
Raghunath Nambiar
Meikel Poess (Eds.)

 123

LN
CS

 8
39

1

5th TPC Technology Conference, TPCTC 2013
Trento, Italy, August 26, 2013
Revised Selected Papers

Performance Characterization
and Benchmarking

Lecture Notes in Computer Science 8391
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Raghunath Nambiar Meikel Poess (Eds.)

Performance Characterization
and Benchmarking

5th TPC Technology Conference, TPCTC 2013
Trento, Italy, August 26, 2013
Revised Selected Papers

13

Volume Editors

Raghunath Nambiar
Cisco Systems, Inc.
Data Center Business Group
275 East Tasman Drive, San Jose, CA 95134, USA
E-mail: rnambiar@cisco.com

Meikel Poess
Oracle Corporation
Server Technologies
500 Oracle Parkway, Redwood Shores, CA 94065, USA
E-mail: meikel.poess@oracle.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-04935-9 e-ISBN 978-3-319-04936-6
DOI 10.1007/978-3-319-04936-6
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014930885

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The Transaction Processing Performance Council (TPC) is a non-profit organi-
zation established in August 1988. Over the years, the TPC has had a significant
impact on the computing industry’s use of industry-standard benchmarks. Ven-
dors use TPC benchmarks to illustrate performance competitiveness for their
existing products, and to improve and monitor the performance of their prod-
ucts under development. Many buyers use TPC benchmark results as points of
comparison when purchasing new computing systems.

The information technology landscape is evolving at a rapid pace, challenging
industry experts and researchers to develop innovative techniques for evaluation,
measurement, and characterization of complex systems. The TPC remains com-
mitted to developing new benchmark standards to keep pace with these rapid
changes in technology. One vehicle for achieving this objective is the TPC’s
sponsorship of the Technology Conference Series on Performance Evaluation
and Benchmarking (TPCTC) established in 2009. With this conference series,
the TPC encourages researchers and industry experts to present and debate
novel ideas and methodologies in performance evaluation, measurement, and
characterization.

The first TPC Technology Conference on Performance Evaluation and Bench-
marking (TPCTC 2009) was held in conjunction with the 35th International
Conference on Very Large Data Bases (VLDB 2009) in Lyon, France, during
August 24–28, 2009.

The second TPC Technology Conference on Performance Evaluation and
Benchmarking (TPCTC 2010) was held in conjunction with the 36th Interna-
tional Conference on Very Large Data Bases (VLDB 2010) in Singapore during
September 13–17, 2010.

The third TPC Technology Conference on Performance Evaluation and Bench-
marking (TPCTC 2011) was held in conjunction with the 37th International
Conference on Very Large Data Bases (VLDB 2011) in Seattle, Washington,
from August 29 to September 3, 2011.

The fourth TPC Technology Conference on Performance Evaluation and
Benchmarking (TPCTC 2011) was held in conjunction with the 38th Interna-
tional Conference on Very Large Data Bases (VLDB 2012) in Istanbul, during
August 27–31, 2012.

This book contains the proceedings of the fifth TPC Technology Conference
on Performance Evaluation and Benchmarking (TPCTC 2013), held in conjunc-
tion with the 38th International Conference on Very Large Data Bases (VLDB
2013) held in Riva del Garda, Trento, Italy, during August 27–31, 2013, includ-
ing seven selected peer-reviewed papers, a report from the TPC Public Relations
committee (PR), and one invited paper.

VI Preface

The hard work and close cooperation of a number of people have contributed
to the success of this conference. We would like to thank the members of TPC and
the organizers of VLDB 2013 for their sponsorship, the members of the Program
Committee and Publicity Committee for their support, and the authors and the
participants, who are the primary reason for the success of this conference.

January 2014 Raghunath Nambiar
Meikel Poess

TPCTC 2013 Organization

General Chairs

Raghunath Nambiar Cisco, USA
MeikelPoess Oracle, USA

Program Committee

Alain Crolotte Teradata, USA
Chaitanya Baru San Diego Supercomputer Center, USA
Daniel Bowers Gartner, USA
Marco Vieira University of Coimbra, Portugal
Masaru Kitsuregawa University of Tokyo, Japan
Michael Brey Oracle, USA
TilmannRabl University of Toronto, Canada
Xiaohua Tony Hu Drexel University, USA
Wen Chen Hu University of North Dakota, USA
Harumi Kuno HP Labs, USA

Publicity Committee

Raghunath Nambiar Cisco, USA
Andrew Bond Red Hat, USA
Andrew Masland NEC, USA
MeikelPoess Oracle, USA
Reza Taheri VMware, USA
Michael Majdalany L&M Management Group, USA
Forrest Carman Owen Media, USA
Andreas Hotea Hotea Solutions, USA

Invited Speaker

Karl Huppler IBM, USA

Keynote Speaker

Raghu Ramakrishnan Microsoft, USA

About the TPC

Introduction to the TPC

The Transaction Processing Performance Council (TPC) is a non-profit or-
ganization that defines transaction processing and database benchmarks and
distributes vendor-neutral performance data to industry. Additional information
is available at http://www.tpc.org/.

TPC Memberships

Full Members

Full Members of the TPC participate in all aspects of the TPC’s work, including
development of benchmark standards and setting strategic direction.The Full
Member application can be found at
http://www.tpc.org/information/about/app-member.asp.

Associate Members

Certain organizations may join the TPC as Associate Members. Associate Mem-
bers may attend TPC meetings, but are not eligible to vote or hold office. As-
sociate membership is available to non-profit organizations, educational institu-
tions, market researchers, publishers, consultants, governments, and businesses
that do not create, market, or sell computer products or services. The Associate
Member application can be found at
http://www.tpc.org/information/about/app-assoc.asp.

Academic and Government Institutions

Academic and government institutions are invited join the TPC and a special
invitation can be found at
http://www.tpc.org/information/specialinvitation.asp.

Contact the TPC

TPC
Presidio of San Francisco
Building 572B (surface)
P.O. Box 29920 (mail)
San Francisco, CA 94129-0920
Voice: 415-561-6272
Fax: 415-561-6120
Email: info@tpc.org

X About the TPC

How to Order TPC Materials

All of our materials are now posted free of charge on our website. If you have
any questions, please feel free to contact our office directly or by email at
info@tpc.org

Benchmark Status Report

The TPC Benchmark Status Report is a digest of the activities of the TPC and
its technical subcommittees. Sign-up information can be found at the following
URL: http://www.tpc.org/information/about/email.asp.

TPC 2013 Organization

Full Members

Cisco
Dell
Fujitsu
HP
Hitachi
Huawei
IBM
Intel
Microsoft
NEC
Oracle
Redhat
Sybase (An SAP Company)
Teradata
Unisys
VMware

Associate Members

ITOM International Co
Gartner
San Diego Super Computing Center
Telecommunications Technology Association
University of Coimbra, Portugal

Steering Committee

Karl Huppler (IBM), Chair
Mike Brey (Oracle)
Charles Levine (Microsoft)
Raghunath Nambiar (Cisco)
Wayne Smith (Intel)

Public Relations Committee

Raghunath Nambiar (Cisco), Chair
Andrew Bond (Red Hat)

XII TPC 2013 Organization

Andrew Masland(NEC)
MeikelPoess (Oracle)
Reza Taheri (VMware)

Technical Advisory Board

Jamie Reding (Microsoft), Chair
Andrew Bond (Red Hat)
Matthew Emmerton (IBM)
John Fowler (Oracle)
Bryon Georgson (HP)
Andrew Masland (NEC)
Wayne Smith (Intel)

Table of Contents

TPC State of the Council 2013 . 1
Raghunath Nambiar, Meikel Poess, Andrew Masland,
H. Reza Taheri, Andrew Bond, Forrest Carman, and
Michael Majdalany

TPC-BiH: A Benchmark for Bitemporal Databases 16
Martin Kaufmann, Peter M. Fischer, Norman May,
Andreas Tonder, and Donald Kossmann

Towards Comprehensive Measurement of Consistency Guarantees
for Cloud-Hosted Data Storage Services . 32

David Bermbach, Liang Zhao, and Sherif Sakr

TPC Express – A New Path for TPC Benchmarks 48
Karl Huppler and Douglas Johnson

TPC-H Analyzed: Hidden Messages and Lessons Learned
from an Influential Benchmark . 61

Peter Boncz, Thomas Neumann, and Orri Erling

Architecture and Performance Characteristics of a PostgreSQL
Implementation of the TPC-E and TPC-V Workloads 77

Andrew Bond, Douglas Johnson, Greg Kopczynski, and
H. Reza Taheri

A Practice of TPC-DS Multidimensional Implementation on NoSQL
Database Systems . 93

Hongwei Zhao and Xiaojun Ye

PRIMEBALL: A Parallel Processing Framework Benchmark for Big
Data Applications in the Cloud . 109

Jaume Ferrarons, Mulu Adhana, Carlos Colmenares,
Sandra Pietrowska, Fadila Bentayeb, and Jérôme Darmont

CEPBen: A Benchmark for Complex Event Processing Systems 125
Chunhui Li and Robert Berry

Author Index . 143

R. Nambiar and M. Poess (Eds.): TPCTC 2013, LNCS 8391, pp. 1–15, 2014.
© Springer International Publishing Switzerland 2014

TPC State of the Council 2013

Raghunath Nambiar1, Meikel Poess2, Andrew Masland3, H. Reza Taheri4,
Andrew Bond5, Forrest Carman6, and Michael Majdalany7

1 Cisco Systems, Inc., 3800 Zanker Road, San Jose, CA 95134, USA
rnambiar@cisco.com

2 Oracle Corporation, 500 Oracle Pkwy, Redwood Shores, CA 94065, USA
meikel.poess@oracle.com

3 NEC Corporation of America, 14335 NE 24th Street, Bellevue, WA 98007, USA
andy.masland@necam.com

4 VMware, Inc., 3401 Hillview Ave, Palo Alto CA 94304, USA
rtaheri@vmware.com

5 Red Hat, 100 East Davie Street, Raleigh, NC 27601, USA
abond@redhat.com

6 Owen Media, 3130 E. Madison St., Suite 206, Seattle, WA 98112, USA
forrestc@owenmedia.com

7 LoBue & Majdalany Mgmt Group, 572B Ruger St. San Francisco, CA 94129, USA
majdalany@lm-mgmt.com

Abstract. The TPC has played, and continues to play, a crucial role in
providing the computer industry and its customers with relevant standards
for total system performance, price-performance, and energy efficiency
comparisons. Historically known for database-centric standards, the TPC is now
developing benchmark standards for consolidation using virtualization
technologies and multi-source data integration. The organization is also
exploring new ideas such as Big Data and Big Data Analytics as well as an
Express benchmark model to keep pace with rapidly changing industry
demands. This paper gives a high level overview of the current state of the TPC
in terms of existing standards, standards under development and future outlook.

Keywords: Industry Standard Benchmarks, Transaction Processing
Performance Council.

1 TPC a Look Back and a Look Ahead

System benchmarks have played, and continue to play, a crucial role in the
advancement of the computing industry. Existing system benchmarks are critical to
both buyers and vendors. Buyers use benchmark results when evaluating new
systems in terms of performance, price/performance, and energy efficiency, while
vendors use benchmarks to demonstrate the competitiveness of their products and to
monitor release-to-release progress of their products under development. With no
standard system benchmarks available for Big Data systems, today’s situation is
similar to that of the mid-1980s, when the lack of standard database benchmarks led

2 R. Nambiar et al.

many system vendors to practice what is now referred to as “benchmarketing,” a
practice in which organizations make performance claims based on self-designed,
highly biased benchmarks. The goal of publishing results from such tailored
benchmarks was to state marketing claims, regardless of the absence of relevant and
verifiable technical merit. In essence, these benchmarks were designed as forgone
conclusions to fit a pre-established marketing message. Similarly, vendors would
create configurations, referred to as “benchmark specials," that were specifically
designed to maximize performance against a specific benchmark with limited benefit
to real-world applications. The TPC was founded to address these issues and it
continues to do so today. To keep up with rapid changes in the industry, the TPC
introduced its annual international conference series on performance evaluation and
benchmarking (TPCTC) in 2009.

2 TPC Benchmark Roadmap

Over the years, TPC benchmarks have raised the bar for what the computing industry
has come to expect in terms of benchmarks themselves. Though the original focus has
been on online transaction processing (OLTP) benchmarks, to-date the TPC has
approved a total of nine independent benchmarks. Of these benchmarks, TPC-C,
TPC-H, and TPC-E are currently active, and are widely being used by the industry.

TPC-V, TPC-VMC, and TPC-DI are under development. As described below,
TPC-Express is another initiative from the TPC to bring out packaged benchmark kits
that are easy to run and report.

The TPC-Pricing Specification and the TPC-Energy Specification are common
across all the benchmark standards.

The timelines are shown in Figure 1.

Fig. 1. TPC timeline (Color coding: blue=obsolete, red=current, green= common specifications,
beige=under development)

TPC-A

TPC-B

TPC-C

TPC-D

TPC-R

TPC-H

TPC-W

TPC-App

TPC-E

TPC-DS

TPC-VMS

Pricing

Energy

TPC-DI

TPC-VMC

TPC-V

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Benchmark Standards

Common Specifications

Developments in Progress

 TPC State of the Council 2013 3

3 TPC Development Status Report

3.1 TPC-Data Integration (TPC-DI)

Data Integration (DI), also known as ‘”ETL” (Extract, Transform, Load), is the
analysis, combination, and transformation of data from a variety of data sources and
formats into a unified data model representation. Having a performing data
integration system is a key element of data warehousing, application integration, and
business analytics solutions. This is especially important as the variety and volume of
data are always increasing and performance of data integration systems is critical.
Despite the significance of having a highly performing DI system, there has been no
industry standard for measuring and comparing the performance of DI systems.
Recognizing this benchmark void, the TPC established a subcommittee to develop
TPC-DI, a benchmark for Data Integration. It is based on ideas first presented at
TPCTC09. The release date of the benchmark is expected in 4th quarter 2013.

The TPC-DI benchmark workload transforms and combines data extracted from a
fictitious On-Line Transaction Processing (OTLP) system and other data sources, and
loads it into a data warehouse. The source and destination data models, data
transformations, and implementation rules have been designed to be broadly
representative of modern data integration requirements. No single benchmark can
reflect the entire range of possible DI requirements. However, using data and
operation models of a retail brokerage, it exercises a breadth of system components
associated with DI environments, which are characterized by:

• The manipulation and loading of large volumes of data
• A mixture of transformation types including data validation, key

lookups, conditional logic, data type conversions, aggregation
operations, etc.

• Fact and dimensional table building and maintenance operations
• Multiple data sources having a variety of different data formats
• Historical loading and incremental updates of the destination data

warehouse
• Consistency requirements ensuring that the integration process results in

reliable and accurate data
• Multiple data tables with varied data types, attributes, and inter-table

relationships

The benchmark is executed in a series of phases, consisting of:

• Initialization
• Loading the data warehouse with large volumes of historical data
• Two incremental updates to the data warehouse, each representing one

day of new data
• An automated audit check to verify the results

The Performance Metric reported by TPC-DI is a throughput measure, the number
of source rows processed per second. The metric combines the throughputs achieved
for each phase to produce the single throughput performance metric.

4 R. Nambiar et al.

3.2 TPC-Decision Support (TPC-DS)

The TPC Benchmark

DS (TPC-DS) is a decision support benchmark that models

several generally applicable aspects of a decision support system, including queries,
and data maintenance. The benchmark provides a representative evaluation of the
System Under Test’s (SUT) performance as a general purpose decision support
system.

This benchmark illustrates decision support systems that:

• Examine large volumes of data
• Give answers to real-world business questions
• Execute queries of various operational requirements and complexities

(e.g., ad-hoc, reporting, iterative OLAP, data mining)
• Are characterized by high CPU and IO load
• Are synchronized with source OLTP databases through database

maintenance functions that are executed while queries are being run,
a.k.a. trickle updates

A benchmark result measures query throughput and data maintenance performance
for a given hardware, operating system, and DBMS configuration under a controlled,
complex, multi-user decision support workload. There have not been any benchmark
publications since the benchmark was introduced and only one minor revision was
published to clarify wording regarding trickle updates.

3.3 TPC -Virtualization in Progress

The TPC has been working on multiple fronts to deliver benchmarks for measuring
the performance of virtualized databases. This section presents a benchmark that has
already been released, one that is under development and close to being released, and
one that is still a little further from completion.

3.3.1 TPC-VMS
Performance analysts have a choice of virtualization benchmarks [5], including some
that have been around for years [6]. But TPC-VMS is the first industry standard
virtualization benchmark with the characteristics that have made TPC benchmarks the
benchmarks of choice for enterprise-class servers:

• Includes a Price/performance metric
• Is an audited benchmark
• Has database-centric workloads
• Scales the database size with performance when running TPC-E and TPC-C

workloads

The goal of the TPC-VMS benchmark was to develop a benchmark specification
quickly by utilizing the existing TPC benchmark specifications. The TPC Virtual
Measurement Single System Specification (TPC-VMS) leverages the TPC-C, TPC-E,
TPC-H, and TPC-DS benchmarks by adding the methodology and requirements for
running and reporting performance metrics for virtualized databases. The intent of

 TPC State of the Council 2013 5

TPC-VMS is to represent a virtualization environment where three database
workloads are consolidated onto one server. Test sponsors choose one of the four
benchmark workloads (TPC-C, TPC-E, TPC-H, or TPC-DS) and run one instance of
that benchmark workload in each of the three virtual machines (VMs) on the system
under test. The three virtualized databases must have the same attributes, e.g. the
same number of TPC-C warehouses, the same number of TPC-E Load Units, or the
same TPC-DS or TPC-H scale factors. The TPC-VMS Primary Performance Metric is
the minimum value of the three TPC Benchmark Primary metrics for the TPC
Benchmarks run in the Virtualization Environment.

Several characteristics of the benchmark are worth noting:

• It models a consolidation environment of three identical databases on three
virtual machines with the same workload on the same OS, DBMS, etc.

• The four possible workloads are the well-understood existing TPC-C, TPC-
E, TPC-H, and TPC-DS TPC benchmarks.

• To enhance ease of benchmarking for test sponsors, the benchmark was
defined such that existing benchmarking kits for TPC-C, TPC-E, TPC-H,
and TPC-DS can be used to also run the TPC-VMS variants of these
workloads.

• An elegant feature of the benchmark is specifying that the metrics reported
are those of the VM with the lowest primary performance metric. This
avoids the possibility of a test sponsor gaming the test by dividing system
resource unevenly among the VMs, but it does so without having to resort to
complicated run rules to prevent such gaming.

The TPC-VMS benchmark was adopted in August of 2012, after a very short
development phase of one year, hence meeting its goal of a quick development
schedule. Prototyping results [7] show that the benchmark meets its goal of exercising
the virtualization management system with a complex, database-centric workload.

3.3.2 TPC-V
In 2010, the TPC formed a subcommittee to develop a new benchmark for virtualized
databases. The TPC-V benchmarks aims to capture some of the most important
properties of databases in the cloud:

• Multiple VMs of varying sizes and different workload types.
• Load elasticity: the benchmark poses a challenge to the hypervisor to react to

unexpected changes to the load, and allocate just the right amount of
resources to each VM. TPC-V specifies four groups of VMs. Although a
constant overall tpsV load level is maintained throughout the run time, the
proportion directed to each group changes every twelve minutes, as depicted
in the Figure 2 below.

• As the processing power of the system under test (SUT) grows, TPC-V
specifies more sets of VMs in each of the four groups. The minimum
configuration has four groups, one set per group, and three VMs per set for a
total of twelve VMs. But unlike many other virtualization benchmarks, the
number of sets does not scale linearly with the power of the SUT. Using a

6 R. Nambiar et al.

logarithmic scale,
systems, and arou
foreseeable future.
a server may host
VMs on one serve
limited.

• TPC-V uses the T
development time.
and comparing th
oranges compariso
cut years from the

F

Perhaps the most uniqu
benchmarks, the TPC w
benchmarking kit along wi
Java and C++. The first imp
full status update paper on T

3.3.3 TPC-VMC
TPC-VMS is the first virt
TPC-V takes that one ste
varying load levels among
with performance. But to t
properties such as:

TPC-V specifies two sets per group for today’s high
und three sets per group for the high end systems of
. This makes sense in the context of databases in the clo
hundreds of application VMs, but the number of datab

er, even in a cloud environment, is likely to be much m

TPC-E DDL and DML as a starting point to reduce
. The TPC-V specification is vastly different from TPC
e results would bring to mind the proverbial apples

on. Yet, the reliance on the proven properties of TPC-E
TPC-V development process.

Fig. 2. Elastic load variation of TPC-V

ue differentiator for TPC-V is that unlike previous T
ill provide a complete end-to-end, publicly availa
ith the paper functional specification. The kit is written
plementation uses the open source PostgreSQL database
TPC-V has been submitted to the TPCTC 2013.

tualized database benchmark, and models consolidati
ep further by modeling heterogeneous workload typ
 the VMs, elasticity of load, and a VM count that sca
truly model cloud environments, one has to include ot

end
the

oud:
base

more

the
C-E,
and
has

TPC
able
n in
e. A

ion.
pes,
ales
ther

 TPC State of the Council 2013 7

• Multiple servers
• Load balancing among servers
• Migration of VMs between servers
• Deployment of VMs and applications

The TPC formed a working group to study the feasibility of such a benchmark [8].
The working group considered a number of proposals, and came up with the
following requirements:

• The benchmark cannot become a test of deep pockets. In other words, if the
number of servers is allowed to grow without bounds, a test sponsor can
achieve any arbitrary performance level by simply assembling a
configuration with just the right number of nodes. Note that this would be
trivial for a benchmark such TPC-VMC since the application environment
we are simulating is one of independent databases. So one can increase
performance by simply adding more nodes. Surprisingly, one can use this
very property to limit the number of servers in the configuration. A
minimum set of servers can characterize the performance of a large number
of servers in a large cloud environment. Therefore, the working group settled
on no more than two or four servers.

• In keeping with the success of TPC-VMS in employing existing TPC
benchmarking kits, the working group explored options that would not
require modifications to existing kit.

• The benchmark proposal outlines a choreographed sequence of VM
deployments and migrations, as depicted in Figure 3.

The working group has submitted its findings to the TPC, and is presently in
hiatus. The TPC expects that once the TPC-V benchmark is released, the working
group will resume and consider whether the TPC-V kit can be used to run a
benchmark that includes migrations, deployment, etc. If the TPC-V kit proves to be
well-received by the industry, extending it to simulate the properties required by TPC-
VMC is only a small incremental step since the benchmark already deals with
multiple VMs, elasticity, and load balancing within a server.

4 TPC-Express – A New Model for Benchmark Delivery

Traditionally, TPC benchmarks have been delivered in the form of a specification,
allowing great flexibility in the way the benchmark application is implemented to
satisfy the business case defined by the benchmark. This model worked well in times
when customized application development was commonplace and when the various
database products in the market delivered function in a wide variety of ways. The
TPC considers this more traditional approach to its benchmarks as the “Enterprise”
model. Compelling reasons to use the existing "Enterprise" benchmark model remain
when the optimal application is developed to satisfy a functional specification.

8 R. Nambiar et al.

Today, however, most database management products offer a suite of functions
that are largely compatible for most database applications, and most commercial
applications are purchased from an application provider. It makes good sense, then,
to offer benchmarks that emulate these off-the-shelf products with the delivery of
working benchmark applications in a downloadable benchmark kit, rather than
requiring the development of the benchmark application by the implementer. This
represents an exciting step for the TPC and those using TPC benchmarks. This new
"Express" model will provide a kit that includes routines to build the database, run the
benchmark application, report the results, and provide a level of validation for result
compliance. This means that implementation of a benchmark can be accomplished
much less expensively, with a higher confidence that the results are compliant and
comparable.

A quick comparison of the two models is summarized in Table 1

Table 1. Express vs. Enterprise Models

 Express Enterprise
Execution Kit based

(enhanced by specification)
Specification based
(with some code)

Implementation Out of the box Customized
Audit Requirements Mostly self validation Full audit
Pricing Not required Required
ACID properties ACI at most Full ACID
Pricing model License sales and

benchmark registration
Benchmark
registration

Expected volume High Limited
Cost to run the benchmark Low High
Time to run the benchmark Short Longer

Where the existing Enterprise benchmarks were typically only published by

computer manufacturers, the TPC expects that the Express class of benchmarks will
appeal to a wider audience that includes computer and software manufacturers,
academic researchers as well as individuals interested in running test environment
workloads to validate data center system changes.  

The TPC is actively working to produce a first benchmark within the Express
model. This will likely be a revision of an existing Enterprise benchmark, adjusted in
ways to satisfy the needs of the Express model. The results will not be comparable
with the parent Enterprise benchmark. In parallel, the TPC intends to produce a guide
for other Express benchmark proposals that are both in the areas of traditional TPC
benchmarks and in newer areas, such as database in the cloud, Big Data, Business
Analytics, in-memory databases, and so on. The TPC welcomes proposals from
within and outside of the TPC membership, and invites those who would like to
participate in this development process to become active members.

 TPC State of the Council 2013 9

5 TPC Technology Conference Series (TPCTC)

The information technology landscape is evolving at a rapid pace, challenging
industry experts and researchers to develop innovative techniques for evaluation,
measurement and characterization of complex systems. The TPC remains committed
to developing new benchmark standards to keep pace, and one vehicle for achieving
this objective is the sponsorship of the Technology Conference on Performance
Evaluation and Benchmarking (TPCTC). Over the last four years we have held
TPCTC successfully in conjunction with VLDB.

Table 2. TPCTC at a glance

TPCTC VLDB Location Date Keynote Proceedings

TPCTC

2009

35th Int’l

Conference

Lyon,

France

August

24-28

Michael

Stonebraker1 1 ,

M.I.T.

http://www.springer.com/978-3-642-

10423-7

TPCTC

2010

36th Int’l

Conference

Singapore Septembe

r 13-17

C. Mohan2,

IBM

http://www.springer.com/computer/com

munication+networks/book/978-3-642-

18205-1

TPCTC

2011

37th Int’l

Conference

Seattle, WA Aug 29 –

Sep 3

Umesh Dayal3,

HP Labs

http://www.springer.com/computer/com

munication+networks/book/978-3-642-

32626-4

TPCTC

2012

38th Int’l

Conference

Istanbul,

Turkey

August

27-31

Michael Carey4,

UC Irvine

http://www.springer.com/computer/com

munication+networks/book/978-3-642-

36726-7

TPCTC

2013

39th Int’l

Conference

Trento,

Italy

August

26-30

Raghu

Ramakrishnan5,

Microsoft

The TPC Technology Conferences have had direct effect on the TPC’s direction

and activities:

• The formation of TPC’s Virtualization working group (TPC-V) was a direct
result of papers presented at TPCTC 2009. Proposals such as dependability
aspects are under consideration for future benchmark enhancements.

• Several new benchmark ideas, enhancements to existing benchmarks and
lessons learnt in practice were presented at TPCTC 2010 that had a direct

1 Adjunct Professor, Massachusetts Institute of Technology, Cambridge, MA.
2 IBM Fellow at the IBM Almaden Research Center, San Jose, CA.
3 ACM Fellow and Chief Scientist of the Information Analytics Lab at HP Labs, Palo Alto, CA.
4

 Donald Bren Professor of Computer and Information Sciences, University of California,
Irvine, CA.

5
 Technical Fellow, Microsoft, and Professor of Computer Sciences at the University of
Wisconsin, Madison, WI.

10 R. Nambiar et al.

impact to the TPC and the industry, e.g. a proposal for a generic data
generator.

• Papers presented at TPCTC 2011 included new benchmark ideas in the area
of Event Bases Systems, Mixed Workload Benchmarks, and Dependability
Benchmarks. There were also various papers on enhancing existing TPC
workloads, such as an enhancement to TPC-H and a dbgen implementation
for TPC-H using the generic data generator PDGF. Some more theoretical
papers included analytical models of benchmarks.

• Papers presented at TPCTC 2012 included new benchmark ideas in the area
of big data, energy efficiency, Cloud, ETL, and virtualization.

With the 5th TPC Technology Conference on Performance Evaluation and

Benchmarking (TPCTC 2013) proposal, the TPC strives to exceed the success of
previous workshops by encouraging researchers and industry experts to present and
debate novel ideas and methodologies in emerging performance evaluation and
benchmarking areas. Authors are invited to submit original, unpublished papers that
are not currently under review for any other conference or journal. The TPC also
encourages the submission of extended abstracts, position statement papers and
lessons learned in practice. The accepted papers will be published in the workshop
proceedings, and selected papers will be considered for future TPC benchmark
developments. Topics of interest include, but are not limited to:

• Big Data
• Cloud Computing
• Social media infrastructure
• Business intelligence
• Complex event processing
• Database optimizations
• Green computing
• Disaster tolerance and recovery
• Energy and space efficiency
• Hardware innovations
• Hybrid workloads
• Virtualization
• Lessons learned in practice using TPC workloads
• Enhancements to existing TPC workloads

6 Major Areas of Focus for 2014 and Beyond

6.1 Big Data

The last five years have seen a huge change in the industry landscape: Platforms that
can handle Big Data workloads have become mainstream. Big Data refers to data sets
that are too large and too complex to store and process in a cost effectively and timely

 TPC State of the Council 2013 11

manner using traditional tools like scale-up systems and relational management
systems. Emerging from the Web 2.0 challenge, solutions are now available to
provision and manage very large workloads, including Hadoop and NoSQL.
Without doubt, enterprises see the value of Big Data and Big Data analytics across all
major sectors, including health care, retail, education, and government, due to two
main reasons. First is an increased number of people constantly connected to the
internet and second there is an increased number of devices connected to the Internet.
While there were 15 billion devices connected to the Internet in 2011 it is predicted
that by year 2020 there will be 50 connected billion devices connected.

To face the challenges associated with the amount of data produced by the
increased number of users and their devices, hardware and software infrastructure
technologies have also evolved from traditional scale-up and client/server systems to
massive scale-out clusters and clouds. Hadoop and NoSQL systems have become
cost–effective, scalable platforms for handling massive amounts of structured, semi
structured and unstructured data. Many of these technologies were a contribution of
Web 2.0-era companies. Enterprises are also considering the use of Hadoop and
NoSQL, realizing that storing and mining large data sets can help optimize their
business processes, improve the customer experience, uncover strategic and
competitive opportunities, and thereby gain a competitive advantage. With this new
Big Data landscape, and multiple technologies to choose from, there is a need for
industry standards so users can see fair and unbiased comparisons of technologies and
solutions.

With no standard system benchmarks available for Big Data systems, today’s
situation is similar to that of the middle 1980s, when the lack of standard database
benchmarks led many system vendors to practice what is now referred to as
“benchmarketing,” a practice in which organizations make performance claims based
on self-designed, highly biased benchmarks.

Some of the existing TPC benchmarks like TPC-H and TPC-DS can easily be
extended for use in large structured datasets. For example, current TPC-H and TPC-
Ds benchmarks support scale factors of 100GB, 300B, 1TB, 3TB, 10TB and 30TB.
This can be extended to larger scale factors like 100TB, 300GB, 1TB, 3PB and more,
following the log scale, using existing data generation tools and queries. There is
work in progress to extend TPC-DS to handle unstructured data also. There are
initiatives like WBDB (Workshop on Big Data Benchmarking), which is intended
developed brand new workloads. TPC-H and TPC-DS contain a diverse set of
structured data, which makes them a suitable candidate for a Big Data benchmark.

As reported in Big Data Management, Technologies, and Applications, one of the
outcomes of the first workshop on Big Data Benchmarking is BigBench
_Ref355098135. BigBench is an end-to-end, Big Data benchmark proposal. It is
based on TPC-DS. Hence, its underlying business model is a product retailer. In
addition to TPC-DS, it proposes a data model and synthetic data generator that
address the variety, velocity and volume aspects of Big Data systems containing
structured, semi-structured, and unstructured data. The structured part of BigBench’s
data model is adopted from TPC-DS. It is enriched with semi-structured and
unstructured data components. The semi-structured part captures registered and guest

12 R. Nambiar et al.

user clicks on the retailer's web site. The unstructured data captures product reviews
submitted online.

The data generator, which was designed for BigBench, provides scalable volumes
of raw data based on a scale factor. BigBench’s workload is designed around a set of
queries against the data model. From a business prospective, the queries cover the
different categories of Big Data analytics proposed by McKinsey. From a technical
prospective, the queries are designed to span three different dimensions based on data
sources, query processing types and analytic techniques. In the SIGMOD paper, the
authors further illustrate the feasibility of BigBench by presenting an implementation
on Teradata’s Aster Database. The test includes generating and loading a 200
Gigabyte BigBench data set and testing the workload by executing the BigBench
queries (written using Teradata Aster SQL-MR) and reporting their response times.

BigBench’s data model focuses on volume, variety, and velocity. The variety
property of BigBench is illustrated in Figure 4. The structured portion of BigBench’s
data model is adapted directly from TPC-DS’ data model, which also depicts a
product retailer _Ref355098116 [13]. BigBench adds a table for prices from the
retailer’s competitors to the portion of TPC-DS that contain store and online sales
data. TPC-DS structured part is enriched with semi-structured and un-structured data
shown in the lower and right hand side of Figure 4. The semi-structured part is
composed by clicks made by customers and guest users visiting the retailer's web site.
The design assumes the semi-structured data to be in a key-value format similar to
Apache's web server log format. The un-structured data in the new model is covered
by product reviews that can be submitted by guest users or actual customers.

Fig. 4. Logical Data Model BigBench (Adapted from _Ref355098135)

6.2 OpenStack

The term cloud computing has different meanings depending on the target
environment. There are three main types of services provided by cloud environments:

 TPC State of the Council 2013 13

Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-
Service (SaaS). The difference between these various cloud environments has mostly
to do with how much of the solution stack the user can control. For instance, with
SaaS the user has access to a piece of software running in the cloud but has no control
over what operating system it is running on whereas in IaaS the user has control over
many aspects of the solution stack.

OpenStack (www.openstack.org) is an open source project to define and build a
highly scalable common cloud computing platform for public and private clouds.
OpenStack would be defined as an IaaS cloud service. Over 150 companies are
participating in some aspect of the OpenStack development effort, including many of
the TPC member companies.

The OpenStack project has an extremely active development community. The
first OpenStack release was in October of 2010, and there have been six releases over
the course of the following two and a half years. With two to three releases a year,
the pace of development is very rapid. This fast development cadence is necessary,
since many vendors want to implement cloud environments starting immediately
rather than some time in the future.

Fig. 5. OpenStack Architecture (http://www.redhat.com/products/cloud-computing/openstack/)

14 R. Nambiar et al.

The design of OpenStack contains components in the areas of compute,
networking, and storage. The parts of OpenStack that deal with the compute aspect
of a cloud have project names such as Nova, Glance, and Horizon. Nova is a
framework for providing virtual servers on demand in an OpenStack environment.
Nova does not provide virtualization functionality, but can be hooked into various
virtualization technologies via an API. Glance provides a way to create a catalog of
virtual disk images for the compute framework to reference and use. Horizon will
be the most recognizable part of OpenStack to users since it is the GUI management
interface for OpenStack.

The network and storage area is addressed by the Quantum, Swift, and Cinder
projects. Quantum provides network connectivity as a service and interfaces with
many different types of networking technologies. The Swift and Cinder projects
both deal with storage, but different aspects of storage. Swift provides for object
storage, while Cinder can provide persistent block storage to the virtual machines
deployed in OpenStack.

A key aspect to any cloud environment is security. In the OpenStack environment
authentication and authorization are handled by the Keystone project. Cloud
infrastructure security must be both robust and efficient.

Not all of the OpenStack projects mentioned above are needed for every
OpenStack use case, but all of the projects are designed to function together to
provide a complete and scalable cloud infrastructure. How efficiently they function
and scale is where benchmarking comes in.

6.2.1 Benchmarking OpenStack
Of course the main question facing industry consortia focused on performance like
the TPC is how to measure the performance of a cloud infrastructure like OpenStack.
The first step would be to realize that the performance of OpenStack should not be
focused on the virtualization technology. There are already industry standard
benchmarks such as SPECvirt_sc2010, SPECvirt_sc2013, TPC-VMS, and the under-
development TPC-V that are focused on measuring the performance of virtualization
technologies. It is also possible to take a currently available benchmark from any
industry consortia and run it in a virtualized environment to try and measure
virtualization performance.

The performance of a cloud environment is heavily dependent on the infrastructure
used to build the cloud. Therefore, cloud benchmarks should focus on measuring
this infrastructure performance while as the same time measuring overall cloud
environment performance.

Below are some interesting performance questions related to a cloud environment
as well as the parts of OpenStack that would most affect the answer.

How fast can a virtual machine image be deployed? Nova, Glance, Swift, Cinder

• Do my tasks take longer to run in a cloud than if I was just using
virtualization? Nova, Glance, Quantum, Swift, Cinder

• What kind of performance slowdown does the security of the cloud cause?
Nova, Keystone

 TPC State of the Council 2013 15

• Do the answers to any of the previous questions change as the cloud
environment scales? All OpenStack projects

The use of a cloud environment for providing compute resources to a specific set
of customers revolves mainly around the ability to meet particular response time
criteria for those customers. If a cloud environment cannot meet a customer’s
response time needs then dedicated hardware would have to be deployed instead.
Therefore, any cloud benchmark must be designed around response time requirements
and have it built into every aspect of the benchmark.

Because there are many different aspects to a cloud infrastructure like OpenStack,
a benchmark designed to test such an environment would have to have many aspects
as well. Potentially a suite of tests will be required with each designed to put stress
on a particular aspect of the OpenStack environment to see how it performs. The
challenge to having a benchmark that is made up of multiple tests is normalizing
multiple data points into a single metric score. For an industry standard benchmark
to be successful, one main metric is ideal. Multiple secondary metrics could be
defined, but they should be rolled up into a single main metric.

7 Conclusion

In an environment of rapid and pervasive change, the TPC remains committed to
serve the industry with benchmark standards that are relevant and up to date. While
the TPC’s traditional, Enterprise benchmarks continue to be the gold-standard for
large database workloads, the organization has several new benchmarks in process.
TPC-DI, TPC-V, and the new TPC-Express model are such initiatives that cover
workloads as diverse as data integration, virtualization, and an entire new approach to
benchmarks The TPC is also exploring ideas and methodologies to create benchmarks
for Big Data and OpenStack. The organization also strongly supports benchmarking
innovation through the TPC Technical Conference (TPCTC) and looks forward to
incorporating innovative ideas from the 5th TPCTC.

Acknowledgements. The authors thank the past and present members of the TPC for
their contribution to the specifications and documents referenced in this paper.

References

1. Nambiar, R., Poess, M. (eds.): TPCTC 2012. LNCS, vol. 7755. Springer, Heidelberg (2013)
2. Nambiar, R., Poess, M. (eds.): TPCTC 2011. LNCS, vol. 7144. Springer, Heidelberg (2012)
3. Nambiar, R., Poess, M. (eds.): TPCTC 2010. LNCS, vol. 6417. Springer, Heidelberg (2011)
4. Nambiar, R., Poess, M. (eds.): TPCTC 2009. LNCS, vol. 5895. Springer, Heidelberg (2009)
5. SPEC Virtualization Committee: http://www.spec.org/virt_sc2010/,

http://www.spec.org/virt_sc2013/
6. VMware, Inc., http://www.vmware.com/products/vmmark/overview.html
7. Smith, W.D., Sebastian, S.: Virtualization Performance Insights from TPC-VMS,

http://www.tpc.org/tpcvms/tpc-vms-2013-1.0.pdf
8. Smith, W.D.: Characterizing Cloud Performance with TPC Benchmarks. In: Nambiar, R.,

Poess, M. (eds.) TPCTC 2012. LNCS, vol. 7755, pp. 189–196. Springer, Heidelberg (2013)

TPC-BiH: A Benchmark for Bitemporal

Databases

Martin Kaufmann1,2, Peter M. Fischer3, Norman May1,
Andreas Tonder1, and Donald Kossmann2

1 SAP AG, 69190 Walldorf, Germany
{norman.may,andreas.tonder}@sap.com
2 ETH Zurich, 8092 Zurich, Switzerland

{martin.kaufmann,donald.kossmann}@inf.ethz.ch
3 Albert-Ludwigs-Universität, Freiburg, Germany

peter.fischer@cs.uni-freiburg.de

Abstract. An increasing number of applications such as risk evalua-
tion in banking or inventory management require support for temporal
data. After more than a decade of standstill, the recent adoption of some
bitemporal features in SQL:2011 has reinvigorated the support among
commercial database vendors, who incorporate an increasing number of
relevant bitemporal features. Naturally, assessing the performance and
scalability of temporal data storage and operations is of great concern
for potential users. The cost of keeping and querying history with novel
operations (such as time travel, temporal joins or temporal aggregations)
is not adequately reflected in any existing benchmark. In this paper, we
present a benchmark proposal which provides comprehensive coverage
of the bitemporal data management. It builds on the solid foundations
of TPC-H but extends it with a rich set of queries and update scenar-
ios. This workload stems both from real-life temporal applications from
SAP’s customer base and a systematic coverage of temporal operators
proposed in the academic literature. We present preliminary results of
our benchmark on a number of temporal database systems, also high-
lighting the need for certain language extensions.

