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1 Introduction

Deducing behavioural properties from structural properties is one of the major
objectives of the analysis of systems. In this paper, a similar question about
system synthesis is addressed: given regular behaviour, can one find a generating
system that is well-structured? An answer will be given for marked graph Petri
nets [7,8], leading to a full characterisation of their state spaces.

Petri net region theory [1,2] investigates general conditions under which an
edge-labelled directed graph (or a labelled transition system) is the reachability
graph of a Petri net. However, not much is implied about the structure of the
net, if it exists. This paper shows that if a labelled transition system exhibits a
characteristically uniform cyclic structure, then it can be generated by a marked
graph, and the marking bounds may easily be deduced from some paths. Such
cyclic behaviour arises, for instance, in the context of persistent Petri nets [3,11],
or in the context of signal transition graphs [10].

Labelled transition systems and Petri nets are defined in sections 2 and 3,
respectively. The cyclic (and other) behavioural properties studied in this paper
are introduced at the end of section 3. The synthesis procedure and its applica-
tion to marked graphs are described in sections 4 and 5, respectively. Section 6
concludes and describes ideas for future work. Proofs of some auxiliary results
have been moved to Appendix A.
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2 Labelled Transition Systems

Definition 1. lts, reverse lts, reachability, Parikh vectors, cycles
A labelled transition system with initial state, abbreviated lts, is a quadruple

(S,→, T, s0) where S is a set of states, T is a set of labels with S ∩ T = ∅,
→⊆ (S × T × S) is the transition relation, and s0 ∈ S is an initial state. The
reverse lts is (S,←, T, s0) with (s, t, s′) ∈← iff (s′, t, s) ∈→. A label t is enabled
in a state s, denoted by s[t〉, if there is some state s′ such that (s, t, s′) ∈→. For
s ∈ S, let s• = {t ∈ T | s[t〉}. For t ∈ T , s[t〉s′ iff (s, t, s′) ∈→, meaning that s′ is
reachable from s through the execution of t. The definitions of enabledness and
of the reachability relation are extended to sequences σ ∈ T ∗:

s[ε〉 and s[ε〉s are always true;
s[σt〉 (s[σt〉s′) iff there is some s′′ with s[σ〉s′′ and s′′[t〉 (s′′[t〉s′, respectively).

A state s′ is reachable from state s if there exists a label sequence σ such that
s[σ〉s′. By [s〉, we denote the set of states reachable from s. For a finite sequence
σ ∈ T ∗ of labels, the Parikh vector Ψ(σ) is a T -vector (i.e., a vector of natural
numbers with index set T ), where Ψ(σ)(t) denotes the number of occurrences of
t in σ. s[σ〉s′ is called a cycle, or more precisely a cycle at state s, if s = s′. The
cycle is nontrivial if σ 	= ε. An lts is called acyclic if it has no nontrivial cycles.
A nontrivial cycle s[σ〉s around a reachable state s ∈ [s0〉 is called small if there
is no nontrivial cycle s′[σ′〉s′ with s′ ∈ [s0〉 and Ψ(σ′) � Ψ(σ). 
�

Definition 2. Basic properties of an lts
A labelled transition system (S,→, T, s0) is called

• totally reachable if [s0〉 = S (i.e., every state is reachable from s0);
• finite if S and T (hence also →) are finite sets;
• (super-)deterministic, if for any states s, s′, s′′ ∈ [s0〉 and sequences σ, τ ∈ T ∗

with Ψ(σ) = Ψ(τ): (s[σ〉s′∧s[τ〉s′′) ⇒ s′ = s′′ and (s′[σ〉s∧s′′[τ〉s) ⇒ s′ = s′′

(i.e., from any one state, Parikh-equivalent sequences may not lead to two
different successor states, nor come from two different predecessor states);

• reversible if ∀s ∈ [s0〉 : s0 ∈ [s〉 (i.e., s0 always remains reachable);
• persistent if for all reachable states s and labels t, u, if s[t〉 and s[u〉 with

t 	= u, then there is some state r ∈ S such that both s[tu〉r and s[ut〉r
(i.e., once two different labels are both enabled, neither can disable the other,
and executing both, in any order, leads to the same state);

