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Preface

These proceedings contain the papers that were presented at the 8th Interna-
tional Conference on Language and Automata Theory and Applications (LATA
2014), held in Madrid, Spain, during March 10–14, 2014.

The scope of LATA is rather broad, including: algebraic language theory;
algorithms for semi-structured data mining; algorithms on automata and words;
automata and logic; automata for system analysis and program verification; au-
tomata, concurrency, and Petri nets; automatic structures; cellular automata;
codes; combinatorics on words; compilers; computability; computational com-
plexity; data and image compression; decidability issues on words and languages;
descriptional complexity; digital libraries and document engineering; DNA and
other models of bio-inspired computing; foundations of finite state technology;
foundations of XML; fuzzy and rough languages; grammars (Chomsky hierarchy,
contextual, unification, categorial, etc.); grammatical inference and algorithmic
learning; graphs and graph transformation; language varieties and semigroups;
language-based cryptography; language-theoretic foundations of artificial intelli-
gence and artificial life; natural language and speech automatic processing; par-
allel and regulated rewriting; parsing; patterns; power series; quantum, chemical
and optical computing; semantics; string and combinatorial issues in computa-
tional biology and bioinformatics; string processing algorithms; symbolic dynam-
ics; symbolic neural networks; term rewriting; transducers; trees, tree languages
and tree automata; weighted automata.

LATA 2014 received 116 submissions. Each one was reviewed by three Pro-
gramCommittee members, many of whom consulted with external referees. After
a thorough and vivid discussion phase, the committee decided to accept 45 pa-
pers (which represents an acceptance rate of 38.79%). The conference program
also included four invited talks and one invited tutorial. Part of the success in
the management of such a large number of submissions is due to the excellent
facilities provided by the EasyChair conference management system.

We would like to thank all invited speakers and authors for their contri-
butions, the Program Committee and the reviewers for their cooperation, and
Springer for its very professional publishing work.

December 2013 Adrian-Horia Dediu
Carlos Mart́ın-Vide

José-Luis Sierra
Bianca Truthe
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Béatrice Bérard and Olivier Carton

Characterisation of the State Spaces of Live and Bounded Marked
Graph Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Eike Best and Raymond Devillers

Computing Depths of Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Francine Blanchet-Sadri, Andrew Lohr, Sean Simmons, and
Brent Woodhouse

Solving Equations on Words with Morphisms and Antimorphisms . . . . . . 186
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A Brief History of Strahler Numbers

Javier Esparza, Michael Luttenberger, and Maximilian Schlund

Fakultät für Informatik, Technische Universität München, Germany

Abstract. The Strahler number or Horton-Strahler number of a tree,
originally introduced in geophysics, has a surprisingly rich theory. We
sketch some milestones in its history, and its connection to arithmetic ex-
pressions, graph traversing, decision problems for context-free languages,
Parikh’s theorem, and Newton’s procedure for approximating zeros of
differentiable functions.

1 The Strahler Number

In 1945, the geophysicist Robert Horton found it useful to associate a stream
order to a system of rivers (geophysicists seem to prefer the term ‘stream”) [20].

Unbranched fingertip tributaries are always designated as of order 1, trib-
utaries or streams of the 2d order receive branches or tributaries of the
1st order, but these only; a 3d order stream must receive one or more
tributaries of the 2d order but may also receive 1st order tributaries. A
4th order stream receives branches of the 3d and usually also of lower
orders, and so on.

Several years later, Arthur N. Strahler replaced this ambiguous definition by
a simpler one, very easy to compute [26]:

The smallest, or ”finger-tip”, channels constitute the first-order seg-
ments. [. . . ]. A second-order segment is formed by the junction of any
two first-order streams; a third-order segment is formed by the joining of
any two second order streams, etc.

Streams of lower order joining a higher order stream do not change the order
of the higher stream. Thus, if a first-order stream joins a second-order stream,
it remains a second-order stream. Figure 1 shows the Strahler number for a
fragment of the course of the Elbe river with some of its tributaries. The stream
system is of order 4.

From a computer science point of view, stream systems are just trees.

Definition 1. Let t be a tree with root r. The Strahler number of t, denoted by
S(t), is inductively defined as follows.

– If r has no children (i.e., t has only one node), then S(t) = 0.
– If r has children r1, . . . , rn, then let t1, . . . , tn be the subtrees of t rooted at

r1, . . . , rn, and let k = max{S(t1), . . . , S(tn)}: if exactly one of t1, . . . , tn has
Strahler number k, then S(t) = k; otherwise, S(t) = k + 1.

A.-H. Dediu et al. (Eds.): LATA 2014, LNCS 8370, pp. 1–13, 2014.
c© Springer International Publishing Switzerland 2014
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Fig. 1. Strahler numbers for a fragment of the Elbe river

Note that in this formal definition the Strahler number of a simple chain (a
”finger-tip”) is zero, and not one. This allows another characterization of the
Strahler number of a tree t as the height of the largest minor of t that is a
perfect binary tree (i.e., a rooted tree where every inner node has two children
and all leaves have the same distance to the root): Roughly speaking, such a
binary tree is obtained by, starting at the root, following paths along which the
Strahler number never decreases by more than one unit at a time, and then
contracting all nodes with only one child. If t itself is a binary tree, then this
minor is unique. We leave the details as a small exercise.

Figure 2 shows trees with Strahler number 1, 2, and 3, respectively. Each node
is labeled with the Strahler number of the subtree rooted at it.
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Fig. 2. Trees of Strahler number 1, 2, and 3
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Together with other parameters, like bifurcation ratio and mean stream length,
Horton and Strahler used stream orders to derive quantitative empirical laws for
stream systems. Today, geophysicists speak of the Strahler number (or Horton-
Strahler number) of a stream system. According to the excellent Wikipedia ar-
ticle on the Strahler number (mainly due to David Eppstein), the Amazon and
the Mississippi have Strahler numbers of 10 and 12, respectively.

2 Strahler Numbers and Tree Traversal

The first appearance of the Strahler number in Computer Science seems to be
due to Ershov in 1958 [8], who observed that the number of registers needed to
evaluate an arithmetic expression is given by the Strahler number of its syntax
tree. For instance, the syntax tree of (x + y · z) · t, shown on the left of Figure
3, has Strahler number 2, and indeed can be computed with just two registers
R1, R2 by means of the code shown on the right.

×

+

x ×

y z

w

R1 ← y
R2 ← z
R2 ← R1 ×R2

R2 ← x
R1 ← R1 +R2

R2 ← w
R1 ← R1 ×R2

Fig. 3. An arithmetic expression of Strahler number 2

The strategy for evaluating a expression e = e1 op e2 is easy: start with the
subexpression whose tree has lowest Strahler number, say e1; store the result in
a register, say R1; reuse all other registers to evaluate e2; store the result in R2;
store the result of R1opR2 in R1.

Ershov’s observation is recalled by Flajolet, Raoult and Vuillemin in [16],
where they add another observation of their own: the Strahler number of a bi-
nary tree is the minimal stack size required to traverse it. Let us attach to each
node of the tree the Strahler number of the subtree rooted at it. The traversing
procedure follows again the “lowest-number-first” policy (notice that arithmetic
expressions yield binary trees). If a node with number k has two children, then
the traversing procedure moves to the child with lowest number, and pushes the
(memory address of the) other child onto the stack. If the node is a leaf, then
the procedure pops the top node of the stack and jumps to it. To prove that
the stack size never exceeds the Strahler number, we observe that, if a node of
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number k has two children, then at least one of its children has number smaller
than k. So the procedure only pushes a node onto the stack when it moves to a
node of strictly smaller number, and we are done.

Notice, however, that the “lowest-number-first” policy requires to know the
Strahler number of the nodes. If these are unknown, all we can say is that a
nondeterministic traversing procedure always needs a stack of size at least equal
to the Strahler number, and that it may succeed in traversing the tree with a
stack of exactly that size.

2.1 Distribution of Strahler Numbers

The goal of Flajolet, Raoult and Vuillemin’s paper is to study the distribution
of Strahler numbers in the binary trees with a fixed number n of leaves. Let Sn

be the random variable corresponding to the Strahler number of a binary tree
(every node has either two or 0 children) with n internal nodes chosen uniformly
at random. Since the Strahler number of t is the height of the largest perfect
binary tree embeddable in t, we immediately have Sn ≤ �log2(n+1)�. The paper
shows that

Exp[Sn] ≈ log4 n and Var [Sn] ∈ O(1) .

In other words, when n grows the Strahler number of most trees becomes in-
creasingly closer to log4 n. Independently of Flajolet, Raoult and Vuillemin, also
Kemp derives in [21] the same asymptotic behaviour of the expected Strahler
number of a random binary tree. Later, Flajolet and Prodinger extend the anal-
ysis to trees with both binary and unary inner nodes [17]. Finally, Devroye and
Kruszewski show in [5] that the probability that the Strahler number of a ran-
dom binary tree with n nodes deviates by at least k from the expected Strahler
number of log4 n is bounded from above by 2

4k
, that is, the Strahler number is

highly concentrated around its expected value.

2.2 Strahler Numbers in Language Theory: Derivation Indices,
Caterpillars, and Dimensions

Derivation indices and caterpillars. The Strahler number has been rediscov-
ered (multiple times!) by the formal language community. In [19], Ginsburg and
Spanier introduce the index of a derivation S ⇒ α1 ⇒ α2 ⇒ · · · ⇒ w of a given
grammar as the maximal number of variables occurring in any of the sentential
forms αi (see also [27]). For instance, consider the grammar X → aXX | b. The
index of the derivations

X ⇒ aXX ⇒ aXaXX ⇒ abaXX ⇒ ababX ⇒ ababb

X ⇒ aXX ⇒ abaXX ⇒ abaXX ⇒ ababX ⇒ ababb

is 3 (because of aXaXX) and 2, respectively. For context-free grammars, where
we have the notion of derivation tree of a word, we define the index of a derivation
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tree as the minimal index of its derivations. If the grammar is in Chomsky normal
form, then a derivation tree has index k if and only if its Strahler number is
(k − 1).

A first use of the Strahler number of derivation trees can be found in [4],
where Chytil and Monien, apparently unaware of the Strahler number, introduce
k-caterpillars as follows:

A caterpillar is an ordered tree in which all vertices of outdegree greater
than one occur on a single path from the root to a leaf. A 1-caterpillar is
simply a caterpillar and for k > 1 a k-caterpillar is a tree obtained from
a caterpillar by replacing each hair by a tree which is at most (k − 1)-
caterpillar.

Clearly, a tree is a k-caterpillar if and only if its Strahler number is equal to k.
Let Lk(G) be the subset of words of L(G) having a derivation tree of

Strahler number at most k (or, equivalently, being a k-caterpillar). Chytil and
Monien prove that there exists a nondeterministic Turing machine with lan-
guage L(G) that recognizes Lk(G) in space O(k log |G|). Assume for simplicity
that G is in Chomsky normal form. In order to nondeterministically recognize
w = a1a2 . . . an ∈ Lk(G), we guess on-the-fly (i.e., while traversing it) a deriva-
tion tree of w with Strahler number at most k, using a stack of height at most
k. The traversing procedure follows the “smaller-number-first” policy. More pre-
cisely, the nodes of the tree are triples (X, i, j) with intended meaning “X gen-
erates a tree with yield ai . . . aj”. We start at node (S, 1, n). At a generic node
(X, i, j), we proceed as follows. If i = j, then we check that X → ai is a produc-
tion, pop a new node, and jump to it. If i < j, then we guess a production, say
X → Y Z, and an index i ≤ l ≤ j, guess which of (Y, 1, i) and (Z, l, j) generates
the subtree of lowest number, say (Y, i, l), and jump to it, pushing (Z, l, j) onto
the stack.

The traversing procedure can also be used to check emptiness of Lk(G) in
nondeterministic logarithmic space (remember: k is not part of the input) [13].
In this case we do not even need to guess indices: if the current node is labeled
by X , then we proceed as follows. If X has no productions, then we stop. If G
has a production X → a for some terminal a, we pop the next node from the
stack and jump to it. If G has productions for X , but only of the form X → Y Z,
then we guess one of them and proceed as above. Notice that checking emptiness
of L(G) is a P -complete problem, and so unlikely to be solvable in logarithmic
space.

Tree dimension. The authors of this paper are also guilty of rediscovering the
Strahler number. In [9] we defined the dimension of a tree, which is . . . nothing
but its Strahler number.1 Several papers [9,11,18,13] have used tree dimension

1 The name dimension was chosen to reflect that trees with Strahler number 1 are a
chain (with hairs), trees of dimension 2 are chains of chains (with hairs), that can be
nicely drawn in the plane, trees of dimension 3 are chains of chains of chains (with
hairs), with can be nicely displayed in 3-dimensional space, etc.
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(that is, they have used the Strahler number) to show that Ln+1(G), where
n is the number of variables of a grammar G in Chomsky normal form, has
interesting properties2:

(1) Every w ∈ L(G) is a scattered subword of some w′ ∈ Ln+1(G) [13].
(2) For every w1 ∈ L(G) there exists w2 ∈ Ln+1(G) such that w1 and w2 have

the same Parikh image, where the Parikh image of a word w is the function
Σ → N that assigns to every terminal the number of times it occurs in w.
Equivalently, w and w′ have the same Parikh image if w′ can be obtained
from w by reordering its letters [9].

The first property has already found at least one interesting application in
the theory of formal verification (see [13]). The second property has been used
in [12] to provide a simple “constructive” proof of Parikh’s theorem. Parikh’s
theorem states that for every context-free language L there is a regular language
L′ such that L and L′ have the same Parikh image (i.e., the set of Parikh images
of the words of L and L′ coincide). For instance, if L = {anbn | n ≥ 0}, then we
can take L′ = (ab)∗.

The proof describes a procedure to construct this automaton. By property (2),
it suffices to construct an automaton A such that L(A) and Lk+1(G) have the
same Parikh image. We construct A so that its runs “simulate” the derivations
of G of index at most k+1. Consider for instance the context-free grammar with
variables A1, A2 (and so k = 2), terminals a, b, c, axiom A1, and productions

A1 → A1A2|a A2 → bA2aA2|cA1

Figure 4 shows on the left a derivation of index 3, and on the right the run of A
simulating it. The states store the current number of occurrences of A1 and A2,
and the transitions keep track of the terminals generated at each derivation step.
The run of A generates bacaaca, which has the same Parikh image as abcaaca.

A1 (0, 1)

⇒ A1A2
ε−→ (1, 1)

⇒ A1bA2aA2
ba−−→ (1, 2)

⇒ A1bcA1aA2
c−→ (2, 1)

⇒ abcA1aA2
a−→ (1, 1)

⇒ abcaaA2
a−→ (0, 1)

⇒ abcaacA1
c−→ (1, 0)

⇒ abcaaca
a−→ (0, 0)

Fig. 4. A derivation and its “simulation”

2 For an arbitrary grammar G, the same properties hold for Lnm+1(G), where m is
the maximal number of variables on the right-hand-side of a production, minus 1. If
G is in Chomsky normal form, then m ≤ 1.
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The complete automaton is shown in Figure 5.

0, 0 2, 01, 0 3, 0

2, 11, 10, 1

0, 2 1, 2

0, 3

a

a a

a

a a

εc ba c

cc

ba

ba c

c ε ε

Fig. 5. The Parikh automaton of A1 → A1A2|a, A2 → bA2aA2|cA1 with axiom A1

3 Strahler Numbers and Newton’s Method

Finally, we present a surprising connection between the Strahler number and
Newton’s method to numerically approximate a zero of a function. The con-
nection works for multivariate functions, but in this note we just consider the
univariate case.

Consider an equation of the form X = f(X), where f(X) is a polynomial with
nonnegative real coefficients. Since the right-hand-side is a monotonic function,
by Knaster-Tarski’s or Kleene’s theorem the equation has exactly one smallest
solution (possibly equal to ∞). We denote this solution by μf . It is perhaps less
known that μf can be given a “language-theoretic” interpretation. We explain
this by means of an example (see [14] for more details).

Consider the equation

X =
1

4
X2 +

1

4
X +

1

2
(1)

It is equivalent to (X − 1)(X − 2) = 0, and so its least solution is X = 1. We
introduce identifiers a, b, c for the coefficients, yielding the formal equation

X = f(X) := aX2 + bX + c . (2)

We “rewrite” this equation as a context-free grammar in Greibach normal
form in the way one would expect:

G : X → aXX | bX | c , (3)
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Consider now the derivation trees of this grammar. It is convenient to rewrite the
derivation trees as shown in Figure 6: We write a terminal not at a leaf, but at
its parent node, and so we now write the derivation tree on the left of the figure
in the way shown on the right. Notice that, since each production generates a
different terminal, both representations contain exactly the same information.3

X

a X X

b X

c

a X X

c b X

c

a

b a

c c b

c

Fig. 6. New convention for writing derivation trees

We assign to each derivation tree t its value V (t), defined as the product of
the coefficients labeling the nodes. So, for instance, for the tree of Figure 6 we
get the value a2 · b2 · c3 = (1/4)4(1/2)3 = 1/128. Further, we define the value
V (T ) of a set T of trees as

∑
t∈T V (t) (which can be shown to be well defined,

even if T is infinite). If we denote by TG the set of all derivation trees of G, then

μf = V (TG). (4)

The earliest reference for the this theorem in all its generality we are aware of
is Bozapalidis [2] (Theorem 16) to whom also [6] gives credit.

A well-known technique to approximate μf is Kleene iteration, which consists
of computing the sequence {κi}i∈N of Kleene approximants given by

κ0 = 0
κi+1 = f(κi) for every i ≥ 0

It is easy to show that this corresponds to evaluating the derivation trees
(with our new convention) by height. More precisely, if Hi is the set of derivation
trees of TG of height less than i, we get

κi = V (Hi) (5)

In other words, the Kleene approximants correspond to evaluating the deriva-
tion trees of G by increasing height.

It is well known that convergence of Kleene iteration can be slow: in the worst
case, the number of correct digits grows only logarithmically in the number of

3 This little change is necessary, because the tree of the derivation X ⇒ c has Strahler
number 1 if trees are drawn in the standard way, and 0 according to our new
convention.
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iterations. Newton iteration has much faster convergence (cf. [15,10,25]). Recall
that Newton iteration approximates a zero of a differentiable function g(X). For
this, given an approximation νi of the zero, one geometrically computes the next
approximation as follows:

– compute the tangent to g(X) at the point (νi, g(νi));
– take for νi+1 the X-components of the intersection point of the tangent and

the x-axis.

For functions of the form g(X) = f(X) − X , an elementary calculation yields
the sequence {νi}i∈N of Newton approximants

ν0 = 0

νi+1 = νi −
f(νi)− νi
f ′(νi)− 1

We remark that in general choosing ν0 = 0 as the initial approximation may not
lead to convergence – only in the special cases of the nonnegative reals or, more
generally, ω-continuous semirings, convergence is guaranteed for ν0 = 0.

A result of [11] (also derived independently in [23]) shows that, if Si is the set
of derivation trees of TG of Strahler number less than i (where trees are drawn
according to our new convention), then

νi = V (Si) (6)

In other words, the Newton approximants correspond to evaluating the deriva-
tion trees of G by increasing Strahler number!

The connection between Newton approximants and Strahler numbers has sev-
eral interesting consequences. In particular, one can use results on the conver-
gence speed of Newton iteration [3] to derive information on the distribution of
the Strahler number in randomly generated trees. Consider for instance random
trees generated according to the following rule.

A node has three children with probability 0.1, two children with proba-
bility 0.2, one child with probability 0.1, and zero children with
probability 0.6.

Let G the context-free grammar

X → aXXX | bXX | cX | d

with valuation V (a) = 0.1, V (b) = 0.2, V (c) = 0.1, V (d) = 0.6. It is easy to see
that the probability of generating a tree t is equal to its value V (t). For instance,
the tree t of Figure 7 satisfies Pr [t] = V (t) = a · b2 · c · d5.

Therefore, the Newton approximants of the equation

X = 0.1X3 + 0.2X2 + 0.1X + 0.6

give the distribution of the random variable S that assigns to each tree its
Strahler number. Since f(X) = 0.1X3+0.2X2+0.1X+0.6 and f ′(X) = 0.3X2+
0.4X2 + 0.1, we get
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b

a

d d d

c

b

d d

Fig. 7. A tree with probability a · b2 · c · d5

ν0 = 0.6

νi+1 = νi −
ν3i + 2ν2i − 9νi + 6

3ν2i + 4νi − 9

and so for the first approximants we easily obtain

ν0 = Pr [S < 0] = 0
ν1 = Pr [S < 1] = 0.667
ν2 = Pr [S < 2] ≈ 0.904
ν3 = Pr [S < 3] ≈ 0.985
ν4 = Pr [S < 4] ≈ 0.999

As we can see, the probability converges very rapidly towards 1. This is not a
coincidence. The function f(X) satisfies μf < 1, and a theorem of [3] shows that
for every f satisfying this property, there exist numbers c > 0 and 0 < d < 1
such that

Pr [S ≥ k] ≤ c · d2k .

4 Strahler Numbers and . . .

We have exhausted neither the list of properties of the Strahler number, nor the
works that have obtained them or used them. To prove the point, we mention
some more papers.

In 1978, Ehrenfeucht et al. introduced the same concept for derivation trees
w.r.t. ET0L systems in [7] where it was called tree-rank.

Meggido et al. introduced in 1981 the search number of an undirected tree [22]:
the minimal number of police officers required to capture a fugitive when police
officers may move along edges from one node to another, and the fugitive can
move from an edge to an incident one as long as the common vertex is not blocked
by a police officer; the fugitive is captured when he cannot move anymore. For
trees, the search number coincides with the better known pathwidth (see e.g.
[1]), defined for general graphs. In order to relate the pathwidth to the Strahler
number, we need to extend the definition of the latter to undirected trees: let
the Strahler number S(t) of an undirected tree be the minimal Strahler number
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of all the directed trees obtained by choosing a node as root, and orienting all
edges away from it. We can show that for any tree t:

pathwidth(t)− 1 ≤ S(t) ≤ 2 · pathwidth(t)
Currently, we are studying the Strahler number in the context of natural

language processing. Recall that the Strahler number measures the minimal
height of a stack required to traverse a tree, or, more informally, the minimal
amount of memory required to process it. We conjecture that most sentences of a
natural language should have a small Strahler number – simply not to overburden
the reader or listener. Table 1 contains the results of an examination of several
publicly available tree banks (banks of sentences that have been manually parsed
by human linguists), which seem to support this conjecture. For each language
we have computed the average and maximum Strahler number of the parse trees
in the corresponding tree bank. We are currently investigating whether this fact
can be used to improve unlexicalized parsing of natural languages.

Table 1. Average and maximum Strahler numbers for several treebanks of natural
languages. ‡: SPMRL shared task dataset, ♣: 10% sample from the Penn treebank
shipped with python nltk, ♠: TueBa-D/Z treebank.

Language Source Average Maximum

Basque SPMRL‡ 2.12 3
English Penn♣ 2.38 4
French SPMRL 2.29 4
German SPMRL 1.94 4

German TueBa-D/Z♠ 2.13 4
Hebrew SPMRL 2.44 4
Hungarian SPMRL 2.11 4
Korean SPMRL 2.18 4
Polish SPMRL 1.68 3
Swedish SPMRL 1.83 4

5 Conclusions

We have sketched the history of the Strahler number, which has been redis-
covered a surprising number of times, received a surprising number of different
names (stream order, stream rank, index, tree rank, tree dimension, k-caterpillar
. . . ), and turns out to have a surprising number of applications and connections
(Parikh’s theorem, Newton’s method, pathwidth . . . ).

This paper is by no means exhaustive, and we apologize in advance to the
many authors we have surely forgotten. We intend to extend this paper with
further references. If you know of further work connected to the Strahler number,
please contact us.

Acknowledgments. We thank Carlos Esparza for his help with some
calculations.
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Abstract. We consider the problem of determining if a string w belongs
to a language L specified by an automaton (NFA, or PDA augmented
by reversal-bounded counters, etc.) where the string w is specified by its
Parikh vector. If the automaton (PDA augmented with reversal-bounded
counters) is fixed and the Parikh vector is encoded in unary (binary),
the problem is in DLOGSPACE (PTIME). When the automaton is
part of the input and the Parikh vector is encoded in binary, we show
the following results: if the input is an NFA accepting a letter-bounded
language (i.e., ⊆ a∗

1 · · · a∗
k for some distinct symbols a1, ..., ak), the prob-

lem is in PTIME, but if the input is an NFA accepting a word-bounded
language (i.e., ⊆ w∗

1 · · ·w∗
m for some nonnull strings w1, ..., wm), it is

NP -complete. The proofs involve solving systems of linear Diophantine
equations with non-negative integer coefficients. As an application of the
results, we present efficient algorithms for a generalization of a tiling
problem posed recently by Dana Scott. Finally, we give a classification
of the complexity of the membership problem for restricted classes of
semilinear sets.

Keywords: Parikh vector, NFA, counter machine, reversal-bounded
counters, CFG, Chomsky Normal Form, bounded language.

1 Introduction

Membership problems are the most fundamental problems in computation the-
ory. Here we study a variation in which the input string is specified by its Parikh
vector - i.e., as a vector < n1, n2, ..., nk > where k is the alphabet size and ni

is the number of occurrences of the i-th letter. A potential application area in-
volves pattern matching in which some symbols are allowed to commute [13].
Our study was also motivated by a tiling problem (posed by Dana Scott) for
which a polynomial time algorithm follows from the new version of the member-
ship problem studied here. The problem of membership given by Parikh vector
is a natural one and is probably of interest in its own right.
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Membership problem as well as other problems (such as equivalence, con-
tainment etc.) have been studied [6] where the input is a Parikh vector. But
prior studies have generally assumed that the language is also represented as a
semilinear set (in terms of the basis vectors). In this setting, the membership
(equivalence) problem has been shown to be NP -complete (Σp

2 -complete) [6].
[13] and [2] have studied membership problems similar to the ones presented in
this paper. The main difference between these papers and ours are as follows:
(a) we present an application to a class of tiling problems, (b) we present NP-
hardness result even when restricted to NFA’s accepting a bounded language
and (c) we show the positive result (namely PTIME algorithm) for a wider class
of languages (namely those that are accepted by PDA’s augmented by reversal-
bounded counter machines).

The rest of the paper is organized as follows: In Section 2, we review some basic
definitions and concepts used in this paper. In Section 3, we introduce Scott’s
tiling problem and present an efficient algorithm to solve the unary as well as
the binary version. In Section 4, we consider the Parikh vector membership
problem when the language is part of the input. We extend the polynomial
time membership to NPDA’s augmented by reversal-bounded counters. Next we
consider the membership problem when the automaton is not fixed (i.e., it is
part of the input). In the case of binary encoding of the input (Parikh) vector,
the problem is shown to be in PTIME when the input is an NFA that accepts
a letter-bounded regular language. It is also in PTIME if the language is k
string-bounded for a fixed k. It becomes NP-complete if k is not fixed. Thus,
the membership problem exhibits an interesting contrast - when the input NFA
is letter-bounded it is solvable in polynomial time, but is NP-complete when it
is string-bounded (i.e., a subset of w∗1 ...w

∗
k for some w1, ..., wk). In Section 5,

we give a classification of the complexity of the membership problem for some
restricted classes of semilinear sets. In Section 6, we conclude with a summary
of the main results presented in this work. Our work shows some results on the
solvability of systems of linear Diophantine equations with non-negative integer
coefficients.

2 Preliminaries

We will assume that the readers are familiar with terms and notation used
in formal language, automata theory and complexity theory as presented in
standard references such as [5], [3].

Let N be the set of non-negative integers and n ≥ 1. Q ⊆ Nn is a linear
set if there is a vector c in Nn (the constant vector) and a set of periodic
vectors V = {v1, . . . , vr}, r ≥ 0, each vi in Nn such that Q = {c+ t1v1 + · · ·+
trvr | t1, . . . , tr ∈ N}. We denote this set as Q(c, V ). A finite union of linear sets
is called a semilinear set.

Let Σ = {a1, . . . , an}. For w ∈ Σ∗, let |w| be the number of letters
(symbols) in w, and |w|ai denote the number of occurrences of ai in w.
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The Parikh map P (w) of w is the vector (|w|a1 , . . . , |w|an); similarly, the Parikh
image of a language L is defined as P (L) = {P (w) | w ∈ L}.

3 D. Scott’s Problem and Related Problems

Polyominoes are a collection of unit squares forming a connected piece in the
sense that each square is reachable from any other by going through adjacent
squares. Polyominoes were made popular in the recreational Mathematics lit-
erature by [4] and numerous puzzles have been created based on polyominoes.
Pentominoes are polyominoes made of five squares. There are 12 distinct pen-
tominoes and they have been labeled using letters P through Z by Conway - see
the figure below. Dana Scott [19] pioneered the use of backtracking to solve the
problem of placing one copy each of the 12 different pentominoes in the stan-
dard 8 by 8 checker-board with a 2 by 2 hole in the center. Of course, such a
placement requires leaving no other holes and with no overlap among the tiles.
Note that the tiles can be placed on the board in any orientation. There are 63
distinct pentominoes when all possible orientations (rotations and reflections)
are counted as distinct. From now on, these will be called oriented pentominoes.

Fig. 1. Twelve pentominoes with Conway’s labels

In a lecture at the University of Pennsylvania in April, 2012, Scott introduced
a tiling problem: Suppose the 12 pentominoes are labeled 1 through 12. Given
a sequence of twelve positive integers (n1, n2, ..., n12) as input, the problem is
to determine if there is a tiling of 5 × n checker-board using exactly ni copes
of tile i (where n = n1 + ... + n12). Scott asked whether this problem is in
PTIME, NP -complete or possibly a problem of intermediate complexity (with
ni’s given in unary). We will show that Scott’s problem is actually solvable in
DLOGPSACE (PTIME) when the input is given in unary (binary).

The main result of this section is that the solutions to the tiling problem can
be encoded as a regular language Ltile. In the next section, we will use this result
to design a polynomial time algorithm for Scott’s problem.

We begin by describing the alphabet over which we will define the language
Ltile. To define this, we first uniquely label all the different 63 pentominoes. For
pentomino j, we will assign labels for each of its squares by a label using the
following convention: Suppose the pentomino j occupies a total of r columns
when placed on the board. (For example, the x-pentomino has three columns -
the first one containing one square, the second one containing 3 squares and the
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third one containing one square.) The label we will assign to column c of pen-
tomino j is the pair (j, c). Thus, the center square of the x-pentomino (assuming
its label is jx) will be labeled (jx, 2). For a oriented pentomino j, let wj be its
width. For example, the R-pentomino’s width is 3 in all its (eight) orientations.

Let Σ = {[p1, p2, p3, p4, p5] | pj = (j, cj), j ∈ {1, 2, ..., 63} and cj ≤ wj}. We
will now define the language Ltile as follows: Consider any valid placement P
of the 63 oriented pentominoes to cover a 5×m checkerboard for some m. The
encoding associated with this placement is to replace each of the squares its
checkerboard with the corresponding label of the pentomino that occupies that
square. For a placement P , let code(P ) denote this string. The language L is the
collection of all such codes. Formally,

Ltile = {code(P ) | P is a valid placement of a collection of pentominoes on a
5×m checkerboard for some m}.

Theorem 1. Ltile is regular.

Proof. We will describe informally a DFA M to accept Ltile. We will start by
describing the state set of M . In fact, we will use the set Σ together with a
start state q0 and a dead state qd as the state set Q of M . We define a valid
opening state p ∈ Q as follows: p = [(r1, 1), (r2, 1), (r3, 1), (r4, 1), (r5, 1)] is a valid
opening state if the following condition is satisfied: the oriented pentominoes
whose labels appear in the set {r1, r2, r3, r4, r5} can be placed on the leftmost
column of a checker-board so that each pentomino’s label matches the label ri
and the pentonimoes do not overlap each other in any column. Basically, the
opening state represents the first column of a valid placement of pentominoes.
For example, suppose Ov stand for the vertical orientation of the O-pentomino.
The state

[(Ov, 1), (Ov, 1), (Ov, 1), (Ov, 1), (Ov, 1)] represents a valid opening state that
corresponding to placing the O-pentomino vertically on the board so that it
covers the leftmost column completely. On the other hand, we can also place
five copies of Oh, the same O-pentomino in horizontal orientation. In this case,
the opening state associated with the leftmost column of this placement would
be [(Oh, 1), (Oh, 1), (Oh, 1), (Oh, 1), (Oh, 1)].

Next we define the notion of consistency: We say that a state p is consistent
with a state q (note that this relationship is not symmetric) if the following is
true: Consider state p = [(r1, c1), (r2, c2), (r3, c3), (r4, c4), (r5, c5)]. Create a 2 by
5 board and place the pentominoes on the squares of the left column so that the
pentomino rj is placed with its column cj is on square (1, j) for j = 1 to 5. Let q =
[(s1, d1), (s2, d2), (s3, d3), (s4, d4), (s5, d5)]. The following three conditions should
be satisfied for l and q to be consistent:

1. it should be possible to place the pentominoes matching state p as described
above.

2. the extensions of pentominoes placed in the above step in column 2 should
match the labels associated with state q.

3. it should be possible to fill the ’holes’ in the second column by placing
pentominoes specified in state q.
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We can now describe transitions as follows: a transition from state p on in-
put q (note: here q is the next input as well as the next state) goes to state
q if and only if p and q are consistent. On all other inputs, p transitions to
the dead state qd. Finally we describe a test to determine if a state p = p =
[(r1, c1), (r2, c2), (r3, c3), (r4, c4), (r5, c5)] is the accepting state. Apply the first
step in checking the consistency between states p and q described above. Recall
that this involves placing pentominoes on the left column of a 2 by 5 checker-
board so that the column numbers c1, c2 etc. match the column numbers of the
pentominoes being placed. After this placement, if none of the placed pentomi-
noes extend to the right column, then p is accepting state. It is easy to see that
this DFA accepts the set of encodings of a valid placement of a collection of
pentominoes on 5×m checker-board for some m and so the claim is proved. �

We now show that Scott’s problem is in DLOGSPACE. We begin with the
following result:

Theorem 2. Let M be an NPDA augmented with 1-reversal counters such that
L(M) ⊆ {a1, ..., ak}∗. Let LM = {an1

1 · · · ank

k | there exists w in L(M) such that
for 1 ≤ i ≤ k, w has exactly ni occurrences of ai }. Then LM can be accepted by
a DFA augmented with 1-reversal counters that runs in linear time.

Proof. We first construct an NPDA M ′ augmented with 1-reversal counters
that accepts LM . In addition to the counters used by M , M ′ has k new 1-
reversal counters C1, .., Ck. M ′ on input an1

1 · · ·ank

k first reads the input and
stores n1, ..., nk in counters C1, C2, ..., Ck. Then M ′ guesses an input w to M
symbol-by-symbol and simulates M . It also decrements counter Ci whenever it
guesses symbol ai in w. When all the counters become zero, M ′ accepts if and
only if w is accepted by M .

It is known (see [8]) that any language B ⊆ w∗1 · · ·w∗k, where k ≥ 1 and
w1, ..., wk are (not necessarily distinct) nonnull strings, accepted by an NPDA
with 1-reversal counters is a semilinear language, i.e., QB = {(i1, i2, . . . , ik) | wi1

1

wi2
2 · · ·wik

k ∈ B} is a semilinear subset ofNk. Hence, LM is a semilinear language.
It was recently shown in [11] that the following statements are equivalent:

1. B is semilinear language.
2. B is accepted by a DFA augmented with 1-reversal counters.

In [1], it was shown that for every NFA M with 1-reversal counters, there is
a constant c such that every string x of length n in L(M) can be accepted by
M within cn time (even if x is non-bounded). Hence, a DFA augmented with
1-reversal counters runs in linear time. The theorem follows. �

When the values of the counters are polynomial, they can be stored in log n
space; hence:
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Corollary 3. L(M) (where M is as defined in Theorem 2) is in DLOGSPACE
and, hence, in PTIME.

We can generalize Theorem 2:

Theorem 4. Let M be an NPDA augmented with 1-reversal counters, k ≥ 1,
and w1, w2, . . . , wk be nonnull strings. Let LM = {wn1

1 wn2
2 · · ·wnk

k | there ex-
ists w in L(M) such that for 1 ≤ i ≤ k, w has exactly ni occurrences of wi,
and all the occurrences of w1’s, ... , wk’s are not overlapping (hence |w| =
n1|w1| + · · · + nk|wk|) }. Then LM can be accepted by a DFA augmented with
1-reversal counters that runs in linear time. Hence, LM is in DLOGSPACE
and in PTIME.

Proof. As in the proof of Theorem 2, we first construct an NPDA M ′ aug-
mented with 1-reversal counters that accepts LM . M ′ when given a string x in
w∗1 · · ·w∗k, first reads x and stores n1, ..., nk in k counters C1, ..., Ck such that
x = wn1

1 · · ·wnk

k . (Note that the ni’s are not unique, since there may be more
than one decomposition of x.) Then M ′ guesses an input w to M segment-by-
segment (where a segment is one of w1, ..., wk) and simulates M . It also decre-
ments counter Ci whenever it guesses segment wi. When all the counters become
zero, M ′ accepts if and only if w is accepted by M .

Again from [8], the set LM ′ is a semilinear language. The rest of the proof is
the same as in Theorem 2. �

We use Theorems 1 and 4 to show the main result of this section.

Theorem 5. There is a DLOGSPACE algorithm that takes as input a vector
(n1, ..., n12) (in unary notation) of non-negative integers (where

∑
j nj = n) and

answers yes (no) if there is a tiling of 5×n checker-board using nj pentominoes
of type j.

Proof. Since the input vector is given in unary, the input vector (n1, n2, ..., n12)
can be viewed as the string an1

1 ...an12
12 . We describe a nondeterministic 12 counter

machineM (which reverses each counter at most twice) that accepts the language
L = {an1

1 ...an12

12 | there is a tiling of 5× n checker-board using nj pentominoes
of type j}. We describe M informally. Let Mtile be the DFA described in the
proof of 1. For simplicity, we can assume that the input is of the form a∗1...a

∗
n.

(This can be easily checked by M in the finite control.) M guesses (symbol by
symbol) a string w that represent a tiling of 5 × n checker-board where n is
the length of the input string. After each symbol is guessed it simulates a single
step of the DFA Mtile and it also moves the input head exactly once after each
symbol is guessed. It further increases the counter j if the current input symbol
it scans on the input tape is aj . In addition, in finite control, it keeps track of
the last five symbols it guessed, and uses it to decrement j for each tile j that
was guessed, and that lies completely to the left of the current input position.
This simulation may pose a small problem in that for most of the tile types,
the counter values may have to be decremented to a value below 0 since the
incrementing may happen later than the decrementing. But this problem can
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be easily overcome with the standard trick of representing a negative value −k
using a counter value k and remembering the sign in the finite control. Note
that the incrementing of the counter happens in one block while the input head
moves over the block a

nj

j and decrementing happens every time a tile of type j is
actually seen on the (guessed) board. However, because of the above trick we use
to avoid negative counter values, each counter may be reversed at most twice.
This is seen as follows: if a tile of type j is encountered before the input head
reads the block aj , then clearly a symbol will be pushed for each occurrence
of tile j in the guessed board, and then when the block of aj ’s is reached, a
symbol is popped off counter j for each aj on the input tape. This happens
until the counter value reaches 0. From this point, for each aj on the input tape,
the counter will be incremented and each occurrence of tile type j will result
in decrementing the counter. When the entire input has been read, if all the
counters reach value 0, and the DFA Mtile reaches an accepting state, it is clear
that the input is a yes instance of the problem and is accepted. It is also clear
that no guessing will result in acceptance of the string an1

1 ...an12
12 that is a ’no’

instance of the problem. Thus it is clear that a NFA N1 with 12 counters each
of which reverse at most twice can accept the language L. It is easy to see that
N1 can be simulated by a 24-counter machine NFA N2 with counters reversing
once. Using Theorem 4, N2 can be simulated by a DFA augmented by a counter
machine and hence we conclude that there is a DLOGSPACE Turing machine
for L. �

4 Case of the Input Vector (n1, . . . , nk) Encoded in
Binary

Throughout this section, we will assume that n1, . . . , nk are represented in binary
with leading bits 1. So the time complexity involving these numbers will be a
function of log(n1) + · · ·+ log(nk).

We will need the following result of Lenstra in [16]:

Theorem 6. Let S be a system of linear constraints:

v11x1 + v12x2 + · · ·+ v1mxm ≤ n1

.....

vk1x1 + vk2x2 + · · ·+ vkmxm ≤ nk

where k,m ≥ 1 and the ni’s, and the vij ’s are integers (+, -, 0), represented in
binary.

When m (the number of variables) or k (the number of equations) is fixed, de-
ciding if the system has an integer solution (+, -, 0) for x1, ..., xm is in PTIME.

When the ni’s and the vij ’s are non-negative and the inequalities become
equalities, we can show:
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Theorem 7. Let S1 be a system of linear equations:
v11x1 + v12x2 + · · ·+ v1mxm = n1

.....

vk1x1 + vk2x2 + · · ·+ vkmxm = nk

where k,m ≥ 1 and the ni’s, and the vij’s are non-negative integers, represented
in binary. When m is fixed, deciding if the system S1 has a non-negative integer
solution for x1, ..., xm is in PTIME.

Proof. We transform system S1 to a system S of Theorem 6 as follows. For
1 ≤ i ≤ k, we convert

vi1x1 + vi2x2 + · · ·+ vimxm = ni

to two inequalities:

vi1x1 + vi2x2 + · · ·+ vimxm ≤ ni

−vi1x1 − vi2x2 − · · · − vimxm ≤ −ni

We also introduce for 1 ≤ i ≤ m, the inequality:

−xi ≤ 0

Then we get a system of inequalities of the form S given in Theorem 6 with
m variables and 2k + m inequalities. It follows that system S1 is solvable in
polynomial time. �

When m (number of variables) in the system S1 in Theorem 7 is not fixed, the
problem is NP-hard, even when (the number of equations) k = 1 [17]. However,
when the coefficients are bounded by a fixed positive integer, we can show:

Theorem 8. Let S2 be a system of linear equations:
v11x1 + v12x2 + · · ·+ v1mxm = n1

.....

vk1x1 + vk2x2 + · · ·+ vkmxm = nk

where k,m ≥ 1 and the ni’s, and the vij ’s are non-negative integers (represented
in binary) such that the vij ’s are bounded by a fixed positive integer d. When
(the number of equations) k is fixed, deciding if the system S2 has a non-negative
integer solution for x1, ..., xm is in PTIME.

Proof. Call the given system of equations as (1). First we will describe a poly-
nomial time algorithm when k = 1. Since v1j ≤ d, we can rewrite the equation

v11x1+v12x2+· · ·+v1mxm = n1 (1)

as

X1+2X2+ ...+dXd = n1 (2)
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where Xi, i = 1...d are new variables so that the former equation has a solution
in non-negative integers if and only if the latter has a solution in non-negative
integers. The idea is to add all the variables xj for which the coefficients in the
original equation (1) equal r and set it to Xr. Formally, define

Xr =
∑

j:v1j=r

xj (3)

and we get equation (2). Suppose (1) has a solution in non-negative integers,
then clearly (2) also has a solution by simply setting Xi as in (3). Conversely,
if (2) has a solution, then we can find a solution to (1) as follows: Suppose Xi

= d in the solution of (2). In equation (3), choose one of the variables xj that
appears on the right-hand side and set it to d and the others to 0. Since each
variable xj appears only once in (3), this assignment is consistent and provides
a solution to (1). A polynomial time algorithm to determine if (2) has a solution
follows from Theorem 7.

We next show how to extend this idea to k equations. Note that a variable
xj has coefficients vj,i in the set {0, 1, ..., d}. Define di as the column vector
associated with xi:

di = (v1,i, ..., ck,i)

Let D = {v1, v2, ..., vr} be the set {di | 1 ≤ i ≤ m} with duplicates removed.
Clearly r ≤ (d+1)k. Define a map f : {1, 2, ...,m} → {1, 2, ..., d} such that vt is
the vector associated with variable xj where t = f(j).

We introduce new variables y1, ... , yr and let

yi =
∑

j:f(j)=i

xj

We now replace the variables xj by yi and rewrite the equations (1). The
following illustrates this process. Suppose the original system of equations is:

x1 + x2 + 2x3 + x4 + 2x5 + 2x6 + 2x7 + 2x8 + 2x9 = 123

2x1 + x2 + 2x3 + x4 + x5 + 2x6 + x7 + 2x8 + x9 = 97

x1 + 2x2 + x3 + 2x4 + x5 + 2x6 + 2x7 + 2x8 + x9 = 104

The multi-set {di | 1 ≤ i ≤ 9} = {(1, 2, 1), (1, 1, 2), (2, 2, 1), (1, 1, 2), (2, 1, 1),
(2, 2, 2), (2, 1, 2), (2, 2, 2), (2, 1, 1)} and after removing duplicates, we get:

D = {(1, 2, 1), (1, 1, 2), (2, 2, 1), (2, 1, 1), (2, 2, 2), (2, 1, 2)} and the function f
defined as:

f(1) = 1, f(2) = f(4) = 2, f(3) = 3, f(5) = f(9) = 4, f(6) = f(8) = 5 and
f(6) = 7.
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Thus yi’s are related to the original variables xi’s via the equations:

y1 = x1

y2 = x2 + x4

y3 = x3 (4)

y4 = x5 + x9

y5 = x6 + x8

y6 = x7

Using yi’s to eliminate xj ’s, we get:

y1 + y2 + 2(y3 + y4 + y5 + y6) = 123

y2 + y4 + y6 + 2(y1 + y3 + y5) = 97 (5)

y1 + y3 + y4 + 2(y2 + y5 + y6) = 104

Note that the number of variables in the new sytem of equations is bounded by
a constant r (since both d and k are constants).

In order to conclude the proof, we need to prove the following:

1. Given (1), we can construct (3) in time bounded by a polynomial in the
input size.

2. The system (1) has a solution in non-negative integers if and only if the
system (3) does.

3. There is a polynomial time algorithm to determine if (3) has a solution in
non-negative integers.

We will show each of these claims.

Claim 1. By scanning the equations, a vector v associated with each variable xj

can be created. Then by sorting the vectors and elimiating duplications the set D
can be constructed, with label j attached to vector v. Finally, the equations can
be rewritten by replacing each variable xj by yi where vi is the vector associated
with variable xj . All these steps can be done in polynomial time.

Claim 2. Note that (3) was arrived at from (1) by replacing sums of the form
xi1 + xi2 + ... by new variables yt. If (1) has a solution, clearly we can find a
solution to (3) by taking the assignments for xj ’s and using them to compute the
corresponding yt’s. Conversely, suppose (3) has a solution in which the variable
yt has assignment v. yt is a sum of some x’s such as xi1 + xi2 + .... We can pick
arbitrarily one of the xi’s in this expression and set it to v and the others to 0.
The key point is that since the variables that occur in these equations form a
partition, such an assignment will not cause any inconsistency. This shows (2).
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Claim 3. This readily follows from the fact that in the system (3), the number of
variables is bounded by (d+1)k which is bounded by a constant since k and d are
bounded. Thus by Theorem 7, there is a polynomial time algorithm to determine
if (3) has a non-negative integer solution. This concludes the proof. �

Theorem 9. Let M be an NPDA augmented with 1-reversal counters such that
L(M) ⊆ {a1, ..., ak}∗. The problem of deciding, given n1, ..., nk, whether there
exists a string w in L(M) with exactly ni occurrences of ai (for 1 ≤ i ≤ k) is in
PTIME. (Note that the time complexity is a function of log(n1)+· · ·+log(nk).)

Proof. As in the proof of Theorem 2, QM = {(n1, ..., nk) | ai11 · · ·a
ik
k ∈ L(M)} is

a semilinear subset of Nk. Now QM is a union of linear sets. Clearly, it sufficient
to show the result for the case when Q is a linear set.

So let Q be a linear set specified by a constant vector c = (c1, ..., ck) in Nk and
periodic vectors v1 = (v11, v21, ..., vk1), ..., vm = (v1m, v2m, ..., vkm) in Nk, That
is, Q = {(n1, ..., nk) | (n1, ..., nk) = c+ v1x1 + · · ·+ vmxm for some nonnegative
integers x1, ..., xm}. Assume that the ci’s and vij ’s are written in binary.

Thus, given (n1...., nk), we first check that for 1 ≤ i ≤ k, ni − ct ≥ 0, and
then determine if a system S1 of k linear equations with m variables with non-
negative integer coefficients of the form given in Theorem 7 has a nonnegative
integer solution in x1, ..., xm, when the right hand side of the equations are
n1 − c1, ..., nk − ck, respectively. Since the linear set is fixed, k is fixed. Hence,
this problem is in PTIME by Theorem 7. �

Now we consider the case when an NFA accepting a bounded language is part
of the input. In this case, the problem becomes NP-complete. First we need a
lemma. The membership problem for linear sets is the following:

Given: A specification of a linear set L as a collection of vectors v0, v1, v2,
..., vm where each vi is a k-dimensional vector of integers and a target v,
a k-dimensional vector of integers. (The components of the vectors in L as
well as v are represented in binary.)
Question: Is v in the linear set spanned by the vectors in L? (i.e, do there
exist non-negative integers d1, ..., dm such that v = v0 +

∑m
j=1 dvvj?)

The specification of a linear set can be written as a system of expressions:
c1 + v11x1 + v12x2 + · · ·+ v1mxm

....

ck + vk1x1 + vk2x2 + · · ·+ vkmxm

where k,m ≥ 1 and the ci’s and the vij ’s are at most 4. To decide if (n1, ..., nk)
is in the linear set, we need to determine if there exist non-negative integers
x1, ..., xm such that the ith expression evaluates to ni.

Clearly, since the ci’s are at most 4, we can modify the system so that the
constant term in each expression is zero, and checking instead if the new system
has a solution for (n1−c1, ..., nk−ck). So we may assume that c1 = · · · = ck = 0.
(This is equivalent to the vector v0 being 0.) It was shown by D. Hyunh in [6]
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that this problem is NP-complete. Note that the complexity is a function of
|S| + log(n1) + · · · + log(nk), where |S| is the size of S. We will now show the
following stronger NP-completeness result.

Lemma 10. The linear set membership is NP-hard even when all the compo-
nents of the vectors in the specifications of the linear sets and the target vector
are bounded by 4.

Proof. Consider the standard reduction from 3-SAT to subset sum [15], (The-
orem 34.15, page 1015). Let the instance C of 3-SAT be {C1, ..., Cm} over the
variables x1, ..., xn. The instance C is turned into a set SC = A ∪B of integers
where each integer (in base 10) with (n + m) digits where n is the number of
clauses and m is the number of Boolean variables and a target integer t of n+m
digits. The number of integers in SC is 2(n +m) - forming two sets A and B.
A contains two integers for each Boolean variable (vi and v′i - corresponding to
variable xi and its complement x′i) and hence |A| = 2n. B contains two integers
for each clause (si and s′i corresponding to clause Ci), so |B| = 2m. The digits
(in the decimal representation) of the numbers in A and B lie in {0, 1, 2}.

The reduction is as follows: The integer vi (v′i) has a 1 in column i and a 1
for column (n + j) for each clause Cj in which the literal xi (x′i) appears. The
integer sj (s′j) has a 1 (2) in column n + j. The target t is the integer whose
decimal representation is 1n4m. It is easy to see that the 3-SAT instance C is
satisfiable if and only if there is a subset of SC with sum = t. Shown below
is an example (taken from [15]) that shows the reduction for the instance D
= C1 ∧ C2 ∧ C3 ∧ C4, where C1 = (x1 ∨ x̄2 ∨ x̄3), C2 = (x̄1 ∨ x̄2 ∨ x̄3), C3 =
(x̄1 ∨ x̄2 ∨ x3), and C4 = (x1 ∨ x2 ∨ x3).

Fig. 2. Reduction example
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We will adapt this reduction so that it transforms 3-SAT to linear set mem-
bership problem. We do this by making vi, v

′
i, si and s′i as (n+m) dimensional

vectors in which the j-th component will be the j-th digit in the above reduction,
and similarly for the target. (Thus, in the figure, each row, except the last, rep-
resents a vector in the linear set, and the last row represents the target vector.)
However, an additional change is needed to make the reduction work. The reason
is that in the subset sum problem, we are allowed to choose each subset at most
once which corresponds to taking linear combinations with coefficient 0 or 1. But
in the linear set membership problem, we are allowed to multiply each vector by
any positive integer (not just 0 or 1). The following modification to the above
reduction will overcome this problem: we add m additional columns and extend
the vectors as follows: for vectors vi and v′i, all the components in the additional
vectors are 0. For sj and s′j , there will be a 1 in (m + n + j)-th component.
The target will now be the vector (1, 1, ..., 1, 4, 4, ..., 4, 1, 1, ..., 1) where the last
m components are 1. It is clear that the only linear combinations of vectors from
A∪B that can match t are those with coefficients are 0 or 1 - since multiplication
by any integer greater than 1 will create a component greater than 1 in one of
the first m- or of the last m-components, and hence can’t equal t which has 1
in those positions. Thus the membership problem for linear sets in which each
component and target vector is chosen from the set {0, 1, 2, 3, 4} is NP-hard. �

Now we show the NP-completeness of Parikh membership problem when the
NFA accepting a bounded language is part of the input.

Theorem 11. The problem of deciding, given an NFA M and w1, ..., wm such
that L(M) ⊆ w∗1 ...w

∗
m, where each wi ∈ {a1, ..., ak}+, and n1, ..., nk, whether

there exists a string w in L(M) with exactly ni occurrences of ai (for 1 ≤ i ≤ k)
is NP-complete.

Proof. Note that in this version, in addition to the NFA M and the vector
(n1, n2, ..., nk), the strings w1, ..., wm are given as input. Thus the input size for
the problem is N = |M | + Σjlog2nj + Σj |wj |. For convenience, we will call this
problem Parikh membership problem for bounded NFA.

First we show that the problem is in NP. The NP algorithm is as follows:

Step 1: Guess integers N1, . . . , Nm and check that the following equations
are satisfied:

N1a11 +N2a12 + ...+Nma1m = n1

....

N1ak1 +N2ak2 + ...+Nmakm = nk

In the above, aij is the number of occurrences of symbol ai in string wj .)
Clearly, the size of aij are bounded by a polynomial in the input size and
it is clear that the equations can be checked in time polynomial in N , the
input size.
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Step 2: Check that the string wN1
1 ...wNm

m is in L(M) as follows:
For each string wi, create a matrix Mi of order q × q (where q is the

number of states in M) as follows: Mi[j, k] = 1 if qk ∈ δ(qj , wi), i.e., qk is
reachable from qj on string wi. It is clear that the entries of Mi can be filled
in polynomial time by performing a breadth-first search on the graph of M
starting from state qj using the successive symbols of the string wi.

Next we use repeated squaring technique to perform Boolean matrix
exponentiation (using the recursive formula xn = x (of n = 1), xn−1 × x
(if n is odd and n > 1) and xn = (x

n
2 )2 (if n is even)) to compute MNi

i

for each i. It is easy to see that the above algorithm can be performed in
O(|M |3log Ni) operations.
Step 3: We create a graph G with q × k nodes in a grid of k + 1 columns
and q rows and label the nodes by the row and column index pair. Column
index starts with 0. We add an edge from < r−1, s > to < r, t > if MNr

r [s, t]
= 1. We can create this graph in time O(qk) by reading off the entries from
the Boolean matrices computed in Step 2.
Step 4: Let q0 be the starting state of M . Accept the input (n1, n2, ..., nk)
if and only if there is a path from < 0, 1 > in graph G to a vertex < k, f >
for some accepting state qf of M .

It is not hard to see that the above algorithm correctly solves the problem and
is an NP algorithm.

Next, we show that the problem is NP-hard. We present a reduction from lin-
ear set membership problem (see Lemma 10) to Parikh membership for bounded
NFA. Let a1, ..., ak be distinct symbols. We construct an NFA M such that
L(M) ⊆ w∗1w

∗
2 · · ·w∗m where w1 = av11

1 av21
2 · · ·avk1

k , w2 = av12
1 av22

2 · · · avk2

k , ...,
wm = av1m

1 av2m
2 · · · avkm

k . M operates as follows, given a string w:

Step 1: M executes the following process x1 times for some nondeterminis-
tically chosen x1 (including x1 = 0): reads av11

1 av21
2 · · · avk1

k and then goes to
Step 2.
Step 2: M executes the following process x2 times for some nondeterminis-
tically chosen x2 (including x2 = 0): reads av12

1 av22
2 · · · avk2

k and then goes to
Step 3.
.....
Step m: M executes the following process xm times for some nondetermin-
istically chosen xm (including xm = 0): reads av1m

1 av2m
2 · · · avkm

k and then
enters an accepting state.

Clearly, the size of M is polynomial in the size of S. Moreover, given n1, ..., nk,
there is a string w in L(M) where the number of occurrences of ai in w is exactly
ni (for 1 ≤ i ≤ k) if and only if the system S generates (n1, ..., nk).

It follows that deciding if there is a string w in L(M) such that the number
of occurrences of ai in w is exactly ni (for 1 ≤ i ≤ k) is NP-hard. This concludes
the proof of Theorem 11. �
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Note that in the case of DFA accepting an unbounded language, Parikh mem-
bership problem is already NP-hard by a reduction from Hamilton cycle problem
[20]. The upper-bound for the general (unbounded) NFA remains NP. One way
to see this is as follows: [7] showed that the problem of Parikh membership is in
NP when the input is a context-free grammar. Since there is a logspace reduction
from NFA to CFG, the claim follows. Thus Parikh membership problem for DFA
and NFA are NP-complete. However, when the NFA is augmented by 1-reversal
counters, it is not clear if Parikh membership problem is in NP. (Of course, the
normal membership problem is in NP since a Turing machine can simulate the
given M on the given string x in linear time, but since M is an NFA, the sim-
ulation results in an NP algorithm.) The best upper-bound we can obtain for
this case is PSPACE. (In this case, an input string x is guessed whose Parikh
map is the given vector v, and the counter machine is simulated on x. Since |x|
is exponential in the size of v, the simulation can take exponential number of
steps, but needs only polynomial space.)

Next consider the class of regular expressions of the form w∗1 · · ·w∗m over the
alphabet {a1, ..., ak}, where k,m ≥ 1. Moreover, for 1 ≤ i ≤ m and 1 ≤ j ≤ k,
the number of occurrence of aj in wi is at most 3. We denote such a regular
expression by Rkm and the language it denotes by L(Rkm).

Theorem 12

1. When m or k is fixed, the problem of deciding, given a regular expression
Rkm and n1, ..., nk, whether there is a string w in L(Rkm) with exactly ni

occurrences of ai (for 1 ≤ i ≤ k) is in PTIME.
2. When k and m are not fixed, the problem of deciding, given a regular expres-

sion Rkm and n1, ..., nk, whether there is a string w in L(Rkm) with exactly
ni occurrences of ai (for 1 ≤ i ≤ k) is NP-complete.

Proof Given a regular expression Rkm = w∗1 · · ·w∗m, we first construct another
regular expression R′km = z∗1 · · · z∗m, such that if in wi, aj occurs ij times,
zi = ai11 ai22 · · ·a

ik
k . Clearly, there exists a string w in L(Rkm) with exactly ni

occurrences of ai if and only if there is string z in L(R′km) with exactly ni oc-
currences of ai. From R′km, we then construct in polynomial time a system of
k linear equations with m variables with nonnegative integer coefficients of the
form given in the proof of Theorem 9. If m (resp., k) is fixed, then the system
can be solved in polynomial time by Theorem 7 (resp., Theorem 8).

For part (2), given regular expression Rkm, we construct in polynomial time
an NFA M accepting the language L(Rkm). It follows from Theorem 11 that the
problem is in NP. For NP-hardness, we observe that the NFA M constructed in
the second part of the proof of Theorem 11 accepts exactly the language denoted
by R′km (hence denoted by Rkm). �

We note that the nondeterminism in the NP proof of Theorem 11 is because we
need to “guess” the decomposition of the ni’s. However if the NFA M accepts a
letter-bounded language, i.e., subset of a∗1 · · · a∗k, then there is no nondeterminism
involved. Hence, we have:
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Corollary 13. The problem of deciding, given an NFA M such that L(M) ⊆
a∗1...a

∗
k (where the ai’s are distinct symbols), and n1, ..., nk, whether there exists

a string w in L(M) with exactly ni occurrences of ai (for 1 ≤ i ≤ k) is in
PTIME.

The following result concerns the Parikh membership problem for NFA with
1-reversal counters, when the machine and the Parikh vector (in unary notation)
are given as input:

Theorem 14. The problem of deciding, given an NFA M augmented with 1-
reversal counters over input alphabet Σ = {a1, . . . , ak} and n1, . . . , nk, whether
there exists a string in L(M) ⊆ Σ∗ with exactly ni occurrences of ai (for 1 ≤
i ≤ k) is in PTIME.

Proof. Given M , we constrict an NFA M ′ augmented with 1-reversal counters
(k more counters than M) to accept the the language LM = {an1

1 · · · ank

k | there
exists w in L(M) such that for 1 ≤ i ≤ k, w has exactly ni occurrences of ai
}, as in the proof of Theorem 2. Clearly, M ′ has size polynomial in the size of
M , and (from [1]) there is a constant c such that every string in LM can be
accepted by M ′ within c(n1+ · · ·+nk) time (i.e., in linear time). It fiollows that
M can be simulated by a nondeterministic TM in log n space, which can then
be simulated by a deterministic TM in polynomial time. �

Clearly, if n1, . . . , nk are given in binary, the Parikh membership problem
would be in polynomial space (PSPACE). Whether or not it is in PTIME is an
interesting open problem.

5 Complexity of the Semilinear Set Membership Problem

Using the results in Section 4, we can classify the complexity of the membership
problem for semilinear sets into four categories.

Clearly, if the membership problem when the semilinear set is a linear set is
in PTIME (resp., NP-complete), then the problem for the general case (i.e., the
semilinear set is a union of linear sets) is also in PTIME (resp., NP-complete).

So we need only consider the case when the semilinear set is a linear set, spec-
ified by S = (c, V ), where c ∈ Nk is the constant vector, and V = {v1, . . . , vm}
is the set of periodic vectors, m ≥ 1, each vi ∈ Nk.

Theorem 15

1. For any fixed positive integer m, the membership problem is in PTIME when
the number of periodic vectors in S is at most m.

2. The membership problem is NP-complete if the number of periodic vectors
in S is not bounded, even when (the arity of S) k = 1.

3. The membership problem is NP-complete if the number of periodic vectors
in S is not bounded, even when the components of the periodic vectors have
value at most 3 (note that the arity of S is no longer assumed to be bounded
in this case).
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4. For any fixed positive integers k and d, the membership problem is in PTIME
when the arity of S is at most k and the components of the periodic vectors
of the linear set have value at most d.

Proof. Part 1 follows from Theorem 7, since the specification S of the linear
set can be represented as a system of equations that satisfies Theorem 7 (after
moving the constant terms in each equation to the right-hand side.)

Part 2 follows from [17] (see remark before Theorem 8). Part 3 follows from
the proof of Theorem 11. Part 4 follows from Theorem 8. �

6 Conclusion

In this paper, we have studied some problems related to testing membership
for regular and other languages. Unlike most of the study on such problems, we
assume that the string is specified by its Parikh vector. We studied two versions
of this problem in which the Parikh vector is specified in binary (unary). We
showed that the problem can be solved in PTIME in the unary case when the
fixed language comes from a very broad class (namely, the class of languages
accepted by NPDA augmented by reversal-bounded counter machines). When
the input vector is specified in binary, the complexity of the problem is already
NP-hard in the case of word-bounded regular languages. One of the interesting
fact we found is the difference between the letter-bounded regular languages and
word-bounded regular languages. The membership problem for the former case
is in PTIME while in the latter case it is NP-complete. Our results imply that a
classical tiling problem is in DLOGSPACE (PTIME) when the number of tiles
of various types are specified in unary (binary) notation.

Acknowledgments. We thank T.-D. Hyunh for pointing out that his proof
of the NP-completeness of the linear set membership problem can be modified
so that all components of the vectors in the specifications of the linear sets are
bounded by a fixed integer. We also thank Maximilian Schlund for bringing the
references [2] and [13] to our attention.
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The maximum matching problem is among the most well-studied problems in
combinatorial optimization with many applications. The matching problem is
well-known to be efficiently solvable, that is, there are algorithms that solve the
matching problem using polynomial space and time. However, as large data sets
become more prevalent, there is a growing interest in sublinear algorithms —
these are algorithms whose resource requirements are substantially smaller than
the size of the input that they operate on. In this talk, we will describe some
results that illustrate surprising effectiveness of randomization in solving exact
and approximate matching problems in sublinear space or time.

Specifically, the first part of the talk will focus on the problem of finding a
perfect matching in a regular bipartite graph. Regular bipartite graphs are fun-
damental objects that have been extensively studied in computer science and
mathematics. It is well-known that a regular bipartite graph of degree d can be
decomposed into exactly d perfect matchings. The problem of finding a perfect
matching in a regular graph has applications to routing in switch fabrics, task-
assignment, and edge-coloring of general bipartite graphs. The perfect matching
problem in regular bipartite graphs is also closely related to the Birkhoff-von
Neumann decomposition of doubly stochastic matrices [1, 9]. The first algo-
rithm for finding a perfect matching in a regular bipartite graph dates back
to the work of König in 1916 [8] who gave an O(mn) time algorithm; here n
denotes the number of vertices and m denotes the number of edges. The well-
known bipartite matching algorithm of Hopcroft and Karp [6] can be used to
solve this problem in O(m

√
n) time. However, the degree regularity assumption

has allowed researchers to develop more efficient algorithms, and a sequence of
improvements over two decades have culminated in an O(n+m) time algorithm
by Cole, Ost, and Schirra [2]. We will show that sampling and random walks
can be used to obtain sublinear-time exact algorithms for this problem [3–5]. In
particular, we will describe a simple algorithm that uses random walks to find a
perfect matching in O(n log n) time, independent of the number of edges in the
graph. Our algorithm, which is within an O(log n) factor of output complexity,
also yields a fast algorithm for computing Birkhoff-von-Neumann decomposition
of doubly stochastic matrices. These ideas have also been used for rounding frac-
tional flow solutions in recently developed fast algorithms for the maximum flow
problem in general graphs.

In the second part of the talk, we will consider the problem of estimating the
size of a maximum matching using small space in the streaming model where
the edges of the input graph arrive one by one. It is easy to approximate the
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matching size to within a constant factor using O(n) space – one can simply
maintain a maximal matching of the input graph. It is also known that one can
obtain an Õ(

√
n) approximation to the matching size using poly-logarithmic

space. We show that if the edges of the graph are streamed in a random order,
then poly-logarithmic space suffices to estimate the maximum matching size to
within a poly-logarithmic factor [7]. Our result is based on a new local algorithm
for this problem that may be of independent interest.
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Abstract. A crucial issue when providing publicly accessible web ser-
vices is that sensitive data should only be accessible by authorized users.
Accessibility of data within an application or information flow can conve-
niently be formalized as a 2-hyperproperty of a program. Here, we present
a technique to interprocedurally analyze information flow in XML pro-
cessors. Our approach is based on general techniques for program match-
ing, and relational abstract interpretation of the resulting 2-programs.
In case of XML processors, the abstract relational semantics then can be
practically analyzed by means of finite tree automata.

1 Introduction

Web services accessed by a variety of users such as a conference management sys-
tem or the information system of a health insurance company maintain sensible
data which should not be accessible to everyone. Therefore, rules are provided
to formalize which users are authorized to access which pieces of data. Infor-
mation flow analysis allows to verify that the system complies with the rules
given by the access policy by inferring which pieces of observable information
may depend on secret data. Such dependencies can conveniently be formalized
as 2-hyperproperties of programs, more precisely, 2-hypersafety properties [6].
2-Hyperproperties do not refer to single executions of a program but to pairs
of executions. Information-flow on the other hand can be formalized by com-
paring the observations of two executions whose starting states only differ in
secret data. No information leaks if unauthorized users cannot observe any dif-
ference between the two. This observational indistinguishability has also been
called noninterference [11].

Consider, e.g., the code fragment in Listing 1 written in the Web Services
Business Process Execution Language [1] (BPEL). The fragment is meant to
update the health status of patients in a database according to the results of
their blood tests. The database is stored in the data structure of variable pList.
The actual patient is identified by the value in the variable patientId, while the
update depends on the value of test. We consider the blood test and the health
status of patients as confidential information, while the rest of the database is

� This work was partially supported by the German Research Foundation (DFG) under
the project SpAGAT (grant no. SE 551/14-2) in the priority program “Reliably
Secure Software Systems – RS3”.
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1 <if name ="If">

2 <condition > <![ CDATA[$test < 0.5]]>

3 </condition >

4 <assign name =" EvalGood ">

5 <copy > <from >" good"</from >

6 <to> $pList/patientRecord [id=$patientId ]

7 /health/text ()

8 </to > </copy >

9 </assign >

10 <else >

11 <assign name =" EvalPoor ">

12 <copy > <from >" poor"</from >

13 <to> $pList/patientRecord [id=$patientId ]

14 /health/text ()

15 </to > </copy >

16 </assign >

17 </else >

18 </if>

Listing 1. A BPEL fragment updating the health status of patients

public. Accordingly, the data structure is heterogeneous, in that it stores confi-
dential as well as public information. Our goal is to prove that the value of test
only interferes with the health status in the description of the patient, but nei-
ther with his name nor with the size of the data structure etc. Such an analysis
is challenging, because the control states of the program depend on secret data.
In the example, the difference still is not observable, since the two branches per-
form the same manipulations on public data. However, information flow analyses
such as [5, 16, 24] which rely on tainting of data elements and program points
may not be able to verify the given program. Clarkson and Schneider, on the
other hand, have observed that the verification of k-hypersafety properties of a
program can be reduced to the verification of ordinary safety properties of the
self-composition of the program [6]. In this paper we follow the approach of [6]
and provide techniques for automatically inferring 2-hypersafety properties by
means of decent self-compositions of programs. Our observation is that preci-
sion can be gained by aligning similar parts of the program and then applying
relational abstract interpretation.

Related techniques based on the analysis of self-compositions of programs have
been presented in [2, 3, 15]. Here, we indicate how this idea can be conveniently
extended to languages with procedures. Our exposition is based on the approach
of [15] from where we borrow key notions and definitions. The self-composition
algorithm there is extended to procedures in such a way that the resulting 2-
program can be analyzed by means of standard interprocedural analysis. This
means that the two executions performed in parallel are synchronized in a way
that they could be implemented on a single runtime stack.
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The algorithm uses a tree distance measure as a heuristic to align syntactically
similar pieces of code fragments with each other. As a result, a call to a procedure
proc is either aligned with another call to proc, or a skip instruction. Therefore,
in the resulting composition, three procedures are introduced corresponding to
proc in the original pair of programs, namely, the self-composition [proc,proc]
of proc, together with [proc,skip] and [skip,proc].

Given a 2-program resulting from the self-composition, we may apply any
approach to interprocedural analysis, e.g., the functional approach [9, 14, 21]
based on function summaries, or the call string approach advocated in [21] based
on abstractions of the call-stack.

In this paper we exemplify the summary-based approach for the case where
secrecy is analyzed at the level of program variables. However, in the presence of
heterogeneous data structures as in Listing 1 secrecy cannot be successfully ana-
lyzed in terms of variables. More generally, web services and business workflows
implemented, e.g., in BPEL store data in XML documents and support manip-
ulation of XML documents by means of XPath [4] expressions and XSLT [13]
transformations. Accordingly, information flow policies may not only refer to
values of variables but may specify the secrecy of individual nodes or subtrees
of documents explicitly. In order to discuss these issues, we will not refer to
complicated high-level web standards, but consider a simple “assembly” lan-
guage for tree manipulation where procedures are used, e.g., to evaluate XPath
queries. In order to argue relationally about differences of subdocuments, we
rely on an abstract domain of public views of documents. These are represented
by sets of trees while the abstract transformers corresponding to operations on
document trees are formalized by means of Horn clauses. The abstract domain
of sets of trees seems to be too complicated to allow for concise descriptions
of procedure summaries. Therefore, we rely on a simple call string 0 approach
where procedure calls and returns are essentially modeled by jumps. Given a
2-program (represented as a control-flow graph), the analysis proceeds in two
steps. First, implications are generated to specify the relations of abstract val-
ues corresponding to the different nodes in the graph. These implications comply
with the format of the subclass of H1 clauses. The least model of a finite set
of such clauses is known to consist of regular sets of trees [18, 25]. Therefore in
the second step, the normalization procedure from [18] is applied to compute
representations of these sets by means of finite tree automata.

To summarize, this paper has the following contributions:

– An algorithm is introduced for the construction of self-compositions of pro-
grams having procedure calls.

– The applicability of our method is demonstrated by proving information flow
properties of two examples:

• In the first example summary functions are used to represent the abstract
effect of procedures.

• In the second example global control flow graphs are applied to prove
the information flow security of a tree-manipulating program.
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Our exposition uses a minimalistic language in order to simplify the presentation
and to emphasize the key features of our techniques.

The rest of this paper is organized as follows. In Section 2 the concepts of
the programming language and its semantics are formalized. In Section 3 our
technique is introduced to compose pairs of programs, and the relation between
programs and their compositions is discussed. Section 4 shows how to apply
abstract interpretation on self-compositions of programs. As a first interproce-
dural analysis, an information flow analysis is presented, which interprocedurally
tracks on disequalities of variables using function summarization. The applica-
tion of global control flow graphs is discussed in Section 5. Finally, in Section 6
we relate our work to others and conclude.

2 Preliminaries

We use a structured programming language extended with procedures in order
to present our analyses. We assume that all variables are local. All locals are
passed to a called procedure where the result computed by a call is passed to
the caller via the dedicated variable ret. The syntax of programs f is given by
the following grammar:

(declarations) f ::= procedure proc{p} f | p
(program) p ::= ε | c;p
(command) c ::= skip | x := e | call proc | while b {p} |

if b {ptt} else {pff}
(1)

Thus, a program consists of a sequence of procedure declarations, followed by the
main program. The main program and the bodies of procedures are sequences of
commands. A command c is either an assignment, a procedure call, a conditional
selection of branches if or a while loop. For convenience there is also a skip

command that leaves the program state intact. Expressions are used on the
right-hand-side of assignments to compute new values based on already existing
ones. In later sections we will instantiate the expression language for particular
examples.

The semantics of programs is defined by means of a transition relation cfg1 →
cfg2 between configurations. The transitive closure of the transition relation
is denoted by →∗. A configuration is a tuple 〈p, s〉, where p is a sequence of
commands to be executed on the state s. We denote the set of states by S.
The execution of a program has terminated, if the configuration is of the form
〈ε, s〉, i.e., the remaining sequence of commands to be executed is empty. We
abbreviate the configuration 〈ε, s〉 by the state s.

The semantics of the programming language is shown in Figure 1. The se-
mantics of a call to a procedure proc, is defined by means of the functions
enter : S → S and combine : S×S → S. The function enter constructs the initial
state for the execution of the procedure, while combine combines the original
state at the call site with the return value computed by the procedure. In case
the state is a mapping from variables to values, then all variables are passed as
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A: 〈x:=e;p, s〉 → 〈p, �x:=e�s〉 SK: 〈skip;p, s〉 → 〈p, s〉

PC:

〈p′, enter(s)〉 →∗ s′

where the procedure definition is: procedure proc{p′}
〈call proc;p, s〉 → 〈p, combine(s, s′)〉

WT:
�b�s = tt

〈while b {ptt};p, s〉 → 〈ptt while b {ptt};p, s〉

WF:
�b�s = ff

〈while b {ptt};p, s〉 → 〈p, s〉

IT:
�b�s = tt

〈if b {ptt} else {pff};p, s〉→〈ptt if b {ptt} else {pff};p, s〉

IF:
�b�s = ff

〈if b {ptt} else {pff};p, s〉 → 〈pff if b {ptt} else {pff};p, s〉

Fig. 1. The semantics of the programming language

parameters, and results are communicated back to the caller in the variable ret.
Therefore, we have:

enter(s) = s
combine(s, s′) = s[ret �→ s′(ret)]

Above, s[x �→ v] denotes the mapping where for all y �= x it holds that s[x �→
v] = s(y) and s[x �→ v](x) = v.

3 Self-composition of Programs

The information flow properties we want to prove can be formalized as 2-
hypersafety properties [6]. Formally, a 2-hypersafety property is given by two
relations on program states, the initial ρin and final ρfi relations which specify
the pairs of states that should be observationally equivalent. A program satisfies
the (end-to-end) 2-hypersafety property, if (s, t) ∈ ρin entails that (s′, t′) ∈ ρfi
whenever 〈p, s〉 →∗ s′ and 〈p, t〉 →∗ t′. The verification of a hypersafety property
of a program on the other hand, can be reduced to the verification of an ordinary
safety property, but now for a self-composition of the program [3, 6, 23]. Safety
properties can be inferred by means of abstract interpretation [8].

Definition 1. A program pp is a self-composition of the program p if for all
pairs of states s and t it holds that whenever 〈p, s〉 →∗ s′ and 〈p, t〉 →∗ t′ then
〈pp, (s, t)〉 →∗ (s′, t′).

A program satisfying the condition in Definition 1 will be called 2-program. A
2-program manipulates pairs of states. We construct self-compositions for each



Interprocedural Information Flow Analysis of XML Processors 39

procedure and the main program separately. In the case of branching constructs
it is possible that different branches are executed on the two members of a pair
of states. Therefore, now we discuss how to construct the composition of two
potentially different sequences of commands p and q in general. We construct
the composition of two programs using two mutually recursive functions:

– p2c(p, q) constructs the composition of the two sequences of commands p
and q.

– c2c(c, d) computes the composition of the two commands c and d.

3.1 Composing Two Sequences of Commands

The composition of two sequences p = c1;...;ck and q = d1;...;dl is constructed
by the function p2c(p, q). An alignment Ω of the two sequences is a sequence
of pairs of commands (c′1, d

′
1);...;(c

′
m, d′m), where each c′i and d′j are either a

skip operation or a command occurring in the original sequences. The set of all
possible alignments A(p, q) is recursively defined by:

A(ε, ε) = ε ∪ {(skip, skip);Ω | Ω ∈ A(ε, ε)}
A(ε, d;q) = {(skip, d);Ω | Ω ∈ A(ε, q)}∪

{(skip, skip);Ω | Ω ∈ A(ε, d;q)}
A(c;p, ε) = {(c, skip);Ω | Ω ∈ A(p, ε)}∪

{(skip, skip);Ω | Ω ∈ A(c;p, ε)}
A(c;p, d;q) = {(c, d);Ω | Ω ∈ A(p, q)}∪

{(skip, d);Ω | Ω ∈ A(c;p, q)}∪
{(c, skip);Ω | Ω ∈ A(p, d;q)}∪
{(skip, skip);Ω | Ω ∈ A(c;p, d;q)}

(2)

In order to identify a decent alignment, we proceed as in [15] by defining the
function p2c. This function chooses a best alignment Ωopt according to some tree
distance measure td for pairs of commands. Accordingly, we set:

Ωopt = argmin
Ω∈A(p,q)

|Ω|∑
i=1

td(Ω[i].1, Ω[i].2)

where Ω[i] stands for the ith pair in the sequence, and Ω[i].1 and Ω[i].2 stand
for the first and second members of the pair, respectively. The best alignment
Ωopt according to td is the one, where the sum of the distances between the
abstract syntax trees of the members of pairs is minimal. In our implementa-
tion, we use for td the Robust Tree Edit Distance of [19]. Finally the function
c2c(Ωopt [i].1, Ωopt [i].2) is called for all pairs of commands in the best align-
ment in order to construct the corresponding fragment in the composition of the
sequences.

3.2 Composing Two Commands

In this section we discuss how the composition of two commands is constructed.
The composition of two commands is a fragment of a 2-program that operates
on pairs of states in order to meet the requirements of Definition 1.
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We regard two commands as composable, if both of them are either if con-
structs, while constructs, skip instructions, invocations of the same procedure,
or syntactically equal assignments. In our implementation we furthermore require
from branching constructs that their conditions are also syntactically equal.

First, we treat the case when the pair of commands are not composable.
For this we make use of two functions skip1(c) and skip2(c). In case c is an
assignment, then skip1(c) = [skip,c] and skip2(c) = [c,skip]. In case c is
a call to some procedure proc, then we set: skip1(c) = call [skip,proc] and
skip2(c) = call [proc,skip]. In case c is a branching construct, then skip1 re-
places the conditional expression b with [true,b], skip2 replaces b with [b,true]
and both of them transform the subtrees of the corresponding ASTs recursively.
Accordingly, we have:

skip1(if b {ptt} else {pff}) = if [true,b] {skip1(ptt)} else {skip1(pff)}
skip1(while b {p}) = while [true,b] {skip1(p)}

skip2(if b {ptt} else {pff}) = if [b,true] {skip2(ptt)} else {skip2(pff)}
skip2(while b {p}) = while [b,true] {skip2(p)}

The application of skip1 and skip2 on sequences p = c1;c2;, ... is just syntactic
sugar for applying them to each command individually, i.e., skip1(c1;c2;, ...) =
skip1(c1);skip1(c2);...

Now we can define the composition of two commands c and d that are not
composable by:

c2c(c, d) = skip1(c);skip2(d)

In other words, the composition of two commands that are not composable is a
sequence of two pairs of commands, where the first manipulates the first member
of the pair of states and the second manipulates the second member of the pair
of states.

1 if [b1,b2] {

2 p2c(ptt, qtt)
3 } else {

4 if [¬b1,b2] {

5 p2c(pff, qtt)
6 } else {

7 if [b1,¬b2] {

8 p2c(ptt, qff)
9 } else {

10 p2c(pff, qff)
11 };

12 };

13 };

Listing 2. The composition of two if constructs
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Now we consider the case when the two commands are composable. For two
equal assignments or procedure calls we have that:

c2c(x:=e, x:=e) = [x:=e,x:=e]
c2c(call proc, call proc) = call [proc,proc]

The composition of if b1 {ptt} else {pff} and if b2 {qtt} else {qff} is as
follows:

As shown by Listing 2, the composition of two if constructs consists of three
if constructs embedded into each other. The idea is that a composition of the
bodies of the original branching constructs should be generated for all possible
evaluations of the conditional expressions. The composition of while b1 {p} and
while b2 {q} is given by Listing 3. By composing two loops we need to take
into consideration that it is possible that they are executed a different number
of times. Therefore, the first loop at line 1 in Listing 3 handles the case when the
original loops execute in synchrony, while the two loops at lines 2 and 3 handle
the case when one of the loops has already terminated, but the other has not.

1 while [b1,b2] { p2c(p, q) };

2 while [¬b1,b2] { skip1(p) };

3 while [b1,¬b2] { skip2(q) };

Listing 3. The composition of two while loops

3.3 Handling Procedures

In the composition of sequences of commands we may find commands of the
following forms:

call [proc,proc]
call [skip,proc]
call [proc,skip]

The first command executes the self-composition of the procedure identified by
proc, the other two model the case when only one of the pair of executions
calls the procedure. Therefore, when constructing the self-composition of the
main program, self-compositions of the procedures need to be constructed as
well where each procedure of the original program gives rise to three procedures
in the resulting 2-program. For each procedure declaration procedure proc{p}
we generate:

procedure [proc,proc]{p2c(p, p)}
procedure [skip,proc]{skip1(p)}
procedure [proc,skip]{skip2(p)}

The body of the procedure [proc,proc] is the self-composition of the body of the
original procedure. The other two take care of the case when only one member
of a pair of commands is a procedure call and the other is skip.
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3.4 Semantics of Self-compositions of Programs

For pairs of Boolean expressions, we define �[b1,b2]�(s, t) = �b1�s∧�b2�t. In case
of assignments c or skip we set �[c,d]�(s, t) = (�c�s, �d�t). In case of procedure
calls the semantics is defined analogously to the original semantics of procedures.
Given that a procedure declaration in the composition is procedure r {pp}
we define �call r��(s, t) = combine2((s, t), (s

′, t′)) where 〈pp, enter2(s, t)〉 →∗

(s′, t′). If both states are mappings from variables to values, they are given by:

enter2(s, t) = (s, t)
combine2((s, t), (s

′, t′)) = (s[ret �→ s′(ret)], t[ret �→ t′(ret)])

In general, the functions enter2, combine2 should meet the following requirements:

enter2(s, t) = (enter(s), enter(t))
combine2((s, t), (s

′, t′)) = (combine(s, s′), combine(t, t′))

Finally, we define the 2-program p2c(f, f) for a program f as the collection
of procedure declarations for [proc,proc], [skip,proc], [proc,skip] (proc de-
clared in f), together with p2c(p, p) for the main program p of f . Then the
following relation between the semantics of a sequence of commands and
the self-composition which we have constructed can be proven by induction on
the abstract syntax:

Theorem 2. Any sequence p of commands of a program f and its self-compo-
sition p2c(p, p) satisfy the condition of Definition 1. �

By Theorem 2, the information flow analysis of an ordinary program f with pro-
cedures can be reduced to inferring interprocedural invariants for the 2-program
p2c(f, f). In the next section we review two examples of such interprocedural
analyses.

4 Relational Interprocedural Analysis of
Self-compositions of Programs

In order to analyze the self-composition of a program it is convenient to repre-
sent the main program as well as the declared procedures of the self-composition
by means of control flow graphs (CFG). These CFGs differ from CFGs for ordi-
nary programs only in that edges are not labeled with single assignments, guards
or procedures, but with pairs of such actions. Thus, one such CFG is a tuple
G = (N,E, nin , nfi), where N is a finite set of nodes, E is a set of directed and
labeled edges, and nin and nfi are the initial and final nodes, respectively. The
nodes of the CFG stand for sequences of (pairs of) commands pp that need to be
executed on states in a configuration 〈pp, (s, t)〉, while the edges of the CFG rep-
resent the transition relation →. Whenever 〈c;pp, (s, t)〉 → 〈pp, (s′, t′)〉 then the
corresponding edge of the CFG is labeled by c if the command is an assignment
or a call. Guards bb and ¬bb are used as labels for edges entering the then and
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else branches of if commands with condition bb, and accordingly, for entering
the bodies of while loops with condition bb or exiting those loops, respectively.
In the concrete semantics, each label l of an edge corresponds to a state trans-
former �l� : S × S → S × S. These state transformers are partial functions, i.e.,
the guards that hold on a pair of states propagate the pair unmodified, while
the result is undefined on those states on which the guard does not hold.

In order to perform abstract interpretation for self-compositions of programs,
we choose a complete lattice (D,�) whose elements represent the potential in-
variants at program points. We use a function γ to map an abstract value D ∈ D
to the set pairs of states for which the invariant D holds. As usual, the function
γ is called concretization.

Example 1. Assume that we only want to track the set of program variables
where the two states possibly differ. For that, we choose D as the complete lattice
P(X )⊥ = {⊥} ∪P(X ) consisting of a least element ⊥ (denoting unreachability)
together with all subsets of the set of program variables X . The ordering relation
is given by ⊥ � D for all D ∈ D, and for D �= ⊥ �= D′, D � D′ iff D ⊆ D′.

The concretization γ(V ) of an abstract value V is then defined by:

γ(V ) = {(s, t) | ∀x ∈ X : x �∈ V ⇒ s(x) = t(x)}
γ(⊥) = ∅ (3)

Besides a complete lattice of potential invariants, transfer functions �l�� are
needed for the labels l at control flow edges, which describe how the potential
invariants are affected. For a transfer function �l��, we require that for all abstract
values D and pairs of states (s, t) with (s, t) ∈ γ(D) the following holds:

�l�(s, t) ∈ γ(�l��D)

Example 2. In the case when only potential disequalities are tracked, all transfer
functions �l�� preserve the abstract value ⊥. For V �= ⊥, we could have:

�x:=e, x:=e�� (V ) = (vars(e) ∩ V �= ∅) ? (V ∪ {x}) : (V \{x})
�x:=e, skip��(V ) = V ∪ {x}
�skip, x:=e��(V ) = V ∪ {x}
�¬b, b��(V ) = (vars(b) ∩ V �= ∅) ? V : ⊥
�b,¬b��(V ) = (vars(b) ∩ V �= ∅) ? V : ⊥
�bb��(V ) = V for any other guard bb

Here, we use the “? :” operator as in C for representing a conditional choice, i.e.,

b ? x : y =

{
x if b holds

y otherwise

Note that all listed transformers are indeed monotonic. The intuition behind
these definitions are as follows. Whenever both assignments are syntactically
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equal, then the same value will be assigned to the left-hand side variable x, if
all variables occurring on the right-hand side agree in their respective values.
In this case, x must be removed from the argument set V . Otherwise, it must
be added. On the other hand when guards are concerned, we can be sure that
the condition is not met only when the guard is of the form [b,¬b] or [¬b,b],
and all variables occurring in b agree in their respective values. In this case, the
guard definitely cannot be taken and therefore ⊥ can be returned. In all other
cases, no information can be extracted.

Besides transformers for assignments and guards, we can also provide abstract
enter and combine functions. For the analysis of Example 1, both functions pre-
serve ⊥ (in each argument); for non-⊥ arguments, their results are given by:

enter2
�(V ) = V

combine2
�(V1, V2) = (V1 \ {ret}) ∪ (V2 ∩ {ret})

Since the function enter2 simply forwards the state to the called procedure, its
abstract variant is the identity function as well. Because the values of variable
ret in the resulting pair of concrete states only depend on the result of the
procedure call, it is first removed from the initial abstract value V1. In case
the results of a pair of procedure calls may differ in the variable ret, then this
variable may contain different values after evaluating combine2. Therefore, its
abstract variant adds ret to the set of variables possibly affected by the secret.

Although we are thus given abstract versions of enter2 and combine2, the
abstract transformers for call edges are still not yet known: they additionally
depend on the abstract semantics of the called procedures. In order to compute
these, we introduce for each program point n of a CFG the unknown �n��,
which denotes the transformer that transforms the abstract value at the entry
point of the DFG into the abstract value at program point n. These abstract
transformers can jointly be approximated by the least solution of the following
constraint system:

�nin�� � Id For the initial node nin of some CFG.

�n�� � H�(�nr
fi ��) ◦ �m�� For an edge: (m, call r , n) where nr

fi is the

final node of the CFG of procedure r.

�n�� � �l�� ◦ �m�� For an edge: (m, l, n) where l is a guard or
an assignment.

(4)

Here, Id denotes the identity function, ◦ denotes function composition and H�

is an operator which takes the effect of a procedure body and transforms it into
the effect of a call. Thus, H� is defined by:

H� g D = combine2
�(D, g(enter2

�(D)))

This constraint system does no longer speak about the complete lattice D itself
but about the set of monotonic functions in D → D. This set, however, can
again be considered as a complete lattice w.r.t. the argumentwise ordering on
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functions. Likewise, if D is finite (as in our example) then also the set D → D
is finite. Therefore, the least fixpoint solution of the constraint system can be
computed by ordinary Kleene iteration.

Now assume that we are given a set V0 of variables which at program start
may contain secrets. Furthermore, assume that h is the abstract transformer
computed by the analysis for the exit point of the main program. If h(V0) = ⊥,
then we can be sure that program exit cannot be simultaneously reached by
two executions starting with initial states (s0, t0) ∈ γ(V0). If h(V0) �= ⊥, then
all variables that may potentially leak information about the initial secrets are
contained in the set h(V0).

1 procedure fib {

2 x := xin;

3 if x = 0 { ret := 0; }

4 else {

5 if x = 1 { ret := 1; }

6 else {

7 one := 1;

8 xin := x-one;

9 call fib;

10 r1 := ret;

11 xin := xin -one;

12 call fib;

13 r2 := ret;

14 ret := r1+r2;

15 };

16 };

17 }

18

19 xin := secin;

20 call fib;

21 secfib := ret;

22 xin := pubin

23 call fib;

24 pubfib := ret;

Listing 4. A program computing Fibonacci numbers

Let us, for example, consider the recursive program from Listing 4 which com-
putes two members of the Fibonacci series from the numbers in variables secin
and pubin of the initial state, respectively. The corresponding two return values
then are stored in the variables secfib and pubfib of the final state, respectively.

1 procedure [skip ,fib] {

2 [skip ,x := xin];

3 if [true ,x = 0} { [skip ,ret := 0]; }

4 else {

5 if [true ,x = 1] { [skip ,ret:= 1]; }

6 else {
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7 [skip ,one := 1];

8 [skip ,xin := x-one];

9 call [skip ,fib];

10 [skip ,r1 := ret];

11 [skip ,xin := x-one];

12 call [skip ,fib];

13 [skip ,r2 := ret];

14 [skip ,ret := r1+r2];

15 };

16 };

17 }

18

19 procedure [fib ,skip] {

20 [x := xin ,skip ];

21 if [x = 0,true] { [ret := 0,skip ]; }

22 else {

23 if [x = 1,true] { [ret := 1,skip ]; }

24 else {

25 [one := 1,skip ];

26 [xin := x-one ,skip ];

27 call [fib ,skip ];

28 [r1 := ret ,skip ];

29 [xin := x-one ,skip ];

30 call [fib ,skip ];

31 [r2 := ret ,skip ];

32 [ret := r1+r2,skip ];

33 };

34 };

35 }

36

37 procedure [fib ,fib] {

38 [x:=xin ,x:=xin];

39 if [x = 0,x = 0] { [ret := 0,ret := 0];

40 } else {

41 if [¬ x=0, x=0] {

42 [skip ,ret :=0];

43 if [x = 1,true] { [ret := 1,skip ]; }

44 else {

45 [one := 1,skip ];

46 [xin := x-one ,skip ];

47 call [fib ,skip ];

48 [r1 := ret ,skip ];

49 [xin := xin -one ,skip ];

50 call [fib ,skip ];

51 [r2 := ret ,skip ];

52 [ret := r1+r2,skip ];

53 };

54 } else {

55 if [x=0, ¬ x=0] {

56 [ret := 0,skip]
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57 if [true ,x = 1] { [skip ,ret:= 1]; }

58 else {

59 [skip ,one := 1];

60 [skip ,xin := x-one];

61 call [skip ,fib];

62 [skip ,r1 := ret];

63 [skip ,xin := xin -one];

64 call [skip ,fib];

65 [skip ,r2 := ret];

66 [skip ,ret := r1+r2];

67 };

68 } else {

69 if [x = 1,x = 1] { [ret := 1,ret := 1]; }

70 else {

71 if [¬ x=1,x = 1] {

72 [skip ,ret := 1];

73 [one := 1,skip ];

74 [xin := x-one ,skip ];

75 call [fib ,skip ];

76 [r1 := ret ,skip ];

77 [xin := xin -one ,skip ];

78 call [fib ,skip ];

79 [r2 := ret ,skip ];

80 [ret := r1+r2 ,skip ];

81 } else {

82 if [x = 1,¬ x=1] {

83 [ret:= 1,skip ];

84 [skip ,one := 1];

85 [skip ,xin := x-one];

86 call [skip ,fib];

87 [skip ,r1 := ret];

88 [skip ,xin := xin -one];

89 call [skip ,fib];

90 [skip ,r2 := ret];

91 [skip ,ret := r1+r2];

92 } else {

93 [one := 1,one := 1];

94 [xin := x-one ,xin := x-one];

95 call [fib ,fib];

96 [r1 := ret ,r1 := ret];

97 [xin := xin -one ,xin := xin -one];

98 call [fib ,fib];

99 [r2 := ret ,r2 := ret];

100 [ret := r1+r2,ret := r1+r2];

101 };

102 };

103 };

104 };

105 };

106 };
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107 }

108

109 [xin := secin ,xin := secin];

110 call [fib ,fib];

111 [secfib := ret ,secfib := ret];

112 [xin := pubin ,xin := pubin];

113 call [fib ,fib];

114 [pubfib := ret ,pubfib := ret];

Listing 5. The self-composition of the program in Listing 4

The self-composition of the program in Listing 4 is shown in Listing 5.
According to the abstract semantics, we can compute the abstract transformers

for the end points of the procedures [fib,fib], [skip,fib], and [fib,skip].
Clearly, all of them map the bottom element ⊥ to ⊥. Furthermore, whenever xin
is not contained in the argument set V , then ret will not be member of resulting
abstract value. On the other hand if xin is member of the argument V , then ret

will also be member of the resulting abstract value. As a consequence, the secret
value in secin does only influence the variable secfib at program exit, but does
not influence the variable pubfib.

5 Analysis Using Global Control Flow Graphs

Summary based interprocedural analysis may be difficult if the complete lattice D
for expressing relational invariants is infinite. An example for this is the analysis
of XML processing programs from [15]. Still, this analysis can be extended to
programs with procedures by directly abstracting the occurring call-stacks. Here,
we only consider the simplest variant of this approach where each call-stack is
abstracted by a call site, i.e., the topmost element of the stack. For each node
n ∈ N , we then introduce an unknown D[n] representing the abstract value from
D describing an invariant satisfied by all pairs (s, t) of concrete states reaching
node n. In order to determine these values, we again put up a constraint system
consisting of the following constraints:

D[nin ] � D0

D[n] � �l��(D[m]) For each edge (m, l, n) where l �= call r.

Here, D0 is the abstract value for pairs of initial states, and l is not a call edge.
Moreover for every call edge (m, call r, n), we add the constraints:

D[nr
in ] � enter2

�(D[m])

D[n] � combine2
�(D[m], D[nr

fi ])

Thus at the price of potential loss in precision, it suffices to compute with values
from D alone — without resorting to abstract lattices of functions.

Let us apply this approach to an interprocedural information flow analysis
of programs manipulating tree-structured data. For the sake of simplicity our
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patientRecord

id name health

patientRecord

id

name

health

’123’ ’J.Doe’

’123’

’J.Doe’

’good’

’good’ #

patientRecord

id

name

health

’144’

’R.Miles’

’poor’ #

...

...

Fig. 2. A record describing a patient in unranked form (top), and its binary represen-
tation as a member of a list (bottom)

programming language is designed to manipulate binary trees. There is no loss of
generality involved, since XML documents can be encoded as binary trees, e.g.,
by means of the first-child-next-sibling (FCNS) [7] encoding. Figure 2 shows an
unranked tree describing a patient in a database, and its binary representation
as member of a list. The FCNS encoding maps the first child of a node to its
first child, and its sibling to the right to its second child. The symbol # stands
for empty unranked forests. It is a requirement that the set of labels of binary
and nullary nodes are disjunct. In order to achieve this we put labels of nullary
nodes other than # between ’ signs and call them basic values. We denote the
set of labels for binary nodes with Σ2 and the set of labels for nullary nodes
with Σ0.

(tree expression) e ::= # | x | x/1 | x/2 | σ2(x, y) | λt(x1, x2, ...)
(Boolean expression) b ::= top(x)=σ | λb(x1, x2, ...)

(5)

The instantiation of the expression language of the programming language
shown in (1) can be found in (5). Now there are tree expressions on the right-
hand-sides of assignments. A tree expression can be the binary representation
of an empty forest #, the value of a variable x, the first or second child of the
tree in a variable denoted as x/1 or x/2 respectively, and a new tree σ2(x,y)
composed of two existing trees and a binary alphabet element. λt stands for
an interpreted tree function which is provided by the execution environment
returning a basic value. A Boolean expression can either check whether the root
of a tree is labeled with a specific alphabet element, or it can be an interpreted
Boolean expression λb provided by the execution environment. An example for
an interpreted Boolean expression is test < ’0.5’. The value of the expression
is true if the tree-structured value in the variable test consists of a single leaf
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labeled with a string that can be interpreted as a floating-point number, and its
value is less then 0.5.

The execution state s of the programming language typically is a mapping
s : X → BΣ2,Σ0 ∪ {�} from the set of variables X to the set of binary trees
BΣ2,Σ0 over the binary alphabet Σ2 and nullary alphabet Σ0. It can, however,
also equal to � — flagging that a runtime error occurred. This happens when
the child of a nullary node is queried by an expression of the form x/1 or x/2.

for all e it holds that �x:=e�� = �
�x:=y�s = s[x �→ s(y)] �x:=#�s = s[x �→ #]

�x:=σ(x1,x2)�s = s[x �→ σ(s(x1), s(x2))]

�x:=y/1�s =

⎧⎪⎨⎪⎩
s[x �→ τ1] if s(y) = σ(τ1, τ2) for some label σ

and trees τ1 and τ2

� otherwise

�x:=y/2�s =

⎧⎪⎨⎪⎩
s[x �→ t2] if s(y) = σ(τ1, τ2) for some label σ

and trees τ1 and τ2

� otherwise

�x:=λt(x1,x2,...)� = s[x �→ �λt�(s(x1), s(x2), ...)]

(6)

The formal semantics of assignments is shown in (6). The error state is propa-
gated by assignments without modification.

Now we define the semantics of Boolean expressions. �top(x)=σ�s = s if
s(x) = σ(τ1, τ2) for some trees τ1 and τ2, or if σ = # and s(x) = #. The basic
values of leaves can be examined using interpreted Boolean expressions. The fact
whether �λb(x1,x2,...)�s = s holds, i.e., if an interpreted Boolean expression
holds on a state depends on the predefined semantics in the runtime environment.

Boolean expressions propagate the error state only if they are negated, i.e.,
they are of the form ¬b. The results of positive Boolean expressions on the error
state is undefined. This behavior is necessary in order to ensure that loops
terminate in case an error occurs.

The only requirement for interpreted functions λt and λb is that they are
deterministic, and do not result in the error state.

We define now the semantics of procedure calls. By entering a procedure the
values of variables are unchanged. However, if the state is erroneous, then the
procedure is not executed. Therefore we have:

enter(s) =

{
s if s �= �

otherwise undefined

By returning from a procedure execution there are two possibilities. If there was
no error during the procedure, then the value of variable ret is updated with
that at the end of the procedure execution, the values of other variables are
propagated from the call site. On the other hand, if there was an error during
the execution of the procedure, then the error state needs to be propagated.
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Therefore we have:

combine(s, s′) =

{
s[ret �→ s′(ret)] if s �= � and s′ �= �
� otherwise

As an example consider the program from the introduction, now compiled to
our assembly language. The program is meant to manipulate the database of
an insurance company. The database consists of a list of records as it is shown
on the bottom of Figure 2. The program updates the health status of patients
depending on the results of blood tests as shown by Listing 6.

1 procedure query {

2 empty := #;

3 found := false(empty ,empty);

4 while top(found) = false {

5 ret := pList/1;

6 idVal := ret/1;

7 if idVal = patientId {

8 found := true(empty ,empty);

9 } else {

10 pList := pList/2;

11 };

12 };

13 }

14

15 procedure update {

16 empty :=#;

17 ret := #;

18 newEntIdVal := newEntry /1;

19 while top(pList) = patientRecord {

20 entry:= pList/1;

21 entIdVal := entry/1;

22 if entIdVal = newEntIdVal {

23 ret := patientRecord (newEntry ,ret);

24 } else {

25 ret := patientRecord (entry ,ret);

26 };

27 pList := pList/2;

28 };

29 }

30

31 procedure createNewEntry {

32 idVal := oldEntry /1;

33 name := oldEntry /2;

34 nameVal := name /1;

35

36 newHealth := health(newHealthVal ,empty);

37 newName := name(nameVal ,newHealth );

38 ret := id(idVal ,newName );

39 }
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40

41 empty := #;

42 if test < 0.5 {

43 call query;

44 entry := ret;

45 newHealthVal := ’good ’;

46 call createNewEntry ;

47 newEntry := ret;

48 call update;

49 pList := ret;

50 } else {

51 call query;

52 entry := ret;

53 newHealthVal := ’poor ’;

54 call createNewEntry ;

55 newEntry := ret;

56 call update;

57 pList := ret;

58 };

Listing 6. A routine for updating the database of a hospital

The main program starts at line 41. At line 42 a branching decision is made based
on the result of the blood test. In both branches, first the database entry with
the appropriate identifier is queried using the procedure query. The procedure
iterates over the list of entries in the database and returns the one with the
appropriate identifier. Then, a new entry is constructed using the procedure
createNewEntry, where the health status is updated according to the result of
the test. And finally, the old entry is exchanged with the new one in the database
using the procedure update.

In our example we consider the result of the blood test and the health status
of patients as confidential. Therefore, the goal of our analysis is to prove that
these values do not interfere with the names and identifiers of patients, the shape
and size of the database etc.

We use public views of documents in order to identify subdocuments possi-
bly depending on confidential data. Figure 3 shows a pair of documents and a
corresponding public view. Thus, we consider a public view as an abstraction of
pairs of trees. A pair of trees (τ1, τ2) is a member of the concretization γ(τ) of a
public view τ , if τ can be constructed from the pair of concrete trees by replacing

id

name

health

’144’

’R.Miles’

’poor’ #

id

name

health

’144’

’R.Miles’

’good’ #

id

name

health

bv

bv

� #

( )∈ γ(, )

Fig. 3. A pair of documents and a public view of them
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potentially different subtrees with a leaf labeled �, and by replacing leaves la-
beled with equal basic values with leaves labeled bv . Accordingly, a public view
is a tree over the binary alphabet Σ2 and the nullary alphabet {#, bv , �}.

An abstract description of a relation of states is a tuple (T,E), where T :
X → P(BΣ2,{#,bv,�}) is a mapping from variables to sets of public views, and
E is an element of the 3-point lattice {� � � � �}. E is necessary in order
to represent potential runtime errors. A pair of states (s, t) is a member of the
relation given by (T,�) (denoted1 (s, t) ∈ γ(T,�)) whenever for each variable
x ∈ X there is a τ ∈ T (x) so that (s(x), t(x)) ∈ γ(τ). In case E = �, then (�,�)
is also member of the relation. This represents the situation when a runtime
error could have potentially occurred independently of the secret. On the other
hand, E = � represents that a runtime error might have occurred depending on
the secret. Therefore, in this case pairs of states are also members of the relation
where only one member is the error state �.

Given an initial abstract value (T0,�) describing the set of public views of
pairs of potential initial states, we are interested in computing the sets of po-
tential public views for every reachable node of the CFG of the self-composition
of the program. In our analysis, sets of public views for variables x occurring at
a node n are described by means of unary predicates varx,n, which are defined
by means of Horn clauses. Formally, τ ∈ T (x) at node n if varx,n(τ) holds. The
value of E at node n is represented by means of the unary predicate errorn.

Horn clauses are used for the specification of the analysis in two ways. First,
they are used to specify the set of potential initial public views for each variable
at the initial node nin . Secondly, they are used to formalize how the views at
different program points are related to each other. These clauses are obtained
from the CFG of the 2-program.

For our analysis, we assume that information flow policies are defined by
regular sets of public views, and thus can be described by finite tree automata.
We will not define finite tree automata here, but note that their languages can
be defined by means of clauses of the form:

p(σ0). or p(σ2(X1,X2))⇐ p1(X1),p2(X2).

Here, p, p1 and p2 are unary predicates corresponding to the states of the au-
tomaton, and σ0 and σ2 are nullary and binary constructors respectively.

In our running example, the health status of patients in the list of records seen
in Figure 2 is confidential. Thus, the information flow policy, the set of public
views of all possible databases is given by the predicate qPlist defined by the
implications in (7):

1 Here we overload the notation γ and use it for the concretization of public views of
document trees, and for the concretization of abstract descriptions of pairs of states.
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qPlist(patientRecord(L,R))⇐ qId(L),qPlist(R).

qPlist(#).

qId(id(L,R)) ⇐ qBV(L),qName(R).

qName(name(L,R)) ⇐ qBV(L),qHealth(R).

qHealth(health(L,R)) ⇐ qStar(L),qEmpty(R).

qBV(bv). qStar( � ). qEmpty(#).

(7)

qPlist(patientRecord)

qId(id)

qName(name)

qHealth(health)

qBV(bv)

qBV(bv)

qStar(�) qEmpty(#)

qPlist(patientRecord)

qPlist(#)
...

Fig. 4. A run of the automaton specified in (7) accepting the public view of a list of
records like that on the bottom of Figure 2 with state qPlist

As Figure 4 illustrates, a list accepted by the predicate qPlist is either a
tree with root labeled patientRecord having a first child accepted by qId and a
second child accepted by qPlist, or it is a nullary node with label #. The other
predicates can be understood similarly. In particular, the predicate qHealth

accepts a tree only, if the first child of its root is a leaf labeled � specifying
that the corresponding value is confidential. Supposing that the variable pList

contains the database in the initial state of our program, the corresponding
information for the initial node nin is defined by: varpList,nin(X)⇐ qPlist(X).

In the following, we describe how the abstract state transformers �l�� of edges
(m, l, n) are formalized by means of Horn clauses. In order to do so we need
that the set of binary elements Σ2 potentially occurring in the program is finite
and a priori known. This information can be extracted, e.g., from the interface
descriptions of web services. Due to the construction of self-compositions of
programs edges either refer to assignments or to Boolean expressions, but never
to both.

5.1 Horn Clauses for Procedure Calls

Consider a call edge (m, call r, n) in one of the CFGs of the program. Here we
denote the initial and final nodes of the CFG corresponding to procedure r with
nr
in and nr

fi , respectively.
The function enter2 propagates values of variables without modification. There-

fore, we generate the following implication for each variable x:

varx,nr
in
(X)⇐ varx,m(X).

For the propagation of the error state we have:

errornr
in
(�)⇐ errorm( ).
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Above, ’ ’ stands for an anonymous variable. The condition of the implication
makes sure that the error state � is only added to the abstract value correspond-
ing to node nr

in if it is reachable.
In order to define combine2

� we generate the following implication for all
variables x other than ret:

varx,n(X)⇐ varx,m(X).

For ret we define:
varret,n(X)⇐ varret,nr

fi
(X).

Thus, the value of variable ret is propagated from the final node of the procedure
r to node n, whereas the values of other variables x are propagated from node
m. The error state at node n needs to be greater or equal to those at nodes m
and nr

fi . Therefore, the error states corresponding to nodes m and nr
fi are joined:

errorn(X)⇐ errorm(X).

errorn(X)⇐ errornr
fi
(X).

The definitions of the clauses for simulating assignments and Boolean expressions
are as in [15] which we repeat here for the sake of self-containedness.

5.2 Horn Clauses for Assignments

First, we discuss the case of assignments, i.e., transformers of edges of the fol-
lowing form:

(m, �x:=e1(x1, . . . , xn), y:=e2(y1, . . . , ym)��, n)
If no error occurs, then x and y are updated, the values of other variables remain
unchanged. Accordingly, for all variables z �= x and z �= y the following clauses
are defined, which propagate their values unmodified:

varz,n(X)⇐ varz,m(X).

In order to handle errors, the following implication is generated in addition:

errorn(X)⇐ errorm(X). (8)

Values of variables on the left hand sides of the assignments are defined by the
following clauses.

– For edges with label (x:=#, x:=#) we have varx,n(#)⇐ varx,m( ) where ’ ’
denotes an anonymous logic variable. The implication is required to ensure
that # is added to the predicate varx,n only if m may be reachable. At a
reachable node n for all variables x there is a tree τ so that varx,n(τ) holds.

– For edges with (x:=y, x:=y) we have: varx,n(X)⇐ vary,m(X).
– For edges with (x:=σ2(y,z), x:=σ2(y,z)) we have:

varx,n(σ2(L,R))⇐ vary,m(L),varz,m(R).
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– For edges with (x:=y/1, x:=y/1) we have varx,n(L) ⇐ vary,m(σ2(L, ))

for all σ2 ∈ Σ2. As an example, let us suppose that the abstract value of
variable pList at node m is a model of the predicate qPlist according to
the implications in (7). Using the command id := pList/1 we can assign
the head of the list into variable id. The implication defining the abstract
value of variable id after the assignment is:

varid,n(L)⇐ varpList,m(patientRecord(L, )).

However, during the analysis the label of the root of the tree in a variable
needs to be treated as unknown. Therefore, the implication is repeated for
all possible binary alphabet elements σ2 ∈ Σ2.
An error is caused by an expression of the form x/1, if the content of x does
not have children, i.e., it is a leaf. Therefore, in addition the following is
defined:

errorn(�) ⇐ vary,m(#).

errorn(�) ⇐ vary,m(bv).
errorn(�)⇐ vary,m( � ).

(9)

– For edges with (x:=y/2, x:=y/2) we have varx,n(R)⇐ vary,m(σ2( ,R)) for
all σ2 ∈ Σ2. The implications handling the error state are identical to those
in (9).

– By edges with (l, l) where l = x:=λt(x1, . . . ,xk), it needs to be examined
whether the arguments of the function λt contain secret. The implications
below are used for the purpose, where the second and third lines are defined
for all σ2 ∈ Σ2:

secret( � ).
secret(σ2(L, ))⇐ secret(L).

secret(σ2( ,R))⇐ secret(R).

Concerning the resulting value of x we have:

varx,n(bv)⇐ varx1,m( ),varx2,m( ), . . .,varxk,m( ). (10)

varx,n( � )⇐ varxi,m(X),secret(X),varx1,m( ), . . .,varxk,m( ). (11)

According to implication (10), the value of x at node n will potentially be
bv if all of the arguments x1, ..., xk of λt are defined. Furthermore, according
to implication (11), if any of the input variables depends on the secret, then
the resulting abstract value will also contain �. There is an implication of
the form (11) defined for all arguments xi of λt.

– By edges with labels (x:=e(x1, . . . , xk), skip) or (skip, x:=e(x1, . . . , xk)) we
have:

varx,n( � )⇐ varx1,m( ), . . . ,varxk,m( ).

If the effect of an edge consists of an assignment and a skip command,
then in the resulting abstract state the value of the variable on the left-
hand-side becomes �. This indicates that its value might be different in the
corresponding two concrete states. At this point we cannot take the values
of variables on the right-hand-side into consideration.
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If the expression is of the form x/1 or x/2, then we have in addition:
errorn(�)⇐ varx,m( ) in order to indicate that an error may occur only
in one member of the pair of corresponding concrete states.

5.3 Horn Clauses for Boolean Expressions

Now we discuss abstract transformers with Boolean expressions. In our imple-
mentation we treat two branching constructs composable only if their conditional
expressions are syntactically equivalent. Therefore, here we only need to treat
the corresponding combinations of Boolean expressions.

– By edges labeled (b, b), (b, skip) or (skip, b), where b = λb(x1, x2, . . . , xk),
the values of all variables y occurring in the program are propagated the
following way:

vary,n(X)⇐ vary,m(X),varx1,m( ), . . .,varxk,m( ).

In other words, it is checked whether the input variables of the conditional
expression have been defined, in order to ensure that the node m is reachable.
The actual values of variables are propagated without modification.

– In case the label of the root of a tree is tested using an edge having label
of the form (top(x)=σ, top(x)=σ), then the following clauses are defined to
propagate the values of variables y �= x if σ ∈ Σ2:

vary,n(X)⇐ vary,m(X),varx,m(σ( , )).

vary,n(X)⇐ vary,m(X),varx,m( � ).
(12)

The value of the variable x is propagated as well:

varx,n(σ(L,R))⇐ varx,m(σ(L,R)). (13)

varx,n(σ( � , � ))⇐ varx,m( � ). (14)

If σ = # then σ(X,Y ) is exchanged with # in (12), (13) and (14).
– For edges with (top(x)=σ, skip) or (skip, top(x)=σ) (12) needs to be re-

peated for all variables y �= x, and (13) needs to be repeated in order to
propagate the value of x as well. In addition varx,n(�)⇐ varx,m(�) needs
to be defined.

– By edges having labels of the form (¬top(x)=σ,¬top(x)=σ), (¬top(x)=σ,
skip) or (skip,¬top(x)=σ), the values of the variables are propagated only
in the case, when the root of the value of x is labeled with some δ �= σ.
Therefore, the following implication is defined for all variables y other than
x and for all alphabet elements δ ∈ Σ2 \ {σ}:

vary,n(X)⇐ vary,m(X),varx,m(δ( , )). (15)

In order to handle the value of x as well, the following implication is defined
for all δ ∈ Σ2 \ {σ}:

varx,n(δ(L,R)) ⇐ varx,m(δ(L,R)). (16)

Additionally, we need to define (15) and (16) so that δ(X,Y ) is replaced by
�, and if σ �= # then by # too.
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– In case the two components of the label of an edge are the negations of each
other, e.g., (¬b(x1, x2, ..., xk), b(x1, x2, ..., xk)), then the values of variables
need to be propagated only in the case, when at least one of the variables
in the argument depends on the secret. Assuming that b is a function, the
simultaneous execution of the two steps cannot take place otherwise. Accord-
ingly, the following is defined for all variables y occurring in the program and
for all variables xi ∈ {x1, ..., xk}:

vary,n(X)⇐ vary,m(X),varxi,m(Z),secret(Z). (17)

The transfer functions of edges labeled with Boolean expressions propagate the
error state without modification, therefore we generate implications of the form
(8) for each of them.

5.4 Discussion

In [15], we have proven that the abstract transformer �f, g�� for a pair (f, g) as
defined by Horn clauses is correct. In other words, if �f�(s0) = s and �g�t0 = t
where (s0, t0) ∈ γ(D0) and �f, g��D0 = D, then (s, t) ∈ γ(D) holds. Therefore,
noninterference for a particular output variable x holds at program exit nfi , if the
predicate varx,nfi

does not accept trees containing �. Algorithmically, therefore,
the analysis boils down to computing (or approximating) the least model of the
set of Horn clauses defined for the program. Now we observe that the head of
each clause possibly generated by our analysis, is of one of the following forms:

h ::= p | p(X) | p(σ0) | p(σ2(X1,X2)),

where X1 and X2 are distinct. Therefore, all of them belong to the class of Horn
clauses H1 [18,25]. Finite sets of clauses from this class are known to have least
models consisting of regular sets. Moreover, finite automata characterizing these
regular sets can be effectively computed by means of a normalization procedure.

We have carried out the analysis of the self-composition of the program in
Listing 6. The initial abstract values of the input variables are defined by the
following implications:

varpList,nin(X)⇐ qPlist(X).

vartest,nin( � ). varpatientId,nin(bv).
(18)

The initial values of all other variables x are defined by predicates of the form
varx,nin(#), the initial error state is defined by errornin(�).

The result of the analysis reveals that the final abstract value of the variable
pList equals to the initial one defined by the predicate qPlist in (18). In other
words, the secret remains in the variable test and in the health status of the
records in the list, but does not interfere with other values. Thus, the call string
0 approach is sufficient to verify noninterference. The reason is that the proce-
dure calls of the original program are all within a similar security context. In
applications, where this is not the case, more information about calling contexts
may be required.
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6 Related Work and Conclusion

Information flow analysis can be traced at least as far back as to the fundamental
work of Denning [10] who provided a lattice model for information flow, and
Volpano et al. who provided a first sound type system to analyze such properties
[24]. Since then various extensions of the original ideas have been proposed. For
a still valuable overview see, e.g, in [20]. An alternative approach to information
flow analysis is through program dependence graphs as, e.g., realized in the
system Joana for Java [12].

Both approaches loose information when the control flow depends on secret
data. Information flow properties, on the other hand, can be naturally formal-
ized as 2-hypersafety properties. As observed by Clarkson and Schneider, the
verification of 2-hypersafety properties can be reduced to the verification of or-
dinary safety properties for self-compositions of programs [6]. This direct road
to a more precise information flow analysis has been further explored by Barthe
et al. [2, 3] and Banerjee et al. [17, 22] who provide proof methods based on
self-compositions. In our predecessor paper [15], we have introduced syntactic
matching of programs to provide appropriate self-compositions and relational
abstract interpretation in order to obtain fully automatic analyses. These ideas
have been exemplified by means of an intraprocedural analysis of XML trans-
formers. Our present paper has reviewed that approach and extended it with a
generic treatment of procedures. In principle, any technique for interprocedural
analysis (e.g., [9,14,21]) can be applied together with suitable abstract domains
which allow to express potential differences between reaching pairs of program
states. For the case of programs manipulating XML trees, we used public views
to identify these differences. Analyzing the sets of potentially reaching public
views for 2-programs, turned out to be quite analogous to analyzing the sets of
potentially reaching XML values for ordinary programs.
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Goland, Y., Gúızar, A., Kartha, N., Liu, C.K., Khalaf, R., Koenig, D., Marin, M.,
Mehta, V., Thatte, S., Rijn, D., Yendluri, P., Yiu, A.: Web services business process
execution language version 2.0 (OASIS standard). WS-BPEL TC OASIS (2007),
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

2. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011)

3. Barthe, G., Crespo, J.M., Kunz, C.: Beyond 2-safety: Asymmetric product pro-
grams for relational program verification. In: Artemov, S., Nerode, A. (eds.) LFCS
2013. LNCS, vol. 7734, pp. 29–43. Springer, Heidelberg (2013)

4. Berglund, A., Boag, S., Chamberlin, D., Fernández, M.F., Kay, M., Robie, J.,
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Abstract. We study priced dense-timed pushdown automata that are
a generalization of the classic model of pushdown automata, in the sense
that they operate on real-valued clocks, and that the stack symbols have
real-valued ages. Furthermore, the model allows a cost function that
assigns transition costs to transitions and storage costs to stack symbols.
We show that the optimal cost, i.e., the infimum of the costs of the set
of runs reaching a given control state, is computable.

1 Introduction

Pushdown automata are a widely used model both in language theory and pro-
gram verification. Recently, several models have been introduced that extend
pushdown automata with clocks and real-time constraints [10,12,1]. In the mean
time, several works have extended the model of timed automata [5] with prices
(weights) (e.g., [6,7,9]). Weighted timed automata are used in the modeling of
embedded systems, where the behavior of the system is usually constrained by
the availability of different types of resources.

In this paper, we consider Priced Dense-Timed Pushdown Automata (Ptpa)
that subsume all the above models. Ptpa are a generalization of classic push-
down automata with real-valued clocks, timed constraints, and prices for com-
putations. More precisely, a Ptpa contains a finite set of global clocks, and each
symbol in the stack is equipped with a real number indicating its age. The global
clocks admit the same kind of operations as in timed automata, and timed tran-
sitions increase the clock values and the ages of stack symbols at the same rate.
Pop operations may only be performed if the age of the topmost stack symbol is
within a given time interval. Furthermore, the model is priced in the sense that
there is a cost function that assigns transition costs to transitions and storage
costs to stack symbols.

We study the problem of computing the optimal cost to reach a given con-
trol state. In general, a cost-optimal computation may not exist (e.g., even in
priced timed automata it can happen that there is no computation of cost 0,
but there exist computations of cost ≤ ε for every ε > 0). However, we show
that the infimum of the costs is computable. To do this, we perform a sequence
of reductions that ultimately translates the problem to the problem of control
state reachability for plain (unpriced and untimed) pushdown automata. The
latter problem is known to be decidable [8].

A.-H. Dediu et al. (Eds.): LATA 2014, LNCS 8370, pp. 62–75, 2014.
c© Springer International Publishing Switzerland 2014
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Related Work. Priced extensions of timed models have been studied in the liter-
ature. The paper [4] studies a priced dense-timed extension of Petri nets, where
the optimal cost is computed for satisfying coverability objectives (reaching an
upward closed set of markings). Proofs for solving the coverability problem in
Petri nets are in general quite different from those for the solving control state
reachability problem in pushdown systems. This is already the case for the un-
priced untimed case, where the former relies on Karp-Miller constructions [11] or
backward reachability analysis [3], while the latter uses finite automata construc-
tions [8]. This difference is also reflected in the priced timed case. In particular,
[4] (using backward reachability analysis) reduces optimal cost computation to
the reachability problem for a more powerful model than plain Petri nets, namely
that of Petri nets with one inhibitor arc. In our case, we reduce the problem to
the plain pushdown model.

Several timed extensions of pushdown automata have been considered [12,10,1].
Since our model extends these, some of the techniques need to be reused. However,
priced timedmodels are nontrivial extensions of (unpriced) timedmodels. Here, in
a similar manner to priced extensions of timed Petri nets [4] and timed automata
[9], we need to reason about special forms of computations, and a nontrivial modi-
fication of the (region-based) symbolic encoding is also necessary to represent the
infinite state space.

In [2] we study priced discrete-timed pushdown automata. In the discrete-time
case, time is interpreted as being incremented in discrete steps and thus the clock
values and ages of stack symbols are in a countable domain. The method of [2]
cannot be extended to the dense time case. It is well-known that, in timed
models, using discrete domains represents a substantial simplification compared
to using dense time. In particular, the absence of fractional parts in clock values
and stack symbol ages leads to a much simpler symbolic representation of the
stack. The model of priced discrete-timed pushdown automata is generalized in
[13], where the authors consider pushdown systems that can modify the whole
stack using transducers.

2 Preliminaries

We use R≥0 to denote the non-negative reals. For r ∈ R≥0, where r = n + r′

for n ∈ N, r′ ∈ R≥0 and r′ < 1, we let �r� = n denote the integral part and
fract (r) = r′ denote the fractional part of r. Given a set A, we use 2A for the
powerset of A. For sets A and B, f : A→ B denotes a (possibly partial) function
from A to B. If f is undefined at a, we write f(a) = ⊥. We use dom (f) and
range (f) to denote the domain and range of f . Given a function f and a set A,
we use f(A) for the image {f(x) |x ∈ A} of A under f . The image img(f) of f
is then defined as f(dom (f)). We write f [a← b] to denote the function f ′ such
that f ′(a) = b and f ′(x) = f(x) for x �= a. Given a function f : A×B → C, we
sometimes write f(a)(b) = c to make explicit that f might be applied partially,
i.e. to get a function f(a) : B → C. The set of intervals of the form [a : b],
(a : b], [a : b),(a : b),[a :∞) or (a :∞), where a, b ∈ N, is denoted by I. Given a
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set A, we use inf(A), max(A) and min(A) to denote the infimum, the maximum
and the minimum of A, respectively.

Let A be an alphabet. We denote by A∗, (resp. A+) the set of all words (resp.
non-empty words) over A. The empty word is denoted by ε. For a word w, |w|
denotes the length of w (we have |ε| = 0). For words w1, w2, we use w1 ·w2 for the
concatenation of w1 and w2. We extend · to sets W1,W2 of words by defining W1 ·
W2 = {w1 ·w2 |w1 ∈W1, w2 ∈W2}. For a word w = a0 . . . an, and i ∈ {0, . . . , n},
we let w[i] denote ai. Given a word w = 〈x0, y0〉 . . . 〈xn, yn〉 ∈ (X×Y )∗, we define
the first projection proj 1(t) = x0 . . . xn and the second projection proj 2(t) =
y0 . . . yn. We define a binary shuffle operation ⊗ inductively: For w ∈ (2A)∗,
define w ⊗ ε = ε⊗ w = w. For sets r1, r2 ∈ 2A and words w1, w2 ∈ (2A)∗, define
(r1 ·w1)⊗(r2·w2) = (r1·(w1⊗(r2·w2)))∪(r2 ·((r1 ·w1)⊗w2)))∪((r1∪r2)·(w1⊗w2)).

3 Priced Timed Pushdown Automata

In this section, we introduce Ptpa and define cost-optimal reachability.

Model. Formally, a Ptpa is a tuple T = 〈Q, qinit , Γ,X,Δ,Cost〉, where Q is a
finite set of states, qinit ∈ Q is the initial state, Γ is a finite stack alphabet, X is
a finite set of clocks, and Cost : (Γ ∪Δ)→ N is a function assigning transition
costs to transition rules and storage costs to stack symbols. The set Δ consists
of a finite number of transition rules of the form 〈q, op, q′〉, where q, q′ ∈ Q and
op is either (i) nop, an operation that does not modify the clocks or the stack,
(ii) push(a), where a ∈ Γ , which pushes a onto the stack with initial age 0, (iii)
pop(a, I), where a ∈ Γ and I ∈ I, which pops a of the stack if its age is in I,
(iv) test(x, I), where x ∈ X and I ∈ I, which is only enabled if x ∈ I, or (v)
reset(x), where x ∈ X , which sets the value of the clock x to 0.

Semantics. A clock valuation is a function X : X → R≥0 which assigns a
concrete value to each clock. A stack content is a word w ∈ (Γ × R≥0)∗, i.e.
a sequence of stack symbols and their corresponding ages. A configuration is a
tuple 〈q, X, w〉, where q ∈ Q is a state, X is a clock valuation, and w is a stack
content. For a configuration γ = 〈q, X, w〉, define the functions State (γ) = q,
ClockVal (γ) = X, and Stack (γ) = w. For any transition rule t = 〈q, op, q′〉 ∈ Δ,
define Op(t) = op. Given a Ptpa T , we use Conf (T ) to denote the set of all
configurations of T . Let Xinit be the clock valuation such that Xinit(x) = 0 for
each x ∈ X . The initial configuration γinit is the configuration 〈qinit , Xinit, ε〉.
The operational semantics of a Ptpa T are defined by a transition relation
over the set of configurations Conf (T ). It consists of two types of transitions;
timed transitions, which simulate time passing, and discrete transitions, which
are applications of the transition rules in Δ.

Timed Transitions. Fix some r ∈ R≥0. Given a clock valuation X, let X+r be
the function defined by X+r(x) = X(x) + r for all x ∈ X . For any stack content
w = 〈a0, v0〉 · · · 〈an, vn〉, let w+r be the stack content 〈a0, v0 + r〉 · · · 〈an, vn + r〉.
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push(a)

1

0.93

0.93 · (3 + 4)

0.01

0.01 · (3 + 4)

pop(a, [0..1])

2

Fig. 1. A fragment of a computation

Given configurations γ = 〈q, X, w〉 and γ′ = 〈q′, X′, w′〉, we have γ
r−→ γ′ if

q′ = q, X′ = X+r and w′ = w+r. This means that a Ptpa may perform a timed
transition, whereby it advances all clocks and ages of stack symbols by some
non-negative real number.

Discrete Transitions. Let t = 〈q, op, q′〉 ∈ Δ be a transition rule. For configura-

tions γ = 〈q, X, w〉 and γ′ = 〈q′, X′, w′〉, we have γ
t−→ γ′ if either (i) op = nop,

w′ = w, and X′ = X, (ii) op = push(a), w′ = w · 〈a, 0〉, and X′ = X, (iii)
op = pop(a, I), w = w′ · 〈a, v〉 for some v ∈ I, and X′ = X, (iv) op = test(x, I),
w′ = w, X′ = X, and X(x) ∈ I, or (v) op = reset(x), w′ = w, and X′ = X[x← 0].

A computation π to a configuration γ of a Ptpa T is a finite sequence of the

form γ0
t1−→ γ1

t2−→ · · · tn−→ γn, where γ0 = γinit , γn = γ, and for all 1 ≤ i ≤ n,
γi ∈ Conf (T ), and either ti ∈ Δ or ti ∈ R≥0. We define Comp(T , q) to be
the set of computations to a configuration γ such that State (γ) = q. If π is a
computation to γ, and State (γ) = q, we say that π is a computation to q.

Cost of Computation. We will now extend the cost function Cost , which we orig-
inally defined on stack symbols and transition rules, to transitions and computa-
tions. The cost of a discrete transition is given by the cost of the corresponding
transition rule, and the cost of a timed transition is the total cost of the stack
scaled by the length of the timed transition. Fix a discrete or timed transition

γ
t−→ γ′, and let γ = 〈q, X, 〈a0, v0〉 · · · 〈an, vn〉〉. Formally, Cost(γ

t−→ γ′) =

Cost(t) if γ
t−→ γ′ is discrete, and Cost(γ

t−→ γ′) = t ·
∑n

i=0 Cost(ai) if γ
t−→ γ′

is timed. The cost of a computation π = γ0
t1−→ γ1

t2−→ · · · tn−→ γn is defined as

the sum of the costs of its transitions, i.e. Cost(π) =
∑n

i=1 Cost(γi−1
ti−→ γi).

Fig. 1 shows a fragment of a computation of a Ptpa where the set of clocks is
{x1, x2} and the stack alphabet is {a, b, c} (the stack not shown is filled with
c). We assume that the storage costs of a, b and c are 4, 3 and 0, respectively,
that the transition cost of 〈q1, push(a), q2〉 is 1, and that the transition cost of
〈q2, pop(a, [0 : 1]), q3〉 is 2. The accumulated cost for the example is 9.64.

Cost-Optimality. In this paper, we address the problem of computing the op-
timal cost required to reach a certain state. The optimal cost is defined as the
infimum of the set of reachability costs. Formally, we define the optimal cost



66 P.A. Abdulla, M.F. Atig, and J. Stenman

Costopt (T , q) as Costopt (T , q) = inf{Cost(π) |π ∈ Comp(T , q)} if Comp(T , q) �=
∅ and Costopt (T , q) = ∞ otherwise. The cost-optimal reachability problem is
then, given a Ptpa T and a state q, to compute the optimal cost Costopt (T , q).

Theorem 1. Let T be Ptpa and q be a state. Then Costopt (T , q) is computable.

The rest of the paper is devoted to the proof of the above theorem. In Sec. 4, we
show that it is sufficient to consider computations in a certain form in order to
compute the optimal cost. In Sec. 5, we introduce our symbolic automata (Ppa)
to which we reduce the cost-optimal reachability problem for Ptpa. In Sec. 6,
we formally define the region encoding and some related operations. Finally, we
construct a Ppa that simulates all the computations (in a certain form) of Ptpa
in Sec. 7.

4 Forms of Computations

Detailed Computations. In order to solve the cost-optimal reachability problem,
we will only consider computations that are of a certain form, called detailed.
This yields a closer correspondence between computations of Ptpa and computa-
tions in the untimed automaton, defined in section 7. Consider a timed transition
〈q, X, 〈a0, v0〉 · · · 〈an, vn〉〉 r−→ 〈q′, X′, 〈a0, v′0〉 · · · 〈an, v′n〉〉. Let V = fract (X(X)) ∪
fract ({v0, . . . , vn}) and let m = min(V ) and d = max(V ). In other words, m is
the minimal fractional part and d is the maximal fractional part of any value. We
can classify the timed transition into two different types:
– Type 1: A transition which is taken when no value has fractional part 0, and

which may make the values with the largest fractional parts reach the next
integer. This is the case when r > 0, m > 0 and r ≤ 1− d.

– Type 2: A transition which is taken when some values have fractional parts
0, which makes the fractional parts of those value positive, and which does
not change the integral part of any value. This is the case when r > 0, m = 0
and r < 1− d.

A detailed computation is a computation where all timed transitions are of ei-
ther type 1 or 2. We use Compd(T , q) to denote all the detailed computations
in Comp(T , q). Since the cost function is linear, considering only detailed com-
putations is not a restriction. Formally, we have:

Lemma 2. ∀. π ∈ Comp(T , q), ∃. π′ ∈ Compd(T , q) s.t. Cost(π′) = Cost(π).

Computations in δ-form. A computation is in δ-form if the values of all clocks and
symbol ages along the computation are strictly within δ of an integer. Formally,
given some δ : 0 < δ < 1

10 , we say that a configuration 〈q, X, 〈a0, v0〉 · · · 〈am, vm〉〉
is in δ-form if (i) for all x ∈ X , fract (X(x)) < δ or fract (X(x)) > 1− δ, and (ii) for

all i : 1 ≤ i ≤ m, fract (vi) < δ or fract (vi) > 1 − δ. A computation π = γ0
t1−→

γ1
t2−→ · · · tn−→ γn is in δ-form if for each i : 1 ≤ i ≤ n, the configuration γi is

in δ-form. Note that we need an upper bound (e.g. 1
10 ) on δ to ensure that short
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and long timed transitions are not mixed. We use Compd
δ (T , q) to denote all the

computations in Compd(T , q) in δ-form.
We use established linear programming techniques, first used for priced timed

automata [9] and later for priced timed Petri nets [4], to show that the feasible
delays for a set of computations with fixed “structure”, i.e. discrete transitions,
form a polyhedron with integral vertices. Since the cost-function is linear, its
extreme values in the vertices of the polyhedron, which means that the optimal
cost is a natural number.

Lemma 3. For any Ptpa T and state q of T , we have Costopt (T , q) ∈ N.

Due to strict inequalities in the structure of the computation, the exact delays
represented by the vertex which represents the optimal cost might not be feasible,
but by choosing the delays arbitrarily close to the vertex, we can get arbitrarily
close to the optimal cost.

Lemma 4. For every π ∈ Compd(T , q) and δ : 0 < δ < 1
10 , there is π′ ∈

Compd
δ (T , q) such that Cost (π′) ≤ Cost(π).

From Lemma 4 it follows that in order to find the optimal cost, we only need to
consider computations in δ-form for arbitrarily small δ, i.e.

Lemma 5. ∀δ : 0 < δ < 1
10 ,Costopt(T , q) = inf{Cost(π) |π ∈ Compd

δ (T , q)}.

The fact that a computation is detailed and in δ-form implies that the length
of any timed transition is either in (0 : δ) (a short timed transition) or in
(1− δ : 1) (a long timed transition). For example, if δ = 1

11 , the timed transition
between γ3 and γ4 in Fig. 1 is long, while the other two are short. We use this to
construct a Ppa (the symbolic automaton), which simulates Ptpa computations
that are detailed and in δ-form for arbitrarily small δ. Since δ is arbitrarily
small, the model simulates long timed transitions with length arbitrarily close
to 1, and short timed transition with length arbitrarily close to 0. Therefore,
in the discrete model, we pay the full stack cost for long timed transitions and
nothing for short timed transitions. The cost for simulating the computation in
Fig. 1 would be 10, i.e. slightly higher than the real cost of 9.64. However, the
difference between the real and symbolic computations can be made arbitrarily
small by decreasing δ. We build on techniques from [1] to handle the simulation
of the timed part, and extend the concepts with the necessary information to
handle costs.

5 Priced Pushdown Automata

A priced pushdown automaton (Ppa) P is a tuple 〈Q, qinit , Γ,Δ1, Δ2,Cost〉,
where Q is a finite set of states, qinit ∈ Q is an initial state, Γ is a finite stack
alphabet, Δ1 and Δ2 are finite sets of transition rules, and Cost : (Δ1∪Γ )→ N
is a cost function assigning costs to both transition rules in Δ1 and stack symbols
in Γ . Intuitively, we separate the transition rules into two different sets. When
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(�•, 0)

(b•, 1)
(x2, 3)

(x•
2 , 3)

k = 2
R2

(�, 0)

(x1, 2)

(x•
1 , 2)

(a, 0)

(�•, 0)

(b•, 1)
(x2, 3)

(x•
2 , 3)

k = 3
R3

(x2, 4)

(x•
2 , 4)

(�, 0)

(x1, 2)

(x•
1 , 2)

(a, 0)

(�•, 0)

(b•, 1)

k = 0 R4

(x2, 4)

(x•
2 , 4)

(c•, 0)

(x•
1 , 1)

(x1, 2)
(�, 0)

(b, 1)

(�•, 0)

k = 0

R′1

(x2, 4)

(x•
2 , 4)

(�, 0)

(c•, 0)

(x•
1 , 1)

(x1, 2)
(b, 1)

(�•, 0)

k = 0

R5

Fig. 2. Example regions used in the simulation of the example in Fig. 1

we perform transitions in Δ1, we pay the transition cost, and when we perform
transitions in Δ2, we pay for each stack symbol in the stack. The set Δ1 contains
transition rules of the form 〈q, op, q′〉, where op is one of (i) nop, an operation
that does not modify the stack, (ii) push(a), which pushes a on top of the stack,
or (iii) pop(a) which pops a off the stack. The set Δ2 contains transition rules
of the form 〈q, sc, q′〉, where q, q′ ∈ Q (sc stands for “stack cost”).

Semantics. A configuration β of P is a tuple 〈q, w〉, where q ∈ Q is a state and
w is a word over Γ . The initial configuration βinit is the configuration 〈qinit , ε〉.
Let Conf (P) denote the set of configurations of P .

For two configurations β = 〈q, w〉 and β′ = 〈q′, w′〉, we have γ
t−→ γ′ if either

(i) w′ = w and t = 〈q, nop, q′〉 ∈ Δ1, (ii) w
′ = w · a and t = 〈q, push(a), q′〉 ∈ Δ1

for some a ∈ Γ , (iii) w = w′ · a and t = 〈q, pop(a), q′〉 ∈ Δ1 for some a ∈ Γ ,
or (iv) w′ = w and t = 〈q, sc, q′〉 ∈ Δ2. We define the functions State (β) = q
and and Stack (β) = w. A computation π to a configuration β of P is a finite

sequence β0
t1−→ β1

t2−→ · · · tn−→ βn where β0 = βinit , βn = β, and for all
1 ≤ i ≤ n, βi ∈ Conf (P) and ti ∈ Δ1 ∪Δ2. We define Comp(P , q) to be the set
of computations to a configuration β such that State (β) = q. In this case, we
also say that π is a computation to q.

Cost of Computations. For a transition β
t−→β′, where β = 〈q, a0 · · ·am〉 and

β′ = 〈q′, w〉, we define its cost as Cost(β
t−→β′) = Cost(t) if t ∈ Δ1 and

Cost(β
t−→β′) =

∑m
i=0 Cost(ai) if t ∈ Δ2. The cost of a computation π =

β0
t1−→β1

t2−→· · · tn−→βn is then defined as Cost(π) =
∑n

i=1 Cost(βi−1
ti−→βi). We

define the cost-optimal reachability problem for Ppa in the same manner as for
Ptpa. Lemma 6 follows by a reduction to the same problem for priced discrete-
timed pushdown automata [2]:

Lemma 6. Let P be a Ppa and q be a state. Then Costopt (P , q) is computable.

6 Regions

For timed automata, the proof of reachability is achieved using the classical
region encoding [5], which is a finite-state abstraction of an uncountable state
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space. In [1], we showed that it is possible to extend this encoding to timed
pushdown automata. More precisely, we show that given a timed pushdown
automaton, it is possible to construct an untimed pushdown automaton that
simulates it w.r.t. reachability properties. This works by storing regions in the
stack of the untimed automaton. The main difficulty in the construction is that
the automaton can only access the top element of the stack. However, we might
need to remember relationships between elements that lie arbitrarily far apart
in the stack. We showed that it is possible to extend the regions in a finite way
to capture all such dependencies.

Let T = 〈Q, qinit , Γ,X,Δ,Cost〉 be a Ptpa. We define the set Y = X∪Γ∪{"}
of plain items and a corresponding set Y • = X•∪Γ •∪{"•} of shadow items. We
then define the set of items Z = Y ∪Y •. Intuitively, a shadow item in a region on
the stack records the value of its plain counterpart in the region below. Let cmax

be the largest constant in the definition of T and Max = {0, 1, . . . , cmax ,∞}.
Here, ∞ is a symbolic value representing anything larger than cmax . A region
R is a tuple 〈w, k〉, consisting of a word w = r0r1 . . . rn ∈ (2Z×Max )+ and a
boundary position k : 0 ≤ k ≤ n, such that w satisfies the following conditions:
–

∑n
i=0 |ri ∩ (Γ ×Max )| = 1 and

∑n
i=0 |ri ∩ (Γ •×Max )| = 1. There is exactly

one occurrence of a stack symbol and one occurrence of a shadow stack
symbol.

–
∑n

i=0 |ri ∩ ({"} × Max )| = 1 and
∑n

i=0 |ri ∩ ({"•} × Max )| = 1. There is
exactly one occurrence of " and one occurrence of "•.

– For all clocks x ∈ X ,
∑n

i=0 |ri ∩ ({x} ×Max )| = 1 and
∑n

i=0 |ri ∩ ({x•} ×
Max )| = 1. Each plain clock symbol and shadow clock symbol occurs exactly
once.

– ri �= ∅ for all 1 ≤ i ≤ n. Only the first set may be empty.
The purpose of the boundary position is to separate the items with low frac-
tional parts from those with high fractional parts. For z ∈ Z, if 〈z,m〉 ∈ ri
for some (unique) m ∈ Max and i ∈ {0, . . . , n}, then let Val (R) (z) = m and
Index (R) (z) = i. Otherwise, define Val (R) (z) = ⊥ and Index (R) (z) = ⊥ (this
may only be the case for stack symbols). We defineR
 = {z ∈ Z | Index (R) (z) �=
⊥}. Note that the set of regions, w.r.t. fixed X , Γ and cmax , is finite. As an
example, the region R0 in Fig. 2 is the topmost region in the symbolic stack
representing the configuration γ0 in Fig. 1.

Next, we define a number of operations on regions that we need for the con-
struction of the symbolic automaton.

Satisfiability. Given an item z ∈ Z, an interval I ∈ I, and a region R such that
z ∈ R
, we write R |= (z ∈ I) if one of the following conditions holds:
– Index (R) (z) = 0, Val (R) (z) �= ∞ and Val (R) (z) ∈ I. If the fractional

part of z is 0, we test if the value of z is in I.
– Index (R) (z) > 0, Val (R) (z) �=∞ and (Val (R) (z) + v) ∈ I for all v ∈ R≥0

such that 0 < v < 1. If the fractional part of z is greater than 0, we test if its
integral part increased by any real number v : 0 < v < 1 is in the interval.

– Val (R) (z) =∞, and I is of the form (m :∞) or of the form [m :∞). If the
integral part of z is ∞, then the interval cannot have an upper bound.
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Adding and Removing Items. For a region R = 〈r0 . . . rn, k〉, an item z ∈ Z, and
m ∈ Max , we define R ⊕ 〈z,m〉 to be the set of regions R′ which satisfy one of
the following conditions:
– R′ = 〈r0 . . . ri−1(ri ∪ {〈z,m〉})ri+1 . . . rn, k〉, where 0 ≤ i ≤ n. The item is

added into an existing set, in which case k is unchanged.
– R′ = 〈r0 . . . ri{〈z,m〉}ri+1 . . . rn, k + 1〉, where 1 ≤ i ≤ k. The item is added

as a new singleton set to the left of k, in which case k is increased by 1.
– R′ = 〈k, r0 . . . ri{〈z,m〉}ri+1 . . . rn, k〉, where k ≤ i ≤ n. The item is added

as a new set to the right of k, which is left unchanged.
We defineR$z to be the regionR′ = 〈r0 · · · rj−1(rj \ ({z} ×Max ))rj+1 . . . rn, k

′〉,
where j is the unique value s.t. rj ∩ ({z} × Max ) �= ∅ and where k′ = k − 1 if
0 < j ≤ k and |rj | = 1, and k′ = k otherwise. In other words, we delete z from a
set, if it exists, and update k accordingly. We extend the definition of $ to sets of
items by letting R$ {z1 . . . zn} = (· · · ((R$ z1)$ z2) · · · )$ zn.

Resetting. For a region R = 〈r0 . . . rn, k〉 and an item z ∈ Z, we define R[z ← 0]
to be the unique region 〈(r′0 ∪ {〈z, 0〉})r′1 · · · r′n, k〉, where r′0r′1 · · · r′n = R$z. We
delete z from the region and reintroduce it with value 0. This operation is used
when we simulate the resetting of clocks.

Pushing New Regions. This operation is used to simulate the pushing of new
regions. It takes a region R and a stack symbol a ∈ Γ , and creates a new region
R′ in which the shadow items record the values of the plain items in R and
where the value of a is 0. We define New(R, a) to be the region R′ such that
there are R1, R2, R3 satisfying the following conditions (for example, in Fig. 2,
R2 = New(R1, a)):
– R1 = 〈r0 · · · rn1 , k〉 = R$ (R
 ∩ Y •). Delete all shadow items from R.
– R2 =

〈
r′0 . . . r

′
n1
, k

〉
, where r′i = ri ∪ {〈y•,m〉 | 〈y,m〉 ∈ ri} for 0 ≤ i ≤ n1.

Add fresh shadow items with the same values and the same indices as their
plain counterparts.

– R3 =
〈
r′′0 . . . r′′n2

, k
〉
= R2 $ (R
 ∩ Γ ). Delete the previous stack symbol.

– R′ =
〈
(r′′0 ∪ {〈a, 0〉})r′′1 . . . r′′n2

, k
〉
. Introduce a with value 0.

Passage of Time. Next, we describe operations that simulate the passage of
time. Given a pair 〈z,m〉 ∈ Z × Max , define 〈z,m〉⊕ = 〈z,m′〉, where m′ =
m + 1 if m < cmax , and m′ = ∞ otherwise. For a set r ∈ 2Z×Max , define
r⊕ = {〈z,m〉⊕ | 〈z,m〉 ∈ r}. In other words, we increase the integral part of
each item by 1, up to cmax . For a region R = 〈r0 . . . rn, k〉, define R⊕ = 〈w′, k′〉
in the following way:
– If r0 �= ∅, then w′ = ∅r0 . . . rn, and k′ = k + 1. A small amount of time

passes, which results in the first region being “pushed” out.
– If r0 = ∅ and k < n, then w′ = rn

⊕r1 . . . rn−1 and k′ = k. The items in
the last region reach their next integral value but the small fractional parts
remain small.

– If r0 = ∅ and k = n, then w′ = w and k′ = 0. All small fractional parts
become large, but no integral part changes.
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We denote by R⊕⊕ the set {R,R⊕, (R⊕)
⊕
, . . .}. Note that this set is finite. We

define R⊕� to be the region R′ such that there are R1 and R2 satisfying the
following conditions:
– R1 = R⊕$ ". We remove the item ".
– R2 ∈ R1⊕ (", 0) and R2 |= ("∈ [0..0]). We reintroduce " by placing it in the

leftmost set. Note that R2 is unique.
The operation R⊕� simulates passage of time while maintaining the value and
index of ". We define R⊕⊕� similarly to R⊕⊕. In Fig. 2, we have that R3 ∈ R2

⊕⊕.

Product. We now define the product operator % that merges the information in
two regions. This operation is used when simulating pop transitions. For regions
R1 = 〈w1, k1〉 and R2 = 〈w2, k2〉, we write R1 & R2 if there are i0 < i1 <
· · · < i	 ≤ |w1| and j0 < j1 < · · · < j	 ≤ |w2| such that: (1) i0 = j0 =
0, (2) {i1, . . . , i	} ⊆ Index (R1)

(
R
1 ∩ Y

)
⊆ {i0, i1, . . . , i	}, (3) {j1, . . . , j	} ⊆

Index (R2)
(
R2


 ∩ Y •
)
⊆ {j0, j1, . . . , j	}, (4) (R2


∩Y •) = {y• | y ∈ (R
1 ∩Y )},
and (5) for every h : 0 ≤ h ≤ � and y ∈ (R
1 ∩Y ), we have: (i) Index (R1) (y) = ih
iff Index (R2) (y

•) = jh, and (ii) jh ≤ k2 iff ih ≤ k1. In this case we say that R1

supports R2. Intuitively, this means that the shadow items in R2 match their
plain counterparts in R1 and that the information in the two regions can be
merged. In Fig. 2, we have that R′1 & R4. The matching is illustrated by dotted
lines.

Assume that R1 & R2, w1 = r0 . . . rn and w2 = r′0 . . . r
′
n′ . Let vh = rih+1

· · · rih+1−1, v′h = r′ih+1 · · · r′ih+1−1 for all h : 0 ≤ h < �, v	 = ri�+1 · · · rn,
and v′	 = r′i�+1 · · · r′n′ . Note that the sequences of indices i0, . . . i	 and j0, . . . , j	
are unique. We define ph = rih ∩ (Y • ∪ Γ ) and p′h = r′jh ∩ (X ∪ {"}) for all
h : 0 ≤ h ≤ �. We define q0 = p0 ∪ p′0 and, for 1 ≤ h ≤ �, define qh = ph ∪ p′h if
ph ∪ p′h �= ∅ and qh = ε otherwise. Then, w ∈ w1 %w2 if w = q0 ·w′0 · q1 · · · q	 ·w′	
and w′h ∈ (vh ⊗ v′h) for h : 0 ≤ h ≤ �. Intuitively, we take the clocks from w2,
and the shadow items and stack symbol from w1. For regions R1 = 〈w1, k1〉 and
R2 = 〈w2, k2〉, we have R = 〈w, k〉 ∈ R1 % R2 if w ∈ w1 % w2 and for all z ∈ Z,
the following conditions hold (in Fig. 2 we have R5 ∈ R′1 %R4):
– Index (R) (z) ≤ k iff Index (R1) (z) ≤ k1, for z ∈ Γ •∪X•∪Γ . The boundary

should be preserved for the shadow items and the stack symbol from R1.
– Index (R) (z) ≤ k iff Index (R2) (z) ≤ k2, for z ∈ X . The boundary should

be preserved for the clocks taken from R2.

7 Simulation

We will describe how, given a Ptpa T = (Q, qinit , Γ,X,Δ,Cost), one can con-
struct a priced pushdown automaton Ppa P = (QP , qPinit , Γ

P , ΔP
1 , Δ

P
2 ,Cost

P)
that simulates detailed computations in δ-form of T for arbitrarily small δ.

The states of P contain both the states of T , which are called genuine, and
a set of temporary states which are used as intermediate states to simulate
the transitions of T . More precisely, we use a set Qtmp of temporary states s.t.
Qtmp ∩Q = ∅. We write tmp(. . . ), tmp1(. . . ), tmp2(. . . ) and tmp3(. . . ) to denote
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unique elements of Qtmp, where the arguments are used to uniquely identify
elements of Qtmp. We also assume that qPinit �∈ Q and qPinit �∈ Qtmp. Then, Q

P is
defined as Q ∪Qtmp ∪ {qPinit}.

The stack alphabet ΓP of P is the set of regions over the stack alphabet
Γ ∪ {⊥}, the set of clocks X and the maximal constant cmax , where ⊥ �∈ Γ is a
special symbol that represents the bottom of the stack. Note that ΓP is finite. We
define CostP(⊥) = 0. The cost of a region R is defined as CostP(R) = Cost(a),
where a is the unique stack symbol s.t. R
 ∩ Γ = {a}.

Let winit = {〈z, 0〉 | z ∈ X ∪X• ∪ {","•}} ∪ {〈⊥, 0〉 , 〈⊥•, 0〉}. The symbolic
automaton starts in its initial configuration

〈
qPinit , ε

〉
and pushes the initial region

Rinit = 〈winit , 0〉 on the stack while moving to the initial state of T , i.e. ΔP
1

contains the rule
〈
qPinit , push(Rinit ), qinit

〉
. We define

CostP(
〈
qPinit , push(Rinit ), qinit

〉
) = 0.

Then, P starts the simulation of T . The transitions of T are simulated in the
following way (as an example, Fig. 2 shows the regions involved in the simulation
of Fig. 1):
– Nop. For every t = 〈q1, nop, q2〉 ∈ Δ, the set ΔP

1 contains t = 〈q1, nop, q2〉.
Define CostP(t) = Cost(t).

– Push. We need two temporary states to simulate this transition. First, we
move to a temporary state and pop the topmost region in order to re-
member its content. Then, we push back that region, moving to the sec-
ond temporary state. Finally, we push a new topmost region that we con-
struct using the remembered values. For every t = 〈q1, push(a), q2〉 ∈ Δ,
and every region R, the set ΔP

1 contains t1 = 〈q1, pop(R), tmp1(t, R)〉, t2 =
〈tmp1(t, R), push(R), tmp2(t, R)〉, and t3 = 〈tmp2(t, R), push(New(R, a)), q2〉.
We define CostP(t1) = 0, CostP(t2) = 0 and CostP (t3) = Cost(t).

– Pop. To simulate pop transitions, we use two temporary states. We first pop
the topmost region. The new topmost region then needs to be updated to
reflect the changes that occurred while it was inaccessible. To do this, we
rotate it until it matches the popped region. Then, we merge the information
in both regions. In this way, the information about changes “ripples” down
the stack as elements are popped. The effect of both these steps is captured
by popping the new topmost region and pushing a region which is a product
of the two popped regions. Formally, for every t = 〈q1, pop(a ∈ I), q2〉 ∈ Δ,
and all regions R1, R2 such that R2 |= a ∈ I, the set ΔP

1 contains t1 =
〈q1, pop(R2), tmp1(t, R2)〉 and t2 = 〈tmp1(t, R2), pop(R1), tmp2(t, R2, R1)〉.
Additionally, ΔP

1 contains tR3 = 〈tmp2(t, R2, R1), push(R3), q2〉 for all R3 ∈
{R′1 % R2 |R′1 ∈ R1

⊕⊕, R′1 & R2}. We define their costs as CostP(t1) = 0,
CostP(t2) = 0 and CostP(tR3) = Cost(t) for all the above R3. In Fig. 2, R5

is the result of popping R4 when R1 is the second topmost region.
– Test. We simulate a test transition with two transitions. First, we pop the

region if it satisfies the condition, while moving to a temporary state. Next,
we push the same region and move to the new genuine state. For every
t = 〈q1, test(x ∈ I), q2〉 ∈ Δ, and every region R such that R |= x ∈ I, the set
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Δ1 contains t1 = 〈q1, pop(R), tmp(t, R)〉 and t2 = 〈tmp(t, R), push(R), q2〉.
Define CostP(t1) = 0 and CostP(t2) = Cost(t).

– Reset. We simulate resetting x by popping the topmost region and push-
ing back a region which is identical, except that x is 0. For every t =
〈q1, reset(x), q2〉 ∈ Δ, and every region R, the set of ΔP

1 contains t1 =
〈q1, pop(R), tmp(t, R)〉 and t2 = 〈tmp(t, R), push(R[x← 0]), q2〉.

Define CostP(t1) = 0 and CostP(t2) = Cost(t).

– Timed Transitions. To simulate timed transitions, we pop the topmost re-
gion, rotate it, and push it back. Let R = 〈r0 . . . rn, k〉 be a region.
• If r0 �= ∅ (resp. r0 = ∅ and k < n), then we simulate a short timed
transition which makes the fractional part of all value positive (resp. the
highest fractional part 0). In this case, ΔP

1 contains

t1 = 〈q, pop(R), tmp1(time, q, R)〉 and

t2 =
〈
tmp1(time, q, R), push(R⊕� ), q

〉
.

We define CostP(t1) = CostP(t2) = 0.
• If r0 = ∅ and k = n, then we simulate a long timed transition. In this
case, ΔP

1 contains

t1 = 〈q, pop(R), tmp1(time, q, R)〉 and

t2 =
〈
tmp1(time, q, R), push(R⊕� ), tmp2(time, q, R)

〉
.

Define CostP(t1) = CostP (t2) = 0. Since the transition is long, we must
pay the stack cost. Therefore, ΔP

2 contains 〈tmp2(time, q, R), sc, q〉.

Correctness. Consider a detailed computation πT in δ-form of length n in T and
its simulation πP in P . We will give a bound on the difference in cost between
each step in πT compared to its corresponding steps in πP . The costs of the
discrete steps are identical. Now we consider timed transitions. If the timed
transition is short, its cost is bounded by δ multiplied by the stack cost at that
step, while the cost of the corresponding steps in πP is equal to 0. On the other
hand, if the timed transition is long, the cost is bounded by (1 − δ) multiplied
by the stack cost, while the cost of the corresponding steps is exactly equal to
the stack cost. Consequently, the difference is always bounded by δ multiplied
by the stack cost. Since the stack cost is bounded by the length of the stack
multiplied by the cost of the most expensive symbol, and since the length of
the stack is bounded by n, the difference in price at each step is bounded by
δ · |πT | · max{Cost(a) | a ∈ Γ}. This implies that the total difference in cost
between πT and πP is bounded by δ · |πT |2 · max{Cost(a) | a ∈ Γ}. This gives
the following lemma:

Lemma 7. ∀δ : 0 < δ < 1
10 and ∀πT . πT ∈ Compd

δ (T , q), ∃πP . πP ∈ Comp(P , q)
s.t. |CostP(πP )− Cost(πT )| ≤ δ · |πT |2 ·max{Cost(a) | a ∈ Γ}.
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The other direction can be explained in a similar manner:

Lemma 8. ∀πP . πP ∈ Comp(P , q), and ∀δ : 0 < δ < 1
10 , ∃πT . πT ∈ Compd

δ (T , q)
s.t. |CostP(πP )− Cost(πT )| ≤ δ · |πT |2 ·max{Cost(a) | a ∈ Γ}.
We now combine Lemma 2, Lemma 4, and Lemmas 8 and 7 to prove the
following:

Theorem 9. Costopt (T , q) = Costopt (P , q) for any state q ∈ Q.

Thus, the cost-optimal reachability problem for Ptpa reduces to the same prob-
lem for Ppa, which is computable by Lemma 6. This concludes the proof of
Theorem 1.

8 Conclusion

We have studied the cost-optimal reachability problem for priced dense-timed
pushdown automata, and shown that this problem can be reduced to the same
problem for priced (untimed) pushdown automata, which in turn can be reduced
to the reachability problem for ordinary pushdown automata. This yields an
algorithm for computing the optimal reachability cost for Ptpa. To simplify the
exposition, we assumed that push (resp. reset) operations result in the stack
symbol having age (resp. affected clock having value) 0. The model still strictly
subsumes that of [1] (we can encode the intervals in the stack symbols).

A simple generalization is to make the stack symbol storage cost dependent on
the current control-state. Our construction can be trivially extended to handle
this case. (We need to consider a similar extension for the priced pushdown
automata.)

A challenging problem which we are currently considering is to extend our
results to the case of negative costs.
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Abstract. Polyominoes are edge-connected sets of cells on the square
lattice Z2. We investigate polyominoes on a square lattice embedded on
so-called twisted cylinders of a bounded width (perimeter) w. We prove
that the limit growth rate of polyominoes of the latter type approaches
that of polyominoes of the former type, as w tends to infinity. We also
prove that for any fixed value of w, the formula enumerating polyomi-
noes on a twisted cylinder of width w satisfies a linear recurrence whose
complexity grows exponentially with w. By building the finite automaton
that “grows” polyominoes on the twisted cylinder, we obtain the prefix
of the sequence enumerating these polyominoes. Then, we recover the
recurrence formula by using the Berlekamp-Massey algorithm.

Keywords: Recurrence formula, transfer matrix, generating function.

1 Introduction

Polyominoes (also known as lattice animals) of size n are edge-connected sets of
n cells on the orthogonal lattice Z2. Fixed polyominoes are considered distinct if
they differ in their shapes or orientations. The number of fixed polyominoes of
size n is usually denoted in the literature by A(n). There are two long-standing
open problems related to the study of polyominoes.

1. The enumeration of polyominoes, that is, finding a formula for A(n) or com-
puting A(n) for specific values of n; and

2. Computing limn→∞A(n+ 1)/A(n), the asymptotic growth rate of polyomi-
noes (also called “Klarner’s constant”).

A.-H. Dediu et al. (Eds.): LATA 2014, LNCS 8370, pp. 76–87, 2014.
c© Springer International Publishing Switzerland 2014



Formulae for Polyominoes on Twisted Cylinders 77

To date, no analytic formula is known for A(n). The best currently-known
method (in terms of running time) for counting fixed polyominoes is a transfer-
matrix algorithm suggested by Jensen [6]. In a parallel version of this algorithm,
Jensen was able to compute A(n) up to n = 56 [7]. In a seminal work, Klarner [8]
showed that the limit λ := limn→∞

n
√

A(n) exists. Only three decades later did
Madras [10] show that the limit limn→∞ A(n+1)/A(n) exists and, hence, is equal
to λ. At the present time not even a single significant decimal digit of λ is known.
The best-known lower [3] and upper [9] bounds on λ are 3.9801 and 4.6496,
respectively. It is generally assumed (see, e.g., [5]), as a conclusion from numerical
methods applied to the known values of A(n), that λ = 4.06± 0.02. Jensen [7]
refined this analysis, estimating λ at 4.0625696± 0.0000005.

