteristic
of (structured) argumentation frameworks is that, once a conclusion is reached,
we are left with an explanation of how we arrived at it and information about why
a given argument is warranted; this is very important information for users to
have. In the following, we first recall the basics of the underlying argumentation
framework used, and then go on to introduce the analytical model (AM).

3.1 Defeasible Logic Programming with Presumptions (PreDeLP)

Defeasible Logic Programming with Presumptions (PreDeLP) [1] is a formalism
combining logic programming with defeasible argumentation; it arises as an ex-
tension of classical DeLP [20] with the possibility of having presumptions, as
described below – since this capability is useful in many applications, we adopt
this extended version in this paper. In this section, we briefly recall the basics
of PreDeLP; we refer the reader to [20,1] for the complete presentation.

The formalism contains several different constructs: facts, presumptions, strict
rules, and defeasible rules. Facts are statements about the analysis that can
always be considered to be true, while presumptions are statements that may
or may not be true. Strict rules specify logical consequences of a set of facts or
presumptions (similar to an implication, though not the same) that must always
occur, while defeasible rules specify logical consequences that may be assumed
to be true when no contradicting information is present. These building blocks
are used in the construction of arguments, and are part of a PreDeLP program,
which is a set of facts, strict rules, presumptions, and defeasible rules. Formally,
we use the notation ΠAM = (Θ,Ω,Φ,Δ) to denote a PreDeLP program, where
Ω is the set of strict rules, Θ is the set of facts, Δ is the set of defeasible rules,
and Φ is the set of presumptions. In Figure 1, we provide an example ΠAM. We
now define these constructs formally.
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Θ : θ1a = p θ1b = q θ2 = r

Ω : ω1a = ¬s ← t ω1b = ¬t ← s ω2a = s ← p, u, r, v ω2b = t ← q, w, x, v

Φ : φ1 = y –≺ φ2 = v –≺ φ3 = ¬z –≺

Δ : δ1a = s –≺ p δ1b = t –≺ q δ2 = s –≺ u δ3 = s –≺ r, v
δ4 = u –≺ y δ5a = ¬u –≺ ¬z δ5b = ¬w –≺ ¬n

Fig. 1. An example (propositional) argumentation framework

Facts (Θ) are ground literals representing atomic information or its negation,
using strong negation “¬”. Note that all of the literals in our framework must
be formed with a predicate from the set PAM. Note that information in the form
of facts cannot be contradicted. We will use the notation [Θ] to denote the set
of all possible facts.

Strict Rules (Ω) represent non-defeasible cause-and-effect information that re-
sembles an implication (though the semantics is different since the contrapositive
does not hold) and are of the form L0← L1, . . . , Ln, where L0 is a ground literal
and {Li}i>0 is a set of ground literals. We will use the notation [Ω] to denote
the set of all possible strict rules.

Presumptions (Φ) are ground literals of the same form as facts, except that
they are not taken as being true but rather defeasible, which means that they
can be contradicted. Presumptions are denoted in the same manner as facts,
except that the symbol –≺ is added.

Defeasible Rules (Δ) represent tentative knowledge that can be used if nothing
can be posed against it. Just as presumptions are the defeasible counterpart of
facts, defeasible rules are the defeasible counterpart of strict rules. They are of
the form L0 –≺ L1, . . . , Ln, where L0 is a ground literal and {Li}i>0 is a set of
ground literals. In both strict and defeasible rules, strong negation is allowed in
the head of rules, and hence may be used to represent contradictory knowledge.

Even though the above constructs are ground, we allow for schematic versions
with variables that are used to represent sets of ground rules. We denote variables
with strings starting with an uppercase letter.

Arguments. Given a query in the form of a ground atom, the goal is to derive
arguments for and against it’s validity – derivation follows the same mecha-
nism of logic programming [21]. Since rule heads can contain strong negation,
it is possible to defeasibly derive contradictory literals from a program. For the
treatment of contradictory knowledge, PreDeLP incorporates a defeasible argu-
mentation formalism that allows the identification of the pieces of knowledge
that are in conflict and, through the previously mentioned dialectical process,
decides which information prevails as warranted. This dialectical process involves
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〈A1, s〉 A1 = {θ1a, δ1a} 〈A2, s〉 A2 = {φ1, φ2, δ4, ω2a, θ1a, θ2}
〈A3, s〉 A3 = {φ1, δ2, δ4} 〈A4, s〉 A4 = {φ2, δ3, θ2}
〈A5, u〉 A5 = {φ1, δ4} 〈A6,¬s〉 A6 = {δ1b, θ1b, ω1a}
〈A7,¬u〉 A7 = {φ3, δ5a}

Fig. 2. Example ground arguments from the framework of Figure 1

the construction and evaluation of arguments, building a dialectical tree in the
process. Arguments are formally defined next.

Definition 3. An argument 〈A, L〉 for a literal L is a pair of the literal and
a (possibly empty) set of the EM (A ⊆ ΠAM) that provides a minimal proof
for L meeting the following requirements: (i) L is defeasibly derived from A;
(ii) Ω ∪ Θ ∪ A is not contradictory; and (iii) A is a minimal subset of Δ ∪ Φ
satisfying 1 and 2, denoted 〈A, L〉.

Literal L is called the conclusion supported by the argument, and A is the
support of the argument. An argument 〈B, L〉 is a subargument of 〈A, L′〉 iff
B ⊆ A. An argument 〈A, L〉 is presumptive iff A∩Φ is not empty. We will also
use Ω(A) = A ∩Ω, Θ(A) = A ∩Θ, Δ(A) = A ∩Δ, and Φ(A) = A ∩ Φ.

Our definition differs slightly from that of [22], where DeLP is introduced, as
we include strict rules and facts as part of arguments – the reason for this will
become clear in Section 4. Arguments for our scenario are shown next.

Example 3. Figure 2 shows example arguments based on the knowledge base
from Figure 1. Note that 〈A5, u〉 is a sub-argument of 〈A2, s〉 and 〈A3, s〉. �

Given an argument 〈A1, L1〉, counter-arguments are arguments that contra-
dict it. Argument 〈A2, L2〉 is said to counterargue or attack 〈A1, L1〉 at a lit-
eral L′ iff there exists a subargument 〈A, L′′〉 of 〈A1, L1〉 such that the set
Ω(A1) ∪Ω(A2) ∪Θ(A1) ∪Θ(A2) ∪ {L2, L

′′} is contradictory.

Example 4. Consider the arguments from Example 3. The following are some of
the attack relationships between them: A1, A2, A3, and A4 all attack A6; A5

attacks A7; and A7 attacks A2. �

A proper defeater of an argument 〈A,L〉 is a counter-argument that – by
some criterion – is considered to be better than 〈A,L〉; if the two are incompa-
rable according to this criterion, the counterargument is said to be a blocking
defeater. An important characteristic of PreDeLP is that the argument compari-
son criterion is modular, and thus the most appropriate criterion for the domain
that is being represented can be selected; the default criterion used in classical
defeasible logic programming (from which PreDeLP is derived) is generalized
specificity [23], though an extension of this criterion is required for arguments
using presumptions [1]. We briefly recall this criterion next – the first defini-
tion is for generalized specificity, which is subsequently used in the definition of
presumption-enabled specificity.
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Definition 4. Let ΠAM = (Θ,Ω,Φ,Δ) be a PreDeLP program and let F be
the set of all literals that have a defeasible derivation from ΠAM. An argument
〈A1, L1〉 is preferred to 〈A2, L2〉, denoted with A1 �PS A2 iff:

(1) For all H ⊆ F , Ω(A1) ∪ Ω(A2) ∪ H is non-contradictory: if there is a
derivation for L1 from Ω(A2) ∪Ω(A1) ∪Δ(A1)∪H, and there is no derivation
for L1 from Ω(A1)∪Ω(A2)∪H, then there is a derivation for L2 from Ω(A1)∪
Ω(A2) ∪Δ(A2) ∪H; and

(2) there is at least one set H ′ ⊆ F , Ω(A1)∪Ω(A2)∪H ′ is non-contradictory,
such that there is a derivation for L2 from Ω(A1) ∪Ω(A2) ∪H ′ ∪Δ(A2), there
is no derivation for L2 from Ω(A1)∪Ω(A2)∪H ′, and there is no derivation for
L1 from Ω(A1) ∪Ω(A2) ∪H ′ ∪Δ(A1).

Intuitively, the principle of specificity says that, in the presence of two conflict-
ing lines of argument about a proposition, the one that uses more of the available
information is more convincing. A classic example involves a bird, Tweety, and
arguments stating that it both flies (because it is a bird) and doesn’t fly (because
it is a penguin). The latter argument uses more information about Tweety – it
is more specific – and is thus the stronger of the two.

Definition 5 ([1]). Let ΠAM = (Θ,Ω,Φ,Δ) be a PreDeLP program. An ar-
gument 〈A1, L1〉 is preferred to 〈A2, L2〉, denoted with A1 � A2 iff any of the
following conditions hold:

(1) 〈A1, L1〉 and 〈A2, L2〉 are both factual arguments and 〈A1, L1〉 �PS 〈A2, L2〉.
(2) 〈A1, L1〉 is a factual argument and 〈A2, L2〉 is a presumptive argument.

(3) 〈A1, L1〉 and 〈A2, L2〉 are presumptive arguments, and

(a) Φ(A1) � Φ(A2) or,

(b) Φ(A1) = Φ(A2) and 〈A1, L1〉 �PS 〈A2, L2〉.

Generally, if A,B are arguments with rules X and Y , resp., and X ⊂ Y , then A
is stronger than B. This also holds when A and B use presumptions P1 and P2,
resp., and P1 ⊂ P2.

Example 5. The following are some relationships between arguments from Ex-
ample 3, based on Definitions 4 and 5.

A1 and A6 are incomparable (blocking defeaters);
A6 � A2, and thus A6 defeats A2;
A5 and A7 are incomparable (blocking defeaters). �

A sequence of arguments called an argumentation line thus arises from this
attack relation, where each argument defeats its predecessor. To avoid undesir-
able sequences, which may represent circular argumentation lines, in DeLP an
argumentation line is acceptable if it satisfies certain constraints (see [20]). A
literal L is warranted if there exists a non-defeated argument A supporting L.

Clearly, there can be more than one defeater for a particular argument 〈A, L〉.
Therefore, many acceptable argumentation lines could arise from 〈A, L〉, lead-
ing to a tree structure. The tree is built from the set of all argumentation lines
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rooted in the initial argument. In a dialectical tree, every node (except the root)
represents a defeater of its parent, and leaves correspond to undefeated argu-
ments. Each path from the root to a leaf corresponds to a different acceptable
argumentation line. A dialectical tree provides a structure for considering all
the possible acceptable argumentation lines that can be generated for deciding
whether an argument is defeated. We call this tree dialectical because it repre-
sents an exhaustive dialectical1 analysis for the argument in its root. For a given
argument 〈A, L〉, we denote the corresponding dialectical tree as T (〈A, L〉).

Given a literal L and an argument 〈A, L〉, in order to decide whether or not a
literal L is warranted, every node in the dialectical tree T (〈A, L〉) is recursively
marked as “D” (defeated) or “U” (undefeated), obtaining a marked dialectical
tree T ∗(〈A, L〉) as follows:
1. All leaves in T ∗(〈A, L〉) are marked as “U”s, and
2. Let 〈B, q〉 be an inner node of T ∗(〈A, L〉). Then 〈B, q〉 will be marked as “U”

iff every child of 〈B, q〉 is marked as “D”. The node 〈B, q〉 will be marked as
“D” iff it has at least a child marked as “U”.

Given an argument 〈A, L〉 obtained from ΠAM, if the root of T ∗(〈A, L〉) is
marked as “U”, then we will say that T ∗(〈A, h〉) warrants L and that L is war-
ranted from ΠAM. (Warranted arguments correspond to those in the grounded
extension of a Dung argumentation system [24].) There is a further requirement
when the arguments in the dialectical tree contains presumptions – the conjunc-
tion of all presumptions used in even (respectively, odd) levels of the tree must
be consistent. This can give rise to multiple trees for a given literal, as there can
potentially be different arguments that make contradictory assumptions.

We can then extend the idea of a dialectical tree to a dialectical forest. For
a given literal L, a dialectical forest F(L) consists of the set of dialectical trees
for all arguments for L. We shall denote a marked dialectical forest, the set of
all marked dialectical trees for arguments for L, as F∗(L). Hence, for a literal
L, we say it is warranted if there is at least one argument for that literal in the
dialectical forest F∗(L) that is labeled as “U”, not warranted if there is at least
one argument for the literal ¬L in the dialectical forest F∗(¬L) that is labeled
as “U”, and undecided otherwise.

4 Probabilistic PreDeLP

Probabilistic PreDeLP arises from the combination of the environmental and
analytical models (ΠEM and ΠAM, respectively). Intuitively, given ΠAM, every
element of Ω ∪ Θ ∪Δ ∪ Φ might only hold in certain worlds in the set WEM –
that is, they are subject to probabilistic events. Therefore, we associate elements
of Ω ∪Θ∪Δ ∪ Φ with a formula from formEM . For instance, we could associate
formula rainy to fact umbrella to state that the latter only holds when the
probabilistic event rainy holds; since weather is uncertain in nature, it has been
modeled as part of the EM.

1 In the sense of providing reasons for and against a position.
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af(θ1a) = af(θ1b) = k ∨ (
f ∧ (

h ∨ (e ∧ l)
))

af(φ3) = b
af(θ2) = i af(δ1a) = af(δ1b) = True
af(ω1a) = af(ω1b) = True af(δ2) = True
af(ω2a) = af(ω2b) = True af(δ3) = True
af(φ1) = c ∨ a af(δ4) = True
af(φ2) = f ∧m af(δ5a) = af(δ5b) = True

Fig. 3. Example annotation function

We can then compute the probabilities of subsets of Ω ∪Θ ∪Δ ∪ Φ using the
information contained in ΠEM, as we describe shortly. The notion of an anno-
tation function associates elements of Ω ∪Θ ∪Δ ∪ Φ with elements of formEM .

Definition 6. An annotation function is any function af : Ω ∪ Θ ∪ Δ ∪ Φ →
formEM . We shall use [af ] to denote the set of all annotation functions.

We will sometimes denote annotation functions as sets of pairs (f, af(f)) in
order to simplify the presentation. Figure 3 shows an example of an annotation
function for our running example.

We now have all the components to formally define Probabilistic PreDeLP
programs (P-PreDeLP for short).

Definition 7. Given environmental model ΠEM, analytical model ΠAM, and
annotation function af , a probabilistic PreDeLP program is of the form I =
(ΠEM, ΠAM, af ). We use notation [I] to denote the set of all possible programs.

Given this setup, we can consider a world-based approach; that is, the defeat
relationship among arguments depends on the current state of the (EM) world.

Definition 8. Let I = (ΠEM, ΠAM, af ) be a P-PreDeLP program, argument
〈A, L〉 is valid w.r.t. world w ∈ WEM iff ∀c ∈ A, w |= af(c).

We extend the notion of validity to argumentation lines, dialectical trees,
and dialectical forests in the expected way (for instance, an argumentation line
is valid w.r.t. w iff all arguments that comprise that line are valid w.r.t. w).
We also extend the idea of a dialectical tree w.r.t. worlds; so, for a given world
w ∈ WEM, the dialectical (resp., marked dialectical) tree induced by w is denoted
with Tw〈A, L〉 (resp., T ∗

w 〈A, L〉). We require that all arguments and defeaters in
these trees to be valid with respect to w. Likewise, we extend the notion of
dialectical forests in the same manner (denoted with Fw(L) and F∗

w(L), resp.).
Based on these concepts we introduce the notion of warranting scenario.

Definition 9. Let I = (ΠEM, ΠAM, af ) be a P-PreDeLP program and L be a
literal formed with a ground atom from GAM; a world w ∈ WEM is said to be
a warranting scenario for L (denoted w �war L) iff there is a dialectical forest
F∗

w(L) in which L is warranted and F∗
w(L) is valid w.r.t. w.
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Hence, the set of worlds in the EM where a literal L in the AM must be true
is exactly the set of warranting scenarios – these are the “necessary” worlds:
nec(L) = {w ∈ WEM | (w �war L)}. Now, the set of worlds in the EM where
AM literal L can be true is the following – these are the “possible” worlds:
poss(L) = {w ∈ WEM | w ��war ¬L}. The probability distribution Pr defined
over the worlds in the EM induces an upper and lower bound on the probability
of literal L (denoted PL,Pr ,I) as follows:

L,Pr ,I =
∑

w∈nec(L)

Pr (w), uL,Pr ,I =
∑

w∈poss(L)

Pr (w)

L,Pr ,I ≤ PL,Pr ,I ≤ uL,Pr ,I

Since the EM in general does not define a single probability distribution, the
above computations should be done using linear programs EP-LP-MIN and EP-
LP-MAX, as described above.

4.1 Sources of Inconsistency

We use the following notion of (classical) consistency of PreDeLP programs: Π
is said to be consistent if there does not exist ground literal a s.t. Π � a and
Π � ¬a. For P-PreDeLP programs, there are two main kinds of inconsistency
that can be present; the first is what we refer to as EM, or Type I, (in)consistency.

Definition 10. Environmental model ΠEM is Type I consistent iff there exists
a probability distribution Pr over the set of worlds WEM that satisfies ΠEM.

We illustrate this type of consistency in the following example.

Example 6. The following formula is a simple example of an EM for which there
is no satisfying probability distribution:

rain ∨ hail : 0.3± 0;

rain ∧ hail : 0.5± 0.1.

A P-PreDeLP program using such an EM gives rise to an example of Type I
inconsistency, as it arises from the fact that there is no satisfying interpretation
for the EM knowledge base. �

Assuming a consistent EM, inconsistencies can still arise through the interac-
tion between the annotation function and facts and strict rules. We will refer to
this as combined, or Type II, (in)consistency.

Definition 11. A P-PreDeLP program I = (ΠEM, ΠAM, af ), with ΠAM =
〈Θ,Ω,Φ,Δ〉, is Type II consistent iff: given any probability distribution Pr that
satisfies ΠEM, if there exists a world w ∈ WEM such that

⋃
x∈Θ∪Ω |w|=af(x){x}

is inconsistent, then we have Pr(w) = 0.
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Thus, any EM world in which the set of associated facts and strict rules are
inconsistent (we refer to this as “classical consistency”) must always be assigned
a zero probability. The following is an example of this other type of inconsistency.

Example 7. Consider the EM knowledge base from Example 1, the AM presented
in Figure 1 and the annotation function from Figure 3. Suppose the following
fact is added to the argumentation model:

θ3 = ¬p,

and that the annotation function is expanded as follows:

af (θ3) = ¬k.

Clearly, fact θ3 is in direct conflict with fact θ1a – this does not necessarily mean
that there is an inconsistency. For instance, by the annotation function, θ1a holds
in the world {k} while θ3 does not. However, if we consider the world:

w = {f, h)

Note that w |= af (θ3) and w |= af (θ2), which means that, in this world, two
contradictory facts can occur. Since the environmental model indicates that this
world can be assigned a non-zero probability, we have a Type II inconsist pro-
gram. �

Another example (perhaps easier to visualize) in the rain/hail scenario discussed
above, is as follows: suppose we have facts f = umbrella and g = ¬umbrella,
and annotation function af (f) = rain ∨ hail and af (g) = wind. Intuitively, the
first fact states that an umbrella should be carried if it either rains or hails,
while the second states that an umbrella should not be carried if it is windy. If
the EM assigns a non-zero probability to formula (rain ∨ hail)∧wind, then we
have Type II inconsistency.

In the following, we say that a P-PreDeLP program is consistent if and only
if it is both Type I and Type II consistent. However, in this paper, we focus on
Type II consistency and assume that the program is Type I consistent.

4.2 Basic Operations for Restoring Consistency

Given a P-PreDeLP program that is Type II inconsistent, there are two basic
strategies that can be used to restore consistency:

Revise the EM: the probabilistic model can be changed in order to force the
worlds that induce contradicting strict knowledge to have probability zero.

Revise the annotation function: The annotations involved in the inconsistency
can be changed so that the conflicting information in the AM does not become
induced under any possible world.

It may also appear that a third option would be to adjust the AM – this is,
however, equivalent to modifying the annotation function. Consider the presence
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of two facts in the AM: a,¬a. Assuming that this causes an inconsistency (that
is, there is at least one world in which they both hold), one way to resolve it
would be to remove one of these two literals. Suppose ¬a is removed; this would
be equivalent to setting af(¬a) = ⊥ (where ⊥ represents a contradiction in the
language of the EM). In this paper, we often refer to “removing elements of
ΠAM” to refer to changes to the annotation function that cause certain elements
of the ΠAM to not have their annotations satisfied in certain EM worlds.

Now, suppose that ΠEM is consistent, but that the overall program is Type
II inconsistent. Then, there must exist a set of worlds in the EM where there is
a probability distribution that assigns each of them a non-zero probability. This
gives rise to the following result.

Proposition 1. If there exists a probability distribution Pr that satisfies ΠEM

s.t. there exists a world w ∈ WEM where Pr(w) > 0 and
⋃

x∈Θ∪Ω |w|=af(x){x}
is inconsistent (Type II inconsistency), then any change made in order to re-
solve this inconsistency by modifying only ΠEM yields a new EM Π ′

EM such that(∧
a∈w a ∧

∧
a/∈w ¬a

)
: 0± 0 is entailed by Π ′

EM.

Proposition 1 seems to imply an easy strategy of adding formulas to ΠEM

causing certain worlds to have a zero probability. However, this may lead to
Type I inconsistencies in the resulting modelΠ ′

EM. If we are applying an EM-only
strategy to resolve inconsistencies, this would then lead to further adjustments
to Π ′

EM in order to restore Type I consistency. However, such changes could
potentially lead to Type II inconsistency in the overall P-PreDeLP program
(by either removing elements of Π ′

EM or loosening probability bounds of the
sentences in Π ′

EM), which would lead to setting more EM worlds to a probability
of zero. It is easy to devise an example of a situation in which the probability
mass cannot be accommodated given the constraints imposed by the AM and
EM together – in such cases, it would be impossible to restore consistency by
only modifying ΠEM. We thus arrive at the following observation:

Observation 1 Given a Type II inconsistent P-PreDeLP program, consistency
cannot always be restored via modifications to ΠEM alone.

Therefore, due to this line of reasoning, in this paper we focus our efforts on
modifications to the annotation function only. However, in the future, we intend
to explore belief revision operators that consider both the annotation function
(which, as we saw, captures changes to the AM) along with changes to the EM,
as well as combinations of the two.

5 Revising Probabilistic PreDeLP Programs

Given a P-PreDeLP program I = (ΠEM, ΠAM, af ), with ΠAM = Ω∪Θ∪Δ ∪ Φ,
we are interested in solving the problem of incorporating an epistemic input
(f, af ′) into I, where f is either an atom or a rule and af ′ is equivalent to
af , except for its expansion to include f . For ease of presentation, we assume
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that f is to be incorporated as a fact or strict rule, since incorporating defeasible
knowledge can never lead to inconsistency. As we are only conducting annotation
function revisions, for I = (ΠEM, ΠAM, af ) and input (f, af ′) we denote the
revision as follows: I • (f, af ′) = (ΠEM, Π

′
AM, af

′′) where Π ′
AM = ΠAM ∪ {f}

and af ′′ is the revised annotation function.

Notation. We use the symbol “•” to denote the revision operator. We also
slightly abuse notation for the sake of presentation, as well as introduce notation
to convert sets of worlds to/from formulas.

– I ∪ (f, af ′) to denote I ′ = (ΠEM, ΠAM ∪ {f}, af ′).
– (f, af ′) ∈ I = (ΠAM, ΠEM, af ) to denote f ∈ ΠAM and af = af ′.

– wld(f) = {w | w |= f} – the set of worlds that satisfy formula f ; and

– for(w) =
∧

a∈w a ∧
∧

a/∈w ¬a – the formula that has w as its only model.

– ΠI
AM(w) = {f ∈ Θ ∪Ω | w |= af(f)}

– W0
EM(I) = {w ∈ WEM | ΠI

AM(w) is inconsistent}
– WI

EM(I) = {w ∈ W0
EM | ∃Pr s.t. Pr |= ΠEM ∧ Pr(w) > 0}

Intuitively, ΠI
AM(w) is the subset of facts and strict rules in ΠAM whose annota-

tions are true in EM world w. The set W0
EM(I) contains all the EM worlds for a

given program where the corresponding knowledge base in the AM is classically
inconsistent and WI

EM(I) is a subset of these that can be assigned a non-zero
probability – the latter are the worlds where inconsistency in the AM can arise.

5.1 Postulates for Revising the Annotation Function

We now analyze the rationality postulates for non-prioritized revision of belief
bases first introduced in [2] and later generalized in [25], in the context of P-
PreDeLP programs. These postulates are chosen due to the fact that they are
well studied in the literature for non-prioritized belief revision.

Inclusion: For I • (f, af ′) = (ΠEM, ΠAM∪{f}, af ′′), ∀g ∈ ΠAM, wld
(
af ′′(g)

)
⊆

wld(af ′(g)).
This postulate states that, for any element in the AM, the worlds that satisfy its
annotation after the revision are a subset of the original set of worlds satisfying
the annotation for that element.

Vacuity: If I ∪ (f, af ′) is consistent, then I • (f, af ′) = I ∪ (f, af ′)

Consistency Preservation: If I is consistent, then I•(f, af ′) is also consistent.
Weak Success: If I ∪ (f, af ′) is consistent, then (f, af ′) ∈ I • (f, af ′).
Whenever the simple addition of the input doesn’t cause inconsistencies to arise,
the result will contain the input.

Core Retainment: For I • (f, af ′) = (ΠEM, ΠAM ∪ {f}, af ′′), for each w ∈
WI

EM(I ∪ (f, af ′)), we have Xw = {h ∈ Θ ∪ Ω | w |= af ′′(h)}; for each g ∈
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ΠAM(w) \Xw there exists Yw ⊆ Xw ∪ {f} s.t. Yw is consistent and Yw ∪ {g} is
inconsistent.

For a given EM world, if a portion of the associated AM knowledge base is
removed by the operator, then there exists a subset of the remaining knowledge
base that is not consistent with the removed element and f .

Relevance: For I • (f, af ′) = (ΠEM, ΠAM ∪ {f}, af ′′), for each w ∈ WI
EM(I ∪

(f, af ′)), we have Xw = {h ∈ Θ ∪ Ω | w |= af ′′(h)}; for each g ∈ ΠAM(w) \Xw

there exists Yw ⊇ Xw ∪ {f} s.t. Yw is consistent and Yw ∪ {g} is inconsistent.
For a given EM world, if a portion of the associated AM knowledge base is
removed by the operator, then there exists a superset of the remaining knowledge
base that is not consistent with the removed element and f .

Uniformity 1: Let (f, af ′1), (g, af
′
2) be two inputs where WI

EM(I ∪ (f, af ′1)) =
WI

EM(I ∪ (g, af ′2)); for all w ∈ WI
EM(I ∪ (f, af ′)) and for all X ⊆ ΠAM(w); if

{x | x ∈ X ∪ {f}, w |= af ′1(x)} is inconsistent iff {x | x ∈ X ∪ {g}, w |= af ′2(x)}
is inconsistent, then for each h ∈ ΠAM, we have that:

{w ∈ WI
EM(I ∪ (f, af ′1)) | w |= af ′1(h) ∧ ¬af ′′1(h)} =

{w ∈ WI
EM(I ∪ (g, af ′2)) | w |= af ′2(h) ∧ ¬af ′′2(h)}.

If two inputs result in the same set of EM worlds leading to inconsistencies in
an AM knowledge base, and the consistency between analogous subsets (when
joined with the respective input) are the same, then the models removed from
the annotation of a given strict rule or fact are the same for both inputs.

Uniformity 2: Let (f, af ′1), (g, af
′
2) be two inputs where WI

EM(I ∪ (f, af ′1)) =
WI

EM(I ∪ (g, af ′2)); for all w ∈ WI
EM(I ∪ (f, af ′))and for all X ⊆ ΠAM(w); if

{x | x ∈ X ∪ {f}, w |= af ′1(x)} is inconsistent iff {x | x ∈ X ∪ {g}, w |= af ′2(x)}
is inconsistent, then

{w ∈ WI
EM(I ∪ (f, af ′1)) | w |= af ′1(h) ∧ af ′′1(h)} =

{w ∈ WI
EM(I ∪ (g, af ′2)) | w |= af ′2(h) ∧ af ′′2(h)}.

If two inputs result in the same set of EM worlds leading to inconsistencies in
an AM knowledge base, and the consistency between analogous subsets (when
joined with the respective input) are the same, then the models retained in the
the annotation of a given strict rule or fact are the same for both inputs.

Relationships between Postulates. There are a couple of interesting re-
lationships among the postulates. The first is a sufficient condition for Core
Retainment to be implied by Relevance.

Proposition 2. Let • be an operator such that I • (f, af ′) = (ΠEM, ΠAM ∪
{f}, af ′′), where ∀w ∈ WI

EM(I ∪ (f, af ′)), ΠI•(f,af ′)
AM (w) is a maximal consis-

tent subset of Π
I∪(f,af ′)
AM (w). If • satisfies Relevance then it also satisfies Core

Retainment.
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Similarly, we can show the equivalence between the two Uniformity postulates
under certain conditions.

Proposition 3. Let • be an operator such that I • (f, af ′) = (ΠEM, ΠAM ∪
{f}, af ′′) and ∀w, ΠI•(f,af ′)

AM (w) ⊆ Π
I∪(f,af ′)
AM (w). Operator • satisfies Unifor-

mity 1 iff it satisfies Uniformity 2.

Given the results of Propositions 2 and 3, we will not study Core Retainment
and Uniformity 2 with respect to the construction of a belief revision operator
in the next section.

5.2 An Operator for P-PreDeLP Revision

In this section, we introduce an operator for revising a P-PreDeLP program. As
stated earlier, any subset of ΠAM associated with a world in WI

EM(I ∪ (f, af ′))
must be modified by the operator in order to remain consistent. So, for such a
world w, we introduce a set of candidate replacement programs for ΠAM(w) in
order to maintain consistency and satisfy the Inclusion postulate.

candPgm(w, I) = {Π ′
AM | Π ′

AM ⊆ ΠAM(w) s.t. Π ′
AM is consistent and

�Π ′′
AM ⊆ ΠAM(w) s.t. Π ′′

AM ⊃ Π ′
AM s.t. Π ′′

AM is consistent}

Intuitively, candPgm(w, I) is the set of maximal consistent subsets of ΠAM(w).
Coming back to the rain/hail example presented above, we have:

Example 8. Consider the P-PreDeLP program I presented right after Exam-
ple 7, and the following EM knowledge base:

rain ∨ hail : 0.5± 0.1;

rain ∧ hail : 0.3± 0.1;

wind : 0.2± 0.

Given this setup, we have, for instance:

candPgm({rain, hail, wind}, I) =
{{

umbrella
}
,
{
¬umbrella

}}
.

Intuitively, this means that, since the world where rain, hail, and wind are all
true can be assigned a non-zero probability by the EM, we must choose either
umbrella or ¬umbrella in order to recover consistency. �

We now show a series of intermediate results that lead up to the representation
theorem (Theorem 1). First, we show how this set plays a role in showing a
necessary and sufficient requirement for Inclusion and Consistency Preservation
to hold together.

Lemma 1. Given program I and input (f, af ′), operator • satisfies Inclusion
and Consistency Preservation iff for I • (f, af ′) = (ΠEM, ΠAM, af

′′), for all
w ∈ WI

EM(I ∪ (f, af ′)), there exists an element X ∈ candPgm(w, I ∪ (f, af ′))
s.t. {h ∈ Θ ∪Ω ∪ {f} | w |= af ′′(h)} ⊆ X.
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Next, we investigate the role that the set candPgm plays in showing the nec-
essary and sufficient requirement for satisfying Inclusion, Consistency Preserva-
tion, and Relevance all at once.

Lemma 2. Given program I and input (f, af ′), operator • satisfies Inclusion,
Consistency Preservation, and Relevance iff for I • (f, af ′) = (ΠEM, ΠAM, af

′′),
for all w ∈ WI

EM(I ∪ (f, af ′)) we have {h ∈ Θ ∪ Ω ∪ {f} | w |= af ′′(h)} ∈
candPgm(w, I ∪ (f, af ′)).

The last of the intermediate results shows that if there is a consistent program
where two inputs cause inconsistencies to arise in the same way, then for each
world the set of candidate replacement programs (minus the added AM formula)
is the same. This result will be used as a support of the satisfaction of the first
Uniformity postulate.

Lemma 3. Let I = (ΠEM, ΠAM, af ) be a consistent program, (f1, af
′
1), (f2, af

′
2)

be two inputs, and Ii = (ΠEM, ΠAM ∪ {fi}, af ′i). If WI
EM(I1) =WI

EM(I2), then
for all w ∈ WI

EM(I1) and all X ⊆ ΠAM(w) we have that:

1. If {x | x ∈ X ∪ {f1}, w |= af ′1(x)} is inconsistent ⇔ {x | x ∈ X ∪ {f2}, w |=
af ′2(x)} is inconsistent, then {X \ {f1} | X ∈ candPgm(w, I1)} = {X \
{f2} | X ∈ candPgm(w, I2)}.