• backward persistent if for all reachable states s, s′, s′′, and labels t, u, if s′[t〉s
and s′′[u〉s and t 	= u, then there is some reachable state r ∈ S such that
both r[u〉s′ and r[t〉s′′ (i.e., persistency in backward direction). 
�

If the lts is totally reachable, reversibility is the same as strong connectedness
in the graph-theoretical sense. If the lts is strongly connected, backward persis-
tency is the same as persistency in the reverse lts. The lts depicted in Figure 1
satisfies all properties given in Definition 2.
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Fig. 1. A transition system (l.h.s.) and a Petri net solving it (r.h.s.)

3 Petri Nets

Definition 3. Petri nets, markings, reachability graphs
A (finite, initially marked, place-transition, arc-weighted) Petri net is a tuple

N = (P, T, F,M0) such that P is a finite set of places, T is a finite set of
transitions, with P ∩T = ∅, F is a flow function F : ((P ×T )∪(T ×P )) → N, M0

is the initial marking, where a marking is a mapping M : P → N. A transition
t ∈ T is enabled by a marking M , denoted by M [t〉, if for all places p ∈ P ,
M(p) ≥ F (p, t). If t is enabled at M , then t can occur (or fire) in M , leading to
the marking M ′ defined by M ′(p) = M(p) − F (p, t) + F (t, p) (noted M [t〉M ′).
The set of markings reachable from M is denoted [M〉. The reachability graph
of N is the labelled transition system with the set of vertices [M0〉 and set of
edges {(M, t,M ′) | M,M ′ ∈ [M0〉 ∧M [t〉M ′}. If an lts TS is isomorphic to the
reachability graph of a Petri net N , we will also say that N solves TS. 
�

Definition 4. Basic structural properties of Petri nets
For a place p of a Petri net N = (P, T, F,M0), let

•p = {t ∈ T | F (t, p) > 0}
and p• = {t ∈ T | F (p, t) > 0}. N is called connected if it is weakly connected as
a graph; plain if cod(F ) ⊆ {0, 1}; pure or side-condition free if p• ∩ •p = ∅ for all
places p ∈ P ; ON (place-output-nonbranching) if |p•| ≤ 1 for all places p ∈ P ; a
marked graph if N is plain and |p•| ≤ 1 and |•p| ≤ 1 for all places p ∈ P . 
�

Definition 5. Basic behavioural properties of Petri nets
A Petri net N = (P, T, F,M0) is weakly live if ∀t ∈ T∃M ∈ [M0〉 : M [t〉

(i.e., there are no unfireable transitions); k-bounded for some fixed k ∈ N, if
∀M ∈ [M0〉∀p ∈ P : M(p) ≤ k (i.e., the number of tokens on any place never
exceeds k); bounded if ∃k ∈ N : N is k-bounded; persistent (backward persistent,
reversible) if its reachability graph is persistent (backward persistent, reversible,
respectively); and live if ∀t ∈ T∀M ∈ [M0〉∃M ′ ∈ [M〉 : M [t〉 (i.e., no transition
can be made unfireable). 
�

Proposition 6. Properties of Petri net reachability graphs
The reachability graph RG of a Petri net N is totally reachable and determin-

istic. N is bounded iff RG is finite. 
�
This paper focusses on the basic finite situation, on lts generated by Petri nets,

and on systems without superfluous transitions. Therefore, we shall assume that

All transition systems are finite, totally reachable, and deterministic.
All Petri nets are connected, weakly live, and bounded.
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In the next definition, ρ mimicks the notion of a Petri net place in terms of an
lts. R corresponds to the marking of this place at the various states; and B (F)
correspond to its outgoing (incoming, respectively) transitions.