The notion of polyominoes on a twisted cylinder was introduced in [3]. For a
fixed natural number w, the twisted cylinder of width1 w is the surface obtained
from the Euclidean plane by identifying all pairs of points of the form (x, y),
(x − kw, y + k), for k ∈ Z. Pictorially, we can imagine this as taking the strip
[0, w]× R and gluing, for all y, (w, y) with (0, y + 1) (see Figure 1(a)).

3
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{1, 3, 4, 5, 7, 8, 9, 12, 13} 4 5 7 8 91 12 133

(a) Cylinder (b) Polyomino (c) Subgraph of the host graph

Fig. 1. A polyomino on the twisted cylinder of width 3

A polyomino on the twisted cylinder is a finite edge-connected set of unit
integer cells on this cylinder. Two polyominoes obtained from each other by
translation are considered identical. In order to have a unique representation,
we shall assume without loss of generality that the cell [0, 1]×[0, 1] is the leftmost
cell belonging to all polyominoes. We shall label this cell by 1, and all other cells
on the cylinder will lie on the right of 1 so that the cell i will be the right
neighbor of the cell i − 1. Therefore, the twisted cylinder of width w may be
seen as a host graph (dual of the lattice graph) whose vertices are labeled by
N, and there is an edge {i, j} if |i − j| = 1 (a horizontal edge) or |i − j| = w
(a vertical edge). Alternatively, we have a half-infinite circulant graph with ℵ0
vertices, in which each vertex i ∈ N is connected to vertices i±1 and i±w (unless
the attempted connection is to a non-natural number). In this interpretation,
a polyomino P may be regarded as a finite subset of N such that 1 ∈ P and
the corresponding induced subgraph (in the mentioned-above host graph) is
connected. Figures 1(b,c) show a sample polyomino on the twisted cylinder of
width 3.

1 The term ‘width,’ and not ‘perimeter,’ is used for consistency with [6] and [3].
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Let Aw(n) denote the number of polyominoes on the twisted cylinder of width
w up to translation. It is easy to observe [3] that for n > w, we have Aw(n) <
A(n). This follows from the fact that one can embed any polyomino on a twisted
cylinder in the regular plane, but the opposite operation is not always possible
due to self-overlaps of the polyominoes. Furthermore, it is also true [ibid.] that for
any fixed value of w, the limit λw := limn→∞Aw(n+1)/Aw(n) exists. Moreover,
we also have λ1 ≤ λ2 ≤ λ3 ≤ · · · . It was conjectured in [3] that this sequence
converges to λ, a claim which we prove in this paper.

It is proven in [3] that λw is the only positive eigenvalue of a huge matrix (the
size of each of which dimensions is proportional to the wth Motzkin number), and
much effort is spent in that work on computing numerically this eigenvalue for
as large as possible value of w. The currently best lower bound on λ is achieved
by computing λ22 ≈ 3.9801. Since limw→∞ λw = λ, we believe that finding
explicit formulae for the numbers of polyominoes on twisted cylinders of different
widths, and understanding the relations between these formulae, will shed light
on the real value of λ. In the current paper we investigate the values known
of this sequence, and find, by using numerical methods, that it converges to
roughly 4.068. This supports the common belief [5] that λ is approximately 4.06,
which, as mentioned above, is based on a completely different method.

It is easy to show that A2(n) = 2n−1. This follows immediately from observing
the possible edges connecting cells of a polyomino in the host graph. Order the
cells according to their ordinal numbers on the cylinder. Then, a cell must be
connected to the next cell (according to this order) by either a horizontal edge
(if the difference between them is 1) or a vertical edge (if the difference is 2).
Since the cylinder is narrow, no “spiraling” is possible.

In this work we obtain enumeration results for polyominoes on twisted cylin-
ders by building finite automata that describe the “growth” of polyominoes on
these cylinders, computing their transfer matrices (similarly to [3]), and obtain-
ing from these matrices the generating functions and the recurrence formulae
for the number of polyominoes. This method can be generalized to any width.
This gives rise to our main result, namely, that the formula enumerating poly-
ominoes on any twisted cylinder obeys a linear recurrence. In practice, the size
of the involved matrix increases exponentially (as do Motzkin numbers), and so,
the amount of computations, as well as the orders of the computed formulae,
becomes prohibitively large (at least, with respect to the computing resources
available to us) for width greater than 10.

2 Convergence of Growth Rates

We begin this paper by proving a conjecture made in [3, p. 32], namely, that
the asymptotic growth rate of polyominoes on a twisted cylinder of width w
approaches that of polyominoes in the plane, as w tends to infinity.
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Theorem 1. limw→∞ λw = λ.

Proof. By Madras [10] we know that

λ = lim
n→∞

A(n+ 1)/A(n) = lim
n→∞

n
√

A(n),

and that a similar property holds for a twisted cylinder of any width w, that is,

λw = lim
n→∞

Aw(n+ 1)/Aw(n) = lim
n→∞

n
√

Aw(n).

By Barequet et al. [3] we also know that

λ1 ≤ λ2 ≤ · · · ≤ λ,

thus, the limit λ∗ = limw→∞ λw exists and we also have λ∗ ≤ λ. Our goal is to
prove that λ∗ = λ. We will prove this by showing that for any ε > 0 there exists
wε such that λwε ≥ λ− ε.

Since λ = limn→∞
n
√

A(n), for any ε > 0 there exists n0 = n0(ε) such that

for all n ≥ n0 we have n
√

A(n) ≥ λ − ε, in particular, n0

√
A(n0) ≥ λ − ε.

Consider the twisted cylinder of width n0. For any k ≤ n0, we obviously have that
An0(k) = A(k), since the twist of the cylinder has no effect on polyominoes whose
size is smaller than the width of the cylinder. In addition, we argue that there
exists an infinite monotone increasing subsequence of ( k

√
An0(k)), for k ≥ n0.

2

This follows immediately from a standard polyomino-concatenation argument.
As in the plane, we always have, for any w, that Aw(n)Aw(m) ≤ Aw(n+m). By
fixing w = n0 and m = n we obtain that A2

n0
(n) ≤ An0(2n), that is,

n
√

An0(n) ≤
2n
√

An0(2n). Thus, (
2in0

√
An0(2

in0)) (for i ≥ 0) is an appropriate subsequence.
Since the original sequence converges, so does its subsequence, and since the
latter is monotone increasing, it lies entirely below its limit. Therefore,

λn0 = lim
n→∞

n
√

An0(n) ≥ n0
√

An0(n0) =
n0
√

A(n0) ≥ λ− ε,

hence, choosing wε = n0 completes the proof.

2 A similar claim for polyominoes in the plane is a well-known folklore lemma. In fact,
one can prove a slightly stronger claim, that the entire sequence is found below its
limit. However, although it is widely believed that the entire sequence in monotone
increasing, no proof for this is currently known.
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To date, the growth rates
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Fig. 2. A plot of λw as a function of w

λw were published [3] up to
w = 22. Five more values
(up to w = 27) were recently
computed using a supercom-
puter. Specifically, (λw)

27
w=1

= (1, 2, 2.65897, 3.06090,
3.31410, 3.48094, 3.59606,
3.67875, 3.74022, 3.78724,
3.82409, 3.85355, 3.87752,
3.89732, 3.91388, 3.92790,
3.93988, 3.95021, 3.95920,
3.96706, 3.97399, 3.98014,
3.98562, 3.99052, 3.99494,
3.99893, 4.00254). Figure 2
plots λw as a function of w.

We attempted to estimate the limit of (λw) using three methods. First, we
represented λw as a solution to a linear-programming problem. Assuming that
λw has a 1/w-expansion, we approximated it by the sum of the twenty leading

terms of this expansion, that is, λw ∼ f(w) =
∑19

i=0 ci/w
i. The linear system

included the constraints f(w) ≤ λw + ε and f(w) ≥ λw − ε, for 4 ≤ w ≤ 27. We
excluded w = 1, 2, 3 since when trimming the expansion, the smaller w is, the
larger the error introduced to the value of the function is. (This is in conjunction
with the fact that we trimmed the values of λw after the 5th or 6th digit after the
decimal point.) The target function was simply ε, and the goal was to minimize
it. Using Mathematica, we found that c0 (the free term in the 1/w-expansion)
was about 4.06714. The other coefficients were c1 ≈ −0.848309, c2 ≈ −27.9819,
c3 ≈ 116.155, c4 ≈ −405.076, c5 ≈ 1023.27, c6 ≈ −1135.33, and ci = 0 for
7 ≤ i ≤ 19. The obtained error was ε ≈ 6.49 · 10−6.

Second, we computed the vector x̄ that solves the linear least-squares problem
for the matrix equation B · x̄ = b̄, where Bi,j = 1/ij and bi = λi (taking, again,
4 ≤ i ≤ 27 and, this time, 0 ≤ j ≤ 6). Using Mathematica, we found that x̄0 was
about 4.06727. The other values xi, for 1 ≤ i ≤ 6, were approximately−0.856246,
−27.7995, 114.068, −392.374, 984.007, and −1087.02, which compares well with
c1 through c6 from the previous method. These two methods strongly support
the widely-believed [5,7] estimate of λ at 4.06± 0.02.

Third, Wynn’s epsilon algorithm [14] yielded 4.04161 as the estimated limit
of the sequence (omitting the first two terms), which is still quite close to the
anticipated value. Figure 3 shows the three Mathematica programs used above.

3 Transfer Matrix

Our method for enumerating polyominoes on a twisted cylinder is based on
showing that there is a bijection between the set of all these polyominoes and
a regular language, and on computing the generating function that enumerates
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NMinimize[{eps,

c0+c1/4^1+c2/4^2+c3/4^3+c4/4^4+c5/4^5+c6/4^6+c7/4^7+c8/4^8+c9/4^9+c

10/4^10+c11/4^11+c12/4^12+c13/4^13+c14/4^14+c15/4^15+c16/4^16+c17/4^17

+c18/4^18+c19/4^19+c20/4^20 <= 3.060901+eps &&

c0+c1/4^1+c2/4^2+c3/4^3+c4/4^4+c5/4^5+c6/4^6+c7/4^7+c8/4^8+c9/4^9+c

10/4^10+c11/4^11+c12/4^12+c13/4^13+c14/4^14+c15/4^15+c16/4^16+c17/4^17

+c18/4^18+c19/4^19+c20/4^20 >= 3.060901-eps &&

(* ... similarly, two constraints for each value of w ... *)

c0+c1*1/27+c2/27^2+c3/27^3+c4/27^4+c5/27^5+c6/27^6+c7/27^7+c8/27^8+

c9/27^9+c10/27^10+c11/27^11+c12/27^12+c13/27^13+c14/27^14+c15/27^15+c1

6/27^16+c17/27^17+c18/27^18+c19/27^19+c20/27^20 <= 4.00254+eps &&

c0+c1*1/27+c2/27^2+c3/27^3+c4/27^4+c5/27^5+c6/27^6+c7/27^7+c8/27^8+

c9/27^9+c10/27^10+c11/27^11+c12/27^12+c13/27^13+c14/27^14+c15/27^15+c1

6/27^16+c17/27^17+c 18/27^18+c19/27^19+c20/27^20 >= 4.00254-eps},

{c0,c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14,c15,c16,c17,c18,

c19,c20,eps}]

(a) Linear programming (result: 4.06714)

LeastSquares[{

{1/4^0,1/4^1,1/4^2,1/4^3,1/4^4,1/4^5,1/4^6},

{1/5^0,1/5^1,1/5^2,1/5^3,1/5^4,1/5^5,1/5^6},

{1/6^0,1/6^1,1/6^2,1/6^3,1/6^4,1/6^5,1/6^6},

{1/7^0,1/7^1,1/7^2,1/7^3,1/7^4,1/7^5,1/7^6},

{1/8^0,1/8^1,1/8^2,1/8^3,1/8^4,1/8^5,1/8^6},

{1/9^0,1/9^1,1/9^2,1/9^3,1/9^4,1/9^5,1/9^6},

(* ... lines of the form

{1/w^0,1/w^1,1/w^2,1/w^3,1/w^4,1/w^5,1/w^6},

for each value of w ... *)

{1/23^0,1/23^1,1/23^2,1/23^3,1/23^4,1/23^5,1/23^6},

{1/24^0,1/24^1,1/24^2,1/24^3,1/24^4,1/24^5,1/24^6},

{1/25^0,1/25^1,1/25^2,1/25^3,1/25^4,1/25^5,1/25^6},

{1/26^0,1/26^1,1/26^2,1/26^3,1/26^4,1/26^5,1/26^6},

{1/27^0,1/27^1,1/27^2,1/27^3,1/27^4,1/27^5,1/27^6}},

{3.060901, 3.314100, 3.480943, 3.596055, 3.678749, 3.740221,

3.787243, 3.824087, 3.853548, 3.877519, 3.897317, 3.913880, 3.92790,

3.93988, 3.95021, 3.95920, 3.96706, 3.97399, 3.98014, 3.98562,

3.99052, 3.99494, 3.99893, 4.00254}]

(b) Least squares (result: 4.06727)

SequenceLimit[{2.658967, 3.060901, 3.314100, 3.480943, 3.596055,

3.678749, 3.740221, 3.787243, 3.824087, 3.853548, 3.877519,

3.897317, 3.913880, 3.92790, 3.93988, 3.95021, 3.95920, 3.96706,

3.97399, 3.98014, 3.98562, 3.99052, 3.99494, 3.99893, 4.00254

}]

(c) Wynn’s epsilon algorithm (result: 4.04161)

Fig. 3. Mathematica programs used for estimating the limit of (λw)
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words in this language. To this aim, we use the transfer matrix that encodes the
growth of polyominoes on the twisted cylinder of width w.3

The first cell of the twisted cylinder is always “occupied.” Then, the next cell
is made either “occupied” or “empty,” and the process continues ad infinitum.
The signature of a polyomino P characterizes to which connected components
the lastw cells of P on the cylinder (the “boundary” of P ) belong. (The signature
encodes both occupied and empty cells.) Obviously, polyominoes with more than
one connected component are invalid, but they can become valid later if enough
cells are added so as to make the entire polyomino connected. The addition
of an empty (resp., occupied) cell to a (possibly disconnected) polyomino P of
size n and with a signature q results in a polyomino of size n (resp., n+1) with
signature q′ (resp., q′′). The key idea is that one does not need to keep in memory
all possible polyominoes, but only all possible signatures. The identity of q, and
whether the new cell is empty or occupied, determines unambiguously the size
and signature of the new polyomino. This is precisely the information encoded
in the transfer matrix. The reader is referred to [3,6,7] for the full details of
this method, and, in particular, how signatures encode the possible boundaries,
and how to set the transfer rules (between signatures) that define the respective
automaton. In what follows we provide a brief description of this automaton, and
focus on how to compute from it the function that enumerates the polyominoes.

The transfer matrix encodes a finite automaton defined as follows. The states
of the automaton are all possible signatures. The initial state corresponds to the
signature that encodes w empty cells. Each state has up to w outgoing edges,
labeled ‘0’ through ‘w−1’. Being at state q, and upon reading the input character
k (for 0 ≤ k < w), the automaton switches to the new state q′ that corresponds
to concatenating to a polyomino with signature q an occupied cell and then k
more empty cells. (Naturally, concatenating w empty cells to any polyomino P
will “terminate” it since then any further occupied cells will be disconnected
from P .) This guarantees that a sequence of n input characters will correspond
to a polyomino of size precisely n. The only accepting state of the automaton, qa,
corresponds to the signature ‘100. . . 0’ that encodes an occupied cell followed by
w−1 empty cells. (Any valid polyomino can be “normalized” by concatenating to
it empty cells as needed.) The connectedness of polyominoes with the signature
that corresponds to qa is guaranteed by the edges of the automaton. Any edge,
that manifests the split of the polyomino into components that can never be
connected again, leads to a “dead-end” state. Our goal is, thus, to count all
words over the alphabet {0,1,. . . ,w − 1} that are recognized by the automaton,
that is, correspond to valid (connected) polyominoes.

Figure 4(a) shows the automaton that describes the growth of polyominoes
on the twisted cylinder of width 3. States are named according to the notation
used for signatures in [3,6,7]. For simplicity of presentation, the original initial
state ‘000’ was “united” with the accepting state ‘100’. (The original initial

3 Jensen [6] invented this method in order to count polyominoes on regular (non-
twisted) cylinders, and his implementation did not actually use the matrix per se.
He used a system of “transfer rules” and did not look for any enumerating formula.
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state—the empty polyomino—had no incoming edges and had the same outgoing
edges as the state ‘100’.) In addition, the “dead end” state, as well as the edges
leading to this state, were omitted from the figure.

We now follow closely the method described by Stanley [13, §4.7]. The transfer
matrix B that describes this automaton is of size k×k, where k is the number of
different signatures. In fact, k+1 is equal to the (w+1)st Motzkin number [2,3].
The entry Bij contains the number of edges leading from state qi to state qj . (In
our case, entries can only be 0 or 1.) Denote by fi(x) the generating function for
the number of words accepted by the automaton if qi is the initial state, and by
f(x) the vector of all these generating functions. Since the number of accepting
paths of length n starting at qi is identical to the number of accepting paths
of length n − 1 starting at states reachable from qi by one step, we have the
relation fi =

∑
j Bijxfj + δi, where δi = 1 if qi = qa and 0 otherwise. Therefore,

we have f = xBf + v (xB = Bx since this is a commutative ring), where v
is a binary vector containing 1 in the entries corresponding to accepting states
and 0 elsewhere. By solving for f , we obtain that f = (I − xB)−1v. Our case is
simple in the sense that we have only one accepting state that is also identical to
the initial state. By using Cramer’s rule, one can easily see that the generating
function of qa is given by det(C)/ det(M), where M = I−xB and C is obtained
from M by erasing the row and column corresponding to qa. (In general, one has
to erase the row corresponding to the initial state and the column corresponding
to the accepting state.)

Figure 4(b) shows the transfer matrix that corresponds to the growth of poly-
ominoes on the twisted cylinder of width 3. The described method yields the gen-
erating function (x3+x2+x−1)/(2x3+x2+2x−1), which implies immediately [13,
p. 202, Th. 4.1.1]4 that the recurrence formula is an = 2an−1 + an−2 + 2an−3.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0
1 1 0 0 0 0 0 1
1 0 1 0 0 1 0 0
1 0 1 0 0 1 0 0
1 0 1 0 0 0 1 0
1 0 1 0 0 0 1 0
1 0 1 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(a) Automaton (b) Transfer matrix

Fig. 4. An automaton implementing the building of polyominoes on the twisted cylin-
der of width 3, and the corresponding transfer matrix

4 The cited theorem says that the recurrence is manifested in the denominator of
the generating function. Actually, the recurrence can be obtained directly from the
transfer matrix (once its minimal polynomial is known), but we find it beneficial to
also have the generating function at hand.
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An important implication of the fact that a transfer matrix (that is, a finite
automaton) controls the growth of polyominoes on a twisted cylinder of any
width is the following theorem.

Theorem 2. For any w ≥ 2, Aw(n) satisfies a linear recurrence. �
We next report our results for twisted cylinders of widths up to 10.

3.1 Using a Generating Function

First, we applied the method described above, namely, computing the generating
function and deriving from it the recurrence formula. This allowed us to com-
pute the linear recurrences for w = 4, 5, 6. (This method exceeded our available
computing resources for higher values of w.) As the meaning of an should be
understood from the context, we omit w from the notation of the recurrence.

For width 4, the obtained generating function is

x7 − 4x6 + 2x5 − 3x3 + 5x2 − 4x+ 1

2x7 − 6x6 + 2x5 + 2x4 − 7x3 + 8x2 − 5x+ 1
,

and the minimal linear recurrence is

an = 5an−1 − 8an−2 + 7an−3 − 2an−4 − 2an−5 + 6an−6 − 2an−7,

with a1 = 1, a2 = 2, a3 = 6, a4 = 19, a5 = 59, a6 = 181, and a7 = 555. The
growth rate (solution of the characteristic equation) is λ4 = 3.0609 . . ..

For width 5, the generating function is found to be (x18+x17+7x16− 3x15−
17x14− 13x13 +13x12 + 8x11− 10x10− 12x9− 10x8− 16x7 +3x6 − 2x4 +5x3 −
x2−3x+1)/(2x18+14x16−x15−23x14−22x13+16x12+14x11−10x10−18x9−
9x8 − 25x7 − x6 − 5x4 + 6x3 + x2 − 4x+ 1). The minimal linear recurrence is

an = 4an−1 − an−2 − 6an−3 + 5an−4 + an−6 + 25an−7 + 9an−8 + 18an−9

+ 10an−10 − 14an−11 − 16an−12 + 22an−13 + 23an−14 + an−15

− 14an−16 − 2an−18,

with a1 = 1, a2 = 2, a3 = 6, a4 = 19, a5 = 63, a6 = 211, a7 = 707, a8 =
2360, a9 = 7853, a10 = 26070, a11 = 86434, a12 = 286416, a13 = 948991,
a14 = 3144464, a15 = 10419886, a16 = 34530671, a17 = 114435963, and a18 =
379251561. The growth rate is λ5 = 3.3141 . . ..

For width 6, the computed generating function was (x48− 6x47+ · · ·+17x2−
7x+1)/(2x48−9x47+ · · ·−8x+1). The minimal linear recurrence (of degree 48)
and its initial values can be found in [1]. The growth rate is λ6 = 3.4809 . . ..

3.2 Using the Berlekamp-Massey Algorithm

The procedure described above broke down at w = 7 due to an explosion in the
running time needed to compute the minimal polynomial of the huge transfer
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matrix. Hence, we attempted to compute the linear recurrence directly from the
sequence of numbers of polyominoes obtained by running the automaton.

Our first attempt was to feed enough values of the sequence to the Math-
ematica command FindLinearRecurrence, running this package on a virtual
machine having four vCPU of total 10.1 GHz and 8 GB of RAM, hosted on a
PowerEdge R710. As a testcase, we computed again the linear recurrence for the
number of polyominoes on the twisted cylinder of width 6. This computation re-
quired about 1.5 seconds. Repeating the procedure for width 7, it took about 11
minutes to obtain a linear recurrence with 121 terms, whose largest coefficient
in absolute value was about 8.74 · 107 (27 bits). The recurrence is found in [1].

Mathematica was unable to compute the linear recurrence for width 8, so we
turned to another idea. Massey [11] used an algorithm of Berlekamp in order
to find the shortest linear recurrence that satisfies a sequence of elements from
a field. Reeds and Sloane [12] generalized this method to the case in which the
elements of the sequence are integers modulo an arbitrary number whose prime
factorization is known. Observing that a recurrence remains the same if it is
taken modulo some big-enough number N , we followed the same strategy. First,
we computed the leading values of the sequence modulo a few prime numbers
p1 = 2, p2 = 3, p3 = 5, . . . , pk and obtained “modulo sequences” s1, s2, s3, . . . , sk.
Second, we computed, using the Berlekamp-Massey algorithm, the respective
linear recurrence formulae r1, . . . , rk of the sequences s1, . . . , sk. Finally, using
the Chinese remainder theorem, we recovered the original recurrence formula
from the recurrences r1, . . . , rk.

We only needed to take care that N =

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 4  5  6  7  8  9  10

10
^6

 *
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Fig. 5. A plot of ln lnL(w) as a
function of w

Πk
i=1pi > 2L, where L = L(w) is the

largest absolute value of a coefficient of
the original recurrence, in order to guar-
antee that the latter was recovered cor-
rectly. Indeed, this condition implies that
the original non-negative coefficients are
recovered correctly in the range [0, N/2],
while the negative coefficients are recov-
ered uniquely in the range (N/2, N ]. A
priori we had no clue about the value of
L. From a plot of the values of ln lnL(w)
as a function of w, for 4 ≤ w ≤ 10 (see
Figure 5), it seems that L(w) grows in a doubly-exponential manner with respect
to w. A well-known approximation of the primorial pn# =

∏n
k=1 pk (the product

of the first n prime numbers) is e(1+o(1))(n lnn). Hence, O(lnL(w)/ ln lnL(w)) =
O(ew/w) prime numbers should be sufficient for our purpose. In practice, at least
for small values of w, less than ew/w primes are needed. Thus, we started with
a nominal number of primes, and whenever the procedure failed, we doubled the
number of primes and repeated the procedure. Checking whether the procedure
succeeded was performed simply by comparing values produced by the recovered
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recurrence to the values computed by the automaton, for as many more values
as the number of values needed to initialize the recurrence.

If a sequence s satisfies a recurrence R, then the sequence, obtained from s
by taking all values modulo a prime p, satisfies the recurrence obtained from R
by taking all coefficients modulo p. If we repeat this process for enough prime
numbers, the original recurrence can be recovered uniquely since all primes are
obviously coprime. This is readily done by using the Chinese remainder theorem,
recovering each coefficient independently. In case a recovered coefficient exceeds
N/2, we simply subtract N from it to obtain the correct value.

Given the sequence (with original values taken modulo p), computing the
linear recurrence formula (modulo p) was performed by a C++ program running
Massey’s algorithm. Currently, we use a simple O(n2)-time implementation of
it (where n is the complexity of the recurrence), while the best known upper
bound is currently O(n log2 n) [4]. The code for recovering the original recurrence
formula from all the modulo recurrences was written in Python, which has a
built-in capability of handling big numbers.

These two programs were run on a home laptop with a 2.2 GHz processor
and 3 GB of main memory. The computation time of the entire procedure for
cylinders of up to width 8 was negligible. For width 8, the obtained recurrence
included 315 terms, and the largest coefficient in absolute value was about 5.48 ·
1019 (66 bits). For width 9, the computation time was about 20 seconds. The
obtained recurrence included 826 terms, and the largest coefficient was about
5.18 · 1051 (172 bits). The computation of the linear recurrence for the number
of polyominoes on a twisted cylinder of size 10 required about 5 minutes, and
the obtained recurrence included 2168 terms, with the largest coefficient being
about 6.39 ·10129 (432 bits). The recurrences for widths 8–10 can be found in [1].

Note that the complexities of the recurrence formulae for twisted cylinders of
widths 1–10, that is, 1, 1, 3, 7, 18, 48, 121, 315, 826, 2168, are almost identical to
the 2nd through 11th Motzkin numbers, namely, 1, 2, 4, 9, 21, 51, 127, 323, 835,
2188. This is due to the fact that the respective automata have that many
essentially-different states [3], hence, these are the sizes of the corresponding
transfer matrices whose minimal polynomials are computed.

4 Conclusion

In this paper we studied the formulae that enumerate fixed polyominoes on
twisted cylinders. First, we proved that as w, the width of the cylinder, tends to
infinity, λw, the growth rate of polyominoes on these cylinders, approaches λ (the
growth rate of polyominoes in the plane). By numerical methods we found that
the limit of the sequence (λw) is roughly 4.06, supporting the common belief.
Then, we analyzed the formula enumerating polyominoes on a twisted cylinder
by manipulation the transfer matrix that describes the finite automaton that
models the growth of the polyominoes. A direct consequence of this method is
that the function enumerating polyominoes on a twisted cylinder of any width
w satisfies a linear recurrence. We recovered these recurrences for up to w = 10.
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We believe that further investigation of formulae enumerating polyominoes on
twisted cylinders may shed more light on the elusive formula for the number of
polyominoes in the plane.

Problems for further research include:

– Obtain recurrence formulae for cylinders of width larger than 10.
– Find the rule governing the development of the recurrence formulae.
– Investigate how fast the sequence (λw) converges to λ.

References

1. Barequet, G.: Recurrence data for polyominoes on twisted cylinders,
http://www.cs.technion.ac.il/~barequet/twisted/

2. Barequet, G., Moffie, M.: On the complexity of Jensen’s algorithm for counting
fixed polyominoes. J. Discrete Algorithms 5, 348–355 (2007)
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Abstract. A two-dimensional code is defined as a set X ⊆ Σ∗∗ such
that any picture over Σ is tilable in at most one way with pictures in X.
The codicity problem is in general undecidable. Very recently in [4] prefix
picture codes were introduced as a decidable subclass that generalizes
prefix string codes. Finite deciphering delay sets are an interesting class
of string codes that coincide with prefix codes in the case of delay equal to
0. An analogous notion is introduced for picture codes and it is proved
that they correspond to a bigger class of decidable picture codes that
includes interesting examples and special cases.

Keywords: Two-dimensional languages, codes.

1 Introduction

In the theoretical study of formal languages, string codes have been always a
relevant subject of research also because of their applications to practical prob-
lems. Theoretical results on string codes are related to combinatorics on words,
automata theory and semigroup theory. We refer to [8] for complete references.
Extensions of classical strings to two dimensions can be done in several ways: in
general they bring to the definition of polyominoes, labeled polyominoes, as well
as rectangular labeled polyominoes usually referred to as pictures. On the other
hand, the notion of codes can be intuitively and naturally transposed to two di-
mensional objects by exploiting the notion of unique tiling decomposition. A set
C of polyominoes is a code if every polyomino that is tilable with (copies of) ele-
ments of C, it is so in a unique way. Unfortunately, most of the published results
show that in the 2D context we loose important properties. In [7] D. Beauquier
and M. Nivat proved that the problem whether a finite set of polyominoes is a
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code is undecidable, and that the same result holds also for dominoes. Codes
of other variants of polyominoes including bricks (i.e. labelled polyominoes) and
pictures are also studied in [1,9,13,14,16] and further undecidability results are
proved.

It is worthwhile to remark that all mentioned results consider 2D codes inde-
pendently from a 2D formal language theory.

Very recently, in [4], a new definition for picture codes was introduced in con-
nection with the family REC of picture languages recognized by finite tiling sys-
tems. Remark that finite tiling systems generalize to two dimensions finite state
automata for strings and that family REC is considered as the two-dimensional
counterpart of regular string languages (see [12]). In [4] codes are defined by
using the formal operation of tiling star as defined in [17]: the tiling star of a
set X is the set X∗∗ of all pictures that are tilable (in the polyominoes style) by
elements of X . Then X is a code if any picture in X∗∗ is tilable in a unique way.
Remark that if X ∈ REC then X∗∗ is also in REC. By analogy to the string case,
it holds that if X is a finite picture code then, starting from pictures in X we
can construct an unambiguous tiling system for X∗∗ (see [5] for the definition).
Unfortunately, despite this nice connection to the string code theory, it is proved
that it is still undecidable whether a given set of pictures is a code. This is ac-
tually coherent with the known result of undecidability for unambiguity inside
the family REC.

An important and easy-to-construct class of string codes are prefix codes.
Recall that a set S of words is called prefix if inside S no word is (left-)prefix
of another one. It holds that any prefix set of words is also a code, referred to
as a prefix code. Moreover prefix codes have the property that any string can
be decoded on-time: while reading the string from left-to-right, always only one
element in S matches the input.

Looking for decidable subclasses of picture codes, in [4] it is proposed a defi-
nition of prefix code for pictures. Pictures are then considered with a preferred
scanning direction: from top-left corner towards the bottom-right one. Then a
picture x is a prefix of a picture p, if x coincides with the top-left portion of p.
Unfortunately the mere translation that defines a set X to be prefix by imposing
that its pictures are not mutually prefixes is not sufficient to guarantee that X
is a code. Then, going from strings to pictures it is maintained the following
property: if X is a prefix code, when decoding a picture p starting from top-left
corner, it should be uniquely chosen which element in X we can start with.

Notice that, in the generic intermediate step of the computation, we have
read only part of the input: this is where the main difficulties arise. In fact the
initial part of a string is still a string while a piece of a picture is not in general
a picture. The formal definition involves special kind of polyominoes that have
straight top border.

Main results in [4] include the proof that it is decidable whether a finite set of
pictures is a prefix set and that, as in the 1D case, every prefix set of pictures is
a code. Moreover a polynomial time decoding algorithm for finite prefix codes is
presented. Some results are also given concerning the generalization to 2D of the
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notions of maximal and complete prefix codes. A particular subclass of prefix
codes is studied in [3].

In this paper we extend to picture codes the notion of finite deciphering delay
for strings, as described in [8,10]. Intuitively, when reading a coded message from
left to right, its deciphering can already begin after a finite lookahead without
waiting for the end of the message. Saying it differently, if S is a string code
with deciphering delay d, we need to read a portion of the string corresponding
to d+ 1 code words before actually uniquely decoding the leftmost one.

More formally: if w is a string having two distinct prefixes in S+ (i.e. they
factorize in S) and such that the shorter one is in Sd+1 then the two prefixes
start with the same word in S. In particular it holds that prefix codes have delay
equal to zero and for this they are also called instantaneous codes (see [8] for all
formal definitions).

Extending the concept of finite deciphering delay code to two dimensions
seems quite intuitive and natural, but the formalization of such ideas is extremely
involved and require to cleverly invent the right definition of polyomino prefix
of another polyomino as well as a careful counting of such k code-pictures that
play the role of finite scanning lookahead. The main difficulties come, as in the
prefix case, from the fact that in the computation the initial part of a picture
is a polyomino and not a picture. Moreover we have the further inconvenience
that we need to compare two different polyominoes one composed by at least k
pictures of the set X .

We give the definition of a set of pictures with finite deciphering delay. As in
the string case, a code with delay equal to 0 is a prefix code. Further we exhibit,
for each integer k, a set with deciphering delay equal to k and point out a set
that has not finite deciphering delay. Moreover, since it is decidable whether a
finite set of pictures has deciphering delay equal to k, this notion contributes to
enlarge the family of known decidable picture codes.

The paper is organized as follows: Section 2 and 3 report all needed definitions
and known results on picture codes; Section 4 includes all new results proposed
in this paper. Some conclusions are given in Section 5.

2 Preliminaries

We introduce some definitions about two-dimensional languages (see [12,11]).
A picture over a finite alphabet Σ is a two-dimensional rectangular array of
elements of Σ. Given a picture p, |p|row and |p|col denote the number of rows
and columns, respectively while |p| = (|p|row, |p|col) denotes the picture size.
The set of all pictures over Σ is denoted by Σ∗∗. A two-dimensional language
(or picture language) over Σ is a subset of Σ∗∗.

In order to locate a position in a picture, it is necessary to put the pic-
ture in a reference system. The set of coordinates dom(p) = {1, 2, . . . , |p|row} ×
{1, 2, . . . , |p|col} is referred to as the domain of a picture p. We let p(i, j) denote
the symbol in p at coordinates (i, j). Positions in dom(p) are ordered following
the lexicographic order: (i, j) < (i′, j′) if either i < i′ or i = i′ and j < j′.
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We assume the top-left corner of the picture to be at position (1, 1) and this
automatically fix the scanning direction for a picture from the top-left corner
toward the bottom right one. Moreover, to easily detect border positions of pic-
tures, we use initials of words “top”, “bottom”, “left” and “right”: then, for
example the tl-corner of p refers to position (1, 1).

A subdomain of dom(p) is a set d of the form {i, i + 1, . . . , i′} × {j, j +
1, . . . , j′}, where 1 ≤ i ≤ i′ ≤ |p|row, 1 ≤ j ≤ j′ ≤ |p|col, also specified by
the pair [(i, j), (i′, j′)]. The portion of p corresponding to positions in subdo-
main [(i, j), (i′, j′)] is denoted by p[(i, j), (i′, j′)]. Then a picture x is subpicture
of p if x = p[(i, j), (i′, j′)], for some 1 ≤ i ≤ i′ ≤ |p|row, 1 ≤ j ≤ j′ ≤ |p|col. In
other words, x is a subpicture of p when, after a translation of x that lets its
tl-corner be placed on position (i, j) of p, the content of x matches the content
of the corresponding portion of p (taking care of considering a common reference
for the coordinates of positions). Throughout all the paper, when dealing with
subpictures or prefixes of pictures (or in the sequel polyominoes), and a transla-
tion of p is needed, it will be implicitly assumed that the positions of the cells
will refer to a common reference system (for example, a translation of dom(p)
could be considered).

As a special case of subpictures we consider prefixes of pictures. Given pic-
tures x, p, with |x|row ≤ |p|row and |x|col ≤ |p|col, we say that x is a pre-
fix of p if x is a subpicture of p corresponding to its top-left portion, i.e. if
x = p[(1, 1), (|x|row, |x|col)].

In this paper we will consider an interesting star operation for picture language
introduced by D. Simplot in [17]: the tiling star. The idea is to compose pictures
in a way to cover a rectangular area as, for example, in the following figure.

Definition 1. The tiling star of X, denoted by X∗∗, is the set of pictures p
whose domain can be partitioned in disjoint subdomains {d1, d2, . . . , dk} such
that any subpicture ph of p associated with the subdomain dh belongs to X, for
all h = 1, ..., k.

LanguageX∗∗ is called the set of all tilings by X in [17]. In the sequel, if p ∈ X∗∗,
the partition t = {d1, d2, . . . , dk} of dom(p), together with the corresponding
pictures {p1, p2, . . . , pk}, is called a tiling decomposition of p in X .

In this paper, while dealing with the tiling star of a set X , we will need to
manage also non-rectangular “portions” of pictures composed by elements of X :
those are actually labeled polyominoes, that we will call polyominoes, for the
sake of simplicity.

In order to use consistent notation when dealing with pictures and polyomi-
noes, given a polyomino c we can consider it as plugged in its minimal (rectangu-
lar) bounding box. In some sense it can be viewed as a picture where positions
not ”occupied” by the polyomino contain the blank symbol.
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The domain of a (labeled) polyomino c is naturally defined as the set of pairs
(i, j) corresponding to all occupied positions inside its minimal bounding box,
i.e. positions containing a non-blank symbol. As before, to the tl-corner of the
minimal bounding box is assigned position (1, 1). Notice that position (1, 1) does
not necessarily belong to the domain of a given polyomino (see the examples
below).

a a
a a a
b a a

a b a a

a b
a
b a a

a b a a

a b a a
a a a
b

In this paper we restrict our attention to column convex polyominoes, i.e.
polyominoes with the property that if two positions in the same column belong
to the domain then all the intermediate positions in that column belong to the
domain too.

We can also use the notion of a picture x to be subpicture of a polyomino c by
directly referring to their domains (again actually translation of domains) and
comparing the labels of corresponding common positions.

This allows to extend to polyominoes the notion of tiling decomposition in a
set of pictures X : the domain of a polyomino c is partitioned in a collection of
rectangular subdomains in a way that the subpictures corresponding to those
subdomains belong to X . Finally, we also define a sort of polyomino tiling star
that, applied to a set of pictures X , produces the set of all polyominoes that have
a tiling decomposition in X . We denote it by Xp∗∗. If a polyomino p belongs to
the polyomino star of X , we say that p is tilable in X .

3 Two-Dimensional Codes

In this section we summarize the results in [4] that introduce the motivations
for the main results of this paper given in the next section.

The notion of codes in two dimensions was considered by many authors in the
literature: their works defined, in different contexts, polyomino codes, picture
codes, and brick codes ([7,9,16]). We directly refer to the definition of code given
in [4] where two-dimensional codes are introduced in the setting of the theory of
recognizable two-dimensional languages and coherently to the notion of language
unambiguity as in [2,5,6].

Definition 2. Let Σ be a finite alphabet. X ⊆ Σ∗∗ is a code iff any p ∈ Σ∗∗

has at most one tiling decomposition in X.

Example 3. Let Σ = {a, b} be the alphabet and let X =

{
a b ,

a
b
,
a a
a a

}
.

It is easy to see that X is a code. Any picture p ∈ X∗∗ can be decomposed
starting at tl-corner and checking the size (2, 2) subpicture p[(1, 1), (2, 2)]: it can
be univocally decomposed in X . Then, proceed similarly for the next contiguous
size (2, 2) subpictures.
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The notion of code seems to generalize easily from strings to pictures: the bad
new is that the problem whether a given set of pictures is a code is in general
undecidable, even for finite sets (and this holds also for other definitions of
picture codes found in the literature). A challenging aim is then to find decidable
subclasses of codes.

Recall that in one dimension, a set X of strings is prefix if no two strings in X
are one prefix of the other one. Moreover, it holds that any prefix set is a code.
Unfortunately this cannot be directly generalized to picture world as shown in
the following example.

Example 4. Let X =

{
a b , b a ,

a
a

}
. Notice that no picture in X is prefix of

another picture in X (see the definition in Section 2). Nevertheless X is not a

code. Indeed picture
a b a
a b a

has the two following different tiling decompositions

in X : t1 =
a b a
a b a

and t2 =
a b a
a b a

.

Then a more careful definition of prefix sets of pictures is needed. The basic idea
in defining a prefix code is to prevent the possibility to start decoding a picture in
two different ways (as it is for the prefix string codes). One major difference going
from 1D to 2D case is that, while any initial part of a decomposition of a string
is still a string, the initial part of a decomposition of a picture has not necessarily
a rectangular shape: it is in general a (labeled) polyomino. More specifically, it
is a polyomino whose domain contains always the tl-corner position (1, 1) that
is referred to as corner polyomino.

The definition of a picture x prefix of a corner polyomino c is naturally
given by referring to their domains as done at the end of Section 2: x cor-
responds exactly to the top-left portion of c that has the same size of x, i.e
x = c[(1, 1), (|x|row, |x|col)].

Definition 5. A set X ⊆ Σ∗∗ is prefix if any two different pictures in X cannot
be both prefix of the same corner polyomino tilable in X.

Notice that the set X of Example 3 is prefix. On the contrary, the set X of

Example 4 is not prefix: pictures
a
a

and a b are both prefixes of the corner

polyomino
a b
a b

tilable in X .

Definition 5 seems a good generalization of prefix sets of strings; in fact it is
proved that a prefix set is a code referred to as prefix code. Contrarily to the
case of all other known classes of 2D codes, the family of finite prefix codes
has the important property to be decidable. In [4] it is also given polynomial
decoding algorithm for a finite prefix picture code and notions of maximality
and completeness are investigated.
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4 Codes with Finite Deciphering Delay

In the theory of string codes an important role is played by codes with finite
deciphering delay. Informally, they satisfy the property that the decoding of a
given string-message can be started after reading a finite number of code words.
Formally: a set S ∈ Σ∗ has finite deciphering delay if there is an integer d ≥ 0
such that for all x, x′ ∈ S, y ∈ Sd, y′ ∈ S∗, xy prefix of x′y′ implies x = x′ (see
[8]). They generalize prefix codes that are in fact also called instantaneous codes.
In this section we afford their generalization to picture codes.

The idea can be translated quite naturally to two dimensions. We fix, as for
prefix codes, the top-left to bottom-right scanning direction. Then, deciphering
delay equal to k means that we can possibly begin two different candidate de-
compositions containing up to k code pictures: if we add further code pictures,
only one of the attempts of decomposition can survive (and then we can validate
the first picture code).

With this concept in mind, we can say that, as in the string case, prefix picture
codes have deciphering delay equal to 0. To formalize deciphering delay greater
than 0 we need to cope with the two dimensions: at each step of decoding process
we can proceed in the two different directions rightwards and downwards. Thus
an “explored part” composed by k code pictures is not a subpicture but in general
it is a polyomino. Remark that, besides using the top-left to bottom-right scan-
ning direction, we will follow the lexicographic order in domain positions: this
produces only column-convex polyominoes. Then to extend the formal definition
from strings to pictures we need to fix the following notions (as in Definitions 6,
8, 9) :
– prefix in the framework of polyominoes
– “initial” picture of a polyomino decomposition
– polyomino decomposition of k code pictures
– extension of a polyomino decomposition from k to more than k pictures.

To give the definition of polyomino prefix of another one, we need to fix
the first position of a polyomino c, that, we call tl-corner by uniformity with
pictures: it is the minimal position (with respect to the lexicographic order) of
dom(c) inside its minimal bounding box.

Definition 6. Let c, c′ ∈ Σp∗∗. Polyomino c is prefix of c′, we write c � c′, if,
when using the same coordinates to denote their tl-corners, the following condi-
tions are verified.

1. dom(c) ⊆ dom(c′)
2. c(i, j) = c′(i, j) for all (i, j) ∈ dom(c)
3. if (i0, j0) ∈ dom(c) then, for all (i, j) ∈ dom(c′) with i ≤ i0 and j ≤ j0, we

have (i, j) ∈ dom(c).

Notice that condition 3. in the definition imposes to c a sort of “column prefix-
ness”: we pretend that each column in c is “prefix” of the corresponding column
in c′ along the direction from top to bottom. Moreover remark that this def-
inition, when referred to pictures and corner polyominoes, corresponds to the
definition of prefix as in [4].
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Example 7. In the figure below, polyomino (b) is prefix of polyomino (a), accord-
ing to the definition. The same polyomino (b), referred to the minimal bounding
box of (a), is shown in (c).

a b b
a a a a a
a a a a a a

b a a a a a a
a a a

a b b
a a a a
a a a

a b b
a a a a
a a a

(a) (b) (c)

In the figures below polyomino (e) is prefix of polyomino (d), whereas poly-
omino (f) is not because it does not satisfy condition 3) of the definition. In
particular position (5, 5) is in (f), while positions (3, 5) and (4, 5) are in (d) but
not in (f).

b
b
b a b
b a b
b a b a b a
b a a a a a

b
b
b
b
b a b

b
b
b
b
b a b a b

(d) (e) (f)

For the next definition we introduce the notation of “first picture in a de-
composition”: it is the picture that contains the tl-corner of the domain. More
formally, let c ∈ Xp∗∗ and let t = {d1, d2, . . . , dh} be a tiling decomposition of c
in X , with corresponding pictures {p1, p2, . . . , ph}. The picture pf associated to
the subdomain df that contains the tl-corner of c is called the first picture in t
and is denoted by first(t).

Another important aspect to consider when generalizing the definition for
strings is “how to count” the k pieces of the decomposition: we are interested
only in the pieces of the decomposition that come “after” the first picture of the
decomposition itself. (Recall we follow a top-left to bottom-right direction and
explore along the lexicographic order of domain positions). This is formalized in
the following definition.

Definition 8. Let X ⊆ Σ∗∗, c ∈ Xp∗∗. Let t be a tiling decomposition of c in
X and tl-c(c) = (1, j). The decomposition t has k br-components if there are
k subdomains in t, specified by the pairs [(i1, j1), (i

′
1, j

′
1)], . . . , [(ik, jk), (i

′
k, j

′
k)],

respectively, such that jr ≥ j or ir > |first(t)|row, for all 1 ≤ r ≤ k.

Recall that in the string case, when we extend a prefix of k code words, we just
add one code word and consider a prefix with k+ 1 words. This is not sufficient
in a two-dimensional setting where we need to consider an extension step that
enlarges the prefix along the “frontier”. And this is expressed in the following
definition.
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Definition 9. Let X ⊆ Σ∗∗, c, c′, c′′ ∈ Xp∗∗ with c � c′, and let t, t′′ be tiling
decompositions of c, c′′, respectively in X. Then t′′ extends t consistently with
c′ if:

– t ⊂ t′′

– for any (i, j) ∈ dom(c′′), c′′(i, j) = c′(i, j)
– dom(c′′) contains all positions (i, j) ∈ dom(c′) \ dom(c) such that (i, j − 1)

or (i− 1, j − 1) or (i− 1, j) is in dom(c).

Finally we are ready to give the definition of picture languages with finite deci-
phering delay k ≥ 1. Recall that picture languages with deciphering delay k = 0
are prefix codes.

Definition 10. Let X ⊆ Σ∗∗. X has finite deciphering delay if it is prefix or
there is an integer k ≥ 1 such that, for any c, c′ ∈ Xp∗∗, with c � c′, and for
any pair of tiling decompositions in X, t and t′, of c and c′, respectively, where
t has k br-components and first(t) �= first(t′), there is no c′′ ∈ Xp∗∗ with a tiling
decomposition t′′ �= t′ that extends t consistently with c′.

If the condition in the previous definition holds for some integer k, then it holds
for all k′ ≥ k. If X has finite deciphering delay, then the smallest integer k
satisfying the condition in the previous definition, is the deciphering delay of X .

The following examples show a picture language with finite deciphering delay
and another one that has not finite deciphering delay, respectively.

Example 11. Let X =

{
a
b
, a a b ,

b a
b b

}
.

Set X is not prefix; in fact pictures
a
b
and a a b are both prefixes of the corner

polyomino
a a b a
b b b b

tilable in X .

Let us show that X has deciphering delay 1. Indeed, the only possibility for
c, c′ ∈ Xp∗∗ with tiling decompositions t and t′ respectively, to have c � c′ and

first(t) �= first(t′), is that first(t) =
a
b
, and first(t′) = a a b (or viceversa).

Therefore the top-left portion of c′ must be
a a b
b

. This fact leds to these

two different possible situations: c = a a b ∈ Xp∗∗ prefix of c′ =
a a b a
b b b b

∈

Xp∗∗ and c =
a
b
∈ Xp∗∗ prefix of c′ =

a a b
b a
b a

with tiling decompositions in

X , t and t′ respectively, as in the figure, and first(t) �= first(t′). But in both cases
there is no c′′ ∈ Xp∗∗ with a tiling decomposition that extends t consistently
with c′. Remark that t has k = 1 br-component.
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Example 12. Let X =

{
b
a
, b a ,

a a
a a

}
.

It is easy to see that X is a code but X has an infinite deciphering delay.
Indeed, consider for any k > 0,

c =

b a a a . . .
a a a a . . .
a a
. . .

∈ Xp∗∗ and c′ =

b a a a a . . .
a a a a a . . .
a a
a a
. . .

∈ Xp∗∗.

Then c� c′ and any pair of tiling decompositions in X , t and t′ respectively,
with first(t) �= first(t′), t with k br-components, must be as those ones given in
the figure. But it is easy to see that, for any k, there is always c′′ ∈ Xp∗∗ with
a tiling decomposition t′′ that extends t consistently with c′.

Under the hypothesis X finite, the following result can be proved by checking
all polyominoes tilable with k pictures in X .

Proposition 13. Given a finite set of picture X ⊆ Σ∗∗ and an integer k ≥ 0,
it is decidable whether X has deciphering delay k.

The next two theorems contain the main results of the paper. We prove first
that picture sets with finite deciphering delay form a non trivial hierarchy and
second that having finite deciphering delay is a sufficient condition for a picture
set to be a code.

Theorem 14. For any k ≥ 0 there exists a set X ⊆ Σ∗∗ that has deciphering
delay k.

Proof. Let k ≥ 0. Consider the set Xk =

{
a
b
, ak b ,

bk a
bk b

}
where ak (bk,

resp.) denotes the picture with one row and k columns over the alphabet {a}
({b}, resp.). Let us show that, for any k ≥ 0, Xk has deciphering delay k.

For k = 0, X0 is prefix. For k > 0, in order to make the proof easier, let us fix

k = 3. Set X3 =

{
a
b

, a a a b ,
b b b a
b b b b

}
has deciphering delay greater than

2.

Indeed, consider c =
a a
b b

∈ Xp∗∗
3 and c′ =

a a a b
b b b a
b b b b

∈ Xp∗∗
3 , with

the tiling decompositions t and t′ in X , respectively, as shown in the figure. Then
t has 2 br-components, first(t) �= first(t′) and there is

c′′ =

a a a b
b b b a

a a a b b b b a
b b b b

∈ Xp∗∗
3

with a tiling decomposition t′′ that extends t consistently with c′.
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Let us show that X3 has deciphering delay 3. Note that the only possibility
for c, c′ ∈ Xp∗∗ with tiling decompositions in X t and t′ respectively, to have

that c� c′ and first(t) �= first(t′), is that first(t) =
a
b

and first(t′) = a a a b

(or viceversa). Therefore the top-left portion of c′ must be
a a a b
b

. Then

the unique possible scenario is the following: c =
a a a
b b b

∈ Xp∗∗
3 prefix of

c′ =
a a a b
b b b a
b b b b

∈ Xp∗∗
3 , with tiling decompositions in X , t and t′ respectively,

as in the figure, where t has 3 br-components and first(t) �= first(t′). In this case
there is no c′′ ∈ Xp∗∗

3 with a tiling decomposition t′′ that extends t consistently
with c′.

Theorem 15. If X ⊆ Σ∗∗ has finite deciphering delay then X is a code.

Proof. Let k be the deciphering delay of X . Suppose by contradiction that there
exists a picture u ∈ Σ∗∗ that admits two different tiling decompositions in X ,
say t1 and t2. Now, let (i0, j0) the smallest position (in lexicographic order) of u,
where t1 and t2 differ. Position (i0, j0) corresponds in t1 to the tl-corner of some
x1 ∈ X , and in t2 to the tl-corner of some x2 ∈ X , with x1 �= x2. See the figure
below, where a dot indicates position (i0, j0) of u in t1 (on the left) and t2 (on
the right), respectively.

x1
� x2

�

Consider the polyomino ū obtained by eliminating from u all the pictures
whose top-left corner occurs, in the tiling decomposition t1, in a position (i, j)
that is smaller than (i0, j0) and consider its corresponding tiling decomposition
say dū. Now let y1 the picture that covers the bottom-right corner of ū in dū
and consider the polyomino ū1 obtained, from ū, by eliminating the picture y1
and its corresponding tiling decomposition dū1 ; let y2 the picture that covers the
bottom-right corner of ū1 in dū1 and consider the polyomino ū2 obtained, from
ū1, by eliminating the picture y2 and its corresponding tiling decomposition dū2

Remark that ū2 � ū1 and that first(dū1) = x1 �= x2 = first(dū2). Now, if ū2

has k br-components, this contradicts the definition of deciphering delay k by
choosing c = ū2, c

′ = u and c′′ = ū1.
On the contrary, if ū2 has less than k br-components, an anologous contradic-

tion can be obtained. Indeed, define the pictures uh as the juxtaposition, row by
row, of h copies of u, for an appropriate h, and v as the juxtaposition, row by
row, of ū with uh.

Then choose c, c′ and c′′ equal to the picture obtained by gluing, one under
the other, v with u, ū1 and ū2, respectively. �
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Note that the converse of Theorem 15 does not hold as shown by language X
in Example 12.

Furthermore the next proposition shows that the parsing problem becomes
polynomially solvable for languages that are the tiling star of a finite code with
finite deciphering delay. Recall that the parsing problem is NP-complete for finite
or, more in general, tiling recognizable languages (see [15]).

Proposition 16. There exists a polynomial time algorithm that, given a finite
code X ⊆ Σ∗∗ with deciphering delay k, and a picture p ∈ Σ∗∗, finds a tiling
decomposition of p in X, if it exists, it exits with negative answer, otherwise.

Proof. (Sketch) The algorithm scans p using a “current position” (i, j) and a
“current partial tiling decomposition” T that contains some of the positions of
p grouped as collections of rectangular p subdomains. At the beginning (i, j) =
(1, 1). The algorithm finds the pictures in X that are subpictures of p when
translated with tl-corner on (i, j) and such that the positions of their subdomains
were not yet put in T . If there does not exist a picture as above, it exits with
negative answer; if there exists only one picture it adds it to T and set (i, j)
as the minimum position of p not yet covered by T ; otherwise for any pair of
such pictures x1 and x2 in X , the algorithm continues as follows. It tries to
extend alternatively two tiling decompositions t1 and t2, initially consisting only
by dom(x1), dom(x2), respectively, in such a way that at each step, t1 (t2, resp.)
corresponds to a polyomino c1 ∈ Xp∗∗ (c2 ∈ Xp∗∗, resp.) and c1�c2 or vice versa.
The process continues until one between t1 or t2 cannot be anymore extended
and this is at most when it has k br-components. At this point the algorithm
adds to T the first picture (x1 or x2) of the other decomposition, and set (i, j)
as the minimum position of p not yet covered by T . The algorithm stops when
it does not find any new position (i, j) and returns T .

All this task can be accomplished by doing a preprocessing that classifies all
tiling decompositions with k br-components done with elements of the input
code. Then, the algorithm processes the picture p in time polynomial in the size
of p and in a function of k and the size of the input code. �

5 Conclusions

This paper proceeds along the direction started in [4] where prefix picture codes
are defined and investigated in relation with the theory of recognizable picture
languages (REC family). The general aim is to define subfamilies of decidable
picture codes. Here we concentrate on sets of pictures with finite deciphering
delay giving a non trivial definition that extends the corresponding definition
for strings and that, at the same time, captures meaningful families of sets.

Several research directions are worthwhile to explore as, for instance, the
relation between maximal codes with finite deciphering delay and maximal prefix
codes. Moreover it will be interesting to investigate possible 2D generalizations
of other types of string codes, as for example bifix codes. Finally one can try to
remove the finiteness hypothesis and find decidable picture codes belonging to
particular sub-families in REC, such as deterministic ones (see [2,6]).
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Abstract. In this paper, we consider the computational power of a new
variant of networks of evolutionary processors which seems to be more
suitable for a software and hardware implementation. Each processor as
well as the data navigating throughout the network are now considered
to be polarized. While the polarization of every processor is predefined,
the data polarization is dynamically computed by means of a valuation
mapping. Consequently, the protocol of communication is naturally de-
fined by means of this polarization. We show that tag systems can be
simulated by these networks with a constant number of nodes, while Tur-
ing machines can be simulated, in a time-efficient way, by these networks
with a number of nodes depending linearly on the tape alphabet of the
Turing machine.

1 Introduction

Networks of evolutionary processors (NEP) form a class of highly parallel and
distributed computing models inspired and abstracted from the biological evolu-
tion. Informally, a network of evolutionary processor consists of a virtual (com-
plete) graph in which each node hosts a very simple processor called evolutionary
processor. By an evolutionary processor we mean a mathematical construction
which is able to perform very simple operations inspired by the point mutations
in DNA sequences (insertion, deletion or substitution of a single base pair). By
an informal parallelism with the natural process of evolution, each node may be
viewed as a cell having genetic information encoded in DNA sequences which
may evolve by local evolutionary events, that is point mutations. Each node pro-
cessor, which is specialized just for one of these evolutionary operations, acts on
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the local data and then local data becomes a mobile agent which can navigate
in the network following a given protocol. Only that data which is able to pass
a filtering process can be communicated. This filtering process may require to
satisfy some conditions imposed by the sending processor, by the receiving pro-
cessor or by both of them. All the nodes send simultaneously their data and the
receiving nodes handle also simultaneously all the arriving messages, according
to some strategies.

It is worth mentioning that NEPs resemble a pretty common architecture for
parallel and distributed symbolic processing, related to the Connection Machine
[7] which was defined as a network of microprocessors in the shape of a hypercube.
Each microprocessor was very simple, processing one bit per unit time. Also it
is closely related to the tissue-like P systems [13] in the membrane computing
area [19].

NEPs as language generating devices and problem solvers have been consid-
ered in [2] and [14], respectively. They have been further investigated in a series
of subsequent works. NEPs as accepting devices and problem solvers have been
considered in [12]; later on, a characterization of the complexity classes NP,
P, and PSPACE based on accepting NEPs has been reported in [10]. Univer-
sal NEPs and some descriptional complexity problems are discussed in [9]. The
reader interested in a survey of the main results regarding NEPs is referred to
[11].

Software implementations of NEPs have been reported, see, e.g., [3,4,16], most
of them in JAVA. They encountered difficulties especially in the implementation
of filters. The main idea to simulate the non-deterministic behavior of NEPs has
been to consider a safe-thread model of processors, that is to have each rule and
filter in a thread, respectively. Clearly the threads corresponding to the filters
are much more complicated than those associated with the evolutionary rules.
Configuration changes in a NEP are accomplished either by a communication
step or by an evolutionary step, but these two steps may be realized in any or-
der. This suggests that evolution or communication may be chosen depending
on the thread model of processor [4]. The input and output filters are imple-
mented as threads extending the Runnable interface. Therefore a processor is
the parent of a set of threads, which use all objects from that processor in a
mutual exclusion region. When a processor starts to run, it starts in a cascade
way the rule threads and filter threads. As one can see, the filters associated
with processors, especially if there are both input and output filters, seem to
be hardly implementable. Consequently, it would be of interest to replace the
communication based on filters among processors by another protocol. A first
attempt was to move filters from each node to the edges between the nodes, see,
e.g., [5]. Although this variant seems to be theoretically simpler, the attempts
towards an implementation have encountered similar difficulties due to the fact
that the filters associated with edges are similar to those associated with nodes.

Work [1] considers a new variant of NEP with the aim of proposing a new
type of filtering process and discusses the potential of this variant for solving
hard computational problems. The main and completely new feature of this
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variant is the valuation mapping which assigns to each string an integer value,
depending on the values assigned to its symbols. Actually, we are not interested in
computing the exact value of a string, but just the sign of this value. By means
of this valuation, one may metaphorically say that the strings are electrically
polarized. Thus, if the nodes are polarized as well, the strings migration from
one node to another through the channel between the two cells seems to be more
natural and easier to be implemented.

We consider here a slightly more general variant of networks of polarized evo-
lutionary processors (NPEP) and investigate its computational power. Although
the communication protocol based on the polarized processors and the valuation
function seems to offer less control, the new variant is still computationally com-
plete. We show that NPEP with a constant number of processors, namely 15, are
computationally complete by devising a method for simulating 2-Tag Systems.
As a 2-tag system can efficiently simulate any deterministic Turing machine but
not nondeterministic ones, we propose a simulation of nondeterministic Turing
machines with NPEP which maintains the working time of the Turing machine.
That is, every language accepted by a one-tape nondeterministic Turing machine
in time f(n) can be accepted by an NPEP in time O(f(n)). Unlike the simulation
of a 2-tag system, the size of a NPEP simulating an arbitrary Turing machine
depends linearly on the number of tape symbols of the Turing machine.

2 Preliminaries

We start by summarizing the notions used throughout this work. An alphabet
is a finite and nonempty set of symbols. The cardinality of a finite set A is
written card(A). Any finite sequence of symbols from an alphabet V is called
word over V . The set of all words over V is denoted by V ∗ and the empty word is
denoted by ε. The length of a word x is denoted by |x| while alph(x) denotes the
minimal alphabet W such that x ∈ W ∗. Furthermore, |x|a denotes the number
of occurrences of the symbol a in x.

A homomorphism from the monoid V ∗ into the monoid (group) of additive
integers Z is called valuation of V ∗ in Z.

We consider here the following definition of 2-tag systems that appears in
[20]. This type of tag-system, namely the type T2 2-tag-systems that appear in
Section 8 of [20], is slightly different but equivalent to those from [18,15]. A 2-
tag system T = (V, μ) consists of a finite alphabet of symbols V , containing a
special halting symbol H (denoted in [20] with STOP ) and a finite set of rules
μ : V \{H} → V + such that |μ(x)| ≥ 2 or μ(x) = H . Furthermore, μ(x) = H for
just one x ∈ V \{H}. A halting word for the system T is a word that contains the
halting symbol H or whose length is less than 2. The transformation tT (called
the tag operation) is defined on the set of non-halting words as follows: if x is
the leftmost symbol of a non-halting word w, then tT (w) is the result of deleting
the leftmost 2 symbols of w and then appending the word μ(x) at the right
end of the obtained word. A computation by a 2-tag system as above is a finite
sequence of words produced by iterating the transformation t, starting with an
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initially given non-halting word w and halting when a halting word is produced.
A computation is not considered to exist unless a halting word is produced in
finitely-many iterations. Note that in [20] the halting words are defined a little
bit different, as the words starting with the only symbol y such that μ(y) = H ,
or the words whose length is less than 2. However, our way of defining halting
words is equivalent to that in [20], in the sense that there exists a bijection
between the valid computations obtained in each of these two cases. Indeed, if
we consider the stopping condition from [20], and obtain in a valid computation
a word starting with y, thus a halting word, it is enough to apply once more tT
on this word to obtain a word containing H , a halting word according to our
definition, and transform the initial valid computation in a valid computation
according to our definition. Conversely, if a word containing H , a halting word
for our definition, is obtained in a valid computation, then the halting symbol
could not have appeared in that word in other way than by applying tT on a
word starting with y, a halting word for the definition from [20], therefore we
have a corresponding valid computation, by that definition. As shown in [20],
such restricted 2-tag systems are universal.

A nondeterministic Turing machine is a construct M = (Q, V, U, δ, q0, B, F ),
where Q is a finite set of states, V is the input alphabet, U is the tape alphabet,
V ⊂ U , q0 is the initial state, B ∈ U\V is the “blank” symbol, F ⊆ Q is the set of
final states, and δ is the transition mapping, δ : (Q\F )×U → 2Q×(U\{B})×{R,L}.
In this paper, we assume without loss of generality that any Turing machine we
consider has a semi-infinite tape (bounded to the left) and makes no stationary
moves; the computation of such a machine is described in [21,6,17]. An input
word is accepted if and only if after a finite number of moves the Turing machine
enters a final state. The language accepted by the Turing machine is a set of all
accepted words. We say a Turing machine decides a language L if it accepts L
and moreover halts on every input.

We say that a rule a→ b, with a, b ∈ V ∪{ε} and ab �= ε is a substitution rule
if both a and b are not ε; it is a deletion rule if a �= ε and b = ε; it is an insertion
rule if a = ε and b �= ε. The set of all substitution, deletion, and insertion rules
over an alphabet V are denoted by SubV , DelV , and InsV , respectively. Given
a rule σ as above and a word w ∈ V ∗, we define the following actions of σ on w:

– If σ ≡ a→ b ∈ SubV , then σ(w) =

{
{ubv : ∃u, v ∈ V ∗ (w = uav)},
{w}, otherwise.

– If σ ≡ a→ ε ∈ DelV , then

σr(w) =

{
{u : w = ua},
{w}, otherwise

σl(w) =

{
{v : w = av},
{w}, otherwise

– If σ ≡ ε→ a ∈ InsV , then σr(w) = {wa}, σl(w) = {aw}.
Note that α ∈ {l, r} expresses the way of applying a deletion or insertion rule
to a word, namely in the left (α = l), or in the right (α = r) end of the word,
respectively. It is worth mentioning that the action mode of a substitution rule
applied to a word w: it returns the set of all words that may be obtained from
w depending on the position in w where the rule was actually applied.
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For every evolutionary rule σ, action α ∈ {l, r}, (α is missing when σ is a
substitution rule) and L ⊆ V ∗, we define the α-action of σ on L by σα(L) =⋃
w∈L

σα(w). Given a finite set of rules M , we define the α-action of M on the

word w and the language L byMα(w) =
⋃

σ∈M
σα(w) and Mα(L) =

⋃
w∈L

Mα(w),

respectively.

Definition 1. A polarized evolutionary processor over V is a pair (M,α, π),
where:

• M is a set of substitution, deletion or insertion rules over the alphabet V . For-
mally: (M ⊆ SubV ) or (M ⊆ DelV ) or (M ⊆ InsV ). The set M represents
the set of evolutionary rules of the processor. As one can see, a processor is
“specialized” in one evolutionary operation, only.
• α gives the action mode of the rules of the node. If M ⊆ SubV , then α is

missing.
• π ∈ {−,+, 0} is the polarization of the node (negatively or positively charged,

or neutral, respectively).

We denote the set of evolutionary processors over V by EPV . Clearly, the evolu-
tionary processor described here is a mathematical concept similar to that of an
evolutionary algorithm, both being inspired from the Darwinian evolution. As
compared to evolutionary algorithms, the rewriting operations we have consid-
ered here might be interpreted as mutations and the filtering process described
above might be viewed as a selection process. Recombination is missing but it
was asserted that evolutionary and functional relationships between genes can
be captured by taking only local mutations into consideration [22].

Definition 2. A network of polarized evolutionary processors (NPEP for short)
is a 7-tuple Γ = (V, U,G,R, ϕ, In,Out), where:

+ V and U are the input and network alphabet, respectively, V ⊆ U .
+ G = (XG, EG) is an undirected graph without loops with the set of vertices

XG and the set of edges EG. G is called the underlying graph of the network.
+ R : XG −→ EPU is a mapping which associates with each node x ∈ XG the

polarized evolutionary processor R(x) = (Mx, αx, πx).
+ ϕ is a valuation of U∗ in Z.
+ In,Out,∈ XG are the input and the output node of Γ , respectively.

We say that card(XG) is the size of Γ . A configuration of a NPEP Γ as above
is a mapping C : XG −→ 2V

∗
which associates a set of words with every node

of the graph. A configuration may be understood as the sets of words which
are present in any node at a given moment. Given a word w ∈ V ∗, the initial

configuration of Γ on w is defined by C
(w)
0 (xI) = {w} and C

(w)
0 (x) = ∅ for all

x ∈ XG \ {xI}.
A configuration can change either by an evolutionary step or by a communi-

cation step. When changing by an evolutionary step, each component C(x) of
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the configuration C is changed in accordance with the set of evolutionary rules
Mx associated with the node x. Formally, we say that the configuration C′ is
obtained in one evolutionary step from the configuration C, written as C =⇒ C′,
iff

C′(x) = Mαx
x (C(x)) for all x ∈ XG.

When changing by a communication step, each node processor x ∈ XG sends
out copies of all its words but keeping a local copy of the words having the same
polarity to that of x only, to all the node processors connected to x and receives
a copy of each word sent by any node processor connected with x providing
that it has the same polarity as that of x. Note that, for simplicity reasons, we
prefer to consider that a word migrate to a node with the same polarity and not
an opposed one. Formally, we say that the configuration C′ is obtained in one
communication step from configuration C, written as C " C′, iff

C′(x) = (C(x) \ {w ∈ C(x) | sign(ϕ(w)) �= πx}) ∪⋃
{x,y}∈EG

({w ∈ C(y) | sign(ϕ(w)) = πx}),

for all x ∈ XG. Here sign(m) is the sign function which returns +, 0,−, provided
that m is a positive integer, is 0, or is a negative integer, respectively. Note that
all words with a different polarity than that of x are expelled. Further, each
expelled word from a node x that cannot enter any node connected to x (no
such node has the same polarity as the word has) is lost.

Let Γ be a NPEP, the computation of Γ on the input word w ∈ V ∗ is a

sequence of configurations C
(w)
0 , C

(w)
1 , C

(w)
2 , . . . , where C

(w)
0 is the initial con-

figuration of Γ on w, C
(w)
2i =⇒ C

(w)
2i+1 and C

(w)
2i+1 " C

(w)
2i+2, for all i ≥ 0. Note

that the configurations are changed by alternative steps. By the previous defini-

tions, each configuration C
(w)
i is uniquely determined by the configuration C

(w)
i−1.

Otherwise stated, each computation in a NPEP is deterministic.
A computation as above halts, if there exists a configuration in which the set

of words existing in the output node Out is non-empty. Given a NPEP Γ and
an input word w, we say that Γ accepts w if the computation of Γ on w halts.

Let Γ be a NPEP with the input alphabet V ; the time complexity of the finite

computation C
(x)
0 , C

(x)
1 , C

(x)
2 , . . . C

(x)
m of Γ on x ∈ V ∗ is denoted by T imeΓ (x)

and equals m. The time complexity of Γ is the function from N to N,
T imeΓ (n) = sup{T imeΓ (x) | |x| = n}.

3 2-Tag Systems Can Be Simulated by NPEP of Constant
Size

In the following we show how a 2-tag system can be simulated by an NPEP. We
make use of a similar strategy to that developed in [8].

Theorem 1. For every 2-tag system T = (V, μ) there exists a NPEP Γ of size
15 such that L(Γ ) = {w | T halts on w}.
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Proof. Let V = {a1, a2, . . . , an, an+1} be the alphabet of the tag system T with
an+1 = H and V ′ = V \ {H}. Let S be the set of all suffixes of the words in
{μ(a) | a ∈ V }. We consider the NPEP Γ = (V ′, U,G,R, ϕ, 1, 15) with the 15
nodes 1, 2, . . . , 15. The working alphabet of the network is defined as follows:

U = V ∪ {a′0, a′′0} ∪ {a′, a′, a′′, a◦ | a ∈ V ′} ∪
{[x], 〈x〉,, x-, 〈x〉,, x-, 〈a0x〉,, a0x-, 〈a0x〉,, a0x- | x ∈ S}.

The processors placed in the 15 nodes of the network are defined in Table 1.

Table 1. The description of the nodes of Γ

Node M α π Adjacency list

1 {a→ [μ(a)] | a ∈ V ′} 0 {2, 14}
2 {a→ a◦ | a ∈ V ′} + {1, 3}
3 {ε→ a′

0} r − {2, 4, 12}
4 {a′

k → a′′
k | 0 ≤ k ≤ n+ 1} 0 {3, 5, 9}

5 {[akx]→ 〈ak−1x〉 | 1 ≤ k ≤ n+ 1, x ∈ S}∪ + {4, 6}
{〈akx〉 → 〈ak−1x〉 | 1 ≤ k ≤ n+ 1, x ∈ S}

6 {〈x〉 → x�| x ∈ S} − {5, 7}
7 {a′′

k−1 → a′
k | 1 ≤ k ≤ n+ 1} 0 {6, 8}

8 {a′
k → a′

k | 1 ≤ k ≤ n+ 1} + {7, 9}
9 { x�→ 〈x〉 | x ∈ S} − {4, 8, 10}
10 {〈a0x〉 →  a0x� | x ∈ S} 0 {9, 11}
11 {a′

k → ak | 1 ≤ k ≤ n+ 1} + {10, 12, 15}
12 { a0akx�→ [akx] | 1 ≤ k ≤ n+ 1, x ∈ S}∪ 0 {3, 11, 13}

{ a0 �→ [a0]}
13 {[a0]→ ε} l − {12, 14}
14 {a◦ → ε} l − {1, 13}
15 ∅ − {11}

The construction of Γ is complete as soon as we define the valuation mapping
ϕ. It is defined as follows:

ϕ(ak) = 0, 1 ≤ k ≤ n, ϕ(H) = −10,
ϕ([x]) = ϕ(〈x〉) = ϕ(〈a0x〉) = 1, x ∈ S,

ϕ(a◦) = −2, a ∈ V ′,

ϕ(a′k) = 1, 0 ≤ k ≤ n+ 1,

ϕ(a′′k) = 2, 0 ≤ k ≤ n+ 1,

ϕ(〈x〉) = ϕ(〈a0x〉) = −1, x ∈ S,

ϕ(, x-) = ϕ(, a0x-) = 0, x ∈ S,

ϕ(a′k) = 3, 1 ≤ k ≤ n+ 1,

ϕ(, x-) = ϕ(, a0x-) = 2, x ∈ S.

We show that Γ accepts a word w that does not contain H if an only if T
eventually halts on w. Let w = aby, a, b ∈ V, y ∈ V ∗ be a word that does not
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contain H such that T eventually halts on w. We show how w can be accepted
by Γ . At the beginning of the computation w is found in node 1, where the first
symbol a can be replaced with [μ(a)]. From our further explanations, it will turn
out that if the symbol a replaced by [μ(a)] in node 1 is not the leftmost one, then
the computation on this word is blocked. The valuation of the new word, [μ(a)]by,
has a positive value such that the word enters node 2 which is positively charged.
In node 2, we can rewrite b as b◦, getting the new word [μ(a)]b◦y. Again, later
we infer that if another symbol is replaced, the computation will be blocked. The
word [μ(a)]b◦y can only enter node 3 where the symbol a′0 is inserted to its right
end obtaining [μ(a)]b◦ya′0. This word can enter node 4 and 12. Note that the
copy entering node 12 remains there forever. Therefore, we continue our analysis
in node 4. In this node, a′0 is replaced by a′′0 which change the polarization of
the word from neutral to positive which makes it to migrate to node 5.

We now assume that μ(a) = akx for some 1 ≤ k ≤ n + 1. In node 5, [akx]
is replaced by 〈ak−1x〉 and the new word which is negatively charged enters
node 6. After its first symbol 〈ak−1x〉 is substituted with , ak−1x-, the word
has a null valuation and enters node 7. The word is successively transformed in
, ak−1x- b◦ya′1 (in node 7),, ak−1x- b◦ya′1 (in node 8), and 〈ak−1x〉b◦ya′1
(in node 9). If k > 1, this string first returns to node 4, resulting in 〈ak−1x〉b◦ya′′1 ,
and then enters node 5, resulting in 〈ak−2x〉b◦ya′′1 . This process continues by
iteratively passing the sequence of nodes 4, 5, 6, 7, 8, 9 until a string of the form
〈a0x〉b◦ya′k is obtained in node 9. Now the current word enters 10 and 11, where
it is rewritten into, a0x-b◦ya′k and, a0x-b◦yak, respectively. If k = n+1,
then the word enters the output node 15 and the computation halts. Otherwise,
the current string can only enter node 12, where its first symbol , a0x- is
replaced either by [ajx

′], provided that x = ajx
′, or by [a0], if x = ε. In the

former case, the whole process described above resumes from the node 3. In the
latter, we actually reached a word of the form [a0]b

◦yμ(a). This word can enter
node 13, where the symbol [a0] is deleted, provided that it is the leftmost symbol.
A copy of this word remains in 13 forever, but another copy enters 14, where the
symbol b◦ is deleted, provided that it is the leftmost symbol. One can see now
that if the symbols substituted in the nodes 1 and 2 were not the right ones, the
computation will get stuck. Note that the word obtained in node 14 is exactly
yμ(a), which means that we have correctly simulated the step a → φ(a) in the
tag system. Now, this word enters 1 where the simulation of the next step in T
starts.

By these explanations, we infer that w ∈ L(Γ ) if and only if T will eventually
halt on w. �

4 Arbitrary Turing Machines Can Be Simulated by
NPEP

Although 2-tag systems efficiently simulate deterministic Turing machines, via
cyclic tag systems (see, e.g., [23]), the previous result does not allow us to say
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much about the NPEP accepting in a computationally efficient way all recur-
sively enumerable languages. We now discuss how recursively enumerable lan-
guages can be efficiently (from the time complexity point of view) accepted by
NPEP by simulating arbitrary Turing machines.

Theorem 2. For any recursively enumerable language L, accepted in O(f(n))
by a Turing machine with tape alphabet U , there exists an NPEP of size 10card(U)
accepting L in O(f(n)) steps.

Proof. Let M = (Q, V, U, δ, q0, B, F ) be a Turing machine with U ∩Q = ∅, and
U = {a1, a2, . . . , an+1}, an+1 = B. We start the construction of the NPEP
Γ accepting the language accepted by M with the definition of its working
alphabet:

W = U ∪Q ∪ {q | q ∈ Q} ∪ {a | a ∈ U} ∪ {a′, a′′, ã, â | a ∈ U \ {B}} ∪
{[q, a,D] | q ∈ Q, a ∈ U \ {B}, D ∈ {L,R}}.

We now can define the valuation mapping ϕ as follows:

ϕ(a) = 0, a ∈ U, ϕ(a) = 2, a ∈ U,
ϕ(a′) = −1, a ∈ U \ {B}, ϕ(a′′) = 2, a ∈ U \ {B},
ϕ(q) = −1, q ∈ Q \ F ϕ(q) = 1, q ∈ F,
ϕ(ãi) = −pi, 1 ≤ i ≤ n, ϕ(âi) = pi, 1 ≤ i ≤ n,
ϕ(〈s, ai, L〉) = −pi, s ∈ Q, 1 ≤ i ≤ n, ϕ(〈s, ai, R〉) = pi, s ∈ Q, 1 ≤ i ≤ n,
ϕ([s, a,D]) = −2, ϕ(q) = 0, q ∈ Q,

s ∈ Q, a ∈ U \ {B}, D ∈ {L,R}

Here pi denotes the ith odd prime number. The processors placed in the nodes
of the network are defined in Table 2.

We now analyze the computation of Γ on an input word, say w, which is
placed in the input node In. Here the B symbol is added to its right-hand end,
yielding wB which has a neutral polarization. Therefore, a copy of this word
remains in In, while another copy migrates to InsSt (Insert State). It will turn
out, by our further explanations, that if w is accepted by a computation of M
that uses the minimal number t of auxiliary cells (cells that initially contain B),
then every word wBj , with j < t, that enters InsSt will be eventually blocked
in a node. We assume that wBj , for some j ≥ t, enters InsSt. It is transformed
into wBjq0 which is negatively charged, such that each node IdS(ai) (Identify
Symbol), 1 ≤ i ≤ n + 1, receives one of its copies. Inductively, we may assume
that the current word is yBkqx, for some k ≥ 0, which signifies that the Turing
MachineM is in state q and has on its tape the word xy, with its head positioned
on the first symbol of y. Assume that y = aiz, for some 1 ≤ i ≤ n+1; note that
the copy of yBkqx that enters IdS(ak), k �= i, will be further blocked in Del.

Let us follow the copy of aizB
kqx that enters IdS(ai). After an occurrence of

ai, not necessarily the leftmost one, is replaced by ai, the word arrives in ChT (ai)
(Choose Transition). Here a symbol [s, am, D], such that (s, am, D) ∈ δ(q, ai), is
adjoined which makes the new word to have a null value through the valuation
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mapping ϕ. This word enters Del, where a barred symbol is removed provided
that it is the leftmost one. We can see now that, if the occurrence of ai substituted
in the node IdS(ai) was not the leftmost one, the word remains blocked in Del.
Therefore, our current word becomes zBk[s, am, D]x, 1 ≤ m ≤ n, D ∈ {L,R}.
As it is negatively charged, it entersDetLR (Determine Left-Right). In this node,
[s, am, D] is replaced by 〈s, am, D〉 and the new word is zBk〈s, am, D〉x.

Table 2. The definition of the nodes of Γ

Node M α π Adjacency list

In {ε→ B} r 0 {InsSt}
InsSt {ε→ q0} r 0 {In}∪

{IdS(a) | a ∈ U}
IdS(a), {a→ a} − {InsSt,RestS,ChT (a)}
a ∈ U

ChT (a), {q → [s, b,D] | + {Del, IdS(a)}
a ∈ U (s, b,D) ∈ δ(q, a)}
Del {a→ ε | a ∈ U} l 0 {DetLR}∪

{ChT (a) | a ∈ U}
DetLR {[s, b,D]→ 〈s, b,D〉 | − {Del}∪

(s, b,D) ∈ δ(q, a), {InsL1(a) | a ∈ U \ {B}∪
for some q ∈ Q \ F, a ∈ U} {InsR1(a) | a ∈ U \ {B}∪

InsR1(a), {ε→ ã} r + {DetLR,CSR(a)}
a ∈ U \ {B}
CSR(a) {〈s, a,R〉 → s | s ∈ Q} 0 {InsR1(a), InsR2(a)}

a ∈ U \ {B}
InsR2(a) {ã→ a} − {CSR(a), RestS}

a ∈ U \ {B}
InsL1(a), {ε→ â} l − {DetLR,CSL(a)}
a ∈ U \ {B}
CSL(a) {〈s, a, L〉 → s | s ∈ Q} 0 {InsL1(a), InsL2(a)}

a ∈ U \ {B}
InsL2(a) {â→ a} + {CSL(a),Move}

a ∈ U \ {B}
Move {a→ a′ | a ∈ U \ {B}} 0 {InsL2(a) | a ∈ U \ {B}}∪

Ins(a) | a ∈ U \ {B}
Ins(a) {ε→ a′′} l − {Move,Del(a)}

a ∈ U \ {B}
Del(a) {a′ → ε}∪ r + {Ins(a), FL}

a ∈ U \ {B}
FL {a′′ → a | a ∈ U \ {B}} + {RestS}∪

{Del(a) | a ∈ U \ {B}}
RestS {s→ s | s ∈ Q} 0 {FL,Out}∪

{InsR2(a) | a ∈ U \ {B}}∪
{IdS(a) | a ∈ U}∪

Out ∅ + {RestS}

The value of this word is either negative, if D = L, or positive, if D = R. We
first consider the caseD = R; each node InsR1(a), a ∈ U\{B}, receives a copy of
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the word zBk〈s, am, R〉x. If a copy arrives in InsR1(a), a �= am, then it can never
be transformed into a word with a null value. After a number of evolutionary
steps, each of them inserting a ã at the end, the word gets a negatively value and
migrates back to DetLR, where it remains forever. The copy of zBk〈s, am, R〉x
that enters InsR1(am), is modified into zBk〈s, am, R〉xãm. As it has a null value,
it enters CSR(am) (Change State from the Right), where it becomes zBksxãm.
The word zBksxãm is negatively charged and migrates to InsR2(am), where
wtam is substituted with am. Now, the word enters RestS (Restore State), where
the word becomes zBksxam, hence we have correctly simulated a move of M to
the right.

If D = L, then by means of the nodes InsL1(am), CSL(am), and InsL2(am),
the symbol am is inserted in the beginning of the word. Then, by means of the
nodes Move, Ins(b), Del(b), and FL, the symbol b �= B is rotated from the end
of the word to its beginning. After this rotation, the word enters RestS, where
it becomes bamzBksx1, provided that x = x1b. In conclusion, we have correctly
simulated a move of M to the left.

In order to simulate another move, the word enters IdS(a), a ∈ U , and the
whole process discussed above resumes. Note that if the state s in a word existing
in RestS is a final state, then the word enters Out and the computation halts.

Now, the simulation proof is complete. From Table 2, it is easy to see that
the size of Γ is exactly 10card(U). �

An analysis of the proof, reveals that each move of M is simulated by Γ in
a constant number of steps. On the other hand, if M accepts in O(f(n)) time,
then the number of necessary steps in the beginning of any computation of Γ
on a word of length n is at most O(f(n)). Consequently, T imeΓ ∈ O(f(n)).

We finish this work with two open problems that naturally arise:

1. Is the size proved in Theorem 1 optimal?
2. Can arbitrary Turing machines be simulated by NPEP of constant size? In

the affirmative, is such a simulation still time-efficient?
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LNCS, vol. 2723, pp. 401–412. Springer, Heidelberg (2003)

15. Minsky, M.L.: Size and structure of universal Turing machines using tag systems.
In: Recursive Function Theory, Symp. in Pure Mathematics, vol. 5, pp. 229–238
(1962)

16. Navarrete, C.B., Echeanda, M., Anguiano, E., Ortega, A., Rojas, J.M.: Paral-
lel simulation of NEPs on clusters. In: Proc. IEEE/WIC/ACM International
Joint Conference on Web Intelligence and Intelligent Agent Technology - WI-IAT,
pp. 171–174. IEEE Computer Society (2011)

17. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
18. Post, E.L.: Formal reductions of the general combinatorial decision problem. Amer.

J. Math. 65, 197–215 (1943)
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Abstract. We shall consider nondeterministic and deterministic au-
tomata equipped with a limited pushdown (constant height npdas and
dpdas) as well as their two-way versions (constant height 2npdas and
2dpdas). We show two double-exponential gaps for these devices, namely,
(i) for complementing constant height one-way npdas and (ii) for con-
verting 2npdas or 2dpdas into one-way devices.

Keywords: pushdown automata, finite state automata, regular lan-
guages, descriptional complexity.

1 Introduction

Pushdown automata (pdas) are one of the fundamental models in the formal
language theory. They were introduced as a model for solving many practical
problems arising from syntax analysis in programming languages and provided
a machine counterpart for context-free grammars [3,6,8,11].

In [4], a model of a one-way nondeterministic automaton equipped with a
limited pushdown was introduced (constant height npda), together with its de-
terministic version (constant height dpda). Obviously, such machines can ac-
cept regular languages only. However, once a pushdown store is available, even
though of a constant height, we may accept some regular languages with ma-
chines much smaller than any finite state automata.1 For some languages, there
exists an exponential gap between the size of constant height npdas and the size
of nondeterministic finite automata (nfas); the same gap was found between the
constant height dpdas and deterministic finite automata (dfas) [4].

From that perspective, it makes sense to analyze the blow-up in the size
of constant height pdas incurred by basic Boolean operations such as union,
intersection, or complement. The size cost of Boolean operations is a classical
problem, see, e.g., [5,7,10,12]. Unlike the pdas with unrestricted pushdown, both

� Supported by the Slovak grant contracts VEGA 1/0479/12 and APVV-0035-10.
1 For such a machine, a fair descriptional complexity measure must take into account
all machine’s components, i.e., the number of states, the height of the pushdown
store, and the size of the pushdown alphabet.

A.-H. Dediu et al. (Eds.): LATA 2014, LNCS 8370, pp. 113–125, 2014.
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114 Z. Bednárová and V. Geffert

the constant height npdas and dpdas are closed under all these operations:
(i) For constant height dpdas, the costs of union and intersection are single-
exponential, but the cost of complement is polynomial [1]. (ii) For constant
height npdas, the cost of union is linear but the cost of intersection is single-
exponential [2]. The cost of the given Boolean operation for the constant height
version of pda is at most polynomial if and only if the unrestricted version is
closed under the same operation (see e.g. [8]). This holds also for complementing
constant height npdas [2], but here we have a large gap: the upper bound is
trivially double-exponential (see also Thm. 1 below), but the proved lower bound
is only single-exponential (obtained by application of De Morgan’s laws).

The first problem tackled here is complementing of one-way npdas. We show
that this requires a double-exponential blow-up. Namely, for each c ≥ 2, we
provide {Ln}n≥1, a family of regular languages, built over the same (c+2)-letter
alphabet, such that: (i) these languages are accepted by one-way npdas with
n+O(c) states, a pushdown of height n, and c pushdown symbols, but (ii) their
complements {LC

n}n≥1 cannot be accepted by one-way npdas in which both the

number of states and the pushdown height are below 21/6·c
n−O(n·log c) ≥ 2c

n−O(1)

,
independently of the used pushdown alphabet.

Second, it turns out that {LC
n}n≥1, for which one-way npdas require double-

exponential resources, can be accepted by two-way machines deterministically
even with linear resources, namely, by constant height 2dpdas with n+O(c)
states, a pushdown of height n+1, and c+1 pushdown symbols. This gives a
double-exponential blow-up for converting constant height 2dpdas (hence, also
2npdas) to constant height one-way npdas (hence, also dpdas). For comparison,
removing bidirectionality is single-exponential for finite state automata [9], but
not possible at all for 2dpdas or 2npdas with unrestricted pushdown, capable
of accepting non-context-free languages like {ambmcm : m ≥ 0}.

2 Preliminaries

We assume the reader is familiar with the standard models of a deterministic and
nondeterministic finite state automaton (dfa and nfa, for short), see, e.g., [8].

For the given alphabet Σ, let Σi denote the set of words of length i, with
Σ0 = {ε}, Σ≤h =

⋃h
i=0 Σ

i, and Σ∗=
⋃∞

i=0 Σ
i.

For technical reasons, we introduce a (one-way) nondeterministic pushdown
automaton (npda) in the form that distinguishes instructions manipulating the
pushdown store from those reading the input tape [4]; as a sextuplet A = 〈Q,Σ,
Γ,H, qI, F 〉, where Q is the finite set of states, Σ the input alphabet, Γ the
pushdown alphabet, qI ∈ Q the initial state, F ⊆ Q the set of accepting states,
and H ⊆ Q × ({ε} ∪ Σ ∪ {−,+}·Γ )× Q is the transition relation, establishing
instructions with the following meaning. (q, ε, q′): A gets from the state q to the
state q′ without using the input tape or the pushdown store. (q, a, q′): if the next
input symbol is a, A gets from q to q′ by reading a. (q,−X, q′): if the symbol
on top of the pushdown is X , A gets from q to q′ by popping X . (q,+X, q′):
A gets from q to q′ by pushing the symbol X onto the pushdown. An accepting
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computation begins in the state qI with the empty pushdown store (no initial
symbol in the pushdown), and ends by halting in an accepting state q′ ∈ F after
reading the entire input. As usual, L(A) denotes the language accepted by A.

A two-way nondeterministic pushdown automaton (2npda) is defined in the
same way as the one-way npda, but now A can move in both directions along
the input. Transitions in H related to input reading are upgraded as follows.
(q, a→, q′), (q, a←, q′), (q, a ◦, q′): if the current input symbol is a, A gets from
q to q′ and moves its input head one position to the right, left, or keeps it
stationary, respectively. The input in enclosed in between ",. /∈ Σ, called the
left and right endmarkers, respectively. A starts in qI with the input head at the
left endmarker and accepts by halting in q′ ∈ F anywhere along the input.

A deterministic pushdown automaton (dpda or 2dpda) is obtained from
npda or 2npda by claiming that the transition relation does not allow executing
more than one possible instruction at a time. (See [1] for formal details.)

A constant height pushdown automaton (npda, 2npda, dpda, or 2dpda) is
A = 〈Q,Σ, Γ,H, qI, F, h〉, where all components are as above, but h is a constant
delimiting the pushdown height. By definition, if A tries to push a symbol onto
the pushdown but h symbols are already piled up, A aborts and rejects.

3 Complementing Constant Height NPDAs

Given a constant height npda A, a trivial double-exponential upper bound for
an npda accepting the complement of L(A) is obtained easily, by converting into
a classical dfa for L(A)C. The resulting machine can be viewed as a special case
of the constant height npda, with the pushdown height equal to zero and not
using the power of nondeterminism. This gives:

Theorem 1 ([2, Thm. 9]). For each constant height npda A = 〈Q,Σ, Γ,H,
qI, F, h〉, there exists a dfa A′ (hence, also a constant height npda) accepting

the complement of L(A) with at most 2‖Q‖·‖Γ
≤h‖ states.

We shall now show that the above conversion to dfas cannot be substantially
improved. Let us begin with the family of witness languages. For a given alpha-
bet Σ and n ≥ 1, let X = Σn. Clearly, we have ‖Σ‖n many different strings in X .
We say that a string ϕ is well-formed, if it has the following block structure:

ϕ = x1c|x2c| · · ·xsc|$y
R
1 c|y

R
2 c| · · · yR

r c| , (1)

where $, c| /∈ Σ are separator symbols, s, r ≥ 0, and xi, yj ∈ X , for i ∈ {1, . . . , s}
and j ∈ {1, . . . , r}. We call the string ill-formed, if it is not well-formed.

Definition 2. For the given alphabet Σ and n ≥ 1, let LΣ,n be the language
consisting of all strings ϕ ∈ (Σ ∪ {$, c|})∗ which are ill-formed, plus all well-
formed strings ϕ ∈ (Σ ∪ {$, c|})∗, for which ∪s

i=1{xi}
⋂
∪r
j=1{yj} �= ∅. That is,

xi = yj for some i ∈ {1, . . . , s} and j ∈ {1, . . . , r}.
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We are going to show that the language LΣ,n can be accepted by a constant
height npda with linear cost, but any constant height npda accepting the com-
plement LC

Σ,n must use resources that are double-exponential in n:

Lemma 3. For each alphabet Σ and n ≥ 1, the language LΣ,n can be accepted
by a constant height npda using n+ 2·‖Σ‖+ 8 states, a pushdown of height n,
and ‖Σ‖ pushdown symbols.

Theorem 4. Let An be any constant height npda accepting the language LC
Σ,n,

for some non-unary alphabet Σ and some n ≥ 4, and let Qn and hn be, respec-
tively, the number of states and the pushdown height in An. Then

(‖Qn‖+1)2 · (hn+1) > 21/2·‖Σ‖
n−2n·log ‖Σ‖−2·log(n+2)−log(3/2).

Consequently, in {An}n≥1, either the number of states or else the pushdown

height must be above 21/6·‖Σ‖
n−O(n·log ‖Σ‖) ≥ 2‖Σ‖

n−O(1)

.

Proof. Let An =〈Qn, Σ, Γn, Hn, qI,n, Fn, hn〉 be a constant height npda for LC
Σ,n.

Assume first that An is in the normal form of Lem. 1 in [4]. That is, An accepts
in the unique state qF,n with empty pushdown at the end of the input, and hence
Fn = {qF,n}. For contradiction, assume also that, for some n ≥ 4,

‖Qn‖2 · (hn+1) ≤ 21/2·‖Σ‖
n−2n·log ‖Σ‖−2·log(n+2)−log(3/2)

= 21/2·‖Σ‖
n−log ‖Σ‖2n−log(n+2)2−log(3/2) = 21/2·‖Σ‖n ·2

‖Σ‖2n·(n+2)2·3 .
(2)

We are now going to fool An, i.e., to construct a string δ /∈ LC
Σ,n such that An

accepts δ. First, we partition the blocks in X = Σn, upon which the languages
LΣ,n and LC

Σ,n are defined, into two disjoint sets

U={xi∈X : num(xi)<� 12 ·‖Σ‖n�} and W={xi∈X : num(xi)≥� 12 ·‖Σ‖n�},

where num(xi) denotes the integer value corresponding to the string xi, inter-
preting the symbols of the alphabet Σ = {d0, d1, . . . dc−1} as the corresponding
digits in the representation of numbers to the base c = ‖Σ‖. It is easy to see
that ‖X‖ = ‖U‖+‖W‖ and that

‖X‖=‖Σ‖n, ‖U‖=� 12 ·‖Σ‖n� , ‖W‖=0 12 ·‖Σ‖n1 . (3)

Define now the following sets of strings composed of these blocks:

X0 = {x1c| · · ·xsc| : num(x1) < . . . < num(xs) , x1, . . . , xs ∈ X} ,
U0 = {u1c| · · ·usc| : num(u1) < . . . < num(us) , u1, . . . , us ∈ U} ,
W0 = {w1c| · · ·wsc| : num(w1) < . . . < num(ws) , w1, . . . , ws ∈ W} .

Before passing further, we need some additional notation and terminology.
First, for each string z = z1c| · · · zsc| ∈ X0, a complementary string (with respect
to the set X ) will be, by definition, the string zC(X) = z̃1c| · · · z̃rc| consisting of all
blocks from X that do not appear in z, in sorted order. That is, {z̃1, . . . , z̃r} =
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X \ {z1, . . . , zs}, and num(z̃1) < . . . < num(z̃r). Clearly, z
C(X) is again in X0.

With z, we also associate the set Sz = {z1, . . . , zs} consisting of all blocks that
appear in z. It is obvious that Sz ∪ SzC(X) = X and Sz ∩ SzC(X) = ∅. In the same
way, we introduce zC(U), zC(W) for strings z ∈ U0 or z ∈ W0, complementing
with respect to U or W , so here we have SzC(U) = U \ Sz and SzC(W) = W \ Sz.
(When the base set B is known from the context, we shall sometimes write zC

instead of zC(B).) Second, we define a blockwise reversal of the string z ∈ X0,
slightly different from the usual reversal: by definition, zR = zR

1 c| · · · zR
s c| , not

reversing the whole string, but each block separately in its own place. (For
comparison, the classical reversal gives zR = c|zR

s · · · c|zR
1 .) Finally, the blockwise

reversal of the complementary string, with respect to X , will be denoted by

zC(X)R = (zC(X))R = z̃R
1 c| · · · z̃R

r c| , sometimes simplifying notation to zCR.
Now, we can rewrite the definition of the language LC

Σ,n. A well-formed string

ϕ = x$yR = x1c| · · ·xsc|$y
R
1 c| · · · yR

r c| is in LC
Σ,n if and only if Sx ∩ Sy = ∅.

Now, it is easy to see that X0 can be expressed as X0 = U0 ·W0. This follows
from the fact that the blocks in each x = x1c| · · ·xsc| ∈ X0 are sorted. Thus, x can
be partitioned into x = uw, for some u ∈ U0 and w ∈ W0, not excluding the
possibility of u = ε or w = ε. The boundary between u and w is unambiguously
given by the position of the first block xi for which we have num(xi) ≥ � 12 ·‖Σ‖n�.
Because of the one-to-one correspondence between the subsets of X ,U ,W and
the strings in X0, U0,W0, we have, using (3):

‖X0‖=2‖Σ‖
n
, ‖U0‖=2�1/2·‖Σ‖

n�, ‖W0‖=2�1/2·‖Σ‖
n�. (4)

Consider now an arbitrary input ϕuw = uw$uC(U)RwC(W)R, where u ∈ U0

and w ∈ W0. To simplify the notation, we shall write uC and wC instead of
uC(U) and wC(W), respectively. That is, ϕuw = uw$uCRwCR. This input can also
be expresses as ϕx = x$xC(X)R, where x represents an arbitrary string taken
from X0, using decompositions x = uw and xC(X)R = uCRwCR.

It is obvious that the string ϕuw = uw$uCRwCR = x$xC(X)R is well-formed
and that Sx ∩ SxC(X) = ∅. This gives that ϕuw ∈ LC

Σ,n and hence ϕuw must be
accepted by An. In general, ϕuw may have more than one accepting computa-
tion path but, for each ϕuw , we can fix the “leftmost” accepting path (using
some lexicographic ordering among the paths). For this fixed path, we define the
following parameters (see either side of Fig. 1):

– y� ∈ {0, . . . , hn} is the lowest height of pushdown store in the course of
reading the string w$uCR.

– q� ∈ Qn is the state in which the height y� is attained for the last time,
along w$uCR.

– x� ∈ {−(|w|+1), . . . ,−1,+1, . . . ,+(|uCR|+1)} is the input position in which
q� is entered. This value is relative to the position of the $-symbol in w$uCR.
Since each block in both w and uCR is exactly n+1 input symbols long (taking
also into account the c| -symbol at the end of each block) and the same block is
not repeated twice, we have x� ∈ {−(‖W‖·(n+1)+1), . . . ,−1,+1, . . . ,+(‖U‖·
(n+1)+1)}. Therefore, by the use of (3), the total number of different values x�
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Fig. 1. Parameters and pushdown content along the computation

can be bounded by 0 12 ·‖Σ‖n1·(n+1)+�
1
2 ·‖Σ‖n�·(n+1)+2 = ‖Σ‖n·(n+1)+2 ≤

‖Σ‖n ·(n+2). The last inequality holds for each ‖Σ‖ ≥ 2 and each n ≥ 4.
– γu,w is the pushdown content at the moment when q� is entered.

The values for the next two parameters, namely, for qk and xk, depend on whether
x� ≤ −1 or x� ≥ +1: For x� ≤ −1, that is, if the computation reaches the state q�

before reading the $-separator (see the left side of Fig. 1), then:

– qk ∈ Qn is the state at the moment when the pushdown height is equal to y�

for the first time in the course of reading wCR. Such situation must happen
because the pushdown height drops down to zero at the end of wCR, starting
from at least y� at the beginning of wCR.

– xk ∈ {0, . . . , |wCR|} is the distance from the beginning of wCR to the input
position in which qk is entered. Using (3), the total number of different
values xk can be bounded by ‖W‖· (n+1) + 1 = 0 12 ·‖Σ‖n1 · (n+1) + 1 ≤
(12 ·‖Σ‖n+1)·(n+1)+ 1 ≤ 1

2 ·‖Σ‖n ·(n+2). The last inequality uses the fact
that n+2 ≤ 1

2 ·‖Σ‖n for each ‖Σ‖ ≥ 2 and each n ≥ 4.

For x� ≥ +1, that is, if the computation reaches the state q� after reading the
$-separator (see the right side of Fig. 1), then:

– qk ∈ Qn is the state at the moment when the pushdown height is equal to y�

for the last time in the course of reading u. Such situation must happen
because the pushdown height shoots up to at least y� at the end of u, starting
from zero at the beginning of u.

– xk ∈ {0, . . . , |u|} is the distance from the beginning of u to the input position
in which qk is entered. Here the total number of different values xk can be
bounded by ‖U‖·(n+1)+ 1 = � 12 ·‖Σ‖n�·(n+1) + 1 ≤ 1

2 ·‖Σ‖n ·(n+2).

It is easy to see that, independent of whether x� ≤ −1 or x� ≥ +1, we have
hn+1 different possible values for y�, ‖Qn‖ different possibilities for the state q�,
‖Σ‖n·(n+2) possible values for x�, ‖Qn‖ possibilities for the state qk, and at most
1
2 ·‖Σ‖n ·(n+2) possibilities for the value xk. Therefore, the number of different
quintuples [y�, q�, x�, qk, xk] is bounded by ‖Qn‖2 ·(hn+1)·‖Σ‖2n·(n+2)2 · 12 .

In conclusion, for each x = uw ∈ X0 = U0·W0, we took the corresponding input
ϕuw = uw$uCRwCR (in total, ‖X0‖ inputs of this kind) and, for each of them, we
fixed the unique leftmost accepting computation path, which gave the unique
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Fig. 2. Computation paths for the inputs ϕu̇ẇ = u̇ẇ$u̇CRẇCR, ϕüẇ = üẇ$üCRẇCR, and
for δu̇\ü = u̇ẇ$üCRẇCR /∈ LC

Σ,n, for the case of x� ≤ −1

quintuple of parameters [y�, q�, x�, qk, xk]. Thus, each x = uw ∈ X0 is associated
with exactly one quintuple [y�, q�, x�, qk, xk]. Hence, a simple pigeonhole argument
proves the existence of a set X1 ⊆ X0, such that all uw ∈ X1 share the same
[y�, q�, x�, qk, xk] and, using (4) and (2), the cardinality of such set is

‖X1‖ ≥ ‖X0‖
‖Qn‖2·(hn+1)·‖Σ‖2n·(n+2)2· 12

= 1
‖Qn‖2·(hn+1) ·

2‖Σ‖n ·2
‖Σ‖2n·(n+2)2

≥ ‖Σ‖2n·(n+2)2·3
21/2·‖Σ‖n ·2 · 2‖Σ‖n ·2

‖Σ‖2n·(n+2)2 = 3·21/2·‖Σ‖n = 21/2·‖Σ‖
n

+ 21/2·‖Σ‖
n+1

≥ 2�1/2·‖Σ‖
n� + 2�1/2·‖Σ‖

n� = ‖U0‖+ ‖W0‖ .

Summing up, X1 ⊆ X0 = U0·W0 and ‖X1‖ ≥ ‖U0‖+‖W0‖−1. Therefore, the
sets A = U0, B = W0, and C = X1 satisfy the assumptions of Lem. 3 in [2], by
which there must exist some strings u̇, ü ∈ U0 and ẇ, ẅ ∈ W0, with u̇ �= ü and
ẇ �= ẅ, such that u̇ẇ, u̇ẅ, and üẇ are all in X1. Consequently, they all share the
same parameters [y�, q�, x�, qk, xk] on the corresponding accepting paths. Now we
have to distinguish between the two cases, depending on the shared value x�.

Case i: x� ≤ −1. This means that, for uw ∈ {u̇ẇ, u̇ẅ, üẇ}, all fixed accepting
computations for the inputs ϕuw = uw$uCRwCR visit the same state q� ∈ Qn,
with the same pushdown height y�, and at the same position x�, before reading
the $-separator, in the course of reading w. Thus, for all these inputs, the pa-
rameter qk ∈ Qn is taken as the state at the moment when the pushdown height
is equal to y� for the first time along wCR, at a position xk. Also the values qk

and xk are the same for all these inputs. This situation is depicted in Fig. 2.
Consider now ϕu̇ẇ = u̇ẇ$u̇CRẇCR and ϕüẇ = üẇ$üCRẇCR (forgetting about

ϕu̇ẅ). Both ϕu̇ẇ and ϕüẇ are in LC
Σ,n. Since u̇ �= ü and u̇, ü ∈ U0, the sets Su̇, Sü

must differ in at least one block ui ∈ U . Assume first that ui ∈ Su̇ \ Sü. But
then ui ∈ Su̇ ∩SüC , and hence ui ∈ Su̇ẇ ∩SüCẇC . This gives that a hybrid input
δu̇\ü = u̇ẇ$üCRẇCR, which is clearly well-formed, cannot be in LC

Σ,n.
However, An accepts δu̇\ü. First, on the inputs ϕu̇ẇ and ϕüẇ, the pushdown

store contains, respectively, the string γu̇,ẇ or γü,ẇ at the moment when the
machine An reaches the state q� at the position x�. On both ϕu̇ẇ and ϕüẇ, these
deepest y� symbols will stay unchanged in the pushdown until the moment when
An reaches the same state qk at the same position xk along ẇCR.
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Fig. 3. Computation paths for the inputs ϕu̇ẇ = u̇ẇ$u̇CRẇCR, ϕu̇ẅ = u̇ẅ$u̇CRẅCR and
for δẇ\ẅ = u̇ẇ$u̇CRẅCR /∈ LC

Σ,n, for the case of x� ≥ +1

Now, for the input δu̇\ü, one of the possible computations can start by fol-
lowing the trajectory for ϕu̇ẇ, reading u̇ and the first |ẇ$| − |x�| symbols of ẇ$,
until it reaches q�. At this moment, the pushdown store contains γu̇,ẇ. Now the
machine switches to the computation path for ϕüẇ, until it gets to qk. Along
this path, the computation does not touch the deepest y� symbols in the push-
down store, reading the remaining |x�| symbols of ẇ$, the entire segment üCR,
and the first xk symbols of ẇCR. Then the computation on δu̇\ü switches back
to the trajectory for ϕu̇ẇ, working with the same content in the pushdown and
reading the remaining |ẇCR| − xk symbols of ẇCR. Thus, An stops in the unique
state qF,n and accepts δu̇\ü = u̇ẇ$üCRẇCR /∈ LC

Σ,n, which is a contradiction.
Symmetrically, for ui ∈ Sü \ Su̇, the argument switches the roles of ϕu̇ẇ

and ϕüẇ, proving that An accepts δü\u̇ = üẇ$u̇CRẇCR /∈ LC
Σ,n, a contradiction.

Case ii: x� ≥ +1. The argument is similar to Case i. Again, the fixed com-
putations on ϕuw have the same parameters q�, y�, and x�, this time in the
course of reading uCR. Hence, qk is now taken as the state at the moment
when the pushdown height equal to y� for the last time along u, at a posi-
tion xk. Also here both qk and xk are the same (see Fig. 3). Thus, instead
of computations connecting q� with qk, we consider segments connecting qk

with q�, for the inputs ϕu̇ẇ = u̇ẇ$u̇CRẇCR and ϕu̇ẅ = u̇ẅ$u̇CRẅCR (forget-
ting about ϕüẇ). Here we have two subcases: either Sẇ \ Sẅ �= ∅, but then the
machine accepts δẇ\ẅ = u̇ẇ$u̇CRẅCR /∈ LC

Σ,n, or Sẅ \ Sẇ �= ∅, when it accepts

δẅ\ẇ = u̇ẅ$u̇CRẇCR /∈ LC
Σ,n.

In conclusion, we have δ ∈ {δu̇\ü, δü\u̇, δẇ\ẅ, δẅ\ẇ} not belonging to LC
Σ,n

but accepted by An. Therefore, the inequality (2) must be reversed. This gives

‖Qn‖2 ·(hn+1) > 21/2·‖Σ‖
n−O(n·log ‖Σ‖), for n ≥ 4. However, the argument holds

only for npdas in “normal form” of Lem. 1 in [4], assuming that An accepts with
empty pushdown. For general npdas, the bound changes to (‖Qn‖+1)2 ·(hn+1) >

21/2·‖Σ‖
n−O(n·log ‖Σ‖), since converting into the normal form costs one state,

keeping the same pushdown height. Thus, either ‖Qn‖+1 or else hn+1 is above

21/6·‖Σ‖
n−O(n·log ‖Σ‖) ≥ 2‖Σ‖

n−O(1)

. �

By combining Lem. 3 and Thm. 4, for ‖Σ‖ = c, we get:
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Theorem 5. For each fixed constant c ≥ 2, there exists {Ln}n≥1, a family of
regular languages built over a fixed (c+2)-letter input alphabet, such that:

(i) there exists {An}n≥1, a sequence of constant height npdas accepting these
languages with ‖Qn‖ ≤ n+O(c) states, the pushdown of height hn = n, and
c pushdown symbols, but

(ii) for any constant height npdas {AC
n}n≥1 accepting the family of their com-

plements {LC
n}n≥1, either the number of states in AC

n or else the pushdown

height must be above 21/6·c
n−O(n·log c) ≥ 2c

n−O(1)

, independently of the size
of the used pushdown alphabet.

Finally, by allowing alphabets to grow in n, we can get a slightly wider gap.
For example, using Ln = LΣn,n, where ‖Σn‖ = n, we obtain:

Theorem 6. There exists {Ln}n≥1, a family of regular languages, such that:

(i) there exists {An}n≥1, a sequence of constant height npdas accepting these
languages with ‖Qn‖ ≤ 3n+8 states, the pushdown of height hn = n, and
‖Γn‖ = n pushdown symbols, but

(ii) for any constant height npdas {AC
n}n≥1 accepting the family of their com-

plements {LC
n}n≥1, either the number of states in AC

n or else the pushdown

height must be above 21/6·n
n−O(n·logn) ≥ 22

n·logn−O(1)

.

4 Converting Two-Way PDAs to One-Way Devices

Here we consider the problem of converting into one-way devices. Given a con-
stant height 2npda A, a double-exponential upper bound for an equivalent one-
way npda is obtained as follows. First, we code the pushdown content in the
finite state control, with ‖Q′‖ ≤ ‖Q‖ · ‖Γ≤h‖+ 1 states (cf. [1, Lem. 2.2]). This

2nfa is made one-way, with ‖Q′′‖ ≤ ( 2·‖Q′‖
‖Q′‖+1

) ≤ 4‖Q
′‖−Ω(log ‖Q′‖) ≤ 4‖Q‖·‖Γ

≤h‖

states [9]. The resulting nfa is a special case of a one-way constant height npda.

Theorem 7. For each constant height 2npda A = 〈Q,Σ, Γ,H, qI, F, h〉 (hence,
also for 2dpda), there exists an equivalent one-way nfa A′ (hence, also a one-

way constant height npda) with at most 4‖Q‖·‖Γ
≤h‖ states.

We now show that converting constant height 2dpdas into one-way devices
must be paid by a double-exponential blow-up, even if we use nondeterminism
as an additional tool. To this aim, we show that the languages {LC

Σ,n}n≥1, intro-
duced in Def. 2, are accepted by constant height 2dpdas with linear resources.

Lemma 8. For each alphabet Σ and n ≥ 1, the language LC
Σ,n can be accepted

by a constant height 2dpda using n+ 6·‖Σ‖+ 21 states, a pushdown of height
n+1, and ‖Σ‖+1 pushdown symbols.
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Proof. We present only the main ideas for a 2dpda A accepting LC
Σ,n, but all

details can be easily filled by the reader. Recall that the input of a two-way
machine is enclosed in between two endmarkers, and hence a tape with a well-
formed accepted input (see also (1) and Def. 2) looks as follows:

"ϕ. = "x1c|x2c| · · ·xsc|$y
R
1 c|y

R
2 c| · · · yR

r c| . ,

with blocks xi, yj ∈ Σn and xi �= yj , for each i ∈ {1, . . . , s} and j ∈ {1, . . . , r}.
Next, we shall use the pushdown alphabet Γ = Σ∪{XI}, whereXI is a new push-
down symbol, to be placed at the bottom at the very beginning. The pushdown
is of height h = n+1, capable of containing one block z ∈ Σn, above XI.

After pushing XI onto the pushdown, the machine A verifies whether the
input is the well-formed. Traversing the entire tape from left to right, A checks
whether the input contains exactly one $-symbol; traversing the tape back, it
verifies that each block is exactly of length n. If the input is ill-formed, A halts
and rejects. Such procedure uses only n+O(1) states. In addition, if the input is
well-formed but it begins with the $-symbol, A halts and accepts. (This reduces
the number of states in subsequent phases.)

We are now ready for the main idea. The machine A generates in its push-
down store, one after another, all possible blocks z ∈ Σn = {d0, . . . , dc−1}n, in
lexicographic order. In the course of this iteration, each generated block z ∈ Σn

is compared with the input blocks xi, for i = 1, . . . , s, and then with yj , for
j = r, . . . , 1, in that order. The input is rejected if and only if, for some z ∈ Σn

and some i, j, we find out that z = xi and z = yj .
The iteration is initialized by storing the lexicographically first block z = dn0

in the pushdown. Pushing n copies of d0 on top of the pushdown costs only O(1)
states, since the input is well-formed and hence we can count from 1 to n just
by moving the input head along "x1c| .

Now, the current pushdown block z is compared with the input blocks xi,
for i = 1, . . . , s, one after another. Comparing z with xi is based on ability
to read xi in both directions. That is, the symbols are popped out from the
pushdown to the finite state control, after which they are compared against the
symbols in xi, moving the input head to the right. If A finds the first difference,
it can restore the pushdown content be reading the input symbols in opposite
direction. After that, A can move one input block to the right and compare the
restored pushdown block z again, with the next input block xi+1. (When the
last block xs has been compared without a match, A starts the next iteration,
for the next pushdown block z ∈ Σn.) Conversely, if the match is found, that
is, if z = xi, the machine A still restores z by reading xi from right to left but,
after that, A moves to the right endmarker ., to inspect yj-blocks. The whole
procedure uses 3·‖Σ‖+O(1) states. (Since the input is well-formed, the pushdown
need not be tested against overflows or underflows, which saves states.)

If z = xi, for some z and xi, the current pushdown block z is also compared
with yr, . . . , y1. This procedure is very similar to that inspecting x1, . . . , xs, but
the blocks in the right part are written reversely. For this reason, all input head
movements are in the opposite direction, starting with yr and ending by y1.
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The most important difference is that if A finds a match, i.e., if z = yj, for
some j, we have found a pushdown block equal to some blocks in both parts of
the input, i.e., xi = z = yj . Therefore, A halts immediately in a rejecting state.
(When the last block y1 has been compared without a match, A starts the next
iteration, for the next z ∈ Σn.) This procedure uses only 2·‖Σ‖ + O(1) states,
instead of 3·‖Σ‖+O(1), since A does not have to restore z, if z = yj .

To iterate over all blocks z ∈ Σn = {d0, . . . , dc−1}n, we need also a routine that
replaces the current block z in the pushdown by the next block in lexicographic
order. Clearly, z can be expressed in the form ξdid

e
c−1, for some ξ ∈ Σ∗ and some

e ∈ {0, . . . , n}, and di represents the first symbol in z not equal to dc−1 from
the right. Hence, it is enough to replace z in the pushdown by ξdi+1d

e
0. Thus, in

the first phase, A pops all symbols dc−1 out from the pushdown, until it finds
the first symbol di different from dc−1. Then A starts the second phase, pushing
the symbol di+1 and the “proper” number of copies of d0. To avoid counting
from 0 to e and then back from e to 0 in the finite state control, we count by
input head movement. That is, the first phase starts with the input head at the
$-symbol, moving one position to the left per each symbol dc−1 popped out.
Conversely, in the second phase, we push one copy of d0 per each move to the
right, until we reach the $-symbol. Implemented this way, ‖Σ‖+O(1) states are
sufficient, instead of Ω(n·‖Σ‖). (Since there is at least one block to the left of $,
i.e., we have enough room for this input head movement.) There is one special
case, an attempt to increment the largest block z = dnc−1. This is detected when
A sees the bottom pushdown symbol XI in the first phase. This means that the
iteration over all possible blocks z ∈ Σn has been completed without meeting
with the same z on both sides of the input, and hence A halts and accepts.

Carefully implemented, the machine works with n+ 6·‖Σ‖+ 21 states. �

Combining this with Thm. 5, we get a gap for removing bidirectionality:

Theorem 9. For each fixed constant c ≥ 2, there exists {LC
n}n≥1, a family of

regular languages built over a fixed (c+2)-letter input alphabet, such that:

(i) there exists {An}n≥1, a sequence of constant height 2dpdas (hence, also
2npdas) accepting these languages with ‖Qn‖ ≤ n+O(c) states, the pushdown
of height hn = n+1, and c+1 pushdown symbols, but

(ii) for any constant height one-way npdas {AC
n}n≥1 accepting this family (hence,

also for one-way dpdas), either the number of states in AC
n or else the push-

down height must be above 21/6·c
n−O(n·log c) ≥ 2c

n−O(1)

, independently of the
size of the used pushdown alphabet.

5 Final Remarks

We tackled two problems for pushdown automata with a limited pushdown
height. First, complementing a one-way npda A with ‖Q‖ states and a pushdown

of height h, using ‖Γ‖ pushdown symbols, does not cost more than 2‖Q‖·‖Γ
≤h‖
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states [2]—actually by a trivial conversion to a classical dfa not using nondeter-
minism or any pushdown at all (see Thm. 1). More important, in Thms. 5 and 6,
we have shown that a double-exponential blow-up is necessary. This reveals that,
for one-way constant height npdas, the complement is essentially harder than
intersection, the cost of which is single-exponential [2].

Second, converting a two-way constant height 2npda into a one-way device

does not cost more than 4‖Q‖·‖Γ
≤h‖ states— this time by a trivial conversion to a

classical nfa, by Thm. 7. Also for removing bidirectionality, a double-exponential
blow-up is necessary, as shown in Thm. 9. Moreover, this blow-up is required for
converting 2dpdas into one-way npdas or dpdas as well.

There are not too many computational models with a double-exponential
blow-up for such operations. To obtain these gaps, we used some techniques
from [2] as a starting point. Nevertheless, several new ideas were required.
Namely, in [2], also the upper bounds for complementing the used witness lan-
guages were only single-exponential, which is not sufficient for our purposes.

However, the exact costs are still open; the upper and lower bounds presented
here do not match each other exactly. It should also be interesting to investigate
the cost of other language operations for constant height pdas. Finally, we would
like to emphasize the interest in studying the power of machines with a limit
on some other types of memory (a queue, a stack with a read-only access below
the top, and so on). The main reason is that such machines may be viewed
as automata with a huge—but finite—number of states, with some replicated
patterns in the structure of transitions in the state set.
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Abstract. The Minimum Path Cover problem on directed acyclic graphs
(DAGs) is a classical problem that provides a clear and simple mathe-
matical formulation for several applications in different areas and that
has an efficient algorithmic solution. In this paper, we study the compu-
tational complexity of two constrained variants of Minimum Path Cover
motivated by the recent introduction of next-generation sequencing tech-
nologies in bioinformatics. The first problem (MinPCRP), given a DAG
and a set of pairs of vertices, asks for a minimum cardinality set of paths
“covering” all the vertices such that both vertices of each pair belong to
the same path. For this problem, we show that, while it is NP-hard to
compute if there exists a solution consisting of at most three paths, it is
possible to decide in polynomial time whether a solution consisting of at
most two paths exists. The second problem (MaxRPSP), given a DAG
and a set of pairs of vertices, asks for a single path containing the max-
imum number of the given pairs of vertices. We show its NP-hardness
and also its W[1]-hardness when parametrized by the number of covered
pairs. On the positive side, we give a fixed-parameter algorithm when
the parameter is the maximum overlapping degree, a natural parameter
in the bioinformatics applications of the problem.

1 Introduction

The Minimum Path Cover (MinPC) problem is a well-known problem in graph
theory. Given a directed acyclic graph (DAG), MinPC asks for a minimum-
cardinality set Π of paths such that each vertex of G belongs to at least one
path of Π . The problem can be solved in polynomial time with an algorithm
based on a proof of the well-known Dilworth’s theorem for partially ordered sets
which allows to relate the size of a minimum path cover to that of a maximum
matching in a bipartite graph obtained from the input DAG [6].

The Minimum Path Cover problem has important applications in several fields
ranging from bioinformatics [1, 5, 11] to software testing [7, 10]. In particular, in
bioinformatics the Minimum Path Cover problem is applied to the reconstruc-
tion of a set of highly-similar sequences starting from a large set of their short
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fragments (called short reads) [5, 11]. More precisely, each fragment is repre-
sented by a single vertex and two vertices are connected if the alignments of the
corresponding reads on the genomic sequence overlap. In [11], the paths on such
a graph represent putative transcripts and a minimum-cardinality set of paths
“covering” all the vertices represents a set of protein isoforms which are likely to
originate from the observed reads. On the other hand, in [5] the paths on such
a graph represent the genomes of putative viral haplotypes and a minimum-
cardinality set of paths covering the whole graph represents the likely structure
of a viral population.

Recently, different constraints have motivated the definition of new variants of
the minimum path cover problem. In [1], given a DAG D and a set P of required
paths, the proposed problem asks for a minimum cardinality set of paths such
that: (1) each vertex of the graph belongs to some path, and (2) each path in P
is a subpath of a path of the solution. The authors have described a polynomial-
time algorithm to solve this problem by collapsing each required path into a
single vertex and then finding a minimum path cover on the resulting graph.
Other constrained problems related to minimum path cover have been proposed
in the context of social network analysis and, given an edge-colored graph, ask for
the maximum number of vertex-disjoint uni-color paths that cover the vertices
of the given graph [2, 12].

Some constrained variants of the minimum path cover problem have been in-
troduced in the past by Ntafos and Hakimi in the context of software testing [10]
and appear to be relevant for some sequence reconstruction problems of recent
interest in bioinformatics. More precisely, in software testing each procedure to
be tested is modeled by a graph where vertices correspond to single instructions
and two vertices are connected if the corresponding instructions are executed
sequentially. The test of the procedure should check each instruction at least
once, hence a minimum path cover of the graph represents a minimum set of
execution flows that allows to test all the instructions. Clearly, not all the execu-
tion flows are possible. For this reason, Ntafos and Hakimi proposed the concept
of required pairs, which are pairs of vertices that a feasible solution must include
in a path, and that of impossible pairs, which are pairs of vertices that a feasible
solution must not include in the same path. In particular, one of the problems
introduced by Ntafos and Hakimi is the Minimum Required Pairs Cover (Min-
RPC) problem where, given a DAG and a set of required pairs, the goal is to
compute a minimum set of paths covering all the required pairs, i.e., a minimum
set of paths such that, for each required pair, at least one path contains both
vertices of the pair.

The concept of required pairs is also relevant for sequence reconstruction
problems in bioinformatics, as short reads are often sequenced in pairs (paired-
end reads) and these pairs of reads must align to a single genetic sequence. As a
consequence, each pair of vertices corresponding to paired-end reads must belong
to the same path of the cover. Paired-end reads provide valuable information
that, in principle, could greatly improve the accuracy of the reconstruction.
However, they are often used only to filter out the reconstructed sequences that
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do not meet such constraints, instead of directly exploiting them during the
reconstruction process. Notice that MinRPC asks for a solution that covers only
the required pairs, while in bioinformatics we are also interested in covering
all the vertices. For this reason, we consider a variant of the Minimum Path
Cover problem, called Minimum Path Cover with Required Pairs (MinPCRP),
that, given a DAG and a set of required pairs, asks for a minimum set of paths
covering all the vertices and all the required pairs. Clearly, MinPCRP is closely
related to MinRPC. In fact, as we show in Section 2, the same reduction used
in [10] to prove the NP-hardness of MinRPC can be applied to our problem,
leading to its intractability.

In this paper, we continue the analysis of [10] by studying the complexity
of path covering problems with required pairs. More precisely, we study how
the complexity of these problems is influenced by two parameters relevant for
the sequence reconstruction applications in bioinformatics: (1) the minimum
number of paths covering all the vertices and all the required pairs and (2) the
maximum overlapping degree (defined later). In the bioinformatics applications
we discussed, the first parameter—the number of covering paths—is often small,
thus an algorithm exponential in the size of the solution could be of interest. The
second parameter we consider in this paper, the maximum overlapping degree,
can be informally defined as follows. Two required pairs overlap when there exists
a path that connects the vertices of the pairs, and the path cannot be split in two
disjoint subpaths that separately connect the vertices of the two pairs. Then, the
overlapping degree of a required pair is the number of required pairs that overlap
with it. In the sequence reconstruction applications, as the distance between two
paired-end reads is fixed, the maximum overlapping degree is small compared
to the number of vertices, hence it is a natural parameter for investigating the
computational complexity of the problem.

First, we investigate how the computational complexity of MinPCRP is influ-
enced by the first parameter. In this paper we prove that it is NP-complete to
decide if there exists a solution of MinPCRP consisting of at most three paths
(via a reduction from the 3-Coloring problem). We complement this result by
giving a polynomial-time algorithm for computing a solution with at most 2
paths, thus establishing a sharp tractability borderline for MinPCRP when pa-
rameterized by the size of the solution. These results significantly improve the
hardness result that Ntafos and Hakimi [10] presented for MinRPC (and that
holds also for MinPCRP), where the solution contains a number of paths which
is polynomial in the size of the input.

Then, we investigate how the computational complexity of MinPCRP is in-
fluenced by the second parameter, the overlapping degree. Unfortunately, Min-
PCRP is NP-hard even if the maximum overlapping degree is 0. In fact, this can
be easily obtained by modifying the reduction presented in [10] to hold also for
restricted instances of MinPCRP with no overlapping required pairs.

A natural heuristic approach for solving MinPCRP is the one which com-
putes a solution by iteratively adding a path that covers a maximum set of
required pairs not yet covered by a path of the solution. This approach leads
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to a natural combinatorial problem, the Maximum Required Pairs with Single
Path (MaxRPSP) problem, that, given a DAG and a set of required pairs, asks
for a path that covers the maximum number of required pairs. We investigate
the complexity of MaxRPSP and we show that it is not only NP-hard, but also
W[1]-hard when the parameter is the number of covered required pairs. This
result shows that it is unlikley that the problem is fixed-parameter tractable,
when parameterized by the number of required pairs covered by a single path.
We refer the reader to [3, 9] for an in-depth presentation of the theory of fixed-
parameter complexity. We consider also the MaxRPSP problem parameterized
by the maximum overlapping degree but, differently from MinPCRP, we give a
fixed-parameter algorithm for this case. This positive result shows a gap between
the complexity of MaxRPSP and the complexity of MinPCRP when parameter-
ized by the maximum overlapping degree.

The rest of the paper is organized as follows. First, in Section 2 we give some
preliminary notions and we introduce the formal definitions of the two problems.
In Section 3, we investigate the computational complexity of MinPCRP when
the solution consists of a constant number of paths: we show that it is NP-
complete to decide if there exists a solution of MinPCRP consisting of at most
three paths, while the existence of a solution consisting of at most two paths can
be computed in polynomial time. In Section 4, we investigate the computational
complexity of MaxRPSP: we prove its W[1]-hardness when the parameter is the
number of required pairs covered by the path (Section 4.1) and we give a fixed-
parameter algorithm when the parameter is the maximum overlapping degree
(Section 4.2).

Due to the page limit, some proofs are omitted. A complete version of this
paper, containing all the proofs, is available at http://arxiv.org/abs/1310.5037.

2 Preliminaries

In this section, we introduce the basic notions used in the rest of the paper and
we formally define the two combinatorial problems we are interested in.

While our problems deal with directed graphs, we consider both directed and
undirected graphs. We denote an undirected graph as G = (V,E) where V is the
set of vertices and E is the set of (undirected) edges, and a directed graph as
D = (N,A) where N is the set of vertices and A is the set of (directed) arcs.
We denote an edge of G = (V,E) as {v, u} ∈ E where v, u ∈ V . Moreover, we
denote an arc of D = (N,A) as (v, u) ∈ A where v, u ∈ N .

Given a directed graph D = (N,A), a path π from vertex v to vertex u,
denoted as vu-path, is a sequence of vertices 〈v1, . . . , vn〉 such that (vi, vi+1) ∈ A,
v = v1 and u = vn. We say that a vertex v belongs to a path π = 〈v1, . . . , vn〉,
denoted as v ∈ π, if v = vi, for some 1 ≤ i ≤ n. Given a path π = 〈v1, . . . , vn〉,
we say that a path π′ = 〈vi, vi+1, . . . , vj−1, vj〉, with 1 ≤ i ≤ j ≤ n, is a subpath
of π. Given a set N ′ ⊆ N of vertices, a path π covers N ′ if every vertex of N ′

belongs to π.
In the paper, we consider a set R of pairs of vertices in N . We denote each

pair as [vi, vj ], to avoid ambiguity with the notations of edges and arcs.

http://arxiv.org/abs/1310.5037
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u′ u′′ v′ v′′. . . . . .

(a) Alternated

u′ u′′ v′′ v′. . . . . .

(b) Nested

Fig. 1. Examples of two overlapping required pairs [u′, v′] and [u′′, v′′]. In (a) the
required pairs are alternated, while in (b) they are nested.

Now, we are able to give the definitions of the combinatorial problems we are
interested in.

Problem 1. Minimum Path Cover with Required Pairs (MinPCRP)
Input: a directed acyclic graph D = (N,A), a source s ∈ N , a sink t ∈ N , and
a set R = {[vx, vy] | vx, vy ∈ N, vx �= vy} of required pairs.
Output: a minimum cardinality set Π = {π1, . . . , πn} of directed st-paths such
that every vertex v ∈ N belongs to at least one st-path πi ∈ Π and every
required pair [vx, vy] ∈ R belongs to at least one st-path πi ∈ Π , i.e. vx, vy
belongs to πi.

Problem 2. Maximum Required Pairs with Single Path (MaxRPSP)
Input: a directed acyclic graph D = (N,A), a source s ∈ N , a sink t ∈ N and a
set R = {[vx, vy ] | vx, vy ∈ N, vx �= vy} of required pairs.
Output: an st-path π that covers a set R′ = {[vx, vy] | vx, vy ∈ π} ⊆ R of
maximum cardinality.

Two required pairs [u′, v′] and [u′′, v′′] in R overlap if there exists a path
π in D such that the four vertices appear in π in one of the following orders
(assuming that the vertex u′ appears before u′′ in π), where v′ and u′′ are two
distinct vertices of G (see Fig. 1):
– 〈u′, u′′, v′, v′′〉 (the two required pairs are alternated);
– 〈u′, u′′, v′′, v′〉 (the required pair [u′′, v′′] is nested in [u′, v′] ).

Notice that, from this definition, the required pairs [x, y] and [y, z] do not overlap.
Finally, consider a required pair [u′, v′] of R. We define the overlapping degree

of [u′, v′] as the number of required pairs in R that overlap with [u′, v′].

Hardness of MinPCRP. As we mentioned in the introduction, MinPCRP is
related to a combinatorial problem which has been studied in the context of
program testing [10], where it is shown to be NP-hard. More precisely, given a
directed acyclic graph D = (N,A), a source s ∈ N , a sink t ∈ N and a set R =
{[vx, vy ] | vx, vy ∈ N, vx �= vy} of required pairs, the Minimum Required Pairs
Cover (MinRPC) problem asks for a minimum cardinality set Π = {π1, . . . , πn}
of directed st-paths such that every required pair [vx, vy] ∈ R belongs to at least
one st-path πi ∈ Π , i.e. vx, vy ∈ πi.

MinRPC can be easily reduced to MinPCRP due to the following property:
each vertex of the graph D (input of MinRPC) must belong to at least one
required pair. Indeed, if this condition does not hold for some vertex v, we can
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modify the graph D by contracting v (that is removing v and adding an edge
(u, z) to A, for each u, z ∈ N such that (u, v), (v, z) ∈ A). This implies that,
since in an instance of MinRPC all the resulting vertices belong to some required
pair, a feasible solution of that problem must cover every vertex of the graph.
Then, a solution of MinRPC is also a solution of MinPCRP, which implies that
MinPCRP is NP-hard.

MinPCRP on directed graphs (not necessarily acyclic) is as hard as MinPCRP
on DAGs. In fact, since each strongly connected component can be covered with
a single path, we can replace them with single vertices, obtaining a DAG and
without changing the size of the solution. Clearly, MinPCRP on general graphs
and requiring that the covering paths are simple is as hard as the Hamiltonian
path problem, which is NP-complete.

3 A Sharp Tractability Borderline for MinPCRP

In this section, we investigate the computational complexity of MinPCRP and
we give a sharp tractability borderline for k-PCRP, the restriction of MinPCRP
where we ask whether there exist k paths that cover all the vertices of the graph
and all the set of required pairs. First, we show (Sect. 3.1) that 3-PCRP is NP-
complete. This result implies that k-PCRP does not belong to the class XP 1,
so it is probably hopeless to look for an algorithm having complexity O(nk),
and hence for a fixed-parameter algorithm in k. We complement this result by
giving (Sect. 3.2) a polynomial time algorithm for 2-PCRP, thus defining a sharp
borderline between tractable and intractable instances of MinPCRP.

3.1 Hardness of 3-PCRP

In this section we show that 3-PCRP is NP-complete. We prove this result
via a reduction from the well-known 3-Coloring (3C) problem which, given an
undirected (connected) graph G = (V,E), asks for a coloring c : V → {c1, c2, c3}
of the vertices of G with exactly 3 colors, such that, for every {vi, vj} ∈ E, we
have c(vi) �= c(vj).

Starting from an undirected graph G = (V,E) (instance of 3C), we construct
a corresponding instance 〈D = (N,A), R〉 of 3-PCRP as follows. For every sub-
set {vi, vj} of cardinality 2 of V , we define a graph Di,j = (Ni,j , Ai,j) (in the
following we assume that, for each Di,j associated with set {vi, vj}, i < j). The

vertex set Ni,j is {si,j, ni,j
i , ni,j

j , f i,j , ti,j}. The set Ai,j of arcs connecting the
vertices of Ni,j can have two possible configurations, depending on the fact that
{vi, vj} belongs or does not belong to E. In the former case, that is {vi, vj} ∈ E,
Di,j is in configuration (1) (see Fig. 2 (a)) and:

Ai,j = {(si,j , ni,j
i ), (si,jni,j

j ), (si,j , f i,j), (ni,j
i , ti,j), (ni,j

j , ti,j), (f i,j , ti,j)}
1 We recall that the class XP contains those problems that, given a parameter k, can
be solved in time O(nf(k)).



132 N. Beerenwinkel et al.

si,j ni,j
j

ni,j
i

f i,j

ti,j. . . . . .

(a) Configuration (1): {vi, vj} ∈ E

si,j

ni,j
i ni,j

j

ti,j

f i,j

. . . . . .

(b) Configuration (2): {vi, vj} /∈ E

Fig. 2. Example of the two configurations of subgraph Di,j = (Ni,j , Ai,j) associated
with a pair {vi, vj} of vertices of a graph G = (V,E)

s D1,2 . . . Di,j Di,j+1 . . . Di,n Di+1,i+2 . . . Dn−1,n t

Fig. 3. Example of graph D = (N,A) associated with graph G = (V,E). Grey boxes
represent subgraphs Di,j in one of the two possible configurations of Fig. 2.

In the latter case, that is {vi, vj} /∈ E, Di,j is in configuration (2) (see
Fig. 2 (b)) and:

Ai,j = {(si,j , ni,j
i ), (si,j , f i,j), (ni,j

i , ni,j
j ), (ni,j

j , ti,j), (f i,j , ti,j)}

The whole graph D = (N,A) is constructed by concatenating the graphs Di,j

(for all 1 ≤ i < j ≤ n) according to the lexicographic order of their indices i, j.
The sink ti,j of each graph Di,j is connected to the source si

′,j′ of the graph
Di′,j′ which immediately follows Di′,j′ . A distinguished vertex s is connected to
the source of D1,2 (i.e., the first subgraph), while the sink of Dn−1,n (i.e., the
last subgraph) is connected to a second distinguished vertex t. Fig. 3 depicts
such a construction.

The set R of required pairs is defined as follows.

R = {[s, f i,j] | {vi, vj} ∈ E}∪
⋃

1≤i≤n

Ri where Ri= {[ni,j
i , ni,h

i ] | 1 ≤ j ≤ h ≤ n}

The following lemmas prove the correctness of the reduction.

Lemma 3. Let G = (V,E) be an undirected (connected) graph and let 〈D =
(N,A), R〉 be the corresponding instance of 3-PCRP. Then, given a 3-coloring of
G we can compute in polynomial time three paths of D that cover all its vertices
and every required pair in R.

Lemma 4. Let G = (V,E) be an undirected graph and let 〈D = (N,A), R〉 be
the corresponding instance of 3-PCRP. Then, given three paths in D that cover
all its vertices and every required pair in R we can compute in polynomial time
a 3-coloring of G.
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Since 3-PCRP is clearly in NP, the following result is a consequence of the
previous lemmas and of the NP-hardness of 3C [8].

Theorem 5. 3-PCRP is NP-complete.

3.2 A Polynomial Time Algorithm for 2-PCRP

In this section we give a polynomial time algorithm for computing a solution of
2-PCRP. Notice that 1-PCRP can be easily solved in polynomial time, as there
exists a solution of 1-PCRP if and only if the reachability relation of the vertices
of the input graph is a total order.

The algorithm for solving 2-PCRP is based on a polynomial-time reduction to
the 2-Clique Partition problem, which, given an undirected graph G = (V,E),
asks whether there exists a partition of V in two sets V1, V2 both inducing
a clique in G. Computing the existence of a 2-Clique Partition over a graph
G is equivalent to computing if there exists a 2-Coloring of the complement
graph G′ (hence deciding if G′ is bipartite), which is well-known to be solvable
in polynomial time [8, probl. GT15]. To perform this reduction we assume that
given 〈D = (N,A), R〉, instance of 2-PCRP, every vertex of the graph D belongs
to at least one required pair in R. Otherwise, we add to R the required pairs
[s, vi] for all vi ∈ N that do not belong to any required pair. Therefore, a solution
that covers all the required pairs in R covers also all the vertices, hence it is a
feasible solution of 2-PCRP. Moreover, notice that this transformation does not
affect the solution of 2-PCRP, since all the paths start from s and cover all the
nodes of the graph, including the additional required pairs.

The algorithm, starting from an instance 〈D = (N,A), R〉 of 2-PCRP, com-
putes in polynomial time a corresponding undirected graph G = (V,E) where
V = {vc | c ∈ R} andE = {{vci , vcj} | ∃ a path in D that covers both ci and cj}.

Given a set of required pairs R′ ⊆ R, we denote by V (R′) the corresponding
set of vertices of G (i.e., V (R′) = {vc | c ∈ R′}).

The algorithm is based on the following fundamental property.

Lemma 6. Given an instance 〈D = (N,A), R〉 of 2-PCRP and the correspond-
ing graph G = (V,E), then there exists a path π that covers a set R′ of required
pairs if and only if V (R′) is a clique of G.

From Lemma 6, it follows that, in order to compute the existence of a solution
of 2-PCRP over the instance 〈D = (N,A), R〉 (in which every vertex ofD belongs
to at least one required pair in R), we have to compute if there exists a 2-Clique
Partition of the corresponding graph G. Since the 2-Clique Partition problem
can be solved in polynomial-time [8, probl. GT15], we can conclude that 2-PCRP
can be decided in polynomial time.

4 Parameterized Complexity of MaxRPSP

In this section, we consider the parameterized complexity of MaxRPSP. We
show that, although MaxRPSP is W[1]-hard (hence unlikely fixed-parameter
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tractable) when parameterized by the number of required pairs covered by a
single path (Section 4.1), the problem becomes fixed-parameter tractable if the
maximum overlapping degree is a parameter (Section 4.2).

4.1 W[1]-Hardness of MaxRPSP Parameterized by the Optimum

In this section, we investigate the parameterized complexity of MaxRPSP when
parameterized by the size of the solution, that is the maximum number of re-
quired pairs covered by a single path, and we prove that the problem is W[1]-hard
(notice that this result implies the NP-hardness of MaxRPSP). This result shows
that it is unlikley that the problem is fixed-parameter tractable, when parame-
terized by the number of required pairs covered by a single path. For details on
the theory of fixed-parameter complexity, we refer the reader to [3, 9].

We prove this result via a parameterized reduction from the h-Clique problem
to the decision version of MaxRPSP (k-RPSP), parameterized by the sizes of
the respective solutions. Given an undirected graph G = (V,E) and an integer
h, h-Clique asks to decide if there exists a clique C ⊆ V of size h. On the other
hand, given a DAG D, a set R of required pairs, and an integer k, the k-RPSP
problem consists of deciding if there exists a path in D that “covers” k required
pairs. We recall that h-Clique is known to be W[1]-hard [4].

First, we start by showing how to construct an instance of k-RPSP starting
from an instance of h-Clique. Given an (undirected) graph G = (V,E) with n
vertices v1, . . . , vn, we construct the associated directed acyclic graphD = (N,A)
as follows. The set N of vertices is defined as:

N = {vzi | vi ∈ V, 1 ≤ z ≤ h} ∪ {s, t}

Informally, N consists of two distinguished vertices s, t and of h copies v1i , . . . , v
h
i

of every vertex vi of G.
The set of arcs A is defined as:

A = {(vzi , vz+1
j ) | {vi, vj} ∈ E, 1 ≤ z ≤ h− 1} ∪ {(s, v1i ), (vhi , t) | vi ∈ V }

Informally, we connect every two consecutive copies associated with vertices that
are adjacent in G, the source vertex s to all the vertices v1i , with 1 ≤ i ≤ n, and
all the vertices vhi , with 1 ≤ i ≤ n, to the sink vertex t.

The set R of required pairs is defined as:

R = {[vxi , v
y
j ] | {vi, vj} ∈ E, 1 ≤ x < y ≤ h}

Informally, for each edge {vi, vj} of G there is a required pair [vxi , v
y
j ], 1 ≤

x < y ≤ h, between every two different copies associated with vi, vj .
By construction, the vertices in N (except for s and t) are partitioned into h

independent sets Iz = {vzi | 1 ≤ i ≤ n}, with 1 ≤ z ≤ h, each one containing
a copy of every vertex of V . Moreover, the arcs of A only connect two vertices
of consecutive subsets Iz and Iz+1, with 1 ≤ z ≤ h − 1. Figure 4 presents an
example of directed graph D associated with an undirected graph G.

Now, we are able to prove the main properties of the reduction.
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I1 Iz Iz+1 Ih

v11

v1i

v1j

v1n

...

...

...

vz1

vzi

vzj

vzn

...

...

...

vz+1
1

vz+1
i

vz+1
j

vz+1
n

...

...

...

vh1

vhi

vhj

vhn

...

...

...

s t

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Fig. 4. Example of directed acyclic graph D = (N,A) associated with an instance
G = (V,E) of the h-Clique problem. Each gray box highlight an independent set Iz
composed of one copy of the vertices in V . Edges (vz1 , v

z+1
j ), (vzi , v

z+1
j ), and (vzn, v

z+1
i )

are some of the directed edges in A associated with edges {v1, vj}, {vi, vj}, {vi, vn} ∈ E.

Lemma 7. Let G = (V,E) be an undirected graph and 〈D = (N,A), R〉 be the
associated instance of k-RPSP. Then: (1) starting from an h-clique in G we can
compute in polynomial time an st-path π in D that covers

(
h
2

)
required pairs of

R; (2) starting from an st-path π in D that covers
(
h
2

)
required pairs we can

compute in polynomial time an h-clique in G.

The W[1]-hardness of k-RPSP easily follows from Lemma 7 and from the
W[1]-hardness of h-Clique when parameterized by h [4].

Theorem 8. k-RPSP is W[1]-hard when parameterized by the number of re-
quired pairs covered by an st-path.

4.2 An FPT Algorithm for MaxRPSP Parameterized by the
Maximum Overlapping Degree

In this section we propose a fixed parameter algorithm (FPT) for the MaxRPSP
problem, where the parameter is the maximum overlapping degree of the required
pairs in R. For the rest of the section, let 〈D = (N,A), R〉 be an instance of the
MaxRPSP problem.

For ease of exposition, we fix an order of the required pairs in R and we
represent the i-th required pair of the ordering as [v1i , v

2
i ]. Whenever no confusion

arises, we will refer to that required pair as i-pair. Intuitively, we want that the
order of the required pairs is “compatible” with the topological order of the
vertices. More formally, in this ordering, for any two distinct required pairs
[v1j , v

2
j ] and [v1i , v

2
i ] with j < i, pair [v1j , v

2
j ] is nested in [v1i , v

2
i ] or there does not

exist a path π from s to v2j that covers both the required pairs (that is, π passes

through v2j before v2i ). Clearly, an order that satisfies this condition can be easily
computed from the topological order of the vertices.
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We present a parameterized algorithm based on dynamic programming for
the MaxRPSP problem when the parameter p is the maximum number of over-
lapping required pairs. In fact, we can decompose a path π, starting in s, ending
in a vertex v, and covering k required pairs, into two subpaths: the first one—
π1—starts in s, ends in a vertex v′, and covers k1 required pairs, while the other
one—π2—starts in v′, ends in v, and covers the remaining k2 = k − k1 required
pairs (possibly using vertices of π1). The key point to define the recurrence is
that, for each required pair p, we keep track the set of required pairs overlapping
p and covered by the path. To this aim, for each required pair [v1i , v

2
i ], we define

the set OP([v1i , v
2
i ]) as the set of vertices v such that v belongs to a required pair

that overlaps [v1i , v
2
i ] and such that v2i is reachable from v. By a slightly abuse

of the notation, we consider that OP([v1i , v
2
i ]) always contains vertex v1i .

The recurrence relies on the following observation. Let π be a path covering
a set P of required pairs and let N(P ) be the set of vertices belonging to the
required pairs in P . Consider two required pairs [v1i , v

2
i ] and [v1j , v

2
j ] in P , with

j < i. Then, either [v1j , v
2
j ] is nested in [v1i , v

2
i ] (hence the fact that π covers

the pair [v1j , v
2
j ] can be checked by the recurrence looking only at the required

pairs that overlap with [v1i , v
2
i ]) or pairs [v1i , v

2
i ] and [v1j , v

2
j ] are alternated. In

the latter case, since [v1i , v
2
i ] is in P , we only have to consider the vertices in

the set N(P ) ∩ OP([v1i , v
2
i ]) ∩ OP([v1j , v

2
j ]). Moreover, let pi be the number of

required pairs that overlap the required pair [v1i , v
2
i ], then |OP([v1i , v

2
i ])| is at

most 2pi. Hence, the cardinality of set N(P ) ∩ OP([v1i , v
2
i ]) ∩ OP([v1j , v

2
j ]) is

bounded by 2max(pi, pj). Moreover, given two sets S and S′ of vertices such
that S ⊆ OP([v1i , v

2
i ]) and S′ ⊆ OP([v1j , v

2
j ]), we say that S is in agreement

with S′ if S ∩ (OP([v1i , v
2
i ]) ∩OP([v1j , v

2
j ])) = S′ ∩ (OP([v1i , v

2
i ]) ∩OP([v1j , v

2
j ])).

Informally, when S and S′ are in agreement, they must contain the same subset
of vertices of OP([v1i , v

2
i ]) ∩OP([v1j , v

2
j ]).

Let P ([v1i , v
2
i ], S) denote the maximum number of required pairs covered by

a path π ending in vertex v2i and such that the set S ⊆ OP([v1i , v
2
i ]) is covered

by π. In the following we present the recurrence to compute P ([v1i , v
2
i ], S). For

ease of exposition we only focus on vertices that appear as second vertices of
the required pairs. In fact, paths that do not end in such vertices are not able
to cover new required pairs. Furthermore, for simplicity, we consider the source
s as the second vertex of a fictitious required pair (with index 0) [⊥, s] which
does not overlap any other required pair. Such a fictitious required pair does not
contribute to the total number of required pairs covered by the path.

The recurrence is:

P ([v1i , v
2
i ], S) = max

[v1
j , v

2
j ] not nested in [v1

i , v
2
i ] and j < i;

S′ in agreement with S;

∃ a path from v2
j to v2

i

covering all vertices in S\S′;

{
P ([v1j , v

2
j ], S

′) + |Ov([v1i , v
2
i ], S, S

′)|
}

(1)

where Ov([v1i , v
2
i ], S, S

′) = {[v1h, v2h] | [v1h, v2h] is nested in [v1i , v
2
i ] ∧ v1h ∈ S ∧ v2h ∈

S \ S′}. Notice that each required pair is assumed to be nested in itself.
The base case of the recurrence is P ([⊥, s],∅) = 0.
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The correctness of the recurrence derives from the following two lemmas.

Lemma 9. If P ([v1i , v
2
i ], S) = k, then there exists a path π in D ending in v2i ,

such that every vertex in S belongs to π and the number of required pairs covered
by π is k.

Lemma 10. Let π be a path in D ending in v2i and covering k required pairs.
Let S be the set of all the vertices belonging to required pairs covered by π and
overlapping [v1i , v

2
i ]. Then P ([v1i , v

2
i ], S) ≥ k.

Let p be the maximum number of overlapping required pairs in D (that is,
p = maxi{pi}). It follows that the number of possible subsets S is bounded by
O(2p). Then, each entry P [v2i , S] requires time O(2pn) to be computed, and,
since there exist O(2pn) entries, the recurrence requires time O(4pn2). From
Lemma 9 and Lemma 10, it follows that an optimal solution for MaxRPSP can
be obtained by looking for the maximum of the values P [v2i , S]. Hence, the overall
time complexity of the algorithm is bounded by O(4pn2).
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Abstract. Kernel methods are powerful tools in machine learning. They
have to be computationally efficient. In this paper, we present a novel
list-based approach to compute efficiently the string subsequence kernel
(SSK). Our main idea is that our list-based SSK reduces to range query
problem. We started by the construction of a match list L(s, t) = {(i, j) :
si = tj} where s and t are the strings to be compared; such match
list contains only the required data that contribute to the result. To do
some intermediate processing efficiently, we constructed a layered range
tree and applied the corresponding computational geometry algorithms.
Moreover, we extended our match list to be a list of lists in order to
improve the computation efficiency of the SSK. The whole process takes
O(|L| log |L|+pK) time and O(|L| log |L|+K) space, where |L| is the size
of the match list, p is the length of the SSK and K is the total reported
points by range queries over all the entries of the list.

Keywords: string kernel, computational geometry, layered range tree,
range query.

1 Introduction

Kernel methods [6] offer an alternative solution to the limitation of traditional
machine learning algorithms, applied solely on linear separable problems. They
map data into a high dimensional feature space where we can apply linear learn-
ing machines based on algebra, geometry and statistics. Hence, we may discover
non-linear relations. Moreover, kernel methods enable other data type process-
ings (biosequences, images, graphs, . . . ).

Strings are among the important data types. Therefore, machine learning com-
munity devotes a great effort of research to string kernels, which are widely used
in the fields of bioinformatics and natural language processing. The philosophy
of all string kernels can be reduced to different ways to count common substrings
or subsequences that occur in both strings to be compared, say s and t.

In the literature, there are two main approaches to improve the computation of
the SSK. The first one is based on dynamic programming; Lodhi et al. [8] apply
� This work is supported by the MESRS - Algeria under Project 8/U03/7015.
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dynamic programming paradigm to the suffix version of the SSK. They achieve a
complexity ofO(p|s||t|), where p is the length of the SSK. Later, Rousu and Shawe-
Taylor [9] propose an improvement to the dynamic programming approach based
on the observation that most entries of the dynamic programming matrix (DP) do
not really contribute to the result. They use a set of match lists combined with a
sum range tree. They achieve a complexity of O(p|L| logmin(|s|, |t|)), where L is
the set of matches of characters in the two strings. Beyond the dynamic program-
ming paradigm, the trie-based approach [9,7,11] is based on depth first traversal
on an implicit trie data structure. The idea is that each node in the trie corre-
sponds to a co-occurrence between strings. But the number of gaps is restricted,
so the computation is approximate.

Motivated by the efficiency of the computation, a key property of kernel meth-
ods, in this paper we focus on improving the SSK computation. Our main idea
consists to map a machine learning problem on a computational geometry one.
Precisely, the list-based SSK computation reduces to 2-dimensional range queries
on a layered range tree (a range tree enhanced by the fractional cascading tech-
nique). We started by the construction of a match list L(s, t) = {(i, j) : si = tj}
where s and t are the strings to be compared; such match list contains only the
required data that contribute to the result. To do some intermediate processing
efficiently, we constructed a layered range tree and applied the corresponding
computational geometry algorithms. Moreover, we extended our match list to
be a list of lists in order to improve the computation efficiency of the SSK. The
overall time complexity is O(|L| log |L|+ pK), where |L| is the size of the match
list and K is the total reported points by range queries over all the entries of
the match list.

The rest of this paper is organized as follows. Section 2 deals with some concept
definitions used in the other sections. In section 3, we recall formally the SSK
computation. We also review three efficient computations of the SSK, namely,
dynamic programming, trie-based and sparse dynamic programming approaches.
Section 4 is devoted to the presentation of our contribution. Section 5 includes
conclusions and discussion.

2 Preliminaries

Let Σ be an alphabet of a finite set of symbols. We denote the number of symbols
in Σ by |Σ|. A string s = s1...s|s| is a finite sequence of symbols of length |s|
where si denotes the ith element of s. We use Σn to denote the set of all finite
strings of length n and Σ∗ to denote the set of all strings. The notation [s = t]
is a boolean function that returns{

1 if s and t are identical;
0 otherwise.

The string s(i : j) denotes the substring sisi+1...sj of s. Accordingly, a string
t is a substring of a string s if there are strings u and v such that s = utv (u
and v can be empty). The substrings of length n are referred to as n-grams (or
n-mers).
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The string t is a subsequence of s if there exists an increasing sequence of
indices I = (i1, ..., i|t|) in s, (1 ≤ i1 < ... < i|t| ≤ |s|) such that tj = sij , for
j = 1, ..., |t|. In the literature, we use t = s(I) if t is a subsequence of s in the
positions given by I. The empty string ε is indexed by the empty tuple. The
absolute value |t| denotes the length of the subsequence t which is the number
of indices (|I|), while l(I) = i|t| − i1 + 1 refers to the number of characters of s
covered by the subsequence t.

3 String Subsequence Kernels

The SSK adopts a new weighting method that reflects the degree of contiguity of
a subsequence in the string. In order to measure the distance of non contiguous
elements of the subsequence, a gap penalty λ ∈ ]0, 1] is introduced. Formally,
the mapping function φp(s) in the feature space F can be defined as follows:

φp
u(s) =

∑
I:u=s(I)

λl(I), u ∈ Σp.

The associated kernel can be written as:

Kp(s, t) = 〈φp(s), φp(t)〉 =
∑
u∈Σp

∑
I:u=s(I)

∑
J:u=t(J)

λl(I)+l(J).

A suffix kernel is defined to assist in the computation of the SSK. The associated
embedding is given by:

φp,S
u (s) =

∑
I∈I|s|

p :u=s(I)

λl(I), u ∈ Σp,

where Ikp denotes the set of p-tuples of indices I with ip = k.
The associated kernel can be defined as follows:

KS
p (s, t) = 〈φp,S(s), φp,S(t)〉

=
∑
u∈Σp

φp,S
u (s).φp,S

u (t).

The SSK can be expressed in terms of its suffix version as follows:

Kp(s, t) =

|s|∑
i=1

|t|∑
j=1

KS
p (s(1 : i), t(1 : j)), (1)

with KS
1 (s, t) = [s|s| = t|t|] λ

2.
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3.1 Naive Implementation

The computation of the similarity of two strings (sa and tb) is conditioned by
their final symbols. In the case where a = b, we have to sum kernels of all prefixes
of s and t. Hence, a recursion has to be devised:

KS
p (sa, tb) = [a = b]

|s|∑
i=1

|t|∑
j=1

λ2+|s|−i+|t|−jKS
p−1(s(1 : i), t(1 : j)). (2)

This computation leads to a complexity of O(p(|s|2|t|2)).

3.2 Efficient Implementations

We will present three methods that compute the SSK efficiently, namely the
dynamic programming [8], the trie-based [9,7,11] and the sparse dynamic pro-
gramming approaches [9].

Dynamic Programming Approach. The starting point of the dynamic pro-
gramming approach is the suffix recursion given by equation (2). From this equa-
tion, we can consider a separate dynamic programming table DPp for storing
the double sum:

DPp(k, l) =

k∑
i=1

l∑
j=1

λk−i+l−j KS
p−1(s(1 : i), t(1 : j)). (3)

It is easy to see that: KS
p (sa, tb) = [a = b]λ2 DPp(|s|, |t|)).

Computing ordinary DPp for each (k, l) would be inefficient. So we can devise
a recursive version of equation (3) with a simple counting device:

DPp(k, l) = KS
p−1(s(1 : k), t(1 : l)) + λDPp(k − 1, l) +

λDPp(k, l − 1)− λ2DPp(k − 1, l− 1).

Consequently, the complexity of the SSK becomes O(p |s||t|).

Trie-Based Approach. This approach is based on search trees known as tries,
introduced by E. Fredkin in 1960. The key idea of the trie-based approach is
that leaves play the role of the feature space indexed by the set Σp. In the lit-
erature, there are variants of trie-based string subsequence kernels. For instance
the (p,m)-mismatch string kernel [7] and restricted SSK [11].

In the present section, we try to describe a trie-based SSK presented in [9]
that slightly differ from those cited above [7,11]. Given that each node in the trie
corresponds to a co-occurrence between strings, the algorithm stores all matches
s(I) = u1 · · ·uq, I = i1 · · · iq in such node. In parallel, it maintains a list of alive
matches Ls(u, g) that records the last index iq (g is the number of gaps in the



142 S. Bellaouar, H. Cherroun, and D. Ziadi

occurences). Notice that in the same list we are able to record many occurrences
with different gaps. Similarly, the algorithm is applied to the string t. The process
will continue until achieving the depth p where the kernel is evaluated as follows:

Kp(s, t) =
∑
u∈Σp

φp
u(s)φ

p
u(t) =

∑
u∈Σp

∑
gs,gt

λgs+p|Ls(u, gs)| · λgt+p|Lt(u, gt)|.

Given that, there exists
(
p+gmax

gmax

)
different entries at leaf nodes, the worst-case

time complexity of the algorithm is O(
(
p+gmax

gmax

)
(|s|+ |t|)).

Sparse Dynamic Programming Approach. It is built on the fact that in
many cases, most of the entries of the DP matrix are zero and do not contribute
to the result. Rousu and Shawe-Taylor [9] have proposed a solution using two
data structures. The first one is a set of match lists instead of KS

p matrix. The
second one is a range sum tree, which is a B-tree, that replaces the DPp matrix.
It is used to return the sum of n values within an interval in O(log n) time. Their
algorithm runs in O(p|L| logmin(|s|, |t|)), where L = {(i, j)|si = tj} is the set of
matches of characters in both strings.

4 List and Layered Range Tree Based Approach

Looking forward to improving the complexity of SSK, our approach is based
on two observations. The first one concerns the computation of KS

p (s, t) that is
required only when s|s| = t|t|. Hence, we have kept only a list of index pairs of
these entries rather than the entire suffix table, L(s, t) = {(i, j) : si = tj}. If we
consider the example which computes Kp(gatta, cata), the list generated is

L(gatta, cata) = {(2, 2), (5, 2), (3, 3), (4, 3), (2, 4), (5, 4)}.

In the rest of the paper, while measuring the complexity of different compu-
tations, we will consider, |L|, the size of the match list L(s, t) as the parameter
indicating the size of the input data.

The complexity of the naive implementation of the list version is O(p|L|2),
and it seems not obvious to compute KS

p (s, t) efficiently on a list data structure.
In order to address this problem, we have made a second observation that the
suffix table can be represented as a 2-dimensional space (plane) and the entries
where s|i| = t|j| as points in this plane.

