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Towards a “Brain-Guided” Cognitive

Architecture

Vishwanathan Mohan, Pietro Morasso, and Giulio Sandini

7.1 Introduction

Motor control and motor cognition have been under intensive scrutiny for over a

century with a growing number of experimental and theoretical tools of increasing

complexity. Still we are far away from a real understanding which can allow us, for

example, to integrate what we know in large-scale projects like VPH (Virtual

Physiological Human). In a sense, the abundance of new behavioral, neurophysio-

logical, and computational approaches may worsen the situation, by “flooding”

researchers with frequently incompatible evidence, losing view of the overall

picture. An aspect of this tendency is to quickly dismiss earlier “old-fashioned”

ideas on the basis of specific but narrow new evidence. This chapter argues in the

opposite direction, revisiting old-fashioned notions, like synergy formation, equi-

librium point hypothesis (EPH), and body schema, in order to reuse them in a larger

context, focused on whole-body actions: this context, typical of humanoid robotics,

stresses the need of efficient computational architectures, capable to defeat the curse

of dimensionality determined by the frightening “trinity”: complex body + com-

plex brain + complex (partly unknown) environment. The idea is to organize the

computational process in a local to global manner, grounding it on emerging studies

in different areas of neuroscience, while keeping in mind that motor cognition and

motor control are inseparable twins, linked through a common body/body schema.

The long-term goal is to make a humanoid robot like iCub capable of “cumulative

learning.” A humanoid robot should mirror both the complexity of the human form

and the brain that drives it to exhibit equally complex and often creative behaviors!

This requires to emulate the gradual process of infant “cognitive development”

in order to investigate the underlying interplay among multiple sensory, motor,

and cognitive processes in the framework of an integrated system: a coherent,
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purposive system that emerges from a persistent flux of fragmented, partially

inconsistent episodes in which the human/humanoid perceives, acts, learns, remem-

bers, forgets, reasons, makes mistakes, introspects, etc. We aim at linking such a

model building approach with emerging trends in neuroscience, taking into account

that one of the fundamental challenges today is to “causally and computationally”

correlate the incredibly complex behavior of animals to the equally complex

activity in their brains. This requires to build a shared computational/neural basis

for “execution, imagination, and understanding” of action, while taking into

account recent findings from the field of “connectomics,” which addresses the

large-scale organization of the cerebral cortex, and the discovery of the “default

mode network” of the brain. We will particularly focus, in the near future, on the

organization of memory instead of “learning” per se because this helps understand-

ing development from a more “holistic” viewpoint that is not restricted to “isolated

tasks” or “experiments.” Computationally the proposed architecture should lead

towards novel nonlinear, non-Turing computational machinery based on quasi-

physical, non-digital interactions grounded in the biology of the brain.

7.2 Background Concepts on Body and Embodiment

7.2.1 Embodiment

Robotics has long been disputed between approaches that are fully dependent on the

exploitation of the affordances provided by the specific features/structure of the

robot “body” and approaches, based on artificial intelligence (AI) principles, that

neglect “embodiment” and operate in a completely abstract domain. The “vehicles”

proposed by Valentino Braitenberg (1986) are examples of the former approach: in

spite of the fact that the control hardware is simply a reactive system, which directly

links the sensors to the actuators, vehicles’ behaviors can be surprisingly adaptive

and exhibit remarkable features that are commonly attributed to some kind of

“intelligence.” There are also many biological counterparts of Braitenberg’s vehi-

cles, such as the Aplysia depilans (Kandel and Tauc 1965), which emphasize the

fact that adaptive behavior does not require a central nervous system but can

emerge in very simple networks of biological neurons as well. However, it is

quite clear that purely reactive systems (or reflexes, in the neurophysiological

jargon) can only work effectively with very simple bodies.

Nevertheless, a very influential theory proposed by Charles Sherrington (1904)

that dominated the understanding of human neurophysiology for over half a century

is based on a simple generalization of the reactive architecture, by positing that

reflexes are the basic modules of the integrative action of the nervous system, thus

enabling the entire body to function towards one definite goal at a time. A similar

point of view was defended by Rodney Brooks in robotics (Brooks 1991), as a

drastic alternative to GOFAI (Good Old-Fashioned Artificial Intelligence), by
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proposing a bottom-up design, named Subsumption Architecture, that is supposed
to achieve “intelligence without representation”: this architecture is organized in

layers, decomposing complicated intelligent behavior into many “simple” behav-

ioral modules, which in turn are organized into layers of simpler behaviors, down to

reflex-like mechanisms. Each layer implements a particular goal of the agent, and

higher layers are increasingly general and abstract. However, this kind of layered

bottom-up architecture scales up badly when one attempts to deal with complex

bodies and complex behaviors in a complex environment.

In contrast with the Sherringtonian view, Hugo Liepmann (1905) was the first

one to suggest that actions are generated from within, requiring the existence of an

internal state where they would be encoded, stored, and ultimately performed

independently of the stimuli coming from the external environment. To account

for the implementation of action plans, he proposed that the elementary chunks of

action are assembled according to an internal representation: he called movement
formula the result of this process, i.e., an anticipatory hierarchical structure where

all the aspects of an action are represented, before it is enfolded in time. Liepmann’s

legacy is still quite influential in motor neuroscience, although the term movement
formula was later replaced by several others, like engram, schema, or internal
model. In the same vein, Nikolai Bernstein (1935) had an interesting analogy for

explaining this mode of organization: he suggested that the representation of an

action must contain, “like an embryo in an egg or a track on a gramophone record,”

the entire scheme of the movement as it is expanded in time and it must also

guarantee the order and the rhythm of the realization of this scheme.

In the field of human motor cognition, only recently advanced brain imaging

techniques allowed to gain direct access to cognitive/mental states in the absence of

overt behavior, thus making clear that actions involve a covert stage. It is now

accepted that the covert stage is a representation of the future that includes

• The goal of the action

• The means/tools to reach it

• The consequences on the body

• The effects on the external world

Covert and overt stages thus represent a continuum, such that every overtly

executed action implies the existence of a covert stage, whereas a covert action does

not necessarily turns out into an overt action. Jeannerod (2001) provided a very

important contribution by formulating the Mental Simulation Theory, which posits

that cognitive motor processes such as motor imagery, movement observation,

action planning, and verbalization share the same representations with motor

execution. Jeannerod interpreted this brain activity as an internal simulation of a

detailed representation of action and used the term S-state for describing the

corresponding time-varying mental states. The crucial point is that since S-states

occurring during covert actions are, to a great extent, quite similar to the states

occurring during overt actions, then it is not unreasonable to posit that also real,

overt actions are the results of the same internal simulation process. Running such
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internal simulations on an interconnected set of neuronal networks is, in our view,

the main function of what is known as body schema.

7.2.2 Synergies

Synergy is a compound noun of Greek origin that implies the interaction and

cooperation of two or more elements for carrying out some function or work

which is difficult or impossible to achieve with isolated elements. Bernstein

(1935) was among the first ones to use this term for describing the complexity of

the motor system, recognizing that the central problem in the neural control of

movement is motor redundancy, namely the imbalance between (a small number

of) task-related variables and the (extremely large number of) muscles and mechan-

ical degrees of freedom (DoF). He suggested that the brain uses synergies to solve

this problem, giving this term a strongly cybernetic meaning, indeed years before

Norbert Wiener invented the term cybernetics: the idea, although not developed in a

mathematical model, was that synergies allow the brain to get rid of task-irrelevant

degrees of freedom, thus focusing on the simpler problem of mastering a smaller

number of task-relevant variables. In this sense, a synergy can be conceived as a

“dimensionality-reduction device,” and as such it has been criticized by some (e.g.,

Diedrichsen and Classen 2012) considering that deterministic constraints on the

evolution of DoFs would imply the inability to achieve large subsets of physically

possible postures, an inability which is contradicted by a number of experimental

findings in speech motor control, whole-body reaching, brain–machine interfaces,

etc. However, this criticism can be overcome by supposing that the computational

mechanism, responsible for constraining DoFs and muscle activation patterns in

such a way to allow a small number of command variables to coordinate them in a

purposive manner, is not hardwired but is sensitive to task requirements, imposing

task-related constraints in the preparation time of an action. In this view, biologi-

cally plausible synergy formation mechanisms must be multireferential, in the

sense of allowing task-modulated bidirectional dynamic interactions among differ-

ent spaces: end-effector space, joint and muscles space, and possibly spaces related

to the DoFs of manipulated tools. If such dynamic interactions are acquired by the

brain of a subject via training in the real world, they will incorporate implicitly

causality constraints, thus allowing a synergy formation mechanism to bind

together high-dimensionality and low-dimensionality computational processes.

This means that dimensionality reduction can coexist with full dimensionality

representation also in a deterministic framework, provided that suitable dynamic

processes link the different spaces. Later on we describe a mathematical model,

based on Passive Motion Paradigm (PMP), that can achieve this goal.

In recent years a lot of effort has been focused on muscle synergies (D’Avella
et al. 2003). It has been found that, for a wide variety of motor tasks, muscle

activation patterns evolve in low-dimensional manifolds and thus can be approxi-

mated by the linear composition of a small set of predefined/primitive patterns or
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modules, i.e., the basis vectors of such low-dimensional subspace. However, from

this empirical evidence, can we conclude that muscle synergies are explicitly

encoded or stored in the brain, thus becoming the building blocks of the synergy

formation mechanism? It is possible indeed that the observed correlations and

regularities are not determined by the immediate readout of hypothetic modules,

for which there is no concrete evidence, but the effects of a multireferential neural

dynamics that does not need to explicitly store or encode a number of high-

dimensional patterns. It has been shown, for example, by Kutch and Valero-Cuevas

(2012), that biomechanical constraints can explain the low-dimensionality of mus-

cle synergies, without the need of an explicit neural coding, and it is conceivable

that the specific dynamic modules incorporate such constraints in the production of

synergistic patterns. A recent study with frog leg muscles before and after transec-

tion at different levels of the neuraxis (Roh et al. 2011) shows that muscle synergies

are organized within the brain stem and spinal cord and are activated by descending

commands. Moreover, microstimulation of cortical areas (Overduin et al 2012) is

capable of evoking muscle synergies that match those extracted from natural

movements. But again, this does not imply that muscle synergies are explicitly

coded in the corticospinal motor system, although it is compatible with the neural

origin of such synergies (Bizzi and Cheung 2013).

