
Weight-Reducing Hennie Machines

and Their Descriptional Complexity�

Daniel Pr̊uša

Czech Technical University, Faculty of Electrical Engineering,
Karlovo náměst́ı 13, 121 35 Prague 2, Czech Republic

prusapa1@cmp.felk.cvut.cz

Abstract. We present a constructive variant of the Hennie machine. It
is demonstrated how it can facilitate the design of finite-state machines.
We focus on the deterministic version of the model and study its de-
scriptional complexity. The model’s succinctness is compared with com-
mon devices that include the nondeterministic finite automaton, two-way
finite automaton and pebble automaton.

Keywords: Finite automata, two-way automata, Hennie machine,
descriptional complexity.

1 Introduction

Regular languages are naturally defined via finite automata. Various extensions
of this basic model preserve its recognition power (nondeterminism, two-way
movement, use of a pebble). However, measured in the number of states or
transitions, they provide a more economic mean of a language description.

Great attention has been paid to the cost of transformations among the models
[15,8,13,4]. From our point of view, the related studies usually do not cover
automata which, in some restricted way, can rewrite the content of the tape. A
two-way finite automaton with write-once tracks presented by Durak [2] is one
of the few.

A very general representative of rewriting devices we have in mind is a Hen-
nie machine. It is a bounded, single-tape Turing machine performing constantly
many transitions over each tape field, independently on the input’s length. Hen-
nie proved that the machine recognizes only regular languages and also general-
ized this result on any Turing machine working in linear time [6]. Hartmanis later
showed that even time O(n logn) still leads to recognition of regular languages
[5]. Only going beyond this time complexity allows to recognize a non-regular
language.

Generality of the model causes some unpleasant properties. It is undecidable
whether a given Turing machine is a Hennie machine. Moreover, there is no
computable function bounding the blowup in states when transforming to a finite

� The author was supported by the Grant Agency of the Czech Republic under the
project P103/10/0783.

A.-H. Dediu et al. (Eds.): LATA 2014, LNCS 8370, pp. 553–564, 2014.
c© Springer International Publishing Switzerland 2014

554 D. Pr̊uša

automaton. The aim of this paper is to define a reasonable constructive subclass
of deterministic Hennie machines and study its descriptional complexity. To
achieve this, a weight-reducing property is utilized – each transition is required
to lower a weight of the scanned symbol.

A two-dimensional variant of the weight-reducing Hennie machine has already
been introduced in [10]. Relation to other two-dimensional models with respect
to the recognition power was investigated there.

The paper is structured as follows. In the next section we demonstrate that
the possibility of rewriting can greatly facilitate the design of a finite automaton.
Then we define the weight-reducing Hennie machine and compare it with the
original one. Section 4 focuses on the descriptional complexity. The relation to
other automata is studied. The paper closes with a short summary and some
open problems in Section 5.

2 Motivation

Consider a system of objects aligned in a row. The leftmost one is a transmitter
that sends a signal and the rightmost one is a receiver that waits for it. The
signal can be in two states, it is either normal or amplified. The objects between
the transmitter and receiver are of three types: silencer, reflecting silencer and
amplifier. The silencer changes the first amplified signal it receives to normal.
After that it becomes passive and, from that time, it does not influence incoming
signals at all. The reflecting silencer behaves like the silencer, but in addition,
it reflects the first received amplified signal back. Finally, the amplifier changes
a normal signal to amplified, however, a signal (normal or amplified) can pass
trough it only k times. If it passes there k + 1-st time, the amplifier is burned
and the signal is lost.

Now, given such a system, the question is whether a normal signal sent by
the transmitter will get to the receiver. Examples are shown in Figure 1.

r a r s r s a a r

Fig. 1. Two systems composed of amplifiers (a), silencers (s) and reflecting silencers
(r). On the left, the signal passes to the receiver provided that k ≥ 3, on the right,
it returns back to the transmitter. The signal is normal in the dashed parts of the
trajectory and amplified in the solid parts.

Each system is encoded by a string over Σ = {a, r, s}. It is clear that systems
complying with the condition can be recognized by a finite automaton. However,
if we try to design such an automaton, even for k = 3, we find that it is not
entirely easy task, despite the fact there is a deterministic solution with 8 states,
depicted in Figure 2 (one “dead” state is hidden there).

