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Abstract. The potential double exponential blow-up for the genera-
tion of deterministic ω-automata for linear temporal logic formulas mo-
tivates research on weaker forms of determinism. One of these notions is
the good-for-games property that has been introduced by Henzinger and
Piterman together with an algorithm for generating good-for-games au-
tomata from nondeterministic Büchi automata. The contribution of our
paper is twofold. First, we report on an implementation of this algorithms
and exhaustive experiments. Second, we show how good-for-games au-
tomata can be used for the quantitative analysis of systems modeled by
Markov decision processes against ω-regular specifications and evaluate
this new method by a series of experiments.

1 Introduction

The automata-theoretic approach to formal verification relies on the effective
translation of specifications, e.g., formulas of some temporal logic such as linear
temporal logic (LTL) into automata over infinite words (ω-automata) [34,6,12].
The verification problem for finite-state system models is then solvable by ana-
lyzing the product of the system model and the automaton for the formula. In
the classical setting where the system model can be seen as a nondeterministic
automaton, nondeterministic ω-automata suffice. For some applications, such as
game-based synthesis and probabilistic model-checking problems, the nondeter-
minism of the ω-automaton poses a problem. Used as a monitor to determine
the winning strategies of turn-based two-player games, the lack of look-ahead
beyond the players’ choices in general precludes the use of nondeterministic
automata. Similarly, in probabilistic model checking, the lack of look-ahead be-
yond the probabilistic choices renders nondeterministic automata unsuitable in
general. In these settings, the use of deterministic ω-automata resolves these
problems at the cost of a further worst-case exponential determinization con-
struction [26,31,25]. Thus, there is considerable interest in methods that tackle
the worst-case double exponential time-complexity of algorithms caused by the
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construction of deterministic ω-automata for LTL formulas. This includes for
example variants of the determinization construction for nondeterministic Büchi
automata (NBA) [28,32], heuristics [14,15] and the direct translation from frag-
ments of LTL to deterministic automata [24,17,1]. Instead of reducing the num-
ber of states, [27] provides a translation from non-confluent NBA that aims
to generate a compact symbolic representation of the generated deterministic
automata based on binary decision diagrams (BDDs).

There are also several attempts to avoid determinization in certain scenar-
ios [21,18] and provide better theoretical complexity and performance in prac-
tice. Henzinger and Piterman [13] introduce a special property for nondeter-
ministic automata, being good-for-games (GFG), that is fulfilled by all deter-
ministic automata but still permits nondeterministic choices. [13] proposes an
algorithm, called the HP-algorithm here, for the construction of a nondetermin-
istic GFG automaton with parity acceptance from an NBA that is amenable
to a symbolic representation. The number of states in the constructed GFG
automaton is still exponential in the number of states of the given NBA, but
a smaller worst-case bound on the number of states can be provided than for
Safra’s determinization algorithm [31]. Among others, [4] introduced the notion
determinizable-by-pruning for automata that have an embedded deterministic
automaton for the same language. [4] states the existence of GFG automata
that are not determinizable-by-pruning, but we are not aware of any result stat-
ing the existence of languages where GFG automata are more succinct than
deterministic ones. To the best of our knowledge, the HP-algorithm is the sole
published algorithm for the construction of GFG automata and it has not been
implemented or experimentally evaluated yet.

In the context of probabilistic model checking for finite-state Markov chains,
[8,3] propose the use of unambiguous automata that can be generated from LTL
formulas with a single exponential blow-up in the worst case. Alternative ap-
proaches that also lead to single exponential-time model-checking algorithms for
Markov chains and LTL specifications have been presented in [5] using weak al-
ternating automata and in [7] using an iterative approach to integrate the effect
of the temporal modalities of a given LTL formula ϕ in the Markov chain. Given
that the analogous problem is 2EXPTIME-complete for models where nonde-
terministic and probabilistic choices alternate [7], there is no hope to generalize
these results for Markov decision processes (MDPs). Only for the qualitative
analysis of MDPs where the task is to show that an ω-regular path property
holds with probability 1, no matter how the nondeterminism is resolved, Büchi
automata that are deterministic-in-limit are shown to be sufficient [34,7].