2. If {X \ {f1} | X ∈ candPgm(w, I1)} = {X \ {f2} | X ∈ candPgm(w, I2)}
then {x | x ∈ X∪{f1}, w |= af ′1(x)} is inconsistent⇔ {x | x ∈ X∪{f2}, w |=
af ′2(x)} is inconsistent.

We now have the necessary tools to present the construction of our non-
prioritized belief revision operator.

Construction. Before introducing the construction, we define some preliminary

notation. Let Φ :WEM → 2[Θ]∪[Ω]. For each h there is a formula in ΠAM ∪ {f},
where f is part of the input. Given these elements, we define:

newFor(h, Φ, I, (f, af ′)) = af ′(h) ∧
∧

w∈WI
EM(I∪(f,af ′)) | h/∈Φ(w)

¬for(wi)

The following definition then characterizes the class of operators called AFO
(annotation function-based operators).

Definition 12 (AF-based Operators). A belief revision operator • is an “an-
notation function-based” (or af-based) operator (• ∈ AFO) iff given program
I = (ΠEM, ΠAM, af ) and input (f, af ′), the revision is defined as I • (f, af ′) =
(ΠEM, ΠAM ∪ {f}, af ′′), where:

∀h, af ′′(h) = newFor(h, Φ, I, (f, af ′))

where ∀w ∈ WEM, Φ(w) ∈ CandPgmaf(w, I ∪ (f, af ′)).

As the main result of the paper, we now show that satisfying a key set of
postulates is a necessary and sufficient condition for membership in AFO.
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Theorem 1 (Representation Theorem). An operator • belongs to class AFO
iff it satisfies Inclusion, Vacuity, Consistency Preservation, Weak Success, Rel-
evance, and Uniformity 1.

Proof. (Sketch) (If) By the fact that formulas associated with worlds in the set
WI

EM(I∪(f, af ′)) are considered in the change of the annotation function, Vacu-
ity and Weak Success follow trivially. Further, Lemma 2 shows that Inclusion,
Consistency Preservation, and Relevance are satisfied while Lemma 3 shows that
Uniformity 1 is satisfied.

(Only-If) Suppose BWOC that an operator • satisfies all postulates and • /∈
AFO. Then, one of four conditions must hold: (i) it does not satisfy Lemma 2
or (ii) it does not satisfy Lemma 3. However, by those previous arguments,
if it satisfies all postulates, these arguments must be true as well – hence a
contradiction. �

6 Conclusions

We have proposed an extension of the PreDeLP language that allows sentences to
be annotated with probabilistic events; such events are connected to a probabilis-
tic model, allowing a clear separation of interests between certain and uncertain
knowledge. After presenting the language, we focused on characterizing belief
revision operations over P-PreDeLP KBs. We presented a set of postulates in-
spired in the ones presented for non-prioritized revision of classical belief bases,
and then proceeded to study a construction based on these postulates and prove
that the two characterizations are equivalent.

As future work, we plan to study other kinds of operators, such as more general
ones that allow the modification of the EM, as well as others that operate at
different levels of granularity. Finally, we are studying the application of P-
PreDeLP to real-world problems in cyber security and cyber warfare domains.
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Abstract. Various applications require storing and handling data at
different granularities due to the nature of the data, diverse data origins,
and resource-constraint specifications. The work in this paper introduces
domain schemas, which extend the concept of domain to consider dif-
ferent granularities and the relationships among them. Relying on this
definition, we introduce a multi-granular database model and its integrity
constraints and query language. In particular, we extend traditional and
conditional dependency constraints to deal with data at different granu-
larities and study the satisfiability and consistency problems associated
with them. The query language corresponds to SQL extended with op-
erators specifically design to deal with granularities. As a case study, we
focus on the spatial and temporal domains, which have extensive use in
the literature and highlight the notion of granularity.

1 Introduction

Granularity defines bounds to the level of detail in which data is represented.
Different real applications require storing and handling data at different gran-
ularities due to the nature of the data [2], diverse data origins, and resource-
constraint specifications [14,13]. The work in this paper presents a model and
query language for multi-granular databases. This is done from a general per-
spective, which is considered relevant if we want to integrate data from different
data sources and domains. Unlike other approaches, data is not necessarily stored
at the finest level of granularity upon which aggregation functions derive data
at other coarser levels. Also, categories are not necessarily made explicit, but
they can be done on the fly depending on the domain. Even more, we do not
deal with only the hierarchical relationships between granularities, but we allow
relationships between granules that make possible to address cases other than
the classical finer-than or coarser-than relationship between granularities. In this
way, our work relates to work done in spatio-temporal granularity [3], which pro-
vides different operations and relationships between granularities target to only
the spatial and temporal domains. However, unlike this previous work, we take
a more general perspective of databases and complement the database schema
with integrity constraints that specify valid states of a multi-granular database.
The following example clarifies the problems addressed by this work.

Example 1. Consider a database of an agency that stores information about rel-
evant disasters (natural and man-made) occurred around the world. The infor-
mation stored in the system as shown in Figure 1. Events are stored at different
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levels of detail respect to time (i.e., day, month, season, holiday season, year)
and location (i.e., city, country, zone). Different granularities are useful in this
databases since events may occur in a large geographic area (e.g., continent) or
at a particular place (i.e., building). They also may occur at a fine time granular-
ity (i.e., hour of a day) but also they may extend during a whole season as in the
case of a drought. It can also be the case that the data availability is stored at
different levels of detail. For example, the first tuple in relation Natural in Figure
1 means that there was a tsunami in some part of Indonesia and not necessarily
all of it at some point during 2004. The fact that Indonesia can denote part of
the region and not necessarily all is called weak semantics. On the other hand,
a strong interpretation would mean that there was a tsunami in all Indonesia
during all 2004. In this work, we focus on the weak semantics of granules.

Natural Where When Type Death
Indonesia 2004 tsunami 280,000
Pakistan Columbus 2005 earthquake 75,000
Huascarán 1970 avalanch 20,000
Afghanistan winter, 2007-2008 natural 926
Valdivia May, 1960 earthquake 1,655
Haiti winter 2009-2010 earthquake 360,000
Chile February 27 2010 earthquake 525
Eastern Japan March 11 2011 tsunami 24,000

ManMade Where When Type Death
Santiago December 8 2010 fire 81
Madrid March 11 2010 terrorist attack 191
Sao Paulo July 17, 2007 plane crash 199
Newtown, Conneticut Christmas holiday shooting 26

Fig. 1. Example of a multi-granular database about disaster events

Despite differences in data granularity, one would like to retrieve data that are
related at a specific granularity. For example, one would want to retrieve data
of disasters occurred during a particular year or in particular country such that
the system will need to find data at the desired time and location granularity.

In addition, assume that the agency only stores one man-made event per day
and country. If one wants to enforce this constraint in the database, we could add
the functional dependency Where,When→ Type,Death. However, this constraint
does not check what is expected since, for example, it will consider consistent an
instance that stores man-made disasters in different cities of the same country
occurred during the same day. The constraint should consider the granularity
associated with the attribute ofWhere, which becomes an extension to traditional
functional dependency constraints. �

Our previous work in [20] addresses the integration of databases at different
granularities. It describes a database model and derives a global schema for data
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integration. We now further develop the database model and make the following
specific contributions: (1) the definition of a global schema upon which integrity
constraints are formalized and (2) the definition of a language to answer general
queries and check integrity constraints.

The reminder of this paper is organized as follows. We define domain schemas
in Section 2 and, based on its use, the Multi-granular Database Model and
dependency constraints are formalized in Section 3. The query language for this
model is presented in Section 4. Sections 5 and 6 discuss implementation issues
and relevant literature followed by the conclusions in Section 7.

2 Domain Schemas

A domain schema will be used to represent the granularities associated with
a domain and the relationships between them. In order to formalize a domain
schema, we will need identifiers for granularities, e.g. Month, and identifiers for
the granules that belong to a granularity, e.g., January 2012. Let L and I denote
the universe of possible granularities and granule identifiers, respectively. We
will also need a distinguished granule all ∈ I and two distinguished granularities
�,⊥ ∈ L. Identifiers � and ⊥ correspond to the coarsest and finest granularity
of a specific domain. In fact, � contains the single granule all that groups in it
all the elements in the domain, and ⊥ contains one granule for each element in
U .
A domain schema is a tuple Ψ = (U , , I, μ, τ), where
– U is the domain associated with Ψ ,
–  ⊆ L is a finite set of granularity identifiers (or labels) such that ⊥,� ∈ ,
– I ⊆ I is a finite set of granule identifiers (or labels) such that all ∈ I,
– μ is a function μ : (I ∪ U)→ 2U that maps granule identifiers to subsets of

the domain. In particular, μ(all) = U and μ(g) = g for every g ∈ U .
– τ is a function → 2I∪U such that τ(�) = {all}, τ(⊥) = U , and for all G ∈ 

if i, j ∈ τ(G) then μ(i) ∩ μ(j) = ∅.
To simplify the presentation, we will asume that for i, j ∈ I, i �= j iff μ(i) �= μ(j),
and that for G1, G2 ∈ , G1 �= G2 iff τ(G1) �= τ(G2).

Given a domain schema Ψ = (U , , I, μ, τ), a granule c1 ∈ I is said to map
to c2 ∈ I if μ(ci) ⊆ μ(cj). For example, a granule ‘London’ would map to
a granule ‘England’ since the former is in a way generalized by the latter. A
granularity G1 ∈  is finer or equal than G2 ∈ , denoted by G1 �Ψ

G2, iff for all
ci ∈ τ(G1) there exists cj ∈ τ(G2) such that ci maps to cj . For example, if we
consider granularities ‘US state’, ‘CA province’ and ‘country’ with their expected
meaning, both state and province would be finer than country, but there would
be no such relation between state and province. A granularity G1 ∈  is finer
than G2 ∈ , denoted by G1 ≺Ψ G2 if G1 �Ψ G2 and G2 ��Ψ G1. When clear
from the context we will replace G1 �Ψ

G2 and G1 ≺Ψ
G2 by G1 � G2 and

G1 ≺ G2.

Remark 1. In what follows, we will assume that, for any pair of indices ci, cj ∈ I,
checking that ci maps to cj and μ(i) ∩ μ(j) = ∅ can be done in constant time.
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This can be achieved in several ways. For example, if the domain U has a total
order and μ(i) is defined as a range checking, those relations can be determined
comparing only the limits of the range. On the other hand, in several settings
the granularities in the domain schema can be pre-processed to compute the
relationships between indices. In this case, the cost of checking if a granule maps
to another will have a tradeoff between time and space. For example, given place
names as index of a spatial domain, it is possible to have a pre-processed graph
connecting all pairs of granules for which an inclusion relation holds. This results
in constant time checking of mappings between granules. If we want to reduce
the space used, we would leave the smallest graph for which the rest of the
relations can be computed by composition. In this case, the mappings can be
obtained in linear time over the number of granules.

A particular instance of a domain schema is the one defined over the time
domain. A time domain is a pair (T ;≤), where T is a non-empty set of con-
stants that represent time instants and ≤ is a total order in T [5,4,8]. The
next example illustrates the case of multiple time granularities for representing
academic activities of universities using our notation. In this setting the set of
granule identifiers is an ordered set of index values.

Time domain

μ(Jan12) μ(Feb12)μ(Mar12)μ(Abr12)μ(May12)μ(Jun12) μ(Jul12) μ(Aug12)μ(Sep12)μ(Oct12)μ(Nov12)μ(Dic12)

μ(winter12) μ(fall12)μ(spring-summer12)

μ(first12)

trimester

μ(second12)
semester

month

μ(2012)
year

μ(bi-1-12) μ(bi-2-12) μ(bi-3-12) μ(bi-4-12) μ(bi-5-12) μ(bi-6-12) bimester

Fig. 2. Instance a of a domain schema over the time domain to represent academic
activities of universities

Example 2. Consider the following domain schema Ψt = (Ut, t, It, μt, τt),
where Ut is the time domain (i.e., T of the tuple (T ;≤) introduced above),
t = {month, bimester, trimester, semester, year}, and It is the set of indices repre-
sented graphically in Figure 2. We consider Ut to be a set of instants in the
smallest perceptible time unit. For this example, τ(⊥) = Ut, μ(g) = g for every
g ∈ Ut, τ(�) = {all} and μ(all) = Ut. The relations that hold among these gran-
ularities are month ≺ year, bimester ≺ year, trimester ≺ year, semester ≺ year, and
month ≺ bimester. �

The previous example could also be partially represented by a data warehousing
dimension where granularities are represented as categories and granules as el-
ements. For example, the dimension in Figure 3 represents all the relationships
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All

Year

TrimesterBimester

Month

Semester

Time

Fig. 3. Time Dimension

between granularities. However, not all the information of a dimension schema
can be represented in this dimension. for example, the fact that granule bi-3-12

maps to spring-summer12 cannot be represented since, as the domains schema
shows, elements in category bimester can only be connected to elements in Year.

Sometimes, specially at query time, we will want to find a suitable granularity
when two attributes share the same domain schema but they are at different
granularities. In order to find this granularity, we define the join operator.

Definition 1. Given a domain schema Ψ = (U , , I, ρ, τ) and G1, G2 ∈ , the
Join of G1 and G2 in Ψ is Join(Ψ,G1, G2) = G such that G ∈ , G1�G,G2�G
and there does not exist G′ ∈  such that (G1�G′, G2�G′, G′≺G). �

Thus, the join operator of G1 and G2 returns the finest granularity in  such
that it subsumes both G1 and G2. Note that the Join always exists since we
always have that granularity � ∈  that satisfies the conditions that G1�� and
G2��.

Example 3. For the domain schema of Example 2, we have: Join(Ψt,month,
semester) = year, Join(Ψt,month, bimester) = year and Join(Ψt, trimester, semester) =
year. �

In the next section we formalize databases that can assign to an attribute a
domain schema instead of a simple domain.

3 Multi-granular Databases

A database schema is a tuple Σ = (M,R, Dom,Gran), where: (a) M is a set
of domain schemas, (b) R is a set of relational schemas and (c) Given a relation
R ∈ R and an attribute A ∈ R, function Dom(R,A) returns a domain schema
ΨRA = (URA, RA, IRA, μRA, τRA) and Gran(R,A) returns a granularity in RA.
Intuitively, Dom and Gran return, respectively, the domain schema and the
granularity associated with attribute A ∈ R. Without loss of generality, we will
assume that there are no schemas Ψ1, Ψ2 ∈M that refer to the same domain U .
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More formally, a database instance D of a schema Σ is a finite collection of
ground atoms of the form R(c1, . . . , ci, . . . , cl), where (a) R(B1, . . . , Bi, . . . , Bl) ∈
R, and (b) every ci is such that forDom(R,Bi) = (URBi , RBi , IRBi , μRBi , τRBi),
Gran(R,Bi) = GRBi , ci ∈ IRBi ∪ URBi and one of the following holds:
– GRBi = �, or
– GRBi = ⊥ and ci ∈ URBi

– GRBi ∈  and there exists cj ∈ τRBi (GRBi) for which ci maps to cj .
Thus, a database instance contains in each attribute granules that can map to
a granule in the granularity of the attribute. In this way, data is stored using as
much detail as it is available.

In order to enforce consistency of data in a multi-granular database, tradi-
tional functional dependencies and inclusion dependencies are not enough to
handle the types of inconsistencies that can arise. We now introduce extensions
of functional dependencies to consider data at different granularities and also to
trigger constraints conditionally to particular values of attributes.

A classic functional dependency X1, . . . ,Xk → Xk+1, . . . ,Xn is satisfied by a
relation R that might contain null values if for every tuples t1 and t2 in D such
that t1[Xi] = t2[Xi] �= null for i ∈ [1, k], then it should hold that t1[Xj ] = t2[Xj]

1

for every j ∈ [k + 1, n].

A granular functional dependency (GFD) extends classic functional de-
pendency with the concept of multi-granular attributes. It enforces that tuples
with the same values in a subset of attributes, at specific granularities, should
have the same values in another set of attributes, at given granularities. This is
formally introduced as followed.

GFD syntax. Given a database schema Σ = (M,R, Dom,Gran), a Granular
Functional Dependency (GFD) over a relation R ∈ R is of the form:

(X1, . . . ,Xk → Xk+1, . . . ,Xn; @tg)
where tg is a pattern tuples of the form tg = (G1, . . . , Gk;Gk+1, . . . , Gn), for
every i ∈ [1, n], Xi is an attribute in R, and Gi is either ‘ ’ or a granularity such
that Dom(R,Xi) = (URXi , RXi , IRXi , μRXi , τRXi) and Gi ∈ RXi .

Intuitively, a GFD will check if the functional dependency X1, . . . ,Xk →
Xk+1, . . . ,Xn is satisfied at the granularity levels defined by tg. When the pat-
tern contains ‘ ’, the values are checked at the granularity associated with the
attribute in the database schema. In order to formally provide the semantics
for these constraints, we need to define the mapping of a granule identifier in a
granularity.

Definition 2. Given a domain schema Ψ = (U , , I, μ, τ), a granule identifier
c ∈ I and a granularity G ∈ , the mapping of c in G, denoted by map(c,G), is
defined as follows:

map(c,G) ::=

{
c if G = ⊥ and c ∈ U
d if G ∈ , d ∈ τ(G) and μ(c) maps to μ(d)
null otherwise �

1 The condition is satisfied even if t1[Xj ] = t2[Xj ] = null.



350 L. Bravo and M.A. Rodŕıguez

Because of the definition of granularity, the second condition can be satisfied
by at most one d ∈ τ(G). Checking this condition requires to determine, for
every d ∈ τ(G), if μ(c) ⊆ μ(d). Since we have restricted to domain schemas in
which checking μ(i) ⊆ μ(j) takes constant time, the cost of this computation is
O(|τ(G)|). Therefore, the following lemma holds:

Lemma 1. Given a domain schema Ψ = (U , , I, ρ, τ), a granule c ∈ I and a
granularity G ∈ , the mapping map(c,G) can be computed in linear time over
|I|. �

GFD semantics. Consider a relation R and a GFD (X1, . . . ,Xk → Xk+1, . . . ,Xn;
@tg) with tg = (G1, . . . , Gk;Gk+1, . . . , Gn). Let t

′
g = (G′

1, . . . , G
′
k;G

′
k+1, . . . , G

′
n),

where G′
i = Gran(R,Xi) if Gi =‘ ’ and G′

i = Gi otherwise. Relation R satisfies
the GFD if for t′g, every t1, t2 inR and every i ∈ [1, k] such that map(t1[Xi], G

′
i) =

map(t2[Xi], G
′
i) �= null, it holds that map(t1[Xj ], G

′
j) = map(t2[Xj ], G

′
j) for ev-

ery j ∈ [k + 1, n].
In the same way as for classic functional dependencies, checking consistency

of a database with respect to GFDs is tractable.

Proposition 1. The problem of checking if a database D is consistent with
respect to GFD ic can be solved in polynomial time.

Proof. Let ic = (X1, . . . ,Xk → Xk+1, . . . ,Xn; @tg). The problem can be reduced
to checking satisfaction of classic functional dependencies. Indeed, we can con-
struct a new database D′ with each attribute in ic at the granularity defined by
tg. Database D′ can be constructed efficiently since map(c,G) is computed in
polynomial time (see Lemma 1). Now, if D′ satisfies the functional dependency
X1, . . . ,Xk → Xk+1, . . . ,Xn, then D satisfies ic. Note that D′ can have an at-
tribute repeated at different granularities of the corresponding domain schema.
�

Given a set of constraints, the satisfiability problem consists in determining if
there exists a non-empty instance that satisfies the constraints. As in the case
for classic functional dependencies, for any set IC of GFDs defined over a schema
R, there exists a non-empty instance D of R such that D satisfies the constraints
in IC. Indeed, a relation with a single tuple with any value will always satisfy a
set of GFDs.

A conditional-granular functional dependency (CGFD) is an extension to
GFDs that allows us to filter the tuples over which the dependencies are checked
in the same way as conditional functional dependencies [11] extend classic func-
tional dependencies to add conditions.

CGFD syntax. Given a schema Σ = (M,R, Dom,Gran) and a relation R ∈ R,
a Granular Conditional Functional Dependency (CGFD) over R is of the form:

(X1, . . . ,Xk → Xk+1, . . . ,Xn; @tg; tc)
where, for every i ∈ [1, n], Xi is an attribute in R and tg, tc are pattern tuples
of the form: tg = (G1, . . . , Gk;Gk+1, . . . , Gn) and tc = (c1, . . . , ck; ck+1, . . . , cn)
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where each Gi for i ∈ [1, n] is either ‘ ’ or a granularity in the domain schema
Dom(R,Xi) and each ci ∈ τ(Gi) or ci=‘ ’2. A value ‘ ’ in tc represents the fact
that there is no constraint about the value in that attribute. In this sense, we
will say that ci 9 cj if either ci = cj , ci =‘ ’ or cj =‘ ’.

Remark 2. Here we chose to force ci ∈ τ(Gi). If we want to consider more general
ICs, we can remove this condition and only require ci ∈ I for Dom(R,Xi) =
(U , , I, μ, τ). In this case, the constraint is triggered only if the value in the
instance is equal to ci. This extension would only be interesting if ci belongs to
more than one granularity.

CGFD semantics. Consider a relationR and a CGFD (X1, . . . ,Xk→Xk+1, . . . ,Xn;
@tg; tc) such that tg = (G1, . . . , Gk;Gk+1, . . . , Gn) and tc = (c1, . . . , ck; ck+1, . . . ,
cn). Let t

′
g = (G′

1, . . . , G
′
k;G

′
k+1, . . . , G

′
n), whereG

′
i = Gran(R,Xi) ifGi =‘ ’ and

G′
i = Gi otherwise. RelationR satisfies the CGFD if for t′g, every t1, t2 inR and i ∈

[1, k] such that map(t1[Xi], G
′
i) = map(t2[Xi], G

′
i) 9 ci, then map(t1[Xj], G

′
j) =

map(t2[Xj], G
′
j) 9 cj for every j ∈ [k + 1, n].

By slightly modifying the proof of Proposition 1 by checking also the con-
stants in tc, we get that the consistency of a database with respect to CGFDs
is tractable.

Proposition 2. The problem of checking if a database D is consistent with
respect to CGFD ic can be solved in polynomial time. �

Example 4. Consider a database that tracks the number of attendees to events
held at a specific location and date. Let its database schema be Σ = (M, R,
Dom, Gran) with (i) M = {ΨL, ΨD, ΨN}, where ΨL is the schema domain for
location and contains City and Country granularities defined as expected; ΨD

contains Date, Month and Year granularities defined as expected; and ΨN has
as domain the natural numbers and contains no granularities except for ⊥ΨN ;
(ii) R = {Event(Location, Date, Number)}; (iii) Dom(Event, Location) = ΨL,
Dom(Event, Date) = ΨD and Dom(Event, Number) = ΨN; and (iv) Gran(Event,
Location) = City, Gran(Event, Date) = Date and Dom(Event, Number) = ⊥ΨN .

The events stored in this database take place at most once a month in UK
and once a year in Canada. To enforce these constraints, we need both to restrict
to specific locations and to check at different levels of granularity. The instance
of table Event should satisfy ic1 : (Location,Date → Location,Number; @tg1 ; tc1)
and ic2 : (Location,Date→ Location,Number; @tg2 ; tc2) where:

Location Date Location Number
tg1 Country Year
tc1 Canada

Location Date Location Number
tg2 Country Month
tc2 UK

Note that we need the location attribute in both sides so that the constraints
are triggered considering the relevant granularity of country but they also need
to enforce that the event takes place in the same city. The following instance
violates both constraints:
2 Note that this implies that there can be no null values in the patterns.
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Location Date Number
t1 London June 1st, 2011 12
t2 Cambridge March 3rd, 2012 80
t3 Oxford March 23rd, 2012 80
t4 Ottawa July 7st, 2012 250
t5 Ottawa March 6st, 2012 254

Tuples t4 and t5 violate ic1 since they are Canadian cities for which we have
events with different number of attendees. On the other hand, tuples t2 and t3
do not satisfy ic2 since, for two different cities in the UK, there is an event in
the same month. These constraints cannot be expressed using classic functional
dependencies nor GFD. �

The satisfiability problem for CGFDs is NP-complete. It is NP-hard since con-
ditional FDs [11] are a particular case of CGFDs. The problem is in NP since we
can guess a database and check in polynomial time if it satisfies the constraints.
It is easy to see that if a set of CGFDs is satisfiable, there always exist a database
with one tuple that satisfies them.

4 Multi-granular Query Language

This section introduces a multi-granular language MSQL to express not only
general queries but also queries that check integrity constraints over a database
instance D of a schema Σ = (M,R, Dom,Gran). Using a SQL-like syntax, a
query in this language is of the form:

SELECT [ ALL | DISTINCT ] MSQL expression
[ FROM table references ]
[ WHERE MSQL condition ]
[ GROUP BY grouping column reference list ]
[ HAVING MSQL condition ]

MSQL modifies the classical SQL syntax by including additional options when
defining the select expression and search condition. In particular, MSQL includes
operators over granules and granularities that are not found in SQL. The spec-
ification of the select expression and search condition in MSQL follows, where
for simplification, we assume that elements SQL predicate and SQL expression
include all elements of the classical SQL predicate and SQL select expression.

MSQL expression ::= < SQL expression > |
< granule > [ AS < column name >][,MSQL expression]

MSQL condition ::= < bool condition > |< bool condition >AND < bool condition > |
< MSQL condition > OR < MSQL search condition >

bool condition ::= [NOT]{< MSQL predicate > | (< MSQL condition >)}
[ IS [ NOT ]{ TRUE | FALSE | UNKNOWN }]

MSQL predicate ::= < SQL predicate > | < granule relation > (< granule >,< granule >)
granule ::= < granule column name > |

map(< granule column name >,< granularity >)
granularity ::= < granularity id > | join(< granularity id >, < granularity id >)
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Let schema Ψ = (U , , I, μ, τ) be a domain schema, x, y ∈ I be granule identifiers,
and G1, G2 ∈  be granularities. The function join(G1, G2) returns the finest
granularity that can be defined in the domain that is coarser than both G1 and
G2 (cf. Definition 1) and the function map(c,G1) returns the value of c at the
granularity G1 (cf. Definition 2).

In the previous specification, we have left undefined granule relation because it
may depend on the particular domain. We consider these relations to be basically
set-based operators found in the context of mereology [23], which is the theory
of parts and wholes. We will use the following study case to specify particular
relations for the spatial and temporal domains and illustrate with them the use
of the query language.

4.1 Case Study: Spatial and Temporal Domain

Mereo-topology has been an important area of research for the spatial and tem-
poral domains. Mereo-topology is a theory, combining mereological and topo-
logical concepts, of the relations among wholes, parts, and boundaries between
parts [23]. Based on this theory, Table 1 provides the semantics of the topological
relations between geometries (spatial granules), which were extracted from the
Open Geospatial Consortium Simple Feature Specification [17] and are currently
implemented in spatial query languages. In this table, given a geometry x, ∂(x)
indicates its boundary, and dim(x) its dimension, where dim(x) is equal to 0 if
x is a point, 1 if it is a curve, and 2 if it is a surface.

Table 1. Definition of topological relations by the Open Geospatial Consortium [17]

Relation Definition

Disjoint(x, y) True if x ∩ y = ∅
Touches(x, y) True if x ∩ y ⊆ (∂(x) ∪ ∂(y))
Equals(x, y) True if x = y
Within(x, y)|Contains(y, x) True if x ⊆ y
Overlaps(x, y) True if x ∩ y �= ∅, x ∩ y �= x �= y, and dim(x ∩ y) =

dim(x) = dim(y)
Crosses(x, y) True if x ∩ y �= ∅, x ∩ y �= x �= y, and dim(x ∩ y) <

max(dim(x), dim(y))
Intersects(x, y) True if x ∩ y �= ∅

Table 2 provides the semantics of the relations between two time intervals
x = [xs, xf ] and y = [ys, yf ] (temporal granules), which are extracted from the
relations in [1] and can be mapped to temporal extensions to SQL languages
such as TSQL2 [22] and TQuel [21].

Granules in MSQL can be represented by geometric attributes and time inter-
vals of spatial and temporal SQLs, respectively. In such cases, the comparison
operators of MSQL over granules as binary relations are equivalent to those
found in spatial and temporal languages. Although the specification of MSQL
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could also include the particularities for handling spatial and temporal domain,
we have omitted these components of the language to keep it simpler. In addi-
tion to relations between granules, MSQL includes map and join operators to
handle granules and granularities of the schema, which cannot be mapped onto
spatial and query languages.

Table 2. Definition of time interval relations [1]

Relation Definition

Before(x, y)|After(y, x) x.f < y.s
Equals(x, y) x.s = y.s and x.f = y.f
Meets(x, y) x.f = y.s or y.f = x.s
Overlaps(x, y) x.f > y.s and y.s > x.f or y.f > x.s and x.s > y.f
During(x, y)|Contains(y, x) x.s > y.s and x.f < y.f
Starts(x, y)|StartedBy(y, x) x.s = y.s and x.f > y.f
Finishes(x, y)|FinishedBy(y, x) x.f = y.f and x.s < y.s

Database Schema and Instance. To show the expressiveness of the language,
let us consider a database of disaster events occurred around the world with
schema Σ = (M,R, Dom,Gran) and two relational predicates, one for natural
and other for man-made disasters. This database handles multi-granular data
since events may occur during a day, week, season, and so on. In addition, they
occur in a place, city, region, and so on. Figure 1 shows a database instance for
relations Natural(Where,When,Type,Death) ∈ R and ManMade(Where,When,
Type,Death) ∈ R.

In M there are four domain schemas of the form ΨD = (UD, D, ID, μD, τD),
where D is the domain of space, time, type of disaster, or natural numbers. The
domain schemas for space and time are shown graphically in Figures 4 and 5,
where granule identifiers are grouped into corresponding granularities of the do-
main and where directed lines indicate inclusion relationship between granule in-
dices (⊆). The schema of type of disaster is essentially a taxonomy of natural and
man-made disasters. In this database schema, Gran(Natural,Where) = Country ,
Gran(Natural,When) = Year , Gran(Natural,Type) = Natural , Gran(Natural,
Death) =⊥N, Gran(ManMade, Where) = City , Gran(ManMade,When) = Year ,
Gran(ManMade,Type) = ManMade , and Gran(ManMade,Death) =⊥N.
Although attribute Where is at granularity Country in relation Natural, its val-
ues are at the level of country, zone of a country, and city. In relation ManMade,
in contrast,Where is at granularity of city. Similarly, for When of relation Natural
there are values in months, years, seasons3, holidays, and days. For all these at-
tributes, their values correspond to granule identifiers, whose mapping to the
underlying domain is part of the mapping of granule indices at the attribute’s
granularity.

3 Data about seasons use the north hemisphere as reference.
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Country

Country zone

Afganistan Indonesia Peru ChileSpain Japan Brazil

Huarascan
Eastern 
Japan

Valdivia SantiagoMadrid City

HaitiPakistan USA

Country state

Connecticut

Sao Pablo NewTown

Fig. 4. Instance of the space domain schema

Year

Calendar season

March 2011

 March 11, 2011July 17, 2007 March 11, 2010 December 8, 2010

Day

May 1960 July 2007 March 2010 December 2010

Month

winter 2009-2010 winter 2007-2008 fall-2010 winter-2010-2011 spring 2007

1960 1970 2004 2007 2008 2009 2010 2011

spring 1960

December 2012

2012

Christmas 2012 Columbus 2005 

Holiday

Octuber 2005

fall 2005 

2005

Fig. 5. Instance of the time domain schema

Even though the granularity of Where is country, it is very useful to store the
finer data when available. Indeed, in the tuple 〈Valdivia,May 1960,earthquake,
1655〉, knowing that the earthquake was in the city of Valdivia provides more
information than saying that it took place in Chile.

Queries. Some examples of queries that are of interest for this data are:

1. Find natural events occurred during year 2010:

SELECT Where,When,Type,Death
FROM Natural
WHERE During(When, 2010)

Answer to this query is the tuple 〈Chile, February 27 2010, earthquake, 525〉.
Notice that the earthquake occurred during the winter 2009-2010 in Haiti is
not part of the answer, since the winter 2009-2010 in not part of the year
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2010. By using Overlaps instead of During in the query, the answer would
also include tuple 〈Haiti, winter 2009-2010, earthquake, 360,000〉.

2. Find natural events of the same type that occurred during the same year in
different countries:

SELECT d1.Type, map(d1.When, Y ear),
map(d1.Where, Country), map(d2.Where, Country)

FROM Natural as d1, Natural as d2
WHERE Equals(map(d1.When, Y ear), map(d2.When, Y ear))and not

Equals(map (d1.Where, Country),map(d2.Where, Country))

Answer to this query is the tuple 〈Earthquake, 2010, Haiti, Chile〉.
3. Find two natural events occurred in ‘Haiti’ in different years:

SELECT d1.Where, d1.When, d2.When
FROM Natural as d1, Natural as d2
WHERE Within(map(d1.Where, Country), ‘Haiti’) and

Within(map(d2.Where, Country), ‘Haiti’) and not
Equals(map(d1.When, Y ear),map(d2.When, Y ear))

The answer to this query is empty.