Weight-Reducing Hennie Machines 555

start

s

a

r

s

a

s a

r

s
a

sr

a

a

r

s

s, r

a

Fig. 2. A deterministic finite automaton accepting codes of systems in which the signal
reaches the receiver for k = 3. All the displayed states are accepting. Missing transitions
are heading to a hidden dead state which is rejecting.

One the other hand, it is not difficult to construct a Turing machine that
tracks the signal, marks objects that become inactive and counts in amplifiers
how many times the signal passed trough them. In fact, the machine will be a
Hennie machine. This demonstrates that a usage of tape rewriting could simplify
the design of a finite automaton, by the assumption, we have an automatic
procedure that converts the rewriting device to it.

The following table lists sizes of minimal deterministic finite automata ac-
cepting our systems for greater (odd) values k. It suggests that, in this case, the
dependency is bounded by an exponential function.

k 3 5 7 9 11 13 15
states 8 16 30 56 102 188 346

3 Weight-Reducing Hennie Machines

Given an input string w, a bounded Turing machine M operates on a tape which
initially stores � w �, where �, � are special end markers, not contained in the
working alphabet of M . Whenever the machine reaches � or � it immediately
moves the head back and does not rewrite the end marker. If w is the empty
string, the head scans � in the initial configuration. The computation ends after
performing one transition. A computation is accepting if M finishes in a final
state and rejecting when it is not finite or M terminates due to non-applicability
of any instruction. The language accepted by M is denoted as L(M).

We say that a bounded Turing machine M a is a Hennie machine if there is
a constant k limiting the number of transitions performed over any tape field
during any computation. Let ν(M) denote the smallest such k for M .

Proposition 1 ([6]). If M is a Hennie machine, L(M) is a regular language.

Theorem 2. It is undecidable if a Turing machine T is a Hennie machine.

Proof. The halting problem reduces to the stated question. Assume T has its
working tape unbounded in one direction. Let w be an input and t(w) the length

556 D. Pr̊uša

of the computation of T for w. It is possible to construct a bounded Turing
machine M fulfilling these two conditions.

– If T halts on w, M is a Hennie machine with ν(M) ≤ t(w).

– If T does not halt on w, for any input v such that |v| ≥ |w|, M either does
not halt or it visits the leftmost tape field at least |v| times.

The idea is to take the tape fields storing an input v as the only space available
for M to perform the simulation of T on w. Thus, M memorizes w in states,
writes it on the tape and erases all remaining symbols of v (if |v| < |w|, it halts).
After that it simulates T . If the simulation exceeds the space |v|, M visits the
leftmost tape field |v| times and halts. ��

A weight-reducing Hennie machine is a bounded Turing machine equipped by a
weight function defined on working symbols. A transition has to lower the weight
of the scanned symbol. A formal definition follows.

Definition 3. A weight-reducing Hennie machine is a tuple

M = (Q,Σ, Γ, δ, q0, QF , μ) where

– Q is a finite set of states,

– Γ is a working alphabet,

– Σ ⊆ Γ is an input alphabet,

– q0 ∈ Q is the initial state,

– QF ⊆ Q is a set of final states,

– δ : (Q�QF)× (Γ ∪ {�,�}) → 2Q×(Γ∪{�,�})×{�,0,�} is a transition relation,
with the set of the head movements {�, 0,�},

– μ : Γ → N is a weight function.

Moreover, the following properties are fulfilled:

– (Q,Σ, Γ, δ, q0, QF) is a bounded Turing machine,

– the transition relation is weight-reducing:

for all q, q′∈ Q, d ∈ {�, 0,�}, a, a′∈ Γ : (q′, a′, d)∈δ(q, a) ⇒ μ(a′)<μ(a).