Contribution. The purpose of our paper is to study whether GFG automata are
adequate in the context of probabilistic model checking, both at the theoretical
and the practical level. At the theoretical level, we answer in the affirmative and
provide algorithms for the computation of maximal or minimal probabilities for
path properties specified by GFG automata in finite-state Markov decision pro-
cesses (MDPs). The time complexity of our algorithm is polynomial in the size
of the given MDP and GFG automaton. To evaluate the GFG-based approach
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empirically, we have implemented the HP-algorithm (and various variants) sym-
bolically using binary decision diagrams (BDDs). In a series of experiments,
we study the performance of the HP-algorithm – from LTL formula via NBA to
GFGautomaton – compared to the determinization implementation of ltl2dstar
[14,15] based on Safra’s construction.We have furthermore implemented theGFG-
based approach for the analysis ofMDPs in the popular probabilisticmodel checker
Prism [22] and evaluated its performance in practice.

Outline. Section 2 briefly introduces our notations for ω-automata and MDPs.
The applicability of GFG automata for the quantitative analysis of MDPs is
shown in Section 3. In Section 4, we study the HP-algorithm in detail and present
a few heuristics that have been integrated in our implementation. Section 5 re-
ports on our experiments, Section 6 contains some concluding remarks. Omitted
proofs and other additional material can be found in the technical report [16].

2 Preliminaries

Throughout the paper, the reader is supposed to be familiar with the basic
principles of ω-automata, games and temporal logics. For details we refer to
[6,12]. We briefly summarize our notations for ω-automata, present the definition
of good-for-games automata [13] and provide a condensed survey of the relevant
principles of Markov decision processes (MDPs). Further details on MDPs and
their use in the context of model checking can be found e.g. in [30,2].

Automata over Infinite Words. An ω-automaton A = (Q,Σ, δ, q0, Acc) is a
tuple, where Q is a finite set of states, Σ is a finite alphabet, δ : Q×Σ → 2Q is
the (nondeterministic) transition function and q0 ∈ Q is the initial state. The last
component Acc is the acceptance condition (see below). The size of |A| denotes
the number of states in A. A is said to be complete, if δ(q, σ) �= ∅ for all states
q ∈ Q and all symbols σ ∈ Σ. A is called deterministic, if |δ(q, σ)| ≤ 1 for all q ∈
Q and σ ∈ Σ. A run in A for an infinite word w = σ0 σ1 σ2 . . . ∈ Σω is a sequence
ρ = q0 q1 q2 . . . ∈ Qω starting in the initial state q0 such that qi+1 ∈ δ(qi, a) for all
i ∈ N. We write inf(ρ) to denote the set of all states occurring infinitely often in
ρ. A run ρ is called accepting, if it meets the acceptance condition Acc, denoted
ρ |= Acc. We consider here the following three types of acceptance conditions
and describe their constraints for infinite runs:

– Büchi: Acc = F is a set of states, i.e., F ⊆ Q, with the meaning �♦F
– parity: Acc is a function col : Q → N assigning to each state q a parity color

and requiring that the least parity color appearing infinitely often is even
– Rabin: Acc is a set consisting of pairs (E,F ) with E,F ⊆ Q, imposing the

constraint
∨

(E,F )∈Acc

(♦�¬E ∧ �♦F )

Büchi acceptance can be seen as a special case of parity acceptance which again
can be seen as a special case of Rabin acceptance. We use the standard notations
NBA (NRA, NPA) for nondeterministic Büchi (Rabin, parity) automata and
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DBA, DRA, DPA for their deterministic versions. The language of A, denoted
L(A), consists of all infinite words w ∈ Σω that have at least one accepting run
in A, i.e., w ∈ L(A) iff there exists a run ρ for w with ρ |= Acc.