Keywords: Bitemporal Databases, Benchmark, Data Generator.

1 Introduction

Temporal information is widely used in real-world database applications, e.g.,
to plan for the delivery of a product or to record the time a state of an order
changed. Particularly the need for tracing and auditing the changes made to a
data set and the ability to make decisions based on past or future assumptions are
important use cases for temporal data. As a consequence, temporal features were
included into the SQL:2011 standard [9], and an increasing number of database
systems offer temporal features, e.g., Oracle, DB2, SAP HANA, or Teradata. As
temporal data is often stored in an append-only mode, temporal tables quickly
grow very large. This makes temporal processing a performance-critical aspect

R. Nambiar and M. Poess (Eds.): TPCTC 2013, LNCS 8391, pp. 16–31, 2014.
c© Springer International Publishing Switzerland 2014

TPC-BiH: A Benchmark for Bitemporal Databases 17

of many analysis tasks. Clearly, an understanding of the performance character-
istics of different implementations of temporal queries is required to select the
most appropriate database system for the desired workload. Unfortunately, at
this time there is no generally accepted benchmark for temporal workloads.

For non-temporal data the TPC has defined TPC-H and TPC-DS for an-
alytical tasks and TPC-C and TPC-E for transactional workloads. Especially
TPC-H and TPC-C are popular for comparing database systems. These bench-
marks query only the most recent version of the data. We propose to leverage
the insights gained with TPC-H and to TPC-C while widening the scope for
temporal data. In particular, it should be possible to evaluate all TPC-H queries
at different system times. This allows us to compare results on temporal data
with those on non-temporal data. We carefully introduce additional parameters
to examine the temporal dimension. Furthermore, we propose additional queries
that resemble typical use cases we encountered in real-world use cases at SAP
but also during literature review. In some cases, the expressiveness of SQL:2011
is not sufficient to express these queries in a succinct way. For example, the sim-
ulation of temporal aggregation in SQL:2011 results in rather complex queries.

More precisely, we propose a novel benchmark for temporal queries which
are based on real-world use cases. As such, these queries retrieve both previous
states of the system (i.e., a certain system time) but they also examine time
intervals defined in the business domain (i.e., application time); this concept
was introduced as the bitemporal data model by Snodgrass [12]. The benchmark
we propose contains a data generator which first generates a TPC-H data set
extended with some temporal data. In contrast to previous related work (such as
[1] and [2]) it also generates a history of values using various business transactions
on this data to generate system times. These transactions are inspired by the
TPC-C benchmark, and they are designed to keep the characteristics generated
by TPC-H dbgen at every point in time. Consequently, all TPC-H queries can
be executed on the generated data, and their result properties for certain system
times are comparable to those in the standard TPC-H benchmark. However, over
time the overall data set grows as the previous versions are preserved in order
to support time travel to a previous state of the system. In order to evaluate the
time dimension, for this benchmark, we define additional queries which retrieve
data at different points in time.

The remainder of this paper is structured as follows: In Section 2 we summa-
rize the design goals for our proposed benchmark TPC-BiH. We survey related
work on benchmarking temporal databases in Section 3. In the core part of
the paper (Section 4), we define the schema, the data generator for temporal
data, and the queries comprising the benchmark. We analyze two systems that
support temporal queries, and we present performance measurements for our
benchmark (Section 5). In Section 6, we summarize our findings and point out
future work.

18 M. Kaufmann et al.

2 Goals and Methodology

The goal of this paper is to present a comprehensive benchmark for bitempo-
ral query processing. This benchmark includes all necessary definitions as well
as the relevant tools such as data generators. The benchmark setting reflects
real-life customer workloads (which have typically not been formalized to match
the current expression of the bitemporal model) and is complemented by syn-
thetic queries to test certain operations. The benchmark is targeted towards
SQL:2011, which has recently adopted core parts of the temporal data model.
Since the expressiveness of SQL:2011 is limited (no complex temporal join, no
temporal aggregation), we provide alternative versions of the queries using lan-
guage extensions. Similarly, in order to support DBMS’s which provide temporal
support, but have not (yet) adopted SQL:2011 (like Oracle or Teradata), we pro-
vide alternative queries.

The schema builds on a well-understood existing non-temporal analytics
benchmark: TPC-H. Its tables are extended with different types of history classes,
such as degenerated, fully bitemporal or multiple user times. The benchmark
data is designed to provide a range of different temporal update patterns, vary-
ing the ratio of history vs. initial data, the types of operations (UPDATE, INSERT
and DELETE) as well as the temporal distributions within and between the tem-
poral dimensions. The data distributions and correlations stay stable with regard
to system time updates and evolve according to well-defined update scenarios in
the application time domain. The data generator we developed can be scaled in
the dimensions of initial data size and history length independently, providing
support for many different scenarios.

Our query workload provides a coverage of common temporal DB require-
ments. It covers operations such as time travel, key in time, temporal joins, and
temporal aggregations – the latter is not directly expressible in SQL:2011. Simi-
larly, we investigate many patterns of storage access and time- vs. key-oriented
access with varying ranges and selectivity. The query workload also covers the
different temporal dimensions (system and application time): The focus of the
queries is on stressing the system for individual time dimensions while consider-
ing correlations among the dimensions whenever relevant.

In summary, our benchmark fulfills the requirements mentioned in the bench-
mark handbook by Jim Gray [3], i.e., it is

– relevant, since it covers all typical temporal operations.
– portable, since it targets SQL:2011 and provides extensions for systems not

completely supporting SQL:2011.
– scalable, since it provides well-defined data which can be generated in differ-

ent sizes for base data and history.
– understandable, since all queries have a meaning in application scenarios and

in terms of operator/system “stress”.

TPC-BiH: A Benchmark for Bitemporal Databases 19

3 Related Work on Temporal Benchmarks

The foundation of the bitemporal data model was established in the proposal for
TSQL2 [12]. For a single row the system time – in the original paper called trans-
action time – defines different versions as they were created by DML statements
on a row. The system time is immutable, and the values are implicitly generated
during transaction commit. Orthogonal to that, validity intervals can be defined
on the application level – called valid time in the original paper. An example
is the specification of the visibility of some marketing campaigns to users. Un-
like the system time, the application time can be updated, and both interval
boundaries may refer to times in the past, present, or future. The concept of
the bitemporal model is now also applied in the SQL:2011 standard [9]. This
standard focuses on basic operations like time travel on a single table. Complex
temporal joins or aggregations are out of scope, but they are acknowledged as
relevant scenarios for future versions of the SQL standard.

The benchmarks published by the TPC are the most commonly used bench-
marks for databases. While these benchmarks used to focus either on analytical
or transactional workloads, recently a combination has been proposed: The CH-
benCHmark [2] extends the TPC-C schema by adding three tables from the
TPC-H schema. Yet, no time dimension is included in these benchmarks.

Benchmarking the temporal dimension has been the focus of several stud-
ies: In 1995, a research proposal by Dunham et al. outlined possible directions
and requirements for such a benchmark. The approach for building a temporal
benchmark and the query classes come close to our methods.

A later work by Kuala and Robertson [5] provides logical models of several
temporal database application areas alongside with queries expressed in an in-
formal manner. The test suite of temporal database queries [4] from the TSQL2
editors provides a large number of temporal queries focused on functional testing
rather than performance evaluation.

A study on spatio-temporal databases by Werstein [13] evaluates existing
benchmarks and concludes that the temporal aspects of these benchmarks are
insufficient. In turn, a number of queries are informally defined to overcome this
limitation.

The work that is most closely related to ours was presented at TPCTC 2012
and includes a proposal to add a temporal dimension to the TPC-H Bench-
mark [1]. The authors also use TPC-H as a starting point, extend some tables
with temporal columns to express bitemporal data, and rely on the data gener-
ator and the original queries of TPC-H as part of their workload. Yet, this work
seems to be more focused on sketching the possibilities for the bitemporal data
model rather than providing explicit definitions of data and queries. Specific
differences exist in the language used (we focus on SQL:2011, in [1] a variant
of TSQL2 is applied) as well as the derivation of application timestamps (we
use existing temporal information in TPC-H for the initial version). Our update
scenarios and queries cover a broader range of cases and aim to provide more
properties on data and queries.

20 M. Kaufmann et al.

PART

SUPPLIER

PARTSUPP

CUSTOMER

NATION

LINEITEM

COMMENT

ACTIVE_TIME

SYS_TIME

REGIONKEY

NAME

COMMENT

REGION

ORDERS

NATIONKEY

NAME

REGIONKEY

COMMENT

PARTKEY

NAME

MFGR

BRAND

TYPE

SIZE

CONTAINER

RETAILPRICE

COMMENT

AVAILABILITY_TIME

SYS_TIME

PARTKEY

SUPPKEY

AVAILQTY

SUPPLYCOST

COMMENT

VALIDITY_TIME

SYS_TIME

SUPPKEY

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

COMMENT

SYS_TIME

ORDERKEY

PARTKEY

SUPPKEY

LINENUMBER

QUANTITY

EXTENDEDPRICE

DISCOUNT

TAX

RETURNFLAG

LINESTATUS

SHIPDATE

COMMITDATE

RECEIPTDATE

SHIPINSTRUCT

SHIPMODE

CUSTKEY

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

MKTSEGMENT

COMMENT

VISIBLE_TIME

SYS_TIME

ORDERKEY

CUSTKEY

ORDERSTATUS

TOTALPRICE

ORDERDATE

ORDERPRIORITY

CLERK

SHIPPRIORITY

COMMENT

ACTIVE_TIME

RECEIVABLE_TIME

SYS_TIME

Fig. 1. Schema

4 Definition of the TPC-BiH Benchmark

The definition of our benchmark consists of a schema, properties of the bench-
mark data and a range of queries. Our benchmark mainly targets the current
SQL:2011 standard, but we also show examples how it can be translated to a
system with other temporal expressions.

Showing the full SQL code for all statements and queries is not possible due
to the space constraints of a workshop paper. Thus, we describe representative
examples in this paper and refer to a technical report [7] which includes all
queries and definitions in detail.

4.1 Schema

The schema we use in our benchmark is shown in Figure 1. As stated before, it
is based on the TPC-H schema and adds temporal columns in order to express
system and application times. Each of these time dimensions is stored as an
interval and represented physically as two columns, e.g., sys time begin and
sys time end. This means that any query defined on the TPC-H schema can run
on our data set, and will give meaningful results, reflecting the current system

TPC-BiH: A Benchmark for Bitemporal Databases 21

time and the full range of application time versions. Specific other temporal
dimensions can be added in a fairly straightforward manner. The additional
temporal columns are chosen in such a way that the schema contains tables with
different temporal properties: Some tables are kept unversioned, some express a
correlated/degenerated behavior. Most tables are fully bitemporal, and we also
consider the case in which a table has multiple “user” times. Even if the latter
is not well specified in the standard, we observe it a lot in customer use cases.

More specifically, we do not add any temporal columns to REGION and NA-
TION. This is also plausible from application semantics, since this kind of in-
formation rarely ever changes. All other relations at least include a system time
dimension. For SUPPLIER we simulate a degenerated table by only giving a
system time. Since this single time dimension is determined by the loading/up-
dating timing, we do not use any temporal correlation queries between this table
and truly bi-dimensional tables. For all the remaining relations, we determine
the application time from the existing information present in the data: Tuples
in LINEITEM are valid as long as any operation like shipping them is pending.
Likewise, tuples from PART are valid when they can be ordered, tuples from
CUSTOMER when the customer is visible to the system, tuples from PART-
SUPP when the price and the amount are valid. Finally, ORDERS has two time
dimensions: ACTIVE TIME : when was the order “active” (i.e., placed, but not
delivered yet) and RECEIVABLE TIME : when the bill for the order can be paid
(i.e., invoice sent to customer, but not paid yet). Both application times become
part of the schema. Since current DBMSs only support a single application time,
we designate ACTIVE TIME as such, and keep RECEIVABLE TIME as a “reg-
ular” timestamp column. Likewise, if a DBMS does not provide any support for
application time, application times are mapped to normal timestamp columns.

4.2 Benchmark Data

Complementing TPC-H with an extensive update workload has been proposed
before. Given the structural similarity and the wide recognition, TPC-C has
been used for this purpose, e.g., in [2]. We also used a similar approach (with
additional timestamp assignment) in a previous version of the benchmark [8], but
this proved to not be fully adequate: The set of update scenarios is quite small,
and does not provide much emphasis on temporal aspects such as timestamp
correlations. The query mix also constrains the flexibility in terms of temporal
properties, e.g., since a fixed ratio of updates needs to go to specific tables.

The standard TPC-H has only a very limited number of “refresh” queries,
which furthermore do not contain any updates to values. Nonetheless, the data
produced by the data generator serves a good “initial” data set. The applica-
tion time columns defined in the schema are initialized with the temporal data
already present in this data: Extreme values of shipdate, commitdate and receipt-
date define the validity interval of LINEITEM. Given the dependencies among
the data items (e.g., LINEITMES in an ORDER), we can now derive plausi-
ble application times for all bitemporal tables. Where needed, we complement
this information with random distributions. The resulting data will contain data

22 M. Kaufmann et al.

tuples with “open” time intervals, since customers or parts may have a validity
far into the future.

To express the evolution of data, we define nine update scenarios, stressing
different aspects among tables, values, and times:

1. New Order : Choose or create a customer, choose items and create an order
on them.

2. Cancel Order : Remove an order, its dependent lineitems and adapt the num-
ber of available parts

3. Deliver Order : Update the order status and the lineitem status, adapt the
available parts and the customer’s balance.

4. Receive Payment : Update currently pending orders and the related cus-
tomers’ balances.

5. Update Stock : Increase available parts of a supplier.

6. Delay Availability: Postpone the date after which items are available from a
supplier to a later date, e.g., due to a shipping backlog.

7. Price Change: Adapt the price of parts, choosing times from a range spanning
from past to future application time.

8. Update Supplier : Update the supplier balance. This update stresses a degen-
erated table.

9. Manipulate Order Data: Choose an “old” order (with the application time
far before system time) and update its price. This update changes values
while keeping the application times (i.e., trying to hide this change).

Since the initial data generation and the data evolution mix are modeled
independently, we can control the size of the initial data (called h like in TPC-
H) and the length of the history (called m) separately, thus permitting cases like
large initial data with a short history (h � m), small initial data with a long
history (h � m) or any other combination. Similarly to the scaling settings in
TPC-H, where h = 1.0 corresponds to 1 GB of data, we normalize m = 1.0 to
the same size, and use the same (linear) scaling rules.

Table 1 describes the outcome of applying a mix of these queries on the var-
ious tables. The history growth ratio describes how many update operations
per initial tuple happen when h = m. As we can see, CUSTOMER and SUP-
PLIER get a fairly high number of history entries per tuple, while ORDERS and
LINEITEM see proportionally fewer history operations. When taking the sizes of
the initial relations into account, the bulk of history operations is still performed
on LINEITEM and ORDER. A second aspect on which the tables differ is the
kind of history operations: SUPPLIER, CUSTOMER and PARTSUPP only re-
ceive UPDATE statements, whereas the remaining bitemporal relations will see a
mix of operations. LINEITEM is strongly dominated by INSERT operations (>
60 percent), ORDERS less so (50 percent inserts and 42 percent updates). CUS-
TOMERS in turn see mostly UPDATE operations (> 70 percent). The temporal
specialization follows the specification in the schema, providing SUPPLIER as
a degenerate table. Finally, existing application time periods can be overwrit-
ten with new values for CUSTOMER, PART, PARTSUPP and ORDERS which

TPC-BiH: A Benchmark for Bitemporal Databases 23

Table 1. Properties of the History for each Table

Table History growth ratio Dominant Operations Temporal Specialization Overwrite App.Time

NATION None None non-versioned no
REGION None None non-versioned no
SUPPLIER 5 Update degenerate no
CUSTOMER 3.7 Update fully bitemporal yes
PART 0.25 Update fully bitemporal yes
PARTSUPP 0.72 Update fully bitemporal yes
LINEITEM 0.32 Insert fully bitemporall no
ORDER 0.4 Insert fully bitemporal yes

refers to the use case of updating application time, which is an important feature
of the bitemporal data model.

We implemented a generator to derive the application times from the TPC-H
dbgen output for the initial version and generate the data evolution mix. The
generator accounts for the different ways temporal data is supported by current
temporal DBMS. Initial evaluations show that this generator can generate 0.6
Million tuples/sec, compared to 1.7 Million tuples/sec of dbgen on the same
machine. The data generator can also be configured to compute a data set con-
sisting purely of tuples that are valid at the end of the generation interval. This
is useful when comparing the cost of temporal data management on the latest
version against a non-temporal database.

4.3 Queries

Given the multi-dimensional space of possible temporal query classification, we
cluster the queries among common dimensions: Data access [10], temporal oper-
ators and specific temporal correlations.

Pure-Timeslice Queries (Time Travel). The first group of queries is con-
cerned with testing “slices” of time, i.e., establishing the state concerning a
specific time for a table or a set of tables. Also known as Time Travel, this is
the most commonly supported and used class of temporal queries. Given that
time in a bitemporal database has more than one dimension, one can specify
different slicing options for each of these dimensions: Each dimension could be
treated as a point or as complete slice, e.g., fixing the application time to June
1st, 2013, while considering the full evolution through system time. Further as-
pects to study are the combination of time travel operations (e.g., to compare
values at different points in time), implicit vs. explicit expressions for time and
the impact of underlying data/temporal update patterns. The first set of queries
is targeted for testing various aspect of time travel in isolation, consisting of nine
queries with variants.

T1 and T2 are our baseline queries, performing a point-point access for both
temporal dimensions. By varying both timestamps accordingly, particular com-
binations can easily be specified, e.g., tomorrow’s state in application time, as
recorded yesterday. The difference between T1 and T2 is according to the un-
derlying data: T1 uses CUSTOMER, a table with many update operations and
large history, but stable cardinalities. T2, in turn, uses ORDERS, a table with

24 M. Kaufmann et al.

a generally smaller history and a focus on insertions. This way, we can study
the cost of time travel operations on significantly different histories. T3 and T4
correlate data from two time travel operations within the same table. Compar-
ing their results with T2 (very selective) and T5 (entire history) gives an insight
into whether any sharing of history operations is possible. T4 adds a TOP N
condition, providing possible room for optimization in the database system. T5
retrieves the complete history of the ORDERS table. Given that all data is re-
quested, it should serve as a yardstick for the maximal cost of simple time travel
operations. T6 performs temporal slicing, i.e., retrieving all data of one tempo-
ral dimension, while keeping the other to a point. This provides insights if the
DBMS prefers any dimension, and a comparison of T2 and T5 yields insights
if any optimization for points vs. slices are available. T7 complements T6 by
implicitly specifying current system time, providing an understanding as to if
different approaches of specifying current time work equally well. T8 and T9 in-
vestigate the behavior of additional application times, as outlined in Section 4.1.
Since the standard currently only allows a single, designated application time, we
can study the benefits of explicit vs. implicit application times. In that context,
T8 uses point data (like T2), while T9 uses slicing (like T6).

The second set of timeslice queries focuses on application-oriented workloads,
providing insights on how well synthetic time travel performance translates into
complex analytical queries, e.g., accounting for additional data access cost and
possibly disabled optimizations. For this purpose, we use the 22 standard TPC-H
queries (similar to what [1] proposes) and extend them to allow the specification
of both a system and an application time point. Possible evaluations might
contain determining the cost of accessing the current version (in both system
as well as current application time) compared against the logically same data
stored in a non-temporal table (see Section 4.2).

Pure-Key Queries (Audit). The next class of queries we study poses an or-
thogonal problem: Instead of retrieving all tuples for a particular point in time,
we process the history of a specific tuple or a small set of tuples. This way, we
can investigate how tuples evolve over time, e.g., for auditing or trend detec-
tion. This evolution can be considered along the system time, the application
time(s) or both. Additional aspects to study are the effects of constraints on
the version range (complete time range, some time period, some versions) and
type of tuple selection, e.g., keys or predicates. In total, we specify 6 queries,
each with small variants to account for the different time dimensions: K1 selects
the tuple using a primary key, returns many columns and does not place any
constraints on the temporal range. For key-based histories, this should provide
the yardstick, and also offers clear insights into the organization of the storage of
temporal data. The cost of this operation can also be compared against T5 and
T6, which retrieve all versions of all tuples (for both dimensions or each time
dimension, each). To allow easy comparison with the T queries, all queries are
executed on the ORDERS relation. K2 alters K1 by placing a constraint on the
temporal range. Compared to K1, this additional information should provide an
optimization possibility. K3 alters K2 even further by only retrieving a single

TPC-BiH: A Benchmark for Bitemporal Databases 25

column, providing optimization potential for decomposition or column stores.
K4 complements K2 by constraining not the temporal range (by a time inter-
val), but the number of versions (by using TOP N). While the intent is quite
similar to K2, the semantics and possible execution strategies are quite different.
K5 constitutes a special case of K4 in which only the immediately preceding ver-
sion is retrieved, employing no TOP N expression, but a timestamp correlation.
From a technical point of view, this provides additional potential for optimiza-
tion. From a language point of view, such an access is required for queries that
perform change detection. K6 chooses the tuples not via a key of the underlying
table, but using a range predicate on a value (o totalprice). Besides a general
comparison to key-based access, choosing the value of this parameters allows us
to study the impact of the selectivity on the computation cost.

Range-Timeslice Queries. As the most general access pattern, range-timeslice
queries permit any combination of constraints on both value and temporal as-
pects. As a result, a broad range of queries falls into that range. We will provide a
set of application-derived workloads here, highlighting the variety and the differ-
ent challenges it brings. As before, these queries contain variants which restrict
one time dimension to a point, while varying the other.

R1 considers state change modeling by querying those customers who moved
to the US at a particular point in time and still live there. The SQL expression
involves two temporal evaluations on the same relation and a join of the results.
R2 also handles state modeling, but instead of detecting changes, it computes
state durations for LINEITEMs (the shipping time). Compared to R1, the in-
termediate results are much bigger, but no temporal filters are applied when
combining them. R3 expresses temporal aggregation, i.e., computing aggregates
for each version or time range of the database. At SAP, this turned out to be
one of the most sought-after analyses of temporal data. However, SQL:2011 does
not provide much support for this use case. The first query (R3.a) computes the
greatest number of unshipped items in a time range. In SQL:2011, this requires
a rather complex and costly join over the time interval boundaries to determine
change points, followed by a grouping on these boundaries for the aggregates.
The second query (R3.b) computes the maximum value of unshipped orders
within one year. As before, interval joins and grouping are required. R4 com-
putes the products with the smallest difference in stock levels over the history.
While the temporal semantics are rather easy to express, the same tables need
to be accessed multiple times, and significant amount of post-processing is re-
quired. R5 covers temporal joins by computing how often a customer had a
balance of less than 5000 while also having orders with a price greater than 10.
The join therefore not only includes value join criteria (on the respective keys),
but also time correlation. R7 computes changes between versions over a full set,
retrieving those suppliers who increased their prices by more than 7.5 percent
in a single update. R7 thus generalizes K4/K5 by determining previous versions
for all keys, not just specific ones.

26 M. Kaufmann et al.

Bitemporal Queries. Nearly all queries so far have treated the two tempo-
ral dimensions in the same way: Keeping one dimension fixed, while perform-
ing different operations types of operations on the other. While this is a fairly
common pattern in real-life queries, we also want to gain a more thorough un-
derstanding of queries stressing both time dimensions. Snodgrass [11] provides
a classification of bitemporal queries. Our first set of bitemporal queries follows
this approach and creates complementary query variants to cover all relevant
combinations. These variants span both time dimensions and vary the usage of
each time dimension: a) current/(extended to) time point, b) sequenced/time
range, c) non-sequenced/agnostic of time. The non-temporal baseline query B3
is a standard self-join: What (other) parts are supplied by the suppliers who
supplies part 55? Table 2 describes the semantics of each query.

Table 2. Bitemporal Dimension Queries

Name App Time System Time System Time value

B3.1 Point Point Current
B3.2 Point Point Past
B3.3 Correlation Point Current
B3.4 Point Correlation -
B3.5 Correlation Correlation -
B3.6 Agnostic Point Current
B3.7 Agnostic Point Past
B3.8 Agnostic Correlation -
B3.9 Point Agnostic -
B3.10 Correlation Agnostic -
B3.11 Agnostic Agnostic -

5 Experiments

In order to validate the quality and usefulness of our benchmark, we carried out
a number of preliminary performance experiments on systems supporting tem-
poral data. In addition, we added baselines for systems without native temporal
support by simulating temporal queries by means of additional columns which
represent the time dimension. More specifically, we execute the experiments on
System A, a relational DBMS supporting the temporal features of SQL:2011 as
well as on System B, an in-memory column store with basic system time support.
Since neither of these systems provides documentation on how to tune temporal
tables, we utilize out-of-the-box settings. All experiments were carried out on a
server with 192GB of DDR3-1066MHz RAM and 2 Intel Xeon X5675 processors
with 6 cores at 3.06 GHz running a Linux operating system. The execution was
staged and controlled using the Database Benchmarking Service [6].

Most of our experiments were performed on data sizes with an initial data
scaling factor h of 1.0 and a history size m of 1.0. The most significant obstacle

TPC-BiH: A Benchmark for Bitemporal Databases 27

that currently prohibits us from reaching larger scale factors is the loading pro-
cess into the database servers. In order provide a suitable system time history for
our measurements, individual update cases need to be performed as individual
update transactions. The loading process is therefore rather time-consuming, as
it cannot benefit from bulk loading. With this loading approach, the timestamps
of the system time history are compressed to the period of the loading time, thus
requiring adaptations when correlating system and application times.

5.1 Pure Timeslice

Our first measurement concerns the pure-timeslice queries introduced in Sec-
tion 4.3. For each query we measure a uniform distribution of timestamps over
each temporal dimension while keeping the other dimension to the current time,
when needed. Figure 2 shows the results for both systems. System A sees rel-
atively little variance since almost all queries have similar cost as full-history
retrieval. The only notable exceptions are T3 and T4, which seem to pay an
additional cost for the second time travel. System B shows more varied results:
Establishing two system times in the same query is not possible, and generally
the cost of system time operations exceeds that of application time. Yet, in all
cases, more restricted queries yield better response times. Somewhat surprising
is the high cost of implicit time travel to the current version (T7).

TPC-BiH: Pure-Timeslice Queries

T.1c (app) T.1a (sys) T.2c (app) T.2a (sys) T.3 (app) T.3 (sys) T.4 (app) T.4 (sys)

T.5 Allversions T.6 (app) T.6 (sys) T.6 Simulated App Time T.7 T.8 T.9

System A System B

Server

1 0

100

1000

10000

100000

L
o

g
(e

xe
cu

ti
o

n
 t

im
e

 [
m

s]
)

Fig. 2. Time Travel Operations

28 M. Kaufmann et al.

In order to understand the impact of time travel on complex application
queries, we compare the TPC-H benchmark queries on the latest version stored
in a normal table with time travel on these queries over temporal tables. As
we can see in Figure 3, the impact strongly depends on the individual queries.
While the majority of queries only see a small effect, other queries suffer from an
order-of-magnitude slowdown (H17, H20). The exact causes need further study,
one potential factor being range comparisons with sub queries.

TPC-H: Normal vs. Bitemporal

H.1 H.2 H.3 H.4 H.5 H.6 H.7 H.8 H.9 H.10 H.11 H.12 H.13 H.14 H.15 H.16

H.17 H.18 H.19 H.20 H.21 H.22

System A Time Travel System A Non-Temporal

Server

1 0

100

1000

10000

100000

L
o

g
(e

xe
cu

ti
o

n
 t

im
e

 [
m

s]
)

Fig. 3. Time Travel in Applications: TPC-H

5.2 Key in Time

Figure 4 shows the results for the queries focusing on the evolution of tuples
over time, as described in Section 4.3. The results for System A show that using
all queries relying on a key over application time at the current system time
perform very fast, since they can rely on the primary key of the current table.
Any operation referring to historic data in system time is significantly slower
(about two orders of magnitude). Yet this cost is still lower than the access
to the entire history (T5). Among the variations of the workload, only history
length (K1a) and selectivity of tuples choice (K6) have a clear (and plausible)
effect. The reduction of the temporal range (K2), projection of attributes (K3),
version count ranges (K4) and previous versions (K5) end up costing the same
– regardless if the time dimension is application time or system time. System B

TPC-BiH: A Benchmark for Bitemporal Databases 29

TPC-BiH: Simple Aggregation over Time

K.1 (app) K1-past (App Time in Past System Time) K.1 (both) K.1 (sys) K.1a (app)

K1a-past (App Time in Past System Time) K.1a (both) K.1a (sys) K.2 (app) K.2 (app-past)

K.2 (both) K.2 (sys) K.3 (app) K.3 (app - system past) K.3 (both) K.3 (sys) K.4 (app)

K.4 (app - system past) K.4 (sys) K.5 (app) K.5 (app - system past) K.5 (sys) K.6 (app) K.6 (sys)

K.6 (app) - high selectivity K.6 (app - system past) - high selectivity

System A System B

Server

1

1 0

100

1000

10000

L
o

g
(e

xe
cu

ti
o

n
 t

im
e

 [
m

s]
)

Fig. 4. Key in Time

also shows a performance gap between operations current system time and all
other data, but it is much less pronounced. Similar effects exist for the value
predicate selection.

5.3 Range-Timeslice

For the application-oriented queries in range-timeslice, we notice that the cost
can become very significant (see Figure 5). To prevent very long experiment
execution times, we measured this experiment on a smaller data set, containing
data for h=0.1 and m=0.1. Nonetheless, we see that the more complex queries
(R3 and R4) lead to serious problems: For System A, the response times of R3a
and R3b (temporal aggregation) are more than two orders of magnitude more
expensive than a full access to the history (measured in T5). While System
B fares somewhat better on the T3 queries, it runs into a timeout after 1000
seconds on R4. Generally speaking, the higher raw performance of System B
does not translate into lower response times for the remaining queries.

5.4 Bitemporal Dimensions

The results for combining all temporal dimensions with different types of oper-
ations (Figure 6) show some similar patterns: Measurements running purely on
current system time perform rather well (3.1, 3.3, 3.5), whereas history accesses

30 M. Kaufmann et al.

TPC-BiH: Range-Timeslice Queries

R.1 R.2 R.3a R.3b R.4 R.5 R.7

System A System B

Server

1

1 0

100

1000

10000

100000

1000000
L

o
g

(e
xe

cu
ti

o
n

 t
im

e
 [

m
s]

)

Fig. 5. Range-Timeslice

TPC-BiH: Covering bitemporal dimensions

B.3.1 B.3.2 B.3.3 B.3.4 B.3.5 B.3.6 B.3.7 B.3.8 B.3.9 B.3.10 B.3.11

System A

Server

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

22,000

24,000

26,000

e
xe

cu
ti

o
n

 t
im

e
 [

m
s]

Fig. 6. Bitemporal dimensions

TPC-BiH: A Benchmark for Bitemporal Databases 31

are expensive. Application time operations are cheapest when time can be ig-
nored (3.5/3.6 vs 3.1/3.2), followed by temporal joins which are more expensive.

6 Conclusion

In this paper, we presented a benchmark for bitemporal databases which builds
on existing benchmarks and presents a comprehensive coverage of temporal data
and queries. Preliminary results on existing temporal database systems highlight
significant optimization potential and insufficient support for common applica-
tion use cases in the current SQL:2011 standard. We currently consider the
following directions for future work: First, we want to broaden our evaluation,
including larger data sets, DBMSs which we have not covered so far and possi-
ble tuning guidelines. This will give us further insights into which queries to add
and possibly remove for a complete, yet concise coverage of the temporal DBMS
workloads. Furthermore, we would like to incorporate explicit update queries,
which we can evaluate in their performance characteristics.

References

1. Al-Kateb, M., Crolotte, A., Ghazal, A., Rose, L.: Adding a Temporal Dimension
to the TPC-H Benchmark. In: Nambiar, R., Poess, M. (eds.) TPCTC 2012. LNCS,
vol. 7755, pp. 51–59. Springer, Heidelberg (2013)

2. Cole, R., et al.: The Mixed Workload CH-benCHmark. In: DBTest, p. 8 (2011)
3. Gray, J.: Benchmark Handbook: For Database and Transaction Processing Sys-

tems. Morgan Kaufmann Publishers Inc., San Francisco (1992)
4. Jensen, C.S., et al.: A consensus test suite of temporal database queries. Tech. rep.,

Department of Computer Science, Aarhus University (1993)
5. Kalua, P.P., Robertson, E.L.: Benchmarking Temporal Databases - A Research

Agenda. Tech. rep., Indiana University, Computer Science Department (1995)
6. Kaufmann, M., Fischer, P.M., Kossmann, D., May, N.: A Generic Database Bench-

marking Service. In: ICDE (2013)
7. Kaufmann, M., Kossmann, D., May, N., Tonder, A.: Benchmarking Databases with

History Support. Tech. report. ETH Zurich and SAP AG (2013)
8. Kaufmann, M., Manjili, A., Vagenas, P., Fischer, P., Kossmann, D., Faerber, F.,

May, N.: Timeline index: A unified data structure for processing queries on tem-
poral data in SAP HANA. In: SIGMOD (2013)

9. Kulkarni, K.G., Michels, J.E.: Temporal Features in SQL: 2011. SIGMOD Record
41(3) (2012)

10. Salzberg, B., Tsotras, V.J.: Comparison of access methods for time-evolving data.
ACM Comput. Surv. 31(2), 158–221 (1999)

11. Snodgrass, R.T.: Developing Time-Oriented Database Applications in SQL. Mor-
gan Kaufmann (1999)

12. Snodgrass, R.T., et al.: TSQL2 language specification. SIGMOD Record 23(1)
(1994)

13. Werstein, P.: A Performance Benchmark for Spatiotemporal Databases. In: Proc.
of the 10th Annual Colloquium of the Spatial Information Research Centre, pp.
365–373 (1998)

Towards Comprehensive Measurement

of Consistency Guarantees for Cloud-Hosted
Data Storage Services

David Bermbach1, Liang Zhao2, and Sherif Sakr2

1 Karlsruhe Institute of Technology
Karlsruhe, Germany

david.bermbach@kit.edu
2 NICTA and University of New South Wales

Sydney, Australia
firstname.lastname@nicta.com.au

Abstract. The CAP theorem and the PACELC model have described
the existence of direct trade-offs between consistency and availability
as well as consistency and latency in distributed systems. Cloud stor-
age services and NoSQL systems, both optimized for the web with high
availability and low latency requirements, hence, typically opt to relax
consistency guarantees. In particular, these systems usually offer even-
tual consistency which guarantees that all replicas will, in the absence
of failures and further updates, eventually converge towards a consistent
state where all replicas are identical. This, obviously, is a very imprecise
description of actual guarantees.

Motivated by the popularity of eventually consistent storage systems,
we take the position that a standard consistency benchmark is of great
practical value. This paper is intended as a call for action; its goal is to
motivate further research on building a standard comprehensive bench-
mark for quantifying the consistency guarantees of eventually consistent
storage systems. We discuss the main challenges and requirements of
such a benchmark, and present first steps towards a comprehensive con-
sistency benchmark for cloud-hosted data storage systems. We evaluate
our approach using experiments on both Cassandra and MongoDB.

1 Introduction

Recently, we have been witnessing an increasing adoption of cloud computing
technologies in the IT industry. This new trend has created new needs for design-
ing cloud-specific benchmarks that provide the ability to conduct comprehensive
and powerful assessments for the performance characteristics of cloud-based sys-
tems and technologies [8, 15]. These benchmarks need to play an effective role
in empowering cloud users to make better decisions regarding the selection of
adequate systems and technologies that suit their application’s requirements.
In general, designing a good benchmark is a challenging task due to the many
aspects that should be considered and which can influence the adoption and the

R. Nambiar and M. Poess (Eds.): TPCTC 2013, LNCS 8391, pp. 32–47, 2014.
c© Springer International Publishing Switzerland 2014

Towards Comprehensive Measurement of Consistency Guarantees 33

usage scenarios of the benchmark. In particular, a benchmark is considered to be
good if it can provide true and meaningful results for all of its stakeholders [17].

Over the past decade, rapidly growing Internet-based services such as e-mail,
blogging, social networking, search and e-commerce have substantially redefined
the way consumers communicate, access contents, share information and pur-
chase products. Relational database management systems (RDBMS) have been
considered as the one-size-fits-all solution for data persistence and retrieval for
decades. However, the ever increasing need for scalability and new application
requirements have created new challenges for traditional RDBMS. Recently, a
new generation of low-cost, high-performance database systems, aptly named as
NoSQL (Not Only SQL), has emerged to challenge the dominance of RDBMS.
The main features of these systems include: ability to scale horizontally while
guaranteeing low latency and high availability, flexible schemas and data models,
and simple low-level query interfaces instead of rich query languages [22].

In general, the CAP theorem [10] and the PACELC model [1] describe the
existence of direct tradeoffs between consistency and availability as well as con-
sistency and latency. These trade-offs are a continuum, so that, due to the pop-
ularity of NoSQL systems, there is now a plethora of storage systems covering a
broad range of consistency guaranteess. In practice, most cloud storage services
and NoSQL systems (e.g., Amazon SimpleDB1, Amazon Dynamo [14], Google
BigTable [11], Cassandra [19], HBase2) opt for low latency and high availability
and, hence, apply a relaxed consistency policy called eventual consistency [25]
which guarantees that all replicas will, in the absence of failures and further
updates, eventually converge towards a consistent state where all replicas are
identical. For situations without failures, the maximum size of the inconsistency
window can be bounded based on factors such as communication delays, the load
on the system, and the number of replicas involved in the replication scheme,
e.g., see [3]. In practice, the implementation and the performance of the even-
tually consistent mechanism could vary between systems depending on several
factors such as the data replication and synchronization protocols, the system
load etc. For example, the results of [5] cannot be entirely explained by the
aforementioned influence factors.

Motivated by the increasing popularity of eventually consistent cloud-hosted
data storage systems, we take the position that a standard consistency mea-
surement benchmark for cloud-hosted data storage system is of great practical
value. For example, in cloud environments, users often want to monitor the per-
formance of their services in order to ensure that they meet their Service Level
Agreements (SLAs). Therefore, if consistency guarantees are specified as part of
the SLA of a cloud-hosted data storage service and the severity of SLA violations
can be detected and quantified in an agreeable way, then users could at least
receive some monetary compensation.

Furthermore, we believe that a comprehensive consistency benchmark is nec-
essary to evaluate the emerging flow of eventually consistent storage systems.

1 http://aws.amazon.com/simpledb/
2 http://hbase.apache.org/

http://aws.amazon.com/simpledb/
http://hbase.apache.org/

34 D. Bermbach, L. Zhao, and S. Sakr

Such a consistency benchmark should be able to provide a clear picture of the
relationship between the performance of the system under consideration, the
benchmarking workloads, the pattern of failures and the different consistency
metrics that can be measured from both of the system perspective and the client
perspective. This paper is intended as a call for action; its goal is to motivate
further research on building a standard benchmark for quantifying consistency
guarantees and behavior of cloud-hosted data storage systems. In this paper, we
do not present a comprehensive benchmark that would address all the challenges
such a benchmark would need to consider. We do, however, define the main re-
quirements for designing and building this benchmark and present the first steps
towards a comprehensive consistency benchmark. In particular, we summarize
the main contributions of this paper as follows:

– The identification of the challenges that a comprehensive consistency bench-
mark should consider.

– An analysis of state-of-the-art consistency benchmarking of NoSQL systems.
– The extension of an existing benchmarking approach towards meeting the
defined consistency measurement challenges.

– An experimental evaluation of two popular NoSQL systems, Cassandra [19]
and MongoDB3.