At the light of this observation, the computation of KS
p (s, t) can be interpreted

as an orthogonal range query. In the literature, there are several data structures
that are used in computational geometry. We have examined a spatial data
structure known as Kd-tree [1,4,10]. It records a total time cost of O(p(|L|

√
|L|+

K)) for computing the SSK, where K is the total of the reported points. It is
clear that this relative amelioration is not sufficiently satisfactory. So we adopted
another spatial data structure, called range tree [4,10,2,3], which has better query
time for rectangular range queries. We will describe such data structure and its
relationship with SSK in the following subsections.
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4.1 Suffix Table Representation

The entries (k, l) in L(s, t) correspond to a set S of points in the plane, where
the index pairs (k, l) play the role of the point coordinates. The set S is rep-
resented by a 2-dimensional range tree, where nodes represent points in the
plane. Thereby, representing the suffix table tend to be the construction of a
2-dimensional range tree. A range tree, denoted by RT is primarily a balanced
binary search tree (BBST) augmented with an associated data structure. In order
to build such data structure, first, we consider the set Sx of the first coordinate
(x-coordinate) values of all the points in S. Thereafter, a BBST called x-RT
is constructed with points of Sx in the leaves. Both internal and leaf nodes v
of x-RT are augmented by a 1-dimensional range tree, it can be a BBST or a
sorted array, of a canonical subset P (v) on y-coordinates, denoted by y-RT . The
subset P (v) is the points stored in the leaves of the sub tree rooted at the node
v. Figure 1 illustrates the construction process of a 2-dimensional range tree.

In the case where two points have the same x or y-coordinate, we have to
define a total order by using a lexicographic one. It consists to replace the real
number by a composite-number space [4]. The composite number of two reals x
and y is denoted by x|y, so for two points, we have:

(x|y) < (x′|y′)⇔ x < x′ ∨ (x = x′ ∧ y < y′).

In such situation, we have to transform the range query [x1 : x2] × [y1 : y2]
related to a set of points in the plane to the range query [(x1| − ∞) : (x2| +
∞)]× [(y1| −∞) : (y2|+∞)] related to the composite space.

Based on the analysis of computational geometry algorithms, our 2-dimensional
range tree requires O(|L| log |L|) storage and can be constructed in O(|L| log |L|)
time. This leads to the following lemma.

Lemma 1. Let s and t be two strings and L(s, t) = {(i, j) : si = tj} the match
list associated to the suffix version of the SSK. A range tree for L(s, t) requires
O(|L| log |L|) storage and takes O(|L| log |L|) construction time.

4.2 Location of Points in a Range

We recall that computing the recursion for the SSK given by the equation (2)
can be interpreted as the evaluation of a 2-dimensional range query applied to
a 2-dimensional range tree. Such evaluation locates all points that lie in the
specified range.

A useful idea, in terms of efficiency, consists on treating a rectangular range
query as a two nested 1-dimensional queries. In other words, let [x1 : x2]×[y1 : y2]
be a 2-dimensional range query, we first ask for the points with x-coordinates in
the given 1-dimensional range query [x1 : x2]. Consequently, we select a collection
of O(log |L|) subtrees. We consider only the canonical subset of the resulted
subtrees, which contains, exactly, the points that lies in the x-range [x1 : x2]. At
the next step, we will only consider the points that fall in the y-range [y1 : y2].
The total task of a range query can be performed in O(log2 |L|+ k) time, where
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Fig. 1. Layered range tree RT related to KS
p (gatta, cata)

k is the number of points that are in the range. We can improve it by enhancing
the 2-dimensional range tree with the fractional cascading technique which is
described in the following subsection.

4.3 Fractional Cascading

The key observation made during the invocation of a rectangular range query is
that we have to search the same range [y1 : y2] in the associated structures y-
RT of O(log |L|) nodes found while querying the x-RT by the range query [x1 :
x2]. Moreover, there exists an inclusion relationship between these associated
structures. The goal of the fractional cascading consists on executing the binary
search only once and use the result to speed up other searches without expanding
the storage by more than a constant factor.

The application of the fractional cascading technique introduced by [5] on a
range tree creates a new data structure so called layered range tree. We illustrate
such technique through an example of SSK computing in Fig. 1.

Using this technique, the rectangular search query time becomes O(log |L|+
k), where k is the number of reported points. For the computation of KS

p (s, t)
we have to consider |L| entries of the match list. The process iterates p times,
therefore, we get a time complexity of O(p|L| log |L|+K) for evaluating the SSK,
where K is the total of reported points over all the entries of L(s, t). This result
combined to that of Lemma. 1 lead to the following lemma:

Lemma 2. Let s and t be two strings and L(s, t) = {(i, j) : si = tj} the match
list associated to the suffix version of the SSK. A layered range tree for L(s, t)
uses O(|L| log |L|) storage and it can be constructed in O(|L| log |L|) time. With
this layered range tree, the SSK of length p can be computed in O(p(|L| log |L|+
K)), where K is the total number of reported points over all the entries of L(s, t).
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4.4 List of Lists Building and SSK Computation

Another observation leads us to pursue our improvement of the SSK computa-
tion complexity. It is obvious to state that point coordinates, in our case, in
the plane remain unchanged during the entire process. So instead of invoking
the 2-dimensional range query multiple times according to the evolution of the
parameter p, it is more beneficial if we do the computation only once. Accord-
ingly, in this phase, we extended our match list to be a list of lists (Fig. 2),
where each entry (k, l) points to a list that contains all the points that lie in the
corresponding range. Algorithm 1 builds this list of lists. The complexity of the
construction of the list of lists is the complexity of invoking the 2-dimensional
range query over all the entries of the match list. This leads to O(|L| log |L|+K)
time complexity.

Algorithm 1. List of Lists Creation
Input: match list L(s, t) and Layered Range Tree RT
Output: List of Lists LL(s, t): The match list augmented by lists

containing reported points
1 foreach entry (k, l) ∈ L(s, t) do
2 Preparing the range query
3 x1 ← 0
4 y1 ← 0
5 x2 ← k − 1
6 y2 ← l − 1
7 relatedpoints ← 2D-RANGE-

QUERY(RT , [(x1| −∞) : (x2|+∞)]× [(y1| −∞) : (y2|+∞)])

8 while There exists (i, j) ∈ relatedpoints do
9 add (i, j) to (k, l)-list

Once the list of lists constructed, the SSK computation will sum over all the
reported points stored on it. The process is described in Algorithm 2. The cost of
this computation is O(K). Since we will evaluate the SSK for p ∈ [1..min(|s|, |t|)],
this leads to a complexity of O(pK). So the over all complexity is O(|L| log |L|+
pK) which include the construction of the list of lists and the computation of
SSK in the strict sense. This leads to the following theorem that summarizes the
result for the computation of the SSK.

Theorem 3. Let s and t be two strings and L(s, t) = {(i, j) : si = tj} the match
list associated to the suffix version of the SSK. A layered range tree and a list of
lists for L(s, t) require O(|L| log |L|+K) storage and they can be constructed in
O(|L| log |L|+K) time. With these data structures, the SSK of length p can be
computed in O(|L| log |L|+ pK), where K is the total number of reported points
over all the entries of L(s, t).
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Fig. 2. List of lists inherent to KS
1 (gatta,cata)

Algorithm 2. SSK computation
Input: List of Lists LL(s, t), subsequence length p and penalty coefficient

λ
Output: Kernel values Kq(s, t) = K(q) : q = 1, . . . , p

1 for q=1:p do
2 Initialization
3 K(q)← 0
4 KPS(1 : |max|)← 0
5 foreach entry (k, l) ∈ LL(s, t) do
6 foreach entry r ∈ (k, l)− list do
7 (k, l)− list is a list associated to the entry (k, l)
8 (i, j)← r.Key
9 KPS(i,j) ← r.V alue

10 KPS(k, l)← KPS(k, l) + λk−i+l−j KPS(i,j)

11 K(q)← K(q) +KPS(k, l))

12 Preparing LL(s, t) For the next computation
13 foreach entry (k, l) ∈ KPS do
14 Update LL(k, l) with KPS(k, l)

5 Conclusions

We have presented a novel algorithm that efficiently computes the string subse-
quence kernel (SSK). Our approach is refined over three phases. We started by
the construction of a match list L(s, t) that contains, only, the information that
contributes in the result. In order to locate, efficiently, the related positions for
each entry of the match list, we have constructed a layered range tree. At last,
we have built a list of lists to compute efficiently the SSK. The Whole task takes
O(|L| log |L| + pK) time and O(|L| log |L| +K) space, where p is the length of
the SSK and K is the total number of reported points.
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The reached result gives evidence of an asymptotic complexity improvement
compared to that of a naive implementation of the list version O(p |L|2). On
the other hand, our algorithm is output sensitive. Such property dictates to us
to conduct empirical analysis in order to compare our contribution with other
approaches. This will be the subject of a future research.

Nevertheless, based on the asymptotic complexities of the different approaches
and the experiments presented in [9], we make some discussions. The dynamic
programming approach is faster when the DPp table is dense. This case is
achieved on long strings if the alphabet is small and on short strings. The trie-
based approach is faster on medium-sized alphabets but it suffers from gap num-
ber restriction. Furthermore, recall that our approach and the sparse dynamic
programming one are proposed in the context where the most of the entries
of the DPp table are zero. This case occurred for large-sized alphabets. From
the asymptotic complexity of the sparse approach, O(p|L| logmin(|s|, |t|)), it is
clear that its efficiency depends on the size of the strings. For our approach it
depends only on the number of common subsequences. Under these conditions
our approach outperforms for long strings. These discussions will be validated
by a future empirical study.

A noteworthy advantage is that our approach separates the process of required
data location from the strict computation one. This separation limits the impact
of the length of the SSK on the computation. It have influence, only, on the strict
computation process. Moreover, such separation property can be favorable if we
assume that the problem is multi-dimensional, e.g. the multiple string compar-
ison problem, one of the most active research in biological sequence analysis.
We believe that our approach open a new vision for attacking this problem. In
terms of complexity, this can have influence, only, on the location process by a
logarithmic factor. Indeed, the layered range tree can report points that lies in
a rectangular range query in O(logd−1 |L|+ k), in a d-dimensional space.

At the implementation level, great programming effort is supported by well-
studied and ready to use computational geometry algorithms. Hence, the em-
phasis is shifted to a variant of string kernel computations that can be easily
adapted.
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Abstract. Given a system modeled by a rational relation R, a channel
is a pair (E,D) of rational relations that respectively encode and decode
binary messages, and such that the composition ERD is the identity
relation. This means that the message between E and D has been per-
fectly transmitted through R. Investigating the links between channels
and the growth of rational sets of words, we give new characterizations
for relations with channels. In the particular case where the relation is
given as a union of functions, we obtain as a consequence the decidability
of the synthesis problem with a linear complexity.

Keywords: Distributed synthesis, channels, rational relations, trans-
ducers, security.

1 Introduction

Channel synthesis. The problem of channel synthesis was introduced in [1,2] as a
special case of the general distributed synthesis problem: Given an architecture
defined by processes and communication links between them or with the envi-
ronment, and a specification on the messages transmitted over these links, this
general problem aims at deciding the existence of local programs, one for each
process, that together meet the specification, whatever the environment does.

In the asynchronous setting, this problem is undecidable for LTL specifica-
tions as soon as there are two processes [3]. It was then proposed in [1,2] to
consider two processes modeled by finite transducers, that respectively encode
and decode finite binary messages. They communicate asynchronously through
a medium, acting as noise over the link between them and also described by a
fixed non deterministic finite transducer. Moreover, a particular basic external
specification expresses faithful communication: the message received is equal to
the message emitted. Such an encoder/decoder pair was called a channel. The
channel synthesis problem then asks if, given the noisy process, the encoder and
decoder can be synthesized. This question is related to security properties: when
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the noisy process describes some protocol, the existence of a channel may lead
to possibly illegal communication [4,5,6]. The problem was proved undecidable
(Σ0

1 -complete) for rational relations, but decidable in polynomial time for a ra-
tional function. When a channel exists for such a function, it can be effectively
computed.

Contribution. We revisit here this notion of channel and show that it has strong
links with rational bijections [7], hence it is also related to the growth of lan-
guages. Given a language L, the growth function associates with an integer n ≥ 0
the number of words in L of length less than or equal to n. We introduce the
notion of patterns, which generate typical languages of exponential growth, and
establish some of their properties. Then, combining these properties with results
on rational bijections, we prove a new characterization for bounded relations
with channels: If R is a bounded rational relation, given as a union of rational
functions h1 + · · ·+ hn, then the following conditions are equivalent: (1) R has
a channel, (2) at least one of the his has a channel, (3) the range of R has an
exponential growth. We obtain as a corollary that the channel synthesis problem
is decidable in linear time for a finite union of functions. The latter result was
already stated in [8] (with a polynomial time complexity), but the proof was not
satisfactory. We believe that the notion of exponential growth is central to the
study of channels, although it was often implicit in previous works.

2 Definitions and Notations

The set of natural numbers is denoted by N and the set of words over a finite
alphabet A is denoted by A∗, with ε for the empty word and A+ = A∗ \ {ε}.
The binary alphabet {0, 1} is denoted by B. The length of a word u is written
|u| and for n ∈ N, we denote by A≤n (respectively An) the subset of A∗ of words
of length less than or equal to n (respectively equal to n). A language is a subset
of A∗. We denote also by |L| the cardinality of a language L.

For two words u and v, v is a prefix of u, written v � u, if there is some
word w such that u = vw. Two words w and w′ are called prefix compatible if
either w is a prefix of w′ or w′ is a prefix of w. If they are not prefix compatible,
there exist two different letters a and b and three words u, v and v′ such that
w = uav and w′ = ubv′. The word u is, by definition, the longest common prefix
of w and w′. The notions of suffix compatible words and longest common suffix
are defined similarly.

A subset X of A∗ is a code if any word in X∗ admits a unique decomposition
over X . A set of two words X = {u, v} is not a code if and only if u and v
commute (uv = vu) ([9]).

Finite Automata. A finite automaton, or automaton for short, is a tuple A =
〈Q, I, Lab,Δ, F 〉, where Q is a finite set of states, I ⊆ Q is the subset of initial
states, Lab is a finite set of labels, Δ ⊆ Q×Lab×Q is a finite transition relation
and F ⊆ S is a of final states. Note that Lab can be an alphabet but also a
(subset of a) monoid. Given two states q, q′ ∈ Q, a path from q to q′ with label u,
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written as q u−→ q′, is a sequence of transitions q a1−→ q1, q1
a2−→ q2, · · · qn−1

an−−→ q′,
with ai ∈ Lab and qi ∈ Q, for 1 ≤ i ≤ n − 1 such that u = a1 · · ·an. The
path is accepting if q ∈ I and q′ ∈ F , and the language of A, denoted by L(A),
is the set of labels of accepting paths. A state q ∈ Q is useful if it occurs in
some accepting run. Since the accepted language is the same when removing
non useful states, we assume in the sequel that the set Q contains only useful
states, in which case A is called trim. A regular language over an alphabet A is
a subset of A∗ accepted by a finite automaton with set of labels Lab = A. The
regular languages over A are also the rational sets of A∗.

Finite Transducers. A finite transducer (or transducer for short) is a finite
automaton T with set of labels Lab ⊆ A∗ × B∗ for two alphabets A and B. A
label (u, v) ∈ A∗ × B∗ is also written as u|v. The subset L(T ) of A∗ × B∗ is
a rational relation [10] from A∗ to B∗. The transducer T is said to realize the
relation L(T ).

Given a rational relation R, we write R(u) = {v ∈ B∗ | (u, v) ∈ R} for the
image of u ∈ A∗, R−1(v) = {u ∈ A∗ | (u, v) ∈ R} for the inverse image of v ∈ B∗,
possibly extended to subsets of A∗ or B∗ respectively, dom(R) = {u ∈ A∗ | ∃v ∈
B∗, (u, v) ∈ R} for the domain of R and rg(R) = {v ∈ B∗ | ∃u ∈ A∗, (u, v) ∈ R}
for the range of R.

For a subset P of A∗, the identity relation {(u, u) | u ∈ P} on A∗ × A∗ is
denoted by IdP . The composition of rational relations R1 on A∗×B∗ and R2 on
B∗×C∗, denoted by R1R2 (from left to right) or by R2◦R1 (from right to left), is
the rational relation on A∗×C∗ defined by {(u,w) | ∃v (u, v) ∈ R1∧(v, w) ∈ R2}
([11]). Moreover, the image and inverse image of a regular language by a rational
relation are regular languages [10].

The relation R is bounded if there exists k ∈ N such that for each word
u ∈ A∗, |R(u)| ≤ k. It is a function if k = 1. We often identify a function f with
its graph {(x, f(x) | x ∈ dom(f)} and we write f ⊆ R (resp. f ⊆ f ′) to mean
that its graph is contained in R (resp. in the graph of f ′). We also write R + f
to mean the relation which is the union of R and the graph of f . Since functions
play a central role in the rest of the paper, we recall below two powerful and
useful results. The first one states that it is always possible to extract a rational
function from a rational relation. The second one gives a representation of a
bounded rational relation as a union of rational functions.

Theorem 1 (Uniformization [10]). For any rational relation R, there exists
a rational function f ⊆ R with the same domain. Furthermore, a transducer
realizing f can be effectively computed from a transducer realizing R.

Theorem 2 (Bounded relations [12,13]). A rational relation R is bounded
by k if and only if there exist k rational functions f1, . . . , fk such that R =
f1 + · · ·+ fk.

Growth. The growth of a language L is the function mapping each integer n ∈ N
to the number of words in L of length less than or equal to n. The growth of L
is polynomial if it is bounded by some polynomial, that is |L ∩ A≤n| = O(nk)
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for some k ∈ N. For instance, the growth of Pk = (0∗1)k0∗ is polynomial since
|Pk ∩ B≤n| = O(nk+1). The growth of the set L = (0 + 10)∗ is not polynomial.

The growth of a set L is exponential if it is greater that some exponential,
that is if θn = O(|L ∩ A≤n|) for some real number θ > 1. The growth of the
set L = (0 + 10)∗ is, for instance, exponential. Note that the growth cannot be
more than exponential since |A≤n| = (|A|n+1 − 1)/(|A| − 1), for |A| ≥ 2. The
following proposition states that, for rational sets, there is a gap:

Proposition 1 ([7]). The growth of a rational set of words is either polynomial
or exponential. Moreover, for a finite automaton A, the language L(A) has an
exponential growth if and only if there exist words u, v, v̄, w with |v| = |v̄| and
v �= v̄, and a state q of A such that i u−→ q v−→ q w−→ f and q v̄−→ q in A where i is
an initial state and f is a final state.

This result suggests the notion of patterns studied in details in Section 4, and
defined as tuples of words (u, v, v̄, w) with |v| = |v̄| and v �= v̄.

An automaton with ε-transitions is an automaton in which any transition has
either the form p a−→ q for a letter a ∈ A or the form p ε−→ q. It is well-known [14]
that ε-transitions can be removed and that any automaton with ε-transitions
is equivalent to an automaton without ε-transition. This latter transformation
may however introduce a quadratic blow-up of the number of transitions. The
following proposition states that it can be directly checked, without removing ε-
transitions, whether the language accepted by an automaton has an exponential
growth (the result is more or less part of folklore but a proof is given in [15]).

Proposition 2. It can be checked in linear time whether the language accepted
by an automaton with ε-transitions has an exponential growth.

The degree deg(L) of a set L with a polynomial growth is the least integer k such
that |L ∩ A≤n| = O(nk). The degree of the set Pk = (0∗1)k0∗ is, for instance,
deg(Pk) = k + 1. Note that a rational set L is finite whenever deg(L) = 0. If
L is exponential, we set deg(L) = ∞. The following theorem characterizes the
existence of a rational bijection between two rational sets.

Theorem 3 ([7]). There exists a rational bijection between two rational sets L
and L′ if and only if either they are both finite, (that is deg(L) = deg(L′) =
0) and they have the same cardinality or they are both infinite and deg(L) =
deg(L′).

When the languages L and L′ are infinite, the relation deg(L) = deg(L′) should
be understood as either their growths are both exponential, that is deg(L) =
deg(L′) =∞, or their growth are both polynomial with the same degree deg(L) =
deg(L′) <∞.

3 Channels

A channel is a way to achieve reliable communication between two processes,
an encoder and a decoder, via a noisy medium modeled by a non deterministic
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transducer with labels in A∗ × B∗. The encoder E reads binary input and pro-
duces an output in A∗, while the decoder D reads words in B∗ and produces
a binary word. The pair (E,D) is a channel if the binary message is correctly
transmitted:

Definition 1. Let R ⊆ A∗ × B∗ be a rational relation. A rational channel (or
channel for short) for R is a pair (E,D) of rational relations in B∗ × A∗ and
B∗ × B∗ respectively such that ERD = IdB∗.

As a consequence of this definition, a rational relation R has a channel if and
only if R−1 has a channel.
Examples. We set here A = B = B.

The prefix relation Pref = {(u, v) | u � v} has a rational channel with
E = {(0, 00), (1, 11)}∗(ε, 01) and D = {(00, 0), (11, 1)}∗(01, ε), as illustrated in
Figure 1.

0 1
ε|01

0|00, 1|11

0 1
ε|0, ε|1

0|0, 1|1 ε|0, ε|1

0 1
01|ε

00|0, 11|1

Fig. 1. From left to right: E, Pref and D

The relation Diff1 = {(u, v) | u and v differ by at most 1 bit} has a rational
channel where 0 and 1 are encoded respectively by 000 and 111 in E. A first
decoder D consists in a majority choice (this would be a subcase of channels with
substitution in [2]), associating 0 with 000, 001, 010 and 100, and similarly for
1. Another decoder can also be simply the inverse of E, hence a “sub-decoder”
of D, ignoring the substitution.

Note that in the definition above, E and D must be rational relations. How-
ever, there exist some relations without rational channels but with a chan-
nel satisfying the relation ERD = IdB∗ . Let f be a bijection from B∗ onto
N and let R be the relation defined by R = {(u, v) | |u| = |v|}. Then for
E = {(u, 0f(u)) | u ∈ B∗} and D = {(0f(u), u) | u ∈ B∗}, the inverse of E, (E,D)
satisfies ERD = IdB∗ but the characterization proved in Section 5 shows that R
has no rational channel.

In the sequel, we only consider rational channels. The main result of this paper
is the following:

Theorem 4. Let R = h1 + · · · + hn be a bounded relation where each hi is a
rational function. The following statements are equivalent:

1. R has a channel,
2. At least one function hi has a channel,
3. rg(R) has an exponential growth.
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Using the equivalence between 1 and 3 and Proposition 2, we obtain the
decidability of the channel synthesis problem:

Corollary 1. The channel existence problem for bounded relations, given as a
union of functions h1 + · · ·+ hn, is decidable in linear time. When it exists, the
channel can be effectively computed.

4 Patterns

It can be observed in the examples above that, when the encoder/decoder pair
(E,D) exists, E can be chosen as a bijection from B∗ onto some language L
of the form u(v + v̄)∗w, with D the inverse of E. In order to generalize this
observation, and in relation with Proposition 1, we now introduce the notion of
pattern:

Definition 2. A pattern is a 4-tuple s = (u, v, v̄, w) of words such that |v| =
|v̄| and v �= v̄. The language associated with s is Ls = u(v + v̄)∗w. A sub-
pattern of s is a pattern of the form (ux, y, ȳ, zw) where x, y, ȳ, z ∈ (v + v̄)∗.
Two patterns s and s′ of the form s = (u, xv, xv̄, xw) and s′ = (ux, vx, v̄x, w)
(or s′ = (ux, v̄x, vx, w)) are called conjugated.

Note that in a pattern s = (u, v, v̄, w), the set {v, v̄} is a code hence, the
notion of pattern can be seen as the basic element for the canonical channels
and encoding states or nodes defined in [5,6,2].

If s′ is a sub-pattern of s, then the inclusion Ls′ ⊆ Ls holds. Moreover, if
the two patterns s and s′ are conjugated, then the languages Ls and Ls′ are
equal. For a pattern s = (u, v, v̄, w), we denote by μs the morphism from B∗ to
(v + v̄)∗ which maps 0 to v and 1 to v̄. If t = (x, y, ȳ, z) is a pattern over the
alphabet B, then (uμs(x), μs(y), μs(ȳ), μs(z)w) is a sub-pattern of s which we
denote by s + t. Note that this composition of patterns is associative. Indeed, if
t = (x, y, ȳ, z) and t′ = (x′, y′, ȳ′, z′) are two patterns over the alphabet B, then
s + (t + t′) = (s + t) + t′.

The proofs of the next lemmas are omitted and can be found in [15]. These
proofs are based on a pumping argument.

Lemma 1. Let s be a pattern and L a rational set of words. There exists a
sub-pattern s′ of s such that either Ls′ ⊆ L or Ls′ ∩ L = ∅.

Lemma 2. Let s be a pattern and let L be a rational set accepted by an au-
tomaton A. If Ls ⊆ L, there exist a sub-pattern s′ = (u′, v′, v̄′, w′) of s and paths
i u′
−→ q v′

−→ q w′
−→ f and q v̄′

−→ q in A where i is an initial state and f is a final
state.

The following proposition shows that if two patterns are not conjugated, one of
them can be replaced by one of its sub-patterns to make the associated languages
disjoint. In particular, two patterns are conjugated if and only if their associated
languages are equal.



Channel Synthesis Revisited 155

Proposition 3. If the patterns s and s′ are not conjugated, then either there
exists a sub-pattern s′′ of s such that Ls′′∩Ls′ = ∅ or there exists a sub-pattern s′′

of s′ such that Ls′′ ∩ Ls = ∅.

Proof. Let s and s′ be the two patterns (u, v, v̄, w) and (u′, v′, v̄′, w′). Let k, k′,
m and m′ be the integers defined by k = |uw|, k′ = |u′w′|, m = |v| = |v̄| and
m′ = |v′| = |v̄′|. Let Ms and Ms′ be the sets {|x| | x ∈ Ls} and {|x| | x ∈ Ls′}
of lengths of words in Ls and Ls′ . These two sets Ms and Ms′ are respectively
contained in the sets k +mN and k′ +m′N.

We first suppose that m �= m′ and by symmetry we can assume that m < m′.
We then consider two sub-cases depending on whether k ≡ k′ mod m′ or not.
We first suppose that k �≡ k′ mod m′. The two sets k+mm′N and k′+m′N are
then disjoint. It follows that the sub-pattern s′′ = (u, vm

′
, v̄m

′
, w) of s satisfies

Ls′′ ∩ Ls′ = ∅. We now suppose k ≡ k′ mod m′. Since m < m′, k + m �≡ k′

mod m′ holds and the two sets k+m+mm′N and k′+m′N are then disjoint. It
follows that the sub-pattern s′′ = (uv, vm

′
, v̄m

′
, w) of s satisfies Ls′′ ∩ Ls′ = ∅.

From now on, we suppose that m = m′. If k �≡ k′ mod m, the two sets Ms

and Ms′ are already disjoint and we can set s′′ = s. From now on, we also
suppose that k ≡ k′ mod m.

If uv and u′ are not prefix compatible, the sub-pattern s′′ = (uv, v, v̄, w)
satisfies Ls′′ ∩Ls′ = ∅. A similar solution can be found if uv̄ and u′ are not prefix
compatible or if w and v′w′ are not suffix compatible. We can now suppose that
uv and u′ (resp. uv̄ and u′, u and u′v′, u and u′v̄′) are prefix compatible and
that vw and w′ (resp. v̄w and w′, w and v′w′, w and v̄′w′) are suffix compatible.

Since u and u′v′ are compatible and u and u′v̄′ are also compatible, the word u
is a prefix of u′z where z is the longest common prefix of v′ and v̄′ and thus
|u| ≤ |u′|+ |z|. By a similar argument, the word w satisfies |w| ≤ |w′|+ |z′| where
z′ is the longest common suffix of v′ and v̄′. Combining these two relations gives
k = |uw| ≤ k′+ |zz′| < k′+m where the relation |zz′| < m follows from v′ �= v̄′.
By symmetry the relation k′ ≤ k +m also holds and this implies k = k′ since
k ≡ k′ mod m.

We now have m = m′ and k = k′. We can assume by symmetry that |u| ≤ |u′|
and thus |w′| ≤ |w|. Since u and u′ are prefix compatible, the word u is a prefix
of u′. There exists a word x such that u′ = ux. By symmetry, the word w′ is a
suffix of w and there exists a word x′ such that w = x′w′. Since u′ and uv are
prefix compatible and u′ and uv̄ are also prefix compatible, the word x is a prefix
of v and v̄. There exist two words z and z̄ such that v = xz and v̄ = xz̄. By
symmetry, the word x′ is a suffix of v′ and v̄′ and there exist two words z′ and z̄′

such that v′ = z′x′ and v̄′ = z̄′x′. Note that |x| = |x′| = |u′| − |u| = |w| − |w′|
and that |z| = |z̄| = |z′| = |z̄′| = m− |x|.

We first suppose that x �= x′. Let s′′ be the sub-pattern (u′v′2, v′, v̄′, w′) of s′.
Any word in Ls′′ starts with u′v′2 = uxz′x′z′x′ whereas any word of Ls is either
shorter or starts with a prefix in u(v+ v̄)2 = ux(z+ z̄)x(z+ z̄). This shows that
Ls′′ ∩Ls = ∅. We now suppose that x = x′. If the two sets {z, z̄} and {z′, z̄′} are
equal, the two patterns s and s′ are conjugated and this a contradiction with
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the hypothesis. If these two sets are different, we can assume by symmetry that
z /∈ {z′, z̄′}. The sub-pattern (uv, v, v̄, w) of s satisfies then Ls′′ ∩ Ls′ = ∅.

5 Channel Characterizations

Recall that in both examples of section 3, the encoder and decoder can be chosen
as rational bijections. The following characterization generalizes this observation.

Proposition 4. There is a channel for a relation R if and only there exist two
rational sets L0 and L1 with exponential growth such that R ∩ (L0 × L1) is a
bijection between L0 and L1.

Note that it is assumed, in the previous proposition, that both L0 and L1 have
an exponential growth. It is actually sufficient to assume that only one of them
has. Theorem 3 and the fact that R∩ (L0×L1) is a bijection between L0 and L1

ensure that the other one also has an exponential growth.

Proof. We first prove that the condition is sufficient. Suppose that R∩(L0×L1) is
a bijection between L0 and L1. Since L0 has an exponential growth, there exists,
by Theorem 3, a rational bijection E between {0, 1}∗ and L0. The relation ER
is thus a bijection between {0, 1}∗ and L1. Set D = (ER)−1. It is then clear
than ERD = IdB∗ .

Suppose now that there are two rational relations E and D such that ERD =
IdB∗ . We first claim that there exists a function E′ ⊆ E from {0, 1}∗ to A∗ and
another function D′ ⊆ D from B∗ to {0, 1}∗ such that E′RD′ = IdB∗ . Let K1 be
the rational set rg(ER) = {v | ∃u ∈ {0, 1}∗ (u, v) ∈ ER} and D′ the restriction
D′ = D ∩ (K1 × {0, 1}∗). It is clear that ERD′ = IdB∗ and that D′ must be
functional. Let K0 be the set dom(RD′) = {u | ∃v ∈ {0, 1}∗ (u, v) ∈ RD′} and
let E′′ be the restriction E′′ = E ∩ ({0, 1}∗ ×K1). The relation E′′ might not
be functional but there exists by Theorem 1 a rational function E′ ⊆ E′′. It is
also clear that E′RD′ = IdB∗ .

We now suppose that E and D are two functions. Applying the reasoning
to E−1 and D−1 there are two relations E′ ⊆ E and D′ ⊆ D such that E′−1

and D′−1 are functions and E′RD′ = IdB∗ . Let L0 and L1 be the sets L0 =
dom(RD′) = {u | ∃v ∈ {0, 1}∗ (u, v) ∈ RD′} and L1 = rg(E′R) = {v | ∃u ∈
{0, 1}∗ (u, v) ∈ E′R}. The relation E′ is then a bijection between {0, 1}∗ and L0

and the relation D′ is a bijection between L1 and {0, 1}∗. It follows that R ∩
(L0 × L1) must be a bijection between L0 and L1.

For two patterns s = (u, v, v̄, w) and s′ = (u′, v′, v̄′, w′), we denote by hs,s′ the
function whose graph is the rational relation (u, u′)((v, v′)+(v̄, v̄′))∗(w,w′). Note
that this function is a bijection from Ls to Ls′ and that the inverse function h−1

s,s′

is actually the function hs′,s. Let s0 be the pattern (ε, 0, 1, ε). The set Ls0 is then
the set B∗ and hs0,s is a bijection from B∗ to Ls. Note finally that if t is a pattern
over the alphabet B the restriction of the function hs,s′ to the domain Ls�t is
the function hs�t,s′�t from Ls�t to Ls′�t.
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Lemma 3. Let h be a rational function such that rg(h) has an exponential
growth. Then there exist two patterns s and s′ such that hs,s′ ⊆ h.

Proof. Let T be a transducer realizing the function h. Let A be the automaton
obtained by ignoring the input label of each transition of T and taking the output
label as the label. This automaton accepts the set rg(h). By Proposition 1 there
exists a pattern s′ = (u′, v′, v̄′, w′) and paths i u′

−→ q v′
−→ q w′

−→ f and q v̄′
−→ q in A

where i is an initial state and f is a final state. Since these paths come from
paths in T , there are words u, v0, v̄0 and w and paths i u|u′

−−→ q v0|v′
−−−→ q w|w′

−−−→ f
and q v̄0|v̄′

−−−→ q in T . Note however that the words v0 and v̄0 may not have the
same length. Let v and v̄ be the words v0v̄0 and v̄0v0. These words have the same
length but they are different. Otherwise h maps the single word uv0v̄0 to the two
differents words u′v′v̄′w′ and u′v̄′v′w′. The function hs,s′′ where s = (u, v, v̄, w)
and s′′ = (u′, v′v̄′, v̄′v′, w′) satisfies then hs,s′′ ⊆ h.

The proof of Theorem 4 proceeds by induction on the number of functions, so
we first establish the result for a single function.

Proposition 5. If h is a function, then h has a channel if and only if rg(h) has
an exponential growth.

Proof. By Proposition 4, the condition is necessary. Indeed, if h has a channel,
there exist two languages L0 and L1 with an exponential growth such that
h∩ (L0×L1) is a bijection from L0 to L1. The set L1 is thus contained in rg(h)
and rg(h) has a exponential growth.

By Lemma 3, there are two patterns s and s′ such that hs,s′ ⊆ h. Since h is a
function, h∩ (Ls ×Ls′) = hs,s′ . By Proposition 4, the function h has a channel.

The next lemma, which is one of the key ingredients for the main result, was
present in [8] (with an unsatisfactory proof).

Lemma 4. Let R be a rational relation and let h be a rational function. If R
has a channel, then R+ h also has a channel.

Proof. If R has a channel, by Proposition 4, there exist two languages L0 and L1

with an exponential growth such that g = R ∩ (L0 × L1) is a bijection from L0

to L1. Applying Lemma 3 to g, there exist two patterns s = (u, v, v̄, w) and s′ =
(u′, v′, v̄′, w′) such that hs,s′ ⊆ g. Let L be the domain of the function h. By
Lemma 1, s can be replaced by one of its sub-patterns such that either Ls∩L = ∅
or Ls ⊆ L. Like in the previous proof, g ∩ (Ls × Ls′) = hs,s′ . If Ls ∩ L = ∅ then
(R+ h)∩ (Ls ×Ls′) = hs,s′ and the function hs,s′ provides a channel for R+ h.

We now suppose that s satisfies Ls ⊆ L. Let T be a transducer realizing the
function h and let A be the automaton obtained by ignoring the output label
of each transition of T and taking the input label as the label. This automaton
accepts the set L = dom(h). By Lemma 2, s can be replaced by one its sub-
patterns such that there are paths i u−→ q v−→ q w−→ f and q v̄−→ q in A where i is
an initial state and f is a final state. Since these paths come from paths in T ,
we obtain a pattern s′′ = (u′′, v′′, v̄′′, w′′) such that i u|u′′

−−−→ q v|v′′
−−−→ q w|w′′

−−−→ f
and q v̄|v̄′′

−−−→ q in T .
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We distinguish two cases depending on whether the two patterns s′ and s′′ are
conjugated or not. If they are not conjugated, it can be assumed, without loss of
generality, that Ls′ ∩ Ls′′ = ∅ by Proposition 3. In this latter case, the function
hs,s′ provides a channel for R+h. If they are conjugated, the two functions hs,s′

and hs,s′′ are equal and therefore again provide a channel for R+ h.

We are now ready to prove Theorem 4.

Proof (Proof of Theorem 4). Let R = h1+ . . .+hn be a bounded relation, where
h1, . . . , hn are rational functions. If R has a channel, then by Proposition 4,
rg(R) has an exponential growth, hence (1) implies (3). If rg(R) has an expo-
nential growth, then one of the images rg(hi) has an an exponential growth. By
Proposition 5, the function hi has a channel, hence (3) implies (2). Finally, let
us assume that h1 has a channel. Using the previous lemma, it can be proved
by induction on i, that each relation h1 + . . .+ hi has a channel, hence R has a
channel. Therefore (2) implies (1) which concludes the proof.

Example of Channel Synthesis
We finally illustrate the channel construction of Corollary 1 on an example. With
A = B = B, Figure 2 depicts a transducer realizing a relation R which is the
union R = h1 + h2 of two functions h1 and h2 from B∗ to B∗. The function h1

(on the left side) is the morphism which maps the symbols 0 and 1 to 01 and 1
respectively. The function h2 (on the right side) maps each word a1a2 . . . an to
a1a3 . . . keeping only symbols at odd positions.

0 1 2

0|01, 1|1
0|0, 1|1

0|ε, 1|ε

Fig. 2. A union of 2 functions

The function h1 has obviously a channel since it is one-to-one fromB∗ onto (01+
1)∗. We show how the proof of Lemma 4 extracts a channel for the relation R.

1. Since the range rg(h1) = (01+1)∗ has an exponential growth, we obtain the
pattern s1 = (ε, 011, 101, ε) such that Ls1 ⊆ (01 + 1)∗. The corresponding
pattern of the inputs for h1 is s = (ε, 01, 10, ε), hence the function hs,s1

provides a channel for h1.
2. Examining the part of the transducer realizing h2, we observe that the input

pattern s induces the corresponding output pattern s2 = (ε, 0, 1, ε), but the
two patterns s1 and s2 satisfy Ls1 ∩ Ls2 �= ∅, so hs,s1 does not correspond
to a channel for R itself.

3. Since s1 and s2 and are not conjugated, it is possible to find a sub-pattern
s3 = (ε, 00, 11, ε) of s2 such that Ls1 ∩ Ls3 = ∅. The corresponding input
pattern for h2 is then the pattern s′ = (ε, 0101, 1010, ε) obtained from s.
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4. The channel in R = h1+h2 is then built from the function hs′,s3 . It consists
of the pair (E,D) where E is the morphism which maps 0 and 1 to 0101 and
1010 respectively, and D maps 00 and 11 to 0 and 1 respectively.

Besides Corollary 1, we also obtain:

Corollary 2. Let R = h1 + · · · + hn be a relation where each hi is either a
function or the inverse of a function. The following statements are equivalent:

1. R has a channel,
2. At least one relation hi has a channel.

This last result has to be compared with Theorem 4. When R is the finite
union of functions and inverses of functions, it may have a domain and a range
with exponential growth without having a channel as shown by the following
example. Let A and B the alphabet B. Let R be given by R = h1 + h2 where h1

is the function from B∗ to B∗ which maps each word to the empty word and h2

is the inverse of h1. The domain and the range of R are both equal to B∗ but R
has no channel. Hence the decidability result cannot apply in this case.

Proof. Let us recall that a relation R has a channel if and only if R−1 has a
channel. If one relation hi has a channel, then R has a channel by Lemma 4.

Suppose now that R has a channel. By Proposition 4, there exist two languages
L0 and L1 with an exponential growth such that R′ = R∩(L0×L1) is a bijection
between L0 and L1. For each 1 ≤ i ≤ n, let us denonte by h′i the restriction
hi ∩ (L0 × L1). Since h′i ⊆ R′, and R′ is a bijection, each relation h′i is also a
bijection. We may then suppose that each h′i is a function. It follows then from
Thereom 4 that R′ has a channel and that R has also a channel.

6 Conclusion

We proved a new characterization of bounded relations with channels, linked
to the growth of their image. We conjecture that this characterization could be
extended to relations R for which there exists a polynomial P such that for each
word u, |R(u)| ≤ P (|u|). We also plan to investigate more powerful channels
described by (subclasses of) two-way transducers instead of simple transducers.
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Abstract. The structure of the reachability graph of a live and bounded
marked graph Petri net is fully characterised. A dedicated synthesis pro-
cedure is presented which allows the net and its bounds to be computed
from its reachability graph.
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1 Introduction

Deducing behavioural properties from structural properties is one of the major
objectives of the analysis of systems. In this paper, a similar question about
system synthesis is addressed: given regular behaviour, can one find a generating
system that is well-structured? An answer will be given for marked graph Petri
nets [7,8], leading to a full characterisation of their state spaces.

Petri net region theory [1,2] investigates general conditions under which an
edge-labelled directed graph (or a labelled transition system) is the reachability
graph of a Petri net. However, not much is implied about the structure of the
net, if it exists. This paper shows that if a labelled transition system exhibits a
characteristically uniform cyclic structure, then it can be generated by a marked
graph, and the marking bounds may easily be deduced from some paths. Such
cyclic behaviour arises, for instance, in the context of persistent Petri nets [3,11],
or in the context of signal transition graphs [10].

Labelled transition systems and Petri nets are defined in sections 2 and 3,
respectively. The cyclic (and other) behavioural properties studied in this paper
are introduced at the end of section 3. The synthesis procedure and its applica-
tion to marked graphs are described in sections 4 and 5, respectively. Section 6
concludes and describes ideas for future work. Proofs of some auxiliary results
have been moved to Appendix A.
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2 Labelled Transition Systems

Definition 1. lts, reverse lts, reachability, Parikh vectors, cycles

A labelled transition system with initial state, abbreviated lts, is a quadruple
(S,→, T, s0) where S is a set of states, T is a set of labels with S ∩ T = ∅,
→⊆ (S × T × S) is the transition relation, and s0 ∈ S is an initial state. The
reverse lts is (S,←, T, s0) with (s, t, s′) ∈← iff (s′, t, s) ∈→. A label t is enabled
in a state s, denoted by s[t〉, if there is some state s′ such that (s, t, s′) ∈→. For
s ∈ S, let s• = {t ∈ T | s[t〉}. For t ∈ T , s[t〉s′ iff (s, t, s′) ∈→, meaning that s′ is
reachable from s through the execution of t. The definitions of enabledness and
of the reachability relation are extended to sequences σ ∈ T ∗:

s[ε〉 and s[ε〉s are always true;
s[σt〉 (s[σt〉s′) iff there is some s′′ with s[σ〉s′′ and s′′[t〉 (s′′[t〉s′, respectively).

A state s′ is reachable from state s if there exists a label sequence σ such that
s[σ〉s′. By [s〉, we denote the set of states reachable from s. For a finite sequence
σ ∈ T ∗ of labels, the Parikh vector Ψ(σ) is a T -vector (i.e., a vector of natural
numbers with index set T ), where Ψ(σ)(t) denotes the number of occurrences of
t in σ. s[σ〉s′ is called a cycle, or more precisely a cycle at state s, if s = s′. The
cycle is nontrivial if σ �= ε. An lts is called acyclic if it has no nontrivial cycles.
A nontrivial cycle s[σ〉s around a reachable state s ∈ [s0〉 is called small if there
is no nontrivial cycle s′[σ′〉s′ with s′ ∈ [s0〉 and Ψ(σ′) � Ψ(σ). �

Definition 2. Basic properties of an lts

A labelled transition system (S,→, T, s0) is called

• totally reachable if [s0〉 = S (i.e., every state is reachable from s0);
• finite if S and T (hence also →) are finite sets;
• (super-)deterministic, if for any states s, s′, s′′ ∈ [s0〉 and sequences σ, τ ∈ T ∗

with Ψ(σ) = Ψ(τ): (s[σ〉s′∧s[τ〉s′′)⇒ s′ = s′′ and (s′[σ〉s∧s′′[τ〉s)⇒ s′ = s′′

(i.e., from any one state, Parikh-equivalent sequences may not lead to two
different successor states, nor come from two different predecessor states);

• reversible if ∀s ∈ [s0〉 : s0 ∈ [s〉 (i.e., s0 always remains reachable);
• persistent if for all reachable states s and labels t, u, if s[t〉 and s[u〉 with

t �= u, then there is some state r ∈ S such that both s[tu〉r and s[ut〉r
(i.e., once two different labels are both enabled, neither can disable the other,
and executing both, in any order, leads to the same state);

• backward persistent if for all reachable states s, s′, s′′, and labels t, u, if s′[t〉s
and s′′[u〉s and t �= u, then there is some reachable state r ∈ S such that
both r[u〉s′ and r[t〉s′′ (i.e., persistency in backward direction). �

If the lts is totally reachable, reversibility is the same as strong connectedness
in the graph-theoretical sense. If the lts is strongly connected, backward persis-
tency is the same as persistency in the reverse lts. The lts depicted in Figure 1
satisfies all properties given in Definition 2.
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01 2c c

aa
a c

Fig. 1. A transition system (l.h.s.) and a Petri net solving it (r.h.s.)

3 Petri Nets

Definition 3. Petri nets, markings, reachability graphs

A (finite, initially marked, place-transition, arc-weighted) Petri net is a tuple
N = (P, T, F,M0) such that P is a finite set of places, T is a finite set of
transitions, with P ∩T = ∅, F is a flow function F : ((P ×T )∪(T ×P ))→ N, M0

is the initial marking, where a marking is a mapping M : P → N. A transition
t ∈ T is enabled by a marking M , denoted by M [t〉, if for all places p ∈ P ,
M(p) ≥ F (p, t). If t is enabled at M , then t can occur (or fire) in M , leading to
the marking M ′ defined by M ′(p) = M(p) − F (p, t) + F (t, p) (noted M [t〉M ′).
The set of markings reachable from M is denoted [M〉. The reachability graph
of N is the labelled transition system with the set of vertices [M0〉 and set of
edges {(M, t,M ′) | M,M ′ ∈ [M0〉 ∧M [t〉M ′}. If an lts TS is isomorphic to the
reachability graph of a Petri net N , we will also say that N solves TS. �

Definition 4. Basic structural properties of Petri nets

For a place p of a Petri net N = (P, T, F,M0), let
•p = {t ∈ T | F (t, p) > 0}

and p• = {t ∈ T | F (p, t) > 0}. N is called connected if it is weakly connected as
a graph; plain if cod(F ) ⊆ {0, 1}; pure or side-condition free if p• ∩ •p = ∅ for all
places p ∈ P ; ON (place-output-nonbranching) if |p•| ≤ 1 for all places p ∈ P ; a
marked graph if N is plain and |p•| ≤ 1 and |•p| ≤ 1 for all places p ∈ P . �

Definition 5. Basic behavioural properties of Petri nets

A Petri net N = (P, T, F,M0) is weakly live if ∀t ∈ T∃M ∈ [M0〉 : M [t〉
(i.e., there are no unfireable transitions); k-bounded for some fixed k ∈ N, if
∀M ∈ [M0〉∀p ∈ P : M(p) ≤ k (i.e., the number of tokens on any place never
exceeds k); bounded if ∃k ∈ N : N is k-bounded; persistent (backward persistent,
reversible) if its reachability graph is persistent (backward persistent, reversible,
respectively); and live if ∀t ∈ T∀M ∈ [M0〉∃M ′ ∈ [M〉 : M [t〉 (i.e., no transition
can be made unfireable). �

Proposition 6. Properties of Petri net reachability graphs

The reachability graph RG of a Petri net N is totally reachable and determin-
istic. N is bounded iff RG is finite. �

This paper focusses on the basic finite situation, on lts generated by Petri nets,
and on systems without superfluous transitions. Therefore, we shall assume that

All transition systems are finite, totally reachable, and deterministic.
All Petri nets are connected, weakly live, and bounded.
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In the next definition, ρ mimicks the notion of a Petri net place in terms of an
lts. R corresponds to the marking of this place at the various states; and B (F)
correspond to its outgoing (incoming, respectively) transitions.

Definition 7. Regions of lts

A triple ρ = (R,B,F) ∈ (S → N, T → N, T → N) is a region of an lts
(S,→, T, s0) if for all s[t〉s′ with s ∈ [s0〉, R(s) ≥ B(t) and R(s′) = R(s)−B(t)+
F(t). �

An lts (S,→, T, s0) satisfies SSP (state separation property) iff

∀s, s′ ∈ [s0〉 : s �= s′ ⇒ ∃ region ρ = (R,B,F) with R(s) �= R(s′)

and ESSP (event/state separation property) iff

∀s ∈ [s0〉 ∀t ∈ T : (¬s[t〉) ⇒ ∃ region ρ = (R,B,F) with R(s) < B(t).

Theorem 8. Basic region theorem for place/transition nets [2]

A (finite, totally reachable, deterministic) lts is the reachability graph of a
(possibly non-plain, or non-pure) Petri net iff it satisfies SSP and ESSP. �

Let Υ : T → N\{0} be a fixed Parikh vector with no zero entries. The principal
properties of any lts TS studied in this paper are the ones listed below.

b : TS is finite, totally reachable, and deterministic.
rp : TS is reversible and persistent.
PΥ : The Parikh vector of any small cycle in TS equals Υ .
bp : TS is backward persistent.

For example, the lts shown in Figure 1 satisfies all four requirements. Figure 2
violates P1 (i.e.: PΥ with constant Parikh vector 1) but satisfies P2 as well
as all other properties – b, rp, and bp. The lts shown in Figure 3 satisfies all
properties b to P1, but not bp. Two solutions are also depicted: a plain non-ON
one in the middle of the figure, and a non-plain ON one on the right-hand side.

M0

a

a

bb

c

c

c a

b

2

2 2

Fig. 2. An lts satisfying all properties but P1. The Petri net shown on the right-hand
side solves it. However, there is no ON Petri net, much less a marked graph, solution.
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b a

c

a

b

d

d

d

a b

c

d

a

b

c d

2

Fig. 3. An lts that cannot be solved by a marked graph, and two solutions

Theorem 9. Properties of live marked graphs [7,8]

The reachability graph of a connected, live and bounded marked graph is finite
and satisfies b, rp, P1, and bp. �

Theorem 9 implies that the lts shown in Figure 3 cannot be solved by a marked
graph. Consider state M : it has incoming arrows a and d which violate bp.

4 Solving an lts, Using rp, P1, and bp

Let TS = (S,→, T, s0) satisfy properties b (basic), rp (reversible and persistent),
P1 (constant Parikh vector 1 of small cycles), and bp (backward persistent).
We present an algorithm that produces a Petri net with isomorphic reachability
graph. We shall assume that TS is nontrivial, in the sense that |S| ≥ 2 and
|T | ≥ 2. Otherwise TS can be solved trivially.

For s, s′ ∈ S, let a path s[τ〉s′ be called short if |τ | ≤ |τ ′| for every path s[τ ′〉s′,
where |τ | denotes the length of τ . Also, let the distance Δs,s′ : T → N be defined
as Δs,s′ = Ψ(τ), where s[τ〉s′ is any short path. By Lemmata 22 and 24 in the
appendix, Δs,s′ is well-defined for any two states s, s′.

Fix a label x ∈ T . Let TS-x be defined from TS by erasing every arrow
labelled with x, as illustrated in Figure 4. The resulting lts has state set S and
label set T \ {x}. By Lemma 21, the paths of TS-x are precisely the short paths
of TS not containing x.

Lemma 10. Properties of TS-x
TS-x is acyclic, has a unique maximal state sx, a unique minimal state rx,

and is weakly connected.

Proof: Acyclicity arises from the fact that every nontrivial cycle must contain
at least one x by property P1. The existence of sx follows from Lemma 25. By
Lemma 26, there is a short directed path not containing x from any state into sx.
Hence, connectedness (between s and s′) results from going forward from s to sx
and then backward from sx to s′. The existence of rx also follows from Lemma
25, applied to the reverse lts (which is allowed because the assumed properties
are, as a whole, preserved by reversal). �
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These properties depend heavily on PΥ with Υ = 1. For instance, if all a-
arrows are erased in Figure 2, the resulting lts is not weakly connected.

Let Seq(x) be the set of sequentialising states w.r.t. x in which, by definition,
x is not enabled but in all of whose immediate successor states, x is enabled:

Seq(x) = {s ∈ S | ¬s[x〉 ∧ ∀a ∈ T : s[a〉 ⇒ s[ax〉}

The terminology is motivated in [6] for ON nets. E.g., in Figure 3, M ′ ∈ Seq(b).
The ON solution shown on the right-hand side contains a “sequentialising place”
having a and d as input transitions and b as an output transition.

In general, the set S is partitioned into X •∪(S\X) where X is the set of states
enabling x. S \X includes rx and Seq(x), as well as all states in between. The
latter is implied by persistency.X includes all states between Seq(x) (exclusively)
and sx (inclusively). In Figure 4, X is represented by slim nodes, while S \X
is represented by fat nodes. It is an easy consequence of our basic assumptions
that all sets are nonempty.

TS:

0=s0

1

2

3

4

5

a

b

b

a

x

x

a
d

TS-x:

0

1=sb

2

3=sx

4=rx

5

a

b

b

a
a

d

TS-a:

0

1

2

3

4

5

b

b

x

x

d

TS-b:

0

1

2

3

4

5

a
a

x

x

ad

TS-d:

0

1

2

3

4

5

a

b

b

a

x

x

a

Solution:

a b

d x

Fig. 4. A fully worked, simple example. Legend: rx is represented by a semicircle; sx
is represented by a kite symbol; elements in Seq(x) are represented as stars; the five
places of the solution correspond to the five stars.

Let x be fixed as before and pick, in addition, a state s in max (S\X) = Seq(x).

Lemma 11. Properties of Δrx,s

Δrx,s has exactly two entries that are zero; all other entries are positive.

Proof: Δrx,s(x) = 0, by persistency and because s does not enable x.
Assume that all other entries of Δrx,s are positive; there is a path rx[α〉s with

Ψ(α) = Δrx,s. By Lemma 20 and P1, there is a cycle rx[β〉rx with Ψ(β) = 1,
hence β contains x. Thus, by Keller’s theorem (cf. Appendix), rx[α〉s[β−• α〉, so
that s[x〉, contradicting s ∈ S \X . Therefore, Δrx,s has at least two entries 0.
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Assume that s[a〉q[x〉q′. This is possible by s ∈ Seq(x). By Lemma 20, there
is a cycle s[ax〉q′[γ〉s where every letter except a and x occurs in γ. Let rx[δ〉q′
be any short path (not containing x). Then rx[δγ〉s is a path from rx to s not
containing x, and therefore short, but containing all transitions in TS-x except
a. Therefore, Δrx,s has at most two entries 0. �

This proof implies that (i): a label a with s[a〉 is uniquely determined by the
choice of x and s, and (ii): s = sa, the unique state enabling only a.

Next, we define a function Rs,x : S → N, also depending on s and x. Let a be
the unique label with s = sa. For any state q ∈ S, define Rs,x(q) = Δrx,q(a) . For
example, let the initial state on the top left-hand corner of Figure 4 be s0 = 0.
Then with TS-x and s = sb = 1, Rs,x(s0) = 0, because on any path from rx = 4
to s0 = 0, no b occurs.

A net will now be assembled from TS = (S,→, T, s0) by the following algo-
rithm.

for every label x ∈ T do for every state s ∈ Seq(x) do
determine a ∈ T for which s = sa;
define a place p=ps,x with •p={a}, F (a, p)=1 and p•={x}, F (p, x)=1;
compute Rs,x as above and put M0(p

s,x) = Rs,x(s0) tokens on ps,x

end for end for

(1)

In the net so constructed, every place ps,x has exactly one input transition, viz.
a, and exactly one output transition, viz. x, and the net is plain. So, it is a
marked graph, and moreover, it is side-condition-free because a �= x.

Lemma 12. Rs,x
“disables” x in s and “enables” x in all states in X

Rs,x(s) = 0, and Rs,x(q) ≥ 1 for every state q ∈ X.

Proof: Rs,x(s) = 0 because a does not occur on any path from rx to s.
Every q ∈ X is above some s′ ∈ Seq(x), i.e. s′[a′α〉q for some a′ and some α.

As shown in the proof of Lemma 11, every label except a′ and x occurs on a short
path from rx to s′, so that Rs,x(q) ≥ 1 by the definition of Rs,x, independently
of whether a = a′ or a �= a′. �

Let a be determined from x and s, as before, and define

B(t) =
{
1 if t = x
0 if t �= x

and F(t) =
{
0 if t �= a
1 if t = a

(2)

Lemma 13. (Rs,x,B,F) is a region

The triple ρs,x = (Rs,x,B,F), as constructed above, is a region in TS.

Proof: Suppose s1[t〉s2. Rs,x(s1) ≥ B(t) follows from the second claim of Lemma
12 if t = x and from B(t) = 0 and the semipositiveness of Rs,x if t �= x. Rs,x(s2) =
Rs,x(s1) + F(t) − B(t) follows from the first line of (2) if t = x, and from the
second line of (2) if t �= x. �
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Theorem 14. Isomorphism of TS and RG(N,M0)
Let a labelled transition system TS = (S,→, T, s0) with properties b, rp, P1,

and bp be given. Let N with initial marking M0 be the Petri net constructed
according to the above procedure. Then TS and the reachability graph RG(N,M0)
of (N,M0) are isomorphic.

Proof: Lemma 12 implies that the set of regions constructed above satisfy ESSP,
which ensures that TS and RG(N,M0) are language-equivalent. To see that SSP
is also satisfied, assume that s1 and s2 in TS are mapped to the same marking
M reachable in (N,M0). By the strong connectedness of TS, there is a sequence
s1[σ〉s2. Since M [σ〉 by language equivalence, and because s2 is mapped to M ,
there is also a sequence s2[σ〉s3. Using the finiteness of TS, we get si[σ

	〉si for
some i, � ≥ 1. Because this is a cycle, property P1 implies that every letter
occurs equally often in σ	, and hence also equally often in σ. Thus σ is itself
cyclic, entailing s1 = s2. The claim follows by Theorem 8. �

Note that N has no isolated places. Hence it is connected, because otherwise,
each connected component generates small cycles which do not satisfy P1.

5 Marked Graphs, and Place Bounds

Theorem 15. Live and bounded marked graph reachability graphs

A labelled transition system satisfying b is isomorphic to the reachability graph
of a connected live and bounded marked graph iff it satisfies the properties rp,
P1 and bp.

Proof: For (⇒), see Theorem 9. For (⇐), see Theorem 14. �
Theorem 15 characterises the structure of the reachability graph of a con-

nected, live and bounded marked graph. Let us now look more carefully at this
bound.

Lemma 16. Exact bound

Assume that TS = (S,→, T, s0) satisfies b, rp, P1, and bp. The bound of the
marked graph constructed by (1) is max{Δsa,sx(a) | x ∈ T, sa ∈ max(S \X)}.

Proof: We already saw that Mr(p
s,x) = Δrx,r(a) for each x ∈ T , s = sa ∈

max(S \X)} and r ∈ S, and Ms(p
s,x) = 0. Hence, the maximum marking for

that place is Msx(p
s,x) = Δrx,sx(a) so that, if s = sa, Msx(p

s,x) = Δrx,sx(a) =
Δrx,sa(a)+Δsa,sx(a) = Δsa,sx(a), and this is the maximal marking of that place.
The claimed bound results. �

Lemma 17. Minimality

Assume that TS = (S,→, T, s0) satisfies b, rp, P1, and bp. Any marked
graph solution of TS contains (a copy of) the net constructed by (1).
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Proof: Let us consider some x ∈ T and sa ∈ max(S \X) as above. There must
be a place px,a in the solution that excludes x at sa, that is Msa(px,a) = 0 since
the net is a marked graph, hence plain. Let us assume that it is a place from b
to x. For any state r ∈ S we must also have Mr(px,a) = Mrx(px,a)+Δrx,r(b), so
that Mrx(px,a) = 0 = Δrx,sa(b) as well. Therefore, there is no label b between
rx and sa. But since sa ∈ Seq(x), from Lemma 11 and P1, the only missing
labels between rx and sa are a and x, so that px,a = pa,s, with the same initial
marking. The property results. �

Corollary 18. Live and k-bounded marked graph reachability graphs

Assume that TS = (S,→, T, s0) satisfies b, rp, P1, and bp.
Let K = max{Δsa,sx(a) | x ∈ T, sa ∈ max(S \X)} .
(a): If k ≥ K, then TS is (isomorphic to) the reachability graph of a connected,
live, k-bounded marked graph. (b): If k < K, then no marked graph whose
reachability graph is isomorphic to TS is k-bounded.

Thus K is the tightest possible bound for a marked graph realising TS: this
results from Lemmata 16 and 17. As a consequence, the constructed marked
graph is not only minimal, but also unique. Moreover, if an lts satifying all
properties b, rp,P1, bp is reduced by fusing the endpoints of all x-labelled edges,
one gets a well-defined new lts (with one transition less) which also satisfies all
properties, and thus corresponds again to a marked graph.

6 Concluding Remarks

In this paper, we have proved that every labelled transition system satisfying
some basic properties as well as reversibility, persistency, backward persistency,
and a Parikh 1 property of small cycles, is isomorphic to the reachability graph
of a live and bounded marked graph. This result, and the corresponding one for
k-bounded marked graphs, seem to be novel, even though marked graphs enjoy
a long history of being studied.

We would like to emphasise the key role of backward persistency. If bp is
not true, then the state rx of Lemma 10 cannot be used, as the set S \X may
have more than one minimum; also, Lemma 11 fails. If bp is dropped but all
other properties are kept, one can find examples which cannot be solved by
ON Petri nets even if arbitrary arc weights and arbitrary side-conditions are
allowed, disproving a conjecture of [5]. Such examples are rather complex; they
are described in [6].

Future work might be concerned with the following issues:

• Extending the characterisations to non-live and/or unboundedmarked graphs,
while relaxing the plainness and pureness assumptions [12].

• Checking whether nets (N,M0) which satisfy rp and whose initial marking
satisfies gcd{M0(p) | p ∈ P} > 1 are backward persistent. (A positive answer
would settle a question left open in [4].)
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Appendix

A Auxiliary Results

Let TS = (S,→, T, s0) be an lts satisfying b, rp, and PΥ with some positive Υ .
For sequences σ, τ ∈ T ∗, τ−• σ denotes the residue of τ w.r.t σ, i.e. the sequence
left after cancelling successively in τ the leftmost occurrences of all symbols
from σ, read from left to right. Formally and inductively: for t ∈ T , τ−• t = τ
if Ψ(τ)(t) = 0; τ−• t =the sequence obtained by erasing the leftmost t in τ if
Ψ(τ)(t) �= 0; τ−• ε = ε; and τ−• (tσ) = (τ−• t)−• σ.

Theorem 19. Keller’s theorem [9]

If s[τ〉 and s[σ〉 for some s ∈ [s0〉, then s[τ(σ−• τ)〉s′ and s[σ(τ−• σ)〉s′′ as well
as Ψ(τ(σ−• τ)) = Ψ(σ(τ−• σ)) and s′ = s′′. �

Lemma 20. Cyclic extensions

Suppose s[α〉 with α ∈ T ∗ and Ψ(α) ≤ Υ . Then there is a small cycle s[κ〉s
such that α is a prefix of κ.

Proof: Let α̃ be such that s[α̃〉s and Υ = Ψ(α̃). Such a sequence α̃ exists by
persistency, reversibility, and because small cycles can be pushed to all states
(cf. Corollary 4 of [3]). Suppose s[α〉s′. By Keller’s theorem, s[α〉s′[α̃−• α〉s′′. By
Ψ(α) ≤ Υ = Ψ(α̃), Ψ(α̃) = Ψ(α(α̃−• α)). By the cyclicity of α̃, s′′ = s. Choosing
κ = α(α̃−• α) proves the lemma. �

Lemma 21. Characterisation of short paths

Suppose that s[τ〉s′. Then s[τ〉s′ is short iff ¬(Υ ≤ Ψ(τ)).

Proof: (⇒): By contraposition. Suppose that s[τ〉s′ and that Υ ≤ Ψ(τ). There
is some cycle s[κ〉s with Ψ(κ) = Υ . By Keller’s theorem, s[κ〉s[τ−• κ〉s′′. By
Ψ(κ) = Υ ≤ Ψ(τ), Ψ(τ) = Ψ(κ(τ−• κ)), and therefore, s′ = s′′ (by determinacy,
which holds by property b). Since neither κ nor τ is the empty sequence, and by
the fact that κ contains every transition at least once, |τ−• κ| < |τ |. Hence s[τ〉s′
is not short.

(⇐): Suppose that s[τ〉s′ and ¬(Υ ≤ Ψ(τ)). Consider any other path s[τ ′〉s′
from s to s′. By reversibility, there is some path ρ from s′ to s. Hence both s′[ρτ〉s′
and s′[ρτ ′〉s′ are cycles at s′. By Keller’s theorem, s′[ρτ ′〉s′[(ρτ)−• (ρτ ′)〉s′. Hence
s′[τ−• τ ′〉s′, and since this is a cycle, Ψ(τ−• τ ′) is a multiple of Υ . In view of
¬(Υ ≤ Ψ(τ)) and 1 ≤ Υ , this can only be the case if Ψ(τ−• τ ′) = 0, i.e., τ−• τ ′ = ε.
This implies, in particular, that Ψ(τ) ≤ Ψ(τ ′) and that |τ | ≤ |τ ′|, and therefore,
s[τ〉s′ is short. �
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Lemma 22. Uniqueness of short Parikh vectors

Suppose that s[τ〉s′ and s[τ ′〉s′ are both short. Then Ψ(τ) = Ψ(τ ′).

Proof: By Lemma 21, both ¬(Υ ≤ Ψ(τ)) and ¬(Υ ≤ Ψ(τ ′)). As in the second
part of the previous proof, we may conclude, using some suitable (in fact any)
path s′[ρ〉s, both s′[τ−• τ ′〉s′ and s′[τ ′−• τ〉s′. Therefore, both Ψ(τ) ≤ Ψ(τ ′) and
Ψ(τ ′) ≤ Ψ(τ), implying Ψ(τ) = Ψ(τ ′). �

Lemma 23. Characterisation of Parikh vectors of paths

Suppose that s[τ〉s′. Then Ψ(τ) = Ψ(τ ′) + m·Υ , with some number m ∈ N,
where s[τ ′〉s′ is any short path.

Proof: Assume that s[τ〉s′. Let m be the maximal number in N such that
Ψ(m·Υ ) ≤ Ψ(τ). Let s[κ〉s be some cycle with Ψ(κ) = Υ . Then also s[κm〉s,
with Ψ(κm) = m·Υ . By Keller’s theorem, s[κm〉s[τ ′〉s′, with τ ′ = τ−• κm. By the
maximality of m, s[τ ′〉s′ is short, and by Ψ(κm) ≤ Ψ(τ), Ψ(τ) can be written as
Ψ(τ) = Ψ(τ ′) + Ψ(κm). By Lemma 22, the choice of τ ′ is arbitrary. �

Lemma 24. Existence of short paths

Suppose that s, s′ are states. There is a short path from s to s′.

Proof: By reversibility, s[τ〉s′ for some τ . Just take the path s[τ ′〉s′ from the
proof of Lemma 23. �

So far, only PΥ was needed, but the remaining Lemmata depend on P1.

Lemma 25. Every label has a unique singular enabling state

For every x ∈ T there is a unique state sx on which only x is enabled.

Proof: There must be at least one such state, because otherwise one can create
a cycle without any x, by bypassing every outgoing edge labelled x on every
state and using the finiteness of the lts, eventually contradicting property P1.

Suppose sx and s′x are two such states and let sx[x〉s. By P1, we can find
s[αx〉s, without any x in α. Let s[β〉s′x be a short path, which exists by Lemma
24. By Keller’s theorem, s′x[αx−•β〉. Hence all of α are wiped out by β because s′x
enables only x. Therefore, and because β is short, every letter except x occurs
at least once in β. Similarly, if s′x[x〉s′[β′〉sx (with a short β′), then every letter
except x occurs at least once in β′. Now consider the cycle sx[x〉s[β〉s′x[x〉s′[β′〉sx.
It has every letter exactly twice, because x occurs exactly twice in it, and because
of P1. Therefore, β has every letter except x exactly once, which implies sx = s′x,
again by P1. �

Lemma 26. Labels on short paths into sx
On any short path into sx, there is no label x.

Proof: Assume that r[xα〉sx is a short path such that α has no label x. (Other
short paths into sx containing x can be reduced to this case by taking suffixes.)
Also, let r[xδ〉r be a cycle where δ contains no x but every other letter once. By
Keller’s theorem, sx[xδ−•xα〉 which cannot be empty (because otherwise r[xα〉sx
is not short) but also does not start with an x; contradiction. �



172 E. Best and R. Devillers

References

1. Badouel, E., Bernardinello, L., Darondeau, P.: Theory of Regions (to appear)
2. Badouel, E., Darondeau, P.: Theory of Regions. In: Reisig, W., Rozenberg, G.

(eds.) APN 1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)
3. Best, E., Darondeau, P.: A Decomposition Theorem for Finite Persistent Transition

Systems. Acta Informatica 46, 237–254 (2009)
4. Best, E., Darondeau, P.: Separability in Persistent Petri Nets. Fundamenta Infor-

maticae 112, 1–25 (2011)
5. Best, E., Darondeau, P.: Petri Net Distributability. In: Clarke, E., Virbitskaite,

I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 1–18. Springer, Heidelberg
(2012)

6. Best, E., Devillers, R.: Solving LTS with Parikh-unique Cycles. Technical Report
(2013)

7. Commoner, F., Holt, A.W., Even, S., Pnueli, A.: Marked Directed Graphs. J.
Comput. Syst. Sci. 5(5), 511–523 (1971)

8. Genrich, H.J., Lautenbach, K.: Synchronisationsgraphen. Acta Inf. 2, 143–161
(1973)

9. Keller, R.M.: A Fundamental Theorem of Asynchronous Parallel Computation.
In: Tse-Yun, F. (ed.) Parallel Processing. LNCS, vol. 24, pp. 102–112. Springer,
Heidelberg (1975)

10. Kondratyev, A., Cortadella, J., Kishinevsky, M., Pastor, E., Roig, O., Yakovlev, A.:
Checking Signal Transition Graph Implementability by Symbolic BDD Traversal.
In: Proc. European Design and Test Conference, Paris, France, pp. 325–332 (1995)

11. Landweber, L.H., Robertson, E.L.: Properties of Conflict-Free and Persistent Petri
Nets. JACM 25(3), 352–364 (1978)

12. Teruel, E.: On Weighted T-systems. In: Jensen, K. (ed.) ICATPN 1992. LNCS,
vol. 616, pp. 348–367. Springer, Heidelberg (1992)



Computing Depths of Patterns�

Francine Blanchet-Sadri1, Andrew Lohr2, Sean Simmons3,
and Brent Woodhouse4

1 Department of Computer Science, University of North Carolina
P.O. Box 26170, Greensboro, NC 27402–6170, USA

blanchet@uncg.edu
2 Department of Mathematics, Mathematics Building
University of Maryland, College Park, MD 20742, USA

alohr1@umd.edu
3 Department of Mathematics, Massachusetts Institute of Technology

77 Massachusetts Avenue, Cambridge, MA 02139–4307, USA
seanken@mit.edu

4 Department of Mathematics, Purdue University
150 N. University Street, West Lafayette, IN 47907–2067, USA

bwoodhou@purdue.edu

Abstract. Pattern avoidance is an important research topic in combi-
natorics on words which dates back to Thue’s construction of an infinite
word over three letters that avoids squares, i.e., a sequence with no two
adjacent identical factors. This result finds applications in various alge-
braic contexts where more general patterns than squares are considered.
A more general form of pattern avoidance has recently emerged to al-
low for undefined positions in sequences. New concepts on patterns such
as depth have been introduced and a number of questions have been
raised, some of them we answer. In the process, we prove a strict bound
on the number of square occurrences in an unavoidable pattern, and
consequently, any pattern with more square occurrences than distinct
variables is avoidable over three letters. We also prove a strict bound on
the length of an avoidable pattern with at least four distinct variables.
We finally provide an algorithm that determines whether a given pattern
is of bounded depth, and if so, computes its depth.

1 Introduction

A pattern p, i.e., a word over an alphabetΔ of variables denoted by A,B,C, . . ., is
avoidable over some finite alphabetΣ if there exists an infinite word (or sequence)
over Σ with no occurrence of p. The terminology of avoidable pattern, although
studied by Thue at the beginning of the twentieth century, was introduced much
later by Bean et al. [1] and by Zimin [12] who described a simple procedure to
decide avoidability. The problem of deciding whether a pattern is k-avoidable,
i.e., avoidable over k letters, has however remained open. Thus the problem of
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classifying the avoidability indices of all patterns over a fixed number of variables
has become subject of investigation [8, 11] (the smallest k such that a pattern
is k-avoidable is its avoidability index). Chapter 3 of [9] provides background on
avoidable patterns.

A more general form of pattern avoidance has recently emerged to allow for
undefined positions. In this context, partial words are sequences that may have
such positions, called don’t care symbols or holes, that match any letter of the
alphabet (partial words without holes are full words). The occurrences of the
same variable in a pattern are replaced with pairwise “compatible” partial words.
For example, an occurrence of the pattern AAA has the form uvw where u
is compatible with both v and w, and v is compatible with w. Constructing
an infinite partial word with infinitely many holes that avoids a given pattern
amounts to constructing an infinite set of infinite words that avoid the pattern.
New research topics are being developed such as pattern avoidance with respect
to hole sparsity [2], abelian pattern avoidance [6], etc.

Clearly AA is unavoidable due to occurrences of trivial squares of the form
a+ or +a, where a is a letter and + is the hole symbol. In [10], it was shown
that there exists a partial word with infinitely many holes over two letters that
avoids the pattern An, n ≥ 3, and so its avoidability index in partial words is
2. Ref. [3–5] provide, using “division” of patterns, the avoidability indices of all
binary patterns, those over A and B, and almost all ternary patterns, those over
A, B and C, except for four patterns whose avoidability index was shown to be
between 2 and 5. To calculate the avoidability index of a pattern p, the lower
bound is usually computed using backtracking. For the upper bound, a HD0L
system is built that consists of an inner morphism φ and of an outer morphism
ψ. Then ψ(φω(a)) is shown to avoid p, for some letter a.

In the process of classifying the ternary patterns with respect to partial word
avoidability, new concepts such as depth and shallowness, were introduced and
a number of questions were raised [4]. Among them are the following:

1. If p is k-shallow and p1 and p2 are (h1, k)-deep and (h2, k)-deep respectively,
is p1Ap2 (h1+h2, k)-deep? In general, what relation does the depth of p1Ap2
have with the depth of p1 and p2? (Concepts are recalled in Section 5.)

2. Can every unavoidable pattern be written in the form of [4, Corollary 9]?
(Corollary 9 is recalled in Section 5.)

In relation to 1, it was mentioned that the classification of the depths of patterns
may give insight; this classification was completed in [4] though the problem
remained open. Among other things, we answer these questions. In Section 2, we
review a few basic concepts and notations. In Section 3, we prove, in particular,
a strict bound on the number of square occurrences in a pattern that is partial
word unavoidable, and consequently, any pattern with more square occurrences
than distinct variables is 3-avoidable in partial words. We also prove a strict
bound on the length of a pattern with at least four variables that is partial word
avoidable. In Section 4, we exhibit an unavoidable pattern that cannot be written
in the form of [4, Corollary 9], negatively answering 2 above. In Section 5, we
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provide an algorithm that determines if a given pattern has bounded depth, and
if so, outputs its depth. Finally in Section 6, we conclude with some remarks.

2 Basic Concepts and Notations

Let Σ be a finite alphabet of letters. Define Σ� = Σ∪{+}, where + �∈ Σ represents
an undefined position or a hole. Partial words over Σ are sequences over Σ�
while full words over Σ are partial words over Σ with no +’s. The empty word
is denoted by ε. The set of all full words (resp., non-empty full words) over Σ is
denoted by Σ∗ (resp., Σ+), while the set of all partial words (resp., non-empty
partial words) over Σ by Σ∗

� (resp., Σ+
� ). If u, v are partial words over Σ of

equal length, then u is contained in v, denoted u ⊂ v, if u[i] = v[i] for all i such
that u[i] ∈ Σ; u, v are compatible, denoted u ↑ v, if u[i] = v[i] for all i such
that u[i], v[i] ∈ Σ. If u, v are non-empty and compatible, then uv is a square. A
partial word u is a factor of a partial word v if there exist x, y such that v = xuy.
A full word is a subword of v if it is compatible with a factor of v. A completion
of a partial word is a full word compatible with it. We denote by v[i..j] (resp.,
v[i..j)) the factor v[i] · · · v[j] (resp., v[i] · · · v[j − 1]).

Let Δ be an alphabet of variables, Σ ∩Δ = ∅, and let p = A0 · · ·An−1, where
Ai ∈ Δ, be a pattern. The set of distinct variables that occur in p is denoted
by α(p). If a variable occurs only once in p, it is a singleton variable. Define an
occurrence of p in a partial word w over an alphabet Σ as a factor u0 · · ·un−1 of
w, where for all i, ui �= ε, and for all i, j, if Ai = Aj , then ui ↑ uj . In other words,
u0 · · ·un−1 ⊂ ϕ(p), where ϕ is any non-erasing morphism from Δ∗ to Σ∗. The
partial word w meets the pattern p, or p occurs in w, if for some factorization
w = xuy, we have that u is an occurrence of p in w; otherwise, w avoids p or w
is p-free. For instance, ab+ba+bba meets ABBA (take the morphism ϕ(A) = bb
and ϕ(B) = a), while +babbbaaab avoids ABBA. These definitions also apply to
(one-sided) infinite partial words over Σ, which are functions from N to Σ�.

A pattern p ∈ Δ∗ is k-avoidable in partial words if there are infinitely many
partial words in Σ∗

� with h holes, for any integer h > 0, that avoid p, where Σ
is any alphabet of size k. If there is a partial word over Σ with infinitely many
holes that avoids p, then p is obviously k-avoidable. On the other hand, if, for
some integer h ≥ 0, every long enough partial word in Σ∗

� with h holes meets p,
then p is k-unavoidable (it is unavoidable over Σ). Finally, a pattern which is k-
avoidable for some k is avoidable, and a pattern which is k-unavoidable for every
k is unavoidable. The avoidability index of a pattern p is the smallest integer k
such that p is k-avoidable, or is ∞ if p is unavoidable. Note that k-avoidability
implies (k + 1)-avoidability.

If a pattern p occurs in a pattern q, then p divides q and denote this by p | q;
for instance, AA � ABA but AA | ABAB. Note that if p | q and an infinite word
avoids p then it also avoids q, and so the avoidability index of q is less than or
equal to the avoidability index of p.
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3 Avoiding Patterns

Any infinite partial word with at least one hole must meet A2, so A2 is clearly
unavoidable in partial words. The theorem below addresses the avoidability of
all other patterns where each variable occurs at least twice.

Theorem 1. Let p be a pattern with |p| > 2 such that each variable in p occurs
at least twice. Then p can be avoided by an infinite full word over k letters,
for some k, and there exists a partial word with infinitely many holes over an
alphabet of size k + 5 that avoids p. Moreover, if there are no squares of length
two in p, there exists a partial word with infinitely many holes over an alphabet
of size k + 3 that avoids p.

Proof. By [9, Corollary 3.2.10], p can be avoided by an infinite full word if
each of its variables occurs at least twice. Therefore, let w be an infinite word
over an alphabet Σ of cardinality k, such that w avoids p. Take m = 1 if
there are no squares of length two in p and m = 2 otherwise. There exist some
a0, a1, . . . , a2m ∈ Σ (not necessarily distinct) such that a0a1 · · ·a2m occurs in-
finitely often as a factor of w. We create a sequence of integers {kj} as follows.
Let k0 be the smallest positive integer where a0a1 · · ·a2m = w[k0 − m]w[k0 −
(m− 1)] · · ·w[k0 +m]. Define kj recursively so that kj+1 is the smallest integer
with kj+1 > 4kj and a0a1 · · ·a2m = w[kj+1−m]w[kj+1−(m−1)] · · ·w[kj+1+m].

Define the alphabet Σ′ = Σ ∪ {b0, b1, . . . , b2m}, where bi /∈ Σ for all i. We
define the partial word v as follows. If j ≡ 0 mod 6|p|, for 0 ≤ i ≤ m − 1 let
v[kj + i + 1] = bm+i+1 and v[kj − i − 1] = bm−i−1; also define v[kj ] = +. If
j �≡ 0 mod 6|p|, let v[i] = bm if i = kj , and in all other cases let v[i] = w[i].
Note that v is basically w, except the factor b0 · · · bm−1 + bm+1 · · · b2m is inserted
infinitely often, and between each two occurrences of this factor, there are 6|p|−1
instances of bm, where the distance between any two such instances is greater
than or equal to the distance from the first bm to the beginning of the word.
This construction also guarantees that for any i with v[i] = b0, we must have
v[i+m] = +. Likewise, for any i with v[i] = b2m, v[i−m] = +. Thus b0 and b2m
can be viewed as “sentinel” letters on the left and right of the holes in v.

The partial word v is well-defined, and its letters come from an alphabet of
size k+2m+1. We show that v avoids p by assuming that v meets p and reaching
a contradiction. Set p = A0 · · ·An−1, where each Ai is a variable in Δ. Define
j0 and j1 so that u = u0 · · ·un−1 = v[j0..j1] is a factor of v such that if Ai = Aj

then ui ↑ uj, i.e., u is an occurrence of p in v.
Two occurrences of the same variable A in p, say Ai and Ai′ , where i < i′,

correspond to partial words ui, ui′ such that ui ↑ ui′ . Moreover, there exist s, t,
and �, s ≤ s+ � < t ≤ t+ �, so that ui = v[s] · · · v[s+ �] and ui′ = v[t] · · · v[t+ �].
Let J1 = {j | s ≤ kj ≤ s + �} and J2 = {j | t ≤ kj ≤ t + �}. We show that
|J2| ≤ 1, thus |J1| ≤ 2. Assume for the sake of contradiction that |J2| > 1, so
there exists j ∈ J2 such that j + 1 ∈ J2. However,

� = t+ �− t ≥ kj+1 − kj > kj > s+ � ≥ �,
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a contradiction. For the second inequality, if we assume |J1| > 2, there are at
least two occurrences of the letter bm in ui, and for each such occurrence there
must also be an occurrence of bm or + in ui′ . This would imply the contradiction
|J2| > 1, therefore |J1| ≤ 2.

Since each variable in p occurs at least twice, |J1| ≤ 2 and |J2| ≤ 1 imply there
are at most 2|p| non-negative integers j with j0 ≤ kj ≤ j1. By construction of
v, there are 6|p| − 1 integers j such that v[kj ] = bm between any two holes in
v. Thus u contains at most one hole. We can show that u actually contains no
holes. Thus ui �= + for all ui in u. Define ϕ : (Σ′)∗ → Σ∗ with ϕ(a) = a if
a ∈ Σ and ϕ(bi) = ai for 0 ≤ i ≤ 2m. By construction ϕ(u) is a factor of w that
represents an occurrence of p, contradicting the fact that w avoids p. �

It was shown in [3,4] that the maximum length unary unavoidable pattern is
A2, length 2, the maximum length binary unavoidable pattern is A2BA2, length
5, and the maximum length ternary unavoidable pattern is A2BA2CA2, length
8. Now, let Am, for m ∈ N be different variables. Let Z0 = ε, and for all m ∈ N,
Zm+1 = ZmAm+1Zm, the Zm’s being the Zimin words known to be unavoidable
in full words [9]. Referring to [7], all the Zimin words are unavoidable in partial
words. Note that Zm is over m distinct variables and |Zm| = 2m− 1. Therefore,
the following corollary provides a strict avoidability bound for patterns with at
least four variables. It also extends [9, Corollary 3.2.11].

Corollary 2. Let p be a pattern with n ≥ 4 distinct variables. If |p| ≥ 2n, then
p is avoidable in partial words.

The next theorem provides a bound on the number of square occurrences in
a pattern that is partial word unavoidable. This bound cannot be improved. For
a variable alphabet of size n, the pattern

A0A0A1A0A0A2A0A0 · · ·A0A0An−1A0A0

has n square occurrences, and is unavoidable in partial words (there has to be a
factor “a+” that occurs infinitely often for some letter a).

Theorem 3. The number of square occurrences in a pattern that is partial word
unavoidable is less than or equal to the number of distinct variables used. Con-
sequently, any pattern with more square occurrences than distinct variables is
3-avoidable.

Proof. If any square occurrence in the pattern is of length greater than two, it is
divisible by ABAB, which is 3-avoidable, so, we restrict to only when we have a
single variable squared. Also, no square occurrences are adjacent, otherwise the
pattern would be divisible by AABB, which is 3-avoidable. Lastly, no square
occurrences overlap, because an overlap of two length two square occurrences is
an occurrence of AAA, which is 2-avoidable.

Suppose that p is an unavoidable pattern over an alphabet of n variables
Δ. Proceeding by contradiction, write p = A1A1u1A2A2 · · ·AnAnunAn+1An+1
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where, for all i, Ai ∈ Δ and ui ∈ Δ+ (we can ignore the ends of p before A1A1

and after An+1An+1). Let S = ∪n+1
i=1 {Ai}. We can prove that for all i, ui /∈ S+.

Because |Δ \S| < n, there must be some i such that there is some mapping f
from α(ui) \ S to {1, . . . , i− 1} such that for every A ∈ α(ui) \ S,A ∈ α(uf(A)).
Put another way, every variable that occurs in ui has to either appear in a square
occurrence or at some point further left in p. We know such an i exists because
with each m, um can either use a variable from Δ \ S that has not been used
before, or it can only use variables that occurred before. Because there are more
um than variables in Δ \ S to introduce for the first time, at least one of them
has to not introduce any new variables from Δ \ S, that is the ui we want.

Let T = α(ui)\S and let g : Δ→ N map A to the number of times A appears
in ui. We can prove that the partial word w′ with infinitely many holes over
three letters constructed below avoids p. Let Σ = {a, b, c} and let θ : Σ∗ → Σ∗

be the morphism defined by θ(a) = abc, θ(b) = ac, and θ(c) = b. Define the
morphism φ : Σ∗ → Σ∗

� as θ3 with the factor bab of θ3(a) changed to b+b, i.e.,

φ(�) =

⎧⎪⎨⎪⎩
abcacb+bcbac, if � = a;

abcacbac, if � = b;

abcb, if � = c.

Let w = φ ◦ θω(a) and let 〈im〉 be the sequence of indices of holes of w, i.e.,
w[i] = + if and only if i ∈ 〈im〉. Let 〈jm〉 be any subsequence of 〈im〉 such that

jm+1 > (1 +
∑
A∈T

g(A))jm + 4 + 2
∑
A∈S

g(A).

We construct w′ from w by replacing, for all im, w[im − 1..im + 1] with b+b if
im ∈ 〈jm〉 or bab if not.

Since p is unavoidable, we have a meeting morphism h. Note that, for every
A ∈ T , uf(A) contains A means |h(uf(A))| ≥ |h(A)|. Then because each square
occurrence in p has its ends within two positions of a +, there is a function gap
mapping um, m ≤ i, to jm′ − jm′′ where the two terms jm′ and jm′′ of 〈jm〉
selected are the positions of the two holes that the ends of um are near. This
means gap(ui) ≥ |h(ui)| ≥ gap(ui)− 4. So, for every A ∈ T , if f(A) �= i− 1,

|h(A)| ≤ |h(uf(A))| ≤ gap(uf(A)) < gap(ui−1)− 4 ≤ |h(ui−1)|.

Then,

|h(ui)| >
(∑

A∈T g(A)
)
|h(ui−1)|+ 2

∑
A∈S g(A)

≥
(∑

A∈T g(A)|h(A)|
)
+ 2

∑
A∈S g(A),

which contradicts the fact that

|h(ui)| =
∑
A∈Δ

g(A)|h(A)| ≤
(∑

A∈T
g(A)|h(A)|

)
+ 2

∑
A∈S

g(A).

�
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The next theorem will be useful for computing the depth of a given pattern
in the next section.

Theorem 4. If p is a pattern with no squares that is k-avoidable in full words,
then, for every positive integers m,h, there is an infinite avoiding partial word
over k + 4h letters with h holes each at least m positions away from each other
and the beginning of the word.

Proof. We do induction on the number of variables in the pattern p. For the
basis, the smallest alphabet size over which it is possible to have a square-free
pattern that is avoidable by infinite full words is three. The only such ternary
pattern with a singleton is ABACBAB which, by [4], can be avoided with a
partial word having infinitely many holes over only three letters, using the HD0L
system given by φ(θω(a)) where

θ(�) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ad, if � = a;

ab, if � = b;

db, if � = c;

c, if � = d;

and φ(�) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
bb, if � = a;

caabc, if � = b;

aab+acbaabc, if � = c;

ac, if � = d.

Then, we just fill in all but h of the holes that are far enough apart. In the case
of no singletons, by Theorem 1, p is avoidable over k + 3 letters, and we have
our base case with α(p) = 3.

For the inductive step, let w be an infinite full word over k letters that avoids
p. Let w′ be a length five factor of w that occurs infinitely often. Let Sw′ =
{w0, w1, . . . , wh−1} be a collection of h disjoint occurrences of w′ in w that
each occurs at least m positions apart and m positions from the ends of the
word. Let {ai, bi, ci, di}0≤i<h be distinct letters that do not appear in w. Define
w′i = aibi+cidi. Then, for each wi ∈ Sw′ , replace wi with w′i, call the resulting
word W . Our claim is that W avoids p because under the mapping θ(v) = w′[0]
if v = ai for some i; w′[1] if v = bi for some i; w′[2] if v = +; w′[3] if v = ci for
some i; w′[4] if v = di for some i; and v otherwise, θ(W ) = w avoids p. Assume
to the contrary that W meets p with pattern occurrence u1 · · ·u|p|. Then there
must be some i such that + is a factor of ui.

Suppose towards a contradiction that for every i such that + is a factor of
ui, the variable corresponding to ui is a singleton. Then, if ui corresponds to
a singleton, ui is not required to be compatible with any uj , j �= i, so, the
pattern occurrence is preserved under applying θ to W , contradicting the fact
that w is p-free. We are also able to require that at least one of the non-singleton
hole containing factors does not correspond to the factor + of W . So let A be a
non-singleton corresponding to some uj that contains a hole.

Suppose towards a contradiction that + is at some position other than either
the first or last position of uj . Then there is an i such that bi+ci is a factor of
uj, but any possible completion of bi+ci is a subword that only appears in uj ,
contradicting the fact that uj corresponds to a non-singleton. So, uj either starts
or ends with a +.
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Suppose towards a contradiction that |uj | > 2. Then, there is an i such that
uj has either aibi+ or +cidi as a suffix or prefix respectively. Any completion of
either however is not a subword that appears anywhere else. So, uj is + (Case 1),
+ci (Case 2), or bi+ (Case 3). Note that Case 3 is symmetric to Case 2. Letting
the function f map un to the variable that corresponds to un, the rest of the
proof is based on the concept of “holeboundedness”. �

4 Answering a Conjecture

It has been conjectured that every unavoidable pattern may be written in the
form of [4, Corollary 9] which is stated as follows. Let p be a pattern of only
distinct variables over Δ and let 0 ≤ i < |p| be such that p0, p1, . . . , pn ∈ Δ∗

are compatible with factors of digi(p), where digi(p) is defined by digi(p)[i] = +
and digi(p)[j] = p[j] if j �= i. If A1, . . . , An are distinct variables not in Δ, then
p0A1p1 · · ·Anpn is unavoidable. We answer negatively this conjecture.

Theorem 5. The above mentioned conjecture is false.

Proof. It suffices to provide a pattern that is unavoidable and that is neither full
word unavoidable nor of the form of [4, Corollary 9]. The pattern

p = Z4EFF = ABACABADABACABAEFF

satisfies such property. It is clearly not full word unavoidable because it is di-
visible by AA. It is also not of the form of Corollary 9, as the only possibilities
for A1, . . . , An are A1 = D and A2 = E as they are the only variables occurring
only once, meaning that p0 = p1 = ABACABA and p2 = FF . However, since
p0 has A occurring more than twice, it cannot be compatible with a factor of
some digi(p), pattern formed from at most one hole and some number of distinct
variables, as was the restriction on p.

To see that p is unavoidable, first note that it is unavoidable even in full
words. Thus, there must be some hole occurring at least two letters to the right
of an occurrence of Z4. Let F map to the letter occurring immediately to the
right of the hole, and E be the factor of the word between the occurrence of Z4

and the hole. �

5 Computing Depths of Patterns

Recall the definitions of depth and shallowness from [4]. A k-unavoidable pattern
p is (h, k)-deep if there exists some m ∈ N such that every partial word w over
a k-letter alphabet meets p whenever w has at least h holes separated pairwise
from each other and from the first and final position of w by factors of length m
or greater. A function δ : N \ {0, 1} → N is the depth-function of an unavoidable
pattern p if for all k the pattern p is (δ(k), k)-deep and p is not (j, k)-deep for
any j < δ(k). When the depth function of p is bounded, its supremum d is the
depth of p and p is d-deep. On the other hand, a pattern p is k-shallow if p is
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(0, k)-deep or (1, k)-deep. If p is k-shallow for all k, p is shallow. The pattern p
is k-non-shallow if it is k-unavoidable but not k-shallow. Shallow patterns have
some properties in common with full word unavoidable patterns that higher-
depth patterns do not have.

A use of shallowness from [4] states that if p1, p2 are k-unavoidable patterns
over an alphabet of variables Δ and A is a variable which does not appear in p1
or p2, i.e., A ∈ Δ \ (α(p1) ∪ α(p2)), then the pattern p1Ap2 is k-unavoidable if
there exists some k-shallow pattern p such that p1 and p2 are factors of p. Note
that it is also much easier to check that a given pattern is shallow for a given k
than to check that it has higher depth. This is done just by starting with a hole
then trying to add a letter on each side, backtracking if no letter works. If there
are only finitely many such words, then the pattern is unavoidable with depth 1.
This does not work as easily for higher depths because if the backtracking came
up finite, then it could be that the two holes starting the backtracking were not
far enough apart.

The classification of the depths of the 2-unavoidable binary patterns has been
completed.

Theorem 6 ( [4]). The 2-unavoidable binary patterns fall into five categories
with respect to depth:

1. The patterns ε, A, AB, and ABA are shallow with depth 0;
2. The patterns AA and AAB are (0, 2) and (1, k)-deep for all k ≥ 3;
3. The pattern AABA is (0, 2), (1, 3), and (2, k)-deep for all k ≥ 4;
4. The pattern AABAA has depth function δ satisfying δ(2) = 0 and, for all

k ≥ 3, δ(k) = k + 1;
5. The patterns AABAB, AABB, ABAB, ABBA are (0, 2)-deep.

For example, consider the depth of AABAA. To have an occurrence, the same
square must occur twice, separated by at least one letter. If we have k+1 holes,
at least one letter occurs next to two distinct holes. Then we have the same
trivial square introduced twice. This means the word must meet the pattern, so
there can be no avoiding word with k + 1 holes. If we have k − 1 holes, we can
surround them like aka1+a1ak, aka2+a2ak, . . . , akak−1+ak−1ak, which avoids. To
increase the lower bound on the depth to k + 1, we can construct an avoiding
word with k holes starting with the fixed point at a of the morphism mapping
a to abc, b to ac, and c to b.

The next theorem describes the form of all 1-deep patterns, knowing that the
variable that appears squared cannot appear anywhere else, and the variables
appearing around the square occurrence must be singletons. The rest of the
pattern must be 0-deep, once the square surrounded by singletons is replaced
with a single singleton.

Theorem 7. The only patterns that are 1-deep have exactly one square occur-
rence.

The proof, which can be done by induction on the number of variables in the
patterns, relies on the following two lemmas.
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Lemma 8. If the patterns p1 and p2 are (h1, k) and (h2, k)-deep respectively,
then p = p1Ap2 is not (h, k)-deep with h < h1 + h2.

This implies that p is either k-avoidable or (h, k)-deep with h ≥ h1 + h2. We do
not necessarily have h = h1+h2, as demonstrated by ABACAA which is 3-deep
even though ABA has depth 0 and AA has depth 1.

Lemma 9. If the patterns p1 and p2 are both 0-deep, then, taking A to be a
variable not appearing in either p1 or p2, we have p = p1Ap2 is not h-deep for
any h > 0.

We now have the necessary machinery to describe Algorithm 1, which finds the
depth of an arbitrary pattern p. We say a variable A of p is holebound if all but
a single occurrence of A must map to a + in any meeting morphism. This is used
in the proof of Theorem 10 in which we insert arbitrarily many factors of the
form a1 · · · a|p| + a|p|+1 · · · a2|p|, where each of the ai’s that are used are unique
to each hole.

Algorithm 1. Determine if a pattern has bounded depth, if so, find its depth

Require: p is a pattern
Ensure: the depth of p if p has bounded depth, FALSE otherwise
1: V ← ∅
2: S ← ∅
3: Sf ← ∅
4: for variables A that appear in a square occurrence in p do
5: if A has two or more square occurrences in p then
6: return FALSE
7: S ← {all maximal occurrences of powers of A} ∪ S
8: V ← {A} ∪ V
9: while S �= ∅ do
10: remove an occurrence O from S
11: Sf ← {O} ∪ Sf

12: for occurrences OA of variables A between O and either the side of the word or
a singleton do

13: if A ∈ V then
14: return FALSE
15: V ← {A} ∪ V
16: S ← {all occurrences of A other than OA} ∪ S
17: f ← the formula obtained by removing all the occurrences in Sf from p
18: if f is full word avoidable (using Zimin’s procedure) then
19: return FALSE
20: return |Sf |

To illustrate Algorithm 1, suppose that we want to determine if the pattern
AABCECDFBGD has bounded depth. Build the table:
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S Sf V
{AA} ∅ {A} AABCECDFBGD
{B} {AA} {A,B} AABCECDFBGD
{B,C} {AA} {A,B,C} AABCECDFBGD
{B,C} {AA} {A,B,C} AABCECDFBGD
{C} {AA,B} {A,B,C} AABCECDFBGD
{D} {AA,B,C} {A,B,C,D} AABCECDFBGD
∅ {AA,B,C,D} {A,B,C,D} AABCECDFBGD

We then have that the given pattern is unavoidable with depth four.

Theorem 10. Given as input a pattern p, Algorithm 1 determines if p has depth
that is bounded, and if so, it outputs its depth; otherwise, it returns FALSE.

Proof. If p is full word unavoidable, then it has bounded depth 0. Now suppose
that it is full word avoidable over k letters. Construct the word over k + 2h|p|
letters by arbitrarily far apart inserting h holes surrounded by 2|p| unused letters
extending |p| on each side. Call this word w. By Theorem 4, if p does not have
at least one square occurrence, then p cannot have bounded depth, because it
cannot be (h, k + 4h)-deep. Also, if the same variable appears squared twice,
then p is divisible by AABAA meaning that its depth function is unbounded.
Any square occurrence must correspond to a hole and a letter adjacent to a hole,
meaning that variable is holebound because any letter that appears adjacent to
a hole never appears again. Here V serves to keep track of exacty those variables
which have been holebound within two positions of hole-containing occurrences
of variables already considered, i.e., already in either S or Sf . This means that if
a variable that is in V ever appears again when considering some different hole-
containing occurrence, then that variable is holebound in two different locations,
a contradiction. So, the word w would avoid p.

Every time we take an occurrence O from S, it either corresponds exactly to a
hole, or, if it came from a square in the first for loop, a hole and one letter that is
adjacent. Because each of the letters as we go out on either side are distinct, the
neighbors are either holebound or singletons. To see this, note that no subword
of length greater than two ever appears again. Holebound variables only have
length one meaning that we must eventually reach a singleton or the end of the
pattern. For the non-singletons considered before reaching a singleton, their other
occurrences must correspond to holes, so they go onto S. Note then, that splitting
p on its singletons, each term must consist entirely of variables in V , or have no
variables in V . After removing all such chunks of the holebound variables, the
pattern we are left with is square-free, and, if it is full word avoidable, we can get
an avoiding word over k+4h letters, meaning that the pattern is not of bounded
depth. On the other hand, if what we are left with is full word unavoidable, then
there is a way of spacing the holes that each corresponded to some occurrence
that is in Sf far enough apart so that the terms whose variables were disjoint
from V must appear between the holes. Because the only holes that were used
were for occurrences in Sf , and only one each, the depth is |Sf |. �
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If the pattern, after deleting variables occurring in V , is entirely composed of
singletons, then we are in the interesting case where p is unavoidable even over
an infinite alphabet so long as there are |Sf | holes spaced far enough apart.

6 Conclusion

Dealing with unavoidable patterns with unbounded depth functions is much
more complicated than dealing with patterns with bounded ones because letters
around holes must be reused at some point. Because Algorithm 1 uses a con-
struction that introduces 2|p| new letters per hole, every depth function is either
bounded or is in Ω(k) where k is the alphabet size.

For any m, the pattern p = A0A0A1A2 · · ·Am−2Am−1A0A0A1A2 · · ·Am−2

over m variables has depth function in Θ(km−1). In fact, it has depth function
at least (k− 3)m−1 +1. To see this, p has avoidability index 3 in full words, and
by starting with a square-free word over three letters, A0A0 has to line up with
a square. By using the k − 3 letters left over, we can fill in the m− 1 positions
to the right of the hole in (k − 3)m−1 different ways. By exponentially spacing
the holes, for every 0 ≤ i < m − 1, Ai must have an image of length one, but
each of the length m− 1 factors to the right of the hole is distinct. So, this word
over k letters with (k− 3)m−1 holes avoids p. There may be patterns with more
quickly growing depths than p.
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Abstract. Word equations are combinatorial equalities between strings
of symbols, variables and functions, which can be used to model problems
in a wide range of domains. While some complexity results for the solv-
ing of specific classes of equations are known, currently there does not
exist any equation solver publicly available. Recently, we have proposed
the implementation of such a solver based on Boolean satisfiability that
leverages existing SAT solvers for this purpose. In this paper, we propose
a new representation of equations on words having fixed length, by using
an enriched graph data structure. We discuss the implementation as well
as experimental results obtained on a sample of equations.

1 Introduction

Combinatorics on words has known increasing popularity in the last decades
and has proven useful in a large variety of situations, such as computational lin-
guistics [12], bioinformatics [7], automated testing [8] and discrete geometry [3].
A subfield having been considerably developped in parallel is that of equations
involving words.

Equations on words have been studied from both theoretical and practical
perspectives. Literature on combinatorics often refers to the so-called “Makanin’s
algorithm” [13], used to demonstrate that the existential theory of equations
over free monoids is decidable. It was, however, probably not meant to be used
to actually solve equations on words, and rather appears as a proof device by
which decidability is deduced. Nevertheless, a LISP implementation of Makanin’s
algorithm was discussed in [1], although this implementation is neither available
nor has been experimentally evaluated. Moreover, Makanin’s result only applies
to word equations with variables and constants; even if an implementation were
available, it would not handle morphisms (i.e. substitutions) and antimorphisms
(i.e. substitutions reversing the letters’ order).

More recent tools have considered the solving of string constraints using reg-
ular expressions, such as Hampi [9], Omega [6] and Stranger [15]. However,
while regular expressions and word equations present some overlap, morphisms
and antimorphisms are outside their range of expressiveness. This entails that
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many problems (such as those presented in Section 4) are not within reach of
known algorithms and tools.

A recent approach followed by the authors of this paper consists in translating
a set of word equations into an equivalent instance of the Boolean satisfiability
(SAT) problem [10]. This problem is then sent to an off-the-shelf SAT solver
called Minisat [4], whose answer is then converted back into appropriate val-
ues for each variable appearing in the equations. However, the SAT approach,
while successful at enumerating all solutions of a given system of equations, pro-
vides little insight into the structure of this set of solutions. Our main objective
here is to present an alternate way of solving the same problem addressing this
particular issue.

The sections are divided as follows. As usual, Section 2 contains the definitions
and notation used in the next sections. Section 3 describes two domains of appli-
cation of equations involving words. Section 4 deals with theoretical aspects and
introduce the data structure used to solve particular types of equations. Finally,
Section 6 discusses an implementation of a solver with two paradigms (Boolean
constraints satisfiability and based on a graph data structure). Section 7 concludes
briefly.

2 Definitions and Notation

The usual terminology and notation on words is found in [11]. An alphabet A is
a finite set whose elements are called letters or symbols. A word is a (finite or
infinite) sequence of elements of A. Given an alphabet A, the free monoid A∗ is
the set of all finite words on A. The length of a word w, denoted by |w|, is the
number of letters it contains. The empty word, usually denoted by ε is the only
word having length 0. The basic operation on words is catenation, writtent uv
or u ·v for words u and v. A practical notation is xk to denote xx · · ·x (k times).

Given two alphabets A and B, a morphism (or substitution) is a function
ϕ : A∗ → B∗ compatible with catenation, i.e. ϕ(uv) = ϕ(u)ϕ(v) whenever u and
v are words of A. A k-uniform morphism ϕ (or simply uniform) is a morphism
such that |ϕ(a)| = k for all letters a ∈ Σ. If ϕ is k-uniform, we set |ϕ| = k.

Similarly, an antimorphism is a function ϕ : A → B such that ϕ(uv) =
ϕ(v)ϕ(u). For instance, the reversal operator ·̃ is an antimorphism since ũv = ṽũ.
It is easy to verify that antimorphisms are the same as morphisms up to the re-
versal operator. More precisely, if ϕ is antimorphism, then there exists a (unique)
morphism ϕ′ such that ϕ = ϕ′ ◦ ·̃. Moreover, every morphism or antimorphism
is completely determined by the image of each letter of the alphabet. Uniform
morphisms ϕ are of particular interest since the length of ϕ(u) can be determined
unequivocally from the length of u.

In general, equations on words are studied only with constants and variables.
In our case, we are interested to extend the theory to equations on words in-
volving morphisms and the reversal operator. For this purpose, we introduce the
following four sets of symbols: (i) Σ is called the set of constants ; (ii) V is the set
of variables; (iii) M is the set of morphisms; (iv) A is the set of antimorphisms.
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Usually, elements of Σ are denoted by the first letters a, b, c, . . . and elements
of V by the last letters x, y, z, t, . . . of the latin alphabet. Elements of M and
A are identified with capital letters A, B, . . . or greek letters ϕ, μ, . . .

To introduce formally what is an equation on words, we first define word
expressions. We say that u is a word expression (or simply expression) if

(i) u = ε, u ∈ Σ or u ∈ V ;
(ii) u = (v1, v2, . . . , vk), where vi is an expression, for i = 1, 2, . . . , k;
(iii) u = (ϕ, v), where ϕ ∈ M∪A and v is itself an expression.

The set of all expressions is denoted by E . An equation on words (or simply
equation) is a couple (L,R), where L = (u1, u2, . . . , u	) and R = (v1, v2, . . . , vr)
are expressions. Often, we write L = u1u2 · · ·u	, R = v1v2 . . . vr and L = R for
simplifying the notation. For instance, let Σ = {a, b}, V = {x, y}, ϕ : a �→ b, b �→
a, M = {ϕ} and A = { ·̃ }. Then

abx̃y = ϕ(x)yab, (1)

is an equation on words with respect to these four sets.
An assignment is a map I : V → Σ∗. Any assignment can naturally be

extended to arbitrary expressions by applying the following recursive rules:

(i) I(ε) = ε;
(ii) If u ∈ Σ, then I(u) = u;
(iii) If u = (v1, v2, . . . , vk), where vi is an expression, for i = 1, 2, . . . , k, then

I(u) = I(v1)I(v2) · · · I(vk);
(iv) If u = (ϕ, v), where ϕ ∈ M∪A and v is an expression, then I(u) = ϕ(I(v)).

A solution is an assignment S : V → Σ∗ whose extension verifies S(L) = S(R).
As an example, the assignment S(x) = ba and S(y) = ε is a solution to Equation
(1) since S(L) = abab = S(R).

Equations for which the lengths of all variables are known will be of special
interest. Consider a map λ : V → N assigning to each variable a fixed length and
suppose that all morphisms and antimorphisms are uniform. As for assignment
maps, λ can naturally be extended to any expression:

(i) λ(ε) = 0;
(ii) If u ∈ Σ, then λ(u) = 1;
(iii) If u = (v1, v2, . . . , vk), where vi is an expression, for i = 1, 2, . . . , k, then

λ(u) = λ(v1) + λ(v2) + . . .+ λ(vk);
(iv) If u = (ϕ, v), where ϕ ∈M∪A and v is an expression, then λ(u) = |ϕ|·λ(v).

3 Motivation

Equipped with the previous definitions, it now becomes possible to formulate a
range of mathematical problems as equations on words.
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3.1 Distinct Square Conjecture

A first example comes from pure combinatorics on words. In [5], one may read
the following conjecture in the concluding section:

Conjecture 1 ( [5]). A word w of length n contains less than n distinct squares.

For instance, the eight square factors of the word w = 0000110110101 are

00, 11, 0000, 0101, 1010, 011011, 101101, 110110

and it can be shown by exhaustive enumeration that no word of length 13 can
achieve more than 8 squares. An intuitive argument in favor of Conjecture 1 is
that if a word contains many squares, then it is strongly periodic, so that the
squares cannot all be distinct.

Now, although there are many ways of generating examples with many squares,
an alternate approach would be to model the problem with an equation and to
enumerate all possible solutions. More precisely, in order to compute a word with
k squares, one could solve the equations

x1u
2
1y1 = x2u

2
2y2 = . . . = xku

2
kyk

with various distinct lengths for the words xi, i = 1, 2, . . . , k. Obviously, this
would not provide a proof to Conjecture 1, but it could be a simple way to
generate candidates for words that are rich in distinct squares.

3.2 Tilings

Another interesting example comes from the field of discrete geometry. Consider
the alphabet F = {0,1,2,3}, where the symbols in F represent unit-length
moves in each of the four directions of a square grid, starting from 0 (meaning
“north”) and rotating 90◦ counter-clockwise at each successive symbol. Some
words of F , called boundary words represent a sequence of moves surrounding a
closed and connected region of the plane, called a polyomino.

Fig. 1. A 2-square tile and the two tilings it induces. The two factorizations
(01030101030103010103010, 121,23212323212321232321232, 303) (on the left)
and (03010301010301030, 101030101, 21232123232123212, 323212323) (on the
right) are represented by black dots.
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Consider then the (unique) antimorphism on F such that 0 �→ 2, 1 �→ 3,
2 �→ 0 and 3 �→ 1. Intuitively, the application of ·̂ on some word produces the
“mirror” path of its input, i.e. the same path traveled in the opposite direction.
A 2-square tile is a polyomino whose boundary word w verifies the equations

w = xyx̂ŷ (2)
ww = pzt ẑ t̂s, (3)

where x, y, z and t are nonempty words on F that describe two distinct factor-
izations of w (see Figure 1) and p and s are some prefix and suffix of w. It turns
out that the set of all solutions of Equations (2)–(3) is quite complex to describe
and it is only thanks to computer exploration that the authors of [2] were able
to compute it.

4 Solving Equations on Words

The examples given in the previous section illustrate how a number of mathemat-
ical objects can be specified as solutions of equations on words. In this section,
we briefly describe the problem complexity and next, we focus our attention on
a particular subset of equations on words.

The exact complexity class for the problem of solving word equations is cur-
rently unknown. When the length of equations is not known in advance, the
current best upper bound is due to Plandowski, who showed that the problem
is in PSPACE [14]. However, if we restrict ourselves to equations of a known
length, we can show that the problem becomes NP-complete.

Theorem 1. Let Σ, V, M and A be some sets of constants, variables, mor-
phisms and antimorphisms. Assume that all morphisms and antimorphisms are
uniform and consider an equation L = R on these four sets, where |L| = |R| = n.
Then the problem of finding some solution S : V → Σ∗ for L = R is NP-
complete.

Proof. The problem is clearly in NP, since a given solution S can be verified
by replacing all variables with their values and then performing a symbol-by-
symbol comparison of both sides of the equality, even if some morphisms and
antimorphisms are involved.

It remains to show that the problem is NP-hard. We do so by reducing 3-
SAT to our problem. An instance of the 3-SAT problem is a set of Boolean
variables B = {b1, b2, . . . , bn} and a set {{x1,1, x1,2, x1,3}, {x2,1, x2,2, x2,3}, . . . ,
{xm,1, xm,2, xm,3}}, where each triplet {xi,1, xi,2, xi,3} is called a clause and each
xi,j is either bi or ¬bi for some bi ∈ B. Let

Σ = {000, 001, 010, 011, 100, 101, 110, 111}

be the set of constants, V = {si,j | 1 ≤ i ≤ m, j = 1, 2, 3} the set of variables,
M = {E, σ} and A = ∅, where E and σ are defined by

E(x) = x and σ(x) =

{
000, if x = 000;
111, otherwise.
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for any x ∈ Σ, where x is the symbol in Σ with the 0’s and 1’s inverted in x.
We then associate a given 3-SAT instance with the word equation:

σ(s1,1 · s1,2 · s1,3 · s2,1 · s2,2 · · · · · sm,3) = (111)3m (4)

where si,j = bi if xi,j = bi, and si,j = bi,j if xi,j = ¬bi,j , for bi,j the i-th
variable of the j-th clause of the 3-SAT instance. For example the 3-SAT instance
{{b1,¬b2, b3}, {¬b1,¬b3, b4}} translates into the equation σ(b1 ·b2 ·b3 ·b1 ·b3 ·b4) =
(111)6.

A solution to the 3-SAT problem is an assignment ν : B → {�,⊥} such that
each clause contains at least one xi,j that is assigned to the value true (�). This
happens exactly when each triplet of the left-hand side of Equation 4 contains at
least one occurrence of the symbol “1”, which in turn entails that the application
of σ to this triplet will produce symbol “111”. Hence one can observe that this
instance admits a solution if and only if Equation 4 does. �

It follows from Theorem 1 that, unless P = NP, one cannot expect to design
a polynomial time algorithm solving any equation on words, even with fixed
length. Nevertheless, it is possible to achieve reasonable performance by using
convenient data structures that allow one to decide whether such a solution
exists, and even exhaustive enumeration of all solutions.

5 Data Structure

We now describe the main data structure behind our word equations solver.

5.1 Two Examples

Suppose that we wish to find a word of length 20 having square prefixes of length
8 and 12. What form would have that word? This can easily be represented by
the equation uuv = wwx, where |u| = 4, |v| = 12, |w| = 6 and |x| = 8. Checking
the result by hand takes some time and it seems more convenient to use a
computer to solve it. The idea is to represent each letter of the variables and of
the equation by a vertex and add an edge between two vertices whenever they
host equal letters. Then we merge the connected components to obtain a final
graph that describes the value of every letter (see Figure 2).

Since we are interested in handling equations with morphisms as well, let us
next consider an equation over the alphabet {R,L, F} involving the antimor-
phism ·̂ defined by û = ˜̄u, where ·̄ is the morphism defined by R ↔ L and
F ↔ F . We wish to find the solution to the equation

(xLyLx̂LŷL)2 = uzLtLẑLt̂Lv, (5)

where |x| = 3, |y| = 4, |z| = 3, |t| = 4, |u| = 3 and |v| = 15. As in the first
example, we add vertices x1, x2, x3 for the variable x, vertices x̂1, x̂2, x̂3 for the
variable x̂, and so on for the other variables. Since u and v are not interesting
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e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20

u1 u2 u3 u4

w1 w2 w3 w4 w5 w6

(a)

u1, u3, e1, e3, e5, e7, e9, e11, w1, w3, w5

u2, u4, e2, e4, e6, e8, e10, e12, w2, w4, w6

e13

e14

e15

e16

e17

e18

e19

e20

(b)

Fig. 2. The relation between letters for the equation uuv = wwx. (a) The initial graph.
(b) The resulting graph whose connected components have been merged.

(a)

e1, e19, x1, t̂3e6, e24, y2, z3

e10, e28, x̂1, t3 e15, e33, ŷ2, ẑ3

L, e3, e4, e7, e9, e12,
e13, e16, e18, x3, z1,
y3, t2, x̂3, ẑ1, ŷ3, t̂2

·̄·̄

·̄ ·̄

e2, e20,
x2, t̂4

e8, e26,
y4, t1

e14, e32,
ŷ1, ẑ2

e5, e23,
y1, z2

e17, e35,
ŷ4, t̂1

e11, e29,
x̂2, t4

·̄·̄

·̄

·̄ ·̄

·̄

(b)

R, e1, e6, e10,
e15, e19, e24, e28,
e33, x1, y2, x̂1,
ŷ2, t̂3, z3, t3, ẑ3

L, e3, e4, e7, e9, e12,
e13, e16, e18, x3, z1,
y3, t2, x̂3, ẑ1, ŷ3, t̂2

·̄

e2, e14,
e17, e20,
e32, e35,
x2, ŷ1,
ŷ4, t̂4,
ẑ2, t̂1

e5, e8,
e11, e23,
e26, e29,
y1, y4,
x̂2, z2,
t1, t4

·̄

Fig. 3. (a) The merged graph obtained from Equation (5). It has two connected com-
ponents. Each label is identified with the morphism ·̄. (b) Resulting graph after having
merged further the vertices with the information deduced from the involutory mor-
phism ·̄.
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for the problem (they may be considered as slack variables), we do not show
them in the graph. After having merged the connected components, we obtain
a graph with 11 vertices (see Figure 3). Next, we connect vertex i to vertex j
with label � if �(i) = j. In this case, the label is the morphism ·̄.

Let us denote by [v] the vertex containing the value v. We can see from the
graph of Figure 3 that additional information can be deduced. For instance, since
L belongs to the vertex [e3], this implies that [e6] = [e1] = [e10] = [e15] = R. In
the same spirit, since ·̄ is involutory, the cycle with 6 vertices to the right could be
reduced to a cycle with 2 vertices since [e2] = [e17] = [e14] and [e5] = [e8] = [e11].
Therefore, there are exactly three solutions to Equation (5), when the lengths
are fixed as above, according to whether [e5] = R, [e5] = L or [e5] = F .

5.2 The General Case

The two examples of Subsection 5.1 are easily generalized to arbitrary equations
with known lengths. To construct the graph, we proceed as follows. Let

(u1, u2, . . . , u	) = (v1, v2, . . . , vr)

be an equation of length n with fixed lengths and uniform morphisms and anti-
morphisms. First, we create a vertex for every constant occuring in the equation.
Also, we create a vertex ei for i = 1, 2, . . . , n. Next, for every variable v having
length k, we create a vertex vi for i = 1, 2, . . . , k. Finally, for every variable
v such that ϕ(v) occurs in the equation, we introduced the vertex ϕ(v)i, for
i = 1, 2, . . . , |v| · |ϕ|.

It remains to describe how to construct the arcs. Clearly, if some variable v oc-
curs at position i in the equation, then we add the non directed edge {v1+j , ei+j}
for j = 0, 1, . . . , |v| − 1. The same applies for constants occurring in the equa-
tion, as well as morphic expressions, i.e. expressions of the form ϕ(v) for some
expression v. It only remains to establish a link between a variable v and its
image under some morphism ϕ. If ϕ is 1-uniform, then it suffices to add an
arc (vi, ϕ(v)i) for i = 1, 2, . . . , |v|. On the other hand, if ϕ is k-uniform for
k > 1, then we add edges of the form (vi, ϕ(v)|ϕ|·(i−1)+j) for i = 1, 2, . . . , |v| and
j = 1, 2, . . . , |ϕ|. Notice that the direction of the arc is important. In particular,
whenever the restriction of the morphism is invertible, it is important to add an
arc in the opposite direction labelled with the inverse. Figures 2 and 3 illustrate
the construction.

When the graph is constructed, it is possible to reduce it according to different
simple rules:

(1) We can merge every pair of vertices linked by an unlabelled edge, since they
correspond to equal values.

(2) If some vertex v contains a constant letter a, then we can derive the value of
any other vertex u connected to v by some morphism ϕ. It suffices to apply
ϕ to a and to merge the result with the vertex u.

(3) If two arcs with the same label leave some vertex v to vertices u1 and u2,
then we can merge vertices u1 and u2.



194 A. Blondin Massé et al.

(4) If ϕn = ϕ for some positive integer n, then we merge any pair of vertices to
the ends of directed paths composed of n arcs labelled ϕ.

(5) If ϕ(a) = a for a unique letter a ∈ Σ and if there is a loop labelled ϕ from
vertex u to itself, then we can merge u and a.

In the first example, only Rule (1) has been applied, since there is no mor-
phism/antimorphism involved. On the other hand, in the second example, we
used Rule (1) to get the graph of Figure 3(a), and then we used Rules (2) and
(4) to reduce the graph further.

It is also worth mentioning that in a concrete implementation, vertices are not
actually merged, but are rather assigned a common representant as for the union-
find datastructure, thus guaranteeing a better theoretical complexity. Therefore,
to solve any equation on words, it suffices to try every possible lengths for the
variable, construct the graph described above and then compute either one or
all solutions by applying Rules (1)–(5).

6 Implementation

To assess the practical feasibility of this representation, we implemented it into
a generic word equation solver made of 1,800 lines of Python code, which is
publicly available under an open source license.1 The solver provides a uniform
interface for the solving of word equations through two different methods. The
first method is the graph technique presented in this paper; the second method
converts the input data into an equivalent Boolean satisfiability problem (SAT),
as was mentioned earlier [10].

Figure 4 shows a sample input file for the solver. The first line must be the
enumeration of the alphabet; the second statement lists the word variables used
in the equations, which must differ from the alphabet symbols. Each word must
have at least one length; either a single value (first line), a list or a range of
lengths. Morphisms are then defined on alphabet symbols, and the set of equa-
tions ends the file. The token * stands for concatenation and ˜ is the reversal
operator. The solver return any combination of words that meets all equations.

Alphabet [a,b,c];
Word u,v,w;
|u| = 2;
|v| = [1,2,4];
|w| = [3-6];
Morphism sigma : a->b, b->c, c->a;
u*w=ab*v*ba;
sigma(u)*v=abba*~(v);

Fig. 4. Sample input file for the word equation solver

1 http://github.com/ablondin/solver

http://github.com/ablondin/solver
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The solver was run on a batch of four equations corresponding to four classes of
problems: 1) Only variables and constants: uwba = wabv; 2) Variables, constants
and mirror operator: ũbaw = abw̃v; 3) Variables, constants and morphisms:
σ(u)wba = σ(w)abv; 4) Variables, constants, mirror operator and morphisms:
ũabw = σ(w)bav. For each of these equations, we ran the solver by increasing
either the size of the alphabet or the length of the solutions to find. The running
times for both experiments are shown respectively in Figures 5 and 6. The com-
puted times were obtained on an Intel Xeon W3520 CPU running at 2.67 GHz.
For the sake of completeness, we ran the solver on each problem for both the
graph- and the SAT-based method and plotted their results on the same figure.

We observed that, while both alphabet size and word length progressively
increase the solver’s running time, the main contributing factor, for the equations
we studied, is word length. Indeed, using variables of length 10 yields a solving
time of more than 400 seconds for most equations, irrespective of the algorithm
used, while increasing the size of the alphabet up to 25 requires a solving time
of less than 200 seconds even for the worst case measured.

The use of morphisms in the graph-based method takes its toll on solving
time. This can be clearly seen in Figure 5, where the growth of solving time for
both equations involving morphisms exceeds that of all other problem instances.
The same trend can be observed in Figure 6. However, we can also observe that,
for equations that do not involve morphisms, the use of the graph technique
outperforms the SAT-based approach for all problem instances. This is best
illustrated in Figure 6, where the graph-based algorithm beats the SAT solver
by a large margin; for example with word length fixed to 10, equation (2) is solved
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Fig. 5. Solving time of various equations for increasing alphabet size (word length fixed
to 5)
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Fig. 6. Solving time of various equations for increasing word length (alphabet size fixed
to 2)

in 130 seconds by the graph solver, while the SAT solver takes 420 seconds to
solve the same problem instance —an almost fourfold increase. This gap further
widens as the word length increases.

This finding is especially pleasing, since SAT solvers are generally regarded as
heavily-optimized software for most NP-complete problems. The fact that the
graph-based method, implemented in an interpreted language such as Python,
still surpasses SAT solvers for this class of problems is a telling sign of its ad-
equacy. As for the use of morphisms, an initial profiling of the graph solver
indicates that there is ample room for improvement through the use of more
optimized data structures to handle the merging of vertices in a graph.

7 Conclusion

The resolution of equations on words is a fertile concept that is being increasingly
used for the modelling of many mathematical problems. However, the absence
of a dedicated and efficient solver for word equations slows down its adoption by
researchers; in that respect, the encoding of word equations as graph structures,
as presented in this paper, turns out to be a promising way to compute solutions
to a system of word equations.

The implementation of a general-purpose solver reveals that solutions to com-
plex equations can be computed efficiently; in addition, the output returned
by the solver does not merely enumerate solutions, but provides the user with
a graph revealing the structure of these solutions. Additions and future work
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on this topic includes the optimization of node-merging code, the relaxation of
bound conditions on variables and the handling of non-uniform morphisms. In
time, the widespread use of such a solver can prove instrumental in extending
the reach of word equations to other mathematical problems of importance.
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Abstract. Discrete figures (or polyominoes) are fundamental objects in
combinatorics and discrete geometry, having been studied in many con-
texts, ranging from game theory to tiling problems. In 2008, Provençal
introduced the concept of prime and composed polyominoes, which arises
naturally from a composition operator acting on these discrete figures.
Our goal is to study further polyomino composition and, in particular,
factorization of polyominoes as a product of prime ones. We provide a
polynomial time (with respect to the perimeter of the polyomino) algo-
rithm that allows one to compute such a factorization. As a consequence,
primality of polyominoes can be decided in polynomial time.

Keywords: Discrete figures, polyominoes, boundary words, primality,
tiling, morphism.

1 Introduction

Although polyominoes are known since antiquity, it is only in 1953 that the
word was coined by S.W. Golomb and was later popularized by M. Gardner,
who was very active in recreational mathematics for a large part of the 20th
century [6]. In fact, polyominoes are well-known from the general public: One
only needs to think about the very popular Tetris video game, which consists
in filling lines with tetrominoes (i.e. polyominoes composed of four unit cells).
Polyominoes are also well-known and useful in combinatorics and theoretical
computer science. For instance, one of the applications of the famous dancing
links algorithm proposed by D. Knuth in 2000 consists in solving polyomino
tiling puzzles efficiently [7] (an implementation of such a solver is found in [8]).

Polyominoes have also been fundamental objects in the study of tilings. It
is known since 1970 that the problem of tiling the plane with free polyomi-
noes (polyominoes that can be rotated and reflected) picked from a finite set is
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(a)

(b)

Fig. 1. Two double parallelogram tiles and the tilings they induce. The black dots indi-
cate the points shared by four copies of the tile. (a) A Christoffel tile. (b) A Fibonacci
tile (see [10] for more details).

undecidable [5]. When restricted to only one tile, it is not known if it is decidable
or not. Also, the problem of deciding if a given polyomino tiles another poly-
omino is known to be NP-complete [13]. In the case where no rotation and no
reflection is allowed, the problem becomes much simpler. Indeed, not only is it
decidable, but it can also be determined in polynomial time (a O(n2) bound is
proved in [4], which was reduced to O(n) for tilings whose boundary has bounded
local periodicity [2]) by using results from [1,16]. The basic idea comes from D.
Beauquier and M. Nivat, who characterized such objects by the shape of their
boundary: Indeed, they are polyominoes whose boundary can be divided into
four or six pieces that are pairwise parallel [1]. Pseudo-square tiles have been
extensively studied (see for instance [3] and [12]).

In [11], Blondin Massé et al. considered the problem of enumerating poly-
ominoes called double parallelogram tiles, i.e. polyominoes yielding two distinct
parallelogram tilings (see Figure 1). In order to prove one of their main results,
they had to rely on the concept of prime and composed polyominoes, introduced
by Provençal in his Ph.D thesis [15]. However, very little is known about that
classification.

This article is divided as follows. In Section 2, we introduce the usual defini-
tions and notation. Section 3 is devoted to the link between discrete paths and
words. Composition, prime and composed polyominoes are defined in Section
4. We provide the main algorithms of this article in Section 5 and we briefly
conclude in Section 6.

2 Definitions and Notation

The square grid is the set Z2. A cell is a unit square in R2 whose corners are
points of Z2. We shall denote by c(i, j) the cell

c(i, j) = {(x, y) ∈ R2 | i ≤ x ≤ i+ 1, j ≤ y ≤ j + 1},
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Fig. 2. Free polyominoes without hole having area at most 6

i.e. (i, j) is the bottom left corner of the cell. The set of all cells is denoted
by C. Two cells c, d ∈ C are called 4-neighbors if they have exactly one side
in common. Clearly, every cell c(i, j) has exactly four 4-neighbors: c(i + 1, j),
c(i, j + 1), c(i− 1, j) and c(i, j − 1). A 4-connected region of Z2 is any subset R
of R2 such that for every c, d ∈ R, there exist cells c1, c2, . . . , ck such that c = c1,
d = ck, and ci, ci+1 are 4-neighbors for i = 1, 2, . . . , k − 1.

The usual isometries (translation, rotation and reflections) are naturally de-
fined on 4-connected regions. In some cases, it is convenient to consider two
regions equivalent up to some isometries. For instance, the relation R ∼θ S
defined by “R is a translated copy of S” is an equivalence relation: A fixed poly-
omino (or simply polyomino) is any equivalence class of ∼θ. In the same spirit, if
the relation R ∼ρ S is defined by “R is a translated or rotated copy of S”, then
a one-sided polyomino is any equivalence class of ∼ρ. Finally, a free polyomino
is any equivalence class of the relation R ∼σ S defined by “R is a translated,
rotated, reflected or glided reflected copy of S”.

Another notion of interest is that of holes. Given a region R, let R denote
its complement, i.e. R = C−R. We say that R is without hole ifR is a 4-connected
region. All free polyominoes of c cells, c = 1, 2, 3, 4, 5, 6, are illustrated in
Figure 2.

In many situations, it is convenient to represent a polyomino by its boundary,
which in turn is easily represented by a word on a 4-letter alphabet encoding the
elementary steps → (east), ↑ (north), ← (west) and ↓ (south). In the following,
we recall basic definitions from combinatorics on words [9].

An alphabet A is a finite set whose elements are letters. A finite word w is
a function w : {1, 2, . . . , n} → A, where wi (also denoted by w i ) is the i-th
letter, 1 ≤ i ≤ n. The length of w, denoted by |w|, is the integer n. The empty
word ε is the unique word having length 0.
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The free monoid A∗ is the set of all finite words over A. The reversal of
w = w1w2 · · ·wn is the word w̃ = wnwn−1 · · ·w1. Given a nonempty word w, let
Fst(w) = w1 and Lst(w) = wn denote respectively the first and last letter of
the word w. A word u is a factor of another word w if there exist x, y ∈ A∗ such
that w = xuy. A proper factor of w is any factor u such that u �= ε and u �= w.
The factor u of w starting at position i and ending with position j is denoted by
w i : j and the integer i is called an occurrence of u in w. Moreover, if x = ε,
then u is called prefix and if y = ε, it is called a suffix of w. We denote by |w|u
the number of occurrences of u in w. Two words u and v are conjugate, written
u ≡ v or sometimes u ≡|x| v, when x, y are such that u = xy and v = yx.
Conjugacy is an equivalence relation and the class of a word w is denoted by
w . A power of a word u is a word of the form uk for some integer k ∈ N. It

is convenient to set u0 = ε for each word u.
Given two alphabets A and B, a morphism is a function ϕ : A∗ → B∗ com-

patible with concatenation, that is, ϕ(uv) = ϕ(u)ϕ(v) for any u, v ∈ A∗. It
is clear that a morphism is completely defined by its action on the letters of
A. In the same spirit, an antimorphism is a function ϕ : A∗ → B∗ such that
ϕ(uv) = ϕ(v)ϕ(u) whenever u, v ∈ A∗. The reversal ·̃ is an antimorphism and it
is not difficult to show that for any antimorphism ϕ, we have ϕ = ·̃ ◦ ϕ′, where
ϕ′ is a morphism, i.e. ϕ can be expressed as the composition of a morphism and
the reversal operator.

3 Paths as Words

The Freeman chain code F = {0,1,2,3} is considered as the additive group of
integers modulo 4. To distinguish the number (for instance 0) from the letter
(for instance 0), we shall denote the latter with bold font. Basic transformations
on F are rotations ρi : x �→ x + i and reflections σi : x �→ i − x, which extend
uniquely to morphisms on F∗. Two other useful functions for our purpose are
the morphism · defined by 0↔ 2 and 1↔ 3 and the antimorphism ·̂ = · ◦ ·̃.

From now on, words are considered over F and are called paths to emphasize
their geometrical nature. A path w is closed if it satisfies |w|0 = |w|2 and |w|1 =
|w|3, and it is simple if no proper factor of w is closed. A boundary word is a
simple and closed path. It is convenient to represent each closed path w by its
conjugacy class w , also called circular word. It follows from this definition
that counter-clockwise circular boundary words and the polyominoes without
hole they describe are in bijection.

In [1], D. Beauquier and M. Nivat proved that a polyomino P tiles the plane
by translation if and only if it admits a boundary word

w = xyzx̂ŷẑ,

with at most one empty word among x, y and z. If x, y or z is empty, then P
is called parallelogram polyomino (pseudo-square in [2]). Otherwise, it is called
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(a) (b)

Fig. 3. (a) A parallelogram polyomino and the tiling it induces (one of its boundary
words admits a BN-factorization 0010·101211·2322·330323). The black dots indicate
the factorization points of the boundary word and they clearly form a parallelogram.
(b) An hexagon polyomino having boundary word 000 ·0010 ·1121 ·222 ·2322 ·3033
and the corresponding tiling.

hexagon polyomino (pseudo-hexagon in [2]). It should be noted that parallelo-
gram polyominoes were introduced more than 40 years ago with a completely
different meaning [14], but we still prefer to use the word “parallelogram” in this
case as it seems the most appropriate word for the concept (see Figure 3).

The following simple fact, proven in [11], is one of the key idea for designing
Algorithm 1. Roughly speaking, it states that the factors of any parallelogram
polyomino always start and end with the same elementary step, and that all four
letters are exactly covered once:

Proposition 1 ([11]). Let w ≡ xyx̂ŷ be a boundary word of a parallelogram
polyomino. Then Fst(x) = Lst(x), Fst(y) = Lst(y) and the first letter of x,
x̂, y, ŷ are mutually distinct, that is,

{Fst(x),Fst(x̂),Fst(y),Fst(ŷ)} = {0,1,2,3}.

4 Prime and Composed Polyominoes

On the Freeman alphabet, a class of morphisms is of particular interest for our
purpose:

Definition 1 ([11,15]). A morphism ϕ : F∗ → F∗ is called homologous if

ϕ(a) = ϕ̂(a) for every a ∈ F .

Roughly speaking, homologous morphisms replace the two horizontal elemen-
tary steps by an arbitrary path (ϕ(0) is traveled in the opposite direction with
respect to ϕ(2)) and the same idea applies to vertical steps. One proves easily

that homologous morphisms satisfy ϕ̂(w) = ϕ(ŵ) for any w ∈ F∗.
As polyominoes without hole have simple boundary word, an additional condi-

tion on homologous morphism is necessary in order to define prime and composed
polyominoes without hole.
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Definition 2. Let ϕ be an homologous morphism. We say that ϕ is a parallel-
ogram morphism if

(i) ϕ(0123) is the boundary word of a parallelogram polyomino;
(ii) Fst(ϕ(a)) = a for every a ∈ F .

The purpose of condition (ii) of Definition 2 is justified by the following ex-
tension of Proposition 1:

Proposition 2. Let ϕ be a parallelogram morphism. Then for every a ∈ F ,
Fst(ϕ(a)) = a = Lst(ϕ(a)).

Let M be the set of morphisms on F , H the set of homologous morphisms
and P the set of parallelogram morphisms.

Proposition 3. H is a submonoid ofM and P is a submonoid of H with respect
to the concatenation.

Proof. The identity morphism Id is both an homologous and parallelogram mor-
phism. Now, let ϕ, ϕ′ ∈ H. Then for every letter a ∈ F ,

̂(ϕ ◦ ϕ′)(a) = ̂ϕ(ϕ′(a)) = ϕ(ϕ̂′(a)) = ϕ(ϕ′(a)) = (ϕ ◦ ϕ′)(a),

so that ϕ ◦ ϕ′ ∈ H as well. Similarly, on one hand, if ϕ, ϕ′ ∈ P , then

Fst((ϕ ◦ ϕ′)(a)) = Fst((ϕ(ϕ′(a))) = Fst(ϕ′(a)) = a.

On the other hand (ϕ ◦ ϕ′)(0123) is closed. The proof that (ϕ ◦ ϕ′)(0123) is
simple is more technical and is ommitted due to lack of space. �

Every parallelogram morphism ϕ is associated with a unique polyomino, de-
noted by Poly(ϕ). Conversely, one might be tempted to state that each parallel-
ogram polyomino is uniquely represented by a parallelogram morphism. Indeed,
condition (i) in Definition 2 ensures that the boundary word is traveled counter-
clockwise and that only one of its conjugate is chosen. However, even when taking
those restrictions into account, there exist parallelogram polyominoes with two
distinct parallelogram factorizations:

Example 1. The parallelogram morphisms ϕ defined by ϕ(0) = 010, ϕ(1) = 121
and ϕ′ defined by ϕ′(0) = 030, ϕ′(1) = 101 both yield the X pentamino (see the
polyomino in the third row, fourth column of Fig. 2).

In fact, every double parallelogram tile admits two nontrivial distinct factoriza-
tions [11].

We are now ready to define prime and composed polyominoes. It shall be noted
that prime polyominoes were defined in [15], but the (equivalent) definition below
relies on parallelogram morphisms:
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◦ =

Fig. 4. Composition of a polyomino with a parallelogram polyomino. The parallelogram
factorization is illustrated with black dots. The resulting composed polyomino can be
tiled by copies of the parallelogram polyomino.

Definition 3 ([15]). A polyomino P distinct from the one cell polyomino is
called composed if there exists some boundary word u and some parallelogram
morphism ϕ such that

(i) Poly(ϕ(u)) = P ;
(ii) Poly(u) is not the unit square;
(iii) ϕ �= Id.

Otherwise, P is called prime.

In other words, a polyomino is prime if and only if it cannot be decomposed
as a product of some parallelogram polyomino and some other polyomino. It
is worth mentioning that the problem of deciding if a polyomino is prime is
as least as hard as the problem of deciding if a number is prime. Indeed, one
notices that the rectangle 1 × n having boundary word 0n12n3 is prime if and
only if n is prime. In the same spirit, a boundary word u is called prime if
Poly(u) is a prime polyomino and a parallelogram morphism ϕ is called prime
if Poly(ϕ(0123)) is a prime polyomino.

Following Definition 3, one is naturally led to ask whether the fundamental
theorem of arithmetic can be extended to polyominoes. There are two condi-
tions to verify: the existence of a prime factorization and the unicity of this
factorization. The former is easy to prove:

Theorem 1. Let P be any non-unit polyomino without hole. Then either P is
a prime polyomino or there exist prime parallelogram morphisms ϕ1, ϕ2, . . ., ϕn

and a prime boundary word u such that P = Poly((ϕ1 ◦ ϕ2 ◦ . . . ◦ ϕn)(u)).

Proof. By induction on the perimeter of P . If P is prime, then there is nothing to
prove. Otherwise, there exist a parallelogram morphism ϕ �= Id and a boundary
word u, with Poly(u) different for the unit square, such that P = Poly(ϕ(u)).
By induction applied to Poly(u), there exist parallelogram morphisms ϕ1, ϕ2,
. . ., ϕn and a prime boundary word v such that

u = (ϕ1 ◦ ϕ2 ◦ . . . ◦ ϕn)(v),
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so that P = Poly((ϕ ◦ ϕ1 ◦ ϕ2 ◦ . . . ◦ ϕn)(v)). If ϕ is prime, then the claim is
proved. Otherwise, using induction, one shows that ϕ = ϕ′1◦ϕ′2◦ . . .◦ϕ′k for some
prime parallelogram morphisms ϕ′1, ϕ

′
1, . . ., ϕ

′
k, which concludes the proof. �

The proof of unicity seems rather involved and is discussed in the last section
(see Conjecture 1).

5 Algorithms

In this section, we shift our attention to the algorithmic aspects surrounding
composed and prime polyominoes. Basically, to determine if a polyomino P is
composed, we need to find a parallelogram morphism ϕ �= Id and a boundary
word u /∈ 0123 such that ϕ(u) is a boundary word of P . If no such morphism
exists, then we may conclude that the polyomino is prime.

5.1 Naive Version

The simplest straightforward approach consists of trying every possible factor-
ization until either one is found or all have been exhausted. To reduce the number
of cases to be considered, by Proposition 2, we may restrict ourselves to factors
starting and ending with the same letter. More precisely, let P be any polyomino
and w one of its boundary word. For every a ∈ F , let Fa be the set of factors of
w2 starting and ending with a. The following steps can be used to factorize P :

1. Compute F0 and F1;
2. Let u ∈ F0, v ∈ F1;
3. Let ϕ be the parallelogram morphism induced by u and v;
4. If there is some conjugate w′ of w such that w = ϕ(w′), then return (ϕ, u).
5. Otherwise, repeat steps 2–4 until all possible u and v have been exhausted.

The complexity of the previous algorithm is clearly polynomial.

Theorem 2. Any polyomino P may be factorized as a product of prime poly-
ominoes in O(n6), where n is the perimeter of P .

Proof. Let w be any boundary word of P . Step 1 is done in O(n2), as there are
O(n2) factors starting and ending with some letter in any word on F . Steps 2–4
are then repeated O(n4). The construction of ϕ in Step 3 is done in constant
time, while Step 4 takes O(n) since it must be performed for every conjugate of
w. Therefore, decomposing P as ϕ(u), for some parallelogram morphism ϕ and
some boundary word u is done in O(n5). Since it must be repeated as long as
either ϕ or u is not prime, the overall complexity is O(n6). �

As a consequence:

Corollary 1. Given a polyomino P having perimeter n, it can be decided in
polynomial time with respect to n whether P is prime or composed. �

The algorithm was implemented in Python and tested for polyominoes having
number of cells between 1 and 10. Figure 5 contains the result. As there are many
more prime than composed polyominoes, only the composed ones are illustrated.



206 A. Blondin Massé, A.M. Tall, and H. Tremblay

Fig. 5. Free polyominoes having area at most 10 that are composed

5.2 Improving the Naive Algorithm

An upper bound of O(n6) is rather crude and one should expect to reduce it.
More precisely, instead of enumerating all possible factors u in F0 and v in F1,
the choice should be sensible about whether u and v occur contiguously or with
overlap. This yields an algorithm such as the following one. As a first step, choose
any boundary word w starting with 0. The first idea consists in trying to divide
w into blocks starting and ending with the same letter, in virtue of Proposition
2. It suffices to look at every occurrence of 0 for the ending of ϕ(0). When such
a block is chosen, then ϕ(0) and ϕ(2) are completely determined.

The next step consists in checking the letter following the first block. If it is
0 or 2, then we check if the following letters match ϕ(0). If it is not the case,
then we have to try with another choice for ϕ(0). On the other hand, if there is
a match, then we go on to the next block. We repeat the previous steps until we
reach either the letter 1 or 3. In the same manner as for the letter 0, we then
try every possible block for either 1 or 3 (and then the image of the last letter
under ϕ is uniquely determined). When the four images of ϕ over single letters
are chosen, it only remains to verify if the boundary word may be factorized as
a product of the four blocks (this step is called the decoding step).

Based on the previous paragraphs, one might design a branch-and-bound
algorithm for factorizing any polyomino. The pseudocode is found in Algorithm
1 and it was also implemented in Python.

Theorem 3. Any polyomino P may be factorized as a product of prime poly-
ominoes in O(n5), where n is the perimeter of P .

Proof. Let w be any boundary word of P starting with 0. Choosing each occur-
rence of 0 in w to construct ϕ(0), there are at most n possible values (and then
ϕ(2) is determined). Once ϕ(0) is chosen, there are at most n possible values for
ϕ(1) (and then ϕ(3) is determined). Finally, when ϕ(a) is known for each a ∈ F ,
it remains to verify if w might be decoded from ϕ, which is done in linear time
at most. Therefore, it can be decided in O(n3) whether w is decodable according
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Algorithm 1. Improved factorization of polyomino

1 Require: w is simple;
2 Function Factorize(w : boundary word)
3 begin
4 for i ∈ Occurrences(0, w) do
5 /* We try to factorize every conjugate starting with 0 */
6 u← Conjugate(w, i)
7 ϕ← FactorizeRec(w, ∅, 0)
8 if ϕ �= ∅ then
9 return ϕ

10 return ∅

11 Function FactorizeRec(w : boundary word, ϕ : morphism, i : integer)
12 begin
13 if i ≥ |w| then
14 /* We first check if the decoding is complete */

15 if ϕ is completely defined and non-trivial then
16 return ϕ

17 else
18 return ∅

19 else
20 �← w[i]
21 if ϕ(�) is defined then
22 /* The next block should match ϕ(�) */

23 k← |ϕ(�)|
24 if k > |w| − i or w[i : i+ k] then
25 return ∅
26 else
27 return FactorizeRec(w[i+ k : |w| − 1], ϕ, i+ k)

28 else
29 /* We consider constructions of the next block */

30 for j ∈ Occurrences(�, w[i : |w| − 1]) do
31 ϕ(�)← w[i : j]

32 ϕ(�)← ŵ[i : j]
33 ϕ← FactorizeRec(w[j + 1 : |w| − 1], ϕ, j + 1)
34 if ϕ is not trivial then
35 return ϕ

36 else
37 return ∅

38 return ∅
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to some parallelogram morphism ϕ. Since the test must be performed for every
conjugate of w starting with 0, we obtain a bound of O(n4). Finally, repeating
this reduction until a prime decomposition is obtained yields the claimed O(n5)
complexity. �

5.3 Improving the Upper Bound

The O(n5) bound seems rather high and it is not clear whether it can be realized.
To support this impression, let us study Algorithm 1 on the polyomino P having
boundary word

w = 0k1k2k−1323k−1.

Let n = |w| = 4k. Since P is a square k × k minus one corner cell, one might
prove that it is prime. For the algorithm to take as much time as possible, assume
that k has d divisors. Then the algorithm will try the k conjugate of w starting
with 0 and will construct d images for ϕ(0). Similarly, we will have to consider
d possible images for ϕ(1). The decoding being performed in linear time, we get
an overall bound of O(kd2n) = O(n2d2). But d is in general much smaller than
k: It is easy to see for instance that d ≤

√
k (tighter bounds from number theory

can be derived). Therefore, we obtain in that case a bound of O(n3).
We believe that a significant improvement could reduce the theoretical bound

to O(n4) or even O(n3) by taking into account the repetitions of some factors.
For instance, when we try to factorize the polyomino P of the previous paragraph
with ϕ(0) = 0 and we read the factor 0k, it would be more efficient to keep in
memory the fact that ϕ(0) can be set only to powers of 0 that divide k.

6 Concluding Remarks

In this paper, we have provided an algorithm to express any polyomino as a
product of prime polyominoes in polynomial time. As a consequence, it follows
that we can decide if a polyomino is prime or composed in polynomial time
as well. Another result worth mentioning is Theorem 1, which guarantees the
existence of a prime factorization. However, it seems more difficult to verify
if such a factorization is unique. Hence, we are led to propose the following
conjecture:

Conjecture 1. Let P be some composed polyomino. Then there exist unique
prime parallelogram morphisms ϕ1, ϕ2, . . ., ϕn and a unique prime boundary
word u such that P = Poly((ϕ1 ◦ ϕ2 ◦ . . . ◦ ϕn)(u)).

Indeed, actual computational explorations have not succeeded in providing a
counter-example to this conjecture for polyominoes having area at most 10.

As mentioned above, the O(n5) bound is rather crude and it would not be
surprising to design more efficient algorithms for solving the factorization prob-
lem.
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The reader interested in toying with an implementation of Algorithm 1 is
invited to look at the publicly available source code hosted on Github1, which
only depends on a basic Python installation to be run.
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Abstract. We study the online list update problem under the advice
model of computation. Under this model, an online algorithm receives
partial information about the unknown parts of the input in the form of
some bits of advice generated by a benevolent offline oracle. We show that
advice of linear size is required and sufficient for a deterministic algorithm
to achieve an optimal solution or even a competitive ratio better than
15/14. On the other hand, we show that surprisingly two bits of advice
is sufficient to break the lower bound of 2 on the competitive ratio of
deterministic online algorithms and achieve a deterministic algorithm
with a competitive ratio of 1.6̄. In this upper-bound argument, the bits
of advice determine the algorithm with smaller cost among three classical
online algorithms.

1 Introduction

List update is a well-studied problem in the context of online algorithms. The
input is a sequence of requests to items of a list; the requests appear in a se-
quential and online manner, i.e., while serving a request an algorithm cannot
look at the incoming requests. A request involves accessing an item in the list1.
To access an item, an algorithm should linearly probe the list; each probe has
a cost of 1, and accessing an item in the ith position results in a cost of i. The
goal is to maintain the list in a way to minimize the total cost. An algorithm can
make a free exchange to move an accessed item somewhere closer to the front of
the list. Further, it can make any number of paid exchanges, each having a cost
of 1, to swap the positions of any two consecutive items in the list.

� Supported in part by the Danish Council for Independent Research and the Villum
Foundation.

�� Supported in part by Dr. Derick Wood Graduate Scholarship in Computer Science.
1 Similar to other works, we consider the static list update problem in which there is
no insertion or deletion.

A.-H. Dediu et al. (Eds.): LATA 2014, LNCS 8370, pp. 210–221, 2014.
c© Springer International Publishing Switzerland 2014



On the List Update Problem with Advice 211

Similar to other online problems, the standard method for comparing online
list update algorithms is competitive analysis. The competitive ratio of an on-
line algorithm A is the maximum ratio between the cost of A for serving any
sequence and the cost of Opt for serving the same sequence. Here, Opt is an
optimal offline algorithm. It is known that, for a list of length l, no deterministic
online algorithm can achieve a competitive ratio better than 2l/(l+1) (reported
in [13]); this converges to 2 for large lists. There are 2-competitive (hence op-
timal) algorithms for the problem; these include Move-To-Front (Mtf) [20] and
Timestamp [1].

Although competitive analysis has been accepted as the standard tool for
comparing online algorithms, there are objections to it. One relevant objection
in this context is that assuming a total lack of information about the future is
unrealistic in many applications. This is particularly the case for the list update
problem when it is used as a method for compression [4]. In this application,
each character of a text is treated as an item in the list, and the text as the in-
put sequence which is parsed (revealed) in a sequential manner. A compression
algorithm can be devised from a list update algorithm A by writing the access
cost of A for serving each character in unary2. Hence, the size of the compressed
file is roughly equal to the access cost of the list update algorithm. In this appli-
cation, it is possible to include some partial information about the structure of
the sequence (text) in the compressed file, for example, which of three algorithms
was used to do the compression. This partial information could potentially be
stored using very little space compared to the subsequent savings in the size of
the compressed file compared with the original file, due to the availability of the
partial information.

Advice complexity provides an alternative for the analysis of online problems.
Under the advice model, the online algorithm is provided with some bits of ad-
vice, generated by a benevolent offline oracle with infinite computational power.
This reduces the power of the adversary relative to the online algorithm. Vari-
ant models are proposed and studied for the advice complexity model [10,11,7,6].
Here, we use a natural model from [7,6] that assumes advice bits are written on a
tape, and the online algorithm can access the tape at any time. The advice com-
plexity of an algorithm is then the length of the shortest prefix of the tape that
includes all accessed bits. Since its introduction, many online problems have been
studied under the advice model. These include classical online problems such as
paging [7,12,15], k-server [11,6,19], and bin packing [9].

1.1 Contribution

When studying an online problem under the advice model, the first question to
answer is how many bits of advice are required to achieve an optimal solution.
We show that advice of size Opt(σ) is sufficient to optimally serve a sequence
σ, where Opt(σ) is the cost of an optimal offline algorithm for serving σ, and
it is linear in the length of the sequence, assuming that the length of the list is

2 Encodings other than unary correspond to other cost models for list update.
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a constant. We further show that advice of linear size is required to achieve a
deterministic algorithm with a competitive ratio better than 15/14.

Another important question is how many bits of advice are required to break
the lower bound on the competitive ratio of any deterministic algorithm. We
answer this question by introducing a deterministic algorithm that receives two
bits of advice and achieves a competitive ratio of 1.6̄. The advice bit for a
sequence σ simply indicates the best option between three online algorithms
for serving σ. These three algorithms are Timestamp, MTF-Odd (MtfO) and
MTF-Even (MtfE). Timestamp inserts an accessed item x in front of the first
item y (from the front of the list) that precedes x in the list and was accessed at
most once since the last access to x. If there is no such item y or x is accessed
for the first time, no items are moved. MtfO (resp. MtfE) moves a requested
item x to the front on every odd (resp. even) request to x.

2 Optimal Solution

In this section, we provide upper and lower bounds on the number of advice bits
required to optimally serve a sequence. We start with an upper bound:

Theorem 1. Under the advice model, Opt(σ) − n bits of advice are sufficient
to achieve an optimal solution for any sequence σ of length n, where Opt(σ) is
the cost of an optimal algorithm for serving σ.

Proof. It is known that there is an optimal algorithm that moves items using
only a family of paid exchanges called subset transfer [16]. In a subset transfer,
after serving a request to an item x, a subset S of items preceding x in the list
is moved (using paid exchanges) to just after x in the list, so that the relative
order of items in S among themselves remains unchanged. Consider an optimal
algorithm Opt which only moves items via subset transfer. After a request to x
at index i, an online algorithm can read i−1 bits from the advice tape, indicating
(bit vector style) the subset which should be moved to after x. Provided with
this, the algorithm can always maintain the same list as Opt. The total number
of bits read by the algorithm will be equal to Opt(σ)− n. �

The above theorem implies that for lists of constant size, advice of linear size
is sufficient to optimally serve a sequence. We show that advice of linear size is
also required to achieve any competitive ratio smaller than 15/14.

Consider instances of the list update problem on a list of two items x and
y which are defined as follows. Assume the list is ordered as [x, y] before the
first request. Also, to make explanation easier, assume that the length of the
sequence, n, is divisible by 5. Consider an arbitrary bitstring B, of size n/5,
which we refer to as the defining bitstring. Let σ denote the list update sequence
defined from B in the following manner: For each bit in B, there are five requests
in σ, which we refer to as a round. We say that a round in σ is of type 0 (resp.
1) if the bit associated with it in B is 0 (resp. 1). For a round of type 0, σ will
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contain the requests yyyxx, and for a round of type 1, the requests yxxxx. For
example, if B = 011 . . ., we will have σ = 〈yyyxx, yxxxx, yxxxx, . . .〉.

Since the last two requests in a round are to the same item x, it makes sense
for an online algorithm to move x to the front after the first access. This is
formalized in the following lemma, which is easy to prove.

Lemma 2. For any online list update algorithm A serving a sequence σ created
from a defining bitstring, there is another algorithm whose cost is not more than
A’s cost for serving σ and that ends each round with the list in the order [x, y].

Provided with the above lemma, we can restrict our attention to algorithms
that maintain the ordering [x, y] at the end of each round. In what follows, by
an ‘online algorithm’ we mean an online algorithm with this property.

Lemma 3. The cost of an optimal algorithm for serving a sequence of length n,
where the sequence is created from a defining bitstring, is at most 7n/5.

Proof. Since there are n/5 rounds, it is sufficient to show that there is an algo-
rithm which incurs a cost of at most 7 for each round. Consider an algorithm
that works as follows: For a round of type 0, the algorithm moves y to the front
after the first access to y. It also moves x to the front after the first access to x.
Hence, it incurs a cost 2+1+1+2+1 = 7. For a round of type 1, the algorithm
does not move any item and incurs a cost of 2+1+1+1+1 = 6. In both cases,
the list ordering is [x, y] at the end of the round and the same argument can be
repeated for the next rounds. �

For a round of type 0 (with requests to yyyxx), if an online algorithm A moves
each of x and y to the front after the first accesses, it has cost 7. If it does not
move y immediately, it has cost at least 8. For a round of type 1 (i.e., a round
of requests to yxxxx), if an algorithm does no rearrangement, its cost will be 6;
otherwise its cost is at least 7. To summarize, an online algorithm should ‘guess’
the type of each round and act accordingly after accessing the first request of the
round. If the algorithm makes a wrong guess, it incurs a ‘penalty’ of at least 1
unit. This relates our problem to the binary guessing problem, defined in [11,5].

Definition 4 ([5]). The Binary String Guessing Problem with known history
(2-SGKH) is the following online problem. The input is a bitstring of length m,
and the bits are revealed one by one. For each bit bt, the online algorithm A must
guess if it is a 0 or a 1. After the algorithm has made a guess, the value of bt is
revealed to the algorithm.

Lemma 5 ([5]). On an input of length m, any deterministic algorithm for 2-
SGKH that is guaranteed to guess correctly on more than αm bits, for 1/2 ≤
α < 1, needs to read at least (1 + (1− α) log(1−α) + α logα)m bits of advice. 3

We reduce the 2-SGKH problem to the list update problem:

3 In this paper we use log n to denote log2(n).
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Theorem 6. On an input of size n, any algorithm for the list update problem
which achieves a competitive ratio of γ (1 < γ ≤ 15/14) needs to read at least
(1 + (7γ − 7) log(7γ − 7) + (8− 7γ) log(8− 7γ))/5× n bits of advice.

Proof. Consider the 2-SGKH problem for an arbitrary bitstring B. Given an
online algorithm A for the list update problem, define an algorithm for 2-SGKH
as follows: Consider an instance σ of the list update problem on a list of length
2 where σ has B as its defining bitstring, and run A to serve σ. For the first
request y in each round in σ, A should decide whether to move it to the front or
not. The algorithm for the 2-SGKH problem guesses a bit as being 0 (resp. 1) if,
after accessing the first item requested in the round associated with the bit in B,
A moves it to front (resp. keeps it at its position). As mentioned earlier, for each
incorrect guess A incurs a penalty of at least 1 unit, i.e., A ≥ Opt+w, where w
is the number of wrong guesses for critical requests. Since A has a competitive
ratio of γ, we have A ≤ γOpt. Consequently, we have w ≤ (γ − 1)Opt(σ) and
by Lemma 3, w ≤ 7(γ − 1)/5× n. This implies that if A has a competitive ratio
of γ, the 2-SGKH algorithm makes at most 7(γ− 1)/5×n mistakes for an input
bitstring B of size n/5, i.e., at least n/5−7(γ−1)/5×n = (8−7γ)×n/5 correct
guesses. Define α = 8− 7γ, and note that α is in the range [1/2, 1) when γ is in
the range stated in the lemma. By Lemma 5, at least (1 + (1− α) log(1 − α) +
α logα)n/5 bits of advice are required by such a 2-SGKH algorithm. Replacing
α with 8− 7γ completes the proof. �

Thus, to obtain a competitive ratio better than 15/14, a linear number of
bits of advice is required. For example, to achieve a competitive ratio of 1.01,
at least 0.12n bits of advice are required. Theorems 1 and 6 imply the following
corollary.

Corollary 7. For any fixed list, Θ(n) bits of advice are required and sufficient
to achieve an optimal solution for the list update problem. Also, Θ(n) bits of
advice are required and sufficient to achieve a 1-competitive algorithm.

3 An Algorithm with Two Bits of Advice

In this section we show that two bits of advice are sufficient to break the lower
bound of 2 on the competitive ratio of deterministic algorithms and achieve
a deterministic online algorithm with a competitive ratio of 1.6̄. The two bits
of advice for a sequence σ indicate which of the three algorithms Timestamp,
MTF-Odd (MtfO) and MTF-Even (MtfE), have the lower cost for serving σ.
Recall that MtfO (resp. MtfE) moves a requested item x to the front on every
odd (resp. even) request to x. We prove the following theorem:

Theorem 8. For any sequence σ, we have either Timestamp(σ) ≤ 1.6̄Opt(σ),
MtfO(σ) ≤ 1.6̄Opt(σ), or MtfE(σ) ≤ 1.6̄Opt(σ).

To prove the theorem, we show that for any sequence σ, Timestamp(σ) +
MtfO(σ) + MtfE(σ) ≤ 5Opt(σ). We note that all three algorithms have
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the projective property, meaning that the relative order of any two items only
depends on the requests to those items and their initial order in the list (and
not on the requests to other items). MtfO (resp. MtfE) is projective since in
its list an item y precedes x if and only if the last odd (resp. even) access to y
is more recent than the last odd (resp. even) access to x. In the lists maintained
by Timestamp, item y precedes item x if and only if in the projected sequence
on x and y, y was requested twice after the second to last request to x or the
most recent request was to y and x has been requested at most once. Hence,
Timestamp also has the projective property.

Similar to most other work for analysis of projective algorithms,4 we consider
the partial cost model, in which accessing an item in position i is defined to have
cost i−1. We say an algorithm is cost independent if its decisions are independent
of the cost it has paid for previous requests. The cost of any cost independent
algorithm for serving a sequence of length n decreases n units under the partial
cost model when compared to the full cost model. Hence, any upper bound for
the competitive ratio of a cost independent algorithm under the partial cost
model can be extended to the full cost model.

To prove an upper bound on the competitive ratio of a projective algorithm
under the partial cost model, it is sufficient to prove that the claim holds for
lists of size 2. The reduction to lists of size two is done by applying a factoring
lemma which ensures that the total cost of a projective algorithm A for serving
a sequence σ can be formulated as the sum of the costs of A for serving projected
sequences of two items. A projected sequence of σ on two items x and y is a copy
of σ in which all items except x and y are removed. We refer the reader to [8,
p. 16] for details on the factoring lemma. Since MtfO, MtfE, and Timestamp

are projective and cost-independent, to prove Theorem 8, it suffices to prove the
following lemma:

Lemma 9. Under the partial cost model, for any sequence σxy of two items, we
have MtfO(σxy) +MtfE(σxy) +Timestamp(σxy) ≤ 5×Opt(σxy).

Before proving the above lemma, we study the aggregated cost of MtfO

and MtfE on certain subsequences of two items. One way to think of these
algorithms is to imagine they maintain a bit for each item. On each request, the
bit of the item is flipped; if it becomes ‘0’, the item is moved to the front. Note
that the bits of MtfO and MtfE are complements of each other. Thus, we can
think of them as one algorithm started on complementary bit sequences. We say
a list is in state [ab](i,j) if item a precedes b in the list and the bits maintained for
a and b are i and j (i, j ∈ {0, 1}), respectively. To study the value of Opt(σxy),
we consider an offline algorithm which uses a free exchange to move an accessed
item from the second position to the front of the list if and only if the following
request is to the same item. It is known that this algorithm is optimal for lists
of two items [17].