It is well-known that the classes of languages recognizable by NBA, NRA,
NPA, DRA or DPA are the same (the so-called ω-regular languages), while DBA
are less powerful. For each LTL formula ϕ with atomic propositions in some finite
set AP , the semantics of ϕ can be described as an ω-regular language L(ϕ) over
the alphabet Σ = 2AP and there is an NBA A for ϕ (i.e., L(ϕ) = L(A)) whose
size is at most exponential in the formula length |ϕ|.
Good-for-Games (GFG) Automata. The formal definition of GFG automata
[13] relies on a game-based view of ω-automata. Given an ω-automaton A as
before, we consider A as the game arena of a turn-based two-player game,
called monitor game: if the current state is q then player 1 chooses a sym-
bol σ ∈ Σ whereas the other player (player 0) has to answer by a successor
state q′ ∈ δ(q, σ), i.e., resolve the nondeterminism. In the next round q′ becomes
the current state. A play is an alternating sequence ς = q0 σ0 q1 σ1 q2 σ2 . . . of
states and (action) symbols in the alphabet Σ starting with the initial state
q0. Intuitively, the σi’s are the symbols chosen by player 1 and the qi’s are the
states chosen by player 0 in round i. Player 0 wins the play ς if ς is infinite
and if ς |Σ = σ0 σ1 σ2 . . . ∈ L(A) then ς |Q = q0 q1 q2 . . . is an accepting run. A
strategy for player 0 is a function f : (Q×Σ)+ → Q with f(. . . q σ) ∈ δ(q, σ). A
play ς = q0 σ0 q1 σ1 q2 . . . is said to be f-conform or a f-play if qi = f(ς ↓ i) for
all i ≥ 1 where ς ↓ i = q0 σ0 . . . σi−2 . . . qi−1σi is the prefix of ρ that ends with
the chosen symbol in round i. An automaton A is called good-for-games if there
is a strategy f such that player 0 wins each f-play. Such strategies will be called
GFG-strategies for A. Obviously, each deterministic automaton enjoys the GFG
property. GFG automata with Rabin or parity condition cover the full class of
ω-regular languages, while GFG automata with Büchi acceptance do not [4]. For
illustrating examples of GFG automata see [16].

Markov Decision Processes (MDP). MDPs are an operational model for
systems that exhibit nondeterministic and probabilistic choices. For the purposes
of this paper, we formalize an MDP by a tuple M = (S,Act, P, s0,AP , 	) where
S is a finite set of states, s0 ∈ S is the initial state, Act a finite set of actions
and P : S ×Act × S → [0, 1] is the transition probability function satisfying:

∑

s′∈S

P (s, α, s′) ∈ {0, 1} for all s ∈ S, α ∈ Act .

We write Act(s) for the set of actions α that are enabled in s, i.e., P (s, α, s′) > 0
for some s′ ∈ S, in which case s′ 
→ P (s, α, s′) is a distribution formalizing the
probabilistic effect of taking action α in state s. We refer to the triples (s, α, s′)
with P (s, α, s′) > 0 as a step. The choice between the enabled actions is viewed
to be nondeterministic. For technical reasons, we require Act(s) �= ∅ for all
states s. The last two components AP and 	 serve to formalize properties of
paths in M. Formally, AP is a finite set of atomic propositions and 	 : S → 2AP

assigns to each state s the set 	(s) of atomic propositions that hold in s. Paths
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in M are finite or infinite sequences π = s0 α0 s1 α2 s2 α3 . . . starting in the
initial state s0 that are built by consecutive steps, i.e., P (si, αi, si+1) > 0 for all
i. The trace of π is the word over the alphabet Σ = 2AP that arises by taking
the projections to the state labels, i.e., trace(π) = 	(s0) 	(s1) 	(s2) . . .. For an
LTL formula ϕ over AP we write π |= ϕ if trace(π) ∈ L(ϕ).