The reminder of this paper is organized as follows. We start with some back-
ground on consistency perspectives as well as consistency metrics and identify
challenges of a comprehensive consistency benchmark in section 2. Next, in sec-
tion 3 we describe the extensible architecture of a consistency benchmarking
system and its implementation. Afterwards, we use our proposed system for
evaluating and analyzing the effects of geo-replication under different workloads
on the performance of consistency guarantees for Cassandra and MongoDB in
section 4. Section 5 summarizes the related work before we conclude the paper
in Section 6.

2 Consistency Measurement: Perspectives, Metrics and
Challenges

2.1 Consistency Perspectives

There are two main perspectives on consistency measurement: the perspective
of the provider of a storage system and the perspective of a client of such a
system. The provider perspective focuses on the internal synchronization pro-
cesses and the communication between replicas and is, hence, called data-centric
consistency. In contrast, the client perspective focuses on the consistency guaran-
tees that a client will be able to observe. This perspective is called client-centric
consistency [24]. Depending on the perspective, different aspects need to be mea-
sured. Figure 1 shows a schematic overview of both consistency perspectives.

3 mongodb.org

mongodb.org

Towards Comprehensive Measurement of Consistency Guarantees 35

Fig. 1. Data-centric and Client-centric Consistency Perspectives

For both perspectives, there are two dimensions: staleness and ordering. Stal-
eness describes how much a replica (or a datum returned to the client) lags
behind in comparison to the newest version. It can be expressed both in terms
of time or versions and most real world applications can tolerate small staleness
values. Data-centric staleness is an upper bound for client-centric staleness [5].

Ordering on the other hand is more critical. It describes how updates are
executed on replicas for data-centric consistency and what kind of operation
ordering becomes visible to clients for client-centric consistency models. Typical
data-centric models like Sequential Consistency or Causal Consistency [24] do
not consider staleness and can be ordered by their strictness. Typical client-
centric ordering models like monotonic reads or read your writes are disjunct in
their guarantees [6, 24].

2.2 Metrics

From the data-centric consistency perspective, consistency metrics (e.g., stale-
ness or violations of certain ordering models) can be easily determined by ana-
lyzing detailed logs created by the different replicas. It is therefore not possible
to quantify data-centric consistency for hosted cloud storage services (e.g., Ama-
zon S3) as access to the machines running the actual replicas is required. On the
other hand, analyzing those logs after running a standard database benchmark
is relatively straightforward. Based on previous work [3, 5, 6], we propose to use
fine-grained client-centric metrics. These are useful to an application developer
as they provide direct insight into the guarantees an application will encounter
and can be measured with any kind of storage system which is treated as a black
box. This is also a common practice for measuring the performance benchmarks
of database4 and NoSQL systems [12,20]. Furthermore, using such an approach
does not preclude the usage of replica logs (if available) to also determine data-
centric consistency guarantees.

4 tpc.org

tpc.org

36 D. Bermbach, L. Zhao, and S. Sakr

In principle, we suggest that a comprehensive consistency benchmark should
include the following staleness metrics:

– Time-Based Staleness (t-visibility): This metric describes how stale a read
is in terms of time. The inconsistency window can be calculated as the time
window in between the latest possible read of version n and the start of the
write of version n+1 . Several measurements can be aggregated into a density
function describing the distribution of inconsistency windows. If a sufficient
number of reads was executed during the inconsistency window, it is also
possible to report a cumulative density function describing the likelihood of
fresh and stale reads as a function of the duration since the last update.

– Operation Count-Based Staleness (k-staleness): This metric is based on the
number of intervening writes and measures the degree of staleness. It obvi-
ously depends on the write load on the system and can, thus, be expressed
as a function of the write load combined with t-visibility.

Regarding the ordering dimension, the following four client-centric consistency
models have been proposed, e.g., see [24, 25]:

– Monotonic Read Consistency (MRC): After reading a version n, a client will
never again read an older version.

– Monotonic Write Consistency (MWC): Two writes by the same client will
(eventually but always) be serialized in chronological order.

– Read Your Writes Consistency (RYWC): After writing a version n, the same
client will never again read an older version.

– Write Follows Read Consistency (WFRC): After reading a version n, an
update by the same client will only execute on replicas that are at least as
new as version n.

For these four models, we propose to use the likelihood of a violation as
metrics. WFRC is usually not directly visible to a client and is therefore hard
to determine without access to the replica servers’ logs. A standard benchmark,
hence, need only include measurements of MRC, RYWC and MWC.

2.3 Measurement Challenges

Accuracy and Meaningfulness of Measurements. In general, fine-grained
metrics are better for controlling the quality of a system than coarse-grainedmet-
rics as they allow the definition of more expressive tradeoff decisions between
conflicting design decisions. In practice, an accurate measurement for consis-
tency metrics is a challenging process. For example, the accuracy of client-centric
t-visibility measurements is directly influenced by the precision of the clock syn-
chronization protocol. There are several synchronization protocols that work for
different scenarios. For example, NTP5 which is frequently used in distributed
systems offers about single digit millisecond accuracy

In addition, apart from workloads which may run in parallel to the benchmark
and, thus, use different system resources up to saturation levels, there is also the

5 ntp.org

ntp.org

Towards Comprehensive Measurement of Consistency Guarantees 37

workload (or rather the interaction pattern between benchmarking clients and
datastore) of the benchmark itself. Our experience has shown that observed
consistency ordering guarantees are highly volatile in regards to small changes
in this workload pattern (e.g., see [7]). Also, there is much interdependency
between the actual storage system, the load balancer used and the application
implementation. All in all, this leads to a situation where it is very hard to
precisely reproduce a concrete workload on one storage system, not to mention
on more than one, in a comparable way.

In large numbers of experiments, we have seen that more simplistic workloads
are easier to reproduce and, thus, allow a fairer comparison of systems. At the
same time, such a workload is not necessarily representative of an actual appli-
cation. Storage systems with at least causally consistent guarantees will assert
those guarantees independent of the actual workload. For eventually consistent
systems, though, some systems might (depending on the load balancer strategy
as well as the actual workload) behave like a strictly consistent database in one
scenario and become completely inconsistent in another. To us, the best strategy
for measuring the ordering dimension is still an unsolved challenge. We believe,
though, that reproducible and comparable results are paramount to benchmark-
ing whereas application-specific measurements belong in the area of consistency
monitoring. Hence, we tend to favor more simplistic workloads.

Staleness, on the other hand, can be measured independent of benchmarking
workloads. Finally, measurement results should be meaningful to application
developers in that measured values have a direct impact on application design.

Workloads. Modern web-based application are often periodically demanding
(e.g. on specific day, month or time of the year) or create bursty workloads that
may grow very rapidly before shrinking back to previous normal levels [9]. Ideally,
a cloud-hosted data storage service should be infinitely scalable and instanta-
neously elastic and, thus, be able to handle such a load variance. In particular, a
perfectly elastic cloud-hosted storage system should scale up or out its resources
indefinitely with increasing workload, and this should happen instantly as the
workload increases with no degradation on the application performance.

However, reality is not perfect: In practice, systems use different mechanisms
to scale horizontally. For example, when new nodes are added to the cluster,
Cassandra moves data stored on the old nodes to the new nodes that have just
been bootstrapped. HBase, in contrast, acts as a cache for the data stored in the
underlying distributed file system and pulls data only on cache misses. Clearly,
reducing the amount of the data that needs to be moved during the bootstrap-
ping process asserts that the system will reach its stable state faster with less
congestion on system resources. In other scenarios, live migration techniques
are used in a multi-tenancy environment to migrate the tenant with excessive
workload to less loaded server in order to cope with increasing workload.

These different implementations for the different systems could affect the
consistency guarantees in different ways during the scaling process and should,
hence, be considered within a comprehensive assessment of a storage system’s
consistency guarantees. Previous studies did not consider different workloads

38 D. Bermbach, L. Zhao, and S. Sakr

(e.g., sinusoidal workloads, exponentially bursty workloads, linearly increasing
workload, random workload) and how the system’s process of coping with it
affects consistency guarantees.

Geo-replication. In general, Cloud computing is a model for building scalable
and highly available low latency services on top of an elastic pool of configurable
virtualized resources such as virtual machines, storage services and virtualized
networks. These resources can be located in multiple data centers that are geo-
graphically located in different places around the world which provides the abil-
ity to build an affordable geo-scalable cloud-hosted data storage service that can
cope with volatile workloads. In practice, most of the commercial cloud storage
services such as Amazon S3 or SimpleDB do not use wide area replication (only
within a region). However, other systems such as PNUTS [23], Megastore [4]
and Spanner [13] have been specifically designed for geo-replicated deployments.
Using compute services, it is easily possible to deploy geo-replicated NoSQL
systems of any kind.

Zhao et al. [28, 29] have conducted an experimental evaluation of the perfor-
mance characteristics of asynchronous database replication of database servers
which are hosted in virtual machines using wide area replication. The results of
the study show that an increased application workload directly affects the up-
date propagation time. However, as the number of database replicas increases,
the replication delay decreases. Obviously, the replication delay is more affected
by the workload increase than the configurations of the geographic location of the
database replicas. So far, there is no study that has considered measuring the
consistency guarantees of cloud-hosted data storage services in geo-replicated
deployments. This issue should be considered in a comprehensive consistency
benchmark. Specifically, such a benchmark should analyze the impact of differ-
ent levels of geo-distribution on consistency guarantees.

Multi-tenancy. Multi-tenancy is an optimization mechanism for cloud-hosted
services in which multiple customers are consolidated onto the same system so
that the economy of scale principles help to effectively drive down the opera-
tional cost. One challenge of multi-tenancy in cloud storage services is to achieve
complete resource separation and performance isolation of tenants hosted on the
same physical server. In practice, the performance for any hosted tenant can turn
to be a function of the workloads of other tenants hosted on the same server. A
comprehensive benchmark should consider all kinds of cross-effects that could
happen between the different tenants.

Node Failure Consideration. Inconsistencies in cloud storage systems are
often caused by failures. While it is certainly interesting to consider failures,
this is not possible when running black box tests, e.g., against cloud storage
services, where injecting artificial failures is not an option. If access to the replica
servers is possible, a comprehensive benchmark should also consider the effects
of different failure types (e.g., node crash-stop, crash-recover or byzantine) on
the consistency guarantees of the underlying storage system.

Towards Comprehensive Measurement of Consistency Guarantees 39

Fig. 2. Benchmark Architecture

3 Consistency Benchmark Design

3.1 Benchmark Architecture

A comprehensive consistency benchmark needs to consider the challenges pointed
out in the previous section. From a more technical perspective, it is desirable
to reuse existing components and to assert that the benchmark is extensible
and flexible. We propose to use a plugin model where the component which is
actually measuring consistency is augmented with additional modules if desired.
Figure 2 illustrates the basic architecture of our framework with the following
main components:

– Workload Generator: This component is used to create different work-
loads on the system to allow the quantification of consistency effects during
phases of resource saturation. It should also report results for standard per-
formance metrics like latency or throughput to quantify tradeoffs between
consistency and performance.

– Tenant Simulator: The Tenant Simulator is used to create a specific kind
of behavior for individually simulated tenants of a storage system. While the
workload generator just creates load on the system, this component might
create a more detailed behavior of a single tenant so that multi-tenant cross-
effects on consistency can be studied.

– Consistency Measurement Component (CMC): This is the compo-
nent which is responsible for measuring the consistency guarantees of the
underlying system. Its output should use meaningful and fine-grained con-
sistency metrics from a client perspective.

– Failure Injector: The Failure Injector is a component which can be used
with self-hosted storage systems and can cause a variety of failures.

It could also be reasonable to include a benchmark scheduling and deploy-
ment component, e.g., [18], to ease benchmarking of various configurations and
systems.

40 D. Bermbach, L. Zhao, and S. Sakr

3.2 Benchmark Implementation

For the implementation, we propose to reuse existing, proven tools and to patch
them together using shell scripts. The consistency benchmarking tool of
Bermbach and Tai [5] has been used for a large number of consistency bench-
marks with various storage systems and services. We extended it slightly to
also measure violations of RYWC and MWC so that it, combined with the
existing code, measures data for all metrics discussed above. As these contin-
uous, and thus fine-grained, consistency metrics take a client perspective they
should be meaningful to application developers. As the benchmarking approach
itself relies on a distributed deployment it lends itself to studying the effects of
geo-replication. An extension, measuring consistency after delete operations, is
currently being developed. Therefore, we will use this tool as our CMC.

The Yahoo! Cloud Servicing Benchmark (YCSB) [12] is the most well known
benchmarking framework for NoSQL databases. The tool supports different
NoSQL databases and various kinds of workloads and has been designed to
be extensible in both dimensions. We will use it as our Workload Generator
Component.

So far, we have not included implementations for a Tenant Simulator which
is ongoing work at KIT. We have also not used a Failure Injector but Simian
Army6, which was published as open source by Netflix7, is a promising candidate
for future experiments.

The benchmarking tool is extensible for use with all kinds of storage systems.
Both our CMC as well as YCSB use an adapter model where the tool itself in-
teracts only with an abstract interface while concrete implementations describe
the mapping to the storage system itself. The CMC requires only a key-value
interface (even though more complex interfaces can be studied as well) which
can be fulfilled by all kinds of systems. YCSB uses the abstract operations in-
sert, update, delete, read and scan for different workloads. Depending on the
system itself and the kind of workloads whose influence shall be studied, differ-
ent combinations of those operations can be used. A Failure Injector could also
use a multi-cloud library to create machine failures as well as a similar database
adapter framework to cause database failures. The Tenant Simulator could use
the same adapter framework as YCSB.

4 Evaluation

To show the applicability of our consistency benchmarking approach, we studied
how geo-distribution of replicas combined with two different workloads affects
the consistency guarantees of Cassandra and MongoDB. We chose these systems
as Cassandra is a popular example of a peer-to-peer system whereas MongoDB
is typically (and was during our tests) configured in a master slave setup.

6 github.com/Netflix/SimianArmy
7 netflix.com

github.com/Netflix/SimianArmy
netflix.com

Towards Comprehensive Measurement of Consistency Guarantees 41

4.1 Experiment Setup

For our evaluation, we ran the following three benchmarks on Amazon EC28,
each with Cassandra and MongoDB:

– Single-AZ: All replicas were deployed in the region eu-west within the same
availability zone9.

– Multi-AZ: One replica is deployed in each of the three availability zones of
the region eu-west.

– Multi-Region: One replica is deployed in three different regions: eu-west,
us-west (northern California) and asia-pacific (Singapore).

All replicas were deployed on m1.medium instances, whereas the CMC was run-
ning on m1.small instances distributed according to the respective test. YCSB
was deployed on an m1.xlarge instance. Both YCSB and the writer machine of
the Consistency Measurement Component as well as the MongoDB master were
deployed in the eu-west-1a availability zone. We used a simple load balancer
strategy for all tests, where requests were always routed to the closest replica.
Cassandra clients were configured to use consistency level ONE for all requests.

During each test, we left the storage system at idle for at least 30 minutes
before we started the Consistency Measurement Component. After another 30
minutes we then started YCSB running workload 1. When YCSB was done,
we again waited for the storage system to stabilize before running workload 2.
Finally, after completing workload 2, we asserted that the system stabilized again
at the levels before each workload. This resulted in about 1000 to 1300 writes of
the CMC per benchmark for which we measured our consistency metrics.

There were no cross effects between the three different tests as we started
each storage system cluster from scratch. Both workloads comprised one million
operations on 1000 records. Workload 1 had 80% reads and 20% writes, while
workload 2 was configured the other way around.

4.2 Results

Effects of Workload. Surprisingly, the workloads barely affected the incon-
sistency window (t-visibility) of both systems. We used Amazon CloudWatch
to also measure the CPU utilization and network IO of the replicas and the
YCSB instance. In all cases network IO of the “master” replica10 seemed to be
the bottleneck. During one benchmark, while we were still testing the setup of
our scripts, we managed to overload the CPU of Cassandra’s “master” replica.
During that period we observed very high staleness values. Obviously, when the
CPU is saturated, the consistency behavior becomes completely unpredictable.
Table 1 shows the CPU utilization that we encountered during our experiments.

8 aws.amazon.com/ec2
9 On AWS, availability zones describe completely independent data centers located
next to each other within the same geographical region. AWS regions each have at
least two availability zones and are geographically distributed.

10 The load balancing strategy that we chose effectively asserted that all updates orig-
inated on the same replica.

aws.amazon.com/ec2

42 D. Bermbach, L. Zhao, and S. Sakr

Table 1. CPU Utilization During Consistency Benchmarks

Workload

System Replica Type idle CMC only read-heavy update-heavy

Cassandra
Update Coordinator <5% ca. 20% 70-80% 70-80%

Other Replica <5% 15-20% ca. 25% 25-40%

MongoDB
Master <5% 20% ca. 25% 35-40%
Slave <5% 5-10% ca. 25% 35-40%

Fig. 3. Change of Staleness over Time (Cassandra, Multi-region Setup)

During one of the tests (Cassandra in the multi-region setup), we were able to
see an effect of the workloads on the inconsistency window. Figure 3 shows how
staleness values changed over time during that experiment (the graph shows
a moving average to remove extreme values). The boxes indicate the periods
during which the two workloads were running.

4.3 Effects of Geo-distribution

For Cassandra, about 98% of all requests created an inconsistency window be-
tween zero and one milliseconds when deployed within a single availability zone.
As there was only a single maximum value of 38ms, we do not show a chart
for this. For the setups where replicas were distributed over three availability
zones or regions respectively, Figure 4 shows the observed density functions for
the inconsistency windows. We have excluded extreme values from our results to
increase clarity of the chart. As expected, it is fairly obvious that increasing the
level of geo-distribution increases staleness. We did not encounter any violations
of MRC, MWC or RYWC which is caused by both the load balancing strategy
that we chose (routing requests to the closest replica) as well as the fact that
our benchmarks did not encounter any obvious failures.

For MongoDB, the results were slightly different. As expected, the setup with
replicas distributed over different regions showed the longest inconsistency win-
dow. We would have expected to see again a value of close to zero for the sin-
gle availability zone setup and a slightly larger value for the setup in multiple
availability zones. Interestingly though, this was exactly the other way around.
See Figure 5 for the density functions of observed inconsistency windows on
MongoDB.

Towards Comprehensive Measurement of Consistency Guarantees 43

(a) Replicas in Different Availability
Zones

(b) Replicas in Different Regions

Fig. 4. Distribution of Inconsistency Windows in Cassandra

Fig. 5. Distribution of Inconsistency Windows in MongoDB

When looking at the detailed results for the individual replicas11, it becomes
obvious that it was always the same replica that was lagging behind. When
we excluded this replica, results are again as expected: More than 96% of all
requests show an inconsistency window of 5ms or less in the single availability
zone setup. We believe that this could be caused by one of two effects which are
both related to problems with the respective virtual machine. Either the third
replica had a problem (possibly due to a resource-greedy tenant on the same
physical machine) and was really lagging behind or the CMC reader for this
replica had a clock synchronization issue which caused its clock to lag by around
10ms behind. Normally, this should not be an issue as our CMC component
was started about 24 hours in advance to allow for a slow clock synchronization
process12. In this case, one possible reason for causing this effect is a problem
with the virtual machine of the CMC reader. However, further investigation is
required to verify if other reasons could be behind this effect.

During our multi-region tests with both Cassandra and MongoDB, we could
observe that the Singapore region usually added another 15 to 20ms to the incon-
sistency window already caused by the us-west replica. Obviously, the connection
to the Singapore replica was the limiting factor in our setup.

11 We do not report those detailed results here due to space limitations, but the CMC
logs the result of every single datastore interaction as well as the corresponding
timestamp and latency.

12 ntp.org recommends about 4 hours, so we really played it safe here.

ntp.org

44 D. Bermbach, L. Zhao, and S. Sakr

4.4 Additional Observations

For Cassandra, we also repeated a multi-region setup with a fourth replica in
the region sao-paulo and varied the write consistency level of Cassandra which
describes the number of replicas that need to acknowledge a write request so
that it terminates successfully. In all of our tests, we could not see any variance
in the staleness levels due to the write consistency level chosen. Obviously, the
write consistency level is rather a durability level than a consistency level as the
system does not block dirty reads. This implies that in a geo-distributed setting
the updates might be visible on some replicas before the request commits at
the coordinator of the write which, in essence, corresponds to something like
“negative staleness”. Apart from increased request latency there was no effect
on the system.

5 Related Work

Several studies have been presented as an attempt to quantify the consistency
guarantees of cloud storage services. Wada et al. [26] presented an approach
for measuring time-based staleness by writing timestamps to a key from one
client, reading the same key and computing the difference between the reader’s
local time and the timestamp read. However, this approach is very primitive
and imprecise and is, hence, unsuitable in a production environment. In par-
ticular, systems often use a certain degree of sessions stickiness so that most
inconsistencies will never become visible to the single client. Arguably, a more
complex interaction pattern between benchmarking client and datastore could
also be interesting. These limitations hurt the accuracy and meaningfulness of
the reported measurements. Bermbach and Tai [5] have addressed parts of these
limitations by extending the original experiments of [26] using a number of read-
ers which are geographically distributed. They measure the inconsistency win-
dow by calculating the difference between the latest read timestamp of version
n and the write timestamp of version n + 1. Their experiments with Amazon
S3 showed that the system frequently violates monotonic read consistency and
exposes very high degrees of staleness. Using the individual reader’s read times-
tamps their approach also allows to easily describe monotonic reads violations
as well as the probability of reading fresh or stale data (including the degree
of staleness) as a function of the duration since the last update. The accuracy
of their measurements in contrast to the single reader-writer setup, though, is
limited by the accuracy of the clock synchronization protocol used.

Anderson et al. [2] and Golab et al. [16] presented an offline algorithm and its
online analysis extension that builds a dependency graph based on the clients’
operation logs and searches for cycles in that graph. Their approach allows to
check for violations of safety, regularity and atomicity which are properties de-
veloped by the theoretical distributed systems community. It is unclear what the
implications of their results are for both system providers (data-centric view) or
application developers (client-centric view). Rahman et al. [21] have presented a
first step towards defining a standard consistency measurement benchmark and

Towards Comprehensive Measurement of Consistency Guarantees 45

extended their previous work to also consider, e.g., Δ-atomicity and k-atomicity.
k-atomicity describes an atomic execution where a maximum version lag of k
units could be observed. Δ-atomicity does the same for time. We believe that
these metrics are insufficient for benchmarking consistency guarantees of cloud
storage systems for several reasons: First, these metrics are very coarse-grained
in that they just return the single maximum inconsistency value which could be
observed. For example, in the results of [5] only the highest measurement spike
would be reported. Second, although these metrics are from a client perspective,
it is unclear how they might be helpful to an application developer. Third, the
measurements are highly dependent on the client workload and are, thus, likely
to be not reproducible. We believe that their approach is, hence, more suitable
for monitoring a consistency health status for a production application where
it may be necessary to react to severe consistency violations whereas for bench-
marking purposes more detailed metrics are needed which provide meaningful
information to application developers.

Zellag and Kemme [27] have proposed an approach for real-time detection of
consistency anomalies for arbitrary cloud applications accessing various types
of cloud datastores in transactional or non-transactional contexts. In particular,
the approach builds the dependency graph during the execution of a cloud appli-
cation and detect cycles in the graph at the application layer and independently
of the underlying datastore. One of their main assumptions though, that of a
causally consistent datastore, makes it impractical to use with today’s eventually
consistent storage systems. We expect future extensions to resolve this issue.

Bailis et al. [3] presented an approach that provides expected bounds on stal-
eness by predicting the behavior of eventually consistent quorum-replicated data
stores using Monte Carlo simulations and an abstract model of the storage sys-
tem including details such as the distribution of latencies for network links. In
general, predicting staleness, if accurate, can be used in a variety of ways, such
as performance tuning, monitoring system service level agreements and feedback
control. Still, a simulation approach is inherently limited in its accuracy as it
is only an approximation based on the influence factors considered within the
model. Furthermore, PBS is limited to Dynamo-style quorum systems and, thus,
not applicable to systems like MongoDB.

Patil et al. [20] also propose to measure staleness in terms of time. Their
benchmarking approach, though, can only serve as a rough approximation for
consistency as it is subject to the same limitations as the approach described by
Wada et al. [26] and also incurs additional inaccuracies due to the way values
are measured.

6 Conclusion

In this paper, we presented the first steps for building a standard comprehen-
sive benchmark for quantifying the consistency guarantees of cloud-hosted stor-
age systems. We identified meaningful and fine-grained continuous metrics, the
main challenges and requirements for such a benchmark and proposed an archi-
tecture for a corresponding benchmarking system. Afterwards, we showed how

46 D. Bermbach, L. Zhao, and S. Sakr

a comprehensive benchmarking tool could be built reusing proven, standard
components. We then used this benchmarking tool to evaluate the effects of geo-
replication and different workloads on two popular NoSQL systems, Cassandra
and MongoDB, and also studied how different write quorums in Cassandra affect
consistency.

In future work, we plan to also include a Tenant Simulator and a Failure In-
jector, as outlined in section 3, and use it to study the effects of various kinds
of failures as well as cross-tenant effects on consistency guarantees of eventually
consistent storage systems. We also plan to run additional benchmarks on other
storage systems in all kinds of consistency benchmark setups using the compo-
nents presented within this work. Furthermore, we intend to continue our efforts
towards a standardized comprehensive consistency benchmark comparable to
performance benchmarks like TPC-W.

References

1. Abadi, D.: Consistency tradeoffs in modern distributed database system design:
Cap is only part of the story. Computer 45(2) (2012)

2. Anderson, E., Li, X., Shah, M.A., Tucek, J., Wylie, J.J.: What consistency does
your key-value store actually provide? In: HotDep (2010)

3. Bailis, P., Venkataraman, S., Franklin, M., Hellerstein, J., Stoica, I.: Probabilisti-
cally bounded staleness for practical partial quorums. PVLDB 5(8) (2012)

4. Baker, J., Bond, C., Corbett, J., Furman, J., Khorlin, A., Larson, J., Léon, J.M.,
Li, Y., Lloyd, A., Yushprakh, V.: Megastore: Providing scalable, highly available
storage for interactive services. In: Proc. of CIDR, pp. 223–234 (2011)

5. Bermbach, D., Tai, S.: Eventual consistency: How soon is eventual? an evalua-
tion of amazon s3’s consistency behavior. In: Proceedings of the 6th Workshop on
Middleware for Service Oriented Computing (2011)

6. Bermbach, D., Kuhlenkamp, J.: Consistency in distributed storage systems: An
overview of models, metrics and measurement approaches. In: Gramoli, V., Guer-
raoui, R. (eds.) NETYS 2013. LNCS, vol. 7853, pp. 175–189. Springer, Heidelberg
(2013)

7. Bermbach, D., Kuhlenkamp, J., Derre, B., Klems, M., Tai, S.: A middleware guar-
anteeing client-centric consistency on top of eventually consistent datastores. In:
Proceedings of the 1st International Conference on Cloud Engineering (IC2E).
IEEE (2013)

8. Binnig, C., Kossmann, D., Kraska, T., Loesing, S.: How is the weather tomorrow?:
towards a benchmark for the cloud. In: Proceedings of the Second International
Workshop on Testing Database Systems (2009)

9. Bod́ık, P., Fox, A., Franklin, M.J., Jordan, M.I., Patterson, D.A.: Characterizing,
modeling, and generating workload spikes for stateful services. In: SoCC (2010)

10. Brewer, E.A.: Towards robust distributed systems (abstract). In: PODC (2000)
11. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,

Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A Distributed Storage System for
Structured Data. ACM Trans. Comput. Syst. 26(2) (2008)

12. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with ycsb. In: Proceedings of the 1st ACM Symposium on
Cloud Computing, pp. 143–154. ACM (2010)

Towards Comprehensive Measurement of Consistency Guarantees 47

13. Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J., Ghemawat,
S., Gubarev, A., Heiser, C., Hochschild, P., et al.: Spanner: Google’s globally-
distributed database. To appear in Proceedings of OSDI, p. 1 (2012)

14. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. In: SOSP (2007)

15. Folkerts, E., Alexandrov, A., Sachs, K., Iosup, A., Markl, V., Tosun, C.: Bench-
marking in the Cloud: What It Should, Can, and Cannot Be. In: Nambiar, R.,
Poess, M. (eds.) TPCTC 2012. LNCS, vol. 7755, pp. 173–188. Springer, Heidel-
berg (2013)

16. Golab, W., Li, X., Shah, M.: Analyzing consistency properties for fun and profit. In:
Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, pp. 197–206. ACM (2011)

17. Gray, J. (ed.): The Benchmark Handbook for Database and Transaction Systems,
1st edn. Morgan Kaufmann (1991)

18. Klems, M., Bermbach, D., Weinert, R.: A runtime quality measurement framework
for cloud database service systems. In: Proceedings of the 8th International Con-
ference on the Quality of Information and Communications Technology. Springer
(2012)

19. Lakshman, A., Malik, P.: Cassandra: A structured storage system on a p2p net-
work. In: Proceedings of the Twenty-First Annual Symposium on Parallelism in
Algorithms and Architectures, pp. 47–47. ACM (2009)

20. Patil, S., Polte, M., Ren, K., Tantisiriroj, W., Xiao, L., López, J., Gibson, G., Fuchs,
A., Rinaldi, B.: Ycsb++: benchmarking and performance debugging advanced fea-
tures in scalable table stores. In: Proceedings of the 2nd ACM Symposium on
Cloud Computing, p. 9. ACM (2011)

21. Rahman, M.R., Golab, W.M., AuYoung, A., Keeton, K., Wylie, J.J.: Toward a
Principled Framework for Benchmarking Consistency. In: HotDep (2012)

22. Sakr, S., Liu, A., Batista, D.M., Alomari, M.: A Survey of Large Scale Data Man-
agement Approaches in Cloud Environments. IEEE Communications Surveys and
Tutorials 13(3), 311–336 (2011)

23. Silberstein, A., Chen, J., Lomax, D., McMillan, B., Mortazavi, M., Narayan, P.P.S.,
Ramakrishnan, R., Sears, R.: PNUTS in Flight: Web-Scale Data Serving at Yahoo.
IEEE Internet Computing 16(1) (2012)

24. Tanenbaum, A.S., van Steen, M.: Distributed systems: principles and paradigms,
2nd edn. Pearson, Prentice Hall, Upper Saddle River, NJ (2007)

25. Vogels, W.: Eventually Consistent. Queue 6 (October 2008),
http://doi.acm.org/10.1145/1466443.1466448

26. Wada, H., Fekete, A., Zhao, L., Lee, K., Liu, A.: Data Consistency Properties
and the Trade-offs in Commercial Cloud Storage: the Consumers’ Perspective. In:
CIDR (2011)

27. Zellag, K., Kemme, B.: How Consistent is your Cloud Application? In: SoCC (2012)
28. Zhao, L., Sakr, S., Fekete, A., Wada, H., Liu, A.: Application-Managed Database

Replication on Virtualized Cloud Environments. In: ICDE Workshops on Data
Management in the Cloud (DMC) (2012)

29. Zhao, L., Sakr, S., Liu, A.: Application-Managed Replication Controller for Cloud-
Hosted Databases. In: IEEE CLOUD (2012)

http://doi.acm.org/10.1145/1466443.1466448

R. Nambiar and M. Poess (Eds.): TPCTC 2013, LNCS 8391, pp. 48–60, 2014.
© Springer International Publishing Switzerland 2014

TPC Express – A New Path for TPC Benchmarks

Karl Huppler1 and Douglas Johnson2

1 Independent
karlhuppler@gmail.com

2 InfoSizing
doug@sizing.com

Abstract. To accommodate differences in systems architecture and DBMS
functions and features, the TPC has long held that the best way to define a
database benchmark is to author a paper specification of the application to be
measured, leaving the implementation of that specification to the individual
analyst. While this technique allows for the optimal implementation for a
specific DBMS on a specific platform, it makes the initial entry into benchmark
development a costly one – often cost prohibitive. The TPC has embarked on a
plan to develop a new benchmark category, dubbed TPC Express, where
benchmarks based on predefined, executable kits that can be rapidly deployed
and measured. This paper defines the TPC Express model, contrasts it to the
TPC’s existing “Enterprise” model, and highlights many of the changes needed
within the TPC to ensure the Express model is a successful one.

Keywords: Performance, Benchmark, Database, Servers.

1 Introduction

To accommodate differences in systems architecture and DBMS functions and
features, the Transaction Processing Performance Council (TPC) has long held that
the best way to define a database benchmark is to author a paper specification of the
application to be measured, leaving the implementation of that specification to the
individual analyst. While this technique allows for the optimal implementation for a
specific DBMS on a specific platform, it makes the initial entry into benchmark
development a costly one – often cost prohibitive.

Although members of the TPC have looked for solutions to this challenge for
several years, the work discussed in this paper was initiated in early 2012, by one of
the TPC’s affiliates, InfoSizing. The TPC contracted with InfoSizing to deliver a
summary overview of steps and processes needed to shift to a benchmark format that
retained the current strengths of the TPC, while removing or diminishing current
impediments in the existing TPC benchmark model.

As a result of this work and research from the leadership in the TPC, the TPC has
embarked on a plan to develop a new benchmark category, dubbed TPC Express,

 TPC Express – A New Path for TPC Benchmarks 49

where benchmarks are based on predefined, executable kits that can be rapidly
deployed and measured. This paper defines the TPC Express model, contrasts it to the
TPC’s existing “Enterprise” model, and highlights the many changes needed within
the TPC to ensure the Express model is a successful one.

Caveat: This paper is based on a “work in progress.” As the work progresses, it is
likely that improvements will be made and some decisions will go in a direction that
is different than is indicated, here. This paper is not a guarantee of the outcome,
but rather an indicator of what is certain to be an exciting development within the
TPC.

2 Pros and Cons of the TPC’s Current Benchmark Model

There is little question that the TPC’s existing model for enterprise database
benchmarks was a good one when the TPC first started developing benchmarks in
1989 and the early 1990s. Database products delivered solutions in very different
ways and most enterprise customers had private development teams that would create
custom applications for the enterprise, using the hardware, operating system and
DBMS of choice.

The TPC’s choice to deliver, instead of explicit executable code, a functional
specification for a benchmark application was novel. It allowed benchmark teams to
develop and deliver the best possible application for their environment. This
“Enterprise” benchmark model has had proven success over the years. Benchmark
implementations based on this model continue to be widely used as engineering tools
to develop new customer solutions. However, over time the public display of TPC
benchmark results has diminished.

Based on the views of the TPC membership, discussions with industry analysts,
and examination of adjustments made to TPC benchmarks for academic studies, we
find the following reasons for why the number of official benchmark publications is
diminishing:

1) TPC Enterprise benchmarks are expensive. Although the benchmark
specification and any associated tool downloads are free, the remainder of
the benchmark process is costly:

a. Enterprise database application environments tend to require substantial
storage, memory and processing components. Even a small TPC
benchmark configuration is larger than configurations required for many
other industry benchmarks.

b. TPC Enterprise benchmarks require Roll-Your-Own applications. To
run a benchmark, you either must partner with someone who has
already written a benchmark implementation, or you must author a new
one.

50 K. Huppler and D. Johnson

c. TPC Enterprise benchmarks require a separately contracted audit to
assure that the application specification is correctly followed for the
benchmark implementation. In reality, this cost is minute in comparison
to the above two items. However, it continues to be perceived as a
deterrent to publishing official benchmark results in terms of both
expense and time.

2) TPC Enterprise benchmarks have a rigorous set of tests and checks, either as
a part of the benchmark process or a part of the audit process, that are viewed
as a deterrent to producing benchmark results that can be registered with the
TPC.

a. For example, the TPC has requirements for ensuring that ACID
(Atomicity, Consistency, Isolation, Durability) properties are
maintained. These requirements are critical for delivery of a consumer
solution, but testing them with abnormal power failures, simulated
memory failures, physical removal of disks and other tests can be time
consuming and expensive.

3) TPC Enterprise benchmarks require total system pricing. This is both a very
positive aspect of TPC benchmarks and a deterrent to publication of
benchmark results.

a. On the positive side, the inclusion of price exposes unfair comparisons,
such as configuring one system with 4 processors, 48 processor cores
and 4 TB of memory and comparing it to another system having only 1
four-core processor with 64 GB of memory.

b. However, generating a fair and accurate price for an entire configuration
is a challenge for an academic study that only wants to compare two
methods of delivery for a particular query function, or a storage vendor
who wants to contrast their solid state and rotating storage solutions.

c. Pricing of products is not an exact science, as it almost always depends
on market forces that are not within the control of the person executing
the benchmark.

d. Pricing also proves to be a challenge for different solution delivery
methods. TPC pricing requirements assume a capital purchase of
dedicated computer equipment, licensing of dedicated software, and
three years of maintenance costs for both. This is in stark contrast to
expense-oriented costs associated with cloud based solutions, or other
contracted managed operations solutions that are prevalent throughout
the industry.

4) TPC benchmarks have incorrectly gained a reputation for not being
publishable on the day a product or feature is announced. We include this
point because, although inaccurate, the perception is that this is a deterrent to
publication of TPC benchmark results.

 TPC Express – A New Path for TPC Benchmarks 51

a. The perception is that, because of TPC audit requirements and the
TPC’s mandatory 60-day benchmark review period, a result can only be
publicized well after a product is announced.

b. The reality is that the TPC’s certified benchmark auditors maintain the
strictest levels of confidentiality with their clients and have shown a
willingness to work with their clients to deliver timely benchmark
results that are compliant with the specifications. The TPC has
infrastructure in place that will allow a benchmark sponsor to prepare
results well ahead of a product announcement, and have those results be
known only to the sponsor and the TPC Administrator until the sponsor
elects to release them. Even incomplete results can be logged with the
Administrator, so that the sponsor can prepare publicity ahead of time,
but can still place the final results in the TPC’s database at the very last
minute, with publicity commencing immediately.

5) TPC benchmarks have a reputation for not being at the forefront of
computing technology.

a. Although some TPC benchmarks have existed for a long time, there are
also new benchmarks that have yet to be published, so to a large degree
we feel that this point is secondary to the first three items in the above
list.

b. It is true, however, that benchmark development from an industry
standards organization like the TPC, or SPEC (Standard Performance
Evaluation Corporation), or SPC (Storage Performance Corporation)
tends to take several years to complete. If something can be done to
improve this process, it should be.

3 Needs for a New Benchmark Model

How does the TPC resolve these real and perceived issues while retaining the
strengths of the existing TPC benchmark model? The first conclusion is not to forsake
the existing model, but to enhance the TPC’s offerings by introducing a new
benchmark model, in parallel with the existing one. Dubbed “TPC Express”, the
intention is to focus on a critical subset of the database application suite, trading the
ability to demonstrate absolute optimal performance for improved ease and costs of
benchmarking. Fundamentally, the Enterprise model is specification-based, while the
Express model will be based on predefined, executable kits that will be offered as
benchmark products from the TPC.

Described further in subsequent sections of this paper, the two benchmark models
are compared in the following table.

52 K. Huppler and D. Johnson

Table 1. Comparison of TPC Enterprise and TPC Express Benchmark Models

Enterprise Express

Specification based with some TPC
code

Kit based enhanced by documentation, such
as a users’ guide or a design document

Roll-Your-Own implementation Out-Of-Box implementation of at least the
application and perhaps also the database
build routines.

Best possible optimization allowed System tuning for “unalterable” benchmark
application

Full Audit Much self-validation, perhaps with
additional post-publish review.

Price required Price eliminated

ACID testing ACI testing as a part of self validation

Full System Configuration Limited configurations focused on stressing
key components of the benchmark.

TPC revenues from benchmark
registration

TPC revenues from license sales and
potentially also benchmark registration

Substantial implementation costs Reduced implementation costs

Ability to promote results as soon as
published to the TPC

Ability to promote results as soon as
published to the TPC

4 TPC Express Proposal

There are a great many things that need to be developed or enhanced within the TPC
to enable development and support of TPC Express benchmark products.

• Where fairness and comparability was maintained in the Enterprise model by
focusing on the delivery of specified functions in each benchmark
implementation, these qualities must now be enforced as a part of the
delivery of a pre-defined application.

• Where much of the compliance validation was handled by certified
benchmark auditors in the Enterprise model, Express benchmarks will be
validated using integrated routines that check the results of the benchmark as
it is executed.

• Where existing Enterprise benchmark specifications and associated support
code can be downloaded for free, the Express model will require the creation

 TPC Express – A New Path for TPC Benchmarks 53

of a license control structure that reflects the value of the work donated to
generate and support the benchmark product.