4 Almost all existing algorithms for the list update problem are projective; the only
exceptions are Transpose, Move-Fraction [20], and Split [13]; see [14] for a survey.
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Table 1. Assuming the initial ordering of items is [ab], the cost of a both MtfO and
MtfE for serving subsequence 〈baba〉 is at most 3 (under the partial cost model). The
final ordering of the items will be [ab] in three of the cases.

Bits for (a, b) Cost for 〈baba〉 Orders before accessing items Final order

(0, 0) 1 + 0 + 1 + 1 = 3 [ab] [ab] [ab ] [ba ] [ab]

(0, 1) 1 + 1 + 0 + 1 = 3 [ab ] [ba] [ba] [ba ] [ab]

(1, 0) 1 + 0 + 1 + 1 = 3 [ab] [ab] [ab ] [ba] [ba]

(1, 1) 1 + 1 + 1 + 0 = 3 [ab ] [ba ] [ab] [ab] [ab]

Lemma 10. Consider a subsequence of two items a and b of the form (ba)2i,
i.e., i repetitions of 〈baba〉. Assume the initial ordering is [ab]. The cost of each of
MtfO and MtfE for serving the subsequence is at most 3i (under the partial
cost model). Moreover, at the end of serving the subsequence, the ordering of
items in the list maintained by at least one of the algorithms is [ab].

Proof. We refer to repetition of baba as a round. We show thatMtfO andMtfE

have a cost of at most 3 for serving each round. Assume the bits associated with
both items are ‘0’ before serving baba. The first request has a cost of 1 and b
remains in the second position, the second request has cost 0, and the remaining
requests each have a cost of 1. In total, the cost of the algorithm is 3. The other
cases (when items have different bits) are handled similarly. Table 1 includes a
summary of all cases. As illustrated in the table, if the bits maintained for a
and b before serving baba are (0, 0), (0,1), or (1,1), the list order will be [ab]
after serving the round. Since both a and b are requested twice, the bits will be
also the same after serving baba. Hence, in these three cases, the same argument
can be repeated to conclude that the list order will be [ab] at the end of serving
(ba)2i. Since the bits maintained for the items are complements in MtfE and
MtfO, at least one of them starts with bits (0, 0), (0, 1), or (1, 1) for a and b;
consequently, at least one algorithm ends up with state [ab] at the end. �

Lemma 11. Consider a subsequence of two items a and b which has form 〈baa〉.
The total cost that MtfE and MtfO incur together for serving this subsequence
is less than or equal to 4 (under the partial cost model).

Proof. If the initial order of a and b is [ba], the first request has no cost, and
each algorithm incurs a total cost of at most 2 for the other two requests of the
sequence. Hence, the aggregated cost of the two algorithms is 4. Next, assume
the initial order is [ab]. Assume the bits maintained by one of the algorithms for
a and b are (1,0), respectively. As illustrated in Table 2, this algorithm incurs
a cost of 1 for serving baa; the other algorithm incurs a cost of 3. In total, the
algorithms incur a cost of 4. In the other case, when bits maintained for a and b
are both ‘0’ in one algorithm (consequently, both are ‘1’ in the other algorithm),
the total cost of the algorithms for serving 〈baa〉 is 3. �
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Table 2. The total cost of MtfO and MtfE for serving a sequence 〈baa〉 is at most
4 (under the partial cost model). Note that the bits of these algorithms for each item
are complements of each other.

Initial order Bits for (a, b) Cost for Orders before Bits and Costs Total cost
〈baa〉 accessing items (other algorithm) (both algs.)

[ab] (0,0) 1 + 0 + 0 = 1 [ab] [ab] [ab] (1, 1)→ 2 1 + 2 = 3

[ab] (0,1) 1 + 1 + 1 = 3 [ab ] [ba] [ba ] (1, 0)→ 1 3 + 1 = 4

[ab] (1,0) 1 + 0 + 0 = 1 [ab] [ab] [ab] (0, 1)→ 3 1 + 3 = 4

[ab] (1,1) 1 + 1 + 0 = 2 [ab ] [ba ] [ab] (0, 0)→ 1 2 + 1 = 3

[ba] (0,0) (0,1) ≤ 0 + 1 + 1 = 2 - ≤ 2 2 + 2 = 4
(1,0) (1,1)

Using Lemmas 10 and 11, we are ready to prove Lemma 9:

Proof (Lemma 9, and consequently Theorem 8).
Consider a sequence σxy of two items x and y. We use the phase partitioning

technique as discussed in [8]. We partition σxy into phases which are defined
inductively as follows. Assume we have defined phases up until, but not including,
the tth request (t ≥ 1) and the relative order of the two items is [xy] before the
tth request. Then the next phase is of type 1 and is of one of the following forms
(j ≥ 0 and k ≥ 1):

(a) xjyy (b) xj(yx)kyy (c) xj(yx)kx

In case the relative order of the items is [yx] before the tth request, the phase
has type 2 and its form is exactly the same as above with x and y interchanged.
Note that, after two consecutive requests to an item, Timestamp, MtfO and
MtfE all have that item in the front of the list. So, after serving each phase,
the relative order of items is the same for all three algorithms. This implies that
σxy is partitioned in the same way for all three algorithms. To prove the lemma,
we show that its statement holds for every phase.

Table 3 shows the costs incurred by all three algorithms as well as Opt for
each phase. Note that phases of the form (b) and (c) are divided into two cases,
depending on whether k is even or odd. We discuss the different phases of type
1 separately. Similar analyses, with x and y interchanged, apply to the phases
of type 2. Note that before serving a phase of type 1, the list is ordered as [xy]
and the first j requests to x have no cost.

Consider phases of form (a), xjyy. MtfO and MtfE incur a total cost of 3
for serving yy (one of them moves y to the front after the first request, while the
other keeps it in the second position). Timestamp incurs a cost of 2 for serving
yy (it does not move it to the front after the first request). So, in total, the three
algorithms incur an aggregated cost of 5. On the other hand, Opt incurs a cost
of 1 for the phase. So, the ratio between the sum of the costs of the algorithms
and the cost of Opt is 5.

Next, consider phases of the form (b). Timestamp incurs a cost of 2k for
serving the phase; it incurs a cost of 1 for all requests in (yx)2i except the very
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first one, and a cost of 1 for serving the second to last request to y. Assume k
is even and we have k = 2i for some i ≥ 1, so the phase looks like xj(yx)kyy.
By Lemma 10, the cost incurred by MtfO and MtfE is at most 3i for serving
(yx)2i. We show that for the remaining two requests to y, MtfO and MtfO

incur an aggregated cost of at most 3. If the list maintained by any of the
algorithms is ordered as [yx] before serving yy, that algorithm incurs a cost of 0
while the other algorithm incurs a cost of at most 2 for these requests; in total,
the cost of both algorithms for serving yy will be at most 2. If the lists of both
algorithms are ordered as [xy], one of the algorithms incurs a cost of 1 and the
other incurs a cost of 2 (depending on the bit they keep for y). In conclusion,
MtfO and MtfE incur a total cost of at most 6i+3. Timestamp incurs a cost
of 2k = 4i, while Opt incurs a cost of 2i + 1 for the phase. To conclude, the
aggregated cost of all algorithms is at most 10i+3 compared to 2i+1 for Opt,
and the ratio between them is less than 5.

Next, assume k is odd and we have k = 2i − 1, i.e., the phase has the form
xj(yx)2i−2yxyy. The total cost of MtfO and MtfE for (yx)2i−2 is at most
2 × (3(i − 1)) (Lemma 10), the total cost for the next request to y is at most
2, and the total cost for subsequent xyy is at most 4 (Lemma 11). In total,
MtfO and MtfE incur a cost of at most 6i for the phase. On the other hand,
Timestamp incurs a cost of 4i − 2 for the phase. The aggregated cost of the
three algorithms is at most 10i− 2 for the phase, while Opt incurs a cost of 2i.
So, the ratio between sum of the costs of the algorithms and Opt is less than 5.

Next, consider phases of type 1 and form (c). Timestamp incurs a cost of
2k− 1 in this case. Assume k is even, i.e., the phase has the form xj(yx)2ix. By
Lemma 10, MtfO and MtfE each incur a total cost of at most 3i for (yx)2i.
Moreover, after this, the list maintained for at least one of the algorithms is
ordered as [xy]. Hence, the aggregated cost of algorithms for the next request
to x is at most 1. Consequently, the total cost of MtfE and MtfO is at most
6i+ 1 for the round. Adding the cost 2k − 1 = 4i− 1 of Timestamp, the total
cost of all three algorithms is at most 10i. On the other hand, Opt incurs a
cost of 2i for the phase. So, the ratio between the aggregated cost of all three
algorithms and the cost of Opt is at most 5. Finally, assume k is odd, i.e., the
phase has form xj(yx)2i−2yxx. By Lemma 10, MtfO and MtfE together incur
a total cost of 2× 3(i− 1) for xj(yx)2i−2. By Lemma 11, they incur a total cost
of at most 4 for yxx. In total, they incur a cost of at most 6(i − 1) + 4 for the
phase. Timestamp incurs a cost of 4i− 3; this sums up to 10i− 5 for all three
algorithms. In this case, Opt incurs a cost of 2i − 1. Hence, the ratio between
the sum of the costs of all three algorithms and Opt is at most 5.

In fact, the upper bound provided in Theorem 3 for the competitive ratio of
the better algorithm among Timestamp, MtfO and MtfE is tight under the
partial cost model. To show this, we make use of the following lemma.

Lemma 12. Consider a sequence σα = x(yxxx yxxx)k, i.e., a single request to
x, followed by k repetitions of (yxxx yxxx). Assume the list is initially ordered
as [xy]. We have MtfO(σ) = MtfE(σ) = 4k while Opt(σ) = 2k (under the
partial cost model).
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Table 3. The costs of MtfO, MtfE, and Timestamp for a phase of type 1 (the phase
has type 1, i.e., the initial ordering of items is xy). The ratio between the aggregated
cost of algorithms and the cost of Opt for each phase is at most 5. AlgMin (resp.
AlgMax) is the algorithm among MtfO and MtfE, which incurs less (resp. more)
cost for the phase. Note that the costs are under the partial cost model.

Phase AlgMin AlgMax Timestamp
Sum (AlgMin +

Opt’ Sum
Opt

′
AlgMax + Timestamp)

xjyy 1 2 2 5 1 5

xj(yx)2iyy ≤ 3i+ 1 ≤ 3i+ 2 2× 2i = 4i ≤ 10i+ 3 2i+ 1 < 5

xj(yx)2i−2yxyy ≤ 3(i− 1) + 1 ≤ 3(i− 1) + 1 2× (2i− 1) ≤ 6(i− 1) + 2 + 4 2i < 5
+AlgMin(〈xyy〉) +AlgMax(〈xyy〉) = 4i− 2 +(4i− 2) = 10i− 2

xj(yx)2ix ≤ 3i ≤ 3i+ 1 2× 2i− 1 ≤ (6i+ 1) + (4i− 1) 2i ≤ 5
= 4i− 1 = 10i

xj(yx)2i−2yxx ≤ 3(i− 1) ≤ 3(i− 1) 2× (2i− 1)− 1 ≤ 6(i− 1) + 4 2i− 1 ≤ 5
+AlgMin(〈yxx〉) +AlgMax(〈yxx〉) = 4i− 3 +(4i− 3) = 10i− 5

Proof. We refer to each repetition of (yxxx yxxx) as a round. Initially, the bits
maintained by MtfO (resp. MtfE) for x, y are (1, 1) (resp. (0,0)). After the
first request to x, the bits of MtfO (resp. MtfE) change to (0, 1) (resp. (1,0))
for x, y. MtfO incurs a cost of 3 for the first half of each round; it incurs a cost
of 1 for all requests except the last request to x. MtfE incurs a cost of 1 for
serving the first half of a round; it only incurs a cost of 1 on the first requests y.
After serving the first half, the list for each algorithm will be ordered as [xy] and
the bits maintained by MtfO (resp. MtfE) for x, y will be (1, 0) (resp. (0,1)).
Using a symmetric argument, the costs of MtfO and MtfE for the second half
of a round are respectively 1 and 3. In total, both MtfO and MtfE incur a
cost of 4 for each round. After serving the round, the list maintained by both
algorithms will be ordered as [xy] and the bits associated with the items will be
the same as at the start of the first round. Thus, MtfO and MtfE each have
a total cost of 4k on σα. An optimal algorithm Opt never changes the ordering
of the list and has a cost of 2 for the whole round, giving a cost of 2k for σα. �

Theorem 13. There are sequences for which the costs of all of Timestamp,
MtfE, and MtfO are 1.6̄ times that of Opt (under the partial cost model).

Proof. Consider a sequence σ = σασβ where σα = x(yxxx yxxx)kα and σβ =
(yyxx)kβ . Here, kα is an arbitrary large integer and kβ = 2kα. By Lemma
12, we have MtfO(σα) = MtfE(σα) = 4kα while Opt(σα) = 2kα. We have
Timestamp(σα) = 2kα, because it does not move y from the second position.

Next, we study the cost of MtfO and MtfE for serving σβ . Note that after
serving σα, the lists maintained by these algorithms is ordered as [xy] and the
bits associated with x and y are respectively (0, 1) for MtfO and (1, 0) for
MtfE (see the proof of Lemma 12).We show that for each round yyxx of σβ ,
the cost of each algorithm is 3. On the first request to y, MtfO moves it to the
front (since the bit maintained for y is 1); so it incurs a cost of 1 for the first
requests to y. On the first request to x, MtfO keeps x in the second position;
hence it incurs a cost of 2 for the requests to x. In total, it has a cost of 3 for
the round. With a similar argument, MtfE incurs a cost of 2 for the requests
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to y and a cost of 1 for the requests to x and a total cost of 3. The list order and
bits maintained for the items will be the same at the end of the round as at the
start. Hence, the same argument can be extended to other rounds to conclude
that the cost of both MtfE and MtfO for serving σβ is 3kβ . On the other
hand, Timestamp incurs a cost of 4 on each round as it moves items to the
front on the second consecutive request to them; hence, the cost of Timestamp

for serving σβ is 4kβ . An algorithm that moves items in front on the first of two
consecutive request to them will incur a cost of 2 on each round; hence the cost
of Opt for serving σβ is at most 2kβ .

To summarize, the cost of each of MtfO and MtfE for serving σ is 4kα +
3kβ = 10kα while the cost of Timestamp is 2kα + 4kβ = 10kα, and the cost
of Opt is 2kα + 2kβ = 6kα. As a consequence, all three algorithms have a cost
which is 10/6 = 1.6̄ times that of Opt. �

4 Concluding Remarks

It is generally assumed that the offline oracle that generates advice bits has
unbounded computational power. We used this assumption when we showed that
Opt(σ) bits are sufficient to achieve an optimal solution in Section 2. However,
for the algorithm introduced in Section 3, the advice bits can be generated
in polynomial time. The offline version of the list update problem is known
to be NP-hard [3]. In this sense, our algorithm can be seen as a linear-time
approximation algorithm with an approximation ratio of 1.6̄; this is, to the best
of our knowledge, the best deterministic offline algorithm for the problem. It
should be mentioned that there is a randomized online algorithm Bit which also
has a competitive ratio of 1.6̄ against an oblivious adversary [18]. Bit maintains
a bit for each item and flips the bit on each access; whenever the bit becomes ‘0’
it moves the item to the front. The bits are initially set uniformly at random;
hence, Bit uses l bits of advice for lists of length l. Comb is another randomized
algorithm which makes use of a linear number of random bits and improves the
competitive ratio to 1.6 [2]. We can conclude that there are online algorithms
which achieve a competitive ratio of at most 1.6 when provided a linear (in the
length of the list) number of advice bits. However, from a practical point of view,
it is not clear how an offline oracle can smartly generate such bits of advice.

We proved that with two bits of advice, one can achieve a (deterministic)
algorithm with a competitive ratio of at most 1.6̄. This bound is tight under
the partial cost model (Theorem 13); however, the lower bound argument for
the competitive ratio of this algorithm does not extend to the full cost mode,
i.e., the upper bound of 1.6̄ might be overly pessimistic. All studied projective
algorithms have the same competitive ratio under partial and full cost models;
our algorithm might be distinctive in this sense.

While two bits of advice can break the lower bound of 2 on the competitive
ratio of online algorithms, it remains open whether this can be done with one
bit of advice. Regardless, it is not hard to see that any algorithm with one bit
of advice has a competitive ratio of at least 1.5. We conjecture that this lower
bound can be improved and leave it as future work.
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3. Ambühl, C.: Offline list update is NP-hard. In: Paterson, M. (ed.) ESA 2000. LNCS,
vol. 1879, pp. 42–51. Springer, Heidelberg (2000)

4. Bentley, J.L., Sleator, D., Tarjan, R.E., Wei, V.K.: A locally adaptive data com-
pression scheme. Commun. ACM 29, 320–330 (1986)
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Abstract. We give a new direct construction of the shift-reduce ELR (1)
parsers for recursive Transition Networks (TN ), which is suitable for
languages specified by Extended BNF grammars (EBNF ). Such parsers
are characterized by their absence of conflicts, not just the classical shift-
reduce and reduce-reduce types, but also a new type named convergence
conflict. Such a condition is proved correct and is more general than the
past proposed conditions for the shift-reduce parsing of EBNF grammars
or TN ’s. The corresponding parser is smaller than a classical one, without
any extra bookkeeping. A constraint on TN ’s is mentioned, which enables
top-down deterministic ELL (1) analysis.

Keywords: extended grammar, EBNF, LR syntax analysis, bottom-up
parser.

1 Introduction

Extended Backus-Naur Form grammars (EBNF ) improve the readability of
context-free (BNF ) grammars and are widely used for language specification.
They often appear in the graphical form of Transition Networks (TN ), pio-
neered by [5]. Our contribution is a new method for constructing parsers start-
ing from a TN. Here we focus on the deterministic bottom-up or shift-reduce
parsers, corresponding to the LR (1) approach [12] widely used and supported
by parser generation tools. The Knuth’s LR (1) condition exactly characterizes
the deterministic BNF languages and his classical mapping from a grammar to
a shift-reduce parser – i.e., a (deterministic) pushdown automaton (D)PDA –
will be referred to as the standard method.

Though any EBNF grammar or TN can be converted into an equivalent BNF
one by replacing each regular expression (r.e.) or finite automaton (FA) with a
BNF subgrammar, the proposed methods for directly checking determinism are
difficult or overly restricted, and none of them has reached consensus. The broad
and accurate recent survey in [10] says: “What has been published about LR-like
parsing theory is so complex that not many feel tempted to use it; . . . Of course,
such a simplistic resumé does not do justice to the great efforts that have gone

� Work partially supported by PRIN “Automi e Linguaggi Formali”, and by CNR -
IEIIT.

�� We thank two anonymous referees for their accurate reading and insightful
comments.

A.-H. Dediu et al. (Eds.): LATA 2014, LNCS 8370, pp. 222–235, 2014.
c© Springer International Publishing Switzerland 2014



Shift-Reduce Parsers for Transition Networks 223

into research and implementation of the methods described. But it is a striking
phenomenon that the ideas behind recursive descent parsing of ECFG’s [i.e.,
EBNF ] can be grasped and applied immediately, whereas most of the literature
on LR-like parsing of RRPG’s [i.e., TN ] is very difficult to access. Given the
developments in computing power and software engineering, and the practical
importance of ECFG’s and RRPG’s, a uniform and coherent treatment of the
subject seems in order.” This is precisely our objective: offering a practical and
general construction for such parsers. Most proposed methods for the construc-
tion of deterministic parsers when TN ’s have bifurcating and circular paths as
well as recursive invocations, add to the standard LR (1) method a few com-
plex bookkeeping operations to manage the reduction of strings of unbounded
length. We contribute instead a novel mapping from a general TN to a shift-
reduce parser DPDA with no extra bookkeeping. We also give a rigorous ELR (1)
condition for the mapping to produce a DPDA: in addition to shift-reduce SR
and reduce-reduce RR conflicts, there should not be any convergence conflict,
to be later defined. We compare our directly obtained ELR (1) parser with the
LR (1) ones indirectly obtained by translating the TN to a BNF grammar and
by applying the standard method. Our direct method is proved as general as
the indirect one, and the (descriptive) state complexity of the indirect LR (1)
parsers always exceeds that of our direct ELR (1) parsers.

Sect. 2 sets terminology and notation. Sect. 3 contains the ELR (1) condition
for TN ’s, the main theoretical property and its proof, and the direct construction
of the parser. Sect. 4 compares the direct and indirect parsers. Sect. 5 discusses
related work and gives conclusions.

2 Preliminaries

The terminal alphabet is Σ and the empty string is ε. A BNF (context-free)
grammar G consists of a 4-tuple (Σ, V, P, S ). A grammar symbol is an element
of the union alphabet Σ ∪ V . In a rule A→ α the symbols A and α are the left
and right part, respectively. Alternative rules such as A → α and A → β may
be joint into one rule A → α | β. A grammar is right-linear (RL) if every rule
has the form A→ aB or A→ ε, with a ∈ Σ and B ∈ V .

In an EBNF grammar G, for each nonterminal A ∈ V there is exactly one
rule A→ α where the regular expression (r.e.) α over the union alphabet Σ ∪ V
uses union, catenation and Kleene star; the regular language associated to A is
denoted as R (α) or RA (�= ∅).

An immediate derivation is denoted by uAv ⇒ uw v, with strings u, w and
v possibly empty, and with w ∈ R (α). A derivation is rightmost if string v does

not contain any nonterminal. A derivation A
∗⇒ Av, with v �= ε, is called left-

recursive. For a derivation u⇒ v the reverse relation is named reduction and is
denoted as v � u.

The language of grammar G is L (G) =
{
x ∈ Σ∗ | S

∗⇒ x
}
. A sentence in

L (G) is unambiguous if it has only one syntax tree (if grammarG is EBNF a tree
node can have unboundedly many child nodes), and grammar G is unambiguous
if every sentence in L (G) is so.
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We represent each rule A→ α as a (deterministic) (D)FA MA (named “ma-
chine”) that recognizes language R (α). A set M of such FA’s for all nontermi-
nals is named transition network (TN ) and represents the grammar. Actually
the same net represents any grammar with the same nonterminals and the same
associated regular languages.

Definition 1. Let G be an EBNF grammar S → σ, A→ α, . . . . The transition
net M = {MS, MA, . . . } is a set of DFA’s that accept the regular languages
RS, RA, . . .. To prevent confusion, the state set of machine MA is denoted
as QA = { 0A, . . . , qA, . . . }, its initial state is 0A and its set of final states
is FA ⊆ QA. The union of all the states of the net is Q =

⋃
MA∈MQA. The

transition function of every machine is denoted as δ, at no risk of confusion since
their state sets are disjoint. We assume that all the machines are non-reentrant,
i.e., no edges enter their initial states.

For a state qA ∈ QA we denote as R (MA, qA) = R (qA) the regular language,
over the union alphabet Σ ∪ V , accepted by machine MA starting from qA and
ending in any final state.

The terminal language defined by machine MA when starting from state qA,
is denoted as L(MA, qA) = L(qA) =

{
y ∈ Σ∗ | η ∈ R (qA) ∧ η

∗⇒ y
}
�= ∅. �

For a non-reentrant machine, a computation that stays inside the machine graph,
never revisits the initial state. Clearly any machine can be so normalized with
a negligible overhead, by adding one state and a few edges. Such an adjust-
ment, though minor, greatly simplifies the reduction moves of the parser. We
remark that any two structurally equivalent EBNF grammars (i.e., such that
their syntax trees are identical up to an isomorphism of nonterminal names) can
be represented by the same TN. Therefore it is meaningful to refer to all such
grammars as being associated to a given TN.

Example 2. Grammar G in Fig. 1.a and its TN in Fig. 1.b will be used as a
running example. Notice that grammar G features a null rule, union, star, union
under star, and self-nested derivations. Machine MS features a null path, loops,
alternative paths, and recursion. �

Next we introduce a special BNF grammar that mirrors the structure of a TN.
Since an FA is equivalent to a (BNF ) RL grammar, which encodes FA edges
as RL rules, consider such a grammar ĜA for machine MA, with R (MA, 0A) =
L (ĜA) ⊆ (Σ ∪ V )

∗
. The nonterminals of ĜA are the states of QA (axiom 0A);

there is a rule pA → X rA if an edge pA
X−→ rA is in δ; and there is the empty rule

pA → ε if pA is a final state. Notice that a rule of ĜA with the form pA → B rA,
where symbol B is a nonterminal of the original EBNF grammar, is still RL
since symbol B is viewed as a “terminal” symbol for ĜA.

Then for every machine MA and grammar ĜA, and for every rule pA → B rA,
replace the nonterminal symbol B ∈ V by 0B, and so obtain a rule pA → 0B rA.
The resulting BNF grammar is denoted as Ĝ, named the right-linearized gram-
mar (RLZG) of the net: it has terminal alphabet Σ, nonterminal set Q and
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(a) EBNF grammar G : S →
(
ε | b

) (
a
(
b | S c

) )∗

(b) machine net
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M = {MS }
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S c
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(c) ELR pilot graph
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(d) bottom-up analysis simulation of “a b a a c c” - stack contents shown before each reduction

input tape (with cell numbering and end-of-text �; the gap is for the null reduction):

a b a a c c �
1 2 3 4 5 6

stack contents after shifting a b a a:

0 � ⊥ a
1 � �1

0 c ⊥ b
3 � �1

3 c �2
a

1 � �1

1 c �2

0 c ⊥
a

1 c �3

0 c ⊥

J [0] J [1] J [2] J [3] J [4]
stack contents after reducing ε � S and then shifting S c:

0 � ⊥ a
1 � �1

0 c ⊥ b
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J [0] J [1] J [2] J [3] J [4] J [5] J [6]
stack contents after reducing a S c � S and then shifting S c:

0 � ⊥ a
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the parser reduces a b a S c � S, the stack contains J [0] = { 〈 0 � ⊥〉 } and the parser accepts
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The parser is a pushdown automaton (PDA). The superimposed arrows are for visualization. Solid

arcs show links between stack items: all the iid chains in the 1st stack, but only the reduction handle

in the 2nd and 3rd stack. Dashed arcs show look-ahead matching with the input at reduction. The

items in the reduction handle are framed. The final states on the stack top, which trigger a reduction

move if their look-ahead matches the input, are encircled. The subscript S of the machine states and

the item brackets are omitted, e.g., item 〈 0S � ⊥ 〉 is shortened as 0 � ⊥, and so on the others.

Fig. 1. EBNF gram. G (a), netM (b), pilot P (c), and analysis with convergence (d).
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(a) right-linearized
grammar Ĝ

{
0S → a 1S | b 3S | ε 2S → c 3S
1S → b 3S | 0S 2S 3S → a 1S | ε

(b) LR pilot graph (partial)

0S → • a 1S
�0S → • b 3S

0S → • ε = ε •

0S → a • 1S �
1S → • b 3S �
1S → • 0S 2S
0S → • a 1S

c0S → • b 3S
0S → • ε = ε •

1S → b • 3S �
0S → b • 3S c

3S → • a 1S � c
3S → • ε = ε •

1S → b 3S • �
0S → b 3S • c

the non-conflicting convergent tran-

sition I1
b⇒ I7 in the ELR pi-

lot P (Fig. 1.c), appears as two
non-conflicting reductions in the m-
state K′; the conflicting convergent

transition I8
b⇒ I7 in the same pilot,

appears as a reduce-reduce conflict
in the m-state K′′

3S → a • 1S � c

1S → • b 3S � c
1S → • 0S 2S
0S → • a 1S

c0S → • b 3S
0S → • ε = ε •

1S → b 3S • � c
0S → b 3S • c

1S → b • 3S � c
0S → b • 3S c

3S → • a 1S � c
3S → • ε = ε •

P̂ →

I0

the m-state I7 in P (Fig. 1.c) is split
into the m-state pairs I ′7-K

′ and I ′′7 -
K′′, without and with conflict

I1

see the correspondence
with the two convergent
b-transitions tagged (∗)
and (∗∗) in Fig. 1.c

I ′7

I8

I ′′7

K′′

K′

reduce-reduce conflict
no conflict here

a

b

(∗)

a

b

(∗∗)

3S

3S

Fig. 2. LR pilot P̂ (b) of the RLZG Ĝ (a): dotted rules are used instead of TN states

axiom 0S . Its right parts have length zero or two, and may contain two non-
terminal symbols; thus grammar Ĝ is not RL. Grammar Ĝ generates language
L (G). See the running example in Fig. 2.a.

The classical notions of LR (1) look-ahead set, dotted rule and item are
rephrased for TN ’s. Dotted rules are replaced by machine states, e.g., S → • b
becomes 0S. An ELR (1) item is a pair 〈 qB, a 〉 in Q × (Σ ∪ {.} ), where .
is the end-of-text: this says that a is a legal look-ahead token for the current
activation of machine MB in the state qB . The standard closure function [12] is
adjusted for the legal items of a TN.

Closure function. It is the smallest set that contains a given set C of items:

closure (C) = C ∪
{
〈 0B, b 〉 ∃ 〈 q, a 〉 ∈ closure (C) ∧ ∃

(
q

B→ r
)
∈M

∧ b ∈ Ini (L (r) · a )

}
For simplicity we group together the items that have the same state, in this way:
〈q, {a1, . . . , ak}〉 ≡ {〈q, a1〉 , . . . , 〈q, ak 〉}, where the look-ahead set {a1, a2, . . . , ak}
is never empty.

3 From TN to Shift-Reduce Parser

For brevity we only comment the passages that essentially depart from the stan-
dard ones. Given a TN M, we present the new direct ELR (1) construction of
the finite state-transition function, denoted as ϑ, of the DFA that controls the
parser (DPDA). This DFA is named pilot to shorten its traditional name “rec-
ognizer of viable LR (1) prefixes”. Its states, named macro-states (m-states) to
distinguish them from TN states, are sets of items.
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The construction has three phases: (i) fromM we construct the pilot ; (ii) we
check the forthcoming ELR (1) condition, which involves the new convergence
conflict, besides the standard shift-reduce (SR) and reduce-reduce (RR) ones;
and (iii) if the test is passed, we construct the DPDA. For an item 〈 pA, ρ 〉 and
a grammar symbol X , the shift (or “go to”) function (qualified as terminal /

nonterminal according to X) is ϑ ( 〈 pA, ρ 〉 , X ) = 〈 qA, ρ 〉 if the edge pA
X→ qA

exists, or the empty set otherwise. For a set C of items, the shift under X is the
union of the shifts of all the items in C.

Algorithm 3. Let the pilot DFA be P = (Σ ∪ V, R, ϑ, I0, F = R ) and let its
initial state be I0 = closure

( {
〈 0S ,. 〉

} )
. The pilot state set R = { I0, I1, . . . }

and its transition function ϑ : R×(Σ ∪ V )→ R are computed by the next steps:

R′ := { I0 }
repeat R := R′

for each m-state I ∈ R and grammar symbol X ∈ Σ ∪ V do
I ′ := closure

(
ϑ ( I, X )

)
R′ := R ∪ { I ′ }

add the edge I
X→ I ′ to the transition function ϑ

until R′ = R �

For a pilot (e.g., Fig. 1.c) every m-state I is partitioned into two subsets. The base
contains the non-initial items: I|base = { 〈 q, π 〉 ∈ I | q is not initial state }; the
closure contains the remaining ones: I|closure = { 〈 q, π 〉 ∈ I | q is initial state }.
All the m-states, but the initial one I0, have a non-empty base, while their clo-
sures may be empty. The kernel of a m-state I is the projection of all the
items contained in I on their first component (which is a TN state): I|kernel =
{ q ∈ Q | 〈 q, π 〉 ∈ I } ⊆ Q.

When in the same m-state I, it happens that two items shift under the same
grammar symbol, then determinism may be defeated, as next explained.

Definition 4. A m-state I has the multiple transition property (MTP) if it in-
cludes two items 〈 q, π 〉 and 〈 r, ρ 〉, such that for some grammar symbol X ∈
Σ ∪ V both TN transitions δ (q, X) and δ (r, X) are defined. Moreover a pilot
transition ϑ (I, X) is convergent if δ (q, X) = δ (r, X). The pilot transition has
a convergence conflict if the look-ahead sets overlap, i.e., π ∩ ρ �= ∅. �

We formalize the conditions for all the decisions of a parser to be deterministic.

Definition 5. ELR (1) condition for a TN.

1. For no m-state I there is a shift-reduce (SR) or a reduce-reduce (RR) conflict:

(SR) ∀ item 〈 q, π 〉 ∈ I s.t. q is final and ∀ edge I
a−→ I ′ : a �∈ π (1)

(RR) ∀ items 〈 q, π 〉 , 〈 r, ρ 〉 ∈ I s.t. q and r are final : π ∩ ρ = ∅ (2)

2. No transition of the pilot has any convergence conflict. �
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In the pilot P shown in Fig. 1.c, the MTP m-states I1, I2 and I8 have outgoing
convergent edges, two of which are conflicting. The presence of a convergent non-
conflicting transition and of a convergent conflicting one that go into the same
m-state I7, shows that the convergence conflict is a property of the transition,
not of the destination m-state.

ELR (1) versus Standard LR (1) Conditions. A BNF grammar, since the
number of alternative rules A → α | β | . . . is known and the right parts do
not contain any star or union operations, has a natural equivalent FA NA, which
in general is nondeterministic; the graph of NA is acyclic and shaped as a tree.
Clearly NA satisfies the no-reentrance hypothesis for the initial state; it is often
not minimal because each graph path ends in a distinct but undistinguishable
final state. No m-state in the standard pilot has the multiple transition property,
and the only possible conflicts are SR and RR.

Our machine MA may differ from NA in two ways. First, machine MA is
deterministic, though out of convenience, not of necessity. To illustrate, consider
the alternatives C → if E then I | if E then I else I. Determinizing has the
effect of left-factoring the longest common prefix, i.e., of using the EBNF rule
C → if E then I ( ε | else I ).

Second, the graph of MA typically has fewer states than that of NA: the final
states (and maybe others) of NA coalesce if they are equivalent for MA. Hence
some pilot edges may get convergent, thus the RR conflicts in the pilot of a BNF
grammar may turn into convergence ones in the pilot of an equivalent EBNF
grammar (Fig. 1.c, 2.b). The correspondence between convergence conflicts and
RR conflicts is not so evident. To have a grasp, notice how the convergence
conflict in the m-state I7 of Fig. 1.c matches the RR conflict in the m-state I ′′7
of Fig. 2.b (read also the included comments).

The next central result supports the view that in a sense our ELR (1) condition
is the most general possible for a TN. We believe this theorem is essential because
early proposals to extend LR (1) concepts to EBNF grammars or to TN ’s, since
they omitted formal analysis, were later found to be flawed or not general enough
(see Sect. 5).

Theorem 6. Let M be a TN and Ĝ be the equivalent RLZG. Net M meets the
ELR (1) condition if, and only if, grammar Ĝ meets the LR (1) condition. �

Proof. The proof shows that (if-part) if the ELR (1) condition is violated by the
pilot P of netM, then the pilot P̂ of grammar Ĝ violates the LR (1) condition,
and viceversa (only-if part) that an LR (1) conflict in P̂ entails an ELR (1) one in
P . We study the correspondence between pilots P and P̂, namely between their
transition functions ϑ and ϑ̂, and their m-states I and Î. It helps to compare
the pilots in Fig. 1.c, 2.b.

We observe that since grammar Ĝ is BNF, all the edges of pilot P̂ that enter
the same m-state, have identical labels. This does not hold for pilot P , and so
a m-state of P may be split into several m-states of P̂. We also notice, for any
non-empty rule X → Y Z of Ĝ, that it holds X ∈ Q, Y ∈ Σ ∪ { 0A | 0A ∈ Q }
and Z ∈ Q \ { 0A | 0A ∈ Q }. Due to the special form of the rules of Ĝ, the
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m-states Î of P̂ are divided into three sets: the set
{
Î0

}
of the initial m-state;

the set of the intermediate m-states, i.e., those such that every item of Î|base has
the form pA → Y • qA; and the set of the sink reduction m-states, i.e., those
such that every item has the form pA → Y qA •.

We say that an item 〈qX , λ〉 of pilot P corresponds to an item of pilot P̂ of
the form 〈 pX → s • qX , ρ 〉, if it holds λ = ρ. Then two m-states I of P and
Î of P̂ are correspondent if the items in I|base and in Î|base correspond to each

other; moreover the initial m-states I0 and Î0 are defined as correspondent.
The following properties of correspondent m-states (Lemma 7) are straight-

forward and can be easily proved, see [2].

Lemma 7. The mapping defined by the correspondence relation from the set
containing the m-state Î0 and the intermediate m-states of pilot P̂, to the set of
the m-states of pilot P, is total, many-to-one and onto (surjective). The following
statements hold:
1. For any grammar symbol s, and any correspondent m-states I and Î, it holds:

transition ϑ (I, s) = I ′ is defined ⇐⇒ transition ϑ (Î , s) = Î ′ is defined and
m-state Î ′ is intermediate. Moreover m-states I ′ and Î ′ are correspondent.

2. Let a final state fA be non-initial. Item 〈 fA, λ 〉 is in m-state I (in I|base)

⇐⇒ a correspondent m-state Î contains both items 〈 pA → s • fA, λ 〉 and
〈 fA → ε •, λ 〉.

3. Let the initial state 0A be final too, but with A �= S. Item 〈 0A, π 〉 is in
m-state I ⇐⇒ a correspondent m-state Î contains item 〈 0A → ε •, π 〉.

4. Let the axiomatic initial state 0S be final too. Item 〈 0S , π 〉 is in m-state I0
⇐⇒ item 〈 0S → ε •, π 〉 is in m-state Î0.

5. For any pair of correspondent m-states I and Î, and any initial state 0A, it
holds: 0A ∈ I|closure ⇐⇒ 0A → •α ∈ Î|closure for every alternative rule
0A → α of 0A. �

Part “if”. Consider the three conflict types that may occur in the pilot P .

SR conflict. Consider a conflict in m-state I 6 〈 fB, {a} 〉, where fB is final and
non-initial and ϑ (I, a) is defined. By Lemma 7 (points (1) and (2)) there exists
a correspondent m-state Î such that ϑ (Î , a) is defined and 〈 fB → ε•, {a} 〉 ∈ Î,
hence the same conflict is in P̂. A similar reasoning, by exploiting (1) and (3),
applies to a conflict in m-state I 6 〈 0B, {a} 〉, where 0B is final and initial, and
ϑ (I, a) is defined.

RR conflict. If a conflict is present in m-state I ⊇ { 〈 fA, {a} 〉 , 〈 fB, {a} 〉 },
where fA and fB are final and non-initial, then from (2) the same conflict exists
in one or more m-states Î ⊇ { 〈 fA → ε•, {a} 〉 , 〈 fB → ε•, {a} 〉 }. Similar rea-
sonings apply to the cases where one final state or both final states in the items
are initial.

Convergence conflict. Consider a conflicting transition I
X→ I ′, where it holds

I ⊇ { 〈 pA, {a} 〉 , 〈 qA, {a} 〉 }, δ (pA, X) = δ (qA, X) = rA and I ′|base 6 〈 rA, {a} 〉.
If neither pA nor qA are initial, both items are in the base of I. By (1) there

are correspondent intermediate m-states and a transition Î
X→ Î ′ with Î ′ ⊇
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{ 〈 pA → X • rA, {a} 〉 , 〈 qA → X • rA, {a}〉 }, and the sink reduction m-state

ϑ̂ (Î ′, rA) has anRR conflict. Similarly, if (arbitrarily) qA = 0A, then 〈 qA, {a} 〉 ∈
I|closure from the non-reentrance hypothesis forMA, and so I|base necessarily con-
tains an item C = 〈 s, ρ 〉 such that closure (C) = 〈 0A, {a} 〉. Therefore for some
t and Y , there exists a m-state Î correspondent of I such that 〈 t→ Y • s, ρ 〉 ∈
Î|base and 〈 0A → •XrA, {a} 〉 ∈ Î|closure, hence it holds ϑ̂ (Î , X) = Î ′ and

〈 0A → X • rA, {a} 〉 ∈ Î ′, whence ϑ̂ (Î ′, rA) has an RR conflict.

Part “only if”. Consider the two conflict types that may occur in the pilot P̂ .

SR conflict. The conflict occurs in m-state Î such that 〈 fB → ε•, {a} 〉 ∈ Î
and ϑ (Î , a) is defined. By Lemma 7 (points (1) and (2) (or (3)), the corre-
spondent m-state I contains 〈 fB, {a} 〉 and the move ϑ (I, a) is defined, thus
resulting in the same conflict.

RR conflict. Consider m-state Î s.t. { 〈 fA → ε•, {a} 〉 , 〈 fB → ε•, {a} 〉 } ⊆
Î|closure, where fA and fB are final non-initial. By (2), the correspondent m-
state I contains the items 〈 fA, {a} 〉 , 〈 fB, {a} 〉 and has the same conflict.
A similar reasoning, based on points (2) and (3), applies if either state fA
or fB is initial. Finally consider an RR conflict in a sink reduction m-state
Î s.t.{ 〈 pA → XrA•, {a} 〉 , 〈 qA → XrA•, {a} 〉 } ⊆ Î. There exist m-states Î ′,

Î ′′ and transitions Î ′′
X→ Î ′

rA→ Î s.t. Î ′ contains items 〈 pA → X • rA, {a} 〉 and
〈 qA → X • rA, {a} 〉, the correspondent m-state I ′ contains item 〈 rA, {a} 〉, and
{ 〈 pA → •XrA, {a} 〉 , 〈 qA → •XrA, {a} 〉 } ⊆ Î ′′|closure. Since Î ′′|closure �= ∅, Î ′′ is
not a sink reduction m-state. Let I ′′ be its correspondent m-state. Then: if pA
is initial, 〈 pA, {a} 〉 ∈ I ′′|closure by (5); if pA is not initial, there exists an item

〈 tA → Z • pA, {a} 〉 ∈ Î ′′|base, and 〈 pA, {a} 〉 ∈ I ′′. A similar reasoning applies to

state qA, hence 〈 qA, {a} 〉 ∈ I ′′, and I ′′
X→ I ′ has a convergence conflict. �

We address a possible criticism to the significance of Theorem 6: that, starting
from an EBNF grammar, several equivalent BNF grammars can be obtained by
removing the r.e. operations in different ways. Such grammars may or may not
be LR (1), a fact that would seem to make somewhat arbitrary the choice of the
left-linearized form in our definition of ELR (1). We defend the significance and
generality of our choice on two grounds. First, our original grammar specification
is not a set of r.e.’s, but a TN set of DFA’s, and the choice to transform the DFA
into a right-linear grammar is not only natural but also opportunistic because, as
shown by [9], the other natural form - left-linear - would exhibit conflicts in most
cases. Second, the same author shows that this definition of ELR (1) grammar
dominates the alternative definitions available at his time (and we believe also
the later definitions). We illustrate by the case of an ELR (1) TN (by Theorem
6 the right-linearized grammar Ĝ is LR (1)) where an equivalent BNF grammar
obtained by a natural transformation has conflicts.

Example 8. The language structure is E ( sE )∗, where substring E has the
(context-free) form b+ bn en or bn en e, with n ≥ 0. It is defined by the TN
below, which meets the ELR (1) condition.



Shift-Reduce Parsers for Transition Networks 231
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On the contrary, in the equivalent BNF grammar with nonterminals S, E, F
and B, and with rules S → E sS | E, E → B F | F e, F → b F e | ε and
B → bB | b, there is an SR conflict. The RLZG postpones any reduction
decision as late as possible and so avoids the conflicts. �

ELR (1) Parser. Given the pilot of an ELR (1) TN, we specify the DPDA that
recognizes and parses the sentences. In the DPDA stack, elements of two types
alternate: grammar symbols and stack m-states (sms). Since for a given TN M
there are finitely many different items, the number of m-states is bounded, and
the number of items in any m-state is bounded by CMax = |Q | × ( |Σ |+ 1 ).
An sms, denoted as J , is an ordered set of triples named stack items, which are
items with one more field named item identifier (iid). A stack item has the form
〈 qA, π, iid 〉, where qA ∈ Q, π ⊆ Σ ∪ {.}, and 1 ≤ iid ≤ CMax or iid = ⊥. For
readability the iid values are prefixed by a " marker.

The parser uses a surjective mapping μ from the set of sms to that of m-states:
it holds μ (J) = I if, and only if, by dropping their iid ’s, the items in J equal
those in I. For explaining the parsing algorithm, we stipulate that identically
indexed symbols J [l] and Il are related by μ (J [l]) = Il.

Algorithm 9. ELR (1) parser as a DPDA. Let J [0] or J [0] a1 J [1] a2 . . . ak J [k]
be the current stack contents, where ai (1 ≤ i ≤ k) is any grammar symbol
(terminal or nonterminal) and the sms on the stack top is J [k] (see Fig. 1.d).

Initialization. The stack contents are set to J [0] = { s | s = 〈q, π, ⊥〉 for
every item 〈q, π〉 ∈ I0 }, where μ (J [0]) = I0 is the initial m-state of the pilot.

Shift move. The top sms is J , with μ (J) = I, the current input token is a ∈ Σ,
and it holds ϑ (I, a) = I ′. Suppose that by inspecting I, the pilot decides to shift.
The shift move performs two steps:
1. pushes on stack the token a and gets the next token
2. pushes on stack the sms J ′ computed as follows:

J ′ =
{
〈q′A, ρ, "i〉 | 〈qA, ρ, "j〉 is at position i in J ∧

(
qA

a→ q′A
)
∈ δ

}
(3)

∪
{
〈0B, σ,⊥〉 | 〈0B, σ〉 ∈ I ′|closure

}
(see Fig. 3) (4)

so that μ (J ′) = I ′. Notice the last condition in (3) implies it holds q′A ∈ I ′|base .

Reduction move (non-initial state). The current stack contents are the se-
quence J [0] a1 J [1] a2 . . . ak J [k] and the corresponding m-states are μ (J [l]) = Il,
with 0 ≤ l ≤ k. Suppose that by inspecting Ik, the pilot chooses to reduce an item
〈qA, π〉 ∈ Ik, where qA is a final yet non-initial state. Let tk = 〈qA, ρ, "ik〉 ∈ J [k]
be the (only) sms such that the current token is a ∈ ρ. An iid chain starts from
"ik, which links tk to a stack item tk−1 = 〈pA, ρ, "ik−1〉 ∈ J [k − 1], and so on
as far as it reaches a stack item th ∈ J [h] that has a null iid (thus its state is
initial): th = 〈0A, ρ, ⊥〉. The reduction move performs three steps:
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1. grows the syntax (sub)tree list by applying reduction ah+1 ah+2 . . . ak � A
2. pops the stack symbols in this order: J [k] ak J [k − 1] ak−1 . . . J [h+ 1] ah+1

3. executes the nonterminal shift move ϑ (I[h], A) (see below)

Reduction move (initial state). It differs from the preceding case (non-initial
state) in that the chosen item is 〈0A, π, ⊥〉. The parser move grows the syntax
(sub)tree list by the null reduction ε � A and performs the nonterminal shift move
corresponding to ϑ (I[k], A).

Nonterminal shift move. It is the same as a shift move, except that the
shifted symbol A is a nonterminal and the parser does not read the next input
token as it does instead in the step 1 of the shift move.

Acceptance. The parser halts and accepts when the stack contains only J [0]
and the current input token is . (end-of-text). �

machine MA pilot ϑ (I, a) = I ′ parser pushdown stack . . . J a J ′

qA q′A

q′′A

a

B

. . .

. . .

〈 qA, π 〉
. . .

a−→
〈 q′A, π 〉

. . .

〈 0B , σ 〉
. . .

I I ′

...
...

1 : . . .

. . .

i : 〈 qA, ρ, �j 〉
. . .

a

〈 q′A, ρ, �i 〉
. . .

〈 0B , σ, ⊥〉
. . .

J J ′

Fig. 3. Shift move scheme, with machine, pilot and stack (μ (J) = I and μ (J ′) = I ′)

For a shift move we notice that an sms J ′ computed by Alg. 9, may contain
multiple items that have the same state. This happens whenever an edge I →
θ (I, a) = I ′ of the pilot graph is convergent. The scheme of a shift move (eq.s
(3) and (4)) is shown in Fig. 3.

Stack items are linked through iid chains, e.g., item 〈 q′A, ρ, "i 〉 is linked to
〈 qA, ρ, "j 〉 via "i. Every stack item is mapped by function μ onto a pilot m-
state item that has the same machine state. In general the look-ahead set π of
such a pilot item is a superset of the look-ahead set ρ in the stack item, due to
the possible presence of convergent transitions. The two sets ρ and π coincide
if at parsing time the pilot does not take a convergent transition. We omit the
straightforward correctness proof of Alg. 9 and we move to an example.

Example 10. Fig. 1.d shows the parse trace of string a b a a c c. The stack alter-
nates grammar symbols X ∈ Σ ∪ V and sms ’s J [l], and starts from sms J [0].
Each pair (X , J) spans the recognized (series of) token(s). In an sms J [l] each
item is numbered from 1 (top item). An iid "i in an item of J [l + 1] refers back
to the i-th item in J [l]. The trace shows from top to bottom: a null reduction,
a non-null one of an acyclic path in MS , and a final non-null cyclic one. The
sms ’s J differ from the m-states I of P : sms J [3] has three items 〈 1S , ., "1 〉,
〈 1S , c, "2 〉 and 〈 0S , c, ⊥〉, which come from m-state I8 (i.e., μ (J [3[) = I8) by
splitting the look-ahead set of the item 〈 1S , . c 〉 that results from convergence;
and sms J [2] is a splitting of m-state I7 (i.e., μ (J [2[) = I7), with two sms ’s
coming from one m-state item. More comments are in Fig. 1 (all parts). �
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4 Standard LR (1) versus ELR (1) Parser

First, we argue that the direct pilot has fewer m-states than the indirect standard
pilot of an equivalent BNF grammar. Consider a family of regular languages
Ln, where integer n is the star height, and their one-rule EBNF grammars S →
Ln (with n ≥ 1). We show a simpler family with an alphabet growing with
n, but others exist with a bounded alphabet. Take these languages: L1 = a∗,
L2 = ( a∗ b )∗, L3 =

(
( a∗ b )∗ c

)∗
, etc. The minimal (non-reentrant) DFA that

recognizes Ln, has n+ 1 states and is isomorphic to the direct pilot of S → Ln.
Converting such a grammar to BNF needs n nonterminals and its standard pilot
has a number of m-states that is lower-bounded by 2n.

Second, we examine how the typical transformations of a BNF grammar into
an EBNF one affect the pilot size. Space prevents a complete analysis and we
consider two main cases only. If a left-recursive (or right-recursive) BNF rule,
such as A→ Au | v, is replaced by an EBNF rule A→ v u∗ that features a star
operation, then the pilot size shrinks. If a language substitution is applied, e.g.,
by replacing rules A→ aB b and B → u | v with one rule A→ a ( u | v ) b, then
the number of nonterminals and FA’s decreases, and so also does the pilot size.
Therefore the repeated application of left-recursion removal and substitution
yields a TN with a smaller pilot.

At last, we compare the run-time memory needed for the pilot stacks. At a
first glance the direct pilot stack contains twice the number of entries of the
indirect pilot stack, because the latter pilot does not need to store the grammar
symbols between sms ’s (all of which are m-states), whereas the former one needs
them to build the syntax tree when performing a reduction (see the trace in Fig.
1.d). Yet it would be straightforward to take the grammar symbol X shifted by

a direct pilot transition I1
X→ I2, and encode it into the sms associated to I2 by

μ. This would make equal the stack lengths of the two parsers. Although such a
coding enlarges the stack alphabet size, it does not penalize run-time efficiency.
To sum up, the direct parser has a smaller pilot and the same stack memory
occupation at run-time as the standard indirect parser. Experimentation on real
grammars is obviously needed to assess the practicality of the direct method.

5 Related Work and Conclusion

Many early authors have proposed to extend the standard LR method to EBNF
grammars, each proposal purporting to improve over previous attempts, but no
clear-cut optimal solution has surfaced. The following discussion particularly
draws from the later papers [10,11,16]. The first dichotomy concerns the source
language specification: either an EBNF grammar or a TN. Since it is now per-
fectly clear that r.e.’s and finite automata are interchangeable notations, the
distinction is moot.

Some authors impose restrictions on the r.e.’s, for instance by limiting the
star depth to one or forbidding common subexpressions. Although the original
motivation to simplify parser construction has since vanished, it is fair to say
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that the r.e.’s used in the language manuals are typically quite simple, for the
reason of avoiding obscurity.

Others, including ourselves, use TN ’s and specify the right parts by DFA’s
(notably [16]). Notice that the use of NFA’s would make little difference for
readability, yet it could be easily accommodated within our parser generation
framework. Our inexpensive normalization of DFA’s that disallows reentering the
initial state (Def. 1), greatly simplifies the parser construction. For TN speci-
fications two approaches to parser construction exist: (A) eliminates star and
union (i.e., converts EBNF into BNF ) and applies the standard LR (1) con-
struction; (B) directly constructs the parser. In [3] a systematic transformation
from EBNF to BNF is used to obtain an ELR (1) parser that simulates the
classical Knuth’s one for BNF. It is generally agreed [16] that approach (B) is
superior, because transforming to BNF adds inefficiency and obscures the se-
mantic structure. Moreover we have seen in Sect. 4 that the size of the directly
produced parser is smaller. The only advantage of approach (A) is to leverage
on existing parser generators, e.g., Bison.

The major difficulty with approach (B) is to identify the left end of the re-
duction handle, since its length is unpredictable and possibly unbounded. A list
of proposed solutions is in the cited surveys. Some algorithms use a special shift
move, sometimes called stack-shift, to record into the stack the left end of the
handle when a new computation on a machine is started. But if the initial state
is reentered, then a conflict between stack-shift and normal shift is unavoidable,
and various complicated devices have been invented to arbitrate the conflict.
Some authors add read-back states to control how deep the parser should dig
into the stack [4,14], others (e.g., [17]) use counters for the same purpose, let
alone further proposed devices. Unfortunately it was shown in [8,11] that sev-
eral proposals do not precisely characterize the grammars they apply to, and
in certain cases they may fall into unexpected errors. Motivated by the flaws
of past attempts, paper [15] offers a characterization of the LR (k) property for
TN ’s. Although their definition is intended to ensure that the languages “can
be parsed from left to right with a look-ahead of k symbols”, the authors admit
that “the subject of efficient techniques for locating the left end of a handle is
beyond the scope of this paper”.

We mention a link (proved in [2]) with the classical top-down deterministic
ELL (1) TN ’s. These are a special case of ELR (1) TN ’s meeting two conditions:
there are no left-recursive derivations and every m-state base has at most one
item. The second condition rules out convergent transitions and conflicts. The
two conditions generalize the Beatty’s characterization [1] of LL (1) BNF gram-
mars. If an ELR (1) pilot meets these conditions, a few steps permit to transform
the shift-reduce parser into a predictive one.

After a long history of moderately successful attempts, our ELR (1) condition
and the naturally corresponding parser hopefully offer a definitive solution to this
long-standing problem. Our approach is more or equally general as any previous
proposal known to us, and is simple: it just adds the treatment of convergent
edges to the Knuth’s definition. The technical difficulties were understood since
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long, and we have combined and improved existing ideas into a practical and
demonstrably correct solution. In our teaching experience [6], the new TN parser
construction method economically unifies bottom-up and top-down approaches,
usually taught as independent methods. Moreover such a unification is promising
for building heterogeneous parsers [7] based on grammar partition [13]. For real
application a parser generation tool has to be developed, which we estimate to
be about as complex as the existing LR (1) tools.
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Abstract. This paper settles the optimality of sorting networks given in
The Art of Computer Programming vol. 3 more than 40 years ago. The
book lists efficient sorting networks with n ≤ 16 inputs. In this paper we
give general combinatorial arguments showing that if a sorting network
with a given depth exists then there exists one with a special form. We
then construct propositional formulas whose satisfiability is necessary for
the existence of such a network. Using a SAT solver we conclude that the
listed networks have optimal depth. For n ≤ 10 inputs where optimality
was known previously, our algorithm is four orders of magnitude faster
than those in prior work.

1 Introduction

In their celebrated result, Ajtai, Komlós and Szemerédi (AKS) [1], gave an opti-
mal oblivious sorting algorithm with O(n log n) comparisons in O(log n) parallel
steps. An oblivious sorting algorithm is one in which the order of comparisons is
fixed and depends only on the number of inputs but not their values. Compare
this with standard algorithms such as MergeSort or QuickSort where the order
of comparisons crucially depends on the input values.

A popular model of oblivious sorting algorithms are so-called sorting networks,
which specify a sequence of swap-comparisons on a set of inputs, and whose depth
models the number of parallel steps required. Even though the AKS network
has asymptotically optimal depth, it is infamous for the large constant hidden
in the big O bound; recursively constructed networks of depth O(log2 n) [2]
prove superior to the AKS network for all practical values of n. Small networks
for small numbers of inputs serve as base cases for these recursive methods.
However, constructing networks of optimal depth has proved extremely difficult
(e.g., [5,7]) and is an open problem even for very small number of inputs. We
address this problem in this paper.

Already in the fifties and sixties various constructions appeared for small
sorting networks on few inputs. In 1973 in The Art of Computer Programming
vol. 3 [4], Knuth listed the best sorting networks with n ≤ 16 inputs known at
the time. It was further shown in [3] that these networks have optimal depth for
n ≤ 8. No progress had been made on the problem until 1989 when Parberry [7]
showed that the networks listed in [4] are optimal for n = 9 and n = 10. The re-
sult was obtained by implementing an exhaustive search with pruning based on
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symmetries in the first two parallel steps in the sorting networks, and executing
the algorithm on a supercomputer (Cray-2). Despite the great increase in avail-
able computational power in the 24 years since, the algorithm would still not be
able to handle the case n = 11. Recently there were attempts [5] at solving the
case n = 11 but we are not aware of any successful one.

Forty years after the publication of the list of small sorting networks by
Knuth [4], we finally settle their optimality for the remaining cases n = 11
up to and including 16. We give general combinatorial arguments showing that
if a small-depth sorting network exists then there exists one with a special form.
We then construct propositional formulas whose satisfiability is necessary for the
existence of such a network. By checking the satisfiability of the formulas using
a SAT solver we conclude that no smaller networks than those listed exist.

We obtained all our results using an off-the-shelf SAT solver running on a
standard desktop computer. It is noteworthy that our algorithm required less
than a second to prove the optimality of networks with n ≤ 10 inputs whereas
the algorithm in [7] was estimated to take hundreds of hours on a supercomputer
and that in [5] took more than three weeks on a desktop computer.

2 Sorting Networks

A comparator network C with n channels and depth d is defined as a tuple
C = 〈L1, . . . , Ld〉 of layers L1, . . . , Ld. Each layer consists of comparators
〈i, j〉 for pairs of channels i < j. Every channel i is required to occur at most
once in each layer Lk, i.e., |{j | 〈i, j〉 ∈ Lk ∨ 〈j, i〉 ∈ Lk}| ≤ 1. A layer L is called
maximal if no more comparators can be added into L, i.e., |L| = �n2 �.

An input to a comparator network is a sequence of numbers applied to chan-
nels in the first layer. The numbers are propagated through the network; each
comparator 〈i, j〉 takes the values from channels i and j and outputs the smaller
value on channel i and the larger value on channel j. For an input sequence
x1, . . . , xn define the value V (k, i) of channel 1 ≤ i ≤ n at layer k = 0 (input) to
be V (0, i) = xi and at layer 1 ≤ k ≤ d to be:

V (k, i) =

⎧⎨⎩
min(V (k − 1, i), V (k − 1, j)) if 〈i, j〉 ∈ Lk,
max(V (k − 1, i), V (k − 1, j)) if 〈j, i〉 ∈ Lk,
V (k − 1, i) otherwise.

The output C(x) of C on x is the sequence 〈V (d, 1), V (d, 2), . . . , V (d, n)〉. See
Fig. 1 for an example of a network and its evaluation on an input.

Each comparator permutes the values on two channels and hence the output
of a comparator network is always a permutation of the input. A comparator
network is called a sorting network if the output C(x) is sorted (ascendingly)
for every possible input x ∈ Zn. We denote the set of all sorting networks with
n channels and depth d by S(n, d).

In this work, we are interested in finding the optimal-depth sorting networks
for small values of n. That is, given n, what is the least value of d, denoted by
V (n), such that S(n, d) is nonempty?
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Fig. 1. A comparator network (L1 = {〈1, 2〉, 〈3, 4〉}, L2 = {〈1, 3〉, 〈2, 4〉}, L3 = {〈2, 3〉})
with 4 channels, 5 comparators, and depth 3. The channels go from left to right, the
first channel is at the bottom, the dashed lines separate the layers. The network on
the left is evaluated on the input 〈0, 1, 0, 1〉 and the network on the right on 〈7, 5, 0, 2〉.
Diagram shows the values on channels after each layer.

Observe that the function V (n) is non-decreasing. Let C be a sorting network
with n channels, and construct a networkD from C by removing the last channel
and all comparators attached to it. Then D is a sorting network with n − 1
channels: its behaviour on any input is simulated by the first n − 1 channels
of C if the input to the last channel is set larger than all other inputs (C(x∞)
is D(x)∞, and C(x∞) is sorted so D(x) is also sorted).

2.1 Known Bounds on V (n)

Fig. 2 summarises the best bounds on V (n) for n ≤ 16 channels known before our
work. See [7] for lower bounds on V (9) and V (10), all other numbers appeared
already in [4]. The main contribution of this paper is that S(11, 7) and S(13, 8)
are empty. Thus we improve the lower bounds for n = 11, 12 and 13 ≤ n ≤ 16
to 8 and 9, respectively, thereby matching the respective upper bounds.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Upper bound 0 1 3 3 5 5 6 6 7 7 8 8 9 9 9 9

Lower bound 0 1 3 3 5 5 6 6 7 7 7* 7* 7* 7* 7* 7*

Fig. 2. Table summarising the best lower and upper bounds known before our work.
We improve the starred lower bounds to match the corresponding upper bound.

One can think of a layer of a comparator network as a matching on n ele-
ments: a comparator joins two distinct elements. The number of matchings on n
elements grows exponentially in n. (See Fig. 3 for values for n ≤ 13.) In partic-
ular, there are 35696 matchings on 11 elements, so to establish the lower bound
V (11) ≥ 8 we have to show that none of the 356967 ≥ 1031 comparator networks
with 11 channels and depth 7 is a sorting one. Similarly, to establish V (13) ≥ 9
we have to consider 5685048 ≥ 1046 candidate networks. These numbers imme-
diately make any exhaustive search approach infeasible. In the next section we
present techniques to reduce the search space of possible sorting networks, and
in Section 4 we show how to explore this space using a SAT solver.
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3 Search Space Reduction

In the previous section we showed that the number of comparator networks grows
very quickly. In this section we study general properties of sorting networks with
arbitrary numbers of channels and depth, and we show that if S(n, d) is non-
empty then it contains a sorting network of a particular form, thus restricting
the set of possible candidate networks. For example, for n = 13 this restricts the
set of 5685042 ≥ 3 · 1011 possible first-two layers to only 212 candidates.

Our arguments build upon and extend those from [7], and are based on four
technical lemmas given in the following subsections. We make use of the following
notation. The set of all layers on n channels is denoted as Gn . For two networks
C = 〈L1, . . . , Lp〉 and D = 〈M1, . . . ,Mq〉 with the same number of channels, the
composition C �D of C andD is the network 〈L1, . . . , Lp,M1, . . . ,Mq〉. That is,
we first apply C and then D; for any input x ∈ Bn we have (C �D)(x) = D(C(x)).
A prefix of a network C is a network P such that C = P � Q for some network
Q. If L is a single layer, we abuse the notation, treat L as a comparator network
of depth 1, and write L(x) for the application of the layer L on input x.

3.1 A Sufficient Sorting Condition

Before we even start looking for sorting networks it seems necessary to check
infinitely many inputs (every x ∈ Zn) just to determine whether a comparator
network is a sorting one. However, a standard result restricts the set of sufficient
inputs to the Boolean ones. Denote B = {0, 1}.

Lemma 1 ([4]). Let C be a comparator network. Then C is a sorting network
if and only if C sorts every Boolean input (every x ∈ Bn).

3.2 Output-Minimal Networks

When looking for a sorting network C = 〈L1, . . . , Ld〉, we can assume without
loss of generality that the first layer L1 is maximal, since by adding comparators
to the first layer we can only restrict the set of its possible outputs. We can-
not assume that all layers are maximal, but we can assume that the individual
prefixes are maximally sorting in the following sense.

By outputs(C) = {C(x) | x ∈ Bn} we denote the set of all possible outputs
of a comparator network C on Boolean inputs. The following lemma states that
it suffices to consider prefixes P with minimal outputs(P ).

Lemma 2. Let C = P �S be a sorting network of depth d and Q be a comparator
network such that depth(P ) = depth(Q) and outputs(Q) ⊆ outputs(P ). Then
Q � S is a sorting network of depth d.

Proof. Since depth(P ) = depth(Q) we have depth(Q � S) = depth(P � S) = d.
Let x ∈ Bn be an arbitrary input. Then Q(x) ∈ outputs(Q) ⊆ outputs(P ).

Hence, there is y ∈ Bn such that Q(x) = P (y). Thus, (Q � S)(x) = S(Q(x)) =
S(P (y)) = (P � S)(y) = C(y), which is sorted since C is a sorting network. �
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3.3 Generalised Sorting Networks and Symmetry

We further restrict the set of candidate sorting networks by exploiting their sym-
metry. To facilitate such arguments, we introduce so-called generalised compara-
tor networks [4] where we lift the condition that the min-channel of a comparator
is the one with a smaller index.

Formally, a generalised comparator network C with n channels and depth
d is a tuple C = 〈L1, . . . , Ld〉 whose layers L1, . . . , Ld consists of comparators
〈i, j〉 for channels i �= j, such that each channel occurs at most once in each layer.
A comparator 〈i, j〉 is called a min-max comparator if i < j and a max-min
comparator otherwise. Channel i receives the minimum and channel j receives
the maximum of the values on channels i and j.

A generalised comparator network can move smaller values to the channel
with larger index; we adapt the definition of a sorting network to reflect this.
A generalised comparator network C is a generalised sorting network if
there exists a permutation πC such that for every x ∈ Bn the value of C(x)
is sorted after applying πC . That is, if C(x) = (y1, . . . , yn) then we require
(yπC(1), . . . , yπC(n)) to be sorted. It is well known [6,4] that a generalised sorting
network can always be untangled into an “ordinary” sorting network of the same
dimensions. Furthermore, this operation preserves the “ordinary” prefix:

Lemma 3 ([6,4]). If G is a generalised sorting network of depth d then there
exist a sorting network C of depth d. Furthermore, if G = P � H where P is a
comparator network then C = P � I where I is a comparator network.

Let π be a permutation on n elements. For a comparator 〈i, j〉 we define the com-
parator π(〈i, j〉) = 〈π(i), π(j)〉, and we extend the action of π to layers and net-
works: π(L) = {π(C1), . . . , π(Ck)} and π(C) = 〈π(L1), . . . , π(Ld)〉. Intuitively,
applying π to a comparator network is equivalent to permuting the channels
according to π; possibly flipping min-max and max-min comparators. Since a
generalised sorting network sorts all inputs up to a fixed permutation (πC) of
the output, so do its permutations π(C) (up to the permutation πC ◦ π−1).

Lemma 4 ([7]). Let C be a generalised sorting network with n channels and π
be any permutation on n elements. Then π(C) is a generalised sorting network.

Lemmas 1 and 2 also hold for generalised comparator networks.

3.4 First Layer

We showed in Section 3.2 that if there is a sorting network in S(n, d), then there
is one whose first layer is maximal. Now we show that for any maximal layer L,
there exists a sorting network in S(n, d) whose first layer is L.

Lemma 5 ([7]). Let L be a maximal layer on n inputs. If there is a sorting
network in S(n, d) there is a sorting network in S(n, d) whose first layer is L.
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Proof. Let C = L1 �N be a sorting network with L1 its first layer. By Section 3.2,
if L+

1 ⊇ L1 is a maximal layer, then C+ = L+
1 �N is also a sorting network. Since

L+
1 and L are both maximal, there is a permutation π such that π(L+

1 ) = L.
Then, π(C+) is a generalised sorting network by Lemma 4. Now, π(C+) =
π(L+

1 ) �π(N) = L �π(N), and by Lemma 3 there is a comparator network I such
that L � I is a sorting network and depth(L � I) = depth(C+) = depth(C). �
Lemma 5 allows us to consider only networks with a given maximal first layer.
For networks on n inputs we fix the first layer to

Fn = {〈i, 0n2 1+ i〉 | 1 ≤ i ≤ �n2 �}.

3.5 Second Layer

Next we reduce the possibilities for the second layer1, not to a single candidate
but to a small set of candidate second layers. For n = 13 we arrive at 212
candidates out of the possible 568504 second layers.

As for the first layer, we can consider second layers modulo permutations of
channels. However, we must take into account that the first layer is already fixed
to Fn, and only consider permutations that leave the first layer intact.

Lemma 6 ([7]). Let π be a permutation such that π(Fn) = Fn and let L be a
layer on n channels such that π(L) is a layer. If S(n, d) contains a network with
first layer Fn and second layer L, it also contains a network with first layer Fn

and second layer π(L).

Denote by Hn the group of permutations on n elements that fix Fn. Two layers
L and L′ are equivalent under Hn if L′ = π(L) for some π ∈ Hn. For any set S of
layers, denote by R(S) a set of (lexicographically smallest) representatives of S
equivalent under Hn. Lemma 6 then implies that it suffices to consider networks
with second layers from R(Gn).

Recall from Lemma 2 that it is enough to consider prefixes of comparator
networks with minimal sets of possible outputs. We apply a symmetry argument
similar to Lemma 6 to the sets of possible outputs, and observe that it extends
to all permutations on n channels. In particular we show that it is enough to
consider second layers whose sets of possible outputs are minimal up to any
permutation of channels.

Lemma 7. Let La and Lb be layers on n channels such that outputs(Fn �Lb) ⊆
π(outputs(Fn �La)) for some permutation π on n channels. If S(n, d) contains a
network with first layer Fn and second layer La, it also contains a network with
first layer Fn and second layer Lb.

Proof. Let C = Fn � La � N be a sorting network of depth d. Then π(C) =
π(Fn � La) � π(N) is a generalised sorting network. Since outputs(Fn � Lb) ⊆
π(outputs(Fn �La)) = outputs(π(Fn �La)), Lemma 2 implies that Fn �Lb �π(N) is
also a generalised sorting network. Then, by Lemma 3, there exists a comparator
network I such that Fn � Lb � I is a sorting network of depth d. �
1 We assume that n > 2 so that the first layer Fn is not yet a sorting network.
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If outputs(Fn � Lb) ⊆ π(outputs(Fn � La)) for some permutation π, we write
Lb ≤po La where po stands for permuted outputs. For a set S of layers, denote
by Rpo(S) a minimal set of representatives from S such that for each s ∈ S,
there is a representative r ∈ Rpo(S) such that r ≤po s. Lemma 7 implies that
it suffices to consider second layers from Rpo(Gn). Fig. 3 compares numbers of
candidate layers |Rpo(Gn)| and |R(Gn)| with |Gn| for various n.

Computing the Representatives Rpo(Gn). Although we can speed up the
search for sorting networks dramatically by only considering second layers from
Rpo(Gn) instead of Gn, computing Rpo(Gn) is a non-trivial task even for n = 13.

Just establishing the inequality La ≥po Lb for two layers La and Lb involves
the comparison of sets outputs(Fn �Lb) and π(outputs(Fn �La)), both of size up
to 2n, for all permutations π. A naive algorithm comparing all sets of outputs for
all pairs of layers thus takes time O(|Gn|2 · n! · 2n), and is infeasible for n = 13.
We present three techniques to speed up the computation of Rpo(Gn).

First we note that in the second layer it is useless to repeat a comparator from
the first layer, and in most other cases adding a comparator to the second layer
decreases the set of its possible outputs. Call a layer L saturated if it contains
no comparator from Fn, and its unused channels are either all min-channels,
or all max-channels of comparators from Fn. Let Sn be the set of all saturated
layers on n channels.

Lemma 8. Let n be odd and let L be a layer on n channels. There exists a
saturated layer S such that S ≤po L.

Proof. Let L be any layer on n channels. First construct L0 by removing from L
all comparators that also appear in Fn. For any input, L and L0 give the same
output, so outputs(Fn � L) = outputs(Fn � L0). Next, suppose that L0 is not
saturated. Then one of the following holds.
– We can add a comparator between a channel i ≤ �n2 �, which is a min-channel

in Fn, and a channel j ≥ 0n2 1 + 1, which is a max-channel in Fn such that
〈i, j〉 is not a comparator from Fn. (If n is odd and L0 is not saturated, there
are at least 3 unused channels, and we can always choose a pair which is not
in Fn, not a pair of min-channels, and not a pair of max-channels from Fn.)
Denote L1 = L0 ∪ 〈i, j〉 and consider the output of Fn � L1 on some input
x ∈ Bn. We will show that (Fn �L1)(x) can also arise as the output of Fn �L0.
If (Fn � L1)(x) �= (Fn � L0)(x), then the output of (Fn � L0)(x) must be
1 on channel i and 0 on channel j, and the added comparator 〈i, j〉 flips
these values in the output of Fn � L1. Since channel i is the min-channel of
the comparator 〈i, i+ 0n2 1〉 in Fn, both channels i and i + 0n2 1 must carry
the value 1 in the input x. Similarly, since channel j is the max-channel
of the comparator 〈j − 0n2 1, j〉 of Fn, both channels j and j − 0n2 1 must
carry the value 0 in the input x. By changing the value of channel i to 0
and the value of channel j to 1, these changes propagate to the output in
Fn �L0, and yield the same output as that of Fn �L1 on x. It follows that of
outputs(Fn � L1) ⊆ outputs(Fn � L0).



Optimal Sorting Networks 243

– We can add a comparator between some channel i and channel j = 0n2 1,
which is unused in Fn, obtaining a layer L1. Similarly as in the previous case
we can prove that outputs(Fn � L1) ⊆ outputs(Fn � L0).

By induction, we obtain layers L1, L2, . . . , until some Lk is saturated. Then
outputs(Fn � Lk) ⊆ outputs(Fn � L0) = outputs(Fn � L), so Lk ≤po L. �

Second we note that if two networks are the same up to a permutation π, then
their sets of outputs are also the same up to π. In particular, L ≤po π(L) for any
layer L and any π ∈ Hn. This observation and the above lemma together imply
that it suffices to consider representatives of saturated layers up to permutations
from Hn before computing the representatives with respect to ≤po.

Lemma 9. For odd n, we have Rpo(Gn) = Rpo(R(Sn)).

Checking whether a layer is saturated only takes time O(n2) and computing
R(·) involves checking only �n2 �! permutations compared to all n! for Rpo(·).
Instead of computing Rpo(Gn) directly, we first compute R(Sn) and only on
this much smaller set we compute the most expensive reduction operation Rpo.
Figure 3 summarises the number of layers, saturated layers, representatives and
representatives modulo rotation for different n.

Finally we show how to compute representatives Rpo. Recall that Lb ≤po La

iff outputs(Fn � Lb) ⊆ π(outputs(Fn � La)) for some permutation π. A necessary
condition for outputs(Fn � Lb) ⊆ π(outputs(Fn � La)) is that the number of
outputs of (Fn �La) where channel i is set to 1 is at least the number of outputs of
(Fn�Lb) where channel π(i) is set to 1. We obtain a similar necessary condition by
considering only outputs with value 1 on exactly k channels. For each i = 1, . . . , n
and each k = 0, . . . , n we obtain a necessary condition on π for outputs(Fn �Lb) ⊆
π(outputs(Fn �La)) to hold. These conditions are fast to check and significantly
prune the space of possible permutations π, thereby making the check Lb ≤po La

feasible for any two layers Lb and La. For n = 13 we were able to compute R(Sn)
in 2 seconds and subsequently Rpo(R(Sn)) in 32 minutes.

n 3 4 5 6 7 8 9 10 11 12 13

|Gn| 4 10 26 76 232 764 2620 9496 35696 140152 568504

|Sn| 2 7 10 51 74 513 700 6345 8174 93255 113008

|R(Gn)| 4 8 18 28 74 101 295 350 1134 1236 4288

|R(Sn)| 2 - 8 - 29 - 100 - 341 - 1155

|Rpo(Gn)| 2 2 6 6 14 15 37 27 88 70 212

Fig. 3. Number of candidates for second layer on n channels. Candidate sets are:
Gn = set of all layers, Sn = set of saturated layers, R(S) = set of representatives of
S under permutations fixing the first layer, Rpo(S) = set of representatives of S under
permuted outputs. Note that R(Sn) is used to compute Rpo(Gn) only for odd n.
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4 Propositional Encoding of Sorting Networks

In the previous section we showed how to restrict the set of possible first two
layers of sorting networks. In this section we describe how to reduce the existence
of such a sorting network to the satisfiability of a set of propositional formulas.
We then employ the power of modern SAT solvers to determine the satisfiability
of the obtained formulas.

Recall that to check whether a comparator network is a sorting one it suffices
to consider only its outputs on Boolean inputs (Lemma 1). Now, for Boolean
values x, y ∈ B a min-max comparator reduces to: min(x, y) = x ∧ y and
max(x, y) = x ∨ y. The authors of [5] observed that a comparator network of a
given size can be represented by a propositional formula, and the existence of
a sorting network in S(n, d) is equivalent to its satisfiability. We improve upon
the work of [5] and give a more natural translation to propositional formulas.

We represent a comparator network with n channels and depth d by Boolean
variables Cd

n = {gki,j} for 1 ≤ i < j ≤ n and 1 ≤ k ≤ d. The variable gki,j
indicates whether the comparator 〈i, j〉 occurs in layer k. We then define

onceki (C
d
n) =

∧
1≤i�=j �=l≤n(¬gkmin(i,j),max(i,j) ∨ ¬gkmin(i,l),max(i,l)) and

valid(C) =
∧

1≤k≤d, 1≤i≤n onceki (C
d
n),

where onceki (C
d
n) enforces that channel i is used at most once in layer k, and

valid(Cd
n) enforces that this constraint holds for each channel in every layer, i.e.,

that C represents a valid comparator network.
Let x = 〈x1, . . . , xn〉 ∈ Bn be a Boolean input and y = 〈y1, . . . , yn〉 be the

sequence obtained by sorting x. To evaluate the network Cd
n on an input x we

introduce variables vki for 0 ≤ k ≤ d and 1 ≤ i ≤ n denoting V (k, i)–the value
of channel i after layer k. The correct value of vki is enforced by updateki (C

d
n)

which implements the recursive formula for V (k, i) from Section 2:

updateki (C
d
n) = (¬usedki (C

d
n) =⇒ (vki ↔ vk−1

i )) ∧∧
1≤j<i

[
gkj,i =⇒ (vki ↔ (vk−1

j ∨ vk−1
i ))

]
∧∧

i<j≤n

[
gki,j =⇒ (vki ↔ (vk−1

j ∧ vk−1
i ))

]
and

usedki (C
d
n) =

∨
j<i g

k
j,i ∨

∨
i<j g

k
i,j ,

where the formula usedki (C
d
n) denotes whether channel i is used in layer k. We

can express the predicate “Cd
n(x) is sorted” as:

sorts(Cd
n, x) =

∧
1≤i≤n(v

0
i ↔ xi) ∧

∧
1≤k≤d,
1≤i≤n

updateki (C
d
n) ∧

∧
1≤i≤n(v

d
i ↔ yi)

where the first term ensures that we start with the input x, the second term
that the vki update appropriately, and the last term that the output is sorted.

Lemma 10. A sorting network with n channels and depth d exists if and only
if valid(Cd

n) ∧
∧

x∈Bn sorts(Cd
n, x) is satisfiable.
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Further, for inputs of the form x = 0py1q, we hard-wire the variables vki in the
formula sorts(Cd

n, x) to false for 1 ≤ i ≤ p and to true for n− q < i ≤ n. These
values are implied by the updateki (C

d
n) formulas (see also Example 11). However,

we find that hard-wiring these values speeds up the SAT solver approximately
by a factor of 4 for n ≤ 12 as the SAT solver is not able to discover them directly
by unit propagation.

In Section 3 we showed that it suffices to consider sorting networks with first
layer Fn and second layer S ∈ Rpo(Gn). We can incorporate such restriction
into the propositional formula easily. For the first layer, let T = outputs(Fn)
be the set of possible outputs, then a sorting network with n channels, depth
d, and first layer Fn exists if and only if valid(Cd−1

n ) ∧
∧

x∈T sorts(Cd−1
n , x) is

satisfiable. A similar adaptation works for fixing the first two layers; we produce
one formula for each S ∈ Rpo(Gn) and check the satisfiability of each of them.

Instantiating these SAT formulas and checking their satisfiability was suffi-
cient to establish V (n) for n ≤ 12 in less than 2 minutes in each case (see Fig. 4).
A further optimisation substantially reduced the time to establish V (13).

4.1 Existence of Subnetworks: A Necessary Condition

Our final optimisation in showing the nonexistence of sorting network is restrict-
ing attention to inputs of the form 0py1q. This optimisation is based on the idea
that if a comparator network sorts its input, its subnetworks must also sort their
respective subinputs. Consider the following example.

Example 11. Consider the evaluation of a sorting network C on input 0x where
x ∈ Bn−1. Since C consists of min-max comparators, the value on the first
channel is always 0. Hence, also the output of the first channel is 0. (See also
Fig. 1.) Let D be the comparator network obtained from C by removing the
first channel and all comparators attached to it. Then C(0x) = 0D(x) for all x.
Requiring that C(0x) is sorted for all x ∈ Bn−1 is the same as requiring that D
is a sorting network. A similar argument can be made for inputs of the form y1
for y ∈ Bn−1, and in general for 0py1q for y ∈ Bn−p−q.

Let T p,q = {t = 0px1q | t ∈ T, x ∈ Bn−p−q} ⊆ T be the set of all inputs
from T beginning with p zeros and ending with q ones. Intuitively, evaluating
a network C on inputs from T p,q exercises only the subnetwork obtained by
removing first p and last q channels from C.

For subnetwork size m < n let Tm =
⋃

p+q=n−m T p,q. Then Tm ⊆ T and so if
network C sorts all inputs from T then C sorts all inputs from Tm. Therefore,
a necessary condition for the existence of a network on n channels and depth d
sorting inputs T is the satisfiability of the formula

subnets(n, d,m, T ) = valid(Cd
n) ∧

∧
x∈Tm

sorts(Cd
n, x).

Empirically, we were always able to find m with m < n such that the resulting
formula subnets(n, d,m, T ) was unsatisfiable. Furthermore, the SAT solver es-
tablished unsatisfiability of this formula significantly faster than for the original
formula (see Fig. 4).
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5 Experimental Results

In this section we present an experimental evaluation of the described tech-
niques, and show how we used them to obtain bounds on V (n) for n ≤ 16. We
instantiated propositional formulas encoding the existence of a sorting network
for various values of n and d and various stages of optimisation as presented
in the previous sections.2 We checked their satisfiability using an off-the-shelf
propositional SAT solver3 running on a standard desktop computer4. The times
taken by the SAT solver are reported in Fig. 4.

n 5 6 7 8 9 10 11 12 13

d 4 4 5 5 6 6 7 7 8

SAT 0.02s 0.05s 1.79s 1.93s 864s 1738s > 105s > 105s -

Fix-1 0s 0s 0s 0.02s 0.5s 0.5s 314s 452s -

Fix-1 + subnet 0s 0s 0s 0.01s 0.27s 0.26s 112s 143s -

Fix-2 0s 0s 0.03s 0.07s 0.93s 1.13s 63s 87s 22h23m

Fix-2 + subnet 0s 0s 0.02s 0.05s 0.77s 0.78s 49s 48s 13h1m

d 5 5 6 6 7 7 8 8 9

SAT 0s 0.04s 0.13s 1.12s 59.7s 949s 1294s > 105s -

Fix-1 0s 0s 0s 0.01s 0.20s 3.6s 24s 172s 1h40m

Fig. 4. Time required by a SAT solver to solve particular instances of n and d using
different variants of propositional formulas: the basic formula from Lemma 10 (SAT), a
formula fixing the first layer to Fn (Fix-1), formulas fixing the first two layers to Fn �S
for each S ∈ Rpo(Gn) (Fix-2), and the subnets(n, d,m) versions thereof for appropriate
values of m (subnet). The top series corresponds to d = V (n)−1, the largest depth for
which no sorting network exists and the formulas are unsatisfiable, the bottom series
corresponds to d = V (n) and the formulas are satisfiable. A missing value indicates
that the SAT solver ran out of available memory.

Our computations confirm the known values of V (n) for n ≤ 10. Noteworthy
is the case n = 9 where we establish the nonexistence of a sorting network of
depth 6 in less than a second. The specially crafted and low-level optimised
program of [7] was estimated to take 200 hours on the supercomputer Cray-2.
Recent work [5] also expressed the existence of such a network as a propositional
formula, but their technique by compilation from a higher-level language yields
an unnecessarily complicated formula whose SAT checking took over 16 hours.

After 5 minutes of computation when fixing the first layer (2 minutes with
the subnetwork optimisation and 1 minute with fixed second layers), we found
that S(11, 7) is empty. Since V (11), V (12) ≤ 8 (see Fig. 2), we have:

Theorem 12. The optimal depth of a sorting network with n = 11 or 12 chan-
nels is eight.

2 Code is available at http://www.cs.ox.ac.uk/people/daniel.bundala/networks/
3 MiniSAT version 2.2.0
4 Linux, CPU: 2.83GHz, Memory: 3.7GiB. All reported times are using a single CPU.
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Note from Fig. 4 that checking all Fix-2 formulas for all candidate first-two
layers is already faster than checking the single Fix-1 formula; despite the draw-
back that the SAT solver is restarted for each different second layer. Furthermore,
checking the Fix-1 formula requires much more memory, and for the case n = 13,
the SAT solver consumed all available memory (4GB) before finishing. Checking
a Fix-2 formula is well within available memory, and different instances for dif-
ferent second layers can be distributed to different computers. This also allows
us to start with a small subnetwork size in the subnetwork optimisation and
increase it only in instances (second layers) where it yields a satisfiable formula.

For n = 13 for each of the 212 depth-two prefixes F13 � L we generated a
formula subnets(13, 6, 10, T ) with subnetwork size m = 10 and determined that
all of them are unsatisfiable in cumulative computation time of 13 hours. Hence,
none of the 212 candidate second layers can be extended to a sorting network.

Theorem 13. The optimal depth of a sorting network with n = 13, 14, 15 or 16
channels is nine.

Even though we were able to compute lower bounds for 11 ≤ n ≤ 16, the case
n = 17 is beyond the scope of current techniques. We leave the depth of the
optimal sorting network on 17 channels as the main open problem of this paper.

Acknowledgments. We would like to thank Donald E. Knuth for valuable
comments on an earlier draft of this paper which led to strengthening of Lem-
ma 7, reformulation of the subnets criterion, and inclusion of the hard-wiring
optimisation. He also observed that a top-to-bottom reflection of a sorting net-
work is a sorting network, reducing the set of candidate second layers to only
118 in the case n = 13.
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Abstract. In the context of real-time systems, Metric Temporal Logic
(MTL) and Timed Propositional Temporal Logic (TPTL) are prominent
and widely used extensions of Linear Temporal Logic. In this paper, we
examine the possibility of using MTL and TPTL to specify properties
about classes of non-monotonic data languages over the natural num-
bers. Words in this class may model the behaviour of, e.g., one-counter
machines. We proved, however, that the satisfiability problem for many
reasonably expressive fragments of MTL and TPTL is undecidable, and
thus the use of these logics is rather limited. On the positive side we prove
that satisfiability for the existential fragment of TPTL is NP-complete.

1 Introduction

Recently, verification and analysis of sets of data words have gained a lot of
interest [6, 18, 11, 10, 3–5]. A data word is a sequence over Σ ×D, where Σ is
a finite set of labels, and D is a (potentially infinite) set of data values. In this
paper, we consider data words as behavioural models of one-counter machines.
In this regard, we let the data domain be the set of natural numbers. Note that
the sequence of data values of a word may be non-monotonic.

For reasoning about data words, one may use extensions of linear temporal
logic (LTL). One of these is FreezeLTL, which extends LTL with a freeze quantifier
that stores the current data value in a register variable. The registers can be used
to test for equality of data values at different positions of a data word. In spite
of this limited access to data values, the satisfiability problem for FreezeLTL is
undecidable [10]. However, over finite data words, and if the logic is restricted to
a single register, then the satisfiability problem is decidable, albeit not primitive
recursive [10]. This lower bound has been confirmed for satisfiability for the frag-
ment of FreezeLTL where the only temporal modality is the finally modality [12].

Originally, the freeze quantifier was introduced in Timed Propositional Tem-
poral Logic (TPTL, for short) [2]. With TPTL, in addition to FreezeLTL, one can
compare data values of a data word using linear inequations of the form, e.g.,
x−y ≤ c. Another widely used logic in the context of real-time systems is Metric
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Temporal Logic (MTL, for short). MTL extends LTL by constraining the tempo-
ral operators with intervals of the non-negative reals. Both logics, however, have
not gained much attention in the specification of non-monotonic data words,
albeit they can express many interesting properties.

FreezeLTL is a fragment of TPTL, and thus it is clear that one cannot find bet-
ter decidability results for TPTL than for FreezeLTL. In fact it is well known that
the satisfiability problem for TPTL over non-monotonic data words is undecid-
able [2]. In the context of monotonic data words over the natural numbers, MTL
and TPTL are equally expressive, and the satisfiability problem for both logics is
EXPSPACE-complete [1, 2]. However, over timed words, TPTL has been proved
strictly more expressive than MTL [7], and while satisfiability for both logics is
undecidable over infinite timed words [1, 15], there is a difference in the finite
words case: TPTL has an undecidable satisfiability problem [1], while satisfiabil-
ity for MTL is decidable (but not primitive recursive) [16]. We recently proved
in [8] that also for non-monotonic data words over the natural numbers TPTL is
strictly more expressive than MTL, and indeed, there are properties which can
be expressed in FreezeLTL, but cannot be expressed in MTL. Hence there was
the possibility that MTL would have a better complexity for the satisfiability
problem.

However, as a main result we prove that the satisfiability problem for MTL
over non-monotonic finite data words is undecidable. This is even the case if we
do not allow for propositional variables.

We then investigate the unary fragments of MTL and TPTL where the only
allowed temporal modalities are unary. We show that the satisfiability problem
over finite data words is undecidable for both logics, and for TPTL it is unde-
cidable even if we restrict the formulae to contain at most one register variable
and no next modality. This is opposed to the decidability result for FreezeLTL
with one register variable evaluated over finite data words [10].

After that we consider another syntactic restriction of the logics, namely we
restrict the negation operator to propositional variables, which results in what
we call the positive fragments of our logics. This excludes the globally modality,
which is used in most of the undecidability proofs. However, we prove that
this restriction does not lead to any changes in the results for the satisfiability
problem compared to the full logics.

Last but not least, we prove that for the unary positive fragment (called
existential fragment in [7]), the satisfiability problem for TPTL is NP-complete.

The main insight of this paper is that both MTL and TPTL have a very lim-
ited use in specifying properties over non-monotonic data languages. This adds
an important piece to complete the picture about decidability of satisfiability
problems for data-relevant extensions of temporal logics.

2 Preliminaries

We use Z and N to denote the set of integers and the non-negative integers,
respectively. We let P be a finite set of propositional variables.
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A data word over P is a finite or infinite sequence (P0, d0)(P1, d1) . . . of pairs
in 2P × N. We use (2P × N)∗ and (2P × N)ω, respectively, to denote the set of
finite and infinite, respectively, data words over P. The length of a data word w
is denoted by |w|, where we set |w| =∞ if w is an infinite data word.

A two-counter machine M is a finite sequence (Ij)nj=1 of instructions oper-
ating on two counters denoted by C1 and C2, where Ij is one of the following
instructions (with i ∈ {1, 2} and j, k,m ∈ {1, ..., n}):

increment Ij :Ci ··= Ci + 1; go to Ik
zero test/decrement Ij : if Ci = 0 then go to Ik else Ci ··=Ci − 1; go to Im
halt Ij : halt

A configuration of a two-counter machine M is a triple γ = (J, c, d) ∈
{I1, ..., In}×N×N, where J indicates the current instruction, and c and d are the
current values of the counters C1 and C2, respectively. A computation ofM is a
finite or infinite sequence (γi)i≥0 of configurations, such that γ0 = (I1, 0, 0) and
γi+1 is the result of executing the instruction Ii on γi for each i ≥ 0. Without
loss of generality, we assume that In is the only instruction of the form halt. The
halting problem for two-counter machines asks, given a two-counter machineM,
whether the (unique) computation ofM reaches a configuration with instruction
In, i.e., the halting instruction. This problem is Σ0

1 -complete [14]. The recurrent
state problem for two-counter machines asks, given a two-counter machine M,
whether the (unique) computation of M visits instruction I1 infinitely often.
This problem is Σ1

1 -complete [2]. We will use reductions of these problems to
show lower bounds of the satisfiability problem for some fragments of MTL and
TPTL .

3 Extensions of Linear Temporal Logic

3.1 Metric Temporal Logic

The set of formulae of MTL is built up from P by boolean connectives and a
constraining version of the until modality:

ϕ ····= p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1UIϕ2

where p ∈ P and I ⊆ Z is an interval with endpoints in Z ∪ {−∞,+∞}. We
use pseudo-arithmetic expressions to denote intervals, like, e.g., ≥ 1 to denote
[1,∞). If I = Z, then we may omit the annotation I on UI .

Formulae in MTL are interpreted over data words. Let w = (P0, d0)(P1, d1) . . .
be a data word, and let i ≤ |w|. We define the satisfaction relation for MTL,
denoted by |=MTL, inductively as follows:

(w, i) |=MTL p⇔ p ∈ Pi, (w, i) |=MTL ¬ϕ⇔ (w, i) �|=MTL ϕ,

(w, i) |=MTL ϕ1 ∧ ϕ2 ⇔ (w, i) |=MTL ϕ1 and (w, i) |=MTL ϕ2,

(w, i) |=MTL ϕ1UIϕ2 ⇔ ∃j.i < j ≤ |w| : (w, j) |=MTL ϕ2 and dj − di ∈ I, and

∀k.i < k < j : (w, k) |=MTL ϕ1.
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We say that a data word satisfies an MTL formula ϕ, written w |=MTL ϕ, if
(w, 0) |=MTL ϕ. We use the following syntactical abbreviations: ϕ1 ∨ ϕ2 ··=
¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 → ϕ2 ··= ¬ϕ1 ∨ ϕ2, true ··= p ∨ ¬p, false ··= ¬true,
XIϕ ··= falseUIϕ, FIϕ ··= trueUIϕ, GIϕ ··= ¬FI¬ϕ. Note that the use of the
strict semantics for the until modality is essential to derive the next modality.

We define the length of a formula ψ, denoted by |ψ|, as the number of symbols
occurring in ψ where all integer constants in ψ are given in a binary encoding.

In the following, we define some fragments of MTL. A unaryMTL formula is
built from propositional variables, using the boolean connectives, and the unary
temporal modalities X and F. We use positiveMTL to denote the subset of MTL
where negation is restricted to propositional variables. A posUnaryMTL formula
is a positiveMTL formula where the only allowed modalities are the F and X
modalities.

3.2 Timed Propositional Temporal Logic

Next we define formulae of TPTL. For this, let X be a countable set of register
variables. Formulae in TPTL are defined by the following grammar:

ϕ ····= p | x ∼ c | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1Uϕ2 | x.ϕ

where p ∈ P, x ∈ X , c ∈ Z, and ∼∈ {<,≤,=,≥, >}.
Formulae in TPTL are interpreted over data words. A register valuation ν is

a function from X to N. Let w = (P0, d0)(P1, d1) . . . be a data word, let ν be
a register valuation, and let i ∈ N. The satisfaction relation for TPTL, denoted
by |=TPTL, is inductively defined in a similar way as for MTL; we only give the
definitions for the new formulae:

(w, i, ν) |=TPTL ϕ1Uϕ2 ⇔ ∃i.i < j ≤ |w|.(w, j, ν) |=TPTL ϕ2,

and ∀k.i<k<j.(w, k, ν) |=TPTL ϕ1,

(w, i, ν) |=TPTL x ∼ c⇔ di − ν(x) ∼ c,

(w, i, ν) |=TPTL x.ϕ⇔ (w, ν[x �→ di], i) |=TPTL ϕ.

Here, ν[x �→ di] is the valuation that agrees with ν on all y ∈ X\{x}, and maps x
to di. We say that a data word w satisfies a TPTL formula ϕ, written w |=TPTL ϕ,
if (w, 0, 0̄) |=TPTL ϕ, where 0̄ denotes the valuation that maps all variables to the
initial data value of the word, i.e. to d0.

We use the same syntactical abbreviations as forMTL. The length of TPTL for-
mulae is also defined as for MTL formulae. We define the fragments unaryTPTL,
positiveTPTL, and posUnaryTPTL like the corresponding fragments in MTL. Ad-
ditionally, we define FreezeLTL to be the subset of TPTL formulae ϕ where ∼ c
is of the form = 0 whenever ϕ contains the subformula x ∼ c. Given n ≥ 0 and
a TPTL fragment L, we use Ln to denote the subset of L that corresponds to
the set of L formulae that use at most n different register variables.
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4 The Satisfiability Problem

In this paper, we are interested in infinitary and finitary versions of the satisfi-
ability problem (SAT, for short): given a formula ϕ in a logic L, is there some
infinite (finite, respectively) data word w with w |=L ϕ?

In the table below, we summarize the complexity results for the satisfiability
problem for different fragments of TPTL and MTL. The results shaded in grey
are new and presented in this paper.

full unary unary without X positive posUnary

F
in
it
a
ry MTL Σ0

1 -cpl. Σ0
1-cpl. ? Σ0

1 -cpl. NP-cpl.

TPTL1 Σ0
1 -cpl. Σ0

1-cpl. Σ0
1 -cpl. Σ0

1 -cpl. NP-cpl.

FreezeLTL1 not pr. rec. [10] not pr. rec. [10] not pr. rec. [12] not pr. rec. NP-cpl.

In
fi
n
it
a
ry

MTL Σ1
1 -cpl. Σ1

1-cpl. ? Σ0
1 -cpl. NP-cpl.

TPTL1 Σ1
1 -cpl. [2] Σ1

1-cpl. Σ1
1 -cpl. Σ0

1 -cpl. NP-cpl.

FreezeLTL1 Π0
1 -cpl. [10] Π0

1 -cpl. [10] Π0
1 -cpl. [12] not pr. rec. NP-cpl.

5 Results for Full and Unary Fragments

Alur and Henzinger proved already 20 years ago that infinitary SAT for TPTL is
undecidable, even if one does not allow for propositional variables [2]. The proof
in the cited paper is by reduction of the recurrent state problem for two-counter
machines. In the reduction more than one register variable is used, however, one
can easily adapt the proof and strenghten the result.

Theorem 1. For TPTL1, finitary SAT is Σ0
1 -complete, even for the fragment

that does not allow propositional variables.

Proof. Σ0
1 -hardness of finitary SAT can be proved in a similar way to Σ1

1 -
hardness of infinitary SAT using a reduction of the halting problem for two-
counter machines. It remains to show that finitary SAT is in Σ0

1 . For this, we
note that given a TPTL1 formula ψ and a finite data word w with w |=TPTL ψ,
there exists a finite data word w′ such that: |w′| = |w| = n, w′ |=TPTL ψ and the
data values occurring in w′ are bounded by n ∗max(| minc |, | maxc |), where
minc and maxc are the smallest and greatest constants occurring in ψ. Based on
this, the satisfiability of ψ can be characterized by a Σ0

1 sentence ∃nφ(n) where
φ(n) has only bounded quantifiers. Any data word can be encoded by using a
unary predicate for each propositional variable p in ψ and a binary predicate
to encode pairs of position numbers and associated data values. The variable
n represents the length of a finite data word and φ(n) expresses whether ψ is
satisfied by a data word of length n. �

It is well known that every formula in MTL can effectively be translated into a
TPTL1 formula defining the same language of data words. Hence the
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upper bounds of SAT for TPTL1 also apply to SAT for MTL. However, we have
recently proved that TPTL1 over non-monotonic data words is strictly more
expressive than MTL [8]. It is thus natural to consider the exact complexity of
SAT for MTL, in particular, as it is further known that finitary SAT for MTL is
decidable (albeit with non-primitive recursive complexity) for timed words [16],
and EXPSPACE-complete for monotonic data words [1]. However, we prove that
the undecidability of SAT for TPTL1 also applies to MTL, even if we do not
allow for propositional variables.

Theorem 2. For MTL, finitary SAT is Σ0
1 -complete, and infinitary SAT is Σ1

1 -
complete, even for the fragment that does not allow propositional variables.

Proof. (Sketch) The upper bounds follow from Th. 1 and the result by Alur and
Henzinger [2]. For the lower bounds of finitary, respectively, infinitary SAT, we
reduce the halting problem, respectively the recurrent state problem for two-
counter machines to SAT for MTL: given a two-counter machine M, we define
an MTL formula ϕM that is satisfiable if, and only if, M reaches the halting
instruction, respectively visits the first instruction infinitely often. In order to
avoid the usage of propositional variables, we use an idea similar to the one in
the proof of Lemma 2 in [11]. Each instruction Ii is encoded by a sequence of
data values, starting with value 3, which is followed by n positions with data
values in {1, 2}. The value 2 occurs at the ith position after the value 3. After n
positions, there is a position for encoding the value of C1 plus 4, and after that
there is a further position for encoding the value of C2 plus 4. The first position
with data value 3 can be used to identify an instruction ofM. For example, the
configuration (I3, 1, 2) of a two-counter machine with 4 instructions is encoded
by s s+3 s s+1 s s+1 s s+2 s s+1 s s+4 s s+5 s. Here, s ∈ N is some arbitrary
initial data value. �

In [10], non-primitive recursive complexity for finitary SAT for unaryFreezeLTL1

is proved. This result was strengthened to SAT for unaryFreezeLTL1 without the
X modality [12]. Unfortunately, if we extend unaryFreezeLTL1 to unaryTPTL1, we
already obtain undecidability of SAT. We also prove undecidability of SAT for
unaryMTL, however, it is an open problem whether undecidability also holds for
the unaryMTL fragment in which the X modality is not allowed.

Theorem 3. For unaryMTL, finitary SAT is Σ0
1 -complete, and infinitary SAT

is Σ1
1 -complete. For unaryTPTL1, this is the case even if we do not allow for the

X modality.

Proof. The upper bounds follow from Theorems 1 and 2. For the lower bounds,
we reduce the halting problem for two-counter machines to SAT for unaryMTL
and to SAT for unaryTPTL1 without the X modality, respectively. Let M be
a two-counter machine with n instructions. Recall that In is the only halting
instruction. Define P = {#, I1, . . . , In, r1, r2}. We define a formula ϕM over P
that is satisfiable if, and only if, M has a halting computation.
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Let γ = (J0, c0, d0)(J1, c1, d1) . . . be a computation ofM, where (J0, c0, d0) =
(I1, 0, 0). . We encode γ as a data word over 2P as follows:

({#}, s)({J0, r1}, s+ c0)({J0, r2}, s+ d0)({#}, s+ 1)({J1, r1}, s+ 1 + c1) . . .

i.e., for each i ≥ 0, the ith configuration of π is encoded by the data word

({#}, s+ i)({Ji, r1}, s+ i+ ci)({Ji, r2}, s+ i+ di).

Here s ∈ N is again an arbitrary initial data value.
The crucial point in this encoding is that the sequence of data values at

positions where # holds is strictly monotonically increasing by exactly 1. In all
of the unaryTPTL1 formulae (and some of the unaryMTL formulae, respectively)
defined below, we can exploit this fact and determine when the encoding of a
new configuration starts without using the X modality.

Next we define some unaryMTL formulae. The conjunction of all these formu-
lae is satisfied by a data word w, if and only if, w encodes a halting computation
of M. Recall that every unaryMTL formula without the X modality can effec-
tively be translated into a unaryTPTL1 formula without the X modality. For the
reduction to SAT for unaryTPTL1 without the X modality, we give extra formu-
lae only in the case that the unaryMTL formula uses the X modality. We further
remark that, due to the strict semantics of our logics, some of the formulae using
the G modality have to be additionally stated for the initial position of the data
word, but have been omitted here due to lack of space. We start by defining the
auxiliary formula ϕidz =

∨
i∈{1,...,n−1} Ii (i.e., the disjunction of all instructions

without the halting instruction In).

(1) At each position in the data word, exactly one of the following subsets of
P must occur: {#}, {Ii, r1} and {Ii, r2}, for some i ∈ {1, . . . , n}. No other
propositional variables are allowed. This can be expressed in unaryMTL with-
out the X modality in a straightforward way.

(2) There are two consecutive positions in the data word where In holds. The
data word ends after the second occurrence of In.
– F(In ∧ F(In)) (There are two different positions where In holds.)
– G(In → G(In → Gfalse)) (After the second occurrence of In the data

word ends.)
– G(In → ¬F(# ∨ r1 ∨ ϕidz)) (After the first occurrence of In, the sym-

bols #, r1, I1, . . . , In−1 should never occur again. Hence, by (1) the only
propositional variables that may occur after the first occurrence of In are
In and r2. This implies that the two occurrences of In (whose existences
are guaranteed by the first formula, are consecutive.)

The following formulae express important conditions on the data values.

(3) The data values in the positions where # holds are strictly monotonic and
increase progressively by exactly 1.
– G(#→ ¬F≤0#) (The data value at a position where # holds can never

be smaller than or equal to the data value at a preceding position where
# holds.)
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– G((# ∧ Fϕidz) → F=1#) (If after the # symbol with data value d# an
instruction different from In is occurring, i.e., by (2) we have not reached
the last configuration, then there will finally be a further # with data
value d# + 1. This and the first formula imply that the next occurrence
of # has data value d# + 1.)

(4) The data values at positions where r1 holds are weakly monotonic. (Similarly
for r2.)

– G(r1 → ¬F<0r1)

(5) The data values at positions where # holds serve as a reference value for 0.
Hence the data values at positions where r1 hold should always be greater
than or equal to this value. (Similarly for r2.)

– G(#→ ¬F<0r1).

Using these conditions, we can express the remaining details of the structure of
a data word encoding a computation of M.

(6) The data word should start with the prefix (#, s)({I1, r1}, s)({I1, r2}, s).
The unaryMTL formula is of the form # ∧ X=0(I1 ∧ r1 ∧ X=0(I1 ∧ r2)). In
order to express this condition in unaryTPTL1 without the X modality, we
have to consider more elaborate formulae:

– # ∧ x.F(I1 ∧ r1 ∧ x = 0 ∧ F(I1 ∧ r2 ∧ x = 0)) (After the first # with
data value d#, there will be some {I1, r1} and data value d#, followed
by some {I1, r2} with data value d#.)

– For i = 1, 2, we define # ∧ x.G(ri → ¬F(ri ∧ F(# ∧ x = 1))) (After
the first # with data value d#, there cannot be two different ri before
another # with data value d# + 1 occurs.)

The second formula and (3) express that after the first # there is at most
one ri before the next # occurs. By (5), each ri following symbol # must
have data value at least as big as that for #. Hence, the ri with data value
d# whose existence is enforced by the first formula must occur before the
second occurrence of #.

(7) In the remaining data word, the symbol # is followed by {r1, Ij}, which
is followed by {r2, Ij} for some j ∈ {1, . . . , n}. This is repeated until the
end of the word. In unaryMTL, this can be expressed by the formula G[#→∨

1≤i≤n(X(Ii ∧ r1)∧XX(Ii ∧ r2 ∧ (X#∨Gfalse)))]. In unaryTPTL1 without
X modality, we define

– G[# ∧ F#→ x.
∨

1≤i≤n−1 F(Ii ∧ r1 ∧ F(Ii ∧ r2 ∧ F(# ∧ x = 1)))]
(Together with (3) this guarantees that after #, the symbol r1 followed
by symbol r2 occur before the next occurrence of #.)

– G[# ∧ ¬F#→ ¬Fϕidz ∧ F(In ∧ r1 ∧ F(In ∧ r2))]

And for i = 1, 2, we define

– G[# ∧ F#→ x.G(ri → ¬F(ri ∧ F(# ∧ x = 1)))]
(There cannot be two different ri between two #.)

(8) We define the correct encoding of an increment instruction of the form
Ij : C1 ··= C1 + 1; go to Ik. Note that incrementing the first counter by
1 corresponds to incrementing the data value of r1 by exactly 2. The value
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of the second counter should not be changed, and this corresponds to in-
crementing the data value of r2 by exactly 1. With unaryMTL, this can be
expressed by the following formulae:
– G〈(Ij ∧ r1) → (¬F<2r1 ∧ F=2r1)〉 (Together with (4) this implies that

the data value at the next occurrence of r1 is incremented by 2.)
– G〈(Ij ∧ r2)→ (¬F<1r2 ∧ F=1r2)〉 (Similarly, this and (4) imply that the

data value at the next occurrence of r2 is incremented by 1.)
– For i = 1, 2, define G〈(Ij ∧ ri)→ XXX(Ik ∧ ri)〉.

For unaryTPTL1 without X modality, we define
– G〈(Ij ∧ r1)→ (x.G(r1 → x ≥ 2) ∧ x.F(r1 ∧ x = 2))〉
– G〈(Ij ∧ r2)→ (x.G(r2 → x ≥ 1) ∧ x.F(r2 ∧ x = 1))〉
– G〈#→ x.G((Ij ∧ r1 ∧ F(# ∧ x = 1))→ (ϕ1 ∨ ϕ2))〉, where

• ϕ1 = F(# ∧ x = 1 ∧ F(Ik ∧ F(# ∧ x = 2))), and
• ϕ2 = F(# ∧ x = 1 ∧ ¬F# ∧ FIk).

(9) We define the correct encoding of instructions of the form Ij : if C1 = 0
then go to Ik else C1 ··= C1 − 1; go to Im: Recall that the data value
at # serves as a reference value for 0. A successful zero test of the first
counter (and no change in the value of the first counter) can thus be defined
in unaryMTL as follows:
– G((# ∧ F=0(Ij ∧ r1)) → F=1(Ik ∧ r1)) (Note that (3) to (5) guarantee

that the position where Ik ∧ r1 holds with data value incremented by 1
is directly after the next #.)

The negative zero test and decrement instruction is similar. Note that decre-
menting the value of the first counter corresponds to not changing the data
value at r1.
– G〈(# ∧ X>0(Ij ∧ r1))→ X(Ij ∧ r1 ∧ F=0r1 ∧ XXXIm)〉

We further can use the same formulae as in (8) to express that the value of
the other counter does not change. The unaryTPTL1 formula without the X
modality for expressing the negative zero test is a bit more elaborate. Again,
(3) to (5) are crucial for ensuring that the correct positions in the data word
are defined.
– G〈ϕ1 → (ϕ2 ∧ ϕ3)〉, where

• ϕ1 = # ∧ x.F(Ij ∧ r1 ∧ F(# ∧ x = 1)) ∧ x.G(Ij ∧ r1 → x > 0), and
• ϕ2 = x.F〈Ij ∧ r1 ∧ F(# ∧ x = 1) ∧ x.F(r1 ∧ x = 0)〉, and
• ϕ3 = x.F〈# ∧ x = 1 ∧ F(Im ∧ (F(# ∧ x = 2) ∨ ¬F#))〉.

This finishes the hardness proof for finitary SAT. For infinitary SAT, we do
not need (2) and instead use the usual approach and define a formula which
expresses that I1 is visited infinitely often: GFI1. We can further simplify some
of the formulae, as we do not have to check whether we have reached the halting
instruction. �

Remark 4. Using Ehrenfeucht-Fräıssé-Games defined in [8], one can prove that
unaryTPTL1-formulae of the form x.F(b ∧ F(c ∧ x = 0)) cannot be expressed
in MTL. We remark that it is exactly this kind of formulae that we use in the
unaryTPTL1 formulae without X modality in (6) to (9). It is an open problem
whether we can express the conditions stated there in unaryMTL without using
the X modality.
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6 Results for Positive Fragments

Next we consider the fragment ofMTL and TPTL, in which negation is restricted
to propositional variables. Note that this excludes the globally operator, which
seems to be crucial in the proofs for lower bounds of SAT for the mentioned
logics. It also allows us to prove the following interesting property:

Theorem 5 (Finite model property). Let ϕ ∈ positiveTPTL. Then ϕ is
satisfiable by a data word if, and only if, it is satisfiable by a finite data word.

This implies that infinitary and finitary SAT are equivalent problems. It turns
out that the restriction of negation to propositional variables does not change
anything about the complexity status of SAT compared to finitary SAT for the
corresponding full logics.

Theorem 6. For positiveMTL and positiveTPTL1, SAT is Σ0
1 -complete. For

positiveFreezeLTL1, SAT is not primitive recursive.

Proof. For positiveMTL, we reduce the halting problem for two-counter ma-
chines to SAT. Given a two-counter machineM with n instructions, we define a
positiveMTL formula ϕM over P = {I1, . . . , In, r1, r2} that is satisfiable if, and
only if, M has a halting computation. A computation (J0, c0, d0)(J1, c1, d1) . . .
is encoded by a data word of the form

({J0}, s)({r1}, s+ c0)({r2}, s+ d0)({J1}, s)({r1}, s+ c1)({r2}, s+ d1) . . .

Using this structure, we can avoid using the G modality.
For positiveTPTL1 and positiveFreezeLTL1, the proof is by reduction of SAT

for the corresponding unary fragment to SAT for the corresponding positive
fragment without the X modality. Let ϕ be, e.g., a formula in unaryTPTL1. For
this we may assume without loss of generality that ϕ is in negation normal
form, where the application of negation is restricted to propositional variables.
For the reduction to work, we must assume that every data word contains a
special symbol halt marking the end of the finite data word. The idea is to
exploit the fact that for finite data words, the formula Gϕ means that ϕ must
hold until the symbol halt marks the end of the word. We define a function
h mapping unaryTPTL1 formulae in negation normal form into positiveTPTL1

formulae. The definition is by induction on the construction of a formula, we
only give the interesting cases: h(Gϕ) ··= (h(ϕ) ∧ ¬halt)Uhalt, h(Fϕ) ··= (true ∧
¬halt)U(h(ϕ)∧¬halt). We have ϕ is satisfiable if, and only if, h(ϕ) is satisfiable.

Note that this proof idea is not trivially applicable to positiveMTL, because
it is not clear how to express the semantics of the G[a,b]-modality for [a, b] �=
(−∞,+∞). �

Last but not least, we consider the unary fragment of positiveTPTL1, in which
the only allowed modalities are the F and X modalities. This fragment has also
been considered for MTL and TPTL over monotonic timed words [7]. In this
setting, SAT for both logics is NP-complete. Here, we show that this applies also
to the setting of non-monotonic data words.
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Theorem 7. For posUnaryTPTL, SAT is NP-complete.

Proof. (Sketch) The lower bound follows by reduction from SAT for proposi-
tional logic. Now we prove that the problem is in NP. Let ψ be a posUnaryTPTL
formula. We denote by Γ (ψ) the set containing all those formulae that can be
obtained from ψ by resolving the non-determinism induced by the occurrences
of disjunctions. Formulae in Γ (ψ) are is satisfiable if, and only if, there exists a
satisfiable formula ψ∗ in Γ (ψ).

Now, consider a formula ψ∗ ∈ Γ (ψ) that is satisfied by a data word w. One can
see that only n ≤ |ψ∗| points in w are relevant for a successful model checking
of w on ψ∗. This is because new further points are only required by subformulae
of the form Fφ or Xφ and negation only occurs in front of atoms. Therefore, a
word w′ of length n can be obtained from w such that w′ |= ψ∗:

Lemma 8. Let ψ be a posUnaryTPTL formula. If ψ is satisfiable, then there
exists a data word w such that w |= ψ and |w| ≤ |ψ|.

The difference to Th. 5 is that we are able to additionally provide a bound to
the length of the possible finite witness of satisfiability.

Based on this, we can decide satisfiability in polynomial non-deterministic
time: guess a formula ψ∗ in Γ (ψ); then guess a data word w = (P0, 0) . . . (Pn−1, 0)
of length n = |ψ∗|; last, for each subformula φ of ψ∗ guess a position from
{0 . . . n− 1} and verify that w model checks ψ∗ (without considering data value
constraints) with respect to the guessed positions. Finally, solve the set of linear
inequalities C built up from the position assigned to each subformula x ∼ c and
its corresponding less outer subformula x.φ (in case it does not exists, then ψ∗ is
used). All the guesses are independent and the verifications can be done in poly-
nomial time. Each inequality in C belongs to the class of difference constraints
and a system of such a class of constraints can be solved in polynomial time [9].
Thus, the problem is in NP. �

Corollary 9. For posUnaryMTL and posUnaryFreezeLTL, SAT is NP-complete.

7 Conclusion and Open Problems

The main open problem of this paper is the decidability status for the unary
fragment of MTL without the X modality. While the X modality can be avoided
in reductions for showing undecidability of SAT for unaryTPTL, it seems to be
fundamental in all reductions we have looked at for showing undecidability of
the unary fragment of MTL. At the same time it seems surprising that the only
absence of the X modality could be enough to change the decidability status of
the SAT problem.

We are also surprised that the decidability of SAT for unaryFreezeLTL does nei-
ther apply to unaryMTL nor to unaryTPTL. This is opposed to a recent extension
of a decidability result for FreezeLTL1-model checking deterministic one-counter
automata [11] to MTL and TPTL1 [17].
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Note that our undecidability results for SAT of different fragments of MTL
and TPTL, also imply the undecidability of the existential model checking and
(apart from the positive fragments) of the universal model checking problem for
one-counter machines and the corresponding logics.
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Abstract. We focus on the family of (k, l)-unambiguous automata that
encompasses the one of deterministic k-lookahead automata introduced
by Han and Wood. We show that this family presents nice theoreti-
cal properties that allow us to compute quasi-deterministic structures.
These structures are smaller than DFAs and can be used to solve the
membership problem faster than NFAs.

1 Introduction

One of the best known automata construction is the position construction [8]. If a
regular expression has n occurrences of symbols, then the corresponding position
automaton, which is not necessarily deterministic, has exactly n+1 states. The
1-unambiguous regular languages have been defined by Brüggemann-Klein and
Wood [2] as languages denoted by regular expressions the position automata of
which are deterministic. They have also shown that there exist regular languages
that are not 1-unambiguous. This property has practical implication, since it
models a property needed in XML DTDs [1]. Indeed, XML DTDs are defined
as an extension of classical context-free grammars in which the right hand side
of any production is a 1-unambiguous regular expression. Consequently, char-
acterization of such languages, that has been considered via the deterministic
minimal automaton, is very important, since it proves that not all the regular
languages can be used in XML DTDs. The computation of a small deterministic
recognizer is also technically important since it allows a reduction of the time
and of the space needed to solve the membership problem (to determine whether
or not a given word belongs to a language). As a consequence, one may wonder
whether there exists a family of languages encompassing the 1-unambiguous one
that can be recognized by a polynomial-size deterministic family of recognizers.

On the one hand, numerous extensions of 1-unambiguity have been con-
sidered, like k-block determinism [7], k-lookahead determinism [9] or weak 1-
unambiguity [4]. All of these extensions, likely to the notion of 1-unambiguity,
are expression-based properties. A regular language is 1-unambiguous (resp. k-
block deterministic, k-lookahead deterministic, weakly 1-unambiguous) if it is
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denoted by a 1-unambiguous (resp. k-block deterministic, k-lookahead determin-
istic, weakly 1-unambiguous) regular expression. And all of these three properties
are defined through a recognizer construction.

On the other hand, the concept of lookahead delegation, introduced in [5], han-
dles determinism without computing a deterministic recognizer; the determinism
is simulated by a fixed number of input symbols read ahead, in order to select
the right transition in the NFA. This concept arose in a formal study of web-
services composition and its practical applications [6]. Questions about complex-
ity and decidability of lookahead delegation have been answered by Ravikumar
and Santean in [13]. Finally, defining predictable semiautomata, Brzozowski and
Santean [3] improved complexity of determining whether an automaton admits
a lookahead delegator.

The notion of (k, l)-unambiguity for automata is the first step of the study of
the (k, l)-unambiguity for languages. In this paper, we define the notion of (k, l)-
unambiguity for automata, leading to the computation of quasi-deterministic
structures, that are smaller than DFAs and that can be used to solve the mem-
bership problem faster than NFAs. Next step is to study the (k, l)-unambiguous
languages, that are languages denoted by some regular expressions the position
automaton of which is (k, l)-unambiguous; Having such a regular expression
allows us to directly compute a quasi-deterministic structures to solve the mem-
bership problem.

In Section 3, after defining the (k, l)-unambiguity as an extension of k-
lookahead determinism, we characterize it making use of the square automaton.
In Section 4, we define quasi-deterministic structures that allow us to perform a
constant space membership test. Section 5 is devoted to the computation of the
quasi-deterministic structure associated with a (k, l)-unambiguous automaton.

2 Preliminaries

Let ε be the empty word. An alphabet Σ is a finite set of distinct symbols. The
usual concatenation of symbols is denoted by ·, and ε is its identity element. We
denote by Σ∗ the smallest set containing Σ∪{ε} and closed under ·. Any subset
of Σ∗ is called a language over Σ. Any element of Σ∗ is called a word. The length
of a word w, noted |w|, is the number of symbols in Σ it is the concatenation of
(e.g. |ε| = 0). For a given integer k, we denote by Σk the set of words of length k
and by Σ≤k the set

⋃
k′≤k Σ

k′
. Let w = a1 · · ·a|w| be a word in Σ∗ such that for

any k in {1, . . . , |w|}, ak is a symbol in Σ. Let i and j be two integers such that
i ≤ j ≤ |w|. We denote by w[i, j] the subword ai · · ·aj of w starting at position
i and ending at the position j and by w[i] the i-th symbol ai of w.

A nondeterministic finite automaton (NFA) A is a 5-tuple (Σ,Q, I, F, δ)
where Σ is an alphabet, Q is a set of states, I ⊂ Q is a set of initial states,
F ⊂ Q is a set of final states and δ is a transition function defined from Q×Σ
to 2Q. The function δ can be interpreted as a subset of Q × Σ × Q defined by
q′ ∈ δ(q, a)⇔ (q, a, q′) ∈ δ. The domain of δ is extended to 2Q×Σ∗ as follows: for
any symbol a in Σ, for any state q in Q, for any subset P of Q, for any word w in
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Σ∗: δ(P, ε) = P , δ(P, a) =
⋃

p∈P δ(p, a), δ(P, aw) = δ(δ(P, a), w). The automa-
ton A is said to be deterministic if the two following properties hold: Card(I) = 1
and ∀(q, a) ∈ Q×Σ, Card(δ(q, a)) ≤ 1. The automaton A is accessible if for any
state q in Q, there exists a word w in Σ∗ such that q ∈ δ(I, w).

Given a word w and an n-state automaton A, the membership test [10], i.e.
deciding whether w belongs to L(A) can be performed in time O(n2 × |w|) and
in space O(n). Let us suppose that A′ is the determinized n′-state automaton of
A (computed as the classical accessible part of the powerset automaton of A).
The membership test can be performed in time O(|w|) and in space O(1). But
n′ can be exponentially greater than n.

Glushkov [8] and McNaughton and Yamada [12] have independently defined
the construction of the Glushkov automaton or position automaton GE of a
regular expression E. The number of states of GE is n + 1, where n is the
number of occurrences of symbols of the alphabet in E. The automaton GE is a
(|E|+ 1)-state finite automaton that recognizes L(E).

A regular expression E is deterministic if and only if its Glushkov automa-
ton is. A language is said to be 1-unambiguous if there exists a deterministic
expression to denote it. Brüggemann-Klein and Wood [2] have shown that de-
termining whether a regular language is 1-unambiguous or not is a decidable
problem. Furthermore, they proposed a characterization and showed that both
1-unambiguous languages and non 1-unambiguous regular languages exist. The
notion of k-lookahead determinism [9] extends the one of 1-unambiguity of ex-
pressions. In that purpose, Han and Wood define the k-lookahead deterministic
position automaton of an expression.

Definition 1 ([9]). Let A = (Σ,Q, I, F, δ) be a position automaton of an ex-
pression. Then A is a deterministic k-lookahead automaton if for any state q0
in Q, where (q0, a0, q0), (q0, a1, q1), . . ., (q0, am, qm) are the out-transitions of
q0, with qi �= qj for 0 ≤ i, j ≤ m, it holds: ai ·Fk−1(qi)∩ aj ·Fk−1(qj) = ∅, where
0 ≤ i < j ≤ m and Fk−1(qi) is the set of words of length k− 1 that labels a path
starting at qi.

Notice that this definition can be extended to any automaton that is not a
position one. Informally, an automaton is k-lookahead deterministic if and only
if for any state q, for any word w = a1 · · · ak of length k, all the w-labelled paths
starting at q share the same successor q11 after a step of length 1 (see Figure 1).

Brzozowski and Santean [3] introduced the notion of predictability for an
automaton and linked it to the one of lookahead determinism: as far as an
automaton admits a unique initial state, it is k-predictable if and only if it is
(k + 1)-lookahead deterministic.

In order to decide whether a given automaton is predictable, they make use
of the square automaton defined as follows: let A = (Σ,Q, I, F, δ). The square
automaton sA of A is the automaton (Σ,Q×Q, I×I, F×F, δ′) where for any pair
(q1, q2) of states in Q, for any symbol a in Σ, δ′((q1, q2), a) = δ(q1, a)× δ(q2, a).

Finally, from the square automaton, they define the pair automata of criti-
cal subsets of Q (the set of initial states and the sets of successors of a fork).
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q
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q2k

q3k
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w

w
q

q′′ ∅

q11

q1k

q2k

q3k

w[1,1]

w[1,1] w[2, k]

w[2, k]

w[2, k]

w[2, k]

q a1 a2 · · · ak

q1
1 q12 · · · q1k

q1
1 q22 · · · q2k

· · · · · · · · · · · ·
q1
1 qn2 · · · qnk

Fig. 1. The k-lookahead determinism

An automaton is predictable if and only if its pair automata admit no cycle.
A closely related method has already been applied in comparable settings for
Moore machines [11].

3 The (k,l)-Unambiguity

The definition of k-lookahead determinism can be extended by the introduction
of an additional parameter l. The maximal length of ambiguity in two distinct
paths from the same state and labelled by a same word is bounded by this
parameter. Hence an automaton is said to be (k, l)-unambiguous if and only if
for any state q, for any word w = a1 · · ·ak of length k, there exists an integer
i ≤ l such that all the w-labelled paths starting at q share the same successor
q1i after a step of length i. In other words, for any path cj = (qj1, . . . , q

j
k) from

q labelled by w, there exists an integer i ≤ l such that for any j′, qj
′

i = q1i (see
Figure 2).

q

q1k

q2k

q3k

w

w

w q

q′′

∅

q1i

q1k

q2k

q3k

w[1, i]

w[1, i]

w[i + 1, k]

w[i + 1, k]

w[i + 1, k]

w[i + 1, k]

q a1 a2 · · · ai · · · ak

q11 q12 · · · q1
i · · · q1k

q21 q22 · · · q1
i · · · q2k

· · · · · · · · · · · · · · · · · ·
qn1 qn2 · · · q1

i · · · qnk

Fig. 2. The (k, l)-unambiguity
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Definition 2. Let k and l be two integers such that l ≤ k. A finite automaton
A = (Σ,Q, I, F, δ) is (k, l)-unambiguous if Card(I) = 1 and if for any state q
in Q, for any word w in Σk, there exists an integer 1 ≤ i ≤ l such that:

Card({q′ ∈ Q | q′ ∈ δ(q, w[1, i]) ∧ δ(q′, w[i + 1, k]) �= ∅}) ≤ 1.

As a direct consequence of this definition, it holds that any (k, l)-unambiguous
automaton is also a (k, l+ 1)-unambiguous automaton whenever l < k.

The following example enlightens the notion of (k, l)-unambiguity while illus-
trating the difference between (k, l)-unambiguity and k-lookahead determinism.

Example 3. Let us consider the automaton A = (Σ,Q, I, F, δ) in Figure 3. Let
us notice that Card(δ(0, a)) = Card(δ(0, ab)) = Card(δ(0, aba)) = 2. As a con-
sequence, the automaton is not (3, 3)-unambiguous since it is not possible to
define an integer i ≤ 3 such that Card(δ(0, aba[1, i])) ≤ 1. Increasing the length
k of the window allows us to avoid this ambiguity. Indeed, for any word w of
length 4, Card(δ(0, w)) ≤ 1. Hence A is (4, 4)-unambiguous. Furthermore, A is
also (4, 3)-unambiguous since 5 is the only state q reached from 0 by aba such
that δ(q, b) is not empty, and since 6 is the only state q reached from 0 by aba
such that δ(q, a) and δ(q, c) are not empty. However, since the states 3 and 4
are states q reached from 0 by ab such that δ(q, ac) is not empty, the automaton
A is not (4, 2)-unambiguous. Finally, let us notice that this automaton is not
k-lookahead deterministic for any integer k since for any integer j and for any
prefix w = aw′ of (abaa)j , δ(0, a) = {1, 2} and w′ ∈ F|w′|(1) ∩ F|w′|(2).

0

1

2

3

4

5

6

7

8

a

a

b

b

a

a

a

b

c

a

Fig. 3. The automaton of Example 3

Proposition 4. An automaton is deterministic k-lookahead if and only if it is
a (k, 1)-unambiguous automaton.

Proposition 5. There exist (k, l)-unambiguous automata that are not k′-look-
ahead deterministic for any integer k′.

Proof. A counterexample is given in Example 3.

Whenever an automaton is not (k, l)-unambiguous for any couple (k, l) of in-
tegers, there exists a state from which it cannot be decided without ambiguity
which successor will appear during the run. Hence there exists an infinite hesi-
tation between two paths, that can be decided via the square automaton.
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Theorem 6. Let A be an accessible automaton and P be the accessible part of
its square-automaton. The two following propositions are equivalent:

1. there exists a couple (k, l) such that A is (k, l)-unambiguous,
2. every cycle in P contains a pair (p, p) for some p in Q.

In order to prove Theorem 6, let us first state the following definitions and
lemmas. Let A = (Σ,Q, I, F, δ) be an automaton, k be an integer and w be a
word in Σk. A path p labelled by w is a finite sequence p = (pj)0≤j≤k such that
for any integer 0 ≤ j < k, pj+1 ∈ δ(pj , w[j+1]). The path p starts with p0. Two
paths p = (pj)0≤j≤k and p′ = (p′j)0≤j≤k labelled by w are totally distinct if for
any integer 0 < j ≤ k, pj �= p′j .

Lemma 7. Let A = (Σ,Q, I, F, δ) be an automaton. If there exists a word w
in Σ+ and a state q in Q such that for any integer 1 ≤ k ≤ |w|, Card({q′ ∈
δ(q, w[1, k]) | k < |w| ⇒ δ(q′, w[k + 1]) �= ∅}) ≥ 2, then there exists at least two
totally distinct paths labelled by w that starts with q.

Lemma 8. Let A be an automaton and P be its square-automaton. Let w be a
word in Σ∗ and q be a state in Q. If there exists two totally distinct paths labelled
by w that starts with q in A, then there exists a path p = (pj)0≤j≤k in P labelled
by w starting with (q, q) such that for any integer 1 ≤ j ≤ k, pj = (c, c′) with
c �= c′.

Lemma 9. Let A = (Σ,Q, I, F, δ) be an automaton and P = (Σ,Q′, I ′, F ′, δ′)
be its square-automaton. Let w be a word in Σ∗ and q1 and q2 be two states in
Q. If q2 ∈ δ(q1, w) then (q2, q2) ∈ δ′((q1, q1), w).

Proof (Theorem 6). Let us set A = (Σ,Q, {i}, F, δ) and P = (Σ,Q′, I ′, F ′, δ′).
(1 ⇒ 2) Let us suppose that there exists a cycle C in P that does not contain

any pair (p, p) for all state p in Q. As a consequence, there exists a path R
from (i, i) to a state s = (c, c′) in C such that any predecessor of the first
occurrence of s does not belong to C. Let q be the state in Q such that (a) (q, q)
appears on the path R from (i, i) to the first occurrence of (c, c′) and (b) there
exists no state p in Q such that (p, p) appears on the path R between (q, q) and
the first occurrence of (c, c′). Notice that q exists since i satisfies the previous
propositions. Hence for any integer k ≥ 1, there exists a word w in Σk such
that δ′((q, q), w) �= ∅ and then Card(δ(q, w)) ≥ 2. Consequently, there exists no
couple (k, l) such that A is (k, l)-unambiguous.

(1 ⇐ 2) Let us suppose that for every integer k, there exists a word w in Σk

and a state q in Q such that for any integer i ≤ k, Card({q′ | q′ ∈ δ(q, w[1, i]) ∧
δ(q′, w[i + 1, k]) �= ∅}) > 1. Hence according to Lemma 7, for any integer k,
there exists a word in Σk such that there exists at least two totally distinct
paths labelled by w that starts with q. Since q is reachable from i, then it
holds from Lemma 9 that (q, q) belongs to Q′ since it is reachable from (i, i).
According to Lemma 8, for any integer k, there exists a word in Σk such that
there exists a path p = (pj)0≤j≤k in P labelled by w starting with (q, q) such
that for any integer 1 ≤ j ≤ k, pj = (c, c′) with c �= c′. Finally, whenever
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k ≥ Card(Q) × (Card(Q) − 1), there exists two integer 1 ≤ k1 < k2 ≤ k such
that pk1 = pk2 . Consequently there exists a cycle in P that contains no pair
(p, p) for any p in Q. �

Notice that Theorem 6 defines a polynomial decision procedure to test if, for
a given NFA A, there exists a couple (k, l) of integer such that A is (k, l)-
unambiguous.

The next section is devoted to the definition of quasi-deterministic structures.
These structures allow us to solve the membership problem with the same com-
plexity as deterministic automata while being possibly exponentially smaller.
Finally, we show in Section 5 how to convert a (k, l)-unambiguous NFA into a
quasi-deterministic structure.

4 The Quasi-Deterministic Structure

A quasi-deterministic structure is a structure derived from an automaton: it
embeds a second transition function that is used to shift the input window (of
a fixed length) while reading a word (see Example 11). In the following, the
symbol ⊥ is used to represent undefined states and transitions.

Definition 10. A quasi-deterministic structure (QDS) is a 6-tuple S = (Σ,Q, i,
F, δ, γ) where:

– Σ is an alphabet,
– Q = (Qj)j∈{1,...,m} is a family of m disjoint set of states,
– i ∈ Q1 is the initial state,
– F ⊂

⋃
j∈{1,...,m}Qj is the set of final states,

– δ is a function from Qj ×Σ to Qj+1 ∪ {⊥} for j ∈ {1, . . . ,m− 1},
– γ is a function from Qm to Q1 × {1, . . . ,m}.

The function δ can be extended for any state q in
⋃

j∈{1,...,m}Qj, for any
state q′ in Qm, for any word w in Σ∗ and for any symbol a in Σ to δ(q, ε) = q,
δ(q′, a) = ⊥, δ(⊥, a) = ⊥, δ(q, aw) = δ(δ(q, a), w).

Example 11. The quasi-deterministic structure S = (Σ,Q, i, F, δ, γ) represented
in Figure 4 is defined by Σ = {a, b}, Q = ({1, 6}, {2, 3, 7}, {4, 5, 8}), i = 1, F =
{2, 7}, δ = {(1, a, 2), (1, b, 3), (2, b, 4), (2, a, 5), (3, a, 5), (3, b, 5), (6, a, 7), (6, b, 7),
(7, a, 8)}, and γ = {(5, 2, 1), (4, 1, 6), (8, 2, 6)}.

Such a structure can be used as a recognizer: a word w is recognized if it labels
a path from an initial state to a final one. However, the notions of path and of
label are different in a quasi-deterministic structure. Indeed, some factors of the
word can be repeated all along the path. As a consequence, there exists a path
from a state q to a state q′ labelled by w if and only if q′ = Δ(q, w) where Δ is
the function defined as follows:
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1 2 4

3 5

6 7 8

a

b a

b

a, b

a, b a

2

1

2

Fig. 4. A Quasi-Deterministic Structure

Definition 12. Let S = (Σ, (Qj)j∈{1,...,m}, i, F, δ, γ) be a QDS. The extended
transition function of S is the function Δ from Q1×Σ∗ to (

⋃
j∈{1,...,m}Qj)∪{⊥}

defined for any pair (q, w) in Q1 ×Σ∗ by:

Δ(q, w) =

⎧⎨
⎩

δ(q, w) if |w| ≤ m− 1,
Δ(q′, w[j + 1, |w|]) if |w| ≥ m ∧ γ(δ(q, w[1, m− 1])) = (q′, j) ∧ q′ �= ⊥,
⊥ otherwise.

Definition 13. Let S = (Σ,Q, i, F, δ, γ) be a quasi-deterministic structure. The
language of S is the language L(S) defined by:

L(S) = {w ∈ Σ∗ | Δ(i, w) ∈ F}.

Finally, let us show how to determine whether a given word is recognized by a
given quasi-deterministic structure (see Example 15).

Require: S = (Σ,Q, i, F, δ, γ) a quasi deterministic structure, w in Σ∗

Ensure: Returns w ∈ L(S)
1: k ← Card(Q)− 1
2: if |w| ≤ k then
3: return δ(i, w) ∈ F
4: end if
5: c ← i
6: w′ ← w
7: while |w′| > k ∧ c �= ⊥ do
8: (c, j) ← γ(δ(c, w′[1, k]))
9: w′ ← w′[j + 1, |w′|]

10: end while
11: return c �= ⊥ ∧ δ(c, w′) ∈ F

Algorithm 1. Membership Test for Quasi-Deterministic Structure
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Proposition 14. Algorithm 1 returns TRUE if and only if w ∈ L(S). Further-
more, its execution always halts, and is performed in time O(k × |w|

s ), where
k = Card(Q)− 1, s = min{j | ∃q ∈ Qk+1, γ(q) = (p, j)} and in space O(1).

Example 15. Let us consider the structure S defined in Example 11. Let w =
bbbaabab. Following computation illustrates that Δ(1, w) = 7, and since 7 ∈ F ,
it holds that w ∈ L(S).

1 b b b a a b a b

b b 5 b a a b a b (δ(1, bb) = 5)

b b 1 b a a b a b (γ(5) = (1, 2))

b b b a 5 a b a b (δ(1, ba) = 5)

b b b a 1 a b a b (γ(5) = (1, 2))

b b b a a b 4 a b (δ(1, ab) = 4)

b b b a a 6 b a b (γ(4) = (6, 1))

b b b a a b a 8 b (δ(6, ba) = 8)

b b b a a b a 6 b (γ(8) = (6, 2))

b b b a a b a b 7 (7 ∈ F ⇒ w ∈ L(S))

Next section is devoted to the conversion of a (k, l)-unambiguous NFA into a
quasi-deterministic structure.

5 Quasi-Determinization of a (k,l)-Unambiguous NFA

For any (k, l)-unambiguous automaton, given a state q and a word w of length
k, there exists an integer i ≤ l such that there exists at most one state q′ in
δ(q, w[1, i]) such that δ(q′, w[i+1, k]) is not empty. Quasi-deterministic structures
can be used in order to simulate each run in a unique way. For any pair (q, w),
the integer i and the state q′ can be precomputed; then the run can restart in
q′ with a word w′ that is a suffix of w. The integer i is the called step index of
q w.r.t. w, and the state q′ the step successor of q w.r.t. w.

Definition 16. Let A = (Σ,Q, {i}, F, δ) be a (k, l)-unambiguous automaton, q
be a state in Q and w be a word in Σk. The step index of q w.r.t. w, denoted by
StepIndexw(q) is the biggest integer j ≤ l satisfying:
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Card({q′ ∈ Q | q′ ∈ δ(q, w[1, j]) ∧ δ(q′, w[j + 1, k]) �= ∅}) ≤ 1.

Definition 17. Let A = (Σ,Q, {i}, F, δ) be a (k, l)-unambiguous automaton, q
be a state in Q and w be a word in Σk. The step successor of q w.r.t. w, denoted
by StepSuccw(q), is defined by:

StepSuccw(q) =

⎧⎪⎪⎨
⎪⎪⎩
⊥ if

{
q′ ∈ Q | q′ ∈ δ(q, w[1, StepIndexw(q)])

∧ δ(q′, w[StepIndexw(q) + 1, k]) �= ∅

}
= ∅,

p if
{
q′ ∈ Q | q′ ∈ δ(q, w[1, StepIndexw(q)])

∧ δ(q′, w[StepIndexw(q) + 1, k]) �= ∅

}
= {p},

Example 18. Let Σ = {a, b}. Let A be the automaton in Figure 5 that denotes
the language Σ∗ · {a} · Σ. It can be shown that the automaton A is a (3, 1)-
unambiguous NFA. As an example let us consider the state 1: For any word w
in Σ3:

Card({q′ ∈ Q | q′ ∈ δ(1, w[1, 1]) ∧ δ(q′, w[2, 3]) �= ∅}) ≤ 1,

i.e. for any word w in Σ3, StepIndexw(1) = 1 and StepSuccw(1) = 1.
Moreover, the automaton is also (3, 3)-unambiguous, since (k, l)-unambiguous

⇒ (k, l + 1)-unambiguous. As a consequence, the step index can be increased.
As an example let us consider the state 1: For any word w in Σ3, there exists
an integer 1 ≤ i ≤ 3 such that:

Card({q′ ∈ Q | q′ ∈ δ(1, w[1, i]) ∧ δ(q′, w[i + 1, 3]) �= ∅}) ≤ 1.

For any word w in Σ{a}Σ, StepIndexw(1) = 1 and StepSuccw(1) = 1.
For any word w in Σ{ba}, StepIndexw(1) = 2 and StepSuccw(1) = 1.
For any word w in Σ{bb}, StepIndexw(1) = 3 and StepSuccw(1) = 1.

1 2 3
a a, b

a, b

Fig. 5. The automaton A

The computation of the pairs (StepIndexw(q), StepSuccw(q)) for any pair of a
state and a word (q, w) is sufficient to compute a quasi-deterministic structure.
The quasi-deterministic structure is exponentially bigger than the automaton,
but with respect to the size of the alphabet, that has to be compared with
the exponential growth with respect to the number of states in the classical
determinization.

Definition 19. Let A = (Σ,Q, {i}, F, δ) be a (k, l)-unambiguous automaton.
The quasi-deterministic structure associated with A is S = (Σ, (Qj)j∈{1,...,k+1},
i′, F ′, δ′, γ′) where:

– ∀j ∈ {1, . . . , k + 1}, Qj = {(q, w) | q ∈ Q ∧ w ∈ Σj−1},
– i′ = (i, ε),
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– F ′ = {(q, w) | δ(q, w) ∩ F �= ∅},
– ∀a ∈ Σ, ∀(q, w) ∈ (Qj)j∈{1,...,k},

δ′((q, w), a) =

{
(q, w · a) if (q, w · a) ∈ Qj+1,
⊥ otherwise,

– ∀(q, w) ∈ Qk+1, γ′((q, w)) = ((StepSuccw(q), ε), StepIndexw(q)).

Proposition 20. Let A = (Σ,Q, I, F, δ) be a (k, l)-unambiguous automaton and
S be the quasi-deterministic structure associated with A. Then the number of
states of S is Card(Q)× Card(Σ)k+1−1

Card(Σ)−1 .

Proposition 21. Let A be a (k, l)-unambiguous automaton and S be the quasi-
deterministic structure associated with A. Then:

L(S) = L(A).

Example 22. Let us consider the automaton A defined in Example 18. After
removing unreachable states, the quasi-deterministic structure associated with
A is given in Figure 6.

(1, ε) (1, ε)

(1, a)

(1, b)

(1, aa)

(1, ab)

(1, aaa)

(1, aab)

(1, aba)

(1, abb)

(1, ba)

(1, bb)

(1, baa)

(1, bab)

(1, bba)

(1, bbb)

a

b

a

b

a

b

a

b

a

b

a

b

a

b

1

1

1

1

2

2

3

3

Fig. 6. The Quasi-Deterministic Structure Associated with A
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6 Conclusion and Perspectives

Quasi-deterministic structures are an alternative to the computation of a deter-
ministic automaton since they can be used as recognizers, while reducing the
space needed to solve the membership problem once computed.

Theorem 23. There exists a QDS that recognizes Lk = {a, b}∗{a}{a, b}k which
is exponentially smaller than the minimal DFA associated with Lk.

A regular language is (k, l)-unambiguous if it is denoted by some regular
expression the position automaton of which is (k, l)-unambiguous. Similar exten-
sions were already defined for deterministic automata (1-unambiguity).
Denoting a language by such an expression allows us to directly compute a
quasi-deterministic structure in order to solve the membership problem.

One may wonder whether every regular language admits a (k, l)-unambiguous
position automaton recognizing it. If the answer is negative, then a second ques-
tion arises: Is it possible to characterize languages having a (k, l)-unambiguous
position automaton, as Brüggemann-Klein and Wood did for languages having
a deterministic position automaton ?
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1 Introduction

The French mathematician Eugène Prouhet is considered to be one of the fathers
of the discipline of combinatorics on words (see [3]). In his paper [18], he provided
a solution to the equal powers problem, which later, after his work has been re-
discovered, started to be called the Prouhet-Tarry-Escott problem. Recently, the
multi-dimensional version of the Prouhet-Tarry-Escott problem was investigated
in [2]. The problem can be described as follows:

Problem 1 (PTEd
k). For a given integer d ≥ 1 (the dimension of the problem)

and k ≥ 1 (the degree of the problem) find two distinct multisets A,B of integer
d-tuples satisfying, for all 0 ≤ r0, . . . rd−1 such that r0+· · · rd−1 < k, the equality∑

〈a0,...ad−1〉∈A
A (〈a0, . . . ad−1〉) ar01 · · · · · a

rd−1

d−1

=
∑

〈b0,...bd−1〉∈B
B (〈b0, . . . bd−1〉) br01 · · · · · b

rd−1

d−1

Here A (〈a1, . . . ad〉) denotes the multiplicity of containment of the tuple
〈a1, . . . ad〉 in the multiset A. Let us note that the degree k, as introduced in
Problem 1, is greater by 1 compared to the degree considered in [2]. Prouhet
constructed a solution to the Problem 1 for d = 1. He actually provided a
solution for d = 1 of the following more general problem.

Problem 2 (PTEd
n,k). For a given integer d ≥ 1 (the dimension of the problem),

k ≥ 1 (the degree of the problem) and n ≥ 2, find a n-tuple of multisets {A}n−1
i=0

A.-H. Dediu et al. (Eds.): LATA 2014, LNCS 8370, pp. 273–284, 2014.
c© Springer International Publishing Switzerland 2014
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of integer d-tuples such that, for all 0 ≤ r0, . . . rd−1 satisfying r0 + · · · rd−1 < k,
the value ∑

〈a0,...ad−1〉∈Ai

Ai (〈a0, . . . ad−1〉) ar00 · · · · · a
rd−1

d−1 (1)

does not depend on i.

In the Prouhet’s solution for d = 1, all the multisets are sets and form a
partition of the set

{
0, . . . , nk − 1

}
. The solution is based on the structure of

words, which can be obtained by iteration of a uniform morphism. These words,
in the case n = 2, form the building blocks of the well-known sequence of Thue-
Morse (which is sometimes called the sequence of Prouhet-Thue-Morse).

In [2], the authors described an exponential-size solution to Problem 1, which
they (not quite properly) call the generalization of the Prouhet’s theorem. The
ideas of the construction are based on geometrical approach entirely different
from that of Prouhet. In the current paper we will show, that a more genuine
generalization of the Prouhet’s construction provides a solution to the Problem
2 for any dimension d. All our considerations will be done for the case d = 2,
there is no principal obstacle to extend them, in a straightforward way, to any
dimension d > 2. We use the (rectangular) array words as a generalization of
the concept of (linear) words.

2 Basic Notions

We will use angle brackets to denote ordered tuples (alternatively, they may be
referred to as finite sequences). Let N = {0, 1, ...} denote the set of all natural
numbers. For m ∈ N, let �m� = {0, 1, . . . ,m − 1}. By default, for i ∈ �m�, αi

will denote the i-th element of an ordered m-tuple α, thus α = 〈α0, . . . , αm−1〉.
We will consider the alphabetical order on �m�× �n�, m,n ∈ N, where 〈i1, j1〉 <
〈i2, j2〉 if either i1 + j1 < i2 + j2 or i1 + j1 = i2 + j2 and i1 < j1.

Besides the usual radix-n notation for natural numbers, we will deal with
mixed-radix notation (see, for example, [12, p. 192]). Assume integers p ≥ 1,
m0, . . . ,mp−1 ≥ 2.

A multiset on a set U is a mapping A : U → N. We will identify a set B ⊆ U
with the multiset defined by B(u) = 1 if u ∈ B and B(u) = 0 otherwise. For
u ∈ U , we will write u ∈ A if A(u) > 0, otherwise we will write u /∈ A. The
multiset A is finite if u ∈ A for finitely many u ∈ U .

The definition of the basic terms of the (one-dimensional) formal languages
theory can be found, for example in [15]. We will concentrate here on definitions
for the two-dimensional case. An alphabet is any non-empty set; elements of
an alphabet are called symbols. We will mostly consider alphabets in the form
�m�,m ∈ N. Thus numbers will be used as symbols. For m,n ∈ N, a 〈m,n〉-
array word ([1,4,7,17,10,19]) is a mapping α : �m� × �n� → Σ. The pair 〈m,n〉
denotes the order of the array word αT. We denote αi,j = α (i, j). Alterna-
tively, an array word may be viewed as a matrix of symbols. The i-th row and
the j-th column of α are the (linear) words αi,0 · · ·αi,n−1 and α0,j · · ·αm−1,j ,
respectively. The set of all array words over the alphabet Σ and the set of all
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〈m,n〉-words will be denoted as Σ∗∗ and Σm,n, respectively. A (scattered) ar-
ray subword of an array word α ∈ Σm,n, m,n ∈ N , is an array word obtained
by deleting zero or more rows and zero or more columns from α. More for-
mally, let I = {i0 < i1 < · · · < ir−1} ⊆ �m�, J = {j0 < j1 < · · · < js−1} ∈ �m�,
〈r, s〉 ∈ �m�×�n�. The (scattered) array subword occurring at position I×J in α
is the 〈|I| , |J |〉-array word αI×J satisfying, for 〈p, q〉 ∈ I ×J , (αI×,J)p,q = αip,jq

An array subword may occur in the original word at different positions - after
deleting different sets of rows and/or columns. The number of occurrences of the
array subword γ in an array subword α is denoted as |α|γ .

For r, s ∈ N, we define a 〈r, s〉-array morphism, as a 2-dimensional analogue
to the uniform morphism1. It is the extension of a mapping h : Σ → Γ r,s,
to h : Σ∗∗ → Γ ∗∗ described as follows. For α ∈ Σm,n, 〈i, j〉 ∈ �m� × �n� and
〈u, v〉 ∈ �r�×�s�, the image h (α) is the 〈rm, sn〉-word satisfying h (α)ri+u,sj+v =
h (αi,j)u,v.

In the rest of the paper, we will omit the adjective “array”. Hence by “word”,
“subword”, “morphism” we will mean “array word”, “array subword”, “array
morphism”, respectively. We will specifically point out when we mean the one-
dimensional case.

Example 3. Consider the 〈3, 2〉-word

α =
0 1
1 1
1 0

over the alphabet {0, 1} and the 〈2, 2〉-morphism h : {0, 1}∗∗ → {0, 1, 2}∗∗ given
as

h (0) =
0 1
2 0

h (1) =
1 2
0 1

.

Then h (α) is the 〈6, 4〉-word

h (α) =

0 1 1 2
2 0 0 1
1 2 1 2
0 1 0 1
1 2 0 1
0 1 2 0

.

The bold symbols in h (α) denote the 〈3, 2〉-subword
0 1
1 1
2 1

occurring at position

{1, 3, 4} × {1, 3} (the subword is obtained by removing from h (α) rows 0, 2, 5
and columns 0, 2.)

1 We call the mapping “morphism”, though it is not a true morphism in algebraic
sense.
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3 Spectra of Array Words and the 2-Dimensional
Prouhet-Tarry-Escott Problem

The spectrum of a linear word is the multiset of its subwords (with the multiplic-
ity given by the number of distinct occurrences of the subword under considera-
tion) of length up to the given value. The question of characterization of words
by their spectra has been widely investigated ([11,8,16,9]). In the 2-dimensional
case, we analogously define the k-spectrum of a word α ∈ Σm,n, m,n ∈ N, k ∈ N,
to be the multiset of array words S

(k)
α = ∪p+q≤k+1D

〈p,q〉
α , where, for r, s ∈ N,

D
〈p,q〉
α is the 〈p, q〉-deck of α, being the multiset on Σp,q, satisfying, for γ ∈ Σp,q,

D
(p,q)
α (γ) = |α|γ .2
Let us first mention, that to check the equality of spectra of two words, it

is enough to compare the number of occurrences of the “largest” subwords, as
follows from a straightforward generalization of the property stated in [9], [6]:

Proposition 4. Let and α, β ∈ Σm,n,m,n ≥ 1. Let 〈r, s〉 ∈ �m� × �n�. If

D
〈r,s〉
α = D

〈r,s〉
β then, for 〈t, u〉 ∈ �r� × �s�, D〈t,u〉

α = D
〈t,u〉
β .

The property follows from the equality (valid for all words ν ∈ Σt,u)(
m− t

r − t

)(
n− u

s− u

)
|α|ν =

∑
γ∈Σr,s

|γ|ν |α|γ . (2)

The left-hand side of (2) expresses the fact that an occurrence of ν in α appears
within

(
m−t
r−t

)(
n−u
s−u

)
distinct occurrences of 〈r, s〉-words in α, while the right-hand

side is the count of occurrences of 〈r, s〉-words γ in α containing ν, each counted
as many times as the number of occurrences of ν it contains.

It is proved in [13,5] that positions of the same symbol in two distinct words
with identical k-spectrum, k ≥ 1, determine a solution of the Prouhet-Tarry-
Escott problem of degree k. We will show here, by following the ideas of the
proof from [13], that analogous assertion is true in the 2-dimensional case.

Assume α ∈ Σm,n, m,n ∈ N. Let 〈p, q〉 ∈ �m+1�×�n+1�. Consider a symbol

c ∈ Σ and 〈i, j〉 ∈ �p�× �q�. Then the number of array words in D
(p,q)
α (taking in

consideration the multiplicity of their occurrences in α) containing the symbol
c ∈ Σ at position 〈i, j〉 is

σc
α (i, j) =

∑
γ∈D(p,q)

α
γi,j=c

D(p,q)
α (γ)

=
∑

〈t,u〉∈�m�×�n�
αt,u=c

(
t

i

)(
m− t− 1

p− i− 1

)(
u

j

)(
n− u− 1

q − j − 1

)
(3)

2 The inequality “p + q ≤ k + 1” in the definition of S
(k)
α will translate to “p + q ≤

k + d− 1” if d-dimensional (instead of 2-dimensional) case is considered.
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since if a 〈p, q〉-subword containing c at position 〈i, j〉 occurs in α if its 〈i, j〉-th
position coincides with some 〈t, u〉-th position in α containing c. In each such
subword γ, the first i rows of γ occur within the first t rows of α and the
remaining p− i− 1 rows occur within its last m− t− 1 rows. The first j columns
of γ occur within the first u columns of α and the last q − j − 1 columns occur
within its last n− u− 1 columns.

We will say that a non-zero bivariate polynomial f (x, y) has bi-order 〈p, q〉
(for p, q ≥ 1) if all degrees of x, y occurring in f are from �p�× �q�, respectively.
(Hence the degrees of x, y in f are at most p−1, q−1, respectively.) For m,n ≥ 1
and 〈p, q〉 ∈ �m+1�×�n+1�, consider, for 〈i, j〉 ∈ �p�×�q�, the following bivariate
polynomials of bi-order 〈p, q〉:

fm,n,p,q
i,j (x, y) =

(
x

i

)(
m− x− 1

p− i− 1

)(
y

j

)(
n− y − 1

q − j − 1

)
. (4)

Lemma 5. For fixed integers m,n ∈ N, 〈p, q〉 ∈ �m + 1� × �n + 1�, the set (4)
forms a base of the vector space of all bivariate polynomials of bi-order 〈p, q〉.

Proof. It is sufficient to show the linear independence of the set. Assume in
contrary that there exist coefficients λi,j , not all of them equal to zero, such
that

ϕ (x, y) =
∑

〈i,j〉∈�p�×�q�

λi,jf
m,n,p,q
i,j (x, y)

is the zero polynomial. Let λt,u be the first of the coefficients in alphabetical order
of indices, which is not equal to zero. Then ϕ (t, u) = λt,u

(
m−t−1
p−t−1

)(
n−u−1
q−u−1

)
, since

for 〈i, j〉 > 〈t, u〉, either
(
t
i

)
= 0 or

(
u
j

)
= 0 and, consequently, fm,n,p,q

i,j (t, u) = 0.

We arrive to a contradiction, since, apparently, ϕ (t, u) �= 0.

We will first that two array words with identical decks induce solution to an
instance of the equal-power problem. This result will imply that two array words
with identical spectra induce a solution to the 2-dimensional Prouhet-Tarry-
Escott problem.

Lemma 6. Let α, β ∈ Σm,n, m,n ∈ N, and let 〈p, q〉 ∈ �m + 1� × �n + 1�. If
D

(p,q)
α = D

(p,q)
β then, for each c ∈ Σ, and 〈r, s〉 ∈ �p�× �q�∑

〈a1,a2〉∈�m�×�n�
αa1,a2=c

ar1a
s
2 =

∑
〈b1,b2〉∈�m�×�n�

βb1,b2
=c

br1b
s
2.

Proof. Let c ∈ Σ and 〈r, s〉 ∈ �p� × �q�. The equality (3) implies, for 〈i, j〉 ∈
�p� × �q�, σc

α (i, j) = σc
β (i, j). For 〈t, u〉 ∈ �m� × �n�, denote δct,u = 1 if αt,u = c

and βt,u �= c, δct,u = −1 if αt,u �= c and βt,u = c, and δct,u = 0 otherwise. Then,
observing 3, we obtain, for a ∈ Σ,
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∑
〈t,u〉∈�m�×�n�

δct,uf
m,n,p,q
i,j (t, u) =

=
∑

〈t,u〉∈�m�×�n�

δct,u

(
t

i

)(
m− t− 1

p− i− 1

)(
u

j

)(
n− u− 1

q − j − 1

)
(5)

= σc
α (i, j)− σc

β (i, j)

= 0 (6)

Take now the following polynomial expressed as linear combination of the poly-
nomials in base (4).

xrys =
∑

〈i,j〉∈�o�×�q�

μi,jf
m,n,p,q
i,j (x, y)

Applying (6), we obtain∑
〈t,u〉∈�m�×�n�

αt,u=c

trus −
∑

〈t,u〉∈�m�×�n�
βt,u=c

trus =

=
∑

〈t,u〉∈�m�×�n�

δcat,ut
rus

=
∑

〈t,u〉∈�m�×�n�

δct,u
∑

〈i,j〉∈�o�×�q�

μi,jf
m,n,p,q
i,j (t, u)

=
∑

〈i,j〉∈�o�×�q�

μi,j

∑
〈t,u〉∈�m�×�n�

δat,uf
m,n,p,q
i,j (t, u)

= 0

As a direct corollary, we obtain the needed relationship between the pairs
array words with identical spectra and solutions of the 2-dimensional Prouhet-
Tarry-Escott problem.

Theorem 7. Let k,m, n ∈ N, c ∈ Σ, and α, β ∈ Σm,n, such that S
(k)
α = S

(k)
β .

Then, for each c ∈ Σ, ∑
〈a1,a2〉∈�m,n�

αa1,a2=c

ar1a
s
2 =

∑
〈b1,b2〉∈�m,n�

βb1,b2
=c

br1b
s
2. (7)

for all 0 ≤ r, s such that r + s < k.

Proof. Let 0 ≤ r, s such that r + s < k. Then (r + 1) + (s+ 1) ≤ k + 1 and

D
(r+1,s+1)
α = D

(r+1,s+1)
β . Lemma 6 implies (7).
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4 Permutation Array Morphisms

In [6], in the 1-dimensional case, uniform morphisms where the images of any two
symbols have the same 1-spectra have been considered. As a partial result, it has
been proved that application of such morphism to a pair of words of equal length
with identical k-spectra results in a pair of words with identical (k + 1)-spectra.
The same seems not to be true in two dimensions, as shown in the following
Example 8.

Example 8. Consider the words α =
0 0
1 1

, β =
0 1
0 1

having the same 2-spectra

(since they contain the same number of occurrences of single symbols being
〈1, 1〉-words and 1 occurrence of λ being a 〈2, 0〉-word, 〈1, 0〉-word, 〈0, 0〉-word,
〈0, 1〉-word and 〈0, 2〉-word in the same time), and the morphism h (0) =

1 0
0 1

,

h (1) =
1 1
0 0

. Then

h (α) =

1 0 1 0
0 1 0 1
1 1 1 1
0 0 0 0

, h (β) =

1 0 1 1
0 1 0 0
1 0 1 1
0 1 0 0

.

Despite the fact that both h (0) and h (1) consist of two symbols 0 and two
symbols 1, the 3-spectra of the words h (α) and h (β) are different, since h (α)
contains 8 occurrences of the 〈1, 2〉-word 0 0 while h (β) contains only 6 its
occurrences.

We will restrict ourselves to a rather narrow class of morphisms where all
the symbol images have the same 1-spectrum. We will call them permutation
morphisms. In this section, we will use the following convention. For two words
α, β ∈ �m�p,q , m, p, q ≥ 1, and for integer c, we will write β = (α+ c)modm if
βr,s = (αr,s + c)modm for each 〈r, s〉 ∈ �p�× �q�.
Definition 9. A 〈p, q〉-morphism h : �m�∗∗ → �m�∗∗, m, p, q ≥ 1, is a permu-
tation morphism, if

1. there exist a permutation π1 of the set �p� and a permutation π2 of the set
�q� such that, for 〈r, s〉 ∈ �p�× �q�,

h (0)π1(r),π2(s)
=

(
h (0)r,s + 1

)
modm,

2. for i ∈ �m� ,
h (i) = (h (0) + i)modm.