Definition 7. Regions of lts
A triple ρ = (R,B,F) ∈ (S → N, T → N, T → N) is a region of an lts

(S,→, T, s0) if for all s[t〉s′ with s ∈ [s0〉, R(s) ≥ B(t) and R(s′) = R(s)−B(t)+
F(t). 
�

An lts (S,→, T, s0) satisfies SSP (state separation property) iff

∀s, s′ ∈ [s0〉 : s 	= s′ ⇒ ∃ region ρ = (R,B,F) with R(s) 	= R(s′)

and ESSP (event/state separation property) iff

∀s ∈ [s0〉 ∀t ∈ T : (¬s[t〉) ⇒ ∃ region ρ = (R,B,F) with R(s) < B(t).

Theorem 8. Basic region theorem for place/transition nets [2]
A (finite, totally reachable, deterministic) lts is the reachability graph of a

(possibly non-plain, or non-pure) Petri net iff it satisfies SSP and ESSP. 
�
Let Υ : T → N\{0} be a fixed Parikh vector with no zero entries. The principal

properties of any lts TS studied in this paper are the ones listed below.

b : TS is finite, totally reachable, and deterministic.
rp : TS is reversible and persistent.
PΥ : The Parikh vector of any small cycle in TS equals Υ .
bp : TS is backward persistent.

For example, the lts shown in Figure 1 satisfies all four requirements. Figure 2
violates P1 (i.e.: PΥ with constant Parikh vector 1) but satisfies P2 as well
as all other properties – b, rp, and bp. The lts shown in Figure 3 satisfies all
properties b to P1, but not bp. Two solutions are also depicted: a plain non-ON
one in the middle of the figure, and a non-plain ON one on the right-hand side.

M0

a

a

bb

c

c

c a

b

2

2 2

Fig. 2. An lts satisfying all properties but P1. The Petri net shown on the right-hand
side solves it. However, there is no ON Petri net, much less a marked graph, solution.
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Fig. 3. An lts that cannot be solved by a marked graph, and two solutions

Theorem 9. Properties of live marked graphs [7,8]
The reachability graph of a connected, live and bounded marked graph is finite

and satisfies b, rp, P1, and bp. 
�
Theorem 9 implies that the lts shown in Figure 3 cannot be solved by a marked

graph. Consider state M : it has incoming arrows a and d which violate bp.

4 Solving an lts, Using rp, P1, and bp

Let TS = (S,→, T, s0) satisfy properties b (basic), rp (reversible and persistent),
P1 (constant Parikh vector 1 of small cycles), and bp (backward persistent).
We present an algorithm that produces a Petri net with isomorphic reachability
graph. We shall assume that TS is nontrivial, in the sense that |S| ≥ 2 and
|T | ≥ 2. Otherwise TS can be solved trivially.

For s, s′ ∈ S, let a path s[τ〉s′ be called short if |τ | ≤ |τ ′| for every path s[τ ′〉s′,
where |τ | denotes the length of τ . Also, let the distance Δs,s′ : T → N be defined
as Δs,s′ = Ψ(τ), where s[τ〉s′ is any short path. By Lemmata 22 and 24 in the
appendix, Δs,s′ is well-defined for any two states s, s′.

Fix a label x ∈ T . Let TS-x be defined from TS by erasing every arrow
labelled with x, as illustrated in Figure 4. The resulting lts has state set S and
label set T \ {x}. By Lemma 21, the paths of TS-x are precisely the short paths
of TS not containing x.

Lemma 10. Properties of TS-x
TS-x is acyclic, has a unique maximal state sx, a unique minimal state rx,

and is weakly connected.

Proof: Acyclicity arises from the fact that every nontrivial cycle must contain
at least one x by property P1. The existence of sx follows from Lemma 25. By
Lemma 26, there is a short directed path not containing x from any state into sx.
Hence, connectedness (between s and s′) results from going forward from s to sx
and then backward from sx to s′. The existence of rx also follows from Lemma
25, applied to the reverse lts (which is allowed because the assumed properties
are, as a whole, preserved by reversal). 
�
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These properties depend heavily on PΥ with Υ = 1. For instance, if all a-
arrows are erased in Figure 2, the resulting lts is not weakly connected.