4. Find man-made disasters that occur during the same year and location of
an earthquake (i.e., natural disaster). Since this query retrieve data from
attributes whose schema is at different granularities, we map values to the
merged granularity of the attributes for comparison.

SELECT d2.Where, d2.When, d2.Type,d2.Death
FROM Natural as d1, ManMade as d2
WHERE d1.Type = ’earthquake’ and

Equals(map(d1.Where,join(Country, City)),
map(d2.Where,join(Country, City))) and
Equals(map(d1.When, Y ear),map(d2.When, Y ear))

Answer to this query is the tuple 〈Santiago, December 8 2010, fire, 81〉.
Note that in the previous queries, and since we use names to specify where an
event occurs, we can think of using string operator = instead of using Equals
when comparing spatial granules that have been mapped to the same granularity.
We use Equals to make clear that we are comparing granules with the semantics
of a spatial domain.

5 Implementation Issues

At the implementation level of the multi-granular database model, we need to
represent granules, implement operators for relations between granules, associate
granules with granularities, and implement map and join operators.

Representing granules and implementing operators for relations depend on
the domain. We distinguish a representation of granules called by-value from
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a representation called by-reference. If the implementation is done using a rep-
resentation by-value, the map relationships could be computed at query time
by using the underlying domain. For the spatial domain, in particular, current
spatial databases provide spatial data types to represent geometries in terms of
boundary points of a geometry. Spatial relations are also implemented by us-
ing polynomial algorithms in terms of the number of points used to represent
these geometries. These databases support spatial indexing structures for query
processing, which can be used for the implementation of operators.

For a representation by-reference in the spatial domain, on the other hand,
we need to have spatial relations between place names. This can be part of the
data store in the database or can be handled in an external knowledge base
such as the gazetteer Geonames4, which establishes relations of inclusion. In
this domain, associating granules to granularities is very common to be a type
of classification. For example, given a place names, this is typically associated
with a class county, city, country, and so on, which is precisely the granularity.
This needs to be explicitly indicated in the database or in the external knowledge
base.

A similar situation occurs for the temporal domain. A representation by-
value is an interval representation, from which it is possible to calculate the
level of granularity and interval relations. A representation by-reference requires
additional knowledge to relate granules and to derive the level of granularity.

The implementation of the map and join operators needs the granularity to
which a granule belongs and the inclusion relations between granules. This oper-
ators require the comparison of all possible candidate granules and granularities;
however, this can be efficiently calculated for some particular domains. Having
the granularity given by the administration partition of regions and its respec-
tive representation by-value, spatial indices can be used to filter out candidate
granules. Furthermore, this computation can be done offline and not at query
time. For a representation by-reference, using a hierarchical structure such as
the one used by Geonames through the inclusion relation, the implementation
of map and join operators traverses the hierarchy up to the desired level.

6 Related Work

Related work concerning multi-granular databases exists within the context of
spatial and temporal databases and data warehousing. We revise here with spe-
cial emphasis on the work done in the spatial and temporal domain, from where
we generalize the notion of granularity.

The formalization of temporal granularity by Bettini et. al. [5,4] is basis for
several different studies that explore temporal and spatial granularity. Gran-
ularity defines the units that quantitatively measure data with respect to the
dimensions of the domain they represent. Temporal granularity is defined in
terms of a mapping function from a domain of index to the time domain. Each
portion of the time domain corresponding to the mapping of a granularity is

4 http://www.geonames.org/

http://www.geonames.org/
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referred as the temporal granule. Temporal granule of a granularity must not
overlap. A time domain is a tuple (T,≤), where T is a non-empty set of time
instants and ≤ is a total order in T . In this context, given two time granularities
Φ1 and Φ2, Φ1 is said to be finer-than Φ2 (or inversely, Φ2 is coarser-than Φ1),
denoted by Φ1 � Φ2, if and only if, for each granule Φ1(i), there exists a granule
Φ2(j) such that Φ1(i) ⊆ Φ2(j).

In a similar way to the definition of temporal granularity, a spatial granularity
Φ can be defined by a mapping function from a domain of index to portion of
the space, called spatial granules, and where the granules of a same granularity
do not overlap [24]. Given two different spatial granularities Φ1 and Φ2 , Φ1 is
said to be finer-than Φ2 is for all granules Φ1(i), there exists a granule Φ2(j)
such that ΦI(i) is inside Φ2(j). The work in [3] enriches the conceptualization
of spatial granularity by considering that spatial granularities represent also the
relations between granules. This is done with a multidigraph where vertices are
granules and edges are explicit relations between granules. It also defines several
relations between spatial granularities in addition to the finer-than relationship
and a set of operations over spatial granularities.

The works in [24,8,3] define spatio-temporal granularity as the composition
of spatial and temporal granularity. A spatio-temporal granule is therefore a
tuple STG(s, t), where s is a spatial index and t a temporal index of granules
in the spatial SG and temporal TG granularity, respectively. In this framework,
at the time instant TG(t), the spatial granule SG(s) is valid. In [24], an object
fully covers, partially overlaps or not overlaps a spatial granule, which may vary
at different time instants. Unlike the works in [24,8] where at each time granule
there is a single spatial granule, the work in [3] assigns to each spatio-time granule
a sequence of spatial granules, one for each granule in the time granularity.

ST4SQL is a spatio-temporal query language dealing with granularities [18].
This language extends SQL syntax and T4SQL [9] temporal language with dif-
ferent temporal and spatial semantics, and in particular, it introduces constructs
to group data with respect to the temporal and spatial domain. The work in [8]
proposes a multi-granular object-oriented framework that supports spatial and
temporal granularity conversion. They define a system where multi-granular spa-
tial and temporal data are defined as instances of spatial and temporal types,
upon which different granularity conversion operators apply. They address con-
version between granules related by inclusion and they provide a language were
users can specify a particular conversion from moving one to another granularity.

Although there exists work on the formalization of spatial and spatio-temporal
integrity constraint [7,16] and about modeling and querying spatial and temporal
data at multiple granularities [24,8,3], to the best of our knowledge, there is no
formalization of semantic integrity constraints for spatial and temporal data at
multiple granularities. We investigate this new type of constraints that impose
topological [10,19] and temporal interval [1] relations of multi-granular spatial
and temporal data.

From a different perspective, data warehousing can be seen as a multi-granular
system where conversion operators are fixed along a dimension. Although data
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warehousing provides efficient implementations of conversion operations along
a hierarchy of granularities, it cannot fully capture the desired semantics of a
multi-granular database. Homogenous data warehousing assumes data stored
at the finest level of detail and where each value (granule) at this level can
be mapped onto a value at a coarser level of a dimension. For heterogenous
data warehousing, a particular granule of a domain cannot belong to two differ-
ent granularities. Despite this disadvantages, recent work on data warehousing
highlights the need of storing data at different granularities [12,15] and handling
complex data objects [6].

7 Conclusions

The work in this paper proposes a database model with attributes stored at
different granularities. It defines a domain schema to model the granularity of a
particular domain, which is a more general approach than modeling categories
in a data warehousing where data is usually stored at the finest level of detail
and categories are related by an inclusion relation. It also introduces integrity
constraints, analyzes the database consistency problem for these constraints, and
presents a multi-granular query language.

We have left for future work the study of efficient implementations for this
database model and query language, which should consider particularities of the
domain.

Acknowledgements. M. Andrea Rodŕıguez is partially funded by FONDEF-
CONICYT project D09I1185. Loreto Bravo is partially founded by FONDECYT-
CONICYT N1130902.

References

1. Allen, J.: Maintaining knowledge about temporal intervals. Communications of the
ACM 26(11), 832–843 (1983)

2. Belussi, A., Combi, C., Pozzani, G., Amaddeo, F., Rambaldelli, G., Salazzari, D.:
Dealing with multigranular spatio-temporal databases to manage psychiatric epi-
demiology data. In: Computer-Based Medical Systems (CBMS), pp. 1–4 (2012)

3. Belussi, A., Combi, C., Pozzani, G.: Formal and conceptual modeling of spatio-
temporal granularities. In: International Database Engineering and Applications
Symposium IDEAS, pp. 275–283. ACM (2009)

4. Bettini, C., Dyreson, C.E., Evans, W.S., Snodgrass, R.T., Wang, X.S.: A glossary
of time granularity concepts. In: Etzion, O., Jajodia, S., Sripada, S. (eds.) Dagstuhl
Seminar 1997. LNCS, vol. 1399, pp. 406–413. Springer, Heidelberg (1998)

5. Bettini, C., Wang, X.S., Jajodia, S.: A general framework for time granularity
and its application to temporal reasoning. Annals of Mathematics and Artificial
Intelligence 22(1-2), 29–58 (1998)
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Abstract. Active integrity constraints (AICs) are a form of integrity
constraints for databases that not only identify inconsistencies, but also
suggest how these can be overcome. The semantics for AICs defines dif-
ferent types of repairs, but deciding whether an inconsistent database
can be repaired is a NP- or Σ2

p-complete problem, depending on the
type of repairs one has in mind. In this paper, we introduce two differ-
ent relations on AICs: an equivalence relation of independence, allowing
the search to be parallelized among the equivalence classes, and a prece-
dence relation, inducing a stratification that allows repairs to be built
progressively. Although these relations have no impact on the worst-case
scenario, they can make significant difference in the practical computa-
tion of repairs for inconsistent databases.

1 Introduction

Maintaining and guaranteeing database consistency is one of the major problems
in knowledge management. Database dependencies have been since long a main
tool in the fields of relational and deductive databases [2,3], used to express
integrity constraints on databases. They formalize relationships between data
in the database that need to be satisfied so that the database conforms to its
intended meaning.

Whenever an integrity constraint is violated, the database must be repaired
in order to regain consistency. Typically there are several sets of update actions
that achieve this goal, leading to different revised consistent databases. Restrict-
ing the set of database repairs to those considered most adequate is therefore
an important task. Minimality of change is commonly accepted as an essential
characteristic of a repair [6,8,18], but it is not enough to narrow down the set of
possible repairs sufficiently.

The most common approach to processing integrity constraints in database
management systems is to use active rules (a kind of event-condition-action
rules, or ECAs [17]), for which rule processing algorithms have been proposed
and a procedural semantics has been defined. However, their lack of declarative
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semantics makes it difficult to understand the behaviour of multiple ECAs acting
together and to evaluate rule-processing algorithms in a principled way.

Active integrity constraints (AICs) [9] are special forms of production rules
that encode both an integrity constraint and preferred update actions to be per-
formed whenever the former is violated. The declarative semantics for AICs [4,5]
is based on the concept of founded and justified repairs. Informally, justified re-
pairs are the repairs that are the most strongly grounded in the given database
and the given set of AICs, that is, those resulting strictly from combinations
of the preferences expressed by the database designer for each of the integrity
constraints and from the principle of minimal change. The operational semantics
for AICs [7] allows direct computation of justified repairs by means of intuitive
tree algorithms. Interaction between different AICs in a set that must be col-
lectively satisfied makes the problem of repairing a database highly non-trivial,
however, and in the worst case deciding whether a database can be repaired
is NP-complete or Σ2

P -complete on the number of AICs [5], depending on the
criteria used to choose possible repairs. For this reason, it is important to be
able to control the number of AICs being considered simultaneously.

In this paper we first present parallelization results that allow a set of AICs
to be split in smaller, independent sets such that repairs for each smaller set
can be computed independently and the results straightforwardly combined into
a repair for the original set. Afterwards, we introduce a hierarchization mech-
anism on AICs that allows repairs to be computed progressively, starting with
a small set of AICs and extending this set while simultaneously extending the
computed repair. With these techniques, it is possible to speed up the problem
of finding repairs significantly; and, although they do not help in the worst-case
scenario, the typical structure of real-life databases indicates that parallelization
and hierarchization should be widely applicable.

1.1 Related Work

When a database needs to be changed, it is necessary to find a way to make
the relevant modifications while maintaining the consistency of the data. This
problem, which has been the focus of intensive research for over thirty years, was
extensively discussed in [1], where three main change operations were identified:
insertion of new facts, deletion of existing facts, and modification of information,
and the concept of “good” update was characterized.

There are two distinct scenarios where database change is required, leading to
the distinction between update and revision [8,11]. An update occurs whenever
the world changes and the knowledge bases needs to be changed to reflect this
fact; a revision happens when new knowledge is obtained about a world that did
not change. This distinction is especially relevant in deductive databases and
open-world knowledge bases, where the known information is not assumed to be
complete.

In spite of their differences, there are obvious similarities between updates and
revisions, and in both cases one has to consider the problems that arise when the
intended semantics of the database is taken into account. Typically, the changes
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that have to be made conflict with the integrity constraints associated with the
database, and the database must be repaired in order to regain consistency.
The ways in which this can be done are many, and several proposals have been
around for years. One possibility is to read integrity constraints as rules that sug-
gest possible actions to repair inconsistencies [1]; another is to express database
dependencies through logic programming, namely in the setting of deductive
databases [12,14,15]. A more algorithmic approach uses event-condition-action
rules [16,17], where actions are triggered by specific events, and for which rule
processing algorithms have been proposed and a procedural semantics has been
defined.

Several algorithms for computing repairs of inconsistent databases have been
proposed and studied throughout the years, focusing on the different ways in-
tegrity constraints are specified and on the different types of databases under
consideration [10,12,14,15]. This multitude of approaches is not an accident: de-
ciding whether an inconsistent database can be repaired is typically a Π2

p - or
co-Σ2

p- complete problem, and it has been observed [8] that there is no reason
to believe in the existence of general-purpose algorithms for this problem, but
one should rather focus on developing more specific algorithms for particular
interesting cases.

Regardless of the approach taken, when an inconsistent database can be re-
paired there are typically several sets of update actions that achieve this goal,
leading to different revised consistent databases. Restricting the set of database
repairs to those considered most adequate is therefore an important task. Among
the criteria that have been proposed to obtain this restriction are minimality of
change [6,8,18] – one should change as little as possible – and the common sense
law of inertia [15] – one should only change something if there is a reason for it –,
but these are not enough to narrow down the set of possible repairs sufficiently.
Ultimately, it is usually assumed that some human interaction will be required
to choose the “best” possible repair [16].

Because of the intrinsic complexity involved in the computation of repairs,
techniques to split a problem in several smaller problems are of particular inter-
est. As far as we know, this problem has received little consideration over the
years. There is a reference to semantic independency in [14] that is not explored
further, and syntactic precedence is used in that same paper in order to compute
models – but within a scenario that is far more powerful than that of active in-
tegrity constraints. More recently, syntactic precedence between constraints was
also discussed with the explicit goal of making the search for repairs more effi-
cient [13], but the authors did not allow for cyclic dependencies. The results we
prove are therefore a significant extension of previous work, and we believe they
can be easily extended to different formalisms of integrity constraints.

2 Background

Active integrity constraints were originally introduced in [9] as a special type of
integrity constraints, specifying not only the consistency requirements imposed
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upon a database, but also actions that can be taken to correct the database
when such requirements are not met.

Within this framework, a database is a subset of a finite set of propositional
atoms At. An active integrity constraint (AIC) is a rule of the form

L1, . . . , Ln ⊃ α1 | . . . | αm

where L1, . . . , Ln are literals in the language generated by At; α1, . . . , αm are
update actions of the form +a or −a, where a is an atom in the same language;
and every update action must contradict some literal, i.e. if +a (resp. −a) occurs
among the αi, then not a (resp. a) must occur among the Li. The set {L1, . . . , Ln}
is the body of the rule and {α1, . . . , αm} is its head.

The close connection between literals and actions is made precise by means of
two operators. The atom underlying an action α is lit(α), defined by lit(+a) = a
and lit(−a) = not a, whereas the update action corresponding to L is ua(L), de-
fined by ua(a) = +a and ua(not a) = −a. The dual of a literal L, LD, is defined as
usual by aD = not a and (not a)D = a. Using this notation, the requirement that
valid AICs must satisfy can be stated as {lit(α1), . . . , lit(αm)}D ⊆ {L1, . . . , Ln}.

Being a set of propositional atoms, any database I induces a propositional
interpretation of literals. We say that I entails literal L, I |= L, if L is a and
a ∈ I, or if L is not a and a �∈ I. Given an AIC r of the form L1, . . . , Ln ⊃
α1, . . . , αm, we say that I |= r if I �|= Li for some i; otherwise, r is said to be
applicable in I. Finally, if η is a set of AICs, then I |= η iff I |= r for every
r ∈ η.

The operational nature of rules is given by the notion of updating a database
by a set of update actions, which captures the intuive idea conveyed above. The
result of updating I with a set of update actions U is I ◦ U , defined as

I ◦ U = (I ∪ {a | +a ∈ U}) \ {a | −a ∈ U} .
In order for this definition to make sense, U must not contain +a and −a for
the same atom a. A set of update actions satisfying this requirement is said to
be consistent.

Given a set of AICs η and a database I, a set of update actions U such
that I ◦ U |= η achieves the task of making I consistent w.r.t. η. In general,
for any given database that is inconsistent w.r.t. η there will be either none or
several such U . In order to compare different ways of repairing I, Caroprese and
Truszczyński [5] studied different semantics for AICs.

Minimality of change is commonly accepted as a desirable property [6,18].
This motivates the following notion: given a database I and a set of AICs η,
a consistent set of update actions U such that (i) every action in U changes I
and (ii) I ◦ U |= η is called a weak repair for 〈I, η〉; a repair for 〈I, η〉 is a weak
repair for 〈I, η〉 that is minimal w.r.t. inclusion (so it contains no proper subset
that is also a weak repair). Condition (i) states that weak repairs only include
actions that change the database, and may be formally stated as ({+a | a ∈ I}∪
{−a | a ∈ At \ I}) ∩ U = ∅, or equivalently as I ◦ α �= I for every α ∈ U .
Condition (ii) simply states that weak repairs make the database consistent
w.r.t. η.
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None of these conditions takes into account the operational nature of AICs,
however, since they ignore the actions in the heads of the rules in η. For this
purpose, one needs to consider the more sophisticated notion of founded (weak)
repairs [5]. The intuition behind these is that they should contain only actions
that are motivated (founded) by the application of some rule. An update action
α is founded1 w.r.t. 〈I, η〉 and a set of update actions U if there is a rule r ∈ η
such that α ∈ head (r) and I ◦ U |= L for every literal L ∈ body (r) \ {lit(α)D}.
Quoting [5], “if U is to enforce r, then it must contain α” – if α is removed from
U , then all literals in the body of r are true and the rule is violated. A set of
update actions U is founded w.r.t 〈I, η〉 if every action in U is founded w.r.t.
〈I, η〉 and U . A set of update actions U is a founded (weak) repair for 〈I, η〉 if
(i) U is a weak repair for 〈I, η〉 and (ii) U is founded w.r.t. 〈I, η〉.

It is important to stress that founded repairs are minimal weak repairs that
are founded. Indeed, there are founded weak repairs that do not contain any
founded repair as subset (see [5] for an example). Also, being founded does not
imply being a weak repair, so these two tests must be performed independently.

Founded repairs, however, sometimes exhibit unexpected properties, such as
circularity of support [5] – e.g. they contain two actions α and β such that α
is founded by means of a rule r whose body only holds because of β, and β is
founded by means of a rule r′ whose body only holds because of α –, and it is
therefore interesting to consider a more complex type of repairs: justified repairs.
In order to define these, we need some auxiliary notions. The set of non-updatable
literals of a rule r is defined as nup(r) = body (r) \ (lit(head (r)))D, were lit is
extended to sets in the obvious way. A set of update actions U is closed for rule
r if nup(r) ⊆ lit(U) implies head (r) ∩ U �= ∅, and U is closed for η if U is closed
for every rule in η.

An update action +a (resp. (−a)) is a no-effect action w.r.t. I and J if
a ∈ I ∩J (resp. a �∈ (I ∪J )) – in other words, both I and J are unaffected by
the action. The set of all no-effect actions w.r.t. I and J is denoted by ne(I,J ).
Given a database I and a set of AICs η, a consistent set of update actions U is
a justified action set for 〈I, η〉 if U is a minimal set of update actions containing
ne (I, I ◦ U) and closed for η. In that case, the set U \ ne (I, I ◦ U) is a justified
weak repair for 〈I, η〉. Being closed for η implies being a weak repair for 〈I, η〉,
so this terminology is consistent with the previous usage of the latter term.

In spite of the minimality requirement in the definition of justified weak repair,
there are justified weak repairs that contain a justified repair as a proper subset;
this is because the minimality involved in this definition is within a different
universe. All justified weak repairs are founded, but not conversely: indeed, these
repairs successfully avoid circularity of support.

We will use the following alternative characterization of justified weak repair:
a weak repair U for 〈I, η〉 is justified if (i) U ∩ ne (I, I ◦ U) = ∅ and (ii) U ∪
ne (I, I ◦ U) is a justified action set. Indeed, takingW = U ∪ne (I, I ◦ U), it can
easily be checked that ne (I, I ◦W) = ne (I, I ◦ U): the only differences between

1 This equivalent characterization of founded action, which can be found in [7], is
slightly different from that in [5], and simpler to use in practice.
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I and I ◦ W must originate from U by definition of ne (I, I ◦ U). Therefore
W \ ne (I, I ◦W) = U .

The major problem with computing repairs for inconsistent databases lies in
the complexity of deciding whether such repairs exist. Given I and η, the problem
of deciding whether there exists a weak repair, a repair or a founded weak repair
for 〈I, η〉 is NP-complete (on the size of η), whereas deciding whether there is a
founded repair, a justified weak repair or a justified repair for η is Σ2

P -complete
(again on the size of η).2 In the special case where all AICs are normalized –
they have only one action in their head – the last two problems also become NP-
complete. Due to these ultimately bad complexity bounds, techniques to lower
the size of the problem can be extremely useful in practice. The goal of this
paper is to discuss how a set of AICs η can be divided into smaller sets such
that the computation of (simple, founded, justified) repairs can be computed for
each of those sets and the results combined in polynomial time.

3 Independent AICs

In this section, we introduce a notion of independence between active integrity
constraints. The goal is the following: given a set of AICs η, to partition it in
distinct independent sets η1, . . . , ηn such that the search for repairs for a database
I and η can be parallelized among the ηi. We define independent sets of AICs
in such a way that (simple, founded, justified) repairs for the different sets can
be combined into a (simple, founded, justified) repair for 〈I, η〉.

The basic concept is that of independent AICs. Two AICs are independent if
they do not share any atoms between their literals, so that applicability of one
does not affect applicability of the other.

Definition 1.

1. The atom underlying a literal L is |L|, defined as |a| = |not a| = a.
2. Let r1 and r2 be two AICs, where r1 is L1, . . . , Ln ⊃ α1, . . . , αp and r2 is

M1, . . . ,Mm ⊃ β1, . . . , βq. Then r1 and r2 are independent, r1 |= r2, if
{|L1|, . . . , |Ln|} ∩ {|M1|, . . . , |Mm|} = ∅.

3. Let η1 and η2 be sets of AICs. Then η1 and η2 are independent, η1 |= η2, if
r |= s whenever r ∈ η1 and s ∈ η2.

Two comments are in place regarding this definition. First, the notion of
independence does not take into account the actions in the rules (the “active”
part of the AICs); this aspect will be dealt with in Section 5. Second, this
concept only depends on the active integrity constraints themselves, and not on
the underlying database. This issue has positive practical implications, as we
will see later.

This notion of independence captures the spirit of parallelization, as the next
lemmas state. Throughout the remainder of this section, let I be a database, η1,
η2 be independent sets of AICs and η = η1 ∪ η2.
2 The size of I does not affect the complexity bounds for these problems [5].
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Lemma 1. Let U1 and U2 be sets of update actions such that every action in Ui
corresponds to a literal (or its dual) in a rule in ηi,

3 and take U = U1 ∪ U2. For
every literal L such that L ∈ body (r) with r ∈ ηi, I ◦ U |= L iff I ◦ Ui |= L. In
particular, for every r ∈ ηi, I ◦ U |= r iff I ◦ Ui |= r.

Proof. Let L ∈ body (r) for some r ∈ η1. If α ∈ U2, then |lit(α)| �= |L| because
η1 |= η2, whence I ◦ U |= L iff I ◦ U1 |= L (note that I ◦ U = (I ◦ U1) ◦ U2).
The result for rules is a straightforward consequence. The argument for U2 is
similar. ��

Lemma 2. Let U1 and U2 be weak repairs for 〈I, η1〉 and 〈I, η2〉, respectively,
such that the actions in Ui are all duals of literals in the body of some rule in
ηi. Then U = U1 ∪ U2 is a weak repair for 〈I, η〉.

Proof. We first show that U is a consistent set of actions containing only essential
actions. For consistency, note that the set of atoms underlying the actions in U1 is
disjoint from that of the atoms underlying the atoms in U2, from the hypothesis
and the fact that η1 |= η2; hence, if +α and −α were both in U = U1 ∪ U2
for some a, this would mean that +α,−α ∈ Ui for some i, whence Ui would be
inconsistent. Furthermore, if α ∈ Ui then α must change the state of I (since Ui
is a weak repair for 〈I, ηi〉), so U consists only of essential update actions.

Finally, we show that U is a weak repair. Without loss of generality, let r ∈ η1.
Then I ◦U1 |= r, since U1 is a weak repair for 〈I, η1〉, and by Lemma 1 I ◦U |= r.

��

The hypothesis that the actions in each Ui are all duals of literals in the body
of some rule in ηi is essential: if it were not required, then U1 could “break” sat-
isfaction of some rule in η2 or reciprocally, or there might be inconsistencies from
joining U1 and U2. Although this hypothesis could be weakened, it is actually
a (very) reasonable assumption: no reasonable algorithm for computing weak
repairs should include actions that do not affect the semantics of the integrity
constraints that should hold, since this verification can be done very efficiently.

If U1 and U2 are repairs, we get the following stronger result.

Lemma 3. If U1 and U2 are repairs for 〈I, η1〉 and 〈I, η2〉, respectively, then
U = U1 ∪ U2 is a repair for 〈I, η〉.

Proof. By Lemma 2, U is a weak repair for 〈I, η〉. For any U ′ � U , define
U ′
i = U ′ ∩ Ui for i = 1, 2. Note that one of the inclusions U ′

i ⊆ Ui must be strict;
without loss of generality, assume that U ′

1 � U1. Since U1 is a repair, this means
that U ′

1 cannot be a weak repair, hence there is a rule r ∈ η1 such that U ′
1 �|= r.

By Lemma 1 U ′
1∪U ′

2 �|= r, hence U ′ = U ′
1∪U ′

2 cannot be a weak repair for 〈I, η〉.
Therefore U is a repair for 〈I, η〉. ��

The converse result also holds: if we split the actions in a weak repair U
according to whether they affect rules in η1 or η2, we get weak repairs for those
sets of AICs.

3 Formally, {|lit(α)| | α ∈ Ui} ⊆ {|L| | ∃r ∈ ηi.L ∈ body (r)}.
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Lemma 4. Let U be a weak repair for 〈I, η〉. Then

Ui = {α ∈ U | ∃r ∈ ηi.lit(α)
D ∈ body (r)}

are weak repairs for 〈I, ηi〉. Furthermore, U = U1 ∪U2 if the actions in U are all
duals of literals in the body of some rule in η.

Proof. Assume that U is a weak repair for 〈I, η〉 and let Ui be as stated. Since
U is a weak repair for 〈I, η〉, I ◦ U |= r for every rule r ∈ ηi. By Lemma 1,
I ◦ Ui |= r. Therefore Ui is a weak repair for 〈I, ηi〉.

If the actions in U are all duals of literals in the body of some rule in η, then
they occur in the body of a rule in η1 or η2, so they will all occur either in U1
or U2, whence U = U1 ∪ U2. ��

The stated equality can be made to hold in the general case by adding the actions
that do not affect any rule to either U1 or U2; however, this is not an interesting
situation, and we will not consider it any further.

If U is minimal, then the same result can be made stronger.

Lemma 5. If U is a repair for 〈I, η〉, then U1 and U2 as defined above are
repairs for 〈I, η1〉 and 〈I, η2〉, respectively, and furthermore U = U1 ∪ U2.

Proof. By Lemma 4, each Ui is a weak repair for 〈I, ηi〉. Suppose that U ′
1 � U1

is also a weak repair for 〈I, η1〉. By Lemma 1, U ′ = U ′
1 ∪ U2 is a weak repair for

〈I, η〉 with U ′ � U , which is absurd. Therefore U ′
1 is not a weak repair, hence U1

is a repair. The case for U2 is similar. Finally, U cannot contain actions that are
not duals of literals in the body of rules in η, since these can always be removed
without affecting the property of being a weak repair; therefore U1∪U2 = U . ��

These results also hold if we consider founded or justified (weak) repairs.

Lemma 6. Let U1 and U2 be founded w.r.t. 〈I, η1〉 and 〈I, η2〉, respectively.
Then U = U1 ∪ U2 is founded w.r.t. 〈I, η〉.

Proof. In order for U to be founded w.r.t. 〈I, η〉, every action in U must be
founded w.r.t. 〈I, η〉 and U . Let α ∈ U and assume that α ∈ U1 (the case when
α ∈ U2 is similar).

Since U1 is founded w.r.t. 〈I, η1〉, there is a rule r ∈ η1 such that α ∈ head (r)
and I ◦ U1 |= L for every L ∈ body (r) \ {lit(α)D}. By Lemma 1, I ◦ U |= L for
every such L. Since η1 ⊆ η, this means that α is founded w.r.t. 〈I, η〉 and U . ��

Corollary 1. If U1 and U2 are founded (weak) repairs, then U is also a founded
(weak) repair.

Proof. Consequence of Lemmas 2, 3 and 6. ��

Lemma 7. Let U be founded w.r.t. for 〈I, η〉. Then U1 and U2 as defined in
Lemma 4 are such that U = U1 ∪ U2 and each Ui is founded w.r.t. 〈I, ηi〉.
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Proof. Let α ∈ U1; since U is founded w.r.t. 〈I, η〉, there is a rule r ∈ η such
that α ∈ head (r) and I ◦ U |= L for every L ∈ body (r) \ {lit(α)D}. But if
α ∈ head (r), then necessarily r ∈ η1; and in that case I ◦ U1 |= L for every
L ∈ body (r) \ {lit(α)D} by Lemma 1. Therefore α is founded w.r.t. 〈I, η1〉 and
U1, whence U1 is founded w.r.t. 〈I, η1〉. The case when α ∈ U2 is similar.

By definition of founded set, all actions in U must necessarily be in either U1
or U2, so U = U1 ∪ U2. ��

Corollary 2. If U is a (weak) founded repair, then U1 and U2 are also (weak)
founded repairs.

Proof. Consequence of Lemmas 4, 5 and 7. ��

Lemma 8. Let U1 and U2 be justified (weak) repairs for 〈I, η1〉 and 〈I, η2〉,
respectively. Then U = U1 ∪ U2 is a justified (weak) repair for 〈I, η〉.

Proof. We begin by making some observations that will be used recurrently
throughout the proof.

(a) For i = 1, 2, ne (I, I ◦ U) ⊆ ne (I, I ◦ Ui), since Ui ⊆ U .
(b) For i = 1, 2, ne (I, I ◦ Ui) ⊆ (ne (I, I ◦ U)∪U3−i): U can only change literals

that changed either by U1 or by U2. In particular, since η1 |= η2, if nup(r) ⊆
lit(ne (I, I ◦ Ui)) for some r ∈ ηi, then L ∈ lit(ne (I, I ◦ U)); and if α ∈
head (r) for some r ∈ ηi and α ∈ ne (I, I ◦ Ui), then α ∈ ne (I, I ◦ U).

(c) For i = 1, 2, if L ∈ body (r) with r ∈ ηi and L ∈ lit(U), then L ∈ lit(Ui):
since every justified weak repair is founded [5], Ui only contains actions in
the heads of rules of ηi, and the thesis follows from η1 |= η2.

We first show that U ∪ ne (I, I ◦ U) is closed for η. Let r ∈ η1; the case when
r ∈ η2 is similar. Suppose nup(r) ⊆ lit (U ∪ ne (I, I ◦ U)), and let L ∈ nup(r).
If L ∈ lit(U), then L ∈ lit(U1) by (c), hence nup(r) ⊆ lit (U1 ∪ ne (I, I ◦ U)),
whence nup(r) ⊆ lit(U1 ∪ ne (I, I ◦ U1)) by (a). But U1 ∪ ne (I, I ◦ U1) is closed
for η1, so head (r)∩ (U1 ∪ ne (I, I ◦ U1)) �= ∅. By U1 ⊆ U and (b), also head (r)∩
(U ∪ ne (I, I ◦ U)) �= ∅.