Proposition 10. If h is a permutation morphism, then (using the notation from
Definition 9),

1. the length of each cycle of the permutation 〈π1, π2〉 of the set �p� × �q� is a
multiple of m
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2. the least common multiple of the lengths of any cycle in π1 and any cycle in
π2 is a multiple of m

3. pq is a multiple of m.

Example 11. Let m = 3, p = 2, q = 3,

h (0) =
1 0 2
2 1 0

, h (1) =
2 1 0
0 2 1

.

Then h is a permutation morphism (choose π1 : 0 �→ 0, 1 �→ 1, π2 : 0 �→ 2 , 1 �→
0, 2 �→ 1).

Theorem 12. Let m, t, u ≥ 1, k ≥ 0, z ∈ �m�, and let α, β ∈ �m�t,u such that

S
(k)
α = S

(k)
β and (β = α+ z)modm. Let h : �m�∗∗ → �m�∗∗be a permutation

morphism. Then S
(k+1)
h(α) = S

(k+1)
h(β) and h (β) = (h (α) + z)modm h

Proof. The latter assertion follows from the fact that

h (βi,j) = (h (αi,j + z)modm)modm

= ((h (αi,j) + z)modm)modm

= (h (αi,j) + z)modm.

To prove the latter, we will assume that h is a 〈p, q〉-morphism, p, q ≥ 1, and
use the notation from Definition 9. There is a bijection φ matching subword

occurrences in α of words from S
(k)
α to subword occurrences of the same words

in β. We will define a bijection ϑ matching the occurrences of subwords of
h (α) of order not greater than k + 1 to array subword occurrences of the same
words in h (β). Assume an occurrence of a 〈r, s〉-word γ, where r + s ≤ k + 1 in
h (α) at some position Iγ × Jγ . For 〈i, j〉 ∈ �t� × �u�, let Iγ,i = (ip+ �p�) ∩ Iγ ,
Jγ,j = (jq + �q�) ∩ Jγ , and [i, j, γ] = Iγ,i × Jγ,j . Then [i, j, γ] is the position of
that part of the occurrence of the word γ, which belongs to the image h (αi,j).
Let

I = {i′ ∈ �t�; [i′, j′, γ] �= ∅ for some j′ ∈ �u�} ,
J = {j′ ∈ �u�; [i′, j′, γ] �= ∅ for some i′ ∈ �t�} .

Observe that [i′, j′, γ] �= ∅ for each 〈i′, j′〉 ∈ I×J , since, otherwise, either I = ∅
or J = ∅. We will consider two cases.

1. There is at least one pair 〈i, j〉 such that |[i, j, γ]| ≥ 2. Then [I]+ [J ] ≤ k and

φ maps the position I×J of the occurrence of the word αI×J ∈ S
(k)
α to some

position φ (I × J) of an occurrence of the word βφ(I×J)′ = αI×J in β. That
means, each position 〈i′, j′〉 ∈ �t, u� such that h (α)[i′,j′,γ] �= ∅ is mapped to

a position 〈i′′, j′′〉 ∈ �t, u�. Since the symbols at the matching positions of
the words αI×J and βφ(I×J)′ are identical, the symbols in h (αi′,j′) belonging
to γ can be found in precisely same positions within h (β)i′′,j′′ . Now the ϑ-
image of the occurrence of γ in β is assembled following, in the reversed
way, the decomposition of the occurrence of γ in α to the parts belonging to
h (αi′,j′).
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2. For each pair 〈i, j〉, |[i, j, γ]| ≤ 1. Take 〈i, j〉 ∈ Iγ×Jγ and denote (by slightly
overusing the notation of ϑ), ϑ (i) = i − (imod p) + π−z

1 (imod p), ϑ (j) =
j−(jmod q)+π−z

2 (jmod q); I ′γ = {ϑ (i) ; i ∈ Iγ}, J ′γ = {ϑ (j) ; j ∈ Jγ}. Then
we set ϑ (Iγ × Jγ) = I ′γ × J ′γ . This mapping determines a position of some
〈r, s〉-word in β. We will show, that the subword occurring at this position
is γ. Indeed,

βϑ(i),ϑ(j) = h (βi div p,j div q)π−z
1 (imod p),π−z

2 (j mod q)

= h ((αi div p,j div q + z)modm)π−z
1 (imod p),π−z

2 (j mod q)

= (h ((αi div p,j div q + z)modm)− z)modm

= h (αi div p,j div q)

The mapping ϑ is clearly a bijection, since, swapping the role of α and β one
obtains the inverse mapping.

Theorem 13. Let m ≥ 1 and let h0, . . . , hk−1 be a sequence of permutation
morphisms, hi : �m�∗∗ → �m�∗∗, i ∈ �k�. Then

Sk
hk−1(hk−2(···h0(0)))

= Sk
hk−1(hk−2(···h0(j)))

for each j ∈ �m� and

hk−1 (hk−2 (· · ·h0 (j))) = (hk−1 (hk−2 (· · ·h0 (0))) + j)modm.

Corollary 14. Let h : �m�∗∗ → �m�∗∗, m, p, q ≥ 1, be a permutation morphism,
k ≥ 0.Then Sk

hk(i) = Sk
hk(j).

Example 15. Consider the following three morphisms on {0, 1}.

h0 (0)=
0 1
1 0

, h0 (1) =
1 0
0 1

h1 (0)= 0 1 , h1 (1) = 1 0

h2 (0)=
1 0
1 0
0 1

, h2 (1) =
0 1
0 1
1 0

Then

h2 (h1 (h0 (0))) =

1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 0

The image of the symbol 1 is obtained by replacing 0 by 1 and 1 by 0. One
can check (in rather painstaking way) that 3-spectra of these two words are
identical. For example,both of them contain 36 occurrences of the 〈2, 2〉-word
0 0
0 0

and neither of them contains an occurrence of
0 0
0 1

.
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Let us note that the morphism h0 in Example 15 may be considered to be a
2-dimensional generalization of the morphism of Thue-Morse.

The latter assertion of Theorem 13 implies that hk−1 (hk−2 (· · ·h0 (j))) con-
tains at some position the symbol 0 if and only if hk−1 (hk−2 (· · ·h0 (0))) contains
(−j)modm at the very same position. This fact, together with Theorem 7 and
Theorem 13 yield.

Theorem 16. Let m, p0, . . . , pk−1, q0, . . . , qk−1 ≥ 1 and let h0, . . . , hk−1 be a
sequence of permutation morphisms, where hi : �m�∗∗ → �m�∗∗, i ∈ �k�, is a
〈pi, qi〉-morphism. Then the partition of the set �p0 · · · pk−1� × �q0 · · · qk−1� into
m parts, where the j-th part, j ∈ �m�, consists of all positions in the word
hk−1 (hk−2 (· · ·h0 (0))) containing the symbol j, is a solution to the problem
PTE2

m,k.

Example 17. Consider the sequence of morphisms from Example 15. The word
h2 (h1 (h0 (0))) induces the following solution to PTE2

2,3.

A0 = { 〈0, 1〉 , 〈0, 2〉 , 〈0, 4〉 , 〈0, 7〉 , 〈1, 1〉 , 〈1, 2〉 , 〈1, 4〉 , 〈1, 7〉 ,
〈2, 0〉 , 〈2, 3〉 , 〈2, 5〉 , 〈2, 6〉 , 〈3, 0〉 , 〈3, 3〉 , 〈3, 5〉 , 〈3, 6〉 ,
〈4, 0〉 , 〈4, 3〉 , 〈4, 5〉 , 〈4, 6〉 , 〈5, 1〉 , 〈5, 2〉 , 〈5, 4〉 , 〈5, 7〉}

A1 = { 〈0, 0〉 , 〈0, 3〉 , 〈0, 5〉 , 〈0, 6〉 , 〈1, 0〉 , 〈1, 3〉 , 〈1, 5〉 , 〈1, 6〉 ,
〈2, 1〉 , 〈2, 2〉 , 〈2, 4〉 , 〈2, 7〉 , 〈3, 1〉 , 〈3, 2〉 , 〈3, 4〉 , 〈3, 7〉 ,
〈4, 1〉 , 〈4, 2〉 , 〈4, 4〉 , 〈4, 7〉 , 〈5, 0〉 , 〈5, 3〉 , 〈5, 5〉 , 〈5, 6〉}

with the sums ∑
〈a0,a1〉∈Ai

a00a
0
1 = 24,

∑
〈a0,a1〉∈Ai

a00a
1
1 = 84,∑

〈a0,a1〉∈Ai

a10a
0
1 = 60,

∑
〈a0,a1〉∈Ai

a10a
1
1 = 210.

Example 18. Consider the following three morphisms on {0, 1, 2}.

h0 (0)=2 1 0 , h0 (1) = 0 2 1 , h0 (2) = 1 0 2

h1 (0)=
1 0
0 2
2 1

, h1 (1) =
2 1
1 0
0 2

, h1 (2) =
0 2
2 1
1 0

h2= h0

Then

h2 (h1 (h0 (0))) =
2 1 0 1 0 2 1 0 2 0 2 1 0 2 1 2 1 0
1 0 2 0 2 1 0 2 1 2 1 0 2 1 0 1 0 2
0 2 1 2 1 0 2 1 0 1 0 2 1 0 2 0 2 1

The word h2 (h1 (h0 (0))) induces the following solution to PTE2
2,3.

A0 = { 〈0, 2〉 , 〈0, 4〉 , 〈0, 7〉 , 〈0, 9〉 , 〈0, 12〉 , 〈0, 17〉 , 〈1, 1〉 , 〈1, 3〉 , 〈1, 6〉 ,
〈1, 11〉 , 〈1, 14〉 , 〈1, 16〉 , 〈2, 0〉 , 〈2, 5〉 , 〈2, 8〉 , 〈2, 10〉 , 〈2, 13〉 , 〈2, 15〉}
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A1 = { 〈0, 1〉 , 〈0, 3〉 , 〈0, 6〉 , 〈0, 11〉 , 〈0, 14〉 , 〈0, 16〉 , 〈1, 0〉 , 〈1, 5〉 , 〈1, 8〉 ,
〈1, 10〉 , 〈1, 13〉 , 〈1, 15〉 , 〈2, 2〉 , 〈2, 4〉 , 〈2, 7〉 , 〈2, 9〉 , 〈2, 12〉 , 〈2, 17〉}

A2 = { 〈0, 0〉 , 〈0, 5〉 , 〈0, 8〉 , 〈0, 10〉 , 〈0, 13〉 , 〈0, 15〉 , 〈1, 2〉 , 〈1, 4〉 , 〈1, 7〉 ,
〈1, 9〉 , 〈1, 12〉 , 〈1, 17〉 , 〈2, 1〉 , 〈2, 3〉 , 〈2, 6〉 , 〈2, 11〉 , 〈2, 14〉 , 〈2, 16〉}

with the sums ∑
〈a0,a1〉∈Ai

a00a
0
1 = 18,

∑
〈a0,a1〉∈Ai

a00a
1
1 = 153,∑

〈a0,a1〉∈Ai

a10a
0
1 = 18,

∑
〈a0,a1〉∈Ai

a10a
1
1 = 153.

5 Conclusion

We provided a construction based on composition of array morphisms leading to
solutions to the two-dimensional Prouhet-Tarry-Escott problem. The construc-
tion can be easily generalized to higher dimensions. Though in the 1-dimensional
case quite a wide class of morphisms can be used in such construction, in our
approach highly regular morphisms had to be applied. We do not know whether
this requirement can be relaxed. One may also wonder, whether some more anal-
ogy to the 1-dimensional case can be drawn. One such analogy is closure of the
solution space under linear transformations.

Theorem 19. Let {Ai}i∈�n� be a solution to the Problem PTE2
n,k, i.e.,∑

〈a,b〉∈Ai

Ai (〈a, b〉) arbs,

for 0 ≤ r + s < k, does not depend on i. Let P0, Q0, P1, Q1 ∈ N. Let Bi, i ∈ �n�
be the multiset, such that

Bi (〈c, d〉) = if 〈c, d〉 = 〈P1a+Q1, P2b+Q2〉 for some (a, b) ∈ Ai

then Ai (a, b) else 0.

Then {Bi}i∈�n� is a solution to the Problem PTE2
n,k.

Proof.∑
(c,d)∈Ai

Bi (〈c, d〉)crds =
∑

(a,b)∈Ai

Ai (〈a, b〉) (P1a+Q1)
r (P2b+Q2)

s

=
∑
t∈�r�

∑
u∈�s�

(
r

t

)(
s

u

)
P t
1Q

r−t
1 Pu

2 Q
s−u
q

∑
〈a,b〉∈Ai

Ai (〈a, b〉) atbu,

for 0 ≤ r + s < k, which does not depend on i, since 0 ≤ t+ u ≤ r + s < k.

We believe that construction of other solutions, based on the radix notation
of the elements of the solution obtained here may be possible, in analogy to the
Theorem of Lehmer [14],[6]. Solutions to the multidimensional Prouhet-Tarry-
Escott problem within an arbitrary semiring may be considered, as well.
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Abstract. It is well known that problems encoded with circuits or for-
mulas generally gain an exponential complexity blow-up compared to
their original complexity.

We introduce a new way for encoding graph problems, based on CNF
or DNF formulas. We show that contrary to the other existing succinct
models, there are examples of problems whose complexity does not in-
crease when encoded in the new form, or increases to an intermediate
complexity class less powerful than the exponential blow up.

We also study the complexity of the succinct versions of the Graph Iso-
morphism problem. We show that all the versions are hard for PSPACE.
Although the exact complexity of these problems is not known, we show
that under most existing succinct models the different versions of the
problem are equivalent. We also give an algorithm for the DNF encoded
version of GI whose running time depends only on the size of the succinct
representation.

Keywords: Complexity, Succinct, Graphisomorphism, CNF, DNF.

1 Introduction

In many applications, like VLSI design or computer aided verification, graphs
and other combinatorial structures present many regularities allowing to encode
them in a compact way, much more succinctly than for example the usual ad-
jacency matrices or lists. Galperin and Wigderson [8] studied for the first time
the complexity of several graph decision problems when the adjacency relation
is presented as a Boolean circuit. The hope was that the succinctly encoded
instances contain enough structure to make the considered problem easier to
solve. They observed however an exponential blow-up in the complexity of these
problems, showing that the regularities that allow a succinct representation, do
not really help in order to solve the problem. Several extensions to this work
[11,2,15,16] showed that the exponential complexity blow-up is the general be-
havior, by proving upgrading theorems for several reducibilities: if a problem is
complete with respect to certain low level reducibility for a complexity class,
then the succinct version of the problem with its instances encoded as a Boolean
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circuit is complete for the corresponding exponentially higher class, with respect
to polynomial time reducibilities. Other extensions of the original work concen-
trated in more restricted encodings of the input instances, like Boolean formulas
[15] or ordered binary decision diagrams (OBDDs) [4],[16]. Even if these repre-
sentation models are more restricted than the Boolean circuits, in these works
the same exponential blow-up in the complexity of the succinct version of the
problem is shown.

Very recently, the class of NC0 circuits was considered as a succinct model
for encoding problem instances. In [9] the authors prove a blow-up result for the
complexity of the Satisfiability problem encoded this way.

We introduce here the use of Boolean formulas in conjunctive (CNF) or dis-
junctive normal form (DNF) in order to encode graphs. This is a considerable
restriction with respect to the model based on general Boolean formulas from
Veith [16]. The size of these representations is closely related to the bi-clique
decomposition of the graphs [5]. We show that in this limited model an upgrade
theorem is not possible since there are examples of problems whose complexity
does not increase when the input graphs are given in the form of a DNF for-
mula, while it presents an exponential blow-up when the dual representation is
considered. In other cases, the complexity of the succinct version of the problem
is neither that of the original problem nor exponentially higher. For example
the Dominating Set problem becomes PP-complete when the input graphs are
encoded as a DNF formula and it becomes complete for NEXP when a CNF
formula is considered, while the connectivity problem for directed graphs re-
mains NL complete with a DNF encoding and becomes complete for PSPACE
with a CNF encoding. This is a new phenomenon in the area of succinct repre-
sentations, since in all the existing models and examples the complexity of the
problem blows up exponentially in the succinct version.

The graph isomorphism problem, GI, asks whether there is a bijection be-
tween the nodes of two given graphs preserving the adjacency relationship. The
problem has been extensively studied (see e.g [10]) because of its graph theoretic
importance, but also because it is one of the few problems in NP whose exact
complexity is unknown: the problem is not known to be solvable in polynomial
time but also it is not expected to be NP-complete. We study here the complexity
of the succinct version of this problem considering several input representations.
The motivation for this is twofold. On the one hand the complexity of the suc-
cinct version of GI might shed some light to the complexity of the standard
version of the problem. On the other hand, algorithms for succinct GI that go
beyond the trivial decoding of the graph and then the application of an algo-
rithm for the standard problem to it, would be very useful in areas like computer
aided verification. Concerning the first goal, since in all the considered models
the graph encoded in the input is at most exponentially larger that the input
itself, the succinct version of GI is in NEXP. We obtain in Section 6 for all the
succinct encoding methods discussed here a hardness result for succinct-GI for
the class PSPACE. This is done with the help of the existing upgrade theorems
and the hardness results for the standard version of GI.



Succinct Encodings of Graph Isomorphism 287

Although the exact complexity of the succinct versions of GI is still unknown,
we prove that in most of the encoding models there is no difference in the com-
plexity of the succinct problem. We show that cir(GI), cnf(GI) and dnf(GI) are
equally powerful by giving polynomial time reductions between all these prob-
lems. Additionally, we reduce obdd(GI) to dnf(GI). This contrasts with the com-
putational power of the models, since it is well known that OBDDs and formulas
can be exponentially larger than Boolean circuits computing certain functions,
and that CNF formulas and OBDD’s cannot simulate each other without super-
polynomially increasing their size.

Concerning the second point in the motivation, we give an algorithm for
cnf(GI) (or for dnf(GI)) whose complexity depends solely on the size of the en-
coding formulas. Based on kernelization methods from the area of parametrized
algorithms [5], we present an algorithm that on input two CNF formulas F1 and
F2 with 2n variables each and at most s clauses, encoding graphs of size 2n,

decides whether the encoded graphs are isomorphic in time O(2
√
s2O(s)

). This
presents an improvement over the straightforward method decoding the graphs
and then applying the fastest known isomorphism algorithm to them, in the
cases in which s is smaller than n.

The rest of this paper is organized as follows: after a preliminary section
explaining our notation and basic definitions, we introduce in Section 3 the CNF
and DNF succinct encodings and show some examples on how the complexity
of the succinct versions can vary. Section 4 shows the equivalence for encodings
in case of the GI problem. Based on these results, we present in Section 5 an
algorithm for graphs encoded with DNF formulas. Finally, we show in Section 6,
that all the considered succinct versions of GI, obdd(GI), cnf(GI), dnf(GI) and
cir(GI) are hard for PSPACE.

2 Preliminaries

We refer the reader to standard textbooks for basic definitions and notation in
complexity theory including complexity classes, reductions and graphs. Building
on that, we present some further definitions.
≤p

m denotes the polynomial time many-one reduction. With ≤LT, we denote
a many-one reduction defined by a function f so that computing the i-th bit
of f(x) (denoted by f(x)i) can be done in logarithmic time in |x|. For this we
consider a machine model with direct access to the input. This kind of machine
has a special query tape, which on input a position, outputs the bit written in
the corresponding input position. This is a very weak type of reduction since
it has very limited access to the input x [2]. ≤qfr denotes the quantifier free
reduction. For space reasons we refer the reader to [16] for a description of this
type of reduction.

A Boolean circuit or formula C(x, y) (where x and y are variable vectors)
can be interpreted as a succinct encoding of a graph G = (V,E) (or any other
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structure). If |x| = |y| = n, we consider that C(x, y) represents a directed graph
on the set of vertices V = [2n] and edges defined by C(x, y) = 1 iff (x, y) ∈ E.
Note that the encoded graph has exponential size in n. We say that C encodes
the graph GC . Also formulas in CNF and DNF can be encoded in a similar way
and we consider FC , to be the CNF formula with 2|x| literals and 2|y| clauses
with C(x, y) = 1 iff literal x is in clause y (similarly for formulas in DNF).

We will consider the input model in which C is a CNF or DNF formula.
Note that every graph can be encoded with a polynomially sized DNF formula
with each edge encoded as a single implicant. A CNF encoding is similar with
each non-edge encoded as a single clause. This trivial observation shows that the
problems encoded as CNF or DNF formulas cannot be easier than the original
problems, for example, the Dominating Set problem for graphs encoded as CNF
formulas is hard for NP.

Looking at graphs encoded as DNF or CNF formulas, we note that in the
first case, each implicant or term adds a directed biclique to the total graph (a
biclique is a complete bipartite graph). The source side of the biclique is defined
by the set of vertices whose labels satisfy the x part of the implicant, while the
target side of the biclique is defined by the vertices satisfying the part of the
y variables. Therefore a graph encoded by a DNF with m implicants can be
decomposed as the union m bicliques.

In the case of a CNF formula, each clause subtracts a directed biclique from
the complete graph K2n . Every clause removes all edges between the set of x
and y nodes falsifying the clause.

Another class of succinct encodings considered in the literature [4,16] is that
defined by ordered binary decision diagrams, OBDDs. A binary decision diagram
is a directed, acyclic, rooted graph. Vertices are labeled with input variables xi

and edges are labeled with 0 or 1. Every vertex (except the two sinks) has two
outgoing edges and they have different labels. There are two special vertices
without successors, denoted 0 and 1, denoting the Boolean values true and false.
A BDD O describes a Boolean function f over a set of variables x1, . . . , xn as
follows: beginning at the root, in each vertex labeled with a variable the outgoing
edge labeled with the value of this variable is followed, until the 0 or the 1 vertex
is reached. This represents the value of the function. O is an OBDD if there is
a permutation π on the set of variables such that in all the paths from the root
to one of the special vertices the variables are consistent with the order defined
by π.

Two graphs G,H are isomorphic, (represented by G ∼= H) iff there is a bijec-
tion π : VG → VH such that for all pairs of vertices u, v ∈ VG, (u, v) ∈ EG iff
((π(u), π(v)) ∈ EH holds. The decision problem, given two graphs, determine if
they are isomorphic, is denoted as GI.

cir(GI), cnf(GI), dnf(GI) and obdd(GI) are the succinct versions of the iso-
morphism problem when the graphs are encoded respectively by circuits, CNF,
DNF formulas or OBDDs.
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3 Succinct CNF and DNF Encodings

We present in this section CNF and DNF encodings of several well known prob-
lems, showing that in some cases the inputs given in this way change the com-
plexity of the problems while in others the complexity of the original problem is
preserved. Figure 1 summarizes our results. For space reasons we omit some of
the proofs in this version of the paper.

Problem CNF encoding DNF encoding

Dominating Set NEXP-complete PP-complete

CNF-SAT NEXP-complete NP-complete

DNF-TAUT coNEXP-complete coNP-complete

STCONN PSPACE-complete NL-complete

Fig. 1. Complexity differences between DNF and CNF encodings

Theorem 1. dnf(Dominating Set) is PP-complete.

Proof. The hardness proof follows by standard methods and it is omitted. We
show that dnf(Dominating Set) is in the class PP. For this we sketch an algorithm
that on input a DNF formula F and a number k decides if the graph encoded
by the formula contains a dominating set of size ≤ k. The algorithm works in
polynomial time with the help of non-adaptive queries to PP. Since PP is closed
under truth-table reductions [6], this proves the result. Because we are dealing
with directed graphs, a dominating set consists of all vertices with in-degree
0 together with a subset of the vertices dominating all vertices with in-degree
greater than 0. The key observation is that this second subset cannot be larger
than m, the number of implicants in F . Recall that an implicant contains an
x and y part where the vertices consistent with the x literals are the source
of the defined edges. Therefore taking at most one vertex satisfying the x part
in each of the m implicants is enough to dominate all vertices with in-degree
greater than 0. We consider the list of all possible pairs (i, j) with 0 ≤ j ≤ m
and i = k − j and ask two queries for each pair: 1) is the number of vertices
with in-degree 0 at most j? and 2) is there a subset of vertices of in-degree at
least 1, of size ≤ i and such that the vertices defined by the y part in every
implicant is dominated by a vertex in the subset or by a vertex with in-degree
0? It is not hard to see that both are PP queries. We can conclude that there is
a dominating set of size at most k if and only if, for at least one of the m pairs
both queries are answered positively. This defines a truth-table reduction. �

Using the the next result for cnf(CNF-SAT) and the standard reduction from
SAT to Dominating Set, it is not hard to see that cnf(Dominating Set) is also
NEXP-complete.
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Theorem 2. cnf(CNF-SAT) is NEXP-complete.

Proof. It is clear that the problem is in NEXP. For showing the hardness we use
a recent result from Jahanjou, Miles and Viola [9]. There it is shown that the
satisfiability problem for formulas in 3-CNF, when encoded with polynomially
many NC0 functions is NEXP-complete. In their setting the formula F being
tested for satisfiability is encoded in a way in which an NC0 function fk gets
as input a clause index from F and computes the k-th bit of the three literals
contained in that clause. We reduce this problem to cnf(CNF-SAT). For this we
make a transformation between both types of encodings. We use a single formula
encoding the literal-clause relation of F instead of a polynomial amount of NC0

functions computing the bit encoding of a clause. For this we first transform
each of the circuits computing the fk functions into three NC0 circuits, with one
output bit each, computing fi,j for the j-th bit of the i-th literal (1 ≤ i ≤ 3).
Each such function depends only on constant many input bits and can therefore
be computed by a constant size CNF. The following circuit computes the literal-
clause relation for a clause encoded in the x variables and a literal encoded in
the y variables. ∨

i∈{1,2,3}

∧
j≤|y|

fi,j(x) = yj

Since fi,j can be represented by a constant size formula, fi,j ↔ yj can also be
expressed by a constant size CNF formula. The conjunction of these |y| formulas
(one for each j) is still a CNF. Finally transforming the disjunction of the 3
resulting formulas (one for each i) into CNF has size O(|y|3) = O(poly(n)). This
completes the reduction. �

4 Succinct Encodings of GI

In this and the following sections we concentrate on the complexity of the differ-
ent succinct versions of GI. We start by investigating the relation between DNF,
CNF, circuit- and OBDD encodings for this problem. Theorem 3 states our re-
sults. As described in the preliminaries, we have chosen to use encodings for
directed graphs. This is not a restriction for studying the complexity of GI since
both versions of the problem, for directed or undirected graphs, are equivalent.

Theorem 3. dnf(GI) ≡p
m cnf(GI) ≡p

m cir(GI) and obdd(GI) ≤p
m cnf(GI).

Proof. Obviously, cnf(GI) ≤p
m cir(GI), since a Boolean formula is a restricted

version of a circuit. The equivalence between dnf(GI) and cnf(GI) follows from
the observation, that two graphs are isomorphic iff their complementary graphs
are isomorphic. Given a CNF (DNF) formula encoding a graph, the negation
of the formula can be easily written as a DNF (CNF) formula and encodes the
complementary graph. More interesting is the proof of cir(GI) ≤p

m cnf(GI).
Given two circuits C(x, y) and C′(x, y) with |x| = |y| = n, encoding two

graphs G = GC and H = GC′ on the vertex set V = [2n], we create two
formulas F and F ′ encoding two new graphs G′ = GF and H ′ = GF ′ such that
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G ∼= H ⇔ G′ ∼= H ′. We give first an intuitive description of our construction
of F . We use the so called Tseitin transformation from circuits to satisfiability
equivalent CNF formulas (see for example [12]). In this transformation a Boolean
circuit C is transformed into a satifiability equivalent formula FC by introducing
for each each gate g in C a new variable zg and a small set of clauses expressing
the value of the gate for a certain input. For example if gate g is an OR gate with
the input gates e and f we add clauses expressing the subformula zg ↔ (ze∨zf).
The transformation also adds the single variable clause zoutput for the output
gate of the circuit. It should be clear that C is satisfiable if an only if FC is
satisfiable.

Going back to our construction, we can get from C(x, y) a formula F1(x, y, z)
which encodes the structure and evaluation of the gates of C on input x and y.
Variable vector z contains a bit for each gate in C. The satisfying assignments
for F1(x, y, z) consists of values for the x and y variables satisfying C(x, y) plus
further assignment values for the z variables with the value of the corresponding
gate in C on input x, y. z contains 2n additional bits (at the beginning) con-
taining a copy of x and y. This implies that for each satisfying assignment x, y
for C, there is a unique z such that F (x, y, z) = 1. Moreover, no other satisfying
assignment x′, y′ shares this particular z. If C has s gates, the new formula has
linear size in s, is in 3-CNF, and can be interpreted as an encoding for a hyper-
graph G1 on the set of vertices [22n+s] that contains only hyperedges of degree
3. In a second step, these hypergraphs are transformed into standard graphs.

We now give a more detailed construction of F . F includes a constant num-
ber of clauses for each gate i in C (represented as Di in the following formula,
encoding the evaluation of this gate. We also separate the original vertices en-
coded in the x and y assignments from the new z vertices by forcing the x, y
vertices to begin with 0 and the z vertices with 1. This can be done with one
additional variable. The succinct formula model assumes that all vertices are
encoded with the same number of bits. To achieve this, we pad the x and y
vectors with (s+2n+1)− (n+1) = s+n zero bits. The last line of the following
formula enforces that in each satisfying assignment, the first 2n bits of z contain
the values of x and y at the beginning, making it unique.

F (x, y, z) = D1 ∧ . . . ∧Ds

∧(x0 = 0) ∧ (y0 = 0) ∧ (z0 = 1)

∧
∧s+2n+1

i=n+1 (xi = yi = 0)

∧
∧n

i=1(xi = zi) ∧
∧2n

i=n+1(yi = zi)

Let G1 be the hypergraph encoded by F (x, y, z) (analogously for H1). We
claim:
Claim: G ∼= H ⇔ G1

∼= H1

Proof: Clearly, if G ∼= H , then G1
∼= H1 since an isomorphism between G and

H can be extended to map the z vertices according to the unique hyperdedge
they belong to.

Conversely, suppose G1
∼= H1 via an isomorphism ρ. Observe that all (non

isolated) z vertices belong to exactly one hyperedge of 3 nodes. If ρ maps z



292 B. Das, P. Scharpfenecker, and J. Torán

vertices to other z vertices then ρ defines an isomorphism between G and H .
Suppose that there is a z vertex being mapped to one of the x vertices. Then x
belongs to a unique hyperdedge. We look at two cases:

– Both neighbors of x belong to a unique hyperedge. Then these three vertices
define an isolated hyperedge. ρ can be easily modified to another isomor-
phism respecting the z vertices, by mapping z to the z neighbor of x. This
also defines an isomorphism between G and H .

– Only one of the neighbors of x belongs to a unique hyperedge. Then x is
connected to z and y of degree > 2. In the original graphs, x only had one
neighbor (y). Again, ρ defines an isomorphism betweenG andH by swapping
the roles of x and z.

�
In a second step we create two standard graphsG2 and H2 such that G1

∼= H1 ⇔
G2
∼= H2. The vertex set of these graphs is the set of assignments for the variable

vectors u, x, y, z with |u| = 1. Each such vertex encodes a hyperedge (x, y, z)
in the previous construction and an additional bit. The formula F ∗(x∗, y∗) =
F ′(x∗, y∗)∨F ′′(x∗, y∗), made of the following two subformulas, implements this
transformation.

F ′(uxyz, vx′y′z′) = F (x, y, z) ∧ (u = 0) ∧ (v = 1)

∧
∧|x′|−1

i=0 x′i = y′i = 0
∧(z′ = y ∨ z′ = z)

F ′′(vx′y′z′, uxyz) = F (x, y, z) ∧ (u = 0) ∧ (v = 1)

∧
∧|x′|−1

i=0 x′i = y′i = 0
∧(z′ = x ∨ z′ = z)

Note that u and v are single bit variables. F ∗ encodes a graph that is the union
of two vertex sets. The first one, encoded with a leading u = 0 encodes the set
of all degree 3 hyperedges. The second one is the set of all vertices in GF . These
are forced to begin with 1 and are padded with zeroes.

F ′ adds edges from a hyperedge vertex {x, y, z} to the vertices y and z. Sim-
ilarly F ′′ adds edges from x and z to the hyperedge {x, y, z}. This encodes the
directed edge (x, y) in GF .

F ∗ is a CNF formula. The whole construction from C to F ∗ only needs poly-
nomial time. Applying this transformation to C and C′ (using some additional
dummy gates to get equal circuit sizes) gives us the formulas F and F ′ satisfying
for G′ = GF and H ′ = GF ′

G ∼= H ⇔ G′ ∼= H ′

The statement obdd(GI) ≤p
m cnf(GI) follows from the fact that an OBDD for

a Boolean function can be transformed into a polynomial size Boolean circuit
for the function, with the above reductions from cir(GI) to cnf(GI). �
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5 An Algorithm for dnf(GI)

Using the characterization for DNF encoded graphs as the union of bicliques,
we give an algorithm for the succinct version of GI when the input graphs are
encoded as DNF formulas. The running time of the algorithm depends on the
number of implicants in the input.

To achieve this, we extend a kernelization technique explained in [5]. Ker-
nelization is a common method in fixed parametrized algorithms. It basically
consists in reducing problem instances to a small part of it from which the com-
plexity of the input can still be recovered. This is called a kernel. In some cases
algorithms can be designed having polynomial running time for performing the
kernelization plus an exponential running time on the size of the kernel.

Looking at graph isomorphism, our kernelization step consists in merging
together all the vertices that have exactly the same set of neighbors. We consider
these nodes to be equivalent. Doing this in both graphs has to be done with some
care, because some information might be lost in this way, namely the number
of merged nodes. For example, if one graph contains one vertex connected to
vertices a, b and c and the second graph contains two such vertices, the graphs
may seem isomorphic after merging these nodes. To avoid this problem, we add
some coloring or labeling encoding the number of vertices that are merged. In
the previous example, we would give the vertex in the kernel in the first graph
a certain color and in the second graph a different one. These colors can be
replaced with gadgets. Such a kernelization preserves isomorphism and can be
constructed in time polynomial in the size of the given graphs.

If our graphs are unions of s bicliques, we assign to every vertex v a vector
b(v) in {0, 1, 2, 3}s where b(v)i is 1 if v is in the source side of the i-th biclique,
meaning that v has outgoing edges to all vertices in the target side of the i-
th DNF term. Similar, b(v)i = 2 if v is in the target side of i, b(v)i = 3 if it
is both sides and b(v)i = 0 if it is in none of them. Note that, in contrast to
[5], we have four cases since we allow a node to be in the source and target
side. There are at most 4s possible vectors. It should be clear that after this
first kernelization step the vertices with the same vector are equivalent. There
may still be however equivalent vertices left with different vectors, which can
create problems when dealing with the isomorphism of two graphs. Consider
for example the case in which two different terms of a DNF formula define two
different sets of source vertices but with the same target set. The source sets
would have different vectors although they might be equivalent. But this and
similar problems are easy to detect. For all pairs of different vertices remaining
after the first part of the kernelization, we check if their in- and out-going edges
are the same. This is done comparing the union of all relevant source sides and
the union of the relevant target sides. If they are the same, we merge these two
vectors. This comes at a cost of (4s)2 = 4O(s) steps but only decreases the size
of the kernel. At last, the kernelization merges all vertices with the same vector
and colors this class of nodes with its size.

The kernelization together with an algorithm for GI can be used to compute
dnf(GI).
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Theorem 4. Given two DNF formulas F1 and F2 with 2n inputs each and with
at most s implicants, encoding graphs G1 and G2 on 2n vertices, isomorphism

for these graphs can be tested in time 2
√
s2O(s)

.

Proof. We describe the algorithm and prove its running time and correctness. On
input two DNF formulas we apply the explained kernelization to them obtaining
two graphs of size at most 4s = 2O(s) in time 2O(s). Using the isomorphism
test of Babai and Luks (see [1]), which runs in time 2

√
n logn on graphs with n

vertices, it can be tested whether the kernels are isomorphic. This clearly gives a

correct result. The running time is 2O(s) for the kernelization as well as 2
√
s2O(s)

for the isomorphism test. �

The same algorithm works for CNF formulas by first negating the formula and
then applying this algorithm to the resulting DNF formula. If s ∈ o(n), this
provides a better upper bound than obtaining an explicit representation of the
graphs (in time 2npoly(n)) and applying then the algorithm from Babai and
Luks.

Note that this algorithm can be also transformed into an algorithm for cir(GI)
by first using our transformation from cir(GI) to dnf(GI) and then applying the
kernelization and the isomorphism test. But since the size of the computed DNF
formula is O(c2) where c ≥ n is the circuit size, the algorithm would have a worse
running time than decoding the graphs from their succinct representations and
applying then an isomorphism algorithm to them.

6 Hardness Results

We show in this section that the circuit, DNF, CNF and OBDD succinct versions
of GI are hard for PSPACE under polynomial time many-one reducibilities. For
this we use the following Conversion Lemma relating the complexity of standard
and succinct encodings of the same problem. The Lemma for circuits appeared
in [2] and was improved in [3]. The version for OBDD’s is from [16].

Lemma 5. Let A,B ⊆ {0, 1}∗. If A ≤LT B, then cir(A) ≤p
m cir(B). If A ≤qfr B

then obdd(A) ≤p
m obdd(B).

Consider cir(USTCONN), the succinct version of the undirected reachability
problem. It is known that this problem is PSPACE-complete under polynomial
time many-one reducibilities [2]. Moreover, USTCONN is AC0 reducible to the
complement of GI [13,14]. We show here that in fact, this reduction can be done
in logarithmic time.

Theorem 6. USTCONN ≤LT GI.

Proof. Let G = (V,E) be an undirected graph with |V | = n and two designated
vertices s, t ∈ V . Consider a graph G′ = G1 ∪ G2 where G1 and G2 are two
copies of G, and for a vertex v ∈ V let us call v1 and v2 the copies of v in G1

and G2 respectively. Furthermore, G′ is defined to have vertex t1 labeled with
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color 1, (the rest of the vertices have color 0). It is not hard to see that there
are not any paths from s to t in G if and only if there is an automorphism ϕ
in G′ mapping s1 to s2. The question of whether there is an automorphism in
G′ with the mentioned properties, can in turn be reduced to GI by considering
the pair of graphs (Ĝ, Ĥ) where Ĝ are Ĥ are copies of G′ but with s1 marked
with a new color 2 in Ĝ and s2 marked with the same color in Ĥ . It holds that
G ∈ USTCONN iff (Ĝ, Ĥ) ∈ GI. It is only left to show that the constructions of
the graphs Ĝ and Ĥ as well as the color labels in the reduction can be done in
logarithmic time. A way to do this, is to consider that graph Ĝ has 4n vertices
(the construction of Ĥ is completely analogous). For each vertex v in V we
consider the four vertices abv with a, b ∈ {0, 1}. The vertices 00v and 11v define
two exact copies of G, while the vertices 01v and 10v are used for the color labels
of s1 and t1. For this we can add edges connecting all the 01v vertices between
themselves forming a clique and to 00s1 and connecting all the 10v vertices to
00t1 (and not between themselves to distinguish them from the 01 vertices).
With this construction, one bit of the adjacency matrix on Ĝ can be computed
in logarithmic time (on input G and the position in the matrix) since at most
one position in the adjacency matrix of G is needed for this. �

This result, together with Lemma 5 imply that cir(GI) is PSPACE-hard with
respect to the polynomial time many-one reducibility. Theorem 3 implies that
even DNF encoded GI is hard for PSPACE.

Corollary 7. dnf(GI) is hard for PSPACE.

Theorem 6 can in fact be strengthened for the case of a quantifier free reduction
[16] (for space reasons, this is omitted in this version). Using the second part
of Lemma 5 this proves that also the OBDD version of the problem is hard for
PSPACE.

Corollary 8. obdd(GI) is hard for PSPACE.

There are stronger hardness results for GI than the one used here [13]. However,
applying the Conversion Lemma to these we do not obtain better hardness results
for cir(GI). The translation of these results would imply hardness for the class
#PSPACE, but this class is known to coincide with FPSPACE [7].

7 Conclusions and Open Problems

We introduced the new CNF and DNF models for encoding problems succinctly.
We showed that contrary to the other existing models, there are examples for
which the complexity of succinct version of the problem does not blow up ex-
ponentially. The size of the graph encoding in the new models are related to
certain graph decompositions. It would be interesting to study further examples
of graph problems encoded in these models, trying to obtain algorithms acting
directly on the succinct versions as we did for the case of GI.
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We also studied the complexity of succinct-GI in the different models and
proved that although the complexity of this problem is not well understood
yet, the versions for GI under DNF, CNF and even circuit encodings are all
equivalent. A question that remains open is whether the OBDD version of GI is
also equivalent to the other versions or easier.
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Abstract. Extremal combinatorics is the study of the size that a certain
collection of objects must have in order to certainly satisfy a property.
Reaction systems are a recent formalism for computation inspired by
chemical reactions. This work is a first contribution to the study of the
behaviour of large reaction systems by means of extremal combinatorics.
We defined several different properties that capture some basic behaviour
of a reaction system and we prove that they must necessarily be satisfied
by large enough systems. Explicit bounds and formulae are also provided.

Keywords: Reaction systems, extremal combinatorics.

1 Introduction

Reaction systems (RS) are a formalism introduced by Ehrenfeucht and Rozen-
berg in 2004 [2] which is inspired by chemical reactions. Similarly to their real
counterparts, RS reactions need a set of chemicals (the reactants) to act on and
either can be inhibited by other chemicals (the inhibitors) or produce some prod-
ucts. Formally, a reaction consists of these three sets, each of which is coded as a
set of symbols and a RS is a set of reactions over a common set of symbols (the
entities). The size of such a system is simply defined as the number of reactions
of which it is composed.

This work provides a first study on the behaviour of large RS. For the first
time (at our knowledge) concepts from extremal combinatorics are applied to
the field of RS. Other works on RS dynamics have also been carried on adopting
a completely different point of view [1]. Indeed, the authors investigated the
properties of random generated RS. Conversely, here we focus on some property
P and the goal is to find minimal bounds on the size of RS such that all RS of
larger size exhibit P .
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Combinatorial statements arise almost naturally in many fields. Particularly
important are those about the properties that a certain structure can exhibit
when its size increases. A famous statement of this kind is, for example, the
Ramsey theorem, that states that for every k ∈ N, any large enough complete
two-colored graph has a monochromatic subgraph of k nodes. Other examples
come from the most different mathematical structures. These statements can be
presented in many ways. One can either point out the existence of a size bound
after which a certain property holds (a more Ramsey-like view), or try to find
the exact value of this bound or, at least, obtain some information on its order
of magnitude (an extremal combinatorics point of view). To prove statements of
extremal combinatorics a large body of work regarding proof techniques has been
produced, ranging from various counting techniques to combinatorial proofs and
linear algebra methods. Since it is impossible to give a detailed account of all
the results and the techniques, we refer the reader to specific books (see, for
example, [5] for extremal combinatorics and [4] for Ramsey theory).

This paper studies the minimal size after which a reaction system:

– necessarily exhibits a non-sequential behaviour.
– always exhibits a non-sequential behaviour.
– includes two reactions such that the reactants of one of them inhibit the

other.
– necessarily has a reaction that produces the inhibitors of another reaction.
– can be substituted by a smaller reaction system with the same dynamics.
– cannot be written as the union of two reaction systems with a disjoint set of

entities.

These properties help to clarify the limits in size and in parallelism that are
inherent in the definition of RS. Many of the results obtained in this paper
can also be restated as Ramsey-like statements (i.e., in terms of presence of an
“ordered” substructure inside a large enough structure).

The paper is structured as follows. The next section recall basic notions about
RS. Section 3 contains the main results. Further remarks and discussion are
provided in Section 4.

2 Reaction Systems

In this section, we give the basic notions about reaction systems, including the
concepts of dynamics and equivalence. Notation is taken from [3].

2.1 Basics of Reaction Systems

We first recall the main concept of a reaction. Inspired by real chemical reactions,
it comprises three sets corresponding to the reactants, the inhibitors, and the
products of the reaction.
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Definition 1. A reaction a = (Ra, Ia, Pa) is a triple of three non-empty sets
such that Ra ∩ Ia = ∅. Ra is called the set of reactants, Ia the set of inhibitors,
and Pa the set of products, respectively, For any set S, we say that a is a reaction
in S if Ra ⊆ S, Ia ⊆ S, and Pa ⊆ S.

Let S be a finite set. The set of all reactions in S is denoted by rac(S). For any
T ⊆ S and any reaction a ∈ rac(S), we say that a is enabled by T if Ra ⊆ T and
Ia∩T = ∅. The result resa(T ) of a reaction a ∈ rac(S) on a set T ⊆ S is defined
as resa(T ) = Pa if a is enabled by T , and resa(T ) = ∅ otherwise. The previous
notion extend naturally to sets of reactions: the result set of A on a subset
T ⊆ S is resA(T ) =

⋃
a∈A resa(T ). For any A ⊆ rac(S), the reactant, inhibitor,

and product set of A are RA =
⋃

a∈A Ra, IA =
⋃

a∈A Ia, and PA =
⋃

a∈A Pa,
respectively. Furthermore, we say that A is enabled by T if every reaction a ∈ A
is enabled by T .

Definition 2. A Reaction System (RS) is a pair A = (S,A), where S is a finite
set of symbols and A ⊆ rac(S). The set S is called the background of A.
The result set of a reaction system A = (S,A) on a subset T ⊆ S is resA(T ) =
resA(T ). The T -activity of A, denoted by enA(T ), is the set of all reactions of
A enabled by T . A reaction system B = (S,B) is a subsystem of A = (S,A) if
B ⊆ A.

Every RS A = (S,A) defines a finite dynamical system where P(S) (the
subsets of S) are the possible states and the next state function is resA.

The following notion is crucial to our study.

Definition 3. The size of a RS A = (S,A) is |A|.
Note that the above definition does not take into account of |S| simply because
|A| can be exponentially larger than |S|.

2.2 Equivalence of Reaction Systems

In order to obtain lower bounds on the structure of RS having a given property,
one needs the notion of equivalence between RS.

Let S be a set of entities, two reactions a, b ∈ rac(S) are functionally equiv-
alent (denoted by a ∼ b) if for all T ⊆ S, resa(T ) = resb(T ). Ehrenfeucht and
Rozenberg found the necessary and sufficient conditions to establish if two re-
actions are functionally equivalent [3]. Indeed, they proved that two reactions
a, b ∈ rac(S) are functionally equivalent iff Ra = Rb, Ia = Ib and Pa = Pb. The
notion of functional equivalence can also be extended to sets of reactions. Two
sets A,B ⊆ rac(S) of reactions are functionally equivalent (denoted by A ∼ B)
iff for all T ⊆ S, resA(T ) = resB(T ). It has been proved that the problem of the
functional equivalence between sets of reactions is coNP-complete [3]. Two RS
are functionally equivalent if their sets of reactions are functionally equivalent.

In [3], also a partial order between reactions has been introduced. For any
pair of reactions a, b ∈ rac(S), a covers b (denoted by a ≥ b) iff for all T ⊆ S,
resa(T ) ⊇ resb(T ). It is immediate that a ∼ b ⇔ a ≥ b ∧ b ≥ a. It has been
proved that a ≥ b if and only if Ra ⊆ Rb, Ia ⊆ Ib and Pb ⊆ Pa [3].
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3 Properties and Bounds of Reaction Systems

An important insight on the behaviour of a large group of RS can be obtained
by studying the properties that any RS with a large enough size has to exhibit.
In this section we will define several properties for RS and we will prove that all
these hold for RS with large enough size. In particular, for most of properties
the minimal RS size making them emerge will turn out to be asymptotically
smaller than the number of all the possible RS. Therefore, we can state that
these properties are verified by the large majority of RS.

We now introduce the concept of threshold property, i.e., a property for RS
expressed in terms of a predicate over the class of all RS which is true for those
RS with size greater than a certain threshold.

Definition 4. Let P be a predicate over the set of all possible RS. P is said
to be a threshold property for RS if for every n ∈ N+ there exists a natural
k ≤ (2n − 1)(3n − 2n+1 + 1) such that P (A) is true for any RS A = (S,A) with
|S| = n and size |A| ≥ k. Depending on P and n ∈ N+, the integer k is denoted
by R(P, n) and called the threshold for P .

The following lemma gives the number of all possible reactions in any set of a
given number of entities. It will be very useful in the sequel to compute bounds
for the threshold properties.

Lemma 5. For any n ∈ N and any set S of symbols with |S| = n, it holds that
|rac(S)| = (2n − 1)(3n − 2n+1 + 1).

Proof. Let n ∈ N and let S be any set with |S| = n. The number of reactions in
S is the number of possible combinations of reactants, inhibitors and products.
The number of possible combinations of reactants and inhibitors is:

n−1∑
i=1

(
n

i

) n−i∑
j=1

(
n− i

j

)
=

n−1∑
i=1

(
n

i

)
(2n−i − 1) =

n−1∑
i=1

(
n

i

)
2n−i −

n−1∑
i=1

(
n

i

)
=

n−1∑
i=1

(
n

i

)
2n−i − 2n + 2

By the properties of binomial coefficient one finds:

n−1∑
i=1

(
n

i

)
2n−i = −2n − 1 +

n∑
i=0

(
n

i

)
2n−i = −2n − 1 + (2 + 1)n

Then, we get 3n − 2n+1 + 1 combinations of reactants and inhibitors. The
multiplication with the number of all possible product sets gives a total of
(2n − 1)(3n − 2n+1 + 1) reactions. �

Remark that, by Lemma 5, a RS with n entities and at least (2n−1−1)(3n−1−
2n + 1) + 1 reactions necessarily has each entity used in at least one reaction.

The following proposition is an immediate consequence of Definition 4 and
gives a necessary and sufficient condition for recognizing threshold properties.
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Proposition 6. A predicate P is a threshold property for RS if and only if for
any set S of entities, P (A) is true for the RS A = (S, rac(S)).

The following example shows that not all the properties on the RS dynamics are
threshold properties.

Example 7. Compare the following two predicates defined for any RS A = (S,A)
as:

1. A has a cycle of period 2, i.e., there exists T ⊆ S such that resA(resA(T )) =
T and resA(T ) �= T .

2. A has a fixed point, i.e., there exists T ⊆ S such that resA(T ) = T .

Even if they might seem similar, only the second predicate is a threshold prop-
erty. Indeed, it is clearly true for any A = (S, rac(S)) since resA(∅) = ∅. Consider
now the evaluation of the first predicate on (S, rac(S)). Since for every T ⊆ S
with T �= ∅ and T �= S the reaction (T, S \ T, S) is enabled, it holds that
resA(T ) = S. Furthermore, resA(S) = resA(∅) = ∅. Hence, the first predicate is
not a threshold property.

Each RS property we are going to consider will be actually expressed in terms
of predicates over the class of all RS. When no confusion is possible, we will
identify the term property with the associated predicate.

The first property we deal with is totality. It holds for those RS that produce
a non-empty result set on every proper subset of entities. In some sense, it is a
kind of liveliness property for RS. More formally, totality is defined for any RS
A = (S,A) by means of resA viewed as a function on the subsets of S.

Definition 8. For any RS A = (S,A), the function resA is said to be total if
for all T ⊆ S with T �= ∅ and T �= S, resA(T ) �= ∅. A RS has property Tot if its
result function is total.

In [6], the problem of determining if the result function of a RS is total was
proved to be coNP-complete. By Proposition 6, it is clear that Tot is a threshold
property. The following proves how large in size a RS should be to define a total
result function.

Proposition 9. The threshold for property Tot is

R(Tot, n) = (2n − 1)(3n − 3 · 2n + 2�
n
2 � + 2�

n
2 �) + 1.

Proof. For every n ∈ N+, let S be any set with |S| = n and let T be any proper
subset of S with |T | = k for some 0 < k < n. The number of all possible reactions
in S enabled by T is (2k−1)(2n−k−1)(2n−1) since any non-empty subset of T ,
resp., S \ T , resp., S can be selected as set of reactants, resp., inhibitors, resp.,
products.

By Lemma 5, a RS with (2n− 1)(3n− 2n+1 +1)− (2k − 1)(2n−k − 1)(2n− 1)
reactions can be defined with no reaction enabled in T . This value is maximized
for k = 0n2 1 or k = �n2 �. Hence,
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R(Tot, n) = (2n − 1)((3n − 2n+1 + 1)− (2�
n
2 � − 1)(2�

n
2 � − 1)) + 1

= (2n − 1)(3n − 3 · 2n + 2�
n
2 � + 2�

n
2 �) + 1

that proves the statement. �

We now consider Minimal-Concurrency (MC). It is that property exhibited
by non-sequential RS, i.e., with at least two reactions that can be executed
concurrently.

Definition 10. A RS A = (S,A), A has the Minimal-Concurrency (MC) prop-
erty if there exist two reactions a, b ∈ A and a set T ⊆ S such that a, b ∈ enA(T ).

Clearly, MC is a threshold property.

Proposition 11. The threshold for MC property is R(MC, n) = 2n − 1.

Proof. Let n ∈ N+. Any RS with n entities and at least 2n − 1 reactions nec-
essarily has two reactions with the same reactant set, since only 2n − 2 distinct
reactant sets are possible. Hence, it has at least two reactions that can be en-
abled at the same time, i.e., R(MC, n) ≤ 2n − 1. To prove that this bound is
strict, consider the RS A = (S,A) where |S| = n and A contains all the possible
reactions in the form a = (Ra, S \ Ra, P ) for some common P ⊆ S. Clearly,
|A| = 2n− 2. Since each a ∈ A is enabled only by T = Ra, and such a T is never
the same for distinct reactions, A does not have the MC property. Therefore,
R(MC, n) = 2n − 1. �

We now bring to the extreme the MC property, that is, we consider a fully
parallel behavior for RS.

Definition 12. A RS A = (S,A) has the Always-Parallel (AP) property if for
every set T ⊆ S and every reaction a ∈ enA(T ) there exists a reaction b ∈ A\{a}
such that b ∈ enA(T ).

By Proposition 6, AP is a threshold property.

Proposition 13. The threshold for AP property is

R(AP, n) = (2n − 1)
(
3n − 5 · 2n−1 + 2

)
+ 2.

Proof. For every n ∈ N+, let S be any set with |S| = n. We count the number of
reactions in S enabled by each subset T ⊆ S, i.e., those reactions c = (Rc, Ic, Pc)
with Rc ⊆ T , Ic ∩ T = ∅, and an arbitrary Pc. This number is (2n − 1)(2|T | −
1)(2n−|T | − 1) that is minimized when |T | = n − 1 or, symmetrically, |T | = 1.
Thus, the minimum number of reactions enabled by any subset of S is (2n −
1)(2n−1 − 1). Let k = (2n − 1)(3n − 2n+1 + 1 − 2n−1 + 1) + 2. By Lemma 5,
for any RS (S,A) with |A| ≥ k every subset T ⊆ S enables at least two distinct
reactions.
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On the other hand, consider the RS A = (S,A) where A is made of the
reaction a = ({s}, S \ {s}, P ) for some fixed s ∈ S and P ⊆ S and all the ones
with a reactant set different from {s}. A has exactly k−1 reactions but AP does
not hold for A, since a ∈ enA(T ) for T = {s} but no reaction different from a is
enabled by T . Therefore, R(AP, n) = k. �

As immediate generalization of the AP property, we can introduce the (thresh-
old) APm property with 2 ≤ m ≤ (2n−1)(2n−1−1), that is, the predicate which
is true for any RS such that every subset of its entities enables either 0 or at
least m reactions. Clearly, AP = AP2 and the following fact holds.

Corollary 14. For each 2 ≤ m ≤ (2n− 1)(2n−1− 1), the threshold for the APm

property is

R(APm, n) = (2n − 1)
(
3n − 5 · 2n−1 + 2

)
+m.

No-Concurrency (NC) is the property exhibited by those RS with at least two
reactions that can never be executed at the same time step. In some sense, it is
an “upper” limit on the concurrency that a RS can achieve.

Definition 15. A RS A = (S,A) has the No-Concurrency (NC) property if
there exist a, b ∈ A such that for all T ⊆ S, either a /∈ enA(T ) or b /∈ enA(T ).

Equivalently, any RS (S,A) has the NC property if and only if it admits two
reactions a = (Ra, Ia, Pa) and b = (Rb, Ib, Pb) such that Ra ∩ Ib �= ∅, i.e., if and
only if RA ∩ IA �= ∅. Then, it follows from Proposition 6 that NC is a threshold
property.

Proposition 16. The threshold for NC property is

R(NC, n) = (2n − 1)
(
2n − 2�

n
2 � − 2�

n
2 � + 1

)
+ 1.

Proof. For every n ∈ N+, let S be any set with |S| = n. We count the largest
number of possible reactions in any reaction set A such that RA ∩ IA = ∅ and
|RA| is fixed. Putting h = |RA|, this number is (2h − 1)(2n−h − 1)(2n − 1) =
(2n−1)(2n−2h−2n−h+1) which is maximized by either h = �n2 � or 0

n
2 1. Thus,

the maximum number of reactions of any reaction set A such that RA ∩ IA = ∅
is (2n − 1)

(
2n − 2�

n
2 � − 2�

n
2 � + 1

)
and this concludes the proof. �

On the other hand, we also consider RS with at least one reaction that pro-
duces at least one inhibitor of another reaction. Clearly, the behavior of RS with-
out this feature is determined only by reactants and products since inhibitors
play no role.

Definition 17. A RS A = (S,A) has property Inh if there exist two reactions
a = (Ra, Ia, Pa), b = (Rb, Ib, Pb) ∈ A such that Pa ∩ Ib �= ∅.

It is clear that Inh is a threshold property.
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Proposition 18. The threshold for Inh property is bounded as follows:(
2n−1 − 1

)2
< R(Inh, n) < (2n − 1)

(
2n − 2�

n
2 � − 2�

n
2 � + 1

)
.

Proof. For every n ∈ N+, let S be any set with |S| = n. To obtain the lower
bound, we compute the maximal cardinality of any reaction set A such that
PA ∩ IA = ∅ ∧ RA ∩ IA = ∅. Once |IA| has been fixed to some n − h with
1 ≤ h ≤ n− 1, the largest cardinality of any reaction set A satisfying the above

conjunction condition is
(
2h − 1

)2
(2n−h − 1) since the cardinalities of PA and

RA can be at most h. Since this value is maximum for h = n − 1 and the
conjunction condition is stronger than the statement [∀a ∈ A,Ra ∩ Ia = ∅], the
maximal cardinality of any reaction set A satisfying this latter statement is at

most
(
2n−1 − 1

)2
. This proves the lower bound for R(Inh, n).

As to the upper bound, we compute the cardinality of any set A of triples
a = (Ra, Ia, Pa) such that PA ∩ Ia = ∅ for all a ∈ A without any restriction on
Ra ∩ Ia (i.e., we also count triples that are not reactions). When |PA| is fixed to
some h with 0 < h < n, it holds that |IA| = n− h. Since RA is not constrained,
the cardinality of such a set A with |PA| = h is (2n−1)(2n−h−1)(2h−1), a value
that is maximum when h = 0n2 1. As a consequence, the maximal cardinality of

any such a set A of triples is k = (2n − 1)
(
2n − 2�

n
2 � − 2�

n
2 � + 1

)
and, hence,

R(Inh, n) ≤ k. To prove that the inequality is strict, just remark that a =
(Ia, Ia, Pa) ∈ A, but a /∈ rac(S). �

Proposition 18 does not provide an exact threshold value for Inh. However,
the ratio between the lower and upper bound is relatively small, in the sense
that these are asymptotically proportional. Indeed,

lim
n→+∞

(
2n−1 − 1

)2
(2n − 1)

(
2n − 2�

n
2 � − 2�

n
2 � + 1

) =
1

4
.

We now introduce a notion of redundancy for RS.

Definition 19. A RS A = (S,A) is Red ( redundant) if there exists C ⊂ A such
that A ∼ C.

In other words, a RS is Red if its set of reactions contains some redundancy, i.e.,
reactions that do not contribute to the dynamics of the system. As an example of
redundant system consider (S, rac(S)). Indeed, it is equivalent to (S,∅). Hence,
by Proposition 6, Red is a threshold property. The following property is very
useful to provide a sufficient condition assuring that a RS has property Red.

Definition 20. A RS A = (S,A) has property Comp if for every a ∈ rac(S),
there exists b ∈ A such that either a ≥ b or b ≥ a.

In other words, any RS has the Comp property if it contains a maximal an-
tichain of reactions.
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Proposition 21. Let A = (S,A) be a RS. If there exists B ⊂ A such that the
RS B = (S,B) has property Comp, then A has property Red.

Proof. Suppose that for some B ⊂ A the RS (S,B) has the Comp property and
let C ⊆ A be the set of maximal elements of A. We are going to prove that the
RS C = (S,C) is functionally equivalent to A and C ⊂ A. Remark that any
RS with two reactions a, b ∈ A with a ≥ b is functionally equivalent to the one
obtained by removing b from the former. Thus, C ∼ A. Since (S,B) has the
Comp property, there exist a ∈ A \B and b ∈ B such that either a ≥ b or b ≥ a.
Because of that, at least one between a and b cannot be an element of C and,
hence, C ⊂ A. �

The property Comp holds for (S, rac(S)) and thus it is a threshold prop-
erty. It is difficult to find an exact threshold for Comp property. However, using
Proposition 22 convenient bounds can be given.

Proposition 22. The threshold for property Comp is bounded as follows:

n!(2n − 2)

0n2 1!�
n
2 �!

≤ R(Comp, n) ≤ n!(3n − 2n+1 + 1)

0n2 1!�
n
2 �!

.

Proof. For every n ∈ N+, let S be any set with |S| = n. Denote by l and u the
lower and upper bound for R(Comp, n), respectively, in the statement of this
Proposition.

To prove that R(Comp, n) ≥ l, it is enough to provide a reaction set in S
containing an antichain of l reactions. Let A be the set of all the reactions of form
(R,S \ R,P ) with |P | = 0n2 1. All reactions from A are pairwise incomparable.
Indeed, consider any two distinct reactions a, b ∈ A. If Pa �= Pb, then they are
not comparable since their product sets have the same cardinality. Otherwise,
it holds that either Ra �= Rb or Ia �= Ib, and so necessarily a and b are not
comparable. We now compute |A|. There are

(
n
k

)
subsets of S with k elements

and this value is maximized for either k = 0n2 1 or k = �n2 �. Hence, there are(
n
�n

2 �
)
possible product sets for reactions in A. Since there are 2n − 2 possible

reactant sets and the inhibitor sets are completely determined by them, it follows
that |A| = l.

On the other hand, to prove that R(Comp, n) ≤ u we exhibit a set B of
reactions in S such that the RS (S,B) has the property Comp, |B| = u, and any
antichain of reactions in S has smaller cardinality. Let B be the set of all reactions
of form (R, I, P ) with |P | = 0n2 1. Every reaction a = (Ra, Ia, Pa) ∈ rac(S) \ B
is comparable with (Ra, Ia, P ) ∈ B for some P ⊂ Pa or P ⊃ Pa. Thus, (S,B)
has the property Comp. Furthermore, by the same arguments used as above to
compute |A| and in the proof of Lemma 5, we get |B| = u. Consider now any
antichain C of reactions in S. For each a ∈ C, define Ca = {(R, I, P ) ∈ C :
R = Ra and I = Ia} and Ba = {(R, I, P ) ∈ B : R = Ra and I = Ia}. Let
π3 be the projection mapping any reaction to its third component. Since each
Ca is an antichain, each π3(Ca) is also an antichain (in P(S) ordered by the
inclusion relation). Moreover, each π3(Ba) is a maximal antichain in P(S) and
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then |Ca| ≤ |Ba| for every a ∈ C. Since it is possible to extract from {Ca}a∈C a
partition Γ of C and, consequently, from {Ba}a∈C a collection of disjoint subsets
of B, it follows that |C| =

∑
Ca∈Γ |Ca| ≤

∑
Ca∈Γ |Ba| ≤ |B|. �

Knowing if a RS has property Comp is useful to find RS with property Red.
In fact, Proposition 21 shows that the existence of a subsystem with property
Comp is a sufficient condition for a RS to contain redundant reactions. Hence,
by Propositions 21 and 22, the bounds for property Comp immediately give
bounds for Red.

The previous proposition can also be reformulated into a Ramsey-like state-
ment as follows.

Proposition 23. Every RS of large enough size contains a maximal antichain
of reactions.

Equivalently, if one wants to put more emphasis on the property of containing
redundant reactions, Proposition 22 can be turned into the following.

Proposition 24. Every RS of large enough size contains an equivalent subsys-
tem.

Another interesting property concerns the “decomposability”, i.e., the possi-
bility that a RS can be decomposed as the union of two or more smaller RS.

Definition 25. A RS A = (S,A) is decomposable if there exist two RS A1 =
(S1, A1) and A2 = (S2, A2) such that S1, S2 �= ∅, S1 ∪ S2 = S, S1 ∩ S1 = ∅,
A1∪A2 = A, and A1 ∩A2 = ∅. A system is non-decomposable (or has property
NC) if it is not decomposable.

There are pretty simple systems which are not decomposable. As an example,
the RS A = ({a, b}, {({a}, {b}, {a})} cannot be decomposed. The same holds for
(S, rac(S)). Therefore, it is natural to search for the threshold assuring that any
RS of bigger size is non-decomposable.

Proposition 26. The threshold for property ND is

R(ND, n) = (2n−1 + 1)(3n−1 − 2n + 1) + 1.

Proof. For every n ∈ N+, let S be any set of n entities. Suppose that a RS A =
(S,A) can be decomposed into two RS A1 = (S1, A1) and A2 = (S2, A2) with
|S1| = h for some h ∈ {1, . . . , n−1}. By Lemma 5, |A1| ≤ (2h−1)(3h−2h+1+1)
and |A2| ≤ (2n−h−1)(3n−h−2n−h+1+1). Since |A| = |A1|+|A2|, we can find the
value of h that maximizes |A|. This value is h = 1 or, symmetrically, h = n− 1.
Hence, if A can be decomposed, then A has at most k = (2n−1+1)(3n−1−2n+1)
reactions. Furthermore, if |A| exceeds h, then A cannot be decomposed. Hence,
R(ND, n) = k + 1. �

As generalization of the ND property, for 1 ≤ m ≤ 0n2 1 the (threshold) NDm

property is the predicate which is true for any RS decomposable in two RS both
with a background of at least m entities.
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Corollary 27. For each 1 ≤ m ≤ �n2 �, the threshold for the NDm property is

R(NDm, n) = (2n−m − 1)(3n−m − 2n−m+1 + 1) + (2m − 1)(3m − 2m+1 + 1) + 1.

Proof. The value R(NDm, n)−1 is the maximum size of a RS decomposable into
two RS both with background of at least m entities. It is obtained as done in
the proof of Proposition 26 for RS decomposed into two RS with background of
m and n−m entities. �

4 Conclusion

This work provides a first application of extremal combinatorics to the study of
large RS. The results concern some basic properties of RS. In particular, we deal
with questions about concurrency, full parallelism, decomposability. All these are
fundamental structural properties of RS. Indeed, assume to endow the set of RS
having n entities with the uniform probability. Then, extracting a RS with the
property MC, or NC, or Inh, or Comp is an event whose probability goes to one
as n goes to infinity. It would be interesting to understand if this also holds for
property ND, since our result proves that the probability is asymptotically lower
bounded by a positive constant. However, we do not know if this probability
goes to one or not.

Future works should aim at enlarging the set of threshold properties and build
up a corpus of tools favouring the transfer of the extremal combinatorics results.
We have studied bounds that involved only one application of the result function.
It would be interesting to find natural threshold properties on the dynamics
of RS.
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Abstract. Stochastic context-free grammar (SCFG) has been successful
in modeling biomolecular structures, typically RNA secondary structure,
for statistical analysis and structure prediction. Context-free grammar
rules specify parallel and nested co-occurren-ces of terminals, and thus
are ideal for modeling nucleotide canonical base pairs that constitute the
RNA secondary structure. Stochastic grammars have been sought, which
may adequately model biomolecular tertiary structures that are beyond
context-free. Some of the existing linguistic grammars, developed mostly
for natural language processing, appear insufficient to account for cross-
ing relationships incurred by distant interactions of bio-residues, while
others are overly powerful and cause excessive computational complexity.

This paper introduces a novel stochastic grammar, called stochastic
k-tree grammar (SkTG), for the analysis of context-sensitive languages.
With the new grammar rules, co-occurrences of distant terminals are
characterized and recursively organized into k-tree graphs. The new
grammar offers a viable approach to modeling context-sensitive inter-
actions between bioresidues because such relationships are often con-
strained by k-trees, for small values of k, as demonstrated by earlier
investigations. In this paper it is shown, for the first time, that proba-
bilistic analysis of k-trees over strings are computable in polynomial time
nO(k). Hence, SkTG permits not only modeling of biomolecular tertiary
structures but also efficient analysis and prediction of such structures.

Keywords: stochastic grammar, context-sensitive language, k-tree, dy-
namic programming, biomolecule, RNA tertiary structure.

1 Introduction

Stochastic formal language systems, typically the stochastic context-free gram-
mar (SCFG), have been significantly valuable to various applications. Such a
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system essentially consists of a finite set of rules that syntactically dictate gen-
eration of strings for a desired language. Any generation process of a language
string is a series of Chomsky rewriting rule applications and thus yields a syntac-
tic structure associated with (the terminal occurrences in) the string. Because
syntactic rules often are nondeterministic, there may be more than one syntac-
tic process to generate the same string [26,9]. Stochastic versions of such formal
systems may be established by associating a probability distribution with the
rules. Compounding the probabilities of rules used in a generation process of
a string gives rise to the probability for the corresponding syntactic structure
admitted by the string [28,8]. Therefore, a stochastic language system defines a
probability space for all the syntactic structures admitted by the string. At the
same time, it also defines a probability space for all the strings in the language.

In addition to the apparent wide application in natural language processing
[18,15,35,16,27,2], SCFG has also been extensively adopted for statistical analy-
sis of biomolecular structures [25,8,4,5,29]. A biomolecule consists of a string of
linearly arranged residues that can spatially interact to fold the string into a 3D
structure of biological significance. Interactions between residues are interpreted
as co-occurrences of lexical objects in each parsing of the string. SCFG can con-
veniently model nested and parallel relationships of the interacting residues on a
biomolecule. Figure 1 shows an RNA molecule with parallel and nested canonical
base parings (in gray, lighter lines) between nucleotides, which is context-free.
Indeed, SCFG has enabled the development of a number of effective computer
programs for the prediction of RNA secondary structure [21,39,17,1,24]. Such
programs are also computationally efficient by taking the advantage of dynamic
programming algorithms permitted by context-free rules.

Nevertheless, SCFG cannot account for crossing interactions of a context-
sensitive nature, e.g., the interactions in Figure 1 denoted by both gray (lighter)
and pink (darker) lines. Since crossing, distant interactions are the signature
of a biomolecule forming a tertiary (3D) structure, adequate modeling of such
interactions with a stochastic grammar would have the potential for effec-
tive analysis and even prediction of biomolecular tertiary structures. Modeling
context-sensitive languages with Chomsky context-sensitive grammars can be
inconvenient and may incur computational intractability [19,9]. Previous work
in more constrained languages has studied mildly context-sensitive grammars,
typically the Tree-Adjoining Grammar [13] and its equivalent variants [14,34], to
model limited cross-serial dependencies arising in natural language processing.
There has been limited success in the applications of such grammars in biomolec-
ular structure modeling [33,29,4]; they were mostly used for the characterization
of local, secondary structures. The global structure of a biomolecule involving
cross relationships between arbitrarily distant residues may be beyond limited
cross-serial dependencies.

In this paper, we introduce a novel stochastic grammar called stochastic
k-tree grammar (SkTG), for the analysis of context-sensitive languages. With
succinct grammar rules, co-occurrences of distant terminals are recursively char-
acterized as k-trees. A k-tree is a chordal graph that does not contain cliques
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Fig. 1. A single RNA molecule can fold back on itself to form secondary and tertiary
structures through bio-residue interactions. (a) The secondary structure of tRNA (Phe
of yeast, PDB id: 1EHZ)) consists of parallel and nested canonical base parings (gray,
lighter connections) between nucleotides, which is context-free. The tertiary structure
formed with additional non-canonical tertiary interactions (pink, darker connections)
between nucleotides is context-sensitive. (b) Illustration of the bio-residues interactions
of the tRNA molecule in terms of co-occurrences of terminals on a language string.

of size more than k + 1 as a graph minor [23,3]. For small values of k, k-
trees are tree-like graphs; they are adopted in this work to constrain cross-
ing relationships of terminal occurrences on language strings. Such constrained
context-sensitivity has been discovered in biomolecular structures; recent studies
have revealed that graphs describing bio-residue interactions found in resolved
biomolecular 3D structures are actually (subgraphs of) k-trees, typically for
k ≤ 4 [36,31,37,11,10]. Therefore, the new grammar SkTG offers a viable ap-
proach to statistical modeling, analysis, and prediction of biomolecular tertiary
structures.

Previous studies showed that statistical analysis problems over general k-
trees are extremely difficult, in particular, NP-hard even for k = 2, excluding
the possibility to feasibly implement such a framework [32,40,30]. However, with
the linear chain of vertices constrained on k-trees, we are able to show, for the
first time, that the k-tree parsing problem is solvable in polynomial-time for
every fixed value of k. In particular, we will show that SkTG makes it possible
to define a probability space for all k-tree structures admitted by any given
language string. We will demonstrate efficient dynamic programming algorithms
for computing the most probable k-tree structure for any given string. In this
paper, we will also discuss the application in the prediction of biomolecular
tertiary structures that has motivated this work.

2 k-Trees and the k-Tree Grammar

Definition 1. [23] Let integer k ≥ 1. The class of k-trees are defined with the
following inductive steps:
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Fig. 2. (a) A generation of a 3-tree of 7 vertices by Definition 1. (b) A derivation of
string abcdefg with 3-tree grammar rules introduced in Definition 3, with the types
of applied grammar rules shown and the LHS of every applied rule underscored. The
derivation also results in an induced 3-tree, the same graph shown in (a).

1. A k-tree of k + 1 vertices is a clique of k + 1 vertices;
2. A k-tree of n vertices, for n > k + 1, is a graph consisting of a k-tree G of

n− 1 vertices and a vertex v, which does not occur in G, such that v forms
a new (k + 1)-clique with some size-k clique already in G.

Figure 2 (a) shows of a 3-tree with seven vertices. By Definition 1, the order
in which 4-cliques formed is: initially {1, 2, 3, 6} (black edges), vertex 5 and blue
edges added, then vertex 7 and red edges added, and finally vertex 4 and green
edges added.

2.1 The k-Tree Grammar

Chomsky grammars derive a language sentence by series of rewritings on a single
symbolic string. Instead, our new grammar derives a language sentence by rewrit-
ings onmultiple symbolic strings, thus resulting in multiple symbolic strings. The
language sentence generated in such a derivation consists of the terminal symbols
that occur in the resulting multiple symbolic strings; the positional ordering of
the derived terminals is completely determined by the derivation.

Let Σ be an alphabet, N be the set of non-terminals, and ε be the empty
string. We call a symbolic string an m-alternating string, if it has the format
X0a1X1 · · · amXm for some m ≥ 0, such that Xi ∈ N ∪ {ε} for all 0 ≤ i ≤ m
and ai ∈ Σ for all 1 ≤ i ≤ m.

Definition 2. Let α = X0a1X1 · · · amXm be an m-alternating string for some
m ≥ 0. Let ω be the substring Xiai+1 · · ·Xj in α, for some 0 ≤ i ≤ j ≤ m,
and σ ∈ (N ∪Σ)∗ be a string. Then α|ωσ is the string obtained from α with the
substring ω being substituted by σ.

For two non-overlapping substrings ω1 and ω2 in α, we use α|ω1,ω2
σ1,σ2

to denote
the string obtained from α with ω1 being replaced by σ1 and ω2 being replaced
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by σ2 at the same time. We also allow aggregation ∀i to denote multiple simul-
taneous substitutions involving all applicable indexes i. In particular, α|∀iXi

Yi
is

the string obtained from α by replacing Xi with Yi for every i

Definition 3. Let k ≥ 2 be a fixed integer. A k-tree grammar is a 6-tuple Γ =
(Σ,N ,R,M, I, S), where Σ is a finite alphabet, N is a set of nonterminals, S, I,
and M are the starting, importing and masking nonterminals in N , respectively,
and R is a set of grammar rules. Each rule has the format of α→ A, where α is
either S or a (k + 1)-alternating string and A is a subset of (k + 1)-alternating
strings, and has one of the following four types. (In the following we assume
α = X0a1X1 · · · ak+1Xk+1, where ∀i = 1, · · · , k+ 1, ai ∈ Σ, and ∀j = 0, · · · , k+
1, Xj ∈ N .)

(A) S → {β}, for β = Y0b1Y1 · · · bk+1Yk+1, where ∀i = 1, · · · , k + 1, bi ∈ Σ,
and ∀j = 0, 1, · · · , k + 1, Yj ∈ N − {M, I}.

(B) α→ {β, γ}, where ∃s, 0 ≤ s ≤ k + 1, Xs �= M , such that

(1) β = α|∀iXi

Yi
, γ = α|∀iXi

Zi
, Ys = I, and Zs = M .

(2) ∀i = 0, 1, · · · , k + 1, if Xi = M then Yi = Zi = M ; else either Yi = Xi

and Zi = M , or Yi = M and Zi = Xi.

(C) α → {β}, where ∃s, 0 ≤ s ≤ k + 1, Xs = I, and ∃t, 0 ≤ t ≤ k, t − s ≥ 1

or s − t > 1, Xt = Xt+1 = M , such that β = α|Xs

Y aZ |
Xtat+1Xt+1

M , for some
Y, Z ∈ N − {M, I} and some a ∈ Σ.

(D) α→ {β}, such that β|∀iXi

Yi
and ∀i = 0, 1, · · · , k+1, if Xi = M then Yi = M ;

else Yi = ε.

We note that rules of types (B) and (C) are tightly related by the importing
nonterminal I. In particular, a rule of type (C) can be used if and only if a
related rule of type (B) has been used.

Definition 4. Let Γ = (Σ,N ,R,M, I, S) be a k-tree grammar. Let set T ⊆
(Σ ∪ N )+. Let α ∈ T , α → A ∈ R, and define T ′ = T − {α} ∪ A. We say that
T derives T ′ with rule α→ A and denote it by T ⇒α→A T ′ (or simply T ⇒ T ′
when the used rule is clear in the context).

We call T ⇒∗ T ′ a derivation if and only if either T = T ′ or there are T ′′
and α→ A such that T ⇒α→A T ′′ and T ′′ ⇒∗ T ′ is a derivation.

Let T ⊆ (Σ∪N )+ be a subset. A terminal occurs in T if it occurs in some string
contained in T . Binary relation & on the set of all terminal occurrences in T is
such that, for any two terminal occurrences ai and aj in T , ai & aj if and only
if (a) ai = aj, or (b) ai occurs to the left of aj in the same string, or (c) there is
a terminal occurrence ah such that ai occurs to the left of ah in the same string
and ah & aj .

Theorem 5. Let T ⊆ (Σ ∪ N )+ be a subset and {S} ⇒∗ T be a derivation.
Then the binary relation & on the set of all terminal occurrences in T is a total
order.
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Proof. (Sketch) By induction on m, the number of terminal occurrences in T ,
where {S} ⇒ T .

Basis: m = k + 1. T can contain only one string and the last rule used must
be of type (D). Therefore, all the terminal occurrences are next to each other on
the only string in T , thus forming the total order.

Assumption: for m terminal occurrences in T , the claim is true.
Induction: we assume that there are m+ 1 terminal occurrences in T . Let T1

be such that {S} ⇒∗ T1 and T1 ⇒∗ T for which rule α→ {β, γ} of type (B) and
β → θ of type (C) are used to introduce a new terminal occurrence a. Let L be
the set of m terminal occurrences in T1. By the assumption, the binary relation
& on L is a total order. Note that terminal a co-occurs with other k terminals in
the same string θ. Without loss of generality, we assume a occurs to the right of
terminal occurrence b and to the left of terminal occurrence c. Then b & a and
a & c, and for any other terminal occurrence d ∈ L, either d & b or c & d, thus
either d & a or a & d by the definition of &. So the binary relationship & on set
L ∪ {a} is also a total order. �

Definition 6. Let Γ = (Σ,N ,R,M, S) be a k-tree grammar and T ⊆ (Σ ∪
{M})+ such that {S} ⇒∗ T . A string a1a2 · · · an ∈ Σ+, n ≥ 3, is the underlying
string of T , if for every 1 ≤ i < n, substring aiai+1 occurs in some string in T .
In addition, the language defined by the grammar Γ is

L(Γ ) = {s ∈ Σ+ : T ⊆ (Σ ∪ {M})+, {S} ⇒∗ T , and uls(T , s)}

where predicate uls(T , s) asserts that s is the underlying string of T .

For example, Figure 2(b) shows a derivation of T that contains four symbolic
strings, for which the string abcdefg of 7 terminals is the underlying string.

2.2 Structure Space for Individual Strings

The introduced k-tree grammars are context-sensitive that can define crossing
relationships among terminals. Let subset T ⊆ (Σ ∪N )+. We call two terminal
occurrences syntactically related if they appear in the same RHS of some rule used
in some derivation {S} ⇒∗ T . We characterize such relationships of terminal
occurrences in T with notions of graphs.

Definition 7. Let Γ be a k-tree grammar. Let T ⊆ (Σ ∪ N )+ be such that
{S} ⇒∗ T . The induced graph of T is a labeled graph GT = (V,E), in which
vertices have one-to-one correspondence (i.e., labeled) with the terminal occur-
rences in T and edges connect vertices corresponding to syntactically related
terminal occurrences. The structure space E(s) of any given string s ∈ L(Γ ) is
defined as

E(s) = {GT : T ⊆ (Σ ∪ {M})+ and uls(T , s)}

For example, Figure 2(a) is the induced graph for the final set of four sym-
bolic strings in the derivation shown in Figure 2(b), for which abcdefg is the
underlying string.
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Definition 8. Let s = s1 · · · sn ∈ Σ+ be a string of length n. A (labeled) graph
G = (V,E), where V ⊆ {1, 2, · · · , n}, is faithful to s if

(a) ∀ i ∈ V , vertex i is labeled with si; and
(b) ∀ i, j ∈ V , if i < j and ¬∃ l ∈ V i < l < j, then (i, j) ∈ E.

Lemma 9. Let {S} ⇒∗ T ′ with the underlying string s = s1s2 · · · sn ∈ Σ+.
Then for any T such that {S} ⇒+ T ⇒∗ T ′, the induced graph of T is a faithful
k-tree to string s.

Proof. (Sketch) We prove by induction on l, the number of grammar rule appli-
cations in the derivation {S} ⇒+ T to show the induced graph GT of T is both
a k-tree and faithful to s.

l = 1. This is the case that rule {S} → {X0a1X1 · · · ak+1Xk+1} is first
used. Thus GT , where T = {X0a1X1 · · · ak+1Xk+1}, consists of k + 1 vertices
{i1, i2, · · · , ik+1} labeled with terminal co-occurrences {a1, a2, · · · , ak+1}. GT is
a (k + 1)-clique, thus a k-tree. It also is faithful to s since it satisfies condition
(b) as no vertices other than {i1, i2, · · · , ik+1} are present.

We assume the lemma to be true for the case that fewer than l rules are
applied. We now prove it is also true for the case that l rules applied, l ≥ 2. Let
T1 be such that {S} ⇒∗ T1 ⇒∗ T and T1 ⇒∗ T be realized by either a rule of
type (D) or a rule of type (B) and then a rule of type (C).

In the case of a rule of type (D) used to realize T1 ⇒∗ T , no new terminal
occurrences are introduced to T . Thus GT1 = GT , proving the lemma by the
assumption.

In the case of a combination of rules of types (B) and (C), one new vertex
h, labeled with the new terminal occurrence b in the RHS of the rule of type
C, is introduced to GT . New vertex h, along with the vertices labeled with
a1, · · · , at, at+2, · · · , ak+1, forms a (k+1)-clique, thus GT is a k-tree. In addition,
let i and j be two vertices in GT such that i < j and there is no vertex between
them. If neither is labeled with the terminal occurrence b, they should belong
to GT1 as well. By the assumption they satisfy condition (b) of Definition 8. If i
(resp. j) is labeled with b, the rule of type (C) ensures that (h, i) (resp. (h, j)) is
included in the new (k+1)-clique, thus in GT . Therefore, GT is a faithful k-tree
to s. �

Let {S} ⇒∗ T for which s, |s| = n, is the underlying string. Then by Lemma 9,
GT is a k-tree of n vertices faithful to s. According to Definition 7, edge (i, i+1)
is in GT , for all 1 ≤ i ≤ n− 1. Hence, GT contains the annotated Hamiltonian
path {(i, i+ 1) : 1 ≤ i ≤ n− 1}. We thus have the following.

Theorem 10. Let Γ be a k-tree grammar and string s ∈ L(Γ ). The structure
space E(s) is a set of k-trees, each containing the Hamiltonian path {(i, i+ 1) :
1 ≤ i ≤ n− 1}, where n = |s|.

On the other hand, we are interested in such k-tree grammars that for every
string s in the defined language, the structure space E(s) contains all possible
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k-trees (of size n = |s|) constrained by the annotated Hamiltonian path. In the
following, we show that such k-grammars do exist.

Recall Definition 1 for creating all possible k-trees. Let κ = {i1, i2, · · · , ik+1}
be an existing (k + 1)-clique, with i1 < i2 · · · < ik+1. We call any new (k + 1)-
clique a child of κ if it is formed by a newly introduced vertex along with exactly
k vertices already in κ.

Lemma 11. Let κ = {i1, i2, · · · , ik+1} be an existing (k + 1)-clique. Then with
the Hamiltonian path constraint, κ can have at most k + 2 children.

Proof. (Sketch) A new (k+1)-clique can be created by introducing a new vertex
in one of the k + 2 intervals (1, i1), (i1, i2), · · · , (ik+1, n) to connect to exactly k
vertices in the clique κ. Therefore, it suffices to show that, for each of the (k+2)
intervals, at most one new (k + 1)-clique can be created.

Without loss of generality, assume two different new (k+1)-cliques κ1 and κ2

are created with two new vertices h and l drawn from the same interval (ij , ij+1),
respectively, where ij < h < l < ij+1. Apparently (h, l) is not an edge. Nor can
there be a path {(h, h+1), (h+1, h+2), · · · , (h+m, l)}, where h+m = l−1, for
any m ≥ 1. This is because a new vertex between h and l will only be introduced
as a part of descendant of either κ1 or κ2 but not both. Therefore, there must
be r, 0 ≤ r ≤ m, such that edge (h+ r, h+ r+ 1) is not accounted for as a part
of the Hamiltonian path. �

Theorem 12. Let k ≥ 2 be a fixed integer. There exists a k-tree grammar Γ
such that L(Γ ) = Σ∗ and, for any given string s ∈ L(Γ ) of length n, the structure
space E(s) contains all k-trees constrained by the Hamiltonian path {(i, i+ 1) :
1 ≤ i < n}.

Proof. (Sketch) It suffices to show that such a desired k-tree grammar has a
finite number of rules.

Recall the four types of grammar rules given in Definition 3. Each rule {S} →
{β} of type (A) induces a (k + 1)-clique corresponding to the co-occurrence of
k + 1 terminals in β. Such rules can be at most O(|Σ|k+1|N |k+2) in number.
Each rule α→ {β, γ} of type (B) and each rule β → ρ of type (C) work together
to induce an additional (k + 1)-clique from the (k + 1)-clique whose vertices
are labeled with the k + 1 terminals that co-occurr in α. As a result of the
rule applications two symbolic strings are derived. One symbolic string contains
k existing terminals selected from those in α to co-occur with a new terminal
occurrence b, while the other symbolic string retains the co-occurrences of k+1
terminals in α but “masks off” the segment that introduces b. The latter symbolic
string allows rules of types (B) and (C) to be repeatedly applied to induce more
(k + 1)-cliques from the same terminal occurrences in α. By Lemma 11, rules
of types (B) and (C) are bounded by O(|Σ|k+2|N |k+4k2) in number. Finally,
type (D) rules are used to terminate recursion without deriving new terminal
occurrence. They are bounded by O(|Σ|k+1|N |k+2) in number as well. �
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3 Probability Computation with k-Tree Grammars

3.1 Stochastic k-Tree Grammars

Definition 13. A stochastic k-tree grammar (SkTG) is a pair (Γ, θ), where Γ =
(Σ,N ,R,M, I, S) is a k-tree grammar and θ is a function: R→ [0, 1] such that
for every α ∈ (Σ ∪ N )+, ∑

α→A∈R
θ(α → A) = 1

We interpret the probability model θ associated with grammar rules as follows.
θ(S → {β}) is the probability for co-occurrence of the k + 1 terminals in β. θ
associated with all such type (A) rules gives a probability distribution over all co-
occurrences of k + 1 terminals. In addition, θ distributes probabilities between
rules of type (B) and of type (D) to account for the expected number of co-
occurrences of k+1 terminals that share the same set of at least k− 1 terminal
occurrences. θ(α → β) of a type (C) rule is probability for co-occurrence of the
k + 1 terminals in β conditional on co-occurrence of the k + 1 terminals in α.

Definition 14. Let T ⊆ (Σ∪N )+ be such that {S} ⇒∗ T . Then the probability
of derivation {S} ⇒∗ T with (Γ, θ) is defined recursively as

Prob(T |Γ, θ) =
∑

r∈R, T ′⇒rT
Prob(T ′|Γ, θ)× θ(r)

with the base case Prob({S}|Γ, θ) = 1.

Definition 15. Let (Γ, θ) be a SkTG. Then for any given string s ∈ L(Γ ), its
probability with (Γ, θ) is defined as

Prob(s|Γ, θ) =
∑

{S}⇒∗T , uls(T ,s)

Prob(T |Γ, θ)

Therefore, the probability of s under the model (Γ, θ) is computed as the sum
of probabilities of all derivations of s by the grammar. In other word, Prob(s|Γ, θ)
is the likelihood for the string s to possess at least one k-tree structure. We
observe that

Proposition 16. Let (Γ, θ) be a SkTG, the strings in the language L(Γ ) form
a probabilistic space, i.e., ∑

s∈L(Γ )

Prob(s|Γ, θ) = 1

Alternatively, it is of interest to know the most likely structure possessed by a
given string s. This then is to compute the maximum probability of a derivation
{S} ⇒∗ T for which s is the underlying string. Similar to the total probability
computation, we can define maximum probability recursively,
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Let T ⊆ (Σ ∪ N )+ be such that {S} ⇒∗ T . Then the maximum probability
of derivation {S} ⇒∗ T is defined recursively as

Maxp(T |Γ, θ) = max
r∈R, T ′⇒rT

Maxp(T ′|Γ, θ) × θ(r)

with the base case Maxp({S}|Γ, θ) = 1.

Definition 17. Let (Γ, θ) be a stochastic k-tree grammar. Then for every given
string s ∈ L(Γ ), the maximum probability of a derivation for s is defined as

Maxp(s|Γ, θ) = max
{S}⇒∗T , uls(T ,s)

Maxp(T |Γ, θ)

And the most likely structure for s with (Γ, θ) is the induced graph GT � of
the subset T � ⊆ (Σ ∪ {M})+ decoded from Maxp(s|Γ, θ), where

T � = arg max
{S}⇒∗T , uls(T ,s)

Maxp(T |Γ, θ)

3.2 Dynamic Programming Algorithms

We now show probability computations with SkTG can be done efficiently. We
outline a dynamic programming strategy for computing the maximum probabil-
ity function Maxp. The computation for the total probability function is similar.
Let s = s1 · · · sn, where si ∈ Σ, for 1 ≤ i ≤ n, be a given terminal string.

Definition 18. Let α = X0a1X1 · · · ak+1Xk+1 ∈ (Σ∪N )+ be a symbolic string
and κ = (l1, l2, · · · , lk+1) be k+1 ordered integers where 1 ≤ l1 < l2, · · · , lk+1 ≤
n. (α, κ) is a consistent pair if

(1) ai = sli , 1 ≤ i ≤ k + 1, and
(2) For i = 0, 1, · · · , k + 1, Xi = ε iff li = li+1 − 1 (l0 =df 1 and lk+2 =df n).

Now given a pair (α, κ), we define function f(α, κ) to be the maximum prob-
ability for a derivation {α} ⇒∗ T , where T ⊆ (Σ ∪ {M})+ for which s is the
underlying string. Then function f can be recursively defined according to types
of α and the types of rules α is involved with in R.

1. α ∈ (Σ ∪ {M})+:

f(α, κ) =

{
1 (α, κ) is a consistent pair
0 otherwise

2. α ∈ (Σ ∪ N )+ but α �= S:

f(α, κ) = max
r∈R

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f(β, κ)f(γ, κ)θ(r) r = α→ {β, γ}, type (B)

max
ls<h<ls+1,κ′=κ|lt+1

h

f(β, κ′)θ(r) r = α→ {β}, type (C)

f(β, κ)θ(r) r = α→ {β}, type (D)

where for the case of r being a type (C) rule, s and t are known values given

in β = α|Xs

Y bZ |
Xtat+1Xt+1

M , satisfying (s− t) > 1 or (t− s) ≥ 1, and κ′ = κ|lt+1

h

represents the ordered set modified from κ by replacing lt+1 with h.
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3. α = S:
f(S, κ) = max

S→{β}∈R
f(β, κ)θ(S → {β})

Theorem 19. Maxp(s|Γ, θ) = max
κ∈[n]k+1

f(S, κ), where [n]k+1 is the set of all

combinations of k + 1 integers in [n] = {1, 2, · · · , n}.

Proof. (Sketch) We prove by induction on the number m of rule applications in
a process to generate the string s with the maximum probability, where m ≥ 2.
The base case m = 2 is obvious. The proof of inductive step examines all possible
types of rules used in the last step. �

A dynamic programming algorithm can be implemented to compute func-
tion f(α, κ). This is to establish a table to store computed values of function
f through the use of the formulae provided above (the cases 1 through 3). The
table has k+2 dimensions, one for all α’s in the grammar and the other k+1 are
for all κ’s, resulting in the O(nk+2|Γ |)-time and O(nk+1|Γ |)-space complexities,
respectively, for every fixed k.

4 Applications and Discussions

We have introduced the stochastic k-tree grammar (SkTG) for the purpose of
modeling context-sensitive yet tamable crossing co-occurrences of terminals. The
recursive rules of the new grammar permit association of probability distribu-
tions in a natural way. The resulting dynamic programming algorithms for prob-
ability computation with SkTG are efficient enough, with potential for statistical
analysis of real-world structures. This work is in progress in both application and
further theoretical investigation.

4.1 Application in Biomolecular Structure Prediction

This work was initially motivated by the need in the analysis of biomolecules
for tertiary structure prediction. A biomolecular sequence, e.g., ribonucleic acid
(RNA) or protein, is a linear chain of residues interacting spatially to form a
3D structure functionally important [22,20]. One of the most desirable com-
putational biology tasks is to predict the tertiary structure from the sequence
information only [12,38]. The newly introduced SkTG offers a viable approach
to this task. We briefly outline the application as follows.

Biomolecular sequences are natural strings definable over some finite alpha-
bet Σ (e.g., Σ = {A, C, G, U} for nucleic acids). A class of biomolecular sequences
can be defined as a language with a SkTG in which grammar rules model sta-
tistically not only the sequential composition but also structural composition of
the sequences. The task of designing SkTGs, much like that for SCFGs, is non-
trivial and may often be based on experience. Equipping a designed SkTG Γ with
probability parameters θ may be done through learning from known biomolecules
(with or without known structures) (see next subsection for a briefly discussion).
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Fig. 3. Illustration of a tertiary structure prediction from BWYV (beet west-
ern yellows virus) RNA molecule sequence (PDB ID: 1L2X) that contains 28 nu-
cleotides, coaxial helices connected with two loops, and an A-minor motif. Top
of (a): Tertiary structure (drawn via pymol) and details of nucleotide interactions
(http://www.biomath.nyu.edu/motifs/); (b) The induced 3-tree (containing desired
interactions) corresponding to a derivation of the sequence with the maximum prob-
ability. The 3-tree is presented in terms of the tree topology connecting the created
4-cliques in the 3-tree. Bottom-left of (a): 3D representation of the 3-tree with one
tetrahedron for every 4-clique; Bottom-right of (a): only backbone edges are kept from
the tetrahedron representation, serving as a preliminary structure prediction from the
sequence. We note that more accurate structural motif modeling of individual 4-cliques
would allow more accurate prediction of the overall tertiary structure.

With an SkTG (Γ, θ), using the dynamic programming algorithm (developed
in section 3) we can compute the maximum probability of an induced k-tree , e.g.,
k = 3, from a given query sequence. In such an application, every (k+1)-clique κ
in the desired k-tree may potentially admit one of many possible configurations
(i.e., all possible interaction topologies along with permissible geometry shapes)
for the k+1 residues in κ. Therefore, the dynamic programming algorithm can be
tailored to include the third argument Cκ in the probability function f defined
in section 4, where Cκ is the set of all possible configurations incurred by (k+1)-
clique κ. The information about Cκ can often be obtained from known tertiary
structures of biomolecules as well. Figure 3 illustrates this approach used in a
tertiary structure prediction for a small RNA molecule.

4.2 Further Theoretical Issues

SkTG is a natural extension from SCFG; in particular, k-tree grammars, for
k = 2, can define all context-free languages. In addition, the outlined dynamic
programming algorithm (in section 3.2) to compute the maximum probability
can be improved. In fact, in a related work [6], the authors have developed
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an algorithm of time O(nk+1), for every fixed value of k, for computing the
maximum spanning k-tree that includes a designated Hamiltonian path. On the
other hand, due to the long standing barrier of O(n3) for parsing context-free
languages, this also suggests the time complexity upper bound O(nk+1) has
optimal order of growth in n for each k ≥ 2.

We further note that the above efficiency issue is closely related with the
parameterized complexity [7] of the following problem: computing the maximum
probability of an input sentence to be produced by an input SkTG, for which k
is considered a variable parameter. By the above observation, such a problem is
likely parameterized intractable. Nevertheless, the interesting question remains
whether an additional small parameter (e.g., significant in applications) may
be associated with such problems for further improvement of computational
efficiency.

Estimation of probability parameters θ for given k-tree grammars deserves
more thorough investigation and it is not within the scope of this paper. However,
we point out that it is highly possible to develop efficient parameter estimation
algorithms for SkTG. This is because O(nk+1)-time algorithms may exist for
computing the maximum and total probabilities of given language strings. Much
like the analogous algorithms for SCFG, these algorithms can be used to re-
estimate probability parameters θ given an initial parameter θ0, through an EM
algorithm.

Finally, we feel that future work is also needed to investigate the relation-
ship between the k-tree grammar and other grammars that already exist (e.g.,
the Tree-Adjoining Grammar and its generalized versions [14]) for constrained
context-sensitive languages.
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Abstract. Nested words introduced by Alur and Madhusudan are used
to capture structures with both linear and hierarchical order, e.g. XML
documents, without losing valuable closure properties. Furthermore, Alur
and Madhusudan introduced automata and equivalent logics for both fi-
nite and infinite nested words, thus extending Büchi’s theorem to nested
words. Recently, average and discounted computations of weights in
quantitative systems found much interest. Here, we will introduce and
investigate weighted automata models and weighted MSO logics for in-
finite nested words. As weight structures we consider valuation monoids
which incorporate average and discounted computations of weights as
well as the classical semirings. We show that under suitable assumptions,
two resp. three fragments of our weighted logics can be transformed into
each other. Moreover, we show that the logic fragments have the same
expressive power as weighted nested word automata.

Keywords: nested words, weighted automata, weighted logics, quanti-
tative automata, valuation monoids.

1 Introduction

Nested words, introduced by Alur and Madhusudan [2], capture models with
both a natural sequence of positions and an hierarchical nesting of these posi-
tions. Prominent examples include XML documents and executions of recursively
structured programs. Automata on nested words, logical specifications, and cor-
responding languages of nested words have been intensively studied, see [1],
[2], [17]. Recently, there has been much interest in quantitative features for the
specification and analysis of systems. Quantitative automata modeling the long-
time average or discounted behavior of systems were investigated by Chatterjee,
Doyen, and Henzinger [6], [7]. It is the goal of this paper to present quantitative
logics for such quantitative automata on nested words.

The connection between MSO logic and automata due to Büchi, Elgot, and
Trakhenbrot [5], [15], [21] has proven most fruitful. Weighted automata over
semirings (like (N,+, ⋅,0,1)) were already investigated by Schützenberger [20]
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and soon developed a flourishing theory, cf. the books [3], [14], [16], [19] and
the recent handbook [8]. However, an expressively equivalent weighted MSO
logic was developed only recently [9]. This was extended to semiring-weighted
automata and logics over finite nested words in [18], and further to strong bi-
monoids as weight structures in [12]. For quantitative automata and logics, in-
corporating average and discounting computations of weights over words, such
an equivalence was given in [11].

In this paper, we will investigate quantitative nested word automata and
suitable quantitative MSO logics. We will concentrate on infinite nested words,
although our results also hold for finite nested words. We employ the stair Muller
nested word automata of [2], [17], since these can be determinized without losing
expressive power. As weight structures we take the valuation monoids of [11].
These include infinite products as in totally complete semirings [13], but also
computations of long-time averages or discountings of weights. As example for
such a setting we give the calculation of the long-time ratio of bracket-free posi-
tions in prefixes of an infinite nested word. As our first main result, we show that
under suitable assumptions on the valuation monoid D, two resp. three versions
of our weighted MSO logic have the same expressive power. In particular, if D
is commutative, then any weighted MSO-formula is equivalent to one in which
conjunctions occur only between ’classical’ boolean formulas and constants. In
contrast to [11], our proof uses direct conversions of the formulas and thus has
much better complexity than using the automata-theoretic constructions of [11].
These conversions are new even for the case of weighted logics on words.

In our second main result, we show under suitable assumptions on the val-
uation monoid that our weighted MSO logics have the same expressive power
as weighted nested automata. These assumptions on the valuation monoid are
satisfied by long-time average resp. discounted computations of weights; there-
fore our results apply to these settings. All our constructions of automata from
formulas or conversely are effective.

2 Automata and Logics for Nested ω-words

In this section we describe basic background for classical (unweighted) automata
and logics on nested-ω-words. We denote by Σ an alphabet and by Σω the set
of all ω-words over Σ. N is the set of all natural numbers without zero. For a
binary relation R, we denote with R(x, y) that (x, y) ∈ R.

Definition 1. A matching relation ν over N is a subset of ({−∞}∪N)×(N∪{∞})
such that:

(i) ν(i, j) ⇒ i < j,
(ii) ∀i ∈ N ∶ ∣{j ∶ ν(i, j)}∣ ≤ 1 ∧ ∣{j ∶ ν(j, i)}∣ ≤ 1,
(iii) ν(i, j) ∧ ν(i′, j′) ∧ i < i′ ⇒ j < i′ ∨ j > j′,
(iv) (−∞,∞) ∉ ν.

A nested ω-word nw over Σ is a pair (w,ν) = (a1a2..., ν) where w = a1a2... is
an ω-word over Σ and ν is a matching relation over N. We denote by NW ω(Σ)
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the set of all nested ω-words over Σ and we call every subset of NW ω(Σ) a
language of nested ω-words.

If ν(i, j) holds, we call i a call position and j a return position. In case of
j = ∞, i is a pending call otherwise a matched call. In case of i = −∞, j is a
pending return otherwise a matched return. If i is neither call nor return, then
we say i is an internal.

Definition 2. A deterministic stair Muller nested word automaton (sMNWA)
over Σ is a quadruple A = (Q,q0, δ,F), where δ = (δcall, δint, δret), consisting of:

– a finite set of states Q,
– an initial state q0 ∈ Q,
– a set F ⊆ 2Q of accepting sets of states,
– the transition functions δcall, δint ∶ Q ×Σ → Q,
– the transition function δret ∶ Q ×Q ×Σ → Q.

A run r of the sMNWA A on the nested ω-word nw = (a1a2..., ν) is an infinite
sequence of states r = (q0, q1, ...) where qi ∈ Q for each i ∈ N and q0 is the inital
state of A such that for each i ∈ N the following holds:

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

δcall(qi−1, ai) = qi , if ν(i, j) for some j > i (or j = ∞)
δint(qi−1, ai) = qi , if i is an internal
δret(qi−1, qj−1, ai) = qi , if ν(j, i) for some 1 ≤ j < i
δret(qi−1, q0, ai) = qi , if ν(−∞, i) .

We call i ∈ N a top-level position if there exist no positions j, k ∈ N with j < i < k
and ν(j, k). We define

Qt
∞
(r) = {q ∈ Q ∣ q = qi for infinitely many top-level positions i} .

A run r of an sMNWA is accepted if Qt
∞

(r) ∈ F. An sMNWA A accepts the
nested ω-word nw if there is an accepted run of A on nw . We denote with L(A)
the set of all accepted nested ω-words of A. We call a language L of nested
ω-words regular if there is an sMNWA A with L(A) = L.

Alur and Madhusudan [2] considered nondeterministic Büchi NWA and non-
deterministic Muller NWA. They showed that the deterministic versions of these
automata have strictly less expressive power than the nondeterministic automata.
However, refering to Löding, Madhusudan and Serre [17], Alur and Madhusudan
stated that deterministic stair Muller NWA have the same expressive power as
their nondeterministic versions as well as nondeterministic Büchi NWA. More-
over, the class of regular languages of nested-ω-words is closed under union,
intersection and complement ([2]).

Definition 3. The monadic second order logic for nested words MSO(NW (Σ))
contains exactly all formulas ϕ which are given by the following syntax:

ϕ ∶∶= Laba(x) ∣ call(x) ∣ ret(x) ∣x ≤ y ∣ν(x, y) ∣x ∈ X ∣ ¬ϕ ∣ϕ ∨ ϕ ∣ ∃x.ϕ ∣ ∃X.ϕ

where a ∈ Σ and x, y are first order variables and X is a second order variable.
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The semantics of these formulas is given in a natural way, cf. [2]. Later we
give a full definition of the semantics of weighted MSO-formulas. We call ϕ a
sentence if ϕ contains no free variables. If ϕ is a sentence, then L(ϕ) = {nw ∈
NW ω(Σ) ∣ nw ⊧ ϕ} is the language defined by ϕ.

Theorem 4 (Alur, Madhusudan [2]). Let L be a language of nested ω-words
over Σ. Then L is regular if and only if L is definable by some MSO(NW (Σ))-
sentence ϕ.

3 Weighted Stair Muller Nested Word Automata

In this section, we introduce weighted versions of stair Muller nested word au-
tomata. As weight structures, we will employ ω-valuation monoids introduced
in [11]. We recall the definitions.

A monoid (D,+,0) is complete if it has infinitary sum operations ∑I ∶ DI → D
for any index set I such that

– ∑i∈∅ di = 0, ∑i∈{k} di = dk, ∑i∈{j,k} di = dj + dk for j ≠ k,
– ∑j∈J(∑i∈Ij di) = ∑i∈I di if ⋃j∈J Ij = I and Ij ∩ Ik = ∅ for j ≠ k.

Note that in every complete monoid the operation + is commutative. We let Dω

comprise all infinite sequences of elements of D.

Definition 5 (Droste,Meinecke [11]).An ω-valuation monoid (D,+,Valω,0)
is a complete monoid (D,+,0) equipped with an ω-valuation function Valω ∶ Dω →
D with Valω((di)i∈N) = 0 if di = 0 for some i ∈ N.

A product ω-valuation monoid (D,+,Valω,◇,0,1) (short ω-pv-monoid) is an
ω-valuation monoid (D,+,Valω,0) with a constant 1 ∈ D and an operation ◇ ∶
D2 → D satisfying Valω(1ω) = 1, 0◇d = d◇0 = 0 and 1◇d = d◇1 = d for all d ∈ D.

Let (D,+,Valω,◇,0,1) be an ω-pv-monoid. D is called associative resp. com-
mutative if ◇ is associative resp. commutative. D is left-+-distributive if for all
d ∈ D, for any index set I and (di)i∈I ∈ DI :

d ◇∑
i∈I

di = ∑
i∈I

(d ◇ di) .

Right-+-distributivity is defined analogously. We call D +-distributive if D is
left- and right-+-distributive. D is left-Valω-distributive if for all d ∈ D and
(di)i∈N ∈ Dω:

d ◇Valω((di)i∈N) = Valω((d ◇ di)i∈N) .

D is left-multiplicative if for all d ∈ D and (di)i∈N ∈ Dω :

d ◇Valω((di)i∈N) = Valω(d ◇ d1, (di)i≥2) .

D is called conditionally commutative, if for all (di)i∈N, (d
′

i)i∈N ∈ Dω with di◇d
′

j =
d′j ◇ di for all j < i, the following holds:

Valω((di)i∈N) ◇Valω((d′i)i∈N) = Valω((di ◇ d′i)i∈N) .
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We call D left-distributive if D is left-+-distributive and, additionally, left-Valω-
distributive or left-multiplicative. If D is +-distributive and associative, then
(D,+,◇,0,1) is a complete semiring and we call (D,+,Valω,◇,0,1) an ω-valuation
semiring. A cc-ω-valuation semiring is an ω-valuation semiring D which is con-
ditionally commutative and left-distributive.

Example 1 ([11]). We set R̄ = R ∪ {−∞,∞} and −∞ +∞ = −∞. We let

(D1,+,Val
ω,◇,0,1) = (R̄, sup, lim avg,+,−∞,0),

where lim avg((di)i∈N) = lim inf
n→∞

1

n

n

∑
i=1

di .

Let 0 < λ < 1 and R̄+ = {x ∈ R̄ ∣ x ≥ 0} ∪ {−∞}. We put

(D2,+,Val
ω,◇,0,1) = (R̄+, sup,discλ,+,−∞,0),

where discλ((di)i∈N) = lim
n→∞

n

∑
i=1

λi−1di .

Then D1 is a left-+-distributive and left-Valω-distributive ω-valuation monoid
but not conditionally commutative. Furthermore, D2 is a left-multiplicative cc-
ω-valuation semiring.

Definition 6. A weighted stair Muller nested word automaton (wsMNWA) A =
(Q,I, δ,F), where δ = (δcall, δint, δret), over the alphabet Σ and the ω-valuation
monoid (D,+,Valω,0) consists of:

– a finite set of states Q,
– a set I ⊆ Q of initial states,
– a set F ⊆ 2Q of accepting sets of states,
– the weight functions δcall, δint ∶ Q ×Σ ×Q → D,
– the weight function δret ∶ Q ×Q ×Σ ×Q → D.

A run r of the wsMNWA A on the nested ω-word nw = (a1a2..., ν) is an infinite
sequence of states r = (q0, q1, ...). We denote with wtA(r,nw , i) the weight of the
transition of r used at position i ∈ N, defined as follows

wt
A(r,nw , i) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

δcall(qi−1, ai, qi) , if ν(i, j) for some j > i
δint(qi−1,ai, qi) , if i is an internal
δret(qi−1, qj−1, ai, qi) , if ν(j, i) for some 1 ≤ j < i
δret(qi−1, qI , ai, qi) , if ν(−∞, i) for some qI ∈ I .

(1)

Then we define the weight wt
A(r,nw) of r on nw by letting

wtA(r,nw) = Valω((wtA(r,nw , i))i∈N) .

We define top-level positions and the set Qt
∞

(r) as before. A run r is accepted if
q0 ∈ I and Qt

∞
(r) ∈ F. We denote with acc(A) the set of all accepted runs in A.
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We define the behavior of the automaton A as the function ∥A∥ ∶ NW ω(Σ) → D
given by (where as usual, empty sums are defined to be 0)

∥A∥(nw) = ∑
r∈acc(A)

wtA(r,nw)

= ∑
r∈acc(A)

Valω((wtA(r,nw , i))i∈N) .

We call every function S ∶ NW ω(Σ) → D a nested ω-word series (short:
series). We call a series S regular if there exists an automaton A with ∥A∥ = S.

Example 2. Within the following example we call a position i of a nested ω-
word nw = (w,ν) bracketfree if there are no positions j, k ∈ (N ∪ {−∞,∞}) with
j < i < k and ν(j, k). This requirement is stronger than i being a top-level
position because it contains −∞ and ∞ thus also banning i being in the scope
of pending calls and pending returns. Only for well-matched nested ω-words, i.e.
nested ω-words without pending edges, the two properties coincide.

We consider the series S assigning to every nested ω-word nw the greatest
accumulation point of the ratio of bracketfree positions in finite prefixes of nw .

To model S we use the ω-valuation monoid D = (R̄, sup, lim avg,−∞). If
we want to analyze this property for well-matched nested ω-words only, then
automaton A1 given below recognizes S. In the general case including pending
edges, automaton A2 recognizes S. Note that we denote the call transitions with
⟨Σ and the return transitions with Σ⟩/q where q has to be the state where the
last open call was encountered. The weights 1 resp. 0 are given in brackets.

Automaton 1: wsMNWA A1 with F1 = {{q0}}

q0 q1

Σ(1) Σ(0), ⟨Σ(0),Σ⟩/q1(0)

⟨Σ(1)

Σ⟩/q0(1)

Automaton 2: wsMNWA A2 with F1 = {{q2},{qp},{q2, qp},{q0, q1},{q0},{q1}}

qp q0q2 q1

Σ(1) Σ(0), ⟨Σ(0),Σ⟩/q1(0)Σ(0),Σ⟩/qp(0)

Σ⟩/qp(1) ⟨Σ(1)

Σ⟩/q0(1)

Σ(0), ⟨Σ(0),Σ⟩/q2(0)

⟨Σ(0)

Σ⟩/qp(0)
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As usual, we extend the operation + and ◇ to series S,T ∶ NW ω(Σ) → D by
means of pointwise definitions as follows:

(S ⋆ T )(nw) = S(nw) ⋆ T (nw) for each nw ∈ NW ω(Σ),⋆ ∈ {+,◇} .

We let d ∈ D also denote the constant series with value d, i.e. ∥d∥(nw) = d
for each nw ∈ NW ω(Σ). For L ⊆ NW ω(Σ), we define the characteristic series
�L ∶ NW ω(Σ) → D by letting �L(nw) = 1 if nw ∈ L, and �L(nw) = 0 otherwise.
We call a series S a regular step function if

S =
k

∑
i=1

di ◇ �Li , (2)

where Li are regular languages of nested-ω-words forming a partition ofNW ω(Σ)
and di ∈ D for each i ∈ {1, ..., k}; so S(nw) = di iff nw ∈ Li for each i ∈ {1, ..., k}.

An ω-pv-monoid D is regular if for any alphabet Σ we have: For each d ∈ D
there exists a wsMNWA Ad with ∥Ad∥ = d. Analogously to Droste and Meinecke
[11] we can show that every left-distributive ω-pv-monoid is regular.

Proposition 7. Let D be a regular ω-pv-monoid. Then each regular step func-
tion S ∶ NW ω(Σ) → D is regular. Furthermore, the set of all regular step func-
tions is closed under + and ◇.

Next we show that regular series are closed under projections. Consider a
mapping h ∶ Σ → Γ between two alphabets. Then h extends uniquely to an
homomorphism between Σω and Γω, also denoted by h. Hence h is length-
preserving and we can extend h to a function h ∶ NW ω(Σ) → NW ω(Γ ) by defin-
ing h(nw) = h(w,ν) = (h(w), ν) for each nw ∈ NW ω(Σ). Let S ∶ NW ω(Σ) → D
be a series. Then we define h(S) ∶ NW ω(Γ ) → D for each nv ∈ NW ω(Γ ) by

h(S)(nv) = ∑(S(nw) ∣ nw ∈ NW ω(Σ), h(nw) = nv) .

Proposition 8. Let D be an ω-valuation monoid, S ∶ NW ω(Σ) → D regular
and h ∶ Σ → Γ . Then h(S) ∶ NW ω(Γ ) → D is regular.

4 Weighted MSO-Logic for Nested ω-words

In this section, we will present different fragments of our weighted MSO logic,
and we give our first main result on the equivalence of these fragments. In the
following D is always an ω-pv-monoid. We combine ideas of Alur and Madhusu-
dan [2], Droste and Gastin [9], and Bollig and Gastin [4], and divide the syntax
of the weighted logic into a boolean part and a weighted part.

Definition 9 (Syntax). The weighted monadic second order logic for nested
words MSO(D,NW (Σ)) is given by the following syntax

β ∶∶= Laba(x) ∣ call(x) ∣ ret(x) ∣x ≤ y ∣ν(x, y) ∣x ∈ X ∣ ¬β ∣β ∧ β ∣ ∀x.β ∣ ∀X.β

ϕ ∶∶= d ∣ β ∣ ϕ ∨ϕ ∣ ϕ ∧ϕ ∣ ∀x.ϕ ∣ ∃x.ϕ ∣ ∃X.ϕ
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where d ∈ D, a ∈ Σ and x, y, X are first resp. second order variables. We call
all formulas β boolean formulas.

The set of all positions of nw ∈ NW ω(Σ) is N. Let ϕ ∈ MSO(D,NW (Σ)).
We denote the set of free variables of ϕ by free(ϕ). Let V be a finite set of
variables containing free(ϕ). As usual, we define a (V ,nw)-assignment γ as
function assigning to every first order variable of V a position of nw and to
every second order variable a subset of positions of nw . We let γ[x → i] (resp.
γ[X → I]) be the (V ∪ {x},nw)-assignment (resp. (V ∪ {X},nw))-assignment)
mapping x to i (resp. X to I) and equaling γ anywhere else.

We encode a pair (nw , γ) as nested ω-word as usual over the extended alpha-
bet Σ

V = Σ × {0,1}V with the same matching relation ν (cf. [9], [12]). We call
(nw , σ) ∈ NW ω(ΣV) valid if σ emerges from a (V ,nw)-assignment. Clearly the
language NV of all valid words is regular.

Definition 10 (Semantics).The semantics of ϕ is a series ⟦ϕ⟧V ∶ NW ω(ΣV) →
D. If (nw , σ) is not valid, we set ⟦ϕ⟧V(nw , σ) = 0. Otherwise we define ⟦ϕ⟧V(nw , σ)
for (nw , σ) = ((a1a2..., ν), σ) inductively as follows:

⟦Laba(x)⟧V(nw , σ) = {
1 , if aσ(x) = a
0 ,otherwise,

⟦call(x)⟧V(nw , σ) = {
1 , if σ(x) is a call
0 ,otherwise,

⟦ret(x)⟧V(nw , σ) = {
1 , if σ(x) is a return
0 ,otherwise,

⟦x ≤ y⟧V(nw , σ) = {
1 , if σ(x) ≤ σ(y)
0 ,otherwise,

⟦ν(x, y)⟧V(nw , σ) = {
1 , if ν(σ(x), σ(y))
0 ,otherwise,

⟦x ∈X⟧V(nw , σ) = {
1 , if σ(x) ∈ σ(X)
0 ,otherwise,

⟦¬β⟧V(nw , σ) = {
1 , if ⟦β⟧V(nw , σ) = 0
0 ,otherwise,

⟦d⟧V(nw , σ) = d for all d ∈D,

⟦ϕ ∨ψ⟧V(nw , σ) = ⟦ϕ⟧V(nw , σ) + ⟦ψ⟧V(nw , σ),

⟦ϕ ∧ψ⟧V(nw , σ) = ⟦ϕ⟧V(nw , σ) ◇ ⟦ψ⟧V(nw , σ),

⟦∃x.ϕ⟧V(nw , σ) = ∑
i∈N

(⟦ϕ⟧
V∪{x}(nw , σ[x → i])),

⟦∃X.ϕ⟧V(nw , σ) = ∑
I⊆N

(⟦ϕ⟧
V∪{X}(nw , σ[X → I])),

⟦∀x.ϕ⟧V(nw , σ) = Val
ω
((⟦ϕ⟧

V∪{x}(nw , σ[x→ i]))i∈N),

⟦∀X.β⟧V(nw , σ) = {
1 , if ⟦β⟧

V∪{X}(nw , σ[X → I]) = 1 for all I ⊆ N
0 , otherwise .

We write ⟦ϕ⟧ for ⟦ϕ⟧free(ϕ), so ⟦ϕ⟧ ∶ NW ω(Σfree(ϕ)) → D. If ϕ contains no
free variables, ϕ is a sentence and ⟦ϕ⟧ ∶ NW ω(Σ) → D.

Example 3. Continuing Example 2 with D = (R̄, sup, lim avg,+,−∞,0) we define

pcall(x) = call(x) ∧ ∀w.¬ν(x,w), pret(z) = ret(z) ∧ ∀u.¬ν(u, z),

bfr(y) = ∀x∀z.(¬(x < y < z ∧ ν(x, z)) ∧ ¬(x < y ∧ pcall(x)) ∧ ¬(y < z ∧ pret(z))),

where x < y < z = ¬(y ≤ x) ∧ ¬(z ≤ y). Then ⟦∀y.((bfr(y) ∧ 1) ∨ 0)⟧ = S = ∥A2∥.

Analogously to [9] and [12] we can show:
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Proposition 11. Let ϕ ∈ MSO(D,NW (Σ)) and let V be a finite set of vari-
ables with free(ϕ) ⊆ V. Then ⟦ϕ⟧V(nw , σ) = ⟦ϕ⟧(nw , σ ↾ free(ϕ)) for each valid
(nw , σ) ∈ NW ω(ΣV). Furthermore, ⟦ϕ⟧ is regular iff ⟦ϕ⟧V is regular.

Clearly, every boolean formula β ∈ MSO(D,NW (Σ)) can be interpreted as
an unweighted MSO-formula ψ ∈ MSO(NW (Σ)) with ⟦β⟧ = �L(ψ), since ⟦β⟧
only yields the values 0 and 1. Conversely, for every formula ψ ∈ MSO(NW (Σ))
there exists a boolean MSO-formula β ∈ MSO(D,NW (Σ)) with ⟦β⟧ = �L(ψ),
since we can replace disjunctions by conjunctions and negations and we can
replace existential quantifiers by universal quantifiers and negations.

In order to obtain a Büchi-like theorem (as Theorem 17 below) for weighted
automata on finite words, it is necessary to restrict the weighted MSO logic (cf.
[9]). Therefore we introduce and study suitable fragments of MSO(D,NW (Σ))
as in the following.

Definition 12. The set of almost boolean formulas is the smallest set of all
formulas of MSO(D,NW (Σ)) containing all constants d ∈ D and all boolean
formulas, which is closed under disjunction and conjunction.

Proposition 13. (a) If ϕ ∈ MSO(D,NW (Σ)) is an almost boolean formula,
then ⟦ϕ⟧ is a regular step function.

(b) For every regular step function S ∶ NW ω(Σ) → D, there exists an almost
boolean sentence ϕ with S = ⟦ϕ⟧.

Definition 14. Let ϕ ∈ MSO(D,NW (Σ)). We denote by const(ϕ) the set of
all elements of D occurring in ϕ. We call ϕ

1. strongly-∧-restricted if for all subformulas ψ ∧ θ of ϕ:
Either ψ and θ are almost boolean or ψ is boolean or θ is boolean.

2. ∧-restricted if for all subformulas ψ ∧ θ of ϕ:
Either ψ is almost boolean or θ is boolean.

3. commutatively-∧-restricted if for all subformulas ψ ∧ θ of ϕ:
Either const(ψ) and const(θ) commute or ψ is almost boolean.

4. ∀-restricted if for all subformulas ∀x.ψ of ϕ: ψ is almost boolean.

We call a formula of MSO(D,NW (Σ)) syntactically restricted if it is both
∀-restricted and strongly-∧-restricted. Note that every subformula of a syntac-
tically restricted formula is syntactically restricted itself.

Now we show that under suitable assumptions on the ω-pv-monoid D, par-
ticular classes of MSO(D,NW (Σ))-formulas have the same expressive power.
In [11] these equivalences (for unnested words) followed from the main result
and thus needed constructions of automata. Here we show the equivalence of the
logic fragments directly.

Theorem 15. (a) Let D be left-distributive and ϕ ∈ MSO(D,NW (Σ)) be ∧-
restricted. Then there exists a strongly-∧-restricted formula
ϕ′ ∈ MSO(D,NW (Σ)) with ⟦ϕ⟧ = ⟦ϕ′⟧. Moreover, if ϕ is also ∀-restricted,
then ϕ′ can also be chosen to be ∀-restricted.
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(b) Let D be a cc-ω-valuation semiring and let ϕ ∈ MSO(D,NW (Σ)) be
commutatively-∧-restricted. Then there exists a strongly-∧-restricted for-
mula ϕ′ ∈ MSO(D,NW (Σ)) with ⟦ϕ⟧ = ⟦ϕ′⟧. Moreover, if ϕ is also ∀-
restricted, then ϕ′ can also be chosen to be ∀-restricted.

Proof (sketch). We use an induction on the structure of ϕ. The interesting case
is ϕ = ψ ∧ θ and ψ is almost boolean. By induction we can assume that ψ and
θ are strongly-∧-restricted (and resp. ∀-restricted). As an example, we consider
the case of the universal quantification in (a) as follows. Assume θ = ∀x.θ1
and ψ does not contain x. By the induction hypothesis, we obtain a strongly-∧-
restricted formula ϕ1 such that ⟦ϕ1⟧ = ⟦ψ ∧ θ1⟧.

First let D be left-Valω-distributive. Using this assumption at equation *, we
get for V = free(ψ) ∪ free(∀x.θ1) and each (nw , σ) ∈ NW ω(ΣV):

⟦ϕ⟧(nw , σ) = ⟦ψ ∧ ∀x.θ1⟧V(nw , σ)

= ⟦ψ⟧
V(nw , σ) ◇Valω((⟦θ1⟧V∪{x}(nw , σ[x → i]))i∈N)

∗

= Valω((⟦ψ⟧V(nw , σ) ◇ ⟦θ1⟧V∪{x}(nw , σ[x → i]))i∈N)

= Valω((⟦ψ⟧
V∪{x}(nw , σ[x → i]) ◇ ⟦θ1⟧V∪{x}(nw , σ[x → i]))i∈N)

= Valω((⟦ψ ∧ θ1⟧V∪{x}(nw , σ[x → i]))i∈N)

= ⟦∀x.(ψ ∧ θ1)⟧V(nw , σ) .

So ϕ′ = ∀x.ϕ1 is strongly-∧-restricted and ⟦ϕ⟧ = ⟦ϕ′⟧. If ϕ is ∀-restricted, θ1
is almost boolean. In this case we can put directly ϕ′ = ∀x.(ψ ∧ θ1). Then ϕ′

is strongly-∧-restricted and ∀-restricted because ψ and θ1 are almost boolean
formulas.

Now let D be left-multiplicative. Using the formulas min(x) = ∀y.(x ≤ y) and
min(x) → ψ = ¬min(x) ∨ (min(x) ∧ψ) it can be shown that

⟦ϕ⟧ = ⟦ψ ∧ ∀x.θ1⟧

= ⟦∀x.((min(x) → ψ) ∧ θ1)⟧

= ⟦∀x.((¬min(x) ∧ θ1) ∨ (min(x) ∧ ψ ∧ θ1))⟧ .

Then ϕ′ = ∀x.((¬min(x) ∧ θ1) ∨ (min(x) ∧ ϕ1)) is strongly-∧-restricted since
min(x) is boolean. Furthermore, ⟦ϕ⟧ = ⟦ϕ′⟧. If ϕ is ∀-restricted, we can put
directly ϕ′ = ∀x.((min(x) → ψ) ∧ θ1). Then ϕ′ is strongly-∧-restricted and ∀-
restricted because min(x) → ψ and θ1 are almost boolean formulas.

If D is a cc-ω-valuation semiring, clearly almost boolean formulas can be
written as disjunctions of conjunctions of boolean formulas or constants from D.
Our proof of Theorem 15 (b) shows the following corollary.

Corollary 16. Let D be a commutative cc-ω-valuation semiring. Then for any
formula ϕ ∈ MSO(D,NW (Σ)) there exists a formula ϕ′ ∈ MSO(D,NW (Σ)) in
which conjunctions occur only between boolean formulas and constants such that
⟦ϕ⟧ = ⟦ϕ′⟧.

This follows also from a slightly modified proof of Theorem 17, but the present
proof gives direct and efficient conversions of the formulas.
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5 Characterization of Regular Series

In this section, we give our second main result on the expressive equivalence
of weighted stair Muller nested word automata and our different fragments of
weighted MSO logic.

Theorem 17. Let D be a regular ω-pv-monoid and S ∶ NW ω(Σ) → D a series.

1. The following are equivalent:
(a) S is regular.
(b) S = ⟦ϕ⟧ for some syntactically restricted sentence ϕ of

MSO(D,NW (Σ)).
2. Let D be left-distributive. Then the following are equivalent:

(a) S is regular.
(b) S = ⟦ϕ⟧ for some ∀-restricted and ∧-restricted sentence ϕ of

MSO(D,NW (Σ)).
3. Let D be cc-ω-valuation semiring. Then the following are equivalent:

(a) S is regular.
(b) S = ⟦ϕ⟧ for some ∀-restricted and commutatively-∧-restricted sentence

ϕ of MSO(D,NW (Σ)).

Proof. ’(i) ⇒ (ii)’: We construct a syntactically restricted MSO-sentence simu-
lating the given wsMNWA, thus showing all three statements.

’(ii) ⇒ (i)’: By Theorem 15 we may assume ϕ to be syntactically restricted.
We prove the regularity of ⟦ϕ⟧ by induction on the structure of ϕ as follows. If
ϕ is almost boolean, by Propositions 13(a) and 7, ⟦ϕ⟧ is regular. Next we have
to prove that the regularity is preserved under the non-boolean operations. We
only sketch the ideas. Closure under disjunction follows from Proposition 8 and
a union construction of automata. If ϕ is a conjunction, the regularity of ⟦ϕ⟧
follows from a product construction of automata. The regularity of ⟦∃x.ϕ⟧ and
⟦∃X.ϕ⟧ follows from Proposition 8. For ∀x.ϕ, ϕ is almost boolean. Then ⟦∀x.ϕ⟧
can also be shown to be regular.

6 Conclusion

We have introduced a weighted automaton model for infinite nested words and
weighted MSO logics. We could show that under suitable assumptions on the
valuation monoids, two resp. three fragments of the weighted logics have the same
expressive power with efficient conversions into the smallest fragment. Moreover,
the weighted automata and our logic fragments have the same expressive power.
The valuation monoids form very general weight structures; they model long-
time average and discounted computations of weights as well as the classical
complete semirings [9]. As in [2], we considered nested words possibly containing
pending edges. We remark that our results also hold similarly for finite nested
words, and our conversions of the weighted logic formulas also work, similarly,
for other discrete structures like trees, cf. [10].

It would be interesting to investigate decision problems for weighted nested
word automata, e.g., like done in [6], [7] for automata on words and with average
or discounted computations of weights.
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5. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik
und Grundlagen Math. 6, 66–92 (1960)

6. Chatterjee,K.,Doyen,L.,Henzinger,T.A.:Quantitative languages. In:Kaminski,M.,
Martini,S.(eds.)CSL2008.LNCS,vol.5213,pp.385–400.Springer,Heidelberg(2008)

7. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties
for quantitative languages. In: LICS, pp. 199–208. IEEE Computer Society (2009)

8. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata.
EATCS Monographs in Theoretical Computer Science. Springer (2009)

9. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput.
Sci. 380(1-2), 69–86 (2007)

10. Droste, M., Götze, D., Märcker, S., Meinecke, I.: Weighted tree automata over
valuation monoids and their characterization by weighted logics. In: Kuich, W.,
Rahonis, G. (eds.) Algebraic Foundations in Computer Science. LNCS, vol. 7020,
pp. 30–55. Springer, Heidelberg (2011)

11. Droste, M., Meinecke, I.: Weighted automata and weighted MSO logics for average
and long-time behaviors. Inf. Comput. 220, 44–59 (2012)

12. Droste, M., Pibaljommee, B.: Weighted nested word automata and logics over
strong bimonoids. In: Moreira, N., Reis, R. (eds.) CIAA 2012. LNCS, vol. 7381,
pp. 138–148. Springer, Heidelberg (2012)

13. Droste, M., Rahonis, G.: Weighted automata and weighted logics on infinite words.
In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 49–58. Springer,
Heidelberg (2006)

14. Eilenberg, S.: Automata, Languages, and Machines, Volume A, Pure and Applied
Mathematics, vol. 59. Academic Press (1974)

15. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Transactions of the American Mathematical Society 98(1), 21–52 (1961)

16. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Monographs
in Theoretical Computer Science, vol. 6. Springer (1986)

17. Löding, C., Madhusudan, P., Serre, O.: Visibly pushdown games. In: Lodaya, K.,
Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 408–420. Springer, Hei-
delberg (2004)

18. Mathissen, C.: Weighted logics for nested words and algebraic formal power series.
In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
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Abstract. Overlapping tile automata and the associated notion of rec-
ognizability by means of (adequate) premorphisms in finite ordered
monoids have recently been defined for coping with the collapse of classi-
cal recognizability in inverse monoids. In this paper, we investigate more
in depth the associated algebraic tools that allow for a better understand-
ing of the underlying mathematical theory. In particular, addressing the
surprisingly difficult problem of language product, we eventually found
some deep links with classical notions of inverse semigroup theory such
as the notion of restricted product.

Keywords: Overlapping structures, premorphisms,Ehresmannmonoids,
birooted trees.

Introduction

Overlapping structures, be they linear shaped as in McAlister monoids [18], tree
shaped as in free inverse monoids [23,20] or more generally higher-dimensional
(overlapping) strings as in Kellendonk’s tiling monoids [14,15], are promising
high level models of system behaviors as already illustrated in musical application
modeling [13] and the associated programming language proposal [12], or in
distributed behavior modeling [3]. Be it for modeling/typing purposes or system
analysis, there is incentive to develop the language theory of overlapping tiles.

Since Kellendonk’s tiling monoids are inverse semigroups, such a language
theory lies at the intersection between inverse semigroup theory [21,17] and for-
mal language theory. A number of studies, such as [19,24] to mention but a few,
already show deep connections between these fields. However, with Monadic Sec-
ond Order logic (MSO) in the background as yardstick of expressive power (see
e.g. [25]), classical language theoretic concepts and tools fail to be expressive
enough [24,10]. Adaptation of the classical theory have thus recently been pro-
posed in order to cope with such a collapse in expressive power. The resulting
concepts: tile automata and quasi-recognizability have been proved to essentially
capture MSO both for linear tiles [11] or tree-shaped tiles [9].
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Although, the resulting theory is somewhat robust – word or tree shaped tile
automata are essentially non deterministic word or tree automata with adapted
semantics [11,9] – the resulting language theory remains mysteriously tricky.
For instance, the product of two quasi-recognizable languages is not necessarily
quasi-recognizable.

In this paper, as an echo of [22] in classical algebraic language theory, con-
tinuing the newly developed theory, we study the case of positive word tiles,
that is birooted words where the input root never occurs after the output root
– positive tiles are the word counterpart of the positive birooted trees that form
the elements of free ample monoids [5]. Our interest in studying the associated
algebraic language theory is that, restricted to positive birooted words or trees,
the class of quasi-recognizable languages turned out to be closed under product
and star.

Although such a closure property was expected from our automata character-
ization od quasi-recognizable languages of word tiles [11], its proof is surprisingly
technical unless, as we propose here, we first consider the restricted product: a
fundamental notion in inverse semigroup theory [17] that was so far unused in
our language theoretic investigation.

As a result, the proposed study not only sheds a new light on the adequate
ordered monoids that are used as recognizers in quasi-recognizability, but also
strengthens quite in depth the underlying theoretical framework. The fact is
that our proposed recognizer definition can also be seen as a follow-up to the
research track initiated by Fountain et al. [4,16,6,1] on certain semigroups with
local units.

Worth being mentioned, though we restrict our study to positive birooted
words as studied in [10,8,11], it is quite clear that our constructions can be
extended to the case of positive birooted trees as studied in [9]. It follows that the
algebraic tools proposed here are particularly well-suited for a language theory of
the free ample monoid [5] whose elements are, precisely, positive birooted trees.

Organization of the Paper

In the first part, we give a formal definition of positive tiles as triplets of words,
i.e. as words equipped with an input and output point, of the product of tiles
and of the set of all tiles, including or not a 0 tile to make the product complete.

The following part presents our automatic tools, then the algebraic ones,
mainly Ehresmann monoids and premorphisms. The definition of adequate pre-
morphisms will bring that of the restricted product, which is an added condition
to the definition of the product.

The third part presents our algebraic construction: we explore all the decom-
positions of each element in a restricted product. For tiles, this is equivalent to
going through all the possible cutting points between input and output, which
simulates a first order existential quantifier. Since we only consider positive tiles,
this amounts to only going forward, "between input and output".

In the last part, we use this construction to prove the closure property under
(restricted) products. For such a purpose, we use the fact that if a tile belongs
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to the restricted product L1 •L2 of two languages L1 and L2, then any tile with
a similar set of decompositions will also belong to the same product.

1 Overlapping Tiles

Let A be an alphabet and let A∗ be the free monoid generated by A, that is, the
set of finite words equipped with the concatenation operation. The empty word
is denoted by 1 and, for every two words u and v ∈ A∗, we write u · v or simply
uv for the concatenation of the words u and v.

The set A∗ is ordered by the prefix order≤p (resp. the suffix order≤s) defined,
for every word u and v ∈ A∗, by u ≤p v (resp. u ≤s v) when there exists w ∈ A∗

such that uw = v (resp. wu = v).
A defined positive overlapping unidimensional tile (or just tile in the sequel)

on the alphabet A is any triple u of the form u = (u1, u2, u3) ∈ A∗ × A∗ × A∗.
Such a tile is depicted in Figure 1. The set of defined tiles on the alphabet A

u1 u2 u3

Fig. 1. A graphical representation of tile (u1, u2, u3)

is denoted by T+(A). It is ordered by the natural order relation ≤ defined, for
every tile u = (u1, u2, u3) and v = (v1, v2, v3), by

(u1, u2, u3) ≤ (v1, v2, v3) when u1 ≥s v1, u2 = v2, u3 ≥p v3

The (partial) product u · v of two such tiles u and v is defined, if it exists, as
the greatest tile w = (w1, w2, w3) in the natural order such that w1 ≥s u1,
w1u2 ≥s v1, w2 = u2v2, v2w3 ≥p u3 and w3 ≥p v3. Such a definition is depicted
in Figure 2. Completing the set T+(A) of positive tiles by an undefined tile 0,
the partial product is made complete by letting u · v = 0 when there exists no
such a defined product tile w and we put u · 0 = 0 = 0 · u for every defined or
undefined tile u.

u1 u2 u3

v1 v2 v3

w1 w2 w3

Fig. 2. A graphical representation of the product (u1, u2, u3)·(v1, v2, v3) = (w1, w2, w3)
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It has already been shown in [10] that the set T+
0 (A) of positive tiles equipped

with such a product is actually a submonoid of the (inverse) monoid of McAl-
ister [18] with unit 1 = (1, 1, 1). Moreover, extending the natural order to the
undefined tile by letting 0 ≤ u for every u ∈ T+

0 (A), the natural order is indeed
a partial order relation over T+

0 (A) that is also stable under product, i.e. for
every tiles u, v and w ∈ T+

0 (A), if u ≤ v then w · u ≤ w · v and u · w ≤ v · w.
For every non zero tile u = (u1, u2, u3) ∈ T+(A), we define the left projection

uL = (u1u2, 1, u3) and the right projection uR = (u1, 1, u2u3) of the tile u.
These projections are extended to zero by taking 0L = 0 = 0R. Then it can be
shown [10] that for every u and v ∈ T+

0 (A) we have u ≤ v if and only u = uR · v
if and only if u = v ·uL. Moreover, a tile u is idempotent, that is u ·u = u if and
only if uL = u if and only if uR = u if and only if u ≤ 1.

Let U(T+
0 (A)) = {u ∈ T+

0 (A) : u ≤ 1} be the set of subunits of the monoid
of positive tiles. We have just seen that, in the monoid T+

0 (A) idempotents and
subunits coincide. It can also be shown that U(T+

0 (A)) ordered by the natural
order is a complete lattice with product as meet.

2 Automata and Algebra for Overlapping Tiles

We review here the notion of quasi-recognizable languages of overlapping tiles.
The notion of Ehresmann ordered monoids, previously left unused, that extends
to adequately ordered monoids the congruence property of left and right projec-
tions defined for U -semiadequate monoids [16], turns out to play a crucial role
in the analysis of the product of quasi-recognizable languages, somehow much
in the same way it is of crucial importance for extending quasi-recognizability
to infinite tiles [2].

Definition 1 (Tile automata [11]). A (finite) tile automaton on the alphabet
A is a triple A = 〈Q, δ,K〉 such that Q is a (finite) set of states, δ : A →
P(Q×Q) is the transition function, and K ⊆ Q×Q is the set of accepting pairs
of states.

Given δ∗ : A∗ → P(Q × Q) the closure of the transition function inductively
defined by δ(1) = {(q, q) ∈ Q × Q : q ∈ Q} and δ(wa) = {(p, q) ∈ Q × Q :
∃r ∈ Q, (p, r) ∈ δ∗(w), (r, q) ∈ δ(a)} for every a ∈ A and w ∈ A∗, a run of the
tile automaton A on a defined tile u = (u1, u2, u3) is defined as a pair of states
(p, q) ∈ Q × Q, such that there is a start state s ∈ Q and an end state e ∈ Q
such that (s, p) ∈ δ∗(u1), (p, q) ∈ δ∗(u2) and (q, e) ∈ δ∗(u3). By convention,
there exists no run of the automaton A on the undefined tile 0.

For every tile u ∈ T+
0 (A), we write ϕA(u) ⊆ Q × Q for the set of runs of

the automaton A on the tile u. The language L(A) of tiles recognized by the
automaton A is defined by L(A) = {u ∈ T+

0 (A) : ϕA(u) ∩K �= ∅}.

By definition, every such recognized language is upward closed in the natural
order. We have already shown that:
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Theorem 2 (Logical characterization [11]). A language of tiles L ⊆ T+
0 (A)

is recognizable by a finite state tile automaton if and only if it does not contain
zero, it is upward closed and definable in Monadic Second Order (MSO) logic.

And, as a corollary:

Corollary 3 (Closure property [11]). The union, intersection, product and
star of languages recognizable by finite state tile automata are recognizable by
finite state tile automata.

Remark. For every language L ⊆ T+
0 (A) recognizable by a (finite) tile automaton

A, we have L = ϕ−1
A (ϕA(L)), i.e. the language L is recognized by the mapping

ϕA. However, although the set P(Q×Q) can be seen as a monoid with product
X · Y = {(p, q) ∈ Q × Q : ∃r ∈ Q, (p, r) ∈ X, (r, q) ∈ Y } for every X and
Y ⊆ Q×Q, the mapping ϕA : T+

0 (A)→ P(Q ×Q) is not a monoid morphism.
Indeed, we only have ϕA(u · v) ⊆ ϕA(u) · ϕA(v), that is, the mapping ϕA is
a ∨-premorphism (see [7]). This observation leads us in [8] and [11] to make
the properties of both the monoid P(Q×Q) and the premorphism ϕA explicit
in order to define an effective notion of algebraic recognizability called here
quasi-recognizability.

The notion of quasi-recognizability itself is the main object of study in the
present paper and is a refined version of the one proposed in [11] and [9].

The recognizers we use are called E-preordered monoid in reference to Ehres-
mann monoids defined in [16].

Definition 4 (Ehresmann preordered monoid). A preordered monoid is
a monoid S equipped with a preorder relation �, i.e. a reflexive and transitive
relation, that is stable under product, i.e. for every x, y, z ∈ S, if x � y then
zx � zy and xz � xy.

Such a preordered monoid is said to be an Ehresmann preordered monoid, or
just E-monoid, when it satisfies the following properties:

(A0) S possesses a minimum 0, i.e. for any x ∈ S, 0 � x and if x � 0 then
x = 0,

(A1) relation � restricted to the set U(S) is an order and the set U(S) = {x ∈
S | x � 1} of subunits of S ordered by � is a ∧-semilattice with ∧ as product,

(A2) the left projection xL = min{y ∈ U(S) | xy = x} and the right projection
xR = min{y ∈ U(S) | yx = x} are defined for every x ∈ S,

(A3) left and right projections are monotonic, i.e. if x � y then xL � yL and
xR � yR for every x and y ∈ S,

(A4) left and right projections induce right and left semi-congruence, i.e. we
have (xy)L = (xLy)L and (xy)R = (xyR)R for every x and y ∈ S.

Remark. One easily checks that Property (A1) implies that all subunits are
idempotents and commute since the product is a meet for the order induced on
the subunits by the preorder on S.

One can also check that in the case where S is finite then Property (A1)
implies Property (A2) since we have xR =

∏
{z ≤ 1 : zx = x} and xL =

∏
{z ≤
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1 : xz = x}. In all cases, whenever x ≤ 1 then we have xL = x = xR hence the
mappings x �→ xL and x �→ xR are indeed projections.

Surprisingly, the link between the monotonicity hypothesis (Property (A3))
and Properties (A0) to (A2) is far from being clear. Intuition says that, in the
finite case at least, the Property (A3) may well be implied by the previous ones.

Property (A4) indeed equivalently says that the equivalence induced by the
left (resp. right) projection is a right (resp. left) congruence. Indeed, assume
that xL = yL then, for every z ∈ S, we have xLz = yLz, and, by applying
Property (A4), we have (xz)L = (xLz)L and (yz)L = (xLz)L and thus (xz)L =
(yz)L. A symmetrical argument proves the right case.

Last, left and right projections are related with Green left and right preorders
as follows. Recall that for a semigroup S, the left and right Green’s preorders are
defined, for every x, y ∈ S by x ≤R y when x = yz for some z ∈ S and x ≤L y
when x = zy for some z ∈ S. If we assume that S is an E-monoid then one can
easily check that for every x and y ∈ S we have that if x ≤R y then xR ≤ yR

and if x ≤L y then xL ≤ yL, i.e. left and right projections are refinements of the
left and right Green’s classes.

Examples. Examples of E-monoids are numerous. First, every semigroup ex-
tended with a zero and trivially ordered by the relation x ≤ y when x = 0 or
x = y is an E-monoid. Every inverse semigroup, possibly extended with a zero,
and ordered by the natural order (see [17]) is also an E-monoid with projection
xL = x−1x and xR = xx−1 for every element x. Every submonoid with a zero of
an inverse monoid naturally ordered and closed under left and right projection
as above is also an E-monoid. In particular, the monoid T +(A) of positive tiles
and naturally ordered is an E-monoid.

Less obviously, one can check that the monoid P(Q×Q) of relations over the
set Q, ordered by inclusion, is also an E-monoid with projection XL = {(q, q) ∈
Q×Q : ∃p ∈ Q, (p, q) ∈ X} and XR = {(p, p) ∈ Q×Q : ∃q ∈ Q, (p, q) ∈ X} for
every X ⊆ Q×Q. Every submonoid of P(Q×Q) that contains ∅ (the zero for the
relation product) and that is closed under the above left and right projections
is an E-monoid.

Examples of E-monoids with preorders that are not partial order relations
arise later in the text when defining the E-monoid of decompositions.

The following definition is an extension of the well-known notion of restricted
product in inverse semigroup theory.

Definition 5 (Restricted product). Let S be an E-monoid. For every x, y ∈
S, the restricted product x • y of x and y is defined when xL = yR and, in that
case, it equals xy. In the sequel, we shall write ∃x • y to denote both the fact
that the restricted product x • y is defined and, if needed, its value.

The restricted product is extended to subsets of S by taking X • Y = {xy ∈
S : x ∈ X, y ∈ Y, ∃x • y}.

Remark. The restricted product is associative in the sense that, for every x, y, z ∈
S, we have ∃x • (∃y • z) = ∃(∃x • y) • z. Indeed, this is a direct consequence of
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Property (A4) hence the fact that for every x, y, z ∈ S, we have (x • y)R =
(xyR)R = (xxL)R = xR and (y • z)L = (yL • z)L = (zR • z)L = zL. In that case,
we simply write ∃x • y • z.

We can now define adequate premorphisms and quasi-recognizability .

Definition 6. Let S be an E-monoid. A premorphism ϕ : T +(A) → S is a
monotonic mapping such that ϕ(uv) & ϕ(u)ϕ(v). It is called adequate when,
moreover, it satisfies the following properties:

# it preserves left and right projections, i.e. for every u ∈ T +(A), we have
ϕ(uR) = ϕ(u)R and ϕ(uL) = ϕ(u)L,

# it preserves disjoint products, i.e. for every tile u = (u1, u2, u2) and v =
(v1, v2, v3), if u3 = 1 = v1 then ϕ(uv) = ϕ(u)ϕ(v),

# it also preserves restricted products, i.e. for every u, v ∈ T +(A) such that
∃u • v, we have ϕ(u • v) = ϕ(u) • ϕ(v).

Remark. We have already seen that for every set Q, the monoid P(Q × Q)
ordered by inclusion is an E-monoid. One can check that the mapping ϕA :
T +(A) → P(Q × Q) defined out a tile automaton A as above in an adequate
premorphism.

It must be mentioned that in [11], the adequate premorphisms are not required
to preserve restricted product. The fact is that, when arbitrary tiles are involved
as in [11], it may be the case that the premorphism ϕA does not preserve the
restricted product. So the definition of adequacy given here is really suited to
the case of positive tiles.

Definition 7 (Quasi-recognizability). A language L ⊆ T +(A) of non zero
positive tiles is quasi-recognizable (QR) when there exists a finite E-monoid S
and an adequate premorphism ϕ : T +(A)→ S such that L = ϕ−1(ϕ(L)).

One can easily derive from the analogous statement proved in [9] for birooted
trees and with an automata theoretic proof:

Theorem 8 (Logical characterization [9]). A language L ⊆ T (A) of non
zero positive tiles is quasi-recognizable (QR) if and only if it is a finite boolean
combination of upward closed MSO definable languages of non zero positive tiles.

Remark. Observe that such a result does not imply that the class of quasi-
recognizable languages in closed under product. This is especially clear consid-
ering that the same statement holds for languages of arbitrary tiles which closure
under product is provably false [9].

3 Restricted Decompositions Monoid

We aim at providing algebraic tools for the product of two languages of positive
tiles. Beware that by the product of two languages X and Y ⊆ T+

0 (A) we mean
the product X ·Y = {xy ∈ T+

0 (A) : x ∈ X, y ∈ Y, xy �= 0}, i.e. the undefined tile
is systematically omitted from the resulting point-wise product.
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Applying Theorem 8, one can directly prove, by means of automata theoretic
techniques, that the class of quasi-recognizable languages of positive tiles is closed
under product. But the need to account for all the different configurations that
may arise makes such a construction lengthy and tedious.

The algebraic tools developed here are thus defined for the restricted product
and, fortunately, the arbitrary product can still be expressed quite simply in
terms of the restricted one.

We define in this section out of any E-monoid, the monoid of its decompositions
and show how this construction preserves in some sense quasi-recognizability on
positive tiles.

Then, in the next section, such a restricted decomposition monoid can be used
for achieving an algebraic proof that the restricted product (and henceforth the
product) of two quasi-recognizable languages is indeed quasi-recognizable.

From now on, let S be an E-monoid preordered by the relation �. The relation
� is extended to pairs over S × S by taking the product preorder defined by
(x, x′) � (y, y′) when x � x′ and y � y′ for every (x, x′), (y, y′) ∈ S × S. It is
then extended to P(S×S) by taking X � Y when for every x ∈ X , there exists
y ∈ Y so that x � y, for every X,Y ∈ P(S × S). Similar constructions can be
found in the context of ordered semigroups in [22].

Definition 9 (Restricted decompositions monoid). Wedefine the setDr(S)
⊆ P(S × S), preordered by �, by

Dr(S) = {X ∈ P(S × S) | ∃c ∈ S, (c, cL) ∈ X,

(cR, c) ∈ X, ∀(x, y) ∈ X, x • y = c}.

The product ∗ is defined for every (x, x′), (y, y′) ∈ S × S by:

(x, x′) ∗ (y, y′) = {(x(x′yy′)R, xLx′yy′), (xx′yy′
R
, (xx′y)Ly′)}.

and extended to Dr(S) in a point-wise manner, that is, for every X,Y ∈ Dr(S),
by

X ∗ Y =
⋃

(x,x′)∈X
(y,y′)∈Y

(x, x′) ∗ (y, y′).

Lemma 10. The set Dr(S) equipped with the product ∗ and ordered by the re-
lation � is an Ehresmann preordered monoid.

Proof. The detailed proof is a little long but presents no real difficulties as soon
as the appropriate definition has been found. �

Let then L ⊆ T +(A) be a language recognized by adequate premorphism ϕ :
T +(A) −→ S into the E-monoid S. We build out of ϕ an adequate premorphism
from T +(A) to the decomposition Dr(S) that still recognizes L.

For that purpose, let ψ : T +(A) → Dr(S) be defined, for every u ∈ T +(A)
by ψ(u) = {(ϕ(u1), ϕ(u2)) | u = ∃u1 • u2}.
Lemma 11. The mapping ψ : T +(A) → Dr(S) is an adequate premorphism
that recognizes L.
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Proof. The detailed proof is a little long but, again, presents no real difficulties
as soon as the appropriate definitions have been found. �

4 Application to the Restricted and Unrestricted
Products of Languages

In the previous section, given any adequate premorphism ϕ : T +(A) → S we
have defined ψ : T +(A) → Dr(S) that allows for computing ϕ on the two
components of any restricted decomposition of a positive tile. In some sense, for
every positive tile u, when u is seen as a FO-structure with edges labeled over
the alphabet A, this construction allows for simulating any existential first order
quantification over the vertices between and including the input root and the
output root.

This intuition is used here to prove our main theorem:

Theorem 12. Let L1, L2 ⊆ T +(A) quasi-recognizable languages, the language
L1 • L2 is quasi-recognizable.

Proof. Let S1, S2 E-monoids and L1, L2 ⊆ T +(A) respectively recognized by
adequate premorphisms ϕ1 : T +(A) −→ S1 and ϕ2 : T +(A) −→ S2. First, we
define

ϕ : T +(A) −→ S1 × S2

u −→ (ϕ1(u), ϕ2(u))

Remark that S1 × S2 is an E-monoid and ϕ is an adequate premorphism recog-
nizing both L1 and L2.

We now consider premorphism ψ : T +(A) → Dr(S1 × S2) as defined in the
previous section from the adequate premorphism ϕ. By Lemma 10, the monoid
Dr(S1 × S2) is an E-monoid and, by Lemma 11, the mapping ψ is an adequate
premorphism. We will now prove that ψ recognizes L1 • L2.

Let u1 ∈ L1 and u2 ∈ L2 so that ∃u1 • u2, and let v ∈ T +(A) so that
ψ(v) = p(u1 • u2). So we have (ϕ(u1), ϕ(u2)) ∈ ψ(v), therefore there exists
v1, v2 ∈ T +(A) so that v1 • v2 = v and

(ϕ(u1), ϕ(u2)) = (ϕ(v1), ϕ(v2)).

Since ϕ recognizes L1 and L2, we have v1 ∈ L1 and v2 ∈ L2. Consequently,
v = v1 • v2 ∈ L1 • L2. �

We will now apply the restricted product case to the general product case.

Lemma 13. Let L1, L2 ⊆ T +(A) be quasi-recognizable languages. We have

L1L2 =
(
(A∗)LL1(A

∗)R • L2

)
∪

(
L1 • (A∗)LL2(A

∗)R
)

∪
(
(A∗)LL1 • L2(A

∗)R
)
∪

(
L1(A

∗)R • (A∗)LL2

)
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Proof. We first show that L1L2 ⊆
(
(A∗)LL1(A

∗)R • L2

)
∪
(
L1 • (A∗)LL2(A

∗)R
)

∪
(
(A∗)LL1 • L2(A

∗)R
)
∪

(
L1(A

∗)R • (A∗)LL2

)
. Let u = (u1, u2, u3) ∈ L1, v =

(v1, v2, v3) ∈ L2, so that uv �= 0. By definition of the product, we have four
possibilities :

# if v1 is a suffix of u1u2 and u3 is a prefix of v2v3, then wv1 = u1u2 for a w ∈ A∗

and u3w
′ = v2v3 for a w′ ∈ A∗, hence uv = (u1, u2, u3w

′) • (wv1, v2, v3) that
thus belongs to L1(A

∗)R • (A∗)LL2,
# if u1u2 is a suffix of v1 and u3 is a prefix of v2v3, then wu1u2 = v1 for a w ∈ A∗

and u3w
′ = v2v3 for a w′ ∈ A∗, hence uv = (wu1, u2, u3w

′) • (v1, v2, v3) that
thus belongs to (A∗)LL1(A

∗)R • L2,
# if v1 is a suffix of u1u2 and v2v3 is a prefix of u3, then wv1 = u1u2 for a w ∈ A∗

and v2v3w
′ = u3 for a w′ ∈ A∗, hence uv = (u1, u2, u3) • (wv1, v2, v3w′) that

thus belongs to L1 • (A∗)LL2(A
∗)R,

# if u1u2 is a suffix of v1 and v2v3 is a prefix of u3, then wu1u2 = v1 for a w ∈ A∗

and v2v3w
′ = u3 for a w′ ∈ A∗, hence uv = (wu1, u2, u3) • (v1, v2, v3w′) that

thus belongs to L1 • (A∗)LL2(A
∗)R.

Conversely, let u = (u1, u2, u3) ∈ L1, v = (v1, v2, v3) ∈ L2, and w,w′ ∈ A∗.
If ∃(wu1, u2, u3w

′) • (v1, v2, v3) = t, or if ∃(u1, u2, u3w) • (w′v1, v2, v3) = t, or
if ∃(wu1, u2, u3) • (v1, v2, v3w′) = t, or if ∃(u1, u2, u3) • (wv1, v2, v3w′) = t, then
t = uv. �

We then have to show that these “completions” on the right or left (the product
with (A∗)L or (A∗)R) preserves quasi-recognizability. First, we prove that it
preserves the recognizability by automaton with simple constructions.

Lemma 14. Let L ⊆ T +(A) be a language recognized by an automaton A,
therefore there exist automata Ar and Al that recognize respectively L(A∗)R and
(A∗)LL.

Proof. Let A = 〈Q, δ,K〉 be an automaton recognizing a language L ⊆ T +(A),
we define Al = 〈Q ∪ ∗, δl,K〉 and Ar = 〈Q ∪ ∗, δr,K〉, with for any a, δl(a) =
δ(a) ∪ {(∗, ∗), (∗, q) | q ∈ Q} and δr(a) = δ(a) ∪ {(∗, ∗), (q, ∗) | q ∈ Q}.

We see that any tile of the type (a1a2 . . . aku, v, w), with (u, v, w) ∈ L, is
recognized by Al, by a run of the form ∗a1 ∗ a2 ∗ . . . ∗ akR, R being a run of A
on (u, v, w).

Reciprocally, any run we have over tile (u, v, w) by Al is of the form ∗a1 ∗a2 ∗
. . .∗akR, where a1a2 . . . ak is a prefix of u, and R a ∗-less run on (u′, v, w) where
u = a1a2 . . . aku

′, i.e. a run of A on (u′, v, w). Therefore, if (u, v, w) is recognized
by Al, then (u′, v, w) is recognized by A, so (u, v, w) ∈ (A∗)LL.

We demonstrate symmetrically that Ar recognizes L(A∗)R. �

We can now show that these “completions” on the right or left preserve quasi-
recognizability. This is accomplished by noting that quasi-recognizable languages
are combinations of upward-closed languages, that can be recognizedby automata.
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Lemma 15. Let L ⊆ T +(A) be a quasi-recognizable language, therefore L(A∗)R

and (A∗)LL are quasi-recognizable.

Proof. Let L ⊆ T +(A) be a quasi-recognizable language, then L is a linear
combination of languages recognized by automata hence a finite union of the
form L =

⋃
i∈I Di ∩ Ui with, for every i ∈ I, quasi-recognizable language Ui

upward-closed and quasi-recognizable language Di downward-closed. It follows
that L(A∗)R =

⋃
i∈I Di ∩ Ui(A

∗)R since Di(A
∗)R = Di for every downward

closed language Di. We conclude by applying Lemma 14 that shows that Ui(A
∗)R

is quasi-recognizable for every upward closed language Ui. �

Corollary 16. Let L ⊆ T +(A) be a quasi-recognizable language, then the lan-
guage (A∗)LL(A∗)R is quasi-recognizable.

Theorem 17. Let L1, L2 ⊆ T +(A) quasi-recognizable languages, then L1L2 is
quasi-recognizable.

Proof. This follows directly from Lemma 13, Lemma 15 and corollary 16, and
theorem 12. �

5 Conclusion

We have thus shown, by means of algebraic tools, that both the restricted
product (Theorem 12) and the arbitrary product (Theorem 17) of two quasi-
recognizable languages of positive tiles are quasi-recognizable. By using the no-
tion of restricted decomposition monoid (Definition 9) we have eventually ex-
tended to positive tiles classical algebraic techniques that, over words, are used
to simulate existential FO-quantification when letters are modeled by labeled
graph edges. We do believe that a similar technique can be used to prove the
closure under iterated product (Kleene star).
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Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
{bertram.felgenhauer,rene.thiemann}@uibk.ac.at

Abstract. Regular tree languages are a popular device for reachability
analysis over term rewrite systems, with many applications like analysis
of cryptographic protocols, or confluence and termination analysis. At
the heart of this approach lies tree automata completion, first introduced
by Genet for left-linear rewrite systems. Korp and Middeldorp introduced
so-called quasi-deterministic automata to extend the technique to non-
left-linear systems. In this paper, we introduce the simpler notion of
state-compatible automata, which are slightly more general than quasi-
deterministic, compatible automata. This notion also allows us to decide
whether a regular tree language is closed under rewriting, a problem
which was not known to be decidable before.

Several of our results have been formalized in the theorem prover Is-
abelle/HOL.This allows to certify automatically generatednon-confluence
and termination proofs that are using tree automata techniques.

1 Introduction

In this paper we are largely concerned with over-approximations of the terms
reachable from a regular tree language L0 by rewriting using a term rewrite
system R, that is, we are interested in regular tree languages L such that
R∗(L0) ⊆ L. Such over-approximations have been used, among other things,
in the analysis of cryptographic protocols [6], for termination analysis [7,10] and
for establishing non-confluence of term rewrite systems [15].