• These and many other infrastructure areas are actively being developed
within the TPC. In addition to the specific items necessary to support
benchmarks under the Express model, the TPC is also taking a close look at
the steps needed to create and approve a final benchmark product, in order to
improve the time to market for novel benchmark ideas.

While these items are critical to the success of the TPC Express model,
they are primarily TPC-Internal activities, and are not the primary focus of
this paper. Let us assume that an Express benchmark has been created, and
examine the overall life cycle of implementations of that benchmark:

Fig. 1. Consumer Benchmark Life Cycle

• Release: The Benchmark is made public: In the Enterprise model, this meant
that a specification and associated tooling was available for download from
the TPC and the consumer could initiate development of a benchmark
application. In the Express model, this will mean that a new benchmark
product is being made available. The code will already have been tested in a
variety of supported environments. A critical component of the development
process will be to ensure that the product works in specific, declared

54 K. Huppler and D. Johnson

environments. Facility needs to be provided by the TPC to allow other
environments to also work with the product, but new operating environments
may require some qualification process to become officially supported by the
benchmark product.

• Register: In the Enterprise model, the most a consumer would need to do is
agree to an End-User License Agreement. Because Express benchmarks will
be actual products from the TPC, the registration process for these products
will also include a licensing process, most likely with a nominal fee. The
TPC has not completed definition of this process, but it is likely that each
product will be licensed separately, that for-profit organizations will have
higher fees than academic organizations, and that TPC members may receive
license credit with the payment of their membership fees.

• Download: Upon receipt of the licensing agreement and associated payment,
the TPC will make the product available to the consumer. While this could
be as simple as mailing physical media, it can also be electronic download
authorized through a specific license key. Although we are not detailing
infrastructure requirements in this paper, this is an indication of some of the
infrastructure that needs to be developed within the TPC. License and media
control is new to the TPC, although it is a regular part of doing business for
most of the TPC’s individual members.

• Support: When consumers purchase a license to use a product, they expect
that product to be supported by the provider. Because the TPC is a nonprofit
consortium comprised of volunteers, the level of support must necessarily be
limited. However, it is in the TPC’s best interest to provide support, since it
will help to further the benchmark product as a worthwhile tool. In the
Enterprise model, this support comes from the specification, from interaction
with benchmark partners such as a database vendor, and from contracts with
TPC certified auditors.

With a licensed benchmark product, the TPC needs to be prepared to
provide operational and defect support for the product from within the TPC.
This could be from the volunteer members of the TPC committee that
created the benchmark product, or a contract with one of the TPC’s affiliates,
or some combination of the two. It may vary from benchmark to benchmark,
but this should be transparent to the licensees of TPC products.

As indicated in the diagram, activity associated with support, building the
benchmark environment, and running the benchmark may well be an
iterative process.

• Build: Apart from the infrastructure changes and user costs associated with
acquisition of a licensed benchmark product, the benchmark build process is
the first really tangible difference between the Enterprise and Express
benchmark models. With the Enterprise model, the TPC often (but not
always) makes available tools to generate “flat file” data that will eventually
be inserted into a database which will be exercised by the benchmark.

In the Enterprise model, how that database is defined, where each table
and index will reside, how the operating system and DBMS storage

 TPC Express – A New Path for TPC Benchmarks 55

management routines will access the data is both allowed to be defined by
the implementer and required to be defined by the implementer. While this
allows for the greatest degree of optimization, it also has a substantial
implementation cost in terms of human expertise and experimentation.

With the Express model, it is expected that much of this will be
predetermined. The number of options available to the benchmark
implementer will be limited, but the ease of implementing the benchmark
will be greatly improved. This also serves to improve confidence that the
final benchmark result is valid, since the data and application build routines
will be well understood.

• Run: The most significant difference between the benchmark models is with
the preparations and measurement of the benchmark application, itself. With
the Enterprise model, before initiating a benchmark run, the application has
to be created. In the early years of the TPC, this application was typically
written by the sponsoring hardware company. However, for much of the
TPC’s history, the application is written by the database partner participating
in the benchmark, with enhancements applied by the hardware sponsor to
match capabilities in hardware, firmware and the operating system.
Regardless of the method, achieving optimal results requires an investment
of time by someone who is intimately aware of the benchmark specification,
the resulting application, the operating system, the firmware and the specific
hardware configuration.

With the Express model, the TPC will predetermine a “typical”
implementation and test it to ensure that it functions and performs as
expected. While the model will not accommodate extraordinary application
tuning measures to get the last few percent of performance out of the
environment, the goal is that once the product is installed and the
environment is built, the benchmark implementer need only press “GO” to
run the benchmark.

Of course, there may still be iterative steps needed to tune the operating
environment, match the target build to the system capacity, and so forth. The
Express benchmark model does not eliminate the need to analyze results and
optimize the environment. What it does do is contain the extent of this
analysis to what would typically be required in an environment where a
purchased software package is newly installed on a computer server.

To achieve this, there are new requirements placed on the development
process within the TPC. The expectation that a benchmark product will run
out-of-the-box means that it must be tested and proven on a wide variety of
configurations prior to its release as a product.

This could also lead to a new role for TPC certified auditors. For example,
if a benchmark product has been tested with two database products, and a
third database wants to be included, the new company could work directly
with the TPC to have their product be included in the official benchmark kit,
or the TPC might provide a process where the new company can work with a
certified TPC auditor to attest to the benchmark compliance of the kit
adjustments needed to include the new database.

56 K. Huppler and D. Johnson

• Post Process: In the Enterprise model, there are three components to
benchmark post processing: First, the custom kit may include some
automated testing to ensure that the benchmark result is likely to be
compliant. Second, the custom kit may include routines to examine the
measured data for the best possible result to report. Third, the test sponsor is
required to contract with a TPC-certified benchmark auditor to examine the
results to attest to compliance with the benchmark requirements. This can be
a substantial process, particularly for new implementations or unique
hardware configurations.

For the Express model, the expectation is that the post-processing routines
will be built into the product, or perhaps explicitly described in the users
guide. The intent is to have consistent post-processing for all benchmark
sponsors and to have sufficient analysis that the test sponsor can be confident
of the compliance of the measurement.

• Submit: This process may be very similar between the two models. The
TPC already has a sophisticated mechanism for submission of results,
including an option to immediately register and publish a complete result, an
option to register a complete result with delayed publication (keeping the
result confidential until the delay expires) and an option to pre-register an
incomplete result (to prepare for future publicity) with the intent to make the
result complete prior to its public release. Some adjustments to this process
may be needed, but the basic functions are already sound for both the
Enterprise and Express models.

As soon as the submission process is complete, the benchmark sponsor
may begin publicizing the results. This is true in the current Enterprise model
and is expected to be true in the Express model. It has been suggested that
publicity ought to be allowed even without a formal submission. It is clear
that some academic studies will not require submission of benchmark results.
However, if a competitive comparison is to be made with existing registered
benchmark results, it seems reasonable to require submission of a result prior
to the comparison becoming public. The TPC has made it sufficiently easy to
submit a result. Results that are not submitted through the TPC’s process
should not be considered to be comparable to results that have gone through
the full process.

• Validate: This step is largely transparent to the benchmark sponsor who is
submitting the result. In the Enterprise model, the staff at the office of the
TPC Administrator check to ensure that all necessary components are
present. With the use of TPC-certified benchmark auditors, there is a high
confidence that the results are compliant with the benchmark requirements.

With the Express model, the TPC may choose to conduct additional
validation of the result prior to publication. If additional validation is needed,
it must be conducted in a timely manner, based on the potential need to
publicize the result.

• Publish: As discussed earlier, the actual publication of a result can be
controlled entirely by the benchmark sponsor. If results are submitted that

 TPC Express – A New Path for TPC Benchmarks 57

are believed to be compliant with the benchmark rules, they are published on
the date of the submitter’s choosing. This will be true for both Enterprise and
Express models.

• Review: The current Enterprise model has a 60-day review period for all
results. The result is presumed to be correct (as attested to by a TPC-certified
benchmark auditor) and may be publicized during the review period. A
similar review period is likely for the Express model, although there will be
high confidence in the compliance of the result, since the benchmark
application will be well understood.

5 Existing Benchmark Models in the Industry

One might ask “Why not just join SPEC?” Certainly the Standard Performance
Evaluation Corporation (SPEC) has seen substantial success with many of its
benchmarks, and the TPC Express model has some distinct similarities to many
aspects of SPEC benchmark products. Furthermore, SPEC already has groups that
focus on high performance computing, workstation and graphics computing, and
general server computing – so why not add a group that focuses on database
computing?

Examination of SPEC’s public documentation regarding their benchmarks and the
procedures associated with them was certainly one of the areas of research that led to
the development of the Express proposal. SPEC has developed a very successful
product development and delivery system, and some of their benchmarks have been
extremely popular. On the other hand, there are also some SPEC benchmark products
that have not seen a publication on the SPEC site for two or more years. It is only
practical to assume that simply becoming a part of the SPEC organization is not a
guarantee of having a successful benchmark product.

It is worthwhile examining some of SPEC’s success stories. Of the current or near-
current SPEC benchmark products, the three with the greatest number of publishes are
SPECjbb2005, SPECpower_ssj2008 and the SPECcpu2006 suite. For the first two
quarters of 2013, SPECpower_ssj2008 had 19 publishes, with a current lifetime total
of 440. SPECjbb2005 was recently replaced with SPECjbb2013. In it’s final two
quarters as a current benchmark, it had 39 publications and it enjoyed a lifetime
publish list of 746 results. Although the SPECcpu2006 suite is actually 4 benchmarks,
it is almost astounding that in the first two quarters of 2013 it had 729 published
results – an indication that one should not be surprised to learn that the lifetime
publication list totaled 4,391 up to July 2013.

One must ask “What are the components that generated these levels of success?”
We believe there are five key qualities, of which the first three are the most important:

1) The benchmark products have an order/delivery/execution/validation process
that is easily understood and managed by the end user. Providing a similar
process is the focus of the portion of the TPC Express model that has been
described earlier in this paper.

58 K. Huppler and D. Johnson

2) The benchmark products focus on key components of computing in the
industry that are deemed to be important by those interested in running the
benchmarks. It is not critical that these key components be “new and novel.”
The SPECcpu suite focuses a great deal on compiler technology and
optimization – something that has been with the industry since computers
shifted from interpretive to compiled programs. TPC Enterprise benchmarks
clearly already focus on key areas in the industry - - All businesses require
enterprise database applications to run. However, just satisfying this
requirement, without the others in this list, is insufficient.

3) The three SPEC products listed above fit on servers of almost any size.
Although there can be substantial memory and processor requirements to
achieve optimal performance, all three benchmarks can be run on systems
with minimal storage and can execute on both small and large
processor/memory configurations. This makes the benchmarks affordable for
measurement on many configurations. This is in contrast to current TPC
Enterprise benchmarks, which require very robust configurations to execute
properly. To achieve this configuration economy typically requires a
compromise in the “completeness” of the benchmark application. It is
important that the functions tested satisfy item 2, above, but it is a reasonable
trade-off to say that the benchmark need not test “every” function in the
business model being emulated by the benchmark.

4) The benchmarks are attractive to the academic community. This is really a
result of the first three items in the list – relatively easy to use, focusing on
an area of interest, and capable of being measured on a wide spectrum of
configurations, including inexpensive ones. The additional requirements for
the academic community are the ability to make adjustments, if needed, for
specific experiments and having a pool of existing data to compare to.
Although there will be cases when fully compliant benchmark results are not
generated by the academic community, because of the nature of the
experiments conducted, there will be a much higher potential for academic
results to be fully comparable to official results if the first three items in this
list are satisfied.

5) The existing pool of results attracts interest in generating additional results.
Also a result of the first three items in the list, with a symbiotic relation to
the fourth item. As more results are generated, it is more likely that more
results will be generated.

Although some additional actions may be required to encourage the fourth
and fifth items, the key areas to examine for TPC Express are the first three
in the list. The first item is an aspect of most SPEC benchmarks, although
the degree of ease varies. SPEC benchmarks that are not published as heavily
tend to fall short in either the second or third category. TPC Enterprise
benchmarks tend to fall short in the first and third. The goal of TPC Express
must be to develop both processes and benchmarks that satisfy all of these.

 TPC Express – A New Path for TPC Benchmarks 59

6 Meeting the Challenge

The intent of the TPC Express model is to develop a suite of benchmarks that are
complimentary to the TPC Enterprise model and that satisfy the perceived needs
discussed here. It is hoped that the Express model can be applied to data processing
areas that have yet to be explored in TPC benchmarks.

Although several benchmarks are desired, there must always be a first instance of
any new concept. The clear goal is to ensure that all three of the key items listed in the
previous section are satisfied in this first Express product.

To facilitate development of the Express model and speed delivery of the first
benchmark, a member company has volunteered to contribute substantial portions of
their TPC-E benchmark kit and to work with members of the TPC to alter the kit to
create a new benchmark. The benchmark will likely have some similar characteristics
to TPC-E, but will be substantively different and will produce results that are not
comparable to TPC-E results.

The base kit has been used by the member company and their partners to measure
and analyze TPC-E results in the TPC Enterprise space. It includes many of the
characteristics discussed in section 4 of this paper, although some enhancement may
be required to satisfy all of the delivery and execution characteristics that are needed.
In doing so, the kit will satisfy the first of the three critical needs listed in the previous
section.

The database build and benchmark execution characteristics will be significantly
different from those of TPC-E, both to ensure that the new benchmark is not
comparable to TPC-E and to help satisfy some of the requirements for ease of
measurement and validation. As these adjustments and enhancements are made, the
TPC will be mindful of the second major requirement – to continue to focus on key
functions that are of interest to those who conduct benchmarks and their audiences.

The third critical point is to develop a benchmark that can be run on an affordable
configuration. In this regard, one of the key decisions that have been made is to target
an active data volume for the benchmark that will fit in memory. Much prototype
experimentation is required to be able to deliver this, but the current goal is to deliver
a benchmark that will essentially fit in 256 GB for the processing power provided by
one processor (one populated processor socket). Through the process of prototyping
the new benchmark, it may be possible to drop this target to a much smaller amount.
The memory target will not preclude executing on smaller amounts of memory,
although smaller systems will suffer in performance. It will mean that configurations
with massive storage subsystems will not be required for running the benchmark.

7 Opportunities for Contribution

There are many areas in data processing that are not currently covered in any industry
standard benchmark. The TPC believes that the new TPC Express benchmark model
will open opportunities for new benchmark areas to be explored. The TPC welcomes
active participation in this endeavor – from full TPC members, associate TPC

60 K. Huppler and D. Johnson

members, and those who have not yet joined the TPC, but have an interest in
expanding the breadth of industry standard data processing benchmarks.

This is not a short-term proposal, but one that the TPC expects to be in place for
many years. As new benchmark prototypes are generated for cloud computing, big
data, data transformation, analytics, data approximations, symbiotic transactions, and
so on and so on - - the opportunity exists to work with the TPC to formalize the
application into a meaningful benchmark product that can help to advance the
industry.

8 Summary

The TPC Express benchmark model is an exciting development for the TPC, for TPC
members and for the data processing industry. The TPC is actively working on the
infrastructure needed to support such a model and is simultaneously working on the
first Express-model benchmark. This first instance will be a fairly extensive
remodeling of an existing TPC Enterprise benchmark – both to speed the delivery of
the first Express benchmark and to aid in the development of the necessary support
infrastructure.

The TPC expects and welcomes ideas to build on this concept, to deliver new
benchmarks that are of use to the industry, academia and consumers and that focus on
a spectrum of important data processing features.

References

1. Transaction Processing Performance Council: “TPC Policies, Revision 5.26”,
http://www.tpc.org/information/about/documentation/doc.asp

2. Standard Performance Evaluation Corporation: “SPEC OSG Policies”,
http://www.spec.org/osg/policy.html

3. Huppler, K.: The Art of Building a Good Benchmark. In: Nambiar, R., Poess, M. (eds.)
TPCTC 2009. LNCS, vol. 5895, pp. 18–30. Springer, Heidelberg (2009)

4. Internal research from InfoSizing Corporation and TPC Steering Committee

TPC-H Analyzed: Hidden Messages and Lessons

Learned from an Influential Benchmark

Peter Boncz1, Thomas Neumann2, and Orri Erling3

1 CWI, Amsterdam, The Netherlands
boncz@cwi.nl

2 Technical University Munich, Germany
neumann@in.tum.de

3 Openlink Software, United Kingdom
oerling@openlinksw.com

Abstract. The TPC-D benchmark was developed almost 20 years ago,
and even though its current existence as TPC-H could be considered su-
perseded by TPC-DS, one can still learn from it. We focus on the tech-
nical level, summarizing the challenges posed by the TPC-H workload
as we now understand them, which we call “choke points”. We identify
28 different such choke points, grouped into six categories: Aggregation
Performance, Join Performance, Data Access Locality, Expression Calcu-
lation, Correlated Subqueries and Parallel Execution. On the meta-level,
we make the point that the rich set of choke-points found in TPC-H sets
an example on how to design future DBMS benchmarks.1

1 Introduction

Good benchmark design starts with a use case that is recognizable and under-
standable, and where the data being stored as well as query and update work-
loads being posed, resemble those of a wider class of data management problems
faced by IT practitioners (and more, see [1]). However, basing a benchmark
solely on “real-life” data management scenarios, data-sets and query logs will
not necessarily lead to an interesting benchmark, for instance because such real-
world examples characterize what technology can do now, not what it could
do in the future. Moreover, the value in a benchmark is not only in allowing
data management practitioners to test different technologies and compare them
quantitatively, but also in stimulating technological advances.

In the LDBC (Linked Data Benchmark Council) project, these authors are
currently pursuing the design of new benchmarks that will stimulate technolog-
ical advance in graph (and RDF) data management. For this purpose, LDBC
follows a dual design track where on the one hand a Technical User Commu-
nity (TUC) consisting of data management technology practitioners contribute
data-sets and workloads, but on the other hand, technology experts both from
industry and academic database research provide technical guidance on what we

1 Partially supported by EU project LDBC (FP7-317548), see http://ldbc.eu

R. Nambiar and M. Poess (Eds.): TPCTC 2013, LNCS 8391, pp. 61–76, 2014.
c© Springer International Publishing Switzerland 2014

http://ldbc.eu

62 P. Boncz, T. Neumann, and O. Erling

call “choke points”, that should be embedded in these new benchmarks. Choke
points are those technological challenges underlying a benchmark, whose resolu-
tion will significantly improve the performance of a product.

This paper was written with a dual motivation: (i) to use the by now well-
understood TPC-H benchmark to illustrate examples of what we understand
“choke points” to be, and use TPC-H as an example of a benchmark that con-
tains a rich set of these, and (ii) as an overview and reference for analytical data
management practitioners to better understand the TPC-H workload itself; con-
centrating collected wisdom on this benchmark in a single place.

We do not dispute that TPC-H, which is almost 20 years old, could by some
be regarded as superseded (e.g. by TPC-DS). The purpose of this paper is not
to criticize TPC-H or suggest improvements as has been done elsewhere [2], but
rather to describe what TPC-H is. We would appreciate any future benchmark
to be at least as rich in relevant technical challenges as TPC-D was in 1995.

2 TPC-H Choke Point Analysis

Table 1 contains the summary of our choke point classification, which in the
remainder of this paper will be discussed point-by-point.

2.1 Aggregation Performance

Aggregations occur in all TPC-H queries, hence performance of group-by and
aggregation is quite important.

CP1.1: Ordered Aggregation. Aggregation implementations typically use a
hash-table to store the group-by keys in. This is an efficient method, because
hash-lookup (with a properly sized hash-table) has constant lookup cost. Hash-
aggregation does run into performance deterioration when the amount of distinct
group-by keys is large. When the hash-table will no longer fit the various CPU
cache levels, cache and TLB misses will make the lookup more costly CPU-wise.
With even more distinct keys, one may get to the situation that the hash-table
cannot be kept in RAM anymore. Here a spilling hash aggregation would be
needed, that first hash-partitions the tuple stream to different files based on the
hash value, and then aggregates the individual files inside RAM one-at-a-time.
Spilling hash aggregations are not obviously superior to other methods, such
as those based on creating a B-tree or, more plausibly, those based on sorting
(external memory sort). In case the group-by keys arrive in sorted order, or
actually much more generally, if all equal group-by keys appear consecutively in
the stream, one should employ ordered aggregation instead of hash aggregation.

These approaches can even be mixed, e.g., using repetitive grouped execu-
tion of hash-aggregation, or using hash-based early aggregation in a sort-based
spilling approach. Therefore the key challenge is detecting which situation ap-
plies, which depends both on the available hardware and the query characteris-
tics. Related to this, the query optimizer has to infer the correct intermediate
result cardinalities, which is relatively simple for most TPC-H query constructs,
but challenging for group-by expressions.

TPC-H Analyzed 63

Table 1. TPC-H Choke Point (CP) classification, and CP impact per query
(white=light, gray=medium, black=strong)

Q1Q2Q3Q4Q5Q6Q7Q8Q9Q10Q11Q12Q13Q14Q15Q16Q17Q18Q19Q20Q21Q22

CP1 Aggregation Performance. Performance of aggregate calculations.

CP1.1 QEXE: Ordered Aggregation.
CP1.2 QOPT: Interesting Orders.
CP1.3 QOPT: Small Group-by Keys (array lookup).
CP1.4 QEXE: Dependent Group-By Keys (removal of).

CP2 Join Performance. Voluminous joins, with or without selections.

CP2.1 QEXE: Large Joins (out-of-core).
CP2.2 QEXE: Sparse Foreign Key Joins (bloom filters).
CP2.3 QOPT: Rich Join Order Optimization.
CP2.4 QOPT: Late Projection (column stores).

CP3 Data Access Locality. Non-full-scan access to (correlated) table data.

CP3.1 STORAGE: Columnar Locality (favors column storage).
CP3.2 STORAGE: Physical Locality by Key (clustered index, partitioning).
CP3.3 QOPT: Detecting Correlation (ZoneMap,MinMax,multi-attribute histograms).

CP4 Expression Calculation. Efficiency in evaluating (complex) expressions.

CP4.1 Raw Expression Arithmetic.
CP4.1a QEXE: Arithmetic Operation Performance.
CP4.1b QEXE: Overflow Handling (in arithmetic operations).
CP4.1c QEXE: Compressed Execution.
CP4.1d QEXE: Interpreter Overhead (vectorization; CPU/GPU/FPGA JIT compil.).

CP4.2 Complex Boolean Expressions in Joins and Selections.
CP4.2a QOPT: Common Subexpression Elimination (CSE).
CP4.2b QOPT: Join-Dependent Expression Filter Pushdown.
CP4.2c QOPT: Large IN Clauses (invisible join).
CP4.2d QEXE: Evaluation Order in Conjunctions and Disjunctions.

CP4.3 String Matching Performance.
CP4.3a QOPT: Rewrite LIKE(X%) into a Range Query.
CP4.3b QEXE: Raw String Matching Performance (e.g. using SSE4.2).
CP4.3c QEXE: Regular Expression Compilation (JIT/FSA generation).

CP5 Correlated Subqueries. Efficiently handling dependent subqueries.

CP5.1 QOPT: Flattening Subqueries (into join plans).
CP5.2 QOPT: Moving Predicates into a Subquery.
CP5.3 QEXE: Overlap between Outer- and Subquery.

CP6 Parallelism and Concurrency. Making use of parallel computing resources.

CP6.1 QOPT: Query Plan Parallelization.
CP6.2 QEXE: Workload Management.
CP6.3 QEXE: Result Re-use.

64 P. Boncz, T. Neumann, and O. Erling

CP1.2: Interesting Orders. Apart from clustered indexes providing key order,
other operators also preserve or even induce tuple orderings. Sort-based opera-
tors create new orderings, typically the probe-side of a hash join conserves its
order, etc. For instance TPC-H Q3,4,18 join ORDERS and LINEITEM, followed by
aggregation grouped-by on o orderkey. If the tuple order of ORDERS is conserved
by the join, ordered aggregation is applicable. This is not to say that it is always
best to use the join order with ORDERS on the probe side and LINEITEM on the
build side (in hash-join terms), but if this is chosen then the ordered aggregation
benefit should be reaped. A similar opportunity arises in Q21 with a join between
SUPPLIER and LINEITEM, and grouped-by on s suppkey. These are an examples
of interesting order handling where the query optimization space should take
multiple orders into account [3] (i.e. choosing a particular join methods leads to
lower aggregation cost, subsequently).

CP1.3: Small Group-By Keys. Q1 computes eight aggregates: a count, four
sums and three averages. Group-by keys are l returnflag, l linestatus, with
just four occurring value combinations. This points to a possibility to optimize a
special case of group-by. Namely, if all group-by expressions can be represented
as integers in a small range, one can use an array to keep the aggregate totals by
position, rather then keeping them in a hash-table. This can be extended to mul-
tiple group-by keys if their concatenated integer representation is still “small”. In
case of Q1, the group-by attributes are single-characters strings (VARCHAR(1))
which can be stored as an integer e.g. holding the Unicode value.

CP1.4: Dependent Group-By Keys. Q10 has a group-by on c custkey and
the columns c comment, c address, n name, c phone, c acctbal, c name. The
amount of data processed is large, since the query involves a one-year ORDERS

and LINEITEM join towards CUSTOMER. Given that c custkey is the primary
key of CUSTOMER, the query optimizer can deduce that its value functionally
determines the columns c comment, c address, n name, c phone, c acctbal,
c name. As a result, the aggregation operator should have the ability to exclude
certain group-by attributes from key matching: this can greatly reduce the CPU
cost and (cache) memory footprint of such an operator. This opportunity arises
in many other queries that have an aggregation that includes a tuple identity
(denoted #) in addition to other columns that are functionally determined by it:

Q3 #o → o shippriority, o orderdate

Q4 #o → o orderpriority

Q10 #c → c comment, c address, n name, c phone, c acctbal, c name

Q13 #c → count(*)

Q18 #c,#l → l quantity, o totalprice, o orderdate, c name

Q20 #s → s address, s name

Q21 #s → s name

Even though declaring keys is optional in the rules of TPC-H, functional
dependency exploitation in aggregation is a clear argument why one would do
so. An additional argument is execution optimization that can be performed
when executing N:1 foreign key joins: knowing that exactly one value will be

TPC-H Analyzed 65

added to an intermediate result record, allows to lower CPU effort (breaking
off hash-table search after the first hit) and to avoid intermediate data copying,
which is needed if a join “blows up” an intermediate result in case of a 1:N join.

In this sense, it is noteworthy that the EXASOL TPC-H implementations
do not declare (foreign) keys, but add a “foreign key check” query set to the
load phase; it is understood that a side effect of this may be the detection of
these (foreign) key constraints. This might avoid the only drawback of declaring
constraints: namely the obligation to check these in the refresh queries.

2.2 Join Performance

CP2.1: Large Joins. Joins are the most costly relational operators, and there
has been a lot of research and different algorithmic variants proposed. Generally
speaking, the basic choice is between hash- and index-based join methods. It is
no longer assumed that hash-based methods are always superior to index-based
methods; the choice between the two depends on the system implementation of
these methods, as well as on the physical database design: in general, index-
based join methods are used in those situations where the data is stored in an
index with a key of which the join key is a prefix. For the cost model, whether
the index is clustered or unclustered makes a large difference in systems relying
on I/O; but (as by now often is the case) if the TPC-H workload hot-set fits into
the RAM, the unclustered penalty may be only moderate.

Q9 and Q18 are the queries with the largest joins without selection predicates
between the largest tables ORDERS and LINEITEM. The heaviest case is Q9, which
essentially joins it also with PARTSUPP, PART and SUPPLIERwith only a 1 in 17 se-
lection on PART. The join graph has the largest table LINEITEM joining with both
ORDERS and PARTSUPP. It may be possible to get locality on the former join, using
either clustered indexing or table partitioning; this will create a merge-join like
pattern, or a partitioned join where only matching partitions need to be joined.
However, using these methods, the latter join towards the still significantly large
PARTSUPP table will not have locality. This lack of locality causes large resource
consumption, thus Q9 can be seen as the query that tests for out-of-core join
methods (e.g. spilling hash-joins). In TPC-H, by configuring the test machine
with sufficient RAM, typically disk spilling can be avoided, avoiding its high
performance penalty. In the case of parallel database systems, lack of join local-
ity will cause unavoidable network communication, which quickly can become a
performance bottleneck. Parallel database systems can only avoid such commu-
nication by replicating the PARTSUPP, PART and SUPPLIER tables on all nodes –
a strategy which increases memory pressure and disk footprint, but which is not
penalized by extra maintenance cost, since the TPC-H refresh queries do not
modify these particular tables.

For specific queries, usage of special join types may be beneficial. For example,
Q13 can be accelerated by the GroupJoin operator [4], which combines the outer
join with the aggregation and thus avoids building the same hash table twice.

CP2.2: Sparse Foreign Key Joins. Joins occur in all TPC-H queries ex-
cept Q1,6; and they are invariably over N:1 or 1:N foreign key relationships. In

66 P. Boncz, T. Neumann, and O. Erling

contrast to Q9 and Q18, the joins in all other queries typically involve selections;
very frequently the :1 side of the join is restricted by predicates. This in turn
means that tuples from the N: side, instead of finding exactly one join part-
ner, often find no partner at all. In TPC-H it is typical that the resulting join
hit-ratios are below 1 in 10, and often much lower. This makes it beneficial for
systems to implement a bloom filter test inside the join [5]; since this will elim-
inate the great majority of the join lookups in a CPU-wise cheap way, at low
RAM investments. For example, in case of VectorWise, bloom filters are created
on-the-fly if a hash-join experiences a low hit ratio, and make the PARTSUPP-PART
join in Q2 six times faster, accelerating Q2 two-fold overall.

Bloom filters created for a join should be tested as early as possible, poten-
tially before the join, even moving it down into the probing scan. This way, the
CPU work is reduced early, and column stores may further benefit from reduced
decompression cost in the scan and potentially also less I/O, if full blocks are
skipped [6]. Bloom filter pushdown is furthermore essential in MPP systems in
case of such low hit-ratio joins. The communication protocol between the nodes
should allow a join to be preceded by a bloom filter exchange; before sending
probe keys over the network in a communicating join, each local node first checks
the bloom filter to see if it can match at all. In such way, bloom filters allow to
significantly bring down network bandwidth usage, helping scalability.

CP2.3: Rich Join Order Optimization. TPC-H has queries which join up
to eight tables with widely varying cardinalities. The execution times of different
join orders differ by orders of magnitude. Therefore, finding an efficient join order
is important, and, in general, requires enumeration of all join orders, e.g., using
dynamic programming. The enumeration is complicated by operators that are
not freely reorderable like semi, anti, and outer joins. Because of this difficulty
most join enumeration algorithms do not enumerate all possible plans, and there-
fore can miss the optimal join order. One algorithm that can properly handle
semi-, anti-, and outer-joins was developed by IBM for DB2 [7]. Moerkotte and
Neumann [8] presented a more general algorithm based on hypergraphs, which
supports all relational operators and, using hyperedges, supports join predicates
between more than two tables.

CP2.4: Late Projection. In column stores, queries where certain columns are
only used late in the plan, can typically do better by omitting them from the
original table scans, to fetch them later by row-id with a separate scan operator
which is joined to the intermediate query result. Late projection does have a
trade-off involving locality, since late in the plan the tuples may be in a different
order, and scattered I/O in terms of tuples/second is much more expensive than
sequential I/O. Late projection specifically makes sense in queries where the late
use of these columns happens at a moment where the amount of tuples involves
has been considerably reduced; for example after an aggregation with only few
unique group-by keys, or a top-N operator. There are multiple queries in TPC-H
that have such pattern, the most clear examples being Q5 and Q10.

A lightweight form of late projection can also be applied to foreign key joins,
scanning for the probe side first only the join keys, and only in case there is a

TPC-H Analyzed 67

match, fetching the remaining columns (as mentioned in the bloom filter dis-
cussion). In case of sparse foreign key joins, this will lead to reduced column
decompression CPU work, and potentially also less I/O – if full blocks can be
skipped.

2.3 Data Access Locality

A popular data storage technique in data warehousing is the materialized view.
Even though the TPC-H workload consists of multiple query runs, where the
22 TPC-H queries are instrumented with different parameters, it is possible to
create very small materialized views that basically contain the parameterized
answers to the queries. Oracle issued in 1998 the One Million Dollar Challenge,
for anyone who could demonstrate that Microsoft SQLserver 7.0 was not 100
times slower than Oracle when running TPC-D; exploiting the fact that Ora-
cle had introduced materialized views before SQLserver did. Since materialized
views essentially turn the decision support queries of TPC-D into pre-calculated
result-lookups, the benchmark no longer tested ad-hoc query processing capabil-
ities. This led to the split of TPC-D into TPC-R (R for Reporting, now retired,
where materialized views were allowed), and TPC-H, where materialized views
were outlawed. As such, even though materialized views are an important feature
in data warehousing, TPC-H does not test their functionality.

CP3.1: Columnar Locality. The original TPC-D benchmark did not allow
the use of vertical partitioning. However, in the past decade TPC-H has been
allowing systems that uniformly vertically partition all tables (“column stores”).
Columnar storage is popular as it accelerates many analytical workloads, without
relying on a DBA to e.g. carefully choose materialized views or clustered indexes.
As such, it is considered a more “robust” technique. The main advantage of
columnar storage is that queries only need to access those columns that actually
are used in a query. Since no TPC-H query is of the form SELECT * FROM ..,
this benefit is present in all queries. Given that roughly half of the TPC-H data
volume is in the columns l comment and o comment (in VectorWise), which are
very infrequently accessed, one realizes the benefit is even larger than the average
fraction of columns used by a query.

Not only do column-stores eliminate unneeded I/O, they also employ effective
columnar compression, and are best combined with an efficient query compiler
or execution engine. In fact, both the TPC-H top-scores for cluster and single-
server hardware platforms in the years 2010-2013 have been in the hands of
columnar products (EXASOL and VectorWise).

CP3.2: Physical Locality by Key. The TPC-H tables ORDERS and LINEITEM

contain a few date columns, that are correlated by the data generator:

– l shipdate = o orderdate + random[1:121],
– l commitdate = o orderdate + random[30:90], and
– l receiptdate = l shipdate + random[1:30].

In Q3, there is a selection with lower bound (LO) on l shipdate and a higher
bound (HI) on o orderdate. Given the above, one could say that o orderdate

68 P. Boncz, T. Neumann, and O. Erling

is thereby restricted on the day range [LO-121:HI]. Similar bounds follow for
any of the date columns in LINEITEM. The combination of a lower and higher
bound from different tables in Q3 is an extreme case, but in Q4,5,8,10,12 there
are range restrictions on one date column, that carry over to a date restriction
to the other side of the ORDERS-LINEITEM join.
Clustered Indexes. It follows that storing the ORDERS relation in a clustered index
on o orderdate and LINEITEM on a clustered index on any of its date columns; in
combination with e.g. unclustered indexes to enforce their primary keys, leads to
joins that can have high data locality. Not only will a range restriction save I/O
on both scans feeding into the join, but in a nested-loops index join the cursor
will be moving in date order through both tables quasi-sequentially; even if the
access is by the orderkey via an unclustered index lookup. Such an unclustered
index could easily be RAM resident and thus fast to access.

In Q3,4,5,8,10,12 the date range selections take respectively 2,3,12,12,3,12 out
of 72 months. Typically this 1 in 6 to 1 in 36 selection fraction on the ORDERS

table is propagable to the large LINEITEM table, providing very significant ben-
efits. In Q12 the direction is reverted: the range predicate is on l receiptdate

and can be propagated to ORDERS (similar actually happens in Q7, here through
l shipdate). Even though this locality automatically emerges during joins if
ORDERS and LINEITEM both are stored in a clustered index with a date key, the
best plan might not be found by the optimizer if it is not aware of the correlation.
Microsoft SQLserver specifically offers the DATE CORRELATION OPTIMIZATION

setting that tells the optimizer to keep correlated statistics.
Table Partitioning. Range-partitioning is often used in practice on a time dimen-
sion, in which case it provides support for so-called data life-cycle management.
That is, a data warehouse may keep the X last months of data, which means
that every month the oldest archived month must be removed from the dataset.
Using range-partitioning, such can be efficiently achieved by range-partitioning
the data per month, dropping the oldest partition. However, the refresh work-
load of TPC-H does not fit this pattern, since its deletes and inserts are not
time-correlated. The benefit from table partitioning in TPC-H is hence partition
pruning, which both can happen in handling selection queries (by not scanning
those partitions that cannot contain results, given a selection predicate) and in
joins between tables that are partitioned on the primary and foreign keys.

Data correlation could be exploited in partitioning as well, even respecting the
TPC-H rule that no index creation directive (or any other DDL) would mention
multiple tables. For example, for range-partitioned tables it is relatively easy to
automatically maintain for all declared foreign key joins to another partitioned
table a pruning bitmap for each partition, that tells with which partitions on
the other side the join result is empty. Such a pruning bitmap would steer join
partition pruning and could be cheaply maintained as a side effect of foreign-key
constraint checking.

CP3.3: Detecting Correlation. While the TPC-H schema rewards creating
these clustered indexes, in case of LINEITEM the question then is which of the
three date columns to use as key. One could say that l shipdate is used more

TPC-H Analyzed 69

often (in Q6,15,20) than l receiptdate (just Q12), but in fact it should not mat-
ter which column is used, as range-propagation between correlated attributes of
the same table is relatively easy. One way is through creation of multi-attribute
histograms after detection of attribute correlation, such as suggested by the
CORDS work in DB2 [9]. Another method is to use small materialized aggre-
gates [10] or even simpler MinMax indexes (VectorWise) or zone-maps (Netezza),
The latter data structures maintain the MIN and MAX value of each column, for
a limited number of zones in the table. As these MIN/MAX are rough bounds
only (i.e. the bounds are allowed to be wider than the real data), maintenance
that only widens the ranges on need, can be done immediately by any query
without transactional locking.

With MinMax indexes, range-predicates on any column can be translated into
qualifying tuple position ranges. If an attribute value is correlated with tuple
position, this reduces the area to scan roughly equally to predicate selectivity.
For instance, even if the LINEITEM is clustered on l receiptdate, this will still
find tight tuple position ranges for predicates on l shipdate (and vice versa).

2.4 Expression Calculation

TPC-H tests expression calculation performance, in three areas:

– CP4.1: raw expression arithmetic.
– CP4.2: complex boolean expressions in joins and selections.
– CP4.3: string matching performance.

We elaborate on different technical aspects of these in the following.
Q1 calculates a full price, and then computes various aggregates.2 The large

amount of tuples to go through in Q1, which selects 99% of LINEITEM, makes it
worthwhile to optimize its many arithmetic calculations.

CP4.1a: Arithmetic Operator Performance. According to the TPC-H rules,
it is allowed to represent decimals as 64-bits doubles, yet this will lead to lim-
ited SIMD opportunities only (4-way in 256-bit AVX). Moreover, this approach
to decimals is likely to be unacceptable for business users of database systems,
because of the rounding errors that inevitably appear on “round” decimal num-
bers. Another alternative for decimal storage is to use variable-length numerical
strings, allowing to store arbitrarily precise numbers; however in that case arith-
metic will be very slow, and this would very clearly show in e.g. Q1.

2 Some notes on Q1.
Compared to Q6, the only other non-join query, the amount of computation done

in Q1 is larger, making it more likely to be CPU-bound than Q6.
Also, Q1 trivially parallelizes: the aggregate result is very small, so the plan can

be run on many cores (or machines) in parallel without need for synchronization or
result communication of any significance. This makes Q1 the only query that allows
to make back-of-the-envelope estimates of the computational power of a database
engine even across systems and platforms and database sizes, since normalization to
a single-core and scale is relatively straightforward.

70 P. Boncz, T. Neumann, and O. Erling

A common and efficient implementation for decimals is to store integers con-
taining the number without dot. The TPC-H spec states that the decimal type
should support the range [-9,999,999,999.99: 9,999,999,999.99] with increments
of 0.01. That way, the stored integer would be the decimal value times 100 and
42-bits of precision are required for TPC-H decimals, hence a 32-bits integer
is too small but a 64-bits integer suffices. Decimal arithmetic can thus rely on
integer arithmetic, which is machine-supported and even SIMD can be exploited.