To check minimality, suppose that U ′ � U is such that U ′ ∪ ne (I, I ◦ U) is
closed for η and take U ′

i = U ′ ∩ Ui for i = 1, 2. Note that one of the inclusions
U ′
i ⊆ Ui must be strict. Without loss of generality, assume this is the case when

i = 1, and take r ∈ η1. If nup(r) ⊆ lit (U ′
1 ∪ ne (I, I ◦ U1)), then nup(r) ⊆

lit (U ′ ∪ ne (I, I ◦ U)), consequence of U ′
1 ⊆ U ′ and (b). Since U ′ ∪ ne (I, I ◦ U)

is closed for η and η1 ⊆ η, it follows that head (r) ∩ (U ′ ∪ ne (I, I ◦ U)) �= ∅. By
definition of U1 and (a), it follows that head (r)∩ (U ′

1 ∪ ne (I, I ◦ U1)) �= ∅. Then
U ′
1 ∪ ne (I, I ◦ U1) is closed for η1, contradicting minimality of U1.
Hence U is a justified weak repair for 〈I, η〉. By Lemma 3, if U1 and U2 are

both justified repairs for 〈I, η1〉 and 〈I, η2〉, respectively, then U is also a justified
repair for 〈I, η〉. ��

Lemma 9. Let U be a justified (weak) repair for 〈I, η〉. Then U1 and U2 as
defined in Lemma 4 are such that U = U1 ∪ U2 and each Ui is a justified (weak)
repair for 〈I, ηi〉.
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Proof. Again note that properties (a), (b) and (c) from the previous proof
hold. We begin by showing that U1 ∪ ne (I, I ◦ U1) is closed under η1. Take
r ∈ η1 and suppose that nup(r) ⊆ lit (U1 ∪ ne (I, I ◦ U1)). Then nup(r) ⊆ lit(U ∪
ne (I, I ◦ U)) by U1 ⊆ U and (b). Since U ∪ ne (I, I ◦ U) is closed for η, it fol-
lows that head (r) ∩ (U ∪ ne (I, I ◦ U)) �= ∅. By construction of U1 and (a), we
conclude that head (r) ∩ (U1 ∪ ne (I, I ◦ U1)) �= ∅. The case for U2 is similar.

To check minimality, suppose that U ′
1 � U1 is such that U ′

1 ∪ ne (I, I ◦ U1) is
closed for η1 and take U ′ = U ′

1 ∪ U2. Let r ∈ η and assume nup(r) ⊆ lit(U ′ ∪
ne (I, I ◦ U)); there are two possible cases.

– Suppose r ∈ η1 and let L ∈ nup(r). Note that L ∈ lit(U2) is impossible, since
η1 |= η2. Therefore nup(r) ⊆ lit (U ′

1 ∪ ne (I, I ◦ U)), whence by (a) nup(r) ⊆
lit (U ′

1 ∪ ne (I, I ◦ U1)), and therefore head (r) ∩ (U ′
1 ∪ ne (I, I ◦ U1)) �= ∅.

From U ′
1 ⊆ U ′ and (b), also head (r) ∩ (U ′ ∪ ne (I, I ◦ U)) �= ∅.

– Suppose r ∈ η2 and let L ∈ nup(r). Since L ∈ lit(U ′
1) is impossible, it follows

that L ∈ U2 ∪ ne (I, I ◦ U), and since U2 ⊆ U we conclude that nup(r) ⊆
lit(U∪ne (I, I ◦ U)). Since U∪ne (I, I ◦ U) is closed for η (which contains η2),
it follows that head (r) ∩ (U ∪ ne (I, I ◦ U)) �= ∅, and since head (r) does not
contain actions in U1 necessarily head (r) ∩ (U2 ∪ ne (I, I ◦ U)) �= ∅, whence
head (r) ∩ (U ′ ∪ ne (I, I ◦ U)) �= ∅.

In either case, from nup(r) ⊆ (U ′ ∪ ne (I, I ◦ U)) one concludes that head (r) ∩
(U ′ ∪ ne (I, I ◦ U)) �= ∅, whence U ′ ∪ ne (I, I ◦ U) is closed for η, contradicting
minimality of U . This is absurd, so U1 is a justified weak repair. Again the case
for U2 is similar.

Since justified weak repairs are founded, Lemma 7 guarantees that U = U1∪U2.
Furthermore, if U is a justified repair for 〈I, η〉, then each Ui is a justified repair
for 〈I, ηi〉 by Lemma 5. ��

The practical significance of the results in this section is a parallelization
algorithm: if η = η1∪η2 with η1 |= η2, then all (simple, founded, justified) repairs
for 〈I, η〉 can be expressed as unions of (simple, founded, justified) repairs for
〈I, η1〉 and 〈I, η2〉 by Lemmas 5, 7 and 9, so one can search for these repairs
instead and combine them in at the end; Lemmas 3, 6 and 8 guarantee that
no spurious results are obtained. The next section expands on these ideas, and
discusses how η can be adequately split.

4 Finding Independent Sets of AICs

The results in the previous section show that splitting a set of AICs η into two
independent sets η1 and η2 allows one to parallelize the search for repairs of
a database I, by searching independently for repairs for 〈I, η1〉 and 〈I, η2〉. In
this section we address a complementary issue: how can one find these sets? We
begin by formulating the results in the previous section in a more general way.

Definition 2. A partition of a set of AICs η is a set η = {η1, . . . , ηn} such that
η = ∪n

i=1ηi and ηi |= ηj for i �= j.
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Theorem 1. Let η be a partition of η.

1. If U is a simple/founded/justified (weak) repair for 〈I, η〉, then there exist
sets U1, . . . ,Un with U = ∪n

i=1Ui such that Ui is a simple/founded/justified
(weak) repair for 〈I, ηi〉.

2. If Ui is a simple/founded/justified (weak) repair for 〈I, ηi〉 for i = 1, . . . , n
and U = ∪n

i=1Ui, then U is a simple/founded/justified (weak) repair for
〈I, η〉.

Proof. By induction on n. For n = 1, the results are trivial. Assume that the
result is true for n; applying the induction hypothesis to η1, . . . , ηn, on the one
hand, and the adequate lemma from Section 3 to η′ =

⋃n
i=1 and ηn+1, yields the

result for η1, . . . , ηn+1, since η
′ |= ηn+1. ��

To find a partition of η (actually, the best partition of η), we will define an
auxiliary relation on AICs. Two AICs r1 and r2 are dependent, r1 � |= r2, if there
exist literals L1 ∈ body (r1) and L2 ∈ body (r2) such that |L1| = |L2|.

Lemma 10. Let η be a partition of η. Then ηi is closed under � |= for every i,
i.e. for every rule r, r′ ∈ η, if r ∈ ηi and r � |= r′, then r′ ∈ ηi.

Proof. Let r be a rule in ηi and let r′ ∈ η be such that r � |= r′. Since η is a
partition of η, r′ ∈ ηk for some k. But i �= k would contradict ηi |= ηk (since r
and r′ are not independent), hence i = k. Therefore ηi is closed under � |= . ��

This relation is reflexive and symmetric, so its transitive closure � |= + is an
equivalence relation. This equivalence relation defines the best partition of η.

Theorem 2. The quotient set η/
 |=+ is a partition of η. Furthermore, for any

other partition η′ of η, if η′i ∈ η′, there exists ηj ∈ η/
 |=+ such that ηj ⊆ η′i.

Proof. Let η/
 |=+ = {η1, . . . , ηn}. By definition of quotient set,
⋃n

i=1 ηi = η. By

definition of � |= , ηi |= ηj . Given η′i as in the statement of the theorem and
choosing r ∈ η′i and observing that η′i is closed under � |= (Lemma 10) and [r] is
the minimal set containing r and closed under � |= , it follows that [r] ⊆ η′i. ��

Furthermore, η/
 |=+ can be computed efficiently and in an incremental way.

Theorem 3. Let η be a set of AICs such that every rule in η contains at most
k literals in its body. Then η/
 |=+ can be computed in O (k × |η|).

Proof. Consider the undirected graph whose nodes are both the rules in η and
the atoms occurring in those rules, and where there is an edge between an atom
and a rule if that atom occurs in that rule. This graph has at most k × |η|
nodes and can be constructed in O (k × |η|) time; it is a well-known fact that its
connected components can again be computed in O (k × |η|) time, and the rules
in each component coincide precisely with the equivalence classes in η/
 |=+ . ��
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Three important remarks are due. First, k typically does not grow with η and
is usually small, so essentially this algorithm is linear in the number of AICs.
Also, the algorithm is independent of the underlying database, which is useful
since the database typically changes more often than η. Finally, if one wishes to
add new rules to η one can reuse the existing partition for η as a starting point,
which makes the algorithm incremental.

5 Stratified Active Integrity Constraints

In this section, we show how to define a finer relation among active integrity
constraints that will allow an incremental construction of these repairs that can
again substantially reduce the time required to find them.

Throughout this section we assume a fixed set of AICs η, so all definitions are
within the universe of this set.

Definition 3. Let r1 and r2 be active integrity constraints. Then r1 ≺ r2 (r1
precedes r2) if {|lit(α)| | α ∈ head (r1)} ∩ {|L| | L ∈ body (r2)} �= ∅.
Intuitively, r1 precedes r2 if ensuring r1 may affect applicability of r2. In partic-
ular, r1 ≺ r2 implies r1 � |= r2.

By definition of AIC, ≺ is a reflexive relation. Let � be its transitive closure
(within η) and ≈ be the equivalence relation induced by �, i.e. r1 ≈ r2 iff
r1 � r2 and r2 � r1. It is a well-known result that 〈η/≈,�〉 is a partial order,
where [r1] � [r2] iff r1 � r2.

Definition 4. Let η1, η2 ⊆ η be closed under ≈. Then η1 ≺ η2 (η1 precedes
η2) if (i) some rule in η1 precedes some other rule in η2, but (ii) no rule in η2
precedes a rule in η1.

4

In particular, if η1 ≺ η2 then η1 and η2 must be disjoint. Note that, if η1 and η2
are distinct minimal sets closed under ≈ (i.e. elements of η/ ≈), then η1 � η2 iff
η1 ≺ η2.

This stratification allows us to search for weak repairs as follows: if η1 ≺ η2,
then we can look for weak repairs for η1 ∪η2 by first looking for weak repairs for
η1 and then extending these to η1 ∪ η2.
Lemma 11. Let η1, η2 ⊆ η with η1 ≺ η2, I be a database and U be a set of
update actions such that all actions in U occur in the head of some rule in
η1 ∪ η2. Let Ui be the restriction of U to the actions in the heads of rules in ηi.
If U is a weak repair for 〈I, η1 ∪ η2〉, then U1 and U2 are weak repairs for 〈I, η1〉
and 〈I ◦ U1, η2〉, respectively.
Proof. Since η1 ≺ η2, (a) actions in the head of a rule in η2 cannot change literals
in the body of rules in η1 and in particular (b) U1 and U2 are disjoint.

By (a), I ◦ U1 |= r iff I ◦ U |= r for every r ∈ η1, so U1 is a weak repair for
〈I, η1〉. By (b), I ◦ U = I ◦ (U1 ∪ U2) = (I ◦ U1) ◦ U2, hence U2 is a weak repair
for 〈I ◦ U1, η2〉. ��
4 Formally: η1 ≺ η2 if (i) r1 ≺ r2 for some r1 ∈ η1 and r2 ∈ η2, but (ii) r2 �≺ r1 for
every r1 ∈ η1 and r2 ∈ η2.
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Lemma 12. In the conditions of Lemma 11, if U is founded w.r.t. 〈I, η1 ∪ η2〉,
then U1 and U2 are founded w.r.t. 〈I, η1〉 and 〈I ◦ U1, η2〉, respectively.

Proof. (i) Let α ∈ U1. Since U is founded w.r.t. 〈I, η1 ∪ η2〉, there is a rule
r ∈ η1∪η2 such that α ∈ head (r) and I◦U |= L for every L ∈ body (r)\{lit(α)D}.
Since η1 ≺ η2, necessarily r ∈ η1. By (b) from the previous proof, I ◦U1 |= L for
every L ∈ body (r) \ {lit(α)D}, whence α is founded w.r.t. 〈I, η1〉 and U1. Thus
U1 is founded w.r.t. 〈I, η1〉.

(ii) Let α ∈ U2. Again there must be a rule r ∈ η such that α ∈ head (r) and
I ◦ U |= L for every L ∈ body (r) \ {lit(α)D}, and as before necessarily r ∈ η2.
Since I ◦U = (I ◦U1) ◦U2, it follows that α is founded w.r.t. 〈I ◦U1, η2〉 and U2,
hence U2 is founded w.r.t. 〈I ◦ U1, η2〉. ��

Corollary 3. If U is a founded weak repair for 〈I, η〉, then U1 and U2 are
founded weak repairs for 〈I, η1〉 and 〈I ◦ U1, η2〉, respectively.

Proof. Immediate consequence of Lemmas 11 and 12. ��

Lemma 13. In the conditions of Lemma 11, if U is a justified weak repair for
〈I, η1 ∪η2〉, then U1 and U2 are justified weak repairs for 〈I, η1〉 and 〈I ◦U1, η2〉,
respectively.

Proof. We first make some remarks that will be relevant throughout the proof.

(a) I ◦U1 |= L iff I ◦U |= L for every literal L ∈ body (r) with r ∈ η1, as argued
in the proof of Lemma 11.

(b) ne (I, I ◦ U) ⊆ ne (I, I ◦ U1), as in the proof of Lemma 8.
(c) ne (I, I ◦ U1) ⊆ ne (I, I ◦ U) ∪ U2, since actions in U2 may not affect literals

in the body of rules in η1 (this would contradict η1 ≺ η2). In particular, if
nup(r) ⊆ lit(ne (I, I ◦ U1)) for some r ∈ η1, then L ∈ lit(ne (I, I ◦ U)); and if
α ∈ head (r) for some r ∈ η1 and α ∈ ne (I, I ◦ U1), then α ∈ ne (I, I ◦ U).

(i) Let r ∈ η1 be such that nup(r) ⊆ lit (U1 ∪ ne (I, I ◦ U1)). From U1 ⊆
U and (c), one gets nup(r) ⊆ lit(U ∪ ne (I, I ◦ U)); since U is closed under η,
head (r) ∩ (U ∪ ne (I, I ◦ U)) �= ∅. By definition of U1 and (c), also head (r) ∩
(U1 ∪ ne (I, I ◦ U1)) �= ∅, whence U1 ∪ ne (I, I ◦ U1) is closed under η1.

For minimality, suppose that U ′
1 � U1 is such that U ′

1 ∪ ne (I, I ◦ U1) is closed
under η1 and take U ′ = U ′

1 ∪ U2. We show that U ′ ∪ ne (I, I ◦ U) is closed under
η. Assume nup(r) ⊆ lit(U ′ ∪ ne (I, I ◦ U)); there are two possible cases.

– r ∈ η1: since η1 ≺ η2, no literal in nup(r) can occur in lit(U2); there-
fore, from (b) it follows that nup(r) ⊆ lit (U ′

1 ∪ ne (I, I ◦ U1)), and thus
head (r) ∩ (U ′

1 ∪ ne (I, I ◦ U1)) �= ∅. From U ′
1 ⊆ U ′ and (c), also head (r) ∩

(U ′ ∪ ne (I, I ◦ U)) �= ∅.
– r ∈ η2: from (U ′

1 ∪ U2) ⊆ U , we conclude that nup(r) ⊆ lit(U ∪ ne (I, I ◦ U)),
hence head (r)∩ (U ∪ ne (I, I ◦ U)) �= ∅ because η2 ⊆ η and U is closed for η.
But head (r) cannot contain actions in U1, so head (r)∩ (U2∪ne (I, I ◦ U)) �=
∅, whence head (r) ∩ (U ′ ∪ ne (I, I ◦ U)) �= ∅.
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In either case, from nup(r) ⊆ (U ′ ∪ ne (I, I ◦ U)) one concludes that head (r) ∩
(U ′ ∪ ne (I, I ◦ U)) �= ∅, whence U ′ ∪ ne (I, I ◦ U) is closed for η, which contra-
dicts U being a justified weak repair for 〈I, η〉. This is absurd, therefore U1 is a
justified weak repair for 〈I, η1〉.

(ii) Denote by N the set ne (I ◦ U1, I ◦ U1 ◦ U2). To show that U2 is a justified
weak repair for 〈I ◦U1, η2〉, we need to show that U2∪N is closed for η2 and that
it is the minimal such set containing N . Note that (d) N = U1 ∪ ne (I, I ◦ U),
since I ◦ U1 is “between” I and I ◦ U (as U1 ⊆ U).

First we show that U2∪N is closed for η2. Let r ∈ η2 and assume that nup(r) ⊆
lit (U2 ∪ N ). By (d), nup(r) ⊆ lit (U2 ∪ U1 ∪ ne (I, I ◦ U)) = (U ∪ ne (I, I ◦ U)),
whence head (r)∩ (U ∪ne (I, I ◦ U)) �= ∅ because U ∪ne (I, I ◦ U) is closed under
η. By construction of U2 and (d), also head (r) ∩ (U2 ∪ N ), whence U2 ∪ N is
closed under η2.

Now let U ′
2 � U2 be such that U ′

2 ∪ N is closed for η2 and take U ′ = U1 ∪ U ′
2.

We show that U ′∪ne (I, I ◦ U) is closed under η. Let r ∈ η be such that nup(r) ⊆
lit(U ′ ∪ ne (I, I ◦ U)). Yet again, there are two cases to consider.

– r ∈ η1: since U ′ ⊆ U , also nup(r) ⊆ lit(U ∪ ne (I, I ◦ U)), whence head (r) ∩
(U ∪ne (I, I ◦ U)) �= ∅ because U ∪ne (I, I ◦ U) is closed for η. But actions in
head (r) may not occur in U2, hence head (r) ∩ (U ′ ∪ ne (I, I ◦ U)) �= ∅ since
(U \ U ′) ⊆ U2.

– r ∈ η2: by (d), U ′ ∪ ne (I, I ◦ U) = U1 ∪ U ′
2 ∪ ne (I, I ◦ U) = U ′

2 ∪N , whence
head (r) ∩ (U ′

2 ∪ N ) �= ∅ because U ′
2 ∪ N is closed for η2, which amounts to

saying that that head (r) ∩ (U ′ ∪ ne (I, I ◦ U)) �= ∅.

In either case, head (r) ∩ (U ′ ∪ ne (I, I ◦ U)) �= ∅, so U ′ ∪ ne (I, I ◦ U) is closed
under η, contradicting the fact that U is a justified weak repair for 〈I, η〉. There-
fore U2 is a justified weak repair for 〈I ◦ U1, η2〉. ��

Lemmas 11, 12 and 13 are analogue to Lemmas 4, 7 and 9, respectively.
Interestingly, the analogue of Lemma 5 does not hold in this setting: it may
happen that U is a repair, but U1 is a weak repair. The reason is that there may
be a repair for 〈I, η1〉 such that there is no (weak) repair for 〈I ◦ U1, η2〉.

Example 1. Let I = ∅ and consider the following active integrity constraints.

r1 :not a ⊃ +a r4 :a, not b, not c, d ⊃ −d
r2 :not b, c ⊃ +b r5 :a, not b, not c, not d ⊃ +d

r3 :b, not c ⊃ +c

Taking η1 = {r1, r2, r3} and η2 = {r4, r5}, one has η1 ≺ η2. Furthermore, {+a}
and {+a,+b,+c} are weak repairs for 〈I, η1〉, the first of which is a repair.
However, the only repair for 〈I, η1 ∪ η2〉 is {+a,+b,+c}, which is not the union
of {+a} with a repair for 〈I ◦ {+a}, η2〉.

However, if both steps succeed then we can combine their results as before.
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Lemma 14. Let η1, η2 ⊆ η with η1 ≺ η2, I be a database, and U1 and U2 be
sets of update actions such that all actions in Ui occur the head of some rule in
ηi. If U1 is a weak repair for 〈I, η1〉 and U2 is a weak repair for 〈I ◦U1, η2〉, then
U = U1 ∪ U2 is a weak repair for 〈I, η1 ∪ η2〉.

Proof. Since η1 ≺ η2, the hypothesis over U2 imply that (a) actions in U2 cannot
change literals in the body of rules in η1 and in particular (b) U1 and U2 are
disjoint.

Take r ∈ η1. Then I ◦ U1 |= r, whence I ◦ U |= r by (a).
Take r ∈ η2. Then (I ◦ U1) ◦ U2 |= r, and by (b) (I ◦ U1) ◦ U2 = I ◦ U .
Therefore U1 ◦ U2 is a weak repair for 〈I, η1 ∪ η2〉. ��

Lemma 15. In the conditions of Lemma 14, if U1 is a repair for 〈I, η1〉 and U2
is a repair for 〈I ◦ U1, η2〉, then U is a repair for 〈I, η1 ∪ η2〉.

Proof. By Lemma 14, U is a weak repair for 〈I, η1 ∪ η2〉. Suppose U is not a
repair; then there is U ′ � U such that U ′ is also a weak repair for 〈I, η1 ∪ η2〉.

Take U ′
1 = U ′ ∩ U1 and U ′

2 = U ′ ∩ U2; by Lemma 11, U ′
1 is a weak repair for

〈I, η1〉 and U ′
2 is a weak repair for 〈I ◦ U1, η2〉. But at least one of the inclusions

U ′
1 ⊆ U1 and U ′

2 ⊆ U2 must be strict, contradicting the hypothesis that U1 and
U2 are both repairs. Therefore U is a repair for 〈I, η1 ∪ η2〉. ��

In this setting, the condition that U1 and U2 be repairs is sufficient but not
necessary, as illustrated by the example above – unlike in Lemma 3 earlier.

Lemma 16. In the conditions of Lemma 14, if U1 is founded w.r.t. 〈I, η1〉 and
U2 is founded w.r.t. 〈I ◦ U1, η2〉, then U is founded w.r.t. 〈I, η1 ∪ η2〉.

Proof. Take α ∈ U1. Since U1 is founded w.r.t. 〈I, η1〉, there is a rule r ∈ η1
such that α ∈ head (r) and I ◦ U1 |= L for every L ∈ body (r) \ {lit(α)D}. By (b)
from the proof of Lemma 14, also I ◦ U |= L for every L ∈ body (r) \ {lit(α)D},
whence α is founded w.r.t. 〈I, η1 ∪ η2〉 and U .

Take α ∈ U2. Since U2 is founded w.r.t. 〈I ◦U1, η2〉, there is a rule r ∈ η2 such
that (I ◦U1)◦U2 |= L for every L ∈ body (r)\{lit(α)D}, and since (I ◦U1)◦U2 =
I ◦ U this implies that α is founded w.r.t. 〈I, η1 ∪ η2〉 and U .

Therefore U is founded w.r.t. 〈I, η1 ∪ η2〉. ��

As before, Lemmas 14, 15 and 16 can be combined in the following corollary.

Corollary 4. In the conditions of Lemma 14, if U1 is a founded (weak) repair
for 〈I, η1〉 and U2 is a founded (weak) repair for 〈I ◦U1, η2〉, then U is a founded
(weak) repair for 〈I, η1 ∪ η2〉.

Lemma 17. In the conditions of Lemma 14, if U1 is a justified weak repair for
〈I, η1〉 and U2 is a justified weak repair for 〈I ◦U1, η2〉, then U is a justified weak
repair for 〈I, η1 ∪ η2〉.

Proof. First observe that properties (a–d) of the proof of Lemma 13 all hold in
this context. Define N = ne (I ◦ U1, I ◦ U1 ◦ U2) as in that proof.

To see that U ∪ ne (I, I ◦ U) is closed for 〈I, η〉, let r ∈ η1 ∪ η2 be such that
nup(r) ⊆ lit(U ∪ ne (I, I ◦ U)). We need to consider two cases.
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– If r ∈ η1, then nup(r) ⊆ lit(U1∪ne (I, I ◦ U1)) by (a) and (b), and since U1∪
ne (I, I ◦ U1) closed for η1 this implies that head (r)∩(U1∪ne (I, I ◦ U1)) �= ∅,
whence also head (r) ∩ (U ∪ ne (I, I ◦ U)) �= ∅ by U1 ⊆ U and (c).

– If r ∈ η2, then by equality (d) we have U ∪ ne (I, I ◦ U) = U2 ∪ U1 ∪
ne (I, I ◦ U) = U2∪N ; then nup(r) ⊆ lit(U2∪N ), whence head (r)∩(U2∪N ) �=
∅ because U2 ∪ N is closed for η2, and the latter condition is precisely
head (r) ∩ (U ∪ ne (I, I ◦ U)) �= ∅.

In either case U ∪ ne (I, I ◦ U) is closed for r, whence U ∪ ne (I, I ◦ U) is closed
for η1 ∪ η2.

For minimality, let U ′ ⊆ U be such that U ′ ∪ ne (I, I ◦ U) is closed for η1 ∪ η2
and take U ′

i = U ′ ∩ Ui for i = 1, 2. We show that U ′
1 = U1 and U ′

2 = U2.

– Let r ∈ η1 be such that nup(r) ⊆ lit(U ′
1 ∪ ne (I, I ◦ U1)). Since U ′

1 ⊆ U ′,
from (c) and the fact that nup(r)∩ lit(U2) = ∅ (because η1 ≺ η2) we conclude
that nup(r) ⊆ lit(U ′∪ne (I, I ◦ U), whence head (r)∩ (U ′∪ne (I, I ◦ U)) �= ∅.
By (b) and the fact that head (r)∩U2 = ∅, also head (r)∩(U ′

1∪ne (I, I ◦ U1)) �=
∅. Therefore U ′

1 ∪ ne (I, I ◦ U1) contains ne (I, I ◦ U1) and is closed for η1;
since U1 ∪ ne (I, I ◦ U1) is the minimal set with this property and U1 ∩
ne (I, I ◦ U1) = ∅, it follows that U ′

1 = U1.
– Let r ∈ η2 be such that nup(r) ⊆ lit(U ′

2 ∪ N ). From (d) and the equality
U ′
1 = U1 established above, nup(r) ⊆ lit(U ′∪ne (I, I ◦ U)), whence head (r)∩

(U ′ ∪ ne (I, I ◦ U)) �= ∅. Again by (d) and U ′
1 = U1 this amounts to saying

that head (r) ∩ (U ′
2 ∪N ) �= ∅. Therefore U ′

2 ∪N contains N and is closed for
η2, whence as before necessarily U ′

2 = U2.

Therefore U ′ = U , hence the set U ∪ ne (I, I ◦ U) is the minimal set containing
ne (I, I ◦ U) and closed for η1 ∪ η2. Therefore U is a justified weak repair for
〈I, η1 ∪ η2〉. ��

Lemmas 11, 12 and 13 allow us to split the search for (weak) repairs into
smaller steps, while Lemmas 14, 15, 16 and 17 allow us to combine the results.
However, 〈η/≈,�〉 is in general not a total order. Therefore, to obtain (weak)
repairs for η, we need to be able to combine weak repairs of sets η1 and η2 that
are not related via ≺ (see example below).

Let η1, η2 be two such sets, and consider a weak repair U for 〈I, η1 ∪ η2〉.
By Lemma 11, restricting U to the actions in η1 ∩ η2 yields a weak repair U ′

for 〈I, η1 ∩ η2〉; furthermore, restricting U to the actions in (η1 ∪ η2) \ (η1 ∩ η2)
yields a weak repair for 〈I ◦ (η1 ∩ η2), (η1 ∪ η2) \ (η1 ∩ η2)〉. This allows us to
restrict ourselves, without loss of generality, to the analysis of the situation where
η1 ∩ η2 = ∅. Since in this case the application of rules in η1 does not affect the
semantics of rules in η2 and vice-versa, the proofs of Lemmas 2, 3, 6 and 8 can
be straightforwardly adapted5 to prove the following result.

5 Although these lemmas assume that η1 |= η2, the key argument is that applying
rules in U1 does not affect the semantics of rules in η2 and conversely, which still
remains true if η1 and η2 are closed under ≈ and neither η1 ≺ η2 nor η2 ≺ η1.
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Lemma 18. Let η1, η2 ⊆ η be closed under ≈ and such that η1 �≺ η2 and η2 �≺ η1.
Let U be a weak repair for 〈I, η1 ∪η2〉 such that U only consists of actions in the
heads of rules in η1 ∪ η2. Define Ui to be the restriction of U to the actions in
the heads of rules in ηi. Then:

1. each Ui is a weak repair for 〈I, ηi〉;
2. if U is a repair for 〈I, η1 ∪ η2〉, then Ui is a repair for 〈I, ηi〉;
3. if U is founded w.r.t. 〈I, η1 ∪ η2〉, then Ui is founded w.r.t. 〈I, ηi〉;
4. if U is a justified (weak) repair for 〈I, η1 ∪ η2〉, then Ui is a justified (weak)

repair for 〈I, ηi〉.

Example 2. To understand how these results can be applied, consider the fol-
lowing set of AICs η.

r1 : a, b ⊃ −a | −b r4 : a, not b, not e ⊃ +e

r2 : not a, c ⊃ +a r5 : d, e, not f ⊃ +f

r3 : b, c, d ⊃ −d

The precedence relation between these rules, omitting the reflexive edges, can
be summarized in the following diagram.

r5

r3

�������
r4

�������

r1

��

��

������������
r2��

��

The equivalence classes are η1 = {r1, r2}, η2 = {r3}, η3 = {r4} and η4 = {r5},
with (direct) precedence relation η1 � η2 � η4 and η1 � η3 � η4. In order to
find e.g. a founded weak repair for 〈I, η〉, we would:

1. find all founded weak repairs for 〈I, {r1, r2}〉;
2. extend each such U to founded weak repairs for 〈I◦U , {r3}〉 and 〈I◦U , {r4}〉,

using Lemma 16;

3. for each pair of weak repairs U2 for 〈I, {r1, r2, r3}〉 and U3 for 〈I, {r1, r2, r4}〉
such that U2 and U3 coincide on the actions from heads of rules in {r1, r2} (i.e.
−a, +a and −b), find weak repairs for 〈I ◦ (U2∪U3), {r5}〉, using Lemma 18.

In the last step, we are using the fact that any weak repair U for 〈I, η〉 must
contain a weak repair U ′ for 〈I, {r1, r2, r3, r4}〉; in turn, this can be split into
a weak repair U1 for 〈I, {r1, r2}〉 and weak repairs U ′

2 for 〈I ◦ U1, {r3}〉 and
U ′
3 for 〈I ◦ U1, {r4}〉; defining U2 = U ′

2 ∪ U1 and U3 = U ′
3 ∪ U1, we must have

U ′ = U1 ∪ U ′
2 ∪U ′

3 = U2 ∪U3. Lemma 12 guarantees that this algorithm finds all
founded weak repairs for 〈I, η〉.
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6 Conclusions

We introduced independence and precedence relations among active integrity
constraints that allow parallelization and sequentialization of the computation
of repairs for inconsistent databases. These two processes allow us to speed up
the process of finding these repairs: the advantages of parallelization are well-
known, whereas the sequentialization herein presented allows a complex problem
to be split in several small (and simpler) problems. Since size is a key issue in the
search for repairs of a database – this being an NP- or Σ2

P -comlete problem –
it is in general much more efficient to solve several small problems than a single
one as big as all of those taken together. Furthermore, the relations proposed are
well-behaved w.r.t. the different kinds of repairs considered in the denotational
semantics for AICs [5], so these results apply to all of them.

Using all the results presented in this paper, the strategy for computing repairs
for a set η of AICs can be summarized as follows.

1. Compute η/
 |=+
2. For each ηi ∈ η/
 |=+

(a) Compute ηi/ ≈
(b) Find (founded/justified) weak repairs for the minimal elements of ηi/ ≈
(c) For each non-minimal element ηj , find its (founded/justified) weak re-

pairs by (i) combining the weak repairs for its predecessors, (ii) applying
each result to I, with result I ′, and (iii) computing (founded/justified)
weak repairs for 〈I ′, ηj〉 (as in the example at the end of the last section).

This yields all (founded/justified) (weak) repairs for each element of η/
 |=+ .
3. Combine these (weak) repairs into a single (founded/justified) (weak) repair

for η.

The only catch regards the situation depicted in Example 1: if one is inter-
ested in computing repairs, then one may restrict the search in the outer cycle
to repairs. However, in step 2, whenever a repair cannot be extended when mov-
ing upwards in ηi/≈, one must also consider weak repairs including that repair,
since the end result may be a repair for the larger set. Also, if one does not
want founded or justified repairs, the precedence relation cannot be used. The
applicability of these techniques is summarized in Table 1.

In the worst case scenario, the set η/
 |=+ will be a singleton (so there will be

no parallelization) and likewise for η/≈ (so there will be no sequentialization).
However, in practical settings these are extremely unlikely situations: in typi-
cal databases concepts are built from more primitive ones, suggesting that the
structure of these sets will be quite rich. Since finding repairs is an NP-complete
or Σ2

p-complete problem, this division can play a key role in making this search
process much faster.

Work is in progress to implement these optimizations in order to obtain a
more precise understanding of their benefits.



Optimizing Computation of Repairs from Active Integrity Constraints 379

Table 1. Applicability of parallelization and stratification techniques to the different
kinds of repairs

Type Parallelization Stratification

weak repairs yes no
repairs yes no

founded weak repairs yes yes
founded repairs yes yes†

justified weak repairs yes yes

justified repairs yes yes†
† may require computation of weak repairs
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Abstract. We study syntactical merging operations that are defined semantically
by means of the Hamming distance between valuations; more precisely, we in-
vestigate the Σ-semantics, Gmax-semantics and max-semantics. We work with
a logical language containing merging operators as connectives, as opposed to
the metalanguage operations of the literature. We capture these merging opera-
tors as programs of Dynamic Logic of Propositional Assignments DL-PA. This
provides a syntactical characterisation of the three semantically defined merging
operators, and a proof system for DL-PA therefore also provides a proof system
for these merging operators. We explain how PSPACE membership of the model
checking and satisfiability problem of star-free DL-PA can be extended to the
variant of DL-PA where symbolic disjunctions that are parametrised by sets (that
are not defined as abbreviations, but are proper connectives) are built into the lan-
guage. As our merging operators can be polynomially embedded into this variant
of DL-PA, we obtain that both the model checking and the satisfiability problem
of a formula containing possibly nested merging operators is in PSPACE.