M is deterministic (det-wr Hennie machine) iff |δ(q, a)| ≤ 1 for all q ∈ Q and
a ∈ Γ ∪ {�,�}.
Observe that the weight-reducing property of δ can be easily algorithmically
verified and that ν(M) ≤ |Γ |.
Lemma 4. LetM = (Q,Σ, Γ, δ, q0, QF) be a Hennie machine. There is a weight-
reducing Hennie machine A such that L(A) = L(M) and the working alphabet of
A has no more than (ν(M)+ 1)|Γ | symbols. Moreover, if M is deterministic, then
A is deterministic as well.

Weight-Reducing Hennie Machines 557

Proof. Denote k = ν(M). Define A = (Q,Σ, Γ ′, δ′, q0, QF , μ), where Γ ′ = Σ ∪
(Γ × {1, . . . , k}) and each instruction (q, a) → (q′, a′, d) from δ where a ∈ Γ is
represented in δ′ by the following instruction set:

(q, a) → (q′, (a′, 1) , d) ,
(q, (a, i)) → (q′, (a′, i+ 1) , d) ∀i ∈ {1, . . . , k − 1}.

Finally, define

μ(a) = k + 1 ∀a ∈ Σ,
μ ((a, i)) = k + 1− i ∀(a, i) ∈ Γ × {1, . . . , k} .

It is easy to see that L(A) = L(M) and that every deterministic δ produces
deterministic δ′. ��
When designing a weight-reducing Hennie machine accepting some language L,
it suffices to describe a Hennie machineM accepting L and derive ν(M). ThenM
can be transformed by Lemma 4. This will be applied in constructions presented
in Section 4.

For a Turing machine T , it is natural to count the number of its transitions
to measure the size of its description. It would not make much sense to count
solely states, since each Turing machine has an equivalent with only two active
states [14]. We apply this measure based on transitions also to Hennie machines.

Let τ(T) denote the number of transitions of T . Let Q be the set of states
of T and Γ be its working alphabet. Note that τ(T) = O(|Q|2|Γ |). If T is
deterministic, then τ (T) = O(|Q||Γ |). If a Hennie machine M is transformed by
Lemma 4 to a weight-reducing Hennie machine M ′, then τ (M ′) ≤ ν(M) τ (M).

4 Results on Descriptional Complexity

In this section we give results on trade-offs between a det-wr Hennie machine
and common models including a deterministic finite automaton (1DFA), nonde-
terministic finite automaton (1NFA), their two-way generalizations (2DFA, 2NFA),
alternating finite automaton (1AFA) and deterministic one-pebble automaton.

Theorem 5. There is no recursive function bounding the blowup in transitions
when transforming a deterministic Hennie machine to a 1DFA.

Proof. We utilize busy beaver function S(n), defined as the maximum number
of steps performed by a halting 2-state Turing machine with a binary working
alphabet when started over a blank tape. It is known that S(n) is noncomputable
and grows asymptotically faster than any computable function [11].

For each n > 0, let wn be the string overΣ = {a} of the length S(n). Moreover,
define one-string languages Ln = {wn}. Each Ln is accepted by a Hennie machine
with O(n) states and O(1) working tape symbols. The machine works as follows.
Simulate an n-state busy beaver. Whenever the beaver performs an i-th step,
mark the i-th tape field and return to the original position. Accept if and only
if the simulation marks all the input tape fields and does not attempt to mark
the right-end marker �.

On the other hand, a 1DFA accepting Ln has at least |wn| = S(n) states. ��

558 D. Pr̊uša

The following theorem is implied by results in [6]. We present a simplified proof
for deterministic machines, because the procedure is essential for an automatic
conversion to 1DFA.

Theorem 6. For each n-state, m-working symbol det-wr Hennie machine, there

is a 22
O(m log n)

-state 1DFA accepting the same language.

Proof. Let M = (Q,Σ, Γ, δ, q0, QF , μ) be a det-wr Hennie machine such that
|Q| = n and |Γ | = m. Assume M can never reenter its initial state q0. Moreover,
assume M can reach a final state in QF only by that transition which moves
the head from the right-end marker � to the preceding input field. Any det-wr
Hennie machine can be modified to fulfill these restrictions by adding a constant
number of states and working symbols.