As the monitor game in nondeterministic automata, MDPs can be seen as
stochastic games, also called a 1 1

2 -player games. The first (full) player resolves
the nondeterministic choice by selecting an enabled action α of the current state
s. The second (half) player behaves probabilistically and selects a successor state
s′ with P (s, α, s′) > 0. Strategies for the full player are called schedulers. Since
the behavior of M is purely probabilistic if some scheduler s is fixed, one can
reason about the probability of path events. If L is an ω-regular language then
PrsM(L) denotes the probability under s for the set of infinite paths π with
trace(π) ∈ L. In notations like PrsM(ϕ) or PrsM(A) we identify LTL formulas
ϕ and ω-automata A with their languages. For the mathematical details of the
underlying sigma-algebra and probability measure, we refer to [30,2].

For a worst-case analysis of a system modeled by an MDP M, one ranges
over all initial states and all schedulers (i.e., all possible resolutions of the
nondeterminism) and considers the maximal or minimal probabilities for some
ω-regular language L. Depending on whether L represents a desired or unde-
sired path property, the quantitative worst-case analysis amounts to computing
Prmin

M (ϕ) = mins Pr
s
M(L) or Prmax

M (L) = maxs Pr
s
M(L).

3 Automata-Based Analysis of Markov Decision Processes

We address the task to compute the maximal or minimal probability in an MDP
M for the path property imposed by a nondeterministic ω-automaton A. The
standard approach, see e.g. [2], assumes A to be deterministic and relies on a
product construction where the transitions of M are simply annotated with the
unique corresponding transition in A. Thus, M⊗A can be seen as a refinement
of M since A does not not affect M’s behaviors, but attaches information on
A’s current state for the prefixes of the traces induced by the paths of M.

We now modify the standard definition of the product for nondeterminis-
tic ω-automaton. The crucial difference is that the actions are now pairs 〈α, p〉
consisting of an action in M and a state in A, representing the nondetermin-
istic alternatives in both the MDP M and the automaton A. Formally, let
M = (S,Act, P, s0,AP , 	) be an MDP and A = (Q,Σ, δ, q0, Acc) a complete
nondeterministic ω-automaton with Σ = 2AP . The product MDP is

M⊗A = (S ×Q,Act×Q,P ′, 〈s0, q0〉,AP , 	′)

where the transition probability function P ′ is given by P ′(〈s, q〉, 〈α, p〉, 〈s′, q′〉)
= P (s, α, s′) if p = q′ ∈ δ(q, 	(s)). In all other cases P ′(〈s, q〉, 〈α, p〉, 〈s′, q′〉) = 0.
The assumption that A is complete yields that for each α ∈ Act(s) there is
some action 〈α, q′〉 ∈ Act(〈s, q〉) for all states s in M and q in A. The labeling
function is given by 	′(〈s, q〉) = {q}. Thus, the traces in M⊗A are words over the
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alphabet Q. Likewise, A’s acceptance condition Acc can be seen as a language
over Q, which permits to treat Acc as a property that the paths in M⊗A might
or might not have. We prove in [16]:

Theorem 1. For each MDP M and nondeterministic ω-automaton A as above:

(a) Prmax
M⊗A

(
Acc

) ≤ Prmax
M

(A )

(b) If A is good-for-games then: Prmax
M⊗A

(
Acc

)
= Prmax

M
(A )

Theorem 1 (b) shows that with a slightly modified definition of the product,
the techniques that are known for the quantitative analysis of MDPs against
deterministic ω-automata specifications are also applicable for GFG automata.
The computation of maximal probabilities for properties given by an ω-regular
acceptance condition Acc (e.g., Büchi, Rabin or parity) can be carried out by
a graph analysis that replaces Acc with a reachability condition and linear pro-
gramming techniques for computing maximal reachability probabilities. See e.g.
[2]. The time complexity is polynomial in the size of the M and A. Thus, if
the specification is given in terms of an LTL formula ϕ then the costs of our
GFG-based approach are dominated by the generation of a GFG automaton for
ϕ. Minimal probabilities can be handled by using Prmin

M (ϕ) = 1− Prmax
M (¬ϕ).