It is also worth mentioning that the idea of storing muscle synergies, as basic

motor primitives, is similar to the rationale of the model proposed years before by

Rosenbaum et al. (1995), which defends the idea that motor planning is based on

“goal postures,” selected from a “database” of stored postures. “Goal postures” take

the place of “muscle synergies,” but the underlying idea is the same: using a

limited, but sufficiently rich, number of high-dimensional patterns to be combined

by a synergy formation process. The underlying issue, in our opinion, is memory
vs. computation trade-off: is it better to find the solution of a problem by storing a

database of predefined solutions or by simulating an internal, generic, computa-

tional model? The answer is not unique and probably the brain can switch between

one method and the other in different situations. However, in the case of whole-

body motor control, the curse of dimensionality, namely, the exponential growth of

computational complexity when the number of recruited degrees of freedom

increases, is likely to hit the memory solution earlier than the computational

solution.

7.2.3 Motor Synergies and Motor Imagery

Recent discoveries about motor imagery are slowly revolutionizing our grasp of

motor control and motor cognition. Motor imagery, which can be defined as the set

of mental processes occurring when a movement is imagined or practiced without

performing it in an overt way, shares many features with brain activities in real

actions, as made explicit by means of brain imaging techniques (Decety 1996). The

practical relevance of this empirical finding comes from the effectiveness of mental
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practice for improving performance in athletic skills (Suinn 1972) and the fact that

stroke patients can use mental practice to regain motor function (Sharma

et al. 2006). We should also take into account that, in spite of similarities, there is

also evidence that motor imagery and neural processes during overt motor behavior

are not exactly the same (Coelho et al. 2012). Nevertheless, the same existence of

motor imagery indicates that muscle synergies are unlike as basic building blocks of

the synergy formation circuitry and suggests that what occurs in the brain, during

mental rehearsal or mental training, reflects an endogenous dynamics, not a dynam-

ics related to the neuromuscular system, as involved in overt movements. In other

words, “muscleless” motor synergies, occurring in covert movements, might be the

hidden building blocks which stand behind the recorded muscle synergies.

In any case, there is mounting evidence accumulated from different directions

such as brain imaging studies (Frey and Gerry 2006; Grafton 2009), mirror neuron

systems (Rizzolatti et al. 1996; Rizzolatti and Luppino 2001; Rizzolatti and

Sinigaglia 2010), and embodied cognition (Gallese and Sinigaglia 2011; Gallese

and Lakoff 2005) that generally supports the idea that action “generation, obser-

vation, imagination, and understanding” share similar underlying functional net-

works in the brain: distributed, multicenter neural activities occur not only during

imagination of movement but also during observation and imitation of other’s

actions (Buccino et al. 2001; Anderson 2003; Frey and Gerry 2006; Grafton

2009; Iacoboni 2009) and comprehension of language, namely action-related

verbs and nouns (Pulvermüller and Fadiga 2010; Glenberg and Gallese 2012).

Such neural activation patterns include premotor and motor areas as well as areas

of the cerebellum and the basal ganglia. During the observation of movements of

others, an entire network of cortical areas, called “action observation network,” is

activated in a highly reproducible fashion (Grafton 2009). The central hypothesis

that emerges out of these results is that motor imagery and motor execution draw on

a shared set of cortical and subcortical mechanisms underlying motor cognition.

On the other hand, single-cell recordings of motor cortical neurons have pro-

vided an apparently different picture, showing that those neurons are characterized

by rather broad tuning functions and suggesting the theory of population coding of

some kind of population parameter. However, after the early seminal study by

Georgopoulos et al. (1986), who proposed that movement direction might be the

coded parameter, alternative interpretations were proposed also on theoretical

ground (Mussa-Ivaldi 1988), by showing that the same experimental findings can

be correlated indeed with different movement-related parameters. Other experi-

mental studies have also shown that the activity of motor cortical neurons correlates

with a broad range of parameters of motor performance from spatial target location

to hand or joint motion, joint torque, muscle activation patterns, etc. In other words,

the correlation between an internal variable, such as the discharge frequency of a

motor neuron, and a specific aspect of an empirically measured movement is a very

weak form of explanation of the organization of the motor system.

This kind of indeterminacy is also found in a related area of motor control study:

the attempt to explain motor invariants, such as the speed–accuracy trade-off

(Woodworth 1899), the bell-shaped speed profile of aiming movements
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(Morasso 1981), or the power law relating the speed and curvature profiles of

continuous drawing movements (Lacquaniti et al. 1983), by means of optimization

processes to be associated with the main synergy formation process. Also in this case

the empirically characterized smoothness of natural movements is compatible with

different optimization criteria, but fails to identify in a strong manner a single

organizing principle. Thus, the quest for the prevailing motor parameter directly

encoded by neuron firing and the optimization criterion specifically employed in the

neural control of movements both appear to be an elusive “holy grail.” The crucial

point, in our opinion, is that the direct encoding/storage of specific features or criteria

is basically a static concept: it may be appropriate, at least as a first-order approxima-

tion, for describing sensory/perceptual processing but fails to capture the essence of

“ergonomics” (in the wide sense of the word’s etymology), namely, the capability of

human beings to generate extremely complex spatiotemporal patterns, required for

performing purposive actions, while interacting with external systems and environ-

ments. Another essential feature of “ergonomics” is flexibility, in the sense that each

action can potentially recruit all the DoFs of the whole body, with the requirement of a

rapid reorganization of the specifically recruited body parts as a function of task and

environmental requirements. This makes the static encoding of movement parameters

impossible or at least nonfunctional.

The alternative to static encoding is endogenous dynamics of brain circuitry

which indirectly supplies the outflow of motor commands and, in turn, is sensitive

to the inflow of reafferent signals. This is an idea supported by Churchland

et al. (2012) who recently proposed that the evolution over time of the state vector

of a cortical map (namely, the instantaneous distribution of firing rates for all the

neurons of a map) can be better characterized by a nonlinear differential equation,

driven by some external input vector, rather than by a direct static encoding of

movement parameters. In this framework, the tuning properties of individual

neurons are unintended consequences of the fact that the state vector

(or population code) is causally determining the motor outflow, although in an

indirect way. We agree with this idea, but we should also consider that it has been

around for at least two decades, although as the opinion of a small minority: we

welcome its resurrection in the context of new evidence and renewed thinking.

7.2.4 Motor Synergies and the Equilibrium Point Hypothesis

The concept of synergy, as a “dimensionality-reduction device,” was accompanied

in early studies by the attempt to assign a regulatory role to the “springlike”

behavior of muscles (Bernstein 1935) when such springness was indeed suggested

by several experimental studies in the 1960s and 1970s (Asatryan and Feldman

1965; Bizzi and Polit 1978, among others). The central idea was that there is no

chance in trying to explain biological movement in terms of engineering servo-

mechanism theory, an approach supported, for example, by Marsden et al. (1972),

first of all because muscles are not force/torque generators like electrical motors but
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mainly because the propagation delays in the feedback loop are a severe, potential

source of instability. In contrast, intrinsic muscle stiffness has two strong beneficial

effects: (1) it provides, locally (i.e., in a muscle-wise manner), an instantaneous

disturbance compensation action, and (2) it induces, globally (i.e., in a total body-

wise manner), a multidimensional force field with attractor dynamics. This allows

to achieve complex body postures “for free,” without a complex, high-dimensional

computational process, but simply by allowing the intrinsic dynamics of the

neuromuscular system to seek its equilibrium state.

In this framework, movement becomes the transition from an equilibrium state

to another, with the remarkable property of “equifinality” (Kelso and Holt 1980),

namely, the fact that movement endpoints should be scarcely affected either by

small, transient perturbations or by variations in the starting position of the body.

Such attractor properties of motor control were confirmed by several studies of

electrical stimulation of different parts of the nervous system, such as interneurons

in the spinal cord of the frog (Giszter et al. 1993) or pyramidal neurons in the

precentral cortex of the monkey (Graziano et al. 2002).

In reality, the picture is more complicated, in the sense that detailed experimen-

tal investigations show, for example, that muscles can only be approximated by

ideal springs and that equifinality can be somehow violated by small, impulsive

force disturbances (Popescu and Rymer 2000) or specific environmental conditions.

In spite of this, we believe that EPH can explain a lot of the overall rationale

underlying synergy formation, although it cannot cover the whole range of situa-

tions. Consider, for example, the stability of the upright standing body and the

coordination in whole-body aiming movements: in this case, muscle stiffness alone

is insufficient to achieve stability (Loram and Lakie 2002) and requires a parallel

intermittent control action (Asai et al. 2009); on the other hand, the appropriate

synchronization of ankle and hip strategies, which is essential for whole-body

aiming, is nicely explained by means of an extended force field-based coordination

model (Morasso et al. 2010), based on the Passive Motion Paradigm (see below).