Let Seq(x) be the set of sequentialising states w.r.t. x in which, by definition,
x is not enabled but in all of whose immediate successor states, x is enabled:

Seq(x) = {s ∈ S | ¬s[x〉 ∧ ∀a ∈ T : s[a〉 ⇒ s[ax〉}
The terminology is motivated in [6] for ON nets. E.g., in Figure 3, M ′ ∈ Seq(b).
The ON solution shown on the right-hand side contains a “sequentialising place”
having a and d as input transitions and b as an output transition.

In general, the set S is partitioned into X •∪(S\X) where X is the set of states
enabling x. S \X includes rx and Seq(x), as well as all states in between. The
latter is implied by persistency.X includes all states between Seq(x) (exclusively)
and sx (inclusively). In Figure 4, X is represented by slim nodes, while S \X
is represented by fat nodes. It is an easy consequence of our basic assumptions
that all sets are nonempty.

TS:

0=s0

1

2

3

4

5

a

b

b

a

x

x

a
d

TS-x:

0

1=sb

2

3=sx

4=rx

5

a

b

b

a
a

d

TS-a:

0

1

2

3

4

5

b

b

x

x

d

TS-b:

0

1

2

3

4

5

a
a

x

x

ad

TS-d:

0

1

2

3

4

5

a

b

b

a

x

x

a

Solution:

a b

d x

Fig. 4. A fully worked, simple example. Legend: rx is represented by a semicircle; sx
is represented by a kite symbol; elements in Seq(x) are represented as stars; the five
places of the solution correspond to the five stars.

Let x be fixed as before and pick, in addition, a state s in max (S\X) = Seq(x).

Lemma 11. Properties of Δrx,s

Δrx,s has exactly two entries that are zero; all other entries are positive.

Proof: Δrx,s(x) = 0, by persistency and because s does not enable x.
Assume that all other entries of Δrx,s are positive; there is a path rx[α〉s with

Ψ(α) = Δrx,s. By Lemma 20 and P1, there is a cycle rx[β〉rx with Ψ(β) = 1,
hence β contains x. Thus, by Keller’s theorem (cf. Appendix), rx[α〉s[β−• α〉, so
that s[x〉, contradicting s ∈ S \X . Therefore, Δrx,s has at least two entries 0.
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Assume that s[a〉q[x〉q′. This is possible by s ∈ Seq(x). By Lemma 20, there
is a cycle s[ax〉q′[γ〉s where every letter except a and x occurs in γ. Let rx[δ〉q′
be any short path (not containing x). Then rx[δγ〉s is a path from rx to s not
containing x, and therefore short, but containing all transitions in TS-x except
a. Therefore, Δrx,s has at most two entries 0. 
�

This proof implies that (i): a label a with s[a〉 is uniquely determined by the
choice of x and s, and (ii): s = sa, the unique state enabling only a.

Next, we define a function Rs,x : S → N, also depending on s and x. Let a be
the unique label with s = sa. For any state q ∈ S, define Rs,x(q) = Δrx,q(a) . For
example, let the initial state on the top left-hand corner of Figure 4 be s0 = 0.
Then with TS-x and s = sb = 1, Rs,x(s0) = 0, because on any path from rx = 4
to s0 = 0, no b occurs.

A net will now be assembled from TS = (S,→, T, s0) by the following algo-
rithm.

for every label x ∈ T do for every state s ∈ Seq(x) do
determine a ∈ T for which s = sa;
define a place p=ps,x with •p={a}, F (a, p)=1 and p•={x}, F (p, x)=1;
compute Rs,x as above and put M0(p

s,x) = Rs,x(s0) tokens on ps,x

end for end for

(1)

In the net so constructed, every place ps,x has exactly one input transition, viz.
a, and exactly one output transition, viz. x, and the net is plain. So, it is a
marked graph, and moreover, it is side-condition-free because a 	= x.