[20,19] proves that a double exponential blow-up for translating LTL to de-
terministic ω-automata (of any type) is unavoidable. We adapted the proof in
[19] for GFG automata (see [16]). Thus, the double exponential time complex-
ity of the GFG-based approach is in accordance with the known 2EXPTIME-
completeness for the analysis of MDPs against LTL specifications [7].

Theorem 2. There exists a family of LTL formulas (ϕ)n∈N such that

|ϕn| = O(n), while every GFG automaton An for ϕn has at least 22
Ω(n)

states.

4 From LTL to GFG Automata

We have previously shown [14,15] that it is possible in practice, using the tool
ltl2dstar, to obtain deterministic ω-automata for a wide range of LTL for-
mula ϕ via the translation to an NBA and Safra’s determinization construction
[31] refined by various heuristics. Here, we are interested in replacing Safra’s
determinization algorithm with the HP-algorithm [13] to generate a GFG au-
tomaton instead of a deterministic automaton. We first provide an outline of the
HP-algorithm and then explain a few new heuristics.

The HP-algorithm transforms an NBA B = (Q,Σ, δ, q0, F ) with |Q| = n
states into a GFG automaton A with parity acceptance and at most 2n · n2n

states and 2n parity colors (or an NRA with n Rabin pairs), which improves on
the upper bound given for Safra’s determinization algorithm. We recall here the
main concepts, for a formal description we refer to [13]. Like Safra’s construc-
tion, the HP-algorithm relies on the simultaneous tracking of multiple subset
constructions to determine acceptance or rejection in the NBA. However, while
the states of Safra’s DRA organize the subsets in trees, the HP-algorithm uses
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a simpler, linear arrangement of the subsets. The state space P = (2Q × 2Q)n

of the GFG automaton A consists of n pairs of subsets of NBA states Q, i.e.,
states of the form p = 〈(A1, B1), . . . , (An, Bn)〉 where Bi ⊆ Ai ⊆ Q, plus some
additional constraints on the state space. Each set Bi serves to mark those states
in Ai that were reached via some accepting state in F of the NBA. The successor
state in A for symbol σ is obtained by applying the transition function δ to each
of the subsets and adding states in F to the Bi subsets. In crucial difference
to Safra’s construction, the HP-algorithm however then introduces significant
nondeterminism by allowing A to discard an arbitrary number of states in any
of the subsets. For p = 〈. . . (Ai, Bi) . . .〉, the set A′

i in a σ-successor p′ of A
thus does not correspond to A′

i = δ(Ai, σ) but there is a nondeterministic choice
between any A′

i satisfying A′
i ⊆ δ(Ai, σ), including the empty set. Whenever

some Ai is empty, A can “reset” Ai by setting Ai to some subset of the first set
A1. Such resets are reflected in the acceptance condition of A as “bad” events
for the pair i, as they signify that the previously tracked runs terminated. The
“good” events in the acceptance condition occur whenever all states in an Ai are
marked as having recently visited F , i.e., whenever Ai = Bi �= ∅. In the next
step, B′

i is then cleared and the tracking of visits to F starts anew. Infinitely
many “good” events without “bad” events then correspond to the existence of
an accepting run in the NBA B. The HP-algorithm relies on the GFG-strategy to
resolve the nondeterminism in the constructed automaton A, i.e., which states
in the subsets are kept, which are dropped and when to reset. There is a large
amount of nondeterminism and a lot of combinatorial possibilities in the reach-
able state space of A. This is confirmed by our experiments, e.g., applying the
construction to the two-state NBA for ♦�a already yields a GFG automaton
with 16 states, where ltl2dstar generates a two-state DRA. As stated in [13],
the HP-algorithm is thus not well-suited for an explicit representation for A,
but is intended for a symbolic implementation. In this context, [13] briefly dis-
cusses the possibility of variants of the transition function in the GFG automaton
that either apply more or less strict constraints on the relationship enforced be-
tween the (Ai, Bi) pairs in each state. In particular, [13] posits that introducing
even further nondeterminism (and increasing the number of possible states) by
loosening a disjunctness requirement on the Ai may lead to a smaller symbolic
representation. In our experiments, we will refer to this as the loose variant.