It is not uncommon for database systems to keep statistics on the minimum
and maximum values in each table column. The columns used in Q1 exhibit
the following ranges: l extendedprice[0.00:100000.00], l quantity[1.00:50.00],
l discount[0.00:0.10] and l tax[0.00:0.08]. This means that irrespective of how
data is physically stored (columnar systems would typically compress the data),
during query processing these columns could be represented in byte-aligned in-
tegers of 32, 16, 8 and 8 bits respectively. The expression (1-l discount) using
an 8-bits representation can thus be handled by SIMD subtraction, processing
32 tuples per 256-bits AVX instruction. However, the subsequent multiplica-
tion with l extendedprice requires to convert the result of (1-l discount)

to 32-bits integers, still allowing 256-bits SIMD multiplication to process 8 tu-
ples per instruction. This highlights that in order to exploit SIMD well, it pays
to keep data represented as long as possible in as small as possible integers
(stored column-wise). Aligning all values on the widest common denominator
(the 32-bits extendedprice) would hurt the performance of four out of the six
arithmetic operations in our example Q1; making them a factor 4 slower.

While SIMD instructions are most easily applied in normal projection calcu-
lations, it is also possible to use SIMD for updating aggregate totals. In aggre-
gations with group-by keys, this can be done if there are multiple COUNT or SUM
operations on data items of the same width, which then should not be stored
column-wise but rather row-wise in adjacent fields [11].

CP4.1b: Overflow Handling. Arithmetic overflow handling is a seldom cov-
ered topic in database research literature, yet it is a SQL requirement. Over-
flow checking using if-then-else tests for each operation causes CPU overhead,
because it is extra computation. Therefore there is an advantage to ensuring
that overflow cannot happen, by combining knowledge of data ranges and the
proper choice of data types. In such cases, explicit overflow check codes that
would be more costly than the arithmetic itself can be omitted, and SIMD
can be used. The 32-bits multiplication l extendedprice*(1-l discount),
i.e. [0.00:100000.00]*[0.00:0.90] results in the more precise value range [0.0000:
90000.0000] represented by cardinals up to 900 million; hence 32-bits integers still
cannot overflow in this case. Thus, testing can be omitted for this expression.

CP4.1c: Compressed Execution. Compressed execution allows certain pred-
icates to be evaluated without decompressing the data it operates on, saving
CPU effort. The poster-child use case of compressed execution is aggregation on
RLE compressed numerical data [12], however this is only possible in aggregation
queries without group-by. This only occurs in TPC-H Q6, but does not apply
there either given that the involved l extendedprice column is unlikely to be

TPC-H Analyzed 71

RLE compressed. As such, the only opportunities for compressed execution in
TPC-H are in column vs. constant comparisons that appear in selection clauses;
here the largest benefits are achieved by executing a VARCHAR comparison on
dictionary-compressed data, such that it becomes an integer comparison.

CP4.1d: Interpreter Overhead. The large amount of expression calculation
in Q1 penalizes slow interpretative (tuple-at-a-time) query engines. Various so-
lutions to interpretation have been developed, such as using FPGA hardware
(KickFire), GPU hardware (ParStream), vectorized execution (VectorWise) and
Just-In-Time (JIT) compilation (HyPer, ParAccel); typically beating tuple-at-
a-time interpreters by orders of magnitude in Q1.

CP4.2a: Common Subexpression Elimination.A basic technique helpful in
multiple TPC-H queries is common subexpression elimination (CSE). In Q1, this
reduces the six arithmetic operations to be calculated to just four. CSE should
also recognize that two of the average aggregates can be derived afterwards by
dividing a SUM by the COUNT, both also computed in Q1.

CP4.2b: Join-Dependent Expression Filter Pushdown. In Q7 and Q19
there are complex join conditions which depend on both sides of the join. In Q7,
which is a join query that unites customer-nations (cn) via orders, lineitems,
and suppliers to supplier-nations (sn), and on top of this it selects:
(sn.n name = ’[NATION1]’ AND cn.n name = ’[NATION2]’) OR

(sn.n name = ’[NATION2]’ AND cn.n name = ’[NATION1]’).
Hence TPC-H rewards optimizers that can analyze complex join conditions

which cannot be pushed below the join, but still derive filters from such join
conditions. For instance, if the plan would start by joining CUSTOMER to NATION,
it could immediate filter the latter scan with the condition:
(cn.n name = ’[NATION1]’ OR cn.n name = ’[NATION2]’)

This will reduce data volume by a factor 12.5. A similar technique can be
used on the disjunctive complex expression in Q19. The general strategy is to
take the union of the individual table predicates appearing in the disjunctive
condition, and filter on this in the respective scan. A further optimization is to
rewrite the NATION scans as subqueries in the FROM clause:

(SELECT (CASE n_name = ’[NATION1]’ THEN 1 ELSE 0 END) AS nation1,

(CASE n_name = ’[NATION2]’ THEN 1 ELSE 0 END) AS nation2

FROM nation WHERE n_name = ’[NATION1]’ or n_name = ’[NATION2]’) cn

And subsequently test the join condition as:
(sn.nation1=1 AND cn.nation2=1) OR (sn.nation2=1 AND cn.nation1=1)

The rationale for the above is that integer tests (executed on the large join
result) are faster than string equality. A rewrite like this may not be needed for
(column store) systems that use compressed execution, i.e. the ability to execute
certain predicates in certain operators without decompressing data [13].

CP 4.2c: Large IN Clauses. In Q19, Q16 and Q22 (and also Q12) there are IN
predicates against a series of at most eight constant values – though in practice
OLAP tools that generate SQL queries often create much bigger IN clauses. A
naive way to implement IN is to map it into a nested disjunctive expression;

72 P. Boncz, T. Neumann, and O. Erling

however this tends to work well with only a handful of values. In case of many
values, performance can typically be won by creating an on-the-fly hash-table,
turning the predicate into a semi-join. This effect where joins turn into selections
can also be viewed as a “invisible join” [13].

CP 4.2d: Evaluation Order in Conjunctions and Disjunctions. In Q19
in particular, but in multiple other queries (e.g. Q6) we see the challenge of
finding the optimal evaluation order for complex boolean expressions consisting
of conjunctions and disjunctions. Conjuctions can use eager evaluation, i.e. in
case of (X and Y) refrain from computing expression Y if X=false. As such, an
optimizer should rewrite such expressions into Y and X in case X is estimated
to be less selective than Y – this problem can be generalized to arbitrarily com-
plex boolean expressions [10]. Estimating the selectivities of the various boolean
expressions may be difficult due to incomplete statistics or correlations. Also,
features like range-partitioning (and partition pruning) may interact with the
actually experienced selectivities – and in fact selectivities might change during
query execution. For instance, in a LINEITEM table that is stored in a clustered
index on l shipdate, a range-predicate on l receiptdate typically first expe-
riences a selection percentage of zero, which at some point starts to rise linearly,
until it reaches 100% before again linearly dropping off to zero. Therefore, there is
an opportunity for dynamic, run-time schemes of determining and changing the
evaluation order of boolean expressions [14]. In the case of VectorWise a 20% per-
formance improvement was realized in Q19 by making the boolean expression op-
erator sensitive to the observed selectivity in conjunctions, swapping left for right
if the second expression is more selective regularly at run-time – and OR(x,y)
being similarly optimized by rewriting it to (NOT(AND(NOT(x),NOT(y))) fol-
lowed by pushing down the inner NOTs (such that NOT(a > 2) becomes a ≤ 2).3

CP 4.3a: Rewrite LIKE(X%) into Range Query. Q2,9,13,14,16,20 contain
expensive LIKE predicates; typically, string manipulations are much more costly
than numerical calculations; and in Q13 it also involves l comment, a single
column that represents 33% of the entire TPC-H data volume (in VectorWise).
LIKE processing has not achieved much research attention; however relying on
regular expression libraries, that interpret the LIKE pattern string (assuming
the pattern is a constant) is typically not very efficient. A better strategy is
to have the optimizer analyze the constant pattern. A special case, is prefix
search (LIKE(’xxx%’) that occurs in Q14,16,20; which can be prefiltered by a
less expensive string range comparison (BETWEEN ’xxx’ AND ’xxy’).

CP4.3b: Raw String Matching Performance. The x86 instruction set has
been extended with SSE4.2 primitives that provide rather a-typical functional-
ity: they encode 16-byte at-a-time string comparisons in a single SIMD instruc-
tion. Using such primitives can strongly speed up long string comparisons; going
through 16 bytes in 4 cycles on e.g. the Nehalem core (this is 20 times faster than
a normal strcmp). However, using these primitives is not always faster, as very
short string comparisons that break off at the first or second byte can be better

3 Swapping the evaluation should only be done if the expression is guaranteed not to
trigger run-time errors nor contains NULLs – if not, query behavior could be altered.

TPC-H Analyzed 73

done iteratively. Note that if string comparisons are done during group-by, as
part of a hash-table lookup, they typically find an equal string and therefore
have to go through it fully, such that the SSE4.2 implementation is best. In con-
trast, string comparisons done as part of a selection predicate might more often
fall in the case where the strings are not equal, favoring the iterative approach.

CP4.3c: Regular Expression Compilation. Complex LIKE expression
should best not be handled in an interpretative way, assuming that the LIKE
search pattern is a constant string. The database query compiler could compile a
Finite State Automaton (FSA) for recognizing the pattern. Another approach is
to decompose the LIKE expression into a series of simpler functions, e.g. one that
searches forward in a string and returns the new matching offset. This should be
used in an iterative way, taking into account backtracking after a failed search.

2.5 CP-CorrelatedSubqueries

CP5.1: Flattening Subqueries. Many TPC-H queries have correlated sub-
queries. All of these query plans can be flattened, such that the correlated sub-
query is handled using an equi-join, outer-join or anti-join [15]. In Q21, for
instance, there is an EXISTS clause (for orders with more than one supplier)
and a NOT EXISTS clause (looking for an item that was received too late). To
execute Q21 well, systems need to flatten both subqueries, the first into an equi-
join plan, the second into an anti-join plan. Therefore, the execution layer of the
database system will benefit from implementing these extended join variants.

The ill effects of repetitive tuple-at-a-time subquery execution can also be
mitigated in execution systems that use vectorized, or block-wise execution, al-
lowing to run sub-queries with thousands of input parameters instead of one. The
ability to look up many keys in an index in one API call, creates the opportunity
to benefit from physical locality, if lookup keys exhibit some clustering.

CP5.2: Moving Predicates into a Subquery. Q2 shows a frequent pattern:
a correlated subquery which computes an aggregate that is subsequently used in
a selection predicate of a similarly looking outer query (“select the minimum cost
part supplier for a certain part”). Here the outer query has additional restrictions
(on part type and size) that are not present in the correlated subquery, but should
be propagated to it. Similar opportunities are found in Q17, and Q20.

CP5.3: Overlap between Outer- and Subquery. In Q2,11,15,17 and Q20
the correlated subquery and the outer query have the same joins and selections.
In this case, a non-tree, rather DAG-shaped query plan [16] would allow to
execute the common parts just once, providing the intermediate result stream
to both the outer query and correlated subquery, which higher up in the query
plan are joined together (using normal query decorrelation rewrites). As such,
TPC-H rewards systems where the optimizer can detect this and where the
execution engine sports an operator that can buffer intermediate results and
provide them to multiple parent operators. In Q17, decorrelation, selective join
push-down, and re-use together result in a speedup of a factor 500 in HyPer.

74 P. Boncz, T. Neumann, and O. Erling

2.6 Parallelism and Concurrency

The TPC-H workload consists of two tests: the Power test and the Through-
put test. The full query set of the former consists of the 22 TPC-H queries
plus two refresh queries, which contain both inserts and deletes to the ORDERS

and LINEITEM tables, that delete scattered ranges of orders from the orderkey

space. In the Throughput test, a number of concurrent Power query streams,
with different selection parameters, are posed to the system. The implementer
can decide in the Throughput run whether to run the refresh streams in par-
allel with the query streams or not. For the Power test, the geometric mean
of all queries results in a Power score. Using the geometric mean implies that
the relative improvements to the performance of any query counts equally in
the score, regardless whether this is a long-running or short-running query. The
upside of this is, is that even as hardware evolves and potentially favors the per-
formance of one query over the other, it remains interesting to optimize the full
workload. On the flip-side, one can maintain that for end-users it would normally
be more relevant if the long-running queries get optimized. This aspect, absolute
run-time, does form part of TPC-H in the form of the Throughput score, which
is derived from the full time span it takes to finish all the streams.

CP6.1: Query Plan Parallelization. When TPC-D was conceived, high-end
servers would be equipped with a handful of single-core CPU chips (SMP), but
very often servers would sport just a single CPU. By 2013, even single-server
systems can contain 64 cores; and as such the importance of parallel query per-
formance has increased. In the first decade of TPC-H this only affected the Power
test, since it runs every query sequentially, hence it is important that the work
gets divided over all cores. With only a few cores available, the Throughput test,
which runs 5 (100GB) or 7 (1TB) or more query sets concurrently, could simply
run sequential plans on every core and still achieve good system utilization. In
the past years, however, having well-performing paralellism is important both in
the Power and Throughput tests.

Query plan parallelization in the multi-core area is currently an open issue.
At the time of this writing, there is active academic debate on how to paral-
lelize the join operator on many-core architectures, with multiple sophisticated
algorithms being devised and tested [17]. We can assume that the current gen-
eration of industrial systems runs less-sophisticated algorithms, and presumably
in the current state may not scale linearly on many-core architectures. As such,
many-core query parallelization, both in terms of query optimization and query
execution is an unresolved choke point.

Further, MPP database systems from the very start focused on scaling out;
typically relying on table partitioning over multiple nodes in a cluster. Table
partitioning is specifically useful here in order to achieve data locality; such that
queries executing in the cluster find much of the data being operated on on
the local node already, without need for communication. Even in the presence
of high-throughput (e.g. Infiniband) network hardware, communication band-
width can easily become a bottleneck. For CP6, we acknowledge that the query
impact color-classification in Table 1 is debatable. This classification assumes

TPC-H Analyzed 75

co-partitioning of ORDERS and LINEITEM to classify queries using these as medium
hard or hard (if other tables are involved as well). Single-table queries parallelize
trivially and are white. The idea is that with table partitioning, good parallel
speedup is achievable, whereas without it this is harder. Typically, single-server
multi-core parallelism does not rely on table partitioning, though it could.

CP6.2: Workload Management. Another important aspect in handling the
Throughput test is workload management, which concerns providing multiple
concurrent queries as they arrive, and while they run, with computational re-
sources (RAM, cores, I/O bandwidth). The problem here is that the database
system has no advance knowledge of the workload to come, hence it must
adapt on-the-fly. Decisions that might seem optimal at the time of arrival of a
query, might lead to avoidable thrashing if suddenly additional resource-intensive
queries arrive. In the case of the Power test, workload management is trivial:
it is relatively easy to devise an algorithm that while observing that maximally
one query is active, assigns all resources to it. For the Throughput run, as more
queries arrive, progressively less resources have to be given to the queries, un-
til the point where there are that many queries in the system and each query
gets only a single core. Since paralellism never achieves perfect scalability, in
such cases of high load overall, the highest throughput tends to be achieved by
running sequential plans in parallel. Workload management is even more com-
plicated in MPP systems, since a decision needs to be made on (i) which nodes
to involve in each query and (ii) how many resources per node to use.

CP6.3: Result Re-use. A final observation on the Throughput test is that
with a high number of streams, i.e. beyond 20, a significant amount of identical
queries emerge in the resulting workload. The reason is that certain parameters,
as generated by the TPC-H workload generator, have only a limited amount of
parameters bindings (e.g. there are at most 5 different values for region name
r name). This weakness opens up the possibility of using a query result cache, to
eliminate the repetitive part of the workload. A further opportunity that detects
even more overlap is the work on recycling [18], which does not only cache final
query results, but also intermediate query results of “high worth”. Here, worth
is a combination of partial-query result size, partial-query evaluation cost, and
observed (or estimated) frequency of the partial-query in the workload. It is
understood in the rules of TPC-H, though, that any form of result caching should
not depend on explicit DBMS configuration parameters, but reflect the default
behavior of the system, in order to be admissible. This rule precludes designing
re-use strategies that particularly target TPC-H, rather, such strategies should
benefit most of the workloads for which the system was designed.

3 Conclusion

In this paper we have (shortly) introduced the concept of “choke points” as be-
ing the (hidden) challenges that underlie a benchmark design with the potential
to stimulate technological progress. These choke points should point into rele-
vant directions where technological advances are needed; the idea being that the
benchmark gives DBMS designers a tangible reward in pursuing solutions for

76 P. Boncz, T. Neumann, and O. Erling

these. The focus of the paper, has been in applying a “post-mortem” analysis
in this regard on TPC-H. We have shown that TPC-H contains a rich set of
such choke points, many of which have led to advances in the state-of-the-art in
analytical relational database products in the past two decades; and in fact still
contains a number of unsolved challenges. Even despite its age, and arguably
reduced value today, we thus argue that TPC-H as introduced in the 1990s (as
TPC-D) should be an example for future benchmark designers.

References

1. Huppler, K.: The art of building a good benchmark. In: Nambiar, R., Poess, M.
(eds.) TPCTC 2009. LNCS, vol. 5895, pp. 18–30. Springer, Heidelberg (2009)

2. Nambiar, R.O., Poess, M.: The making of TPC-DS. In: VLDB, pp. 1049–1058
(2006)

3. Simmen, D.E., Shekita, E.J., Malkemus, T.: Fundamental techniques for order
optimization. In: Jagadish, H.V., Mumick, I.S. (eds.) Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data, Montreal, Quebec,
Canada, June 4-6, pp. 57–67. ACM Press (1996)

4. Moerkotte, G., Neumann, T.: Accelerating queries with group-by and join by
groupjoin. PVLDB 4, 843–851 (2011)

5. Graefe, G.: Query evaluation techniques for large databases. ACM Comput.
Surv. 25, 73–170 (1993)

6. Neumann, T., Weikum, G.: Scalable join processing on very large rdf graphs. In:
Proceedings of the 35th SIGMOD International Conference on Management of
Data, pp. 627–640. ACM (2009)

7. Rao, J., Lindsay, B., Lohman, G., Pirahesh, H., Simmen, D.: Using EELs: A prac-
tical approach to outerjoin and antijoin reordering. In: ICDE, pp. 595–606 (2001)

8. Moerkotte, G., Neumann, T.: Dynamic programming strikes back. In: SIGMOD
Conference, pp. 539–552 (2008)

9. Ilyas, I.F., Markl, V., Haas, P.J., Brown, P., Aboulnaga, A.: Cords: Automatic dis-
covery of correlations and soft functional dependencies. In: SIGMOD Conference,
pp. 647–658 (2004)

10. Moerkotte, G.: Small materialized aggregates: A light weight index structure for
data warehousing. In: VLDB, pp. 476–487 (1998)

11. Zukowski, M., Nes, N., Boncz, P.A.: DSM vs. NSM: Cpu performance tradeoffs in
block-oriented query processing. In: DaMoN, pp. 47–54 (2008)

12. Abadi, D.J.: Query execution in column-oriented database systems. MIT PhD Dis-
sertation (2008) PhD Thesis

13. Abadi, D.J., Madden, S., Hachem, N.: Column-stores vs. row-stores: how different
are they really? In: SIGMOD Conference, pp. 967–980 (2008)

14. Li, Q., Shao, M., Markl, V., Beyer, K.S., Colby, L.S., Lohman, G.M.: Adaptively
reordering joins during query execution. In: ICDE, pp. 26–35 (2007)

15. Seshadri, P., Pirahesh, H., Leung, T.Y.C.: Complex query decorrelation. In: ICDE,
pp. 450–458 (1996)

16. Neumann, T., Moerkotte, G.: A framework for reasoning about share equivalence
and its integration into a plan generator. In: BTW, pp. 7–26 (2009)

17. Balkesen, C., Teubner, J., Alonso, G., Özsu, M.T.: Main-memory hash joins on
multi-core cpus: Tuning to the underlying hardware. In: ICDE (2013)

18. Nagel, F., Boncz, P., Viglas, S.D.: Recycling in pipelined query evaluation. In:
ICDE (2013)

R. Nambiar and M. Poess (Eds.): TPCTC 2013, LNCS 8391, pp. 77–92, 2014.
© Springer International Publishing Switzerland 2014

Architecture and Performance Characteristics
of a PostgreSQL Implementation of the TPC-E

and TPC-V Workloads

Andrew Bond1, Douglas Johnson2, Greg Kopczynski3, and H. Reza Taheri3

1 Red Hat, Inc.
2 InfoSizing, Inc.
3 VMware, Inc.

abond@redhat.com, doug@sizing.com, {gregwk,rtaheri}@vmware.com

Abstract. The TPC has been developing a publicly available, end-to-end ben-
chmarking kit to run the new TPC-V benchmark, with the goal of measuring the
performance of databases subjected to the variability and elasticity of load de-
mands that are common in cloud environments. This kit is being developed
completely from scratch in Java and C++ with PostgreSQL as the target data-
base. Since the TPC-V workload is based on the mature TPC-E benchmark, the
kit initially implements the TPC-E schema and transactions. In this paper, we
will report on the status of the kit, describe the architectural details, and provide
results from prototyping experiments at performance levels that are representa-
tive of enterprise-class databases. We are not aware of other PostgreSQL ben-
chmarking results running at the levels we will describe in the paper. We will
list the optimizations that were made to PostgreSQL parameters, to hard-
ware/operating system/file system settings, and to the benchmarking code to
maximize the performance of PostgreSQL, and saturate a large, 4-socket server.

Keywords: Database performance, virtualization, PostgreSQL, cloud
computing.

1 Introduction

1.1 TPC-V Benchmark

In this paper, we will describe the architecture of the TPC-V benchmark, give a
progress report on its implementation, and present the performance results collected so
far. TPC-V measures the performance of a server running virtualized databases. It is
similar to previous virtualization benchmarks in that it has many VMs running differ-
ent workloads. It is also similar to previous TPC benchmarks in that it uses the schema
and transactions of the TPC-E benchmark. But TPC-V is unique since unlike previous
virtualization benchmarks, it has a database-centric workload, and models many prop-
erties of cloud servers, such as multiple VMs running at different load demand levels,
and large fluctuations in the load level of each VM. Unlike previous TPC benchmarks,
TPC-V will have a publicly-available, end-to-end benchmarking kit.

78 A. Bond et al.

We will start with a short introduction to virtualization, give a brief background on
the properties and the development process of the benchmark, then describe the archi-
tecture of the kit, and conclude with some of the performance results obtained so far.

1.2 Virtualization

Virtualization on the Intel x86 architecture was pioneered in late 1990s [2, 3, 4], and
has grown to become a mainstream technology used in enterprise datacenters. Today,
virtualization is the fundamental technology that enables cloud computing. So, there
is strong demand for a database-centric virtualization performance benchmark with
cloud computing characteristics. In response to this demand, a TPC subcommittee
was formed in 2010 to develop a benchmark with the following properties:

1. Models a database-centric workload
2. Exercises the virtualization layer
3. Has a moderate number of VMs (as opposed to modeling a pure consolidation

scenario with a large number of VMs)
4. Emulates a mix of Transaction Processing and Decision Support workloads
5. A heterogeneous mix of low load volume and high load volume VMs
6. Has a healthy storage and networking I/O content
7. Models the elastic load-level variations of cloud VMs

The complete description of the benchmark specification, the details of the load
variation, performance metrics, and other properties of the benchmark are detailed in
[1, 5]. In this paper, we will describe the new developments and prototyping results.

2 Other Virtualization Benchmarks

2.1 Consolidation Benchmarks

The early virtualization benchmarks were representative of the consolidation envi-
ronment where many low volume workloads that had been running on individual
servers would be consolidated onto a single server using virtualization. The earliest
example is VMmark [14] which is a de facto standard with hundreds of publication on
several succeeding versions of the benchmark. An industry standard follow-on is
SPECvirt_sc2010 [7] which incorporates modified versions of three SPEC workloads
(SPECweb2005_Support, SPECjAppServer2004 and SPECmail2008) and drives
them simultaneously to emulate virtualized server consolidation environments, much
like VMmark 1.0 did. To date, there have been 33 publications on SPECvirt_sc2010.
The SPECvirt_sc2013 [9] benchmark was released in 2013 with 2 publications so far.

2.2 TPC-VMS

In 2012, the TPC released the TPC-VMS [7] (TPC Virtual Measurement Single Sys-
tem) benchmark, which emulates a simple consolidation scenario of 3 identical data-
bases. The 4 workloads used in TPC-VMS are the TPC-C [10], TPC-E [11], TPC-H
[12], and TPC-DS [13] benchmarks. By leveraging existing TPC benchmarks,

 Architecture and Performance Characteristics of a PostgreSQL Implementation 79

TPC-VMS does not require development of a new kit. It is expected that the ease of
benchmarking afforded by use of existing kits will result in vendors publishing TPC-
VMS results while the more feature-rich TPC-V benchmark is being developed.

3 TPC-V Architecture

3.1 TPC-E as a Starting Point

We decided early on to base the TPC-V workload on the existing TPC-E [11] bench-
mark. The long pole in benchmark development is often the development of the
schema and the transactions, as well as writing a crisp, detailed specification that lays
out the detailed documentation required for audit and publication procedures. By
borrowing the Data Definition Language (DDL) and Data Manipulation Language
(DML) of TPC-E, we were able to start the prototyping of TPC-V much earlier than is
typical of TPC benchmarks. And by using the TPC-E functional specification docu-
ment as the starting point, we only had to focus on what is new in TPC-V. TPC-V is
fundamentally a different benchmark from TPC-E with different characteristics, yet
gained years of development time by using TPC-E as the foundation.

3.1.1 Differences with TPC-E
Like TPC-E, TPC-V has 33 tables and 12 transactions, and very similar DDL and
DML. However, there are differences in table cardinalities and the transaction mix,
mostly to make the benchmarks non-comparable and for ease of benchmarking [1].

3.1.2 VGen
EGen, a publicly available program, generates the raw data that is used to populate a
TPC-E database. It is also linked with the benchmarking kit to produce the run time
transaction parameters. This ensures that query arguments match what has been loaded
into the database. It also governs the generation of many run-time parameters, such as
the transaction mix frequencies and random numbers. Besides making it easier to de-
velop benchmarking kits, this guarantees adherence to the benchmark specification

TPC-V follows this model by using a VGen module that is based on EGen,
modified to conform to the TPC-V specification. As will be detailed in section 3, the
TPC-V benchmarking kit must produce different volumes of load to different VMs
(section 3.2), and vary this load at different phases of the benchmark run (section 3.4).
We realized early on that driving the load to different VMs independently and at-
tempting to keep them in sync at run time would be nearly impossible. Instead, all of
these relationships are maintained by VGen. It distributes transactions over VMs fol-
lowing the numerical quantities specified in a configuration file, and also varies the
load based on the elasticity parameters in that file. Using a deck of cards method,
VGen ensures that the load ratios among the many VMs are maintained at the values
specified in the configuration file. If one VM is running slower than expected, the load
to other VMs is automatically reduced such that the specified ratios are maintained.

80 A. Bond et al.

Fig. 2. A TPC-V server with 4 Groups and 12 VMs

Group A, Set 1 VM1 A1 VM2 VM3 A1

Group B, Set 1 VM1 B1 VM2 B1 VM3 B1

Group C, Set 1 VM1 C1 VM2 C1 VM3 C1

Group D, Set 1 VM1 D1 VM2 D1 VM3 D1

Fig. 1. Components of a TPC-V Set

3.2 Heterogeneous Load

The basic building block of TPC-V is a Set of 3 VMs. Tier A VM1 receives transac-
tions from the driver system and runs the database client code, similar to the Tier A of
a TPC-E benchmark configuration [11]. VM1 directs the two Decision Support trans-
actions to the DSS VM2, and the other transactions to the OLTP VM3. Each VM has
an independent database instance that resides on that VM’s virtual disk drives.

3.3 Multiple Sets and Groups

Fig. 2 represents the simplest TPC-V configuration of a server with 4 Groups, each
with one Set of 3 VMs for a total of 12 VMs. To emulate the heterogeneous nature of
VMs in a cloud environ-
ment, each Group handles
a different proportion of
the overall load. Averaged
over the full measurement
interval, Groups A, B, C,
and D receive
10%, 20%, 30%, and 40%
of the overall load, respec-
tively. The sizes of the
independent databases in
the 4 VMs (represented by
table cardinalities) follow
the same proportions. The
4 Groups are driven inde-
pendently; the driver mod-
ule is required to ensure
that the load proportions
remain as specified.

Tier B VM2,
DSS queries

Tier B VM3,
OLTP transactions

Tier A VM1, app logic code

Stored procedure calls

Transactions
arriving from the

driver system

Virtual disks Virtual disks

 Architecture and Performance Characteristics of a PostgreSQL Implementation 81

Fig. 3. Overlapping ranges for valid numbers of Sets
per Group

Table 1. Valid numbers of Sets for various
throughputs

From tpsV To tpsV
No. of
Sets

100 1600 1

400 25,600 2

6,300 409,500 3

102,400 6,553,600 4

1,638,400 104,857,600 5

26,214,000 Infinity 6

The number of Sets per
Group in TPC-V grows as the
overall throughput grows. So,
e.g., at a throughput level of
4,000 tpsV, the sponsor is re-
quired to configure 2 Sets per
Group. For Group A, each of
the two Sets supplies 5% of the
overall throughput; a similar
calculus applies to the other
three Groups. The growth in the
number of Sets per Group is
sub-linear: a 10X throughput
growth might result in a 2X
increase in the number of Sets per Group. This is characteristic of database servers in
the cloud.

Rather than requiring an exact number of Sets for every throughput value, we al-
low two possible Set counts for most throughput ranges, as shown in Table 1 and Fig.
3. This was done for ease of benchmarking. Without this allowance, if a test sponsor
were targeting a throughput that is near the value at which the number of Sets per

Group changes, a slight change up or
down in the eventual throughput would
necessitate rebuilding the testing infra-
structure with a different number of
VMs.

So, for example, 25,600 tpsV is the
crossing point from 2 to 3 Sets per
group. If the sponsor expects to achieve
25,600 tpsV, builds a 3-Sets-per-Group
configuration with 36 VMs and 24 data-
bases, but reaches only 24,000 tpsV,
there is no need to reconfigure platform
with fewer VMs since the specification
allows 3 Sets per Group down to 6,300

tpsV. The sponsor only needs to repopulate the databases, scaled to the correct
throughput.

3.4 Elasticity

A feature of TPC-V is that the load of each Set rises and falls during the measurement
interval. This represents the elastic nature of workloads present in cloud data centers,
and the resource allocation policies required to handle such elasticity. The overall
load presented to the System Under Test remains constant during the Measurement
Interval, but the contribution from each Set varies by as much as a factor of 7X every
12 minutes, e.g., the rise of the contribution of Group A from 5% to 35% in Elasticity

82 A. Bond et al.

Table 2. Phase-to-phase variation of load received by
individual Groups

Elasticity
Phase

Group
A

Group
B

Group
C

Group
D

1 10% 20% 30% 40%

2 5% 10% 25% 60%

3 10% 5% 20% 65%

4 5% 10% 5% 80%

5 10% 5% 30% 55%

6 5% 35% 20% 40%

7 35% 25% 15% 25%

8 5% 65% 20% 10%

9 10% 15% 70% 5%

10 5% 10% 65% 20%

Average 10% 20% 30% 40%

Phase 7. When the contribu-
tion of a Group changes, the
contribution of all individual
Sets in that Group change to
the same degree. Table 2
and Fig. 4 show how much
each Set contributes to the
overall throughput in each
12-minute Elasticity Phase.

4 Reference Kit

 Benchmarking kits for TPC
benchmarks have always
been provided by test spon-
sors, typically by DBMS
vendors who tailor their kits
to their own databases. Al-
though we would have liked

a DBMS vendor to provide a benchmarking kit for TPC-V, due to lack of such a
commitment, the subcommittee accepted the challenge of developing its own kit. This
turned out to be a positive development as it will result in the TPC releasing its first
publicly available, complete end-to-end benchmarking kit which can be used by sys-
tem vendors, researchers, and end users alike. The details of this decision making,
comparison with other benchmarking kits, and a block diagram of the kit components
can be found in [1]. Fig. 5 shows how the various elements of the TPC-V reference
kit map to the components of the tested configurations.

Fig. 4. Distribution of overall load over the 4 Groups versus time

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

D
iv

is
io

n
of

 o
ve

ra
ll

th
ro

ug
hp

ut
 o

ve
r

th
e

4
G

ro
up

s
of

 T
P

C
-V

Group A Group B Group C Group D

Elasticity phase

 Architecture and Performance Characteristics of a PostgreSQL Implementation 83

Fig. 5. Single-set Reference Driver Components Representation

4.1 V-Gen Functionality Development

The primary focus in implementing V-Gen functionality has been in adding multi-
group, multi-set, multi-phase support. And while multi-group and multi-set and multi-
phase have been described previously, the multi-iteration support has been added in
order to be able to run as many ten-phase intervals as desired in a single test. The
tester will then be able to choose any sequential ten phases in the multi-interval test
run as the measurement set. The ability to choose such a measurement set is being
added to a reporter process, which is also new to the kit. And lastly, the runtime result
polling has been modified to provide group mix data that displays performance on a
per-group basis in addition to the previous per-transaction basis.

4.2 Card Deck for Multi-group, Multi-set and Multi-phase Support

 As described previously, multi-group and multi-set support has been implemented in
the reference driver by having every CE process connect to each vconnector process
in every group and every set. In doing so, we are able to use a card deck to assure the
proper mix of transactions across these groups and sets. This deck is created for each
CE load generating thread and is shuffled at the beginning of the run. Each time the
CE starts a new request, it takes a card from this deck to determine the group and set
ID of the vconnector process to whom it should direct the request, and once the bot-
tom of the deck is reached, it simply starts back at the top.

Likewise, different phases have different transaction mixes, so we have a separate
card deck for each of the ten phases that contains the proper mix of transactions for

84 A. Bond et al.

that phase. At a phase change, the deck from which the cards are pulled is also
changed to the corresponding deck with the correct request mix.

4.3 Result Reporting

A reporter class is under development to help with processing the mix logs. It is cur-
rently capable of combining CE mix logs from multiple CE processes into a merged
log that can be used to extract the needed data for a benchmark report. One such piece
of information that it currently offers is that after combining the CE mix logs, it
creates a CSV file with the total number of transactions that occurred in each 30-
second interval from the start of the ramp-up-phase to the end of the ramp-down
phase of the full benchmark run. This code should require minimal modification to
provide similar and more granular information on transaction totals over time based
on transaction type, group, set, iteration, phase, or even per-client-thread transaction
information.

Of course, to be able to accurately combine CE mix log files, you have to have in-
formation about the runtime configuration used to generate those logs. So at the end
of a benchmark run, the reporter also creates a runtime.properties file that contains the
necessary information. This file is also passed to the reporter when it is invoked.

4.4 Runtime Polling

The addition of groups and sets to TPC-V resulted in the need for group- and
set-specific polling information. So in addition to the previous per-transaction-type

--
 Txn Rate Resp Time Txn Pct Pass Count Fail Count
TRADE_ORDER : 8.36 0.0077 11.33 1487 18
TRADE_RESULT : 0.00 0 0.00 0 0
TRADE_LOOKUP : 6.60 0.4995 8.95 1188 0
TRADE_UPDATE : 1.66 0.6165 2.25 299 0
TRADE_STATUS : 15.94 0.0074 21.60 2869 0
CUSTOMER_POSITION: 10.67 0.0076 14.46 1920 0
BROKER_VOLUME : 4.09 0.0402 5.54 736 0
SECURITY_DETAIL : 11.68 0.0067 15.83 2102 0
MARKET_FEED : 0.00 0 0.00 0 0
MARKET_WATCH : 14.78 0.0104 20.04 2661 0
DATA_MAINTENANCE : 0.00 0 0.00 0 0
TRADE_CLEANUP : 0.00 0 0.00 0 0
--

--
 Group 1 Group 2 Group 3 Group 4
Txn Total: 664 1329 3316 7971
Txn Pct : 5.00 10.01 24.97 60.02
Resp Time: 0.0957 0.0771 0.0705 0.0624
Fail Cnt : 2 2 3 11
--

Iteration 2 Phase 2 Aggregate Txn Rate: 73.78

Fig. 6. Sample polling output

 Architecture and Performance Characteristics of a PostgreSQL Implementation 85

polling information, per-group polling information has been added. So now a sample
polling output might look like the output in Fig. 6. This additional information lets
you know whether you are meeting the transaction mix requirements for each group,
as well as the average response times and failure counts for each vconnector process.

4.5 MEE Development

As already noted, the MEE currently implements the Market Feed and Trade Result
transactions as required for TPC-E. However, the nature of the MEE is such that it
places constraints on implementation design for TPC-V. For example, we cannot
design the MEE such that a single MEE process connects to all groups and sets as we
do with the CE. This is because when transactions from the CE that trigger MEE
transactions occur, they do not identify themselves by their group and set. Thus when
the MEE generates a transaction in response to the CE trigger, it would have no way
of knowing which vconnector process should be the recipient of this transaction.

Due to this design constraint, we need a MEE paired specifically with each vcon-
nector process so that any CE request that triggers and MEE transaction will always
be sent to the correct recipient. At this point, this could mean a separate MEE process
is started for each vconnector process, but ideally we hope to be able to have one
MEE process handle requests for all four groups in each set using separate transaction
handling threads and requiring only unique connections for each of these four MEE
threads. This is not a requirement, though having fewer processes for the prime client
to coordinate with is certainly desirable.

4.6 TPC-E Functionality

Since TPC-E is the starting point of this benchmark, and since it is a simpler, single-
system benchmark, we used it as the design center of the first implementation of the
reference kit. Although a complete, compliant TPC-E kit is not a goal of this project,
the early prototype has been used to provide a glimpse of PostgreSQL running the
TPC-E workload. Although we have been experimenting with multiple Sets and VMs
following the TPC-V architecture, the workload has been mostly based on TPC-E.

5 Current Status of the Benchmark and the Reference Kit

The TPC-V reference benchmarking kit is nearly complete as of this writing. Below
are the functionalities that are completed:

- A Driver module that generates TPC-E or TPC-V transactions, and distributes
them over any number of Set and Groups of VMs in case of TPC-V (see sec-
tion 3). It also implements the TPC-V elasticity feature

- A VGen module based on the TPC-V schema, transaction mix, etc.
- The Customer Emulator module
- The Market Exchange Emulator module for TPC-E transactions
- The vconnector module that performs all the database accesses

86 A. Bond et al.

- The DDL and DML scripts for PostgreSQL 9.2
- Linux shell scripts to launch all these programs, collect data and statistics, and

produce results metrics

The functionalities that remain to be completed are:

- Modifying the MEE, stored procedures, and DML calls such that the Trade-
Result and Market-Feed transactions conform to the TPC-V specification

- The Data-maintenance transaction (a non-critical component)
- Extensive prototyping results for verification and testing of the reference kit
- Porting of the reference kit to multiple environments

6 Results from Prototyping Experiments

6.1 Introduction

Most of the results presented here were obtained before the MEE functionality was
added to the kit. So they are not an accurate representation of eventual TPC-V per-
formance. However, we expect the two missing transactions to have similar profiles
to the 8 transactions implemented. The current functionality is sufficient to study how
efficiently PostgreSQL executes the TPC-E/TPC-V queries, as well as an analysis of
whether the hypervisor used in the study was able to handle the variability and elastic-
ity of the load that TPC-V places on the system. For the remainder of this section, we
will refer to transactions per second or tps to denote the total number of transactions
processed. This should not be confused with the tpsV metric, which only counts the
Trade-Result transactions, which make up only a 10% fraction of the total transaction
volume. Trade-Result is issued by the MEE module, which was not developed in time
for our initial measurements. Hence we count all 8 transactions, and report that as tps.

6.2 Benchmarking Configuration

The system under test was a 4-socket HP ProLiant DL580 G7 server with 2.40GHz
Intel Xeon E7-4870 (WestmereEX) CPUs. To put this in perspective, HP has pub-
lished a TPC-E result of 2,454 tpsE1 on this system. The highest TPC-E result is
5,457 tpsE on an IBM System X3850 X5 server2. So the server we are using for pro-
totyping is a large, high-end server. The storage was two EMC VNX5700 disk arrays.
38 EFDs (EMC term for SSDs) in a RAID5 configurations were used for the DSS
VMs, which have the lion’s share of disk I/O. 88 spinning disk drives in a RAID 1
configuration were used for the OLTP VMs, which have lower I/O requirements. The
software stack was vSphere 5.1, RHEL 6.1, PostgreSQL 9.2.2 and unixODBC 2.2.14.

The benchmark was configured with 1 Set for each of the 4 Groups, for a total of
12 VMs. The driver system was the 13th VMs on the system. The database size is
expressed in Load Units, each LU representing 1,000 rows in the Customers table.
The cardinalities of the other 32 tables are either fixed, or are proportional to the
number of Customers.