Consider a sequence R = ((r1, d1), . . . , (r�, d�)) where each ri ∈ Q and di ∈
{�, 0,�}. Such a sequence records in which states M performs transitions over
some tape field, possibly including the last state in which M terminates. A pair
(ri, di) says that the i-th transition over the field starts in state ri. Moreover,
di indicates, which head movement precedes reaching ri in the field. We can see
R as a variant of the crossing sequence, however, defined over a tape field, not
over the border between two neighboring fields. Let R be the set of all such
nonempty sequences of length at most m + 1. Since ν(M) ≤ m, this covers all
those sequences emerging during the computation of M .

Construct a 1NFA A with the set of states R. Let A be in a state R =
((r1, d1), . . . , (r�, d�)) and the scanned symbol be a. Define transitions by the
following rules.

– R is initial iff (r1, d1) = (q0, 0). In such a state, A checks if R is consistent
with the behavior of M over the prefix � a.

– If R is not initial, M only checks whether it is consistent with the scanned
symbol a. It is also required that d1 =�, because the field is reached first
time after moving the head there from the left neighboring field.

– The next state R′ ∈ R is nondeterministically guessed. It has to be consistent
with transitions in R that move the A’s head to the right.

– R is accepting iff r� ∈ QF . A can enter such a state only if R is consistent
with the behavior of M over the suffix a �.

A has |R| = ∑m+1
i=1 (3n)i = 2O(m logn) states. If it is transformed to a minimal

1DFA, the desired automaton is obtained. ��
The next step is to prove that the trade-off between a det-wr Hennie machine
and a 1DFA is really double exponential. For n ∈ N, define a language Bn over
{0, 1, $} consisting of strings v1$v2$. . . $vj where j ∈ N, every vi ∈ {0, 1}∗,
|vj | ≤ n and there is � < j such that v� = vj .

Informally, every string in Bn is a sequence of binary substrings which are
separated by the symbol $. Moreover, the last substring is of length at most n
and it is a copy of one of the preceding substrings. For example,

v1$v2$v3$v4$v5$v6 = 11$0101110$011$0011$001$011 ∈ B4

since v3 = v6 and |v6| ≤ 4.

Weight-Reducing Hennie Machines 559

Lemma 7. Every Bn is accepted by a det-wr Hennie machine with O(1) states
and O(n) working symbols.

Proof. Let Σ = {0, 1, $}. To accept Bn, we will construct a det-wr Hennie ma-
chine A with the working alphabet Γ = Σ ∪ {0, 1, $, x, f} × {1, . . . , 2n}. The
numeric part i of each (a, i) ∈ Γ is used to count the number of transitions over
a tape field. In the next description, we omit technical details on it and focus
rather on the role of elements in {0, 1, $, x, f}.

Let w ∈ Σ∗ be an input string. Write it as w = v1$v2$. . . $vj where each vj ∈
{0, 1}∗. Let s = |vj | and vj = a1 . . . as. A iterates trough symbols as, as−1, . . . , a1
and for each of them performs a traversal trough the tape to detect in which
substrings vi the symbol appears at the same position from the back. Specifically,
the first iteration starts by moving the head to the right end of w. Then, as is
memorized in the control unit and replaced on the tape by x. After that, the
head moves leftwards until it scans the left-end marker. Whenever it enters a
new binary substring vj (i.e., it has passed symbol $), it checks if its last symbol
equals as. If so, it is replaced by x, otherwise it is replaced by f (indicating that
the check has failed). When the left-end marker is reached, A moves the head to
the right end of w and starts the next iteration by locating as−1, which is the
first tape field leftwards not marked by x. The initial tape and the outcome of
all iterations are illustrated by the following example.

11$0101110$011$0011$001$011
1x$010111f$01x$001x$00x$01x
xx$01011xf$0xx$00xx$0fx$0xx
xx$0101fxf$xxx$0xxx$xfx$xxx

A accepts w during the last iteration iff there is some v� (� < n) whose all
symbols have been rewritten by x, including one symbol rewritten during the
last iteration (this guaranteers that |v�| = |vn|). In the example above, A accepts
since it rewrites all three symbols in v3, each of them in one of the three iterations.

Finally, if |vj | > n, A terminates and rejects, since it cannot reduce weights
of symbols during the n+ 1-st iteration. ��
Lemma 8. Every 1DFA accepting Bn has at least 22

n

states.