Unfortunately, the question whether R∗(L0) ⊆ L is undecidable in general.
Tree automata completion, conceived by Genet et al. [4,5], is based on the
stronger requirements that L0 ⊆ L and L is itself closed under rewriting, i.e.,
R(L) ⊆ L. This is accomplished by constructing L as the language accepted
by a bottom-up tree automaton A that is compatible with R: Whenever lσ is
accepted in state q by A, where l → r ∈ R and σ maps variables to states of
A, we demand that rσ is also accepted in q. If A is deterministic or if R is a
left-linear term rewrite system, then compatibility ensures that L(A) is closed
under rewriting by R.
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Example 1. Let R = {f(x, x) → x} and A be the automaton with states 1, 2, 3,
final state 3, and transitions

a→ 1 a→ 2 f(1, 2)→ 3

So A is non-deterministic and R is non-left-linear. Even though A is compatible
with R, L(A) = {f(a, a)} is not closed under rewriting by R, because f(a, a) can
be rewritten to a which is not in L(A).

However, demanding A to be deterministic if R is not left-linear may result in
bad approximations.

Example 2. Let R = {f(x, x) → b, b → a} and L0 = {f(a, a)}. The set of
terms reachable from L0, namely R∗(L0) = {f(a, a), b, a}, is not accepted by
any deterministic, compatible tree automaton. To see why, assume that such
an automaton A exists, and let q be the state accepting f(a, a). There must be
transitions a → q′ (q′ is unique because A is deterministic) and f(q′, q′) → q
in A. By compatibility with the rules f(x, x) → b and b → a, we must have
transitions b → q, and a → q. Since we already have the transition a → q′,
determinism implies q′ = q. With the three transitions a → q, b → q, and
f(q, q)→ q, A accepts every term over the signature {f, a, b}, which is not a very
useful approximation of R∗(L0).

To overcome this problem, Korp and Middeldorp introduced quasi-determinis-
tic automata [10]. Indeed it is easy to find a quasi-deterministic automaton
accepting R∗(L0) = {f(a, a), b, a} that is compatible with R from the previous
example.

Example 3. Let A be an automaton with states 1, 2, final state 2 and transitions

a→ 1∗ a→ 2 b→ 2∗ f(1, 1)→ 2∗

where the stars indicate the so-called designated states for each left-hand side.
Then A is quasi-deterministic, compatible with R and L(A) = {f(a, a), b, a}.

In this paper, we concentrate on the compatibility requirement that ensures
R(L) ⊆ L. Since there may be bugs in the implementation of tree automata
completion, it is important to independently certify whether R(L) ⊆ L is really
satisfied. Such a certifier has already been developed in [2], but it is restricted
to left-linear systems and does not support the stronger quasi-deterministic au-
tomata. We extend this work by introducing state-compatible automata, which
are deterministic but accomplish the effect of quasi-deterministic automata by
relaxing the compatibility requirement instead. It turns out that as long as R
has only non-collapsing rules, state-compatible automata and quasi-deterministic
automata are equivalent. In the presence of collapsing rules, state-compatible au-
tomata can capture more approximations than quasi-deterministic ones.

We will further show that state-compatibility does not only ensure R(L) ⊆ L,
but it can also be utilized to obtain a decision procedure for the question whether
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a regular tree language is closed under rewriting—a problem whose decidability
was hitherto unknown, as far as we know. These results have also been formalized
within the theorem prover Isabelle/HOL [13], resulting in a formalized decision
procedure for the question R(L) ⊆ L. It is used to certify non-confluence proofs
and termination proofs that are using the techniques of [9,10,15].

This paper is structured as follows. In Section 2 we recall basic definitions and
notation. The main part of our paper is Section 3, where we introduce the notions
of state-coherence and state-compatibility, and present the decision procedure.
Section 4 is devoted to a comparison to quasi-deterministic automata. Details
on the formalization are provided in Section 5. Finally, we conclude in Section 6.

2 Preliminaries

We assume that the reader is familiar with first order term rewriting and tree
automata. For introductions to these topics see [1] and [3].

Terms over a signature F and a set of variables V , denoted T (F ,V) (or T (F)
if V is empty) are inductively defined as either variables v ∈ V or of the form
f(t1, . . . , tn), where t1, . . . , tn are terms and f ∈ F is a function symbol of arity
n. We write Var(t) for the set of variables in t. A term t is linear if each variable
occurs in t at most once. Contexts are terms over F ∪ {�} that contain exactly
one occurrence of �. If C is a context and t a term, then C[t] denotes the term
obtained by replacing the � in C by t. A substitution σ : V → T (F ,V) maps
variables to terms. We write tσ for the result of replacing each variable x in t by
σ(x).

A term rewrite system (TRS) R is a set of rewrite rules l → r, where each
rule’s left-hand side l and right-hand side r are terms such that l /∈ V and
Var(r) ⊆ Var(l). A TRS R defines a rewrite relation →R, namely s →R t
whenever there are a context C, a rule l → r ∈ R, and a substitution σ such
that s = C[lσ] and t = C[rσ]. We denote by lhs(R) the set of all left-hand sides
of rules in R. A TRS is left-linear if all its left-hand sides are linear terms. A
rule l→ r is called collapsing if r is a variable. The inverse, the reflexive closure,
transitive closure, and the reflexive, transitive closure of a binary relation →
are denoted by ←, →=, →+, and →∗, respectively. Given a set of terms L,
R(L) (R∗(L)) is the set of one-step (many-step) descendants of L: t′ ∈ R(L)
(t′ ∈ R∗(L)) iff t→R t′ (t→∗

R t′) for some t ∈ L. A language L is closed under
rewriting by R, if R(L) ⊆ L.

A (bottom-up) tree automaton A = (F , Q,Qf , Δ) over a signature F consists
of a set of states Q disjoint from F , a set of final states Qf ⊆ Q, and a set
of transitions Δ of shape f(q1, . . . , qn) → q where the root f ∈ F has arity n
and q, q1, . . . , qn ∈ Q. (We forbid ε-transitions for the sake of simplicity.) We
regard Δ as a TRS over the signature F ∪ Q, with the states as constants. A
substitution σ is a state substitution if σ(x) ∈ Q for all x ∈ V . A term t is
accepted in state q if t→∗

Δ q; t is accepted by A if it is accepted in a final state.
The language accepted by A is L(A) = {t | t→∗

Δ q for some q ∈ Qf}. We call A
deterministic if no two rules in Δ have the same left-hand side. For convenience,
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Fig. 1. Compatibility, state-compatibility, and state-coherence

we often write →A for →Δ. Following [10], we formulate Genet’s result from [5]
as follows:

Definition 4. A tree automaton A is compatible with a TRS R if for all state
substitutions σ, rules l→ r ∈ R and states q ∈ Q, lσ →∗

A q implies rσ →∗
A q.

Theorem 5. Let the tree automaton A be compatible with the TRS R. Then

1. if R is left-linear, then L(A) is closed under rewriting by R, and
2. if A is deterministic, then L(A) is closed under rewriting by R.

Finally, we recall that every tree automaton can be reduced to an equivalent
automaton where all states are useful.

Definition 6. Let A = (F , Q,Qf , Δ) be a tree automaton. We say that a state
q ∈ Q is reachable if t →∗

A q for some term t ∈ T (F); q ∈ Q is productive if
C[q] →∗

A q′ for some context C and state q′ ∈ Qf . Finally, an automaton A is
trim if all its states are both reachable and productive.

Proposition 7. For any tree automaton A there is an equivalent tree automaton
A′ that is trim. If A is deterministic, then A′ is also deterministic.

3 State-Compatible Automata

3.1 Definitions

Before we get down to definitions, let us briefly analyze the failure in Example 2.
What happens there is that, by the compatibility requirement, all three terms in
the rewrite sequence f(a, a)→R b →R a have to be accepted in the same state.
In conjunction with the determinism requirement, this is fatal. Consequently,
because our goal is to obtain a deterministic automaton, we must allow a and
b to be accepted in separate states, qa and qb. To track their connection by
rewriting, we introduce a relation - on states, such that qb - qa. In general,
we require - to be state-compatible and state-coherent, which are defined as
follows (see also Figure 1).

Definition 8. Let A = (F , Q,Qf , Δ) be a tree automaton, and - ⊆ Q×Q be a
relation on the states of A. We say that (A,-) is state-compatible with a TRS
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R if for all state substitutions σ, rules l → r ∈ R and states q ∈ Q, if lσ →∗
A q

then rσ →∗
A q′ for some q′ ∈ Q with q - q′. We say that (A,-) is state-coherent

if {q′ | q ∈ Qf , q - q′} ⊆ Qf , and if for all f(q1, . . . , qi, . . . , qn) → q ∈ Δ and
qi - q′i there is some q′ ∈ Q with f(q1, . . . , q

′
i, . . . , qn)→ q′ ∈ Δ and q - q′.

The purpose of state-coherence is to deal with contexts in rewrite steps, as we
will see in the proof of Theorem 11 below.

Example 9. Let A be an automaton with states 1, 2 (both final), and transitions

a→ 1 b→ 2 f(1, 1)→ 2

Furthermore, let 2 - 2 and 2 - 1. Then (A,-) is state-coherent and state-
compatible with R = {f(x, x) → b, b → a} and L(A) = {f(a, a), b, a}. Note
that this automaton was obtained from the quasi-deterministic automaton from
Example 3 by keeping only the transitions to designated states. We will see in
Section 4 that this construction works in general.

Remark 10. If (A,-) is state-coherent, then (A,-=) and (A,-∗) are also
state-coherent. The same holds for state-compatibility with R.

3.2 Soundness and Completeness

Next we prove the analogue of Theorem 5 for state-coherent, state-compatible
automata.

Theorem 11. Let A be a tree automaton such that (A,-) is state-coherent and
state-compatible with the TRS R for some relation -. Then

1. if R is left-linear, then L(A) is closed under rewriting by R, and

2. if A is deterministic, then L(A) is closed under rewriting by R.

Proof. Let A = (F , Q,Qf , Δ). First we show that whenever lτ →∗
A q for some

substitution τ and rule l → r ∈ R, then there is a state q′ ∈ Q with q - q′ and
rτ →∗

A q′. By the assumptions, we can extract from lτ →∗
A q a state substitution

σ such that lτ →∗
A lσ →∗

A q: For each x ∈ Var(l), we map x to the state reached
from τ(x) in the given sequence. The state is unique either by left-linearity, or
because the given automaton is deterministic. By state-compatibility, we obtain
a state q′ such that q - q′ and rτ →∗

A rσ →∗
A q′.

Using state-coherence we can show by structural induction on C that whenever
C[q]→∗

A q• and q - q′, then C[q′]→∗
A q′• for some state q′• with q• - q′•.

Finally, assume that t ∈ L(A) and t→R t′. Then there exist a rule l→ r ∈ R,
a context C and a substitution τ such that t = C[lτ ] and t′ = C[rτ ]. We have
a derivation t = C[lτ ] →∗

A C[q] →∗
A q• ∈ Qf . By the preceding observations we

can find states q - q′ and q• - q′• such that t′ = C[rτ ] →∗
A C[q′] →∗

A q′•. Note
that by state-coherence, q• ∈ Qf implies q′• ∈ Qf , so that t′ ∈ L(A). �
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Note that Theorem 11 generalizes Theorem 5 (choose- to be the identity rela-
tion on states, which is always state-coherent). Moreover, the converse of Theo-
rem 11 holds for trim, deterministic automata. We will prove this in Theorem 13
below, which allows us to derive our main decidability result in Corollary 14.
But first let us show by example that the converse fails for some trim, non-
deterministic automaton and ground TRS R.

Example 12. Consider the TRS R = {a→ b} and the automaton A with states
0, 1, 2, 3, final state 0, and transitions

a→ 1 f(1)→ 0 g(1)→ 0

b→ 2 f(2)→ 0 b→ 3 g(3)→ 0

This automaton accepts L(A) = {f(a), f(b), g(a), g(b)}, which is closed under
rewriting by R. Assume that (A,-) is state-coherent and state-compatible with
R. By state-compatibility, a → b begets 1 - 2 or 1 - 3. If 1 - 2, then state-
coherence, considering the transition g(1) → 0, requires a transition with left-
hand side g(2), which does not exist. Similarly, if 1- 3, then f(1)→ 0 requires
a transition with left-hand side f(3), which does not exist.

Theorem 13. Let A be a trim, deterministic tree automaton such that L(A)
is closed under rewriting by the TRS R. Then there is a relation - such that
(A,-) is state-coherent and state-compatible with R.

Proof. Let A = (F , Q,Qf , Δ). We define - as follows: q - q′ iff for some terms
t, t′ ∈ T (F), we have

q
∗←−
A

t −→
R

t′
∗−→
A

q′ (1)

Note that by virtue ofA being deterministic, t and t′ determine q and q′ uniquely.
We show that (A,-) is state-coherent and state-compatible.

1. (state-coherence) If q ∈ Qf and q - q′, then there exist terms t, t′ satisfying
(1). In particular, q ∈ Qf implies t ∈ L(A), and t →R t′ implies t′ ∈ L(A),
because L(A) is closed under rewriting by R. Because A is deterministic, t′

determines q′ uniquely, and q′ ∈ Qf follows.

2. (state-coherence) Assume that f(q1, . . . , qn) → q ∈ Δ and qi - q′i for some
index i and state q′i. By (1) there are ti, t

′
i such that qi

∗
A← ti →R t′i →∗

A q′i.
Because all qj are reachable, we can fix terms tj with tj →∗

A qj for j �= i. The
state q is productive, so there is a context C such that C[q] →∗

A q• ∈ Qf .
Let t = f(t1, . . . , tn) and t′ = f(t1, . . . , t

′
i, . . . , tn). Then C[t] ∈ L(A) and

C[t] →R C[t′], hence C[t′] ∈ L(A) as well. Consequently, there are states
q′, q′• such that

C[q]
∗←−
A

C[t] −→
R

C[t′]
∗−→
A

C[f(q1, . . . , q
′
i, . . . , qn)] −→A C[q′]

∗−→
A

q′• ∈ Qf

In particular, we have a transition f(q1, . . . , q
′
i, . . . , qn)→ q′ ∈ Δ, and q - q′.
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3. (state-compatibility) Assume that lσ →∗
A q for a state substitution σ. All

states of A are reachable, so there is a substitution τ : V → T (F) with
τ(x) →∗

A σ(x) for all x ∈ V . Furthermore, q is productive, so that for some
context C, C[q] →∗

A q• ∈ Qf . We have C[lτ ] ∈ L(A) and C[lτ ] →R C[rτ ].
Consequently, C[rτ ] ∈ L(A) and for some states q′, q′•,

C[q]
∗←−
A

C[lσ]
∗←−
A

C[lτ ] −→
R

C[rτ ]
∗−→
A

C[q′]
∗−→
A

q′• ∈ Qf

In particular, rτ →∗
A q′. Recall that A is deterministic. Hence we can de-

compose this rewrite sequence as follows: rτ →∗
A rσ →∗

A q′. We conclude by
noting that q - q′ by the definition of -. �

Corollary 14. The problem R(L(A)) ⊆ L(A) is decidable.

Proof. W.l.o.g. we may assume that A is deterministic. Using Proposition 7 we
may also assume that A is trim. By Theorems 11 and 13 the problem reduces
to whether there is some relation - such that (A,-) is both state-compatible
with R and state-coherent. But since there are only finitely many relations -
we can just test state-compatibility and state-coherence for each -.

Remark 15. As a consequence of Theorem 13, regular languages accepted by
state-coherent automata that are state-compatible with a fixed TRSR are closed
under intersection and union. This can also be shown directly by a product
construction.

3.3 Deciding R(L(A)) ⊆ L(A)

In the remainder of this section we show that instead of testing all possible
relations -, it suffices to construct a minimal one. We proceed as follows:

1. We assume thatA = (F , Q,Qf , Δ) is trim and deterministic. Note that given
a non-deterministic automaton, we can compute an equivalent deterministic
one in exponential time. Once we have a deterministic automaton, we can
compute an equivalent trim one in polynomial time.

2. For each state q ∈ Q and rule l → r ∈ R, check whether there is a state
substitution σ such that lσ →∗

Δ q, but there is no q′ with rσ →∗
Δ q′. If such

a σ exists, then L(A) is not closed under rewriting by R, and the procedure
terminates.

3. In the following steps we will find the smallest relation- that makes (A,-)
both state-compatible with R and state-coherent, if such a relation exists.

4. For each pair of states q, q′ ∈ Q and rule l → r ∈ R, check whether there is
a state substitution σ such that lσ →∗

Δ q and rσ →∗
Δ q′. If so, assert q - q′.

This ensures that (A,-) will be state-compatible with R.
5. Whenever q - q′ is asserted for the first time for states q and q′, we fail if q

is final but q′ is not, violating the state-coherence. Otherwise, we check Δ for
transitions with q on the left-hand side. If f(q1, . . . , qi = q, . . . , qn)→ q• ∈ Δ,
then we look for a transition with left-hand side f(q1, . . . , q

′
i = q′, . . . , qn)
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in Δ. If no such transition exists, state-coherence fails, and the algorithm
terminates. Otherwise, let q′• ∈ Q be the corresponding right-hand side. We
have f(q1, . . . , q

′
i = q′, . . . , qn)→ q′• ∈ Δ. Assert that q• - q′•.

Note that step 5 is really a subroutine, and invokes itself recursively. Steps 2 and
4, which identify the applicable instances of the state-compatibility constraint,
consist of a polynomial number of NP queries, and step 5 can be performed
in polynomial time. The whole procedure is, therefore, in the ΔP

2 (or PNP )
complexity class for deterministic automata as input.

Remark 16. Using [3, Exercise 1.12.2], which shows that it is NP-hard to decide
whether an instance of a term l is accepted by a tree automaton A, we can show
that deciding whether the language accepted by a deterministic automaton is
closed under rewriting by a given TRS is co-NP-hard. To wit, given a term
l, a tree automaton A, a fresh unary function � and a fresh constant +, then
�(L(A)) = {�(x) | x ∈ L(A)} is closed under rewriting by �(l) → + if and only
if no instance of l is accepted by A.

4 Relation to Quasi-deterministic Automata

We recall the definitions of compatibility and quasi-determinism from [10], and
show that given a compatible, quasi-deterministic automaton, we can extract a
state-compatible, deterministic automaton accepting the same language, while
the opposite direction fails in the presence of collapsing rules.

Definition 17 (Definition 18 of [10]). Let A = (F , Q,Qf , Δ) be a tree au-
tomaton. For a left-hand side l ∈ lhs(Δ) of a transition, we denote the set {q |
l → q ∈ Δ} of possible right-hand sides by Q(l). We call A quasi-deterministic
if for every l ∈ lhs(Δ) there exists a designated state p ∈ Q(l) such that for
all transitions f(q1, . . . , qn) → q ∈ Δ and i ∈ {1, . . . , n} with qi ∈ Q(l), the
transition f(q1, . . . , qi−1, p, qi+1, . . . , qn)→ q belongs to Δ. Moreover, we require
that p ∈ Qf whenever Q(l) contains a final state.

For each l ∈ lhs(Δ) we pick a state pl satisfying the constraints of Definition 17.
We denote the set of designated states by Qd and the set {l → pl | l ∈ lhs(Δ)}
by Δd. The notion of compatibility used for quasi-deterministic tree automata
is refined slightly from the standard one, Definition 4.

Definition 18 (Definition 23 of [10]). Let R be a TRS and L a language.
Let A = (F , Q,Qf , Δ) be a quasi-deterministic tree automaton. We say that A
is compatible with R and L if L ⊆ L(A) and for each rewrite rule l → r ∈ R
and state substitution σ : Var(l)→ Qd such that lσ →∗

Δd
q it holds that rσ →∗

Δ q.

Example 3 exhibits a quasi-deterministic, quasi-compatible automaton.
We will show that for each quasi-deterministic automaton that is compatible

with a TRS R, there is a deterministic, state-coherent automaton that is state-
compatible with R and accepts the same language. To this end, we need the
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following key lemma, a slight generalization of [10, Lemma 20], which shows
that a quasi-deterministic automaton A is almost deterministic: all but the last
step in a reduction can be performed using the deterministic Δd transitions.

Lemma 19. Let A = (F , Q,Qf , Δ) be a quasi-deterministic automaton. If t→+
Δ

q then t→∗
Δd
· →Δ q for all terms t ∈ T (F ∪Q) and states q ∈ Q.

Proof. Identical to the proof of [10, Lemma 20], except when ti in t = f(t1, . . . , tn)
is a state. In that case, we let pli = qi = ti. �

Theorem 20. Let A = (F , Q,Qf , Δ) be a quasi-deterministic tree automaton
that is compatible with R. Then A′ = (F , Qd, Qf ∩Qd, Δd) makes (A′,-) state-
coherent and state-compatible with R, where q - q′ if q = q′ or, for some
left-hand side l ∈ lhs(Δ), q ∈ Q(l) and q′ = pl. Furthermore, L(A′) = L(A).

Proof. Note that →A =→Δ and →A′ =→Δd
.

1. (state-coherence) Assume that q is final in A′, and q - q′. If q = q′ then
q′ is final, too. Otherwise, there is a left-hand side l such that q ∈ Q(l) and
q′ = pl is the designated state of l. Since Q(l) contains a final state (namely,
q), q′ must be final as well by Definition 17.

2. (state-coherence) Let l = f(q1, . . . , qi, . . . , qn) and l′ = f(q1, . . . , q
′
i, . . . , qn),

where qi - q′i. Furthermore, let l→ q ∈ Δd. If qi = q′i then l′ → q ∈ Δd and
q - q. Otherwise, there is a left-hand side l• such that qi ∈ Q(l•) and q′i = pl•
is the designated state of l•. By Definition 17, there is a transition l′ → q
in Δ. Thus, l′ is a left-hand side and q ∈ Q(l′). Furthermore, l′ → pl′ ∈ Δd,
and q - pl′ follows.

3. (state-compatibility) Let σ be a state substitution and lσ →∗
Δd

q. By com-
patibility, we have rσ →∗

Δ q. If r is a variable, we are done, noting that
q - q. Otherwise, using Lemma 19, there is a left-hand side l′ ∈ lhs(A) such
that rσ →∗

Δd
l′ →Δ q. Consequently, rσ →∗

Δd
· →Δd

pl′ , and since q ∈ Q(l′),
we have q - pl′ .

4. (accepted language) L(A′) ⊆ L(A) is obvious. To show L(A) ⊆ L(A′),
assume that t ∈ L(A), i.e., t →∗

Δ q ∈ Qf . By Lemma 19, there is a left-
hand side l ∈ lhs(A) such that t →∗

Δd
l →Δ q. As in the previous item we

conclude that t→∗
Δd

pl, and q - pl. The state pl is final by state-coherence,
so t ∈ L(A′) follows. �

In the opposite direction, we have a positive result for non-collapsing TRSs.

Theorem 21. Let A = (F , Q,Qf , Δ) be a deterministic automaton and the
relation - ⊆ Q ×Q be such that (A,-) is state-coherent and state-compatible
with R. Furthermore, assume that R contains no collapsing rules. Then the
automaton A′ = (F , Q,Qf , Δ

′) with Δ′ = {l → q′ | l → q ∈ Δ, q -= q′} is a
quasi-deterministic automaton with designated states pl = q for l → q ∈ Δ, such
that A′ is compatible with R and accepts the same language as A.

Proof. Verifying that the construction results in a quasi-deterministic automaton
that is compatible with R is straight-forward. Note that applying Theorem 20
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to A′ results in some (A′′,-′′) with L(A′′) = L(A′), where A′′ is A with states
restricted to Q′d, the right-hand sides of Δ′. This restriction preserves the ac-
cepted language. Therefore, L(A) = L(A′). �

If R contains collapsing rules, quasi-deterministic, compatible automata may
be weaker than state-coherent, state-compatible ones, as the following example
demonstrates.

Example 22. Let R = {f(x, x) → x}. The automaton A′ over {f, a} with states
1, 2, both final, and transitions

a→ 1 f(1, 1)→ 2

accepts L = {f(a, a), a}. Furthermore, (A′,-) is state-coherent and state-com-
patible with R if we let 2- 1.

Now assume that A = ({f, a}, Q,Qf , Δ) is a quasi-deterministic automaton
and compatible with R, and that f(a, a) ∈ L(A). We will show that A accepts
all terms over {f, a}. Note that since f(a, a) is accepted, a must be a left-hand
side of A. Let q be the designated state of a. By Lemma 19, we have a run
f(a, a) →∗

Δd
f(q, q) →Δ q′ ∈ Qf . Let q• be the designated state of the left-hand

side f(q, q). By quasi-determinism, q• is a final state. Compatibility requires that
f(q, q)→Δd

q• ∗
Δ← q, i.e., q• = q. So we have a final state q and two transitions

a→ q, f(q, q)→ q, and A accepts all of T ({f, a}).

Remark 23. In his thesis [9],Korp generalizesDefinition 17 (cf. [9,Definition 3.10])
by incorporating an auxiliary relation :φA that may be viewed as a precursor to
our relation-. The modified definition permits smaller automata, which benefits
implementations, but is more complicated than Definition 17. The modification
also does not add expressive power. Indeed if A = (F , Q,Qf , Δ) satisfies [9, Def-
inition 3.10] using :φA , then taking Δ′ = {l → q | l ∈ lhs(Δ), φA(l) : q}, the
automaton A′ = (F , Q,Qf , Δ

′) satisfies Definition 17, noting that φA(l) is just
another notation for the designated state pl of l. Furthermore, L(A′) = L(A).

5 Formalization

We have formalized all results from Section 3 as part of IsaFoR, our Isabelle
Formalization of Rewriting, in combination with executable algorithms which
check state-compatibility and state-coherence. These are used in CeTA [14], a
certifier for several properties related to term rewriting.

Here, Tree Automata.thy starts with basic definitions on tree automata where
there are twomajor differences to this paper: the formalization allows ε-transitions,
and the set of reachable states t →∗

Δ q is formalized directly as a function ta res
mapping terms to sets of states. Using a function instead of a relation has both
positive and negative effects. For example, it eases proofs which are naturally per-
formed by induction on terms, since in f(t1, . . . , tn) one does not have to reduce all
arguments t1 to tn sequentially in a relation, but this is done in one step in ta res.
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On the other hand, one cannot trace derivations t →∗
Δ q explicitly as there is no

notion of derivation. Hence, some obvious results have to be proven explicitly by
induction, e.g., that removing transitions results in a smaller accepted language.

The file continues with proofs of Proposition 7 (obtain trimmed ta), Theo-
rems 11 and 13 (state compatible lang and ta trim det closed), and Corol-
lary 14 (closed iff compatible and coherent), where the corollary states only
that L(A) is closed under R iff for the determinized and trimmed automaton
there exists a suitable relation-. Instead of formally proving decidability by an
algorithm which enumerates all possible relations, we directly formalized the al-
gorithm of Section 3.3 to compute the least such relation. Here, we described the
algorithm on an abstract level via some inference system, and its soundness and
completeness manifests in theorem decide coherent compatible. It is later on
refined to a fully executable one.

In addition to the decision procedure, we also provide Theorem 11 to demon-
strate closure under rewriting when - is supplied. The advantage of the latter
is its improved runtime and its broader applicability: one does not have to it-
eratively construct the relation, and for left-linear TRSs, also non-deterministic
automata with ε-transitions are supported, cf. state compatible lang. Here,
for checking state-compatibility, we use a tree automaton matching algorithm
(ta match), that restricts the set of state substitutions σ that have to be consid-
ered for compatibility w.r.t. Definition 8.

Whereas Tree Automata.thy formalizes most algorithms on an abstract level,
in Tree Automata Impl.thy we refined those to fully executable ones. In fact,
for some algorithms we just relied on the automatic refinement provided in [12]
which turns set operations into operations on trees. However, for some algo-
rithms like the matching algorithm we performed manual refinement to increase
the efficiency. For example, we group the transitions of an automaton by their
root symbols and store these groups in ordered trees using Isabelle’s collection
framework [11]. Moreover, for each f(q1, . . . , qn)→ q, we precompute the closure
of q under ε-transitions. This speeds up the computation of ta res while check-
ing state-compatibility. In the end, we provide an executable algorithm which for
given A and R checks whether A is closed under R, cf. tree aut trs closed.

We have extended the termination tool TTT2 [8] and the confluence tool CSI [15]
to produce state-coherent, state-compatible automata. Since both tools use quasi-
deterministic automata in their completion process, we applied the construction
of Theorem 20 as a post-processing step, resulting in a state-coherent, state-
compatible automaton. CeTA can then be used to certify this output. Whereas for
non-confluence proofs the input can be arbitrary, for match-bounds we currently
require left-linearity. The reason is that without left-linearity, the match-bounds
technique requires further conditions besides closure under rewriting, which have
not been formalized yet and which remain as future work.

All tools and the formalization are available at http://cl-informatik.uibk.
ac.at/research/software/ (CeTA + IsaFoR version 2.12, TTT2 version 1.14, CSI
version 0.4.)

http://cl-informatik.uibk.ac.at/research/software/
http://cl-informatik.uibk.ac.at/research/software/
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6 Conclusion

We have introduced the class of deterministic, state-coherent automata that are
state-compatible with a TRS R. We have shown that these automata capture
precisely those regular tree languages that are closed under rewriting by R,
leading to a decision procedure for checking whether a regular language is closed
under rewriting. Their simple definition allowed us to formalize most of our
results on state-coherent, state-compatible automata.

Even though state-coherent, state-compatible tree automata are strictly more
general, we still rely on quasi-deterministic tree automata for the actual com-
pletion process in the CSI and TTT2 tools. Thus, they cannot exploit the full
power of state-coherent and state-compatible tree automata, and will fail when
analyzing TRSs like Example 22. As future work, we plan to investigate whether
working directly on state-coherent, state-compatible automata can improve tree
automata completion.

Acknowledgments. We would like to thank Aart Middeldorp for fruitful dis-
cussions on the topic of tree automata and helpful feedback. We are also grateful
to the anonymous reviewers for their constructive feedback.
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Abstract. We investigate the model counting problem for safety speci-
fications expressed in linear-time temporal logic (LTL). Model counting
has previously been studied for propositional logic; in planning, for exam-
ple, propositional model counting is used to compute the plan’s robust-
ness in an incomplete domain. Counting the models of an LTL formula
opens up new applications in verification and synthesis. We distinguish
word and tree models of an LTL formula. Word models are labeled se-
quences that satisfy the formula. Counting the number of word models
can be used in model checking to determine the number of errors in a
system. Tree models are labeled trees where every branch satisfies the
formula. Counting the number of tree models can be used in synthesis to
determine the number of implementations that satisfy a given formula.
We present algorithms for the word and tree model counting problems,
and compare these direct constructions to an indirect approach based on
encodings into propositional logic.

Keywords: Model counting, temporal logic, model checking, synthesis,
tree automata.

1 Introduction

Model counting, the problem of computing the number of solutions of a given
logical formula, is a useful generalization of satisfiability. Many probabilistic
inference problems, such as Bayesian net reasoning [13], and planning problems,
such as computing the robustness of plans in incomplete domains [14], can be
formulated as model counting problems of propositional logic. State-of-the-art
tools for propositional model counting include Relsat [1] and c2d [6].

In this paper, we study the model counting problem for safety specifications
expressed in linear-time temporal logic (LTL). LTL is the most commonly used
specification logic for reactive systems [15] and the standard input language for
model checking [2,5] and synthesis tools [4,3,7]. Just like propositional model
counting generalizes SAT, LTL model counting introduces “quantitative” exten-
sions of model checking and synthesis. In model checking, model counting can
be used to determine not only the existence of computations that violate the
specification, but also the number of such violations. For example, in a commu-
nication system, where messages are lost (with some probability) on the channel,

A.-H. Dediu et al. (Eds.): LATA 2014, LNCS 8370, pp. 360–371, 2014.
c© Springer International Publishing Switzerland 2014
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it is typically not necessary (or even possible) to guarantee a 100% correct trans-
mission. Instead, the number of executions that lead to a message loss is a good
indication for the quality of the implementation. In synthesis, model counting
can be used to determine not only the existence of an implementation that satis-
fies the specification, but also the number of such implementations. The number
of implementations of a specification is a helpful metric to understand how much
room for implementation choices is left by a given specification, and to estimate
the impact of new requirements on the remaining design space.

Formally, we distinguish two types of models of an LTL formula. A word
model of an LTL formula ϕ over a set of atomic propositions AP is a sequence
of valuations of AP such that the sequence satisfies ϕ. A tree model of an LTL
formula ϕ over a set of atomic propositions AP = I∪O, partitioned into inputs I
and outputs O, is a tree that branches according to the valuations of I and that is
labeled with valuations of O, such that every path of the tree satisfies ϕ. In order
to guarantee that the number of models is finite, we consider bounded models,
i.e., words of bounded length and trees of bounded depth. This is motivated by
applications like bounded model checking [2] and bounded synthesis [8], where we
look for small error paths and small implementations, respectively, by iteratively
increasing a bound on the size of the model.

Since both bounded model checking and bounded synthesis are based on sat-
isfiability checking, a natural idea to solve the model counting problem of LTL
is to reduce it to the propositional counting problem: for word models, this can
be done by introducing a copy of the atomic propositions for each position of
the word, for tree models, by introducing a copy of the atomic propositions for
each node in the tree. Unfortunately, however, this reduction quickly results in
intractable propositional problems. For word models, we need a linear number of
propositional variables in the bound, for tree models even an exponential number
of variables. This is critical, since propositional counting is #P-complete. Cur-
rent state-of-the-art model counters cannot handle more than approximately
1000-10000 propositional variables [9]. This limit is exceeded easily, for example,
by a tree of depth 5. (Assuming 3 bits of input and a 3-bit encoding of the LTL
formula, we need approximately 100000 variables.)

In this paper, we present a model counting algorithm with much better per-
formance. For both word and tree models, the complexity of our algorithm is
linear in the bound. This improvement is obtained by dynamic programming:
we compute the number of models backwards, i.e., from the last position to the
first in the case of word models, and form the leaves to the root in the case
of tree models. We show that LTL formulas can be translated to word and tree
automata that have exactly one run for every model. The number of runs is then
computed by incrementally considering larger models and computing, for each
bound, the number of models that are accepted by runs starting in a specific
state.

Analyzing the complexity of this construction, it turns out that the dramatic
improvement in the complexity with respect to the bound does not come for free,
as our constructions are more expensive in the size of the formula, compared to



362 B. Finkbeiner and H. Torfah

the solution based on a reduction to propositional counting. In practice, however,
this is not a problem, because costs in relation to the size of the formula are much
more benign than costs in relation to the bound: typically, we are interested in
systems with large implementations, but small specifications.

Overview. After reviewing the necessary preliminaries in Section 2, we formally
define the model counting problem in Section 3. Counting algorithms for word
models and tree models are presented in Sections 4 and 5, respectively.

2 Preliminaries

Transition Systems. We represent models as labeled transition systems. For
a given finite set Υ of directions and a finite set Σ of labels, a Σ-labeled Υ -
transition system is a tuple S = (S, s0, τ, o), consisting of a finite set of states
S, an initial state s0 ∈ S, a transition function τ : S × Υ → S, and a labeling
function o : S → Σ.

A path in a labeled transition system is a sequence π : N→ S×Υ of states and
directions that follows the transition relation, i.e., for all i ∈ N if π(i) = (ti, ei)
then π(i + 1) = (ti+1, ei+1) where ti+1 ∈ τ(ti, ei). We call the path initial if it
starts with the initial state: π(0) = (t0, e) from some e ∈ Υ . We define the set
paths(S) as the set of all initial paths of S.

Specifications. We use linear-time temporal logic (LTL) [15], with the usual
temporal operators Next X , Until U , and the derived operators Eventually ♦
and Globally �. LTL formulas are defined over a set of atomic propositions
AP = I ∪ O, which is partitioned into a set I of input variables and a set O of
output variables. We denote the satisfaction of an LTL formula ϕ by an infinite
sequence σ : N→ 2AP of valuations of the atomic propositions by σ |= ϕ. A 2O-
labeled 2I -transition system S = (S, s0, τ, o) satisfies ϕ, if for all π ∈ paths(S)
the sequence σπ : i �→ o(π(i)), where o(s, e) = (o(s) ∪ e), satisfies ϕ. In the
remainder of the paper, we assume that all considered LTL specifications express
safety properties. An infinite sequence σ : N→ 2AP violates a safety property iff
there is a prefix σ′ : [0, i] → 2AP of σ such that for all extensions σ̂ : N → 2AP,
σ′σ̂ �|= ϕ. We call σ′ a bad prefix for ϕ.

Universal Safety Automata. A universal safety automaton is a tuple U =

(Q, q0, δ, Σ, Υ ), where Q denotes a finite set of states, q0 ∈ Q denotes the initial
state, δ denotes a transition function, Σ a finite set of labels, and Υ a finite set
of directions. The transition function δ : Q × Σ × Υ → 2Q maps a state to the
set of successor states reachable via a label σ ∈ Σ and a direction υ ∈ Υ . A
run graph of the automaton on a Σ-labeled Υ -transition system S = (S, s0, τ, o)
is a directed graph G = (G,E) such that: The vertices G ⊆ Q × S, the pair
(q0, s0) ∈ G, and for each pair (q, s) ∈ G there is an edge to (q′, τ(s, υ)) for
υ ∈ Υ and for every q′ ∈ δ(q, o(s), υ). A transition system is accepted by the
automaton if it has a run graph in the automaton.
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Fig. 1. A base and two word models

For each safety property expressed as an LTL formula ϕ, we can construct a
universal safety automaton that accepts exactly the sequences that satisfy ϕ. If
ϕ has length n, then the number of states of this universal safety automaton is
in 2O(n). (This can be done by translating ϕ into an automaton that recognizes
its bad prefixes, called fine bad prefix automaton in [12], and dualizing this
automaton.)

Bottom-Up Tree Automata. Σ-labeled Υ -trees are trees where each node is
labeled with a label α ∈ Σ and has exactly one child for every direction υ ∈ Υ .
A bottom-up tree automaton is a tuple T = (T, TF , Δ0, Δ,Σ, Υ ) defined over
Σ-labeled Υ -trees, where T is a finite set of states, TF ⊆ T denotes the set of
accepting states, an initial transition relation Δ0 ⊆ Σ × T that associates a leaf
node of the tree to a state of the automaton, according to the label α ∈ Σ of
the leaf node, and the transition relation Δ ⊆ T |Υ | × Σ × T that determines
the state labeling of a node according to the label of the node and the state
labelings of the children nodes. A run of the automaton over a Σ-labeled Υ -tree
is a T -labeled Υ -tree. We say that a tree is accepted by the automaton if the
root of its run tree is in TF .

3 The Model Counting Problem

A model of an LTL formula is a finite transition system. Counting the number of
transition systems that satisfy a given LTL formula would not, however, be very
informative, because this number is either 0 or∞: if the formula is satisfiable, it
is satisfied by some ultimately periodic model, and each unrolling of the periodic
part results in a new transition system that satisfies the formula. We therefore
consider bounded models.

We distinguish two types of bounded models, word and tree models. A
k-word model of an LTL formula ϕ over AP = I ∪ O is a lasso sequence
π(0) . . . π(i − 1)(π(i), . . . π(k))ω ∈ (2O × 2I)ω for some i ∈ {0, ..., k}. We call
π⊥ = π(0) . . . π(k) ∈ (2O × 2I)k+1 the base of the model. Figure 1 shows two
word models and their base.

A k-tree model of an LTL formula ϕ is a 2O-labeled-2I-transition system that
forms a tree of depth k with additional loop-back transitions from the leaves
(for every leaf and every direction, there is an edge to some state on the branch
leading to the leaf). The tree without the loop-back transitions is the base of the
model. Figure 2 shows two tree models and their base.

For an LTL formula ϕ and a bound k, the k-word (k-tree) counting problem
is to compute the number of k-word (k-tree) models of ϕ.
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Fig. 2. A base and two tree models

4 Counting Word Models

We start by introducing an algorithm for counting word models of safety LTL for-
mulas. In the next section we show how we can adapt the ideas of this algorithm
in order to count tree models. For a given bound k and a safety specification ϕ,
we construct a word automaton that accepts a finite sequence of size k if it is a
base for a word model of ϕ. We introduce an algorithm based on the automaton
that delivers the number of word models of ϕ.

4.1 An Automaton for Word Models

The following theorem shows that for each safety property expressed as an LTL
specification ϕ and a bound k, we can construct a word automaton that accepts
a word of maximum length k if it is a base of a word model of ϕ. In theorem 2
we show that the word automaton can be used to count the number of k-word
models for the specification ϕ. Our starting point is the representation of the
specification ϕ as a universal safety automaton. When a word model π satisfies
ϕ, then there is a run graph of the universal safety automaton on π. In the run
graph, every state s in π is mapped to a set of states in the universal automaton.
This set is the set of universal states visited by π in the state s. We refer to this
set as an annotation of s. Intuitively, our word automaton tries to reconstruct
a possible annotation for each state for a given base of a word model. The loop
in the word model corresponds to a suffix of the base. The annotation of this
suffix is a repeating annotation in the run graph of the word model. The word
automaton guesses the annotation of the loop-back state (the first state of the
suffix), and checks, traversing the base backwards, whether (1) a repetition of
the guessed annotation along the base is observed, and (2) an initial annotation
is reached after having traversed the whole base (an annotation containing the
initial state of the universal safety automaton). Since one base may correspond to
several word models, the automaton also keeps track of the number of repetitions
of the guessed annotation.

It remains to ensure that the automaton is unambiguous with respect to a
word model, i.e, that every base has at most a single accepted annotation for a
word model. So far, a single base might have multiple annotations. Such a situ-
ation is depicted in Figure 3. To prevent multiple annotations of the same base,
the automaton only allows maximal annotations: in addition to the “positive”
annotation, the automaton builds a “negative” annotation consisting of states
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Fig. 3. On the left: a universal safety automaton; on the right: a base with two different
annotations. The annotation shown above the base corresponds to a run graph of the
universal automaton. The annotation shown below the base is the maximal annotation.

of the universal automaton that must not occur in the positive annotation. All
states that do not occur in the positive annotation must occur in the negative
annotation. Due to the determinism of the universal safety automaton, there is
only one maximal annotation for each word model over its base. Note that the
maximal annotation in Figure 3 (shown below the base) includes the alternative
annotation shown above the base. Also note that the maximal annotation fits
two different word models, the word model with the loop labeled abab and the
word model labeled ab.

Theorem 1. Given a universal safety automaton U = (Q, q0, δ, Σ, Υ ) with n
states, and a bound k, we can construct a finite word automaton A# = (Q#, Q0#,
QF#, Δ,Σ, Υ ) that accepts a sequence σ ∈ (Σ × Υ )k if σ−1 is the sequence of
labels of a base of a word model that is accepted by U . The number of states of
the automaton A# is in 2O(n).

Construction: We choose (2Q×{0, ..., k}×(2Q)n−1)×2Q×(2Q)n to be the state
space of the word automaton. A state ((C, c, C1, . . . , Cn−1),P ,N0, . . . ,Nn−1) is
split into conjecture sets C, C1, . . . , Cn−1, which once chosen cannot be manipu-
lated by the transition relation, and tracking sets P ,N0, . . . ,Nn−1, which keep
track of the possible state annotations for a given sequence π, starting from
the conjecture annotations. The conjecture C denotes a loop back annotation
reached in some state s on π when looping back to s. Given C, the idea is to
traverse π backwards and check whether this annotation is repeated in some
state s on π. If this is the case, we point to a possible word model with a loop
back to s. The counter c denotes the number of valid repetitions of C along π.
The conjectures C1, . . . , Cn−1 are used for the maximality check. As discussed
earlier, when we check a finite sequence in an inverse fashion, we may find more
than one valid annotation of the universal automaton for its states. To check
whether the annotation is maximal, we also compute for each state a set of neg-
ative universal states that are not allowed to be in a sequence state’s annotation.
For a state s in the sequence, a set Cj involves states that lead to a dead end
in the automaton U in the j-th loop to s. Starting with N0 = ∅ we need to
loop at most n − 1 times to reach the largest set Cn−1 of all negative universal
states (the set is at most as large the set of universal states. In each loop this set
either increases or we will have reached a fix-point in which all negative states
are already included). An annotation is maximal if it contains all states that
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are not in the negative set. An initial state is a conjecture state of the form
((C, 0, C1, . . . , Cn−1), C, ∅, C1, . . . , Cn−1) where C, C1, . . . , Cn−1 ⊆ 2Q.

The sets P ,N0, . . . ,Nn−1 are computed via the transition relation Δ. Once
the automaton made a choice for an initial conjecture state ((C, 0, C1, . . . , Cn−1),
C, ∅, C1, . . . , Cn−1), Δ becomes deterministic. For a symbol α ∈ Σ×Υ and a state
Λ# = ((C, c, C1, . . . , Cn−1),P ,N0, . . . ,Nn−1) the transition relation computes a
state Λ′# = Δ(Λ#, α) = ((C, c′, C1, . . . , Cn−1),P ′,N ′

0, . . . ,N ′
n−1) as follows. The

set P ′ contains all the states of the universal automaton that lead to exactly
the set P via the transition with α, i.e., max{P ′ |

⋃
q∈P′

δ(q, α) = P}. If such

a set does not exist then there is no transition with α from this state. For the
sets of maximality check Δ computes N ′

i such that it contains all universal
states that may lead via α to a state in Ni or have no transition with σ, i.e.,
max{N ′ | ∀q′ ∈ N ′

i . δ(q
′, σ) = ∅ ∨ ∃q ∈ Ni. q ∈ δ(q′, σ)}.

A loop is found if the initial conjecture C is repeated i.e. C ⊆ P , and the max-
imality check holds. The latter is true when all positive states are in P , i.e., P =
Nn−1, and for all j < n−1,Nj = Cj+1, and a fix-point for the set of negative states
is reached, i.e., Cn−1 = Nn−1. In this case the counter c is then incremented by
one. A sequence is accepted if a stateΛ# = ((C, c, C1, . . . , Cn−1),P ,N0, . . . ,Nn−1)
is reached after reading the last symbol σ0, s.t., q0 ∈ P and c > 0.

The unambiguity of the automaton with respect to a word model follows
immediately from the maximality check and the determinism of the transition
relation after having chosen the initial state. �

4.2 An Algorithm for Counting Word Models

Theorem 2. There is a procedure that counts the number of k-word models of
a safety specification expressed as an LTL formula ϕ in time linear in the bound
k and double-exponential in the length of ϕ.

Algorithm 1 describes a procedure for computing the number of word models of
bases accepted by the automaton. The algorithm computes for each state of the
automaton the number of bases of length i that are accepted in this state in the i-th
iteration (when this state is visited in the i-th step). Ω maps each accepting state
in the k-th iteration to the number of bases of length k that are accepted by the au-
tomaton. For an accepting state q = ((C, c, C1, . . . , Cn−1),P ,N0, . . . ,Nn−1), a base
accepted in this state has a loop annotation C and it is repeated c times. Thus, each
base accepted in q has c word models. The number of word models is computed by
summing up the number of word models in each accepting state. The algorithm

traverses the automaton k times, resulting in a complexity of O(k).22O(|ϕ|)
.

5 Counting Tree Models

In this section, we introduce the counting algorithm for tree models. Our start-
ing point is again the universal safety automaton. Similar to the case of word
model counting, we guess a loop annotation and check whether the annotation
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Ω = {(q, 1)| q ∈ Q0#}
for (i := 0, i ≤ k, i++) do

for all q ∈ Ω do
for all σ ∈ Σ × Υ do

Ω(Δ(q, σ)) + := Ω(q)

return
∑

q=((C,c,C1,...,Cn−1),P,N0,...,Nn−1)∈QF#

Ω(q) · c

Algorithm 1. Counting with A#

is repeated when exploring the tree from its leaves upwards. However, because
tree models are a composition of word models, we need to guess an annotation
for each branch of the tree (for each leaf). Furthermore, as described in Sec-
tion 2, a tree model must preserve the input structure of a transition system,
i.e., a tree model has loop-backs from each leaf for each direction. Therefore,
we have a conjecture annotation for each direction in each leaf. Traversing the
tree upwards we apply then the procedure of the word case with an additional
merging procedure that merges all the information received from the children in
their parent tree state.

The following theorem shows that for each safety property expressed as an
LTL specification ϕ and a bound k we can construct a bottom-up tree automa-
ton, that accepts a tree if it is a base for a tree model of ϕ. Theorem 4 shows
that this automaton can be used to count the number of k-tree models for the
specification ϕ.

Theorem 3. Given a universal safety automaton U = (Q, q0, δ, Σ, Υ ) with n
states, and a bound k, we can construct a bottom-up tree automaton T# =
(Q#, QF#, Δ0, Δ,Σ, Υ ) that accepts a Σ-labeled Υ -tree of depth k if it is a tree
base of a tree model that is accepted by U . The number of states of T# is double
exponential in n.

Construction: We choose ((2Q → {⊥}∪{0, . . . , k})×(2Q)n−1)×2Q×(2Q)n to
be the state space of T#. The universal safety automaton U has a unique anno-
tation for every tree model. A state ((f, C1, . . . , Cn−1),P ,N0, . . . ,Nn−1) is again
split into a conjecture part f, C1, . . . , Cn−1 and a tracking part P ,N0, . . . ,Nn−1.
The tracking sets assign a node of a tree with the set of its positive and negative
universal states. These annotations are reached from the conjecture sets of all
leaves that lead upwards to this node. The conjecture part differs from the word
case in the conjecture function f . The conjecture function is a partial function
that maps an annotation to the number of expected repetitions along a branch
of the input tree. At leaf level, the function maps the guessed annotation C to
some number μ ∈ {0, ..., k}. Moving upwards in the tree the transition relation
counts down the number of repetitions of C. In each node of the input tree the
function f is a bookkeeping process for the repetitions of all the conjectures at
leaf level up to this node. A node annotation is maximal if P = Nn−1.
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The sets P ,N0, . . . ,Nn−1 are computed via the transition relations as follows.
For each leaf state s labeled with α ∈ Σ the initial transition relation Δ0 guesses
an annotation Cυi and sets C1υi

, ..., Cn−1
υi

for each direction υi ∈ Υ . It then uses the
transition relation Δ to compute the state labeling of leaf state s by computing
Δ(Λυ1

# , . . . , Λ
υ|Υ |
# , α) with Λυi

# = ((fυi , C1υi
, ..., Cn−1

υi
), Cυi , ∅, C1υi

, ..., Cn−1
υi

), where
fυi is a singleton function that maps Cυi to some number μ ∈ {0, ..., k}.

The transition relation Δ is deterministic. For states Λυ1

# , . . . , Λ
υ|Υ |
# with

Λυi

# = ((fυi , C1υi
, ..., Cn−1

υi
),Pυi ,N 0

υi
,N 1

υi
, ...,Nn−1

υi
), and a label α ∈ Σ, the tran-

sition relation computes a state Δ(Λυ1

# , . . . , Λ
υ|Υ |
# , α) = Λ# = ((f, C1, ..., Cn−1),

P ,N0,N1, ...,Nn−1) such that, Ci =
⋃

υi∈Υ
Ciυi

. P is the largest set that leads via

the label α and direction υi to exactly the set Pυi , i.e., max{P |
⋃

q∈P
δ(q, α, υi) =

Pυi}. If such set does not exist then there is no transition for α from this state.

To compute such a set we compute for each Pυi a set P̃υi in the same fashion

as in the word case. We compute then the intersection
⋂
i

P̃υi and check whether

the latter condition holds. Each set Ni must contain all universal states that
may lead via α and direction υi to a state in N i

υi
or have no transition with α

and υi, i.e., max{Ni | ∀q′ ∈ Ni. δ(q
′, α, υi) = ∅ ∨ ∃q ∈ N i

υi
. q ∈ δ(q′, α, υi)}.

Thus, it is the union of all sets Ñυi that may lead to N i
υi

and the set N�→ of
states that reach no state via α and any υi.

A new mapping f is also computed. The domain of f is the union of the
domains of all fυi . If some C is shared between two domains of functions fυi and
fυj , then we require that (fυi(C)) = (fυj (C)). If this condition is violated then
there is no transition for α from this state. For all C with fυi(C) = c, if C ⊆ P ,
for all j < n − 1, Nj = Cj+1, Cn−1 = Nn−1, and P = Nn−1, then a loop with
C is found and we assign f(C) = c − 1. Otherwise f(C) = fυi(C). If c ≤ 0 then
c − 1 = ⊥. A state ((f, C1, ..., Cn−1), P ,N0,N1, ...,Nn−1) is accepting if q0 ∈ P
and for all C in the domain of f , f(C) = 0 (This means the guess of the number
of repetitions was correct). The progress of the transition relation is depicted in
Figure 4. The unambiguity of the tree automaton with respect to tree models
follows from the fact that for each tree there is exactly one maximal annotation
and from the determinism of the transition relation Δ. �

5.1 An Algorithm for Counting Tree Models

Theorem 4. There is a procedure that counts the number of k-tree models of a
safety specification expressed as an LTL formula ϕ in time linear in the bound
k and triple-exponential in the length of ϕ.

Algorithm 2 describes a procedure for computing the number of tree models of
tree bases accepted by the automaton. The algorithm starts at the initial states
computed by Δ0. These states involve the initial conjectures for the number of
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((f, C1, C2..., Cn−2, Cn−1),P ,N0,N1, ...,Nn−1)

((fυi
,C1

υi
,...,Cn−1

υi
),Pυi

,N0
υi

,N1
υi

,...,Nn−1
υi

)

((fυi
,C1

υi
,...,Cn−1

υi
),P̃υi

,Ñ0
υi

,Ñ1
υi

,...,Ñn−1
υi

)

((fυj
,C1

υj
,...,Cn−1

υj
),Pυj

,N0
υj

,N1
υj

,...,Nn−1
υj

)

((fυj
,C1

υj
,...,Cn−1

υj
),P̃υj

,Ñ0
υj

,Ñ1
υj

,...,Ñn−1
υj

)

α

υi

α

υj

=?

=?

=?

=?

P
?

⊇ C∈ Dom(f)

Fig. 4. A transition of the tree automaton over trees with directions υi and υj . The
transition reads in this step a node labeled with α. The double lined states are the
state labelings of the children nodes in directions υi and υj .

expected repetitions of an initial guessed annotation. Each initial state is mapped
via the function Θ to the number of expected repetitions of the initial annotation
(at this level the conjecture function is defined only over one annotation). We
track in each step every possible transition in Δ. A transition involves states
q0, ..., qυ−1 and a parent state q. Recall that a transition exists only if for all
the shared annotations in the domains of the conjecture functions f0, ...fΥ−1

of q0, ..., qυ−1, the number of expected remaining repetitions is identical (this
means that the initial guess was correct). For an annotation C shared among
the domains of conjecture functions (not necessary all of them), let c0, ...ch be
initial guesses for C (the number of loop backs of each leaf annotated with C).
The number of possible loop combinations from those leaves is

∏
i

ci. In the k-

th iteration each accepting state q′ of T# is mapped to a function Θ(q) that
defines for each annotation C in the domain of fq′ the number of possible loop
combinations for C in a tree accepted in q′. By multiplying all possible loop
combination for each defined annotation we get the number of tree models of
the tree accepted in q′. Finally, we sum up the results for all accepting states.
The automaton is traversed k times before obtaining the final result.

6 Discussion

We have studied the model counting problem for safety specifications expressed
in LTL. Counting word and tree models of LTL formulas opens up new “quan-
titative” versions of the classic model checking and synthesis problems for reac-
tive systems: instead of just checking correctness and realizability, respectively,
we can now judge the severity of the error by counting the number of error
paths, and judge the specificity of the specification by counting the number of
implementations.
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Θ : Q# × 2Q → N
Q0# : initial states guessed by Δ0

Let q = (fq , C1q , Cn−1
q ,Pq,N 0

q , ...,Nn−1
q )

for all σ ∈ Σ do
for all q ∈ Q0# do

for all C ∈ Dom(fq) do
Θ(q, C) := fq(C)

for (i := 0, i ≤ k, i+ 1) do
for all (q0, q1, . . . , qΥ−1, σ, q) ∈ Δ do

for all C ∈ Dom(fq) do
Θ(q, C)+ :=

∏
i

Θ(qi, C) /*only if C is defined for qi*/

return
∑

q∈QF#

∏
C∈2Q

Θ(q, C)

Algorithm 2. Counting with T#

While our algorithms are the first to specifically solve the model counting
problem for safety specifications expressed in LTL, obvious competitors are the
reduction to propositional model counting, as well as a direct enumeration of the
models. As discussed in the introduction, the reduction to propositional counting
is not a viable solution, because the reduction quickly leads to propositional
constraints with far more than the 1000-10000 variables that can be handled by
currently available model counters [9].

For k-word models, the complexity of our counting algorithm is double-
exponential in the length of the LTL formula and linear in k. If the complexity
in the formula were our main concern, we could do better better than this by
exhaustively enumerating all words of length k: checking whether a specific se-
quence satisfies an LTL formula can be done in polynomial time (or even in
NC [10]). However, the enumeration of all words takes exponential time in k,
which is, for reasonable values of k, impractical. For k-tree models, the situation
is similar: enumerating all trees would allow us to exploit inexpensive model
checking algorithms for finite trees [11], but would result in double-exponential
complexity in k, while our algorithm maintains linear complexity in k at the
price of triple-exponential complexity in the length of the formula.

In future work, we plan to extend the model counting algorithms to full LTL,
and to investigate the complexity for other fragments of LTL besides safety.
The high complexity in the length of the formula results from the necessity to
memorize information about each leaf of the tree. Fragments where this infor-
mation is not needed, such as reachability properties, should therefore result in
less expensive model counting algorithms.
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Abstract. The paper investigates classes of languages of infinite words
with respect to the acceptance conditions of the finite automata rec-
ognizing them. Some new natural classes are compared with the Borel
hierachy. In particular, it is proved that (fin,=) is as high as FR

σ and GR
δ .

As a side effect, it is also proved that in this last case, considering or not
considering the initial state of the FA makes a substantial difference.

Keywords: ω-rational languages, Borel hierarchy, acceptance conditions.

1 Introduction

Languages over infinite words have been used since the very introduction of sym-
bolic dynamics. Afterwards, they have spread in a multitude of scientific fields.
Computer science is more directly concerned for example by their application in
formal specification and verification, game theory, logics, etc..

ω-rational languages have been introduced as a natural extension of languages
of finite words recognized by finite automata. Indeed, a finite automaton accepts
some input u if at the end of the reading of u, the automaton reaches a final
state. Clearly, when generalizing to infinite words, this accepting condition has
to be changed. For this reason, new accepting conditions have been introduced
in literature. For example, an infinite word w is accepted by a finite automaton
A under the Büchi acceptance condition if and only if there exists a run of A
which passes infinitely often through a set of accepting states while reading w.
Indeed, this was introduced by Richard Büchi in the seminal work [1] in 1960.

Later on, David Muller characterized runs that pass through all elements of a
given set of accepting states and visit them infinitely often [8]. Afterwards, more
acceptance conditions appeared in a series of papers [4,5,11,7,6]. Each of these
works was trying to capture a particular semantic on the runs or to fill some con-
ceptual gap. Acceptance conditions are selectors for runs of the automaton under
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consideration. Of course, the set of selected runs is also deeply influenced by the
structural properties of the FA: deterministic vs. non-deterministic, complete vs.
non complete (see for instance [6]).

Each acceptance condition characterizes a class of languages. In [2], it is proved
that if the acceptance condition is definable in MSO (monadic second order)
logic then the class of languages it induces is ω-rational. However, more work
was necessary to find which was the overall picture i.e. which are the relations
between classes of languages induced by the acceptance conditions appeared in
literature so far. The well-known Borel hierarchy constitute the backbone of such
a picture. Classes in the hierarchy are ordered by set inclusion.

This paper continues the classification work closing some open questions con-
cerning the positioning of the class of languages induced by CDFA(fin,=) (i.e.
languages characterized by runs that pass finitely many times through all the
elements of a given set of final states, recognized by Complete Deterministic
Finite Automata). The motivation for a further study of the condition (fin,=)
is twofold. From one hand, this class is, in a sense, surprising. Indeed, it is as
high as the highest classes of the Borel hierachy but it is distinct from them.
The interest of such a result is to have examples of languages that have high
complexity but in which the complexity is not just determined by the topology
one defines over the words (the Cantor topology here) but the complexity is
determined by the intrinsic combinatorial complexity of the words themselves.

From the other hand, it is another step in the understanding of the theory
of formal specification and verification of daemon processes (non-terminating
processes). In this case, a run of the process is accepted only if it passes through
a finite number of exceptions.

The paper also highlights an interesting phenomenon: the complexity class
can be greatly influenced by the fact that one considers the very first elements
of the paths (initial node) or not. In the sequel given an acceptance condition
(c, R), the version in which the initial node is considered is denoted (c′, R).

For example run is the set of states visited by the finite automaton while
reading the input word, excluding the initial state; run′ is the same as run but
includes the initial state. By Proposition 21, one finds that CDFA(fin,=) �
CDFA(fin′,=) (CDFA stands for complete deterministic finite automata). As
a consequence CDFA(fin′,=) is even higher than CDFA(fin,=). The rest of
the paper is devoted in proving (or disproving) the inclusion relations wrt. all
previously known classes. The resulting hierarchy is illustrated in Figure 5.

Most of the proofs have been omitted due to a lack of space. They will appear
in the long version of this article.

2 Languages and Automata

Let N denote the set of non-negative integers. For all i, j ∈ N, [i, j] is the set
{i, i+ 1, . . . , j}. For a set A, |A| denotes the cardinality of A and P (A) the
powerset of A. An alphabet is a finite set and a letter is an element of an alphabet.
Given an alphabet Σ, a word over Σ is a sequence of letters from Σ. Let Σ∗
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and Σω denote the set of all finite words and the set of all infinite words over Σ,
respectively. Let Σ∞ denote Σ∗ ∪Σω. For a word u, |u| denotes the length of u
and |u|a denotes the number of occurrences of the letter a in u. The empty word
ε is the only word of length zero. For all words u ∈ Σ∗ and v ∈ Σ∞, uv denotes
the concatenation of u with v. For all word u ∈ Σ∞, for all 0 ≤ i ≤ j < |u|, the
word uiui+1 . . . uj is denoted by u[i,j].

A language is a subset of Σ∗, similarly an ω-language is a subset of Σω. For a
language L1 and for L2 ∈ Σ∞, L1L2 = {uv ∈ Σ∗ : u ∈ L1, v ∈ L2} denotes the
concatenation of L1 with L2. For a language L ⊆ Σ∗, let L0 = {ε}, Ln+1 = LnL
and L∗ =

⋃
n∈N Ln the Kleene star of L. For a language L, the infinite iteration

of L is the ω-language Lω = {u0u1u2 · · · : ∀i ∈ N, ui ∈ L� {ε}} .
The class of rational languages is the smallest class of languages containing

∅, all sets {a} (for a ∈ Σ) and which is closed under union, concatenation and
Kleene star operations. An ω-language L is ω-rational if there exist n ∈ N and
two families {Li} and {L′i} of n rational languages such that L =

⋃n−1
i=0 L′iLω

i .
Let RAT denote the set of all ω-rational languages.

Rational languages and ω-rational languages are denoted by rational expres-
sions. For instance, for the alphabet Σ = {0, 1}, Σ∗1 denotes the language of
words ending with a 1 while (Σ∗1)ω and Σ∗(0ω +1ω) denote the ω-languages of
words containing an infinite number of 1’s, and a finite number of 0’s or a finite
number of 1’s, respectively.

A finite automaton (FA) is a tuple (Σ,Q, T, I,F) where Σ is an alphabet, Q
a finite set of states, T ⊆ Q × Σ × Q is the set of transitions, I ⊆ Q is the set
of initial states and F ⊆ P (Q) is the acceptance table. A FA is a deterministic
finite automaton (DFA) if |I| = 1 and |{q ∈ Q : (p, a, q) ∈ T }| ≤ 1 for all p ∈ Q,
a ∈ Σ. It is a complete finite automaton (CFA) if |{q ∈ Q : (p, a, q) ∈ T }| ≥ 1
for all p ∈ Q, a ∈ Σ. A CDFA is a FA which is both deterministic and complete.

A CDFA induces a transition function δ : Q×Σ → Q such that for all p ∈ Q
and a ∈ Σ, δ(p, a) is the only state such that (p, a, δ(p, a)) ∈ T . The transition
function can be extended to a function δ′ : Q×Σ∗ → Q by defining for all p ∈ Q,
δ′(p, ε) = p and for all p ∈ Q, a ∈ Σ and u ∈ Σ∗, δ′(p, au) = δ′(δ(p, a), u). We
usually make no distinction between δ and δ′.

If I = {q0} for some state q0 ∈ Q, we shall write (Σ,Q, T, q0,F) instead of
(Σ,Q, T, I,F). Similarly, if F = {F} or F = {{f}}, we shall write (Σ,Q, T, I, F )
or (Σ,Q, T, I, f) instead of (Σ,Q, T, I,F), respectively.

An infinite path in a FA A = (Σ,Q, T, I,F) is a sequence (pi, xi)i∈N such that
(pi, xi, pi+1) ∈ T for all i ∈ N. The (infinite) word x is the label of the path. A
finite path from p to q is a sequence (pi, ui)i∈[0,n] for some n such that p0 = p,
for all i ∈ [0, n− 1], (pi, ui, pi+1) ∈ T and (pn, un, q) ∈ T . The (finite) word u is
the label of the path. A path is initial if p0 ∈ I. A state q is accessible if there
exists an initial path to q and A is accessible if all its states are. A loop is a
path from a state to the same state. The FA A is normalized if it is accessible,
I = {q0} for some q0 ∈ Q and q0 does not belong to a loop.
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3 Acceptance Conditions, Classes of Languages
and Topology

Definition 1. Let A = (Σ,Q, T, I,F) be a FA and p = (pi, xi)i∈N a path in A.
Define the sets

– runA(p) = {q ∈ Q : ∃i > 0, pi = q},
– run′A(p) = {q ∈ Q : ∃i ≥ 1, pi = q},
– infA(p) = {q ∈ Q : ∀i > 0, ∃j ≥ i, pj = q},
– finA(p) = runA(p)� infA(p),
– fin′A(p) = run′A(p)� infA(p),
– ninfA(p) = Q� infA(p)

as the sets of states appearing at least one time (counting or not the first state of
the path), infinitely many times, finitely many times but at least once (counting
or not the first state of the path), and either finitely many times including never
in p, respectively.

An acceptance condition forA is a subset of all the initial infinite paths ofA. The
paths inside such a subset are called accepting paths. Let A be a FA and cond
be an acceptance condition for A, a word x is accepted by A (under condition
cond) if and only if it is the label of some accepting path.

Let � be the binary relation over sets such that for all sets A and B, A � B
if and only if A ∩B �= ∅.

In this paper, we consider acceptance conditions induced by pairs (c,R) ∈
{run, run′, inf, fin, fin′, ninf} × {�,⊆,=}. A pair cond = (c,R) defines an
acceptance condition condA on an automaton A = (Σ,Q, T, I,F) as follows: an
initial infinite path p = (pi, xi)i∈N is accepting if and only if there exists a set
F ∈ F such that cA(p) R F . We denote by Lcond

A the language accepted by A
under the acceptance condition condA, i.e., the set of all words accepted by A
under condA.

Remark 2. For acceptance conditions which use the relation �, we can assume
that the acceptance table is reduced to one set of states, taking, if necessary, the
union of all sets in the acceptance table.

Definition 3. For all pairs cond ∈ {run, run′, inf, fin, fin′, ninf}× {�,⊆,=}
and for all finite alphabets Σ, define the following sets

– FA(Σ)(cond) =
{
Lcond
A , A is a FA on Σ

}
,

– DFA(Σ)(cond) =
{
Lcond
A , A is a DFA on Σ

}
,

– CFA(Σ)(cond) =
{
Lcond
A , A is a CFA on Σ

}
,

– CDFA(Σ)(cond) =
{
Lcond
A , A is a CDFA on Σ

}
as the classes of ω-languages on Σ accepted by FA, DFA, CFA, and CDFA,
respectively, under the acceptance condition derived by cond. When it is not
confusing, we omit to precise the alphabet in these notations.
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When Σ is endowed with discrete topology and Σω with the induced product
topology, let F, G, Fσ and Gδ be the collections of all closed sets, open sets,
countable unions of closed set and countable intersections of open sets, respec-
tively. For any pair A,B of collections of sets, denote by B (A), A Δ B, and AR

the Boolean closure of A, the set {U ∩ V : U ∈ A, V ∈ B} and the set A ∩ RAT,
respectively. These, indeed, are the lower classes of the Borel hierarchy. For more
on this subject we refer the reader to [12] or [9], for instance.

Some of the acceptance conditions derived by pairs (c,R) have been studied
in the literature (see [1,8,4,5,11,7,6,10,3]). It is known that all the classes of
languages induced are subclasses of RAT because the acceptance conditions are
MSO-definable, see [1,2]. The known inclusions are depicted in Figure 5.

In the sequel, we deal with languages sharing the same structure. For an
alphabet Σ, a ∈ Σ, k ≥ 0 and n > 0, we denote the language

{x ∈ Σω : |x|a = k (mod n)}

by LΣ,a
k,n and L̃Σ,a

k,n denotes the language LΣ,a
k,n + (Σ∗a)ω.

4 Some Relations between run and run′, and fin and fin′

The following lemma is immediate.

Lemma 4. Let cond ∈ {run, inf, fin, ninf} × {�,⊆,=}. If a language L is
recognized by an automaton under condition cond, then it is recognized by a
normalized automaton which is complete (resp. deterministic) if the initial one
is complete (resp. deterministic) under condition cond.

Corollary 5. Let (c,R) ∈ {run, fin} × {�,⊆,=}. The class of languages in-
duced by (c,R) is included in the respective class of languages induced by (c′,R).

Lemma 6. Let R ∈ {�,⊆,=} and cond = (run′,R). If a language L is recog-
nized by an automaton under condition cond, then it is recognized by a normalized
automaton which is complete (resp. deterministic) if the initial one is complete
(resp. deterministic) under condition cond.

Proposition 7. Let R ∈ {�,⊆,=}. The conditions (run,R) and (run′,R) in-
duce the same classes of languages.

We will see later that Proposition 7 has no equivalence for condition based on
fin. In general, the inclusion of classes induced by fin in the respective class
induced by fin′ is strict.

From now on, without loss of generality, we assume that Σ is an alphabet con-
taining {0, 1} and we denote the set Σ � {1} by Σ0 and the set Σ � {0} by Σ1.

5 The Acceptance Conditions (fin,�) and (fin′,�)

The acceptance condition (fin,�) has already been studied in [6]. In this paper,
we prove that the condition (fin′,�) defines new classes for deterministic or
complete automata.
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Proposition 8. The class FA(fin′,�) is included in the class FA(fin,�).

Proposition 9. The language LΣ,1
0,2 is in CDFA(fin′,�) but not in CFA(fin,�)

or in DFA(fin,�).

Proof. Remark that LΣ,1
0,2 = L(fin′,�)

A for the CDFA A = (Σ, {q0, q1} , T, q0, q1)
where (p, a, q) ∈ T if and only if a = 1 and p �= q or a �= 1 and p = q.

For the sake of argument, assume that LΣ,1
0,2 = L(fin,�)

A for a CFA A. The
word x = 0ω is in LΣ,1

0,2 so there exists an accepting path p = (pi, xi)i∈N in A
under (fin,�). Let k > 0 such that pk ∈ F is visited finitely often in p. Let
y = 0k10ω, y is not in L, then all paths starting from pk and labeled by 10ω visit
pk infinitely often. Therefore, there exists a loop on pk labeled by 10k

′
for some

k′ ∈ N. Inserting this loop one time in the first path, we find an accepting path
labeled by y, this is a contradiction.

For the sake of argument, assume that LΣ,1
0,2 = L(fin,�)

A for a DFA A. Without
loss of generality, we can assume that A is accessible. As for all u ∈ Σ∗, u0ω or
u10ω is in LΣ,1

0,2 , there exists a finite initial path labeled by u and A is complete.
We have just shown that this is not possible. �

Theorem 10. The following relations hold for the classes induced by (fin′,�):

1. CDFA(fin,�) � CDFA(fin′,�), DFA(fin,�) � DFA(fin′,�),
CFA(fin,�) � CFA(fin′,�),

2. FA(fin,�) = FA(fin′,�),
3. CDFA(fin′,�) � CFA(fin′,�) � FA(fin′,�),
4. CDFA(fin′,�) � DFA(fin′,�) � FA(fin′,�).

There are no other relations for the classes induced by (fin′,�) except those
obtained by transitivity with previously known classes.

Proof. The first point follows from Corollary 5 and Proposition 9. The equality
FA(fin,�) = FA(fin′,�) holds from Corollary 5 and Proposition 8. The in-
comparability of DFA(fin′,�) with CFA(fin′,�) and the fact there is no other
inclusions come from results of [6]. Indeed, at the one hand, FR ⊆ DFA(fin,�)
but FR �⊆ CFA(fin′,�). And, at the other hand, the language Σ∗10Σω+Σ∗0ω is
in (CDFA(ninf,�) ∩CFA(fin,�))�DFA(fin′,�). Finally, the language Σ∗0ω

is in CDFA(fin,�) ∩ (FR
σ � GR

δ ). �

6 The Acceptance Conditions (fin,⊆) and (fin′,⊆)

In [3], it is proved that an automaton using the acceptance condition (fin,⊆) and
(fin,=) can be completed without changing the recognized language. It follows
that the completeness does not matter for classes induced by those conditions.
The same holds for (fin′,⊆) and (fin′,=).
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Proposition 11. The class F is included in CDFA(fin,⊆) and the class Fσ∩Gδ

is included in CDFA(fin,=).

Proposition 12 ([2]). The class CDFA(fin′,⊆) is included in Gδ.

Proposition 13. The language (Σ∗1)ω is in CDFA(fin,⊆)� FR
σ.

Lemma 14. Let L be a language in FA(fin,⊆) (resp. in FA(fin′,⊆)) such that
there exists a, b ∈ Σ, u ∈ Σ∗ and for all k ∈ N, bakuaω ∈ L (resp. akuaω ∈ L).
Then baω (resp. aω) is in L.

Proof. Let A = (Σ,Q, T, I,F) such that L = L(fin,⊆)
A (resp. L = L(fin′,⊆)

A ). Let
n = |Q|, as x = banuaω (resp. x = anuaω) is in L, there exists an accepting
path p = (pi, xi)i∈N in A. There exists k, k′ such that 1 ≤ k < k′ ≤ n + 1
(resp. 0 ≤ k < k′ ≤ n) and pk = pk′ . Choose k minimal. We define a path
p′ = (p′i, yi)i∈N in A where y = baω (resp. y = aω), for all i ∈ [0, k], p′i = pi
and for all i ∈ N, p′k+i = pk+(i (mod k′−k)). If p′ is accepting, we can conclude.
If not, then, by minimality of k, fin(p′) = {pi : i ∈ [1, k − 1]} (resp. fin′(p′) =
{pi : i ∈ [0, k − 1]}) is not included in any F ∈ F . But as p is accepting, there
exists F ∈ F such that fin(p) ⊆ F (resp. fin′(p) ⊆ F ). That means there
exists q ∈ fin(p′) (resp. q ∈ fin′(p′)) such that q ∈ inf(p). Let k0 ∈ [1, k − 1]
(resp. k0 ∈ [0, k − 1]) be minimal such that pk0 ∈ inf(p). Then by definition
of inf(p), we can find an index k′0 such that pk′

0
= pk0 , k′0 ≥ |u| + n + 1 and

for all i ≥ k′0, pi ∈ inf(p). We define a path p′′ = (p′′i , yi)i∈N in A where for
all i ∈ [0, k0], p

′′
i = pi and for all i ∈ N, p′k0+i = pk′

0+i. By minimality of k0
and by definition of k′0, fin(p′′) = {pi : i ∈ [1, k0 − 1]} ⊆ fin(p) ⊆ F (resp.
fin′(p′′) = {pi : i ∈ [0, k0 − 1]} ⊆ fin′(p) ⊆ F ) and p′′ is an accepting path
labeled by y. �

Proposition 15. The language Σ∗1Σω is in CDFA(ninf,�)∩GR�FA(fin′,⊆).

Proposition 16. The language L̃Σ,1
0,2 is in CDFA(fin′,⊆)� FA(fin,⊆).

Proposition 17. The language L = Σ0(L̃Σ,1
0,2 + L̃Σ,1

0,3 ) is in FA(fin,⊆) but not
in CDFA(fin′,⊆).

Proof. We have L = L(fin,⊆)
A for the FA A = (Σ, {q0, q1, q2, q3, q4, q5} , T, q0,

{{q2} , {q4, q5}}) where T is depicted on Figure 1. For the sake of argument,
assume that L = L(fin′,⊆)

A for a CDFA A = (Σ,Q, T, q0,F). Let δ : Q → Q be
the transition function of A.

We first show that if u and v are two words such that u is a prefix of v
starting by a 0 and δ(q0, u) = δ(q0, v) then |u|1 = |v|1 (mod 6). Let us denote
k = |u|1 (mod 6) and k′ = |v|1 (mod 6). If x is an ω-word, then the set of states
visited finitely often by the path labeled by ux is included in the set of states
visited finitely often by the path labeled by vx. Then, whenever ux is rejected
for some x, vx is rejected. We take x = 1(5−k)0ω (resp. x = 1(7−k)0ω), as ux
is not in the language, it is rejected and vx is also rejected. We deduce that
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|vx|1 = k′ + 5 − k (resp. |vx|1 = k′ + 7 − k) is congruent to 1 or 5 modulo
6. This implies that k = k′. Let n = |Q| and x = 010n10ω. As x is in L,
there exists F ∈ F such that fin′(p) ⊆ F where p is the path labeled by x.
Let S = {q0} ∪

{
δ(q0, x[0,k]) : k ∈ [0, n+ 1]

}
, according to the above lemma,

S ⊆ fin′(p). Moreover, we can find two integers i < j such that δ(q0, 010
i) =

δ(q0, 010
j), then the path p′ labeled by y = 010ω is such that run′(p′) = S.

Finally, fin′(p′) ⊆ run′(p′) = S ⊆ fin′(p) ⊆ F and y is recognized by A but
y �∈ L. We get a contradiction. �

q0 q1 q2q3q4q5
Σ0Σ0

Σ0

1

Σ0

1

Σ0

1

Σ0

1

Σ0

1

Fig. 1. A FA recognizing Σ0(L̃Σ,1
0,2 + L̃Σ,1

0,3 ) under the condition (fin,⊆)

Proposition 18. The language L = Σ(11Σ∗ + 0)ω is in FA(fin,⊆)� Gδ.

Proof. We have L = L(fin,⊆)
A for the FA A = (Σ, {q0, q1, q2, q3} , T, q0, q1) where

T is depicted on Figure 2. It is straightforward to prove that L is not in Gδ. �

q0 q1 q2 q3
Σ

0

1

1

1

Σ
Σ

Fig. 2. A FA recognizing Σ(11Σ∗ + 0)ω under the condition (fin,⊆)

Theorem 19. The classes induced by (fin,⊆) and (fin′,⊆) satisfy the follow-
ing relations:

1. F � CDFA(fin,⊆) � CDFA(fin′,⊆) � Gδ,
2. CDFA(fin,⊆) � FA(fin,⊆) and CDFA(fin′,⊆) � FA(fin′,⊆),
3. FA(fin,⊆) � FA(fin′,⊆).

There is no other relation for the classes induced by (fin,⊆) and (fin′,⊆) except
those obtained by transitivity with previously known classes.

Proof. The inclusions of the first point comes from the Proposition 11, Corol-
lary 5 and Proposition 12, respectively. By Propositions 13, 16 and 15, respec-
tively, the inclusions are strict. The inclusions of the second point are clear and
by Proposition 17 it is strict. The inclusions of the third point are a consequence
of the Corollary 5 and by Proposition 16 they are strict.

The incomparability with the other known classes comes from Proposition 15
which proves that G and CDFA(ninf,�) are not subclasses of FA(fin′,⊆) and
from Propositions 13 and 18 which prove that CDFA(fin,⊆) is not a subclass
of Fσ and FA(fin,⊆) is not a subclass of Gδ, respectively. �
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7 The Acceptance Condition (fin,=) and (fin′,=)

In the previous section we have proved that the class CFA(fin,⊆) is pretty high
in the hierarchy. However, it is incomparable with FR

σ∩GR
δ and it does not contain

any open language. In this section, we are going to show two more classes which
have nicer properties.

Lemma 20. Let a, b ∈ Σ be two distinct letters and L a language such that
L∩ {a, b}∗ bω = L{a,b},a0,2 . If L = L(fin,=)

A or L = L(fin′,=)
A for a CDFA A then A

has a loop on its initial state labeled by bk for some k > 0.

Proof. Let A = (Σ,Q, T, q0,F) be a DFA such that L = L(fin,=)
A or L =

L(fin′,=)
A . For the sake of argument, assume that q0 does not belong to a loop

labeled by b’s. Let δ be the transition function of A. For all word x, denote by
px the path in A labeled by the word x.

Define a sequence of integers (ki)i∈N such that, denoting the finite word
bk0abk1a . . . abki by ui, for all i ∈ N, δ(q0, ui) does not belong to a loop labeled
by b’s but δ(q0, ui0) does. As q0 is not on a loop labeled by b’s, we define k0 as
max

{
j ∈ N : ∀j′ > j, δ(q0, b

j′) �= δ(q0, b
j)
}

. Assume that ki is defined for some
i ∈ N. Then, the state δ(q0, uia) does not belong to a loop labeled by b’s. Indeed,
otherwise the words x = uib

ω and y = uiab
ω verify finA(px) = finA(py) and

fin′A(px) = fin′A(py) (in both cases, the states which appear in those sets are
states reached by reading ui in A counting or not the first state). This is not
possible because only one of this words is accepted by A. We define ki+1 as
max

{
j ∈ N : ∀j′ > j, δ(q0, ui10

j′) �= δ(q0, ui10
j)
}

.
Since Q is finite, there exists i < j such that δ(q0, ui) = δ(q0, uj). The words

x = ujb
ω and y = ujab

ω verify finA(px) = finA(py) and fin′A(px) = fin′A(py)
(see Figure 3) but as above only one of these words is accepted by A. We get a
contradiction. �

bk0 abk1

b

abk2

b

abk3

b

abkj−1

b

bk
′
0 bk

′
1 bk

′
2 bk

′
j−1

abkj

Fig. 3. A figure illustrating the construction in Lemma 20 with i = 1
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Proposition 21. The language LΣ,1
0,2 is in CDFA(fin′,=)� CDFA(fin,=).

Proof. We have LΣ,1
0,2 = L(fin′,=)

A for the CDFA A = (Σ, {q0, q1, q2} , T, q0,
{∅, {q0, q1}}) where (p, a, q) ∈ T if and only if a �= 1 and p = q or a = 1

and (p, q) ∈ {(q0, q1), (q1, q2), (q2, q1)}. If LΣ,1
0,2 would be recognized by a CDFA

B under condition (fin,=), B could be assumed normalized by Lemma 4. But
as LΣ,1

0,2 ∩{0, 1}
∗
0ω = L{0,1},10,2 , by Lemma 20, this automaton should have a loop

on its initial state. This is not possible and LΣ,1
0,2 is not in CDFA(fin,=). �

Proposition 22. The language L = LΣ,0
0,2 + LΣ,1

0,2 is not in CDFA(fin′,=).

Proof. For the sake of argument, assume that L = L(fin′,=)
A for a CDFA A =

(Σ,Q, T, q0, F ). As L∩{0, 1}∗ 0ω = LΣ,1
0,2 , by Lemma 20, there exists k such that

there exists a loop on q0 labeled by 0k. Symmetrically, there exists k′ such that
there exists a loop on q0 labeled by 1k

′
. As 0ω ∈ L, ∅ ∈ F . The path p labeled

by x = (0k1k
′
)ω verifies fin′(p) = ∅ ∈ F . Then x is recognized but x is not in

L. We have a contradiction. �

Remark 23. Using similar methods as in the proof of Lemma 20 and Proposi-
tion 22, we can prove that the language Σ(LΣ,0

1,2 +LΣ,1
1,2 ) is not in CDFA(fin′,=).

Since CDFA(fin′,=) is clearly closed under complementation, Σ(L̃Σ,0
0,2 ∩ L̃

Σ,1
0,2 )

is not in CDFA(fin′,=).

Proposition 24. The language L = LΣ,0
1,2 + LΣ,1

1,2 is in CFA(fin,�) but not in
CDFA(fin′,=).

Proof. By Proposition 9 and using the non-determinism, it is clear that L is in
CFA(fin,�). By Remark 23, L �∈ CDFA(fin′,=). �

Proposition 25. The language L = Σ(L̃Σ,0
0,2 ∩ L̃

Σ,1
0,2 ) is in FA(fin,⊆) but not

in CDFA(fin′,=).

Proof. We have L = L(fin,⊆)
A for the CFA A = (Σ, {q0, q1, q2, q3, q4, q5, q6, q7} ,

T, q0, {q2, q3, q4, q6}) where T is depicted in Figure 4 (here Σ̄ means Σ� {0, 1}).
This automaton is split in two disjoint parts. A path which visits the state q5 is
successful if and only if q5 (and then q7) is visited an infinite number of times,
if and only if its label contains an infinite number of occurrences of the pattern
01, if and only if its label contains in infinite number of a’s and b’s.

A path visiting q1 is successful if and only if q1 is visited an infinite number of
times. Let p be a successful path visiting q1, let ax be its label where a ∈ Σ and
x ∈ Σω . If |x|0 (resp. |x|1) is finite, the set infA(p) is included in {q1, q2} or in
{q3, q4} (resp., in {q1, q3} or in {q2, q4}). Since p is successful, q1 is in infA(p),
therefore infA(p) is included in {q1, q2} (resp., in {q1, q3}) and |x|0 (resp., |x|1)
is even. The converse is clear. By Remark 23, L �∈ CDFA(fin′,=). �
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q0 q1 q2

q3 q4

q5q6

q7

ΣΣ

Σ̄

1

0

Σ̄

1
0

Σ̄

1
0

Σ̄

1

0

Σ1

0

Σ1

0

Σ0

1

Fig. 4. A FA recognizing Σ(L̃Σ,0
0,2 ∩ L̃

Σ,1
0,2 ) under the condition (fin,⊆)

RAT
(C)FA(inf,�), (C)(D)FA(inf,=), (C)FA(ninf,⊆), (C)(D)FA(ninf,=), (C)FA(fin,=)

FRσ
FA(run,�), (C)FA(run,=)

(C)(D)FA(inf,⊆),FA(fin,�)

GRδ
(C)DFA(inf,�)
(C)DFA(ninf,⊆)

FRσ ∩ GRδ
(C)DFA(run,=)

FR

(C)(D)FA(run,⊆)
GR

C(D)FA(run,�)

FR ∩ GR

FRσ Δ GRδ
DFA(run,�)

CDFA(fin,�)

CDFA(fin′,�)DFA(fin,�)

DFA(fin′,�)

CFA(fin,�)

CFA(fin′,�)

CDFA(ninf,�)

CFA(ninf,�)DFA(ninf,�)

FA(ninf,�)
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Fig. 5. The hierarchy of classes of ω-languages. The Borel hierarchy appears in bold
boxes. Grayed boxes show the new classes studied in this paper. Arrows represent
inclusions between classes. Classes in the same box are equal. The possibly missing
arrows are from classes induced by (ninf,�) to CDFA(fin′,=), the question is open
in this case.

8 Conclusions

This paper is a step further in the study of the hierarchy of ω-languages induced
by accepting conditions found in the literature. Figure 5 illustrates the hierarchy
and highlights the contribution of this paper.

This research can be continued along several directions. First of all, some
inclusions of classes induced by (ninf,�) into CDFA(fin′,=) are still open.
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Secondly, in [2], the authors proved that a slight generalization of classical
Büchi result: all second order definable accepting conditions induce ω-rational
languages. It would be very interesting to study what is the impact of weaker
fragments of logic over the classification provided here.

Another promising research direction considers the closure properties of the
newly found classes of ω-languages.

Finally, the decidability of the new classes is certainly a promising research
direction.
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Abstract. The context in which a substring appears is an important
notion to identify – for example – its semantic meaning. However, existing
classes of repeats fail to take this into account directly. We present here
xkcd -repeats, a new family of repeats characterized by the number of
different symbols at the left and right of their occurrences. These repeats
include as special extreme cases maximal and super-maximal repeats.

We give sufficient and necessary condition to bound their number
linearly in the size of the sequence, and show an optimal algorithm that
computes them in linear time – given a suffix array –, independent on
the size of the alphabet, as well as two other algorithms that are faster
in practice.

Additionally, we provide an independent and general framework that
allows to compute these (and other) repeats incrementally; extending the
application space of repeats in a streaming framework.

1 Introduction

Inferring constituents is a basic step for many applications involving textual doc-
uments. These are the semantic blocks that define the meaning of a document,
and may be single words, multi-words expressions or even partial (or several) sen-
tences. They can be used to represent the document, and an accurate description
is crucial to tasks such as classification, clustering, topic detection or knowledge
extraction. It has long been known that the importance of a constituent does
not rely only on its own properties (like frequency, lengths or composition) but
also on the context it appears in. J.R. Frith famously said “You shall know a
word by the company it keeps” and the “distributional” approach has been used
successfully in natural-language applications [16].

These constituents are also crucial in a more fundamental task, that is to infer
the structure of a document. In grammatical inference for instance – where it is
supposed that the document samples were generated by a grammar – prior to
detecting how different rules are related to each other, one has to find which of
the substrings of the document may or not correspond to the same constituent.
A crucial step for this is the notion of the context in which a substring appears
in, which in the most basic setting is just the character to the left and to the
right of the occurrence of a given word. ADIOS for instance [17] uses as funda-
mental signal to decide on the set of constituents the fraction of different context
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a substring appears in. Zellig Harris substitutability theory – strongly related
to the idea of context of a constituent – got implemented in distinct way in
the literature, like in ABL [19] or through the mutual information criterion of
Clark [5,6]. Selecting which are the right substrings to consider, prior to deciding
how they associate to each other hierarchically, is also important in the related
Smallest Grammar Problem [4].

Unfortunately, existing notions from stringology offers only limited links to
these theories. Existing classes of words only tangentially takes into account the
notion of context; and applied algorithms, like those cited above, rely on trivial
straightforward and brute force algorithms to detect them.

We present here a new class of repeats, named xkcd -repeats, that is explicitly
defined by the number of different context a substring appears in. These repeats
define a family of classes where maximal and super-maximal repeats are extreme
cases. We give bounds on their number with respect to the size of the sequence
and compare three algorithms to compute them, relying on different ideas.

This document is structured as follows: first we give some basic definitions
on sequences and data structures in Sect. 2. We then define our new class of
repeats (Sect. 3) and give three algorithms to compute them, running inO(|Σ|n),
O(n logn/ log logn) and O(n) time respectively (Sect. 4). In Sect. 5 we give a
general framework to compute those and other repeats incrementally, which we
believe is of independent interest.

Due to lack of space we have omitted most of the proofs, advancing only the
main arguments.

2 Definitions

A sequence s is a concatenation of symbols s[1], . . . , s[n], with s[i] ∈ Σ, the
alphabet. The length of s, |s| is the numbers of symbols, which we will generally
denote by n. When necessary we will suppose that s starts and ends with different
unique symbols (s[0] = $1, s[n + 1] = $2, $1 �= $2 and $1, $2 �∈ Σ). Another
sequence ω ∈ Σ∗ is said to occur in s at position k if ω[i] = s[k+i] for i = 1 . . . |ω|.
The set of occurrences of ω in s is denoted by occs(ω) (or just occ(ω) if s is clear
from the context) and |occs(ω)| is the support of ω. If |occs(ω)| ≥ 2, ω is called
a repeat of s and R(s) is the set of all repeats of the sequence s.

The size of the left (right) context of a word ω in s is defined as the number
of different symbols appearing to the left (right) of all occurrences of ω: lcs(ω) =
|{s[i− 1] : i ∈ occ(ω)}| (rcs(ω) = |{s[i+ |ω|] : i ∈ occ(ω)}|).

Due to lack of space we will assume that the reader is familiar with the suffix
tree and array data structure. We will denote by sa the suffix array itself (the
positions of the lexigraphically ordered permutation of suffixes), and by lcp the
array holding the lengths of the longest common prefix of successive suffixes of
sa. Suffix arrays and lcp array can be constructed in linear time [14].
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3 Context-Diverse Repeats

Indexing the set R(s) permits to analyze potential constituents of the sequence
or to perform other indexing or counting operations. However, the total set
of repeats is highly redundant and can grow quadratically with the size of the
sequence (|R(s)| ∈ O(|s|2)). These “maps bigger than the empire” (as Apostolico
referred to this [2], borrowing an expression from Borges), lead to the popular
use of maximal classes of repeats. Such a class should ideally focus only on the
“interesting” repeats. We detail below three of these classes:

Maximal Repeat: a repeat is said to be maximal, if it cannot be extended
without losing support. Formally: ω is a maximal repeat iff there is no other
repeat ω′ such that ω occurs in ω′ and |occ(ω)| = |occ(ω′)|. The number of
maximal repeats grows linearly with the size of the sequence, although their
total number of occurrences can still be quadratic [8].

Largest-Maximal Repeats (or near-supermaximal repeat [10]): a repeat is
said to be largest-maximal if it has at least one occurrence that is not strictly
included in another occurrence. Formally, ω is largest-maximal iff there do not
exist other repeats ω1, . . . , ωk such that ω occurs in all of them and pos(ω) ⊆⋃k

i=1 pos(ωi), where pos(ω) =
⋃

i∈occ(ω){i, . . . , i + |ω|}, the set of positions that
ω covers over the sequence. Largest-maximal repeats are a subset of maximal
repeats and therefore linear. The total number of occurrences grows in the worst
case at least as Ω(n

3
2 ), although a tight bound is unknown [8].

Super-Maximal Repeat: A repeat is said to be super-maximal if it does not
occur in any other repeat. The total number of occurrences of super-maximal
repeat is linear.

As an example, consider the sequence dabWabXacYacZdab. The only super-
maximal repeats here are ac and dab. In addition to these ab is also a largest-
maximal repeat because it appears once without any other repeat covering it.
Finally, a is also a maximal repeat as there is no other repeat that contains it
and has the same support.

The following two lemmas provide the fundamental motivation of this paper,
as they show how to characterize maximal and super-maximal repeats by the
number of their left and right context.

Lemma 1. A repeat ω is maximal in s iff lc(ω), rc(ω) ≥ 2.

Lemma 2. A repeat ω is super-maximal in s iff lc(ω) = rc(ω) = |occ(ω)|.

Context-diverse (xkcd) repeats fill the whole range of these two extremes, by
permitting to vary the values of these contexts:

Definition 3. ω ∈ R(s) is said to be x–right-context-diverse (xrcd) in s if
rcs(ω) ≥ x. It is said to be k–left-context-diverse (klcd) in s if lcs(ω) ≥ k.

Finally, ω is a 〈x, k〉–context-diverse (xkcd) in s if it is xrcd and klcd.
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The following theorem follows from Lemma 1 and 2:

Theorem 4.

1. ω is a maximal repeat in s iff it is 〈2, 2〉–context-diverse.
2. ω is a super-maximal repeat in s iff it is 〈|occ(ω)|, |occ(ω)|〉–context-diverse.

And the following Corollary follows from here, and from the linearity of right-
and left-maximal repeats [10]:

Corollary 5. The number of xkcd-repeats is O(n) iff max(x, k) ≥ 2. It is Θ(n2)
otherwise.

A notable exception of a class of repeats that cannot be captured by this notion
of xkcd -repeats are largest-maximal repeats. For a repeat to be largest-maximal,
it has to have at least one occurrence with a right-(left-)context different from all
right-(left-) contexts of remaining occurrences. Such context-uniqueness cannot
be captured with the rc and lc functions.

4 Computation

We will compare three algorithms to compute xkcd -repeats, all using the suffix
array. We will analyze their running time and compare them empirically.

First note that a straightforward way of computing all xkcd -repeat would be
the following two-stage approach: first, compute all repeats R(s). Then, for each
repeat ω inspect all occurrences and store two sets of symbols: those occurring
to the left and to the right (this is, {s[i − 1]} and {s[i + |ω|}, ∀i ∈ occs(ω)).
xkcd -repeats are then those where the size of these sets are greater than x
and k, respectively. Unfortunately, such an approach is Ω(n2), as there may
be this number of repeats in s. If we are only interested in xkcd -repeats such
that max(x, k) ≥ 2, we can precompute only the left (or right) maximal re-
peats, whose number is linear (see Corollary 5). However, the total number of
occurrences of such repeats is still Θ(n2).

4.1 Simple Algorithm

Repeats can easily be computed through the enhanced suffix array because all
occurrences of a given repeat are adjacent in the suffix array. Moreover, infor-
mation about the right context can also be easily obtained through the same
way, by analyzing how the lcp values evolve.

We keep a stack of the current analyzed repeat and traverse the suffix array
in order. If the value of the lcp value remains equal it indicates just another
occurrence of the current repeat (which is at the top of the stack), but with a
different right context. An increase in the lcp value indicates not only the pres-
ence of another repeat, but also that the current one is not adding an additional
right-context until the newly found repeat is popped out of the stack. Finally, a
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decrease in the lcp value indicates the last occurrence of a repeat, and triggers
the eventual output of the current analysed repeat.

Unfortunately, information of the left-context is much harder to get, as it is
spread out over the suffix array. An easy way of collecting this (which we will
improve later on) is to store all the symbols appearing as left context. When
a repeat is popped out, these are then inherited by the topmost repeat in the
stack. Recording all the left-contexts adds an extra |Σ| factor to the space and
time complexity. In our implementation we actually used a set implementation
which adds an additional log(|Σ|), but which allows a better trade-off with the
memory requirements than using a bit array for example.

The exact algorithm is depicted in Alg. 1, which presupposes the existence
of the lcp array and sa array. Each repeat ω is represented by a tuple 〈p, �〉,
where p is the leftmost occurrence of repeat ω in s and � = |ω|. While having
the leftmost occurrence is not necessary at this stage, we will use this later on.
In line 23 a new repeat is added to the stack. Keeping track of where this repeat
started (variable st) is an important detail [15], which we extend with tracking
also the set of left context seen so far (variable stlc). Note that, thanks to the
way the suffix array is build, the repeat added here only has two different right
contexts.

4.2 Using Dynamic Range Computation

What we need in order to determine if a repeat has enough left contexts is to
compute the number of different elements in the virtual array lc[i : p], where
lc = [s[sa[1] − 1], . . . , s[sa[n] − 1]. The way Alg. 1 achieves this is by storing
explicitly these different elements in a set, but there are more efficient ways (the
problem is called color counting in the stringology community, see [12, Problem
12]). The best know solution [3] requires O(log n/ log logn) time for each query.
In our implementation we used a simpler and very easy to implement solution
based upon Fenwick trees (also called BIT trees) [7]. Given a sequence of integers

x a Fenwick tree permits to compute prefix sums psumx(k) =
∑k

i=1 x[i] in time
log(|x|), and to modify x[i] also in time log(|x|).

We traverse the suffix array as in Alg. 1, updating a Fenwick tree over a binary
array islast which contains a 1 at position i if the last occurrence of lc[i] – so far
– is i, and 0 otherwise. This update is done at the beginning of the outermost
loop in Alg. 1. Therefore, when a repeat is popped out the number of its different
left contexts is given by the value psumislast(i)− psumislast(p− 1)1. To perform
the update over islast we need an additional array last of size |Σ| that for each
symbol σ keeps its right-most position so far in lc. The update then becomes
simply to set islast[last[lc[i]] = 0 (except if this is the first occurrence of lc[i])
and islast[i] = 1; and of course last[lc[i]] = i. Remember that all updates of islast
cost logn as its Fenwick tree has also to be updated. This algorithm then runs
in time O(n logn).

1 psumislast(i) is the number of different symbols encountered so far as left context,
and can therefore be kept as global variable.
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Algorithm 1. Computation of xkcd -repeats in O(|Σ|n)
xkcd (s,sa,lcp,x,k)

Input: sequence s, suffix array sa, lcp-array, minimal value of right and left context
diversity x, k

Output: xkcd -repeats in the form 〈p, �〉
1: T = empty stack
2: 〈p, �, r, lc〉 := 〈0, 0, 1, {$}〉
3: T.push(〈p, �, r, lc〉) // ensures that the stack never becomes empty
4: for all i ∈ [2..n + 1] do
5: st := sa[i− 1]
6: stlc := {s[st− 1]}
7: while T.top().� > lcp[i] do // last occurrence of a repeat
8: 〈p, �, r, lc〉 := T.pop() // repeat of length � with leftmost occurrence p and

r,|lc| different right/left context
9: st := p
10: s.top().p := min(s.top().p, p)
11: stlc := lc
12: if r ≥ x ∧ |lc| ≥ k then
13: output 〈p, �〉 // has i− p occurrences
14: end if
15: T.top().lc := T.top().lc ∪ lc
16: end while
17: if T.top().� = lcp[i] then // new occurrence of same repeat
18: T.top().r := T.top().r+ 1
19: T.top().lc := T.top().lc ∪ {s[sa[i]− 1]}
20: s.top().p := min(s.top().p, sa[i])
21: else // new repeat, which already has i− st occurrences
22: stlc := stlc ∪ {s[sa[i]− 1]}
23: T.push(〈min(sa[i− 1], sa[i], st), lcp[i], 2, stlc〉)
24: end if
25: end for

4.3 A Truly Linear Algorithm

Supposing a fixed alphabet is acceptable for many applications, including genetic
sequences analysis on the original alphabet (of size 4 or 20). However, as soon as
new symbols are added [4] or the analyzed sequences are natural language (with
one identifier for each word) having the time complexity depending on the size
of Σ can become a problem. We present an algorithm that computes all xkcd
repeats in optimal linear time, even for an integer alphabet.

Like in many algorithms based on suffix data structures, reasoning with the
right context in Alg. 1 is straightforward. It is the left context which adds com-
plexity. The algorithm is basically traversing the lcp-interval tree [1], so that any
statistics on the left context that can be summarized in constant time and that
can be computed based on the statistics of the children does not present prob-
lems. This is the case for maximal repeats (where we are interested in context
diversity), super-maximal repeats (context uniqueness of all occurrences) [15]
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and largest-maximal repeats (context uniqueness of at least one occurrence).
However, for xkcd -repeats we are interested in the number of different context,
and to compute them based on the information of the children we need to know
exactly which symbols appeared as left contexts.

Our optimal solution diverges therefore from other algorithms, and we divide
it in three stages: compute (i) xrcd -repeats, (ii) klcd -repeats and (iii) merge them.
In order to keep linearity, we consider therefore the case of x, k ≥ 2. This is, it
will not compute xkcd -repeats that are not maximal. The reason for this is that
doing otherwise would risk either phase (i) or (ii) to be potentially quadratic.

Computation of xrcd-Repeats. In its most basic form, this is just a simplified
version of Alg. 1, where we ignore everything related to the left context. We are,
however, interested in having a constant representation for each repeat that
permits to compare it afterwards (in step (iii)). It becomes important now to
have a canonical definition of a repeat, which we take here to be its leftmost
occurrences, together with its length. As shown in Alg. 1, the left-most position
for a node in the lcp-interval tree is one of those statistics that can easily be
computed from the left-most occurrences of its children.

The final output of this phase is an array of lists denoted by qxrcd. For each
position 1 ≤ p ≤ n, the list qxrcd contains the length of all xrcd -repeats whose
first occurrence in s is at position p. An important fact is that each list should
be sorted in strict decreasing order.

The following proposition shows that this order is obtained for free.

Proposition 6. If Alg. 1 outputs 〈p1, �1〉 before 〈p2, �2〉 and �1 < �2 then p1 �= p2

Computation of klcd-Repeats. Computing klcd is equivalent to compute xrcd
repeats, but on a prefix array, (the array of lexicographically ordered prefixes
instead of suffixes). Alternatively, this can be achieved by using the suffix array
of the reversed string (←−s ) and running the same algorithm described to retrieve
xrcd -repeats. However, in order to compare these repeats to the xrcd -pairs, we
need to compute the maximal (right-most) occurrence (replace min by max in
Alg. 1). An 〈p, �〉 xrcd -repeat on ←−s corresponds therefore to the xlcd -repeat
〈n− p+ �, �〉 of s. We define inv(p, �) = n− (p+ �), which gives the index over s
corresponding to position p over ←−s . Moreover, if p is the right-most occurrence
of a repeat ω in ←−s , then inv(p, |ω|) is the left-most occurrence of ←−ω in s.

Equivalently to step (i), the output here is an array of lists ←−q krcd, where←−q krcd[p] contains the length � of all krcd -repeats whose last occurrence in ←−s is
at position p.

In order to do the merging in step (iii) in linear time we need to transform
←−q krcd to qklcd in linear time, such that the lists at each position are sorted.
Prop. 6 ensures this for qxrcd already. The klcd however are computed as krcd
on the reversed string, and it is not trivial which should be the right order to
traverse them to keep order. The following proposition resolves this:
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Proposition 7. Let 〈p, �1〉 and 〈p, �2〉 be two klcd-repeats (with p being the left-
most occurrence), such that �1 < �2, and let p′1, p

′
2 be such that p = inv(p′1, �1) =

inv(p′2, �2). Then, p
′
1 > p′2.

So, to keep the order in the lists of qklcd of the original string, it is enough to
traverse the 〈p, �〉 krcd -repeats of ←−s in decreasing order of p and to add them in
this order into qklcd[inv(p, �)].

Merging. Prop 6 and 7 ensures that the lists qxrcd[i] and qklcd[i] are sorted in
decreasing and increasing order, respectively. Finding the intersection between
them can then be done in linear time

Theorem 8. The xkcd-repeats of sequence s can be computed in time O(|s|),
independent of the size of the alphabet.

4.4 Comparison

We compared the execution time of all three algorithms for sequences of different
alphabet size, over two kind of sequences: randomly generated (uniform and
independent distribution of symbols) over different alphabet size, and an English
wikipedia dump (of Sept 2012), where each tokenized word2 was assigned an
integer identifier. There were 9 million different symbols, distributed as expected
by a power law. Herdan’s law says that the number of words type in a sequence
of size n is expected to be k × nβ, with typical values of 30 ≤ k ≤ 100 and
β ≈ 0.5 [11]. However, in our case we did not perform any cleaning and included
all the XML meta-data of the wikipedia dump. For the random sequences, we
report the average over 5 runs for each point, and for the wikipedia sequence we
took increasing prefixes.

Because the linear algorithm requires to construct two suffix arrays, the choice
of which algorithm to use is crucial. We used Yuta Mori’s implementation3 of the
SAIS algorithm [20], the fastest of the variants we tried, and which also runs in
linear time. While we measured only user time, we did not have major problems
with swapping in the size of sequences considered here (the machine had 32GB
of RAM).

As can been seen in Fig. 1, only with very large alphabets the linear algorithm
effectively outperforms the O(|Σ|n log |Σ|) one. In all cases, the BIT implemen-
tation outperforms all other. However, it should be noted that most of the time
in the linear algorithm is used in the construction of the two suffix arrays and
lcp (85% of the total time, compared with 68% for the BIT version). Any im-
provement in this, or creating both suffix arrays at the same time [13] would
directly impact these plots.

2 We used the NLTK library of python for tokenization.
3 https://sites.google.com/site/yuta256/sais

https://sites.google.com/site/yuta256/sais
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(a) Uniform IID tokens, with |Σ| = 24 (b) Uniform IID tokens, with |Σ| = 216

(c) Uniform IID tokens, with |Σ| = 221 (d) Samples over a dump from wikipedia

Fig. 1. (User) Time usage of all three algorithms, over different document lengths. All
datapoints are the average over 5 runs.

5 Incremental Computation

Existing algorithms to compute repeats, including those presented so far, work in
an off-line mode, where the whole sequence is supposed to be available. This as-
sumption may be true in bioinformatics applications, but many use-cases around
natural language documents work in a streaming setting (ex: online news analy-
sis, real-time document classification, etc). In [9] we advocated the use of repeats
to model this type of documents, showing the advantages over other approaches.
However, this can not be adapted directly to such streaming settings without
paying an extremely high efficiency toll. We present therefore here a general
method to compute – iteratively – a set of characteristics on context-diverse
repeats. For this we will rely on the incremental suffix tree creation algorithm
of Ukkonen [18]. Formally, the problem we try to solve is4:

Problem 9. For a class of repeats X, and given documents D = {d1 . . . dk}, doc-
ument dk+1 and a suffix tree on S = d1.d2. . . . .dk where all nodes corresponding
to X(S) are marked and augmented with their number of occurrences; return
a suffix tree on S.dk+1 where all nodes corresponding to X(S.dk+1) are marked
and augmented with their number of occurrences.

4 We define the concatenation of s1 and s2 as s1.s2 = s1$s2, with $ a new symbol.
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Our approach can easily be extended to keep the list of occurrences or other
information on the selected repeats.

An algorithm resolving this problem is said to be optimal if it runs in time
O(max(n, |Xupdate(S, d)|), where Xupdate(S, d) are the updates that have to be
performed: Xupdate(S, d) = {w ∈ d : w ∈ X(S.d)} ∪ (X(S) \ X(S.d)). Note
that the size of this set can be much larger than the length of the newly added
document:

Proposition 10. |MRupdate(S, d)| ∈ Θ(|d|2)

5.1 Cover of a New Document

When a new document dk+1 is added to S, the new suffix tree will have |dk+1|+1
leaves corresponding to each of the suffixes of dk+1. Any ancestor of these leaves
can potentially change its maximal class because it is repeated for the first time
or because of a change in its context sets. It is therefore this set of nodes we will
be traversing after each update:

Definition 11. We define cover(S, dk+1) as the set of substrings of dk+1 which
are right-maximal repeat in S.dk+1. This corresponds therefore to those internal
nodes of the suffix tree which are ancestor of leaves added for dk+1.

However, the cover set should not be traversed in any arbitrary order: each
node should of course be visited only once, and only after having visited all
its children. Any information on the occurrence of an internal node v can be
obtained by aggregating correctly this same information of the children of v.
The way we achieve this is by ordering the nodes with respect to the lengths of
their represented substring. This defines therefore a partial order on the nodes
of the suffix tree, where v < w iff v is a prefix of w and |v| < |w|. The nodes can
then be correctly traversed by using this order with a priority queue, which is
initialized with all new leaves. The order in which non-ordered pairs are selected
is not important: the priority property ensures that when a node v is visited, all
his descendants in the cover were visited before.

This choice makes this algorithm run in time O((|cover| + n) log(n)), where
the additional n factor is due to the leaves of dk+1 and the logarithm factor is
due to the complexity of insertion and deletion in the queue. The queue could
be replaced by an array p of lists of node of maximal size n, where p[i] is the
list of node whose depth is equal to i and an array added of boolean value where
added[v] asserts if the node v was added to p. These two arrays can be updated in
constant time and the additional cost in memory trades off with speed, making
the cover traversal O(|cover|+ n).

Updating those nodes belonging to a given class is then straightforward, given
that each node is enriched with additional information: we keep for each node v
two sets of symbols: the first lcunique will contain those symbols c such that c is
left context of a leaf-child of v and there is not another leaf of v with the same
left-context. The second set, lc will be disjoint to this one and contain all other
characters which are left-context of a leaf of v but are not in lcunique. With these
definitions, each node can easily be updated with the following rules:
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– v is a maximal repeat iff |v.lc|+ |v.lcunique| > 1 ∧ |children(v)| > 1

– v is 〈x, k〉-cd iff |v.lc|+ |v.lcunique| ≥ x ∧ |children(v)| ≥ k
– v is a supermaximal repeat iff |v.lcunique| = |children(v)|
– v is a largest maximal repeat iff |v.lcunique| > 0

Of course, both sets have also to be updated. This can be done in a straight-
forward manner by updating both sets of the parent of each visited node, adding
a additional |Σ| factor to the final complexity.

Updating the total number of occurrences can be done similarly. The number
of occurrences of a repeat is the number of leaves in the subtree rooted at the
node representing it, a value hold in an additional variable per node. In addition,
each node will keep an auxiliary variable with the number of new leaves it has
due to incorporation of dk+1 to the suffix tree. In a first traversal of the cover
each node updates this auxiliary variable of his parent, and in a second traversal
each node updates its count of subtrees adding the number of new leaves.

6 Conclusions

In this paper we investigated a new class of repeat that includes explicitely
the context in which it appears. This xkcd family is a generic class that includes
maximal and supermaximal repeats as special cases. We also gave three different
algorithms to compute these repeats, allowing for a rich choice depending on the
size of the alphabet. In addition we also studied the problem of computing these
repeats incrementally, to support the addition of new documents to the analyzed
collection. This resulted in a general framework relying on Ukkonen’s suffix tree
creation algorithm.

We believe that these advances will allow the use of these notions from
stringology to model natural language documents, an approach which has not
sufficiently be studied in our opinion. The notion of the cover for the incremen-
tal computation of repeats is of independent interest, and we plan to study its
characteristic further. Note for example that if the goal is only to mark maximal
repeats on the final suffix tree, then the cover permits to do so in optimal time
(this is, in time proportional to the number of nodes that change state).
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Abstract. We present an original refinable subword based symbolic rep-
resentation for the verification of linearly ordered parameterized systems.
Such a system consists of arbitrary many finite processes placed in an ar-
ray. Processes communicate using global transitions constrained by their
relative positions (i.e., priorities). The model can include binary commu-
nication, broadcast, shared variables or dynamic creation and deletion
of processes. Configurations are finite words of arbitrary lengths. The
successful monotonic abstraction approach uses the subword relation to
define upward closed sets as symbolic representations for such systems.
Natural and automatic refinements remained missing for such symbolic
representations. For instance, subword based relations are simply too
coarse for automatic forward verification of systems involving priorities.
We remedy to this situation and introduce a symbolic representation
based on an original combination of counter abstraction with subword
based relations. This allows us to define an infinite family of relaxation
operators that guarantee termination by a new well quasi ordering argu-
ment. The proposed automatic analysis is at least as precise and efficient
as monotonic abstraction when performed backwards. It can also be suc-
cessfully used in forward, something monotonic abstraction is incapable
of. We implemented a prototype to illustrate the approach.

Keywords: counter abstraction, well quasi ordering, reachability,
parameterized verification.

1 Introduction

We introduce in this paper an original adaptation of counter abstraction and use
it for the verification of safety properties for linearly ordered parameterized sys-
tems. Typically, such a system consists of an arbitrary number of identical pro-
cesses placed in a linear array. Each process is assumed to have a finite number
of states (for example obtained by predicate abstraction). The arbitrary size of
these systems results in an infinite number of possible configurations. Examples of
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linearly ordered parameterized systems include mutual exclusion algorithms, bus
protocols, telecommunication protocols, and cache coherence protocols. The goal
is to check correctness (here safety) regardless of the number of processes.

Configurations of such a system are finite words of arbitrary lengths over the
finite set Q of process states. Processes change state using transitions that might
involve universal or existential conditions. Transition t below is constrained by a
universal condition. Here, a process (with array index) i may fire t if all processes
with indices j > i (i.e., to the right, hence ∀R) are in states {q1, q2, q3} ⊆ Q.

t : q5 → q6 : ∀R {q1, q2, q3} (1)

An existential condition requires that some (instead of all) processes are in cer-
tain states. Regular model checking [13,3] is an important technique for the
uniform verification of infinite state systems in general, and of linearly ordered
parameterized systems in particular. It uses finite state automata to represent
sets of configurations, and transducers (i.e., finite state automata over pairs of
letters) to capture transitions of the system. Verification boils down to the re-
peated calculation of several automata-based constructions among which is the
application of the transducers to (typically) heavier and heavier automata rep-
resenting more and more complex sets of reachable configurations. Acceleration
[3], widening [6,17] and abstraction [7] methods are used to ease termination.

In order to combat this complexity, the framework of monotonic abstraction
[2,1] uses upward closed sets (wrt. a predefined pre-order) as symbolic repre-
sentations. This introduces an over-approximation, as sets of states generated
during the analysis are not necessarily upward closed. The advantage is to use
minimal constraints (instead of arbitrary automata) to succinctly represent infi-
nite sets of configurations. The approach typically adopts the subword relation
as the pre-order for the kind of systems we consider in this work1. The analysis
starts with upward closed sets representing the bad configurations and repeat-
edly approximates sets of predecessors by closing them upwards. Termination
is guaranteed by well quasi ordering [12]. The scheme proved quite successful
[2,1] but did not propose refinements for eliminating false positives in ordered
systems like the ones we consider here.

In this work, we describe an original integration of upward closed based sym-
bolic representation and of threshold based counter abstraction. The resulting
symbolic representation allows for the introduction of original relaxation op-
erators that can be used in classical over-approximate-check-refine reachability
schemes. The idea of counter abstraction [16,10] is to keep track of the number of
processes that satisfy a certain property. A typical property for a process is to be
in some state in Q. A simple approach to ensure termination is then to count up
to a prefixed threshold. After the threshold, any number of processes satisfying
the property is assumed possible. This results in a finite state system that can
be exhaustively explored. If the approximation is too coarse, the threshold can
be augmented. For systems like those we consider in this paper, automatically

1 As a concrete example, if q5 ∈ Q, then the word q5q5 would represent all configura-
tions in (Q∗q5Q∗q5Q∗) since q5q5 is subword of each one of them.
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finding the right properties and thresholds can get very challenging. Consider
for instance the transition t above (1). It is part of Burns mutual exclusion al-
gorithm, where q6 models access to the critical section [2]. Suppose we want to
compute the t-successors of configurations only containing processes in state q5.
These are in fact reachable in Burns algorithm. Plain counter abstraction would
capture that all processes are at state q5. After one step it would capture that
there is one process at state q6 and all other processes are at state q5 (loosing
that q6 is at the right of all q5). After the second step it would conclude that
configurations with at least two q6 are reachable (mutual exclusion violation).
Observe that increasing the threshold will not help as it will not preserve the
relative positions of the processes. Upward closure based representations will
also result in a mutual exclusion violation if used in forward. Suppose we use
q5q5 as a minimal constraint. Upward closure wrt. to the subword relation would
result in the set (Q∗q5Q

∗q5Q
∗) which already allows two processes at state q6 to

coexist. Even when using the refined ordering of [1], upward closure would result
in ({q5}∗ q5 {q5}∗ q5 {q5}∗). After one step, the obtained ({q5}∗ q5 {q5}∗ q6) will
be approximated with ({q5, q6}∗ q5 {q5, q6}∗ q6 {q5, q6}∗), again violating mutual
exclusion. Approximations are needed to ensure termination (the problem is un-
decidable in general [4]). Indeed, without approximation, one would differentiate
among infinite numbers of sets, like in the following sequence:

({q5}∗ q6), ({q5}∗ q6 {q5}∗ q6), . . . ({q5}∗ q6 {q5}∗ . . . {q5}∗ q6) (2)

The idea of this work is to combine threshold-based counter abstraction with
subword-based upward closure techniques in order to propose an infinite number
of infinite abstract domains allowing increasing precision of the analysis while
still ensuring termination. To achieve this, we introduce the notion of a counted
word. A counted word has a base and a number of formulae (called counters).
Like in monotonic abstraction, a base (a word in Q∗) is used as a minimal
element and denotes all larger words wrt. the subword relation. In addition,
the counters are used to constrain the denotation of the base. We associate two
counters to each position in the base: a left and a right counter. For each state
q in Q, the left counter of a position constrains how many of the processes to
the left of the position can be in state q (i.e. constrains Parikh images of allowed
prefixes). Right counters constrain allowed suffixes to the right of the positions.
For example ({q5}∗ q6) is captured by the counted word ϕ1 defined below:

ϕ1 =

([
vq5 ≥ 0
∧vq6 = 0

]
, q6,

[
vq5 = 0
∧vq6 = 0

])
,

ϕ2 =

([
vq5 ≥ 0
∧vq6 = 0

]
, q6,

[
vq5 ≥ 0
∧vq6 = 1

])([
vq5 ≥ 0
∧vq6 = 1

]
, q6,

[
vq5 = 0
∧vq6 = 0

])
, . . .

ϕk =

([
vq5 ≥ 0
∧vq6 = 0

]
, q6,

[
vq5 ≥ 0

∧vq6 = (k − 1)

])
. . .

([
vq5 ≥ 0

∧vq6 = (k − 1)

]
, q6,

[
vq5 = 0
∧vq6 = 0

])

In ϕ1, the base q6 denotes (Q∗q6Q
∗). This is constrained to ({q5}∗ q6Q∗) by

the right counter
[

vq5 ≥ 0
∧vq6 = 0

]
and to ({q5}∗ q6) by the left counter

[
vq5 = 0
∧vq6 = 0

]
.

Sequence (2) can then be captured by the counted words ϕ1, ϕ2, . . . ϕk. This
gain in precision comes at the price of loosing termination. We therefore pro-
pose relaxation operators. Each operator comes with a cut-off, i.e., thresholds
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associated to each state in Q. If a counter requires (vq = k) with k larger than
the threshold imposed by the cut-off, we weaken (vq = k) into (vq ≥ k). Using
a well quasi ordering argument, we show that this is enough to ensure termi-
nation of the analysis that relaxes all generated representations. If a spurious
trace is generated, we increase the thresholds in order to obtain a more precise
relaxation that eliminates the spurious trace. We implemented a prototype that
allows, for the first time, to use in a forward exploration scheme upward closure
based representations to verify classical linearly ordered parameterized systems.

Related work. Other verification efforts with a termination guarantee typically
consider decidable subclasses [10,9], or use approximations to obtain systems on
which the analysis is decidable [16,8,15]. For example, the authors in [9] propose
a forward framework with systematic refinement to decide safety properties for a
decidable class. The problem we consider here is undecidable. The authors in [15]
use heuristics to deduce cut-offs in order to check invariants on finite instances.
In [16] the authors use counter abstraction and truncate the counters in order
to obtain a finite state system. This might require manual insertion of auxiliary
variables to capture the relative order of processes in the array. Environment
abstraction [8] combines predicate and counter abstraction. It results in what is
essentially a finite state approximated system. Hence, it can require considerable
interaction and human ingenuity to find the right predicates. Our approach
handles linearly ordered systems in a uniform manner. It automatically adds
precision based on the spurious traces it might generate.

Outline. Section (2) gives preliminaries and formalizes the notion of counters.
Section (3) uses these counters to define counted words and to state some of their
properties that will be useful to build a symbolic representation for the verifi-
cation of parameterized systems. Section (4) formally describes the considered
class of parameterized systems and reports on using counted words as a symbolic
representation to solve their rechability problem. We conclude in Section (5).

2 Preliminaries

Preliminaries. Fix a finite alphabet Σ and let Σ∗ be the set of finite words over
Σ. Let w ·w′ be the concatenation of the words w and w′, ε be the empty word,
w�w′ be the shuffle set {w1 · w′1 · w2 · · ·w′m| w = w1 · · ·wn and w′ = w′1 · · ·w′m}.
We use N for the set of natural numbers and n, with n ∈ N, to mean {1, . . . , n}.
Assume a word w = σ1 · · ·σn where σi ∈ Σ for i ∈ n. We write |w| for the size n,
w[i,j] to mean the word σi · σi+1 · · ·σj , w[i] for the letter σi, hd(w) for the letter
σ1, tl(w) for the suffix w[2,n], and w• for the set {σ1, . . . , σn}. A multiset m is a
mapping Σ → N. We write m & m′ to mean that m(σ) ≤ m′(σ) for each σ ∈ Σ.
We write m⊕m′ to mean the multiset satisfying (m ⊕m′)(σ) = m(σ) +m′(σ)
for each σ ∈ Σ. If m′ & m, then the multiset m $ m′ is defined and verifies
(m$m′)(σ) = m(σ)−m′(σ) for each σ in Σ. The Parikh image w# of a word w
is the multiset that gives the number of occurrences of each letter σ in w. Given
a set S and a pre-order (i.e., a reflexive and transitive binary relation) � on S,
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the pair (S,�) is said to be a well quasi ordering (wqo for short) if there is no
infinite sequence e1, e2, . . . of elements of S with ei �� ej for all 1 ≤ i < j.

A counter over an alphabet Σ is a conjunction of simple constraints that de-
notes a set of multisets. We fix a set of integer variables VΣ that is in a one
to one correspondence with Σ. Each variable v is associated to a letter σ in Σ.
We write vσ to make the association clear. Intuitively, vσ is used to count the
number of occurrences of the associated letter σ in a word in Σ∗. A counter
basically captures multisets over Σ by separately imposing a constraint on each
letter in Σ. Indeed, we define a counter cr to be either [false] or a conjunction
[∧σ∈Σ(vσ ∼ k)] where ∼ is in {=,≥}, each vσ is a variable ranging over N and
each k is a constant in N. Assume in the following a counter cr. For a letter σ in
Σ, we write cr(σ) to mean the strongest predicate of the form (vσ ∼ k) implied
by the counter cr. We write 1σ (resp. 0) to mean the counter [∧σi∈Σ(vσi = bσi)]
with bσi = 1 for σi = σ and bσi = 0 otherwise (resp. bσi = 0 for all σi ∈ Σ). A
substitution is a set {v1 ← u1, . . .} of pairs (s.t. vi �= vj if i �= j) where v1, . . .
are variables, and u1, . . . are either all variables or all natural numbers. Given
a substitution S, we write cr[S] to mean the formula obtained by replacing, for
each pair vi ← ui, each occurrence of vi in cr by ui. We sometimes regard a
multiset m as the substitution {vσ ← m(σ)| σ in Σ}. For a multiset m, the for-
mula cr[m] takes a Boolean value. In the case where it evaluates to true (resp.
false), we say that m satisfies (resp. doesn’t satisfy) the counter cr and that
the counter cr accepts (resp. does not accept) the multiset m. Given a word
w in Σ∗, we abuse notation and write cr[w] to mean that (w#) satisfies cr.
We write [[cr]] to mean the set {m| cr[m] and m is a multiset over Σ}. We de-
fine the cut-off of cr, written κ(cr), to be the multiset that associates to each
letter σ in Σ the value k + 1 if cr(σ) = (vσ = k) and 0 otherwise. Observe
that if κ(cr)(σ) �= 0 for all σ ∈ Σ, then cr accepts a single multiset, while if
κ(cr)(σ) = 0 for all σ ∈ Σ, then cr accepts an upward closed set of multisets wrt.
&2. We write C for the set of counters over Σ. Given a natural k, we write Ck to
mean {cr| κ(cr)(σ) ≤ k for each σ ∈ Σ}. Observe that for any counter cr ∈ Ck,
((cr(σ) = (vσ = k′)) =⇒ k′ < k).

Example 1. For the counter cr = [va = 0 ∧ vb = 2 ∧ vc ≥ 1] over Σ = {a, b, c}, we
have that: κ(cr)(a) = 1, κ(cr)(b) = 3, and κ(cr)(c) = 0. In addition, cr is in C3.

Operations on counters. Assume two counters cr and cr′. The predicate (cr �C

cr′) is defined as the conjunction ∧σ∈Σ(cr �C cr′)(σ), where (cr �C cr′)(σ) is
defined in Table (1). In addition, let cr′′ be any of the counters (cr�C cr

′), (cr$C

cr′), or (cr ⊕C cr′). The counter cr′′ is defined as the conjunction ∧σ∈Σcr′′(σ),
where cr′′(σ) is stated in Table (1). Observe that (cr �C cr′) =⇒ [[cr′]] ⊆ [[cr]],
that [[cr�C cr

′]] = [[cr]]∩ [[cr′]], that [[cr⊕C cr
′]] = {m1 ⊕m2| cr[m1] and cr′[m2]},

and that [[cr $C cr′]] = {m1 $m2| cr[m1] and cr′[m2]}.

2 A set M of multisets is upward closed wrt � if m � m′ and m ∈M imlpy m′ ∈M .
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Table 1. Contribution of each σ ∈ Σ to the predicate cr �C cr′ and to the counters
cr �C cr′, cr ⊕C cr′ and cr �C cr′

cr(σ) cr′(σ) (cr !C cr′)(σ) (cr �C cr′)(σ) (cr ⊕C cr′)(σ) (cr "C cr′)(σ)

vσ = b
vσ = b′ b = b′ (b = b′)?vσ = b : false

vσ = b + b′
(b ≥ b′)?vσ = b− b′ : false

vσ ≥ b′ false (b ≥ b′)?vσ = b : false

vσ ≥ b
vσ = b′

b′ ≥ b
(b′ ≥ b)?vσ = b′ : false

vσ ≥ max(0, b− b′)
vσ ≥ b′ vσ ≥ max(b, b′)

Lemma 2. For k ∈ N, (Ck,�C) is a well quasi ordering. From every infinite
sequence cr1, cr2, . . . we can extract an infinite sequence cri1 �C cri2 �C . . .

Proof. Let cr1, cr2, . . . be an infinite sequence. Fix a letter σ. If the number
of counters for which crm(σ) is not an equality is infinite, then remove all the
counters for which crm(σ) is an equality. Otherwise, by definition of Ck, there
is a b0 < k such that the number of counters for which crm(σ) = (vσ = b0) is
infinite. Keep those counters and remove all others from the resulting sequence.
By repeating this procedure for each letter σ in Σ, we obtain a new infinite se-
quence of counters crm1 , crm2 , . . . for which, for each mi,mj , crmi(σ) = (vσ = b)
iff crmj (σ) = (vσ = b). Fix a letter σ for which crm1(σ) = (vσ ≥ b). It is possible
to extract from the resulting sequence another infinite sequence crn1 , crn2 , . . .
such that if crni(σ) = (vσ ≥ bni) and crnj (σ) = (vσ ≥ bnj ) with ni < nj , then
bni ≤ bnj . By repeating this for each letter σ, we obtain an infinite sequence in
which cri1 �C cri2 �C . . .. �

3 Counted Words

A counted word ϕ is a finite sequence (l1, σ1, r1) · · · (ln, σn, rn) in (C×Σ × C)∗.
The base of ϕ (written ϕ) is the word σ1 · · ·σn in Σ∗. We write ←−ϕ (resp. −→ϕ )
to mean the counter [∧σ∈Σ(vσ ≥ 0)] (resp. [∧σ∈Σ(vσ ≥ 0)]) if ϕ = ε, and l1
(resp. rn) otherwise. We refer to l1, . . . ln (resp. r1, . . . rn) as the left (resp. right)
counters of ϕ. The counted word ϕ is well formed if li[(ϕ)[1,i−1]] and ri[(ϕ)[i+1,n]]
evaluate to true for each i ∈ n. We assume ε is well formed. The following lemma
constrains the possible predicates in a well formed counted word.

Lemma 3 (Well formedness). Let ϕ = (l1, σ1, r1) · · · (ln, σn, rn) be a well
formed word. For each i ∈ n, the counter li(σ) (resp. ri(σ)) either equals:

(vσ = (ϕ[1,i−1])
#(σ)) (resp. (vq = (ϕ[i+1,n])

#(σ))), or (vσ ≥ k) for some k

in {0, . . . (ϕ[1,i−1])
#
(σ)} (resp. in {0, . . . (ϕ[i+1,n])

#
(σ)}).

Denotation. If w = σ1 · · ·σm, ϕ = (l1, σ1, r1) · · · (ln, σn, rn), and h : n→ m is an
increasing injection, we write w |=h ϕ to mean that all following three conditions
hold for each i ∈ n i) ϕ[i] = w[h(i)], and ii) li(w[1,h(i)−1]), and iii) ri(w[h(i)+1,n]).
Intuitively, there is an injection h that ensures ϕ is subword of w, and s.t. words
to the left and right of each image of h respectively respect corresponding left
and right counters in ϕ. We write w |= ϕ if w |=h ϕ for some injection h, and
[[ϕ]] to mean {w| w |= ϕ}. We let [[ε]] = Σ∗. Observe that every well formed word
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has a non-empty denotation since ϕ |= ϕ. We use CW to mean the set of well
formed counted words.

Example 4. ϕ =

([
va = 0
∧vb ≥ 0

]
, a,

[
va ≥ 0
∧vb ≥ 0

])([
va = 1
∧vb = 0

]
, a,

[
va = 0
∧vb ≥ 0

])
and [[ϕ]] = aab∗.

Normalization of well formed words. Counters in a counted word are not inde-
pendent. Consider for instance ϕ = (l1, a, r1)(l2, a, r2) in Example (4). We can
change l1(b) to (vb = 0) without affecting the denotation of ϕ. The reason is that
any prefix accepted by l1 will have to be allowed by l2. It is therefore vacuous for
l1 to accept words containing b, and more generally to accept more than l2$C1a

(defined by well formedness). Also, observe that l2 and r2 imply we can change
r1(a) from (va ≥ 0) to (va = 1). We strengthen a well formed word using the
normalization rules depicted in Table (2).

Lemma 5 (Normalization rules). Applying any of the rules of Table (2) on a
well formed word ϕ does preserve its denotation, and hence its well formedness.

Table 2. Normalization rules. For example, the rule li<j states we can replace counter
li in word (ϕp · (li, σi, ri) · ϕm · (lj , σj , rj) · ϕs) by (li �C li,j). The introduced counters
are li,j = (lj �C (1σi ⊕C . . . ⊕C 1σj−1)), rj,i = (ri �C (1σi+1 ⊕C . . . ⊕C 1σj )), l

′
j,i =

(li ⊕C 1σi ⊕C ri)�C (rj ⊕C 1σj ), and r′i,j = (rj ⊕C 1σj ⊕C lj)�C (li ⊕C 1σi).

ϕp · (li, σi, ri) · ϕm · (lj , σj , rj) · ϕs

ϕp · (li �C li,j , σi, ri) · ϕm · (lj , σj , rj) · ϕs

li<j

ϕp · (li, σi, ri) · ϕm · (lj , σj , rj) · ϕs

ϕp · (li, σi, ri) · ϕm · (lj , σj , rj �C rj,i) · ϕs

ri<j

ϕp · (li, σi, ri) · ϕm · (lj , σj , rj) · ϕs

ϕp · (li, σi, ri) · ϕm · ((lj �C l′j,i), σj , rj) · ϕs

l′i 
=j

ϕp · (li, σi, ri) · ϕm · (lj , σj , rj) · ϕs

ϕp · (li, σi, ri �C r′
i,j) · ϕm · (lj , σj , rj) · ϕs

r′i 
=j

Proof. Sketch. Let ϕ′ be the word obtained from ϕ by applying one of the above
rules. Such a rule only strengthens the counters. Hence, [[ϕ]] ⊇ [[ϕ′]]. Assume w
in Σ∗ with w |=h ϕ. We show w |=h ϕ′ holds. We describe the cases li<j and
r′i �=j. We start with li<j and show that li,j(w[1,h(i)−1]). We know lj(w[1,h(j)−1])

from w |=h ϕ. We also know lj(w[h(1)] · w[h(2)] · · ·w[h(j−1)]) by well formedness

of ϕ and w |=h ϕ. Observe that due to the allowed predicates in the counters,
if cr[m] and cr[m′′] for some multisets m & m′′, then cr[m′] for any multiset
m & m′ & m′′. Also, observe that: (w[h(1)] · w[h(2)] · · ·w[h(j−1)])

# & (w[1,h(i)−1] ·
w[h(i)] · w[h(i+1)] · · ·w[h(j−1)])

# & (w[1,h(j)−1])
#
. We get (lj $C (1σi ⊕C . . . ⊕C

1σj−1))(w[1,h(i)−1]) and hence the result. For r′i �=j, we show r′i,j(w[h(i)+1,|w|]). Ob-

serve that w |=h ϕ ensures li(w[1,h(i)−1]), 1σi(w[h(i)]), lj(w[1,h(j)−1]), 1σj (w[h(j)])
and rj(w[h(j)+1,|w|]). Hence, (lj ⊕C 1σj ⊕C rj)[w] and (li ⊕C 1σi)[w[1,h(i)]]. The

result follows from w# = (w[1,h(i)])
# ⊕ (w[h(i)+1,|w|])

#
. �

Lemma 6 (Normalization). Procedure Normalize repeatedly applies the rules
of Table (2). The resulting counted word is independent of the application order.

Proof. First termination, At each rule, manipulated and obtained counted words
are well formed. Using Lemma (3), we deduce all counters belong to a finite
lattice where rules are monotonic functions that only strengthen one counter.
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Unicity can be obtained by contradiction. Suppose two different counted words
are obtained as normalizations of the same well formed word. The words can
only differ in their counters. Pick different corresponding counters. Given the
allowed forms for the predicates (Lemmata (3) and (5)), we deduce that at least
one predicate associated to some letter is strictly stronger in one of the counters.
If we apply to the word with a weaker predicate, the sequence of rules that were
applied to the word with a stronger predicate, we would get a strictly stronger
predicate. This contradicts having reached a fixpoint. �

Procedure Normalize((l1, σ1, r1) · · · (ln, σn, rn))

1 repeat
2 (l′1, σ

′
1, r

′
1) · · · (l′n, σ′

n, r
′
n)← (l1, σ1, r1) · · · (ln, σn, rn);

3 for i← 1 to n do
4 for j ← 1 to i− 1 do
5 ri ← ri �C

(
rj �C (1σj+1 ⊕C . . .1σi)

)
;

6 li ← li �C

(
(lj ⊕C 1σj ⊕C rj)�C (ri ⊕C 1σi)

)
;

7 ri ← ri �C

(
(lj ⊕C 1σj ⊕C rj)�C (li ⊕C 1σi)

)
;

8 for j ← i+ 1 to n do
9 li ← li �C

(
lj �C (1σj+1 ⊕C . . .1σi)

)
;

10 li ← li �C

(
(lj ⊕C 1σj ⊕C rj)�C (ri ⊕C 1σi)

)
;

11 ri ← ri �C

(
(lj ⊕C 1σj ⊕C rj)�C (li ⊕C 1σi)

)
;

12 until (l1, σ1, r1) · · · (ln, σn, rn) �NCW (l′1, σ
′
1, r

′
1) · · · (l′n, σ′

n, r
′
n);

13 return (l1, σ1, r1) · · · (ln, σn, rn);

Normalized words and entailment. We write NCW to mean the set of normalized
words in CW. Assume two normalized words ϕ = (l1, σ1, r1) · · · (ln, σn, rn) and
ϕ′ = (l′1, σ

′
1, r

′
1) · · · (l′m, σ′m, r′m). We say that ϕ is h-entailed by ϕ′ for some

increasing injection h : n → m, and write ϕ �h
NCW ϕ′, to mean that for each

i ∈ n, ϕ[i] = ϕ′[h(i)], li �C l′h(i), and ri �C r′h(i). We write ϕ �NCW ϕ′ if ϕ �h
NCW

ϕ′ for some h. Observe that
([

va ≥ 0
]
, a,

[
va = 0

])
��NCW

([
va = 0

]
, a,

[
va ≥ 0

])
,

but [[
([

va ≥ 0
]
, a,

[
va = 0

])
]] = [[

([
va = 0

]
, a,

[
va ≥ 0

])
]] = a+.

Lemma 7 (Entailment). �NCW is reflexive and transitive. It can be checked in
linear time in the length of the counted words and ϕ �NCW ϕ′ implies [[ϕ′]] ⊆ [[ϕ]].

Word cut-offs. Similarly to the cut-offs defined in Section (2) for counters, the
cut-off of a well formed word ϕ is a multiset κ(ϕ). It associates to each letter σ the
natural numbermax {κ(cr)(σ)| cr is a counter in ϕ}. In Example (4), κ(ϕ)(a) =
2 and κ(ϕ)(b) = 1. We say that a counted word ϕ has a k-cut-off if all its counters
are in Ck. For example, counted words with a 0-cut-off only have inequalities in
their counters (i.e. denote upward closed sets). We write CWk (NCWk) to mean
the set of (normalized) well formed counted words that have a k-cut-off.

Theorem 8 (WQO). For k ∈ N, (NCWk,�NCW) is a well quasi ordering.

Proof. Higman’s Lemma [12] states that if (Σ,&) is a wqo, then the pair (Σ∗,&∗)
is also a wqo3. We let Γ = Ck×Σ×Ck and (l, σ, r) & (l′, σ′ , r′) if l �C l′ and σ =

3 σ1 · · ·σn �∗ σ′
1 · · ·σ′

m iff there is a strictly increasing h : n→ m with σi � σ′
h(i).
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σ′ and r �C r′. Observe that NCWk ⊆ Γ ∗, and that &∗ coincides with �NCW .
Hence, showing (Γ,&) is a wqo establishes the result. Given an infinite sequence
we can extract an infinite subsequence (lm1 , σm1 , rm1) , (lm2 , σm2 , rm2) , . . . in
which σmi = σmj for all i �= j and use Lemma (2). �

Procedure zip(z, (p:s), (p′:s′))

1 collect := ∅ ;
2 if (s �= ε) then

3 if κ(
−→
p′ )(hd(s)) = 0 and κ(

←−
s′ )(hd(s)) = 0 then

4 collect ∪ := zip(z · hd(s), (p · hd(s) : tl(s)), (p′ : s′))
5 if (s �= ε and s′ �= ε) then

6 if (
←−−−
hd(s) �C

←−−−
hd(s′) �= false) and (hd(s) = hd(s′)) and

(
−−−→
hd(s) �C

−−−→
hd(s′) �= false) then

7 e := (
←−−−
hd(s) �C

←−−−
hd(s′), hd(s),

−−−→
hd(s) �C

−−−→
hd(s′));

8 collect ∪ := zip(z · e, (p · hd(s) : tl(s)), (p′ · hd(s′) : tl(s′)))
9 if (s′ �= ε) then

10 if κ(−→p )(hd(s′)) = 0 and κ(←−s )(hd(s′)) = 0 then
11 collect ∪ := zip(z · hd(s′), (p : s), (p′ · hd(s′) : tl(s′)))
12 if (s = ε and s′ = ε) then
13 collect := {Normalize(z)}
14 return collect;

Meet of counted words. Given ϕ, ϕ′ in NCW, the result of Procedure (zip) is a
set (ϕ �NCW ϕ′) of normalized counted words whose denotation coincides with
[[ϕ]] ∩ [[ϕ′]]. This recursive procedure builds a constrained shuffle of ϕ and ϕ′.
It takes as arguments five counted words z, p, s, p′, s′, with ϕ = (p · s) and
ϕ′ = (p′ · s′). We write (z, (p : s), (p′ : s′)) for clarity. Intuitively, each call tries
to complete the first argument z to obtain a counted word that entails both
(p · s) and (p′ · s′). The procedure starts with (ε, (ε : ϕ), (ε : ϕ′)) and collects all
such counted words z. At each call, it considers contributions to z from hd(s)
(lines (2-4)), hd(s′) (lines (9-11)), or both hd(s) and hd(s′) (lines (5-8)). The
contributions are completed by further recursive calls. Results are collected in
the local variable collect. Lines (2-4) capture the situation where a state in z
is mapped to hd(s) and tolerated by the counters of ϕ′ (test at line (3)). Lines
(5-8) correspond to a state in z simultaneously mapped to hd(s) and hd(s′). The
words s and s′ contain states that are still not treated. Termination is obtained
with the ranking function |s|+ |s′|. The following lemma establishes correctness.

Lemma 9 (intersection). For ϕ, ϕ′ ∈ NCW, zip(ε, (ε : ϕ), (ε : ϕ′)) returns a
finite set {ϕ1, . . . ϕn} such that ∪i∈n[[ϕi]] = [[ϕ]] ∩ [[ϕ′]].

Relaxation. Relaxing a counter cr = [∧σ in Σ(vσ ∼ k)], wrt. a multiset ρ, written
∇ρ(cr), results in the counter [∧σ in Σ(vσ ∼′ k)] s.t. (vσ ∼′ k) equals (vσ ≥ k)
if (vσ ∼ k) was (vσ = k) in cr with k ≥ ρ(σ), and (vσ ∼ k) otherwise. In other
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words, relaxation wrt. ρ replaces by inequalities those equalities that involve con-
stants larger or equal to what is allowed by ρ. Relaxation of a counted word ϕ wrt.
a multiset ρ is simply the word∇ρ(ϕ) obtained by normalizing the result of relax-
ing all counters in ϕ wrt. ρ. We let∇NCW be the set {∇ρ| ρ is a multiset over Σ}.
Lemma 10 (Relaxation). ∇ρ(ϕ) �NCW ϕ for any ϕ ∈ NCW and multiset ρ.
In addition, κ(∇ρ(ϕ))(σ) ≤ max(0, 2ρ(σ)− 1) for each σ ∈ Σ.

Proof. Sketch. Suppose∇ρ(ϕ) ��NCW ϕ, then there is a counter crϕ in ϕ that does
not entail a corresponding counter cr∇ in ∇ρ(ϕ). This is not possible. Indeed,
before normalization, ∇ρ(ϕ) and ϕ are both well formed with the same base
and normalization in ∇ρ(ϕ) starts with weaker counters than those in ϕ . By
applying to ϕ the sequence of normalization rules used to normalize ∇ρ(ϕ), we
obtain (by monotonicity) that the counters in ∇ρ(ϕ) are weaker than those in ϕ.
The strongest cut-off (2ρ(σ) − 1) is obtained when both left and right counters
in some tuple (l, σ, r) associate the predicate vσ = (ρ(σ) − 1) to the letter σ.
One can show by induction on the number of applications of the normalization
rules, that for any letter σ′, κ(l ⊕C 1σ ⊕C r)(σ′) ≤ max(0, 2ρ(σ′)− 1). �

4 Reachability for Linear Parameterized Systems

Linear Parameterized Systems with Global Conditions. Such a system consists
of arbitrary many finite processes placed in an array. Formally, a linear parame-
terized system is a pair P = (Q, T ), where Q is a finite set of local states and T is
a finite set of transitions. A transition is either local or global. A local transition
is of the form q → q′. It allows a process to change its local state from q to q′

independently of the local states of the other processes. A global transition is of
the form q → q′ : QP , where Q ∈ {∃L, ∃R, ∃LR, ∀L, ∀R, ∀LR} and P ⊆ Q. For in-
stance, the condition ∀LP means that “all processes to the left should be in local
states that belong to P”. This work is well suited for extensions involving binary
or broadcast communication, shared variables or dynamic creation and deletion
of processes. We omit them for clarity. A parameterized system (Q, T ) induces
an infinite-state transition system where C = Q∗ is the set of configurations and
−→ is a transition relation on C. For configurations c = c1qc2, c

′ = c1q
′c2, and

a transition t ∈ T , we write c −→t c
′ to mean:

– t is a local transition of the form q → q′, or
– t is a global transition q → q′ : QP , and one of the following holds:

• either QP = ∃LP and c1
• ∩ P �= ∅, or QP = ∃RP and c2

• ∩ P �= ∅, or
QP = ∃LRP and (c1

• ∪ c2
•) ∩ P �= ∅.

• or QP = ∀LP and c1
• ⊆ P , or QP = ∀RP and c2

• ⊆ P , or QP = ∀LRP
and (c1

• ∪ c2
•) ⊆ P .

We write −→ to mean ∪t∈T −→t and use ∗−→ to denote its reflexive transitive
closure. We assume all processes have the same initial state. We use Init to
denote the set of initial configurations. Init is infinite. Using standard techniques
(see e.g. [18]), checking safety properties (expressed as regular languages) can be
translated into instances of the following reachability problem: given P = (Q, T )
and a possibly infnite set CF of configurations, check whether Init ∗−→ CF .
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The reachability scheme. We use NCW over Q as a symbolic representation for
configurations of (Q, T ). We require Init and CF to be captured using a (finite
set of) counted words. We repeatedly compute (lemma (11)) in forward (resp.
backward) the set of successor (resp. predecessor) configurations starting from
Init (resp. CF ). We use lemma (9) to check intersection with CF (resp. Init).
We use �NCW (lemma (7)) to maintain a set of pairwise unrelated elements
capturing configurations that are forward (resp. backward) reachable from Init
(resp. CF ). For termination, we systematically apply some relaxation ∇ρ that
imposes bounded cut-offs (lemma (10) and theorem (8)). We start with ρ =
0 and increase it in case the over-approximation induced by ∇ρ results in a
spurious trace. Strengthening the cut-off ρ results in a more precise (and hence
more expensive) analysis. We use the following heuristic to eliminate encountered
spurious traces without making the analysis unecessary expensive. We follow
without relaxation, the trace obtained using ∇ρ and identify the letters in Q
for which the relaxation in ρ is responsible for generating the supious trace. We
then only increase the cut-offs for those letters.

Lemma 11 (Post and Pre). Given ϕ ∈ NCW and a transition t, we can com-
pute two sets of counted words postt(ϕ) and pret(ϕ) s.t. ∪ϕ′∈postt(ϕ)[[ϕ

′]] equals
{c′| c −→t c

′ and c ∈ [[ϕ]]} and ∪ϕ′∈pret(ϕ)[[ϕ
′]] equals {c′| c′ −→t c and c ∈ [[ϕ]]}.

Example 12. postt(ϕ) for t = (a→ b : ∃R {a}) and ϕ =
([

va ≥ 0
∧vb = 0

]
, a,

[
va ≥ 0
∧vb = 0

])
is{([

va ≥ 0
∧vb = 0

]
, b,

[
va ≥ 1
∧vb = 0

])([
va ≥ 0
∧vb = 1

]
, a,

[
va ≥ 0
∧vb = 0

])}

Table 3. NCW based forward analysis of mutex algorithms

I
II
III
IV

Forward expoloration

refinements time steps words safe
3 0.11 17 875

√

7 5.85 171 5143
√

10 >1200 >2000 >68000 ×
11 >1200 >2800 >120000 ×

Backwards exploration

refinements time steps words safe
1 0.02 2 151

√

1 0.18 19 3026
√

3 158.3 1567 194425
√

2 138.1 932 233604
√

Experimental Results. We have implemented the introduced scheme in Ocaml
and run experiments on an Intel Core 2 Duo 2.26 GHz laptop with 4GB of mem-
ory. We have considered four classical mutex algorithms: Burns [2], compact [5]
and refined [14] versions of Szymanski’s algorithm, and the related Gribomont-
Zenner mutex [11] (respectively rows I,II,III and IV in Table (3)). Our proto-
type takes as input descriptions for the systems introduced at the beginning of
this section. We give running times (seconds), number of refinements, maximum
numbers (per refinement) of steps and of generated counted words. We write
“
√
” to mean unreachability is established. We allocate a budget of 20 minutes

per refinement and write × if the budget is exhausted. Unlike forward analysis,
backwards analysis profits from the fact that CF is typically upward closed.
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5 Conclusions

We have introduced a new symbolic representation for the verification of pa-
rameterized systems where processes are organized in a linear array. The new
representation combines counter abstraction together with upward closure based
techniques. It allows for an approximated analysis with a threshold-based preci-
sion (or relaxation) that can be uniformly tuned. Based on the representation,
we implemented a counter example based refinement scheme that illustrated the
applicability and the relevance of the approach, both for forward and for back-
ward analysis. Possible futur work can investigate more general representations
to apply to heap or graph manipulating programs.
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Abstract. We consider the problem of finding good representations, via
boolean conjunctive normal forms F (clause-sets), of systems S of XOR-
constraints x1 ⊕ · · · ⊕ xn = ε, ε ∈ {0, 1} (also called parity constraints),
i.e., systems of linear equations over the two-element field. These repre-
sentations are to be used as parts of SAT problems F ∗ ⊃ F , such that
F ∗ has “good” properties for SAT solving. The basic quality criterion is
“arc consistency”, that is, for every partial assignment ϕ to the variables
of S, all assignments xi = ε forced by ϕ are determined by unit-clause
propagation on the result ϕ ∗ F of the application. We show there is
no arc-consistent representation of polynomial size for arbitrary S. The
proof combines the basic method by Bessiere et al. 2009 ([2]) on the
relation between monotone circuits and “consistency checkers”, adapted
and simplified in the underlying report Gwynne et al. [10], with the lower
bound on monotone circuits for monotone span programs in Babai et al.
1999 [1]. On the other side, our basic positive result is that computing an
arc-consistent representation is fixed-parameter tractable in the number
m of equations of S. To obtain stronger representations, instead of mere
arc-consistency we consider the class PC of propagation-complete clause-
sets, as introduced in Bordeaux et al. 2012 [4]. The stronger criterion is
now F ∈ PC, which requires for all partial assignments, possibly involv-
ing also the auxiliary (new) variables in F , that forced assignments can
be determined by unit-clause propagation. We analyse the basic trans-
lation, which for m = 1 lies in PC, but fails badly so already for m = 2,
and we show how to repair this.

Keywords: arc consistency, parity constraints, monotone circuits, mono-
tone span programs, unit-propagation complete, acyclic incidence graph.

1 Introduction

Recall that the two-element field Z2 has elements 0, 1, where addition is XOR,
which we write as ⊕, while multiplication is AND, written ·. A linear system
S of equations over Z2, in matrix form A · x = b, where A is an m × n matrix
over {0, 1}, with m the number of equations, n the number of variables, while
b ∈ {0, 1}m, yields a boolean function fS, which assigns 1 to a total assignment
of the n variables of S iff that assignment is a solution of S. The task of finding
“good” representations of fS by conjunctive normal forms F (clause-sets, to be
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precise), for the purpose of SAT solving, shows up in many applications, for
example cryptanalysing the Data Encryption Standard and the MD5 hashing
algorithm in [5], translating Pseudo-Boolean constraints to SAT in [6], and in
roughly 1 in 6 benchmarks from SAT 2005 to 2011 according to [19].

The basic criterion for a good F is “arc-consistency”. See Chapter 3 of [24]
for an overview of “arc-consistency” at the constraint level, see [7] for discus-
sion of the support encoding, a SAT translation of explicitly-given constraints
which maintains arc-consistency, and see [6] for an overview of maintaining arc-
consistency when translating Pseudo-boolean constraints to SAT. To define arc-
consistency for SAT, we use r1 for unit-clause propagation, and we write ϕ ∗ F
for the application of a partial assignment ϕ to a clause-set F .1 For a boolean
function f , a CNF-representation F of f is arc-consistent iff for every partial
assignment ϕ to the variables of f the reduced instantiation F ′ := r1(ϕ ∗ F )
has no forced assignments anymore, that is, for every remaining variable v and
ε ∈ {0, 1} the result 〈v → ε〉 ∗ F ′ of assigning ε to v in F ′ is satisfiable.

We show that there is no polynomial-size arc-consistent representation of ar-
bitrary S (Theorem 7). The proof combines the translation of arc-consistent
CNF-representations of f into monotone circuits computing a monotonisation
f̂ , motivated by [2] and proven in the underlying report [10], with the lower
bound on monotone circuit sizes for monotone span programs (msp’s) from [1].
Besides this fundamental negative result, we provide various forms of good rep-
resentations of systems S with bounded number of equations. Theorem 12 shows
that there is an arc-consistent representation with O(n · 2m) many clauses. The
remaining results use a stronger criterion for a “good” representation, namely
they demand that F ∈ PC, where PC is the class of “unit-propagation com-
plete clause-sets” as introduced in [4] — while for arc-consistency only partial
assignments to the variables of f are considered, now partial assignments for all
variables in F (which contains the variables of f , and possibly further auxiliary
variables) are to be considered. For m = 1 the obvious translation X1, by subdi-
viding the constraints into small constraints, is in PC (Lemma 10). For m = 2 we
have an intelligent representation X2 in PC (Theorem 13), while the use of X1

(piecewise) is still feasible for full (dag-)resolution, but not for tree-resolution.
We conjecture (Conjecture 14) that Theorem 12 and Theorem 13 can be com-
bined, which would yield a fixed-parameter tractable algorithm for computing a
representation F ∈ PC for arbitrary S with the parameter m.

It is well-known that translating each XOR to its prime implicates can result
in hard (unsatisfiable) instances for resolution. This goes back to the “Tseitin
formulas” introduced in [26], which were proven hard for full resolution in [27],
and generalised to (empirically) hard satisfiable instances in [12]. Thus, to tackle
XOR-constraints, some solvers integrate XOR reasoning. EqSatz ([23]) extracts
XOR clauses from its input and applies DP-resolution plus incomplete XOR
reasoning rules. CryptoMiniSAT ([25]) integrates Gaußian elimination during

1 r1 has been generalised to rk for k ∈ N0 in [14,15]. In the underlying report [10]
we discuss this form of generalised unit-clause propagation, where for example r2 is
failed-literal elimination, but in this paper we concentrate on r1.
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search, allowing both explicitly specified XOR clauses and also XOR clauses ex-
tracted from CNF input, however in the newest version 3.3 the XOR handling
during search is removed, since it is deemed too expensive. [17] integrates XOR
reasoning into MiniSat in a similar manner to SMT, while [18] expands on this
by reasoning about equivalence classes of literals created by binary XORs. [20]
learns conflicts in terms of “parity (XOR) explanations”. [21] extends the rea-
soning from “Gaußian elimination” to “Gauß-Jordan elimination”, which also
detects forced literals, not just inconsistencies. Still, for leading current SAT
solvers usage of SAT translations is important. Considering such translations
of XORs to CNF, [19] identifies the subsets of “tree-like” systems of XOR con-
straints, where one obtains an arc-consistent CNF representation; our results on
acyclic systems strengthens this. Additionally they consider equivalence reason-
ing, where for “cycle-partitionable” systems of XOR constraints this reasoning
is sufficient to derive all conclusions. They also show how to eliminate the need
for such special reasoning by another arc-consistent CNF representation. In gen-
eral, the idea is to only use Gaußian elimination for such parts of XOR systems
which the SAT solver is otherwise incapable of propagating on. Existing prop-
agation mechanisms, especially unit-clause propagation, and to a lesser degree
equivalence reasoning, are very fast, while Gaußian elimination is much slower.
Experimental evaluation on SAT 2005 benchmarks instances showed that such
CNF translations can outperform dedicated XOR reasoning modules.

Viewing a linear system S as a constraint on var(S), one can encode evaluation
via Tseitin’s translation, obtaining a CNF-representation F with the property
that for every total assignment ϕ, i.e., var(ϕ) = var(S), we have that r1(ϕ ∗ F )
either contains the empty clause or is empty.2 However, as Theorem 7 shows,
there is no polysize representation which treats all partial assignments. Gaußian
elimination handles all partial assignments in polynomial time (detects unsatisfi-
ability of ϕ∗F for all partial assignments ϕ), but this can not be integrated into
the CNF formalism (by using auxiliary variables and clauses), since algorithms
always need total assignments, and so partial assignments ϕ would need to be
encoded — the information “variable v not assigned” (i.e., v /∈ var(ϕ)) needs to
be represented by setting some auxiliary variable, and this must happen by a
mechanism outside of the CNF formalism. It is an essential strength of the CNF
formalism to allow partial instantiation; if we want these partial instantiations
also to be easily understandable by a SAT solver, then the results of [2] and our
results show that there are restrictions. Yet there is little understanding of these
restrictions. There are many examples where arc-consistent and stronger repre-
sentations are possible, while the current non-representability results, one in [2],
one in this article and a variation on [2] in [16], rely on non-trivial lower bounds
on monotone circuit complexity; in fact, as we show in [10], there is a polysize

arc-consistent representation of a boolean function f iff the monotonisation f̂ ,
encoding partial assignments to f , has polysize monotone circuits.

2 In Subsection 9.4.1 of [11] this class of representations is called ∃UP ; up to linear-
time transformation it is the same as representations by boolean circuits.
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2 Preliminaries

We follow the general notations and definitions as outlined in [13]; for full details
see the underlying report [10] (which contains additional and generalised results).
We use N = {1, 2, . . .} and N0 = N∪ {0}. Let VA be the infinite set of variables,
and let LIT = VA ∪ {v : v ∈ VA} be the set of literals, the disjoint union
of variables as positive literals and complemented variables as negative literals.
We use L := {x : x ∈ L} to complement a set L of literals. A clause is a
finite subset C ⊂ LIT which is complement-free, i.e., C ∩ C = ∅; the set of
all clauses is denoted by CL. A clause-set is a finite set of clauses, the set of all
clause-sets is CLS. By var(x) ∈ VA we denote the underlying variable of a literal
x ∈ LIT , and we extend this via var(C) := {var(x) : x ∈ C} ⊂ VA for clauses
C, and via var(F ) :=

⋃
C∈F var(C) for clause-sets F . The possible literals in a

clause-set F are denoted by lit(F ) := var(F ) ∪ var(F ). Measuring clause-sets
happens by n(F ) := |var(F )| for the number of variables, c(F ) := |F | for the
number of clauses, and �(F ) :=

∑
C∈F |C| for the number of literal occurrences.

A special clause-set is � := ∅ ∈ CLS, the empty clause-set, and a special clause is
⊥ := ∅ ∈ CL, the empty clause. A partial assignment is a map ϕ : V → {0, 1} for
some finite V ⊂ VA, where we set var(ϕ) := V , and where the set of all partial
assignments is PASS. For v ∈ var(ϕ) let ϕ(v) := ϕ(v) (with 0 = 1 and 1 = 0).
We construct partial assignments by terms 〈x1 → ε1, . . . , xn → εn〉 ∈ PASS
for literals x1, . . . , xn with different underlying variables and εi ∈ {0, 1}. For
ϕ ∈ PASS and F ∈ CLS we denote the result of applying ϕ to F by ϕ ∗ F ,
removing clauses C ∈ F containing x ∈ C with ϕ(x) = 1, and removing literals
x with ϕ(x) = 0 from the remaining clauses. By SAT := {F ∈ CLS | ∃ϕ ∈
PASS : ϕ∗F = �} the set of satisfiable clause-sets is denoted, and by USAT :=
CLS \ SAT the set of unsatisfiable clause-sets. By r1 : CLS → CLS we denote
unit-clause propagation, that is r1(F ) := {⊥} if ⊥ ∈ F , r1(F ) := F if F contains
only clauses of length at least 2, while otherwise a unit-clause {x} ∈ F is chosen,
and recursively we define r1(F ) := r1(〈x → 1〉 ∗ F ); it is easy to see that the
final result r1(F ) does not depend on the choice of unit-clauses. Reduction by r1
applies certain forced assignments to the (current) F , which are assignments
〈x → 1〉 such that the opposite assignment yields an unsatisfiable clause-set,
that is, where 〈x → 0〉 ∗ F ∈ USAT ; the literal x here is also called a forced
literal. Two clauses C,D ∈ CL are resolvable iff they clash in exactly one
literal x, that is, C ∩D = {x}, in which case their resolvent is (C ∪D) \ {x, x}
(with resolution literal x). A resolution tree is a full binary tree formed by the
resolution operation. We write T : F " C if T is a resolution tree with axioms
(the clauses at the leaves) all in F and with derived clause (at the root) C. A
prime implicate of F ∈ CLS is a clause C such that a resolution tree T with
T : F " C exists, but no T ′ exists for some C′ ⊂ C with T ′ : F " C′; the
set of all prime implicates of F is denoted by prc0(F ) ∈ CLS. Two clause-sets
F, F ′ ∈ CLS are equivalent iff prc0(F ) = prc0(F

′). A clause-set F is unsatisfiable
iff prc0(F ) = {⊥}. If F is unsatisfiable, then every literal x ∈ LIT is a forced
literal for F , while otherwise x is forced for F iff {x} ∈ prc0(F ).
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3 Propagation-Hardness and PC

A clause-set F is a “CNF-representation” of a boolean function f , if the satisfying
assignments of F projected to the variables of f are precisely the satisfying
assignments of f . Stronger, F is an “arc-consistent” representation of f , if F is a
CNF-representation of f and phdvar(f)(F ) ≤ 1 holds, which is defined as follows.