Keywords: belief merging, belief change, dynamic logic.

1 Introduction

To merge a vector of belief bases E = 〈B1, · · · , Bn〉 means to build a new belief base
Δ(E). In the literature, E is called a profile, and Δ(E) is sometimes called the fusion of
E. Much efforts were spent on the characterisation of ‘good’ merging operations Δ by
means of rationality postulates [14–16]. Beyond such families of abstract belief merging
operations satisfying the postulates, several concrete operations were also introduced
and studied in the literature. Some are syntax-based and others are semantic. The former
are also called ‘formula-based’, and the latter are called ‘model-based’ or ‘distance-
based’. An example of the former is the MCS operation [2], where each element Bi of
E is viewed as a set of formulas that is not closed under logical consequence and where
the construction of Δ(E) is based on the extraction of maximal consistent subsets of each
Bi of E. Such operations are syntax dependent: they do not guarantee that the merging
of logically equivalent profiles leads to merged bases that are logically equivalent.1

1 Two profiles E and E′ are logically equivalent if for every Bi in E there is a logically equivalent
B′j in E′ and the other way round, for every B′i in E′ there is a logically equivalent Bj in E.
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In contrast, syntax independence is guaranteed by the semantic merging operations,
whose most prominent are ΔΣ , Δmax, and ΔGmax [19, 20]. These operations work on
valuations of classical propositional logic. Indeed, even when the elements of the in-
put profile are presented as formulas or sets thereof, the merging procedure starts by
computing their models. The output set of valuations is sometimes transformed into a
formula characterising the set, which can always be done because these operations are
presented in terms of a finite set of propositional variables.

Contrasting with the existing literature, the present paper studies concrete semantic
merging operations from a syntactic perspective: given a vector of formulas E, our aim
is to obtain a syntactical representation of the merged belief base Δ(E), for Δ being ΔΣ ,
Δmax, or ΔGmax. As we have already said above, when the language is finite then it is
easy to construct a formula representing Δ(E): it suffices to take the disjunction of the
formulas describing the models of Δ(E), where each of these model descriptions is a
conjunction of literals. Is there a better, more direct way of building a syntactic repre-
sentation? In this paper we propose a powerful yet simple logical framework: Dynamic
Logic of Propositional Assignments, abbreviated DL-PA [1]. DL-PA is a simple instan-
tiation of Propositional Dynamic Logic PDL [7, 8]. Just as PDL, its language is built
with two ingredients: atomic formulas and atomic programs. In both logics, atomic for-
mulas are propositional variables. While PDL has abstract atomic programs, the atomic
programs of DL-PA are assignments of propositional variables to either true or false,
respectively noted p←� and p←⊥. The assignment p←� corresponds to an update by
p, while the assignment p←⊥ corresponds to an update by ¬p. Complex programs π
are built from atomic programs by the standard PDL program operators of sequential
composition, nondeterministic composition, finite iteration (the so-called Kleene star),
and test. Just as PDL, DL-PA has formulas of the form 〈π〉ϕ and [π]ϕ, where π is a
program and ϕ is a formula. The former expresses that ϕ is true after some possible exe-
cution of π, and the latter expresses that ϕ is true after every possible execution of π. For
example, the DL-PA formula 〈p←�∪ p←⊥〉ϕ captures the propositional quantification
∃p.ϕ, illustrating that DL-PA naturally captures Quantified Boolean Formulas (QBF).
It is shown in [1] that DL-PA formulas can be reduced to equivalent Boolean formulas.
Just as for QBFs, the original formula is more compact than the equivalent Boolean
formula. Star-free DL-PA has the same mathematical properties as the QBF reasoning
problems; in particular, model checking, satisfiability and validity are all PSPACE com-
plete. We believe DL-PA to be a more natural and flexible tool than QBF to reason about
domains involving dynamics due to its more elaborate account in terms of programs.

Our main contributions are polynomial embeddings of semantic belief merging op-
erators into DL-PA: to every profile E and merging operation Δ we associate a DL-PA
formula ϕ(Δ, E), and we prove that the merged profile Δ(E) has the same models as
ϕ(Δ, E). Then ϕ(Δ, E) may then be reduced to a Boolean formula, thus providing a
syntactical representation of Δ(E) in propositional logic. A further contribution of our
paper is a presentation of merging in terms of a recursive language with several merging
operators Δσ in the object language, one operator per semantics σ. This contrasts with
the usual presentations in terms of metalanguage operations (where we systematically
use the term operator for connectives in the object language, while we reserve the term
operation for functions from the metalanguage).
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The paper is organized as follows. In Section 2 we give the basic notation for propo-
sitional logic and recall the semantic definitions of the concrete merging operations ΔΣ ,
ΔGmax, and Δmax. In Section 3 we take a more syntactical stance: instead of viewing Δ
as an operation in the metalanguage, we introduce a recursive language with families
of n-ary merging operators in the object language and reformulate the above concrete
merging operations in that language. In Section 4 we recall DL-PA. In Section 5 we
embed the three merging operations into DL-PA. Section 6 concludes.

2 Background

We recall some standard notations and conventions for propositional logic, in particular
distances between its valuations, as well as the definitions of the three concrete Boolean
merging operators we are interested in.

2.1 Propositional Logic

Boolean formulas are built by means of the standard connectives ¬, ∨, etc. from a
countable set of propositional variables P = {p, q, . . .}. We will in particular use the
exclusive disjunction ⊕. We denote them by letters such as A, B, C; in particular, we
use B, B1, B2, etc. for Boolean belief bases, which we identify with Boolean formulas.

Contrasting with that, modal formulas—to be defined in the next section—will be
denoted by ϕ, ψ, etc. For a given Boolean formula A, the set of variables occurring in A
is noted PA. For example, Pp∨¬q = {p, q}.

A valuation associates a truth value to each propositional variable. We identify valu-
ations with subsets of P and use v, v1, v2, etc. to denote them. The set of all valuations is
V = 2P. Sometimes it will be convenient to view v as a function from Boolean formulas
into the set of truth values {0, 1} and to write v(p) = 1 when p ∈ v and v(p) = 0 when
p � v.

Given a valuation v and a Boolean formula A, the truth value v(A) ∈ {0, 1} is de-
termined in the usual way. When v(A) = 1 then we say that v is an A-valuation. For
example, {p, q} is a ¬p∨¬r valuation. The set of all A-valuations is denoted ||A||. For
example, ||p|| = {v ∈ V : p ∈ v} and ||p ∨ q|| = {v ∈ V : p ∈ v or q ∈ v} = ||p|| ∪ ||q||.

2.2 Distances

The Hamming distance between two valuations v1 and v2 is the cardinality of the sym-
metric difference between v1 and v2:

dH(v1, v2) = card
(
(v1 \ v2) ∪ (v2 \ v1)

)

= card
({p ∈ P : v1(p) � v2(p)}).

So dH(v1, v2) is the number of all those p such that v1(p) � v2(p). For example, the
Hamming distance between ∅ and {p, q} is card

(∅ ∪ {p, q}) = 2, and the Hamming
distance between {p, q} and {q, r, s} is card

({r, s} ∪ {p}) = card
({p, r, s}) = 3. Note that

the Hamming distance might be infinite; for instance, dH(∅, P) = ∞.



384 A. Herzig, P. Pozos-Parra, and F. Schwarzentruber

The definition of Hamming distance can be extended to a distance between a valua-
tion v and a set of valuations V ⊆ V as follows:

dH(v,V) =

⎧
⎪⎪⎨
⎪⎪⎩

0 if V = ∅
min({dH(v, v′) : v′ ∈ V}) otherwise

This leads to the definition of the Hamming distance between a valuation and a
Boolean formula as dH(v, B) = dH(v, ||B||). For example:

dH({p, q}, p∧¬p) = 0

dH({p, q}, p∧q) = 0

dH({p, q},¬p∨q) = 0

dH({p},¬p∨q) = 0

dH({p, q},¬p∨¬q) = 1

dH({p, q},¬p∧¬q) = 2

dH({p, q},¬p∨¬r) = 0

dH({p, q}, (¬p∨¬r)∧¬q) = 1

Lemma 1. For every valuation v, dH(v, B) ≤ card(PB).

Proof. Let v be a valuation. If ||B|| = ∅ then dH(v, B) = dH(v, ||B||) = dH(v, ∅) = 0 and
the lemma is correct. Otherwise, let v′ ∈ ||B||. Without loss of generality, we can assume
that for all p � PB, v(p) = v(p′). Thus, dH(v, v′) ≤ card(PB). By definition of dH(v, B)
we have dH(v, B) = dH(v, ||B||) ≤ dH(v, v′) ≤ card(PB).

Finally, the Hamming distance between a valuation v and a vector of Boolean belief
bases 〈B1, . . . , Bn〉 is defined to be the vector of the distances:

dH(v, 〈B1, . . . , Bn〉) = 〈dH(v, B1), · · · , dH(v, Bn)〉
For example:

dH({p}, 〈¬p∨¬q〉) = 〈1〉
dH({p, q}, 〈¬p∨¬r, (¬p∨¬r)∧¬q〉) = 〈0, 1〉

dH({p, q}, 〈¬p∨q,¬p∨¬q,¬p∧¬q〉) = 〈0, 1, 2〉

2.3 Various Merging Operations

A profile, typically noted E, is a vector of belief bases: E = 〈B1, · · · , Bn〉. The traditional
definition of a belief merging operation is as a mapping Δ associating to every profile
E a new belief base Δ(E). Such operations have been defined in several different ways
and that is why we indicate a particular definition σ by a superscript and write Δσ(E).
Throughout the present paper we suppose that there is no preference between the belief
bases of a profile: we assume that Δσ(ϕ1, · · · , ϕn) is equivalent to Δσ(ϕk1 , · · · , ϕkn), for
every permutation 〈ϕk1 , · · · , ϕkn〉 of 〈ϕ1, · · · , ϕn〉. The reader may therefore view the
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vector as a set. We stick to the vector notation for two reasons: first, it is common
in the merging literature, and second, it better fits the object language operators to be
introduced in the next section.

Perhaps the best starting point is the merging operation that is based on minimisation
of the sum of the Hamming distances to each belief base Bi of E, abbreviated ΔΣ . It
associates to every profile E the set of valuations such that the sum of the distances to
the elements of E is minimal. Formally:

ΔΣ(E) =
{
v ∈ V : there is no v′ ∈ V such that

∑
dH(v′, E) <

∑
dH(v, E)

}
.

For example:

ΔΣ(p,¬p∨q) = {v : p, q ∈ v} = ||p ∧ q||
ΔΣ(p∧q,¬p∧¬q) = 2P = ||�||

Beyond ΔΣ we consider other concrete merging operations: the Gmax merging op-
eration ΔGmax and the max merging operator Δmax. Their definitions are based on other
minimisations. We do not give them here; instead, they will be presented in the next
section in terms of object language operators.

Merging can also be done under integrity constraints. This leads to more general
operations Δσψ(E) where the formula ψ is an integrity constraint that the merged belief
base should satisfy. The unconstrained Δσ(E) can then be identified with Δσ�(E). Then
the ΔΣ operation becomes:

ΔΣψ(E) =
{
v ∈ ||ψ|| : there is no v′ ∈ ||ψ|| such that

∑
dH(v′, E) <

∑
dH(v, E)

}
.

For example, ΔΣ¬r(p,¬p∨q) = ||p ∧ q ∧ ¬r|| and ΔΣp (p∧q,¬p∧¬q) = ||p||.
Observe that in the above definitions ΔC(E) is a set of valuations. In contrast, the

merging postulates to be given below are defined in terms of formulas: as already men-
tioned, papers on merging operations typically identify the set ΔC(E) with the Boolean
formula characterising it.

2.4 The Postulates for Merging with Integrity Constraints

We briefly recall the principles for merging operations that were introduced by
Konieczny and Pino Pérez. We here present the version of [14], in a slightly adapted
version because there, belief bases are considered to be finite sets of formulas (which
are however often identified with their conjunction).

Let Δ be an mapping assigning to each belief profile E and integrity constraint C
a belief base ΔC(E). Δ is a merging operation if and only if it satisfies the following
postulates.

(IC0) ΔC(E)→ C is valid.
(IC1) If C is satisfiable then ΔC(E) is satisfiable.
(IC2) If C ∧ (

∧
E) is satisfiable then ΔC(E)↔ ∧ E is valid.

(IC3) For E = 〈B1, · · · , Bn〉 and E′ = 〈B′1, · · · , B′n〉, if C ↔ C′ and Bi ↔ B′i are valid
for 1≤i≤n then ΔC(E)↔ ΔC′ (E′) is valid.
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(IC4) If ΔC
(〈B, B′〉) ∧ B is satisfiable then ΔC

(〈B, B′〉) ∧ B′ is satisfiable.
(IC5) ΔC(E) ∧C′ → ΔC∧C′ (E) is valid.
(IC6) If ΔC(E) ∧C′ is satisfiable then ΔC∧C′ (E)→ ΔC(E) is valid.

In the above postulates, ‘satisfiable’ means ‘propositionally satisfiable’ and ‘valid’
means ‘propositionally valid’.

The operations ΔΣ and ΔGmax satisfy all the postulates, while the max merging oper-
ator Δmax does not. Nonetheless, many authors in the literature consider that the latter is
an interesting merging operator.

3 A Modal Framework for Merging Operators

The Δσ are not logical connectives of the object language: they are part of the metalan-
guage. We highlight that by saying that they are operations. The merging operators to
be introduced now are connectives of the object language, just as the Boolean operators
¬ and ∨ are.2 For that reason we also write them differently as �σ: for each semanticsσ
we have an object language operator �σ.3 It is an advantage of such a move that many
things can then be proved in a formal, rigorous way inside a logical system, as opposed
to lines of argument in natural language texts. Moreover, it also allows to take advantage
of mathematical results such as complexity upper bounds and theorem proving methods
for the logic.

If merging operators are in the object language, we have enough flexibility to nest
merging operators and even talk about different semantics in the same formula, as illus-
trated by the well-formed formula �σ1

�σ2 (p,q)(p, p∨q). To motivate this, consider a com-
pany whose productivity is declining and whose shareholders desire to implement a
motivation policy in order to change the workers’ conditions. They then have to merge
the desires of every worker, while preserving several kinds of integrity constraints: job
security, working environment, salary costs, job satisfaction. These different criteria
have to be merged in their turn.

Formulas involving one or more kinds of merging operators may be given as an input
to a reasoner. Observe that when we define the length of the input for the reasoner then
one occurrence of a merging operator counts for 1 and certainly not for the length of
the disjunction describing the corresponding set of valuations (as would be the case in
the metalinguistic presentation).

3.1 Language

Our logical language L� is defined by the following grammar:

ϕ� p | ¬ϕ | ϕ∨ϕ | �σϕ (ϕ, · · · , ϕ)

2 While the term ‘merging operator’ is customary in the literature, our terminology is in line
with that of abstract algebra.

3 More precisely, we do not have a single operator but a family of operators �σ,n(.) that is
parametrized by the length n of the profile vector. We abstract away from this here.
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where p ranges over the set of propositional variables P and where σ ranges over the set
of symbols {Σ,Gmax,max}. The informal reading of the formula �σψ(E) is “the profile
E has been merged (with merging semantics σ) under the constraint ψ”.

Abusing language a bit, when the profile is E = 〈ϕ1, . . . , ϕn〉 then instead of �σψ(E)
we write �σψ(ϕ1, · · · , ϕn).

The function P. associating to a formula the set of its propositional variables naturally
extends to our language; in particular we have P�σψ (ϕ1,··· ,ϕn) = Pψ ∪ (⋃1≤i≤n Pϕi

)
.

In the rest of the present section we introduce the truth conditions for the three merg-
ing operators �Σ , �Gmax, and �max. Clearly, when the profile E = 〈B1, . . . , Bn〉 and the
constraint C are Boolean then we expect the interpretation of the merging operator �σ

under semantics σ to coincide with the merging operation Δσ defined in Section 2.3. In
formulas, we expect the equality ΔσC(E) = ||�σC(E)|| to hold for Boolean C and E.

3.2 The Σ-Semantics

The interpretation of �Σ is the set of valuations such that the sum of the distances to the
elements of E is minimal. Formally:

||�Σψ(E)|| =
{
v ∈ ||ψ|| : there is no v′ ∈ ||ψ|| such that

∑
dH(v′, E) <

∑
dH(v, E)

}
.

The definition of the Hamming distance dH is as in Section 2.2. The function || · || is
the interpretation we are currently defining by induction over the formulas of L�. The
integer

∑
dH(v, E) is the sum of the elements of the vector dH(v, E).

For example, ||�Σ�(p∧q,¬p∧¬q)|| = ||�|| = 2P.

3.3 The Gmax-Semantics

The interpretation of �Gmax is as follows:

||�Gmax
ψ (E)|| =

{
v ∈ ||ψ|| : there is no v′ ∈ ||ψ|| such that dsort

H (v′, E) <lex dsort
H (v, E)

}

where dsort
H (v, E) = sort(d(v, ϕ1), . . . , d(v, ϕn)) is the list that is obtained from the vector

〈d(v, ϕ1), . . . , d(v, ϕn)〉 by sorting it in descending order and where <lex is the lexico-
graphical order between sequences of integers of the same length.

For example, ||�Gmax� (p∧q,¬p∧¬q)|| = {v : v(p) � v(q)} = ||p⊕q|| because

dsort
H (v, 〈p∧q,¬p∧¬q〉) =

⎧
⎪⎪⎨
⎪⎪⎩

〈2, 0〉 if v(p) = v(q)

〈1, 1〉 otherwise.

3.4 The max-Semantics

The interpretation of �max is as follows:

||�max
ψ (E)||max =

{
v ∈ ||ψ|| : there is no v′ ∈ ||ψ|| such that max dH(v′, E) < max dH(v, E)

}
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where max dH(v, E) is the maximum of all the distances dH(v, ϕi) between v and the
elements ϕi of E.

For example, ||�max� (p∧q,¬p∧¬q)|| = {v : v(p) � v(q)} = ||p⊕q|| because for
the valuations v such that v(p) � v(q) we have that dH(v, 〈p∧q,¬p∧¬q〉) equals 〈1, 1〉
(and therefore the maximum of that vector is 1), while for the v such that v(p) = v(q)
the distance dH(v, 〈p∧q,¬p∧¬q〉) is either 〈0, 2〉 or 〈2, 0〉 (and therefore the maximum
is 2).

We recall that the max-semantics does not satisfy Konieczny and Pino Pérez’s merg-
ing postulates. We also note that for the empty integrity constraint we have ||�Gmax� (E)|| ⊆
||�max� (E)|| for every profile E.

4 DL-PA: Dynamic Logic of Propositional Assignments

In this section we define syntax and semantics of dynamic logic of propositional as-
signments DL-PA and state complexity results. The star-free fragment of DL-PA was
introduced in [9], where it was shown that it embeds Coalition Logic of Propositional
Control [10–12]. The full logic with the Kleene star was further studied in [1].

4.1 Language

The language of DL-PA is defined by the following grammar:

π � p←� | p←⊥ | π; π | π∪π | ϕ? | π∗
ϕ� p | � | ⊥ | ¬ϕ | ϕ∨ϕ | 〈π〉ϕ

where p ranges over the set of propositional P. So the atomic programs of the language
of DL-PA are of the form p←� and p←⊥. The operators of sequential composition
(“;”), nondeterministic composition (“∪”), unbounded iteration (“(.)∗”, the so-called
Kleene star), and test (“(.)?”) are familiar from Propositional Dynamic Logic PDL.

The length of a formula ϕ, denoted |ϕ|, is the number of symbols used to write down
ϕ, without “〈”, “〉”, parentheses and commas. For example, |q∧r| = |¬(¬q∨¬r)| = 6 and
|〈q←�〉(q∧r)| = 2+6 = 8. The length of a program π, denoted |π|, is defined in the same
way. For example, |p←⊥; p?| = 5.

We abbreviate the logical connectives ∧, →,↔, and ⊕ in the usual way. Moreover,
[π]ϕ abbreviates ¬〈π〉¬ϕ. Several program abbreviations are familiar from PDL. First,
skip abbreviates �? (“nothing happens”). Second, the loop “while A do π” can be ex-
pressed as the DL-PA program (A?; π)∗;¬A?. Third, for n ≥ 0, the n-th iteration of π is
defined inductively as:

π0 = skip

πn+1 = πn; π

Let us now introduce the assignment of literals to variables by means of the following
abbreviations that are proper to DL-PA:

p←q = (q?; p←�) ∪ (¬q?; p←⊥)

p←¬q = (q?; p←⊥) ∪ (¬q?; p←�)
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The former assigns to p the truth value of q, while the latter assigns to p the truth value
of ¬q. The length of p←q is (2+ 1+ 3)+ 1+ (3+ 1+ 3) = 14. That of p←¬q is 14, too.

The star-free fragment of DL-PA is the subset of the language made up of formulas
without the Kleene star “(.)∗”.

4.2 Semantics of DL-PA

DL-PA programs are interpreted by means of a (unique) relation between valuations.
The atomic programs p←� and p←⊥ update valuations in the obvious way, and com-
plex programs are interpreted just as in PDL by mutual recursion. Table 1 gives the
interpretation of the DL-PA connectives.

Table 1. Interpretation of the DL-PA connectives

||p←�|| = {〈v1, v2〉 : v2 = v1 ∪ {p}}
||p←⊥|| = {〈v1, v2〉 : v2 = v1 \ {p}}
||π; π′|| = ||π|| ◦ ||π′||
||π ∪ π′|| = ||π|| ∪ ||π′||
||π∗|| =

⋃

k∈N0

(||π||)k

||ϕ?|| = {〈v, v〉 : v ∈ ||ϕ||}
||p|| = {v : p ∈ v}
||�|| = V = 2P

||⊥|| = ∅
||¬ϕ|| = 2P \ ||ϕ||
||ϕ∨ψ|| = ||ϕ|| ∪ ||ψ||
||〈π〉ϕ|| = {v : there is v1 s.t. 〈v, v1〉 ∈ ||π|| and v1 ∈ ||ϕ||}

Two formulas ϕ1 and ϕ2 are formula equivalent if ||ϕ1|| = ||ϕ2||. Two programs π1 and
π2 are program equivalent if ||π1|| = ||π2||. In that case we write π1 ≡ π2. For example,
the program equivalence π; skip ≡ π holds. A formula ϕ is DL-PA valid if it is formula
equivalent to �, i.e., if ||ϕ|| = 2P. It is DL-PA satisfiable if it is not formula equivalent
to ⊥, i.e., if ||ϕ|| � ∅. For example, the formulas 〈p←�〉� and 〈p←�〉ϕ↔ ¬〈p←�〉¬ϕ
are DL-PA valid. Other examples of DL-PA validities are 〈p←�〉p and 〈p←⊥〉¬p.

In DL-PA, all the program operators can be eliminated: for every formula ϕ there
is a formula equivalent ϕ′ such that no program operator occurs in ϕ′ [1, Theorem 1].
For example, 〈p←�∗〉r is equivalent to p∨〈p←�〉r and 〈p←�; q←�〉r is equivalent to
〈p←�〉〈q←�〉r. This contrasts with PDL, where this is not the case. Once all the pro-
gram operators have been eliminated, modal operators only contain atomic programs.
The latter are both serial and deterministic modal operators and therefore distribute over
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negation and disjunction. They can finally be eliminated when they face a propositional
variable, according to the following equivalences:

〈p←�〉q↔
⎧
⎪⎪⎨
⎪⎪⎩

� if q = p

q otherwise

〈p←⊥〉q↔
⎧
⎪⎪⎨
⎪⎪⎩

⊥ if q = p

q otherwise

All together, we have a complete set of reduction axioms: every formula reduces to a
Boolean formula [1, Theorem 2].

Theorem 1. For every DL-PA formula ϕ there is a Boolean formula ϕ′ such that ϕ↔ ϕ′
is DL-PA valid.

For example, for different propositional variables r and p, the formula 〈p←q〉(p ∨ r) is
successively equivalent to 〈p←q〉p ∨ 〈p←q〉r and to q ∨ r.

It is proved in [9] that both model and satisfiability checking are PSPACE complete
for the star-free fragment of DL-PA.

Observe that if p does not occur in ϕ then both ϕ→ 〈p←�〉ϕ and ϕ→ 〈p←⊥〉ϕ are
valid. This is due to the following semantical property that we will use later.

Proposition 1. Suppose Pϕ ∩ P = ∅, i.e., none of the variables in P occurs in ϕ. Then
v ∪ P ∈ ||ϕ|| iff v \ P ∈ ||ϕ||.

In the rest of the paper we write ||ϕ||DL-PA in order to distinguish the interpretation of
DL-PA formulas from the interpretation of the merging language.

4.3 Some Useful DL-PA Expressions

Table 2 collects some DL-PA expressions that are going to be convenient abbreviations.4

The program vary(P) nondeterministically changes the truth value of some of the
variables in P. Its length is linear in the cardinality of P. So the program vary(PA); A?
accesses all A-valuations that preserve the values of all those variables not occurring in
A. Satisfiability of the Boolean formula A can be expressed in DL-PA by the formula
〈vary(PA); A?〉� or the equivalent 〈vary(PA)〉A. The program flip1(P) changes the truth
value of exactly one of the variables in P. The programs flip≤m(P) flip the truth value of
at most m of the variables in P. The lengths of flipm(P) and flip≤m(P) are quadratic in n.
The formula H(ϕ,≥d) is true in all those valuations whose Hamming distance to ϕ is d.

4 An expression is a formula or a program. When we say that two expressions are equivalent
we mean program equivalence if we are talking about programs, and formula equivalence
otherwise.
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Table 2. Some useful DL-PA expressions, for P = {p1, . . . , pn}, where m ≤ n in flipm(P) and
flip≤m(P), and where d ≤ card(Pϕ) in H(ϕ, d)

vary(P) = (p1←� ∪ p1←⊥); · · · ; (pn←� ∪ pn←⊥)

flipm(P) =

⎧
⎪⎪⎨
⎪⎪⎩

skip if m = 0
(
p1←¬p1∪· · ·∪pn←¬pn

)
; flipm−1(P) if m ≥ 1

flip≤m(P) =

⎧
⎪⎪⎨
⎪⎪⎩

skip if m = 0
(
skip∪flip1(P)

)
; flip≤m−1(P) if m ≥ 1

H(ϕ, d) =

⎧
⎪⎪⎨
⎪⎪⎩

ϕ if m = 0

¬〈flip≤d−1(Pϕ)
〉
ϕ ∧ 〈flipd(Pϕ)

〉
ϕ if m ≥ 1

For example:

H(p, 1) = ¬〈flip≤0({p})〉p ∧ 〈(flip1({p}))〉p
↔ ¬p ∧ 〈p←¬p〉p
↔ ¬p ∧ ¬p

↔ ¬p

H(¬p∨q, 0)↔ ¬p∨q

H(¬p∨q, 1)↔ ¬(¬p∨q) ∧ 〈p←¬p〉(¬p∨q)

↔ p ∧ ¬q ∧ (p∨q)

↔ p ∧ ¬q

H(¬p∨q, 2) = ¬〈(skip ∪ p←¬p); skip〉(¬p∨q) ∧ 〈p←¬p; p←¬p〉(¬p∨q)

↔ ¬((¬p∨q) ∨ (p∨q)
) ∧ (¬p∨q)

↔ ⊥
Lemma 2. The following hold:

1. 〈v1, v2〉 ∈ ||vary(P)|| iff (v1 \ v2) ∪ (v2 \ v1) ⊆ P.
2. 〈v1, v2〉 ∈ ||flip1(P)|| iff 〈v1, v2〉 ∈ ||vary(P)|| and card(v1−̇v2) = 1.
3. 〈v1, v2〉 ∈ ||flip≤m(P)|| iff 〈v1, v2〉 ∈ ||vary(P)|| and card(v1−̇v2) ≤ m.
4. v ∈ ||H(ϕ, d)|| iff dH(v, ϕ) = d.

Note that flipm(P) is nothing but the m-th iteration of flip1(P), so one variable might
be switched twice and therefore 〈v1, v2〉 ∈ ||flipm(P)|| does not in general imply that the
Hamming distance between v1 and v2 is m.

5 Embedding Merging Operators into DL-PA

In this section, we define a translation tr(.) by induction over the formulas of our merg-
ing languageL�. To every formula ϕ of our merging languageL� we associate a DL-PA
formula tr(ϕ). The Boolean part is translated as follows:
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tr(p) = p

tr(¬ϕ) = ¬tr(ϕ)

tr(ϕ ∨ ψ) = tr(ϕ) ∨ tr(ψ)

In the following three subsections we give the inductive cases of the definition of tr(.)
for �Σ , �Gmax and �max. We then prove that the translation is correct and that it gives
us an algorithm to reason in L� from an algorithm to reason in DL-PA. The reader may
observe that our encodings are not particularly sophisticated and follow the semantic
definitions in a fairly straightforward manner.

5.1 Embedding the Σ-Semantics

Let us define the translation for the �Σ as follows. Given a profile E = 〈ϕ1, . . . , ϕn〉, we
define:

tr(�Σψ(E)) = tr(ψ) ∧
∨

〈d1,...,dn〉,dk≤card(Pϕk )

((∧

i≤n

H(tr(ϕi), di)
)
∧

¬〈vary(PE)〉
(
tr(ψ) ∧

∨

〈d′1,...,d′n〉,
∑

k≤n(d′k)<
∑

k≤n(dk)

∧

i≤n

H(tr(ϕi), d′i )
))
.

Intuitively, the translation does the following: first, the integrity constraint is required
to be true (by tr(ψ)), second, it is checked that there is some vector 〈d1, . . . , dn〉 of inte-
gers such that the Hamming distance from the present valuation to each tr(ϕi)-valuation
is di (by H(tr(ϕi), di)) and such that one cannot go to another valuation (by ¬〈vary(PE)〉)
satisfying the constraint and whose sum of distances to the tr(ϕi)-valuations is smaller.
As we are going to show, every model of the formula tr(�Σψ(E)) is indeed a model of
the merged profile.

For example, tr(�Σ�(p,¬p∨q)
)
) is

� ∧
((

H(p, 0) ∧ H(¬p∨q, 0) ∧ ¬〈vary({p, q})〉(� ∧ ⊥) ∨
(
H(p, 0) ∧ H(¬p∨q, 1) ∧ ¬〈vary({p, q})〉(� ∧ H(p, 0) ∧ H(¬p∨q, 0)

) ∨
(
H(p, 1) ∧ H(¬p∨q, 0) ∧ ¬〈vary({p, q})〉(� ∧ H(p, 0) ∧ H(¬p∨q, 0)

) ∨
(
H(p, 1) ∧ H(¬p∨q, 1) ∧ ¬〈vary({p, q})〉(� ∧ ((H(p, 0) ∧ H(¬p∨q, 0)) ∨ · · · ))

)

which is equivalent to

(p ∧ (¬p ∨ q) ∧ �) ∨
(p ∧ (p ∧ ¬q) ∧ ⊥) ∨

(¬p ∧ (¬p ∨ q) ∧ ⊥) ∨
(¬p ∧ (p ∧ ¬q) ∧ · · · ),

i.e., to p ∧ q.
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Here is another example:

tr(�Σ�(p∧q,¬p∧¬q))↔ � ∧ (H(p∧q, 0) ∧ H(¬p∧¬q, 2)
) ∨

↔ �∧ (H(p∧q, 1) ∧ H(¬p∧¬q, 1)
) ∨

↔ �∧ (H(p∧q, 2) ∧ H(¬p∧¬q, 0)
)

↔ (p∧q) ∨
↔ (¬p∧q) ∨ (p∧¬q) ∨
↔ (¬p∧¬q)

↔ �

5.2 Embedding the Gmax-Semantics

The embedding of the Gmax-operator is in the same spirit as that of the previous oper-
ator. Given a profile E = 〈ϕ1, . . . , ϕn〉, we define:

tr(�Gmax
ψ (E)) = tr(ψ) ∧

∨

〈d1,...,dn〉, dk≤card(Pϕk )

((∧

i≤n

H(tr(ϕi), di)
)
∧

¬〈vary(PE)〉
(
tr(ψ) ∧

∨

〈d′1,...,d′n〉,sort(d′1,...,d
′
n)<lexsort(d1,...,dn)

∧

i≤n

H(tr(ϕi), d
′
i )
))
.

Intuitively, the translation checks the integrity constraints and checks for the vector
characterising the Hamming distances to the ϕi-valuations that there exists no other
valuation tr(ψ) whose distance vector is smaller according to the sorted lexicographic
ordering.

Table 3 contains an example. Another example is tr(�Gmax� (p∧q,¬p∧¬q)), which
reduces to p↔ q.