1 As of 6/21/2013. Complete details available at http://www.tpc.org/4046
2 As of 6/21/2013. Complete details available at http://www.tpc.org/4063

 Architecture and Performance Characteristics of a PostgreSQL Implementation 87

Table 3. Configuration info for VMs

 VM
A1

VM
A2

VM
A3

VM
B1

VM
B2

VM
B3

VM
C1

VM
C2

VM
C3

VM
D1

VM
D2

VM
D3

DB size in
LUs

- 50 50 - 100 100 - 150 150 - 200 200

DB size in
GB

- 336 328 - 670 654 - 1004 980 - 1308 1328

Memory in
GB

2 88 39 2 146 54 2 220 68 2 278 78

vCPUs 3 4 12 5 8 24 6 12 30 8 16 40

Table 3 shows various configuration parameters for the 12 VMs. VM1s have very

little memory usage, and their CPU usage is about 1/8th of the total CPU load. VM2s
have modest processing needs, but we had to allocate most of the memory to them to
cache more of the database and reduce the I/O load. VM3s didn’t need as much mem-
ory since their I/O was already low, but were allocated about 60% of the total
processing power. It is worth noting that, much like real cloud database VMs, al-
though the CPU resources were overcommitted (more virtual CPUs in the VMs than
physical CPUs on the server), the total memory allocated to the 12 VMs is 979GB, on
a server with 1TB of memory. This is common for database VMs since overcommit-
ting memory can result in paging, with disastrous results for database performance.

Virtual CPUs and Elasticity
The number of virtual CPUs, however, totals 168, well above the 80 logical CPUs (40
cores X 2 hyperthreads per core) on the server. This overcommitting is common in
cloud environments since the number of virtual CPUs configured into a VM should be
adequate for its peak demand. But not all VMs peak at the same time. So as long as
the total load does not exceed 80 CPUs’ worth, we can overcommit the virtual CPUs.

6.3 1-Phase and 10-Phase Runs

As mentioned in section 3.4, TPC-V requires the load received by each Group to vary
over ten 12-minute elasticity phases. As we will see in section 6.4, this posed a chal-
lenge in our environment due to storage bandwidth limitations. So we ran some expe-
riments with a single phase (i.e., constant proportioning of load across Sets for the
duration of the run) to study the performance characteristics of the database, the oper-
ating, the hypervisor, and the hardware. We also ran experiments with 10 phases to
specifically study the ability of the system under test to respond to load elasticity, and
to determine whether the TPC-V benchmarking kit is able to deterministically distri-
bute the load over the Sets even when some Sets are strained under the load.

In a 1-phase run with 4 Groups, the throughput was 4,191 transactions per second3.
In the CPU utilization graphs in Fig. 7, the Y axis is the total CPU utilization of each

3 As mentioned in section 6.1, this transactions per second metric should not be confused

with the tpsV metric, which would have been as much as an order of magnitude smaller.

88 A. Bond et al.

Fig. 7. CPU utilization of individual VMs for a single-phase run

Fig. 8. Total CPU usage and throughput of a single-phase run

0

200

400

600

800

1000

1200

1400

1600

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

CP
U

 u
ti

liz
at

io
n

ou
t o

f i
nd

iv
id

ua
l V

M
s

Minutes

Per VM CPU utilization
VM A1

VM A2

VM A3

VM B1

VM B2

VM B3

VM C1

VM C2

VM C3

VM D1

VM D2

VM D3

0

1000

2000

3000

4000

5000

6000

0

1000

2000

3000

4000

5000

6000

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

Th
ro

ug
hp

ut

To
ta

l C
PU

 u
sa

ge
 (o

ut
 o

f 8
,0

00
%

)

minutes

Throughput and overall CPU utilization

Total CPU utilziation of guest VMs Throughput

VM. An 8-vCPU VM would register a utilization of 800% if all 8 vCPUs were fully
utilized. All of these metrics are measured on virtual CPUs on the guest VMs.

Fig. 8 shows throughput and the sum of CPU utilizations of individual VMs. It
might appear that the system is not fully saturated, but that’s due to the artifacts of
hyperthreading when we collect statistics on the guest OS. Hypervisor and hardware
counters register between 85% and 95% utilization on the CPU cores.

 Architecture and Performance Characteristics of a PostgreSQL Implementation 89

6.4 Throughput versus Other Performance Metrics for 10-Phase Runs

We also ran the benchmark with the load variation depicted in Fig. 4. As Fig. 9
shows, the CPU utilizations of individual VMs varied during the 2-hour runs, as did
the overall throughput, shown in Fig. 10. However, the benchmarking kit ensured that
the contributions of each Group remained exactly as prescribed in Table 2.

In this case, the throughput dropped drastically during some phases. The reason for
this drop was the inability of the storage to cope with the changes in load. Briefly, the

Fig. 9. CPU utilizations of individual VMs for a run with 10 elasticity phases

Fig. 10. Total CPU usage and throughput for a run with 10 elasticity phases

0

500

1000

1500

2000

2500

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

CP
U

 u
ti

liz
at

io
n

ou
t o

f i
nd

iv
id

ua
l V

M
s

Minutes

Per VM CPU utilization
VM A1

VM A2

VM A3

VM B1

VM B2

VM B3

VM C1

VM C2

VM C3

VM D1

VM D2

0

1000

2000

3000

4000

5000

6000

0

1000

2000

3000

4000

5000

6000

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

Th
ro

ug
hp

ut

CP
U

 u
sa

ge
 o

ut
 o

f a
 p

os
si

bl
e

8,
00

0%

minutes

Throughput and overall CPU utilization

Total CPU utilziation of guest VMs Throughput

90 A. Bond et al.

overall load, and hence the overall I/O requirements, remain constant over the execu-
tion time. Hence, if the storage is shared by all VMs in a striped format, the variations
in load should not have the large impact that we observed. However, our storage was
split in two groups: LUNs for Groups A and B were striped across one set of SSD
disks, and LUNs for Groups C and D on a second set of SSD drives.

When in Phase 4 the load of the Group D is at its maximum, the second storage ar-
ray was unable to satisfy the needs of that Group. One can overlay Fig. 4 and Fig. 10,
and see that whenever Group C or Group D is at or near peak contribution to the
overall throughput, performance goes down because we are unable to utilize excess
capacity left in the first storage array dedicated to Groups A and B. In other words the
benchmark is working exactly as intended: it is exposing a problem in the resource
management of the underlying platform.

6.5 Results with a Full, End-to-End Kit

As pointed out in section 6.1, most of the results reported here were from a kit that did
not have the MEE module, i.e., it was missing the important Trade-Result and Mar-
ket-Feed transactions. In the months leading to this publication, we were able to take
runs with a functional MEE, and could measure performance with the full comple-
ment of the 10 transactions (the Data-Maintenance transaction, which does not impact
performance, has not been implemented). As we had predicted, the overall perfor-
mance in terms of average milliseconds/transaction and the overall execution profile
did not change very much. The addition of the two new transactions only changed the
frequency percentages of the mix of transactions.

Early results look encouraging. We took runs with the TPC-E workload on a 16-
way VM on the server described in section 6.2. We observed a throughput of roughly
140 tpsE at 80% CPU utilization on a 16-vCPU VM. So we are at ~9.1 millise-
conds/tpsE. The published result with a commercial DBMS for this 80-way server is
2,454 tpsE, i.e. ~3.3 milliseconds/tpsE. Since our results are on a VM, there is a virtu-
alization overhead of roughly 10% to consider. Also, our database was oversized, and
our I/O rate is as much as 8 times the I/O rate of the commercial database due to
PostgreSQL not having the Clustered Index feature of the commercial database. Con-
sidering all this, and assuming we can compare 16-way and 80-way results, perfor-
mance is respectable for this early stage of prototyping.

6.6 PostgreSQL Tuning

Our current throughput level is close to 5,000 tps, summed over 4 Sets with 12 VMs.
The audited result for this system is 2,454 tpsE, which only counts Trade-Result
transactions. So running TPC-E with a commercial DBMS, it really processes 24,545
transactions per second. So we are nearly 5X off that mark. To make a direct compar-
ison, we need to run a single VM with the complete TPC-E workload, including the 2
MEE transactions. But based on the data collected so far, we can see that many tuning
opportunities exist, especially in the I/O rate. It appears that due to not having clus-
tered indexes, PostgreSQL issues nearly 4 times as many I/Os per transaction as the
TPC-E design goal. This is our primary focus area for the next phase of this project.

 Architecture and Performance Characteristics of a PostgreSQL Implementation 91

Table 6. Effects of increasing WAL_segments

Checkpoint metric 12
segments

5,120
segments

checkpoints_timed 0 1
checkpoints_req 15 0
buffers_checkpoint 4,437,177 956,174
buffers_clean 14,069 852,893
buffers_backend 46,297 39,297
buffers_alloc 24,831,473 23,749,499

File System Parameters
An optimization recommend in [6] is separate file systems for data and Write-Ahead
Log (WAL), because of the more strict cache flushing semantics for the log. Initially,
an ext4 file system held both log and data, mounted with noatime,nodiratime,
nobarrier,. We then created a pg-xlog ext3 file system, mounted with noatime,
nodiratime,data=writeback. The log virtual disks of all VMs were placed
on a LUN with only 4 disk drives, yet all experienced fast disk latencies. The result
was a 6.5% increase in the throughput of the 4-Group, single-phase runs to 4,769 tps.

Checkpointing
Two parameters manage the checkpoint frequency of PostgreSQL. A new checkpoint
is initiated either when a checkpoint has not occurred in checkpoint_timeout
minutes, or when checkpoint_segments 16MB WAL segments have been used
since the last checkpoint. We increased checkpoint_timeout from the default of
3 minutes to 30, and checkpoint_segments from the default of 3 to 128, believ-
ing 128 checkpoint_segments were enough, even for the largest VM, to let
checkpointing be governed by checkpoint_timeout. Tests, however, showed
that we were checkpointing as often as once every 2 minutes. We needed to increase
checkpoint_segments to 1,920 segments on the largest VM; we used 5,120 to
be safe. This change gave us a 2% improvement to 4,841 tps. Table 6 has the back-

ground writer stats section of the
pgstatspack outputs before and after
the change for 30-minute runs. The
checkpoints_timed and check-
points_req counts show that origi-
nally, there were 15 checkpoints
triggered because the database had
used all the WAL segments, and
none due to reaching the checkpoint
frequency timer. After increasing
the number of WAL segments, we
see only a single time-triggered
checkpoint.

Table 4. I/O stats for DSS VM with one and two 2 file

 wrqm/s r/s w/s rkB/s wkB/s avgrq avgqu await

1 FS Data+log 1830 11151 2767 138602 33956 25 30 2.14

2 FS data 2406 12350 2278 181902 18737 27 40 2.71
log 343 0.34 134 1 17854 264 0.3 1.87

Table 5. I/O stats for OLTP VM with one and two 2 file systems

 wrqm/s r/s w/s rkB/s wkB/s avgrq avgqu await

1 FS Data+log 403 542 476 7682 5552 27 5.1 4.75

2 FS Data 194 860 145 15613 1357 34 6.3 6.29
log 1 0.04 225 0.16 3066 27 0.3 1.15

92 A. Bond et al.

7 Conclusions

The TPC-V reference benchmarking kit, which is at the heart of the benchmark, is
nearly complete. It provides all the novel properties of TPC-V: a heterogeneous com-
bination of workloads driven to many VMs, a deterministic distribution of load over
the VMs regardless of how each VM handles the load, and dynamically varying the
load levels to VMs to emulate the elasticity of load in the cloud. Using this kit, we
have discovered several optimizations for a PostgreSQL implementation of TPC-V.

Acknowledgements. We thank Cecil Reames for VGen and specification reviews,
Matt Emmerton, John Fowler, and Jamie Reding for TPC-E knowledge, Karl Huppler
and Wayne Smith for high level benchmark requirements, and Jignesh Shah for
PostgreSQL advice.

References

1. Bond, A., Kopczynski, G., Reza Taheri, H.: Two Firsts for the TPC: A Benchmark to Cha-
racterize Databases Virtualized in the Cloud, and a Publicly-Available, Complete End-to-
End Reference Kit. In: Nambiar, R., Poess, M. (eds.) TPCTC 2012. LNCS, vol. 7755, pp.
34–50. Springer, Heidelberg (2013)

2. Figueiredo, R., Dinda, P.A., Fortes, J.A.B.: ‘Guest Editors’ Introduction: Resource Virtua-
lization Renaissance. Computer 38(5), 28–31 (2005), http://www2.computer.org/
portal/web/csdl/doi/10.1109/MC.2005.159

3. Nanda, S., Chiueh, T.-C.: A Survey on Virtualization Technologies. Technical Report
ECSL-TR-179, SUNY at Stony Brook (February 2005), http://www.ecsl.cs.
sunysb.edu/tr/TR179.pdf

4. Rosenblum, M., Garfinkel, T.: Virtual Machine Monitors: Current Technology and Future
Trends. Computer 38(5), 39–47 (2005)

5. Sethuraman, P., Reza Taheri, H.: TPC-V: A Benchmark for Evaluating the Performance of
Database Applications in Virtual Environments. In: Nambiar, R., Poess, M. (eds.) TPCTC
2010. LNCS, vol. 6417, pp. 121–135. Springer, Heidelberg (2011)

6. Smith, G.: PostgreSQL 9.0 High Performance. Packt Publishing (October 20, 2010)
7. Smith, W.D., Sebastian, S.: Virtualization Performance Insights from TPC-VMS,

http://www.tpc.org/tpcvms/tpc-vms-2013-1.0.pdf
8. SPECvirt_sc2010 benchmark info, SPEC Virtualization Committee,

http://www.spec.org/virt_sc2010/
9. SPECvirt_sc2013 benchmark info, SPEC Virtualization Committee,

http://www.spec.org/virt_sc2013/
10. TPC: Detailed TPC-C description, http://www.tpc.org/tpcc/detail.asp
11. TPC: Detailed TPC-E Description,

http://www.tpc.org/tpce/spec/TPCEDetailed.doc
12. TPC: TPC Benchmark H Specification,

http://www.tpc.org/tpch/spec/tpch2.14.4.pdf
13. TPC: TPC Benchmark DS Specification,

http://www.tpc.org/tpcds/spec/tpcds_1.1.0.pdf
14. VMware, Inc.,

http://www.vmware.com/products/vmmark/overview.html

R. Nambiar and M. Poess (Eds.): TPCTC 2013, LNCS 8391, pp. 93–108, 2014.
© Springer International Publishing Switzerland 2014

A Practice of TPC-DS Multidimensional Implementation
on NoSQL Database Systems

Hongwei Zhao and Xiaojun Ye

School of Software, Tsinghua University, Beijing 100084, China
hwzhao73@gmail.com, yexj@tsinghua.edu.cn

Abstract. While NoSQL database systems are well established, it is not clear
how to process multidimensional OLAP queries on current key-value stores. In
this paper, we detail how to match the high-level cube model with the low-level
key-value stores built on NoSQL databases, and illustrate how to support effi-
ciently OLAP queries by scale out while retaining a MapReduce-like execution
engine. For big data the functional problem of storage and processing power is
compounded, we balanced them with partial aggregation between batch
processing and query runtime. Base cuboids are initially constructed for
TPC-DS fact tables by using multidimensional array, and cuboids for various
granularity aggregation data are derived at runtime with base ones. The cube
storage module converts dimension members into binary keys and leverages a
novel distributed database to provide efficient storage for huge cuboids. The
OLAP engine built on lightweight concurrent actors can scale out seamlessly;
provide highly concurrent distributed cuboid processing. Finally, we illustrate
some experiments on the implementation prototype based on TPC-DS queries.
The results show that multidimensional models for OLAP applications on
NoSQL systems are possible for future big data analytics.

Keywords: Big Data, On Line Analysis Processing, Multidimensional Data
Model, TPC-DS Benchmark.

1 Motivation

Scalability and flexibility create challenges on earlier-generation Business Intelli-
gence (BI) technologies and infrastructure architectures [1]. On Line Analysis
Processing (OLAP) engine, one of BI components, faces a confluence of growing
challenges deriving from the latest big data revolution [2]. Although business analytics
over large-scale data repositories have been investigated recently, such as Dremel [3],
Spanner [4] and Spark [5], the problem of integrating multidimensional data models on
top of distributed file systems and extending typical OLAP operators in the context of
big data analytics are not clear in current NoSQL database systems.

Purposes of OLAP engines are to provide roll-up/drill-down, slice/dice or pivot
capabilities on data warehouse systems. But the limitations in MOLAP are that
it is not very scalable and can only handle limited amounts of data since calculations
are predefined (storage and cache) in the cube. OLAP engines have to take an

94 H. Zhao and X. Ye

evolutionary architecture that is going to employ distribution and parallel computing
technologies. In this paper, we propose a distributed OLAP server implementation
approach with cube model in order to fill the gap between big data stores and rapid
interactive business analytic demands. Compared to traditional OLAP servers, it’s
easily scaled out for big data analytic and kept low latency by paralleling query
processing tasks with fault tolerance provided by underlying NoSQL database
systems.

1.1 Proposed Solution

We present a system under test (SUT) composed by an OLAP engine, a key-value
database for persistent cube data according to the business scenarios of TPC-DS
benchmark. Since the relational data model does not have linear scalability versus a
pressing need for the analysis of large volumes of data, a few studies addressed OLAP
benchmarking of NoSQL systems [21] [22] [23]. LinkedIn has built an OLAP engine:
Avatara on Hadoop, which has been powering several analytics features on the site
for the past two years [24].

Future benchmarks for big data analysis need consider how to support OLAP mul-
tidimensional model and adapt TPC benchmarks for NoSQL database systems. Thus,
our work may be viewed more like TPC-DS benchmark testing proposition for
key-value store systems. The proposition focuses on multidimensional implementation
for big data analytics [2] [6]. We aim at integrating the classical, well-known benefits
of the cube model with big data store infrastructures to achieve low latency OLAP
queries in NoSQL database systems [28].

Main contribution of this paper is in answering how to build and store multidimen-
sional data on top of big data systems and how to extend typical OLAP operators and
parallel OLAP query processing on distributed key-value data store systems. Key
points are summarized as followings.

1. The OLAP engine built on suitable NoSQL databases can embrace large scale cu-
boids repositories. We choose HBase for distributing cube data storage and improve
stability by its offering a fine-grained fault tolerance model.

2. The engine can scale out seamlessly and provide different levels of concurrency. We
propose a framework to allow building an event-driven concurrent system based on
Akka actor model [7]. As such, OLAP query plan execution can be split into small
parts for concurrent running on distributed nodes.

3. To verify the OLAP engine solution, experiments are taken with TPC-DS data
which will be enriched with semi-structured and unstructured data components to
become a big data benchmark called BigBench [8].

1.2 Paper Organization

In Section 2 we review related OLAP logical model design approaches and cube
modeling techniques for TPC-DS schema. In Section 3, after illustrating proposed
OLAP engine architecture, we show how to convert the snowflake data model into a

A Practice of TPC-DS Multidimensional Implementation on NoSQL Database Systems 95

multidimensional model based on array-based representation. When the analysis en-
gine executing, the actor concurrency pattern and immutable event messages are
heavily used for scalability and fault tolerance. We carry out a group of experiments to
identify its performance bottlenecks on NoSQL databases based on TPC-DS data in
Section 4. Finally, we summarize the mechanism of our OLAP engine implementation
and present future works in Section 5.

2 Related Work

2.1 OLAP for Big Data

There are two fundamental OLAP engines for big data analytics: Relational OLAP
(ROLAP) and Multidimensional OLAP (MOLAP). As for ROLAP, scenarios for big
data analysis have been investigated in Hive [5]. ROLAP is designed to leave the data
where it is and defer processing until it is actually queried. It becomes slow because of
running complex map reduce jobs that consist of grouping and joining large data sets.
As for MOLAP, the preprocessing and storage demands of a pure MOLAP approach
are overwhelming either. Therefore, we have to make a compromise between the
preprocessing costs of real time analytics and the usability of batch processing.

To make appropriate tradeoffs, we choose MOLAP rather than ROLAP as the un-
derlying logical model. MOLAP aggregates the multidimensional data in the form of
cuboids. Conceptually, the data cube consists of the base cuboid, the finest granularity
view containing the full complement of d dimensions (or attributes), surrounded by a
collection of 2d − 1 cuboids that represent the aggregation of the base cuboid along one
or more dimensions. Our solution is to pre-aggregate base cuboid in batch processing of
cube data, and to aggregate other cuboids at runtime according to user queries [28]. To
keep space usage efficient, only base cuboid data are stored, other cuboids are created
in memory by user query requests.

2.2 Cube Modeling for TPC-DS

TPC-DS benchmark models the decision support functions of a retailer with a con-
stellation schema with 7 fact tables and 17 shared dimensions. Its workload covers 99
queries classified into four classes: reporting queries, ad-hoc decision support queries,
interactive OLAP queries, and extraction queries [9].

We can consider cube modeling based on two baselines for TPC-DS schema: 1)
requirement driven: according to Kimball’s “first principles”, the design of TPC-DS
cubes should be based on analysis of benchmark query templates, e.g. based on the
knowledge of the application area and the types of queries the users are expected to
pose [10]. 2) Data driven: like OLAP cubes construction based on queries proposed in
[11], the logical cube construction may be based on the use of functional dependency
involved in TPC-DS schema.

In this paper, we adopt TPC-DS queries as an optimization method rather than a
logical cube design method. We combine the cube design and related queries to find the
base cuboid data for each fact table and cache the data in memory at runtime so that

96 H. Zhao and X. Ye

other cuboids can be generated on the fly. As such, it is meaningful to think that an
OLAP query returns a cuboid or the combination of some underlying cuboids.

Two types of cubes can be used to model TPC-DS schema: hypercubes and multi-
cubes. We adopt multicubes and define 7 cube models for TPC-DS fact tables. The
number of dimensions emerging from each distribution channel in TPC-DS is differ-
ent. The Catalog Sales cube has 11 dimensions, Web Sales cube has 11 dimensions and
Store Sales cube has 8 dimensions. Hierarchies of dimensions can be divided into four
classes: geography information, date, time and target market (Table 1). In this paper,
we illustrate the cube data construction on Store Sales cube and its related queries.

Table 1. Dimensions with hierarchies in TPC-DS

 Geography Target Market Date Time
Store √ √
Call Center √ √

Website √ √

Warehouse √

Customer

Customer Address √ √

Date_Dim √

Time_Dim √

Tens of measures in TPC-DS can be grouped into 8 categories, namely quantity,

price, cost, discount related, tax, charges, cash flow related and profit (Table 2). At the
same time, plenty of calculated measures, which are derived by one or more current
measures, are also proposed, such as gross profit margin, net profit margin, average
price, total cost, etc.

Table 2. Categories of measures in TPC-DS

Categories of Measures Measures
Quantity Unit Sold, Unit Returned, Inventory Quantity, etc.
Price Unit Sales Price, Unit List Price, Extended Sales Price, Extended List Price

Cost Wholesale Cost, Ship Cost, etc.

Discount related Discount, Coupon

Tax Sales Income Tax, Ship Income Tax, Net Paid Income Tax, etc.

Charges Return Fee, Reversed Charge, etc.

Cash flow related Net Paid, Refunded Cash

Profit Net Profit/Loss

2.3 Cube Algebra for TPC-DS Queries

We should work with TPC-DS SQL queries to transform them into MDX-like ones in
order to take full advantage of MOLAP conceptual structures (e.g., concept hierarchies
and cuboids and their paths). Defining the language formally is out of scope of this

A Practice of TPC-DS Multidimensional Implementation on NoSQL Database Systems 97

paper; instead, we illustrate its flavor with some of TPC-DS queries. Internally, we will
adopt MDX model at the conceptual level and provide a common APIs for cube
algebra [13].

The cube keeps aggregate values for the Group-bys of every possible combination
of dimensions. The combination of some certain Group-bys is called a cuboid, and all
different combinations form a lattice structure according to their Group-bys selection.
The top cuboid that named base cuboid can be used to compute all of other cuboids.
So we build the cube with base cuboid only in construction stage while generate other
cuboids in querying stage.

3 MOLAP System Implementation

Recently, there are some implementations of MOLAP based on NoSQL databases:
[26] integrated traditional RDBMS with multidimensional index structure layered
over a range partitioned key-value store to provide scalable multi-dimensional data
infrastructure. [27] designed and tested a scalable and inexpensive transparent data
cube for Spatio-temporal data. [22] transformed multidimensional arrays to pig data
for optimizing Pig Latin queries. LinkedIn [24] provided the OLAP engine architec-
ture to build many, small cubes stored in key-value stores. Generally these systems
consist of two subsystems: cube computation and query serving

Similarly, we build our OLAP engine based on the Hadoop as shown in Fig. 1. The
OLAP engine provides high throughput during batch cube computation and low latency
during online query serving. It can run in a cluster in which there are two roles of
nodes: one is Dispatcher Node, who maintains the task status and dispatches the tasks;
the others are Worker Nodes that execute tasks and cache the partition data in-memory.
This has several features that differentiate it from traditional MOLAP engines:

1. Parallel and distributed pre-aggregation. With Akka actor topology, it can build cube
data and run OLAP operations in a MapReduce-like style. The loading method for
the hash-based base cuboid is better for larger data sets under distributed environ-
ments [14]. Thus we use a designed hash key algorithm and implement the OLAP
engine with actor programming model.

2. Bit-wise key compression method. To convert bit key from multi-dimensional
members, we can use key-value database to store the cube with the high perfor-
mance in reading and writing. When caching we minimize the memory storage size
by caching the bit key only. This reduces both the data size by as much as over
naively storing the data in its original format, and shortens the processing time by
applying the binary operations.

3. The engine is optimized for low latency, and provides an in-memory distributed
storage for cube data. This approach is derived from Resilient Distributed Datasets
(RDDs), a distributed memory abstraction that lets programmers perform
in-memory computations on large clusters in a fault-tolerant manner [16].

98 H. Zhao and X. Ye

Fig. 1.

In the following, we fo
engine in Fig. 1 by:

• Distribute dynamically c
ries (e.g. OLAP operatio

• Apply bitmap keys for
respect to multi-thread co

3.1 Cube Construction

The method in [15], used
pressed in queries and relati
executing. Cube building in

• Extracts dimensions and
The graph is crucial to in

• Validates each above gra
cuboids for user queries
cuboids for fact tables.

In the first stage, the dim
related queries. Query 7 fro

select i_item_id, a
agg2, avg(ss_coupon
store_sales, custom
motion
 where ss_sold_date
 ss_item_sk =
 ss_cdemo_sk

OLAP system architecture build on HBase

ocus on how to build highly concurrent, distributed OL

cubes data onto working nodes and parallelize OLAP q
ons) into a concurrent model;

operations such as aggregation, filter, group-by etc w
oncurrent access.

n

to derive multidimensional schema from requirements
ional schema, include two phases: cube building and qu

ncludes 2 stages::

measures that are organized in a graph for each user que
nfer base cuboid’s metadata among associated queries;
aph according to the multidimensionality. To do so, a se
s are defined, as such, we can summarize them into b

mensions and measures of each cuboid are decided by
om TPC-DS queries is taken as an example:

avg(ss_quantity) agg1, avg(ss_list_pric
n_amt) agg3, avg(ss_sales_price) agg4 fr
mer_demographics, date_dim, item, pro-

e_sk = d_date_sk and
= i_item_sk and
= cd_demo_sk and

LAP

que-

with

ex-
uery

ery.

et of
base

the

ce)
rom
-

A Practice of TPC-DS Multidi

 ss_promo_sk
 cd_gender =
 cd_marital_s
 cd_education
 (p_channel_e
 d_year = [YE
 group by i_item_id
 order by i_item_id

According to Query
"cd_gender", "cd_marita
"p_channel_event", "d_yea
ss_list_price", "average of s

In the second stage, we
lated queries. Finally, we g
the conjunction requiremen

To make OLAP operati
multiple cube parts with the
be distributed to a worker n
the other nodes. Thus we a
formation into cube cells as
The cells will be distributed

Fig. 2. Transform the fa

imensional Implementation on NoSQL Database Systems

= p_promo_sk and
'[GEN]' and

status = '[MS]' and
n_status = '[ES]' and
email = 'N' or p_channel_event = 'N') a
EAR]
d
d

7, a cube is defined. Dimensions are "i_item_
al_status", "cd_education_status", "p_channel_ema
ar". Measures are average of "ss_quantity", "average
ss_coupon_amt", and "average of ss_sales_price".
merge all definitions of graphs that are inferred from

get a graph for the whole cube definition that is defined
nts of related queries.
ion work as MapReduce style [25], we divide a cube i
e largest dimension. To keep sharing nothing, each part
node that works independently without communicating w
adopt the denormalization method to put all dimension
s the bitmap key (Fig.2) while the aggregation as the va
d into different regions naturally by underlying HBase.

act table in star schema into base cuboid by denormalization

99

and

_id",
ail",
e of

m re-
d by

into
can

with
n in-
lue.

100 H. Zhao and X. Ye

3.2 Key-Value Storage

[17] provides a multidimensional array method to organize star schema. The dimen-
sion members are stored with unique keys. The combinations of dimensions’ keys are
the indices of the dimension arrays which are used to determine the position of the
measure values in the arrays. Next, each of the n-dimensional arrays is mapped into a
linearized array by an array linearization function.

With this approach, each fact table of TPC-DS is first stored in a multidimensional
array to remove the need for storing the dimension values. Then, the array is trans-
formed into a linearized array. Finally, the linearized array is replaced by a bit-wise key
compression method.

In this linearized function, each of dimensions has a mask to allocate its effective
bits in the key. When new member added, the mask should be expanded if the dimen-
sion member size has reached the maximum of the effective bits. The masks can an-
ti-linearize the measure keys to members’ keys by XOR operation. This function costs
less CPU times with bit operation instead of multiplication. We may append new
dimension members by increasing member key and sign it in the mask when needed.

To store the array cuboid, we choose HBase, one of NoSQL database [18]. After
converting the dimension array into key array, we put the cube data into HBase:

 The dimensions and dimension hierarchies are explicitly store with dimension
name as row key. Furthermore, dimension member and its bit key are stored as
key-value pairs. The reversed pairs are also stored as indices.

 The Cube’s measure data is stored in each cuboid that is composed by different
dimensions. The bit key for the cell of cuboid is taken as the row key. And the
field and aggregation operation are combined into one string as the qualifier.
The result is stored as the value.

3.3 Cube Building

Cube building includes the base cuboid building and other cuboids building. Base
cuboid building is divided into 4 phases: Dimension initializing, records fetching,
aggregating and saving. Data can be from any DBMS and will be sent to multi-actors to
be handled concurrently in a round robin fashion. This is generally the longest part
when loading large amounts of data.

We build the dimension instance first and fetch the distinct members for each
attribute and assign them a key for cube metadata. Then store them into HBase as index
and make all nodes load them after finished. Then we partition fact table tuples into
small parts according to the dimension chosen by user defined policies. Let each node
load tuples into multidimensional array. A tuple is represented as a cell in the multi-
dimensional array indexed by the values of each of the attributes. In the following
discussion, we use the hash based method [14].

Finally, the OLAP engine performs various granularity aggregation data calcula-
tions. Basic cuboids are constructed for fact tables by using multidimensional array
technology. Other cuboids for various granularity aggregation data are derived from
basic ones when these queried are executed at first time.

A Practice of TPC-DS Multidi

Fig. 3. Data flow of MapRedu

Base cuboid will be hold
patcher. For other cuboids,
sends the aggregated data to

3.4 Query Execution

When cube queries are sub
query uses existing cuboids
the dispatcher send cuboid c
compiles the query into filte

Each worker node has a q
hit cells to a node that accum
with dimension member an

As Fig. 4, the query ex
extractor and filter. There a
records and check whether i
take this record into accoun
one tries to apply the filt
filter. Thus each mapper
or memory cache. If found
can run on multi-threads, an
The overall parallelization o
actors.

imensional Implementation on NoSQL Database Systems

uce to build other cuboid from base cuboid in the query execut

d in memory and can be updated and refreshed by the d
the dispatcher node schedules map tasks; each worker n
o one reducer node that is appointed by the dispatcher.

mitted, the dispatch node will parse and decide whether
s or needs to construct new ones. If new cuboids requir
construction message to related worker nodes. Otherwis
er and expression, and then sends to related worker node
query executer that handles the message and sends back
mulates all hit cells. The node transforms them into reco
d returns them to the dispatcher.
ecuter manages amounts of mappers and reducers for

are two kinds of applying filters. The first one scans all
it passes filtering constraints. If it does, send to reducers
nt. Reducer helps to merge the result and sort. The seco
ter to combine the dimensions that are not used in
will get an assembly key and try to fetch from HB
it, Mapper sends it to reducers. Here mappers and reduc
nd give the benefits to be concurrent locally and remote
obtains the efficiency. Cube data cannot be shared betw

101

tion

dis-
node

r the
red,
e, it
es.

k the
ords

the
the
and
ond
the

Base
cers
ely..

ween

102 H. Zhao and X. Ye

Fig.

We implement the OLA
Distributed Datasets (RDDs
fault tolerance.

 Firstly, we set an R
the each region of H

 Secondly, worker
message received. T

 Finally, the RDD’s
and the RDD’s auto

4 Experiments

The whole workflow of our
Emulators) send cube build
dules the cube loading and
finished, Worker nodes retu
and renders to the client.

We use three data sizes o
query 7, 42, 52 and 55, we
physical worker nodes with
hard disk and 256G mem
band width is 10Gbps. Con
setting.

The test is divided into
cube building and OLAP q
performance with 4, 8, and
between Hive and our propo

 4. Actor workflow for query executing

AP engine on a recently-proposed theory called Resili
s) [16]. It loads data in memory while offering fine-grai

RDD as a read-only, partitioned multidimensional array
HBase. It can be created by the worker from the base cubo
has enough information for RDD constructing from
Thus it can materialize the RDD any time.
s partitioning is controlled by the actors on worker nod
omatically loaded when need.

r experiments is shown in Fig. 5. Clients (Remote Term
d and OLAP query commands to Dispatcher which sc
constructing tasks and distributes them into Workers. A
urn back the result to the dispatcher, then it merges res

of 1G, 10G and 100G and pre-load them into Hive. Based
e construct the store sales cube. The experiments utilize
h 2 Intel Xeon CPU E5-2640@ 2.50GHz, 4 15000r/s S

mories. OS of all is Ubuntu server 12.04. The netw
nfigurations for experiments are based on out-of-the-b

three sorts: correctness of OLAP engine implementati
querying performance on different scale data; and query
d 16 workers. At last we compare the TPC-DS querys ti
osed prototype.

ient
ined

y by
oid.
the

des,

minal
che-

After
ults

d on
ed 3
SAS
work

box

ion;
ying
ime

A Practice of TPC-DS Multidi

4.1 Implementation Ve

The correctness of OLAP en
be compared with SQL one
the average of quantity, list
in stores where the promotio
the results to gender as ‘M
college, we got 5254 tuples
the result from Hive SQL th
tuples is different since the

4.2 Cube Building Perf

Loading test means construc
dispatcher node and 3 work
partition of records and ag
data are showed in Table 3.

Table 3. Fact table rec

records number
cube cell number
regions number

We divide cube construc

queries to fetch dimension
shows Hive’s execution tim
records to bitwise key and a

imensional Implementation on NoSQL Database Systems

Fig. 5. Workflow for SUT

erification Running

ngine is fundamental and the running result verification
e with same data sets. We choose Query 7 which compu
t price, discount, and sales price for promotional items s
on is not offered by mail or a special event. When restrict

M’, marital as ‘S’, year as 2000 and educational status
, and the i_item_id data and related aggregation are same
hat is extracted from the same datasets besides the orde
prototype does not support sort operation.

formance

cting the cube from relational datasets. We experiment o
ker nodes. Each worker node has 32 actors who receive
gregate them and then save them. The details for hand
.

ord number, base cuboid cell number and region files size

1G 10G 100G

2,653,108 26,532,571 265,325,821
2,543,842 24,639,263 189,298,704
4*64M 64*64M 256*64M

ction into four phases: 1) Initializing phase includes exec
n members and save them into HBase. 2) Querying ph
me for joining all tables. 3) Aggregating phase convert
aggregations. 4) Saving phase is to save all cells into HBa

103

can
utes
sold
ting
s as
e as

er of

on 1
es a
dled

cute
hase
t all
ase.

104 H. Zhao and X. Ye

Fig. 6. Building performance on 1G, 10G and 100G TPC-DS data

The graph shows that the handling time increases according to the data scales. The
aggregating phase time shows in Fig. 6 illustrated that OLAP engine does not act well
as Hive since all the records are dispatched by the dispatcher node that is responsible
to fetch the dataset. This is the bottleneck that we will try to set different fetch size for
enhancement. Or we can execute hive query on the Hive gateway node for minimiz-
ing the network traffic. Since we do the test with out-of-the-box setting, the saving
phase should be improved by optimizing configuration.

4.3 Querying Performance

For queries executing, we build RDD at first to scan the stored base cuboid and store
them in partitions on worker nodes. Since HBase commonly does not keep each region
server to store same number region, the owner with maximum regions will be the last
one to finish the cache work. For 1G, 10G, 100G data, we got the cache time is 44, 255,
3997 seconds respectively. It implied that we should improve it in the following re-
search activities by adopting some kinds of index.

Fig. 7. Query performance on 1G, 10G and 100G TPC-DS data

After caching, the dispatcher compiles the queries into messages that composed by
required cuboid and a set of filter keys and send them to worker nodes. After filtering,
the results are sent to dispatcher that merges all the results. After all workers send their

1 10 100 1000 10000100000

100G

10G

1G

running time (seconds)

TP
C-

D
S

da
ta

 s
iz

e
initializing

querying

aggregating

saving

0

20

40

60

80

query 7 query 42 query 52 query 55

ru
nn

in
g

ti
m

e
(s

ec
on

ds
)

TPC-DS queries

1G

10G

100G

A Practice of TPC-DS Multidimensional Implementation on NoSQL Database Systems 105

results, the dispatcher renders result to convert bitwise key to dimension members and
returns them to the client.

We report cache times and queries time separately, and find that sharing data via
RDDs greatly speeds up future iterations. The query time can be reduced between all
worker nodes by given same number regions. The RDD just includes the base cuboid
data and benefits OLAP operations that query other cuboids directly. Thus the cube
data is only base cuboid size finally. We also can cache other cuboids dynamically for
future iterations and we will research on the dynamical partition the other cuboids.

For experimenting, we first run query 7, 42, 52, 55 sequentially, i.e. each query is
sent after the previous query’s result is returned. Then we run them concurrently by
sending them at once. And we find the query result is returned in the same order we
send them. The reason is the caches are used exclusively since they are managed by
actor which handles the data inquiries sequentially. It implied that more actors maybe
improve the efficiency of scanning data.

Fig. 8. Queries performance when running sequentially and concurrently on 1G, 10G data

From Fig.8, we see that the querying time is reduced relatively from 77 seconds that
runs sequent to 48seconds that runs concurrently on 10G data. It infers we can optimize
the performance by add more actors that leads heavier burden too.

4.4 Performance Comparative Analysis with Hive

Hive is deployed in out-of-the-box setting on three data nodes and same results are
returned in experimenting on TPC-DS queries 7, 42, 52, and 55. We got the queries
time of the prototype is generally about 50X times quicker than Hive.

Table 4. Comparing query performance on 10G TPC-DS data

 1G 10G 100G

query 7 14X 24X 19X

query 42 53X 49X 48X

query 52 53X 56X 50X

query 55 40X 56X 39X

0

10

20

30

40

Sequential Concurrent Sequential Concurrent

1G 10G

ru
nn

in
g

ti
m

e
(s

ec
on

ds
)

query 7

query 42

query 52

query 55

106 H. Zhao and X. Ye

Fig. 9. Comp

Sincerely, our prototype
kept partition in memory.
operations on big data.

5 Conclusion

This article presents a fea
NoSQL database systems. B
fact tables by using multidi
nularity aggregation data ar
buted and parallel dynamic
linearized arrays which ar
stores. The OLAP engine im
perform most computations
quickening the interactive
fault tolerance. The implem
The features provided by t
TPC-DS queries. The updat

From experiment results
nologies need to be improv
pReduce functions to creat
HBase. This will resolve
Another key for performan
tive OLAP queries [12].