Motor imagery is quite important, again, for framing the discourse in the right

perspective. Since in humans and other species in the high stages of phylogenetic

development, actions can be goal oriented, not necessarily stimulus oriented, and

can occur in anticipation of events/stimuli or in learned cycles, real/overt actions

can alternate with covert/mental actions in order to optimize the chance of success

in a game or during social interaction. Therefore, overt actions are just the tip of an

iceberg: under the surface it is hidden a vast territory of actions without movements

(covert actions) which are at the core of motor cognition. This has two main

consequences: (1) the format of spatiotemporal patterns of purposive actions,

namely, the organization of the synergy formation process, must be shared by

covert and overt actions; (2) this format cannot be strictly dependent upon the

physics of the body and the neuromuscular system, because in covert actions there

is no motion of body masses or contraction of the muscles. We may then derive the

hypothesis that the endogenous dynamics of cortical maps is basically the same in

overt movements, when it drives the formation of neuromuscular activation pat-

terns, and in covert movements, when it carries out mental simulations of the same
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movements. This concept is implicit in the Mental Simulation Theory (Jeannerod

2001), and in a similar line of reasoning, we may quote recent experiments on motor

planning in tasks that require the careful coordination of rotation and translation of

objects (Cohen and Rosenbaum 2011): these experimental results support theories

of synergy formation as a process that generates holistic body changes between

successive goal postures (Rosenbaum et al. 1995, 2001) or the Ideomotor Theory,

which claims that actions are triggered by the anticipation of intended effects

(Herbort and Butz 2012).

7.2.5 Motor Synergies and the Body Schema

That humans have an integrated, internal representation of their body (the body

image or body schema1) is strongly suggested by the variety of pathological

conditions which can only be explained by a deficient internal representation

(Head and Holmes 1911). More recent studies (for reviews see Graziano and

Botvinick 2002; Haggard and Wolpert 2005) have identified the different cortical

areas that may contribute to this function (area 5 in the superior parietal lobe and

possibly premotor and motor areas) and the multimodal integration of propriocep-

tive, visual, tactile, and motor feedback signals that is necessary for maintaining a

coherent spatiotemporal organization. It has also been suggested that such contin-

uous body experience may be one of the key elements for allowing the emergence

of individual self-consciousness. However, the role of the body schema in synergy

formation needs to be investigated more in depth. We believe indeed that running

internal simulations on an interconnected set of neuronal networks is perhaps one of

the main functions of the body schema. Therefore, the body schema must not be

considered as a static structure, like the Penfield’s homunculus, but a dynamical

system that generates goal-oriented, spatiotemporal, sensorimotor patterns.

This view of the body schema is clearly multireferential and resonates well with

many ideas investigated in the framework of embodied cognition: (1) cognition is
situated, in the sense that it is an online process which takes place in the context of

task-relevant sensorimotor information; (2) cognition is time pressured, i.e., it is
constrained by the requirements of real-time interaction with the environment, what

is also known as “representational bottleneck” (Brooks 1991; Pfeifer and Scheier

1998, among others); (3) the environment is part of the cognitive system, including
both the physical and social environment; (4) cognition is intrinsically action
oriented and even “off-line cognition,” namely, cognition without overt action, is

body based as argued by Lakoff and Johnson (1999), who remarked that in most

1 The difference between body image and body schema is disputed and is somehow fuzzy. For our

purpose we assume that they are two sides of the same coin: the former one stresses the static

component, mainly based on proprioceptive information, whereas the latter is related to the

dynamic synergy formation function.
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occasions abstract concepts are based on metaphors grounded in bodily experience/

activity.

We agree with Brooks (1991) that “the world is its own best model,” but we also

believe that a human being, as well as a humanoid robot, needs an internal model or

representation of its own body or body schema, extended with an internal repre-

sentation of the environment and the mastered tools that allow him/her/it to succeed

in physical/social interaction. Such body schema does not need to be a faithful

biomechanical model, including the finest details of flesh and bones. It is just a

skeleton or middleware representation where it is possible to play plausible spatio-

temporal games, required at the same time and formulated in the same language by

motor cognition and motor control. The power of the concept is that a well-trained
agent can use it to interpret/anticipate the actions of other agents or also imagine

actions that are physically impossible but crucially important for figuring out the

solution of a difficult task (Fig. 7.1).

The introduction of the body schema as a middleware implies two important

concepts in the analysis of the organization of action: one concept is the necessity

and the convenience to separate motor cognition from motor control, in a

multireferential framework; the other concept is the identification of different

time frames. The first concept is related to flexibility and the necessity of degrees

of abstraction in the acquisition of skills. Mental reasoning and mental training can

be powerful and effective only if it is possible to abstract from specific environ-

mental conditions that can require different control strategies. The capability of

abstraction is made possible by a body schema that allows to formulate real and

imagined actions in the same format. This logic separation of motor cognition and

motor control implies the identification of three different time frames: (1) learning
time, for acquiring an approximate representation of the model modules; (2) prep-
aration time, for recruiting the necessary body parts, configuring the networks, and
setting up the specific task-dependent components; and (3) real time, for running
the internal simulation of the body model and thus generating control patterns either

for covert or overt actions.

7.2.6 Implementing the Body Schema by Means
of the Passive Motion Paradigm

The PMP (Mussa Ivaldi et al. 1988) was conceived as an extension of the EPH from

motor control to motor cognition. The idea is to think that there are two attractor

dynamics, nested one inside the other, which cooperate for action generation: the

more internal one expresses an endogenous brain activity, related to an internal

model or body schema, and is the one that is responsible for covert movements

(as such, it does not involve body masses, muscle stiffness, and muscle synergies);

the latter attractor dynamics, related to the conventional EPH, exploits the physical

equilibrium states determined by the biomechanics of the body. Our hypothesis is
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that the two dynamical regimes are compatible and integrated in the same structure,

allowing subjects to shift effortlessly from mental simulations of actions to real

actions and back, in agreement with the evidence coming from brain imaging.

The Passive Motion Paradigm is a force field-based mechanism of synergy

formation that allows to coordinate the motion of a redundant set of articulations

while carrying out a task, like reaching or tracking an object. Originally, it was

formulated in order to demonstrate that, when carrying out inverse kinematics with

a highly redundant system, it is not necessary to introduce an explicit optimization

process. The idea can be expressed, in qualitative terms, by means of the animated

puppet metaphor (Fig. 7.2 left panel) or the “flying hand metaphor” (Fig. 7.2 right

panel), suggested by Marc Jeannerod. The key point, in both cases, is that in

reaching movements, it is not the proximal part of the body which is pushing the

end effector to the target but the other way around: the end effector is pulled
towards the target by the force field and in turn pulls the rest of the body.

In mathematical terms, let us represent the intention to reach a target p
!
T by

means of a force field F
!

H, aimed at the target and attached to the hand p
!

H.
2 F
!

H is

mapped into an equivalent torque field T
!
A, acting on all the joints of the arm (vector

q
!
), by means of the transpose Jacobian matrix JB

3: it is worth mentioning that the

Fig. 7.1 Purely reactive system (left panel) vs. cognitive system (right panel)

2 In the simplest case of a linear model, this field is elastic and is characterized by a stiffness matrix

K: F
!

H ¼ K p
!
T � p

!
H

� �
.

3 The Jacobian matrix of the arm is defined as follows: JB ¼ ∂p
!

H

∂q
! . It maps motion and effort in

opposite directions:
dp
!

H

dt ¼ JB
dq
!

dt and T
!
A ¼ JB

TF
!

H.
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torque field has a much higher dimensionality than the force field as a consequence

of the redundancy of the arm. The torque field induces in the body schema a

distribution of incremental joint rotations, modulated by the admittance matrix A.
In turn, the joint rotation pattern is mapped into the corresponding hand motion

pattern, thus updating the attractor force field and closing the computational loop:

dp
!

H

dt
¼ JB

dq
!

dt

F
!
H ¼ K p

!
T � p

!
H

� �
� Γ tð Þ

8>><
>>:

Hand space

 JB  
! JB

T !

dq
!

dt
¼ AT

!
A

T
!
A ¼ JB

TF
!

H

8>><
>>:
Arm joint space

ð7:1Þ

The mathematical description of the PMP summarized by (7.1) can be expressed

graphically by means of the bock diagram of Fig. 7.3. The transient induced by the

activation of the force field is terminated when the target is reached, if it is

reachable. If the target is not reachable, for example, if it is outside the workspace,

the final posture is the one that minimizes the final positioning error. It should be

noted that all the computations in the loop are “well posed” and thus this compu-

tational model is robust and cannot fail. In any case, if the force field remains

stationary during the movement, the acquisition of the new equilibrium state occurs

in an asymptotic manner, and thus reaching time is not controlled. Such time can be

controlled by means of a technique proposed by the group of Michael Zak (1988),

called terminal attractor dynamics, which consists of a suitable nonlinear modula-

tion of the force field, which tends to diverge to infinity when time approaches the

intended deadline. The Γ(t) function or nonlinear time-base generator implements

such modulation. The function can be considered as a kind of “neural pacemaker”

(Barhen et al. 1989), and a biologically plausible representation can be identified in

the cortico-basal ganglia–thalamocortical loop and the well-established role of the

basal ganglia in the initiation and speed control of voluntary movements. In other

words, synergy formation requires a symphonic director, not a mere metronome,

namely, a coordination entity that, in addition to giving the tempo, recruits the

Fig. 7.2 Animated puppet metaphor (left panel). Flying hand metaphor (right panel)
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different sections of the orchestra, modulates the emphasis of the different melodic

pieces, etc.: the gating action of the function is the key element of this symphonic

action.

The Γ(t) function was not present in the original PMP model, and it was added

later on (Mohan and Morasso 2011; Mohan et al. 2009, 2011a, b) when the model

was applied to the iCub robot (Metta et al. 2010). The movements determined by

Fig. 7.3 Top panel: PMP network. The basic kinematic constraint that links the hand and joint

spaces is represented by the Jacobian matrix. Additional constraints, in the hand and joint spaces,

can be represented by means of corresponding force or torque fields. Bottom panel: Articulated
body schema within the PMP framework, to be configured in the preparation time of an action with

a selection of tools, targets, time-base generators, and specific constraints
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the model are described as “passive” in the sense that the animation of a marionette

is passive: the joint rotation patterns are not explicitly programmed but are the

consequences of applying a set of forces to the terminal parts of the marionette. A

similar point of view has been followed by Kutch and Valero-Cuevas (2012) in their

analysis of muscle synergies, but with a different conclusion: they show that the

biomechanics of the limbs constrain musculotendon length changes to a

low-dimensional subspace across all possible movement directions and then pro-

pose that “a modest assumption”—that each muscle is independently instructed to

resist length change—can explain the formation of neuromuscular synergies. The

“modest assumption” of Kutch and Valero-Cuevas (2012) is equivalent to the

“passive motion” above. However, the conclusion by the former authors (namely,

that “muscle synergies will arise without the need to conclude that they are a

product of neural coupling among muscles”) is not the only possible one. The

alternative, exemplified by the PMP hypothesis, is that the neural coupling (or the

organized S-state, borrowing the terminology of Jeannerod 2001) is just the result

of the simulation of the passive motion induced by the internal body model.