Definition 1. For F ∈ CLS and V ⊆ VA the relation phdV (F ) ≤ 1 holds (F
has p(ropagation)-hardness at most 1 relative to V ) if for all partial assignments
ϕ ∈ PASS with var(ϕ) ⊆ V the clause-set F ′ := r1(ϕ ∗ F ) has no forced literals
x ∈ lit(F ′), that is, for all x ∈ lit(F ′) the clause-set 〈x → 0〉 ∗ F ′ is satisfiable.

We write “phd(F )” for “phdvar(F )(F )”. The class PC ⊂ CLS is the set of all F
with phd(F ) ≤ 1 (the class of unit-propagation-complete clause-sets).

See [8,9] and the underlying report [10] for the general picture, where the measure
phdV (F ) ∈ N0 is defined in general. We now present the basic graph-theoretic
criterion for

⋃
i∈I Fi ∈ PC for clause-sets Fi ∈ PC.

Definition 2. For a finite family (Fi)i∈I of clause-sets Fi ∈ CLS the inci-
dence graph B((Fi)i∈I) is the bipartite graph, where the two parts are given
by

⋃
i∈I var(Fi) and I, while there is an edge between v and i if v ∈ var(Fi).

We say that (Fi)i∈I is acyclic if B((Fi)i∈I) is acyclic (i.e., has no cycle as an
(undirected) graph, or, equivalently, is a forest). A single clause-set F ∈ CLS is
acyclic if ({C})C∈F is acyclic.

The following central lemma is kind of folklore in the CSP literature; for a
complete proof see the underlying report [10].

Lemma 3. Consider an acyclic family (Fi)i∈I of clause-sets. If no Fi has forced
assignments, then also

⋃
i∈I Fi has no forced assignments.

We obtain a sufficient criterion for the union of unit-propagation complete clause-
sets to be itself unit-propagation complete:

Theorem 4. Consider an acyclic family (Fi)i∈I of clause-sets. If for all i ∈ I
we have Fi ∈ PC, then also

⋃
i∈I Fi ∈ PC.

Proof. Let F :=
⋃

i∈I Fi, and consider a partial assignment ϕ with F ′ �= {⊥} for
F ′ := r1(ϕ∗F ). We have to show that F ′ has no forced assignments. For all i ∈ I
we have r1(ϕ ∗ Fi) �= {⊥}, and thus r1(ϕ ∗ Fi) has no forced assignments (since
Fi ∈ PC). So

⋃
i∈I r1(ϕ ∗Fi) has no forced assignments by Lemma 3. Using that

for A,B ∈ CLS holds r1(A ∪ r1(B)) = r1(A ∪B), we get F ′ = r1(
⋃

i∈I ϕ ∗ Fi) =
r1(

⋃
i∈I r1(ϕ ∗ Fi)) =

⋃
i∈I r1(ϕ ∗ Fi), whence F ′ has no forced assignments. �

Two special cases of acyclic (Fi)i∈I are of special importance to us, and are
spelled out in the following corollary (see [10] for full details).

Corollary 5. Consider a family (Fi)i∈I of clause-sets with Fi ∈ PC for all
i ∈ I. Then each of the following conditions implies

⋃
i∈I Fi ∈ PC:
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1. Any two different clause-sets have at most one variable in common, and
the variable-interaction graph is acyclic. (The variable-interaction graph has
vertex-set I, while there is an edge between i, j ∈ I with i �= j if var(Fi) ∩
var(Fj) �= ∅.)

2. There is a variable v with var(Fi) ∩ var(Fj) ⊆ {v} for all i, j ∈ I, i �= j.

4 XOR-Clause-Sets

As usual, anXOR-constraint (also known as “parity constraint”) is a (boolean)
constraint of the form x1⊕· · ·⊕xn = ε for literals x1, . . . , xn and ε ∈ {0, 1}, where
⊕ is the addition in the 2-element field Z2 = {0, 1}. Note that x1⊕· · ·⊕xn = y is
equivalent to x1⊕· · ·⊕xn⊕y = 0, while x⊕x = 0 and x⊕x = 1, and 0⊕x = x and
1 ⊕ x = x. Two XOR-constraints are equivalent, if they have exactly the same
set of solutions. We represent XOR-constraints by XOR-clauses, which are
just ordinary clauses C ∈ CL, but now under a different interpretation, namely
implicitly interpreting C as the XOR-constraints ⊕x∈Cx = 0. And instead of
systems of XOR-constraints we just handle XOR-clause-sets F , which are
sets of XOR-clauses, that is, ordinary clause-sets F ∈ CLS with a different
interpretation. So two XOR-clauses C,D are equivalent iff var(C) = var(D)
and the number of complements in C has the same parity as the number of
complements in D. That clauses are sets is justified by the commutativity of
XOR, while repetition of literals is not needed due to x⊕ x = 0. Clashing literal
pairs can be removed by x⊕x = 1 and 1⊕y = y, as long as there is still a literal
left. So every XOR-constraint can be represented by an XOR-clause except of
inconsistent XOR-constraints, where the simplest form is 0 = 1; we can represent
this by two XOR-clauses {v}, {v}. In our theoretical study we might even assume
that the case of an inconsistent XOR-clause-set is filtered out by preprocessing.

The appropriate theoretical background for XOR-constraints is the theory
of systems of linear equations over a field (here the two-element field). To an
XOR-clause-set F corresponds a system A(F ) · v = b(F ), using ordinary matrix
notation. To make this correspondence explicit we use n := n(F ), m := c(F ),
var(F ) = {v1, . . . , vn}, and F = {C1, . . . , Cm}. Now F yields an m × n matrix
A(F ) over Z2 together with a vector b(F ) ∈ {0, 1}m, where the rows A(F )i,− of
A(F ) correspond to the clauses Ci ∈ F , where a coefficient A(F )i,j of vj is 0 iff
vj /∈ var(Ci), and bi = 0 iff the number of complementations in Ci is even.

A partial assignment ϕ ∈ PASS satisfies an XOR-clause-set F iff var(ϕ) ⊇
var(F ) and for every C ∈ F the number of x ∈ C with ϕ(x) = 1 is even. An
XOR-clause-set F implies an XOR-clause C if every satisfying partial assignment
ϕ for F is also a satisfying assignment for {C}. The satisfying total assignments
for an XOR-clause-set F correspond one-to-one to the solutions of A(F ) · v = b
(as elements of {0, 1}n), while implication of XOR-clauses C by F correspond to
single equations c·v = d, which follow from the system, where c is an 1×n-matrix
over Z2, and d ∈ Z2. A CNF-representation of an XOR-clause-set F ∈ CLS
is a clause-set F ′ ∈ CLS with var(F ) ⊆ var(F ′), such that the projections of the
satisfying total assignments for F ′ (as CNF-clause-set) to var(F ) are precisely
the satisfying (total) assignments for F (as XOR-clause-set).
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The resolution operation for CNF-clauses is the basic semantic operation, and
analogically for XOR-clauses we have the addition of clauses, which corresponds
to set-union, that is, from two XOR-clauses C,D follows C ∪ D. Since we do
not allow clashing literals, some rule is supposed here to translate C ∪ D into
an equivalent E ∈ CL in case the two clauses are not inconsistent together.
More generally, for an arbitrary XOR-clause-set F we can consider the sum,
written as ⊕F ∈ CL, which is defined as the reduction of

⋃
F to some clause

⊕F := E ∈ CL, assuming that the reduction does not end up in the situation
{v, v} for some variable v — in this case we say that ⊕F is inconsistent (which
is only possible for c(F ) ≥ 2). The following fundamental lemma translates
witnessing of unsatisfiable systems of linear equations and derivation of implied
equations into the language of XOR-clause-sets; it is basically a result of linear
algebra, and the proof is provided in the underlying report [10].

Lemma 6. Consider an XOR-clause-set F ∈ CLS.

1. F is unsatisfiable if and only if there is F ′ ⊆ F such that ⊕F ′ is inconsistent.
2. Assume that F is satisfiable. Then for all F ′ ⊆ F the sum ⊕F ′ is defined,

and the set of all these clauses is modulo equivalence precisely the set of all
XOR-clauses which follow from F .

5 No Arc-Consistent Representations in General

We now show, if there were polynomial size arc-consistent representations of all
XOR-clause-sets, then all “monotone span programs” (msp’s) could be computed
by monotone boolean circuits, which is not possible by [1]. The first step here is
to translate msp’s into linear systems S. An msp computes a boolean function
f(x1, . . . , xn) ∈ {0, 1} (with xi ∈ {0, 1}), by using auxiliary boolean variables
y1, . . . , ym, and for each i ∈ {1, . . . , n} a linear system Ai · y = bi, where Ai is
an mi×m matrix over Z2. For the computation of f(x1, . . . , xn), a value xi = 0
means the system Ai · y = bi is active, while otherwise it is inactive; the value
of f is 0 if all the active systems together are unsatisfiable, and 1 otherwise.
Obviously f is monotonically increasing. The task is now to put that machinery
into a single system S of equations. The main idea is to “dope” each equation of
every Ai · y = bi with a dedicated new boolean variable added to the equation,
making that equation trivially satisfiable, independently of everything else; all
these new variables together are called z1, . . . , zN , where N =

∑n
i=1 mi is the

number of equations in S. If all the doping variable used for a system Ai · y = bi
are set to 0, then they disappear and the system is active, while if they are
not set, then the system is trivially satisfiable, and thus is deactivated. Now
consider an arc-consistent representation F of S. Note that the xi are not part
of F , but the variables of F are y1, . . . , ym together with z1, . . . , zN , where the
latter represent in a sense the x1, . . . , xn. Using F we can compute f by setting
the zj accordingly (if xi = 0, then all zj belonging to Ai · y = bi are set to 0,
if xi = 1, then these variables stay unassigned), running r1 on the system, and
output 0 iff the empty clause was produced by r1. By Theorem 6.1 in [10], based
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on [2], finally from F we obtain a monotone circuit C computing f , whose size
is polynomial in �(F ), where by [1] the size of C is NO(logN).

Theorem 7. There is no polynomial p s.t. for all XOR-clause-sets F ∈ CLS
there is a representation F ′ ∈ CLS with �(F ′) ≤ p(�(F )) and phdvar(F )(F ′) ≤ 1.

Proof. We consider representations of monotone boolean functions f : {0, 1}n →
{0, 1} (that is, x ≤ y ⇒ f(x) ≤ f(y)) by monotone span programs (msp’s). The
input variables are given by x1, . . . , xn. Additionally m ∈ N0 boolean variables
y1, . . . , ym can be used, where m is the dimension, which we can also be taken
as the size of the span program. For each i ∈ {1, . . . , n} there is a linear system
Ai · y = bi over Z2, where Ai is an mi × m matrix with mi ≤ m. For a total
assignment ϕ, i.e., ϕ ∈ PASS with var(ϕ) = {x1, . . . , xn}, the value f(ϕ) is 0
if and only if the linear systems given by ϕ(xi) = 0 together are unsatisfiable,
that is, {y ∈ {0, 1}m | ∀ i ∈ {1, . . . , n} : ϕ(xi) = 0 ⇒ Ai · y = bi} = ∅. W.l.o.g.
we assume that each system Ai · y = bi is satisfiable.

Consider for each i ∈ {1, . . . , n} an XOR-clause-set A′i ∈ CLS representingAi ·
y = bi (so var(A′i) ⊇ {y1, . . . , ym}), where, as always, new variables for different
A′i are used, that is, for i �= j we have (var(A′i)∩var(A′j))\{y1, . . . , ym} = ∅ . We
use the process D : CLS → CLS of “doping”, as introduced in [11], where D(F ) is
obtained from F by adding to each clause a new variable. Let A′′i := D(A′i), where
the doping variables for different i do not clash; we denote them (altogether) by
z1, . . . , zN . Let F :=

⋃n
i=1 A

′′
i . Consider a CNF-representation F ′ of the XOR-

clause-set F .
We have f(ϕ) = 0 iff ϕ′ ∗ F ′ ∈ USAT , where ϕ′ is a partial assignment

with ϕ′ assigning only doping variables zj, namely if ϕ(xi) = 0, then all the
doping variables used in D(A′i) are set to 0, while if ϕ(xi) = 1, then nothing is
assigned here. The reason is that by setting the doping variables to 0 we obtain
the original system Ai · y = bi, while by leaving them in, this system becomes
satisfiable whatever the assignments to the y-variables are.

Now assume that we have phd{z1,...,zN}(F ′) ≤ 1. By Theorem 6.1 in [10] we
obtain from F ′ a monotone circuit C (using only and’s and or’s) of size polynomial
in �(F ′) with input variables z′1, z

′′
1 , . . . , z

′
N , z′′N , where

– z′j = z′′j = 1 means that zj has not been assigned,

– z′j = 1, z′′j = 0 means zj = 0,

– z′j = 0, z′′j = 1 means zj = 1,

– while z′j = 0, z′′j = 0 means “contradiction” (forcing the output of C to 0).

The value of C is 0 iff the corresponding partial assignment applied to F ′ yields
an unsatisfiable clause-set. In C we now replace the inputs zj by inputs xi, which
in case of xi = 0 sets z′j = 1, z′′j = 0 for all related j, while in case of xi = 1 all

related z′j , z
′′
j are set to 1.3 This is now a monotone circuit computing f . By [1],

Theorem 1.1, thus it is not possible that F ′ is of polynomial size in F . �

3 In other words, for the j related to i always all z′j are set to 1, while z′′j = xi.
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6 The Translations X0, X1

After having shown that there is no “small” arc-consistent representation of
arbitrary XOR-clause-sets F , the task is to find “good” CNF-representations
for special F . First we consider c(F ) = 1, that is, a single XOR-clause C, to
which we often refer as “x1 ⊕ · · · ⊕ xn = 0”. There is precisely one equivalent
clause-set, i.e., there is exactly one representation without new variables, namely
X0(C) := prc0(x1⊕ · · · ⊕ xn = 0), the set of prime implicates of the underlying
boolean function, which is unique since these prime implicates are not resolvable.
X0(C) has 2n−1 clauses for n ≥ 1 (while for n = 0 we have X0(C) = �), namely
precisely those full clauses (containing all variables) over {var(x1), . . . , var(xn)}
where the parity of the number of complementations is different from the parity
of the number of complementations in C. Note that for two XOR-clauses C,D
we have X0(C) = X0(D) iff C,D are equivalent. More generally, we define
X0 : CLS → CLS, where the input is interpreted as XOR-clause-set and the
output as CNF-clause-set, by X0(F ) :=

⋃
C∈F X0(C). By Theorem 4:

Lemma 8. If F ∈ CLS is acyclic, then X0(F ) ∈ PC.
An early and influential example of unsatisfiable clause-sets are the “Tseitin
formulas” introduced in [26], which are obtained as applications of X0 to XOR-
clause-sets derived from graphs; see the underlying report [10] for various dis-
cussions. In [26] an exponential lower bound for regular resolution refutations of
(special) Tseitin clause-sets was shown, and thus unsatisfiable Tseitin clause-sets
in general have high hardness. This was extended in [27] to full resolution, and
thus unsatisfiable Tseitin clause-sets in general have also high “w-hardness” (see
[10]; as hardness captures tree-resolution, w-hardness captures dag-resolution).

In the following we refine X0 : CLS → CLS in various ways, by first trans-
forming an XOR-clause-set F into another XOR-clause-set F ′ representing F ,
and then using X0(F

′). If the XOR-clause-set F contains large clauses, then
X0(F ) is not feasible, and the XOR-clauses of F have to be broken up into short
clauses, which we consider now. As we have defined how a CNF-clause-set can
represent an XOR-clause-set, we can define that an XOR-clause-set F ′ repre-
sents an XOR-clause-set F , namely if the satisfying assignments of F ′ projected
to the variables of F are precisely the satisfying assignments of F .

Definition 9. Consider an XOR-clause C = {x1, . . . , xn} ∈ CL. The natural
splitting of C is the XOR-clause-set F ′ obtained as follows, using n := |C|:

– If n ≤ 2, then F ′ := {C}.
– Otherwise choose pairwise different new variables y2, . . . , yn−1, and let F ′ :=
{x1 ⊕ x2 = y2} ∪ {yi−1 ⊕ xi = yi}i∈{3,...,n−1} ∪ {yn−1 ⊕ xn = 0}, (i.e.,
F ′ = {{x1, x2, y2}} ∪ {{yi−1, xi, yi}}i∈{3,...,n−1} ∪ {{yn−1, xn}}).

Then F ′ is, as XOR-clause-set, a representation of {C}. Let X1(C) := X0(F
′).

We have for F := X1(C): If n ≤ 2, then n(F ) = c(F ) = n, and �(F ) = 2n−1 · n.
Otherwise n(F ) = 2n− 2, c(F ) = 4n− 6 and �(F ) = 12n− 20. Corollary 5, Part
2, applies to F ′ from Definition 9, and thus:
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Lemma 10. For C ∈ CL we have X1(C) ∈ PC.

We define X1 : CLS → CLS, where the input is interpreted as XOR-clause-set
and the output as CNF-clause-set, by X1(F ) :=

⋃
C∈F X1(C) for F ∈ CLS,

where some choice for the new variables is used, so that the new variables for
different XOR-clauses do not overlap. By Theorem 4 and Lemma 10:

Theorem 11. If F ∈ CLS is acyclic, then X1(F ) ∈ PC.

A precursor to Theorem 11 is found in Theorem 1 of [19], where it is stated that
tree-like XOR clause-sets are “UP-deducible”, which is precisely the assertion
that for acyclic F ∈ CLS the representation X1(F ) is arc-consistent. We now
show that the problem of computing an arc-consistent CNF-representation for
an XOR-clause-set F is fixed-parameter tractable in the parameter c(F ).

Theorem 12. Consider a satisfiable XOR-clause-set F ∈ CLS. Let F ∗ :=
{⊕F ′ : F ′ ⊆ F} ∈ CLS (recall Lemma 6); F ∗ is computable in time O(�(F ) ·
2c(F )). Then X1(F

∗) is a CNF-representation of F with phdvar(F )(X1(F
∗)) ≤ 1.

Proof. Consider some partial assignment ϕ with var(ϕ) ⊆ var(F ), let F ′ :=
r1(ϕ ∗ F ∗), and assume there is a forced literal x ∈ lit(F ′) for F ′. Then the
XOR-clause C := {y ∈ LIT : ϕ(y) = 0} ∪ {x} follows from F . By Lemma 6
there is F ′ ⊆ F with ⊕F ′ = C modulo equivalence of XOR-clauses. So we have
(modulo equivalence) X1(C) ⊆ F ∗, where due to X1(C) ∈ PC (Lemma 10) the
forced literal x for ϕ ∗X1(C) is set by r1, contradicting the assumption. �

Theorem 4 in [22] yields the weaker bound O(4n(F )) for the number of clauses in
an arc-consistent representation of F (w.l.o.g. c(F ) ≤ n(F )). In Conjecture 14 we
state our belief that we can strengthen Theorem 12 by establishing phd(F ′) ≤ 1
for an appropriate, more intelligent representation F ′ of F . We now turn to the
problem of understanding and refining the basic translation X1 for two clauses.

7 Translating Two XOR-Clauses

The analysis of the translation X1({C,D}) for two XOR-clauses C,D in the
underlying report [10] shows, that this representation is very hard for tree-
resolution, but easy for full and for width-restricted resolution. So it might be
usable for (conflict-driven) SAT solvers. But indeed we can provide a represen-
tation in PC as follows; note that an XOR-clause-set {C,D} is unsatisfiable iff
|C ∩D| is odd and var(C) = var(D).

Theorem 13. Consider two XOR-clauses C,D ∈ CL. To simplify the presen-
tation, using V := var(C) ∩ var(D), we assume |V | ≥ 2, and |C| > |V | as
well as |D| > |V |. Thus w.l.o.g. |C ∩ D| = |V |. Let I := C ∩ D. Choose
s ∈ VA \ var({C,D}), and let I ′ := I ∪ {s}. Let C′ := (C \ I) ∪ {s} and
D′ := (D \ I)∪ {s}. Now {I ′, C′, D′} is an XOR-clause-set which represents the
XOR-clause-set {C,D}. Let X2(C,D) := X1({I ′, C′, D′}). Then X2(C,D) ∈
PC is a CNF-representation of the XOR-clause-set {C,D}.
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Proof. That {I ′, C′, D′} represents {C,D} is obvious, since s is the sum of the
common part. {I ′, C′, D′} is acyclic (besides the common variable s the three
variable-sets are disjoint), and thus by Theorem 11 we get X2(C,D) ∈ PC. �

Conjecture 14. We can combine a generalisation of Theorem 13 with Theorem
12 and obtain X∗ : CLS → PC, which computes for an XOR-clause-set F ∈ CLS
a CNF-representation X∗(F ) such that �(X∗(F )) = 2O(c(F )) · �(F )O(1).

8 Open Problems and Future Research Directions

Regarding lower bounds, the main question for Theorem 7 is to obtain sharp
bounds on the size of shortest representations F ′ with phdvar(F )(F ′) ≤ 1. Turn-
ing to upper bounds, in Lemma 8, Theorem 11, and Theorem 13 we have es-
tablished methods to obtain representations in PC, while Conjecture 14 says,
that computing a representation in PC should be fixed-parameter tractable in
the number of XOR-clauses. See [10] for more open problems and conjectures.
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Abstract. In this paper, we show that minimal triangulation techniques
similar to those proposed by Bouchitté and Todinca can be applied to a
variety of perfect phylogeny (or character compatibility) problems. These
problems arise in the context of supertree construction, a critical step in
estimating the Tree of Life.

Keywords: perfect phylogeny, minimal triangulation.

1 Introduction

The perfect phylogeny problem, also known as the character compatibility prob-
lem, is a classic NP-hard [6,30] problem in phylogenetics [13,29] related to su-
pertree construction. The supertree problem takes as input a collection of phylo-
genies whose species set partially overlap, and asks for a phylogeny on the entire
species set. Given a collection of partially labeled unrooted phylogenies, one can
construct two-state partial characters that have a perfect phylogeny precisely
when the collection has a compatible supertree [29]. Supertree construction is
required for estimating the Tree of Life [3]. Rodrigo and Ross [27] called for
the development of compatiblity-based algorithms for supertree construction,
because its criterion is more intuitive than parsimony1.

Solutions to the perfect phylogeny problem are characterized by the existence
of restricted triangulations of the partition intersection graph [12,24,30], and
minimal triangulations of the partition intersection graph also play an impor-
tant role in two variants of this problem. The first, the maximum compatibility
problem, asks to find the largest subset of a set of given characters that has a
perfect phylogeny [8,18], and the second, asks if a set of characters has a unique
perfect phylogeny [28,15]. To our knowledge, advances in the field of minimal
triangulations have not been extended to these problems, although the use of
such methods to solve at least the perfect phylogeny problem may have been
alluded to in [14]. In this paper, we extend the potential maxclique approach
developed by Bouchitté and Todinca [10], which was improved in [14], to solve

1 Matrix representation with parsimony (MRP) is one of the most popular supertree
methods in use [11].
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Fig. 1. A phylogeny T displaying C = {abcdef |gh|ij|kl, ag|dj|fl, bh|ci|ek} and the
corresponding partition intersection graph int(C). A denotes abcdef . The dashed edges
of T are distinguished by abcdef |gh|ij|kl. Removing these edges results in the four
subtrees defined by T (abcdef), T (gh), T (ij), and T (kl). The dashed edges of int(C)
define a proper triangulation, and the solid edges are obtained from pairs of states that
are shared by at least one species. Note T does not display ag|bh, ci|dj, or ek|fl.

the perfect phylogeny problem and its variants. This approach is motivated by
the following: first, the algorithms in [9,14] run in time polynomial in the num-
ber of minimal separators of the graph, and second, that data generated by the
coalescent-based program ms [21] often results in a partition intersection graph
with a reasonable number of minimal separators [16], despite there being an
exponential number of minimal separators in general. In order to unify our ap-
proach, we use a weighted variant of the minimum-fill problem. Minimum-fill is
NP-hard [31] and is an active area of research [5,14].

Given full characters (i.e. defined on every species), the perfect phylogeny
problem is solvable in polynomial time when the number of characters is fixed
[23] or when the number of states is bounded [1], but is NP-complete for two-
state partial characters [29]. The maximum compatibility problem is NP-hard for
two-state full characters [29]. The unique perfect phylogeny problem is CoNP-
complete even when a perfect phylogeny for the characters is given [7,19]. Our
results apply to partial characters, and some of our results apply to unbounded
characters. See [20] for a survey on minimal triangulations, [13,29] for further
reading on the perfect phylogeny / character compatibility problem, and [15] for
further reading on unique perfect phylogeny. Due to space considerations, some
proofs have been sketched or removed. Details may be found in a preliminary
version of this paper [17].

2 Definitions and Results

Let X be a set of species or taxa. A phylogeny is a pair T = (T , φ) where T is an
undirected tree and φ is a bijective map from X to the leaves of T . A character
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on X is a partition χ = A1|A2| . . . |Ar of a subset of X , and it is a two-state
character if r = 2. For i = 1, 2, . . . , r the set Ai is a state of χ. Given a state A
of a character, the minimal subtree of T that connects φ(A) is denoted T (A).
A phylogeny T displays a character χ if, for each pair of distinct states A and
A′ of χ, the trees T (A) and T (A′) have no nodes in common. Given a set C
of characters on X , the perfect phylogeny problem is to determine if there is a
phylogeny T that displays every character in C. In this case, we call T a perfect
phylogeny for C, and say that C is compatible.

The perfect phylogeny problem reduces to a graph theoretic problem that we
detail now. A graph is chordal if any cycle it has on four or more vertices has
a chord, that is, an edge between two non-consecutive vertices in the cycle. For
a non-chordal graph G = (V,E), any chordal supergraph H = (V,E ∪ F ) is
a triangulation of G with fill edges F . If there is no F ′ ⊂ F such that H ′ =
(V,E ∪ F ′) is a triangulation, then H is a minimal triangulation of G.

Given a set of characters C, the partition intersection graph int(C) is the
graph with vertex set {(A,χ) | χ ∈ C and A is a state of χ}, and two vertices
(A,χ) and (A′, χ′) are adjacent in int(C) if and only if A and A′ have non-
empty intersection. If A1 and A2 are states of a character χ, then A1 and A2

are disjoint because χ is a partition of a subset of X , so (A1, χ) and (A2, χ) are
not adjacent in int(C). The vertex (A,χ) has state A and character χ. Let H
be a (minimal) triangulation of int(C) with fill edges F . If, for each fill edge in
F , the vertices incident to the fill edge have different characters, then H is a
proper (minimal) triangulation of int(C). This may be viewed as coloring each
vertex (A,χ) of int(C) by its character χ, resulting in a properly colored graph
whose coloring is fixed by C, and proper triangulations are those whose fill edges
preserve the proper coloring. If u and v are vertices of int(C) that have the same
character/color, we say that u and v are monochromatic, and if a triangulation
of int(C) has uv as an edge, we say that uv is a monochromatic fill edge of the
triangulation. See Figure 1 for an example of these concepts.

For the remainder of this section, we characterize solutions to perfect phy-
logeny problems as constrained minimal triangulations of the partition inter-
section graph, and state our algorithmic results. These problems will then be
discussed in terms of minimum-weight minimal triangulations in Section 3, and
we prove our computational results in Section 4, all of which rely on Algorithm
1. The connection between triangulations and perfect phylogeny stems from the
following result.

Theorem 1. [12,24,30] Let C be a set of characters on X. Then C is compatible
if and only if int(C) has a proper minimal triangulation.

The set of minimal separators of int(C) are denoted Δint(C), and in general,

|Δint(C)| = O(2r|C|). For exposition, we defer their definition to Section 3. Our
first algorithmic result is the following.

Theorem 2. Let C be a set of characters on X with at most r states per char-
acter. There is an O(|X ||C|2 + (r|C|)4|Δint(C)|2) time algorithm that solves the
perfect phylogeny problem.
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If C is not compatible, then the maximum compatibility problem is to de-
termine the largest subset C∗ of C that is compatible. We call C∗ a maximum
compatible subset of C. A character χ is broken by a fill edge (A,χ)(A′, χ′) if
χ = χ′. For a triangulation H of int(C), the displayed characters of H are those
in C that are not broken by any fill edge of H .

Theorem 3. [8,18] Let C be a set of characters on X. Then C∗ is a maximum
compatible subset of C if and only if there is a minimal triangulation H∗ of int(C)
that has C∗ as its displayed characters, and for every other minimal triangulation
H ′ of int(C) with displayed characters C′, |C′| ≤ |C∗|.

Let C be a set of characters on X and w : C → R>0 a weight on C. For a subset
C′ of C, define w(C′) =

∑
χ∈C′ w(χ). The w−maximum compatibility problem is

to find C∗ = argmaxw(C′), where the maximum is taken over all compatible
subsets C′ of C. Theorem 3 is generalized as follows, whose proof we omit due to
space considerations.

Theorem 4. Let C be a set of characters on X weighted by w. Then C∗ is a
w−maximum compatible subset of C if and only if there is a minimal triangu-
lation H∗ of int(C) that has C∗ as its displayed characters, and for any other
minimal triangulation H ′ of int(C) with displayed characters C′, w(C′) ≤ w(C∗).

Our second algorithmic result is as follows.

Theorem 5. Let C be a set of (w−weighted) two-state characters on X. There
is an O(|X ||C|2 + |C|4|Δint(C)|2) time algorithm that solves the (w-)maximum
compatibility problem.

The unique perfect phylogeny problem is to determine if a perfect phylogeny
T = (T , φ) for C is unique. An edge uv of T is distinguished by a character
χ if contracting uv results in a phylogeny that does not display χ, and T is
distinguished by C if each edge of T is distinguished by a character of C. A
phylogeny T = (T , φ) is ternary if every internal node of T has degree three.

Theorem 6. [28] Let C be a set of characters on X. Then C has a unique perfect
phylogeny T = (T , φ) if and only if the following conditions hold:

1. there is a ternary perfect phylogeny T for C and T is distinguished by C;
2. int(C) has a unique proper minimal triangulation.

A perfect phylogeny T can be constructed from a proper minimal triangulation
in polynomial time (see [29] and [4]). Checking if T is ternary and distinguished
by C is also easy to do: an edge uv is distinguished by χ if and only if u is a
node of T (A) and v is a node of T (A) for distinct states A, A′ of χ. So if it
is known that int(C) has a unique proper minimal triangulation, it is possible
to determine if C has a unique perfect phylogeny in polynomial time. On the
other hand, it has recently been shown [7,19] that if a perfect phylogeny is
given for a set of characters, it is still CoNP-complete to determine if it is the
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unique perfect phylogeny for those characters. That is, determining if int(C) has
a unique proper minimal triangulation is CoNP-complete [19]. From this point
of view, the intractibility in utilizing Theorem 6 lies in determining whether
or not int(C) has a unique proper minimal triangulation. This makes our last
algorithmic result of interest.

Theorem 7. Let C be a set of characters on X with at most r states. There is
an O(|X ||C|2 + (r|C|)4|Δint(C)|2) time algorithm that determines if int(C) has a
unique proper minimal triangulation, i.e. it solves the unique perfect phylogeny
problem.

3 Characterizations via Weighted Minimum-Fill

In this section, we characterize solutions to the perfect phylogeny problem and its
variants with respect to a weighted-variant of the minimum-fill problem, which
asks for the fewest number of fill edges required to triangulate a graph. In order
for our results to be useful in the next section, each result will be given with
respect to minimal triangulations.

Suppose G is a non-complete graph. If U is a subset of G’s vertices, then the
potential fill edges pf(U) of U are pairs of vertices of U that are not edges of G.
A fill weight on G = (V,E) is a function Fw : pf(V )→ R≥0. For a triangulation
H of G with fill weight Fw, the weight of H is Fw(H) =

∑
Fw(f) where the

sum occurs over all fill edges of H . We will call H a Fw−minimum triangulation
of G if, for every other triangulation H ′ of G, Fw(H) ≤ Fw(H

′). In this case
we write mfiFw(G) = Fw(H). If Fw(H) = 0, then H is a Fw−zero triangulation
of G. If H is a Fw−minimum or Fw−zero triangulation that is also a minimal
triangulation of G, then H is a Fw−minimum minimal triangulation or Fw−zero
minimal triangulation, respectively.

Let C be a set of characters on X . A natural fill weight on int(C) is Fw(C),
defined as Fw(C)(uv) = 1 if u and v are monochromatic, and Fw(C)(uv) = 0
otherwise. This fill weight indicates when a fill edge breaks a character.

Lemma 8. A collection C of characters on X are compatible if and only if int(C)
has a Fw(C)-zero minimal triangulation.

Proof. A triangulation H of int(C) is proper if and only if Fw(C)(H) = 0. The
result now follows from Theorem 1. �

The following two lemmas, which follow from results in [8,18], will be helpful for
proving Theorem 4.

Lemma 9. Suppose C is a set of characters and C′ ⊆ C is compatible. Then
there is a minimal triangulation of int(C) and C′ is a subset of its displayed
characters.

Lemma 10. Suppose C is a set of characters and H is a triangulation of int(C).
Then the displayed characters of H are a compatible subset of C.
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Suppose C is a set of characters on X weighted by w. Then w induces a fill
weight Fw of int(C) defined by Fw(uv) = w(χ) if u and v are monochromatic
and colored by χ, and Fw(uv) = 0 otherwise.

Lemma 11. Let C be a collection of two-state characters weighted by w, and
suppose H is a triangulation of int(C) with displayed characters C(H). Then
w(C) = Fw(H) + w(C(H)).

Proof. (Sketch) For each χ in C there is exactly one potential fill edge uv of
int(C) such that u and v are monochromatic because χ has two states, and both
vertices are colored by χ. Either uv is a fill edge of H , so χ is broken by uv and
uv contributes to the second term of the RHS, or χ ∈ C(H) and uv contributes
to the first term of the RHS. �

Theorem 12. Let C be a collection of two-state characters weighted by w. Then
C∗ is a w−maximum compatible subset of C if and only if there is a Fw-minimum
minimal triangulation H∗ of int(C) that has C∗ as its displayed characters.

Proof. Suppose that C∗ is a w−maximum compatible subset of C. By Theorem
4, there is a minimal triangulation H∗ of int(C) that has C∗ as its displayed
characters. For the sake of contradiction suppose H∗ is not a Fw−minimum
minimal triangulation, so there is a triangulation H of int(C) such that Fw(H) <
Fw(H

∗). Letting C(H) be the displayed characters of H , by Lemma 11 we have
w(C) − w(C(H)) < w(C) − w(C∗) and therefore w(C∗) < w(C(H)). By Lemma
10 C(H) is compatible, so C∗ can not be a w−maximum compatible subset of C,
a contradiction. Therefore H∗ must be a Fw−minimum minimal triangulation.

Now let H ′ be a Fw−minimum minimal triangulation of int(C) with displayed
characters C(H ′). Then Fw(H

′) = Fw(H
∗) by Fw−minimization, and w(C) −

w(C(H ′)) = w(C) − w(C∗) by Lemma 11 so w(C(H ′)) = w(C∗). The set C(H) is
compatible by Lemma 10, so C(H) is an optimal solution. �

Maximum compatibility reduces to weighted maximum compatibility by assign-
ing each character a weight of one. This character weighting induces the fill
weight Fw(C), giving the following corollary.

Corollary 13. Let C be a collection of two-state characters. Then C∗ is a max-
imum compatible subset of C if and only if there is a Fw(C)-minimum minimal
triangulation H∗ of int(C) that has C∗ as its displayed characters.

We conclude this section by characterizing solutions to unique perfect phylogeny.
Let G = (V,E) be an undirected graph and S ⊆ V . We will use G−S to denote
the graph obtained fromG by removing the vertices S and edges that are incident
to a vertex in S. If x, y are connected vertices in G but disconnected in G− S,
then S is an xy−separator. When no proper subset of S is also an xy−separator,
then S is a minimal xy−separator2. If there is at least one pair of vertices x and
y such that S is a minimal xy−separator, then S is a minimal separator of G.

2 Note that a minimal xy−separator S is defined with respect to x and y. There may
be a different pair of vertices u,v of G such that S is a non-minimal uv−separator.
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The set of minimal separators of G is denoted byΔG. Two minimal separators
S and S′ are parallel if there is a connected component C of G − S such that
S′ ⊆ S ∪ C (this relationship happens to be symmetric [25]). Suppose Φ is a
subset of G’s minimal separators. The graph GΦ is obtained from G by adding
the fill edge uv whenever uv ∈ pf(S) for some S in Φ, and we sayG is obtained by
saturating each minimal separator in Φ. We say Φ is pairwise-parallel if every two
minimal separators S and S′ in Φ are parallel. The following result characterizes
the minimal triangulations of a graph in terms of its minimal separators.

Theorem 14. [25,26] see also [22] Let G a graph and ΔG its minimal sepa-
rators. If H is a minimal triangulation of G, then ΔH is a maximal pairwise-
parallel set of minimal separators of G and H = GΔH . Conversely, if Φ is any
maximal pairwise-parallel set of minimal separators of G, then GΦ is a minimal
triangulation of G and ΔGΦ = Φ.

An important observation from this theorem is that if H is a minimal triangu-
lation of G, then ΔH ⊆ ΔG. Let C be a set of characters on X and Fw be a fill
weight on int(C). We will use Δmin

Fw
to denote the set of minimal separators S

of int(C) such that there is a Fw−minimum minimal triangulation H of int(C)
with S ∈ ΔH .

Theorem 15. Suppose C is a collection of characters on X. Then int(C) has a
unique proper minimal triangulation if and only if

1. int(C) has a Fw(C)−zero minimal triangulation; and
2. Δmin

Fw(C)
is a maximal set of pairwise-parallel minimal separators of int(C).

Proof. Suppose int(C) has a unique proper minimal triangulationH∗. ThenH∗ is
a Fw(C)−zero minimal triangulation of int(C), and further, every Fw(C)−minimum
minimal triangulation of int(C) is a Fw(C)−zero minimal triangulation of int(C).
Each minimal separator of H∗ is a minimal separator of int(C) by Theorem 14,
so ΔH∗ ⊆ Δmin

Fw(C)
. Alternatively, if S ∈ Δmin

Fw(C)
, then S is a minimal separator

of a Fw(C)−zero minimal triangulation of int(C). This minimal triangulation is
proper, so S ∈ ΔH∗ by uniqueness. Therefore Δmin

Fw(C)
= ΔH∗ , and Δmin

Fw(C)
is a

maximal pairwise-parallel set of minimal separators of int(C) by Theorem 14.
To prove the converse, suppose that int(C) has a Fw(C)−zero minimal trian-

gulation, and Δmin
Fw(C)

is a maximal set of pairwise-parallel minimal separators of

int(C). By Theorem 14, the graph H obtained from int(C) by saturating each
minimal separator in Δmin

Fw(C)
is a minimal triangulation of int(C), and further, for

each fill edge uv of H , there is a S′ ∈ Δmin
Fw(C)

such that u, v ∈ S′. By definition

there is some Fw(C)−zero minimal triangulation that has S′ as a minimal sepa-
rator. This triangulation has uv as a fill edge by Theorem 14 so Fw(C)(uv) = 0.
Therefore H is an Fw(C)−zero minimal triangulation of int(C), so H is a proper
minimal triangulation of int(C).

Now let H ′ be any proper minimal triangulation of int(C). Then H ′ is an
Fw(C)−zero minimal triangulation of int(C), so ΔH′ ⊆ Δmin

Fw(C)
. We assumed
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Δmin
Fw(C)

is pairwise-parallel, and ΔH′ is maximal with respect to being pairwise-

parallel by Theorem 14, so ΔH′ = Δmin
Fw(C)

. Thus both H and H ′ are obtained

from int(C) by saturating each minimal separator of ΔH′ = Δmin
Fw(C)

, so H ′ = H .

Therefore H is the unique proper minimal triangulation of int(C). �

4 Finding Weighted Minimum Triangulations

To prove our algorithmic results, now we show that both mfiFw(G) and Δmin
Fw

can be computed in O(|X ||C|2 + (r|C|)4|Δint(C)|2) time.
A block of a graph G is a pair (S,C) where S ∈ ΔG and C is a connected

component of G − S, and it is full or full with respect to S if every vertex of
S has at least one neighboring vertex that is in C (we write N(C) = S). The
realization of a block (S,C) is the graph R(S,C) with vertex set S ∪C, and for
any u and v in S ∪ C, uv is an edge of R(S,C) if either uv is an edge of G or
uv ∈ pf(S).

Kloks, Kratsch, and Spinrad [22] related minimal triangulations to their min-
imal separators and block structure to show that minimum fill can be computed
recursively. The following lemma follows with a slight modification of the proof
of Theorem 3.4 in [22], so we omit it.

Lemma 16. Let G be a non-complete graph and Fw be a fill weight on G. Then

mfiFw(G) = min
S∈ΔG

(fillFw(S) +
∑
C

mfiFw (R(S,C)))

where the sum occurs over the connected components C of G−S and fillFw (S) =∑
uv∈pf(S) Fw(uv).

It turns out that non-full blocks with respect to S ∈ ΔG are full blocks with
respect to a different minimal separator of G. They also allow us to compute
mfiFw (R(S,C)), which is a useful fact for later when we restrict our attention to
full blocks of G.

Lemma 17. [9] Let G be a graph, S ∈ ΔG, and C be a connected component
of G − S. If N(C) = S′ ⊂ S, then (S′, C) is a full block of G (i.e. S′ ∈ ΔG).
Further, if E′ ⊆ pf(C), then the graph obtained from R(S,C) by adding the
fill edges in E′ is a minimal triangulation of R(S,C) if and only if the graph
obtained from R(S′, C) by adding the fill edges in E′ is a minimal triangulation
of R(S,C).

This gives us the following, an extension of Corollary 4.5 in [9].

Lemma 18. Let G be a graph, S ∈ ΔG, and C be a connected component of
G − S. If N(C) = S′ ⊂ S, then mfiFw(R(S,C)) = mfiFw (R(S′, C)) for any fill
weight Fw.
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Proof. (Sketch) Let H be a triangulation of R(S,C) such that mfiFw(R(S,C)) =
Fw(H). Restricting H to C ∪ S′ yields a triangulation of R(S′, C), because any
cycles in this graph must appear in H as well. Therefore mfiFw(R(S,C)) ≥
mfiFw (R(S′, C)).

To obtain mfiFw (R(S,C)) ≤ mfiFw(R(S′, C)), note that any triangulation H ′

of R(S′, C) induces a triangulation of R(S,C) via its fill edges. The only cycles
that appear in R(S,C) after adding the fill edges of H ′ but are not also cycles
of R(S,C) must contain a vertex of S−S′. This vertex must be adjacent to two
vertices of S′, and S′ induces a clique in R(S,C) because S has been saturated.
These vertices form a chord for this cycle. �

In order to compute mfiFw(R(S,C)), we need the notion of a potential maximal
clique. Let G be a graph and K be a subset of its vertices. Then K is a potential
maximal clique of G if there is a minimal triangulation H of G and K is a
maximal clique of H . That is, every pair of vertices in K are adjacent in H , and
no proper superset of K has this property. The set of potential maximal cliques
of G is denoted by ΠG. The next two lemmas describe the interplay between
potential maximal cliques, minimal separators, and blocks.

Lemma 19. [9] Let G be a graph and K be a potential maximal clique of G.
Then S ∈ ΔG and S ⊆ K if and only if N(C) = S for some connected component
C of G−K.

Therefore if K ∈ ΠG and C1, C2, . . . , Ck are the connected components of G−K,
each (Si, Ci) where N(Ci) = Si is a full block of G (i.e. Si ∈ ΔG). These blocks
are called the blocks associated to K.

Lemma 20. [9] Suppose G is a graph, S ∈ ΔG, and (S,C) is a full block. Then
H(S,C) is a minimal triangulation of R(S,C) if and only if

1. there is a potential maximal clique K of G such that S ⊂ K ⊆ (S,C); and
2. letting (Si, Ci) for 1 ≤ i ≤ p be the blocks associated to K such that Si ∪

Ci ⊂ S ∪ C, we have E(H) =
⋃p

i=1 E(Hi) ∪ pf(K) where Hi is a minimal
triangulation of R(Si, Ci) for each 1 ≤ i ≤ p.

The following lemma is an extension of Corollary 4.8 in [9].

Lemma 21. Let (S,C) be a full block of G and Fw be a fill weight on G. Then

mfiFw(R(S,C)) = min
S⊂K⊆(S,C)

(fillFw(K)− fillFw(S) +
∑

mfiFw (R(Si, Ci))) (1)

where the minimum is taken over all K ∈ ΠG such that S ⊂ K ⊆ (S,C), and
(Si, Ci) are the blocks associated to K in G such that Si ∪Ci ⊂ S ∪ C.

Proof. Omitted due to space constraints. See [17] for a proof. �

Theorem 22. Let C be a set of partial characters on X with at most r states,
and Fw be a fill weight on int(C). There is an O(|X ||C|2 + (r|C|)4|Δint(C)|2)
algorithm that computes mfiFw(int(C)) and Δmin

Fw
.
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Data: Partial characters C on X with at most r states
Result: mfiFw (int(C)) and Δmin

Fw

compute int(C);
compute Δint(C) and Πint(C);
// Find the Fw−minimum fill value for each full block

compute all the full blocks (S,C) and sort them by the number of vertices;
for each full block (S,C) taken in increasing order do

mfiFw(R(S,C))← fillFw (S ∪ C) if (S,C) is inclusion-minimal;
and mfiFw(R(S,C))←∞ otherwise;
for each potential maximal clique K s.t. S ⊂ K ⊆ S ∪ C do

compute the blocks (Si, Ci) associated to K s.t. Si ∪ Ci ⊂ S ∪C;
newfill← fillFw(K)− fillFw(S) +

∑
i mfiFw (R(Si, Ci));

mfiFw (R(S,C))← min(mfiFw(R(S,C)), newfill);

end

end
mfiFw(int(C))←∞;
// Find the Fw−minimum fill value for minimal triangulations

containing S
for each minimal separator S of int(C) do

compute the blocks (Si, Ci) associated to S where N(Ci) = Si;
mfiFw(S)← fillFw(S) +

∑
i mfiFw (R(Si, Ci));

mfiFw(int(C))← min(mfiFw(int(C)),mfiFw (S));

end
Δmin

Fw(C)
← {S ∈ ΔFw(C)

s.t. mfiFw (S) = mfiFw(int(C))};
return mfiFw(int(C)) and Δmin

Fw
;

Algorithm 1. Computing Fw−minimum fill

Proof. Our approach is described in Algorithm 1. Constructing int(C) can be
done in O((|X | + r2)|C|2) time as follows. There are at most r|C| vertices of
int(C), one per part of each character. Recall that a pair of vertices (A,χ) and
(A′, χ′) of int(C) form an edge if and only if there is some a ∈ A ∩ A′. For each
a ∈ X , let C(a) be the vertices of int(C) whose state contains a. These sets are
computed in O(|X ||C|) amortized time by scanning each state of each character.
The edges of int(C) are now found by examining each pair (A1, χ1)(A2, χ2) in
C(a) for all a ∈ X . To address redundancy, order the characters and states of
each characters, then construct a table to check if (A1, χ1) and (A2, χ2) has
already been found as an edge. Examining C(a) to find these edges takes O(|C|2)
time (because a is in at most one state per character), and constructing the
redundancy table takes O((r|C|)2) time, for a total of O((|X | + r2)|C|2) time.

For a general graph G with |V | vertices and |E| edges, it is possible to compute
ΔG in O(|V |3|ΔG|) time [2] and ΠG in O(|V |2|E||ΔG|2) time [10]. Let n be the
number of vertices of int(C). The full block computation and nested for loop can
be implemented in O(n3|Πint(C)|) time, which follows from the proof of Theorem
3.4 in [14]. It is known that |ΠG| ≤ |V ||ΔG|2 + |V ||ΔG| + 1 [10], so the nested
for loop takes O(n4|Δint(C)|2) time.
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Consider the second for loop and let S ∈ Δint(C). The blocks associated
to S are found in O(n2) time by searching the graph to find the connected
components, and then computing N(C) for each connected component C of
G− S (in the second computation, each edge of the graph is examined at most
once). By Lemma 18, each (Si, Ci) is a full block of G, so we have calculated
mfiFw (R(Si, Ci)) during the first for loop. The calculation on line 17 matches the
one in Lemma 16 because mfiFw(R(S,Ci)) = mfiFw (R(Si, Ci)) by Lemma 18. It
takesO(n2) time to compute fillFw(S), so the second for loop takes O(n2|Δint(C)|)
time. The last line of the algorithm takes O(|Δint(C)|) time. Aside from the
O(|X ||C|2) term, the bottleneck of the algorithm is the first nested for loop and
calculating Πint(C), so the entire algorithm runs in O(|X ||C|2 + (r|C|)4|Δint(C)|2)
time. �

Theorems 2, 5, and 7 follow from Theorem 22.

Acknowledgements. This research was partially supported by NSF grants IIS-
0803564 and CCF-1017580. We thank the anonymous referees for their helpful
comments that led to improvements in the exposition.

References

1. Agarwala, R., Fernández-Baca, D.: A polynomial-time algorithm for the perfect
phylogeny problem when the number of character states is fixed. SIAM Journal on
Computing 23, 1216–1224 (1994)

2. Berry, A., Bordat, J., Cogis, O.: Generating all the minimal separators of a graph.
International Journal of Foundations of Computer Science 11(3), 397–403 (2000)

3. Bininda-Emonds, O.R.: The evolution of supertrees. Trends in Ecology and Evo-
lution 19(6), 315–322 (2004)

4. Blair, J., Peyton, B.: An introduction to chordal graphs and clique trees. In: George,
J., Gilbert, J., Liu, J.H. (eds.) Graph Theory and Sparse Matrix Computations,
IMA Volumes in Mathematics and its Applications, vol. 56, pp. 1–27. Springer
(1993)

5. Bodlaender, H., Heggernes, P., Villanger, Y.: Faster parameterized algorithms for
minimum fill–in. Algorithmica 61, 817–838 (2011)

6. Bodlaender, H., Fellows, M., Warnow, T.: Two strikes against perfect phylogeny.
In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 273–283. Springer, Heidelberg
(1992)

7. Bonet, M., Linz, S., John, K.S.: The complexity of finding multiple solutions to be-
tweenness and quartet compatibility. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 9(1), 273–285 (2012)

8. Bordewich, M., Huber, K., Semple, C.: Identifying phylogenetic trees. Discrete
Mathematics 300(1-3), 30–43 (2005)
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Abstract. On the basis of the well known pumping lemma for regular
languages we define such a partial function f : IN→ IN that for every e it
yields the least pumping constant for the language We. We ask whether f
is computable. Not surprisingly f turns out to be non-computable. Then
we check whether f is algorithmically learnable. This is also proved not
to be the case. Further we investigate how powerful oracle is necessary
to actually learn f . We prove that f is learnable in 0′. We also prove
some facts relating f to arithmetical hierarchy.
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1 The Pumping Lemma Function

From automata theory one knows the pumping lemma for regular languages [4].
Before we formulate the lemma, let us fix some terminology. Let We denote the
domain of the partial function computed by the Turing machine with Gödel
number e. By R(e, c) we understand the following statement: for each word
ω ∈ We, if |ω| > c, then there are words α,β,γ such that ω = αβγ, β �= ε,
|αβ| ≤ c and for all i ∈ IN αβiγ ∈ We . We may now formulate the pumping
lemma for regular languages easily: for each e such that We is a regular language
there is a positive integer c such that R(e, c). On the basis of this familiar result,
one can define a partial function f : IN → IN (here called the pumping lemma
function) that for each e ∈ IN yields the least c such that R(e, c), if any such c
exists, and otherwise is undefined. A natural question arises: is f computable?
The solution to this question is negative. Another problem which arises is as
follows: is the complement of the graph of f recursively enumerable? This is also
proved not to be the case. Further we investigate algorithmic learnability of f . We
prove that f is not algorithmically learnable. Then we ask how powerful oracle is
necessary to actually learn f . We prove that f is algorithmically learnable with
the halting problem in oracle. We finish the article by relating f to arithmetical
hierarchy.
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2 Terminology and Notation

In this section we provide terminology and notation used throughout the article.
Notions used locally are defined when they are needed. For further details on
computability consult [1,6].

In Sect. 1 we have already introduced some notation, namely We and R(e, c).
Sometimes we use R for the binary relation expressed by the formula R(e, c).
The appropriate meaning of R shall be clear from the context. By Gh we de-
note the graph of the (possibly partial) function h. The operation of taking the
complement of a relation S ⊆ INk is defined as follows: S′ = INk − S. Inputs
of algorithms are words or numbers. We can assume that algorithms are Turing
machines that work with words over binary alphabet. Binary words are easily
coded as numbers. We do not make any explicit distinction between numeric
inputs and string inputs - a particular usage will be clear from context. The
length of the word x is denoted by lh(x) or |x|. By ≤bl we denote bounded
lexicographical order on strings. Let x, y be words. We say x is less or equal to y
with respect to bounded lexicographical order (in symbols x ≤bl y), if |x| < |y|
or both |x| = |y| and x is lexicographically less or equal to y. The characteristic
function of the set A ⊆ IN is denoted by cA. By coding of pairs we mean some
fixed reasonable coding, for example Cantor pairing function. By πi, i = 1, 2, we
mean the canonical projection of a pair on the i-th coordinate. The symbol ≤m
refers to the relation of many-one reducibility. We write h : A ≤m B to express
the fact that h is total recursive and x ∈ A ⇔ h(x) ∈ B, for all x ∈ IN. We use
T (e, x, c) for the Kleene predicate, where e is a Gödel number of a Turing ma-
chine, x stands for an input and c for a computation. U(c) refers to the output
of a computation c. By EMPTY we denote the emptiness problem, i.e the set
{e ∈ IN : We = ∅}. NOTEMPTY stands for the non-emptiness problem, i.e. the
set IN − EMPTY. TOT denotes the totality problem, i.e. {e : ∀x∃ c T (e, x, c)}.
The halting problem {(e, x) ∈ IN2 : ∃ c T (e, x, c)} is denoted by HALT. We use
the standard notation Σ0

k,Π
0
k ,Δ

0
k for the classes of sets in arithmetical hierarchy.

3 Non-computability Results

Lemma 1. EMPTY ≤m R.

Proof. We define the function r(e) = (σ(e), 1), where σ is the total computable
function obtained through smn theorem from g(e, x) which is computed as fol-
lows: We examine whether We is empty. If it is empty, the computation goes on
forever; otherwise emptiness checking procedure stops. In that case we measure
the length of x and if it is even we return 1. Otherwise we loop forever.

Therefore if We = ∅, then Wσ(e) = ∅ and (σ(e), 1) ∈ R. If We �= ∅ then Wσ(e)

contains all words of even length. In this case clearly (σ(e), 1) /∈ R (otherwise
We would have contained words of odd length). �

Lemma 2. If R(e, c) then (∀ d > c)R(e, d).
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Proof. Directly from the definition of R(e, c). �

Theorem 3. f is not computable.

Proof. Suppose for the sake of contradiction that f is computable. Then of
course R is recursively enumerable, that is Σ0

1 (use the fact that the graph of
recursive function is r.e. and, bearing in mind the Lemma 2, devise an algorithm
for enumerating R). Taking into account that EMPTY is Π0

1 -complete, we have
A ≤m EMPTY ≤m R ∈ Σ0

1 for all A ∈ Π0
1 . It follows that Π0

1 ⊆ Σ0
1 , which is

impossible, because it is well known that Π0
1 −Σ0

1 �= ∅. �

Lemma 4. NOTEMPTY ≤m R.

Proof. We define the function r(e) = (σ(e), 1), where σ is the total computable
function obtained through smn theorem from g(e, x) which is computed as fol-
lows. If the length of x is even, then stop. Otherwise start checking, whether
We �= ∅. If We �= ∅ then - when a word α is found such that α ∈ We - stop.
Otherwise (if We = ∅) we loop forever.

Therefore ifWe = ∅ thenWσ(e) contains all words of even length, so (σ(e), 1) /∈
R. If We �= ∅, then Wσ(e) contains all words and (σ(e), 1) ∈ R. �

Lemma 5. If G′f is r.e., then R′ is r.e.

Proof. Let p : IN2 → IN be the recursive partial characteristic function of G′f ,
i.e.

p(x, y) =

{
1 if (x, y) /∈ Gf

undefined otherwise
. (1)

We define h : IN2 → IN - the recursive partial characteristic function of R′:

h(x, y) = Πy
i=0p(x, i) . (2)

Assume (x, y) ∈ R′. Then it must be the case that (∀ i ≤ y) (x, i) ∈ R′. Therefore
(∀ i ≤ y) (x, i) /∈ Gf and thus (∀ i ≤ y) p(x, i) = 1.

Now assume (x, y) /∈ R′. Then (x, y) ∈ R. So it must be the case that f(x) ≤ y.
Therefore Πy

i=0p(x, i) is undefined, since p(x, f(x)) is undefined and 0 ≤ f(x) ≤
y. �

Theorem 6. G′f is not r.e.

Proof. Suppose on the contrary that G′f is r.e. Then by Lemma 5 R′ is r.e. We
use the following fact from recursion theory: A ≤m B ⇔ A′ ≤m B′. We apply
it to NOTEMPTY ≤m R and obtain EMPTY ≤m R′. Then the reasoning is
analogous to the proof of the Theorem 3. �

4 Non-learnability Result

We established some lower bounds on the complexity of the pumping lemma
function: we know that f is not recursive and that G′f is not r.e. In this section

we show that f is not algorithmically learnable which means that Gf is not Σ0
2 .
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Definition 7. Let f : INk → IN be a (possibly partial) function. We say that
f is algorithmically learnable (shortly: learnable) if there is a total computable
function gt(x)

1 such that for all x ∈ INk:

limt→∞gt(x) = f(x) , (3)

which means that neither f(x) nor limt→∞gt(x) exist or - alternatively - both
f(x) and limt→∞gt(x) exist and are equal.

The following lemma is a familiar result from the algorithmic learning theory.
Classical papers related to the subject are [2,3,5].

Lemma 8. Let f : INk → IN. f is learnable if and only if Gf is Σ0
2 .

Proof. (⇒) Let f be learnable and gt(x) be total computable function satisfying
the Equation (3). We observe that Gf (x, y) ⇔ (∃ t ∈ IN )(∀ k > t) y = gk(x).
The formula y = gk(x) defines a recursive ternary relation, because g is total
computable.

(⇐) Let f be such that Gf is Σ0
2 . Choose a recursive relation A ⊆ INk+3 such

that Gf (x, y) ⇔ ∃z∀wA(x, y, z, w). We define an infinite procedure G(x) (Alg.
1) that is easily convertible to the appropriate definition of total computable
learning function gt(x) satisfying Equation 3.

Data: x
Result: y contains hypothesized value f(x)
p,w, y, z ← 0;
while true do

y ← π1(p);
z ← π2(p);
if cA(x, y, z, w) = 1 then

w← w + 1;
else

p← p+ 1;
w← 0;

end

end

Algorithm 1. The infinite procedure G(x)

The procedure simply searches for y satisfying ∃z∀wA(x, y, z, w) by enumer-
ating all possible pairs (y, z). If there is such y, the procedure will finally spot
it together with the relevant witness z. Therefore f(x) will be finally stored in
the variable y and from that point the contents of y will never change. On the
other hand, if there is no such y, the contents of the variable y will continue to
change ad infinitum. �
1 Expression gt(x) shall be read as g(t, x). In precise terms, gt(x) stands for a sequence
of functions. We use indexed t to distinguish the discrete time parameter from the
input.
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Lemma 9. TOT ≤m R.

Proof. Let H(x,m, t) mean (∃ c < t )T (x,m, c). Define a relation S(x, y):

S(x, y)⇔df 2 | lh(y) ∨ (∃ t )(∀m ≤bl y)H(x,m, t) . (4)

Of course, S is r.e. By pS(x, y) we denote recursive partial characteristic func-
tion of S. By smn theorem, there is a total computable function σ such that
{σ(x)}(y) < pS(x, y), where {·} refers to the function computed by Turing
machine having Gödel number ·. Define r(x) =df (σ(x), 1). We prove that
r : TOT ≤m R.

(⇒) Let x′ ∈ TOT. We begin by showing that S(x′, y) holds for all y. Fix y′. If
2 | lh(y′), then obviously S(x′, y′). Assume that 2 � lh(y′). Because x′ ∈ TOT, we
choose a finite sequence of numbers (tω)ω≤bly

′ such that H(x′, ω, tω) holds for

ω ≤bl y′. Let T = max{tω : ω ≤bl y′}. Then we have (∀ω ≤bl y′)H(x′, ω, T ),
and - what follows - (∃ t )(∀ω ≤bl y′)H(x′, ω, t). Therefore S(x′, y′).

The following are equivalent:
(∀ y)S(x′, y),
(∀ y) pS(x′, y) = 1,
(∀ y) {σ(x′)}(y) = 1,
σ(x′) ∈ TOT.
It remains to show that r(x′) = (σ(x′), 1) ∈ R, which is trivially true.
(⇐) Let x′ /∈ TOT. Choose y0 to be the smallest word with respect to ≤bl such

that ¬(∃ c )T (x′, y0, c). Observe that (∀ y) [y0 ≤bl y ∧ 2 � lh(y) ⇒ ¬S(x′, y)].
For let y0 ≤bl y, 2 � lh(y) and suppose S(x′, y). It follows, that (∃ t )H(x′, y0, t)
which is a contradiction.

Let k be any number satisfying lh(y0) < 2k. Observe that 12k ∈ Wσ(x′), be-

cause 2 | lh(12k). The only possible division of 12k into αβγ satisfying conditions
lh(αβ) ≤ 1, β �= ε is α = ε, β = 1, γ = 12k−1. Consider αβ0γ = 12k−1. Clearly
y0 ≤bl 12k−1. Therefore ¬S(x′, 12k−1) and thus 12k−1 /∈ Wσ(x′). We may then
conclude that r(x′) = (σ(x′), 1) /∈ R. �

We are ready to prove the main non-learnability theorem.

Theorem 10. f is not learnable.

Proof. Suppose for the sake of contradiction that f is learnable. By the Lemma
8, Gf is Σ0

2 . R can be defined as follows: R(x, y) ⇔ ∃c(Gf (x, c) ∧ c ≤ y). The
right side of the equivalence is easily convertible to a Σ0

2 -formula. Thus R is Σ0
2 .

Due to the Lemma 9, TOT is Σ0
2 . However, TOT is not Σ0

2 . Contradiction. �

5 Learnability Result

So far we have proved only negative results concerning computability or learn-
ability of f . The question now rises how much we would need to strengthen our
computational capabilities to turn this task into something learnable. In terms
of recursion theory: how complex oracle we need to make f learnable? In this
section we prove that f is learnable in 0′.
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Theorem 11. f is learnable in 0′.

Proof. We choose HALT = {(e, x) ∈ IN2 : (∃ c )T (e, x, c)} for the oracle. By
φ(e, x) we denote the formula provided below. The formula φ(e, x) expresses the
fact that R(e, x):

x > 0 ∧ (∀ω) {
σ(x,e,ω)︷ ︸︸ ︷

[(e, ω) ∈ HALT ∧ lh(ω) ≥ x]⇒ (∃α, β, γ ≤bl ω )

[αβγ = ω ∧ lh(αβ) ≤ x ∧ β �= ε︸ ︷︷ ︸
θ1(x,ω,α,β,γ)

∧ (∀ i) (e, αβiγ) ∈ HALT)︸ ︷︷ ︸
θ2(e,α,β,γ,i)

]} .
(5)

Observe that the relation {(x, ω, e, α, β, γ, i) : θ1 ∧ θ2} is recursive in HALT.
There is a relation η, recursive in HALT, such that (∃α, β, γ ≤bl ω )(∀ i) (θ1 ∧
θ2)⇔ (∀ j) η(x, e, ω, j).

The following are equivalent:
φ(e, x) ,
x > 0 ∧ (∀ω) {σ ⇒ (∃α, β, γ ≤bl ω )[θ1 ∧ (∀ i) θ2]} ,
(∀ω) {x > 0 ∧ [σ ⇒ (∃α, β, γ ≤bl ω )(∀ i) (θ1 ∧ θ2)]} ,
(∀ω) {x > 0 ∧ [σ ⇒ (∀ j) η]} ,
(∀ω) (∀ j) {(x > 0 ∧ (¬σ ∨ η)︸ ︷︷ ︸

ξ(x,e,ω,j)

} .

Thus, the relation defined by φ(e, x) is Π0
1 in HALT. Now we express the fact

that x is the least number such that φ(e, x):

φinf(e, x) := φ(e, x) ∧ (∀ y < x)¬(∀ω) (∀ j) ξ(e, x, ω, j) . (6)

The right conjunct of φinf is equivalent to a formula of the form (∃ z )ζ(e, x, z),
where ζ(e, x, z) is recursive in HALT. Therefore we have

φinf(e, x)⇔ (∀ω, j) ξ(e, x, ω, j) ∧ (∃ z )ζ(e, x, z) . (7)

This easily leads us - by familiar first-order transformations - to the Σ0
2 definition

of the relation expressed by φinf(e, x), in terms of relations recursive in HALT.
Observe that the relation defined by φinf(e, x) is Gf . Thus, Gf is Σ0

2 in HALT.
By the relativized version of the Lemma 8 f is learnable in HALT. �

6 Supplement

We end the article by providing supplementary results relating f to arithmetical
hierarchy.

Theorem 12. R is Π0
2 -complete.

Proof. We have already proved that TOT ≤m R (Lemma 9). It remains to show
that R is Π0

2 . Consider the following definition of R:

x > 0 ∧ (∀ω) {[(∃ c )T (e, ω, c) ∧
σ(x,ω)︷ ︸︸ ︷

lh(ω) ≥ x]⇒ (∃α, β, γ ≤bl ω )

[αβγ = ω ∧ lh(αβ) ≤ x ∧ β �= ε︸ ︷︷ ︸
θ(x,ω,α,β,γ)

∧ (∀ i) (∃ c )T (e, αβiγ, c)]}
(8)
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Consider the implication enclosed in curly brackets:

((∃ c )T (e, ω, c) ∧ σ)⇒ (∃α, β, γ ≤bl ω )(θ ∧ (∀ i) (∃ c )T (e, αβiγ, c)) (9)

We proceed by equivalent reformulations of (9):
(∀ c) (¬T (e, ω, c) ∨ ¬σ) ∨ (∃α, β, γ ≤bl ω )(θ ∧ (∀ i) (∃ c )T (e, αβiγ, c)) ,

(∀ c) (¬T (e, ω, c) ∨ ¬σ) ∨ (∃α, β, γ ≤bl ω )(∀ i) (∃ d )(θ ∧ T (e, αβiγ, d)︸ ︷︷ ︸
ϕ

) ,

(∀ c) (¬T (e, ω, c) ∨ ¬σ) ∨ (∀ i) (∃ d )ψ(x, e, ω, i, d)︸ ︷︷ ︸
ϕ′

,

(∀ c) (∀ i) (∃ d )(¬T (e, ω, c) ∨ ¬σ ∨ ψ(x, e, ω, i, d)) .
Thus, (8) is equivalent to:

(∀ω) (∀ c) (∀ i) (∃ d )[x > 0 ∧ (¬T (e, ω, c) ∨ ¬σ ∨ ψ(x, e, ω, i, d))] . (10)

We have used familiar first order tautologies and the fact that bounded quantifier
prefix in ϕ can be somehow shifted inside, resulting in an equivalent Π0

2 -formula
ϕ′ such that its subformula ψ expresses a recursive relation. The above argument
clearly shows that R is Π0

2 . �

Theorem 13. Gf is Δ0
3.

Proof. Let us denote by φ(e, x) the Π0
2 -formula (10) defining R. As in the proof

of the Theorem 11 define Gf in the following way:

φ(e, x) ∧ (∀ y < x)¬φ(e, y) (11)

The formula (11) is equivalent to a formula of the form (∀∃ . . . ∧ ∃∀ . . .), where
. . . stand for some formulae expressing recursive relations. Proper shifts of quan-
tifiers lead us to Π0

3 - and Σ0
3-formula defining Gf . This clearly shows that Gf

is Δ0
3. �

7 Remarks about Practical Significance

We addressed the problem of determining the least constant from the pumping
lemma with a view to applying results to formal language learning framework.

One of the directions for further investigation can be as follows. Consider the
machine placed in an unknown environment. The environment presents positive
and negative examples of an unknown language L from an unknown class. Note
that the environment that exhaustively presents both positive and negative ex-
amples can be viewed as an oracle for the input language L. Thus the Theorem
11 may be applied, since in such an environment the machine is equipped with
an analogue of the halting problem and the only queries to the halting prob-
lem that are important for determining the least constant for L are of the form
,,α ∈ L?”. Suppose the machine is equipped with the learning procedure for f
as described above. The pumping lemma for regular languages gives a necessary



440 D. Kalociński

condition for a language to be regular. Let the input language L = We, for some
e. If ¬∃cR(e, c), then We is not regular and the learning procedure for f diverges.
This fact can be used as a heuristic and the machine can hypothesize that the
input language is not regular. On the other hand, if ∃cR(e, c), then the learning
procedure for f converges and the machine can use this fact as a heuristic and
conjecture that input language is regular or at least exclude certain languages
from consideration.

We can put further constraints on input languages to make the applications
more practical. Since for every regular language L there is a Turing machine e
that computes the characteristic function cL in linear time, we can restrain the
working time of input machine e by a suitable quadratic polynomial p, with no
worry of omitting any regular language. If the computation of e on the input
α does not stop after p(|α|) steps, the answer to ,,α ∈ We?” is set to no. By
including such time constraints, we in fact obtain the learning algorithm of the
pumping lemma function for languages decidable in quadratic polynomial time.
In this setting, the learning algorithm may be used as a supplementary heuristic
for hypothesizing whether input language is regular.
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Abstract. By focusing on two specific formalisms, viz. Box Algebra and
Interval Temporal Logic, we extend the recently introduced translation
of Petri nets into behaviourally equivalent logic formulas. We remove re-
strictions concerning the way in which the control flow of a concurrent
system is modelled, and allow for a fully general synchronisation opera-
tor. Crucially, we strengthen the notion of equivalence between a Petri
net and the corresponding logic formula, by proving such an equivalence
at the level of transition based executions of Petri nets, rather than just
by considering their labels.
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1 Introduction

In general, temporal logics [1] and Petri nets [4] are regarded as fundamentally
different approaches to the specification and analysis of concurrent systems.
Temporal logics allow one to specify both the system designs and correctness
requirements within the same framework, and the verification of correctness can
be done by checking the satisfaction of logic formulas. Petri nets, on the other
hand, are an automata inspired model with semantics based on actions and local
states which allows one to capture causal relationships in systems’ behaviour.
As a result, verification of behavioural properties can then be carried out using
invariant techniques [14] based on the graph structure of nets, or model checking
techniques based on partial order reductions [15].

To establish a semantical link between logics and Petri nets, we focused in [5]
on two specific formalisms, Interval Temporal Logic (itl) [11,12] and Box Alge-
bra (ba) [2], which are closely related by the their compositional approaches to
constructing systems’ descriptions. In particular, in both itl and ba the con-
trol flow of a system is specified using commonly used programming operators,
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such as sequence, choice, parallelism and iteration. The synchronisation between
concurrently executed subsystems is, however, achieved in different ways and
therefore needs to be handled carefully when relating the two models. In [5] we
proposed a translation from a submodel of ba to semantically equivalent itl
formulas.

In this paper, we extend the results of [5] which provided a compositional
translation from a sub-model of ba [2]. In particular, we drop constraints forbid-
ding the use of the parallel composition outside the topmost level, and consider
a fully general (multi-way) synchronisation operator. Crucially, we strengthen
the notion of equivalence between nets and the corresponding formulas, by prov-
ing such an equivalence at the level of transition based executions of Petri nets,
rather than just by considering their labels. Full details, examples and proofs are
provided in: http://www.cs.ncl.ac.uk/publications/trs/papers/1373.pdf

Throughout the paper, N denotes the set of all positive integers, N0 = N∪{0}
and Nω = N0 ∪ {ω}, where ω denotes the first transfinite ordinal. We extend to
Nω the standard arithmetic comparison operators, assuming that n < ω, for all
n ∈ N0. Moreover, we define & as ≤ without the pair (ω, ω). The concatenation
operator for sequences of sets will be denoted by “◦”, and for sequences of symbols
by “ ·”. For a symbol s and a set of sequences S, we will write s · S to denote the
set {s · s′ | s′ ∈ S}. We also denote ∅∞ = {∅∅ . . .} and ∅∗ = {ε,∅,∅∅, . . .},
i.e., ∅∞ comprises a single infinite sequence. The k-th element of a sequence θ
is denoted by θ(k), and its length by |θ|.

In what follows, A is a set of actions, and a synchronisation relation ρ is any
set of tuples of actions (a1, . . . , an, a) with n ≥ 1. Intuitively, the ai’s represent
n concurrent actions which can be synchronised to yield a single action with the
label a. To reflect this intuition we will denote (a1, . . . , an, a) by a1 . . . an �→ a.

2 Box Algebra

The Box Algebra is based on box expressions using which one can capture com-
mon programming constructs. The standard semantics of box expressions is given
through a mapping into Petri nets called boxes.

Box Expressions. The syntax given below defines two kinds of box expres-
sions, namely non-synchronised expressions E capturing the control flow in a
concurrent system, and synchronised expressions F (below a is an action and ρ
a synchronisation relation):

E ::= stop | a | E ;E | E�E | E ‖E | [[E � E � E]]
F ::= E sco ρ

The intuition behind the above syntax is that: (i) stop denotes a blocked pro-
cess; (ii) a denotes a process which can execute an action a ∈ A and terminate;
(iii) E ;E′ denotes sequential composition; (iv) E�E′ denotes choice composi-
tion; (v) E ‖E′ denotes parallel composition; (vi) [[E � E′ � E′′]] denotes a loop
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with an initial part E, iterated part E′, and terminal part E′′; and (vii) E sco ρ
denotes scoping which enforces all the synchronisations specified by ρ and then
blocks all the original actions present in E.

Box Nets. A box is a tuple N = (P, T, F, �) such that: (i) P and T are disjoint
finite sets of respectively places (representing local states) and transitions (re-
presenting activities); (ii) F ⊆ (P × T ) ∪ (T × P ) is a flow relation; and (iii) �
is a labelling associating an entry or internal or exit status �(p) ∈ {e, i, x} with
every place p, and an action �(t) ∈ A with every transition t. The entry, internal
and exit places of N are given respectively by Ne = �−1(e), N i = �−1(i) and
Nx = �−1(x). Moreover, Nei = Ne∪N i, N ix = N i∪Nx, Npl = P and N tr = T .

Markings are the global states of a box N , each marking being a mapping
M : Npl → N0. The initial (or entry) and final (or exit) markings of N , denoted
respectively by M init

N and Mfin
N , are defined, for every p ∈ P , by: (i) M init

N (p) is
1 if p ∈ Ne, and otherwise 0; and (ii) Mfin

N (p) is 1 if p ∈ Nx, and otherwise 0.
The change of a marking of N results from a simultaneous execution of a

step of transitions. Formally, a step of N is any set of transitions U ⊆ N tr . It
is enabled at a marking M if, for every p ∈ Npl , M(p) ≥ |{t ∈ U | (p, t) ∈ F}|.
An enabled step U can be executed leading to a marking M ′ given by M ′(p) =
(M(p) − |{t ∈ U | (p, t) ∈ F}|) + |{t ∈ U | (t, p) ∈ F}|, for every p ∈ Npl . We
denote this by M [U〉M ′.

The semantics of N is given through sequences of executed steps starting from
the default initial marking M init

N . We will assume that each such step sequence
is infinite which is a harmless requirement as any finite step sequence can be
extended by an infinite sequence of empty steps (note that M [∅〉M for every
marking M). In addition, we single out finite step sequences which lead from the
default initial marking M init

N to the default final marking Mfin
N . Each such step

sequence can be seen as a successfully terminated execution of N .
A step sequence of N is an infinite sequence θ = U1U2 . . . of steps such that

there exist markings M1,M2, . . . satisfying M init
N [U1〉M1[U2〉M2 . . . . More-

over, we define a terminated step sequence of N as a finite sequence θ =
U1 . . . Um (m ≥ 0) of steps such that there exist markings M1, . . . ,Mm−1 satis-
fying M init

N [U1〉M1[U2〉M2 . . . Mm−1[Um〉Mfin
N . The sets of step sequences and

terminated sequences of N are respectively denoted by sts(N) and tsts(N), and
the set of all (executable) steps occurring in sts(N) by N steps .

Composite Boxes. ba derives boxes compositionally from box expressions.
The labelling of places provides the necessary device for composing boxes along
the entry and exit interfaces, i.e., the entry places Ne and exit places Nx. The
derived boxes have a very specific form for their places and transitions, making it
easier to establish connections with itl formulas. Intuitively, we use the syntax of
a non-synchronised box expression E to construct concrete places and transitions
of the corresponding box N , by embedding paths from the root of the parse tree
of E in the identities of places and transitions. In what follows, finite sequences in
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the set Π = { ;L, ;R, �L, �R, 	L, 	R, �L, �M , �R}∗ will be called syntax paths
(with ε denoting the empty syntax path). Note that symbols appearing in syntax
paths correspond to the arguments of operators used in box expressions (with ‘L’
indicating the left argument, etc). For two syntax paths, π1 and π2, we denote
π1|π2 if {π1, π2} = {π· 	L·π′, π· 	R ·π′′}, for some π, π′ and π′′. Intuitively, two
actions of a non-synchronised box expression are concurrent iff their positions,
π1 and π2, in the parse tree are such that π1|π2.

The form of each place in compositionally defined boxes will be pZ , where
p ∈ {e, i, x} and Z ⊂ Π ·{e, x}, while each transition will be of the form aW ,
where a ∈ A and W ⊂ Π . Moreover, for brevity, the sets Z and W will be
written as comma separated lists without brackets.

For a syntax path π ∈ Π and transition aW , we denote π·aW = aπ·W . This
prefix notation extends in the usual way to sets of transitions and sequences of
sets of transitions as well as (sets of) places. The specific form of places and
transitions, together with the systematic way in which boxes are manipulated
below, will mean that for a compositional box N = (P, T, F, �) it will be the
case that, for all pZ ∈ P and aW ∈ T , �(pZ) = p and �(aW ) = a, as well as
(pZ , aW ) ∈ F ⇔ ∃π ∈ W : π·e ∈ Z and (aW , pZ) ∈ F ⇔ ∃π ∈ W : π·x ∈ Z. As a
result, we will represent such a box simply by N = (P, T ). Below we present a
compositional way of constructing composite boxes. For examples, see Figure 1.
Constants: With the blocking expression stop and a single-action expression
a ∈ A, we respectively associate two boxes, Nstop = ({ee, xx},∅) and Na =
({ee, xx}, {aε}), depicted in Figure 1.
Sequence: N ;K = (PL ∪ PR ∪ X , TL ∪ TR), where TL = ;L·N tr , TR = ;R·Ktr ,
PL = ;L·Nei , PR = ;R·K ix and X = {i ;L·Z ∪ ;R·W | xZ ∈ Nx ∧ eW ∈ Ke},
combines the exit interface of N with the entry interface of K. The entry interface
of the resulting box is that of N , and the exit interface is that of K.
Choice: N �K = (PL∪PR∪X∪Y, TL∪TR ), where TL = �L·N tr , TR = �R·Ktr ,
PL = �L·N i, PR = �R·Ki, X = {e�L·Z ∪ �R·W | eZ ∈ Ne ∧ eW ∈ Ke}
and Y = {x�L·Z ∪ �R·W | xZ ∈ Nx ∧ xW ∈ Kx}, combines together the entry
interfaces of the two boxes creating a new entry interface, as well as their exit
interfaces creating a new exit interface.
Parallelism: N ‖K = (PL ∪ PR, TL ∪ TR), where TL =	L ·N tr , TR =	R ·Ktr ,
PL =	L ·Npl and PR =	R ·Kpl , puts next to each other the boxes N and K.
The new entry (resp. exit) interface is simply the union of the entry (resp. exit)
interfaces of the composed boxes.
Iteration: [[N �K � J ]] = (PL∪PM∪PR∪X , TL∪TM∪TR), where TL = �L·N tr ,
TM = �M ·Ktr , TR = �R·J tr , PL = �L·Nei , PM = �M ·Ki, PR = �R·J ix and
X = {i�L·Z ∪ �M ·W ∪ �M ·V ∪ �R·Y | xZ ∈ Nx ∧ eW ∈ Ke ∧ xV ∈ Kx ∧ eY ∈ Je},
combines the exit interfaces of N and K with the entry interfaces of K and J .
The new entry interface is that of N , and the exit interface is that of J .

One can provide a very useful static characterisation of all the executable
steps of a box N constructed using the above rules. In what follows, Npsteps ={
{a1π1

, . . . , anπn
} ⊆ N tr | ∀i < j : πi|πj

}
is the set of all potential steps of N .
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iY = i�Lx,�M �Re,�M �Lx,�Re iZ = i�Lx,�M �Re,�M �Rx,�Re .

Fig. 1. Diagrams of composite boxes with place and transition labels shown inside
the nodes. Top row (left to right): the diagrams of Nstop, Na, Na ;Nb (corresponding to
a ; b) and Nc � (Na ;Nb) (corresponding to c� (a ; b)). Bottom row (left to right): the
diagrams of [[Na � (Nb ‖Nc) � Nd]] and ([[Na � (Nb ‖Nc) � Nd]]) sco {a "→ G, bc "→
A, c "→ C} (the four internal places are defined below the diagrams).

Fact 1. Let N be any net constructed from the Na’s as well as the operators of
sequence, choice, parallelism and iteration. Then N steps = Npsteps . Moreover, if
Nstop can also be used in the construction, then N steps ⊆ Npsteps .

For a synchronisation relation ρ and N constructed as above, we define ρN =
{(U, a{π1,...,πn}) | U = {a1π1

, . . . , anπn
} ∈ Npsteps ∧ (a1, . . . , an, a) ∈ ρ}. Taking

the left N in the bottom row of Figure 1 and ρ = {a �→ G, bc �→ A, c �→ C},
we obtain Npsteps = {∅, {a�L

}, {b�M �L}, {c�M �R}, {d�R
}, {b�M �L , c�M �R}} and

then

ρN={({a�L
}, {G�L

}), ({c�M �R}, {C�M �R}), ({b�M �L , c�M �R}, {A�M �L,�M �R})}
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Scoping: N sco ρ = (Npl ,V), where V = {t | (U, t) ∈ ρN}, has the same places
as N . Moreover, for each potential step of N , one creates a new transition (re-
presenting a synchronisation of two or more actions of N if the potential step is
not a singleton). After that all the transitions of N are removed.

By defining a suitable synchronisation relation ρ, one can capture all practical
forms of synchronisation of two or more actions (e.g., bc �→ A above), as well as
action relabelling (e.g., a �→ G and c �→ C) and action restriction (as for d).

From Expressions to Boxes. The semantics of box expressions is obtained
by transforming them compositionally into the corresponding boxes, and then
adopting the execution semantics of the latter. Formally, we define a mapping
box(.) from box expressions to boxes, in the following way (below op ∈ { ; , � , ‖ }
and const ∈ {stop} ∪ A) :

box(const) = Nconst

box(E op E′) = box(E) op box(E′)
box([[E � E′ � E′′]]) = [[box(E) � box(E′) � box(E′′)]]

box(E sco ρ) = box(E) sco ρ

(1)

From now on, by a box we will mean a composite box constructed using (1).

Behavioural Properties of Composite Boxes. Both finite and infinite step
sequences of composite boxes exhibit compositional properties, i.e., one can (eas-
ily) derive the semantics of a composite box from the semantics of the composed
boxes. This is demonstrated by a series of results which follow from the general
properties of boxes [2].

Fact 2. Let a ∈ A. Then sts(Nstop) = ∅∞ and sts(Na) = ∅∞ ∪ ∅∗◦{{aε}}◦∅∞
as well as tsts(Nstop) = ∅ and tsts(Na) = ∅∗◦{{aε}}◦∅∗.

For choice and parallelism, the semantics of a composite box can easily be ex-
pressed in terms of the semantics of the composed boxes, using an auxiliary
notion of parallel composition of step sequences. For two step sequences, θ
and τ , of equal length, θ ‖ δ is a step sequence of the same length such that
(θ ‖ δ)(k) = θ(k) ∪ δ(k), for all k. Moreover, for two sets of step sequences, Θ and
Δ, the set Θ ‖Δ comprises all step sequences θ ‖ δ, where θ ∈ Θ and δ ∈ Δ are
of equal length.

Fact 3. Let f ∈ {sts, tsts}. Then

f(N �K) = �L·f(N) ∪ �R·f(N)
f(N ‖K) = 	L·f(N)‖ 	R·f(N)

sts(N ;K) = ;L·sts(N) ∪ ;L·tsts(N) ◦ ;R·sts(K)
tsts(N ;K) = ;L·tsts(N) ◦ ;R·tsts(K)

sts([[N � K � J ]]) = �L·sts(N) ∪ �L·tsts(N) ◦ (�M ·tsts(K))∗ ◦ �M ·sts(K)∪
�L·tsts(N) ◦ (�M ·tsts(K))∗ ◦ �R·sts(J)

tsts([[N � K � J ]]) = �L·tsts(N) ◦ (�M ·tsts(K))∗ ◦ �R·tsts(J) .
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Finally, we consider a box N sco ρ, where N is constructed from some non-syn-
chronised box expression. In this case, relating step sequences of N sco ρ and N is
more involved. First, we define a relation ρ̃N comprising all pairs (U, {t1, . . . , tk})
(k ≥ 0), where U ∈ Npsteps and {t1, . . . , tk} ⊆ box(N sco ρ)tr are such that
there is a partition U1, . . . , Uk of U satisfying (Uj , tj) ∈ ρN , for each j ≤ k.
Moreover, for two equal length sequences of sets of transitions, τ and θ, we
denote (τ, θ) ∈ ρ̃N if (τ(j), θ(j)) ∈ ρ̃N , for all j.

Fact 4. Let f ∈ {sts, tsts}. Then f(N sco ρ) = {θ | ∃ τ ∈ f(N) : (τ, θ) ∈ ρ̃N}.

Streamlined Box Expressions. The subsequent translation from ba to itl
is much simpler for the class of streamlined synchronised expressions. We call a
box expression E sco ρ streamlined if, for each transition aπ ∈ box(E)tr there is
exactly one transition bW ∈ box(E sco ρ)tr such that π ∈ W . In other words, if
each transition in E ‘contributes’ to exactly one transition in box(E sco ρ).

It turns out that each synchronised box expression F = E sco ρ can be trans-
formed into a semantically equivalent streamlined expression stl(F ) = F ′ =
E′ sco ρ′, in the following way. First, for every aπ ∈ box(E)tr , let

trans(aπ) = {bW ∈ box(F )tr | π ∈W} = {t | ∃(U, t) ∈ ρbox(E) : aπ ∈ U} .
For example, if we take [[a � (b ‖ c) � d]] sco {a �→ G, bc �→ A, c �→ C} with the
corresponding box depicted in Figure 1, then we have:

trans(a�L
) = {G�L

}
trans(d�R

) = ∅
trans(b�M �L) = {A�M �L,�M �R}
trans(c�M �R) = {A�M �L,�M �R , C�M �R}

Then a suitable E′ is obtained by replacing each occurrence of an action a ∈ A
in E corresponding to transition aπ in box(E) (i.e., identified by the path in the
syntax tree of E which corresponds to π), by:

– stop if trans(aπ) = ∅, and bW if trans(aπ) = {bW };
– b1W1

� (. . . � (bm−1
Wm−1

� bmWm
) . . . ) if trans(aπ) = {b1W1

, . . . , bmWm
} and m ≥ 2

(we assume a fixed total ordering on the transitions of box(F ) so that the
enumeration of trans(aπ) can be made unique).

Furthermore, ρ′ = {b|W |
W �→ bW | bW ∈ box(E sco ρ)tr} defines a suitable syn-

chronisation relation. For the above example, we obtain F ′ = E′ sco ρ′, with
E′ = ([[γ � (α‖ (α� ζ)) � stop]]) and ρ′ = {γ �→ γ, αα �→ α, ζ �→ ζ}, where
γ = G�L

, α = A�M �L,�M �R and ζ = C�M �R . The box corresponding to F ′ is
shown on the right in the bottom row of Figure 1.

We now observe that each transition of box(F ′) is of the form (bW )Y , where
bW ∈ box(E sco ρ)tr . As a result, we can define a bijection

λ : box(F ′)tr → box(F )tr (2)

by setting λ((bW )Y ) = bW , for each transition (bW )Y in box(F ′). Crucially, we
then obtain

Fact 5. The nets box(F ′) and box(F ) are isomorphic after replacing each tran-
sition label bW by b. Moreover, λ(f(box(F ′))) = f(box(F )), for f ∈ {sts, tsts}.
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3 Interval Temporal Logic

We now provide the syntax and semantics of a fragment of itl, including only
those constructs (basic and derived) which are used in the subsequent translation
of box expressions. In particular, we assume that V is a countable set of boolean
variables, all such variables being (the identities of) transitions of boxes created
using the box mapping.1 The fragment of the itl logic we need is defined by:

φ ::= true | flip(v) | skipstable(v) | φ ∧ φ′ | φ ∨ φ′ | φ ;φ′ | φ∗ | inf

where v ∈ V . The intuition behind the syntax is as follows: flip(v) inverts the
value of a boolean variable v over a unit interval while skipstable(v) keeps the
value of v over a unit interval; “ ; ” is a sequential composition operator (called
chop); “∗” is an iterative version of chop; and inf indicates an infinite interval.

A state is a mapping which assigns values to the (boolean) variables V , and
an interval σ is a possibly infinite non-empty sequence of states. Its length, |σ|,
is ω if σ is infinite, and otherwise its number of states minus 1. To simplify
definitions, we will denote σ as 〈σ0, σ1, . . . , σ|σ|〉, where σ|σ| is undefined if σ is
infinite. With such a notation, we denote hdσ = σ0 and tlσ = σ|σ| (whenever
σ is finite). Moreover, for 0 ≤ j & k ≤ |σ|, we denote σj..k = 〈σj , . . . , σk〉 and
σj = 〈σ0, . . . , σj〉 and σ(j) = 〈σj , . . . , σ|σ|〉. The meaning of formulas is given by
the satisfaction relation |= defined as follows:

– σ |= true
– σ |= flip(v) iff |σ| = 1 and hdσ(v) = ¬tlσ(v).
– σ |= skipstable(v) iff |σ| = 1 and hdσ(v) = tlσ(v).
– σ |= φ ∨ φ′ iff σ |= φ or σ |= φ′.
– σ |= φ ∧ φ′ iff σ |= φ and σ |= φ′.
– σ |= φ ;φ′ iff one of the following holds: (i) |σ| = ω and σ |= φ, or (ii) there

is r & |σ| such that σr |= φ and σ(r) |= φ′.
– σ |= φ∗ iff one of the following holds: (i) |σ| = 0, or (ii) there are 0 = r0 ≤

r1 ≤ · · · ≤ rn−1 & rn = |σ| such that, for all 1 ≤ l ≤ n, σrl−1..rl |= φ, or (iii)
|σ| = ω and there are infinitely many integers 0 = r0 ≤ r1 ≤ . . . such that
lim
j→ω

rj = ω and for all l ≥ 1, σrl−1..rl |= φ.

– σ |= inf iff |σ| = ω.

The set of variables occurring in a formula φ will be denoted by var(φ), and we
will denote, for a finite set of logic variables V ′ ⊆ V :

skipstable(V ′) =

{∧
v∈V ′ skipstable(v) if V ′ �= ∅

true otherwise

flip(V ′) =

{∨
v∈V ′ flip(v) ∧ skipstable(V ′ \ {v}) if V ′ �= ∅

inf otherwise .

To capture the semantical link between a box expression and the corre-
sponding formula, with each itl formula φ and interval σ satisfying σ |= φ,
1 The itl syntax is as in [5] except for the names of logic variables in V .
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we associate a sequence of sets γσ = Γ1 . . . Γ|σ|, where each Γj is given by
Γj = {v ∈ var(φ) | σj−1(v) �= σj(v)}. That is, each Γj records all the variables
which flipped their values at the point of entering the state σj . As a result, γσ can
provide a direct interpretation of σ in terms of sequences of steps of transitions
of box nets. Formally, for any itl formula φ, sts(φ) = {γσ | σ |= φ ∧ |σ| = ω}
and tsts(φ) = {γσ | σ |= φ ∧ |σ| < ω}.

The following results are used in the proofs of behavioural equivalence between
box expressions and the corresponding logic formulas (c.f. Fact 3).

Proposition 1. Let φ and φ′ be formulas with disjoint sets of variables, ψ =
skipstable(var(φ))∗, ψ′ = skipstable(var(φ′))∗ and f ∈ {sts, tsts}. Then

f(φ ∧ ψ′ ∨ φ′ ∧ ψ) = f(φ) ∪ f(φ′)
f(φ ∧ φ′) = f(φ)‖ f(φ′)

sts((φ ∧ ψ′) ; (φ′ ∧ ψ)) = sts(φ) ∪ tsts(φ) ◦ sts(φ′)
tsts((φ ∧ ψ′) ; (φ′ ∧ ψ)) = tsts(φ) ◦ tsts(φ′)

Proposition 2. Let φ1, φ2 and φ3 be formulas with mutually disjoint sets of
variables and ψi,j = skipstable(var(φi) ∪ var(φj))

∗. Then

sts((φ1 ∧ ψ2,3) ; ((φ2 ∧ ψ1,3)
∗ ; (φ3 ∧ ψ1,2)) = sts(φ1) ∪

tsts(φ1) ◦ tsts(φ2)
∗ ◦ sts(φ2) ∪ tsts(φ1) ◦ tsts(φ2)

∗ ◦ sts(φ3)
tsts((φ1 ∧ ψ2,3) ; ((φ2 ∧ ψ1,3)

∗ ; (φ3 ∧ ψ1,2)) = tsts(φ1) ◦ tsts(φ2)
∗ ◦ tsts(φ3) .

Proposition 3. Let φ′ be a formula obtained from φ by a consistent renaming
of variables given by a bijection λ and f ∈ {sts, tsts}. Then f(φ′) = λ(f(φ)).

Proposition 4. Let π·φ, where π ∈ Π, be obtained from φ by replacing each
variable aπ′ with aπ·π′ and f ∈ {sts, tsts}. Then f(π·φ) = π·f(φ).

4 From Box Expressions to Logic Formulas

To make the presentation more accessible, we will first show how to translate
non-synchronised box expressions, after that we will extend the translation to
the streamlined synchronised expressions, and finally we will deal with the case
of general synchronised expressions.

The translation for non-synchronised expressions is as follows (note that ex-
cept the formula for itl(a), skipstable is applied to sets of variables):

itl(stop) = inf
itl(a) = skipstable(aε)

∗ ; flip(aε) ; skipstable(aε)
∗

itl(E ;F ) = ;L·itl(E) ∧ skipstable( ;R·box(F )tr )∗ ;
;R·itl(F ) ∧ skipstable( ;L·box(E)tr )∗

itl(E�F ) = �L·itl(E) ∧ skipstable(�R·box(F )tr )∗ ∨
�R·itl(F ) ∧ skipstable(�L·box(E)tr )∗

itl(E ‖F ) = 	L·itl(E) ∧ 	R·itl(F )
itl([[E � F � G]]) = �L·itl(E) ∧ skipstable(�M ·box(F )tr ∪ �R·box(G)tr )∗ ;

(�M ·itl(F ) ∧ skipstable(�L·box(E)tr ∪ �R·box(G)tr )∗)∗ ;
�R·itl(G) ∧ skipstable(�L·box(E)tr ∪ �M ·box(F )tr )∗ .
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For example, if we take the box expressions E = a ; b and F = c� (a ; b) gener-
ating two of the boxes in Figure 1, then we obtain:

itl(E) =
(
sfs(a ;L) ∧ skipstable(b ;R)

∗) ;
(
sfs(b ;R) ∧ skipstable(a ;L)

∗)
itl(F ) =

(
sfs(c�L

) ∧ skipstable({a�R ;L , b�R ;R})∗
)
∨((

(sfs(a�R ;L) ∧ skipstable(b�R ;R)
∗) ;

(sfs(b�R ;R) ∧ skipstable(a�R ;L)
∗)

)
∧ skipstable(c�L

)∗
)

where, for every v ∈ V , sfs(v) = skipstable(v)∗ ; flip(v) ; skipstable(v)∗.
It can easily be checked that the variables occurring in itl(E) are precisely

the transitions of box(E). Crucially, however, the step semantics of a non-syn-
chronised box expression and the corresponding itl formula coincide, i.e., we
have sts(itl(E)) = sts(box(E)) and tsts(itl(E)) = tsts(box(E)). Such a result is
very strong as it basically states that the behavioural properties of non-synchro-
nised box expressions related to the sequencing of executed actions can be re-
interpreted as properties of the translated formulas, assuming that an execution
of a transition is ‘simulated’ by a flipping of the corresponding boolean variable.
Extending such a result to streamlined expressions highlights the way in which
the box expression synchronisation mechanism (through merging transitions),
and the itl synchronisation mechanism (through flipping variables in different
parts of a formula) match each other.

Having dealt with non-synchronised expression, we can turn our attention to
a streamlined box expression F = E sco ρ. In such a case, itl(F ) is obtained from
itl(E) by replacing each occurrence of each variable v by the unique variable in
trans(v). We then obtain that

sts(itl(F )) = sts(box(F )) and tsts(itl(F )) = tsts(box(F )) . (3)

Finally, suppose that F = E sco ρ is an arbitrary synchronised expression.
Given Fact 5, we could now simply take the corresponding streamlined expres-
sion stl(F ) and, after consistently renaming variables according to the bijection
λ defined in (2), obtain the desired result. Having said that, we can proceed
without pre-processing and conservatively extend the previous translation. More
precisely, for any synchronised expression F = E sco ρ we construct itl(F ) from
itl(E) by replacing:

– each sub-formula flip(t) by flip(trans(t));
– each sub-formula skipstable(t) by skipstable(trans(t)); and
– each sub-formula skipstable(V ′) by skipstable(

⋃
trans(V ′)).

We then obtain our main result (the proof of which relies on (3) and therefore
it additionally justifies our interest in streamlined expressions).

Theorem 5. Let F = E sco ρ be a synchronised box expression. Moreover, let
f ∈ {sts, tsts}. Then f(itl(F )) = f(box(F )).

Consider a non-streamlined expression F = E sco {a �→ G, bc �→ A, c �→ C},
where E = [[a � (b ‖ c) � d]]. Note that boxes corresponding to E and F are
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shown in the bottom row of Figure 1. We first derive

itl(E) = sfs(a�L
) ∧ skipstable({b�M �L , c�M �R , d�R

})∗ ;
(sfs(b�M �L) ∧ sfs(c�M �R) ∧ skipstable({a�L

, d�R
})∗)∗ ;

sfs(d�R
) ∧ skipstable({a�L

, b�M �L , c�M �R})∗ .

To prepare for applying scoping we derive

trans(a�L
) = {G�L

} = {γ}
trans(d�R) = ∅

trans(b�M �L) = {A�M �L,�M �R} = {α}
trans(c�M �R) = {A�M �L,�M �R , C�M �R} = {α, ζ}

which leads to

itl(F ) = sfs(γ) ∧ skipstable({α, ζ})∗ ;
(sfs(α) ∧ sfs({α, ζ}) ∧ skipstable(γ)∗)∗ ;
inf ∧ skipstable({γ, α, ζ})∗ .

Hence, in an equivalent form, we obtain:

itl(F ) = sfs(γ) ∧ skipstable({α, ζ})∗ ;(
sfs(α) ∧(
skipstable({α, ζ})∗ ; flip(α) ∧ skipstable(ζ) ; skipstable({α, ζ})∗
∨

skipstable({α, ζ})∗ ; flip(ζ) ∧ skipstable(α) ; skipstable({α, ζ})∗
)

∧ skipstable(γ)∗
)∗

;
inf ∧ skipstable({γ, α, ζ})∗ .

Note that tsts(F ) = ∅ and

sts(F ) = ∅∞ ∪
∅∗ ◦ {γ} ◦∅∞ ∪
∅∗ ◦ {γ} ◦ (∅∗ ◦ {α})∗∅∞ ∪
∅∗ ◦ {γ} ◦ (∅∗ ◦ {α})∗ ◦∅∗ ◦ {ζ} ◦∅∞ .

5 Conclusions

In the past, different kinds of logics have been used as formalism for expressing
correctness properties of systems specified using Petri nets. When it comes to
the relationship between logics and Petri nets, we feel that the work on the
connections between linear logic [7] and Place Transition nets was the closest one.
However, the main concern there was the handling of multiple token occurrences
in net places whereas here nets can hold at most two tokens in a single place ever.
Another way in which logics and Petri nets were discussed was reported in [13]
which provided a characterisation of Petri net languages in terms of second-order
logical formulas.

The results presented in this paper provide a very close structural connection
between ba and itl. In our future work we plan to investigate what is the
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subset of itl which can be modelled by ba. A longer time goal is the deve-
lopment of a hybrid verification methodology combining itl and ba techniques.
For example, sequential algorithms and infinite data structures could be treated
by itl techniques [3,8,10], while intensive parallel or communicating aspects of
systems could be treated, e.g., by net unfoldings [6,9].
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Abstract. The potential double exponential blow-up for the genera-
tion of deterministic ω-automata for linear temporal logic formulas mo-
tivates research on weaker forms of determinism. One of these notions is
the good-for-games property that has been introduced by Henzinger and
Piterman together with an algorithm for generating good-for-games au-
tomata from nondeterministic Büchi automata. The contribution of our
paper is twofold. First, we report on an implementation of this algorithms
and exhaustive experiments. Second, we show how good-for-games au-
tomata can be used for the quantitative analysis of systems modeled by
Markov decision processes against ω-regular specifications and evaluate
this new method by a series of experiments.

1 Introduction

The automata-theoretic approach to formal verification relies on the effective
translation of specifications, e.g., formulas of some temporal logic such as linear
temporal logic (LTL) into automata over infinite words (ω-automata) [34,6,12].
The verification problem for finite-state system models is then solvable by ana-
lyzing the product of the system model and the automaton for the formula. In
the classical setting where the system model can be seen as a nondeterministic
automaton, nondeterministic ω-automata suffice. For some applications, such as
game-based synthesis and probabilistic model-checking problems, the nondeter-
minism of the ω-automaton poses a problem. Used as a monitor to determine
the winning strategies of turn-based two-player games, the lack of look-ahead
beyond the players’ choices in general precludes the use of nondeterministic
automata. Similarly, in probabilistic model checking, the lack of look-ahead be-
yond the probabilistic choices renders nondeterministic automata unsuitable in
general. In these settings, the use of deterministic ω-automata resolves these
problems at the cost of a further worst-case exponential determinization con-
struction [26,31,25]. Thus, there is considerable interest in methods that tackle
the worst-case double exponential time-complexity of algorithms caused by the
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construction of deterministic ω-automata for LTL formulas. This includes for
example variants of the determinization construction for nondeterministic Büchi
automata (NBA) [28,32], heuristics [14,15] and the direct translation from frag-
ments of LTL to deterministic automata [24,17,1]. Instead of reducing the num-
ber of states, [27] provides a translation from non-confluent NBA that aims
to generate a compact symbolic representation of the generated deterministic
automata based on binary decision diagrams (BDDs).

There are also several attempts to avoid determinization in certain scenar-
ios [21,18] and provide better theoretical complexity and performance in prac-
tice. Henzinger and Piterman [13] introduce a special property for nondeter-
ministic automata, being good-for-games (GFG), that is fulfilled by all deter-
ministic automata but still permits nondeterministic choices. [13] proposes an
algorithm, called the HP-algorithm here, for the construction of a nondetermin-
istic GFG automaton with parity acceptance from an NBA that is amenable
to a symbolic representation. The number of states in the constructed GFG
automaton is still exponential in the number of states of the given NBA, but
a smaller worst-case bound on the number of states can be provided than for
Safra’s determinization algorithm [31]. Among others, [4] introduced the notion
determinizable-by-pruning for automata that have an embedded deterministic
automaton for the same language. [4] states the existence of GFG automata
that are not determinizable-by-pruning, but we are not aware of any result stat-
ing the existence of languages where GFG automata are more succinct than
deterministic ones. To the best of our knowledge, the HP-algorithm is the sole
published algorithm for the construction of GFG automata and it has not been
implemented or experimentally evaluated yet.

In the context of probabilistic model checking for finite-state Markov chains,
[8,3] propose the use of unambiguous automata that can be generated from LTL
formulas with a single exponential blow-up in the worst case. Alternative ap-
proaches that also lead to single exponential-time model-checking algorithms for
Markov chains and LTL specifications have been presented in [5] using weak al-
ternating automata and in [7] using an iterative approach to integrate the effect
of the temporal modalities of a given LTL formula ϕ in the Markov chain. Given
that the analogous problem is 2EXPTIME-complete for models where nonde-
terministic and probabilistic choices alternate [7], there is no hope to generalize
these results for Markov decision processes (MDPs). Only for the qualitative
analysis of MDPs where the task is to show that an ω-regular path property
holds with probability 1, no matter how the nondeterminism is resolved, Büchi
automata that are deterministic-in-limit are shown to be sufficient [34,7].

Contribution. The purpose of our paper is to study whether GFG automata are
adequate in the context of probabilistic model checking, both at the theoretical
and the practical level. At the theoretical level, we answer in the affirmative and
provide algorithms for the computation of maximal or minimal probabilities for
path properties specified by GFG automata in finite-state Markov decision pro-
cesses (MDPs). The time complexity of our algorithm is polynomial in the size
of the given MDP and GFG automaton. To evaluate the GFG-based approach



Are Good-for-Games Automata Good for Probabilistic Model Checking? 455

empirically, we have implemented the HP-algorithm (and various variants) sym-
bolically using binary decision diagrams (BDDs). In a series of experiments,
we study the performance of the HP-algorithm – from LTL formula via NBA to
GFGautomaton – compared to the determinization implementation of ltl2dstar
[14,15] based on Safra’s construction.We have furthermore implemented theGFG-
based approach for the analysis ofMDPs in the popular probabilisticmodel checker
Prism [22] and evaluated its performance in practice.

Outline. Section 2 briefly introduces our notations for ω-automata and MDPs.
The applicability of GFG automata for the quantitative analysis of MDPs is
shown in Section 3. In Section 4, we study the HP-algorithm in detail and present
a few heuristics that have been integrated in our implementation. Section 5 re-
ports on our experiments, Section 6 contains some concluding remarks. Omitted
proofs and other additional material can be found in the technical report [16].

2 Preliminaries

Throughout the paper, the reader is supposed to be familiar with the basic
principles of ω-automata, games and temporal logics. For details we refer to
[6,12]. We briefly summarize our notations for ω-automata, present the definition
of good-for-games automata [13] and provide a condensed survey of the relevant
principles of Markov decision processes (MDPs). Further details on MDPs and
their use in the context of model checking can be found e.g. in [30,2].

Automata over Infinite Words. An ω-automaton A = (Q,Σ, δ, q0, Acc) is a
tuple, where Q is a finite set of states, Σ is a finite alphabet, δ : Q×Σ → 2Q is
the (nondeterministic) transition function and q0 ∈ Q is the initial state. The last
component Acc is the acceptance condition (see below). The size of |A| denotes
the number of states in A. A is said to be complete, if δ(q, σ) �= ∅ for all states
q ∈ Q and all symbols σ ∈ Σ. A is called deterministic, if |δ(q, σ)| ≤ 1 for all q ∈
Q and σ ∈ Σ. A run in A for an infinite word w = σ0 σ1 σ2 . . . ∈ Σω is a sequence
ρ = q0 q1 q2 . . . ∈ Qω starting in the initial state q0 such that qi+1 ∈ δ(qi, a) for all
i ∈ N. We write inf(ρ) to denote the set of all states occurring infinitely often in
ρ. A run ρ is called accepting, if it meets the acceptance condition Acc, denoted
ρ |= Acc. We consider here the following three types of acceptance conditions
and describe their constraints for infinite runs:

– Büchi: Acc = F is a set of states, i.e., F ⊆ Q, with the meaning �♦F
– parity: Acc is a function col : Q→ N assigning to each state q a parity color

and requiring that the least parity color appearing infinitely often is even
– Rabin: Acc is a set consisting of pairs (E,F ) with E,F ⊆ Q, imposing the

constraint
∨

(E,F )∈Acc

(♦�¬E ∧ �♦F )

Büchi acceptance can be seen as a special case of parity acceptance which again
can be seen as a special case of Rabin acceptance. We use the standard notations
NBA (NRA, NPA) for nondeterministic Büchi (Rabin, parity) automata and
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DBA, DRA, DPA for their deterministic versions. The language of A, denoted
L(A), consists of all infinite words w ∈ Σω that have at least one accepting run
in A, i.e., w ∈ L(A) iff there exists a run ρ for w with ρ |= Acc.

It is well-known that the classes of languages recognizable by NBA, NRA,
NPA, DRA or DPA are the same (the so-called ω-regular languages), while DBA
are less powerful. For each LTL formula ϕ with atomic propositions in some finite
set AP , the semantics of ϕ can be described as an ω-regular language L(ϕ) over
the alphabet Σ = 2AP and there is an NBA A for ϕ (i.e., L(ϕ) = L(A)) whose
size is at most exponential in the formula length |ϕ|.
Good-for-Games (GFG) Automata. The formal definition of GFG automata
[13] relies on a game-based view of ω-automata. Given an ω-automaton A as
before, we consider A as the game arena of a turn-based two-player game,
called monitor game: if the current state is q then player 1 chooses a sym-
bol σ ∈ Σ whereas the other player (player 0) has to answer by a successor
state q′ ∈ δ(q, σ), i.e., resolve the nondeterminism. In the next round q′ becomes
the current state. A play is an alternating sequence ς = q0 σ0 q1 σ1 q2 σ2 . . . of
states and (action) symbols in the alphabet Σ starting with the initial state
q0. Intuitively, the σi’s are the symbols chosen by player 1 and the qi’s are the
states chosen by player 0 in round i. Player 0 wins the play ς if ς is infinite
and if ς |Σ = σ0 σ1 σ2 . . . ∈ L(A) then ς |Q = q0 q1 q2 . . . is an accepting run. A
strategy for player 0 is a function f : (Q×Σ)+ → Q with f(. . . q σ) ∈ δ(q, σ). A
play ς = q0 σ0 q1 σ1 q2 . . . is said to be f-conform or a f-play if qi = f(ς ↓ i) for
all i ≥ 1 where ς ↓ i = q0 σ0 . . . σi−2 . . . qi−1σi is the prefix of ρ that ends with
the chosen symbol in round i. An automaton A is called good-for-games if there
is a strategy f such that player 0 wins each f-play. Such strategies will be called
GFG-strategies for A. Obviously, each deterministic automaton enjoys the GFG
property. GFG automata with Rabin or parity condition cover the full class of
ω-regular languages, while GFG automata with Büchi acceptance do not [4]. For
illustrating examples of GFG automata see [16].

Markov Decision Processes (MDP). MDPs are an operational model for
systems that exhibit nondeterministic and probabilistic choices. For the purposes
of this paper, we formalize an MDP by a tuple M = (S,Act, P, s0,AP , �) where
S is a finite set of states, s0 ∈ S is the initial state, Act a finite set of actions
and P : S ×Act × S → [0, 1] is the transition probability function satisfying:∑

s′∈S
P (s, α, s′) ∈ {0, 1} for all s ∈ S, α ∈ Act .

We write Act(s) for the set of actions α that are enabled in s, i.e., P (s, α, s′) > 0
for some s′ ∈ S, in which case s′ �→ P (s, α, s′) is a distribution formalizing the
probabilistic effect of taking action α in state s. We refer to the triples (s, α, s′)
with P (s, α, s′) > 0 as a step. The choice between the enabled actions is viewed
to be nondeterministic. For technical reasons, we require Act(s) �= ∅ for all
states s. The last two components AP and � serve to formalize properties of
paths inM. Formally, AP is a finite set of atomic propositions and � : S → 2AP

assigns to each state s the set �(s) of atomic propositions that hold in s. Paths
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in M are finite or infinite sequences π = s0 α0 s1 α2 s2 α3 . . . starting in the
initial state s0 that are built by consecutive steps, i.e., P (si, αi, si+1) > 0 for all
i. The trace of π is the word over the alphabet Σ = 2AP that arises by taking
the projections to the state labels, i.e., trace(π) = �(s0) �(s1) �(s2) . . .. For an
LTL formula ϕ over AP we write π |= ϕ if trace(π) ∈ L(ϕ).

As the monitor game in nondeterministic automata, MDPs can be seen as
stochastic games, also called a 1 1

2 -player games. The first (full) player resolves
the nondeterministic choice by selecting an enabled action α of the current state
s. The second (half) player behaves probabilistically and selects a successor state
s′ with P (s, α, s′) > 0. Strategies for the full player are called schedulers. Since
the behavior of M is purely probabilistic if some scheduler s is fixed, one can
reason about the probability of path events. If L is an ω-regular language then
PrsM(L) denotes the probability under s for the set of infinite paths π with
trace(π) ∈ L. In notations like PrsM(ϕ) or PrsM(A) we identify LTL formulas
ϕ and ω-automata A with their languages. For the mathematical details of the
underlying sigma-algebra and probability measure, we refer to [30,2].

For a worst-case analysis of a system modeled by an MDP M, one ranges
over all initial states and all schedulers (i.e., all possible resolutions of the
nondeterminism) and considers the maximal or minimal probabilities for some
ω-regular language L. Depending on whether L represents a desired or unde-
sired path property, the quantitative worst-case analysis amounts to computing
Prmin
M (ϕ) = mins Pr

s
M(L) or Prmax

M (L) = maxs Pr
s
M(L).

3 Automata-Based Analysis of Markov Decision Processes

We address the task to compute the maximal or minimal probability in an MDP
M for the path property imposed by a nondeterministic ω-automaton A. The
standard approach, see e.g. [2], assumes A to be deterministic and relies on a
product construction where the transitions ofM are simply annotated with the
unique corresponding transition in A. Thus,M⊗A can be seen as a refinement
of M since A does not not affect M’s behaviors, but attaches information on
A’s current state for the prefixes of the traces induced by the paths of M.

We now modify the standard definition of the product for nondeterminis-
tic ω-automaton. The crucial difference is that the actions are now pairs 〈α, p〉
consisting of an action in M and a state in A, representing the nondetermin-
istic alternatives in both the MDP M and the automaton A. Formally, let
M = (S,Act, P, s0,AP , �) be an MDP and A = (Q,Σ, δ, q0, Acc) a complete
nondeterministic ω-automaton with Σ = 2AP . The product MDP is

M⊗A = (S ×Q,Act×Q,P ′, 〈s0, q0〉,AP , �′)

where the transition probability function P ′ is given by P ′(〈s, q〉, 〈α, p〉, 〈s′, q′〉)
= P (s, α, s′) if p = q′ ∈ δ(q, �(s)). In all other cases P ′(〈s, q〉, 〈α, p〉, 〈s′, q′〉) = 0.
The assumption that A is complete yields that for each α ∈ Act(s) there is
some action 〈α, q′〉 ∈ Act(〈s, q〉) for all states s in M and q in A. The labeling
function is given by �′(〈s, q〉) = {q}. Thus, the traces inM⊗A are words over the
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alphabet Q. Likewise, A’s acceptance condition Acc can be seen as a language
over Q, which permits to treat Acc as a property that the paths inM⊗A might
or might not have. We prove in [16]:

Theorem 1. For each MDPM and nondeterministic ω-automaton A as above:

(a) Prmax
M⊗A

(
Acc

)
≤ Prmax

M
(
A

)
(b) If A is good-for-games then: Prmax

M⊗A
(
Acc

)
= Prmax

M
(
A

)
Theorem 1 (b) shows that with a slightly modified definition of the product,
the techniques that are known for the quantitative analysis of MDPs against
deterministic ω-automata specifications are also applicable for GFG automata.
The computation of maximal probabilities for properties given by an ω-regular
acceptance condition Acc (e.g., Büchi, Rabin or parity) can be carried out by
a graph analysis that replaces Acc with a reachability condition and linear pro-
gramming techniques for computing maximal reachability probabilities. See e.g.
[2]. The time complexity is polynomial in the size of the M and A. Thus, if
the specification is given in terms of an LTL formula ϕ then the costs of our
GFG-based approach are dominated by the generation of a GFG automaton for
ϕ. Minimal probabilities can be handled by using Prmin

M (ϕ) = 1− Prmax
M (¬ϕ).

[20,19] proves that a double exponential blow-up for translating LTL to de-
terministic ω-automata (of any type) is unavoidable. We adapted the proof in
[19] for GFG automata (see [16]). Thus, the double exponential time complex-
ity of the GFG-based approach is in accordance with the known 2EXPTIME-
completeness for the analysis of MDPs against LTL specifications [7].

Theorem 2. There exists a family of LTL formulas (ϕ)n∈N such that

|ϕn| = O(n), while every GFG automaton An for ϕn has at least 22
Ω(n)

states.

4 From LTL to GFG Automata

We have previously shown [14,15] that it is possible in practice, using the tool
ltl2dstar, to obtain deterministic ω-automata for a wide range of LTL for-
mula ϕ via the translation to an NBA and Safra’s determinization construction
[31] refined by various heuristics. Here, we are interested in replacing Safra’s
determinization algorithm with the HP-algorithm [13] to generate a GFG au-
tomaton instead of a deterministic automaton. We first provide an outline of the
HP-algorithm and then explain a few new heuristics.

The HP-algorithm transforms an NBA B = (Q,Σ, δ, q0, F ) with |Q| = n
states into a GFG automaton A with parity acceptance and at most 2n · n2n

states and 2n parity colors (or an NRA with n Rabin pairs), which improves on
the upper bound given for Safra’s determinization algorithm. We recall here the
main concepts, for a formal description we refer to [13]. Like Safra’s construc-
tion, the HP-algorithm relies on the simultaneous tracking of multiple subset
constructions to determine acceptance or rejection in the NBA. However, while
the states of Safra’s DRA organize the subsets in trees, the HP-algorithm uses
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a simpler, linear arrangement of the subsets. The state space P = (2Q × 2Q)n

of the GFG automaton A consists of n pairs of subsets of NBA states Q, i.e.,
states of the form p = 〈(A1, B1), . . . , (An, Bn)〉 where Bi ⊆ Ai ⊆ Q, plus some
additional constraints on the state space. Each set Bi serves to mark those states
in Ai that were reached via some accepting state in F of the NBA. The successor
state in A for symbol σ is obtained by applying the transition function δ to each
of the subsets and adding states in F to the Bi subsets. In crucial difference
to Safra’s construction, the HP-algorithm however then introduces significant
nondeterminism by allowing A to discard an arbitrary number of states in any
of the subsets. For p = 〈. . . (Ai, Bi) . . .〉, the set A′i in a σ-successor p′ of A
thus does not correspond to A′i = δ(Ai, σ) but there is a nondeterministic choice
between any A′i satisfying A′i ⊆ δ(Ai, σ), including the empty set. Whenever
some Ai is empty, A can “reset” Ai by setting Ai to some subset of the first set
A1. Such resets are reflected in the acceptance condition of A as “bad” events
for the pair i, as they signify that the previously tracked runs terminated. The
“good” events in the acceptance condition occur whenever all states in an Ai are
marked as having recently visited F , i.e., whenever Ai = Bi �= ∅. In the next
step, B′

i is then cleared and the tracking of visits to F starts anew. Infinitely
many “good” events without “bad” events then correspond to the existence of
an accepting run in the NBA B. The HP-algorithm relies on the GFG-strategy to
resolve the nondeterminism in the constructed automaton A, i.e., which states
in the subsets are kept, which are dropped and when to reset. There is a large
amount of nondeterminism and a lot of combinatorial possibilities in the reach-
able state space of A. This is confirmed by our experiments, e.g., applying the
construction to the two-state NBA for ♦�a already yields a GFG automaton
with 16 states, where ltl2dstar generates a two-state DRA. As stated in [13],
the HP-algorithm is thus not well-suited for an explicit representation for A,
but is intended for a symbolic implementation. In this context, [13] briefly dis-
cusses the possibility of variants of the transition function in the GFG automaton
that either apply more or less strict constraints on the relationship enforced be-
tween the (Ai, Bi) pairs in each state. In particular, [13] posits that introducing
even further nondeterminism (and increasing the number of possible states) by
loosening a disjunctness requirement on the Ai may lead to a smaller symbolic
representation. In our experiments, we will refer to this as the loose variant.

Iterative Approach. In the context of games, [13] proposes an iterative ap-
proach to the HP-algorithm by successively constructing the automata Am ob-
tained by using only the first m of the n pairs, i.e., by setting Ai = Bi = ∅
for all m < i ≤ n. In the acceptance condition this reduces the number of re-
quired parity colors to 2m and Rabin pairs to m as well. For these automata,
L(Am) = L(A) = L(B), but there is no guarantee that Am for m < n is good-
for-games by construction. We start with m = 1 and increase m until early
success or reaching m = n. Our experimental results indeed show that early
termination appears rather often.

We now explain how the iterative approach of [13] can be integrated in the
GFG-based quantitative analysis of MDPs against LTL specifications. Suppose,
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e.g., that the task is to show that Prmax
M

(
ϕ
)
≥ θ for some LTL formula ϕ and

threshold θ ∈ ]0, 1]. Let B be an n-state NBA with L(B) = L(ϕ) and Am the
automaton obtained using only the firstm ≤ n pairs in the HP-algorithm applied
to B. Let Accm denote the acceptance condition of Am. By Theorem 1 (a):

If Prmax
M⊗Am

(
Accm

)
≥ θ for some m ≤ n then Prmax

M
(
ϕ
)
≥ θ.

Moreover, Prmax
M⊗Am

(
Accm

)
≤ Prmax

M⊗Am+1

(
Accm+1

)
for m < n. These obser-

vations suggest an approach that resembles the classical abstraction-refinement
schema: starting with m = 1, we carry out the quantitative analysis ofM⊗Am

against Accm and successively increase m until Prmax
M⊗Am

(
Accm

)
≥ θ or Am is

GFG (which is the case at the latest when m = n). As an additional heuristic to
increase the performance of the linear programming techniques that are applied
for the quantitative analysis ofM⊗Am against Accm, one can reuse the results
computed for M⊗Am−1 and Accm−1 as initial values.

It remains to explain how to check whether Am has the GFG property. For
details we refer to [16]. In this aspect, our prototype implementation departs
from [13] and checks whether Am is GFG by solving a Rabin game (itself an
NP-complete problem) constructed fromAm and a DRA for ¬ϕ constructed with
ltl2dstar while [13] proposes an algorithm based on checking fair simulation.
To study the impact of the iterative approach in terms of the number of required
iterations and the size of the resulting GFG automata, the choice of the GFG
test is irrelevant.

Union Operator for Disjunctive Formulas. For generating a deterministic
automaton from an LTL formula, we have shown in [14] that optionally handling
disjunctive LTL formulas of the form ϕ = ϕ1 ∨ϕ2 by constructing DRA A1 and
A2 for the subformulas ϕ1 and ϕ2 and then obtaining the DRA A1 ∪A2 for the
language L(A1) ∪ L(A2) via a product construction can be very beneficial in
practice. The definition of A1 ∪A2 used in [14] can easily be extended to NRA.
The GFG property is preserved by the union construction. See [16].

5 Implementation and Experiments

We have implemented the HP-algorithm in a tool we refer to as ltl2gfg. Based
on ltl2gfg, we have additionally implemented the GFG-based quantitative
analysis of MDPs in Prism. After a brief overview of ltl2gfg, we report on our
experiments and comparison with the determinization approach of ltl2dstar.

LTL2GFG. Given an LTL formula ϕ, our implementation ltl2gfg constructs
a symbolic, BDD-based representation of a GFG-NPA for ϕ. It first converts
ϕ into an (explicitly represented) NBA B. In our experiments, we use ltl2ba

v1.1 [11] for this task. To facilitate an efficient symbolic representation of the
various subsets used in the HP-algorithm, B is then converted to a symbolic
representation, using a unary encoding of the |Q| = n states of B, i.e., using one
boolean variable qi per state. The state space of the GFG-automaton A, i.e.,
the n pairs (Ai, Bi) is likewise encoded by n2 boolean variables ai,j and bi,j, i.e.,
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Table 1. Statistics for the automata Aϕ constructed for the 94 benchmark formulas.
Number of Aϕ constructed within a given timeframe and a given range of BDD sizes.

Aϕ with constr. time Aϕ with BDD size
aborted <1s <10s <1m <30m <10 <102 <103 <104 <105 ≥105

ltl2dstar std. 0 90 91 92 94 4 65 87 90 91 3
no opt. 0 90 90 92 94 3 48 78 89 90 4

ltl2gfg std. 39 40 47 48 55 3 6 19 26 36 19
std., dynamic 45 34 36 48 49 5 8 19 36 39 10

loose, dynamic 34 43 49 56 60 5 14 31 47 56 4
lo., union, dyn. 29 52 59 61 65 4 13 35 54 60 5

lo., iterative 20 74 74 74 74 3 19 39 60 74 0
lo., it., un., dyn. 18 70 72 74 76 4 32 63 70 76 0

ai,j is true iff NBA state qj ∈ Ai and bi,j is true iff qj ∈ Bi for 1 ≤ i, j ≤ n. To
allow the encoding of the transition relations of A and B, each state variable has
a primed copy, i.e., q′i, a

′
i,j and b′i,j and each of the k atomic proposition in ϕ is

represented by a boolean variable li. For a BDD-based symbolic representation,
the order of the variables is crucial. The state variables and their copies are
always kept adjacent. The standard variable ordering used by ltl2gfg is then
an interleaving of the ai,j and bi,j variables with the qj variables, i.e.,
l1 < . . . < lk < q1 < . . . < qj < a1,j < b1,j < a2,j < b2,j < . . . < qj+1 < . . . .
ltl2gfg uses the JINC C++ BDD library for the symbolic representation.

Experimental Results for the HP-algorithm. We report here on a number
of experiments with ltl2gfg using the benchmark formulas used in the evalu-
ation of ltl2dstar in [14,15], i.e., 39 LTL formulas from the literature [10,33]
and 55 pattern formulas [9] that represent common specification patterns. All
our experiments were carried out on a computer with 2 Intel E5-2680 8-core
CPUs at 2.70 GHz with 384GB of RAM running Linux and with a memory
limit of 10 GB and a time-out of 30 minutes for each formula.

For the automata Aϕ, we report on the number of BDD nodes in the encoding
of the transition function, as this the most crucial aspect. To allow a fair com-
parison with the explicit determinization in ltl2dstar, we consider symbolic
encodings of the DRA Aϕ obtained from ltl2dstar 0.5.1. This encoding uses
0log2 n1 boolean variables to straightforwardly encode the n state indices in Aϕ,
which is the same encoding employed in Prism for its DRA-based approach to
LTL model checking.

Table 1 presents statistics for the construction of DRA with ltl2dstar and
GFG-NPA with ltl2gfg for the benchmark formulas. The ltl2dstar results
are given once with standard settings and for a variant where all optimizations
are disabled, i.e., with purely Safra’s construction. For ltl2gfg, we start with
the pure HP-algorithm and consider variants with the “loose” transition defini-
tion, the union construction, and with dynamic reordering of the variable order.
We also give statistics for the iterative approach, where ltl2gfg constructs the
partial automata Am until it can be shown (via solving a Rabin game [29]) that
the automaton is GFG.
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Table 2. Results of the iterative approach in ltl2gfg, for the loose variant. M is the
minimal value m ≤ n for which the partial NPA Am could be shown to be GFG.

with n NBA states
2 3 4 5 6 7 8 9 10 11 12 >12

number of ϕ 13 17 13 9 8 3 3 1 4 2 4 11
number of ϕ, M < n 11 17 13 8 8 2 2 1 0 0 1 3
number of ϕ, M = 1 11 8 5 4 2 1 1 0 0 0 1 3
number of ϕ, M = 2 2 9 8 4 6 1 1 1 0 0 0 0

number of ϕ, GFG check aborted 0 0 0 1 0 1 1 0 4 2 3 8

ltl2dstar constructed most of the automata in a few seconds, the most dif-
ficult was constructed in 95s and had 1.2 million BDD nodes. Apart from the
most difficult automata, the BDD sizes range in the hundreds and thousands.
For all the ltl2gfg variants, a significant fraction of automata could not be
constructed in the time and memory limits, around 40% for the standard HP-
algorithm, and dropping to around 20% for the best variant. The loose variant
by itself had a mixed effect, but in conjunction with dynamic reordering was gen-
erally beneficial. The union construction was very beneficial for the disjunctive
formulas. For example, the automata for �♦a→ �♦b could not be constructed
in the time limits with the standard HP-algorithm but could be handled using
the union construction. The iterative approach was successful as well in obtain-
ing smaller automata, which is explained by the fact that for a large number of
formulas it could be shown that the partial automata A1 or A2 were already
GFG, as detailed in Table 2. For the iterative approach we were mostly focused
on experimental data for the minimal value m for which Am becomes GFG
and the effect on the BDD size. Different algorithms or implementations for the
GFG check than the one used in ltl2gfg lead to the same final GFG automata,
but could improve the performance. At the end, despite the various approaches
implemented in ltl2gfg, there were only 6 formulas with relatively small au-
tomata where the BDD size of the smallest GFG automaton was smaller than
that of the DRA obtained from ltl2dstar (172 nodes instead of 229 nodes, 219
instead of 347, and the other 4 automata differing by 1 or 2 at a size of less than
20 nodes). We do not report here in detail on the number of reachable states
in the automata, as none of the GFG automata had a smaller number of states
than the DRA generated by ltl2dstar. In particular, the automata obtained
without the iterative approach often had millions and more states.

Implementation in PRISM. We have extended the MTBDD-based, symbolic
engines of Prism 4.1 with an implementation of our algorithm for computing
Prmax
M (ϕ) using GFG automata for ϕ (and Prmin

M (ϕ) using a GFG automaton
for ¬ϕ). We import the BDD of A generated with ltl2gfg into Prism and
perform the product with M and analysis in M⊗A symbolically. In its stan-
dard approach, Prism constructs an explicit DRA with an integrated version of
ltl2dstar, which is then symbolically encoded as described before. The analysis
is then carried out symbolically as well.
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Experiments in PRISM. As a benchmark, we used a Prism model [23] for
parts of the WLAN carrier-sense protocol of IEEE 802.11. As was to be expected
given our results on the automata construction, the GFG-based analysis did not
improve on the standard approach. Even using the optimal variant of ltl2gfg
for each formula, ignoring the automata construction times, and for cases where
the product M⊗A had a comparable BDD size for the GFG- and DRA-based
approach, the model checking using the GFG automata took significantly longer.
For further details, we refer to [16].

6 Conclusion

We have shown that GFG automata can replace deterministic automata for
the quantitative analysis of MDPs against ω-regular specifications without in-
creasing the asymptotic worst-case time complexity. To evaluate the GFG-based
approach from the practical side, we implemented the HP-algorithm, integrated
several heuristics, and performed exhaustive experiments for the LTL-to-GFG
construction and for probabilistic model checking. Our experimental results are
a bit disappointing, as the generated GFG automata were often larger than DRA
generated by the implementation of Safra’s algorithms in ltl2dstar, both in
the number of states and in the symbolic BDD-based representations. Thus,
our empirical results are in contrast to the expectation that the HP-algorithm
yields GFG automata that are better suited for symbolic approaches rather than
DRA generated by Safra’s algorithm. Also in the context of probabilistic model
checking, the GFG-based approach turned out to be more time- and memory-
consuming than the traditional approach with deterministic automata. However,
it is still too early to discard the concept of GFG automata for practical purposes.
Our negative empirical results might be an artefact of the HP-algorithm, which
is – to the best of our knowledge – the only known algorithm for the generation
of GFG automata that are not deterministic. Future directions are the design of
other algorithms for the construction of succinct GFG automata. Alternatively,
one might seek for automata types that are still adequate for probabilistic model
checking and other areas, but rely on weaker conditions than the GFG property.
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Abstract. We study the edit-distance of regular tree languages. The
edit-distance is a metric for measuring the similarity or dissimilarity
between two objects, and a regular tree language is a set of trees ac-
cepted by a finite-state tree automaton or described by a regular tree
grammar. Given two regular tree languages L and R, we define the edit-
distance d(L,R) between L and R to be the minimum edit-distance be-
tween a tree t1 ∈ L and t2 ∈ R, respectively. Based on tree automata for
L and R, we present a polynomial algorithm that computes d(L,R). We
also suggest how to use the edit-distance between two tree languages for
identifying a special common string between two context-free grammars.

Keywords: tree edit-distance, regular tree languages, tree automata,
dynamic programming.

1 Introduction

It is an important problem to measure the similarity or dissimilarity between
data in many applications [14,22,24]. For example, there are several similarity
measures between two strings [7,11,21] and one of the most well-known measures
is is the Levenshtein distance [11], which is often called the edit-distance in the
literature. The edit-distance problem is, then, to compute the shortest distance
between inputs. Researchers extended the edit-distance problem between strings
into the edit-distance problem between a string and a language, or between two
languages [3,8,9,12,13,19,20]. Another extension of the string edit-distance prob-
lem is the tree edit-distance problem [5,10,16,17,23]. The tree edit-distance prob-
lem is to find the minimum number of edit operations required to transform one
tree into the other. The tree edit-distance plays an important role for calculating
the similarity between structural data such as XML documents [18].
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Consider a tree t of size m (namely, there are m nodes in t) and let mh and
ml be the height and the number of leaves of t. Tai [17] considered the problem
of computing the tree edit-distance as a generalization of the string edit-distance
problem and designed an O(m2

l n
2
lmn) algorithm, where m and n are the sizes

of input trees. Later, Shasha and Zhang [23] improved Tai’s algorithm and pre-
sented an O(mn ·min{mh,ml} ·min{nh, nl}) algorithm, which runs in O(m2n2)
time in the worst-case. Klein [10] further improved this algorithm and obtained
an O(m2n logn) algorithm, where n ≥ m. Recently, Demaine et al. [5] suggested
an O(m2n(1 + log n

m )) time algorithm, for n ≥ m, using an optimal decomposi-
tion strategy. Note that all these algorithms allows both insertion or deletion of
internal nodes in a tree.

Selkow [16] considered the tree edit-distance model that requires insertion
and deletion to be allowed only at leaf nodes and called this problem the top-
down tree edit-distance problem. Then, he designed an O(mn) algorithm for the
problem. Researchers successfully applied the top-down tree edit-distance to sev-
eral applications [2,14,15]. For instance, Nierman and Jagadish [14] considered
several tree edit-distance definitions for clustering XML documents and demon-
strated that top-down tree edit-distance guarantees less mis-clusterings than the
general tree edit-distance and, thus, is a better clustering scheme.

We examine the top-down tree edit-distance of two regular tree languages
accepted by tree automata. There are many results on the problem of computing
the distance between languages [1,3,8,9,12]. A regular tree language is a set of
trees, and is specified by either a regular tree grammar or a finite-state tree
automaton. We propose an O(m2n2) algorithm for computing the edit-distance
between two regular tree languages of k-bounded trees and an O(m2n2 logmn)
algorithm for the edit-distance between two regular tree languages of unbounded
trees, where m and n are sizes of two input tree automata.

In Section 2, we give basic definitions and notations. Then, we introduce the
tree edit-distance problem in Section 3. We propose an algorithm for the edit-
distance between two regular tree languages of k-bounded trees in Section 4. We
also consider the unranked case in Section 5. Then, we show that our result can
be applied to the problem of measuring the similarity between two context-free
string languages in Section 6 and conclude the paper in Section 7.

2 Preliminaries

A ranked alphabet Σ is a pair of a finite set of characters and a function r : σ →
N∪{0}. We denote the set of elements of rank m by Σm ⊆ Σ, where m ≥ 0. The
set FΣ consists of Σ-labeled trees, where a node labeled by σ ∈ Σm form ≥ 0 has
exactlym children. We denote the set of trees overΣ by FΣ , which is the smallest
set S satisfying the following condition: if m ≥ 0, σ ∈ Σm and t1, . . . , tm ∈ S,
then σ(t1, . . . , tm) ∈ S. In an unranked tree each node has a finite number of
children but the label of a node does not determine the number of children and
there is no apriori upper bound on the number of children. Unranked trees can
be defined as above by replacing the condition “σ ∈ Σm” by “σ ∈ Σ”.
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A finite-state automaton (FA) A is specified by a tuple A = (Σ,Q, F, δ), where
Σ is an alphabet, Q is a finite set of states, F ⊆ Q is a set of final states, and δ
is a transition function. Given an FA A = (Q,Σ, F, δ), we define the size |A| of
A to be |Q|+ |dom(δ)|. Note that an FA accepts a regular language.

A nondeterministic ranked tree automaton (NTA) A is specified by a tu-
ple (Q,Σ, F, δ), where Q is a finite set of states, Σ is a ranked alphabet, F ⊆ Q
is a set of final states, and δ associates to each σ ∈ Σm a mapping σδ : Qm →
2Q,m ≥ 0. For each tree t = σ(t1, . . . , tm) ∈ FΣ , we define inductively the set
tδ ⊆ Q by setting q ∈ tg if and only if there exist qi ∈ (ti)δ, for 1 ≤ i ≤ m, such
that q ∈ σδ(q1, . . . , qm). Intuitively, tδ consists of the states of Q that A may
reach by reading the tree t. Thus, the tree language accepted by A is defined
as follows: L(A) = {t ∈ FΣ | tδ ∩ Qf �= ∅}. We define the size |A| of a ranked
TA A to be |Q|+

∑
σδ(q1,...,qm)→q(r(σ)+1). The automaton A is a deterministic

ranked tree automaton (DTA) if, for each σ ∈ Σm, where m ≥ 0, σδ is a partial
function Qm → Q. The nondeterministic (bottom-up or top-down) and deter-
ministic bottom-up tree automata accept the family of regular tree languages of
ranked trees.

A nondeterministic unranked tree automaton is specified by a tuple A =
(Σ,Q, F, δ), where Σ is an alphabet, Q is a finite set of states, F ⊆ Q is a
set of final states, and δ is a transition relation. For each q ∈ Q and σ ∈ Σ, we
define δ(q, σ) to be the horizontal language associated with q and σ. We denote
an FA for the horizontal language δ(q, a) of A by HA

q,σ. Then, according to the
transition relation δ, each σ ∈ Σ defines a partial function σδ : Q∗ → Q, where,
for w ∈ Q∗, q ∈ Q, q ∈ σδ(w) if w ∈ HA

q,σ. The tree language accepted by A

is defined as follows: L(A) = {t ∈ TΣ | t ∗→ qf ∈ F}. We define the size |A| of
an unranked TA A to be |Q| +

∑
q∈Q,σ∈Σ(|HA

q,σ | + 1). Naturally a ranked tree
automaton is a special case of an unranked tree automaton, where for σ ∈ Σm

and q ∈ Q we have always HA
q,σ ⊆ Qm.

For a tree t, we assume that all nodes are ordered in postorder and, thus, t
is an ordered tree. Let t[i] be the ith node of t and des(t[i]) be the set of all
descendants of t[i] including t[i] itself. Thus, t[l(i) . . . i] is the subtree rooted at
t[i], that is the subtree consisting of node i and all its descendants. Similarly, we
define anc(t[i]) to be the set of all ancestors of t[i] including t[i]. The size |t| of
t is the number of nodes in t. We denote the character labeling a node t[i] by
σ(i). Let θ be the empty tree. We say that yield(t) is a sequence of leaves in
t. A forest is a sequence of trees and ordered when it has a left-to-right order
among the trees. We only consider the ordered trees and the ordered forests in
this paper. We refer the reader to the literature [4,6] for more details on tree
automata.

3 Tree Edit-Distance

Given an alphabet Σ, let Ω = {(a → b) | a, b ∈ Σ ∪ {λ}} \ {(λ, λ)} be a set of
edit operations. There are three edit operations: deletions (a → λ), insertions
(λ → a) and substitutions (a → b) for a �= b. We associate a non-negative edit
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cost to each edit operation ωi ∈ Ω as a function C : Ω → R+. We assume that C
is a distance metric satisfying the following conditions:

(i) C(a→ b) ≥ 0, C(a→ a) = 0,
(ii) C(a→ b) = C(b→ a) and
(iii) C(a→ c) ≤ C(a→ b) + C(b→ c), where a, b, c ∈ Σ ∪ {λ}.

An edit script S ∈ Ω∗ between two trees t1 and t2 is a sequence of edit
operations transforming t1 into t2. The cost C(S) of S = s1s2 · · · sn is C(S) =∑n

i=1 C(si). An optimal edit script between t1 and t2 is an edit script of minimum
cost and the minimum cost is the tree edit-distance between t1 and t2.

Definition 1. The tree edit-distance d(t1, t2) of two trees t1 and t2 is

d(t1, t2) = min{C(S) | S is an edit script transforming t1 into t2}.

That is, if S is an optimal edit script that transforms t1 into t2, then C(S) =
d(t1, t2). We, in particular, consider the top-down tree edit-distance, which allows
deletions and insertions of nodes only at leaves; namely, a node can be inserted or
deleted only at leaf level. Thus, when an edit script S consists of edit operations
where insertions or deletions occur only at leaf level, we say that S is a top-down
edit script. We define the top-down tree edit-distance as follows:

Definition 2. The top-down tree edit-distance d(t1, t2) of two trees t1 and t2 is

d(t1, t2) = min{C(S) | S is a top-down edit script transforming t1 into t2}.

i
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Fig. 1. A (top-down) mapping example between two trees t1 and t2

The example mapping in Fig. 1 depicts an edit script S that transforms t1
into t2 by deleting a node d, inserting two nodes j and e, and substituting a
node h with k. Thus, the corresponding edit script S is

S = (a→ a)(λ→ j)(b→ b)(d→ λ)(c→ c)(λ→ e)(f → f)(h→ k)(i→ i).

Let T1 and T2 be the sets of nodes in t1 and t2, respectively. We define a
triple (M, t1, t2) to be a mapping from t1 to t2, where M ⊆ T1 × T2 is a set
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of pair of nodes (i, j) for 1 ≤ i ≤ |t1| and 1 ≤ j ≤ |t2|. We use M instead of
(M, t1, t2) for simplicity when there is no confusion. We assume that trees are
ordered in postorder. For any pair of (i1, j1) and (i2, j2) in M , the mapping M
has the following restrictions:

(i) i1 = i2 if and only if j1 = j2 (one-to-one)
(ii) i1 < i2 if and only if j1 < j2 (sibling order preserved)
(iii) t1[i1] ∈ anc(t1[i2]) if and only if t2[j1] ∈ anc(t2[j2]) (ancestor order pre-

served)

We say that a node t1[i] is touched by a line if there exists a pair (i, j) ∈ M .
Let I and J be the sets of nodes in t1 and t2, respectively, that are not touched
by any line in M . Then, we define the cost C(M) of M to be

C(M) =
∑

(i,j)∈M
C(σ(i)→ σ(j)) +

∑
i∈I

C(σ(i)→ λ) +
∑
j∈J

C(λ→ σ(j)).

Next we extend the concept of the edit-distance as a distance metric between
a tree and a tree language.

Definition 3. We define the edit-distance d(t, L) between a tree t and a tree
language L over Σ to be

d(t, L) = inf{d(t, t′) | t′ ∈ L}.

Then, we define the edit-distance between two tree languages as follows:

Definition 4. We define the edit-distance d(L,R) between two tree languages L
and R over Σ to be

d(L,R) = inf{d(t, t′) | t ∈ L and t′ ∈ R}.

In other words, the edit-distance between L and R is the minimum edit-
distance between the most similar pair of trees from two tree languages. Note that
these distance measures are symmetric. Thus, d(t, t′) = d(t′, t), d(t, L) = d(L, t),
and d(L,R) = d(R,L).

4 Edit-Distance of Regular Tree Languages

Before we tackle the main problem, we introduce k-bounded tree automata, which
have more expressive power than ranked TAs. Note that if we insert or delete
a node in a ranked tree, then it does not preserve its rank anymore. Therefore,
instead of considering ranked TAs, we use TAs that allow only a finite number
of children.

Definition 5. A k-bounded tree automaton is specified by a tuple

A = (Σ,Q, F, δ),

where Σ is an alphabet, Q is a finite set of states, F ⊆ Q is a set of final states,
and δ associates to each σ ∈ Σ a mapping σg : Q≤k → 2Q.
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We define the size |A| of a k-bounded TA A to be |Q|+
∑

σδ(q1,...,ql)→q(l+1).
A k-bounded TA is, thus, an unranked TA where there exists a constant k such
that any node can have at most k children. Note that a ranked TA is a restricted
variant of a k-bounded TA. If Σ is a ranked alphabet and k = max{r(σ) | σ ∈ Σ},
then any ranked TA over Σ is k-bounded.

We introduce a polynomial algorithm for computing the tree edit-distance be-
tween two regular tree languages L and R described by k-bounded TAs. By Def-
inition 4, the edit-distance between L and R is the edit-distance between two
closest pair of trees t ∈ L and t′ ∈ R.

Let A = (Σ,Q, F, δ) and B = (Σ′, Q′, F ′, δ′) be two k-bounded TAs accepting
regular tree languages L and R, respectively. From A, let Aq be a new TA that
has a unique final state q ∈ Q. For simplicity, we denote d(L(Aq), L(Bq′)) by
d(q, q′). Then, we have the following statement.

Proposition 6. Let A = (Σ,Q, F, δ) and B = (Σ′, Q′, F ′, δ′) be two k-bounded
TAs accepting two tree languages L and R. Then,

d(L,R) = min{d(q, q′) | q ∈ F, q′ ∈ F ′}.

Proposition 6 states that we can compute the edit-distance between two regular
tree languages by computing the minimum edit-distance between a pair (q, q′)
of states q, q′, where q is a final state of A and q′ is a final state of B. We show
that it is possible to compute such distances in polynomial time by recursively
computing the distance between all pairs of states from A and B. Before we give
the main algorithm, we first define the edit-distance between two sequences of
states. We denote the minimum edit-distance between two forests from two se-
quences of states q1q2 . . . qi and q′1q

′
2 . . . q

′
j by d(q1q2 . . . qi, q

′
1q
′
2 . . . q

′
j). From now,

we denote the sequence q1q2 . . . qi of states by S1,i and the sequence q′1q
′
2 . . . q

′
j

by S′1,j . In other words, Sm,n ∈ Q≤k and S′m,n ∈ (Q′)≤k for m ≤ n.
Given two k-bounded TAs A = (Σ,Q, F, δ) and B = (Σ′, Q′, F ′, δ′), we define

the following sets for the edit-distance d(S1,i, S′1,j) between two sequences of
states.

(i) I(S1,i, S′1,j) = {d(S1,i, S′1,j−1) + d(λ,T′) + C(λ, σ′) | σ′δ′(T′) = q′j},
(ii) D(S1,i, S′1,j) = {d(S1,i−1, S′1,j) + d(T, λ) + C(σ, λ) | σδ(T) = qi}, and
(iii) S(S1,i, S′1,j) = {d(S1,i−1, S′1,j−1)+ d(T,T′)+ C(σ, σ′) | σδ(T) = qi, σ

′
δ′(T

′) =
q′j},

where T ∈ Q∗ and T′ ∈ (Q′)∗. Let I, D, and S denote insertion, deletion
and substitution, respectively. Based on the three sets, we present a recursive
equation for computing the edit-distance between two forests accepted by two
sequences of states from A and B as follows:

Lemma 7. Given two k-bounded TAs A = (Σ,Q, F, δ) and B = (Σ′, Q′, F ′, δ′),
the edit-distance d(S1,i, S′1,j) is defined as

min[I(S1,i, S′1,j) ∪D(S1,i, S′1,j) ∪ S(S1,i, S′1,j)],

where S1,i ∈ Q≤k and S′1,j ∈ (Q′)≤k.



472 S.-K. Ko, Y.-S. Han, and K. Salomaa

We observe that the computation of d(S1,i, S′1,j) may have a self-dependency
problem in the computation. For example, consider the set S(S1,i, S′1,j), which
is the 3rd case in the proof of Lemma 7.

S(S1,i, S′1,j) = {d(S1,i−1, S′1,j−1) + d(T,T′) + C(σ, σ′) | σδ(T) = qi, σ
′
δ′(T

′) = q′j}.

Then, the computation of S(S1,i, S′1,j) requires the value of d(S1,i, S′1,j) when
T = S1,i and T′ = S′1,j . This implies that we need the value of d(S1,i, S′1,j)
for computing the value of d(S1,i, S′1,j). We solve this dependency problem by
using induction on the height of the optimal mapping. Assume that we have
two trees t1, t2 and an optimal mapping M ⊆ t1 × t2. We construct a new
mappingM ′ fromM by removing all insertions and deletions. Then, the resulting
mapping M ′ consists of the pairs (i, j) ∈ t1 × t2 such that i �= λ and j �= λ. We
call M ′ the trimmed mapping. Now we define the height n edit-distance to be the
edit-distance between two trees, where the height of the corresponding optimal
trimmed mapping for the edit-distance is at most n. Let dn(q, q

′) be the height
n edit-distance between two states q and q′. Note that the similar notation can
be used for the height n edit-distance between two sequences of states such as
dn(S1,i, S′1,j).

Then we define the following sets for recurrence of the height n edit-distance
between two sequences of states.

(i) In(S1,i, S′1,j) = {dn(S1,i, S′1,j−1) + d0(λ,T′) + C(λ, σ′) | σ′δ′(T′) = q′j},
(ii) Dn(S1,i, S′1,j) = {dn(S1,i−1, S′1,j) + d0(T, λ) + C(σ, λ) | σδ(T) = qi}, and
(iii) Sn(S1,i, S′1,j) = {dn(S1,i−1, S′1,j−1) + dn−1(T,T′) + C(σ, σ′) | σδ(T) = qi,

σ′δ′ (T
′) = q′j}.

Then, dn(q, q
′) should be the minimum of the following sets:

(i) In(q, q
′) = {d0(q, λ) + d0(λ,T′) + C(λ, σ′) | σ′δ′(T′) = q′},

(ii) Dn(q, q
′) = {d0(λ, q′) + d0(T, λ) + C(σ, λ) | σδ(T) = q}, and

(iii) Sn(q, q
′) = {dn−1(T,T′) + C(σ, σ′) | σδ(T) = q, σ′δ′(T

′) = q′}.

Note that the following equations hold:

– dn(q, q
′) =∞ if n < 0,

– d0(λ, λ) = 0,
– d0(q, λ) = min{|t| | t ∈ L(Aq)}, and
– d0(q, q

′) = min{|t| | t ∈ L(Aq)} +min{|t′| | t′ ∈ L(Bq′)}.

Now we establish the following lemma.

Lemma 8. Given two k-bounded TAs A = (Σ,Q, F, δ) and B = (Σ′, Q′, F ′, δ′),
the height n edit-distance dn(q, q

′) is defined as

min[dn−1(q, q
′) ∪ In(q, q

′) ∪Dn(q, q
′) ∪ Sn(q, q

′)],

where q ∈ Q, q′ ∈ Q′ and n ≥ 0.
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Proof. We prove by induction on n. First, we start with the case when n = 0.
Consider a mapping M between two trees t ∈ L(Aq) and t′ ∈ L(Bq′), where
|t| = i and |t′| = j. We construct the mapping M in postorder, therefore, the
mapping between two root nodes of t and t′ should be the last to consider. By
the definition, the height of the trimmed mapping of M should be 0. This implies
that there is no mapping for substitutions between two trees. Since d−1(q, q

′) is
∞, we compute the case when n = 0 by only considering insertions and deletions.

Assume that the case n = l holds. Then, we prove that the case n = l + 1
also holds. By the assumption, we know that the case when the height of the
trimmed mapping is lower than l+1 is considered by the first term dl(q, q

′). Now
we should prove for the case when the height of the trimmed mapping is l + 1.
There are three cases to consider:

(i) t[i] is not touched by a line in M . Then, we have (i, λ) ∈ M . Note that
insertions and deletions do not change the height of the trimmed mapping.
Therefore,

Dn(q, q
′) = min{d0(λ, q′) + d0(T, λ) + C(σ, λ) | σ(T) = q ∈ δ}.

(ii) t′[j] is not touched by a line inM . Then, we have (λ, j) ∈M . Symmetrically,

In(q, q
′) = min{d0(q, λ) + d0(λ,T′) + C(λ, σ′) | σ′(T′) = q′ ∈ δ′}.

(iii) t[i] and t′[j] are touched by lines in M . Thus, (i, j) ∈ M by the mapping
restrictions. That means we need an optimal mapping between two forests
t[1 . . . i − 1] and t′[1 . . . j − 1]. The height of optimal trimmed mapping
between these two forests is l. Therefore,

Sn(q, q
′) = min{dn−1(T,T′) + C(σ, σ′) | σ(T) = q ∈ δ, σ′(T′) = q′ ∈ δ′}.

Since all possible optimal mappings between two trees can be computed by
the definition, we prove the lemma. �

One remaining issue is how many times we should iterate the computation of
recurrence for computing the correct edit-distance between two regular tree lan-
guages. We can show that |Q||Q′| iterations are enough for computing the edit-
distance between two regular languages as the height of the optimal trimmed
mapping is at most |Q||Q′| to avoid the repetition of the same state pair. We
establish the following result.

Lemma 9. Given two k-bounded TAs A = (Σ,Q, F, δ) and B = (Σ′, Q′, F ′, δ′),
dmn(q, q

′) = d(q, q′), where q ∈ Q, q′ ∈ Q′, m = |Q| and n = |Q′|.

We analyze the time complexity of Algorithm 1 for computing the top-down tree
edit-distance between two regular languages given by two k-bounded TAs and
establish the following result.
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Theorem 10. Let A = (Σ,Q, F, δ) and B = (Σ′, Q′, F ′, δ′) be two k-bounded
TAs. Then, we can compute the edit-distance d(L(A), L(B)) in O(m2n2) time,
where m = |A| and n = |B|.

Algorithm 1. Computing d(L(A), L(B))

input : Two k-bounded TAs A = (Σ,Q,F, δ) and B = (Σ,Q′, F ′, δ′)
output : d(L(A), L(B))

1 d0(λ, λ)← 0;
2 for q ∈ Q do
3 d0(q, λ)← min{|t| | t ∈ L(Aq)};
4 end
5 for q′ ∈ Q′ do
6 d0(λ, q

′)← min{|t′| | t′ ∈ L(Bq′)};
7 end
8 for i← 0 to |Q||Q′| do
9 for q ∈ Q do

10 for q′ ∈ Q′ do
11 di(q, q

′)← min[di−1(q, q
′) ∪ Ii(q, q

′) ∪Di(q, q
′) ∪ Si(q, q

′)];
12 end

13 end

14 end
15 return min{d|Q||Q′|(q, q

′) | q ∈ F, q′ ∈ F ′};

5 Unbounded Case

It is well known that unranked tree automata describe regular tree languages
of unranked and unbounded trees, which are the generalizations of regular tree
languages of ranked and bounded trees [4]. We generalize the edit-distance com-
putation between two regular tree languages accepted by k-bounded TAs to the
unbounded case in this section.

Unlike in a k-bounded or ranked TA, we have a regular language over the
state set Q called a horizontal language instead of a sequence of states in an
unranked TA. Therefore, we compute the minimum edit-distance between two
forests accepted by two sequences of states from two horizontal languages. Let
A = (Σ,Q, F, δ) and B = (Σ′, Q′, F ′, δ′) be two unranked TAs. Then, the edit-
distance between two states q ∈ Q and q′ ∈ Q′ is defined as the minimum of the
following three sets.

(i) I(S1,i, S′1,j) = {d(S1,i, S′1,j−1) + d(λ,T′) + C(λ, σ′) | σ′δ′ (T
′)=q′j ,T

′∈L
(HB

q′,σ′)},
(ii) D(S1,i, S′1,j) = {d(S1,i−1, S′1,j)+d(T, λ)+C(σ, λ) | σδ(T) = qk,T ∈ L(HA

q,σ)},
and

(iii) S(S1,i, S′1,j) = {d(S1,i−1, S′1,j−1) + d(T,T′) + C(σ, σ′) | σδ(T) = q, σ′δ′(T
′) =

q′,T ∈ L(HA
q,σ),T

′ ∈ L(HB
q′,σ′)}.
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Similarly to the bounded case, we define the recurrence for the edit-distance
between two forests accepted by two sequences of states from A and B as follows:

Lemma 11. Given two unranked TAs A = (Σ,Q, F, δ) and B = (Σ′, Q′, F ′, δ′),
the height n edit-distance d(S1,i, S′1,j) is defined as

min[I(S1,i, S′1,j) ∪D(S1,i, S′1,j) ∪ S(S1,i, S′1,j)],

where S1,i ∈ Q∗ and S′1,j ∈ (Q′)∗.

Now we consider the runtime for computing the edit-distance between two un-
ranked TAs. The main difference compared with the bounded case is that we
need to compute the edit-distance between two forests accepted by two regular
horizontal languages instead of two fixed sequences of states.

Corollary 12 (Mohri [12]). Given two FAs A and B, we can compute the edit-
distance d(L(A), L(B)) in O(mn · logmn) time, where m = |A| and n = |B|.

Theorem 13. Let A = (Σ,Q, F, δ) and B = (Σ′, Q′, F ′, δ′) be two unranked
TAs. Then, we can compute the edit-distance d(L(A), L(B)) in O(m2n2 · logmn)
time, where m = |A| and n = |B|.

6 An Application of the Tree Edit-Distance Problem

It is known that the edit-distance between two context-free languages is not
computable [12]. Moreover, the emptiness of the intersection of two context-free
languages is also undecidable. Now we show that it is possible to check whether
or not two CFGs have a common string whose derivation trees are structurally
equivalent by relying on the edit-distance computation between two regular tree
languages.

Proposition 14 (Comon et al. [4]). The following statements hold.

– Given a context-free grammar G, the set of derivation trees of L(G) is a
regular tree language.

– Given a regular tree language L, yield(L) is a context-free language.

– There exists a regular tree language that is not a set of derivation trees of a
context-free language.

Based on Proposition 14, we establish the following result.

Lemma 15. Given two CFGs G and G′, we can determine whether or not there
exists a common string w ∈ L(G)∩L(G′) whose derivation trees from G and G′

are structurally equivalent.
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7 Conclusions

We have studied the top-down tree edit-distance between two regular tree lan-
guages. The tree edit-distance between two tree languages is the minimum tree
edit-distance between two trees from two languages. We, in particular, have con-
sidered the restricted version of the general tree edit-distance problem called
the top-down tree edit-distance. We have proposed an O(m2n2) algorithm for
computing the edit-distance between two regular tree languages given by two
k-bounded TAs of sizes m and n. For the edit-distance between two unranked
TAs of sizes m and n, we have designed an O(m2n2 logmn) algorithm.

Given two CFGs G and G′, we have also shown that it is decidable to deter-
mine whether or not there exists a common string whose derivation trees from
G and G′ are structurally equivalent using the proposed algorithm.
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Abstract. Lookahead DFA are used during parsing for sake of resolving
conflicts (as described in more detail in the introduction). The parsing
of an input string w may require many DFA-explorations starting from
different letter positions. This raises the question how many of these
explorations can be active at the same time. If there is a bound on this
number depending on the given DFA M only (i.e., the bound is valid for
all input strings w), we say that M has a bounded activity level. The main
results in this paper are as follows. We define an easy-to-check property
of DFA named prefix-cyclicity and show that precisely the non prefix-
cyclic DFA have a bounded activity level. Moreover, the largest possible
number �M of mutually overlapping explorations of a given non prefix-
cyclic DFA M with t+ 1 states, the so-called maximum activity level of
M , is bounded from above by 2t − 1, and this bound is tight. We show
furthermore that the maximum activity levels of equivalent DFA coincide
so as to form an invariant of the underlying regular language, which leads
us to a characterization of prefix-cyclicity in terms of the Nerode relation.
We finally establish some complexity results. For instance, the problem
of computing �M for a given non prefix-cyclic DFA M is shown to be
PSPACE-complete.

Keywords: parsing, lookahead DFA, computational complexity.

1 Introduction

LR-regular (LRR) parsing [12] is one of the few parsing techniques utilizing un-
bounded lookahead. LRR languages properly include the deterministic context-
free languages [7]. LRR parsers allow for a large amount of interesting grammars
with practical relevance (such as the original version of the Java language [6]),
which cannot be handled by any LR(k) parser. The parsers generated with the
algorithm from [11] clearly have linear runtime, although they are a little cum-
bersome. The algorithm is rather of theoretical interest as membership in the
class of LR-regular grammars is undecidable and as some implementation details
remain unclear. Practical LRR parsing techniques such as [1] and [4] basically
work like the well-known LR(k) shift-reduce parsers [7], yet use regular looka-
heads of arbitrary length instead of the normal fixed length ones. Starting with
an inconsistent LR(0) automaton, practical LRR parser generation techniques
set out to build disjoint prefix-free regular envelopes for each inconsistent LR(0)
state. This aims at separating the state’s conflicting suffix languages from each

A.-H. Dediu et al. (Eds.): LATA 2014, LNCS 8370, pp. 478–489, 2014.
c© Springer International Publishing Switzerland 2014
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other. These regular envelopes are typically built as prefix-free deterministic fi-
nite automata (DFA), so called lookahead DFA, which are used for lookahead
exploration during parsing whenever necessary. Different lookahead explorations
operating on a common substring of the input string may overlap each other. As
explained in the abstract (and formally defined in section 2), this leads to the
notion of the maximum activity level �M associated with a given DFA M (set
to ∞ in the unbounded case).