We reported performanc
ries for various data volum
parameter setting will be in
tion times in this paper. Du
I/O costs of MapReduce ta
vestigating these data, we
handling most of queries wi

0

500

1000

1500

ru
nn

in
g

ti
m

e
(s

ec
on

ds
)

paring query performance on 10G TPC-DS data

of OLAP engine has pre-aggregated the fact table data
In this way, the engine may support interactive OL

asible way to build multidimensional OLAP engines
Basic data cubes are constructed from involved queries
imensional array technology, and cuboids for various g
re derived with basic ones at running time by using dis
cube data load workers. Basic cuboids are transformed i
e replaced by bit-wise keys suitable for key-values d

mplemented with Resilient Distributed Datasets (RDDs)
s in memory and cache the aggregation data in memory
responds on large-scale data while offering fine-grai

mentation has been successful in most of its original go
the prototype enable fast computation of results for so
te of cube data will be touched in future.
s, we found the cube building and cuboids caching te
ved in various ways. For example, it is better to use M
ting basic cuboids from Hive tables and store them in
the dispatcher’s bottleneck found in above experime

nce is to use distributed high-dimension index for inter

ce results of building and querying against 4 TPC-DS q
mes. In the future more data schemas and different clu
ncluded into experiments. We investigated only the exe
uring experiments we also measured for business questi
asks, the cost of data transfer for remote messages. By

envision the implementation of the MOLAP engine
ith fully TPC-DS dimensionality on cloud systems.

1G 10G 100G

hive

prototype

and
LAP

on
 for
gra-
stri-
into
data
can

y for
ined
oals.
ome

ech-
Ma-
the

ents.
rac-

que-
ster

ecu-
ion,

y in-
for

A Practice of TPC-DS Multidimensional Implementation on NoSQL Database Systems 107

Acknowledgements. This work was supported by national high-technology programs
(2008ZX01045-004-01, 2009ZX01045-004-001 2009CB320706).

References

1. Evelson, B.: It’s the dawning of the age of BI DBMS. Technical report (2011),
http://www.forrester.com

2. Cuzzocrea, A., Il-Yeol, S., Karen, C.D.: Analytics over large-scale multidimensional data:
the big data revolution. In: Proceedings of the DOLAP, pp. 101–103. ACM (2011)

3. Melnik, S., et al.: Dremel: interactive analysis of web-scale datasets. Proceedings of the
VLDB Endowment 3(1), 330–339 (2010)

4. Corbett, J.C., et al.: Spanner: Google’s globally-distributed database. In: Proceedings of
the10th USENIX Symposium on OSDI, pp. 251–264 (2012)

5. Xin, R., et al.: Shark: SQL and rich analytics at scale.arXiv preprint arXiv:1211.6176 (2012)
6. Chen, Z., Carlos, O.: Efficient OLAP with UDFs. In: Proceedings of the DOLAP, pp.

41–48. ACM (2008)
7. Turcu, A., Binoy, R.: Hyflow2: A high performance distributed transactional memory

framework in scala (2012), http://hyflow.org/hyflow/chrome/site/pub/
hyflow2-tech.pdf

8. Ghazal, A., Hu, M., Rabl, T., Raab, F., Poess, M., Crolotte, A., Jacobsen, H.A.: BigBench:
towards an industry standard benchmark forbig data analytics. In: Proceedings of the
SIGMOD (2013)

9. Poess, M., Nambiar, R.O., Walrath, D.: Why you should run TPC-DS: a workload analysis.
In: Proceeding of VLDB, pp. 1138–1149. ACM (2007)

10. Cheung, D., Zhou, B., Kao, B., Lu, H., Lam, T., Ting, H.: Requirement-based data cube
schema design. In: Proceedings of the CIKM, pp. 162–169. ACM (1999)

11. Niemi, T., Nummenmaa, J., Thanisch, P.: Constructing OLAP cubes based on queries.
In: The Proceeding of DOLAP, pp. 9–15. ACM (2001)

12. Dehne, F., et al.: A Distributed Tree Data Structure For Real-Time OLAP On Cloud
Architectures

13. Ciferri, C., Ciferri, R., Gómez, L.I., Schneider, M., Vaisman, A.A., Zimanyi, E.: Cube Al-
gebra: A Generic User-Centric Model and Query Language for OLAP Cubes. International
Journal of Data Warehousing and Mining (2012)

14. Goil, S., Alok, C.: High Performance OLAP and Data Mining on Parallel Computers. Data
Mining and Knowledge Discovery 1(4), 391–417 (1997)

15. Romero, O., Alberto, A.: Multidimensional Design by Examples. Data Warehousing and
Knowledge Discovery, pp. 85–94. Springer, Heidelberg (2006)

16. Zaharia, M., et al.: Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In: Proceedings of the 9th USENIX Conference on NSDI (2012)

17. Li, J., Rotem, D., Srivastava, J.: Aggregation Algorithms for Very Large Compressed Data
Warehouses. In: Proceedings of the VLDB, pp. 651–662. ACM (1999)

18. Taylor, R.C.: An Overview of the Hadoop/MapReduce/HBaseFramework and Its Current
Applications in Bioinformatics. BMC Bioinformatics 11(suppl. 12), S1 (2010)

19. Dean, J., Sanjay, G.: MapReduce: Simplified Data Processing on Large Clusters. Commu-
nications of the ACM 51(1), 107–113 (2008)

20. Van Renesse, R., Dumitriu, D., Gough, V., et al.: Efficient Reconciliation and Flow Control
for Anti-entropy Protocols. In: Proceedings of the LADIS. ACM (2008)

108 H. Zhao and X. Ye

21. Moussa, R.: TPC-H Benchmark Analytics Scenarios and Performances on Hadoop Data
Clouds. In: Benlamri, R. (ed.) NDT 2012, Part I. CCIS, vol. 293, pp. 220–234. Springer,
Heidelberg (2012)

22. d’Orazio, L., Bimonte, S.: Multidimensional arrays for warehousing data on clouds. In:
Hameurlain, A., Morvan, F., Tjoa, A.M. (eds.) Globe 2010. LNCS, vol. 6265, pp. 26–37.
Springer, Heidelberg (2010)

23. Dutta, H., Kamil, A., Pooleery, M., et al.: Distributed Storage of Large-Scale Multidimen-
sional Electroencephalogram Data Using Hadoop and HBase. In: Grid and Cloud Database
Management, pp. 331–347. Springer, Heidelberg (2011)

24. Wu, L., Sumbaly, R., Riccomini, C., et al.: Avatara: Olap for web-scale analytics products.
Proceedings of the VLDB Endowment 5(12), 1874–1877 (2012)

25. Wang, H., Qin, X., Zhang, Y., Wang, S., Wang, Z.: LinearDB: A relational approach to
make data warehouse scale like MapReduce. In: Yu, J.X., Kim, M.H., Unland, R., et al.
(eds.) DASFAA 2011, Part II. LNCS, vol. 6588, pp. 306–320. Springer, Heidelberg (2011)

26. Nishimura, S., Das, S., Agrawal, D., et al.: MD-HBase: design and implementation of an
elastic data infrastructure for cloud-scale location services. In: Distributed and Parallel
Databases, pp. 1–31 (2012)

27. Zhizhin, M., Medvedev, D., Mishin, D., et al.: Transparent Data Cube for Spatiotemporal
Data Mining and Visualization. In: Grid and Cloud Database Management, pp. 307–330.
Springer, Heidelberg (2011)

28. Lehene, C.: Low Latency “OLAP” with Hbase, HBaseCon (2012),
http://www.slideshare.net/Hadoop_Summit/
low-latancy-olap-with-hadoop-13386744

PRIMEBALL:

A Parallel Processing Framework Benchmark
for Big Data Applications in the Cloud

Jaume Ferrarons, Mulu Adhana, Carlos Colmenares, Sandra Pietrowska,
Fadila Bentayeb, and Jérôme Darmont

Université de Lyon (Laboratoire ERIC)
Université Lumière Lyon 2 – 5 avenue Pierre Mendès-France

69676 Bron Cedex – France
first name.last name@univ-lyon2.fr

Abstract. In this position paper, we draw the specifications for a novel
benchmark for comparing parallel processing frameworks in the context
of big data applications hosted in the cloud. We aim at filling several gaps
in already existing cloud data processing benchmarks, which lack a real-
life context for their processes, thus losing relevance when trying to assess
performance for real applications. Hence, we propose a fictitious news
site hosted in the cloud that is to be managed by the framework under
analysis, together with several objective use case scenarios and measures
for evaluating system performance. The main strengths of our benchmark
definition are parallelization capabilities supporting cloud features and
big data properties.

Keywords: Benchmark, Cloud Computing, Parallel Processing Frame-
work, Big Data, Real Data.

1 Introduction

We are currently living through an information revolution that has undoubtedly
brought a massive increase in the volume of data being produced and stored
worldwide. In this Internet age, where the world creates 2.5 exabytes of data
every day [1], traditional approaches and techniques for data analysis proved
limited because some lack parallelism, and most lack fault tolerance capabilities.
Therefore, in recent years, many platforms for parallel processing have been
created so as to satisfy this need. These platforms provide frameworks for storing,
accessing, updating and deleting data efficiently in computer clusters, ensuring
fault tolerance and making the whole process transparent to users. Examples of
such systems include Google’s BigQuery [2] and Apache’s Hadoop [3].

In this context, the terms “big data” are used for referring to digital informa-
tion that comes in high volume, velocity and variety [1]; and the systems that
make use of this type of data for achieving profitable objectives can be referred to
as big data applications. Several examples of big data applications can be found

R. Nambiar and M. Poess (Eds.): TPCTC 2013, LNCS 8391, pp. 109–124, 2014.
c© Springer International Publishing Switzerland 2014

110 J. Ferrarons et al.

in the areas of capital market, risk management, retail, social media analysis and
meteorology. This kind of applications, beside requiring high parallel processing
capabilities for analysis, also needs a good and scalable infrastructure capable
of adapting quickly to an increment in computing or storage needs. Therefore,
many big data applications are being deployed in the cloud so as to allow fast
adaptability and flexibility.

Given the recent increase of big data applications in the cloud, and the use of
parallel processing frameworks for dealing with the technical issues implied by
the use of clusters and large amount of complex data, it has become important
to fix standards so as to allow accurate comparisons of these frameworks. Several
benchmarks already exist for measuring a system’s parallelization capabilities,
cloud features or big data analysis abilities, but none of them offers direct means
of accurately measuring: 1) the three of them 2) in a real-life context.

Thus, following the principles defined by Folkerts et al. [4], we propose the
specifications of PRIMEBALL to position it as a complete and unified bench-
mark for assessing a system’s performance w.r.t. two main axes involved in the
context of big data applications hosted in the cloud: parallel processing frame-
works and cloud computing service providers. PRIMEBALL also aims to emulate
common usages of cloud services, data manipulations and data transfers.

The remainder of this position paper is organized as follows. Section 2 re-
views existing benchmarks similar to PRIMEBALL and motivates its design.
Section 3 provides an overview of PRIMEBALL. Then, Sections 4, 5 and 6 de-
tail the specification of PRIMEBALL’s components, i.e., its dataset, workload,
and properties and metrics, respectively. Finally, Section 7 concludes this paper
and provides future research leads.

2 Related Work

Among the standard TPC benchmarks, TPC-DS, a decision support benchmark
that models several generally applicable aspects of a decision support system,
including queries and data maintenance [5], is closely related to data analytics we
target at. However, although it can generate high volumes of data, its underlying
business model is a classical retail product supplier, thence its dataset could not
fully qualify as big data-oriented because of a lack in structural variety.

MalStone is benchmark for data intensive computing and analysis [6]. It
features MalGen, a synthetic data generator that produces large datasets to
perform benchmarking. Data is designed to assess systems from the parallel
processing point of view. Data is generated probabilistically following specified
distributions.

Cloud Harmony measures the performance of cloud providers as black boxes
[7]. The tests performed are mainly focused on assessing hardware performance
or specific technologies. Cloud Harmony actually aggregates the results of bench-
marks that existed before.

The Yahoo! Cloud Serving Benchmark (YCSB) is a framework to facilitate
performance comparisons among cloud database systems [8] that mainly focuses

PRIMEBALL: A Parallel Processing Framework Benchmark 111

on key-value stores such as Dynamo [9]. YCSB defines several metrics and work-
loads to measure the behavior of the systems in different situations, or the same
system when using different configurations.

Finally, the Statistical Workload Injector for MapReduce, or SWIM bench-
mark, is an open source benchmark that enables rigorous performance
measurement of MapReduce systems [10]. It contains suites of workloads of
thousands of jobs, with complex data, arrival, and computation patterns, and
therefore provides workload-specific optimizations. SWIM is currently integrated
with Hadoop.

We provide in Table 1 a synthetic comparison of all the above-mentioned
benchmarks’ properties, as well as PRIMEBALL’s as a point of reference.

Table 1. Comparison of Benchmark Features

TPC-DS MalStone Cloud Harmony YCSB SWIM PRIMEBALL

Real data ∼ No ∼ No No Yes

Real workload Yes No ∼ No Yes Yes

Parallel processing Yes Yes Yes Yes Yes Yes

Hardware-oriented No No Yes No No No

MapReduce-oriented No No No No Yes ∼
Cloud properties ∼ Yes No Yes Yes Yes

Complex data No No Yes No Yes Yes

Big data ∼ Yes Yes Yes Yes Yes

Technology-indep Yes Yes Yes No No Yes

The first property we compare is whether the data processed by a benchmark
is produced artificially or extracted from a real environment. Only PRIMEBALL
offers the possibility to work with wholly real data, with the aim to better sim-
ulate real applications including facets of the problem difficult to emulate when
using random distributions to produce data. Although some of the benchmarks
used in Cloud Harmony do use real data, most of them are actually processing
artificial data. There are also in between positions such TPC-DS which pro-
duces data artificially but trying to follow the structure of a real environment.
Proposing a real workload is the second property we selected. A benchmark sys-
tem bearing this property is executing real-world operations to better simulate a
production environment. PRIMEBALL, SWIM and TPC-DS execute only tasks
that are closely related to real-world workloads. Moreover, some benchmarks in
Cloud Harmony also execute tasks that are common in real environments but
not all, for that reason has been marked with a tilde.

The next property is satisfied by all analyzed benchmarks, i.e., they are all
aimed at assessing parallel processing. By contrast, Cloud Harmony is the only
benchmark that assesses the performance of specific pieces of hardware. For
example, it has benchmarks for measuring CPU performance, memory I/O and
disk I/O. The other benchmarks can give a notion of the performance of specific
parts of the hardware, but are not that specific.

112 J. Ferrarons et al.

The MapReduce-related property refers to benchmarks aiming at measuring
the quality of a system in terms of the performance obtained when executing
MapReduce tasks. SWIM is the only benchmark that is uniquely dedicated to
MapReduce. However, if PRIMEBALL is implemented using MapReduce tasks,
it can measure performance through them too. Cloud properties refer to the
prominent features of cloud computing. All benchmarks but TPC-DS and Cloud
Harmony are designed to measure properties such as vertical and horizontal
scalability, consistency, etc. (cf. Section 6.1). Even though TPC-DS can be used,
e.g., to measure the scale up of a distributed SQL database but it is not its
purpose. On the other hand, PRIMEBALL has been designed as well to be able
to assess this kind of properties.

Complex data properties describe the benchmarks that are oriented to exe-
cute procedures using complex data structures to assess the system under test
(SUT). TPC-DS implements a classical data warehouse with numerical and tex-
tual values. MalStone only aims to generate a big dataset as a log file and
measures system response while processing it, thus the data processed is not
complex. The same is true for YCSB, which assesses the performance of key-
value stores. Values can be complex, but they are not processed, only stored.
The other benchmarks, including PRIMEBALL, include complex data in some
of their procedures. Big data properties describe the benchmark systems that
involve analytical aspects over large amounts of data. All benchmarks have ana-
lytical situations involving large amounts of data. PRIMEBALL has specifically
been designed to satisfy this property. TPC-DS has been marked with a tilde
because it can be used for this purpose but it depends mainly on the size of
data used.

Finally, technology independence describes the systems the are designed to
work with several kinds of technologies. YCSB and SWIM do not fulfill this
property, because YCSB is oriented to analyze the performance of key-value
stores only; and SWIM only assesses MapReduce procedures, and thus only
makes sense when the SUT is able to execute them. The other benchmarks,
including PRIMEBALL, can be used in environments that are not constrained
by a given technology.

3 PRIMEBALL Overview

3.1 Application Model

PRIMEBALL’s contextual application is set around New Pork Times: a ficti-
tious on-line information service including international news, current affairs,
documentaries, science, health and lifestyle sections. It is constantly updated
and available 24-hours all around the world. New Pork Times hosts articles and
multimedia documents about the latest news, as well as a large archive of past
information.

All of these data are stored in a system called New Pork Times’ News Hub
(NPT-NH), which resides in a cluster hosted by some cloud service provider. This
cluster is managed by a framework for parallel data processing and provides a

PRIMEBALL: A Parallel Processing Framework Benchmark 113

remote storage that allows the user to access the files in the cluster without
having to worry about their distribution in nodes. This storage system allows
the user to insert and update data, and also to execute batch processes for
analyzing/processing the data.

3.2 PRIMEBALL Features

This section lists what PRIMEBALL is/does and does not, so that its position,
notably w.r.t. state of the art benchmarks (Section 2), is clear.

On one hand, PRIMEBALL:

– is a benchmark. It aims to compare the performance of the parallel processing
framework under test with respect to several meaningful metrics;

– is cloud-oriented. The obtained results could also be used to compare:
• cloud platforms as parallel processing frameworks,
• service providers executing systems using the same cloud platform;

– is repeatable. All the proposed experiments are designed to lead to the same
results if they are executed under the same conditions;

– is portable. The benchmark has been designed to be implemented in different
cloud platforms.

– does define a set of operations that is meaningful in the context of parallel
processing and cloud computing;

– does define performance metrics that are oriented to measure cloud proper-
ties. The criteria to assess each metric are also defined;

– does define data relationships. We provide a description of the information
stored in the SUT to be processed during the benchmark run.

On the other hand, PRIMEBALL does not:

– define technical execution details. It defines guidelines, but given that SUTs
can be very different, the relevance of results is tightly related to implemen-
tation details;

– define expected performance results. No absolute value is provided as a com-
parison point, given that they are subject to implementation details;

– compare data retrieval or processing algorithms;
– define a storage schema. However, we define how data are physically stored.

Thence, PRIMEBALL is the first cloud-oriented unified benchmark aiming to
assess all the elements involved in cloud-based big data application systems.

4 PRIMEBALL Dataset

For using PRIMEBALL, it is necessary to implement NPT-NH (Section 3.1).
Therefore, the following subsections contain a technical description of its archi-
tecture, the type of data it contains and the operations performed onto data by
means of batch processes, such as metadata extraction.

114 J. Ferrarons et al.

4.1 Types of Files to be Hosted

The system’s database shall hold only three types of files. However, there can
be many files of the same type. The three types of files follow.

– General information (XML): This set of files comprise the many XML doc-
uments that describe the standard information stored by NPT-NH, i.e., in-
formation about authors, the actual news, and so on. Section 4.2 describes
the conceptual schema of this information.

– Media files (binary): Some articles make references to these files, which can
be either audio or video documents.

– Metadata (XML): Several metadata for information retrieval and other tasks
are extracted from the other two types of files by internal algorithms, for
further querying. These metadata must be persisted as XML files in the
system.

4.2 PRIMEBALL Schema

The system must hold as XML files data about the following entities:

– articles: the actual news articles;
– topics: the topics an article may belong to;
– keywords: sets of words that roughly describe the content of an article;
– languages: marks for indicating what language/dialect an article is written

in;
– authors: people who write the articles;
– journalists: authors who work in journals and make interviews;
– professionals: specialists in some topic who write special analyses;
– countries: information about countries authors might be citizens of or work

in;
– dates: information about the day of the year when an article was written;
– media: reference to a media file with some internal comments.

The conceptual schema of this dataset is featured in Figure 1. Its actual
implementation depends on the framework for parallel data processing to be
benchmarked and its capabilities for storing data.

4.3 Initial Data

To create an initial corpus for populating NPT-NH, PRIMEBALL shall come
bundled with a crawler that extracts, transforms and loads information from one
or more real world news hub akin to New Pork Times (a famous news site may
come to mind). The crawler fetches information about news published during
a requested period of time, which is recommended to be set up as the last 40
years. Moreover, it must also extract information about authors, media files
available, and metadata about the articles relevant to the system’s architecture.
Due the big data properties of the benchmark, it is recommended to fetch at least

PRIMEBALL: A Parallel Processing Framework Benchmark 115

Fig. 1. Conceptual Schema of PRIMEBALL’s Dataset

100 TB of data for running the tests. Although, depending on the environment
to be benchmarked it might be required to use higher amounts of data. The
benchmark can virtually scale up to 1 PB.

Once the corpus has been fetched, it can be sliced at will for selecting any
scale factor for the initial data population. However, it is important to bear in
mind that if the whole corpus is used in the initialization phase, then it will not
be possible to perform updates or scale operations, since there will not be extra
data available.

4.4 Metadata Processes

When data are loaded, it is necessary to run algorithms that extract some meta-
data from the files and build the structures for the following information retrieval
tasks performed by NPT-NH:

– run a Hidden Markov Model [11] speech recognition algorithm on media files
for transcribing the speech to text;

– compute the TF-IDF measure for all articles and transcriptions, as specified
in the CDI IDF algorithm [12];

– compute the page rank of articles, as specified in the weighted pagerank
algorithm [13];

– perform a topic extraction routine on articles and transcriptions, as specified
in the Latent Dirichlet Allocation algorithm [14].

These algorithms have to be implemented as described in the cited references
and adapted to be run in the cluster managed by the parallel data processing
framework.

116 J. Ferrarons et al.

4.5 Data Scaling and Maintenance

This section describes the processes performed for updating and scaling data in
NPT-NH. Basically, these processes are executed integrally as batch tasks. New
Pork Times’ authors write new articles every day. Articles have to be placed
in NPT-NH for allowing access to users. New authors may also come in. The
following scaling tasks have to be performed by the system. New data has to
be obtained as progressive slices of PRIMEBALL’s corpus, making sure that
the data was not already inserted. Once new data are inserted, the system has
to extract the necessary metadata from them so as to ensure that subsequent
queries can be performed.

More specifically, when new information is inserted, it is necessary to recalcu-
late some structures used for information retrieval. Thus, PRIMEBALL contains
an implemented procedure for recomputing both TF-IDF metrics from all the
documents and topics for all articles.

5 PRIMEBALL Workload

5.1 Query Set

This section contains the set of queries that are typically performed by NPT-NH
users and that must be used for testing the performance of any given parallel
data processing framework. These queries must be performed over the dataset
defined in Section 4 and involve the most important aspects of performance.
Although the following set of queries is not finite, it covers a wide range of classes
from Figure 1, the relationships between them; it is applicable and enables to
successfully measure performance.

One first subset of queries concerns the most common and hottest topics
published in the system. The user might be interested in this information in
order to know what kind of issues are the most frequently described in a certain
interval of time, and therefore attract attention.

1. Articles containing the most frequent bigrams, sorted by pagerank.
2. Articles published during a time interval I, sorted by topics. The output

contains pairs of article title and topic.
3. Most frequently used words by a journalist J from each country in the world

during a certain time interval I. The output is compound by a list of coun-
tries, each one with keywords.

4. Rank of the keywords used in the articles published on an exact date D.
5. Most frequently used keywords in month M and year Y .

Furthermore, in order to evaluate how topics evolve w.r.t. time, it is necessary
to include the various time measures in a second subset of queries.

6. Most frequently used keywords on day D and two different years Y1 and Y2,
sorted by descending count.

7. Articles published on date D with the greatest number of references to the
previous year.

PRIMEBALL: A Parallel Processing Framework Benchmark 117

8. Articles related to a topic T very frequently referenced lately, i.e., in a time
interval I ending at the current date.

9. Journalists and professionals who wrote an article on the same month, on
the same topic, sorted by days.

Finally, to analyze the diversity of articles and compare them w.r.t. their
source, one should consider the following, eventual group of queries.

10. Articles written by X journalists in a specific time interval I that have at
least Y common topics.

11. Rank of the languages in which articles are written. The output consists in
pairs (language, number of articles).

12. Articles written by an author A from a given country C that best match a
search term S.

13. Documents that best match another document published on the same day
and month, but one year later.

14. Articles that focus on the same topic, but have been written by different
journalists who were born before and after a given year Y .

5.2 Test Protocol

We present in this section different scenarios to help actually benchmark a sys-
tem. To define them, a default scale factor SF is used. A dataset of scale factor
SF is a set of articles and corresponding metadata having a total size of SF GB.

Scenario 1. This scenario simulates the evolution of the system along time, in
terms of data operations and queries.

Initial state. The system contains a dataset with a specified scale factor SF .

Operations

1. Execute queries 4, 7 and 14 from the generic query set (Section 5.1) choosing
as date, e.g., September 12, 2001.

2. Double the volume of the dataset according to scenario 7.
3. Repeat the queries executed in step 1, for the same date and another one,

e.g., November 5, 2008.

Scenario 2. This scenario simulates an extreme situation: a very famous ar-
ticle has been published with many mistakes and publishers are correcting it
constantly. Their main concern is to deliver a consistent view of the article to
people. Here, we are interested in measuring how many times the article is read
in the older versions after being read once in the new version.

118 J. Ferrarons et al.

Initial state. The system contains a dataset with a specified scale factor SF .

Operations

1. Initiate a thread performing 100 queries per second to retrieve the given
article.

2. Start another thread updating the same article every 5 seconds.

Scenario 3. This scenario simulates node failures in terms of network reacha-
bility. Here, we are interested in knowing how many nodes can be removed from
the cluster before some data become unreachable.

Initial state. The system contains a dataset with a specified scale factor SF .

Operations

1. Execute all queries from the generic query set (Section 5.1) sequentially.
2. Remove a node and reiterate step 1.

Scenario 4. This scenario aims to measure the concurrency offered by the sys-
tem while accessing data.

Initial state. The system contains a dataset with a specified scale factor SF .

Operations. Execute the following process 300 times and count the number of
inconsistencies.

1. Start 10 threads executing the whole generic query set (Section 5.1).
2. Start 5 threads each of them performing:

(a) updates in articles: 10 per second;
(b) removing articles: 10 per second;
(c) adding articles: 10 per second.

Scenario 5. The objective of this scenario is to simulate analysis procedures
over the dataset.

Initial state. The system contains a dataset with a specified scale factor SF .

Operations. Execute queries uniformly selected from the following.

1. Top 10 articles seen each month in 2010.
2. Average number of pages per article for each journalist in the system.
3. Average age of publishers and standard deviation.
4. Maximum number of versions of an article.

PRIMEBALL: A Parallel Processing Framework Benchmark 119

Scenario 6. The aim of this scenario is to initialize the system and make it
ready for handling the information for New Pork Times.

Initial state. Empty storage system.

Operations. Execute the steps described in Section 4.3 to initialize the envi-
ronment.

Scenario 7. This scenario is used to increase the volume of the dataset to sim-
ulate the fact that new articles are inserted over time.

Initial state. NPT-NH has a consistent state.

Operations. Execute the steps described in Section 4.5 for data scaling and
maintenance.

6 PRIMEBALL Properties and Metrics

6.1 Properties and Performance Metrics

This section presents the metrics that we use to evaluate the performance of the
SUT. We also define the different system properties that can be assessed using
PRIMEBALL.

We first specify two main metrics. The first one is throughput. The throughput
of the SUT for a given scenario is the total time required to execute it (scenarios
are defined in Section 5.2). The second metric, price performance, takes price
(Section 6.2) into account and is expressed as follows.

Price performance =
Throughput

Price

Moreover, the set of operations that can be executed against the system in
the context of New Pork Times is defined as follows.

– Read: Obtain one or more articles.

– Write: Create a new article or a new version, add new journalists, languages,
topics...

– Update: Modify an existing article within the same version or modify the
information related to a journalist.

– Delete: Remove inappropriate content.

– Search: Obtain articles by matching a search (a set of given words, topics,
authors, dates...).

Using all these definitions, we can set the following properties.

120 J. Ferrarons et al.

Generic Cloud Properties

1. Scale up: ability of the system to handle more data when adding more
computers while maintaining performance.
– Importance: In the case of a news website, it is very important to be able

to scale up the system. There are a lot of news added every day and the
service must keep on performing the same.

– Measurement : To measure this property, scenarios 4 and 5 (Section 5.2)
must be executed twice, doubling the amount of data (SF) and the
amount of nodes in the cluster the second time. Throughput increase
ratio is the metric recommended for this property.

Throughput increase ratio =
Throughput after

Throughput before

2. Elastic speedup: adding more computers to the cluster with the same
amount of data results in better performance.
– Importance: For New Pork Times, it is very relevant to know whether the

system can offer a better performance when required, e.g., when there is
a worldwide event with more people involved than usual looking for news
and information. Thus, it is crucial to be able to maintain the quality of
service even during peak demands.

– Measurement : To measure this property, we propose to execute scenarios
2, 4 and 5 (Section 5.2) in order to observe throughput with the default
cluster SF size. The metric we propose is also throughput increase ratio.

Throughput increase ratio =
Throughput after

Throughput before

3. Horizontal scalability: ability of the system to distribute evenly the data
load and workload among cluster nodes.
– Importance: It is very useful to know up to what point one can exploit

the current cluster and keep throughput in between some boundaries.
In other terms, we determine what highest price performance can be
achieved. It is very interesting in two senses:
• upper bound: to answer the question “how many articles can the
news website add into the system while keeping response time below
0.2 seconds”;

• lower bound: to optimize resource usage while fixing a performance
lower bound. It might indeed be possible to reduce the number of
nodes and offer the same user experience (response time).

– Measurement : To assess this property, scenarios 4 and 5 (Section 5.2)
must be executed and system throughput measured. Then, SF is in-
creased and the process repeated. Again, throughput increase ratio can
be used to evaluate this property. The closer it is to 1, the better is
horizontal scalability.

Throughput increase ratio =
Throughput after

Throughput before

PRIMEBALL: A Parallel Processing Framework Benchmark 121

4. Latency: time to execute a set of operations.
– Importance: For New Pork Times, it is essential to be able to show news

very quickly to users. If it takes too much time, users are going to look
for a different website, thus a low latency is required.

– Measurement: Latency of the SUT can be measured as the throughput
when executing scenarios 4, 5 and 6 (Section 5.2).

5. Durability: ability of the system to retain information for a long period of
time.
– Importance: In the case of a news website, it is very important to ensure

that no information is lost. Users have to be able to check and find
information they have read previously.

– Measurement: Scenario 1 (Section 5.2) is intended to measure data dura-
bility. We define the durability ratio as a metric for this purpose.

Durability ratio =
Correct reads

Total reads

6. Consistency and version handling: two different readings of the same
data at the same time should return the same value.
– Importance: It is important for a website to give a consistent view of data

to all users at the same time around the world. In the proposed model,
There may be several revisions of an article, which has to be consistent
for all readers.

– Measurement: Using scenario 2 (Section 5.2), the performance of the
system for this property can be measured using the consistency ratio as
a metric.

Consistency ratio =
Consistent reads

Total reads

7. Availability: data is accessible even when there are some inaccessible nodes.
– Importance: It is very relevant for New Pork Times to guarantee the

access to all the news stored in the system.
– Measurement: Scenarios 3 and 6 (Section 5.2) aim to measure this prop-

erty, thus the throughput of the SUT can be taken as a metric for this
property.

8. Concurrency: the system has to be able to offer a service to different clients
at the same time.
– Importance: In New Pork Times, users can keep reading while publishers

are adding news, and the system has to be able to handle the multiple
operations of different natures at the same time.

– Measurement: Given concurrent scenario 4 (Section 5.2), we propose two
metrics:
• system throughput;
• concurrency ratio.

Concurrency ratio =
Successful operations

Total operations

122 J. Ferrarons et al.

Complex Data Properties

9. Path traversals: ability of the system to link data from different parts of
the schema using the defined relationships.
– Importance: In the case of a news Web site environment, this property

is very important to improve search experience.
– Measurement: Queries 3, 4, 7, 10 and 12 (Section 5.1) from the generic

query set involve following a path through different class relations to link
concepts. The throughput of this type of queries is used to measure that
property.

10. Construction of complex results: ability of the system to generate (semi)-
structured output from the information system.
– Importance: This property is very relevant to a news website, mainly to

allow analysis over the contained data.
– Measurement: The generic query set defined in Section 5.1 contains

queries with complex results, i.e., queries 2, 3, 6 and 11. The through-
put of these queries can be used as a metric for this property. Moreover,
scenario 6 (Section 5.2) has to be used to measure this property.

11. Polymorphism: ability of the system to deal with type inheritances, i.e.,
treating types and subtypes of objects to compute query results.
– Importance: Inheritance is a good way to deal with complex relationships

between objects. For this reason, the performance of the system while
executing these kinds of operations is very relevant.

– Measurement: Fix a cluster and an initial workload, then execute and
measure system performance while executing queries 3, 9, 12 and 15
(Section 5.1; all of them involve inheritance operations).

Big Data Properties

12. Analysis: ability of the system to generate summarized data and statistical
information.
– Importance: For a news website, having statistics such as how many

times an article has been read, average words per article, etc., is very
relevant.

– Measurement: This property can be measured in terms of throughput
while executing analytical scenario number 5 (Section 5.2).

Information Retrieval Properties

13. Full text: being able to search a single word in all documents simultaneously.
– Importance: This property is very relevant to a news website to allow

users searching information easily in the system.
– Measurement: It can be measured in terms of throughput when search-

ing for different terms, some famous, some normal and some strange,
e.g., Obama, Higgs, Star Trek, Cleopatra, etc. Queries of this type are
included in the generic query set (Section 5.1).

PRIMEBALL: A Parallel Processing Framework Benchmark 123

6.2 Pricing

In Section 6.1, we defined sytem performance w.r.t. time and cost. The main
pricing factors involved in processing data in the cloud follow.

– Cloud provider: different cloud service providers may have different pricing
policies.

– Number of instances and type: infrastructure used to execute PRIMEBALL.

– Required storage space: it is directly related to the scale factor used (Sec-
tion 5.2).

– Platform inherent costs: operation, administration and maintenance.

– Execution time: time spent to run the tests.

The specific cloud provider model has to be applied to compute real cost.

7 Conclusions

We propose in this paper the specifications for PRIMEBALL, a complete and
unified benchmark for measuring the characteristics of parallel cloud processing
frameworks for big data applications. In front of the already existing benchmark-
ing options, PRIMEBALL can be used as a guideline to build an integral solution
for benchmarking could platforms. The real-life model adopted in PRIMEBALL
is that of a fictitious news hub called New Pork Times, which is basically a
fair approximation of a popular real-life news site. The general architecture and
inner processes of the system are well-defined so as to allow an unambiguous
implementation of the benchmark.

The workload applied on this news dataset is not only made of queries, but
also of data-intensive batch processes. Moreover, we propose several use-case sce-
narios together with relevant metrics for assessing the framework’s performance
from different points of view, such as data availability or horizontal scalabil-
ity. The novelty of our work lies in the fact that existing, related benchmarks
measure parallelization capabilities, cloud features, big data analysis ability, but
none of them combines all these properties while exploiting real-life data.

Future work on PRIMEBALL will be mainly focused on implementing a
crawler for fetching and transforming real data from the Web to feed the bench-
mark’s dataset. Distributing the built dataset online will improve the repeatabil-
ity of the experiments. Moreover, the actual feasibility and relevance of
PRIMEBALL shall be validated by actually implementing the benchmark in
several cloud environments to obtain experimental results and by publishing
performance comparison results. For instance, implementation in popular data
processing frameworks such as Hadoop should be achieved.

Moreover, future extensions of the benchmark could include new scenarios
that exploit different properties of cloud providers, such as vertical growth of the
cluster, or new measures such as efficiency of bandwidth use. Actual experiments
should also help refine the benchmark’s workload.

124 J. Ferrarons et al.

References

1. IBM, What is big data? (2012), http://www-01.ibm.com/software/data/bigdata/
2. Sato, K.: An Inside Look at Google BigQuery, White paper (2012),

https://cloud.google.com/files/BigQueryTechnicalWP.pdf

3. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop Distributed File
System. In: 26th IEEE Symposium on Mass Storage Systems and Technologies
(MSST 2010), Incline Village, USA, pp. 1–10 (2010)

4. Folkerts, E., Alexandrov, A., Sachs, K., Iosup, A., Markl, V., Tosun, C.:
Benchmarking in the Cloud: What it Should, Can, and Cannot Be. In: Nambiar, R.,
Poess, M. (eds.) TPCTC 2012. LNCS, vol. 7755, pp. 173–188. Springer, Heidelberg
(2013)

5. Transaction Processing Performance Council (TPC), TPC Benchmark DS
Standard Specification Version 1.1.0 (2012), http://www.tpc.org

6. Open Cloud Consortium, Generate synthetic site-entity log data for testing and
benchmarking applications requiring large data sets (2009),
http://code.google.com/p/malgen/

7. Cloud Harmony (2013), http://www.cloudharmony.com/benchmarks
8. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, S.: Benchmarking

cloud serving systems with YCSB. In: 1st ACM Symposium on Cloud Computing
(SoCC 2010), Indianapolis, USA, pp. 143–154 (2010)

9. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. In: 21st ACM SIGOPS Symposium on Operating Systems
Principles (SOSP 2007), pp. 205–220 (2007)

10. Chen, Y., Alspaugh, S., Ganapathi, A., Griffith, R., KatzThe, R.: Statistical
Workload Injector for MapReduce (SWIM) (2013),
https://github.com/SWIMProjectUCB/SWIM/wiki

11. Juang, B.H., Rabiner, L.R.: Hidden Markov models for speech recognition.
Technometrics 33(3), 251–272 (1991)

12. Xu, M., Liang, H., Xin, L.: A Refined TF-IDF Algorithm Based on Channel Dis-
tribution Information for Web News Feature Extraction. In: Second International
Workshop on Education Technology and Computer Science (ETCS 2010), Wuhan,
China, vol. 2, pp. 15–19 (2010)

13. Wing, W., Ghorbani, A.A.: Weighted pagerank algorithm. In: Second Annual
Conference on Communication Networks and Services Research (CNSR 2004),
Fredericton, Canada, pp. 305–314 (2004)

14. Newman, D., Asuncion, A., Smyth, P., Welling, M.: Distributed algorithms for
topic models. The Journal of Machine Learning Research 10, 1801–1828 (2009)

http://www-01.ibm.com/software/data/bigdata/
https://cloud.google.com/files/BigQueryTechnicalWP.pdf
http://www.tpc.org
http://code.google.com/p/malgen/
http://www.cloudharmony.com/benchmarks
https://github.com/SWIMProjectUCB/SWIM/wiki

CEPBen: A Benchmark for Complex Event
Processing Systems

Chunhui Li and Robert Berry

Aston University, Birmingham, U.K.
{lic5,r.f.berry}@aston.ac.uk

Abstract. Complex Event processing (CEP) has emerged over the last
ten years. CEP systems are outstanding in processing large amount of
data and responding in a timely fashion. While CEP applications are
fast growing, performance management in this area has not gain much
attention. It is critical to meet the promised level of service for both
system designers and users. In this paper, we present a benchmark for
complex event processing systems: CEPBen. The CEPBen benchmark is
designed to evaluate CEP functional behaviours, i.e., filtering, transfor-
mation and event pattern detection and provides a novel methodology
of evaluating the performance of CEP systems. A performance study by
running the CEPBen on Esper CEP engine is described and discussed.
The results obtained from performance tests demonstrate the influences
of CEP functional behaviours on the system performance.

Keywords: Complex Event Processing, Performance Evaluation, Bench-
mark, Complexity, Throughput, Response Time.

1 Introduction

Computer systems are now used in almost every imaginable field from science to
day-to-day activities of our lives. Meanwhile, sensors and mobile appliances are
widely applied both in daily life and research for monitoring the environment.
The amount of sensors and mobile appliances in one application can be extremely
large and they could generate great volume of data, whose types can vary greatly.
This tremendous increase to process and handle large quantities of information
poses challenges for IT systems.

Complex event processing (CEP) are outstanding in processing large amount
of data and responding in timely fashion. As society demand faster reactions
to changing conditions, CEP systems are means to meet this demand. Applica-
tions in many domains have benefited from event processing technologies, e.g.,
active diagnostics, real-time operational decision, predictive processing, observa-
tion systems and information dissemination. Complex event processing engines
provides three main functional capabilities: filtering, transformation and event
patterns detection. A filter operation takes an event input and decides whether
this event is to be selected for further processing. A transformation operation
takes one or more input events and generates different output events that are

R. Nambiar and M. Poess (Eds.): TPCTC 2013, LNCS 8391, pp. 125–142, 2014.
c© Springer International Publishing Switzerland 2014

126 C. Li and R. Berry

based on them. Event patterns are templates specifying one of more combina-
tions of events. An event pattern detection operation detects such templates
[10].