The simple PMP network of Fig. 7.3 (top panel) is just an example of the body

schema employed in a simple reaching task. Basically, the model of the body

schema is embedded in the Jacobian matrix, and the model of the task in the

force field generator and the admittance matrix. The network can be easily gener-

alized to whole-body movements, which recruit all the DoFs of the body, can be

expanded in order to integrate manipulated tools, and can be easily specialized to a

variety of tasks, even multiple, concurrent tasks (Fig. 7.3, bottom panel).

In the PMP framework, force fields, admittance, and stiffness matrices do not

refer to physical entities, as happens in the classical EPH framework, but to features

of the attractor dynamics of the internal body model. In particular, the “admittance”

matrix A specifies the degree of participation of each degree of freedom to the

common reaching movement, and thus it can be manipulated according to specific

task requirements.

7.2.7 A Biologically Plausible Implementation of the PMP

A biologically plausible neural architecture that is consistent with the PMP dynam-

ics described by (7.1) or the model of Fig. 7.3 is described in Morasso et al. (1998).

It is formulated in terms of collection of macro-neurons, each of which summarizes

the activity level of a cortical column, and characterized by a nonlinear ordinary

differential equation ODE, gated by the same Γ(t) function defined above. These

neural ensembles can be considered “maps” because the lateral connections corre-

spond to a semi-regular grid. The rate of change of the activity of each macro-

neuron is modulated by three elements: (1) a local inhibitory input; (2) a recurrent

neighboring excitatory input, due to lateral connections inside the map; and

(3) another excitatory input originating from external sources. The model is con-

sistent with what is known about the cytoarchitecture of motor cortical areas.
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In fact, the majority of synapses in the mammalian neocortex originate from

cortical neurons. In particular, lateral connections from superficial pyramids tend

to be characterized by recurrent excitation with other pyramids (about 80 % of the

total), while only about 20 % of the synaptic connections are with inhibitory intra-

columnar interneurons (Nicoll and Blakemore 1993). It is well known that recurrent

excitation in neural networks can implement many interesting functions, like finite-

state automata, associative memories, or spatiotemporal pattern formation

(McCulloch and Pitts 1943; Cohen and Grossberg 1983; Hopfield 1984; Morasso

et al. 1998). On the other hand, inhibitory synaptic connections are an important

part of the intrinsic circuitry of the neocortex, serving to modulate the propagation

of sensory information.

More specifically, the inhibitory local field is expressed by a simple “leaky

integrator.” The recurrent lateral connections are excitatory and approximately

symmetric, as in Hopfield networks, thus making sure that the map is stable, i.e.,

has an attractor dynamics. We also assume that the pattern of lateral connectivity is

acquired through a process of babbling and self-organization, thus encoding the

dimensionality and topology of the sensorimotor space represented by the map. The

distribution of activity throughout the map via the lateral connections is normalized

by a mechanism of gating inhibition that takes into account, for each macro-neuron,

the average activity of its neighbors (Reggia et al. 1992; Morasso et al. 1998).

Finally, the input field, broadcasted to the map by another map or by thalamo-

cortical projections, is channeled to a limited population of macro-neurons via a

mechanism of shunting interaction that induces a cluster of activity in the neural

population around the neuron that resonates with the input field.

The equilibrium states of this network architecture are characterized by clusters

of activation in register with the peak of the external field, i.e., a population code

matching the external input field. After a shift of the input field, corresponding to

the selection of a new target, the combination of symmetric recurrent excitation,

gating inhibition, and shunting interaction induces in the map an attractor dynamics

characterized as follows: first, a diffusion process (which initially flattens the

population code, spreading the activity pattern over a large part of the network)

and, then, a re-sharpening process around the target. The combination of the two

processes can be described as a moving hill, namely, the propagation of the

population code towards the new target.

Suppose now to instantiate two cortical maps, with the same network dynamics

but with different dimensionality and connectivity: for example, a map for

representing hand position and the other for representing arm configuration

(in the case of arm motor control) or a map for representing speech sounds and

the other for representing configurations of the vocal tract (in the case of speech

motor control). Both cases are characterized by a high degree of redundancy, and

thus the latter map will have a larger number of units and a more complex

connectivity than the former one. We may suppose that during a process of self-

supervising learning or Piagetian circular reaction (Kuperstein 1991), it was possi-

ble to acquire two sets of topology-representing intra-connections for the two maps

and, at the same time, a set of interconnection between the maps. As a consequence
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of the redundancy of the system, we may expect that interconnectivity will be

“many to one,” i.e., each neuron of the hand map will be connected to many neurons

of the arm map, thus representing in a distributed manner the “null-space” of the

kinematic transformation between the two spaces.

The external field acting on each map is a combination of a bottom-up external

input and an input coming from the cross-connection of the two maps. If no external

input is provided, the two maps excite each other, via the two corresponding

population codes, representing, for example, the current configuration of the arm

and the corresponding position of the hand. Starting from this equilibrium state, if

an external input is activated in the hand map, identifying a target position, then an

overall dynamics will be induced in both maps by spreading activation via inter-

and intra-connections until the population code of the hand settles in the target

positions and the population code of the arm in one of the many corresponding arm

configurations. In principle, this distributed architecture can be extended, up to a

full-body representation, by including cortical maps of different body parts as well

as cortical representations of manipulated tools (Maravita and Iriki 2004).

The “universal” gating action of the Γ(t) function is critical for making sure that

the multiple population codes in a whole-body cortical architecture remain consis-

tent throughout the overall transient from one equilibrium condition to a new one. It

can be considered as a deadline enforcing mechanism, and it has been conceived

originally for attributing terminal attractor dynamics to associative memories of

large size, namely, for assuring that the equilibrium state is achieved in a finite time,

independent of the network size and topology. This kind of nonlinear, broadcasted

gating action is generally appropriate for coordinating the timing in large-scale,

distributed systems, such as different cortical maps. Moreover, the computational

necessity of guaranteeing ordinal and temporal structure in complex biological or

artificial organisms is supported by recent behavioral experiments (Kornysheva

et al. 2013) that suggest the existence of independent ordinal and temporal struc-

tures and advocate a nonlinear multiplicative neural interaction of temporal and

ordinal signals in the production of motor patterns.

7.2.8 Separating Motor Control from Motor Cognition
and Integrating Them via the Body Schema

Figure 7.1 (right panel) illustrates the concept that the body schema can be consi-

dered as an internal model which serves as a middleware between the covert virtual

movements generated by a motor cognitive machinery and the overt movements

generated by the motor controller. In the simplest case (typically used by iCub as a

default control mode), the covert movements provide reference trajectories for all

the DoFs which are then controlled as a bunch of independent PD-controlled

servomechanisms. However, this may not be appropriate in a number of significant

situations, in particular in the case of unstable tasks.
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An example is whole-body reaching while standing. A biomimetic approach,

based on PMP, for synergy formation of whole-body movements in humanoid

robots is described by Morasso et al. (2010). It is supposed to combine a double

task: (1) a focal task (reaching or approaching as much as possible a target in 3D

space) and (2) a postural task (keeping the vertical projection of the center of mass

inside the support base of the standing body). The synergy formation mechanism

uses two force fields applied to the body schema: one linked to the hands for the

focal part and the other linked to the pelvis for the postural part, thus implementing

a hip strategy of stabilization. Remarkably, the simulated patterns generated by the

model are consistent with distinctive aspects of human behavior for this kind of

task, namely, the synchronized velocity peaks of the reaching hand and the forward

shift of the center of mass. However, this PMP-based mechanism is massless and is

not yet a control system because it does not provide specific stabilization signals of

the inverted pendulum which, at least approximately, represents the standing body.

The intrinsic instability of the inverted pendulum model is due to the fact that the

rate of growth of the gravity-related toppling torque is greater than the stiffness of

the critical joint involved in the stabilization of the standing body, namely, the

ankle. Therefore, a controller is needed for providing ankle torque control signals

that stabilize the inverted pendulum. A continuous-time PD feedback controller

applied to the ankle does not work because the delay of the feedback signals (sway

angle and sway speed) becomes itself a source of instability. However, such delay-

induced instability can be avoided by means of an intermittent controller (Asai

et al. 2009), which closes the loop according to a decision mechanism based on the

analysis of the trajectories of the inverted pendulum in the phase space: this

mechanism achieves bounded stability, consistent with the recorded sway move-

ments of the standing body, in a robust way. A recent paper (Morasso et al. 2013)

demonstrates the feasibility of extending the intermittent controller from quiet

standing to dynamic standing. It integrates in a bidirectional manner the PMP

synergy formation mechanism, which generates time-varying reference joint rota-

tions, with the intermittent controller which switches on/off the feedback control

law according to the current state of the pendulum. In other situations, as in

grabbing/pushing in which there is a physical interaction, the control part of the

synergy might be more concerned with a modulation of the end-effector stiffness, in

order to take into account task-dependent features like fragility of the manipulated

objects. In any case, stiffness modulation requires, as a prerequisite, the selection

and real-time adjustment of appropriate body postures that can be naturally pro-

vided by the animated body schema.
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7.3 Beyond Embodiment: Building a Brain to Understand

the Brain

In the first part of this chapter, we summarized some concepts about the necessity

and usefulness of embodiment and body schema as basic building blocks in the

process of building a cognitive architecture of a humanoid robot like iCub. How-

ever this is only a kind of preliminary groundwork, and the actual construction is an

exciting work in progress. As a matter of fact, our ongoing adventure to build a

cognitive architecture for iCub in many ways is linked to the three apparently

disparate citations above, namely, the power of understanding fundamental princi-

ples through a model building approach, which is essentially decentralized, local to

global, nonlinear, non-digital: smooth flow through time and space. All of this

relates to cumulative learning and organization of memories in our brain as well as

in iCub cognitive system. Indeed our own individual experiences play a fundamen-

tal role in leading us to exhibit numerous instances of creativity, rationality, and

irrationality in our behaviors. Use of “experience” to go “beyond experience” is

important simply because we all inhabit a continuously changing world where

neither everything can be known nor can everything be experienced. In order to

succeed and ultimately survive, diverse “chunks of knowledge” emerging from

one’s past experiences have to be integrated and exploited flexibly in the context of

the present state of affairs to ensure smooth realization of goals. How the brain

achieves such diversity in control is a central challenge facing both neuroscience

and cognitive robotics today.