Iterative Approach. In the context of games, [13] proposes an iterative ap-
proach to the HP-algorithm by successively constructing the automata Am ob-
tained by using only the first m of the n pairs, i.e., by setting Ai = Bi = ∅

for all m < i ≤ n. In the acceptance condition this reduces the number of re-
quired parity colors to 2m and Rabin pairs to m as well. For these automata,
L(Am) = L(A) = L(B), but there is no guarantee that Am for m < n is good-
for-games by construction. We start with m = 1 and increase m until early
success or reaching m = n. Our experimental results indeed show that early
termination appears rather often.

We now explain how the iterative approach of [13] can be integrated in the
GFG-based quantitative analysis of MDPs against LTL specifications. Suppose,



460 J. Klein et al.

e.g., that the task is to show that Prmax
M

(
ϕ
) ≥ θ for some LTL formula ϕ and

threshold θ ∈ ]0, 1]. Let B be an n-state NBA with L(B) = L(ϕ) and Am the
automaton obtained using only the firstm ≤ n pairs in the HP-algorithm applied
to B. Let Accm denote the acceptance condition of Am. By Theorem 1 (a):

If Prmax
M⊗Am

(
Accm

) ≥ θ for some m ≤ n then Prmax
M

(
ϕ
) ≥ θ.

Moreover, Prmax
M⊗Am

(
Accm

) ≤ Prmax
M⊗Am+1

(
Accm+1

)
for m < n. These obser-

vations suggest an approach that resembles the classical abstraction-refinement
schema: starting with m = 1, we carry out the quantitative analysis of M⊗Am

against Accm and successively increase m until Prmax
M⊗Am

(
Accm

) ≥ θ or Am is
GFG (which is the case at the latest when m = n). As an additional heuristic to
increase the performance of the linear programming techniques that are applied
for the quantitative analysis of M⊗Am against Accm, one can reuse the results
computed for M⊗Am−1 and Accm−1 as initial values.

It remains to explain how to check whether Am has the GFG property. For
details we refer to [16]. In this aspect, our prototype implementation departs
from [13] and checks whether Am is GFG by solving a Rabin game (itself an
NP-complete problem) constructed fromAm and a DRA for ¬ϕ constructed with
ltl2dstar while [13] proposes an algorithm based on checking fair simulation.
To study the impact of the iterative approach in terms of the number of required
iterations and the size of the resulting GFG automata, the choice of the GFG
test is irrelevant.

Union Operator for Disjunctive Formulas. For generating a deterministic
automaton from an LTL formula, we have shown in [14] that optionally handling
disjunctive LTL formulas of the form ϕ = ϕ1 ∨ϕ2 by constructing DRA A1 and
A2 for the subformulas ϕ1 and ϕ2 and then obtaining the DRA A1 ∪A2 for the
language L(A1) ∪ L(A2) via a product construction can be very beneficial in
practice. The definition of A1 ∪A2 used in [14] can easily be extended to NRA.
The GFG property is preserved by the union construction. See [16].

5 Implementation and Experiments

We have implemented the HP-algorithm in a tool we refer to as ltl2gfg. Based
on ltl2gfg, we have additionally implemented the GFG-based quantitative
analysis of MDPs in Prism. After a brief overview of ltl2gfg, we report on our
experiments and comparison with the determinization approach of ltl2dstar.

LTL2GFG. Given an LTL formula ϕ, our implementation ltl2gfg constructs
a symbolic, BDD-based representation of a GFG-NPA for ϕ. It first converts
ϕ into an (explicitly represented) NBA B. In our experiments, we use ltl2ba
v1.1 [11] for this task. To facilitate an efficient symbolic representation of the
various subsets used in the HP-algorithm, B is then converted to a symbolic
representation, using a unary encoding of the |Q| = n states of B, i.e., using one
boolean variable qi per state. The state space of the GFG-automaton A, i.e.,
the n pairs (Ai, Bi) is likewise encoded by n2 boolean variables ai,j and bi,j, i.e.,
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Table 1. Statistics for the automata Aϕ constructed for the 94 benchmark formulas.
Number of Aϕ constructed within a given timeframe and a given range of BDD sizes.