Complex event processing systems has emerged in the last ten years, but
performance management of such systems has not gain enough attention. Per-
formance management ensures that performance goals and the promised level of
service are consistently being met in an effective and efficient manner. Bench-
marks are often created for exploring performance characteristics of an applica-
tion under varying but controlled conditions. Performance reports can be found
from various CEP venders, e.g. Oracle [2,3], Esper [1] and StreamBase [19]. Their
methodologies in benchmarking CEP systems focus on scaling the load injection,
but do not consider the impact of the types of queries on the performance of the
systems. These queries registered in the system decide what functions the CEP
system performs on events in the event processing. Therefore, the functional ca-
pabilities of a CEP system are critical. We propose the approach of evaluating
the performance of CEP engines’ functional behaviours on events and create the
CEPBen benchmark for CEP systems.

In this paper, we present a benchmark of complex event processing systems fo-
cusing on complex event processing functional behaviours: filtering, transforma-
tion and event pattern detection. We describe our benchmark design and tests,
as well as the factors influence performance measurements. We create a bench-
mark application with Esper complex event processing engine 1, an open source
CEP engine. Lastly, we present and discuss the results obtained from perfor-
mance tests on this benchmark application. The performance tests demonstrate
that the degree of the complexity of CEP functional behaviours has impact on
system performance. We believe that the CEPBen offers a flexible environment
of exploring the influential factors of performance and the performance metrics
for these factors.

2 The Benchmark

In this section, we present the benchmark CEPBen. The goals, the workload de-
sign and performance metrics of the CEPBen, the design and the implementation
are described.

2.1 Goals and the Tested Systems

CEP delivers high-speed processing of events, identifying the meaningful events
according to defined rules, and taking subsequent action in real time. The goal
of this benchmark is to measure the efficiency of CEP engines’ functional be-
haviours.

The Figure 1 illustrates the timeline of events in a CEP system and the
system behaviours. Events occur at T1, and transmit to the front end of the event

1 EsperTech: http://esper.codehaus.org/

http://esper.codehaus.org/

CEPBen: A Benchmark for Complex Event Processing Systems 127

Events Occurrences

T1

Events Arrivals

T2

Event Processing

T3 T4

Derived Events Event Consumers

Event Transmission Event Transmission

Fig. 1. The system behavior of an event processing system

processing engine at T2. After being processed, derived events are generated at
T3 and sent back into the CEP engine for further processing or transmitted to
event consumers. Event consumers receive the derived events at T4.

Event transmission and event processing are crucial for the performance of
a CEP system. Event sources and event processing engines influence event pro-
cessing. Event sources are the resources of events, which influence the system by
their schema, time, causality, aggregation and input rate. Event processing en-
gines drive the whole system to provide satisfactory services in detecting events
and their patterns and generating necessary messages for actions. Meanwhile,
event transmission is much depending on networks, because event sources and
event consumers usually have distributed features. Thus, the performance of
networks plays an important role in such scenarios. Since we focus on the event
processing behaviours in our benchmark, the performance of networks is not
tested in our benchmark.

2.2 WorkLoad Design

To simplify the abstraction of the workload for performance tests, we propose
a batched model for the event workload. The workload is designed to consist of
event batches of variable size with varying interval times (depending on desired
load). The Figure 2 describes that events from various event sources form the
event cloud [16] and arrive in the CEP engine in batches .

The workload can scale in the following dimensions: 1) The number of event
batches; 2) The number of events in a batch; 3) The Interval times between two
event batches. The interval times in a workload generally arbitrarily distributed.
The average time of the intervals can be changed as we vary the load. Short

CEP Engine

Event Sources

Event Batches

The Event Cloud

Fig. 2. The workload model of the CEPBen benchmark

128 C. Li and R. Berry

intervals mean heavier workload in a time unit for the system, while long intervals
mean less workload in a time unit.

2.3 Selection of Metrics

Throughput and response time are commonly applied metrics in measuring in-
formation systems. Throughput can be categorized into input throughput and
output throughput in light of the independence feature of event producers and
event consumers in CEP systems [10].

Suppose a workload with n event instances is sent into the event processing
engine and m output events are generated after the event input are processed.
The input throughput is measured by:

Input Throughput =
The Number of Input Events in the Period

TNth − T1st−input
(1)

Output Throughput =
The Number of Output Events in the Period

TMth − T1st−output
(2)

T1st−input and TNth are the start and the end of the sample period for mea-
suring the input throughput. T1st−output and TMth are the start and the end of
the sample period for measuring the output throughput after the system reaches
steady state.

Response time is one of the performance metrics in the CEPBen. The mea-
surement of response time will be described with the benchmark design.

2.4 Benchmark Design

The goal of complex event processing is to identify meaningful events and re-
spond to them as quickly as possible. Three main functionalities are necessary to
perform the event processing: filtering, transformation and event pattern detec-
tion. Our benchmark is designed to test the three main functional capabilities.
Therefore, we believe our benchmark environment can be used to model the
behaviours of a range of CEP applications.

Tests for Filtering. This group of tests focuses on filtering function of event
processing systems. We create a query load of selection operations for the event
processing engine. Before each event is about to be sent in to the event processing
engine, the event is labelled with the system time Tin. When the event is selected
according to the selection queries by the event processing engine, it is labelled
with the current system time Tout . We measure such responsive behaviour of
the system by the metric of response time:

Tresponse = Tout − Tin (3)

CEPBen: A Benchmark for Complex Event Processing Systems 129

Tests for Transformation. This group of tests focuses on transformation func-
tion of event processing systems. We create a query load of join operations for
the event processing engine. These operation will perform on events in one input
stream and different input streams. An event is sent into the event processing
engine at Tin. Join operation perform on two events (E1 and E2). Suppose E2

is sent into the event processing engine later that E1, that means T2in > T1in.
The new output event is generated at system time Tout. The response time of
transformation behaviour is defined as:

Tresponse = Tout − T2in (4)

Tests for Detecting Event Patterns. This group of tests focuses on the
system behaviour of detecting event patterns. We create a query load of event
patterns for the event processing engine. Suppose a system is targeted at an
event E (labelled with the system time Ttarget) only when this event E hap-
pens in an event pattern. When all the required events for matching this pattern
are detected, a new event responding to the event pattern detection is generated
at the system time Tout. The response time of the pattern detection is defined as:

Trespone = Tout − Ttarget. (5)

Factors. We identify the following factors that have an impact on the perfor-
mance of a CEP system:

– The workload. Heavy workload challenges a CEP system’s capability to han-
dle large amount of events.

– The query load. Query load is the number of query statements in different
test groups. Handling large sets of query statements efficiently is a challenge
for CEP engines. CEP engines take time to process events against each query.
It is expected that a larger number of query statements increases the total
processing time and consumes more resources of the computer, and slows
down the CEP system.

– The depth that query statements perform on event history. Transforma-
tion functionality produces composite events. The composite events can be
formed based on different number of primitive events. An event pattern can
involve more than one primitive event as well. We specify the number of
primitive events that are used to produce a composite event and to match
an event pattern as the depth of a query statement. The depth of query
statements influences the performance of an CEP system. To process events
against more-depth statements, the CEP engine need to catch and hold the
required events temporarily, which is resource-consuming.

– The machine configuration where the event processing engine is run. The
performance of a CEP system relies on the hardware configuration of the
machine on which the CEP system runs.

130 C. Li and R. Berry

2.5 Benchmark Implementation

We implement our benchmark on a performance-oriented framework shown in
the Figure 3. The benchmark consists of several modules: the event generator,
the input layer, the event processing engine, the output layer, the query module,
the events consumers and the performance monitoring and analysis module. The
event generator generates a workload for the CEP system. The input layer and
an output layer are created as the front end and back end of the event processing
engine. The event processing engine is the central component of this CEP system,
as it performs complex event processing. The query module sets the operations
for event processing engine. The event consumers are the users which consume
derived events that are processed by the event processing engine. Performance
monitoring and analysis collects performance data and generates performance
report of this CEP system.

Applying the benchmark on CEP systems requires some programming work.
Implementation of the event generator, input layer, output layer, query mod-
ule and interfaces for performance measurement are depending on tested CEP
systems.

- Raw data is
adapted to

events
- Events are sent

- Performance
instrumentation

- Deliver derived
events to Events

Consumers
- Performance

instrumentation

Computer Systems’
Resources Usage

- e.g. CPU,
memory usage

Events Channel

Performance Analysis

Benchmarking Event processing Systems

Off-line Performance Analysis

- Peformance analysis conbined
with historic data

Event Processing
Engine

- e.g. Esper

Input Layer Output Layer

- Events notfication
- Performance
instrumentation

- Generate events
at rutime

- Or pre-saved CSV
files as events

source

- Real time
monitoring

- Save all collected
data

Events Consumers
Events Generator Query Module

Fig. 3. The architecture of the benchmark

The Event Generator. The event generator is used for generating events
according to desired load. It can be set to two different modes: generating events
at runtime or reading events from saved comma-separated values (CSV) files. To
overcome concerns about computer resources (e.g., memory consumption, CPU
consumption), the event generator can be installed on remote machines and send
events into event processing systems.

CEPBen: A Benchmark for Complex Event Processing Systems 131

Generating events at runtime provides users flexibility to define the events
data that they want to use. Users can either make some data according to
the scenarios of simulations that they are interested in, or make random data
for tests. Events volume, events types and events rate can be well defined and
controlled.

Saved CSV files can be used as events feed to event processing systems. The
adapters in the input layer convert CSV readings to event instances and send
them to the event processing engine.

Input Layer and Output Layer. The input layer is the front end of the
event processing engine component. Adapters convert events from various event
sources into event instances that the CEP engine processes. Events senders send
these events processed by adapters into the CEP engine. Both are implemented
in this layer.

The output layer is used for delivering derived events from the event processing
engine to events consumers. The derived events can be alerts from detecting
certain events patterns, events to change configuration of the system, events to
be processed again or events to be deleted. Derived events and events with new
configuration information go through the events channel and arrive in the input
layer to get processed.

Event Processing Engine. Event processing engine is the core component of
an event processing system. CEP engines from different venders can be applied
here. In our benchmark, the event processing engine connects to events sources
via input layer, and outputs notification to events consumers via output layer.

Query Module. The query module is built for generating query statements
to capture the events and events patterns. Generally, the query module should
be implemented based on the type of query statements (i.e., selections, joins,
windows, event patterns), the number of different type of query statements and
an execution plan. As there is no standard event processing languages across
CEP engines, the query module need to be implemented according to the event
processing engine that users adopt.

Event Consumers. Event Consumers should be implemented according to the
design of CEP systems. Because we focus on the behaviours of event processing
engine, we implemented simple event consumers which subscribe events and
generate text alerts when the events are detected in our benchmark.

Performance Monitoring and Analysis. Performance monitoring and eval-
uation needs instrumentation to gather data on executing systems and processes,
techniques for data analysis and representation, theories and models which real-
istically represent computer systems and computer processes. In the benchmark,
two modes of performance monitoring and analysis are designed: real-time and
off-line mode. The performance of the system in a real time manner in every

132 C. Li and R. Berry

running performance test can be displayed. The off-line performance analysis
is performed to compare the performance results which are obtained in perfor-
mance tests.

2.6 Features of Flexibility of the CEPBen

The CEPBen has the following features of flexibility.

– It is able to present a varied workload for meet the requirements of dif-
ferent performance tests. Users can create events with their desired event
properties, batch size, batch frequency.

– By setting the number of query statements and the depth of query state-
ments, the benchmark presents varied degrees of application query complex-
ity for investigating the system behaviours.

These features will help to explore a range of factors influencing the performance
of CEP systems and a range of metrics to better show that performance.

3 Benchmark Demonstration and Results

3.1 Benchmark Application

To demonstrate the benchmark, we run our benchmark on Esper complex event
processing engine. Event generator is configured to generate four types of events
(EventA, EventB, EventC, EventD) for the workload. By default, we set event
ID and timestamp property for each event. Other string properties for events are
drawn from a string pool with a random process. The integer values in properties
are generated randomly. The event structure is shown as following:

EventA (String eventID, long timeStamp, String attributeA)
EventB (String eventID, long timeStamp, String attributeB)
EventC (String eventID, long timeStamp, String attributeC1, int attributeC2)
EventD (String eventID, long timeStamp, int attributeD1, String attributeD2)

Input layer and output layer are programed on the Esper engine. Event con-
sumers receive processed events from the engine and generate text alerts.

Three types of queries are implemented in the query module: Selection state-
ments are created for tests of filtering functionality; Join statements are created
for tests of transformation functionality; Event pattern statements are created
for tests of event pattern detection functionality. The Event Processing Lan-
guage (EPL) is the language of the Esper event processing. EPL is a SQL-like
language with SELECT, FROM, WHERE, GROUP BY, HAVING and ORDER
BY clauses [9]. EPL queries are created and stored in the engine. Statement ex-
amples for the benchmark tests are listed in the following:

CEPBen: A Benchmark for Complex Event Processing Systems 133

Tests for filtering (query depth = 1):
select * from EventA where EventA.attributeA = ’RED’;

Test for transformation (query depth = 2):
select attributeC as averageSize, attributeC as profession
from EventC.std:lastevent() as attributeC, EventD.std:lastevent() as attributeD
where EventC.eventId=EventD.eventId

Tests for event pattern detection (query depth = 3):
select * from pattern [every data= EventA (attributeA=’green’)
-> (EventB (attributeB = EventB.attributeB))
-> (EventD (attributeD1>3000))]";

3.2 Benchmark Results

Because the workload varies in different CEP applications, there is no typical
workload proposed. In this demonstration, we set the work model as the fol-
lowing: The workload is composed of 500 event batches, which each batch has
20,000 events. The average of interval times is set to 0.3 seconds.

Table 1. Parameter values for different test groups

Settings Group1 Group2 Group3
number of query statements 10 100 100

the depth of query statements 1, 2, 5 1, 2, 5 3, 5

Considering the factors we discussed in the Section 2.4, we set up three groups
of tests according to the factors which we consider influence the system per-
formance. The query depth of a type of query statements is fixed: Filtering
statements have depth as 1; Transformation statements have depth as 2; Event
pattern statements have two depth settings which are 3 and 5. The performance
tests are categorized into three groups (the Table 1): The Group 1 is testing the
three functional behaviours respectively with 10 query statements; The Group 2
is testing the functional behaviours respectively with 100 query statements; And
the Group 3 is testing the effect of window size factor on the system performance.
The Group 1 and the Group 2 are designed for revealing the performance effect of
different functional behaviours. No windows are implemented in the statements
in these two test groups. The Group 3 is designed for revealing the effect of
depths of querying event history. Time windows and length windows are applied
for performance comparison study.

The input throughput, output throughput and response time are measured.
The input throughput and output throughput are measured as events per second.
The averages of input throughput and output throughput are calculated and
presented. The response time is measured in milliseconds. Relative frequencies
and cumulative distribution of response time are calculated and presented.

134 C. Li and R. Berry

Response Time of Test Group 1. The Figure 4 depicts the relative frequency
and the cumulative distribution of response time for filtering, transformation
and pattern detection in the test Group 1. The relative frequency distribution
is divided into two parts in order to show the curve clearly. The part of the
distribution that goes beyond the visible part of the graph is not displayed
here. The response times of filtering are mainly in the interval between 0 and 15
milliseconds (the Figure 4a). The response times of transformation are mainly in
the interval between 0 and 40 milliseconds (the Figure 4b). The relative frequency
distribution for event pattern detection has both a higher mean and higher
variability (from 0 to 350 seconds) than the other query types (the Figure 4c).
This is because the system takes considerable time to query on event history
and wait for the pattern to be matched.

The Figure 4d presents a cumulative distribution comparison for filtering,
transformation and pattern detection in the test Group 1. The part of the dis-
tribution that goes beyond the visible part of the graph is not displayed. The
cumulative probabilities of response time for filtering and transformation con-

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Response Time (in milliseconds)

R
el

at
iv

e
F

re
qu

en
cy

Relative Frequency of Response Time (1)

(a) The filtering in the Group 1

20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Response Time (in milliseconds)

R
el

at
iv

e
F

re
qu

en
cy

Relative Frequency of Response Time (1)

(b) The transformation in the
Group1

1000 2000 3000 4000 5000 6000 7000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Response Time (in milliseconds)

R
el

at
iv

e
F

re
qu

en
cy

Relative Frequency of Response Time (1)

(c) The event pattern detection in the
Group 1

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Response Time (in milliseconds)

P
ro

ba
bi

lit
y

Cumulative Distribution of Response Time in Group 1

Filtering
Transformation
Event pattern detection

(d) The cumulative distribution of re-
sponse time in Group 1

Fig. 4. The relative frequency and the cumulative distribution of response time in
Group 1

CEPBen: A Benchmark for Complex Event Processing Systems 135

verge to 1 sharply and overlap with each other, while the response time for
pattern detection converges to 1 slowly.

The results in Group 1 reveal that the Esper engine responds faster in filtering
than in transformation, and it responds faster in transformation than in event
pattern detection.

Response Time of Test Group 2. The Figure 5 illustrates the relative fre-
quency and the cumulative distribution of response time for filtering, transfor-
mation and event pattern detection in the test Group 2. The relative frequency
distribution is divided into two parts in order to show the curve clearly. The
part of the distribution that goes beyond the visible part of the graph is not
displayed here. The relative frequency distribution for filtering are mostly in the
interval between 0 and 50 milliseconds (the Figure 5a). The relative frequency
distribution for transformation has a higher variability than filtering with a peak
probability of about 0.08 between 160 and 200 milliseconds (the Figure 5b). The
relative frequency distribution for event pattern detection has both a higher

50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Response Time (in milliseconds)

R
el

at
iv

e
F

re
qu

en
cy

Relative Frequency of Response Time (1)

(a) The filtering in the Group 2

140 160 180 200 220
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Response Time (in milliseconds)

R
el

at
iv

e
F

re
qu

en
cy

Relative Frequency of Response Time (1)

(b) The transformation in the
Group 2

0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Response Time (in milliseconds)

R
el

at
iv

e
F

re
qu

en
cy

Relative Frequency of Response Time (1)

(c) The event pattern detection in the
Group 2

0 1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Response Time (in milliseconds)

P
ro

ba
bi

lit
y

Cumulative Distribution of Response Time in Group 2

Filtering
Transformation
Event pattern detection

(d) The cumulative distribution of
response time in test Group 2

Fig. 5. The relative frequency and the cumulative distribution of response time in the
Group 2

136 C. Li and R. Berry

mean and higher variability (from 0 to 2000 seconds) than the other query types
(the Figure 5c).

The Figure 5d depicts the cumulative distribution of the response time for
filtering, transformation and event pattern detection in the test Group 2. The
part of the distribution that goes beyond the visible part of the graph is not dis-
played. Similarities are found with the cumulative distribution of response time
in the test Group 1. The cumulative probabilities of response time for filtering
and transformation converge to 1 sharply, while for event pattern detection it
reaches 1 slowly. The long tail of this plot is not fully displayed.

The results in Group 2 prove the conclusion of the test Group 1 that the Esper
engine responds faster in filtering than in transformation, and it responds faster
in transformation than in event pattern detection.

Results of Test Group 3. To explore the performance impact of query depth
and window sizes, we set up the test Group 3, in addition to the test Group 1 and
2. The benchmark application is run with a hundred of event pattern statements
respectively: with the query depth of 3, no windows and the query depth of 5,
time windows of 30 seconds. The cumulative distribution of the response time
is displayed in the Figure 6. The part of the distribution that goes beyond the
visible part of the graph is not displayed. The test with query depth of 3 out-
performs the other two settings, as the curve converge to 1 faster and in much
lower range of response time. This is because less query depth consumes less
memory for keeping event history so that the CEP system responds faster with
more available computer resources. The system with query depth of 5 and no
windows is outperformed by it with the setting of query depth of 5 and time
windows of 30 seconds before the cumulative probability reaches 0.6 and then
performs better after this point. The long tail of this plot is not fully displayed.

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Response Time (in milliseconds)

P
ro

ba
bi

lit
y

Cumulative Distribution of Response Time in Group 3

depth=3, no time windows
depth=5, no time windows
depth=5, time windows of 30 seconds

Fig. 6. The cumulative distribution of response time in the test Group 3

Comparison of Response Time with the Factor of Query Load. The
Figure 7 shows the cumulative distribution of response time for filtering, trans-
formation and patter detection under different query load in Group 1 and Group

CEPBen: A Benchmark for Complex Event Processing Systems 137

0 100 200 300 400 500

0.4

0.5

0.6

0.7

0.8

0.9

1

Response Time (in milliseconds)

P
ro

ba
bi

lit
y

Cumulative Distribution of Response Time for Filtering

10 filtering statements
100 filtering statements

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Response Time (in milliseconds)

P
ro

ba
bi

lit
y

Cumulative Distribution of Response Time for Transformation

10 transformation statements
100 transformation statements

0 2 4 6 8 10 12

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Response Time (in milliseconds)

P
ro

ba
bi

lit
y

Cumulative Distribution of Response Time for Pattern Detection

10 pattern statements
100 pattern statements

Fig. 7. Comparison of response time for filtering, transformation and patter detection
with different query load

2 tests. Three graphs are included in this figure. They demonstrate that query
load influences the system performance. Tests with heavier query load have larger
response time.

System Input Throughput in the Tests. The Figure 8 shows the system
input throughput in the test Group 1. The input throughput is sampled and
measured in each event batch. The system is run for 3 times and the aver-
age of the input throughput is calculated and plotted. The input throughput
of filtering fluctuates considerably between 140,000 events/second and 210,000
events/second. However, it is much higher than the input throughput of event
pattern detection and transformation overall. Noticeably, the input throughput
of event pattern detection is higher than the input throughput of transformation.

The Figure 9 presents the input throughput of test Group 2. The input
throughput is sampled and measured in each event batch. The system is run for 3
times and the average of the input throughput is calculated and plotted. The in-
put throughput of filtering fluctuates between 52,000 and 58,000 events/second,
which is much higher than the input throughput of the transformation and event
pattern detection in the same group. However, it is significantly lower than the
input throughput of filtering in the Group 1.

The Figure 10 shows the system input throughput in the test Group 3. The
input throughput curves of the query depth 3 without time windows and the

100 200 300 400 500
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

5

Sampling of Input Throughput

In
pu

t T
hr

ou
gh

pu
t (

ev
en

ts
/s

ec
on

d)

System Input Throughput in Group 1

Filtering
Pattern Detection
Transformation

Fig. 8. The system input throughput in the test Group 1

138 C. Li and R. Berry

100 200 300 400 500
0

1

2

3

4

5

6
x 10

4

Sampling of Input Throughput

In
pu

t T
hr

ou
gh

pu
t (

ev
en

ts
/s

ec
on

d)

System Input Throughput in Group 2

Filtering
Pattern Detection
Transformation

Fig. 9. The system input throughput in the test Group 2

100 200 300 400 500
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Sampling of Input Throughput

In
pu

t T
hr

ou
gh

pu
t (

ev
en

ts
/s

ec
on

d)

System Input Throughput in Group 3

Depth=5, no time windows
Depth=3, no time windows
Depth=5, time windows of 30 seconds

Fig. 10. The system input throughput in the test Group 3

query depth 5 with time windows of 30 seconds are declining because of increas-
ing memory consumption and garbage collection, while the curve for the query
depth 5 without time windows becomes steady after a period of decline. Overall
the input throughput with the query depth 5 and no time windows outperforms
the other two. However, this is not expected. The tests with query depth of 5
and no time windows is supposed to perform worse than the tests with the other
two settings, because event pattern detection with higher query depths usually
consumes more memory. This phenomenon needs more investigation.

The major reason for the fluctuation of the input throughput curves is relating
to the garbage collection activity and CPU activity during the simulation. The
input events will be removed from the system after they are processed, and this
triggers garbage collection in the system.

System Output Throughput in the Tests. Outputting events consumes
resources of CEP systems. Output load and output throughput can indicate how
heavy the processing work is engaged in CEP engine with the input workload
and the scalability of the CEP system. Our test environment does not strictly
control the amount of output, because values of event properties and values in

CEPBen: A Benchmark for Complex Event Processing Systems 139

Table 2. The system output throughput and output load in the test Group 1 and
Group 2

Functionalities Output of Group 1 Output of Group 2
Throughput (events/sec) Load (events) Throughput (events/sec) Load (events)

Filtering 14431 3,077,108 84366 28,821,616
Transformation 15031 6,248,000 28644 58,731,250

Event Pattern Detection 3119 990,876 5508 11,086,190

Table 3. The system output throughput in the test Group 3

Settings (100 event pattern statements) Output Throughput (events/sec) Load (events)
Depth=3, no windows 6932 19,598,140
Depth=5, no windows 5508 11,086,190

Depth=5, time windows of 30s 2606 10,891,536

query statements are generated with a random process. Table 2 and 3 present
the average output throughput and the average output load in three test groups.

Comparing the output load and output throughput of three functionalities in
Table 2 of the Group 1 and Group 2, it is found that the scalability of filtering in
Esper engine is the best among the three functionalities. The output throughput
and the output load of filtering are both nearly eight times more in Group 2 than
in Group 1. The output load of transformation and event pattern detection in
Group 2 are nearly ten times heavier than they are in Group 1, while the output
throughput of transformation and event pattern detection are nearly twice larger
in Group 2 than they are in Group 1.

3.3 Summary

The results of performance tests by running the CEPBen on Esper CEP engine
are presented in this section. The functional behaviours of Esper CEP engine are
evaluated. The cumulative probability distribution of response time for filtering,
transformation and event pattern detection presented in the Figure 4d, 5d and
7reveals the similarities and differences in response time with the three functional
behaviours. Factors which influence system performance are tested. System input
and output throughput are measured, presented and compared. The performance
study demonstrates that the CEPBen is able to classify the performance of the
functional behaviours and explore the effects of factors.

4 Related Work

A fundamental aspect for performance evaluation is performance metrics. The
scenarios of applied event processing range broadly and have different opera-
tional requirements in terms of throughput, response time, type of events, pat-
terns, number of event sources and consumers, scalability, and more. Common
performance metrics of interest are the expected event notification latency, uti-
lization and message throughput of the various system components [14].

140 C. Li and R. Berry

Throughput is a critical metric to show the ability of systems to handle large
amount of data. Mendes et al. take throughput as the metric and conducted
a series of tests to compare the performance of three event processing systems
[17]. Lakshmanan et al. [15] choose throughput to demonstrate that their novel
approach could achieve high scalability especially when the model and network
topology change frequently. Throughput measurement is also applied in the pa-
per by Wu et al. [20]. A complex event system, SASE, is developed to address the
need of sliding windows and value-based comparisons between events in monitor-
ing applications using radio frequency identification (RFID) technology. Their
work focus on high volume streams and extracting events from large windows.
Oracle published a white paper on the performance of Oracle Complex Event
Processing. The output event rate which is output throughput, average latency,
99.99% latency and absolute max latency are the metrics in the performance
tests [2]. In addition, Isoyama et al. evaluate the throughput as the performance
metric for their scalable context delivery platform in their paper [13].

Latency is the time that a system takes for the output events to emerge after
the input event happened. It is one of the important metrics in the performance
evaluation in traditional information systems, while it is not often found in the
literature of complex event processing. Grabs and Lu [12] presented information
latency and system latency as metrics for event processing systems to address the
challenges of out-of-order arrival events. The system latency is well understood
as it is the time that a system takes to process the events. The information
latency is caused by delays that the CEP system spends waiting for additional
input.

Some novel metrics are found in the literature. In Linear Road benchmark [4],
response time and supported query load are proposed as appropriate metrics for
the system. Sustainable throughput, response time, scalability, adaptivity, com-
putation sharing, and similarity search and precision and recall are considered to
be useful metrics in the BiCEP benchmark [5]. However, many of these metrics
are yet to be implemented and demonstrated in event processing systems.

Several benchmarks are proposed in different fields related to event processing.
However, benchmarks of CEP systems are rarely found in the literature. In this
section, we review three benchmarks in the related fields.

SPECjms2007 [18] (Standard Performance Evaluation Corporation) is a bench-
mark to provide a standard workload and metrics for measuring and evaluating
the performance and scalability of Message-Oriented Middleware (MOM) plat-
forms based on Java Message Service (JMS). It provides a standard workload and
performance metrics for competitive product comparisons, as well as a frame-
work for in-depth performance analysis of enterprise messaging platforms.

The linear road benchmark has been created for Stream Data Management
Systems (SDMS) by Arasu et al. [4]. It simulates a toll system for motorways,
where tolls are set according to dynamic factors, such as traffic congestion and
accident proximity. It is designed to evaluate the performance of the systems to
respond the real-time queries in processing high-volume streaming and historical
data.

CEPBen: A Benchmark for Complex Event Processing Systems 141

BEAST (BEnchmark for Active database SysTems) is a benchmark for ac-
tive Database Management Systems (ADBMSs) [11]. It is based on the OO7
benchmark, which was built for performance tests of Object-Oriented Database
Management Systems (OODBMS) [6][7]. BEAST benchmark tests active func-
tionality of active database systems. It can be used to compare the performance
of multiple ADBMSs and identify the performance weakness of their systems
compared with others.

SPECjms2007 provides standard workload to measure performance and scal-
ability of JMS based MOM platforms. Linear Road is a popular workload of
traffic and transportation. Both of them do not focus on the system functional
behaviours. BEAST has a series of tests for rule execution and events detec-
tion in active database systems. However, complex event processing applies
event-condition-action (ECA) rules concepts, but goes beyond ECA in term of
complexity of events, conditions and actions [8]. Our benchmark CEPBen is to
evaluate the performance of event processing behaviours which involve complex
events, conditions and actions in complex CEP systems.

5 The Conclusion and Future Work

In this paper, we present the CEPBen benchmark for complex event processing
systems on the system functional behaviours: filtering, transformation and event
pattern detection. We introduce the benchmark design, implementation and its
features of flexibility for exploring the factors and metrics of performance of
CEP systems. Following the benchmark design, we create a benchmark appli-
cation that is run on Esper CEP engine. We present the results of performance
tests for the three functionalities and influential factors. We demonstrate that
CEPBen is capable of classifying the performance of CEP functional behaviours
and investigating influential factors in CEP systems.

In the future, we will apply the CEPBen benchmark on other CEP engines,
and explore metrics and influential factors for performance of CEP systems.

References

1. Esper performance (2007), http://docs.codehaus.org/
2. Oracle complex event processing performance (November 2008),

http://www.oracle.com/
3. Oracle complex event processing exalogic performance study - an oracle white

paper (2011), http://www.oracle.com/
4. Arasu, A., Cherniack, M., Galvez, E., Maier, D., Maskey, A., Ryvkina, E., Stone-

braker, M., Tibbetts, R.: Linear road: A stream data management benchmark. In:
VLDB Conference (September 2004)

5. Bizarro, P.: Bicep - benchmarking complex event processing systems. In: Chandy,
M., Etzion, O., von Ammon, R. (eds.) Event Processing, Dagstuhl, Germany.
Dagstuhl Seminar Proceedings, number 07191, Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2007)

http://docs.codehaus.org/
http://www.oracle.com/
http://www.oracle.com/

142 C. Li and R. Berry

6. Carey, M.J., DeWitt, D.J., Naughton, J.F.: The 007 benchmark. SIGMOD
Rec. 22(2), 12–21 (1993)

7. Carey, M.J., DeWitt, D.J., Kant, C., Naughton, J.F.: A status report on the oo7
oodbms benchmarking effort. In: OOPSLA 1994: Proceedings of the Ninth Annual
Conference on Object-Oriented Programming Systems, Language, and Applica-
tions, pp. 414–426. ACM, New York (1994)

8. Chandy, M.K., Etzion, O., Ammon, von Ammon, R.: 10201 executive summary
and manifesto–event processing. Event Processing (10201) (2011)

9. EsperTech Inc. Esper Reference, version 4.9.0 edition (2012)
10. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publication Co.,

Stamford (2011)
11. Geppert, A., Gatziu, S., Dittrich, K.R.: A designer’s benchmark for active database

management systems: 007 meets the beast. In: Sellis, T.K. (ed.) RIDS 1995. LNCS,
vol. 985, pp. 309–326. Springer, Heidelberg (1995)

12. Grabs, T., Lu, M.: Measuring performance of complex event processing systems,
pp. 83–96 (2012)

13. Isoyama, K., Kobayashi, Y., Sato, T., Kida, K., Yoshida, M., Tagato, H.: A scalable
complex event processing system and evaluations of its performance, pp. 123–126
(2012)

14. Kounev, S., Bacon, J., Sachs, K., Buchmann, A.: A methodology for performance
modeling of distributed event-based systems. In: 11th IEEE Symposium on Object
Oriented Real-Time Distributed Computing (ISORC) (2008)

15. Lakshmanan, G.T., Rabinovich, Y.G., Etzion, O.: A stratified approach for sup-
porting high throughput event processing applications. In: DEBS 2009: Proceedings
of the Third ACM International Conference on Distributed Event-Based Systems,
pp. 1–12. ACM, New York (2009)

16. Luckham, D.C.: Event Processing for Business: Organizing the Real Time
Enterprise. John Wiley & Sons (2011)

17. Mendes, M.R.N., Bizarro, P., Marques, P.: A performance study of event process-
ing systems. In: Nambiar, R., Poess, M. (eds.) TPCTC 2009. LNCS, vol. 5895,
pp. 221–236. Springer, Heidelberg (2009)

18. Schmidt, A.R., Waas, F., Kersten, M.L., Florescu, D., Manolescu, I., Carey,
M.J., Busse, R.: The xml benchmark project. Technical report, Amsterdam, The
Netherlands (2001)

19. Tibbetts, R.: Performance & scalability characterization,
http://www.streambase.com

20. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over
streams, pp. 407–418 (2006)

http://www.streambase.com

Author Index

Adhana, Mulu 109

Bentayeb, Fadila 109
Bermbach, David 32
Berry, Robert 125
Boncz, Peter 61
Bond, Andrew 1, 77

Carman, Forrest 1
Colmenares, Carlos 109

Darmont, Jérôme 109

Erling, Orri 61

Ferrarons, Jaume 109
Fischer, Peter M. 16

Huppler, Karl 48

Johnson, Douglas 48, 77

Kaufmann, Martin 16
Kopczynski, Greg 77
Kossmann, Donald 16

Li, Chunhui 125

Majdalany, Michael 1
Masland, Andrew 1
May, Norman 16

Nambiar, Raghunath 1
Neumann, Thomas 61

Pietrowska, Sandra 109
Poess, Meikel 1

Sakr, Sherif 32

Taheri, H. Reza 1, 77
Tonder, Andreas 16

Ye, Xiaojun 93

Zhao, Hongwei 93
Zhao, Liang 32

	Preface
	Organization
	Table of Contents
	TPC State of the Council 2013
	1 TPC a Look Back and a Look Ahead
	2 TPC Benchmark Roadmap
	3 TPC Development Status Report
	3.1 TPC-Data Integration (TPC-DI)
	3.2 TPC-Decision Support (TPC-DS)
	3.3 TPC -Virtualization in Progress

	4 TPC-Express – A New Model for Benchmark Delivery
	5 TPC Technology Conference Series (TPCTC)
	6 Major Areas of Focus for 2014 and Beyond
	6.1 Big Data
	6.2 OpenStack
	6.2.1 Benchmarking OpenStack

	7 Conclusion
	References

	TPC-BiH: A Benchmark for Bitemporal
Databases
	1 Introduction
	2 Goals and Methodology
	3 Related Work on Temporal Benchmarks
	4 Definition of the TPC-BiH Benchmark
	4.1 Schema
	4.2 Benchmark Data
	4.3 Queries

	5 Experiments
	5.1 Pure Timeslice
	5.2 Key in Time
	5.3 Range-Timeslice
	5.4 Bitemporal Dimensions

	6 Conclusion
	References

	Towards Comprehensive Measurement of Consistency Guarantees for Cloud-Hosted
Data Storage Services
	1 Introduction
	2 Consistency Measurement: Perspectives, Metrics and Challenges
	2.1 Consistency Perspectives
	2.2 Metrics
	2.3 Measurement Challenges

	3 Consistency Benchmark Design
	3.1 Benchmark Architecture
	3.2 Benchmark Implementation

	4 Evaluation
	4.1 Experiment Setup
	4.2 Results
	4.3 Effects of Geo-distribution
	4.4 Additional Observations

	5 Related Work
	6 Conclusion
	References

	TPC Express – A New Path for TPC Benchmarks
	1 Introduction
	2 Pros and Cons of the TPC’s Current Benchmark Model
	3 Needs for a New Benchmark Model
	4 TPC Express Proposal
	5 Existing Benchmark Models in the Industry
	6 Meeting the Challenge
	7 Opportunities for Contribution
	8 Summary
	References

	TPC-H Analyzed: Hidden Messages and Lessons
Learned from an Influential Benchmark
	1 Introduction
	2 TPC-H Choke Point Analysis
	2.1 Aggregation Performance
	2.2 Join Performance
	2.3 Data Access Locality
	2.4 Expression Calculation
	2.5 CP-CorrelatedSubqueries
	2.6 Parallelism and Concurrency

	3 Conclusion
	References

	Architecture and Performance Characteristics of a PostgreSQL Implementation of the TPC-E
and TPC-V Workloads
	1 Introduction
	1.1 TPC-V Benchmark
	1.2 Virtualization

	2 Other Virtualization Benchmarks
	2.1 Consolidation Benchmarks
	2.2 TPC-VMS

	3 TPC-V Architecture
	3.1 TPC-E as a Starting Point
	3.2 Heterogeneous Load
	3.3 Multiple Sets and Groups
	3.4 Elasticity

	4 Reference Kit
	4.1 V-Gen Functionality Development
	4.2 Card Deck for Multi-group, Multi-set and Multi-phase Support
	4.3 Result Reporting
	4.4 Runtime Polling
	4.5 MEE Development
	4.6 TPC-E Functionality

	5 Current Status of the Benchmark and the Reference Kit
	6 Results from Prototyping Experiments
	6.1 Introduction
	6.2 Benchmarking Configuration
	6.3 1-Phase and 10-Phase Runs
	6.4 Throughput versus Other Performance Metrics for 10-Phase Runs
	6.5 Results with a Full, End-to-End Kit
	6.6 PostgreSQL Tuning

	7 Conclusions
	References

	A Practice of TPC-DS Multidimensional Implementation
on NoSQL Database Systems
	1 Motivation
	1.1 Proposed Solution
	1.2 Paper Organization

	2 Related Work
	2.1 OLAP for Big Data
	2.2 Cube Modeling for TPC-DS
	2.3 Cube Algebra for TPC-DS Queries

	3 MOLAP System Implementation
	3.1 Cube n Construction
	3.2 Key-Value Storage
	3.3 Cube Building
	3.4 Query Execution

	4 Experiments
	4.1 Implementation Ve erification Running
	4.2 Cube Building Perf formance
	4.3 Querying Performance
	4.4 Performance Comparative Analysis with Hive

	5 Conclusion
	References

	PRIMEBALL: A Parallel Processing Framework Benchmark
for Big Data Applications in the Cloud
	1 Introduction
	2 Related Work
	3 PRIMEBALL Overview
	3.1 Application Model
	3.2 PRIMEBALL Features

	4 PRIMEBALLDataset
	4.1 Types of Files to be Hosted
	4.2 PRIMEBALL Schema
	4.3 Initial Data
	4.4 Metadata Processes
	4.5 Data Scaling and Maintenance

	5 PRIMEBALL Workload
	5.1 Query Set
	5.2 Test Protocol

	6 PRIMEBALL Properties and Metrics
	6.1 Properties and Performance Metrics
	6.2 Pricing

	7 Conclusions
	References

	CEPBen: A Benchmark for Complex Event
Processing Systems
	1 Introduction
	2 The Benchmark
	2.1 Goals and the Tested Systems
	2.2 WorkLoad Design
	2.3 Selection of Metrics
	2.4 Benchmark Design
	2.5 Benchmark Implementation
	2.6 Features of Flexibility of the CEPBen

	3 Benchmark Demonstration and Results
	3.1 Benchmark Application
	3.2 Benchmark Results
	3.3 Summary

	4 Related Work
	5 The Conclusion and Future Work
	References

	Author Index