Proof. Encode each subset of {0, 1}n as a sequence of its elements separated by
the symbol $. There are 22

n

such subsets. Let w1 and w2 encode two different
subsets and let u be a binary substring represented in w1 but not in w2 (or
vice versa). Then, w1$u ∈ Bn and w2$u /∈ Bn (or vice versa), hence $u is a
distinguishing extension and, by Myhill-Nerode theorem, each 1DFA accepting
Bn has at least 22

n

states. ��
We use the following proposition to show 2Ω(

√
n) trade-off in transitions when

transforming det-wr Hennie machine to 2NFA.

Proposition 9 ([7]). Let L be a finite language over an unary alphabet accepted
by a 2NFA with n states. The longest string in L has length at most n+ 2.

560 D. Pr̊uša

For n ∈ N, define Un = {a2n} – a one-string language over the unary alphabet
Σ = {a}. Every 2NFA accepting Un has Ω(2n) states.

Lemma 10. There is a O(n)-state, O(n)-working symbol det-wr Hennie ma-
chine accepting Un.

Proof. For n ∈ N, we first construct a deterministic Hennie machineM accepting
Un. It will have O(n) states and the working alphabet Γ = {a, 0, 1}. To process
a given input w ∈ {a}∗, M uses a binary counter of length n. At the beginning,
the counter is represented in the first n tape fields and it is initialized by value
n. The least significant bit is in its leftmost field, see Figure 3(a). To perform the
initialization, M memorizes in states the binary representation of n and fills the
counter in each step accordingly. In the subsequent phase, it repeatedly increases
the counter by one and simultaneously shifts its representation on the tape by
one field to the right (the former leftmost field of the counter is rewritten to a).
This guaranteers that the position of the right end of the counter representation
always equals the counter’s value. Hence, M easily checks if the counter has
been increased to value 2n − 1 just when there is exactly one tape field between
the right end of the counter and the right-end marker �, see Figure 3(b). The
counter’s increment as well as its shift is done by one traversal trough the related
tape fields. This means that ν(M) = O(n), hence, by Lemma 4, M can be
transformed to a det-wr Hennie machine with O(n) states and O(n) working
symbols. ��

1 1 0 a a a a a

n=3
︷ ︸︸ ︷

(a)

a a a a 1 1 1 a

n=3
︷ ︸︸ ︷

(b)

Fig. 3. A binary counter of length n = 3 is used by a det-wr Hennie machine to check
if the input’s length is 2n = 8. It store value 3 at the beginning (a) and value 7 at the
end (b).

The acceptance of a 1NFA relates to the following problem. Given an undirected
graph G = (V,E) and two its vertices s, t, the undirected s-t connectivity prob-
lem (USTCON) is to determine if there is a path between s and t. USTCON is
solvable by a deterministic logarithmic-space algorithm [12]. We utilize this fact
in the proof of the next theorem.

Theorem 11. Let A be an n-state 1NFA working over an input alphabet Σ of
size s = |Σ|. There is a det-wr Hennie machine M accepting L(A), with the
number of transitions polynomial in n and s.

Proof. Let Q be the set of states of A. Without loss of generality, A has one
initial (qI) and one accepting (qA) state. We distinguish two cases by the length
of the input string w ∈ Σ∗.

Weight-Reducing Hennie Machines 561

If |w| ≤ n, M solves the question whether 1NFA A accepts w as an instance
of USTCON problem. The related graph is depicted in Figure 4(a). Each column
corresponds to one tape field and contains a vertex for each state of A. Vertices
are thus pairs (q, p) where q ∈ Q and p ∈ {1, . . . , |w|}. Two vertices are con-
nected by an edge iff they are in neighboring columns and a transition from the
configuration on the left to the configuration on the right is allowed. The input
is accepted iff (qI , 1) and (qA, |w|) are connected. How many states are needed
for M? First, to memorize O(sn2) transitions of A. Second, to provide O(log n)
space required to solve USTCON. This space permits polynomially many (in n)
different configurations, hence polynomially many states of M are sufficient.