Lemma 12. Rs,x “disables” x in s and “enables” x in all states in X
Rs,x(s) = 0, and Rs,x(q) ≥ 1 for every state q ∈ X.

Proof: Rs,x(s) = 0 because a does not occur on any path from rx to s.
Every q ∈ X is above some s′ ∈ Seq(x), i.e. s′[a′α〉q for some a′ and some α.

As shown in the proof of Lemma 11, every label except a′ and x occurs on a short
path from rx to s′, so that Rs,x(q) ≥ 1 by the definition of Rs,x, independently
of whether a = a′ or a 	= a′. 
�

Let a be determined from x and s, as before, and define

B(t) =

{
1 if t = x
0 if t 	= x

and F(t) =

{
0 if t 	= a
1 if t = a

(2)

Lemma 13. (Rs,x,B,F) is a region
The triple ρs,x = (Rs,x,B,F), as constructed above, is a region in TS.

Proof: Suppose s1[t〉s2. Rs,x(s1) ≥ B(t) follows from the second claim of Lemma
12 if t = x and from B(t) = 0 and the semipositiveness of Rs,x if t 	= x. Rs,x(s2) =
Rs,x(s1) + F(t) − B(t) follows from the first line of (2) if t = x, and from the
second line of (2) if t 	= x. 
�
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Theorem 14. Isomorphism of TS and RG(N,M0)
Let a labelled transition system TS = (S,→, T, s0) with properties b, rp, P1,

and bp be given. Let N with initial marking M0 be the Petri net constructed
according to the above procedure. Then TS and the reachability graph RG(N,M0)
of (N,M0) are isomorphic.

Proof: Lemma 12 implies that the set of regions constructed above satisfy ESSP,
which ensures that TS and RG(N,M0) are language-equivalent. To see that SSP
is also satisfied, assume that s1 and s2 in TS are mapped to the same marking
M reachable in (N,M0). By the strong connectedness of TS, there is a sequence
s1[σ〉s2. Since M [σ〉 by language equivalence, and because s2 is mapped to M ,
there is also a sequence s2[σ〉s3. Using the finiteness of TS, we get si[σ

�〉si for
some i,  ≥ 1. Because this is a cycle, property P1 implies that every letter
occurs equally often in σ�, and hence also equally often in σ. Thus σ is itself
cyclic, entailing s1 = s2. The claim follows by Theorem 8. 
�

Note that N has no isolated places. Hence it is connected, because otherwise,
each connected component generates small cycles which do not satisfy P1.

5 Marked Graphs, and Place Bounds

Theorem 15. Live and bounded marked graph reachability graphs
A labelled transition system satisfying b is isomorphic to the reachability graph

of a connected live and bounded marked graph iff it satisfies the properties rp,
P1 and bp.

Proof: For (⇒), see Theorem 9. For (⇐), see Theorem 14. 
�
Theorem 15 characterises the structure of the reachability graph of a con-

nected, live and bounded marked graph. Let us now look more carefully at this
bound.

Lemma 16. Exact bound
Assume that TS = (S,→, T, s0) satisfies b, rp, P1, and bp. The bound of the

marked graph constructed by (1) is max{Δsa,sx(a) | x ∈ T, sa ∈ max(S \X)}.

Proof: We already saw that Mr(p
s,x) = Δrx,r(a) for each x ∈ T , s = sa ∈

max(S \X)} and r ∈ S, and Ms(p
s,x) = 0. Hence, the maximum marking for

that place is Msx(p
s,x) = Δrx,sx(a) so that, if s = sa, Msx(p

s,x) = Δrx,sx(a) =
Δrx,sa(a)+Δsa,sx(a) = Δsa,sx(a), and this is the maximal marking of that place.
The claimed bound results. 
�

Lemma 17. Minimality
Assume that TS = (S,→, T, s0) satisfies b, rp, P1, and bp. Any marked

graph solution of TS contains (a copy of) the net constructed by (1).
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Proof: Let us consider some x ∈ T and sa ∈ max(S \X) as above. There must
be a place px,a in the solution that excludes x at sa, that is Msa(px,a) = 0 since
the net is a marked graph, hence plain. Let us assume that it is a place from b
to x. For any state r ∈ S we must also have Mr(px,a) = Mrx(px,a)+Δrx,r(b), so
that Mrx(px,a) = 0 = Δrx,sa(b) as well. Therefore, there is no label b between
rx and sa. But since sa ∈ Seq(x), from Lemma 11 and P1, the only missing
labels between rx and sa are a and x, so that px,a = pa,s, with the same initial
marking. The property results. 
�

Corollary 18. Live and k-bounded marked graph reachability graphs
Assume that TS = (S,→, T, s0) satisfies b, rp, P1, and bp.

Let K = max{Δsa,sx(a) | x ∈ T, sa ∈ max(S \X)} .
(a): If k ≥ K, then TS is (isomorphic to) the reachability graph of a connected,
live, k-bounded marked graph. (b): If k < K, then no marked graph whose
reachability graph is isomorphic to TS is k-bounded.

Thus K is the tightest possible bound for a marked graph realising TS: this
results from Lemmata 16 and 17. As a consequence, the constructed marked
graph is not only minimal, but also unique. Moreover, if an lts satifying all
properties b, rp,P1, bp is reduced by fusing the endpoints of all x-labelled edges,
one gets a well-defined new lts (with one transition less) which also satisfies all
properties, and thus corresponds again to a marked graph.

6 Concluding Remarks

In this paper, we have proved that every labelled transition system satisfying
some basic properties as well as reversibility, persistency, backward persistency,
and a Parikh 1 property of small cycles, is isomorphic to the reachability graph
of a live and bounded marked graph. This result, and the corresponding one for
k-bounded marked graphs, seem to be novel, even though marked graphs enjoy
a long history of being studied.

We would like to emphasise the key role of backward persistency. If bp is
not true, then the state rx of Lemma 10 cannot be used, as the set S \X may
have more than one minimum; also, Lemma 11 fails. If bp is dropped but all
other properties are kept, one can find examples which cannot be solved by
ON Petri nets even if arbitrary arc weights and arbitrary side-conditions are
allowed, disproving a conjecture of [5]. Such examples are rather complex; they
are described in [6].

Future work might be concerned with the following issues:

• Extending the characterisations to non-live and/or unboundedmarked graphs,
while relaxing the plainness and pureness assumptions [12].

• Checking whether nets (N,M0) which satisfy rp and whose initial marking
satisfies gcd{M0(p) | p ∈ P} > 1 are backward persistent. (A positive answer
would settle a question left open in [4].)
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Appendix

A Auxiliary Results

Let TS = (S,→, T, s0) be an lts satisfying b, rp, and PΥ with some positive Υ .
For sequences σ, τ ∈ T ∗, τ−• σ denotes the residue of τ w.r.t σ, i.e. the sequence
left after cancelling successively in τ the leftmost occurrences of all symbols
from σ, read from left to right. Formally and inductively: for t ∈ T , τ−• t = τ
if Ψ(τ)(t) = 0; τ−• t =the sequence obtained by erasing the leftmost t in τ if
Ψ(τ)(t) 	= 0; τ−• ε = ε; and τ−• (tσ) = (τ−• t)−• σ.
Theorem 19. Keller’s theorem [9]

If s[τ〉 and s[σ〉 for some s ∈ [s0〉, then s[τ(σ−• τ)〉s′ and s[σ(τ−• σ)〉s′′ as well
as Ψ(τ(σ−• τ)) = Ψ(σ(τ−• σ)) and s′ = s′′. 
�

Lemma 20. Cyclic extensions
Suppose s[α〉 with α ∈ T ∗ and Ψ(α) ≤ Υ . Then there is a small cycle s[κ〉s

such that α is a prefix of κ.