Simply put, beyond a point a software programmer cannot travel the journey of a

cognitive robot. Instead, like natural cognitive agents, cognitive robots must also be

endowed with mechanisms that enable them to efficiently organize their sensori-

motor experiences into their memories, remember and exploit them effectively

when needed to realize their goals, and, at the same time, keep learning new things.

Enabling them to do so presents a unique opportunity to emulate the gradual

process of infant development and investigate the underlying interplay between

multiple sensory, motor, and cognitive processes from the perspective of an inte-

grated system that perceives, acts, learns, remembers, forgets, reasons, makes

mistakes, introspects, etc. To this effect, even simple experiments with a humanoid

like iCub offer us an exciting medium to “build a brain to understand the brain” and

contemplate numerous open questions related to the emergence of embodied

cognition: how do structures of bodily experience gradually “work their way up”

to form abstract patterns of inferences? How do playful interactions between the

body and the world sculpt the memories of a cumulative learning robot? When and

how do mechanisms related to abstraction, consolidation, and forgetting play a role

in shaping cumulative learning and sensorimotor development? What is the role of

the teacher in minimizing “blind” trial and error exploration and motivating and

influencing the developmental curve? How do all these questions, phrased in the

context of a gradually learning and developing humanoid, relate to emerging trends

in neuroscience? And finally, to which extent this kind of “cognitive biomimetism”
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is effective in shaping humanlike capabilities in a humanoid robot? We are cur-

rently investigating these fundamental issues with the help of numerous playful

experiments with iCub that attempt to achieve cumulative development of proce-

dural, semantic, and episodic memories and the parallel development of a brain-

guided computational framework to organize and creatively exploit such learned

knowledge for the realization of goals.

In general, after the tryst with GOFAI, most current research in the field of

cognitive developmental robotics appreciates the fact that “sensorimotor experi-

ence precedes representation” and cognition is gradually bootstrapped through a

cumulative process of learning by interaction (physical and social) within the zone

of proximal development (Vygotsky 1978) of the agent. This approach indeed has

roots in Wiener’s cybernetics (1948), Varela and Maturana’s autopoiesis (1974),

Chiel and Beer’s neuroethology (1997), Clark’s situatedness (1997), Hesslow’s

simulation hypothesis (Hesslow 2002; Hesslow and Jirenhed 2007), and

Thompson’s enactive cognition (2007). The obvious reason to pursue this path is

because it is impossible to predict and program at design time every possible

situation in every time instance to which an artifact may be subjected to in the

future. Straight robot programming approaches work for simple machines

performing targeted functions but certainly not for general-purpose robotic com-

panions envisaged to interact with humans in unstructured environments.

Complementing the extrinsic application of specific value, the embodied/enactive

approach is also relevant from an intrinsic viewpoint of understanding our own

selves—understanding how interactions between body and the brain shape the mind

and shape action and reason. This is because in addition to the range of direct

problems typical of conventional physics, which involve computing effects of

forces on objects, brains of animals have also to deal with inverse, typically

ill-posed, problems of learning, reasoning, and choosing actions that would enable

realization of one’s goals and hence ultimately survive. Strikingly, many of the

inverse problems faced by the brain to learn, reason, and generate goal-directed

behavior, together with the ability to make predictions inherent with the solution of

direct problems, are indeed analogous to the ones roboticists must solve to make

their robots act cognitively in the real world. At the same time, it is only fair to say

that in spite of extensive research scattered across multiple scientific disciplines and

prevalence of numerous machine learning techniques, the present artificial agents

still lack much of the resourcefulness, purposefulness, flexibility, and adaptability

that biological agents so effortlessly exhibit. Certainly, this points towards the need

to develop novel computational frameworks that go beyond the state of the art and

endow cognitive agents with the capability to learn cumulatively and use past

experience effectively “to connect the dots” when faced with novel situations.

Looking at the incessant loop of gaining experience and using experience,

typical of biological species that exhibit some form of cognition, learning and

reasoning can be seen as foreground and background alternating each other as

intricately depicted in the artistic creations of Escher. In an intriguing work during

the early days of embodied/enactive cognition, Mark Johnson (1987) playfully

remarked that “we are animals but we are also rational animals,” emphasizing the
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fact that, like learning, the structure of reasoning and inference also does not

transcend the structure of bodily experience. The centrality of embodiment directly

influences “what” and “how” things can be meaningful to us, the ways in which our

understanding of the world is gradually bootstrapped by experience and the ways in

which we reason about them. In this essence, we believe that for cognitive robots

foreseen to operate in open-ended unstructured environments, learning and reason-

ing must cumulatively drive each other in a closed loop: more learning leading to

better reasoning and inconsistencies in reasoning driving new learning. In neural

computation, this implies that part of the cortical substrates activated during

perceptual and motor learning (i.e., when an agent gains experience) are also

activated when an agent reasons and simulates the causal consequences of its

actions. While resonance between top-down and bottom-up information flows is a

measure of the quality of learning, dissonance is the stepping stone to novelty

detection for gaining more experience and learning further. Such neural reuse also

makes sense considering the fact that brain is a product of evolution, meant to

support the survival of a species in its natural environments, and importantly

operates under constraints of space, time, and energy. A wealth of emerging

evidence from neuroscience substantiates this fact (see Gallese and Sinigaglia

2011; Grafton 2009; Martin 2009; Bressler and Menon 2010; Hesslow and Jirenhed

2007 for recent reviews). We believe that this aspect must be an essential design

feature in future cognitive robots that have any chance to survive, cooperate, and

assist humans in the real world. While emerging results from functional imaging

and behavioral studies may serve as a guiding light, there is still an urgent need to

also focus on “cognitive computation” and look deeper into the underlying com-

putational principles in order to create artificial cognitive systems that can both be

“practically useful” and in turn shed deeper insights into the ongoing “neural

computation” in the brain. In this context, building up on an intriguing review a

decade back by Germund Hesslow (2002), we believe that computational architec-

tures driving cognitive robots must include the three following basic building

blocks that form the core of the embodied simulation hypothesis:

1. Simulation of action through animation of the PMP-based body schema

This building block was discussed in detail in the Background section. In general

one may ask why does a cognitive robot like iCub need a body schema. Simply

put, for the same reason a human or a chimp needs it: without one, it would be

unable to use its “complex body,” take advantage of it, and ultimately survive. In

general, for an organism with a complex body inhabiting an unstructured world,

the purpose of “action” is not just restricted to shaping motor output to generate

movement but also to provide the self with information on the feasibility,

consequence, and understanding of “potential actions” (which could lead to

realization of “goals”). We already suggested the “iceberg metaphor” to explain

this state of affairs; by adding to it, we should say that there must be continuity

between what is above and what is below the surface: the “link or the

middleware,” we suggest, is the body schema mechanism. We note here that

until recently the issue of body schema has not been very popular in cognitive
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robotics in comparison to the concept of embodiment. These are not the same

things. If you have a body schema, you also have embodiment but not the other

way around. Vernon et al. (2010) in their discussion on a roadmap for cognitive

development in humanoid robots present a catalogue of cognitive architectures,

but in none of them the concept of body schema is a key element. However,

emerging trends in neuroscience act as a motivating force to revisit old ideas like

synergy formation, EPH, and body schema and reuse them in a larger context to

arrive at a shared computational/neural basis for “execution, imagination, and

understanding” of action in humans and humanoids.

2. Simulation of perception and distributed organization of semantic memory

Imagining to perceive something is similar to actually perceive it, only differ-

ence being that the perceptual activity is generated top-down rather than by

environmental stimuli. While this perspective has been emphasized in the

reviews of Hesslow (2002, 2007) and Grush (2004), among others, more recent

developments on the organization of semantic knowledge in the brain (see

Patterson et al. 2007; Martin 2007, 2009; Martin et al. 2011; Damasio 2010)

provide further insights that help to constrain computational architectures for

cognitive agents. The main finding from these studies is that conceptual infor-

mation is grounded in a distributed fashion in “property-specific” cortical net-

works that directly support perception and action. It is also established that

“retrieval” or reactivation of the neural representation can be triggered from

partial cues coming from multiple modalities: for example, the sound of a

hammer retro-activates its shape representation (Meyer and Damasio 2009),

and presentation of a real object or a 2D picture of it can both activate the

complete network associated with the object. The results indicate that while

there is a fine level of “functional segregation” in the higher-level cortical areas

processing sensorimotor information, there is also an underlying cortical dynam-

ics that facilitates cross-modal, top-down, and bottom-up activation of these

areas. “Higher level” needs to be emphasized because there is reason to believe

that both early stages of perception and late stages of action should not be

involved in embodied simulation of action and perception, in order to keep a

distinction between overt and covert actions, which we deem important for

purposive reasoning: there is evidence of this distinction both from motor

(Desmurget and Sirigu 2009) and perceptual studies (Martin 2009).

3. Global integration through small world organization From a computational

perspective, in a large-scale complex system like the brain, efficient integrative

mechanisms require a number of organizational properties, such as minimization

of the number of processing steps, efficient wiring for minimizing brain volumes

and metabolic cost in the transmission of information, and synchronization of

neural processes in order to achieve pattern completion and conflict resolution.