1 2 3 4

q1

q2

q3
q4

(a)

1

q1

1 1 0

q2 q3 q4

(b)

Fig. 4. (a) An undirected graph of configurations and transitions induced by a 1NFA
A over an input string of length 4. State q1 is initial, state q2 is accepting. (b) A block
representing states reachable by M when its head scans the third input’s symbol.

If |w| > n, M has enough space to record states reachable by A on the tape.
The tape is split into blocks of length n, with the exception of the last block
whose length is n + (|w| mod n). The i-th field of a block stores a one-bit flag
indicating the reachability of the i-th state of A, see Figure 4(b). Each block is
used only when the simulated head of A is inside the block. When the head of
A leaves the block, M copies the flags to the next one. This ensures that the
number of transitions done by M over a tape field depends only on n (not on
|w|). More precisely, the simulation inside a block is done in time O(n3) since M
carries out three nested cycles – trough fields scanned by A in the block, states
of A marked as reachable and transitions of A. ��
It would be possible to apply a similar approach to the simulation of an n-
state 2NFA A by a det-wr Hennie machine, however, two things will change. The
question of acceptance of A reduces to the directed s-t connectivity problem
(STCON). We know it is solvable by a nondeterministic algorithm in logarithmic
space [9], thus, by Sawitch theorem, deterministically in space O(log2 n). How-
ever, this leads to O(nlog n) different configurations and this amount of states
would be needed by a det-wr Hennie machine. The other thing is that the sim-
ulation of a two-way automaton on inputs w such that |w| > n would require a
different technique.

As an n-state 2NFA can be simulated by a n2-state 1AFA [1], we also cannot
expect an easy cheap simulation of 1AFA by a det-wr Hennie machine.

562 D. Pr̊uša

Nevertheless, we can show that the blowup in transitions is polynomial when
simulating deterministic one-pebble automata.

Theorem 12. Each deterministic one-pebble n-state automaton can be simu-
lated by a det-wr Hennie machine with the number of transitions polynomial
in n.

Proof. Let A be a deterministic one-pebble automaton with the set of states Q
and the input alphabet Σ. We will design a Hennie machine M simulating A.
Throughout the proof, assume that A always halts, i.e., it never goes into a loop.
It will be clear in the end of the construction that all looping computations of
A result in a det-wr Hennie machine which terminates since it scans a symbol
with the lowest weight.

Given an input w ∈ Σ∗. If |w| ≤ n, M simply represents the pebble on the
tape by a marker and simulates A transition by transition. There are

(|Q||w|2)
different configurations of A, thus M finishes in time O(n3), visiting each tape
field at most n|w| = O(n2) times.

If |w| > n, a direct simulation could easily exceed the targeted polynomial
number of transitions performed over a tape field. To handle this, M splits the
input into blocks1 of length n (all blocks except the last one) or n+(|w| mod n)
(the last block) and computes what happens whenever the head of A moves
outside a block B in a state q while the marker is left inside B. A either returns
back in a state fromQ or finishes, thus, two mappings fL, fR : Q → Q×{acc, rej}
are computed for each block: fL determines the outcome when the head crosses
the left border of B, while fR relates to the right border. The constants acc and
rej represent accepting and rejecting by A. An example is given in Figure 5.
Values of both mappings are recorded in B. Its i-th field stores the pair fL(qi)
and fR(qi). There are (n + 2)2 different values of these pairs, required to have
representatives in the working alphabet of M .

1

B1

2

3
4

B2

1

4

Fig. 5. The simulation of a deterministic one-pebble automaton with the set of states
Q = {1, 2, 3, 4} where 4 is a final state. All transitions done after leaving the block B2

without the pebble are displayed for all the states. Mapping fL for B2 is as follows:
fL(1) = 1, fL(2) = 1, fL(3) = acc, fL(4) = acc.

If all mappings are stored, M performs the simulation of A transition by
transition inside blocks as well as in cases when A moves the pebble. When A
leaves a block without the pebble, the corresponding mapping is used to decide
what happens. This again ensures that time spent by M in a block is polynomial
in n.
1 Splitting points are located by counting to n in states.