Aϕ with constr. time Aϕ with BDD size
aborted <1s <10s <1m <30m <10 <102 <103 <104 <105 ≥105

ltl2dstar std. 0 90 91 92 94 4 65 87 90 91 3
no opt. 0 90 90 92 94 3 48 78 89 90 4

ltl2gfg std. 39 40 47 48 55 3 6 19 26 36 19
std., dynamic 45 34 36 48 49 5 8 19 36 39 10

loose, dynamic 34 43 49 56 60 5 14 31 47 56 4
lo., union, dyn. 29 52 59 61 65 4 13 35 54 60 5

lo., iterative 20 74 74 74 74 3 19 39 60 74 0
lo., it., un., dyn. 18 70 72 74 76 4 32 63 70 76 0

ai,j is true iff NBA state qj ∈ Ai and bi,j is true iff qj ∈ Bi for 1 ≤ i, j ≤ n. To
allow the encoding of the transition relations of A and B, each state variable has
a primed copy, i.e., q′i, a

′
i,j and b′i,j and each of the k atomic proposition in ϕ is

represented by a boolean variable li. For a BDD-based symbolic representation,
the order of the variables is crucial. The state variables and their copies are
always kept adjacent. The standard variable ordering used by ltl2gfg is then
an interleaving of the ai,j and bi,j variables with the qj variables, i.e.,
l1 < . . . < lk < q1 < . . . < qj < a1,j < b1,j < a2,j < b2,j < . . . < qj+1 < . . . .
ltl2gfg uses the JINC C++ BDD library for the symbolic representation.

Experimental Results for the HP-algorithm. We report here on a number
of experiments with ltl2gfg using the benchmark formulas used in the evalu-
ation of ltl2dstar in [14,15], i.e., 39 LTL formulas from the literature [10,33]
and 55 pattern formulas [9] that represent common specification patterns. All
our experiments were carried out on a computer with 2 Intel E5-2680 8-core
CPUs at 2.70 GHz with 384GB of RAM running Linux and with a memory
limit of 10 GB and a time-out of 30 minutes for each formula.

For the automata Aϕ, we report on the number of BDD nodes in the encoding
of the transition function, as this the most crucial aspect. To allow a fair com-
parison with the explicit determinization in ltl2dstar, we consider symbolic
encodings of the DRA Aϕ obtained from ltl2dstar 0.5.1. This encoding uses
�log2 n� boolean variables to straightforwardly encode the n state indices in Aϕ,
which is the same encoding employed in Prism for its DRA-based approach to
LTL model checking.

Table 1 presents statistics for the construction of DRA with ltl2dstar and
GFG-NPA with ltl2gfg for the benchmark formulas. The ltl2dstar results
are given once with standard settings and for a variant where all optimizations
are disabled, i.e., with purely Safra’s construction. For ltl2gfg, we start with
the pure HP-algorithm and consider variants with the “loose” transition defini-
tion, the union construction, and with dynamic reordering of the variable order.
We also give statistics for the iterative approach, where ltl2gfg constructs the
partial automata Am until it can be shown (via solving a Rabin game [29]) that
the automaton is GFG.
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Table 2. Results of the iterative approach in ltl2gfg, for the loose variant. M is the
minimal value m ≤ n for which the partial NPA Am could be shown to be GFG.

with n NBA states
2 3 4 5 6 7 8 9 10 11 12 >12

number of ϕ 13 17 13 9 8 3 3 1 4 2 4 11
number of ϕ, M < n 11 17 13 8 8 2 2 1 0 0 1 3
number of ϕ, M = 1 11 8 5 4 2 1 1 0 0 0 1 3
number of ϕ, M = 2 2 9 8 4 6 1 1 1 0 0 0 0