Recent developments in the fields of network theory (Barabási 2012, 2003) and

connectomics (Sporns 2013) provide useful insights in this direction. The point

of intersection is the property of “small worldness” now found to be prevalent in

many large-scale networks. In simple terms, “small worlds” are complex sys-

tems where individual members form tightly knit local communities,
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characterized by dense clustering and very short connection lengths. Since the

seminal works of Watts and Strogatz (1998) and Barabási and Albert (1999), it is

now established that several complex systems like social networks, transporta-

tion networks, power grids, connectivity of the Internet, gene networks, food

webs, and patterns in sexually transmitted diseases, among several others,

exhibit the “small world” property. Emerging evidence from the analysis of

large-scale architecture of the cerebral cortex (Hagmann et al. 2008; Sporns

et al. 2002; Sporns 2011, 2013) using techniques like Diffusion Tensor Imaging

substantiates the fact that cortical networks of the brain exhibit such small world

property. These studies suggest existence of a small set of “hubs” (highly

connected cortical patches) that closely interact to facilitate swift cross-modal,

top-down, and bottom-up interactions between subnetworks involved in learn-

ing, simulating, and representing various sensorimotor information.

It is also worth to highlight that the studies mentioned above, about the simula-

tion of perception and action, also point towards existence of few set of hubs that

facilitate both “integration and differentiation” (Patterson et al 2007; Martin 2009;

Damasio 2010). Further, with the recent discovery of the default mode network

(DMN) in the brain (Buckner and Carroll 2007; Suddendorf et al. 2009; Buckner

et al 2008; Bressler and Menon 2010; Addis and Schacter 2012; Addis et al 2009;

Hassabis and Maguire 2011; Welberg 2012), it is now also known that a core

network of “highly connected” areas is consistently activated when subjects per-

form diverse cognitive functions like recalling past experiences, simulating possi-

ble future events (or prospection) and planning possible actions, and interpreting

thoughts and perspectives of other individuals. Recently a homologous network for

DMN was also discovered in rats (Lu et al. 2012) further supporting the hypothesis

that the structure of DMN was both retained and further enhanced during evolution.

In addition to natural systems, these findings provide crucial insights towards

creating brain-guided computational architectures that can enhance the survival

and productivity of artificial systems beyond the state of the art (e.g., robotic

assistants supporting humans in numerous application domains). Figure 7.4 pre-

sents a schematic illustration of the recent developments in the fields of neurosci-

ence that we plan to integrate in the cognitive architecture of the iCub.

7.3.1 Organization of a Procedural Memory from
“Fast, Green, Embodied, Cumulative Learning”

We believe that central to the issue of procedural memory is the capability of

humans and cognitive animals to master the use of tools. In general, the essence of

“tool use” lies in our gradual progression from learning to act “on” objects to

learning to act “with” objects in ways to counteract limitations of “perceptions,

actions, and movements” imposed by our bodies. At the same time, to learn both

“cumulatively” and “swiftly,” a cognitive agent must be able to efficiently integrate
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multiple streams of information that aid the learning process itself. Most important

among them are social interaction (e.g., imitating a teacher’s demonstration),

physical interaction (or practice), and “recycling” previously acquired motor

knowledge (experience). On the other hand, from the neuroscience perspective,

there has been resounding evidence substantiating the fact that action “generation

and observation” share underlying functional networks in the brain, and experi-

ments related to “tool use” learning in animals clearly indicate the fact that the a

learned “tool” during coordination becomes a part of the acting “body schema” and

is coded in the motor system as if it were an artificial hand able to interact with the

external objects, exactly as the natural hand is able to do.

For the development of a “motor vocabulary” and a “procedural memory” for

iCub, we took into account the following main requirements:

1. The need to learn “fast” and “green,” by combining multiple learning streams

(social interaction, exploration, recycling of past motor experience);

2. The need to arrive at a shared computational basis for “execution, perception,

imagination, and understanding” of action;

3. The need to arrive at general representational framework for motor action

generation and skill learning that firstly blurs the distinction between body and

Fig. 7.4 Schematic illustration of the recent developments in the fields of neuroscience that we

plan to integrate in the cognitive architecture for iCub
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tool and secondly supports both “task-specific” compositionality and “task-

independent” motor knowledge reuse.

Importantly, expanding the framework to incorporate “skill learning,” “tool

use,” and “motor knowledge recycling” led further towards the incorporation of

several novel ideas emerging from brain science. Looking from the perspective of

the brain, the straightforward advantage of learning one motor skill in an “abstract”

way is that it unlocks the implicit potential to “perceive, mimic, and begin to

perform” several other skills (which share a similar structure). Our working

hypothesis was that “shape of movement” could be the abstract feature using

which motor vocabulary can be efficiently composed and inversely “stored” as a

component of the procedural memory. We observed that a wide range of human

actions result in formation of trajectories that ultimately result in similar “shape”

representations. For example, drawing a circle, driving a steering wheel, uncorking,

winding, cycling, stirring, etc. are actions that have “circularity” as invariant in

them. If we teach a humanoid robot to perceive and synthesize “shapes” of

movements (instead of motion trajectories), we can endow then with the powerful

capability to “compose and recycle” the previously acquired motor knowledge to

swiftly learn a wide range of other motor skills. This led to the development of a

general motor skill learning architecture based on the PMP framework. The value

of this architecture was tested by showing how motor knowledge acquired by iCub

while learning to draw (skill 1: Mohan et al. 2011a) could be systematically

recycled in a task of learning the bimanual control of a toy crane as a tool to

“pick up” otherwise unreachable objects in the environment (skill 2: Mohan and

Morasso 2012). The underlying mechanism is indeed quite general and can be

applied to acquire a wide range of skilled actions in a similar manner.

Figure 7.5 summarizes the central building blocks and high-level information

flows that are crucial for constructing a “reusable” and “growing” motor vocabulary

and procedural memory in cumulatively learning robots. Three streams of learning

are integrated into the architecture: (1) learning through teacher’s demonstration

(information flow in black arrow), (2) learning through physical interaction (blue

arrow), and (3) learning through motor imagery (loop 1–5). The imitation loop

initiates with the teacher’s demonstration and ends with iCub reproducing the

observed action. The motor imagery loop is a subpart of the imitation loop, the

only difference being that the motor commands synthesized by the PMP-based

forward/inverse model are not transmitted to the actuators. This loop hence allows

iCub to internally simulate a range of motor actions and only execute the ones that

are promising, given the task and the context.
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7.4 Work in Progress: Playful Experiments with iCub

for Organizing Episodic and Semantic Memory

If we focus only on learning specific tasks, embodied procedural memory is

sufficient to drive learning and action generation. However, many questions remain

unanswered if we stick to this framework. Let us list a few of them, for summariz-

ing the range of relevant issues:

• How do structures of bodily experience gradually “work their way up” to form

abstract patterns of inferences?

• How do we bridge the gap from task-specific “sense” to task-independent

“common sense”?

• How do playful interactions between the body and the world sculpt the memo-

ries of a cumulatively learning agent?

• When and how do mechanisms related to abstraction, consolidation, and forget-

ting play a role in cumulative learning?

• What is the specific influence of a teacher in minimizing exploration, moti-

vating, and shaping the developmental curve?

In addition to procedural memory, what we need is semantic and episodic

memory (Tulving 1972, 2002) in order to feed in an integrated and bidirectional

manner the twin processes of reasoning and learning: more learning driving better

reasoning and inconsistencies in reasoning driving new learning. In order to address

Fig. 7.5 Motor skill learning and action generation architecture for iCub: building blocks and

information flows
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these problems in the robotic field, it is useful to take inspiration from studies in

animal cognition:

• Causal and spatial reasoning, namely, identifying useful objects in the environ-

ment that could be exploited, as tools, in the context of the otherwise

unrealizable goal.

• Trap tube paradigm, namely, the problem of recovering a piece of food, stored in

a transparent tube, by means of a sticklike object of sufficient length, while

avoiding a trap in the tube.

• Tool making: Consider the behavior of “Betty, the Caledonian crow” (Weir

et al. 2002; Emery and Clayton 2004) when she faced the problem of extracting

a food basket from the bottom of a transparent vertical tube and managed to bend

a piece of metallic wire in such a way to reach and pick up the basket.

Figure 7.6 shows iCub engaged in different kinds of scenarios. In particular, in

these scenarios iCub must learn to push. Why is pushing interesting? As a matter of

fact, this skill has been investigated extensively in studies related to understanding

of “physical causality” in primates and infants (Visalberghi and Tomasello 1997;

Whiten et al 2009; Addessi et al. 2008). It is also known from these studies on

animal behavior that different species are different levels of understanding of the

causality related to this task. In addition to the multiple utilities of the “push/pull”

action itself in the context of assembly operations, what makes it significant is the

sheer range of physical concepts that have to be “learned” and “abstracted” in order

to execute this action successfully in diverse environmental conditions. For exam-

ple, it has to be learned that contact is necessary to push, that object properties

influence “pushability” (balls roll faster than cubes and it does not matter what is

the color of the ball or the cube), that pushing objects gives rise to path of motion in

specific directions (the inverse applies for goal-directed pushing), that pushing can

be used to support grasping and bring objects to proximity (while working on

assembly tasks), and that there can be counterforces that block the pushed object

(similar to a goal keeper in football). The requirement to capture/learn such a wide

range of physical concepts through “playful interactions” of the baby humanoid

with different objects makes this task both interesting and challenging.