Proof: Let α̃ be such that s[α̃〉s and Υ = Ψ(α̃). Such a sequence α̃ exists by
persistency, reversibility, and because small cycles can be pushed to all states
(cf. Corollary 4 of [3]). Suppose s[α〉s′. By Keller’s theorem, s[α〉s′[α̃−• α〉s′′. By
Ψ(α) ≤ Υ = Ψ(α̃), Ψ(α̃) = Ψ(α(α̃−• α)). By the cyclicity of α̃, s′′ = s. Choosing
κ = α(α̃−• α) proves the lemma. 
�
Lemma 21. Characterisation of short paths

Suppose that s[τ〉s′. Then s[τ〉s′ is short iff ¬(Υ ≤ Ψ(τ)).

Proof: (⇒): By contraposition. Suppose that s[τ〉s′ and that Υ ≤ Ψ(τ). There
is some cycle s[κ〉s with Ψ(κ) = Υ . By Keller’s theorem, s[κ〉s[τ−• κ〉s′′. By
Ψ(κ) = Υ ≤ Ψ(τ), Ψ(τ) = Ψ(κ(τ−• κ)), and therefore, s′ = s′′ (by determinacy,
which holds by property b). Since neither κ nor τ is the empty sequence, and by
the fact that κ contains every transition at least once, |τ−• κ| < |τ |. Hence s[τ〉s′
is not short.

(⇐): Suppose that s[τ〉s′ and ¬(Υ ≤ Ψ(τ)). Consider any other path s[τ ′〉s′
from s to s′. By reversibility, there is some path ρ from s′ to s. Hence both s′[ρτ〉s′
and s′[ρτ ′〉s′ are cycles at s′. By Keller’s theorem, s′[ρτ ′〉s′[(ρτ)−• (ρτ ′)〉s′. Hence
s′[τ−• τ ′〉s′, and since this is a cycle, Ψ(τ−• τ ′) is a multiple of Υ . In view of
¬(Υ ≤ Ψ(τ)) and 1 ≤ Υ , this can only be the case if Ψ(τ−• τ ′) = 0, i.e., τ−• τ ′ = ε.
This implies, in particular, that Ψ(τ) ≤ Ψ(τ ′) and that |τ | ≤ |τ ′|, and therefore,
s[τ〉s′ is short. 
�
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Lemma 22. Uniqueness of short Parikh vectors
Suppose that s[τ〉s′ and s[τ ′〉s′ are both short. Then Ψ(τ) = Ψ(τ ′).

Proof: By Lemma 21, both ¬(Υ ≤ Ψ(τ)) and ¬(Υ ≤ Ψ(τ ′)). As in the second
part of the previous proof, we may conclude, using some suitable (in fact any)
path s′[ρ〉s, both s′[τ−• τ ′〉s′ and s′[τ ′−• τ〉s′. Therefore, both Ψ(τ) ≤ Ψ(τ ′) and
Ψ(τ ′) ≤ Ψ(τ), implying Ψ(τ) = Ψ(τ ′). 
�
Lemma 23. Characterisation of Parikh vectors of paths

Suppose that s[τ〉s′. Then Ψ(τ) = Ψ(τ ′) + m·Υ , with some number m ∈ N,
where s[τ ′〉s′ is any short path.

Proof: Assume that s[τ〉s′. Let m be the maximal number in N such that
Ψ(m·Υ ) ≤ Ψ(τ). Let s[κ〉s be some cycle with Ψ(κ) = Υ . Then also s[κm〉s,
with Ψ(κm) = m·Υ . By Keller’s theorem, s[κm〉s[τ ′〉s′, with τ ′ = τ−• κm. By the
maximality of m, s[τ ′〉s′ is short, and by Ψ(κm) ≤ Ψ(τ), Ψ(τ) can be written as
Ψ(τ) = Ψ(τ ′) + Ψ(κm). By Lemma 22, the choice of τ ′ is arbitrary. 
�
Lemma 24. Existence of short paths

Suppose that s, s′ are states. There is a short path from s to s′.

Proof: By reversibility, s[τ〉s′ for some τ . Just take the path s[τ ′〉s′ from the
proof of Lemma 23. 
�

So far, only PΥ was needed, but the remaining Lemmata depend on P1.