Weight-Reducing Hennie Machines 563

The remaining task is to efficiently compute the mappings. We describe the
computation of fL. Let B1, B2, . . . , Bs be all the blocks from left to right. To
compute fL for B1 is trivial. When the head of A leaves its left border, it moves
to the left-end marker. Assume fL has been already computed and represented
for a block Bi. It is used to determine fL for the next block Bi+1. For each state
q ∈ Q, M simulates in Bi what happens when the head of A enters the rightmost
field of Bi and the control unit is in state q. Whenever A is about to enter Bi−1,
the mapping fL of Bi is used to continue the tracking. Note that mappings fR
can be computed analogously, taking them in the reversed order.

Since time spent by M in each block is polynomial in n, it can be converted
to a det-wr Hennie machine with polynomially many transitions. ��

5 Conclusion

We presented deterministic weight-reducing Hennie machines as a constructive
subclass of Hennie machines. We showed that their ability to rewrite symbols
can significantly facilitate design of devices accepting regular languages. When
we get rid of rewriting by converting the machine to a 1DFA, the blowup in
transitions is at most double exponential. This is the same order of blowup as
exhibited, e.g., by alternating automata or two-way one-pebble automata [3].

The power of the model is further illustrated by the other proved trade-offs. It
can simulate at a low cost a pebble used by a deterministic two-way automaton.
It cannot be replaced at a low cost by a 2NFA.

Sakoda and Sipser stated two famous open problems [13]. Is it possible to
simulate an n-state 1NFA or 2NFA by a 2DFA with polynomially many states?
We studied these questions for a more powerful device and showed that det-wr
Hennie machine can do it in the case of 1NFA. This result can be interpreted as
a sort of 1NFA’s determinization which keeps the size of its description small.
An open question remains what is the trade-off in the case of 2NFA. We have
suggested that an n-state 2NFA could be simulated by a det-wr Hennie machine
with O(nlogn) transitions. Can we achieve a polynomial blowup here as for 1NFA?

References

1. Birget, J.C.: State-complexity of finite-state devices, state compressibility and in-
compressibility. Mathematical Systems Theory 26(3), 237–269 (1993)

2. Durak, B.: Two-way finite automata with a write-once track. J. Autom. Lang.
Comb. 12(1), 97–115 (2007)

3. Globerman, N., Harel, D.: Complexity results for two-way and multi-pebble au-
tomata and their logics. Theoretical Computer Science 169, 161–184 (1996)

4. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.:
Descriptional complexity of machines with limited resources. J. UCS 8(2), 193–234
(2002)

5. Hartmanis, J.: Computational complexity of one-tape Turing machine computa-
tions. J. ACM 15(2), 325–339 (1968)

564 D. Pr̊uša

6. Hennie, F.: One-tape, off-line Turing machine computations. Information and Con-
trol 8(6), 553–578 (1965)

7. Kari, J., Moore, C.: New results on alternating and non-deterministic two-
dimensional finite-state automata. In: Ferreira, A., Reichel, H. (eds.) STACS 2001.
LNCS, vol. 2010, pp. 396–406. Springer, Heidelberg (2001)

8. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: SWAT (FOCS), pp. 188–191. IEEE Computer Society (1971)

9. Papadimitriou, C.M.: Computational complexity. Addison-Wesley, Reading (1994)
10. Pr̊uša, D., Mráz, F.: Two-dimensional sgraffito automata. In: Yen, H.-C., Ibarra,

O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 251–262. Springer, Heidelberg (2012)
11. Radó, T.: On non-computable functions. Bell System Technical Journal 41(3),

877–884 (1962)
12. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 1–17 (2008)
13. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite automata.

In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing,
STOC 1978, New York, NY, USA, pp. 275–286 (1978)

14. Shannon, C.E.: A universal Turing machine with two internal states. Annals of
Mathematics Studies 34, 157–165 (1956)

15. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
J. Res. Dev. 3(2), 198–200 (1959)

	Weight-Reducing Hennie Machines and Their Descriptional Complexity
	1 Introduction
	2 Motivation
	3 Weight-Reducing Hennie Machines
	4 Results on Descriptional Complexity
	5 Conclusion
	References