Other paradigmatic scenarios can be envisaged, in order to engage iCub in

significant goal-directed activities. One of them is assembling the tallest possible
stack from a set of available objects/toys. This scenario is useful for exploring the

computational architecture necessary to enable the robot to efficiently organize and

use its own episodic memories related to its various experiences of interacting with

different objects, all channelized towards achieving the goal of building the tallest

possible stack. Learning takes place cumulatively with the robot playing with

different combinations of objects (some previously experienced, some novel) and

it goes on in an open-ended fashion. By incrementally exploring and building stacks

with various objects, the robot has to learn about their physical properties and

relations among different objects in the context of creating the tallest stack. Since

the solution itself depends on what objects are available in the “now,” to be

successful multiple episodes of past experiences have to be remembered and
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integrated in the context of the present. Hence, the robot is continuously pushed to

both exploit “what it knows” from its past experiences in the novel situations and at

the same time learn by exploring novel objects, remember its own mistakes, and

perform better next time.

7.4.1 The Darwin Perception–Action Loop

Darwin is an EU project whose principal goal is the development and validation of

a cognitive architecture to control action in the generation of assembly tasks.

Figure 7.7 shows a block diagram of how the lower-level perception–action-related

information is organized. At the bottom is the Darwin sensory layer that includes

the sensors, associated communication protocols, and algorithms to analyze prop-

erties of the objects, such as color, shape, and size. Word information is an

additional input coming from the teacher either to issue user goals or interact

with the robot. Results of perceptual analysis activate various neural maps

(property-specific SOM’s in layer 1, provincial hubs) ultimately leading to a

distributed representation of the perceived object in the connector hub (top-level

object map). These self-organizing maps are trained using standard techniques

(Kohonen 1995; Fritzke 1995), and more details with experimental results can be

found in Mohan et al. (2013). An interesting aspect of such kind of organization is

that as we move upwards in the hierarchy, information becomes more and more

integrated and multimodal, and as we move downwards, information is more and

more differentiated to the level of perceived properties. The connectivity between

hubs and property-specific maps is essentially bidirectional, hence allowing infor-

mation to move “top-down, bottom-up, or in cross-modal fashion.” For example, as

illustrated in Mohan et al. (2013), when the robot is issued the goal “grasp a red

container” (a new combination of known words describing an object the robot has

not encountered before), bottom-up activity in the word map starts spreading

through the provincial hub leading to anticipatory top-down activations in the

neural maps processing color and shape information. If such top-down activation

Fig. 7.6 Playful scenarios for iCub to learn and reason
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Fig. 7.7 Action–perception loop. Top panel: Shows how lower-level sensorimotor information is

organized and the main subsystems involved in the “identify–localize–reach–grasp” loop used to

generate primitive actions, in the context of creating the tallest possible stack. At the bottom is the

sensory layer that includes the sensors, early visual processing, and associated lower-level

communication protocols. Results of perceptual analysis activate various property-specific neural

maps (property-specific SOM’s in layer 1, provincial hubs) ultimately leading to a distributed

representation of the perceived object in the connector hub. Hubs perform the role of integration

between modalities and enable “top-down, bottom-up, and cross-modal” flow of neural activity.

The abstract layer forms the “connector hub” in the action space and consists of single neurons

coding for different actions at an abstract level. Note that these single neurons do not code for the

action itself but instead have the capability to trigger the complete network responsible for

generating the plan to execute the action in the context of the present environment. Finally all

plans have to be executed by coordinating the body. This is accomplished by iCub action

generation system that decomposes the plans to the level of motor commands to be transmitted

to the actuators. Bottom panel: Some snapshots of the working loop

226 V. Mohan et al.



resonates with the concurrent bottom-up activation (through the perceptual stream),

this is sufficient to lead to the inference that the novel object being perceived is most

probably the one the user is requested to grab (Mohan et al. 2013).

This kind of property-specific organization and global integration through hubs

is in line with emerging results from neuroscience (van den Heuvel and Sporns

2013; Martin 2009; Meyer and Damasio 2009) as depicted in Fig. 7.3. It is also

worth remarking that two important features are made possible by this kind of

architecture:

1. The bottom-up processing leads to a distributed representation of the perceived

objects (in relation to its perceptual properties color, shape, size) in the object

connector hub that identifies the object (in other words coding for “what is it”).

2. Due to reciprocal connectivity between the hubs and property-specific maps, it

becomes possible to go beyond “object–action” and learn things at the level of

“property–action” too: in our embodied framework, “actions” are mediated

through the “body” and directed towards “objects” in the environment,

according to “tasks.”

Playful interactions with objects give rise to sensorimotor experience, learning,

and ability to reason in the future. Thus there is the need to connect “object,”

“action,” and the “body.” Note that there is a subtle separation between represen-

tation of actions at an abstract level (“what all can be done with an object/tool”) and

the memories related to the action and its consequences (“how to do”). While the

former relates to the “affordances” of an object, the latter relates to memories of

motor skills, sensorimotor consequences, and anticipated rewards in relation to the

goal. The abstract layer forms the “connector hub” and consists of single neurons

coding for different action goals like reach, grasp, push, stack, use of different tools,

etc. and grows with time as new skills are learned. Single neurons in the connector

hub in turn have the capability to trigger the subsystems that hold (procedural,

semantic, and episodic) knowledge related to the action (and other actions that may

participate as subcomponents). In this sense neurons in the top-level “action

connector hub” are similar to “canonical neurons” found in the premotor cortex

(Murata et al 1997) that are activated at the sight of objects to which specific actions

are applicable. At the same time the detailed knowledge itself is learned/

represented in distributed cortical networks which are activated by the action goal

(may also involve other sub-actions and sensorimotor memories related to them).

7.4.2 Learning to Build the Tallest Stack Given a Random
Set of Objects to Play with

While building the tallest stack, the robot is allowed to explore gradually with a

limited set of objects (two at a time, then add a new object, further add another new

object, present them in different combinations). The role of the teacher is important
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as he/she gradually helps the developmental curve, without directly suggesting the

solution, but creating situations that can aid new learning, contradictions, and

abstractions. At the same time, this scenario is used to explore the organization

and flexible use of episodic memory of the robot. The main contents of the episodic

memory for this scenario were identified as the temporal order of the robot’s

“action” on objects and the final reward received by the user. At the same time,

the activations in the neurons directly correspond to activations in the “object hubs”

and “action hubs” that were active also during explorative learning. For the stacking

scenario (depicted in Fig. 7.8), let us consider a very small patch of a simulated

neocortex, consisting of 1,000 pyramidal cells. For simplicity in visualization, the

1,000 neurons are organized in a sheetlike structure with 20 rows each containing

50 neurons. Every row may be thought as an event in time (related to object, action,

or reward) and the complete memory as an episode of experience (e.g., picking a

cylinder and placing it on a mushroom and getting a null reward from the user and

vice versa).

This neural network consisting of a sheet of 1,000 pyramidal cells acts as an

auto-associative memory that builds up on a recent excitatory–inhibitory neural

network proposed by Hopfield (2008). So next time the robot perceives a mushroom

(through activations in the color and shape maps), the partial cue is sufficient to

recall its past experiences with mushroom (e.g., placing a cylinder on top of it and

getting a reward of 0 or placing it on top of the cylinder that was more rewarding).

The right panel shows what is “remembered” when these objects are encountered in

the future. The neural map (shown in green) depicts the activations in the object

connector hub due to the result of bottom-up perception (case 1 only green

mushroom and case 2 both mushroom and cylinder). Note that, under such circum-

stances, the anticipated reward can be used to trigger competition between “remem-

bered episodic experiences” in a way that all memories “compete to survive”:

survival based on their capability to reenact their plans once again through

the body.

7.4.2.1 Interplay Between Episodic Memory and Abstraction

Colors of objects do not affect the way they move when they are used to create the

tallest stack. Can this information be abstracted through playful explorative learn-

ing and recall of such past experiences? Suppose that we started with the robot

playing with green sphere and a yellow cylinder; the teacher now presents the robot

with a blue cylinder and orange sphere. Since activity in object hubs reflects activity

in property-specific maps that drive them, there is partial similarity in the neural

activation of the object hubs; the objects are of different colors but same shapes.

Approximate similarity is enough to generate the partial cue and reconstruct the

related past experiences. When presented with a blue cylinder and orange sphere,

still the past memories of playing with green sphere and a yellow cylinder can be

retrieved successfully. Also note that the partial cue is different and contains less

information as compared to the partial cues. This is because the objects in the world
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that are responsible for the generation of partial cues are also different yet share

some similarity in “shape” but not “color.” Partial cue leads to the retrieval of the

most related and valuable past memory. Even though the robot knows nothing

about stacking blue cylinders and orange spheres, it knows something about yellow

cylinders and green spheres and anticipates full reward. Thus, the most valuable

action sequence from the past is once again executed (now on new objects), and it

turns out that the consequence (in terms of reward received) is the anticipated one.

In summary, the robot can pin down “causally dominant” properties while

experiencing, learning, and remembering in a dynamic “cumulative” fashion.

7.4.2.2 Interplay Between Memory, Prospection, and Creativity

Let us focus again on the task of assembling the tallest possible stack in order to

exemplify the creative use of experiences, showing how novel “action sequences”

emerge out of “multiple” past experiences, without any need of “blind” exploration.

The teacher puts all the objects (cube, small cylinder, large box, and sphere) in front

of the robot, to assemble the tallest stack. Let us suppose that iCub only has isolated

past experiences with any of them. This is interesting because none of the “past

experiences” of the robot has enough information to deal with all these objects at

the same time. The challenge is to “combine” knowledge from multiple experiences

to come up with a “novel action sequence.”