5.3 Embedding the max-Semantics

In a first try we have:

tr(�ψ(E)) = tr(ψ) ∧
∨

〈d1,...,dn〉, dk≤card(Pϕk )

((∧

i≤n

H(tr(ϕi), di)
)
∧

¬〈vary(PE)〉(tr(ψ) ∧
∨

〈d′1,...,d′n〉,maxk≤n(d′k)<maxk≤n(dk)

∧

i≤n

H(tr(ϕi), d
′
i )
))
.

This can actually be made more concise, and our official definition of the translation is
as follows:

tr(�ψ(E)) = tr(ψ) ∧
∨

d, d≤maxk≤n(card(Pϕk ))

((∧

i≤n

〈
flip≤d(Pϕi )

〉
tr(ϕi)

)
∧

¬〈vary(PE)〉
(
tr(ψ) ∧

∧

i≤n

〈
flip≤d−1(Pϕi )

〉
tr(ϕi)

)
.
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Table 3. Example: translation of the Gmax merging of the profile 〈p, p,¬p〉 under the empty
integrity constraint �

tr(�Gmax
� (p, p,¬p))

= � ∧ (H(p, 0) ∧ H(p, 0) ∧ H(¬p, 0) ∧ ¬〈vary({p})〉(� ∧ ⊥)
) ∨

� ∧ (H(p, 0) ∧ H(p, 0) ∧ H(¬p, 1) ∧ ¬〈vary({p})〉(� ∧ H(p, 0) ∧ H(p, 0) ∧ H(¬p, 0))
) ∨

� ∧ (H(p, 0) ∧ H(p, 1) ∧ H(¬p, 0) ∧ ¬〈vary({p})〉(· · · )) ∨
� ∧ (H(p, 0) ∧ H(p, 1) ∧ H(¬p, 1) ∧ ¬〈vary({p})〉(· · · )) ∨
� ∧ (H(p, 1) ∧ H(p, 0) ∧ H(¬p, 0) ∧ ¬〈vary({p})〉(· · · )) ∨
� ∧ (H(p, 1) ∧ H(p, 0) ∧ H(¬p, 1) ∧ ¬〈vary({p})〉(· · · )) ∨
� ∧ (H(p, 1) ∧ H(p, 1) ∧ H(¬p, 0) ∧ ¬〈vary({p})〉(· · · )) ∨
� ∧ (H(p, 1) ∧ H(p, 1) ∧ H(¬p, 1) ∧ ¬〈vary({p})〉(· · · ))

↔ (p ∧ p ∧ ¬p ∧ ¬⊥) ∨
(p ∧ p ∧ p ∧ ¬⊥) ∨
(p ∧ ¬p ∧ ¬p ∧ ¬⊥) ∨
(p ∧ ¬p ∧ p ∧ ¬⊥) ∨
(¬p ∧ p ∧ ¬p ∧ ¬⊥) ∨
(¬p ∧ p ∧ p ∧ ¬⊥) ∨
(¬p ∧ ¬p ∧ ¬p ∧ ¬�) ∨
(¬p ∧ ¬p ∧ p ∧ ¬⊥)

↔ p

Intuitively, the integrity constrained is enforced and it is checked for some integer d
that first, each ϕi in the profile has distance at most d and second, that there is no other
valuation that both satisfies the integrity constraint and is strictly less than d away from
each ϕi.

5.4 Correction of the Translations

Theorem 2. Let ϕ be an L� formula. Then ||ϕ|| = ||tr(ϕ)||DL-PA.

Proof. The proof is by induction on the form of ϕ. The only interesting case is that of
merging operators. Let us consider the case of �Σ . We prove in detail that ||�Σψ(E)|| =
||tr(�Σψ(E))||DL-PA.

Let v ∈ V be a valuation. We have v ∈ ||�Σψ(E)|| iff v ∈ ||ψ|| and there is no other
ψ-valuation v′ such that

∑
dH(v′, E) <

∑
dH(v, E). The latter is the case iff v ∈ ||ψ|| and

there are 〈d1, . . . , dn〉 such that

1. dH(v, ϕi) = di for every i, and
2. there is no ψ-valuation v′ and vector 〈d′1, · · · , d′n〉 such that dH(v′, ϕi) = d′i for every

i and
∑

di <
∑

d′i .
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By induction hypothesis, v ∈ ||ψ|| iff v ∈ ||tr(ψ)||DL-PA and v ∈ ||ϕi|| iff v ∈ ||tr(ϕi)||DL-PA.
Therefore H(ϕi, di) equals H(tr(ϕi), di).

We note that by Lemma 1 it is in order to only consider the di such that di ≤ card(Pϕi).
By Lemma 2, Item 1 means that v ∈ ||H(tr(ϕi), di)||DL-PA for every i.

Item 2 means that the formula
∨

〈d′1,··· ,d′n〉,
∑

k(d′k)<
∑

k(dk)

∧

i≤n

H(tr(ϕi), d
′
i )

is unsatisfiable. According to Lemma 2 and Proposition 1, all the relevant valuations
are accessed by the program vary(PE). Therefore Item 2 is equivalent to

v ∈ ||¬〈vary(PE)〉(tr(ψ) ∧
∨

〈d′1,··· ,d′n〉,
∑

k≤n(d′k)<
∑

k(dk)

∧

i≤n

H(tr(ϕi), d′i )
)||DL-PA.

Putting things together, items 1 and 2 are equivalent to v ∈ ||tr(�Σψ(ϕ1, · · · , ϕn))||DL-PA.

It follows from the above theorem that the merging of the Boolean profile 〈B1, · · · ,
Bn〉 under the Boolean constraint C equals ||tr(�σC(B1, · · · , Bn))||DL-PA.

The length of tr(ϕ) is however exponential in the length of ϕ. Nevertheless, if we
consider ‘big disjunctions’ such as

∨
〈d1,...,dn〉,dk≤card(Pϕk ),

∨
〈d′1,...,d′n〉,

∑
k(d′k)<

∑
k(dk) etc. to be

connectives of the object language—i.e., as symbolic disjunctions that are parametrised
by sets and that are not defined as abbreviations, but are proper connectives—then the
length of tr(ϕ) is still polynomial in the length of ϕ. For instance, the length of

∨

〈d′1,··· ,d′n〉,
∑

k(d′k)<
∑

k(dk)

∧

i≤n

H(ϕΣi , d
′
i )

is O(n) plus the length of H(ϕΣi , d
′
i ).

Corollary 1. Both model checking and satisfiability checking of L�-formulas is in
PSPACE.

Proof. First we give the argument why both model and satisfiability checking are
PSPACE-complete for the star-free fragment of DL-PA if we allow symbolic disjunc-
tions in DL-PA formulas. We do so by adapting the proof of PSPACE membership of [9]:
in order to check whether

∨
〈d′1,...,d′n〉,

∑
k(d′k)<

∑
k(dk) ψ is true at a valuation v we backtrack

and test all the choices 〈d′1, . . . , d′n〉 such that
∑

k(d′k) <
∑

k(dk). This backtrack process
can be implemented as an algorithm that only uses a polynomial amount of memory.
By Theorem 2 we then reduce polynomially model (satisfiability) checking of LΔ for-
mulas to model (satisfiability) checking of a DL-PA-formulas, where ‘big disjunctions’
are viewed as being symbolic.

Note that the language of DL-PA is more succinct than that of Boolean formulas: al-
though every formula of DL-PA is equivalent to a Boolean formula, equivalent Boolean
formulas can be exponentially bigger. So SAT techniques for propositional logic do not
provide interesting decision procedures for L�.
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6 Conclusion

We have defined a single language L� in which all merging operators are in the object
language: they are considered to be modal operators and can be nested. This differs with
other approaches such as [18] and [5]. As far as we know, the only similar approach
is [17], where the merging operator (as well as the comma separating the elements of
profiles) are considered to be in the object language.

We have then embedded this language into Dynamic Logic of Propositional Assign-
ments, DL-PA. This has enabled us to give syntactic counterparts to the most popular
semantically defined merging operations. Using the reduction principles of DL-PA we
can therefore rewrite formulas to Boolean formulas. As our examples show, such for-
mulas may be quite long; in particular, they typically contain a lot of disjunctions. They
can however often be simplified by means of standard syntactical operations. This pro-
vides interesting syntactical representations of merged belief bases.

The logic DL-PA actually provides a sort of assembler language for merging opera-
tors. Its use avoids the design of specific tools implementing merging operators. Unfor-
tunately, no efficient reasoning mechanisms for DL-PA exist up to now, and it would be
interesting to have such tools. (It could also be based on Binary Decision Diagrams as
in [5].) As we have seen, if we want the embeddings to be polynomial then such tools
should be able to handle ‘big disjunctions’ and ‘big conjunctions’.

The star-free fragment of DL-PA into which we have mapped various merging op-
erators has PSPACE complexity (both model checking and satisfiability). This induces
a result for our merging language L�, which is new because L� authorizes arbitrary
nesting of merging operators. It is possible that the translated formulas however have
patterns that are less complex.

As to future work, a first perspective is to study the mathematical properties of merg-
ing operators in more detail. One example is the behaviour of iterated merging operators
(which is a research project similar to that for iterated belief revision, see e.g. [3].) Rea-
soning should be considerably facilitated by the help of a DL-PA reasoner. For instance,
suppose we want to know whether the operator �max� is associative. We may run the fol-
lowing experimental protocol: first, choose some Boolean formulas A, B,C and write
down the formula �max� (A,�max� (B,C)) ↔ �max� (�max� (A, B),C); second, translate this
formula into DL-PA; third, run a DL-PA reasoner. Note however that one cannot use the
theorem proving procedure for DL-PA because it only works for formula instances and
not for formula schemas. (This is related to the fact that the rule of uniform substitution
does not preserve validity in DL-PA, which generally fails in dynamic logics).

Our embeddings are somewhat simpler than the embeddings of belief change opera-
tions into QBF as done in [4] since DL-PA is a logic of programs. The same argument
applies to embeddings of merging problems into MSO. Our approach may also be useful
to capture semantics of merging: one may think in particular of new semantics requiring
loops, which can be directly captured in DL-PA by the Kleene-star operator, whereas
the encoding as a QBF will most probably be trickier.

A second perspective is to focus on embeddings of other existing operations. We did
not succeed yet in embedding other approaches to merging such as [13] and syntax-
based operations such as MCS of [2]. Note that in principle this might however be
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feasible: while the Hamming distance is a semantical notion, the function Pϕ is purely
syntactic.

There exist also tentatives to define merging operations in first order logic [6]. In the
long run, we may plan to extend DL-PA with first order constructions in order to capture
those merging operations.

Acknowledgements. We wish to thank the three FOIKS reviewers for their critical
comments and pointers to relevant work that we had not considered at the time of the
submission.
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Abstract. We propose an algorithm called CReaM to incrementally maintain
materialized aggregate views with user-defined aggregates in response to changes
to the database tables from which the view is derived. CReaM is optimal and guar-
antees the self-maintainability of aggregate views that are defined over a single
database table. For aggregate views that are defined over multiple database ta-
bles and do not contain all of the non-aggregated attributes in the database tables,
CReaM speeds up the time taken to update a view as compared to prior view
maintenance techniques. The speed up in the time taken to update a materialized
view with n tuples is either n

log n
or log n depending on whether the materialized

view is indexed or not. For other types of aggregate views, CReaM updates the
view in no more time than that is required by prior view maintenance techniques
to update the view.

1 Introduction

In data management systems, views are derived relations that are computed over databa-
se tables (which are also known as extensional database relations or edbs). Views are
materialized in a database to support efficient querying of the data. A materialized view
becomes out-of-date when the underlying edb relations from which the view is derived
are changed. In such cases, the materialized view is either recomputed from the edb
relations or the changes in the edb relations are incrementally propagated to the view to
ensure the correctness of the answers to queries against the view. Prior work presented
in [5, 21, 27] shows that incrementally maintaining a materialized view can be signifi-
cantly faster than recomputing the view from the edb relations especially if the size of
the view is large compared to the size of the changes.

Several techniques [1–6, 10, 14–16, 18, 21–23, 26–28, 30–32, 34] have been prop-
osed to incrementally maintain views in response to changes to the edb relations. How-
ever, only a small fraction of the prior work on incremental view maintenance [10, 14,
15, 21, 24, 27, 28] addresses the maintenance of views that contain aggregates such
as sum and count. The techniques proposed in [10, 14, 21, 24] incrementally maintain
views that have only one aggregation operator. Furthermore, the incremental mainte-
nance algorithms presented in [10, 14, 15, 21, 24, 27, 28] support only a fixed set of
built-in aggregate operators (min, max, sum, and count).

In contrast, we present an algorithm to incrementally maintain views with multiple
aggregates each of which could be user-defined. As our underlying query language, we
extend Datalog using tuples and sets, and express aggregates as predicates over sets. We
note that, in Datalog, predicates are sets of tuples. Therefore, there are no duplicates.

C. Beierle and C. Meghini (Eds.): FoIKS 2014, LNCS 8367, pp. 399–414, 2014.
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In Section 2, we discuss the specification of user-defined aggregates in our language.
In Section 3, we present differential rules to correctly characterize the changes in edb
relations to aggregate views. In Section 4, we present an algorithm CReaM to optimize
the maintenance of a special class of materialized aggregate views that do not contain
all of the non-aggregated attributes in the underlying edb relations. In Section 5, we
establish the optimality of CReaM and the theoretical results on the performance of
CReaM which are summarized in Table 1. In addition, we show that by materializing
auxiliary views, CReaM guarantees the self-maintainability [17] of aggregate views
that are defined over a single edb relation. This property is desirable when access to
the edb relations is restricted or when the edb relations are hypothetical such as in a
LAV integration scenario [33]. In Section 6, we compare our work to prior work on
incremental maintenance of aggregate views.

Before we discuss our proposed solution, we illustrate the problem of incrementally
maintaining aggregate views using a running example. We use our running example,
which is based on the Star Wars universe, in examples throughout the paper.

Table 1. Performance summary of the CReaM algorithm

Speed up in the time taken to update a materialized aggregate view
with n tuples as compared to prior techniques

Physical design of the database
Non-optimized Optimized

Aggregate view over single edb relation ≥ 1 ≥ 1

Aggregate view over multiple edb relations (single update) log n n
log n

Aggregate view over multiple edb relations (k > 1 updates) log n n
k

Running Example: Suppose that there are tournaments in the Star Wars universe on
different planetary systems. The tournament results are recorded in an edb relation, say
tournament(V,D,L). A tuple (V,D,L) ∈ tournament iff V has defeated D on the
planet L. For instance, if Yoda has defeated Emperor Palpatine at Dagobah then the
tuple (yoda, palpatine, dagobah) is in the extension of the edb relation tournament. We
use the extension of tournament that is presented in Table 2 in examples throughout the
paper.

Table 2. Extension of the edb relation tournament and the view victories in the Star Wars Universe

tournament
Victor Defeated Location
yoda vader dagobah
yoda palpatine dagobah
vader yoda tatooine
yoda palpatine tatooine

victories
Victor Wins
yoda 2
vader 1
yoda 1

We define and materialize a view, say victories(V,W ) to record the number of vic-
tories W achieved by a character V on a planet. For instance, Yoda has two victories
in Dagobah and one victory in Tatooine. Therefore the tuples (yoda, 2) and (yoda, 1) ∈
victories. The extension of victories that corresponds to the extension of the edb relation
tournament is presented in Table 2.
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Suppose that a new tournament match is played in Tatooine and that Darth Vader
defeats Emperor Palpatine in this match. The new tournament match at Tatooine causes
an insert to the tournament relation. In response to the insert to the tournament relation,
the tuple (vader, 1) ∈ victories must be updated to (vader, 2) to ensure the correctness
of the answers to queries against the view. Now, suppose that the previous tournament
match between Yoda and Palpatine at Tatooine is invalidated. In this case, the tuple
(yoda, palpatine, tatooine) is deleted from the tournament relation. In response to this
deletion, the tuple (yoda, 1) must be deleted from the materialized view victories.

2 Preliminaries

As our underlying language, we use the extension of Datalog that is proposed in [20].
We introduce tuples and sets as first-class citizens in our language. A tuple is an ordered
sequence of Datalog constants or sets. A set is either empty or contains Datalog con-
stants or tuples. For example, the tuple (yoda, vader, dagobah) and the sets {}, {(yoda,
vader, dagobah)} and {(yoda, {1, 2})} are legal in our language. We introduce the setof
operator in our language to represent sets as follows.

Definition 1. Suppose that φ(X̄, Ȳ ) is a conjunction of subgoals. For every binding of
values in X̄ , the subgoal setof(Ȳ , φ(X̄, Ȳ ), S) evaluates to true on a database D if
S = {Ȳ | φ(X̄, Ȳ )} for D.

We illustrate the construction of sets in our language using the following example.

Example 1. Consider the running example that we presented in Section 1. Suppose we
would like to compute the set of characters who were defeated by Yoda at Dagobah. In
our language, we compute the desired set using the following query.

q1(S) :- setof(D, tournament(yoda, D, dagobah), S)

In query q1, the set S = {D | tournament(yoda, D, dagobah)}. The evaluation of the
query q1 on the extension of tournament that is presented in Table 2 results in the answer
tuple q1({vader, palpatine}).

Construction of Multisets: In Example 1, we computed the set of characters who were
defeated by Yoda at Dagobah. In addition to generating sets, we could leverage the setof
operator to effectively aggregate multisets as illustrated in the following example.

Example 2. Suppose we would like to count the total number of victories achieved
by Yoda. Since Yoda defeats Emperor Palpatine at multiple locations, we would have
to compute the cardinality of the multiset of people who were defeated by Yoda i.e.
{palpatine, vader, palpatine} to compute Yoda’s total number of victories. Consider a
query q2 which is defined as follows.

q2(C) :- setof((D,L), tournament(yoda, D, L), S), count(S,C)

We assume that the predicate count(X,Y ) computes the cardinality Y of the set X . We
discuss the representation of user-defined aggregates in our language shortly. In query
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q2, the set S = {(D,L) | tournament(yoda, D, L)}. The evaluation of q2 on the ex-
tension of tournament relation (Table 2) computes the cardinality of the set {(palpatine,
dagobah), (vader, dagobah), (palpatine, tatooine)} thus mimicking the computation of
the cardinality of the multiset {palpatine, vader, palpatine}. As a result, the answer tuple
q2(3) is generated.

We use the ‘|||’ operator in our language to represent the decompositions of a set.
We represent the decomposition of a set S into an element X ∈ S and the subset
S1 = S \ {X} as {X |||S1}. For example, {3 ||| {1, 2}} represents the decomposition
of the set of numbers {1, 2, 3} into 3 and the subset {1, 2}. We define the predicate
member in our language to check the membership of an element in a set. The member
predicate has the signature member(X,S), where X is a Datalog constant or a tuple
and S is a set. If X ∈ S then member(X,S) is true, otherwise it is false. The member
predicate can be defined in our language using the decomposition operator ‘|||’ operator
as follows.

member(X, {X |||Y })
member(Z, {X |||Y }) :- member(Z, Y )

In addition, we use ∪ and \ operators in our language to represent set-union and set-
difference respectively. We note that we can define ∪ and \ operators in our language
using the member predicate and the decomposition operator ‘|||’ although we do not de-
fine them as such in this paper.

Aggregation over sets: In our language, user-defined aggregates are defined as pred-
icates over sets. A user-defined aggregate could either be defined (a) in a stand-alone
manner using the member predicate, the decomposition operator ‘|||’, the set-union ∪
and the set-difference \ operators, and the arithmetic operators or (b) as a view over
other aggregates. For instance, we can compute the cardinality of a set in our language
by inductively defining an aggregate, say count(X,C), as follows.

count({}, 0)
count({X |||Y }, C) :- count(Y,C1), C = C1 + 1

The first rule specifies the base case of the induction i.e. the cardinality of an empty
set is 0. The second rule decomposes a set S into an element X and the subset Y
and computes the cardinality of S by leveraging the cardinality of Y . In addition, we
can define an aggregate such as average modularly by leveraging the definitions of the
aggregates count(X,C) and sum(X,S) as follows.

average(X,A) :- sum(X,S), count(X,C), A =
S

C

3 Maintenance of Aggregate Views

In the previous section, we discussed the specification of aggregates as predicates over
sets in our language. Consider the running example that we presented in Section 1.
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Suppose we would like to query the number of victories W achieved by a character V
on a planet. We represent this query in our language as follows.

q(V,W ) :- setof(D, tournament(V,D,L), S), count(S,W )

For every binding of the variables V and L in the query q, W = cardinality of {D |
tournament(V, D,L)}. In the Star Wars universe, this is equivalent to computing the
number of victories W achieved by a character V on a planet. Since the answers to
queries are computed under set semantics, the distinct numbers of victories are gener-
ated by the query q. To efficiently compute the answer to the query q, we can leverage
the materialized view victories from our running example (in Section 1). The material-
ized view victories(V,W ) is defined as follows.

victories(V,W ) :- setof(D, tournament(V,D,L), S), count(S,W )

When changes are made to the edb relation tournament, we must maintain the mate-
rialized view victories to ensure the correctness of answers to the query q.

Maintenance of Views that Contain Sets: Consider a view v in our language which is
defined over the formula φ(X̄, Ȳ , Z̄) using the aggregation predicate agg as follows.

v(X̄, A) :- setof(Ȳ , φ(X̄, Ȳ , Z̄), W ), agg(W,A)

Since aggregates are defined as predicates over sets in our language, we can rewrite the
definition of the view v using the following two rules, one of which contains a setof
subgoal while the other does not.

v(X̄, A) :- u(X̄,W ), agg(W,A)

u(X̄,W ) :- setof(Ȳ , φ(X̄, Ȳ , Z̄), W )

We note that if the definition of v contains k setof subgoals instead of one, we can
rewrite the definition of v using k+1 rules where only k of the rules contain setof sub-
goals. Since prior view maintenance techniques [13] already maintain views that do not
contain sets, we focus only on the maintenance of views that contain setof subgoals. As
a first step, we leverage differential relational calculus to incrementally propagate the
changes in the edb relations to the views through differential rules. Then, in Section 4,
we propose an algorithm called CReaM that applies these differential rules to optimally
maintain materialized aggregate views.

Differential Rules: In differential relational calculus, a database is represented as a set
of edb relations and views r1, r2, . . . , rk with arities d1, d2, . . . , dk. Each relation ri is
a set of di-tuples [9]. The changes to a relation ri in the database consist of insertions
of new tuples and deletions of existing tuples. The new state of a relation ri after ap-
plying a change is represented as r′i. An update to an existing tuple can be modeled as
a deletion followed by an insertion. The insertion of new tuples into a relation ri and
the deletion of existing tuples from ri are represented as the differential relations r+i
and r−i respectively. Prior work in [23] presents a set of differential rules to compute
the differentials (v+ or v−) of a non-aggregate view v. We extend the framework that
is presented in [23] to compute the differentials of aggregate views.
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There are two possible ways in which a view v can be defined in our language using
the setof operator over the formula φ(X̄, Ȳ , Z̄).

1. The view v is defined as v(X̄, Z̄,W ) :- setof(Ȳ , φ(X̄, Ȳ , Z̄), W ). In this case, all
of the variables of φ that are bound outside the setof subgoal are passed to the view
v.

2. The view v is defined as v(X̄,W ) :- setof(Ȳ , φ(X̄, Ȳ , Z̄), W ). In this case, not all
of the variables of φ that are bound outside the setof subgoal are passed to the view
v.

We consider the above two cases separately and present differential rules to compute
the differentials of the view v in each case.
Case 1: Suppose that a view v is defined over a conjunction of subgoals φ(X̄, Ȳ ) as
follows.

v(X̄,W ) :- setof(Ȳ , φ(X̄, Ȳ ), W )

Suppose we define a view u over v(X̄,W ) as u(X̄) :- v(X̄,W ). The view u can be
maintained using the differential rules that are proposed in [23]. In this case, the fol-
lowing differential rules correctly compute the differential relations v+(X̄,W ) and
v−(X̄,W ) in response to the changes to φ(X̄, Ȳ ).

v+(X̄,W ) :- setof(Ȳ , φ+(X̄, Ȳ ), W ), ¬u(X̄) (Δ1)

v+(X̄,W ∪W ′) :- setof(Ȳ , φ+(X̄, Ȳ ), W ), v(X̄,W ′) (Δ2)

v+(X̄,W ′ \W ) :- setof(Ȳ , φ−(X̄, Ȳ ), W ), v(X̄,W ′) (Δ3)

v−(X̄,W ) :- setof(Ȳ , φ−(X̄, Ȳ ), W ), v(X̄,W ) (Δ4)

v−(X̄,W ) :- setof(Ȳ , φ+(X̄, Ȳ ), ), v(X̄,W ) (Δ5)

v−(X̄,W ) :- setof(Ȳ , φ−(X̄, Ȳ ), ), v(X̄,W ) (Δ6)

In the above differential rules, ‘ ’ represents don’t care variables. We prove the correct-
ness of the differential rules Δ1– Δ6 in the following theorem.

Theorem 1. The differential rulesΔ1–Δ6 correctly maintain a view containing a setof
subgoal where all the variables that are bound outside the setof are passed to the head.

Proof. Consider a view v that is defined over a conjunction of subgoals φ(X̄, Ȳ ) as
follows.

v(X̄,W ) :- setof(Ȳ , φ(X̄, Ȳ ), W )

In the definition of v, the variables that are bound outside the setof subgoal i.e. X̄
are passed to the head. Hence the view v contains exactly one tuple (X̄,W ) for every
distinct value of X̄ . Suppose a tuple, say φ(x̄, ȳ), is inserted. Either the view v does not
contain any tuple v(X̄,W ) where X̄ = x̄ or v contains a tuple v(x̄, w). For correctly
maintaining the view v, the tuple (x̄, {ȳ}) is inserted into the view v in the former
case. The differential rule Δ1 handles this case. In the latter case, the tuple v(x̄, w)
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is updated to v(x̄, w ∪ {ȳ}) to correctly update the view v. The differential rules Δ2

and Δ5 capture this update.
Suppose a tuple, say φ(x̄, ȳ), is deleted. Either v contains the tuple v(x̄, {ȳ}) or v

contains the tuple v(x̄,W ) where {ȳ} ⊂ W . For correctly maintaining the view v, the
tuple (x̄, {ȳ}) is deleted from the view v in the former case. The differential rule Δ4

captures this deletion. In the latter case, the tuple v(x̄, w) is updated to v(x̄, w \ {ȳ}) to
correctly update the view v. The differential rules Δ3 and Δ6 capture this update. ��

Case 2: Now, suppose that a view v is defined over a conjunction of subgoals
φ(X̄, Ȳ , Z̄) as follows.

v(X̄,W ) :- setof(Ȳ , φ(X̄, Ȳ , Z̄), W )

In addition, suppose that we define a view u over v(X̄,W ) as u(X̄) :- v(X̄,W ). In the
definition of v, the set W is computed as {Ȳ | φ(X̄, Ȳ , Z̄)} for every binding of X̄ and
Z̄. Since Z̄ is not passed to the view v, a view tuple, say v(x,w), potentially has multiple
derivations. In this case, we compute the differentials v+(X̄,W ) and v−(X̄,W ) as
follows.

v+(X̄,W ) :- setof(Ȳ , φ+(X̄, Ȳ , Z̄), W ), ¬u(X̄) (Γ1)

v+(X̄,W ∪W ′) :- setof(Ȳ , φ+(X̄, Ȳ , Z̄), W ), setof(Ȳ ′, φ(X̄, Ȳ ′, Z̄), W ′),
¬v(X̄,W ∪W ′)

(Γ2)

v+(X̄,W ′ \W ) :- setof(Ȳ , φ−(X̄, Ȳ , Z̄), W ), setof(Ȳ ′, φ(X̄, Ȳ ′, Z̄), W ′),
¬v(X,W ′ \W )

(Γ3)

v−(X̄,W ) :- setof(Ȳ , φ−(X̄, Ȳ , Z̄), W ), v(X̄,W ),

¬setof(Ȳ ′, φ′(X̄, Ȳ ′, Z̄), W )
(Γ4)

v−(X̄,W ) :- setof(Ȳ , φ+(X̄, Ȳ , Z̄), ), setof(Ȳ ′, φ(X̄, Ȳ ′, Z̄), W ),

¬setof(Ȳ ′′, φ′(X̄, Ȳ ′′, Z̄), W )
(Γ5)

v−(X̄,W ) :- setof(Ȳ , φ−(X̄, Ȳ , Z̄), ), setof(Ȳ ′, φ(X̄, Ȳ ′, Z̄), W ),

¬setof(Ȳ ′′, φ′(X̄, Ȳ ′′, Z̄), W )
(Γ6)

We prove the correctness of the differential rules Γ1– Γ6 in the following theorem.

Theorem 2. The differential rules Γ1– Γ6 correctly maintain a view containing a setof
subgoal where all the variables that are bound outside the setof are not passed to the
head.

The proof of Theorem 2 is similar to the proof of Theorem 1, except that before deleting
a tuple from the view we check for alternate derivations of the tuple in the updated
subgoals. In addition, a tuple is inserted into the view only if the view does not contain
an alternate derivation of the tuple to be inserted.

4 Efficient Incremental Maintenance

In the previous section, we extended the differential rules that are presented in [23]
to incrementally compute the differentials of views containing setof subgoals. In this
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section, we leverage the differential rules (from Section 3) to optimally maintain views
containing setof subgoals. As a first step, we present an example where the differential
rules are leveraged to incrementally maintain views containing setof subgoals.

Example 3. Consider a materialized view dominates which is defined over the tourna-
ment relation from our running example (in Section 1) as follows.

dominates(V,W ) :- setof(D, tournament(V,D,L),W )

The extension of the view dominates that corresponds to the extension of tournament
(in Table 2) is presented below.

dominates
Victor Defeated
yoda {palpatine, vader}
vader {yoda}
yoda {palpatine}

Suppose that Yoda defeats Darth Vader at Tatooine in a new tournament match. This
match results in the insertion of the tuple (yoda, vader, tatooine) into the tournament
relation i.e. (yoda, vader, tatooine) ∈ tournament+. Since the non-aggregated variable
L in tournament is not passed to the view dominates, we apply the differential rules
Γ1– Γ6 to incrementally compute the differentials of the view dominates. By applying
the differential rules Γ2 and Γ5 on the differential tournament+ and the relations tour-
nament and dominates, we derive the differentials dominates−(yoda, {palpatine}) and
dominates+(yoda, {palpatine, vader}). The computed differentials correspond to updat-
ing the tuple (yoda, {palpatine}) ∈ dominates to the tuple (yoda, {palpatine, vader}).

We note that in Example 3, the differential rules Γ2 and Γ5 access tournament’s
extension in addition to the differential tournament+ to maintain the view dominates.
A tuple (V,W ) ∈ dominates could potentially have multiple derivations in tournament
because V could defeat the same set of characters W at multiple planetary systems.
Hence, additional accesses to the extensions of edb relations are required to maintain
materialized views using differential rules.

Alternatively, we could maintain the count of the different derivations of tuples to op-
timize the maintenance of aggregate views. The counting algorithm, which is presented
in [14], leverages this idea to optimize the maintenance of views where the tuples in
the view have multiple derivations in the edb relations. Suppose that in Example 3, we
maintain the count of the different derivations of a tuple.

dominates
Victor Defeated Number of Derivations
yoda {palpatine, vader} 1
vader {yoda} 1
yoda {palpatine} 1

Now suppose that we delete a tuple, say (yoda, vader, dagobah) from tournament’s
extension. In this case, we decrease the count of the tuple (yoda, {palpatine, vader}) ∈
dominates from 1 to 0 (thereby deleting it from the view) and increase the count of the
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dominates
Victor Defeated Number of Derivations
vader {yoda} 1
yoda {palpatine} 2

tuple (yoda, {palpatine}) from 1 to 2.

When the tuple (yoda, vader, dagobah) is deleted from tournament’s extension, we
do not have to access tournament’s extension to incrementally maintain the material-
ized view dominates. However, consider a scenario where we delete the tuple (yoda,
palpatine, dagobah) instead of the tuple (yoda, vader, palpatine) from tournament’s ex-
tension. In this scenario, unless we access tournament’s extension, we cannot correctly
update the materialized view dominates because we do not have sufficient information
to determine whether the existing tuple (yoda, {palpatine})∈ dominates is to be deleted
or the tuple (yoda, {palpatine, vader}) ∈ dominates is to be updated.

Incremental Maintenance Using CReaM1: Consider the materialized view dominates
that we presented in Example 3. Suppose we rewrite the definition of dominates using
an auxiliary view va as follows.

dominates(V,W ) :- va(V, L,W )

va(V, L,W ) :- setof(D, tournament(V,D,L),W )

In addition, suppose that we materialize the auxiliary view va and maintain the counts
of the derivations of a tuple in the view dominates. The extension of the auxiliary view
va is presented below.

va
Victor Location Defeated
yoda dagobah {palpatine, vader}
vader tatooine {yoda}
yoda tatooine {palpatine}

Now, suppose that we delete the tuple (yoda, palpatine, dagobah) from the extension
of tournament. Since all of the non-aggregated variables of tournament are passed to the
auxiliary view va, we can incrementally maintain va using the differential rulesΔ1–Δ6

(from Section 3). We note that Δ1– Δ6 only access the extension of a view and the dif-
ferentials of the edb relations over which the view is defined. Thus, we are able to com-
pute the differentials v−a (yoda, dagobah, {palpatine, vader}) and v+a (yoda, dagobah,
{vader}) without accessing the extension of tournament.