Lemma 25. Every label has a unique singular enabling state
For every x ∈ T there is a unique state sx on which only x is enabled.

Proof: There must be at least one such state, because otherwise one can create
a cycle without any x, by bypassing every outgoing edge labelled x on every
state and using the finiteness of the lts, eventually contradicting property P1.

Suppose sx and s′x are two such states and let sx[x〉s. By P1, we can find
s[αx〉s, without any x in α. Let s[β〉s′x be a short path, which exists by Lemma
24. By Keller’s theorem, s′x[αx−•β〉. Hence all of α are wiped out by β because s′x
enables only x. Therefore, and because β is short, every letter except x occurs
at least once in β. Similarly, if s′x[x〉s′[β′〉sx (with a short β′), then every letter
except x occurs at least once in β′. Now consider the cycle sx[x〉s[β〉s′x[x〉s′[β′〉sx.
It has every letter exactly twice, because x occurs exactly twice in it, and because
of P1. Therefore, β has every letter except x exactly once, which implies sx = s′x,
again by P1. 
�
Lemma 26. Labels on short paths into sx

On any short path into sx, there is no label x.

Proof: Assume that r[xα〉sx is a short path such that α has no label x. (Other
short paths into sx containing x can be reduced to this case by taking suffixes.)
Also, let r[xδ〉r be a cycle where δ contains no x but every other letter once. By
Keller’s theorem, sx[xδ−•xα〉 which cannot be empty (because otherwise r[xα〉sx
is not short) but also does not start with an x; contradiction. 
�



172 E. Best and R. Devillers

References

1. Badouel, E., Bernardinello, L., Darondeau, P.: Theory of Regions (to appear)
2. Badouel, E., Darondeau, P.: Theory of Regions. In: Reisig, W., Rozenberg, G.

(eds.) APN 1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)
3. Best, E., Darondeau, P.: A Decomposition Theorem for Finite Persistent Transition

Systems. Acta Informatica 46, 237–254 (2009)
4. Best, E., Darondeau, P.: Separability in Persistent Petri Nets. Fundamenta Infor-

maticae 112, 1–25 (2011)
5. Best, E., Darondeau, P.: Petri Net Distributability. In: Clarke, E., Virbitskaite,

I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 1–18. Springer, Heidelberg
(2012)

6. Best, E., Devillers, R.: Solving LTS with Parikh-unique Cycles. Technical Report
(2013)

7. Commoner, F., Holt, A.W., Even, S., Pnueli, A.: Marked Directed Graphs. J.
Comput. Syst. Sci. 5(5), 511–523 (1971)

8. Genrich, H.J., Lautenbach, K.: Synchronisationsgraphen. Acta Inf. 2, 143–161
(1973)

9. Keller, R.M.: A Fundamental Theorem of Asynchronous Parallel Computation.
In: Tse-Yun, F. (ed.) Parallel Processing. LNCS, vol. 24, pp. 102–112. Springer,
Heidelberg (1975)

10. Kondratyev, A., Cortadella, J., Kishinevsky, M., Pastor, E., Roig, O., Yakovlev, A.:
Checking Signal Transition Graph Implementability by Symbolic BDD Traversal.
In: Proc. European Design and Test Conference, Paris, France, pp. 325–332 (1995)

11. Landweber, L.H., Robertson, E.L.: Properties of Conflict-Free and Persistent Petri
Nets. JACM 25(3), 352–364 (1978)

12. Teruel, E.: On Weighted T-systems. In: Jensen, K. (ed.) ICATPN 1992. LNCS,
vol. 616, pp. 348–367. Springer, Heidelberg (1992)


	Characterisation of the State Spaces of Live and Bounded Marked Graph Petri Nets
	1 Introduction
	2 Labelled Transition Systems
	3 PetriNets
	4 Solving an lts, Using rp, P1, and bp
	5 Marked Graphs, and Place Bounds
	6 Concluding Remarks
	References