Let us suppose that four episodic memories have been assimilated and stored in

the past: EM1 (cylinder on top of sphere), EM2 (sphere on top of cylinder), EM3

Fig. 7.8 Left panel shows explorative attempts to build the tallest stack using a mushroomlike

object and a regular cylinder. The formed memories related to object and action (rows 1–4) reflect

activation in the neural maps related to object and action; row 5 is the end user reward given to the

robot for its performance. Right panel: shows what is remembered when the robot encounters

objects already explored in the past. The green table depicts the activations in the object connector

hub due to the result of bottom-up perception in two cases: (1) only green mushroom and (2) both

mushroom and cylinder are shown. In both cases, partial cues generated by bottom-up perception

enable the robot to remember its past experiences. In such a computational organization, the

anticipated reward (from past explorative experiences) can be used to trigger competition between

multiple “remembered episodic experiences”
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(cube—cylinder—sphere), and EM4 (large box—cube). iCub is then presented to

the full set of four objects (first snapshot of Fig. 7.9). The activity in the object hub

results in “partial cues” that reconstruct all the four EMs: this is because all the

memories (EM1–EM4) have some information related to a “subset” of objects

present in the world. However, not all EMs may participate to the construction

system, although they compete for controlling the hub (either fully or partially),

exerting a top-down influence of the hub. Note that EM1 and EM2 can be wiped out

in the competition because there are other competitors that know more (in the

context of the present situation). For example, EM3 encodes information related not

just to cylinders and spheres (encoded by EM1 and EM2) but also to cubes and

hence is a stronger competitor. But in addition to EM3, also EM4 manages to stay

alive (it knows something about large objects that none of the other EMs knows

anything about). Further, since EM3 and EM4 know something in common (i.e.,

cubes), they must inhibit each other in order to get control. In this specific example,

it happens that the sum of the activities imposed top-down on the hub by EM3 and

EM4 is equal to the bottom-up activities. This implies that “the complete action

sequence to solve the problem is already available in the isolated past experiences

that won the competition” and this applies always independent of how many past

experiences claim their control over the hub. Either the most valuable action

sequence is directly available (in a single episodic memory), or multiple past

experiences may have to be combined in a novel fashion to generate a new

behavior. In any case, if the net top-down hub activity is equivalent to the

bottom-up hub activity, then even if the environment is “novel,” the robot can

conclude that its past experiences contain enough information to realize the goal, by

optimally combining these past memories into a novel sequence. In summary,

action sequence chunks encoded by EM3 and EM4 enter the construction system,

by singling out the overlapping object cube highlighted in the red box.

Overlap in knowledge between different remembered experiences is advanta-

geous, because it helps to connect them together. The construction system just

employs one simple rule to achieve this: if there are overlaps in knowledge encoded

by different “winning” past experiences, bring them as close as possible. In this

sense, the overlapping element is similar to an intermediate subgoal (a point of

intersection between two different past experiences). After the initial bootstrap

explained above, the construction process goes on as illustrated in Fig. 7.9, by

combining isolated memories of past experiences, in such a way that a novel

sequence emerges: stack the large box at the bottom, then the cube, the small

cylinder on top of the cube, and the sphere on top of the small cylinder and

anticipate full reward for this! Indeed full reward was given!

More advanced scenarios, such as the one depicted in Fig. 7.10, are being

investigated, while following the same fil rouge in order to test and improve the

cognitive architecture.
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7.5 Concluding Remarks

The world we inhabit is an amalgamation of structure and chaos. There are

regularities that could be exploited. Biological or artificial agents, which do this

best, have the greatest chances of survival. Often this attempt to survive involves a

complex interplay between fundamental mechanisms associated with perception,

action learning, memory, abstraction, and prospection that can be investigated in

greater detail even through simple “playful” experiments using an integrated

system like a baby humanoid (incorporated with basic vision, touch, propriocep-

tion, force control, and whole-body coordination). Several experiments related to

motor control, skill learning, and organization of procedural, semantic, and episodic

memory were presented in this chapter to describe the cross talk between these

fundamental processes operating in a “cumulatively” developing cognitive robot.

All of this is organized in multiple interacting subsystems that synergistically come

together in the context of the “goal” executed in the present (sometimes combined

with new explorative interactions). Such interplay plays a fundamental role in

ensuring that not everything needs to be learned and explored and not everything

needs to be memorized (even memories compete to survive in the neural substrate

and get their content reenacted by the actor). The interplay goes on cumulatively,

more learning driving better reasoning and inconsistencies in reasoning driving new

learning. Reenacting this on a baby humanoid often makes us remember the

alternating “foregrounds” and “backgrounds” as intricately depicted in the several

artistic creations of Escher. Simply put, beyond a point a software programmer

cannot travel the journey of a cognitive robot like iCub. Instead, like natural

cognitive agents, they must also be endowed with mechanisms that enable them

to efficiently organize their sensorimotor experiences into their memories, remem-

ber, consolidate, forget, and exploit them effectively “when needed” to realize their

Fig. 7.9 Snapshots of the process of building the tallest stack from an available set of objects by

combining past memories without any trial and error exploration
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goals and, at the same time, keep learning new things. Open-endedness, cumu-

latively and growth of a continuously learning system, and gradual emergence of

generativity/creativity in their behaviors are natural consequences arising out of

such a scheme as different sections in our chapter demonstrate.

In this concluding section, we do not intend to summarize all that has been said

so far but instead quickly relate all this to a very fundamental evolutionary function,

namely, “navigation,” an activity that all living organisms engage in. It is already

developed in a sophisticated way in rats, for example, but much more so in humans,

with plenty of added/recycled value (green learning!). The computational basis of

this added value, at the same time grounded in the biology of the brain and recreated

Fig. 7.10 Advanced Darwin scenarios are set up in a range of playful make and break style

assembly tasks, also incorporating several elements of goal-directed reasoning, inspired by similar

studies in animal and infant cognition
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through playful tasks with iCub, was in fact the main subject of this chapter. In the

discussion, we attempt to present a perspective that creative “goal-directed gener-

ation of behavior itself is navigation” (not in space but in time)!

7.5.1 Traveling in Time vs. Traveling in Space:
The Navigating Rat, a Tool-Making Crow,
and Darwin Architecture

All living organisms “navigate.” There are few exceptions like the sea squirts: after

few days of life, the first thing they do is digesting their own brains for nourishment.

But as the complexity of the body and the environments in which the species had to

survive becomes more complex, their brains also become more and more complex.

A rat navigates for food, can remember places where food is found, and finds a path

to reach it, sometimes involving novel solutions as demonstrated by several studies

on rat navigation. However, with an even more complex body and more complex

environment to survive in, higher-order primates need to navigate not only in

“space” but also in time. Evolution being always constrained by “energy and

space” would have certainly found ways to reorganize the primitive neural sub-

strates engaged in navigating in space already existing in lower-level organisms to

be reused to “navigate in time.”

Indeed the recent discovery of the default mode network of the brain (both in

humans and rats) supports this perspective. There is a wide consensus in the field of

neuroscience that the same network is consistently activated while recalling the past

(Maguire 2001; Rugg et al 2002) and other activities as diverse as simulating the

future (Atance and O’Neill 2001; Addis et al. 2009; Szpunar et al 2007; Schacter

et al 2012), spatial navigation (Burgess et al 2002; Suddendorf 2013; Corballis

2013), social cognition (Raichle et al 2001; Frith and Frith 2010), and perspective

taking (Mason et al 2007). The essence of these findings is that there is evidence in

support of the viewpoint that disparate cognitive functions often treated as distinct

might share common underlying processes.

The Darwin architecture being developed looks at the computational basis of

how such diverse functions can share resources and enable a cognitive robot to

“travel in time” (through its multiple past experiences, the present evolving experi-

ence, and the simulated future consequences) to give rise to intelligent goal-

directed behavior. In this sense, by mimicking the DMN, we have created a

computational framework that enables Darwin robot to travel in time, connect its

multiple past experiences to simulate the future, give rise to novel behaviors in

unforeseen situations, and learn new things in the process. In this context, what we

want to emphasize is that “goal-directed reasoning” is very similar to a path-finding

exercise during spatial navigation, but now in “time” not “space.”

Let us consider this analogy in detail in the context of this chapter. Goals are

distant events in time that have to be reached; past experiences triggered by one’s
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episodic memories give a path in time to reach a future event (which can be

remembered based on partial cues). Frequently the paths in time also encounter

obstacles, i.e., a contradiction between what the robot expects to ensue in time as a

result of its past experience and what is actually happening in the present time.

Clearly this is equivalent to getting lost in space, like a rat trapped in a maze. In the

present context, the robot gets lost in time instead!

Alternative paths have to be found in time by exploration, in analogy with a rat,

engaged in exploring its environment to come up with a new path to its spatial

destination. Several cues in the environment are used to guide such exploration. The

same applies when obstacles are encountered in time! Just like a train that changes

its tracks. Many times there are multiple paths that lead to the same goal, when

energy is used as a mechanism to choose the most efficient strategy (PMP mecha-

nism of Sect. 7.2, for instance, which solves the degrees of freedom problem

elegantly). The same applies also in the context of the energy of a memory.

When we navigate in space, we remember the landmarks. Similarly, events in the

episodic memory are landmarks in time. Landmarks in time can be connected by a

mechanism of resonance. When landmarks are connected in space, we get a new

trajectory to navigate spatially towards the goal. When the dots in time are

connected, novel behaviors may emerge (like the examples in Sect. 7.3).

In sum, our memories represent our past, but they can also be used to simulate

the future (whether it is while navigating in space or navigating in time). Emer-

gence of creativity and novelty in behavior when encountered with a novel situation

is related to the power to “re-invoke” such experiences that otherwise lie dormant in

the neural episodic memory based on the present context, connecting the dots

between such diverse experiences to find a new path in time. Indeed a navigating

rat, a tool-making crow, and iCub share similarities in the way they accomplish

their goals. Of course, it may be tough to understand what is going on in the brain of

Betty reasoning in time or a rat navigating in space by looking at the neural

activations in their brains. But principles can be abstracted from information-rich

biology that can help to both “mimic and create” artifacts that show similar

competencies.

Embodied developmental robotics helps here provide novel insights, as we

computationally attempt to reenact such processes and on the way sometimes

manage to abstract “fundamental principles” involved. The discovery of DNA

was a result of model building by Watson and Crick, of empirical measurements

with X-ray diffraction images by Rosalind Franklin, and the theoretical analysis of

chemical bonds by Wolfgang Pauli. The model building direction is what the

Darwin goal-directed reasoning framework achieves, using principles that are

grounded in the biology of the brain! Of course the discussion does not end here;

these were just simple explorations at the tip of the iceberg! Future efforts will be

directed to go deeper!
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