Since the modified definition of the view dominates does not contain setof subgoals,
we use the counting algorithm [14] to incrementally maintain the count of the tuple
derivations in the view dominates in a subsequent step. The updated extension of the
view dominates is presented below.

1 The algorithm has been named CReaM because it Counts the tuple derivations in a view,
Rewrites the view using auxiliary views and Maintains the auxiliary views.
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dominates
Victor Defeated Number of Derivations
vader {yoda} 1
yoda {palpatine} 2

We now propose an algorithm called CReaM to incrementally maintain views con-
taining setof subgoals. The CReaM algorithm is presented in Figure 1. In Step 1 of the
algorithm, the supplied view is rewritten using an auxiliary view which is materialized
in a subsequent step. In Step 3 of the algorithm, the number of derivations of the tuples
in the supplied view is maintained. The incremental maintenance of the view v is car-
ried out in Step 4 of the algorithm by computing the differentials of the auxiliary view
which was created in Step 1 of the algorithm.

CReaM Algorithm
Input: 1. Materialized view v(X̄,W ) defined as:

v(X̄,W ) :- setof(Ȳ , φ(X̄, Ȳ , Z̄),W ),
2. Differentials φ+(X̄, Ȳ , Z̄) and φ−(X̄, Ȳ , Z̄)

Step 1: Rewrite the view v using an auxiliary view va which contains all of the
non-aggregated variables

v(X̄,W ) :- va(X̄, Z̄,W )
va(X̄, Z̄,W ) :- setof(Ȳ , φ(X̄, Ȳ , Z̄),W )

Step 2: Materialize the auxiliary view va
Step 3: Maintain the count of the tuple derivations in the view v
Step 4: Apply the differential rules Δ1- Δ6 over φ+(X̄, Ȳ , Z̄) and φ−(X̄, Ȳ , Z̄)

to compute v+a (X̄, Z̄,W ) and v−a (X̄, Z̄,W )
Use v+a (X̄, Z̄,W ) and v−a (X̄, Z̄,W ) to incrementally update the counts of v’s tuples
using [9]

Fig. 1. Algorithm to optimally maintain views containing setof subgoals

We note that the CReaM algorithm incrementally maintains a view whose definition
contains a single setof subgoal. However, when the supplied view definition contains
multiple setof subgoals and aggregate predicates, we can incrementally maintain the
view using CReaM as follows. Suppose a materialized view v contains k setof subgoals
{si} and m aggregate predicates {ai}. First, we rewrite the definition of v using k
auxiliary predicates, say {ti} where each ti is defined as ti :- si. Next, we maintain the
counts of the tuple derivations in v and incrementally compute the differentials of ti by
applying CReaM to the extensions of the auxiliary predicates {ti} and the differentials
of the edb relations. Since the modified definition of v does not contain setof subgoals,
we use the counting algorithm that is presented in [14] to incrementally maintain the
materialized view v.

In the following theorem, we establish that CReaM correctly maintains views that
contain setof subgoals.

Theorem 3. CReaM correctly maintains a materialized view containing setof subgoals.

Proof. Consider a view v in our language which is defined using k setof subgoals
s1, s2, . . . , sk as v :- s1, s2, . . . , sk. Suppose that we introduce k auxiliary views va1 ,
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va2 , . . . , vak
where each vai is defined as vai :- si. In the definition of the auxiliary

view vai , all of the variables that are bound outside the setof subgoal si are passed to
the view. By replacing the setof subgoals using the auxiliary views, we can rewrite the
definition of the view v as v :- va1 , va2 , . . . , vak

. Since the modified definition of the
view v does not contain setof subgoals, we can correctly maintain it by applying the
counting algorithm [14]. In addition, we can leverage the rules Δ1– Δ6 to correctly
compute the differentials of the auxiliary views {vai} by Theorem 1. ��

In the next section, we discuss the performance of CReaM and prove that it optimally
maintains materialized views containing setof subogals.

5 Performance of CReaM

Previous aggregate view maintenance algorithms [10, 14, 15, 21, 24, 27, 28] do not
materialize and maintain additional views. Instead, the algorithms leverage differential
relational algebra [10, 14, 15, 27, 28] or maintain the count of tuple derivations [10,
14, 15, 21, 24] to efficiently maintain aggregate views. In this section, we show that by
rewriting, and maintaining additional auxiliary views, CReaM speeds up the time taken
to incrementally maintain a view containing setof subgoals in comparision to previous
view maintenance algorithms. As our underlying cost model, we assume that the time
taken by an algorithm to incrementally maintain a view is proportional to the number
of tuple accesses that are required by the algorithm to maintain the view. As a first step,
we discuss the performance of CReaM when a single tuple is changed in the underlying
edb relations. We then discuss the performance of CReaM with respect to multiple tuple
updates.

Consider a view v which is defined as v(X̄,W ) :- setof(Ȳ , φ(X̄, Ȳ , Z̄),W ). Sup-
pose that the extensions of v and φ consist of nv and nφ tuples respectively. The exten-
sion of the view v and the differential φ+ and φ− are provided as inputs to the CReaM
algorithm (see Figure 1). In Steps 1 and 2, CReaM rewrites the definition of v using an
auxiliary view va and materializes va. Suppose that the number of tuples in va is nva .
Then, nv ≤ nva ≤ nφ. In Step 3, CReaM materializes the count of the tuple derivations
in v. Steps 1, 2, and 3 of the CReaM algorithm are pre-processing steps that are exe-
cuted before φ is updated. Therefore, in our analysis, we only consider the time taken
to execute Step 4 of CReaM as the time that is required to incrementally maintain v.

In Step 4, CReaM maintains va using the differential rules Δ1– Δ6. The time re-
quired to update va using Δ1– Δ6 is equal to the time required to compute the join of
the view va and the differentials φ+ and φ−. When the materialized view va is indexed
on the attributes X̄ and Z̄, the time required to compute the join is O(lognva), other-
wise it is O(nva). In a subsequent step, CReaM leverages the differentials v+a and v−a
that were previously computed using Δ1– Δ6 to update the extension of the view v us-
ing the counting algorithm [14]. Since the view v is a projection of the view va, the time
required to incrementally maintain v in response to the differentials v+a and v−a is either
O(lognv) or O(nv) depending on whether the attribute X̄ in the view v is indexed or
not. Therefore, the time taken by CReaM to update a view v with nv tuples in response
to a single tuple update in the underlying edb relations is either O(lognva) or O(nva)
depending on whether the physical design of the database is optimized or not.
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Suppose that we did not materialize the auxiliary view va. In this case, we cannot
update v without accessing the extension of φ. Suppose that the differential of φ consists
of a single tuple φ(x̄, ȳ, z̄). We need to recompute the set Sx̄,z̄ = {Ȳ | φ(x̄, Ȳ , z̄)} to
incrementally update v. We analyze the time required to update v under two possible
scenarios depending on whether φ consists of a single edb relation or φ is a conjunction
of edb relations. In the first case, the time required to incrementally compute Sx̄,z̄ is
either O(lognφ) or O(nφ) depending on whether an index exists on the attributes X̄
and Z̄ in φ or not. However, in the second case, when φ is a conjunction of edb relations,
we need to recompute φ and update it before recomputing the set Sx̄,z̄ . In this case, the
cost of recomputing and updating φ is dominated by the cost of computing the join of
the edb relations which is either O(nφ) or O(n × lognφ) depending on whether the
physical design of the database is optimized or not.

When there are multiple (say k) changes to φ, the time required by CReaM to incre-
mentally update the view v(X̄,W ) :- setof(Ȳ , φ(X̄, Ȳ , Z̄),W ) with nv tuples is either
O(k×lognv) or O(k×nv) depending on whether the views va and v are indexed or not.
However, when va is not materialized and φ is a conjunction of multiple edb relations,
we have to recompute the sets over φ. This requires O(n × logn) time. Therefore, the
speed up in the time to update v using CReaM in comparison to previous view mainte-
nance algorithms is by a factor of n

k when va and v are indexed.
We note that if the view v is defined as v(X̄, Z̄,W ) :- setof(Ȳ , φ(X̄, Ȳ , Z̄),W ), we

can update v without accessing or computing the extension of φ. In this case, the time
taken to update v is the same as is required by CReaM. The summary of CReaM’s
performance is presented in Table 1.

Next, we show that when the supplied materialized view and the auxiliary views that
are materialized by CReaM are indexed, the time taken by CReaM to incrementally
maintain a view is optimal.

Theorem 4. The time taken by CReaM to maintain a materialized view containing a
setof subgoal is optimal when the supplied materialized view and the auxiliary views
are indexed.

Proof. Suppose that a materialized view v containing a setof subgoal is supplied as
an input to CReaM. In addition, suppose that v consists of n tuples. When v and the
auxiliary view (that is materialized by CReaM) are indexed, CReaM maintains v in
O(logn) time. If we prove that Ω(logn) time is required to incrementally maintain an
extension of a view with n tuples, then we would establish the optimality of CReaM.

To prove the lower bound, we reduce the problem of incrementally maintaining the
partial sums of an array of n numbers to the problem of incrementally maintaining an
extension of a view with n tuples. Prior work in [7, 8, 25] have independently proven
that the maintenance of partial sums of an array of n numbers requires Ω(logn) time.
Consider an array of n numbers {ai}. The partial sums problem maintains the sum∑k

i=0 ai for every k (1 ≤ k ≤ n) subject to updates of the form ai = ai + x, where x
is a number. We reduce the instance of the partial sums problem over the array {ai} to
an instance of the view maintenance problem in time that is polynomial in n as follows.
Consider an instance of the view maintenance problem where we have two edb relations
r(A,B) and s(B,C). The extension of r(A,B) consists of the set of n×(n−1) tuples,
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{(i, j) | 1 ≤ j ≤ i ≤ n}. The extension of s(A,B) consists of the set of n tuples,
{(i, ai) | 1 ≤ i ≤ n}. Suppose that we materialize n views v1, v2, . . . , vn over r(A,B)
and s(B,C) where each vi is defined as vi(S) :- setof((B,C), r(i, B)& s(B,C),W ),
sum(W,S, 2). In the definition of vi, the aggregate sum(W,S, 2) computes the sum of
the 2nd component of the tuples ∈W .

When an array value ai is updated to ai+x, we update the tuple (i, ai) ∈ s(B,C) to
the tuple(i, ai+x). Since we can compute the partial sum

∑k
i=0 ai by finding the value

s which is in the extension of vk, the problem of maintaining the partial sums of the ar-
ray {ai} reduces to the problem of incrementally maintaining the views v1, v2, . . . , vk.
Therefore, if the number of tuples in an extension of a view that contains a setof subgoal
is O(n), then Ω(log n) time is required to incrementally maintain the view. ��

Self-maintenance of Aggregate Views: In Theorem 4, we prove that CReaM optimally
maintains views containing setof subgoals. Now, we show that by materializing auxil-
iary views, CReaM guarantees the self-maintainability [17] of aggregate views that are
defined over single edb relations. In other words, the extension of an edb relation does
not have to be accessed to incrementally maintain an aggregate view that is defined
over the relation. The property of self-maintainability is desirable when access to the
edb relations is restricted or when the edb relations themselves are hypothetical (such
as in a LAV integration scenario [33]).

Consider a view v which is defined over an edb relation φ using the aggregation pred-
icate agg as v(X̄, A) :- setof(Ȳ , φ(X̄, Ȳ , Z̄),W ), agg(W,A). To incrementally main-
tain v, CReaM rewrites the definition of v using an auxiliary view va as follows.

v(X̄, A) :- va(X̄, Z̄,W ), agg(W,A)

va(X̄, Z̄,W ) :- setof(Ȳ , φ(X̄, Ȳ , Z̄),W )

CReaM materializes the view va and incrementally computes the diffentials v+a and v−a
by applying the differential rules Δ1– Δ6. The differential rules Δ1– Δ6 compute the
join of the extension of the view va and the differentials of φ i.e., φ+ and φ−. In a
subsequent step, CReaM leverages the differentials of va to incrementally maintain the
view v using the algorithm presented in [14]. By materializing the auxiliary view va,
CReaM is able to maintain v without accessing the extension of φ, thereby, making the
view v self-maintainable.

6 Related Work

The problem of incrementally maintaining views has been extensively studied in the
database community [1–6, 10, 14–16, 18, 21–23, 26–28, 30–32, 34]. A survey of the
view maintenance techniques is presented in [13]. The view maintenance algorithms
proposed in [2, 10, 14, 15, 18, 23, 26, 27] leverage differential relational algebra to
incrementally maintain views in response to changes to the underlying edb relations.
For instance, the prior work presented in [23] incrementally computes the differentials
(or changes) of views by applying a set of differential rules over the extensions of edb
relations and their differentials.
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However, only a small fraction of the prior work on incremental view maintenance
[10, 14, 15, 21, 24, 27, 28] addresses the maintenance of aggregate views. The tech-
niques proposed in [10, 14, 21, 24] incrementally maintain views having only one
aggregation operator. Furthermore, the incremental maintenance algorithms presented
in [10, 14, 15, 21, 24, 27, 28] can support only a fixed set of built-in aggregate operators
(such as min, max, sum, and count).

The problem of incremental view maintenance is closely related to the problem of
self-maintainability [11, 12, 17, 19]. A view is self-maintainable if it can be incremen-
tally maintained using the extension of the view and the changes to the edb relations.
The view maintenance algorithms that are presented in [14, 15, 19] derive efficient self-
maintenance expressions as well for certain types of updates to edb relations. Our view
maintenance algorithm, CReaM, guarantees the self-maintenance of an aggregate view
that is derived over a single edb relation by materializing auxiliary views.

Our work differs from prior work on incrementally maintaining aggregate views in
two ways. First, we propose an algorithm called CReaM that optimally maintains ag-
gregate views. For the special class of aggregate views where all of the non-aggregated
attributes of the underlying edb relations are passed to the view, CReaM speeds up the
time taken to incrementally update the view in comparison to previous view mainte-
nance algorithms [10, 14, 15, 21, 24] by a factor that is at least logarithmic in the size
of the extension of the view. Second, we can extend the CReaM algorithm to main-
tain views that contain user-defined aggregates. To maintain views with user-defined
aggregates we rewrite the supplied view definitions using auxiliary views that contain
setof subgoals and apply the CReaM algorithm to maintain the auxiliary views. Then,
we apply prior maintenance algorithms [13] to maintain views whose definitions do not
contain sets.

We note that even though CReaM optimally maintains aggregate views, we could
further optimize the maintenance of views that contain monotonic aggregates [29] when
new tuples are inserted to the edb relations. When new elements are inserted to a set
that is aggregated by a monotonic aggregate, the aggregate value either always increases
or decreases. For example, the aggregate sum is monotonic over the domain of postive
numbers. Therefore, if we have a view v that is defined as v(A) :- setof(B, r(A,B),W ),
sum(W,S), S > 10 and a tuple t ∈ extension of v, the tuple t can never be changed by
insertions into the relation r(A,B).

7 Conclusion

We propose an algorithm called CReaM that incrementally maintains materialized ag-
gregate views in response to changes to edb relations by materializing auxiliary views.
By materializing auxiliary views, CReaM guarantees the self-maintainability of aggre-
gate views that are defined over a single database table. CReaM optimally maintains
views containing setof subgoals and speeds up the time taken to update materialized
aggregate views with n tuples that are defined over multiple edb relations and do not
contain all of the non-aggregated attributes in the edb relations either by a factor of
n

logn
or logn depending on whether the supplied materialized view is indexed or not.

For other types of aggregate views, CReaM updates the view in no more time than that
is required by prior view maintenance techniques to update the view.
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25. Păatraşcu, M., Demaine, E.D.: Tight bounds for the partial-sums problem. SODA (2004)
26. Qian, X., Wiederhold, G.: Incremental recomputation of active relational expressions. ACM

TKDE (1991)
27. Quass, D.: Maintenance expressions for views with aggregation. Views (1996)



414 A. Mohapatra and M. Genesereth

28. Quass, D., Mumick, I.S.: Optimizing the refresh of materialized view. Technical Report
(1997)

29. Ross, K.A., Sagiv, Y.: Monotonic aggregation in deductive databases. PODS (1992)
30. Shmueli, O., Itai, A.: Maintenance of views. SIGMOD (1984)
31. Stonebraker, M.: Implementation of integrity constraints and views by query modification.

SIGMOD (1975)
32. Tompa, F.W., Blakeley, J.A.: Maintaining materialized views without accessing base data.

Information Systems (1988)
33. Ullman, J.D.: Principles of Database and Knowledge-Base Systems: Volume II (1989)
34. Wolfson, O., Dewan, H.M., Stolfo, S.J., Yemini, Y.: Incremental evaluation of rules and its

relationship to parallelism. SIGMOD (1991)



Towards an Approximative Ontology-Agnostic

Approach for Logic Programs

João Carlos Pereira da Silva1 and André Freitas2
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Abstract. Distributional semantics focuses on the automatic construc-
tion of a semantic model based on the statistical distribution of co-
located words in large-scale texts. Deductive reasoning is a fundamental
component for semantic understanding. Despite the generality and ex-
pressivity of logical models, from an applied perspective, deductive rea-
soners are dependent on highly consistent conceptual models, which lim-
its the application of reasoners to highly heterogeneous and open domain
knowledge sources. Additionally, logical reasoners may present scalabil-
ity issues. This work focuses on advancing the conceptual and formal
work on the interaction between distributional semantics and logic, fo-
cusing on the introduction of a distributional deductive inference model
for large-scale and heterogeneous knowledge bases. The proposed reason-
ing model targets the following features: (i) an approximative ontology-
agnostic reasoning approach for logical knowledge bases, (ii) the inclu-
sion of large volumes of distributional semantics commonsense knowledge
into the inference process and (iii) the provision of a principled geometric
representation of the inference process.

Keywords: distributional semantics, logic programming, knowledge
bases, distributional vector space, approximate deductive reasoning.

1 Introduction

Logical models provide a comprehensive system for representing concepts,
objects, their properties and associations. In addition to the representation of con-
ceptual abstractions, logical models provide a precise definition of logical infer-
ence, allowing new knowledge to become explicit from existing facts and rules.

Despite the fundamental importance of inference to the development of intel-
ligent systems, experimental research over large-scale and heterogeneous knowl-
edge bases shows evidence that logical models have limitations in the provision
of inference models which can cope with the level of contextual complexity,
vagueness, ambiguity and scale present in open domain/commonsense knowl-
edge bases. The lack of properties such as robustness to inconsistencies, a more
principled mechanism of semantic approximation and the ability to scale to large
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volume knowledge bases represents a solid barrier to the applicability of existing
inference models into this scenario.

More recently, distributional semantic models (DSMs) [17] have emerged from
the empirically supported evidence that semantic models automatically derived
from statistical co-occurrence patterns on large corpora provide simplified but
comprehensive semantic models. With the availability of large volumes of text
on the Web, DSMs have the potential to become a fundamental element in
addressing existing challenges for enabling a robust semantic interpretation by
computers.

This work investigates the complementary aspects between distributional se-
mantics and logic programming models, focusing on the analysis of approximate
inference and querying on a distributional vector space. While logical models
provide an expressive conceptual representation structure with support for in-
ferences and expressive query capabilities, distributional semantics provides a
complementary layer where the semantic approximation supported by large-
scale comprehensive semantic models and the scalability provided by the vector
space model (VSM) can address the trade-off between expressivity and seman-
tic/terminological flexibility.

The contributions of this work concentrate on advancing the conceptual and
formal work on the interaction between distributional semantics and logic, fo-
cusing on the investigation of a distributional deductive inference model for
large-scale and heterogeneous knowledge bases. The proposed inference model
targets the following features: (i) an approximative ontology-agnostic reasoning
approach for logical knowledge bases, (ii) the inclusion of large volumes of distri-
butional semantics commonsense knowledge into the inference process and (iii)
the provision of a principled geometric representation of the inference process.

This work is organized as follows: section 2 describes a motivational scenario;
section 3 provides a brief introduction to distributional semantics ; section 4
describes the logic model; section 5 describes the geometric model; section 6
connects the logical and geometrical models ; section 7 shows the combined
distributional-logic inference process; section 8 presents a prototype of the pro-
posed approach; section 9 describes related work and section 10 presents the
conclusions and future work.

2 Motivational Scenario

Every knowledge or information artifact (from unstructured text to structured
knowledge bases) maps to an implicit or explicit set of user intents and semantic
context patterns. The multiplicity of contexts where open domain and common-
sense knowledge bases can be used, defines the intrinsic semantic heterogeneity
for these scenarios. Different levels of conceptual abstraction or lexical expres-
sions in the representation of predicates and constants are examples where a
semantic/terminological gap can strongly impact the inference process.

In the scenario below an user executes a vocabulary-independent (ontology-
agnostic) query over a logic program Π . A query is vocabulary independent if
the user is not aware of the terms and concepts inside Π .
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Consider the query ‘Is the father in law of Bill Clinton’s daughter a politician?’
that can be represented as the logical query:

?− daughter of (X ,bill clinton), politician(Y ), father in law(Y ,X )

Let us assume that the logic program Π contains facts and rules such as:

child of(chelsea clinton,bill clinton).
child of(marc mezvinsky,edward mezvinsky).
spouse(chelsea clinton,marc mezvinsky).
is a congressman(edward mezvinsky).

father in law(A,B) ← spouse(B,C), child of(C,A).

meaning that Chelsea is the child of Bill Clinton, Marc Mezvinsky is the child
of Edward Mezvinsky, Chelsea is the spouse of Marc, Edward Mezvinsky is a
congressman and A is father in law of B when the spouse of B is a child of A.

The inference over Π will not materialize the answer X = chelsea clinton and
Y = edward mezvinsky , because despite the statement and the rule describing
the same sub-domain, there is no precise vocabulary matching between the query
and Π .

In order for the reasoning to work, the approximation of the following terms
would need to be established: daughter of ∼ child of , is a congressman ∼
politician . The reasoner should be able to semantically approximate vocabu-
lary terms such as daughter of and child of , addressing the terminological gap
required by this inference.

To close the semantic/vocabulary gap in a traditional deductive logic knowl-
edge base it would be necessary to increase the size of Π to such an extent that
it would contain all the facts and rules necessary to cope with any potential
vocabulary difference. Together with the aggravation of the scalability problem,
it would be necessary to provide a principled mechanism to build such a large
scale and consistent set of facts and rules.

3 Distributional Semantics and Semantic Approximative
Inference

In this work distributional semantics supports the definition of an approximative
semantic interpretation for facts and rules in a logic program Π where constants
and predicates are mapped to vectors in a distributional vector space. This section
provides a brief introduction to distributional semantics and outlines the core
principles and the rationale of the proposed approximative inference model.

3.1 Distributional Semantics

Distributional semantics is defined upon the assumption that the context sur-
rounding a given word in a text provides important information about its mean-
ing [17]. It focuses on the construction of a semantic model for a word based
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on the statistical distribution of co-located words in texts. These semantic mod-
els are naturally represented by Vector Space Models (VSMs) [17], where the
meaning of a word can be defined by a weighted vector over a term space, which
represents the association patterns of co-occurring words in a corpus.

The existence of large amounts of unstructured text on the Web brings the
potential to create comprehensive distributional semantic models (DSMs). DSMs
can be automatically built from large corpora, not requiring manual interven-
tion on the creation of the semantic model. Additionally, its natural association
with VSMs, where dimensional reduction approaches or data structures such as
inverted list indexes, can provide a scalability benefit for the instantiation of
these models.

These models can provide a more scalable solution to the problem of cap-
turing commonsense semantic information, complementing existing manually
created knowledge bases such as Cyc1. The computation of semantic related-
ness measures between pairs of words is one instance in which the strength of
distributional models and methods is empirically supported ([10],[6]).

3.2 The Distributional Inference Vector Space

The commonsense semantic knowledge embedded in a distributional model is
used to semantically complement a logic program Π . In a traditional deduc-
tive system the inference process is defined by a sequence of exact substitution
operations, where the symbols representing constants and predicates are ex-
actly matched under the syntax of the representation language. In the proposed
inference model the symbols have an associated concept vector representation
which encodes its relation to other symbols based on the symbols’ co-occurrence
statistics in a large unstructured reference corpus. The concept vectors define a
distributional vector space which can be used to represent and embed the logic
program symbols in the space.

The embedding of logic programs in the distributional vector space allows the
definition of a geometric interpretation for the inference process. The geometry
allows the definition of a semantic heuristics which defines a direction for the
exploration of the solution space.

The proposed inference model uses the lexical-semantic information embed-
ded in a distributional-relational vector space (named τ -Space [7]) to compute
a measure of semantic relatedness between logic program symbols in the space.
The distributional semantic relatedness measure can be used to establish an ap-
proximate semantic equivalence between two predicates at a given context. The
intuition behind this approach is that two terms which are highly semantically
related in a distributional model are likely to have a close (implicit) relation2.

This work expands on the existing abstraction of the τ -Space, defined in
[7], introducing the notion of inference process over a τ -Space, articulating the
connections between logical inference and the geometry defined by the τ -Space.

1 http://www.cyc.com/platform/opencyc
2 Distributional semantic models can be specialized to exclude certain types of seman-
tic relatedness (such as antonyms or relations in a negation context).

http://www.cyc.com/platform/opencyc
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4 Logic Model

4.1 Syntax

An alphabet A is formed by the following disjoint set of symbols: (i) Predicates
which are represented by P = {p1 , · · · pm}; (ii) Constants which are represented
by E = {e1 , · · · , en}; (iii) Variables which are represented by upper case letters
{X,Y, Z, · · · }. Also, we have a fixed set of connectives represented by {′,′ ,←,¬}.
A term t is either a constant or a variable. An atom at is an expression of the
form p(t1, · · · , tn) where p is a predicate and t1, · · · , tn are terms. An atom
p(t1, · · · , tn) is grounded whenever t1, · · · , tn are all constants. A (grounded)
literal is an (grounded) atom or a negated (grounded) atom.

A clause cl is an expression of the form: head(cl)← body(cl)., where head(cl)
is an atom and body(cl) is a conjunction of literals. A grounded clause is formed
only by grounded literals.

A logic program Π is a set of clauses. We say that Π is a definite logic
program when there is no negative atom in body(cl). Otherwise, Π is a normal
logic program. A query Q to Π is an expression of the form ?− q1 , · · · , qn .
where q1 , · · · , qn are literals. A signature Σx is a pair (Px ,Ex ) where Px ⊆ P
and Ex ⊆ E are respectively the sets of all predicates and constants that appear
in x ∈ {Π, at,Q}.

4.2 Semantics

Given the sets of constants E and predicates P , let HU = E be the Herbrand
Universe and HB be the Herbrand Base formed by all ground atoms that can
be constructed using predicates and constants in P and E.

A Herbrand interpretation of a predicate p is any set :(p) ⊆ HB such that all
elements in :(p) are of the form p(e1, · · · , en), where for all i ∈ [1, n], ei ∈ HU .
A Herbrand interpretation : satisfies a clause cl of the form h ← b1, · · · , bn,
¬bn+1, · · · ,¬bm if h ∈ : whenever each b1, · · · , bn ∈ : and each bn+1, · · · ,
bm /∈ :. A Herbrand model M(Π) =

⋃
p∈PΠ

:(p) of Π is a Herbrand interpre-
tation that satisfies all clauses in Π . A Herbrand model M(Π) is minimal if no
proper subset ofM(Π) is also a model. A definite logic program Π has only one
minimal Herbrand model, which we denote as Min(Π).

A set of atoms S is an answer set model of a normal logic program Π iff
S = Min(ΠS) where ΠS is the definite logic program obtained from Π (the
reduct of Π - [11]): (i) deleting all clauses that has ¬at in its body such that
at ∈ S and (ii) deleting all negated atoms in the bodies of the remaining clauses.
An answer set model S satisfies an atom at (resp., ¬at) when at ∈ S (resp.,
at /∈ S) which is denoted by S |= at (resp., S |= ¬at).

5 Geometrical Model

5.1 τ -Space

The τ-Space [7] is a distributional structured vector space model that will be used
to represent predicates and constants under a distributional semantic model. It
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is built from a reference corpus formed by a pair of sets (Term,Context) where
Term = {k1, · · · , kt} is a set of terms and Context = {c1, · · · , ct} is a set of
context windows in the corpus. For example, a given set of documents can be
seen as a set of context windows and all terms that occur in those documents
form the set of terms.

Term is used to define the basis Termbasis = {−→k 1, · · · ,
−→
k t} of unit vectors

that spans the term vector space VS term. In VS term , a context window cj is
represented as:

−→c j =

t∑
i=1

vi,j
−→
k i (1)

where vi,j is 1 if term ki appears in context window cj and 0 otherwise.
The set Context is used to define the basis Contextbasis = {−→c 1, · · · ,−→c t} of

vectors that spans the distributional vector space VSdist . A term x is represented
in VSdist as:

−→x =

t∑
j=1

wj
−→c j (2)

where

wj = tfj × idf =
freqj

count(cj)
× log

N

ncj

(3)

meaning that wj is the product of the normalized term frequency tfj (where freqj
is the frequency of term x in the context window cj and count(cj ) is the number
of terms inside cj ) and the inverse document frequency idf for the term x (where
N is the total number of context windows in the reference corpus and ncj is the
number of context containing the term x).

As consequence, a vector −→x ∈ VSdist can be mapped to VS term by the
following transformation:

−→x =
t∑

i=1

t∑
j=1

wjvi,j
−→
k i (4)

We can see from the equations above that the set C ⊆ Context where a term
occurs defines the concept vectors associated with the term. This represents its
meaning on the reference corpus. Since each concept vector is weighted according
to the term distribution in the corpus, we can define the set Contextbasis in terms
of Termbasis where each dimension maps to a word in the corpus.

6 Linking the Logical and Geometrical Models

In this section, we will define the link between the geometrical (distributional)
and logical models. The idea is that the former could provide a way to enrich
the semantics and inference power of the latter, resulting in an approach that
supports an approximative semantic matching inference process.
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6.1 Mapping Predicates and Constants to Vectors

The signature of a given logic program Π can be translated into τ -Space vectors
in the distributional vector space VSdist as follows:

Definition 1. Let {−→c 1, · · · ,−→c t} be the vectors basis that spans VSdist. The
vector representations of P and E in VSdist are defined by:

−→
PVSdist = {−→p : −→p =

t∑
i=1

vpi
−→c i, for each p ∈ P} (5)

−→
EVSdist = {−→e : −→e =

t∑
i=1

vei
−→c i, for each e ∈ E} (6)

where vei and vpi are defined by the weighting scheme over the distributional
model. The weighting scheme will reflect the word co-occurrence pattern in the
reference corpus.

Elements of a query Q with signature ΣQ = (PQ, EQ) are mapped to VSdist

in a similar way.

6.2 Semantic Relatedness of Predicates, Programs and Models

Consider, for example, two highly semantic related concepts represented by two
syntactically different predicates, such as daughter of and child of . In the uni-
fication process only syntactically identical predicates can be resolved. If we
have stated facts/rules using the predicate child of , no query using predicate
daughter of would be answered.

In order to bring to logic programs the ability of semantically relate predicate
symbols which use a meaningful natural language descriptor, we will define the
notion of semantic relatedness between predicates as follows:

Definition 2. Let p1 and p2 be predicate symbols with same arity and with nor-
malized vector representations −→p1 and −→p2 in VSdist. The semantic relatedness
function sr : P × P → [0, 1] is defined by the inner product between −→p1 and −→p2 :
sr(p1, p2) =

−→p1.
−→p2 = cos(θ) where θ is the angle between vectors −→p1 and −→p2.

Definition 3. Let p1 and p2 be predicates and η ∈ [0, 1] be a threshold. We say
that p1 and p2 are semantically related wrt η whenever sr(p1, p2) > η.

The function sr allows us to extend the notion of semantic relatedness to
logic programs, answer set models and unification procedure allowing the in-
ference process to continue in cases where predicates are syntactically distinct.
Initially, we use the semantic relatedness between predicate symbols to define
the predicate substitution as follows:

Definition 4. Let P1 = {p1, · · · , pn} and P2 = {p′1, · · · , p′n} be two sets of
predicate symbols such that ∀i ∈ [1, n], sr(pi, p

′
i) > η. A predicate substitution

of P1 by P2 wrt η is defined by λη(P1, P2) = {p1/p′1, · · · , pn/p′n}. We denote
λ−1
η (P1, P2) = λη(P2, P1) = {p′1/p1, · · · , p′n/pn}.
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Since the goal of this type of substitution is to allow that the inference process
can continue despite the vocabulary differences, definition 4 does not allow the
substitution of two different predicates pi and pj with a single predicate p′.
This is done to preserve the logical semantics of the predicates, that is, both
extensions of pi and pj. Otherwise, if p′ could replace both pi and pj , we would
have :(p′) = {(c1, · · · , cn) such that (c1, · · · , cn) ∈ (:(pi) ∪ :(pj))}.

We associate to predicate substitutions a semantic relatedness measure:

srsubst(λη(P1, P2)) =
1

n
∗

∑
i∈[1,n]

sr(pi, p
′
i) (7)

which will be also used to define semantic relatedness between logic programs
and Herbrand models.