number of ϕ, GFG check aborted 0 0 0 1 0 1 1 0 4 2 3 8

ltl2dstar constructed most of the automata in a few seconds, the most dif-
ficult was constructed in 95s and had 1.2 million BDD nodes. Apart from the
most difficult automata, the BDD sizes range in the hundreds and thousands.
For all the ltl2gfg variants, a significant fraction of automata could not be
constructed in the time and memory limits, around 40% for the standard HP-
algorithm, and dropping to around 20% for the best variant. The loose variant
by itself had a mixed effect, but in conjunction with dynamic reordering was gen-
erally beneficial. The union construction was very beneficial for the disjunctive
formulas. For example, the automata for �♦a → �♦b could not be constructed
in the time limits with the standard HP-algorithm but could be handled using
the union construction. The iterative approach was successful as well in obtain-
ing smaller automata, which is explained by the fact that for a large number of
formulas it could be shown that the partial automata A1 or A2 were already
GFG, as detailed in Table 2. For the iterative approach we were mostly focused
on experimental data for the minimal value m for which Am becomes GFG
and the effect on the BDD size. Different algorithms or implementations for the
GFG check than the one used in ltl2gfg lead to the same final GFG automata,
but could improve the performance. At the end, despite the various approaches
implemented in ltl2gfg, there were only 6 formulas with relatively small au-
tomata where the BDD size of the smallest GFG automaton was smaller than
that of the DRA obtained from ltl2dstar (172 nodes instead of 229 nodes, 219
instead of 347, and the other 4 automata differing by 1 or 2 at a size of less than
20 nodes). We do not report here in detail on the number of reachable states
in the automata, as none of the GFG automata had a smaller number of states
than the DRA generated by ltl2dstar. In particular, the automata obtained
without the iterative approach often had millions and more states.

Implementation in PRISM. We have extended the MTBDD-based, symbolic
engines of Prism 4.1 with an implementation of our algorithm for computing
Prmax

M (ϕ) using GFG automata for ϕ (and Prmin
M (ϕ) using a GFG automaton

for ¬ϕ). We import the BDD of A generated with ltl2gfg into Prism and
perform the product with M and analysis in M⊗A symbolically. In its stan-
dard approach, Prism constructs an explicit DRA with an integrated version of
ltl2dstar, which is then symbolically encoded as described before. The analysis
is then carried out symbolically as well.
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Experiments in PRISM. As a benchmark, we used a Prism model [23] for
parts of the WLAN carrier-sense protocol of IEEE 802.11. As was to be expected
given our results on the automata construction, the GFG-based analysis did not
improve on the standard approach. Even using the optimal variant of ltl2gfg
for each formula, ignoring the automata construction times, and for cases where
the product M⊗A had a comparable BDD size for the GFG- and DRA-based
approach, the model checking using the GFG automata took significantly longer.
For further details, we refer to [16].

6 Conclusion

We have shown that GFG automata can replace deterministic automata for
the quantitative analysis of MDPs against ω-regular specifications without in-
creasing the asymptotic worst-case time complexity. To evaluate the GFG-based
approach from the practical side, we implemented the HP-algorithm, integrated
several heuristics, and performed exhaustive experiments for the LTL-to-GFG
construction and for probabilistic model checking. Our experimental results are
a bit disappointing, as the generated GFG automata were often larger than DRA
generated by the implementation of Safra’s algorithms in ltl2dstar, both in
the number of states and in the symbolic BDD-based representations. Thus,
our empirical results are in contrast to the expectation that the HP-algorithm
yields GFG automata that are better suited for symbolic approaches rather than
DRA generated by Safra’s algorithm. Also in the context of probabilistic model
checking, the GFG-based approach turned out to be more time- and memory-
consuming than the traditional approach with deterministic automata. However,
it is still too early to discard the concept of GFG automata for practical purposes.
Our negative empirical results might be an artefact of the HP-algorithm, which
is – to the best of our knowledge – the only known algorithm for the generation
of GFG automata that are not deterministic. Future directions are the design of
other algorithms for the construction of succinct GFG automata. Alternatively,
one might seek for automata types that are still adequate for probabilistic model
checking and other areas, but rely on weaker conditions than the GFG property.
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