Definition 5. Let Π1 and Π2 be logic programs with signatures, respc., ΣΠ1 =
(PΠ1 , EΠ1) and ΣΠ2 = (PΠ2 , EΠ2 ). We say that Π1 and Π2 are semantically
related wrt a threshold η (or sr-logic programs wrt η) when there is some predicate
substitution λη(P1, P2) such that Π2 = Π1 · λη(P1, P2) where P1 = (PΠ1 \ PΠ2)
and P2 = (PΠ2 \ PΠ1 ).

Note that when Π2 = Π1 ·λη(P1, P2), Π1 = Π2 ·λ−1
η (P1, P2) = Π2 ·λη(P2, P1).

Definition 5 states that two sr-logic programs are different versions of the same
program that use a set of different predicate symbols, which are semantically
related from a natural language perspective. From the logical point of view,
the answer set models of Π1 are preserved in Π2 (and vice-versa) in the sense
that the extensions of all predicates in both programs are the same: different
predicate symbols that are semantically related have the same extension. This
can be shown as follows:

Proposition 1. Let Π be a normal logic program, S ⊆ HBΠ be a set of atoms.
For any predicate substitution λη, (Π

S · λη) = (Π · λη)S·λη .

Proof. (⊆): Suppose that cl ∈ (ΠS ·λη) and cl /∈ (Π ·λη)S·λη . Since cl ∈ (ΠS ·λη),
we have that cl · λ−1

η ∈ ΠS . One of the following cases can occur:

– cl · λ−1
η ∈ Π when there is no occurrence of negative atoms in the body of

cl. Then cl ∈ Π · λη and cl ∈ (Π · λη)S·λη , a contradiction; or
– there is a clause cl′ · λ−1

η ∈ Π with negative atoms ¬at1 · λ−1
η , · · · ,¬atn ·

λ−1
η in the body that are all eliminated by S generating cl · λ−1

η . Since
{at1 · λ−1

η , · · · , atn · λ−1
η } ⊆ S, we have {at1, · · · , atn} ⊆ (S · λη). So cl ∈

(Π · λη)S·λη , which contradicts our hypothesis.

(⊇): Suppose that cl ∈ (Π · λη)S·λη and cl /∈ (ΠS · λη). Since cl ∈ (Π · λη)S·λη ,
we can have one of the following cases:

– cl ∈ (Π · λη). Then (cl · λ−1
η ) ∈ Π , and consequently (cl · λ−1

η ) ∈ ΠS or

cl ∈ (ΠS · λη), contradicting our hypothesis; or
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– there is a clause cl′ ∈ (Π · λη) with negative atoms ¬at1 · λη, · · · ,¬atn ·
λη in the body that are all eliminated by (S · λη) generating cl. Hence
{at1, · · · , atn} ⊆ S and since (cl′ · λ−1

η ) ∈ Π , we have that (cl · λ−1
η ) ∈ ΠS ,

or, cl ∈ (ΠS · λη), contradicting our hypothesis.

Corollary 1. Let Π1 and Π2 be sr-logic programs wrt η and S a set of atoms

such that PS ⊆ PΠ1 . Then ΠS
1 = (Π

S·λη(P1,P2)
2 ) · λη(P2, P1).

Proof. Since Π1 and Π2 be sr-logic programs wrt η, by definition 5, we have
Π1 = Π2 · λη(P2, P1). Given a set of atoms S, let S′ = S · λη(P1, P2) and
consequently S = S′ · λη(P2, P1).

Then, we have: ΠS
1 = (Π2 · λη(P2, P1))

S = (Π2 · λη(P2, P1))
S′·λη(P2,P1) =

(ΠS′
2 ) · λη(P2, P1) = (Π

S·λη(P1,P2)
2 ) · λη(P2, P1)

Proposition 2. Let Π1 and Π2 be sr-logic programs wrt η.
M(Π1) is an answer set model of Π1 iff M(Π2) =M(Π1) · λη(P1, P2) is an

answer set model of Π2.

Proof. We have Π2 = Π1 · λη(P1, P2) and M(Π1) = Min(Π
M(Π1)
1 ). So,

Min(Π
M(Π1)·λη(P1,P2)
2 ) = Min((Π1 · λη(P1, P2))

M(Π1)·λη(P1,P2)) =

= Min((Π
M(Π1)
1 ) · λη(P1, P2)) = Min(Π

M(Π1)
1 ) · λη(P1, P2) = M(Π1) · λη(P1, P2)

The semantic relatedness srprog between logic programs Π1 and Π2 and
the semantic relatedness srmodels between (answer set) models M(Π1) and
M(Π2) =M(Π1)·λη(P1, P2) are defined using the predicate substitution λη(P1,
P2) used to transform Π1 in Π2: srprog(Π1, Π2) = srmodels(M(Π1),M(Π2)) =
srsubst(λη(P1, P2))

The satisfiability of atoms expressed using a predicate symbol that does not
belong to the signature of an answer set model is defined by:

Definition 6. Let S be an answer set model of a logic program Π. Given a
grounded atom p(t1, · · · , tn) such that p /∈ PΠ , we say that:

– S sr-satisfies (p(t1, · · · , tn), ζ) wrt η, denoted by S |=η (p(t1, · · · , tn), ζ)
when there is a substitution λη({p}, {p′}) for some p′ ∈ PΠ such that S |=
(p(t1, · · · , tn) · λη({p}, {p′})) and ζ is the semantic relatedness measure as-
sociated to the predicate substitution λη({p}, {p′}) as defined in equation (7)
(i.e., ζ = srsubst(λη({p}, {p′}))).

– S sr-satisfies (¬p(t1, · · · , tn), ζ) wrt η, denoted by S |=η (¬p(t1, · · · , tn), ζ)
when there is a substitution λη({p}, {p′}) for some p′ ∈ PΠ such that S |=
(¬p(t1, · · · , tn) · λη({p}, {p′})) and ζ is the semantic relatedness measure
associated to the predicate substitution λη({p}, {p′}) as defined in equation
(7) (i.e., ζ = srsubst(λη({p}, {p′}))).

Given a set of grounded literals Q such that Q = Q1 ∪ Q2, PQ1 ∩ PQ2 = ∅,
PQ1 ⊆ PΠ and PQ2 �⊆ PΠ , we say that
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– S sr-satisfies (Q, ζ) wrt η, denoted by S |=η (Q, ζ) iff there is a substitu-
tion λη(PQ2 , P

′) for some P ′ ⊆ PΠ such that S |= (Q · λη(PQ2 , P
′)) and ζ

is the semantic relatedness measure associated to the predicate substitution
λη(PQ2 , P

′) as defined in equation (7) (i.e., ζ = srsubst(λη(PQ2 , P
′))).

7 Distributional-Logic Inference

In this section, we will present the combined distributional-logical inference pro-
cess. The first step to answer Q is to order the literals in it according to a
relevance order of elements in PQ ∪ EQ.

Definition 7. Let Q be a query. The relevance order of the literals in Q is the
sequence of literals < l1, l2, · · · , lm > such that: (i) Q is equivalent to

∧m
i=1 li;

(ii) ∀i ∈ [1,m− 1], frelevance(li) ≥ frelevance(li+1)

The function frelevance is a heuristic measure of specificity over the query sym-
bols which gets the most specific constant or predicate (which we call semantic
pivot symbol). The specificity can be defined as the IDF (Inverse Document Fre-
quency) of a term over a reference corpus, as a function of the lexical categories
associated with the term, or as a combination of the number of elements associ-
ated with x (where x is a predicate or constant). The rationale behind prioritizing
the selection of a symbol with high specificity is that the algorithm prioritizes
the hardest constraint in the query and selects the query element less prone to
semantic ambiguity, vagueness and polysemy. Normally the first semantic pivot
symbol selected in a query Q is a constant, if any exists.

The selection of a semantic pivot allows a reduction in the search space where
just the elements of Π associated with the pivot at a given iteration are can-
didates for the semantic matching. In each iteration, a set of semantic pivots
is defined, which propagates to other points in the τ -Space, following the topo-
logical relations defined by the syntactic structure of the atoms. The order of
the sequence is unique, with regard to a frelevance function and the syntactic
constrains of the query elements.

Once the order of literals in a query Q is fixed, to answer the ordered query
Q over Π , first we use algorithm 1 to find all predicate substitutions wrt a given
threshold η between the predicate symbols that appear in Π (PΠ) and all the
predicate symbols q in Q such that q /∈ PΠ (Pquery).

Each predicate substitution λη(Pquery , P
′
Π) generated by algorithm 1 can be

applied to Q resulting in a query (Q ·λη(Pquery , P
′
Π)) where all predicates belong

to PΠ . So, we can answer this transformed query using any answer set solver.
Note that for each λη(Pquery , P

′
Π) ∈ Substitutions we can calculate the score

associated with that substitution (srsubst(λη(Pquery , P
′
Π))) since the semantic

relatedness measure sr is stored whenever a substitution is found (line 13 in
algorithm 1).
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Algorithm 1. Distributional Predicate Substitution Algorithm - DPS

INPUT

– PΠ : The list of all predicate symbols that appear in a program Π
– Pquery: The list of all predicate symbols q that appear in a query Q such that

q /∈ PΠ

– η: Threshold

OUTPUT

– Substitutions: A set with all predicate substitutions λη(Pquery, P
′
Π) where P ′

Π ⊆
PΠ and |P ′

Π | = |Pquery |
PROCEDURE DPS(PΠ ,Pquery ,η):

1: if Pquery == [ ] then
2: return ([ [ ] ])
3: else
4: for all i ∈ [1, |Pquery|] do
5: X ← Pquery(i)
6: P ′

query ← remove(X,Pquery)
7: Substitutions ← [ ]
8: for all Y ∈ PΠ do
9: if sr(X,Y ) > η then
10: P ′

Π ← remove(Y,PΠ)
11: Subst ← [ ]
12: for all Z ∈ DPS(P ′

Π ,P ′
query,η) do

13: Subst ← append(Z, [(X,Y, sr(X,Y ))])
14: Substitutions ← append(Substitution, [Subst])
15: end for
16: end if
17: end for
18: end for
19: end if
20: return Substitutions

8 Prototype and Evaluation

A prototype of the proposed approach was built and it contains two modules: (i)
the prolog module implemented using SWI-Prolog3 which identifies if a predicate
in a query belongs or not to the signature of a given normal logic program
and does all predicate substitutions with the respective semantic relatedness
measure; (ii) the τ -Space module, which was constructed using Explicit Semantic
Analysis (ESA) as the distributional model built over Wikipedia 2006, where the
Wikipedia articles were the context windows and TF/IDF was the weighting
scheme.

The query is of the form (Q, η), where Q is a query and η is the desired
threshold which has its value determined experimentally accordingly to the cor-

3 www.swi-prolog.org/

www.swi-prolog.org/
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pus that is used. The experimental threshold η was based on the semantic dif-
ferential approach for ESA proposed in [6]. The approach was simplified to a
ground threshold of 0.05.

The answers to (Q, η) are usual logic program answers with the scores corre-
sponding to srsubst. When the predicate q in the selected literal l ofQ is identified
as not belonging to PΠ , the τ -Space module is called and returns all predicate
names of Π semantically related to q wrt η. Each one of these predicates (if any
exists) replaces q in the query, which proceeds in the inference process as usual.

Example 1. Let Π be formed by:

child of(chelsea clinton, bill clinton).
child of(marc mezvinsky,edward mezvinsky).
spouse(chelsea clinton, marc mezvinsky).
is a congressman(edward mezvinsky).

father in law(A,B) ← spouse(B,C),child of(C,A).

Suppose that we want to answer the query ”Is the father in law of Bill Clinton’s
daughter a politician?” wrt a threshold η = 0.05:

?-((daughter of(X,bill clinton),father in law(Y,X),politician(Y)),0.05).

Since the predicate daughter of does not appear in ΣΠ , we need to verify if
there is a semantically related binary predicate to daughter of wrt η = 0.05. As
can be seen in table 1, only child of is semantically related to daughter of wrt η
(sr(child of, daughter of) = 0.054 > 0.05). Thus, we allow that these predicates
unify and they have a mgu ({X/chelsea clinton}, 0.054). The complete inference
is shown in figure 1 and the score of the answer is (0.054 + 0.06)/2 = 0.057.

Fig. 1. Derivation for the question “Is the father in law of Bill Clinton’s daughter a
politician?”
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Table 1. Semantic relatedness determined by the τ -Space module between the predi-
cates in Q and Π , according to arity

sr child of /2 spouse/2 father in law/2 is a congressman/1

daughter of /2 0.054 0.012 0.048 -

politician/1 - - - 0.06

As an approximative approach, we can have some undesirable answers as
shows the following example:

Example 2. Suppose that we have Π ′ defined as:

Π∪{spouse(bill clinton, hilary clinton), child of (hilary clinton, hugh rodman)}

where Π is the program defined in example 1.
Consider that we query Π ′ with “Who is Bill Clinton’s daughter ?” using a

threshold η = 0.04. In this case, we have two predicates semantically related to
daughter of obtaining the answers:

– X = chelsea clinton with score 0.054, replacing daughter of by child of,
– X = hugh rodman with score 0.048, replacing daughter of by father in law.

These answers could be filtered using a higher threshold as input (in the
example, 0.05), using a threshold over the final score or through a principled
interaction mechanism (dialog/disambiguation system).

To illustrate the use of negation, we present the following example:

Example 3. Suppose we query Π ′ using η = 0.04 with:

?- (¬ daughter of(chelsea clinton,bill clinton),0.04).

We obtain the following answers:

– no with score 0.054, replacing daughter of by child of (since
child of(chelsea clinton, bill clinton) ∈ Π ′),

– yes with score 0.048, replacing daughter of by father in law (since
child of(hilary clinton, chelsea clinton) /∈ Π ′).

As before, the answers could be filtered either manually or by adjusting the
threshold.

To evaluate the semantic matching (τ -Space module) we used DBpedia4,
a heterogeneous and large-scale data set which consists of 45,767 predicates,
5,556,492 classes, 9,434,677 instances, as knowledge base. The relevance func-
tion used a combination of IDF over predicates, cardinality (number of associ-
ated constants to another constant) and a dice string similarity coefficient.

4 http://dbpedia.org

http://dbpedia.org
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To query this knowledge base we selected 18 queries (Table 2) extracted from
the Question Answering over Linked Data (QALD)5 2011 test collection. The
selected subset concentrates on queries with a vocabulary gap between query
and knowledge base terms. Queries in the original test collection with a perfect
vocabulary match and with functional operators were removed.

The approach achieved avg. recall=0.935, corroborating the hypothesis that
distributional semantics provides a comprehensive semantic matching solution.
Average mean reciprocal rank (mrr) = 0.632 shows that most of the re-
sults are in the first two positions of the ranked list. Different from traditional
approaches where the matching is done at a syntactical level, the semantic ap-
proximation implies that absolute precision will unlikely to be achieved in all
cases since some level of ambiguity and vagueness is intrinsic to the vocabulary
gap problem.

The avg. precision=0.561 confirms that the distributional semantic relat-
edness measure is able to provide a selective semantic filtering mechanism. How-
ever, in the context of logic programs higher precision should be targeted by
the use of more selective distributional models and by the introduction of dis-
ambiguation/dialog user feedback mechanisms. ESA is a distributional model
which, by its construction, favours the broader class of semantic relatedness in-
stead of the more constrained class of semantic similarity (such as taxonomic
relations). The use of ESA favours recall and broader vocabulary independency
over precision and assume that noisy inferences can be filtered out by a disam-
biguation mechanism. A relevant research direction is to improve precision by
using distributional models with narrower context windows [3]. Enlarging the set
of inferences can be problematic in large-scale knowledge bases, as for example,
in the context of the Semantic Web. The composition with scalable and selective
reasoning models (e.g. in Bonatti et al. [4]) should be investigated in order to
minimize the impact of the additional inference process.

The average predicate distributional matching time is 1,523 ms in a core
i5 8GB RAM machine. The τ -Space works as a semantic best-effort approxi-
mation [7] mechanism where there are no warranties of absolute precision but
recall is close to 1. The distributional semantic relatedness measure provides
a high selectivity rate over unrelevant results (shown by the precision value).
These assumptions mean that in most cases the final result is found, but spuri-
ous inferences are present in the current distributional models. These spurious
inferences can be eliminated by the provision of dialog mechanisms, where users
can provide additional information in order to disambiguate the query.

The computational cost of the distributional semantic approximation con-
centrates on the cosine similarity operation for the semantic relatedness com-
putation which can be performed at O(nlogn) time complexity using Locality
Sensitive Hashing (LSH) techniques.

5 www.sc.cit-ec.uni-bielefeld.de/qald-1

www.sc.cit-ec.uni-bielefeld.de/qald-1
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Table 2. Examples of prolog queries in the test collection. In the third column, (p,r,fm)
represents (precision, recall, F-measure)

NL-query Prolog-query (p, r, fm) vocabulary gap
(query=dataset)

Who was the wife of
Abraham Lincoln?

wife(X,abraham lincoln) (0.0305, 1,0.0592) wife = spouse,
President Lincoln =
Abraham Lincoln

Who created English
Wikipedia ?

created(X,english wikipedia) (1,1,1) created = au-
thor, English
Wikipedia = En-
glish Wikipedia

Who is the owner of
Aldi?

owner(X,aldi) (0.3333, 1, 0.5) owns = key Person,
Aldi = Aldi

How tall is Claudia
Schiffer?

tall(claudia schiffer,X) (0,09090,1, 0.1667) Claudia Schiffer =
Claudia Schiffer, tall
= height

Is Natalie Portman an
actress?

actress(natalie portman) (1,1,1) Natalie Portman =
Natalie Portman,
actress = Actor

Who wrote the book The
Pillars of the Earth?

wrote(X,the pillars of earth) (0.5, 0.5, 0.5) wrote = author, The
Pillars of the Earth
= The Pillars of the
Earth

Who was Tom Hanks
married to?

married to(X,tom hanks) (0.75, 1, 0.8571) Tom Hanks = Tom
Hanks, married to =
spouse

When was Lucas Arts
founded?

founded(lucas arts,X) (1,1,1) Lucas Arts = Lu-
cas Arts, founded =
foundation

Who is the daughter of
Bill Clinton married to?

daugther of(X,bill clinton), (0.5, 0.5, 0.5) Bill Clinton =
Bill Clinton, daugh-
ter = child, married
to = spouse

married to(X,Y)
Where did Abraham
Lincoln die?

die(abraham lincoln,X) (0.0162, 1, 0.032) Abraham Lincoln =
Abraham Lincoln,
die = death Place

Who is the mayor of New
York City ?

mayor(X,new york city) (0.2, 1, 0.3333) New York City =
New York City,
mayor = leader
Name

What is the profession of
Frank Herbert ?

profession(frank herbert,X) (0.01428, 1, 0.0281) Frank Herbert =
Frank Herbert,
profession = occu-
pation

What did Bruce Carver
die from ?

die(bruce carver,X) (0.1818, 1, 0.3077) Bruce Carver =
Bruce Carver, die =
death Cause

Who designed the
Brooklyn Bridge ?

designed(X,brooklyn ridge) (0.5, 1, 0.6667) Brooklyn Bridge =
Brooklyn Bridge,
designed = designer

Give me all films pro-
duced by Hal Roach?

produced(hal roach,X) (0.98, 0.9722, 0.9761) films = Film, pro-
duced = producer,
Hal Roach = Hal
Roach

When was Capcom
founded ?

founded(capcom,X) (1, 1, 1) Capcom = Capcom,
founded = founda-
tion

Which albums contain
the song Last Christ-
mas?

contains(X,last christmas) (1, 0.8571, 0.9231) music albums = al-
bum, contain = ,
song = single, Last
Christmas = Last
Christmas

Was U.S. president Jack-
son involved in a war ?

u s president(jackson), (1, 1, 1) U.S. president =
Presidents Of The
United States, Jack-
son = Jackson, war
= battle

involked(jackson,war)
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9 Related Work

In [13], Lukasiewicz & Straccia presented probabilistic fuzzy dl-programs, which
is a uniform framework that deals with uncertainty and fuzzy vagueness. Our
work focus on the ontology mapping aspect (uncertainty) and in the use of a
distributional semantic approach to align semantically equivalent terms. The
common goal of both fuzzy/probabilistic and distributional approaches is the
introduction of flexibility into the reasoning process. The main benefit of using
distributional semantics is the use of large-scale unstructured or semi-structured
information sources to complement the semantics of logic programs. One of the
streghts of distributional semantic models is from the acquisitional perspective,
where comprehensive semantic models can be automatically built from large-
scale corpora.

Distributional semantic models are evolving in the direction of coping with
better compositional principles, supporting the semantic interpretation of com-
plex sentences/statements. Baroni et al. [3] provide an extensive discussion of
state of the art approaches for compositional-distributional models. In this work
the compositional model is given by the structure of the logical atoms in a logic
program Π , which defines a set of vectors in the distributional vector space.

In [12], Grefenstette presented how elements of a quantifier-free predicate cal-
culus can be modelled using tensors and tensor contraction. The basic elements,
truth values and domains objects, are modelled as vectors and predicates and
relations are modelled through high order tensors. Also, Boolean connectives are
modelled using tensors and with the basic elements used to build a quantifier-free
predicate calculus.

Research on schema matching/alignment [5] have extensively investigated se-
mantic matching approaches for entities on different schemas. Different matching
strategies are employed ranging from structural approaches to strategies based
on linguistic resources [5]. Most of the approaches focusing on linguistic resources
concentrate on the use of manually created resources such as WordNet. Distri-
butional semantic models are still not extensively used in this context. Another
difference between this work and schema alignment approaches is the context
in which the semantic matching takes place, which here focuses on the query -
knowledge base semantic matching.

Freitas et al. [8] and Novacek et al. [9] describe distributional approaches
applied to Semantic Web Data. While Freitas et al. [8] focuses on a natural
language query scenario, [9] Novacek et al. targets the description of a tensor-
based model for RDF data and its evaluation on entity consolidation.

10 Conclusion and Future Work

This work presented a principled approximative inference model for large-scale
and heterogeneous knowledge bases which adds the flexibility and the scale of
commonsense-based semantic approximation of distributional semantics to logic
programming models. The approach was formalized, a prototype was imple-
mented and evaluated over a large knowledge base, achieving avg. recall=0.935,
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avg. mean reciprocal rank=0.632 and avg. precision=0.561. The proposed ap-
proach provides a provides a high recall and mean reciprocal rank semantic
matching mechanism, under a semantic best-effort scenario (accurate approxi-
mation, but which demands a user interaction or post processing step).

Future work will concentrate on the implementation of a pre-processing strat-
egy for natural language queries, the investigation of more constrained distribu-
tional models focussing on the improvement of precision and the study of the
connection of our approach to synonymous theories in answer set programming
proposed by Pearce and Valverde [16].
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Wijsen, Jef 62
Wu, Yuqing 250


	Preface
	Conference Organization
	The Equational Approach to Contrary-to-duty
	Obligations
	Data Structures for Emergency Planing
	A Survey of the Data Complexity of Consistent
	Query Answering under Key Constraints
	Table of Contents
	Invited Talks
	The Equational Approach to Contrary-to-duty Obligations
	1 Methodological Orientation
	1.1 Discussion and Examples
	1.2 Theories and Equations
	1.3 Generating

	2 Equational Modelling of Contrary to Duty Obligations
	2.1 Contrary to Duty Obligations
	2.2 Standard Deontic Logic and Its Problems
	2.3 The Equational Approach to CTD
	2.4 Looping CTDs
	2.5 Methodological Discussion

	3 Equational Semantics for General CTD Sets
	4 Proof Theory for CTDs
	Level 0

	5 Comparing with Makinson and Torre’s Input Output Logic
	6 Comparing with Governatori and Rotolo’s Logic of Violations
	Chisholm’s Paradox.

	7 Conclusion
	References

	A Survey of the Data Complexity of ConsistentQuery Answering under Key Constraints
	1 Motivation
	2 Preliminaries
	2.1 Data and Query Model
	2.2 Restrictions on Conjunctive Queries
	2.3 Complexity Classes

	3 Consistent First-Order Rewriting
	4 Complexity Dichotomy Theorems
	5 Comparing Complexity Boundaries
	6 Nucleus
	7 Probabilistic Databases
	8 Integrity Constraints on Uncertain Databases
	9 Non-boolean Queries and Implemented Systems
	10 Open Problems
	References
	A Appendix: Proof of Theorem 6


	Regular Articles
	Arguments Using Ontological and Causal Knowledge
	1 Introduction and Motivation
	2 Explicative Model = Causal Model + Ontological Model
	2.1 Closed Literals
	2.2 The Causal Model
	2.3 The OntologicalModel
	2.4 The Explicative Model
	2.5 Background Knowledge

	3 The Xynthia Example
	3.1 Classes and Predicates for the Xynthia Example
	3.2 The Causal and OntologicalModels for the Xynthia Example
	3.3 The Explicative Model for the Xynthia Example

	4 Explanations
	4.1 Introducing Explanation Links
	4.2 Explaining a Singleton from a Set of Literals
	4.3 Explaining a Set of Literals from a Set of Literals
	4.4 More Examples Detailed

	5 Argumentation
	5.1 Arguments
	5.2 Counter-Arguments

	6 Conclusion
	References

	Reasoning on Secrecy Constraints under Uncertainty to Classify Possible Actions
	1 Introduction
	2 Epistemic Agent Model for Secrecy Reasoning
	3 Secrecy Reasoner: Declarative Principles
	4 Secrecy Reasoner: Constructive Design
	5 Related Work
	6 Conclusion and Issues Left Open
	References
	A Appendix: Selected Proofs

	An AIF-Based Labeled ArgumentationFramework
	1 Introduction
	2 An Initial Example
	3 Abstract Algebra and Labels
	3.1 Algebra of Argumentation Labels

	4 Argument Interchange Format (AIF)
	5 Labeled Argumentation Framework
	6 Discussion and Related Work
	7 Conclusions and Future Work
	References

	On the Semantics of Partially Ordered Bases
	1 Introduction
	2 Comparing Sets of Totally Ordered Elements
	3 Properties of Relative Likelihood Relations Comparing Subsets
	4 Comparing Sets of Partially Ordered Elements
	4.1 Weak Optimistic Dominance
	4.2 Strong Optimistic Dominance
	4.3 Refinement of Partial Preorders Induced between Subsets
	4.4 FromWeak Optimistic Dominance to a Partial Order on Elements

	5 Representations of an Epistemic State
	5.1 Syntactic Representation
	5.2 Semantic Representation

	6 Optimistic Dominance on Partially Ordered Belief Bases
	6.1 Weak Optimistic Dominance Semantics
	6.2 Preadditive Semantics

	7 Towards Syntactic Inference with Partially Ordered Belief Bases
	8 Conclusion
	References

	The Structure of Oppositions in Rough SetTheory and Formal Concept Analysis -Toward a New Bridge between the Two Settings
	1 Introduction
	2 Structure of Oppositions Induced by a Binary Relation
	2.1 The Square of Relations
	2.2 The Cube of Relations
	2.3 From Squares to Hexagons

	3 The Cube in the Rough Set Terminology
	3.1 Hexagon
	3.2 Other Sources of Oppositions

	4 The Cube in Formal Concept Analysis
	5 Towards Integrating RST and FCA
	5.1 Related Works
	5.2 Some Possible Directions for the Integration of RST and FCA

	6 Conclusion
	References

	Enriching Taxonomies of Place TypesUsing Flickr
	1 Introduction
	2 Related Work
	2.1 Vector-Space Models of Meaning
	2.2 Similarity Based Reasoning

	3 Constructing a Semantic Space of Place Types
	3.1 Data Acquisition
	3.2 Point-Based and Region-Based Representations
	3.3 Dimensionality Reduction

	4 Using betweenness
	4.1 Measuring betweenness
	4.2 Betweenness for Categorisation and Identification Problems

	5 Experimental Study
	5.1 Experimental Set-Up
	5.2 Results Obtained: Point-Based Encoding
	5.3 Results Obtained: Region-Based Encoding
	5.4 Comparison with a Human Gold Standard

	6 Conclusions
	References

	Hintikka-Style Semantic Games for Fuzzy Logics
	1 Introduction
	2 Variants of Semantic Games
	3 Generalized Propositional Rules for the
	4 Random Choice Connectives
	5 Random Witnesses for Quantifiers
	6 Conclusion and Future Research
	References

	A Finite Axiomatization of ConditionalIndependence and Inclusion Dependencies�
	1 Introduction
	2 Preliminaries
	2.1 Team Semantics
	2.2 Dependencies in Team Semantics

	3 Deduction System
	4 Soundness
	5 Completeness
	5.1 Graph Characterization
	5.2 Completeness Proof

	References

	Guard Independenceand Constraint-Preserving Snapshot Isolation
	1 Introduction
	2 Schemata, Views, and Updates
	3 Snapshot Isolation
	4 Constraint Preservation and Its Characterization
	5 Conclusions and Further Directions
	References

	Implication and Axiomatization of FunctionalConstraints on Patterns with an Applicationto the RDF Data Model
	1 Introduction
	2 Preliminaries
	3 Functional Constraints
	3.1 Equality-Generating Constraints
	3.2 Functional Dependencies

	4 Chasing Functional Constraints
	5 Axiomatization for the Functional Constraints
	6 Conclusions and Directions for Future Work
	References

	View-Based Tree-Language Rewritings for XML
	1 Introduction
	2 Related Works
	3 Automata
	4 Queries, Views, and Rewritings
	5 Computing the MCR
	5.1 Auxiliaries
	5.2 The Algorithm
	5.3 Complexity

	6 k-ary Queries
	7 k-ary Views and Rewritings
	8 Computing the MCR of an m-ary Query Using a k-aryView
	8.1 Auxiliaries
	8.2 The Algorithm

	9 Conclusions
	References

	EHC: Non-parametric Editing by FindingHomogeneous Clusters
	1 Introduction
	2 Editing Algorithms
	2.1 The Edited Nearest Neighbor (ENN) Rule
	2.2 All
	2.3 Multiedit
	2.4 Other Editing Algorithms

	3 Editing through Homogeneous Clusters (EHC) Algorithm
	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Comparisons

	5 Conclusions
	References

	A Logic for Specifying Stochastic Actionsand Observations
	1 Introduction
	2 Related Work
	3 Specification Logic of Actions and Observations with Probability
	3.1 Syntax
	3.2 Semantics

	4 Decision Procedure for SLAOP Entailment
	4.1 The Tableau Phase
	4.2 Systems of Inequalities
	4.3 The Label Assignment Phase

	5 Examples
	6 Conclusion
	References

	Belief Revisionin Structured Probabilistic Argumentation
	1 Introduction and Related Work
	2 Preliminaries
	2.1 Probabilistic Model

	3 Argumentation Model
	3.1 Defeasible Logic Programming with Presumptions (PreDeLP)

	4 Probabilistic PreDeLP
	4.1 Sources of Inconsistency
	4.2 Basic Operations for Restoring Consistency

	5 Revising Probabilistic PreDeLP Programs
	5.1 Postulates for Revising the Annotation Function
	5.2 An Operator for P-PreDeLP Revision

	6 Conclusions
	References

	A Multi-granular Database Model
	1 Introduction
	2 Domain Schemas
	3 Multi-granular Databases
	4 Multi-granular Query Language
	4.1 Case Study: Spatial and Temporal Domain

	5 Implementation Issues
	6 Related Work
	7 Conclusions
	References

	Optimizing Computation of Repairs from ActiveIntegrity Constraints
	1 Introduction
	1.1 Related Work

	2 Background
	3 Independent AICs
	4 Finding Independent Sets of AICs
	5 Stratified Active Integrity Constraints
	6 Conclusions
	References

	Belief Merging in Dynamic Logic of Propositional Assignments
	1 Introduction
	2 Background
	2.1 Propositional Logic
	2.2 Distances
	2.3 Various Merging Operations
	2.4 The Postulates forMerging with Integrity Constraints

	3 A Modal Framework for Merging Operators
	3.1 Language
	3.2 The
	3.3 The Gmax-Semantics
	3.4 The max-Semantics

	4 DL-PA: Dynamic Logic of Propositional Assignments
	4.1 Language
	4.2 Semantics of
	4.3 Some Useful

	5 Embedding Merging Operators into
	5.1 Embedding the
	5.2 Embedding the Gmax-Semantics
	5.3 Embedding the max-Semantics
	5.4 Correction of the Translations

	6 Conclusion
	References

	Incremental Maintenance of Aggregate Views
	1 Introduction
	2 Preliminaries
	3 Maintenance of Aggregate Views
	4 Efficient Incremental Maintenance
	5 Performance of CReaM
	6 Related Work
	7 Conclusion
	References

	Towards an Approximative Ontology-AgnosticApproach for Logic Programs
	1 Introduction
	2 Motivational Scenario
	3 Distributional Semantics and Semantic Approximative Inference
	3.1 Distributional Semantics
	3.2 The Distributional Inference Vector Space

	4 Logic Model
	4.1 Syntax
	4.2 Semantics

	5 GeometricalModel
	5.1 τ-Space

	6 Linking the Logical and Geometrical Models
	6.1 Mapping Predicates and Constants to Vectors
	6.2 Semantic Relatedness of Predicates, Programs and Models

	7 Distributional-Logic Inference
	8 Prototype and Evaluation
	9 Related Work
	10 Conclusion and Future Work
	References


	Author Index