If the number of mutually overlapping explorations on strings of length n is
bounded from above by B ≤ n, the whole parser has time bound O(Bn) on
inputs of length n (as illustrated in Fig. 1). If the parser employs prefix-cyclic
DFA, this leads to the time bound O(n2).1 If, however, only non prefix-cyclic
lookahead DFA are employed during parsing, then B does not depend on n (but
still depends on the sizes of the lookahead DFA).2 As for of a fixed LR-regular
grammar with a fixed collection of non prefix-cyclic lookahead DFA, one may
think of B as a (possibly large) constant. But once we think in terms of practical
LRR parser generators, the dependence on the sizes of the employed lookahead
DFA becomes an issue.

1 2 3 4 5 6 7 8 9

in an input string

letter positions

exploration 1

exploration 2

exploration 3

snapshot with activity level 3

Fig. 1. The parser and all of theB = 3 DFA-explorations require up to n computational
steps, respectively

The notion of prefix-cyclicity (among other related notions) was introduced
and exploited in [8]. However, the run time analysis in [8] treats the parameter
B as a constant whenever it does not depend on n. In this paper, we take care
of the dependence of B on the sizes of the employed lookahead DFA and study
the dependence of �M on the number t of M ’s non-initial states. We extend
the work in [8] in various directions. Section 3 presents the (tight) upper bound
2t−1 on �M . Section 4 casts �M as an invariant of the underlying language L(M).
Section 5 characterizes prefix-cyclicity in terms of the Nerode-relation. Section 6
is devoted to complexity issues. Specifically, it is shown that the computation of
�M for a given non prefix-cyclic DFA M is PSPACE-complete.

1 An LRR-grammar leading indeed to quadratic run time for parsing with (unbounded)
lookahead DFA is found in [10].

2 See [8] for several grammar constructs leading to non prefix-cyclic lookahead DFA
(e.g. HTML forms [4] and Ada calls [2,10]).
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2 Definitions and Notations

Let M be a Deterministic Finite Automaton (DFA) given by its finite set of
states, Q, its input alphabet, Σ, its partially defined transition function δ :
Q × Σ → Q, and its initial state q0 ∈ Q. (For the time being, we do not need
to distinguish between accepting and non-accepting states.) If M reads symbol
a in state q and δ(q, a) is undefined, then we may think of M as terminating its
computation. As usual, the mapping δ can be extended to a partially defined
mapping δ∗ : Q×Σ∗ → Q:

δ∗(q, ε) = q

δ∗(q, aw) =

{
undefined if δ(q, a) is undefined
δ∗(δ(q, a), w) otherwise

Here, ε denotes the empty string, q ∈ Q, a ∈ Σ, and w ∈ Σ∗. If not undefined,
then δ∗(q, w) is the state reached by a computation of M that was started in
state q and has processed all letters of w. We say that w is fully processed by
M if δ∗(q0, w) is not undefined. Suppose that w = a1 · · ·an ∈ Σn. Then, for all
1 ≤ i < j ≤ n, wi,j denotes the substring ai · · · aj−1. We say that M has activity
level � at position j of input w if there exist 1 ≤ i1 < . . . < i	 < j such that, for
all l = 1, . . . , �, wil,j is fully processed by M . We say that M has an unbounded
activity level if for any � ≥ 1 there is a string w and a letter position j such that
M has activity level � at position j of input w. We define �M = ∞ if M has
an unbounded activity level, and as the highest possible activity level otherwise.
Note that �M represents the largest possible number of mutually overlapping
explorations when M is used as a lookahed DFA as described in Section 1.

3 DFA with a Bounded Activity Level

Section 3.1 characterizes DFA with an unbounded activity level: exactly the
“prefix-cyclic” DFA M are the ones with �M = ∞. In Section 3.2, it is shown
that �M ≤ 2t−1 for any non prefix-cyclic DFA with t+1 states. It is furthermore
shown that there exists a non prefix-cyclic DFA M with t+ 1 states and �M =
2t − 1 (so that the general upper bound is tight).

3.1 Characterization of DFA with an Unbounded Activity Level

A DFA M = (Q,Σ, δ, q0) with a partially defined transition function δ is said to
be prefix-cyclic if it satisfies the following condition:

∃q ∈ Q, ∃w ∈ Σ+ : δ∗(q0, w) = q = δ∗(q, w) (1)

DFA with an unbounded activity level can be characterized as follows:

Theorem 1 ([8]). A DFA M is prefix-cyclic iff it has an unbounded activity
level.
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Proof. If M is prefix-cyclic as witnessed by q ∈ Q and w ∈ Σ+, then the strings
(w	)	≥1 and the letter positions il = 1 + (l − 1)|w| for l = 1, . . . , � witness that
M has an unbounded activity level.

Suppose now that M has an unbounded activity level. Let � ≥ 1 be a suffi-
ciently large number whose precise definition is given below. Pick a string w and
letter positions 1 ≤ i1 < . . . < i	 < j which witness that �M ≥ �. Let K	 denote
the complete graph with � nodes. Consider the edge-coloring of K	 where each
edge {l, l′} such that l < l′ is colored δ∗(q0, wil,il′ ). Note that this coloring uses
t := |Q| colors. Let r(3, t) denote the smallest number of nodes of a complete
graph such that any t-coloring of its edges leads to at least one monochromatic
triangle.3 It is well-known [5,3,12] that

2t < r(3, t) < 1 +
e− e−1 + 3

2
· t! < 3t! .

Let now � := r(3, t) < 3t!. Then, with the coloring defined above (as for any
t-coloring), K	 has at least one monochromatic triangle. By construction of the
coloring, this means that there exist 1 ≤ l < l′ < l′′ < j such that δ∗(q0, wil,il′ ) =
δ∗(q0, wil,il′′ ) = δ∗(q0, wil′ ,il′′ ). Setting q := δ∗(q0, wil,il′ ), we obtain

δ∗(q, wil′ ,il′′ ) = δ∗(q0, wil,il′′ ) = δ∗(q0, wil′ ,il′′ ) = q

so that (1) holds with wil′ ,il′′ in the role of w. It follows that M is prefix-cyclic.
�

We obtain the following

Corollary 2 ([8]). Suppose that the DFA M = (Q,Σ, δ, q0) is not prefix-cyclic
and has t+ 1 states. Then �M < r(3, t).

Proof. There can be no string w ∈ Σ+ such that δ∗(q0, w) = q0 because, other-
wise, Condition (1) would be satisfied with q0 in the role of q. Assume for sake
of contradiction that �M ≥ r(3, t). An inspection of the second part of the proof
of Theorem 1 shows that this leads to a t-coloring (the color q0 is not used!) of
the complete graph with r(3, t) nodes so that there is a monochromatic triangle
and, consequently, M would be prefix-cyclic (in contradiction to the assumption
made in Corollary 2). �

3.2 Tight Bounds on the Activity Level (Arbitrary Alphabet)

Suppose M = (Q,Σ, δ, q0) is not prefix-cyclic. Let t = |Q|−1 denote the number
of non-initial states. According to Corollary 2, �M < r(3, t). Typically, bounds
obtained from Ramsey theory are far from being tight. We will however show in
this section that the upper bound r(3, t) on �M is not so far from the truth. We
begin our considerations with another upper bound on �M .

Theorem 3. For any non prefix-cyclic DFA M with t+ 1 states: �M ≤ 2t − 1.

3 In Ramsey Theory, r(3, t) is known as the “triangular Ramsey Number with t colors”.
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Proof. Let � = �M . Pick a string w and letter positions 1 ≤ i1 < . . . < i	 < j such
that, for all l = 1, . . . , �, the substrings wil,j are fully processed. For convenience,
set i	+1 = j. For l′ = 1, . . . , �, the “l′-snapshot” is defined as the set

Ql′ := {δ∗(q0, wil,il′+1
) : l = 1, . . . , l′} ⊆ Q \ {q0} .

In other words: if we consider the l′ computational processes created by starting
M in positions i1, . . . , il′ , then Ql′ records the set of states of these processes
when they have reached position il′+1. Note that Ql′ �= ∅ for all l′ = 1, . . . , � so
that there can be at most 2t − 1 distinct snapshots. All what remains to do is
showing that they actually are distinct. Suppose for sake of contradiction that
Ql′ = Ql′′ for some 1 ≤ l′ < l′′ ≤ �. It follows that we can push the activity
level beyond any given bound m simply by replacing the substring u = wil′ ,il′′
of w by um. As an unbounded activity level would imply that M is prefix-cyclic,
we arrived at a contradiction. It follows that the snapshots are distinct and,
therefore, � ≤ 2t − 1. �

The following result shows that the bound in Theorem 3 is tight:

Theorem 4. There exists a non prefix-cyclic DFA M with t + 1 states and
alphabet size t such that �M ≥ 2t − 1.

Proof. Let M = (Q,Σ, δ, q0) be given by Q = {q0, q1, . . . , qt}, Σ = {a1, . . . , at},
and

δ(qi, aj) =

⎧⎨⎩ qj if i < j
qi if i > j

undefined if i = j
. (2)

The following statements obviously hold for any qk ∈ Q and any w ∈ Σ+:

δ∗(qk, w) = qk ⇔ k ≥ 2 ∧w ∈ {a1, . . . , ak−1}+

δ∗(q0, w) = qk ⇒ letter ak occurs in w

It follows that M is not prefix-cyclic because Condition (1) cannot be satisfied.
With the following inductively defined strings w(1), . . . , w(t), we will be able to
push the activity level up to 2t − 1:

w(1) = a1 and w(k) = w(k − 1)akw(k − 1)

The first members of this sequence evolve as follows:

w(1) = a1 , w(2) = a1a2a1 , w(3) = a1a2a1a3a1a2a1 , . . .

Clearly |w(t)| = 2t−1. We claim that all 2t−1 suffixes of w(t) are fully processed
by M (which would readily imply that �M ≥ 2t− 1). The claim is obtained from
the following observations:

1. The snapshot4 after reading w(k) contains state qi with multiplicity 2i−1 for
i = 1, . . . , k (and no other states).

4 Here, the snapshot is considered as a multiset so as to take multiplicities of states
into account.
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2. The snapshot after reading w(k)ak+1 contains the state qk+1 with multiplic-
ity 2k (and no other states).

The second statement immediately follows from the first one. The first state-
ment for w(k) immediately follows inductively from the second statement for
w(k − 1)ak. �

4 Activity Level of DFA with a Binary Alphabet

We argue in Section 4.1 that the maximum activity level �M of a DFA M can
be associated with the language L(M) = L generated by M (and can therefore
be written �L). In Section 4.2, we define a mapping L �→ Lbin that transforms
a prefix-closed language over an arbitrary alphabet into a corresponding prefix-
closed language over a binary alphabet. It is analyzed how �L and �Lbin

are
related. In Section 4.3, we show that there exists a non prefix-cyclic DFA M
over a binary alphabet that has 1 + 3t0log t1 states and satisfies �M ≥ 2t − 1. A
comparison with Theorem 4 shows that the restriction of having a binary input
alphabet does not reduce the largest possible activity-level dramatically.

4.1 Activity Level as an Invariant of the Underlying Language

A DFA M = (Q,Σ, δ, q0, F ) with a partially defined transition function δ is
called prefix-closed if F = Q, i.e., all states of M are accepting. Note that, in
this case, the language L(M) coincides with the set of input strings which are
fully processed by M . A language L is called prefix-closed if w ∈ L implies that
every prefix of w belongs to L too. In other words, any extension of a string
w /∈ L does not belong to L either. Obviously the following holds:

– If M is a prefix-closed DFA, then L(M) is a prefix-closed regular language.
– Any prefix-closed regular language can be be recognized by a prefix-closed

DFA.

We define the maximum activity level of a language L as follows:

�L = sup{� : (∃w1, . . . , w	 ∈ Σ+, ∀l = 1, . . . , � : wl · · ·w	 ∈ L)}

For ease of later reference, we say that w1, . . . , w	 are witnesses for �M ≥ � if
wl · · ·w	 ∈ L for l = 1, . . . , �.

Let M be a prefix-closed DFA. It is then evident from the definition of �M and
�L that �M = �L(M). Thus, �M = �M ′ for any DFA M ′ such that L(M)=L(M ′).

4.2 From an Arbitrary to a Binary Alphabet

For a language L, let Pref(L) denote the language of all prefixes of strings from
L. So L is prefix-closed iff Pref(L) = L.

Let L ⊆ Σ∗ be a prefix-closed language over the alphabet Σ = {a0, . . . , aK−1},
and let k = 0logK1 so that every letter aj can be encoded as a binary string
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bin(j) of length precisely k (with leading zeros if necessary). Let R denote the
homomorphism from Σ∗ to {0, 1}∗ that is induced by aj �→ bin(j). Then R(L) =
{R(w) : w ∈ L} is the image of L under mapping R. Note that the length of
any string in R(Σ∗) is a multiple of k. The language Lbin = Pref(R(L)) is
called the binary version of L in what follows. Note that Lbin is prefix-closed by
construction.

Lemma 5. With these notations, the following holds for any prefix-closed lan-
guage L ⊆ Σ∗:

1. If w ∈ L then R(w) ∈ Lbin.
2. If x ∈ Lbin and |x| is a multiple of k, then there exists a string v ∈ L such

that x = R(v).

Proof. The first statement is obvious from w ∈ L ⇔ R(w) ∈ R(L) and R(L) ⊆
Pref(R(L)) = Lbin. As for the second statement, x ∈ Lbin = Pref(R(L)) implies
that there exists a suffix y ∈ {0, 1}∗ such that xy ∈ R(L). xy ∈ R(L) implies
that |xy| is a multiple of k and, since |x| is a multiple of k by assumption, |y| is
a multiple of k too. The definition of R(L) now implies that there exist strings
v, w ∈ Σ∗ such that x = R(v), y = R(w) and vw ∈ L. Since L is prefix-closed
by assumption, it follows that v ∈ L. �

Theorem 6. With the above notations, the following holds for any prefix-closed
language L:

1. �L =∞ iff �Lbin
=∞.

2. If �L <∞, then �L ≤ �Lbin
≤ k · �L + 1.

Proof. It suffices to show that, for all � ≥ 1,

�L ≥ �⇒ �Lbin
≥ � and �Lbin

≥ k�+ 1⇒ �L ≥ � .

Let w1, . . . , w	 ∈ Σ+ be witnesses for �L ≥ �. It readily follows that the strings
R(w1), . . . , R(w	) ∈ {0, 1}+ are witnesses for �Lbin

≥ �.
Let now x1, . . . , x	′ ∈ {0, 1}+ be witnesses for �Lbin

≥ �′, i.e.,

∀l = 1, . . . , �′ : yl := xl · · ·x	′ ∈ Lbin .

Let us introduce for the moment the following additional assumption:

∀l = 1, . . . , �′ : |yl| is a multiple of k , (3)

which is equivalent to saying that, for l = 1, . . . , �′, |xl| is a multiple of k. Then
the second statement in Lemma 5 (and the fact that R is a homomorphism) let us
conclude that there exist strings w1, . . . , w	′ ∈ Σ+ with the following properties:

– For all l = 1, . . . , �′, R(wl) = xl.
– w1, . . . , w	′ are witnesses for �L ≥ �′ = �Lbin

.
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Of course our assumption of |yl| being a multiple of k is not justified. However,
if �′ = k� + 1, we can argue as follows. We put yl in a bucket with number
|yl| mod k ∈ {0, . . . , k − 1}. By the pigeon-hole principle, there must exist a
number κ ∈ {0, . . . , k − 1} such that the bucket with number κ contains � + 1
suffixes of x1 · · ·x	′ , say yl1 , . . . , yl� , yl�+1

when ordered according to decreasing
length. Note that the shortest suffix, yl�+1

, is a common suffix of all the other
ones. Let us erase the suffix yl�+1

from yl1 , . . . , yl� , respectively, and obtain the
new sequence y′l1 , . . . , y

′
l�
. Note that y′l1 , . . . , y

′
l�
still belong to Lbin because Lbin

is prefix-closed. From |yl| mod k = κ for l = 1, . . . , � + 1, we can conclude that
|y′l| mod k = 0 for l = 1, . . . , �. Thus, assumption (3) on which our previous
analysis was based is now satisfied, indeed, with � in the role of �′. It follows
that �L ≥ � provided that �Lbin

≥ k�+ 1. �

4.3 A Lower Bound on the Activity Level (Binary Alphabet)

The following lower bound, valid for a DFA with a binary input alphabet, should
be compared with the (only slightly superior) lower bound from Theorem 4
(which however makes use of a DFA with a very large input alphabet).

Theorem 7. There exists a non prefix-cyclic DFA with a binary input alphabet,
1 + 3t0log t1 states and an activity level of at least 2t − 1.

Proof. Let M = (Q,Σ, δ, q0) be the DFA from the proof of Theorem 4 except for
the following technical modification: we use alphabet Σ = {a0, . . . , at−1} instead
of {a1, . . . , at}, and state set Q = {q−1, q0, . . . , qt−1} instead of {q0, q1, . . . , qt}.
Now q−1 is the initial state. As before, δ is given by (2).5 We know from
Theorem 4 that �M ≥ 2t − 1. Let L = L(M). We will design a DFA M ′ =
(Q′, {0, 1}, δ′, q′0) for Lbin. According to Theorem 6, �M ′ ≥ �M ≥ 2t − 1. It suf-
fices therefore to make sure that |Q′| = 1 + 3t0log t1 states are sufficient for the
design of M ′. Let k = 0log t1. Q′ is now chosen as the union of {q′0} with the
following set:

{(b, κ, s) : b ∈ {bin(i) : i = 0, 1, . . . , t− 1}, κ ∈ {0, 1, . . . , k − 1}, s ∈ {<,>, ?}}

The intuition behind this definition is as follows:

– The computation of M on input w ∈ Σ∗ is simulated by running the com-
putation of M ′ on input R(w) where R is the homomorphism induced by
aj �→ bin(j) from Section 4.2.

– When M is in state qi, then M ′ keeps b = bin(i) ∈ {0, 1}k in its finite
control. The parameter κ indicates how many bits of bin(j) are processed
by M ′ already when M is currently processing symbol aj . The flag s is set
to “<” (resp. “>”) if M ′ already knows that i < j (resp. i > j). Before a
successful comparison of i and j, the flag s is set to “?”.

5 Reason for the modification: we will map the underlying language L to Lbin, and we
won’t leave the bit pattern bin(0) unused.
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It is not hard to see that the transition function δ′ of M ′ can be defined such
that M ′ simulates a transition δ(qi, aj) of DFA M . The main point is that the
comparison of the binary encodings of two numbers i and j can easily be done
bitwise (where bin(i) is kept in the finite control and bin(j) is processed from
left to right on the input tape). The details of this simulation, omitted here due
to space constraints, are found in the full version of the paper. �

5 Unbounded Activity Level and Nerode Relation

We briefly remind the reader that the Nerode relation induced by a language

L ⊆ Σ∗, denoted
L≡, is a right-congruent equivalence relation on Σ∗ that has

finitely many equivalence classes iff L is regular. The equivalence classes can
then be viewed as the states of the so-called Nerode DFA ML for L.

Theorem 8. Let L be a prefix-closed regular language. Then, �L = ∞ iff there

exists a non-empty string w ∈ L such that w
L≡ w2.

The proof of this theorem, omitted here due to space constraints, is based on the

fact that the condition w
L≡ w2 is equivalent to the condition q := δ∗(q0, w) =

δ∗(q, w) for the transition function δ of the (prefix-free version of the) Nerode
DFA ML.

6 Some Complexity Issues

The following theorem is immediate from Theorem 1 and from the definition of
“prefix-cyclic” in (1):

Theorem 9 ([8]). It can be decided within O(t2) steps whether a DFA M of
size t has an unbounded activity level.

Proof. Let q0 denote the initial state of M , and let M ′ = M . Compute the
product automaton ofM andM ′ and check whether its transition graph contains
a non-trivial path from (q0, q) to (q, q) for some state q. �

Suppose now that M is not prefix-cyclic so that it has a bounded activity level.
It turns out that the computation of the maximum activity level, �M , is a hard
problem:

Theorem 10. Given a non prefix-cyclic DFA M with t + 1 states and given a
threshold T , the problem to decide whether �M > T is PSPACE-complete.

Proof. Membership in PSPACE can be seen as follows. Guess a string w =
a1a2 . . . an letter by letter, start a computation of M on each letter of w so that
up to i computations could potentially be active after the first i letters a1, . . . , ai
have been processed. For each non-initial node q, keep track of the number j(q)
of active computations which are in state q after having processed a1, . . . , ai
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(where the variable j(q) must be updated whenever a new letter is processed).
Furthermore keep track of J :=

∑
q j(q). As soon as J > T accept. Since, at any

time, only t numbers in the range from 0 to T + 1 are stored, this is a space-
efficient non-deterministic procedure for the given decision problem. Because of
Savich’s theorem, it can be turned into a space-efficient deterministic procedure.
In order to show PSPACE-hardness, we present a polynomial reduction from
“Finite Automata Intersection (FAI)” to our problem. FAI, which is known to
be PSPACE-complete [9], is the following problem: given T ≥ 2 and a list
M1, . . . ,MT of DFA with the same input alphabet Σ and with one accept-
ing state per DFA, does there exist an input string w ∈ Σ∗ that is accepted
by every DFA in the list? In the sequel, the initial state of Mj is denoted qj0
and its (unique) accepting state is denoted qj+. We may consider the state sets
Q1, . . . , QT of M1, . . . ,MT , respectively, as pairwise disjoint. We plan to build
a non prefix-cyclic DFA M from M1, . . . ,MT such that �M > T iff there exists
a string w that is accepted by M1, . . . ,MT . To this end, let ",./∈ Σ be new
symbols, and let q0, q+ be new states. M with input alphabet Σ ∪ {",.}, state
set {q0, q+}∪

⋃T
i=1 Qi and initial state q0, has precisely the following transitions:

– M inherits all transitions from M1, . . . ,MT .

– When reading " in state q0, M moves to state q10 .

– When reading " in state qj0 for some j < T , M moves to state qj+1
0 .

– When reading . in state q0 or in state qj+ for some j ∈ {1, . . . , T }, M moves
to state q+.

Suppose that there is a string w which is accepted by all ofM1, . . . ,MT . Consider
the string "T w . and assume that we start a computation of M on each of the
T occurrences of ". Note that the computation started on the j-th occurrence
of " will be in state qT+1−j

0 when reaching the first letter of w. Thus we run a
computation on w for each of the given T DFA. After having processed w, the T
active computations are in states q1+, . . . , q

T
+, respectively. When processing the

final letter of ., we again start a new computation of M , which leads to a state
transition from q0 to q+. In addition, we have the state transitions from qj+ to
q+ for j = 1, . . . , T . Thus, we have now T + 1 > T active computations running
simultaneously (though all of them will be finished at the very next step).

As for the reverse direction, we have to show that an activity level exceeding
T can be reached only if there exists a word over the alphabet Σ that is accepted
by all of M1, . . . ,MT . The main technical observations are as follows:

– In state q0 only the symbols " and . are processed. Thus, a new computation
can be successfully started on these two letters only.

– Any occurrence of symbol " will terminate all computations which are not
in a state from {q0, q10 , . . . , qT−1

0 }.
– In state q+ no symbol is processed.

– Symbol . is processed only when M is in state q0 or qj+ for some j ∈
{1, . . . , T }. Thereafter, all still active computations are in state q+ (so that
these computations are terminated in the next step).



488 M. Konitzer and H.U. Simon

From these observations, it easily follows that we have at most T active compu-
tations (one for each of the DFA M1, . . . ,MT ) as long as . is not processed. If .
is processed, the number of active computations can be at most T +1 (implying
that M is not prefix-cyclic). Moreover the case of T +1 active computations can
occur only on strings which contain the symbols " and . and which have the
property that the word between the last occurrence of " and the first occurrence
of . is accepted by all of M1, . . . ,MT . �

The procedure for the determination of �M that was suggested in the proof of
Theorem 10 shows membership in PSPACE but is not a realistic one. We briefly
sketch a procedure that is realistic at least for DFA with a small number of
states. It is based on the notion of a “snapshot” (similar to the notion that
was used in the proof of Theorem 3). Let M = (Q,Σ, δ, q0) be the given non
prefix-cyclic DFA. A set S ⊆ Q \ {q0} is called a snapshot if S = ∅ or if there
exists a string w = a1 . . . an and letter positions 1 ≤ i1 < . . . i	 ≤ n such that
S = {δ∗(q0, wil,n+1) : l = 1, . . . , �} and such that all strings wil,n+1 are fully
processed. We build a directed snapshot graphG = (V,E) as follows. V is defined
as the set of snapshots. V and E are computed iteratively as follows:

1. Initially set V := {∅} and E := ∅.
2. For each S ∈ V and for each a ∈ Σ such that δ(q, a) is defined for all q ∈ S,

add S′ := {δ(q, a) : q ∈ S} and S′′ := S′ ∪ {δ(q0, a)} to V . Moreover, add
the edges (S, S′) and (S, S′′) to E, where edge (S, S′′) is declared “special”.

The second step is applied to every node only once. Intuitively, an edge represents
a possible next a-transition of a collection of currently active DFA-explorations
(provided that no exploration terminates when processing a), where a special
edge reflects the option to start a new computation on a. An example is shown
in Fig. 2.

It is easy (and similar to the proof of Theorem 3) to show the following:

– The strongly connected components of G = (V,E) do not contain special
edges (because, otherwise, �M =∞).

– If we assign length 1 to special edges and length 0 to all remaining ones,
then �M coincides with the total length of a longest path in G.
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Fig. 2. The snapshot graph induced by the DFA from the proof of Theorem 4 for
t = 3: an edge is labeled i if it represents an ai-transition. Special edges are solid, the
remaining ones are dashed.
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In order to compute the total length of the longest path efficiently, an auxiliary
directed acyclic “super-graph” G′ is computed as follows:

1. The “super-nodes” in G′ are the strongly connected components of G.
2. An edge e′ is drawn from a strongly connected component K1 to another

strongly connected component K2 iff E contains an edge e leading from
a node in K1 to a node in K2. The edge e′ is declared “special” iff the
underlying edge e ∈ E can be chosen as a special one.

Since strongly connected components do not contain special edges, the total
length of the longest path in G equals the total length of the longest path in G′.
But the latter quantity is easy to compute provided that the nodes of G′ are
processed in topological order. If everything is implemented properly then the
run-time is linear in the size of snapshot graph G. Note, however, that this size
can be exponential in the size t of the given DFA M .
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Abstract. We study the problem of learning sequential top-down
tree-to-word transducers (stws). First, we present a Myhill-Nerode char-
acterization of the corresponding class of sequential tree-to-word trans-
formations (STW). Next, we investigate what learning of stws means,
identify fundamental obstacles, and propose a learning model with ab-
stain. Finally, we present a polynomial learning algorithm.

1 Introduction

The main motivation of this paper is to study learnability of a class of tree-to-
word transformations. Tree-to-word transformations are ubiquitous in computer
science. They are the core of many computation paradigms from the evaluation
of abstract syntactic trees to modern programming languages xslt. For these
reason, they are better suited to model general xml transformations as opposed
to tree-to-tree transducers [7,13,14].

Following the work of [12], we study the class of deterministic sequential top-
down tree-to-word transducers (stws). stws are finite state machines that tra-
verse the input tree in top-down fashion and at every node produce words ob-
tained by the concatenation of constant words and the results from processing
the child nodes. stws capture a large subclass of deterministic nested-word to
word transducers (dn2w), which have recently been the object of an enlivened
interest [8,18,19]. stws take as an input a tree in a regular tree language and
output words from a context-free grammar.

Despite of some limitations mainly due to the fact they are deterministic
and top-down1, stws remain however very powerful. They are capable of: con-
catenation in the output, producing arbitrary context-free languages, deleting
inner nodes, and verifying that the input tree belongs to the domain even when
deleting parts of it. These features are often missing in tree-to-tree transducers,
and for instance, make stws incomparable with the class of top-down tree-to-
tree transducers [7,13]. The class of stws has several interesting properties, in
particular a normal form has been proposed in [12].

1 Non-determinism quickly leads to fundamental limitations. For instance, equivalence
of non-deterministic string transducers is known to be undecidable [11].

A.-H. Dediu et al. (Eds.): LATA 2014, LNCS 8370, pp. 490–502, 2014.
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An open question raised in [12] was the existence of a Myhill-Nerode Theorem
for stws. We solve this question and this result is the first main contribution
of this paper. Myhill-Nerode Theorem provides canonical representation of lan-
guages – here, transformations – based on residuals. The Myhill-Nerode Theorem
also opens a way towards grammatical inference for tree-to-word transformation.
Indeed, as pointed by many authors, machine learning of formal languages is
essentially a matter of estimation of equivalence classes of the target language.
The second contribution is then a learning algorithm for the class of stw.

This learnability result is to be placed in a tradition of learning results for
other class of grammars, starting from Gold results [10] for regular languages of
words. This result has served as a basis for a host of learning algorithms including
inference of regular languages of word and trees [15,16] (see also [6] for a survey
of the area), learning of DTDs and XML Schema [2,1], XML transformations [13],
and XML queries [3,20].

The Myhill-Nerode Theorem proof starts from the identification of the class
of earliest stws (estws) given in [12]. The main difficulty is to be able to char-
acterize residual languages of a stw transformation and then define a canonical
representative for estws. This proof relies on an original algorithm capable to
decompose a residual transformation into a form close to a rule of estw. In order
to obtain a learning algorithm (a la RPNI [16,15]) an important step is to de-
cide the consistency of a transducer with a finite transformation. Unfortunately,
we prove that this consistency check is NP-complete. Nevertheless, we present
a learning result in a slightly modified framework where the learning algorithm
can abstain from answering. We prove that we can define a characteristic sam-
ple whose cardinality is within a polynomial bound of the size of the canonical
transducer of the transformation to infer. Using this last result, we present here
the first polynomial time learning algorithm for the class of stw.

2 Sequential Top-Down Tree-to-Word Transducers

Words and Trees. For a finite set Δ of symbols, we denote by Δ∗ the free
monoid on Δ , i.e. the set of finite words over Δ with the concatenation operator
· and the empty word ε. For a word u, |u| is its length. For u = up · uf ·us, up is
a prefix of u, uf a factor of u, and us a suffix of u. The longest common prefix of
a set of words L, denoted lcp(L), is the longest word u that is a prefix of every
word in L. Also, lcs(L) is the longest common suffix of L. For w = u · v, the left
quotient of w by u is u−1 ·w = v and the right quotient of w by v is w · v−1 = u.

A ranked alphabet is a finite set of ranked symbols Σ =
⋃

k≥0 Σ
(k), where

Σ(k) is the set of k-ary symbols. We sometimes write f (k) to indicate explicitly
that f ∈ Σ(k). A tree is a ranked ordered term over Σ. By TΣ we denote the
set of all trees over Σ. A tree language is a subset of TΣ . A context C is a tree
over Σ ∪ {x(0)} with only one leaf labeled x representing a hole. By C[t] we
denote the tree obtained by replacing x by the tree t. A path is a word over⋃

k>0 Σ
(k) × {1, . . . , k}, which identifies a node in a tree by the labels of its

ancestors: ε is the root node and if a node at path p is labeled with f , then
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p · (f, i) is the i-th child of the node. By paths(t) we denote the set of paths of
a tree t. Similarly, for a set of trees T , paths(T ) =

⋃
t∈T paths(t). Words, trees,

paths and contexts have canonical well-founded orders that are consistent with
the size of object and can be tested efficiently. Using these orders, functions
minPath , minTree and minCtx allow to obtain the minimal element of a set of
resp. paths, trees or contexts.

Transducers.A deterministic sequential top-down tree-to-word transducer (stw)
is a tuple M = (Σ,Δ,Q, init , δ), where Σ is a ranked alphabet of input trees, Δ
is a finite alphabet of output words, Q is a finite set of states, init ∈ Δ∗ · Q · Δ∗

is the initial rule, and δ is a partial transition function from Q × Σ to (Δ ∪ Q)∗

such that if δ(q, f (k)) is defined, then it has k occurrences of elements from Q. In
the sequel, we call the state of the initial rule the initial state. We denote stws the
class of deterministic sequential top-down tree-to-word transducers and ST W the
class of transformations represented by an stw.

We often view δ as a set of transition rules , i.e. a subset of Q×Σ× (Δ∪Q)∗,
which allows us to quantify over δ. Also, the transition function is extended to
paths over Σ as follows: δ(q, ε) = q and δ(q, (f, i) · p) = δ(qi, p), where δ(q, f) =
u0 · q1 ·u1 · . . . · qk ·uk. The size of the stw M is the number of its states and the
length of its rules, including the length of words used in the rules. The semantic
of the stw M is the transformation [[M ]] defined with the help of auxiliary
transformations (for q ∈ Q) in a mutual recursion:

[[M ]]q(f(t1, . . . , tk)) =

⎧⎪⎨⎪⎩
u0 · [[M ]]q1 (t1) · u1 · . . . · ·[[M ]]qk(tk) · uk,

if δ(q, f) = u0 · q1 · u1 . . . · qk · uk,

undefined, if δ(q, f) is undefined.

Now, [[M ]](t) = u0 · [[M ]]q0(t) · u1, where init = u0 · q0 · u1. Two transducers are
equivalent iff they define the same transformation. Also, for a transformation τ ,
dom(τ) is the domain of τ and ran(τ) is its range.

We also use deterministic top-down tree automata (dta) that define path-
closed tree languages. Recall that a tree language L ⊆ TΣ is path-closed if
L = {t ∈ TΣ | paths(t) ⊆ paths(L)}. We refer the reader to [5] for a precise
definition and point out that a dta is essentially an stw with empty output
alphabet thus defining a constant transformation mapping every element of its
domain to the empty word.

Earliest Transducers. The construction of the canonical transducer, the core
of the Myhill-Nerode characterisation of ST W , is inspired by the normal form
for stws. The usual choice to define normal forms of transducers is to produce
the output as early as possible. This idea initially comes from normalisation of
word-to-word transducers, as in [4], and is also employed in [13,9] for tree-to-tree
transducers. In [12], we have proposed the following normal form for stws. An
stw M = (Σ,Δ,Q, init , δ) is earliest (estw) iff:

(E1) lcp(ran([[M ]]q)) = ε and lcs(ran([[M ]]q)) = ε for every state q,
(E2) for init = u0 · q0 ·u1, lcp(ran([[M ]]q0) ·u1) = ε and for δ(q, f) = u0 · q1 · . . . ·

qk · uk, then ∀1 ≤ i ≤ k, lcp(ran([[M ]]qi ) · ui · . . . · ran([[M ]]qk ) · uk) = ε. �



Learning Sequential Tree-to-Word Transducers 493

Essentially, (E1) ensures that the output is produced as up as possible during
the parsing while (E2) ensures output is produced as left as possible. We also
observe that in an estw, transformations [[M ]]q associated with states have the
property that the lcp an lcs of their output is empty. It is know that for every
stw there exists a unique minimal equivalent estw [12].

Example 1. Consider the transformation τ1 that takes as an input a tree t over
the signature Σ = {f (2), a(0), b(0)} and output a word on Δ = {#} that counts
the number of symbols in t (i.e. τ1(f(f(a, b), a)) = #####). This can be done
by transducer M1 = (Σ,Δ,Q1 = {q}, init1 = q, δ1) with δ1(q, a) = δ1(q, b) = #
and δ1(q, f) = q ·# ·q. However M1 is not earliest: the output always starts with
an # which can be produced earlier ((E1) is not satisfied), and the symbol #
in the rule δ1(q, f) could be produced before the states ((E2) is not satisfied).

Consider M ′
1 = (Σ,Δ,Q′1 = {q}, init ′1 = # · q, δ′1) with δ′1(q, a) = δ′1(q, b) = ε

and δ′1(q, f) = ## · q · q. This transducer also represent τ1 but is earliest.

3 A Myhill-Nerode Theorem for ST W

In this section we present the construction of a canonical estw Can(τ) that
captures an arbitrary ST W transformation τ . Because stws process the input
tree in a top-down fashion, we shall decompose τ into several transformations
that capture the transformation performed by τ on the children of the input tree.
The decomposition is then used to recursively define the notion of residual p−1τ
of τ w.r.t. a path p, essentially the transformation performed by τ at the node
reached with p of its input tree. Residuals are used to define in the standard way
the Myhill-Nerode equivalence relation and the canonical transducer Can(τ).

Decomposition. We fix a transformation τ and let Left(τ) = lcp(ran(τ)) and
Right(τ) = lcs(Left(τ)−1ran(τ)). τ is reduced if Left(τ) = Right(τ) = ε. The
core of τ is defined as Core(τ) = {(t,Left(τ)−1 · w · Right−1(τ)) | (t, w) ∈ τ}.
While not every transformation is reduced, its core is and it preserves the essence
of the original transformation .

A decomposition of a reduced τ for f ∈ Σ is a sequence u0τ1u1 . . . uk−1τkuk,
where u0, . . . , uk are words and τ1, . . . , τk transformations, that satisfy the fol-
lowing natural conditions:

(D1) dom(τi) = {ti | f(t1, . . . , tk) ∈ dom(τ)},
(D2) ∀t = f(t1, . . . , tk) ∈ dom(τ), τ(t) = u0τ1(t1)...τk(tk)uk,

and to ensure the uniqueness of decomposition we impose two additional condi-
tions that are obtained by reformulation of (E1) and (E2):

(C1) τi is reduced, and

(C2) lcp(ran(τi) · ui · . . . · ran(τk) · uk) = ε.
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We point out that not every transformation can be decomposed.

Example 2. Take τswap = {(f(a, a), aa), (f(a, b), ba), (f(b, a), ab), (f(b, b), bb)}
that outputs leaves in reverse order. This transformation can not be performed
by an stw and there is no decomposition for it.

Residuals. The residual of a transformation τ at a path p is defined recur-
sively: ε−1τ = Core(τ) and (p · (f, i))−1τ = τi if u0 · τ1 . . . τn · un is the unique
decomposition of p−1τ for f .

Example 3. Consider the transformation τ1 of example 1. Core(τ1) = τ ′1 where
τ ′1 gives the number of symbol in tminus one. Then ε−1τ1 = τ ′1. Also, The decom-
position of τ ′1 for f is ## · ((f, 1)−1τ1) · ((f, 2)−1τ1). Observe that (f, 1)−1τ1 =
(f, 2)−1τ1 = τ ′1 , so this decomposition is in fact ## · τ ′1 · τ ′1. Also, lcp(τ ′1) =
lcs(τ ′1) = ε. This decomposition is consistent with the rules of M2.

Example 4. Consider the transformation τ2 that takes as an input a tree t =
f(t1, t2) over Σ = {f (2), a(0), b(0)} and output a word over Δ = {#} such that
the number of # is equal to the number of f and a symbols of t1 plus the number
of f and b symbols of t2, e.g. τ2(f(f(a, b), b))) = #3 (2 # for f(a, b) and one
for b). As τ2 is reduced, ε−1τ2 = Core(τ2) = τ2. The decomposition of τ for f
is τ3 · τ4 with τ3(a) = #, τ3(b) = ε. The decomposition of τ3 at f is # · τ3 · τ3.
Similarly, τ4(a) = ε, τ4(b) = #, and its decomposition at f is # · τ4 · τ4.

Naturally, not every transformation has well-defined residuals. However any
ST W transformation has them and there is a strict correspondence between the
residuals and the states of an estw defining the transformation.

Lemma 5. LetM be an estw with initial state q0. For any p ∈ paths(dom([[M ]]))
we have p−1[[M ]] = [[M ]]δ(q0,p).

This result suggest, and we proved it later on, that the existence of residuals of
a transformation for any path of its domain is an important necessary condition
for being ST W . Consequently, we say that τ is sequential top-down if and only
if p−1τ exists for every p ∈ paths(dom(τ)).

Canonical Transducer. Having defined residuals the construction of the canon-
ical transducer Can(τ) for a transformation τ is standard. The Myhill-Nerode
equivalence relation ≡τ on paths of τ is defined in the standard manner: p1 ≡τ p2
iff p−1

1 τ = p−1
2 τ for p1, p2 ∈ paths(dom(τ)). The Myhill-Nerode equivalence class

of a path p w.r.t. τ is [p]τ = {p′ ∈ paths(dom(τ)) | p ≡τ p′}. We say that τ has
finite Myhill-Nerode index if ≡τ has a finite number of equivalence classes.

The canonical transducer Can(τ) = (Σ,Δ,Q, init , δ) of a sequential top-down
transformation τ of finite Myhill-Nerode index follows: 1) the set of states is
Q = {[p]τ | p ∈ paths(dom(τ))}; 2) the initial rule is init = Left(τ)·[ε]τ ·Right(τ);
3) for every state [p] ∈ Q and every f ∈ Σ such that p−1τ has a decomposition
u0 · τ1 · u1 . . . τk · uk for f , the canonical transducer Can(τ) has the transition
rule δ([p], f) = u0 · [p · (f, 1)]τ · u1 · . . . · uk−1 · [p · (f, k)]τ · uk.
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Theorem 6. For any transformation τ the following conditions are equivalent:
1) τ is definable by an stw; 2) τ is sequential top-down and has a finite Myhill-
Nerode index; 3) Can(τ) is the unique minimal estw defining τ .

Direction (1) to (2) requires normalizing the stw into an estw and using
Lemma 5. Point (3) is obtained from (2) by establishing that the minimal estw
is in fact Can(τ) (modulo state renaming). Direction (3) to (1) is trivial.

Example 7. The canonical transducer of τ2 (as in example 4) is Can(τ2) = M2

defined as follow: M2 = (Σ,Δ,Q = {q1, q2, q3}, init = q1, δ) with δ(q1, f) =
# · q2 · q3, δ(q2, f) = # · q2 · q2, δ(q2, a) = #, δ(q2, b) = ε, δ(q3, f) = # · q3 · q3,
δ(q3, a) = ε and δ(q3, b) = #. This is consistent with decompositions observed
in example 4 if one identifies q1 with ε, q2 with (f, 1) and q3 with (f, 2).

4 Learning STWs

In this section we present a learning algorithm for ST W transformations.

4.1 Learning Framework

First, we investigate the question of the meaning of what learning a transforma-
tion means and pursue an answer that is inspired by the Gold learning model
in polynomial time and data [10]. Essentially, we are interested in a polynomial
time algorithm that takes a finite sample S ⊆ TΣ ×Δ∗ and constructs an stw

M transducer consistent with S i.e., S ⊆ [[M ]]. Unfortunately, unless P = NP,
the following result precludes the existence of such an algorithm.

Theorem 8. Checking if there exists an stw consistent with a given sample is
NP-complete.

To overcome this difficulty, we shall allow the algorithm to abstain i.e., return a
special Null for cases when an stw consistent with the input sample cannot be
easily constructed. Naturally, this opens the door to a host of trivial algorithms
that return Null for all but a finite number of hard-coded inputs. To remove such
trivial algorithms from consideration we shall essentially require that the learning
algorithm of interest can infer any ST W τ from sufficiently informative samples,
called characteristic sample of τ : the learning algorithm should be able to output
an estw defining τ . Furthermore, we require the characteristic sample to use a
number of examples bounded by a polynomial of the number of equivalence
classes of ≡τ .

Another obstacle comes from the fact that dtas are not learnable from positive
examples alone and learning dta from a set of positive examples can be easily
reduced to learning stw. To remove this obstacle, we assume that a dta D
capturing the domain of the goal transformation is given on the input. Note that
this domain automaton could also be obtained by learning method, such as the
RPNI algorithm for trees [15].
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If a class of transformation satisfies all the above properties, we say that it is
learnable with abstain from polynomial time and data. In the following, we aim
to obtain the following result.

Theorem 9. ST W transformations represented by estw are learnable with ab-
stain from polynomial time and data.

4.2 Learning Algorithm

We now present the learning algorithm for ST W. This algorithm essentially
attempts to emulate the construction of the canonical transducer, using a finite
sample of the transformation.

The Core Algorithm. The main procedure of the learning algorithm follows
closely the construction of the canonical transducer. It takes as an input a sample
S of a target transformation τ , as well as a dta D that represents dom(τ).

Algorithm 1. learnerD(S)

1: P := paths(dom(S)) ; Q := ∅
2: state := new hashtable〈Path ,Path〉()
3: while P �= ∅ do
4: p := minPath(P )
5: P ′ := {p′ ∈ Q | p #S,D p′}
6: if P ′ �= ∅ then (*p can be merged*)
7: P := P \ {p′ ∈ P | p is prefix of p′}
8: state [p] := minPath(P

′)
9: else

10: P := P \ {p} ; Q := Q ∪ {p}
11: state [p] := p
12: init := Left(S) · state [ε] ·Right(S)
13: for p ∈ Q do
14: for f ∈ Σ s.t. ∃i with p.(f, i) ∈ paths(dom(S)) do
15: for i ∈ 1, ...k, Let pi = state [p.(f, i)]
16: (u0, , u1, . . . , uk) := decomp(residual(S, p), f)
17: δ(p, f) := u0 · p1 · u1 · . . . · pk · uk

18: M := (Σ,Δ,Q, init , δ)
19: if S ⊆ [[M ]] and dom([[M ]]) ⊆ [[D]] then return M else return Null

The algorithm consists of 2 parts. First, in lines 3 to 11, it attempts to identify
the set of states of the canonical transducer. For this, it builds a function state
that associates with every path the minimal path in its equivalence class that
represents the corresponding residual. This is based on the predicate <S,D which
is an emulation of the Myhill-Nerode equivalence relation ≡τ on an finite sample
of τ . Note that if <S,D behaves exactly as ≡τ , and assuming paths(dom(S)) con-
tains all smallest paths representative of each residual, this procedure produces
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exactly the set Q of states of Can(τ). The exact implementation of the predicate
<S,D is explained later.

Second part, line 12, builds the other elements of the transducer. This uses the
procedure decomp to compute decomposition of samples in a manner emulating
decomposition of transformations and is explained in detail later.

We point out the algorithm may fail to produce an estw consistent with S.
Therefore, in line 19 the consistence of the constructed estw is verified and the
algorithm abstains from answer if the test fails. The following lemma is therefore
trivial.

Lemma 10. For a sample S and a dta D, learnerD(S) produces an estw M
in time polynomial in the size of S or abstains from answer.

This results assumes the existence of polynomial procedures for <S,D, decomp
and residual, which we present next.

Decomposition. The above learning algorithm relies on the ability to decom-
pose a sample. This is done by the following procedure. It takes as an input a
sample S which is supposed to be representative of a transformation τ , and a
symbol f (k) such that there are f rooted trees in S. From this, it outputs a
sequence u0 · S1 · u1 . . . Sk · uk which ideally is the proper decomposition of S
w.r.t. to τ .

Algorithm 2. decomp(S, f (k))

1: Let Sf = {(t, w) ∈ S | t is of the form f(t1, . . . tk)}
2: Let s = f(s1, . . . , sk) be the tree minTree(dom(Sf )) and ws := S(s)
3: for i := 1, . . . , k do Di := {ti | f(s1, . . . , si−1, ti, si+1, . . . , sk) ∈ dom(Sf )}
4: u0 := lcp({w | (t, w) ∈ Sf})
5: prefix 0 = u0

6: for i := 1, . . . , k do
7: prefix i := lcp{w | ∃ti+1, . . . , tk. (f(s1, . . . , si, ti+1, . . . , tk), w) ∈ Sf}
8: suffix i := prefix−1

i · ws

9: S′
i := ∅

10: for t ∈ Di do
11: w := prefix−1

i−1 · S(f(s1, . . . , si−1, t, si+1, . . . , sk)) · suffix−1
i

12: S′
i := S′

i ∪ {(t, w)}
13: ui := lcs(ran(S′

i))
14: Si := {(t, w · u−1

i ) | (t, w) ∈ S′
i}

15: return (u0, S1, u1 . . . , Sk, uk)

From the minimal tree s = f(s1, . . . , sk) of dom(S) rooted by f , the algorithm
essentially tries to decompose ws = S(s) into u0S1(s1) . . . Sk(sk)uk, as defined by
the formal definition of decomp(S, f). Note this is defined only if there are some f
rooted trees in dom(S). The word u0 is simply Left(Sf ). Then, for each i, prefix i

is built such that it is equal to u0S1(s1) . . . Si(si)ui and so suffix i = prefix−1
i ws =

Si+1(si+1) . . . uk. From this, residual transformations Si and words ui can be
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built simultaneously. For any tree ti ∈ (f, i)−1dom(S), we consider the tree
t = f(s1, . . . , si−1, ti, si+1, . . . , sk)) (which belongs to dom(S) if is path-closed
or well constructed) and compute S′i(ti) = Si(ti)·ui = prefix−1

i−1S(t)suffix−1
i . The

word ui is obtained as lcs(ran(S′i)), which allow to obtain Si(ti) = S′i(ti) · u−1
i .

If the sample is rich enough (a notion that will be made precise in the next
section), the lcp and lcs of the different elements are computed correctly and the
algorithm outputs exactly what it supposed to. If the sample is not rich enough,
it may possibly produce a decomposition which is not necessarily sound: there
may be a tree t = f(t1, . . . , tk) such that which S(t) �= u0 ·S1(t1)·u1 . . . Sk(tk)·uk.
However, in any case, the algorithm answers in time polynomial in the size of S.

Residuals and Equivalence. From the decomposition procedure, it is possible
to build the residual of a sample for a path p. residual(S, p) is computed in
a manner analogous to p−1τ : for p = ε, residual(S, p) = reduce(S), and for
p = p′ · (f, i), we compute S′ = residual(S, p) and residual(S, p) = Si, where
decomp(S′, f) = u1 · · ·S1 . . . Sk·uk. Note that again, residual(S, p) is a polynomial
time procedure.

From this, we can define the relation <S,D which tries to emulate ≡τ . Recall
that p1 ≡τ p2 iff p−1

1 τ = p−1
2 τ and note that two transformations are identical

if they have the same domain and agree on every tree. Because the residuals
p−1
1 τ and p−1

2 τ are represented with finite samples S1 = residual(S, p1) and S2 =
residual(S, p2) and their domains need not be necessarily equal, the predicate
p1 <S,D p2 uses the dta D to verify that the domains of the residuals p−1

1 τ and
p−1
2 τ are equal and then checks that for every tree in common both samples S1

and S2 produce the same results.
Again, all those procedures are polynomial. Note however that they behave

correctly (i.e. p <S,D p′ ⇔ p ≡τ p′ for instance) only if the sample is rich enough.
What it means exactly is defined in the next section.

4.3 A Characteristic Sample

In the following, we identify a characteristic sample for stw transformation τ :
CharSet(τ) is a finite set of examples such that whenever learner is provided a
superset of CharSet(τ) as input, it outputs can(τ).

The Characteristic Sample.We first introduce some notations and definitions.
For p ∈ paths(dom(τ)) let cp be the minimal context with x at path p. The finite
set of all minimal representatives of equivalence classes of ≡τ is StatePath(τ) =
{minPath([p]τ ) | p ∈ paths(dom(τ))}. We also define EdgePath(τ), which adds to
the shortest paths their extensions with one additional step i.e., EdgePath(τ) =
StatePath(τ) ∪ {p · (f, i) ∈ paths(dom(τ)) | p ∈ StatePath(τ)}.

Example 11. τ2 has 3 distincts residuals: ε−1τ2, (f, 1)
−1τ2 and (f, 2)−1τ . There-

fore, StatePath(τ2) = {ε, (f, 1), (f, 2)} and EdgePath(τ2) = StatePath(τ2)∪
{(f, 1)(f, 1), (f, 1)(f, 2), (f, 2)(f, 1), (f, 2)(f, 2)}.
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Let us consider a path p ∈ EdgePath(τ), and a set of trees T ⊆ TΣ. Then, T
is structurally representative for τ with respect to p if

(S0) the tree minTree(dom(p−1τ)) belongs to T ;
(S1) lcp((p−1τ)(T )) = ε and lcs((p−1τ)(T )) = ε;
(S2) lcp(ran(p−1τ) \ {ε}) = lcp((p−1τ)(T ) \ {ε}).

Additionally, we say that T is discriminant for τ with respect to p if

(DI) for any p0 ∈ StatePath(τ), if Tp,p0 = {t ∈ dom(p−1τ) ∩ dom(p−1
0 τ) |

p−1τ(t) �= p−1
0 τ(t)} is nonempty, then minTree(Tp,p0) belongs to T .

For a path p, conditions (S0), (S1) and (S2) ensure that T contains all
elements needed to correctly decompose the residual transformation p−1τ . Con-
dition (DI) ensures that T contains witnesses necessary to distinguish different
equivalence classes.

Example 12. Consider transformation τ2 and take for instance p = (f, 1). The
tree Tp,ε is the smallest tree whose image differs in p−1τ2 and ε−1τ2. In fact,
Tp,ε = f(a, a) as p−1τ2(f(a, a)) = #2 and ε−1τ2(f(a, a)) = #3. For other p′ ∈
{(f, 2), (f, 2)(f, 1), (f, 2)(f, 2)}, Tp,p′ = a.

To satisfy condition (S1) and (S2), one can take {a, b, f(a, a)} ∈ Tp. This al-
lows to satisfy (S1) as lcp({(p−1τ2)(a), (p

−1τ2)(b), (p
−1τ2)(f(a, a))}) = lcp({#,

ε, #3}) = ε and the same for lcs . For (S2), we have lcp({(p−1τ2)(a), (p
−1τ2)(b),

(p−1τ2)(f(a, a))} \ {ε}) = lcp({#, ε,#3} \ {ε}) = # which is indeed equal to
lcp(ran(p−1τ) \ {ε}).

Let τ be a transformation in ST W and let p be a path in EdgePath(τ). A
sample S is characteristic for τ at path p if (i) S ⊆ p−1τ and ; (ii) for all paths
p0 such that p ·p0 ∈ EdgePath(τ), the set of trees c−1

p0
dom(S) is discriminant and

structurally representative for τ with respect to p · p0. A sample is characteristic
for τ if it is characteristic for τ at path ε.

An important property is that it is possible to build a characteristic sample
whose cardinality is with a polynomial bound on the number of distinct residuals
of τ . Indeed, to have property (DI), one need a quadratic number of trees
while conditions (S0), (S1), and (S2) all require a linear number of trees. We
denote by CharSet(τ, p) the minimal characteristic sample for τ at path p and
by CharSet(τ) the set CharSet(τ, ε). This yields the following lemma.

Lemma 13. For any estw M there exists a characteristic sample CharSet([[M ]])
of cardinality polynomial in the size of M .

We also point out that any sample S consistent with [[M ]] that contains
CharSet([[M ]]) is also characteristic for [[M ]].

Example 14. From previous example, one can build a characteristic sample for
τ . In particular, the minimal context for (f, 1) is f(x, a). In example 12, it is
argued that trees {a, b, f(a, a)} are in Tp, which means that CharSet(τ) contains
(f(a, a),#3), (f(b, a),#2) (f(f(a, a), a),#5). A similar approach has to be also
considered for all other elements of EdgePath(τ) to obtain the full CharSet(τ).
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Decomposition of Characteristic Samples. It remains to see that from
the characteristic sample of a transduction, the procedures used by the learning
algorithm behave as expected. We begin with the decomposition. The first lemma
shows that the factors of a decomposition are identified whenever a superset of
the characteristic sample is provided to the decomposition procedure.

Lemma 15. Let τ ∈ ST W and p ∈ StatePath(τ). Let S be a characteristic
set for τ at path p, For any f ∈ Σ(k) such that the decomposition of p−1τ at
f is u0 · τ1 . . . τk · uk, then decomp(S, f) = u0 · S1 . . . Sk · uk where each Si is
characteristic for τ at path p · (f, i)

This decomposition lemma relies on the idea that the properties required by the
formal definition can be observed locally on a characteristic sample: for instance
property (D1) and (D2) simply comes from consistency of the sample (S ⊆ τ),
while (C1) is observable on S thanks to property (S1). However, (C2) does not
translate directly into a property that a characteristic sample should fulfill. This
is of course the role played by property (S2).

The link between (S2) and (C2) is actually an indirect consequence of fol-
lowing property: let W and W ′ be two sets of words in Δ∗, if lcp(W \ {ε}) =
lcp(W ′\{ε}), and lcp(W ) = lcp(W ′), then lcp({w ·u | w ∈W}) = ε for a u ∈ Δ∗

implies that lcp({w′ · u | w′ ∈ W ′}) = ε.
Now, consider a transformation τ ∈ ST W , a path p ∈ StatePath(τ) and a

sample S characteristic for τ in a path p. If we consider decomp(p−1τ, f) =
u0τ1 . . . τkuk, then for any i ∈ {1, . . . , k} we have lcp{τi(ti) · ui · . . . · τk(tk) · uk |
ti ∈ (f, i)−1dom(S), . . . , tk ∈ (f, k)−1dom(S)} = ε.. This is a direct consequence
of above property and the fact that S satisfy (S1) and (S2), and allows us to
prove Lemma 15.

As the construction of residuals residual(S, p) relies on the decomposition,
Lemma 15 has the important consequence that those residuals can be com-
puted properly for any p ∈ EdgePath(τ). This gives the following two results.
First, if S is characteristic for τ , and p ∈ EdgePath(τ), then residual(S, p) is
characteristic for τ w.r.t. p. Second, as a consequence and because of (DI), if
p, p′ ∈ EdgePath(τ) then p <S,D p′ ⇔ p ≡τ p′. Ultimately, this indicates that
from a sample S characteristic for τ , the learning algorithm builds Can(τ):

Lemma 16. Let τ ∈ ST W and D a dta with [[D]] = dom(τ). From any sample
S characteristic with τ , learnerD(S) = Can(τ).

This, along with Lemmas 10 and 13 proves Theorem 9.

5 Conclusion

We presented the first polynomial time learning algorithm for tree to string
transformation. This algorithm present the particularity to abstain answering at
some point. This is due to the fact that the consistency problem is NP-complete
for stw, and so, it is simply not possible to provide a transducer consistant with
some input sample.
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Also note that the language of strings outputed by an stw are context free
languages. Therefore, inference of stw is linked to inference of Context Free
Grammars (CFG) and can be seen as the inference of a CFG using words and
their derivative trees as input. This work may therefore bring some highlight to
the problem of Context Free Grammar inference.
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Abstract. This paper studies modelling and analysis issues in the con-
text of a probabilistic data-aware business process. It uses as formal
model to describe process behaviours a labelled transitions system in
which transitions are guarded by conditions defined over a probabilistic
database and presents an approach for testing probabilistic simulation
preorder in this context. A complexity analysis reveals that the problem
is in 2-exptime, and is exptime-hard, w.r.t. expression complexity while
it matches probabilistic query evaluation w.r.t. data-complexity.

Keywords: probabilistic database, testing simulation relaition, data-
aware business process.

1 Introduction

There has been over the last few years an increasing interest around the role
played by data in business processes. Indeed, in many applications the execu-
tions of processes, as specified in a control-flow, may be also governed by con-
ditions defined over variables or over a database. This motivates the emergence
of data-aware and data-centric perspectives for process modelling, approaches
that promote data to first-class citizens in process models [7]. However, whereas
many traditional applications manipulate precise data, there is a wide range
of new applications, such as collaborative business processes, monitoring large-
scale physical systems (e.g., energy efficient buildings) or privacy preservation,
that need to manage imprecise and uncertain data [6,16,15]. The aforementioned
applications stress the need for business process models that are able to handle
imprecise data. We study in this paper the underlying modelling and analysis
issues. We use as formal model to describe process semantics a Labelled Transi-
tions System (LTS) in which transitions are guarded by conditions defined over
a global database which, in spirit of [6], contains an explicit representation of
the uncertainty. We call such a model a probabilistic data-aware business process
(pd-process). Our choice of LTSs is motivated by the prominent role played by
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this formalism for representing behaviours of systems. We rest on recent develop-
ments in the emerging field of probabilistic databases [6,11] to include imprecise
data within labelled transitions systems and formally define the semantics of the
obtained pd-process model.

The paper focuses on the problem of analysing pd-processes. Historically, two
principal methods of equal importance have been used in the literature to analyse
LTSs: temporal logic, used to verify whether a given process satisfies certain
properties and equivalence or preorder relations. Regarding the second class of
methods, simulation preorder is a refinement relation on processes that has been
proved to be very useful in many applications. Simulation equivalence plays a
crucial role in model checking since it preserves relevant properties of many
temporal logics (e.g., CTL*) and hence can be exploited to minimize the state
space explored by verification algorithms [5]. Simulation equivalence has also
been used directly for verification of business processes [12] as well as for web
service analysis and composition [3,4].

Main contributions. The paper presents a formal framework to describe prob-
abilistic data-aware business processes and defines a probabilistic simulation
preorder in this context. The provided definition of simulation is: (i) semantic,
in the sense that it is based on a containment relation between the possible
execution trees of pd-processes, and (ii) conservative, since it matches classical
notion of simulation in non-probabilistic case. The paper describes then a refine-
ment approach that enables to characterize simulation preorder in pd-processes.
Finally, a complexity analysis is conducted w.r.t. two dimensions: (i) expression
complexity, defined in terms of the size of the LTS of a pd-process and (ii)
data-complexity, defined in terms of the size of the probabilistic database. The
paper establishes upper and lower bounds in expression complexity and shows
that there is no overhead w.r.t. probabilistic query evaluation in data-complexity.
This latter result is interesting because data-complexity is the most significant
factor in our context.

Indeed, the general topic of this paper is not totally new since a satisfactory
verification theory for probabilistic processes has been a long-standing research
problem and numerous probabilistic process models have already been proposed
in the literature [14,17]. Two major classes of models are worth to distinguish:
fully probabilistic models, which replace non-determinism with probabilistic
choice, and non-deterministic ones, which distinguish between non-determinism
and probabilistic choice [2,14]. Several types of probabilistic simulation relations
have been defined in the literature depending on the used probabilistic model and
target criteria, e.g., testing, composition [13,9,17]. The pd-process model falls in
the category of non-deterministic models since it makes a difference between non-
determinism and probabilities. Moreover, pd-processes exhibit intricated corre-
lations between transitions since probabilities associated to transitions guards
depend on the considered possible world of the probabilistic database and this
makes pd-processes non-markovian, i.e., predictions for the future of the process
depend on the process’s full history. As a consequence, pd-process semantics
does not coincide with semantics of existing probabilistic processes for which
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simulation has been investigated in the literature. This makes any attempt to
extend existing techniques to characterize simulation preorder in the setting
of pd-processes far from being straightforward (e.g., in most considered prob-
abilistic settings, simulation is ptime [17] while it is shown in this paper that
pd-process simulation is exptime-hard).
Organization. Section 2 reviews basic concepts from the theory of probabilistic
databases useful for this work. Section 3 defines the pd-process model and pro-
vides its formal semantics. This section provides also a semantic definition of
simulation preroder in pd-processes. Section 4 describes a refinement approach
for checking simulation relations between pd-processes and provides complexity
results. Section 5 draws conclusions in terms of future research directions.

2 Overview on Probabilistic Databases

A finite probability space is a pair (Ω,Pr) where Ω is the finite set of outcomes,
and Pr : Ω → [0, 1] s.t.

∑
ω∈Ω

Pr(ω) = 1. For A ⊆ Ω, we take Pr(A) =
∑
ω∈A

Pr(ω).

A set {t1, ..., tn} ⊆ Ω is independent if Pr(t1, ..., tn) = Pr(t1)× . . .× Pr(tn).
We assume readers familiar with basic database concepts (e.g., see [1]). The

issues underlying management of imprecision and uncertainty in data have at-
tracted the attention of the research community since a long time. Several models
have been proposed over the time to handle uncertain data. In recent years, the
field of probabilistic databases gained momentum under the driving force of a
wide spectrum of new applications [6,11]. In this paper, we are interested in
particular by probabilistic relational databases defined over a finite domain. In-
formally, a probabilistic database is defined as a database that includes relations
whose tuples are associated with probabilities.

Table 1. Example of a probabilistic database (Dins)

Relation Profit
AgeMin AgeMax Educ. Lev Lic Year Driv. Rec City Profit Pr

t2 25 50 college 3 medium paris high 60%
t3 20 30 college 3 medium paris medium 50%

Table 1 shows an example of a probabilistic relation1, noted Profit, in the
field of insurance risk assessment. The content of the relation Profit is indeed
not certain and, hence, the relation records a confidence with each prediction or
analysis result. This is materialised by the attribute Pr which associates a prob-
ability with each tuple in a (probabilistic) relation (i.e., Pr gives the marginal
probability of each tuple). The standard semantics of probabilistic databases is

1 In this example, and only for illustration purposes, tuples are assumed to be inde-
pendent (e.g., this is why the sum of probabilities of the tuples t2 and t3 of relation
Profit is > 1). Such an assumption is not mandatory for the proposed approach.
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defined based on the notion of possible worlds. The intuition is that the precise
content of a probabilistic database is unknown but instead the finite set of po-
tential instances, each with some probability, can be computed. For example,
one possible world of the relation Profit is a collection of tuples W2 = {t2} with
probability 30%. Hence, a probabilistic database can be viewed as a probabilistic
distribution over a finite set of possible (complete) databases. Given a probabilis-
tic database D, we denote by W(D) the finite set of its possible worlds (i.e., its
possible instances). Formally, a probabilistic database D defines a finite prob-
ability space (W(D), P r), whose set of outcomes W(D) forms all the possible
instances of the probabilistic database D. Each possible world W ∈ W(D) is
associated with a probability given by Pr(W ), with

∑
W∈W(D)

Pr(W ) = 1.

Given such a framework, a crucial question is then related to query evaluation,
i.e., the problem of calculating the probability of tuples occurring in query answers.
In this paper, we are interested in particular by boolean queries, i.e., queries that
return as unique answers either true or false.

In the context of a probabilistic database (W(D), P r), the problem of the
evaluation of a boolean query q consists in computing the probability of query
q to return as answer the value true. Such a probability is defined as follows
Pr(q) =

∑
W∈W(D)|
q1(W )=true

Pr(W ). In other words, Pr(q) is given by the sum of the

probabilities of all the possible worlds where q is evaluated to true. However, in
most practical situations it is not feasible to compute the setW(D) and then ex-
plicitly evaluates a query q on each world inW(D). Indeed,W(D) is usually very
large. To cope with this problem, existing works have developed techniques to
efficiently evaluate queries on concise representations of probabilistic databases
[6,11]. Not surprisingly, there is a trade-off between the expressiveness of the
representation model and computational tractability of query evaluation. This
is why, most existing works adopt some restricting assumptions, often expressed
as a form of independence of tuples [6]. There are also a few approaches that sup-
port modelling complex correlations in probabilistic databases [11]. It is worth
to mention that, while we rely on existing techniques to handle probabilistic
data, our approach remains insensitive w.r.t. the assumptions underlying the
representation model. We require only a system that is able to evaluate boolean
queries over a probabilistic database, a requirement which is within the reach of
most existing probabilistic database management systems.

3 Probabilistic Data-Aware Business Processes

We present below a formal model to describe pd-processes.

Definition 1 (probabilistic data-aware process). A probabilistic data-aware
process (pd-process) is a tuple A = (S, s0, D,Act,G,Δ, F ), where: S is a finite set
of states, with s0 ∈ S, the starting state, and F ⊆ S the set of final states. D is a
probabilistic database with possible worlds W(D). Act is a finite set of actions or
activities. G is a finite set of guards defined as boolean queries over the database D.
Δ ⊆ S ×Act×G× S, the transition relations, are a set of guarded transitions.



Probabilistic Simulation for PD-Processes 507

A pd-process is essentially a non-deterministic LTS whose transitions are
guarded by boolean queries over a probabilistic database. The probabilities of
transitions determine the branching choices available during a given process ex-
ecution. It should be noted that probabilities of transitions are not independent.
Arbitrary and complex correlations between transitions probabilities may arise
depending on the considered probabilistic database and on the connections that
exist between transitions guards (e.g., disjoint guards, containment, overlapping,
...). As a consequence, pd-processes are non-markovian, i.e., predictions for the
future of the process depend on the process’s full history. Fig 1 (a) shows an
example of a pd-process, called NormCalc, which illustrates a simple business
process about insurance premium calculation. The guards implement boolean
queries over a probabilistic database which is not fully represented in this paper
due to the space limitation (e.g., see [10] for a detailed example).

Fig. 1. Example of an insurance premium calculation business process

Semantics. Various classes of process semantics have been studied in the litera-
ture [8]. A line of demarcation between existing semantics lies in the distinction
between linear time and branching time semantics. Following branching time
semantics, possible executions allowed by a process are characterized in terms of
trees, called execution trees, instead of paths. In the case of pd-processes, execu-
tion trees depend on the guard evaluation which is determined by the considered
possible world of the probabilistic database.

To formally define the notions of execution trees, we use the following defi-
nition of a tree: A tree is a set τ ⊆ N∗ such that if xn ∈ τ , for x ∈ N∗ and
n ∈ N, then x ∈ τ and xm ∈ τ for all 0 ≤ m < n. The elements of τ repre-
sent nodes: the empty word ε is the root of τ , and for each node x, the nodes
of the form xn, for n ∈ N, are children of x. Given a pair of sets L and M ,
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an 〈L,M〉-labelled tree is a triple (τ, λ, δ), where τ is a tree, λ : τ → L is
a node labelling function that maps each node of τ to an element in L, and
δ : τ × τ →M is an edge labelling function that maps each edge (x, xn) of τ to
an element in M . Then, every path ρ = ε, n0, n0n1, . . . of τ generates a sequence
Γ (ρ) = λ(ε).δ(ε, n0).λ(n0).δ(n0, n0n1).λ(n0n1). . . . of alternating labels from L
and M . Informally, if L and M correspond to the sets of states S and actions
Act of a pd-process A, then we can use an 〈S,Act〉-labeled tree to characterize
the semantics of A.

Definition 2 (Execution trees and possible execution trees). Let A =
(S, s0, D,Act,G,Δ, F ) be a pd-process.

– An execution tree of A in a world W ∈ W(D) is a 〈S,Act〉-labeled tree
T = (τ, λ, δ) such that: (i) λ(ε) = s0 and for every leaf x ∈ τ we have
λ(x) ∈ F , and (ii) for each edge (x, xn) of τ , there exists a guard g ∈ G
such that (λ(x), δ(x, xn), g, λ(xn)) ∈ Δ and g(W ) = True. We denote by
Tr(A,W ) the set of execution trees of A in the world W .

– A 〈S,Act〉-labelled tree T = (τ, λ, δ) is a possible execution tree of A iff
∃W ∈ W(D) and ∃λ′ : τ → S such that T ′ = (τ, λ′, δ) ∈ Tr(A,W ). The prob-
ability of a possible execution tree T of A is: Pr(T,A) =

∑
W∈W(D)

T ′∈Tr(A,W )

Pr(W ).

We denote by Tr(A) the set of all possible execution trees of a process A.

The set of execution trees of a given pd-process may be infinite. A possible ex-
ecution tree T is simply an execution tree augmented with the probability of
occurrence of T . Note that two execution trees are considered equal if they dif-
fer only w.r.t. the labels of their states (e.g., T is equal to T ′ in Definition 2).
Hence, a probability of a possible execution tree T is calculated as the sum of
the probabilities of the possible worlds to which T , modulo renaming of states,
belongs. Fig.1 (b) shows the execution trees of the NormCalc pd-process of Fig.1
(a) and their corresponding probabilities.

Simulation preorder. The notion of simulation is used in the literature to
compare LTSs with respect to their branching structures [8]. Usually simulation
is defined as a relation between the states of the considered processes. In the case
of pd-processes, and due to the tight connection between possible execution trees
and possible worlds of a probabilistic database, it is not easy to provide such a
structural definition (i.e., as a general relation between states). This is because,
whether or not a given state s is simulated by another state s′ depends on the
considered possible world. As a consequence, instead of a structural definition,
we provide below a semantic definition of simulation.

Definition 3 (Simulation relation between pd-processes). Let

A = (S, s0, D,Act,G,Δ, F ) and A′ = (S′, s′0, D
′, Act′, G′, Δ′, F ′)

be two pd-processes. Then, A is simulated by A′, noted A � A′, iff: ∀T =
(τ, λ, δ) ∈ Tr(A), ∃λ′ : τ → S′ such that T ′ = (τ, λ′, δ) ∈ Tr(A′), and Pr(T,A) ≤
Pr(T ′, A′).
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Hence, semantics of simulation is defined as a containment between the sets
of possible execution trees of the considered pd-processes, i.e., if a process A
is simulated by a process A′, then every possible execution tree of A is also
a possible execution tree of A′ (modulo renaming of states) with an equal or
higher probability. It is worth noting that the provided definition of simula-
tion is conservative in the sense that when it is applied to pd-processes with
non-probabilistic databases (i.e., having probability of each tuple equal to 1), it
matches non-probabilistic simulation on conventional LTSs.

Unfortunately, Definition 3 is semantic (i.e., it defines the meaning of simula-
tion as a relation between possible execution trees) and not structural (i.e., does
not define a relation between states and transitions of the processes). Therefore,
there is no direct way to derive a simulation algorithm from such a definition
(since testing inclusion between potentially infinite sets of possible execution
trees is not feasible). As a consequence, we propose a method in the next sec-
tion to decompose a pd-process into a set of (unguarded) automata that can
be analyzed separately to structurally characterize simulation relation between
pd-processes.

4 Computing Probabilistic Simulation

We describe below a refinement of a pd-process structure into a set of automata,
called world-partition automata, that can be used to structurally characterize
simulation. We recall that for a set G, the set 2G denotes the power set of G
(i.e., the set of all subsets of G).

Let A = (S, s0, D,Act,G,Δ, F ) be a pd-process with G = {q1, . . . , qn} a set
of boolean queries used as guards of transitions in A. Let PG be a set of boolean
queries obtained as follows: (i) ∀P ∈ 2G, qP := (

∧
q∈P

q) ∧ (
∧

q′ /∈P
¬q′), and (ii)

PG = {qP | P ∈ 2G}. Table 2 presents the partitions of guards of the NormCalc
pd-process of Fig.1(a).

Table 2. Example partitions

Process Partitions Associated query P. worlds Probability

NormCalc
P ′
1 qP ′

1
= q′1 ∧ q′2 {W4, ...} Pr(qP ′

1
) = 16%

P ′
2 qP ′

2
= q′1 ∧ ¬q′2 {W5, ...} Pr(qP ′

2
) = 34%

P ′
3 qP ′

3
= ¬q′1 ∧ q′2 {W2, ...} Pr(qP ′

3
) = 16%

P ′
4 qP ′

4
= ¬q1 ∧ ¬q2 {W6, ...} Pr(qP ′

4
) = 34%

Note that, the set PG forms a partition of the possible worlds of the database
D in the sense given by the following lemma.

Lemma 4. Let A = (S, s0, D,Act,G,Δ, F ) and let PG be the set of guards
constructed as explained above. Then, ∀W ∈ W(D), there exists a unique qP ∈
PG such that qP (W ) = true.
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The proof of this lemma is straightforward since, by construction of PG, ∀W ∈
W(D) we have: (i)

∨
qP∈PG

qP (W ) = true, and (ii) ∀qpi, qpj ∈ PG, with i �= j,

then qpi(W ) ∧ qpj(W ) = false. Hence, each boolean query qP ∈ PG identifies
a unique subset of W(D) (i.e., the set {W ∈ W(D) | qP (W ) = true}). In the
sequel, we use the term partition qP to refer to the subset of W(D) identified
by qP . We introduce below the notion of world-partition automata as a mean to
split the behavior described by a given pd-process w.r.t. the possible worlds of
the underlying probabilistic database. More precisely, the goal is to split the set
of possible execution trees of a pd-process A into subsets of trees each of which
is described by a distinct unguarded automaton.

Definition 5 (World-partition automata). Let A = (S, s0, D,Act,G,Δ, F )
be a pd-process and letPG = {qP1 , . . . , qPn} defined as previously. A world-partition
automata ofA usingPG is a set of automataAPG = {AP1 , . . . , APn}, where, ∀qPi ∈
PG, a corresponding automatonAPi = (S, s0, DPi , Act,GPi , ΔPi , F ) is constructed
from A as follows: (i) the components S, s0,Act, and F , remain unchanged, (ii) the
set of guards is:GPi = {true} and the database isDPi = ∅, (iii) the set of transitions
is: ΔPi = {(s, a, true, s′) | (s, a, g, s′) ∈ Δ and g ∈ Pi}.
The probability function Pr is extended to world-partition automaton as follows:
∀AP ∈ APG , then Pr(AP ) =

∑
W∈W(D)

qP (W )=true

Pr(W )

Hence, an automatonAPi ∈ APG is simply a copy of the processA from which are
removed the transitions having a guard g satisfying the condition Pr(g∧qPi) = 0
(or equivalently, ∀W ∈ W(D) | g ∧ qPi(W ) = false). Note that such a test can
be achieved easily by checking whether g ∈ Pi (since we have: Pr(g ∧ qPi) =
0 iff g /∈ Pi). From item (ii) of this definition, each automaton APi ∈ APG is an
unguarded automaton (i.e., all its guards are set to true). Fig.2 (a) shows the
world-partition automata of the NormCalc pd-process represented at Fig.1(a).

Intuitively, a world-partition automaton AP ∈ APG of an automaton A de-
scribes the behavior of A in all the possible worlds belonging to the partition
qP . The following lemma makes explicit the connection between the behavior of
a pd-process A and the behaviors described by its world-partition automata.

Lemma 6. Let A = (S, s0, D,Act,G,Δ, F ) be a pd-process and let APG its set of
world-partition automata. Then: (i) let W ∈ W(D) be a possible world of D that
belongs to a partition qP ∈ APG . Then, T is an execution tree of A in the world W
iff T ∈ Tr(AP ). (ii) T ∈ Tr(A) with Pr(T,A) > 0 iff ∃{APi1

, . . . , APil
} ⊆ APG

such that: T ∈ Tr(APij
), ∀ij ∈ {i1, . . . , il}, and Pr(T,A) =

∑
ij∈{i1,...,il}

Pr(APij
)

Proof (lemma 6). The case (i)(⇐) is straightforward.

(i) (⇒) Let W ∈ W(D) and qP ∈ APG | qP (W ) = true and let T = (τ, λ, δ) ∈
Tr(A,W ). By definition 2, ∀(x, xn) ∈ τ , ∃g ∈ G such that

(λ(x), δ(x, xn), g, λ(xn)) ∈ Δ and g(W ) = True.
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Fig. 2. Example of world-partition automata

Let GT be the set containing such guards g. From lemma 4,we have
GT ⊆ P . Hence, T ∈ Tr(AP ,W ), by construction of AP .

(ii)(⇒) Assume T ∈ Tr(A) with Pr(T,A) > 0. Hence, from definition 2, there
exists {Wi1 , . . . ,Wil} ⊆ W(D) | T ∈ Tr(A,Wij ) and

Pr(T,A) =
∑

ij∈{i1,...,il}
Pr(Wij ).

From (1), we can derive that ∃{APi1
, . . . , APil

} ⊆ APG such that T ∈
Tr(APij

), ∀ij ∈ {i1, . . . , il}, and

Pr(T,A) =
∑

ij∈{i1,...,il}
Pr(APij

).

(ii)(⇐) Assume that ∃{APi1
, . . . , APil

} ⊆ APG such that: T ∈ Tr(APij
), ∀ij ∈

{i1, . . . , il}. Hence, T ∈ Tr(A) and Pr(T,A) > 0 (from (1) and defini-
tion 2).

While a world-partition automata APG enables to split an original process A
into a set of automata that describe all the possible execution trees of A, it
is still not easy to reason separately on elements of APG to test simulation.
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This is due to the fact that a probability of a possible tree T of A may be
obtained from a subset of APG (and not only from a unique element of APG) (c.f.,
lemma 6). Such problematic execution trees belong to intersections of elements
of APG . Therefore, to characterize precisely the probabilities of every possible
execution tree by a unique automata, there is a need to compute the closure
of world-partition automata w.r.t. the intersection operation. The closure of
world-partition automata, called closure-automata, is formally defined below after
the introduction of some needed notation. Let A = (S, s0, D,Act,G,Δ, F ) be
a pd-process and let APG its corresponding world-partition automata. For a
set ψ ∈ 2APG (i.e., a subset of APG), we define A�ψ

:=
�

AP∈ψ
AP . Therefore,

A�ψ
is an unguarded automata which describes the behavior common to all the

automata of the set ψ.

Definition 7. (closure-automata) Let

A = (S, s0, D,Act,G,Δ, F )

a pd-process and let APG its corresponding world-partition automata. The closure
of the world-partition automata of A is given by the set CL(APG) = {A�ψ

|
ψ ∈ 2APG }, where each transition system A�ψ

∈ CL(A) is associated with a
probability distribution

Pr(A�ψ
) =

∑
AP∈ψ

Pr(AP ).

From the definition of closure automata, we could easily find that a closure
automaton is the intersection of several world-partition automata with the sum
of probabilities. Fig.2 (b) presents the closure automata of the world-partition
automata depicted at Fig.2(a). As a main technical result of this paper, the
next theorem provides a structural characterization of the simulation relation
between two pd-processes.

Theorem 8. Let A and B be two pd-processes. Let CL(APG) be the closure-
automata of A and let BPG′ be the world-partition automata of B. Then:
A � B iff ∀A�ψ

∈ CL(APG), Pr(A�ψ
) ≤

∑
BP ′∈BP

G′
A�ψ

�B
P ′

Pr(BP ′ ).

Proof (sketch).

(⇐) Assume that ∀A�ψ
∈ CL(APG), we have Pr(A�ψ

) ≤
∑

BP ′∈BP
G′

A�ψ
�B

P ′

Pr(BP ′ ) (i).

Let T = (τ, λ, δ) ∈ Tr(A) with Pr(T,A) > 0.
By lemma 6, ∃{APi1

, . . . , APil
} ⊆ APG such that:

T ∈ Tr(APij
), ∀j ∈ {1, . . . , l}, and Pr(T,A) =

∑
ij∈{i1,...,il}

Pr(APij
).
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Let A�ψ
:= APi1

� . . . � APil
.

From assumption (i), we derive: ∃{BP ′
i1
, . . . , BP ′

ik
} ⊆ BP ′

G
such that A�ψ

�
BP ′

ij
, j ∈ [1, k], and Pr(�ψ

) ≤
∑

j∈[1,k]
Pr(BP ′

ij
). Hence, ∀BP ′

ij
, with j ∈

[1, k], ∃λ′ : τ → S′ such that T ′ = (τ, λ′, δ) ∈ Tr(BP ′
ij
). From lemma 6,

T ′ ∈ Tr(B) and Pr(T ′, B) ≥
∑

j∈[1,k]
Pr(BP ′

ij
) ≥ Pr(T,A). Hence, A � B

(by definition 3).
(⇒) Assume that A � B and ∃A�ψ

∈ CL(APG) such that
Pr(A�ψ

) ≥
∑

BP ′∈BP
G′

A�ψ
�B

P ′

Pr(BP ′). In this case, the maximal execution tree of

A�ψ
does not have any corresponding tree in B with enough probability.

Hence, A �� B (which contradict the assumption)

Complexity analysis. Let A = (S, s0, DA, Act,G,Δ, F ) be a pd-process. We use
|X | to denote the cardinality of a set X . We extend this notation to pd-processes
and we write |A| to denote the size of the process A defined in terms of its total
number of guards, transitions and states (i.e., |A| = |S| + |Δ| + |G|). We use
also the notation |DA| to denote the size of the probabilistic database used by A
defined in terms of total number of tuples in D. We study the complexity of the
problem of checking simulation between two pd-processes A and B w.r.t. two
dimensions: (i) expression complexity, which assumes that |DA| + |DB| is fixed
while |A|+ |B| is variable, and (ii) data complexity, which assumes that |A|+ |B|
is fixed while |DA|+ |DB| is variable.
Theorem 9. Let A and B be two pd-processes. The problem of checking whether
A � B is:
(i) in O(f(|D|)) in data complexity, where f(|D|) is the data-complexity of com-
puting the probabilities of a boolean query on a probabilistic database D,
(ii) exptime-hard w.r.t. the expression complexity,
(iii) can be solved in 2-exptime w.r.t. |A|+ |B|.
The proof is omitted due to lack of space. It can be found in the extended ver-
sion of this paper [10]. Therefore, checking simulation between pd-processes is
intractable w.r.t. the size of the LTSs while, interestingly, it does not introduce
additional overhead w.r.t. to probabilistic query evaluation in data-complexity.
We refer to [6] for detailed results regarding the complexity of this latter prob-
lem (i.e., complexity of function f(|D|)) in the context of disjoint-independent
databases. This result is encouraging because data-complexity is the most signif-
icant factor in our context. Indeed, the size of the database of a pd-process can
be expected to be several order of magnitude higher than the size of its LTS.

5 Conclusion

We have proposed a framework based on probabilistic database theory to de-
scribe data-aware business processes and studied the problem of checking sim-
ulation in this context. We have shown that the proposed framework does not
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introduce overhead w.r.t. data-complexity of probabilistic query evaluation (the
most important complexity measure in the setting of pd-processes). A prototype
implementation is currently under development and will be used in experiments
conducted in collaboration with the French Research Institute of Sciences and
Technology for Environment and Agriculture (Irstea). Regarding future research
directions, the expression complexity of the studied problem deserves a further
analysis to get tighter bounds. Moreover, beyond the simulation problem in-
vestigated in this paper, our general purpose is to extend to pd-processes set-
ting analysis and verification techniques that have already proved successful for
non-probabilistic business processes (e.g., checking whether the executions of a
pd-process satisfy some desirable properties expressed in some temporal logic).
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Abstract. We study dynamic networks of infinite-state timed processes,
where each process is a Petri net carrying a single real valued clock.
We compare their expressiveness with other models within the class of
Well-Structured Transition Systems, using coverability languages. We
prove that unbounded places are a strict resource, meaning that extra
unbounded places provides (strictly) with extra expressiveness. Also, we
prove that if no unbounded places are allowed, then the obtained model
is equivalent to Timed Petri nets. We conclude that dynamic networks
of Timed Petri Nets are strictly more expressive than Timed Petri Nets.

1 Introduction

Petri nets, one of the best known models for distributed and concurrent systems,
have been extended with time in many ways. A comparison of these extensions
can be found e.g. in [6], where the authors prove that the class of Petri nets with
time relative to arcs is the most expressive one. A formalism belonging to this
class is that of Timed-Arc Petri Nets (TdPN ) [4], in which tokens are endowed
with a real-valued clock, that can be dynamically created and destroyed.

In [12] we extend the work in [4] by allowing dynamic process creation. We
call the resulting model Timed-Arc ν-Petri nets (ν-TdPN ).1 Hence, our model
manages infinitely-many timed processes, each of which is infinite-state (a poten-
tially unbounded Petri net). This class can serve as the basis of parameterized
verification of infinite-state timed processes. It is defined as an extension of an
(untimed) model, called ν-PN [13], in which tokens are names, that can be cre-
ated fresh and matched with other names. Names can be understood as identifiers
of processes, that can be spawned and can synchronize with each other.

We consider that each process has a single real-valued clock (as in [4] under
a counting abstraction). Each transition specifies which are the possible ages of
the processes involved, and how this age is updated.2In [12] we successfully apply
the theory of regions of [3]. More precisely, working with regions we prove that

� Authors supported by the Spanish projects STRONGSOFT TIN2012-39391-C04-04
and PROMETIDOS S2009/TIC-1465.

1 This class is referred to as locally synchronous ν-Petri nets in [12].
2 Actually, read-only constraints could be considered within the same setting.

A.-H. Dediu et al. (Eds.): LATA 2014, LNCS 8370, pp. 516–527, 2014.
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ν-TdPN belong to the class of Well-Structured Transition Systems (WSTS) [8,1],
for which coverability is decidable.

Several works [9,2,5,7] study the languages generated by different extensions
of Petri Nets, by associating a label with each transition. A finite run of the
net defines a word. Moreover, several acceptance conditions, like reachability,
coverability or no condition, may be considered. These languages are commonly
used to compare the expressiveness of different models.

Here, we compare the expressiveness of ν-TdPN with other well-structured
models. In [9] coverability languages (those obtained with coverability as accep-
tance condition) are proposed as a measure to compare the expressiveness of
WSTS. In [2,9,7,5] Petri nets (PN ), Petri nets with transfers and resets (AWN ),
ν-PN and Data Nets (DN), an extension of ν-PN with ordered data, are com-
pared, proving the following strict relations: PN ≺ AWN ≺ ν-PN ≺ DN . More-
over, DN and TdPN are proved to be equivalent in [5].

This paper puts ν-TdPN in the picture in two different ways. First, we
prove that the class of ν-TdPN with no unbounded places is actually equivalent
to TdPN . Second, we prove that unbounded places are strict resources, meaning
that the class of ν-TdPNwith k unbounded places is strictly less expressive that
the class of ν-TdPNwith k + 1 unbounded places. For that purpose we use the
framework developed in [5]. In particular, we obtain that TdPN ≺ ν-TdPN , so
that ν-TdPN is the most expressive model within the WSTS class, up to our
knowledge, out of those whose relative expressive power has been studied.3

Outline. The rest of the paper is organized as follows. Section 2 gives notations
and results we use throughout the paper. In Section 3 we define ν-TdPN and in
Section 4 we study its expressiveness. In Section 5 we present our conclusions.

2 Preliminaries

Let R≥0 = [0,∞) and N = {0, 1, 2, . . .}, and for n ∈ N let n+ = {1, . . . , n}
and n∗ = {0, . . . , n}. We denote by I the set of real open, closed and mixed
intervals with natural endpoints (the right endpoint can be infinite). (X,≤) is a
partial order (po) if ≤ is a reflexive, transitive and antisymmetric binary relation
on X . A po (X,≤) is a well partial order (wpo) if for every infinite sequence
x0, x1, . . . ∈ X there are i and j with i < j st xi ≤ xj .

Multisets and Words. A (finite) multiset m over X is a mapping m : X → N
st {x ∈ X | m(x) > 0} is finite. We denote by X⊕ the set of multisets over X .
We use set notation for multisets with repetitions to account for multiplicities.
For m1,m2 ∈ X⊕ we define m1 +m2 ∈ X⊕ by (m1 +m2)(x) = m1(x) +m2(x)
and m1 ⊆ m2 if m1(x) ≤ m2(x) for every x ∈ X . When m1 ⊆ m2 we can define
m2 −m1 ∈ X⊕ by (m2 −m1)(x) = m2(x) −m1(x). We denote by ∅ the empty

3 The expressive powers of WSTS based on trees or graphs have not been compared
with others using the techniques in [9], up to our knowledge.
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multiset, that is, ∅(a) = 0 for every a ∈ A. For any set X we denote by X� the
set of finite words over the alphabet X. The empty word is denoted by ε.

Labelled Transition Systems and WSTS. A labelled transition system is
a tuple S = 〈X,→, x0, Σ〉 where X is the set of states, x0 ∈ X is the initial
state, ε /∈ Σ and →⊆ X × (Σ ∪ {ε}) × X is the transition relation. We write

x
a→ x′ instead of (x, a, x′) ∈→. A label ε denotes a silent transition. For u ∈ Σ�,

we write x
u→ x′ if there is a sequence x = x0

a1→ x1 . . . xn−1
an→ xn = x′ and

u = a1 . . . an (notice that some ais may be ε). A labelled well structured transition
system (WSTS) is a tuple S = 〈X,→, x0, xf ,≤, Σ〉, where 〈X,→, x0, Σ〉 is a
labelled transition system, xf is a final state, and ≤ is a wpo on X , st for all

x1, x2, x
′
1 ∈ X and u ∈ Σ� st x1 ≤ x′1 and x1

u→ x2 there is x′2 ∈ X such

that x′1
u→ x′2 and x2 ≤ x′2 (monotonicity). The coverability language of S is

L(S) = {u ∈ Σ� | x0
u−→x, x ≥ xf}.

Labelled Timed-Arc Petri Nets. A Labelled Timed-Arc Petri Net (TdPN )
is a tuple N = 〈P, T, F,H, λ,Σ〉, where P and T are finite disjoint sets of places
and transitions, respectively, λ : T → Σ∪{ε} and F,H : P×T → I⊕. A marking
of a TdPN is a finite multiset M over P × R≥0. Abusing notation, we define
M(p) as the multiset of ages of tokens in place p at M . There are two types
of transitions: timed transitions and discrete transitions. Given a marking M =
{(p1, d1) . . . , (pn, dn)} we write M

ε→M ′ if M ′ = {(p1, d1 + d) . . . , (pn, dn + d)}
for some d ≥ 0. Given t ∈ T and a marking M we write M

λ(t)→ M ′ if for
each p ∈ P with F (p, t) = {I1, . . . , In} and H(p, t) = {J1, . . . , Jm}, there are
In = {r1, . . . , rn} and Out = {r′1, . . . , r′m} st: (i) In ⊆M ′(p), (ii) ri ∈ Ii for any
i ∈ n+, (iii) r′i ∈ Ji for any j ∈ m+ and (iv)M ′(p) = (M(p)−Out) + In.

ν-Petri Nets. We fix infinite sets Id of names, Var of variables and a subset
of variables Υ ⊂ Var for fresh name creation. A ν-PN [13] is a tuple N =
〈P, T, F,H, λ,Σ〉, where P and T are finite disjoint sets, λ : T → Σ ∪ {ε} and
F,H : T → (P × V ar)⊕ are the input and output functions, respectively. We
say that x ∈ V ar(t) iff there is p ∈ P with (p, x) ∈ F (t) +H(t). A marking is a
finite multiset over P × Id . Intuitively, each name represents a different process.
A mode is an injection σ : Var(t) → Id . Modes are extended homomorphically
to (P × Var(t))⊕. A transition t is enabled with mode σ for a marking M if
σ(F (t)) ⊆M and for every ν ∈ Υ , (p, σ(ν)) /∈M for any p. The last condition is

used to create new names, not in the current marking. Then we have M
λ(t)−→M ′,

where M ′ = (M − σ(F (t)) + σ(H(t)). For an example, see Fig. 1 (for now,
disregard the intervals in the arcs), in which places are represented by circles,
transitions by rectangles, and F and H are represented by labelled arcs. Tokens
are represented as names in places. Transition t can be fired from the marking
in the second net, reaching the marking in the third one, with mode σ, with
σ(x) = a, σ(y) = b and σ(ν) = c. In particular, the firing of t creates a new
name c in p4.
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3 Dynamic Networks of Timed Petri Nets

Now we define Timed-Arc ν-PN (ν-TdPN ). In ν-TdPN each process has a single
clock. The age of the processes involved in the firing of a transition must be in the
range determined by it. Also, these ages are updated according to the transition.

Definition 1 (Timed-Arc ν-PN ). A Timed-Arc ν-PN (ν-TdPN ) is a tuple
N = 〈P, T, F,H,G, λ,Σ〉, where:

– P and T are finite disjoint sets,
– λ : T → Σ ∪ {ε},
– for t ∈ T , Ft, Ht : Var → P⊕ are the input and output functions of t,
– for t ∈ T , Gt : Var → I × I is the time constraints function of t.

For each t ∈ T we define Var(t) = {x ∈ Var | Ft(x)+Ht(x) �= ∅}, assumed to be
finite, and we split it into nfVar(t) = Var(t)\Υ and fVar(t) = Var(t)∩Υ . Focus
in the first net of Fig. 1. The input and output functions are represented by
labelled arcs. The figure represents a net with a transition t, with Ft(x) = {p1}
and Ht(x) = {p3}. Moreover, G(x) = ((0, 1], (2, 4)) (analogously for y and ν).

Definition 2 (Markings). A marking M of a ν-TdPN is an expression of
the form a1 : (m1, r1), . . . , an : (mn, rn), where Id(M) = {a1, . . . , an} ⊂ Id are
pairwise different names, and for each i ∈ n+, mi ∈ P⊕ and ri ∈ R≥0.

We treat markings of ν-TdPN as multisets over elements of the form a:(m, r),
which we call instances (or process instances). Hence, a:(m, r) is an instance with
name a, tokens according to m, and age r. For example, the marking represented
in the first net of Fig. 1, consist of an instance with name a and an instance with
name b, with tokens in p1 and p3, and p1 and p2, respectively. Moreover, the
ages of the instances are 0 and 0.5. We use M , M ′,. . . to range over markings.
Let us now define the semantics of ν-TdPN .

Definition 3 (Time delay). Given M = a1 : (m1, r1), . . . , an : (mn, rn) and
d ∈ R≥0, we write M

+d to denote the marking a1:(m1, r1+d), . . . , an:(mn, rn+d),

in which the age of every instance has increased by d. We write M
ε−→M+d.

Notice that time delays are silent transitions. Now we define the firing of transi-
tions, for which we need the following notations. We denote by G1

t (x) and G2
t (x)

the first and second component of Gt(x), respectively. Intuitively, for a transition
to fire the instance corresponding to x must have an age in G1

t (x) and this age is
set to any value in G2

t (x). We say M is the ∅-contraction of M ′ if M is obtained
by removing every instance of the form a:(∅, r) from M ′.

Definition 4 (Firing of transitions). Let t ∈ T with nfVar(t) = {x1, . . . , xn}
and fVar(t) = {ν1, . . . , νk}. We say t is enabled at marking M if:

– There is a marking M st M = a1 : (m1, r1), . . . , an : (mn, rn) +M ,
– for each i ∈ n+, Ft(xi) ⊆ mi and ri ∈ G1

t (xi).
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M3 = a:({p3p3}, 3), b:({p1}, 1),
c:({p4}, 0)

→ε →λ(t)

Fig. 1. Firing of a transition in a ν-TdPN

Then, t can be fired, and taking

– {b1, . . . , bk} pairwise different names not in Id(M),

– m′
i = (mi − Ft(xi)) +Ht(xi) for all i ∈ n+,

– m′′
j = Ht(νj) for all j ∈ k+,

– r′i any value in G2
t (xi), for all i ∈ n+,

– r′′j any value in G2
t (νj), for all j ∈ k+,

we can reach M ′, denoted by M
λ(t)−→M ′, where M ′ is the ∅-contraction of

a1:(m
′
1, r

′
1), . . . , an:(m

′
n, r

′
n), b1:(m

′′
1 , r

′′
1 ), . . . , bk:(m

′′
k , r

′′
k ) +M

We implicitly assume an initial markingM0 with no empty instances, thus obtain-
ing the transition system induced byN . Since we are taking the ∅-contraction, in-
stances in reachable markings are not empty.

Example 5. Fig. 1 depicts a ν-TdPN with three different markings. In the first
marking the transition t is not fireable, because no instance with an age in [1, 1]
has a token in place p2, and therefore, the second enabling condition is not
fulfilled. However, after waiting 0.5 units of time, the marking M2 is reached,
and t becomes enabled. Then, we can fire t reaching, for example, the marking
M3 in the figure by assigning a to x and b to y.

The state space of ν-TdPN is infinite in various dimensions. It encompasses
an unbounded number of (unbounded) instances, each with a real clock. More-
over, the induced transition system is not finitely branching, since any marking
has infinitely-many successors due to arbitrary time delays. In [12], we use the
theory of regions [3,4] to obtain a finitary representation of each ν-TdPN . We
fix a ν-TdPN N = 〈P, T, F,H,G, λ,Σ〉 and denote by maxN (or simply max)
the maximum integer bound appearing in G and n∗ ∪ {∞} as n∗∞.

In order to obtain the region associated to a marking, we partition the in-
stances in M into three multisets:

– The multiset M1 of instances with an integer age of at most max,
– The multiset M2 of instances younger than max, with a non-integer age,

– The multiset M3 of instances older than max.
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We put instances of M1 in A0 with their ages (and forgetting their names).
We keep in A1 . . . An the instances in M2, ordered according to the fractional
part of their ages, and storing only their integer part. Finally, A∞ absorbs all
instances in M3, losing the information about their concrete age.

Hence, a region is an expression A0 ∗A1 ∗ . . . ∗An ∗A∞ with n ≥ 0, and Ai ∈
(P⊕×Ii)⊕ for every i ∈ n∗∞ and I0 = max∗, Ii = (max− 1)∗ for i ∈ n+ and I∞ =

{max+1}. For instance, A0 ∈ (P⊕ ×max∗)
⊕

and A1 ∈ (P⊕ × (max− 1)∗)
⊕
.

We assume Ai �= ∅ for any i ∈ n+, and m �= ∅ for all (m, r) ∈ Ai, for any i ∈ n∗∞.
Each marking M of a ν-TdPN has a region associated to it.

Example 6. Let M = a : ({pq}, 1.5), b : ({p}, 2), c : ({ppq}, 4.5), d : ({q}, 2.3),
e : ({qq}, 0.3) be a marking of a ν-TdPN with max = 3. The region of M
is A0 ∗ A1 ∗ A2 ∗ A∞ with A0 = {({p}, 2)}, A1 = {({qq}, 0), ({q}, 2)}, A2 =
{({pq}, 1)} and A∞ = ({ppq}, 4). In A0 we store the instance with an integer
age, in A1 and A2 we store instances younger than max with ages of fractional
part 0.3 and 0.5 respectively, and in A∞ we store the instance older than max.

In [12] we use these regions to obtain finitary transition systems over countable
domains and we prove that the transition systems are WSTS. In particular, we
can solve the control-state reachability problem (whether a given place can be
marked) by reducing it to a coverability problem.

Proposition 7 ([12]). ν-TdPN are WSTS.

4 Expressiveness Results

In this section we prove that ν-TdPN are strictly more expressive than TdPN .
We compare classes of WSTS by comparing the families of coverability languages
they accept, as advocated for instance in [9,2].

For two classes of WSTS, S1 and S2, we write S1 & S2 whenever for every
S1 ∈ S1 there is S2 ∈ S2 st L(S1) = L(S2). We write S1 < S2 when S1 & S2 and
S2 & S1, and we write S1 ≺ S2 if S1 & S2 and S2 
 S1. In [2,9,5] the following
relations are proved: PN ≺ AWN ≺ ν-PN ≺ DN < TdPN .

In order to obtain a finer analysis of the expressiveness of ν-TdPN we partition
that class into

⋃
k≥0 ν-TdPN k, where ν-TdPN k denotes the class of ν-TdPN

with at most k unbounded places.4 A place p is bounded if there is some b ∈ N
st every instance a : (m, r) satisfies m(p) ≤ b in every reachable marking.5 If
a ν-TdPN has P as set of unbounded places and m bounded places, we can
represent each instance as an element of Q× P⊕ with Q = {0, . . . , b}m.

Let us first see that ν-TdPN 0 is at least as expressive as TdPN .

Proposition 8. TdPN & ν-TdPN 0

4 Alternatively, we could consider the class with exactly k unbounded places, though
we claim these two classes are equivalent with respect to coverability languages.

5 This is actually an undecidable problem [13], though this is not important for the
study of expressiveness.
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Fig. 2. Illustrating Prop. 2 and Prop. 3

Proof. Given N ∈ TdPN we build N ′ ∈ ν-TdPN 0 st L(N) = L(N ′). The net
N ′ has the same sets of places and transitions (with the same labels) asN , respec-
tively. We simulate a token in p with age r by an instance with a single token in
p, and with age r. Each transition is simulated by a transition (with the same la-
bel, hence accepting the same language) that (i) removes instances/tokens with
clocks with the proper values and (ii) creates fresh instances, again with clocks
with the proper values. Therefore, for each input place pi of a transition t of N
labelled by an interval I, we add to N ′ an arc labelled by (ri, I), as depicted in
Fig. 2 (first and second nets). Analogously, for each output place qj of a transition
t of N labelled by an interval I, we add to N ′ an arc labelled by (νj , I) (to repre-
sent the creation of new tokens, we create new instances). If the initial marking of
the TdPN is {(p1, r1), . . . , (pn, rn)} we consider a1 : (p1, r1), . . . , an : (pn, rn) (for
arbitrary a1, . . . , an) as initial marking of the ν-TdPN (analogously for the final
marking). Each instance in N ′ has exactly one token, so that N ′ ∈ ν-TdPN 0. �

The converse of the previous result is also true.

Proposition 9. ν-TdPN 0 & TdPN

Proof. Let N ∈ ν-TdPN 0, so that each instance in each reachable marking is
given by a control-state q ∈ Q and the value of its clock r ∈ R≥0. We perform
a standard counting abstraction (see Fig. 2, second and third nets): we build
a TdPN with Q as set of places, so that each token (with a clock value) in a
place q represents an instance in state q (with the same clock value). Then, a
transition t ∈ T is simulated by consuming a token from q (with a legal clock
value) for each instance that has to be in state q in order to fire t in N (and
analogously for postconditions). �

Corollary 10. TdPN < ν-TdPN 0

Now we prove that ν-TdPN 
 TdPN , ie, that the language of some ν-TdPN
cannot be obtained as the language of any TdPN . We do it indirectly, by proving
that ν-TdPN k ≺ ν-TdPN k+1, which by the previous corollary in particular
implies that TdPN ≺ ν-TdPN 1. Clearly, ν-TdPN k & ν-TdPN k+1 holds. Let us
prove that ν-TdPN k+1 
 ν-TdPN k

In [5] a framework for the strict comparison of WSTS is developed. This
framework is based on two concepts: reflections and witness languages, which can
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be used to prove non-inclusions of families of coverability languages. Let (X,≤X)
and (Y,≤Y ) be two wpos. A mapping ϕ : X → Y is a reflection if ϕ(x) ≤Y ϕ(x′)
implies x ≤X x′ for all x, x′ ∈ X . A reflection is an isomorphism if it is bijective
and x ≤X x′ implies ϕ(x) ≤Y ϕ(x′) (note that this is the symmetric property
of monotonicity). We write X �refl Y if there is a reflection from X to Y . We
extend the relation �refl to classes of wpo by X �refl X

′ if for any X ∈ X there
is X ′ ∈ X′ st X �refl X

′.
Witness languages represent the capability of a WSTS to recognize a state

space. They are useful to prove strict relations between classes of WSTS because
they can be proven not to be recognizable by some classes of WSTS.

Given an alphabet Σ = {a1, . . . , ak}, we consider a disjoint copy Σ =
{a1, . . . , ak}. This notation is extended to words and languages, as expected.
A Σ-representation of a wpo X is any surjective partial function γ : Σ� → X .
Intuitively, every u ∈ Σ� with γ(u) = x is a possible encoding or representation
of x ∈ X . We denote by dom(γ) the domain of γ. For a Σ-representation γ of
X , we define Lγ = {uv | u, v ∈ dom(γ) and γ(v) ≤ γ(u)}, and we say Lγ is a
witness of X . The fact that a WSTS can recognize such Lγ witnesses that it
can represent the structure of X : it can accept all words starting with some u
(representing some state γ(u)), followed by some v that represents γ(v) ≤ γ(u).
In particular, it must be able to accept uu for any u ∈ dom(γ).

Example 11. Let X = Q×N, with Q finite, with its standard order ≤ ((q, n) ≤
(p,m) iff q = p and n ≤ m). Taking Σ = {a} ∪ Q, a Σ-representation of X is
γ : Σ� → X with γ(qan) = (q, n), so Lγ = {qanq̄ām | m ≤ n} is a witness of X .

In order to apply the framework to two classes of WSTS we must prove that
both classes are self-witnessing. A class of WSTS S is self-witnessing if it can
accept encodings (over some alphabet) of their state spaces. Formally, if S is a
class of WSTS whose state spaces are included in the class of wpos X, (X,S) is
self-witnessing if, for all X ∈ X, there is S ∈ S that recognizes a witness of X .

Proposition 12 ([5]). Let (X,S) and (X′,S′) be self-witnessing WSTS classes.
If S & S′ then X �refl X

′.

Next we define the state space of ν-TdPN (using regions) in terms of standard
set constructions, like products, multisets or words.

Definition 13. We define Xk as the class of sets X⊕
max∗ × (X⊕

(max−1)∗)
� ×

X⊕
{max+1} for some max ∈ N and P,Q finite sets with |P | = k, where for every

I ⊆ (max+1)∗, XI = Q × P⊕ × I.

As an example, consider the region in Ex. 6, assuming q is the only bounded
place, bounded by 2. We take Q = {q0, q1, q2}, where qi state with i tokens in q,
and P = {p}. Then, we can write this region as

({(q0, {p}, 2)}, {(q2, ∅, 0), (q1, ∅, 2)}{(q1, {p}, 1)}, {(q1, {p2}, 4)})

that belongs to X⊕
max∗ × (X⊕

(max−1)∗)
� ×X⊕

{max+1}, for max = 3.
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By lack of space we do not show in all detail the order in Xk. It is the standard
order induced by the equality over finite sets in products, multisets and words
(see [5] for details). For X ∈ Xk, we will write QX , PX and maxX to refer to Q,
P andmax as above (or just Q, P andmax, abusing notation). We can represent
each region as an element of some X ∈ Xk. If R = A0 ∗ A1 ∗ . . . ∗ An ∗ A∞ is
a region, A0 is represented by an element of X⊕

max∗ , A1 ∗ . . . ∗ An by a word
over the alphabet X⊕

(max−1)∗ and A∞ by an element of X⊕
{max+1}. In particular,

each (m, r) ∈ Ai is represented by some (q, {p1, . . . , pn}, k) ∈ Q×P⊕× I, where
q ∈ Q is a control state corresponding to the bounded part of m. In order to
apply Prop. 12 to prove ν-TdPN k+1 
 ν-TdPN k we have to see that every
(Xk, ν-TdPN k) is self-witnessing and that Xk+1 ��refl Xk.

Now, given X ∈ Xk, we define a Σ-representation γX of X , and therefore, we
obtain a witness LγX of X . We need auxiliary functions γI

1 , γ
I
2 and γI

3 .

Definition 14. Given X ∈ Xk, let Σ = Q ∪ P ∪ (max+1)∗ ∪ {∗,#,&}. We
define γI

1 : Σ� → XI , γ
I
2 : Σ� → X⊕

I and γI
3 : Σ� → (X⊕

I )� as follows:

– γI
1 (qp1 . . . pnk) = (q, {p1, . . . , pn}, k), with pi ∈ P , q ∈ Q and k ∈ I,

– γI
2 (u1# . . .#un) = {γI

1 (u1), . . . , γ
I
1 (un)}, with ui ∈ dom(γI

1 ) for every i,
– γI

3 (v1 ∗ . . . ∗ vn) = γI
2(v1) . . . γ

I
2 (vn), where vi ∈ dom(γI

2 ) for every i.

Finally, we define the partial function γX : Σ� → X as

γX(u&v&w) = (γmax∗
2 (u), γ

(max−1)∗
3 (v), γ

{max+1}
2 (w))

γX is surjective, so that it is a Σ-representation of X and Lγ is a witness of
X . Although not explicitely mentioned in the results from [5] shown above, if
X ∈ Xk+1 and Xk+1 ��refl Xk then LγX proves that ν-TdPN k+1 �& ν-TdPN k.

Proposition 15. (Xk, ν-TdPN k) is self-witnessing.

Proof. Given X ∈ Xk we have to prove that there is N ∈ ν-TdPN k st L(N) =
LγX . Notice that N must have at most k unbounded places. N operates in two
phases: the first phase generates u with γ(u) = R = A0 ∗A1 ∗ . . . ∗An ∗A∞, and
the second one recognizes any v with γ(v) ≤ R. In turn, each of the phases has
three consecutive sub-phases, dealing with A0, A1∗ . . .∗An and A∞, respectively.
We use control places to move from one subphase to the next (with transitions
labeled by & or &). In order to differentiate between phases, we say that we
generate words in the first one, but we recognize them in the second.

We explain the generation of A1 ∗ . . . ∗ An (the other phases are simpler).
Let Ai = {(qi1,mi

1, k
i
1), . . . , (q

i
ni
,mi

ni
, ki

ni
)}. We use a different name to represent

each process instance. Moreover, instances in the same Ai have the same age. We
use a place now that holds the name (with age 0) of the instance currently being
generated. For a given i, we start by firing a transition of the form tq (labelled
by q ∈ Q) which copies the name in now to a place q. This firing is followed by
the (possibly multiple) firing of transitions tp (labelled by p ∈ P ), each copying
the name in now to a place p. These firings are followed by the firing of some tk
(labelled by k ∈ (max−1)∗), which copies the name in now to a place k.
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Therefore, a word u with γ
(max−1)∗
1 (u) = (qi1,m

i
1, k

i
1) ∈ X(max−1)∗ can be

produced. Next, the name in now is moved to a place all , and replaced by
a fresh name, with age 0 (transition t#, labeled by #). These actions can be
repeated to generate (the encoding of) any element in X⊕

(max−1)∗ . Notice that

they all demand that the instance involved has age 0. At any point, instead of
firing t# we can fire t∗ (labeled by ∗), which has the same effect as t#, but it is
only enabled if the instance in now has a non-null age, so that some time must
elapse. Hence, we start accepting the instances with a higher fractional part, in
Ai+1.

After this phase, there is any number of different names (each representing an
instance) in all , some of which have the same age (those instances with an age
with the same fractional part). Moreover, for any a in all , a belongs to some of
the places in P , and exactly to one place q and one place k. The transitions in
the second phase (the recognizing phase) demand that the age of the instances
involved is exactly 1. Moreover, they are all labeled with symbols in Σ.

This phase starts by taking any name in all and putting it back to now . First,
a transition of the form tq (labelled by q) can remove a token from q with the
same name as the one in now . Then, transitions of the form tp (labeled by p)
can be fired, each consuming a name from p matching the name in now . At any
point, a transition of the form tk, labeled by k (with k ∈ (max−1)∗) can be fired,
which consumes from k a name matching the one in now . Thus, if the current
name represented an instance (q,m, k) then (an encoding of) any (q,m′, k) with
m′ ⊆ m can be recognized. The name in now can be replaced by a name taken
from all (transition t# labeled by #) in order to recognize the next instance.

At any point, time can elapse, so that another instance in now reaches age 1.
Then, t∗ can be fired, labeled by ∗, with the same effect as t#. Notice that when
time elapses, all the names with age greater than 1 are lost (the encodings of the
instances they represent cannot be recognized). This is consistent with the fact
that we must recognize (the encoding of) a state which is less or equal than the
one we generated. Notice also that even in the first phase, names with ages older
than 1 become garbage. However, it is possible to generate all the names in the
first phase with an age smaller than 1, so that the same state can be recognized.

The order between instances is not preserved within each Ai (this is not
demanded by the order in X⊕

(max−1)∗), but it is preserved between different Ai’s,

since older instances reach the age of 1 before. To conclude, we consider as final
marking the one with a token in the control-state marked in the second phase
(the recognizing one). Note that the built net has max = 1. �

Thus, to apply Prop. 12 we only have to see that Xk+1 ��refl Xk. In order to
prove it we use ordinal theory (see Prop. 16 below). Let us explain the needed
concepts about ordinals (for more details see [5]). Each ordinal α is equal to
the set of ordinals {β | β < α} below it, and the class of ordinals is totally
ordered by inclusion. Every total well order (X,≤) is isomorphic to a unique
ordinal ot(X,≤), called the order type of X . In the context of ordinals, we de-
fine 0 = ∅, n = {0, . . . , n−1} and ω = N, ordered by the usual order. The ordinals
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below ε0 (those bounded by a tower ωω···
ω

) can be represented by the hierarchy
of ordinals in Cantor Normal Form (CNF), recursively given by C0 = {0}, and
Cn+1 = {ωα1 + . . . + ωαp | p ∈ N, α1, . . . , αp ∈ Cn and α1 ≥ . . . ≥ αp} ordered

by ωα1 + · · · + ωαp ≤ ωα′
1 + · · · + ωα′

q iff (α1, . . . , αp) ≤lex (α′1, . . . , α
′
q), where

≤lex is the lexicographic order.

Each ordinal below ε0 has a unique CNF. We abbreviate α+
k· · ·+α = α∗k. A

linearization of a po ≤ is a total order ≤′ st x ≤ y ⇒ x ≤′ y. A linearization of
a wpo is well and total, hence isomorphic to an ordinal. The maximal order type
of (X,≤) is ot(X,≤) = sup {ot(X,≤′) | ≤′ linearization of ≤}. The following
result states that we can prove Xk+1 ��refl Xk by comparing their ordinal types.

Proposition 16 ([15]). For X and Y wpos, if X �refl Y then ot(X) ≤ ot(Y ).

Using [11,14,15], we can compute the order type of products, domains of finite
words or finite multisets. In particular, we will need the following result.

Lemma 17. For every Q, P and I finite, ot((Q×P⊕× I)⊕�) = ωωωω|P |∗|Q|∗|I|
.

In particular, ot(P⊕⊕�) = ωωωω|P |
.

Proof. Let X be any wpo with ω ≤ ot(X) < ε0 and Y a finite set. In [11,14] it

is proved that ot(X × Y ) = ot(X) ∗ |Y | and ot(X�) = ωωot(X)

, and [15] proves

that ot(X⊕) = ωot(X). Moreover, P⊕ is isomorphic to N|P |, so that ot(P⊕) =

ot(N|P |) = ω|P |. This allows us to compute the ordinals in the lemma. �

Proposition 18. ν-TdPN k ≺ ν-TdPN k+1 for each k ≥ 0.

Proof. Trivially ν-TdPN k & ν-TdPN k+1 holds. In order to prove ν-TdPN k+1 �&
ν-TdPN k it is enough to apply Prop. 12, since both classes are self-witnessing
(Prop. 15). Let us see that Xk+1 ��refl Xk. We consider only the part of the state
spaces composed of words (of multisets), the one playing the relevant part. Let
us takeXk+1 = P⊕⊕∗ ∈ Xk+1 (i.e., with only one control-state andmax = 1), so
that |P | = k+1. For any Xk ∈ Xk we have that Xk = (Q×P ′⊕× I)⊕∗ for some
max ∈ N and finite P ′ and Q with |P ′| = k. By the previous lemma, ot(Xk+1) =

ωωωωk+1

and ot(Xk) = ωωωωk∗|I|∗|Q|
, which satisfy ot(Xk+1) �≤ ot(Xk). Since this

is true for any Xk ∈ Xk we have that Xk+1 ��refl Xk. �

Corollary 19. TdPN < ν-TdPN 0 ≺ ν-TdPN 1 ≺ ν-TdPN 2 ≺ . . . ≺ ν-TdPN

5 Final Remarks and Future Work

In this paper we have compared ν-TdPN with other classes of WSTS, proving
that it is the most expressive of the studied classes. In particular, we have proved
that TdPN ≺ ν-TdPN by applying the framework in [5]. Interestingly, the
number of unbounded places is a strict resource and the class ν-TdPN 0, with no
unbounded places, is equivalent to TdPN with respect to coverability languages.
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The state space of a ν-TdPN is determined by three factors, the sizes of P
and Q, and max (as denoted in the paper). In the analysis of the expressiveness,
we have only used the size of P , and not the size of Q or max. Actually, the
computation of the ordinal types in the proof of Prop. 18 suggests that max
plays the same role as the number of control-states. Thus, either max plays no
role in the expressiveness of ν-TdPN , or it does, but it cannot be proved by an
analysis of the order types. We believe that any ν-TdPN with max = 0 can be
simulated by a ν-PN extended with broadcast primitives.

Regarding complexity, since ν-TdPN are more expressive than TdPN , the
complexity of the control-state reachability problem is non-primitive recursive.
It would be interesting to obtain a finer-grained complexity analysis, as in [10].

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: Algorithmic analysis of pro-
grams with well quasi-ordered domains. Inf. Comput 160(1-2), 109–127 (2000)

2. Abdulla, P.A., Delzanno, G., Begin, L.V.: A classification of the expressive power
of well-structured transition systems. Inf. Comput 209(3), 248–279 (2011)

3. Abdulla, P.A., Jonsson, B.: Verifying networks of timed processes (extended ab-
stract). In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 298–312. Springer,
Heidelberg (1998)

4. Abdulla, P.A., Nylén, A.: Timed Petri nets and bqos. In: Colom, J.-M., Koutny,
M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 53–70. Springer, Heidelberg (2001)

5. Bonnet, R., Finkel, A., Haddad, S., Rosa-Velardo, F.: Ordinal theory for expres-
siveness of well structured transition systems. Inf. Comput. (2012)

6. Boyer, M., Roux, O.H.: On the compared expressiveness of arc, place and transition
time Petri nets. Fundam. Inform. 88(3), 225–249 (2008)

7. Delzanno, G., Rosa-Velardo, F.: On the coverability and reachability languages of
monotonic extensions of petri nets. Theor. Comput. Sci. 467, 12–29 (2013)

8. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor.
Comput. Sci. 256(1-2), 63–92 (2001)

9. Geeraerts, G., Raskin, J.-F., Begin, L.V.: Well-structured languages. Acta Inf.
44(3-4), 249–288 (2007)

10. Haddad, S., Schmitz, S., Schnoebelen, P.: The ordinal-recursive complexity of
timed-arc Petri nets, data nets, and other enriched nets. IEEE LICS, 355–364
(2012)

11. de Jongh, D.H.J., Parikh, R.: Well partial orderings and hierarchies. Indagationes
Mathematicae, 195–207 (1977)

12. Martos-Salgado, M., Rosa-Velardo, F.: Dynamic networks of infinite-state timed
processes. Technical Report 9/13, UCM (2013),
http://antares.sip.ucm.es/~frosa/

13. Rosa-Velardo, F., de Frutos-Escrig, D.: Decidability and complexity of Petri nets
with unordered data. Theor. Comput. Sci. 412(34), 4439–4451 (2011)

14. Schmidt, D.: Well-partial orderings and their maximal order types. Habilitationss-
crift (1979)

15. Weiermann, A.: A computation of the maximal order type of the term ordering on
finite multisets. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009. LNCS,
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Abstract. This article determines two learning-theoretic combinatorial
parameters, the teaching dimension and the recursive teaching dimen-
sion, for various families of pattern languages over alphabets of varying
size. Our results and formal proofs are of relevance to recent studies in
computational learning theory as well as in formal language theory.

1 Introduction

A pattern is a nonempty finite string of variable symbols and constant symbols,
the latter being chosen from a fixed alphabet Σ. Each pattern generates a formal
language, which contains all words obtained by replacing the variables in the
pattern with nonempty words over Σ [1]. Since their introduction by Angluin
in 1980 [1], pattern languages have continually served as interesting objects of
study both in computational learning theory and in formal language theory. A
large variety of very recent studies include for example the following.

(1) In computational learning theory: learning extensions of pattern languages
[8,9] and novel models of learning pattern languages [7,8].

(2) In formal language theory: embedding pattern languages into the Chom-
sky hierarchy [11,15], the complexity of the membership problem for pattern
languages [5,8,14], and decision problems on comparing pattern languages [6].

Pattern languages have also found applications in bioinformatics [2] and for
text editing in automatic program synthesis [13].

The present article concerns a formal study of structural properties of pattern
languages. The first question we study is the following: given a family L of
pattern languages, how many (and which) membership examples are required in
the worst case to distinguish any language L ∈ L from all other languages in L?
Here, by membership example we mean a word together with the information
whether or not it belongs to L. This question is of interest (i) from a formal
language point of view, because it reveals interesting structural properties of
families of pattern languages, and (ii) from a computational learning theory point
of view, because it corresponds to the complexity of learning pattern languages
from helpfully chosen examples, i.e., in models of learning from teachers. The
number of membership examples required in the worst case directly corresponds
to the widely studied teaching dimension (TD) complexity parameter [10,16].
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Our second question concerns a second complexity parameter of a formal
model of teaching, namely the so-called recursive teaching dimension (RTD) [18].
The RTD is also based on membership examples and it lower-bounds the TD,
but its definition is more involved (see Section 2). Our motivation for studying
RTD is that it, unlike the TD, turns out to be related to other central notions
in computational learning theory, namely to the VC-dimension and to sample
compression schemes [4,3]. In general, lower values of TD and RTD mean more
efficient learnability (where efficiency is measured by the number of membership
examples exchanged between the teacher and the learner).

To the best of our knowledge, this paper is the first to study TD and RTD
for families of formal languages, and the first to study RTD for any infinite
family of objects. We compute both parameters for a variety of families of pat-
tern languages (arbitrary pattern languages, one-variable pattern languages, and
regular pattern languages) as well as for various alphabet sizes. Among the in-
teresting observations we make are the following: (i) for some families of pattern
languages, TD can be infinite where RTD is only 2; (ii) TD can depend on the
size of the underlying alphabet; (iii) different interesting subfamilies of pattern
languages exhibit different values of TD while the RTD is 2 in all cases where
we could determine it. Not surprisingly, the proof techniques vary substantially
when varying the alphabet from singleton over finite non-singleton to infinite.
Similarly, the particular sets of membership examples used for distinguishing a
language often obey a different structure when the alphabet is changed.

The particular sets of membership examples used for distinguishing a pattern
language (in the TD model as well as in the RTD model) give insights into
structural properties of pattern languages that can be useful for further studies
in formal language theory. Further, the fact that RTD equals 2 in so many cases
of non-trivial families of pattern languages suggests the possibility of designing
application scenarios in which pattern languages can be learned very efficiently
from helpful teachers.

2 Preliminaries

Throughout this document, Σ denotes a nonempty and either finite or countably
infinite set, called the alphabet. A language over Σ is a subset of Σ∗, i.e., a set
of finite words formed over Σ. The complement of a language L w.r.t. Σ∗ is
denoted by L. For any two languages L,L′ over Σ, the term L>L′ denotes the
symmetric difference between L and L′. For any set Γ of symbols, Γ+ is the set
of nonempty strings over Γ ; for any w ∈ Γ+ and any p ∈ N, we denote the pth

symbol of w by w[p] and the length of w by |w|. We often omit any reference to
Σ when the choice of alphabet is clear from the context.

2.1 Teaching Dimension and Recursive Teaching Dimension

Let W ⊆ Σ∗ be a set of words. Two languages L,L′ are said to agree on W if
W ∩ (L>L′) = ∅, i.e., if W ∩ (L ∪ L′) ⊆ L ∩ L′. Further suppose that L is a
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family of languages and L ∈ L. The set W is called a distinguishing set for L
w.r.t. L, if W ∩ (L>L′) �= ∅ for every L′ ∈ L \ {L}, i.e., if no other language in
L agrees with L on W . For example, {a, b} is the smallest distinguishing set for
L = ∅ w.r.t. L = {∅, {a}, {b}}.

The size and structure of distinguishing sets often reveal insights into struc-
tural properties of the underlying family L of languages. In particular, they
determine how many and which so-called membership examples are required to
distinguish a specific language from all other languages in the family. A mem-
bership example for a language L is a word w, together with the information
whether or not w ∈ L. Such distinguishing information is useful for example
in the context of formal learning models in the field of computational learning
theory. There, the size of a smallest possible distinguishing set is referred to as
the teaching dimension of L w.r.t. L.

Definition 1. [10,16] Let Σ be any alphabet and L any family of languages over
Σ. Let L ∈ L. The size of a smallest distinguishing set for L w.r.t. L is called the
teaching dimension of L w.r.t. L, denoted by td(L,L). The teaching dimension
of L is then defined as sup{td(L,L) | L ∈ L} and denoted by TD(L).

For example, if L1,∅ consists of all singleton languages (over any alphabet) and
the empty language, then every singleton has a teaching dimension of 1, while
the empty set has a teaching dimension of ∞, so that TD(L1,∅) =∞.

Another complexity parameter recently studied in computational learning the-
ory is the recursive teaching dimension. It refers to the size of distinguishing sets
required in a series of nested subfamilies of the language family.

Definition 2. [18,12] Let Σ be any alphabet and L any family of languages over
Σ. Let L0 = L. For each k ∈ N with Lk �= ∅, let

Lmin
k = {L ∈ Lk | td(L,Lk) = min

L′∈Lk

(td(L′,Lk))}

be the set of languages in Lk whose teaching dimension w.r.t. Lk is smallest.
Further, let dk = td(L,Lk) for L ∈ Lmin

k be that teaching dimension, and let
Lk+1 = Lk \ Lmin

k . The recursive teaching dimension of L is then defined as
sup{dk | k ∈ N and Lk �= ∅} and denoted by RTD(L).

Intuitively, starting from L, one recursively removes the languages with the small-
est teaching dimension and, in the next step, considers the smallest teaching
dimension over the remaining family of languages. RTD(L) is the largest small-
est teaching dimension encountered in this process. One obtains the same value
when recursively removing only a nonempty subset of the languages with the
smallest teaching dimension. It further does not affect the value of RTD if, at
any stage k, a language L ∈ Lk with td(L,Lk) < RTD(L) is removed immedi-
ately, even if L /∈ Lmin

k . We will use these properties in our proofs. A recursive
teaching sequence is any sequence ((F0, d0), (F1, d1), . . .) where (i) the families
Fi form a partition of L, and (ii) di = td(L,L \

⋃
0≤j<i Fj) for all i and all
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L ∈ Fi. Then sup{di | i ∈ N and Fi �= ∅} (≥ RTD(L)) is called the order of the
recursive teaching sequence.

RTD(L1,∅) = 1: one first removes all singletons with a teaching dimension of
1, leaving only the empty set, to be removed with a teaching dimension of 0.

RTD has some interesting properties; for example, in many cases it is upper-
bounded by the VC-dimension, which is a central parameter in learning theory,
and it is of importance for the study of sample compression schemes, see [3,4].

2.2 Pattern Languages

Next we define the concepts of pattern and pattern language, as introduced by
Angluin [1]. Let Σ be an alphabet and X = {x1, x2, . . .} a countably infinite set
of variables, disjoint from Σ. A pattern π is a nonempty finite string of constant
symbols from Σ and variables from X , i.e., π ∈ (Σ ∪ X)∗. Each pattern π
generates a pattern language L(π), defined as the set of words in Σ+ obtained by
substituting (nonempty) words from Σ+ for variables. For instance, if Σ = {a, b}
and π = x1ax1x2b, then L(π) = {w1aw1w2b | w1, w2 ∈ Σ+}.1 For a set Π of
patterns, L(Π) denotes the family of languages generated by patterns in Π .

A pattern π is (i) a constant pattern if π ∈ Σ∗, (ii) a one-variable pattern if
π contains at most one variable (possibly with repetitions), and (iii) a regular
pattern [17] if π has no repeated variables. Languages generated by one-variable
(regular) patterns are called one-variable (regular, resp.) pattern languages.

The main focus of this paper is to determine TD and RTD for various fam-
ilies of pattern languages, in particular for arbitrary (Section 3), one-variable
(Section 4) and regular pattern languages (Section 5). We begin by stating two
straightforward properties of distinguishing sets of some such families.

Proposition 3. Let Σ be any alphabet, Π any set of patterns containing all
constant patterns, and π ∈ Π. Then every finite distinguishing set for L(π)
w.r.t. L(Π) contains at least one word in L(π).

Proof. For finite W ⊆ L(π) and any w /∈W , L(w) agrees with L(π) on W . �

Proposition 4. Let Σ be any alphabet, Π any set of patterns containing x1,
and π ∈ Π \ {x1}. Then every distinguishing set for L(π) w.r.t. L(Π) contains
at least one word in L(π).

Proof. L(x1) agrees with L(π) on every W ⊆ L(π). �

3 Arbitrary Pattern Languages

A well-known fact is that every word is contained in only finitely many pattern
languages [1]. This implies that every pattern language can be distinguished

1 These languages have been called non-erasing languages to distinguish from the
type of pattern language obtained when allowing the variables to be replaced with
the empty string. The latter, called erasing pattern languages or extended pattern
languages, were introduced by Shinohara [17]. In this article, we use the term pattern
language only to refer to a non-erasing pattern language.
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from all other pattern languages using only finitely many membership examples,
independent of the underlying alphabet:

Theorem 5. Let Σ be any alphabet and π any pattern. Then the teaching di-
mension of L(π) w.r.t. the family of all pattern languages is finite.

Proof. Let w ∈ L(π). Let Πw be the set of all patterns that generate w; it
contains only patterns of length at most |w| and is hence finite. Every finite set
of words containing w and, for each π′ ∈ Πw \ {π}, one word w′ ∈ L(π)>L(π′),
is a distinguishing set for L(π) w.r.t. the family of all pattern languages. �

However, it turns out that there is no finite upper bound on the teaching di-
mension of an arbitrary pattern language w.r.t. the family of all such languages,
again independent of the underlying alphabet.

Theorem 6. Let Σ be any alphabet. Then the teaching dimension of the family
of all pattern languages equals ∞.

Proof. Assume each pattern language has a teaching dimension of at mostm ∈ N
w.r.t. the family of all pattern languages. Let k = p1 · . . . · pm for m pairwise
distinct prime numbers p1, . . . , pm. Let π = xk for some x ∈ X . By assumption,
π has a distinguishing set S of at most m words w.r.t. the family of all pattern
languages. By Proposition 3, at most m− 1 words in S are in L(π).

For i ∈ {1, . . . ,m}, define ti =
k
pi
. Then L(xt1), . . . , L(xtm) are pairwise dis-

tinct pattern languages, all of which are proper supersets of L(π). Thus, for each
i ∈ {1, . . . ,m} there is a word wi ∈ L(xti) \ L(π) with wi ∈ S.

Since S contains at most m − 1 words in L(π), there must be two distinct
indices i, j ∈ {1, . . . ,m} such that wi = wj . In particular, wi ∈ (L(xti)∩L(xtj ))\
L(π). However, one can easily verify that L(xti)∩L(xtj ) = L(π), which yields a
contradiction. Therefore, m does not exist. �

In contrast to the infinity of the TD, we now show that the RTD of the family
of all pattern languages is 2, when the alphabet Σ is infinite. This shows how
large the difference between the two complexity parameters can be.

Theorem 7. Let |Σ| =∞. Then the recursive teaching dimension of the family
of all pattern languages equals 2.

Proof. (Sketch.) Let L be the family of all pattern languages. For any pattern
π, let Vπ = {i | π[i] ∈ X} and let Mπ be the multi-set of numbers of occurrences
of variables in π, e.g., Mπ = {1, 2, 2} for π = x1x1ax2bax3x2. For multi-sets
{i1, . . . , is} and {j1, . . . , jt} we write {i1, . . . , is} & {j1, . . . , jt} iff there is a
partition I1, . . . , It of {i1, . . . , is} such that, for all � ∈ {1, . . . , t}, j	 =

∑
i∈It i.

Let Lπ = {L(ρ) | |π| = |ρ| and Mπ & Mρ} ∪ {L(ρ) | |π| = |ρ| and |Vπ | ≥
|Vρ| and Mπ 
 Mρ and Mρ 
 Mπ} ∪ {L(ρ) | |ρ| > |π|}. Then two facts hold:

1. If Mπ �= ∅, then td(L(π),Lπ) = 2. In particular, S = {w1, w2} ⊆ L(π)
is a distinguishing set for L(π) w.r.t. Lπ, where |w1| = |w2| = |π|, the sets
{w1[i] | i ∈ Vπ}, {w2[i] | i ∈ Vπ}, and {π[i] | i /∈ Vπ} are pairwise disjoint and
ws[i] �= ws[j] for s ∈ {1, 2}, 1 ≤ i < j ≤ |π|, and i, j ∈ Vπ with π[i] �= π[j].
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2. If Mπ = ∅, i.e., if π ∈ Σ+, then td(L(π),Lπ) = 1. This is witnessed by the
distinguishing set S = {π}.

RTD(L) ≤ 2 is witnessed by the following recursive teaching sequence: Let
F−1 = ∅. At stage i, one removes all languages in the set Fi = {L(ρ) | ρ ∈ Π
with [|ρ| ≤ |π| and Mπ ⊀ Mρ] for all π with L(π) ∈ L\

⋃
j≤i−1 Fj}. Note that, for

any i and any pattern π with L(π) ∈ Fi, the set L\
⋃

j≤i−1 Fj corresponds to the
set Lπ. Thus, by the two statements above, the distinguishing sets required at
each stage in the removal process have size at most 2, which yields RTD(L) ≤ 2.

RTD(L) ≥ 2 follows immediately from Propositions 3 and 4. �

For finite alphabets, the recursive teaching dimension of the family of all pat-
tern languages remains open. The remainder of this paper therefore deals with
comparing TD and RTD for interesting subfamilies of pattern languages.

As a first example, for finite non-singleton alphabets, there is a rather narrow
family of pattern languages with an RTD of 2 and a TD of ∞.

Theorem 8. Let 2 ≤ |Σ| <∞. Let Πxx be the family of all patterns of the form
x1 . . . xk (for k ≥ 1) or x1...xj−1xixj+1...xk (for 1 ≤ i < j ≤ k). Then

1. the teaching dimension of L(Πxx) equals ∞, and
2. the recursive teaching dimension of L(Πxx) equals 2.

Proof. Assertion 1. Assume TD(L(Πxx)) ≤ m for somem ∈ N. Let k = |Σ|m−1+
1. By Proposition 4, there is a distinguishing set S for L(x1 . . . xk) w.r.t. L(Πxx)
that contains at most m − 1 words in L(x1 . . . xk). Let {w1, . . . , wm−1} be a
set of m − 1 distinct words in L(x1 . . . xk) containing these words. Since S is
a distinguishing set for L(x1 . . . xk) w.r.t. L(Πxx), there is no pattern π ∈ Πxx

such that {w1, . . . , wn−1} ⊆ L(π) ⊂ L(x1 . . . xk). Let n = min{|w1|, . . . , |wm−1|}.
Note that n ≥ k = |Σ|m−1 + 1.

Let l1 = |Σ|m−2 + 1. There must be l1 many positions p11, . . . , p
1
l1
≤ n and a

constant σ1 ∈ Σ such that w1[p
1
1] = w1[p

1
2] = . . . = w1[p

1
l1
] = σ1. Otherwise no

symbol in Σ would occur at least l1 times in w1[1], . . . , w1[n] which would imply
n ≤ (l1 − 1)|Σ| = |Σ|m−1 < k ≤ n. Similarly, if l2 = |Σ|n−3 + 1, there must be
l2 many positions p21, . . . , p

2
l2
among p11, . . . , p

1
l1

and a constant σ2 ∈ Σ such that
w2[p

2
1] = w2[p

2
1] = . . . = w2[p

2
l2
] = σ2. Otherwise, l1 ≤ (l2 − 1)|Σ| = |Σ|m−2 < l1.

In general, for 1 ≤ i ≤ m − 1, let li = |Σ|m−1−i + 1. Then there are li
many positions in which all words wj for 1 ≤ j ≤ i have only repetitions of
some constant σj ∈ Σ. Finally, there must be lm−1 = 2 repetitions of a single
constant in wm−1, such that all words w1, . . . , wm−2 have repeated constants in
the same positions. Let us call these two positions p1 and p2, p1 < p2. Thus,
π = x1 . . . xp2−1xp1xp2+1 . . . xk generates a proper subset of L(x1 . . . xk) that
agrees with L(x1 . . . xk) on all words in S. Hence, S is not a distinguishing set
for L(x1 . . . xk) w.r.t. L(Πxx)—a contradiction.
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Assertion 2. (Sketch.) RTD(L(Πxx)) ≥ 2 is easy to verify. To see that
RTD(L(Πxx)) ≤ 2, let z = |Σ| and consider the following recursive teaching
sequence of order 2:

– Lmin
0 = {L(x1)} with d0 = 1,

– for all k ∈ {1, . . . , z−1}, Lmin
2k = {L(x1 . . . xk+1)} with d2k = 1, and Lmin

2k+1 =
{L(x1 . . . xj−1xixj+1 . . . xk+1) | 1 ≤ i < j ≤ k + 1} with d2k+1 = 1,

– for all k ∈ N, Lmin
2z+2k = {L(x1 . . . xj−1xixj+1 . . . xz+k) | 1 ≤ i < j ≤ z + k}

with d2z+2k = 2, and Lmin
2z+2k+1 = {L(x1 . . . xz+k)} with d2z+2k+1 = 1. �

The subsequent sections focus on two more “natural” families, namely the one-
variable pattern languages and the regular pattern languages.

4 One-Variable Pattern Languages

The languages used in Theorem 8 are generated by a family of patterns with
an unbounded number of variables. One might ask whether it is this property
that creates the infinite gap between TD and RTD for that family. An opposite
extreme is the family of one-variable pattern languages. As it turns out, even
for this family, the teaching dimension is infinite, while the recursive teaching
dimension is only 2—independent of the underlying alphabet.

Theorem 9. Let Σ be any alphabet. Then the following two statements hold.

1. The teaching dimension of the family of one-variable pattern languages is ∞.
2. The recursive teaching dimension of the family of one-variable pattern lan-

guages is 2.

Proof. Assertion 1 is an immediate consequence of the proof of Theorem 6, which
uses exclusively one-variable patterns. It remains to prove Assertion 2.

Let L be the family of one-variable pattern languages. By Propositions 3 and
4, RTD(L) ≥ 2. It thus suffices to find a recursive teaching sequence of order 2.

Claim 1. For any n ≥ 1 and any π ∈ Σ+ with |π| = n, the teaching dimension
of L(π) (= {π}) w.r.t. the family of languages generated by one-variable patterns
of length greater than n or by constant patterns of any length is 1.

Proof of Claim 1. Obviously, L(π) is the only language in the family of interest
that contains π, i.e., {π} is a distinguishing set for L(π).

Claim 2. Suppose |Σ| ≥ 2. Then, for any n ≥ 1 and any non-constant one-
variable pattern π with |π| = n, the teaching dimension of L(π) w.r.t. the family
of languages generated by one-variable patterns of length at least n is 2.

Proof of Claim 2. Let w1 and w2 be two distinct words of length n in L(π)
such that w1[p] �= w2[p] for any p ∈ {1, . . . , n} with π[p] ∈ X . It is not hard to
see that {w1, w2} is a distinguishing set for L(π) w.r.t. the family of interest.

Claim 3. Suppose |Σ| = 1. Let n ≥ k > 1, and let π be any non-constant
one-variable pattern of length n with exactly k occurrences of a variable. Then
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the teaching dimension of L(π) w.r.t. the family of languages generated by one-
variable patterns of length greater than n or by one-variable patterns of length
n that contain more than k variable positions is 2.

Proof of Claim 3. Let Σ = {a}. Then the set {an, an+k} ⊂ L(π) is a distin-
guishing set for L(π) w.r.t. the family of interest. No pattern of length greater
than n generates an and no one-variable pattern of length n with more than k
variable occurrences generates an+k. All one-variable patterns of length n with
exactly k variable positions are equivalent in the sense that they all generate the
same language, namely L(π).

These claims together imply that a recursive teaching sequence of order 2 is
obtained by removing languages in increasing order of the length of the under-
lying patterns, and for each length to proceed in increasing order of the number
of variable positions in the generating patterns. �

5 Regular Pattern Languages

Note that all patterns in the family Πxx in Theorem 8 contain at most one re-
peated variable; such a variable then has exactly two occurrences in the pattern.
Thus the patterns in Πxx look very similar to regular patterns. It would be in-
teresting to know whether the single repetition of a single variable in a pattern
is crucial for obtaining the infinity of the teaching dimension for the correspond-
ing family L(Πxx) of languages by comparing to the teaching dimension of the
family of regular pattern languages.

Unfortunately, for finite non-singleton alphabets, i.e., for the setting of Theo-
rem 8, we have not been able to determine the teaching dimension of the family
of regular pattern languages. Interestingly though, we can prove that the corre-
sponding parameter is exactly 3 for singleton alphabets and exactly 5 for infinite
alphabets. This is in contrast with all our previous results proving the teaching
dimension of particular families of pattern languages to be ∞. It further shows
that the size of the alphabet can have an influence on the teaching dimension
of families of pattern languages. In both cases, the recursive teaching dimension
equals 2, which is again smaller than the respective teaching dimension.

We begin with the case of singleton alphabets.

Theorem 10. Let |Σ| = 1. Then the following two statements hold.

1. The teaching dimension of the family of regular pattern languages equals 3.
2. The recursive teaching dimension of the family of regular pattern languages

equals 2.

Proof. (Sketch.) Let L be the family of regular pattern languages over Σ = {a}.
Every regular pattern of length n ≥ 1 that contains exactly k variables, for
1 ≤ k ≤ n, generates the same language as the regular pattern an−1x1. Thus,
we need to consider only constant patterns and patterns of the form an−1x1.

Both assertions can then easily be verified by observing that the constant
pattern an does not generate the word an+1, while any other regular pattern
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that generates an does generate an+1. Thus {an, an+1} is a distinguishing set for
L(an) w.r.t. L, and {an, an+1, an−1} is a distinguishing set for L(an−1x1) w.r.t.
L (it is not hard to see that no smaller distinguishing sets exist). To establish
a recursive teaching dimension of 2, languages can be removed according to
increasing length of their generating patterns, thus making the word an−1 in the
distinguishing set for L(an−1x1) obsolete. �

The result on the RTD generalizes to arbitrary alphabets:

Theorem 11. Let Σ be any alphabet. Then the recursive teaching dimension of
the family of regular pattern languages equals 2.

Proof. For singleton alphabets, this was already proven in Theorem 10. So sup-
pose Σ contains at least 2 distinct symbols a and b. By Propositions 3 and 4,
RTD is at least 2. A recursive teaching sequence of order 2 looks as follows:

((F0
1 , 2), (F1

1 , 1), (F0
2 , 2), (F1

2 , 2), (F2
2 , 1), . . . , (F0

n, 2), (F1
n, 2), . . . , (Fn

n , 1), . . . ,

where, for n ≥ 1 and n ≥ k ≥ 0, the family Fk
n consists of all languages generated

by regular patterns of length n that contain exactly n− k variables.
For k < n, a distinguishing set of size 2 for any language L(π) in Fk

n w.r.t. the
family of languages occurring later in the sequence consists of two words in L(π)
of length n, namely one in which all n − k variable symbols in π are replaced
by the symbol a and one in which they are replaced by b. Languages in F i

m for
m > n and any i do not contain these words, because their shortest words are of
length m > n. Languages in F i

n for any i > k do not contain both these words at
the same time, because that would require their underlying patterns to contain
at least n− k variables, while they contain only n− i < n− k many.

For k = n, any language in Fk
n is generated by a constant pattern π ∈ Σ+ of

length n, while all languages occurring later in the sequence are generated by
patterns of length greater than n. Thus π itself forms a distinguishing set of size
1 for L(π) w.r.t. the family of languages occurring later in the sequence. �

For the TD however, Theorem 10 does not generalize to larger alphabets, as
summarized in the following two theorems. Unlike the case for singleton alpha-
bets, for |Σ′| ≥ 2 the positioning of variables in a regular pattern π may affect
the language generated. Hence the distinguishing sets for L(π) w.r.t. the family
of all regular pattern languages over Σ′ “encode” the variable positions in π.

Theorem 12. Let 2 ≤ |Σ| <∞. Then the teaching dimension of the family of
regular pattern languages is at least 5.

Theorem 13. Let |Σ| = ∞. Then the teaching dimension of the family of reg-
ular pattern languages equals 5.

Our proof of Theorem 13 is quite involved and has to be shortened substantially
here. We sketch it by presenting the main lemmas establishing Theorems 12 and
13 and by explaining the core ideas for proving these lemmas.
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Lemma 14. Let |Σ| ≥ 2 and n ≥ 3. Let π = c1x1c2x2 . . . xn−1cn for some
c1, cn ∈ Σ+ and c2, . . . , cn−1 ∈ Σ∗ such that at least one of the ci for 1 < i < n
is nonempty. Then the teaching dimension of L(π) w.r.t. the family of regular
pattern languages is at least 5.

Proof. Let L be the family of regular pattern languages. First, note that any
distinguishing set for L(π) w.r.t. L must contain at least 2 words from L(π).

Second, it is shown that any distinguishing set for L(π) w.r.t. L must have
at least three words from L(π). Let i ∈ {2, . . . , n− 1} such that ci is nonempty.
For j = 1, i, n, let πj be the pattern derived from π by replacing the first symbol
of cj with a variable x that does not occur in π. Then L(πj) ⊃ L(π): if some
word w is generated from π by substituting wt for xt whenever 1 ≤ t ≤ n − 1,
then w can be generated from πj by replacing x with the first symbol of cj , and
substituting wt for xt whenever 1 ≤ t ≤ n−1. Thus, any distinguishing set W for
L(π) w.r.t. L contains some vj ∈ L(πj)−L(π). To show that W contains at least

three words in L(π), it suffices to prove L(πj) ∩ L(π	) ⊆ L(π) for j, � ∈ {1, i, n},
j �= �. Consider any w ∈ L(π1) ∩ L(πi). Since w ∈ L(πi), c1 is a prefix of w.
Further, w ∈ L(π1) implies that there are nonempty strings w1, . . . , wn−2 such
that c2w1c3w3 . . . wn−2cn is a suffix of w, and this suffix must start at a position
in w which is at least equal to |c1| + 2. Thus w can be expressed in the form
c1Sc2w1c3w3 . . . wn−2cn for some nonempty string S, and therefore w ∈ L(π).
Analogous proofs apply to the cases {j = 1, � = n} and {j = i, � = n}. �

This lemma immediately yields Theorem 12. To prove Theorem 13, we proceed
with the following lemmas.

Lemma 15. Let |Σ| = ∞ and n ≥ 3. Let π = c1x1c2x2 . . . xn−1cn for some
c1, cn ∈ Σ+ and c2, . . . , cn−1 ∈ Σ∗ such that at least one of the ci for 1 < i < n
is nonempty. Then the teaching dimension of L(π) w.r.t. the family of regular
pattern languages equals 5.

Proof. Let a, b, y, z be four distinct constants in Σ none of which occur in π. For
any c ∈ Σ∗, define c̃ = c if |c| = 0, c̃ = y if |c| = 1, and c̃ = c[1]c[2] . . . c[|c| −
1]yc[2]c[3] . . . c[|c|] if |c| > 1. Let π(a) be the string derived from π by substituting
a for all the variables in π; define π(b) analogously. The required distinguishing
set W of size 5 consists of two words in L(π), namely π(a) and π(b), as well as
three words σ, τ , and η from L(π), namely τ = c̃1zc2z . . . zcn, η = c1zc2z . . . zc̃n,
and σ = c1zc̃2w1c̃3w2 . . . wn−3c̃n−1zcn, where, for all i ≤ n− 3, wi is defined by

wi =

{
zci+2z if ci+1 is a substring of ci+2;
zci+2zci+1z if ci+1 is not a substring of ci+2.

We first show that σ satisfies the crucial property that for any i with 2 ≤ i ≤
n− 1, σ can be expressed as σ = c1w

′
1c2w

′
2 . . . ci−1w

′
i−1c̃iw

′
ici+1w

′
i+1 . . . w

′
n−1cn

for some nonempty words w′1, w
′
2, . . . , w

′
n−1; denote this property by (∗i).

Consider the expression c1zc̃2w1c̃3w2 . . . wn−3c̃n−1zcn for σ. For any i with
2 < i < n− 1, σ contains the sequence of words c1,w1,w2,. . .,wi−2,c̃i,wi−1,wi,. . .,
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wn−3,z,cn. Furthermore, for all i < n − 2, both ci+1 and ci+2 are substrings
of wi that do not overlap with the end points of wi. It follows that σ can be
expressed in the form c1w

′
1c2 . . . w

′
i−2ci−1w

′
i−1c̃iw

′
ici+1w

′
i+1 . . . cn−1w

′
n−1cn for

some nonempty words w′1, w
′
2, . . . , w

′
n−1 whenever 2 < i < n−1, as required. For

i = 2, consider the sequence of words c1, z, c̃2, w1, w2, . . . , wn−3, z, cn contained
in σ. For all j with 1 ≤ j ≤ n − 3, cj+2 is a substring of wj that does not
intersect the end points of wj . Hence property (∗1) holds for σ. Similarly, for
i = n− 1, σ contains the sequence of words c1, w1, w2, . . . , wn−3, c̃n−1, z, cn, and
for all j < n − 2, cj+1 is a substring of wj disjoint with the end points of wj .
Hence property (∗n−1) holds for σ.

The claim that W is indeed a distinguishing set for L(π) w.r.t. L can be
deduced immediately from the following two assertions. The proofs of these
assertions are non-trivial, but have to be omitted due to space constraints.

1. σ /∈ L(π), τ /∈ L(π), and η /∈ L(π).
2. If a regular pattern ρ with L(ρ) �= L(π) generates both π(a) and π(b), then:

– If c1 is not a prefix of ρ, then τ ∈ L(ρ).
– If cn is not a suffix of ρ, then η ∈ L(ρ).
– If c1 is a prefix of ρ and cn is a suffix of ρ, then σ′ ∈ L(ρ) for every σ′

satisfying (∗2) through (∗n−1). �

The next lemmas can be proven following similar ideas as for Lemma 15.

Lemma 16. Let |Σ| = ∞ and n ≥ 2. Let π = x1c1x2c2 . . . cn−1xn for some
c1, c2, . . . , cn−1 ∈ Σ∗ such that at least one of the ci for 1 ≤ i < n is nonempty.
Then the teaching dimension of L(π) w.r.t. the family of regular pattern lan-
guages equals 3.

Lemma 17. Let |Σ| = ∞ and n ≥ 2. Let π = cx1c1x2 . . . cn−1xn and ρ =
x1c1x2c2 . . . cn−1xnc for some c ∈ Σ+ and some c1, c2, . . . , cn−1 ∈ Σ∗ such
that at least one of the ci for 1 ≤ i < n is nonempty. Then both the teaching
dimension of L(π) w.r.t. the family of regular pattern languages and the teaching
dimension of L(ρ) w.r.t. the family of regular pattern languages equal 4.

Together with the facts that constant patterns generate languages of teaching
dimension 2 and constant-free patterns generate languages of teaching dimension
3, both w.r.t. the family of regular pattern languages over infinite alphabets, the
previous four lemmas establish Theorem 13.

For alphabets of size 2, we determined the exact teaching dimension for a few
special cases of regular pattern languages. We omit the rather lengthy proofs.

Proposition 18. Let Σ = {a, b} and n ≥ 3. Let π = ax1bx2ax3b . . . ax2n−1b.
Then the teaching dimension of L(π) w.r.t. the family of regular pattern lan-
guages equals 5.

Proposition 19. Let |Σ| = 2. Let π = x1cx2 for some c ∈ Σ+. Then the
teaching dimension of L(π) w.r.t. the family of regular pattern languages equals 3.
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6 Conclusions

We determined TD and RTD for a variety of families of pattern languages and
under consideration of the size of the underlying alphabet:

2 ≤ |Σ| ≤ ∞ |Σ| = 1 |Σ| =∞

arbitrary patterns
TD =∞ TD =∞ TD =∞
RTD ≥ 2 RTD ≥ 2 RTD = 2

one-variable patterns
TD =∞ TD =∞ TD =∞
RTD = 2 RTD = 2 RTD = 2

regular patterns
TD ≥ 5 TD = 3 TD = 5
RTD = 2 RTD = 2 RTD = 2

In all cases in which we calculated both parameters, RTD is lower than TD.
Our study of regular pattern languages shows that the alphabet size can indeed
affect the value of TD. Furthermore, even when a teaching complexity parameter
is not affected by the alphabet size, often the proof techniques used are different
for different alphabet sizes. In particular, the distinguishing sets themselves may
exhibit a different structure when changing the alphabet.

For the families we studied, the value of RTD did not prove to be affected by
the alphabet size; however, the RTD of the family of all pattern languages over
finite alphabets remains open. Further, we could not determine the TD of the
family of regular pattern languages over finite non-singleton alphabets.
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Abstract. We introduce a two-dimensional variant of the deterministic
restarting automaton for processing rectangular pictures. Our device has
a window of size three-by-three, in a rewrite step it can only replace the
symbol in the central position of its window by a symbol that is smaller
with respect to a fixed ordering on the tape alphabet, and it can only
perform (extended) move-right and move-down steps. This automaton
is strictly more expressive than the deterministic Sgraffito automaton,
but its word problem can still be solved in polynomial time, and when
restricted to one-dimensional input, it only accepts the regular languages.

Keywords: restarting automaton, ordered rewriting, picture language.

1 Introduction

In the literature one finds many different types of grammars and automata for
defining classes of picture languages (for a survey see, e.g., [5]). In particular,
a lot of work has been devoted to defining and characterizing a class of pic-
ture languages that would correspond to the class of regular ‘string’ languages.
Eventually, an agreement has been reached that the class REC of recognizable
languages of Giammarresi and Restivo [4] is such a class. Unfortunately, this
class contains some NP-complete languages [8], which means that in general the
membership problem for a recognizable picture language can be quite complex.

Motivated by that observation the current authors started a research program
for finding a two-dimensional automaton that is conceptually simple, that is more
powerful than the class DREC of deterministic recognizable languages of [1], but
that only accepts the regular languages when restricted to the one-dimensional
case (that is, string languages), that has a membership problem that is decidable
in polynomial time, and that has nice closure properties.
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As a first such model, the Sgraffito automaton was introduced and studied
in cooperation with D. Pr̊uša [11,12,13]. The nondeterministic Sgraffito automa-
ton is too powerful, as it accepts all recognizable picture languages, but the
deterministic Sgraffito automaton meets most of these properties, and it is more
expressive than the four-way alternating automaton [7] and the deterministic
four-way one-marker automaton [2], and it accepts the sudoku-deterministically
recognizable picture languages [3].

In the next step, the restarting automaton, which was introduced in [6] as a
formal device to model the linguistic technique of analysis by reduction, has been
extended to models that process two-dimensional inputs. The first such model
is the restarting tiling automaton, which is a stateless device with a two-by-two
window [10]. In each cycle it scans the current picture based on a given scanning
strategy until, at some place, it performs a rewrite step and restarts. If no rewrite
operation can be performed, then the automaton halts after scanning the current
picture completely. It is said to accept if at that point the current picture satisfies
certain local conditions, similar to a tiling automaton (see, e.g., [5]).

Then in [9] the current authors introduced the deterministic two-dimensional
three-way ordered restarting automaton (or det-2D-3W-ORWW-automaton, for
short) that works more in the original spirit of restarting automata. Such an
automaton has a window of size three-by-three, and it scans a given rectan-
gular input picture starting at the top left corner. Based on the current state
and the contents of its window, it can change its state and move either to the
right, down, or up, but not to the left. It keeps on moving until it either halts,
accepting or rejecting, or until it performs a rewrite step, in which it replaces
the symbol in the middle of its window by a symbol that is strictly smaller
with respect to a given ordering on its tape alphabet. After performing such a
rewrite, the automaton restarts immediately. When restricted to one-dimensional
inputs (that is, strings), then this device just accepts the regular languages. For
two-dimensional inputs, however, it is quite powerful, as it can simulate the de-
terministic Sgraffito automaton. However, because it can perform up and down
movements, while it can only perform move-right but no move-left steps, this
automaton clearly favours vertical operations over horizontal operations. Hence,
it is not surprizing that it can accept picture languages consisting of one-column
pictures such that the corresponding string languages are not regular.

Here we restrict these automata even further by considering a two-way variant
that can only perform move-right and move-down steps. However, such an au-
tomaton would not be able to scan a given rectangular picture completely within
a single cycle, and accordingly, it appears that it would be quite weak. There-
fore, we introduce an extended variant, the deterministic two-dimensional ex-
tended two-way ordered restarting automaton (det-2D-x2W-ORWW-automaton)
for which the move operations are somewhat more general: when a move-right
step is executed, while the central position of the window is placed in row i of
the last column, then the window is moved such that its central position is in
row i+ 1 of the first column. Analogously, when a move-down step is executed,
while the central position of the window is placed in column j of the bottommost
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row, then the window is moved such that its central position is in column j + 1
of the topmost row. In order to avoid infinite sequences of move operations, we
require that in any cycle, the automaton can either use extended move-left or
extended move-down steps, but not both.

Here we show that this automaton is quite expressive, as already its state-
less variant can simulate the deterministic Sgraffito automaton. However, when
restricted to picture languages that only consist of one-column pictures, then
the det-2D-x2W-ORWW-automaton can only accept languages that are obtained
by the operation of rotation from regular (string) languages. Hence, it follows
that our automata cannot accept all those picture languages that are accepted
by det-2D-3W-ORWW-automata. In fact, it turns out that the class of picture
languages that our automata accept is incomparable under inclusion to the class
of picture languages that are accepted by det-2D-3W-ORWW-automata.

2 Picture Languages

Here we use the common notation and terms on pictures and picture languages
(see, e.g., [5]). Let Σ be a finite alphabet, and let P ∈ Σ∗,∗ be a picture over Σ,
that is, a two-dimensional array of symbols from Σ. If P is of size m× n, then
we write P ∈ Σm,n, and we take �1(P ) (�2(P )) to denote the number of rows
(columns) of P . Further, P (i, j) denotes the symbol at row i and in column j
for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. We introduce a set of five special markers
(sentinels) S = {",.,�,⊥,#}, and we assume that Σ ∩S = ∅ for any alphabet
Σ considered. In order to enable an automaton to detect the border of P easily,
we define the boundary picture P̂ over Σ ∪ S of size (m + 2) × (n + 2). It is
illustrated by the following schema:

P

#

#

#

#

"

"...
.

....

⊥ ⊥ ⊥ ⊥. . .

� � � �. . .

We now restate in short the definition of the det-2D-3W-ORWW-automaton
from [9]. This automaton has a read/write window of size three-by-three, which

it can move across a given bordered picture P̂ . For doing so, it uses the set
H = {R,D,U} of possible window movements, where R denotes a step to the
right, D a step down, and U a step up. Observe that no movement to the left is
allowed.

Definition 1. A deterministic two-dimensional three-way ordered restarting
automaton, a det-2D-3W-ORWW-automaton for short, is given through a 7-tuple
M = (Q,Σ, Γ,S, q0, δ, >), where Q is a finite set of states containing the initial
state q0, Σ is a finite input alphabet, Γ is a finite tape alphabet containing Σ
such that Γ ∩ S = ∅, > is a partial ordering on Γ , and δ : Q × (Γ ∪ S)3,3
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→ (Q×H) ∪ Γ ∪ {Accept} is the transition function that satisfies the following
four restrictions for all q ∈ Q and all C ∈ (Γ ∪ S)3,3:

1. if C(1, 2) = �, then δ(q, C) �= (q′,U) for all q′ ∈ Q,
2. if C(2, 3) =., then δ(q, C) �= (q′,R) for all q′ ∈ Q,
3. if C(3, 2) = ⊥, then δ(q, C) �= (q′,D) for all q′ ∈ Q,
4. if δ(q, C) = b ∈ Γ , then C(2, 2) > b with respect to the ordering >.

To simplify the presentation we say that the window of M is at position (i, j)
to mean that the field in the center of the window is at row i and column j.
Given a picture P ∈ Σm,n as input, M begins its computation in state q0 with
its read/write window reading the subpicture of size 3 × 3 of P̂ at the upper
left corner, that is, the window is at position (1, 1) of P . Applying its transition

function, M now moves through P̂ until it reaches a state q and a position
with current contents C of the read/write window such that either δ(p, C) is
undefined, or δ(p, C) = Accept, or δ(p, C) = b for some letter b ∈ Γ such that
C(2, 2) > b. In the first case, M gets stuck, and so the current computation ends
without accepting, in the second case,M halts and accepts, and in the third case,
M replaces the symbol C(2, 2) by the symbol b, moves its read/write window
back to the upper left corner, and reenters its initial state q0. This latter step is
therefore called a combined rewrite/restart step. A picture P ∈ Σ∗,∗ is accepted
by M , if the computation of M on input P ends with an Accept instruction. By
L(M) we denote the language consisting of all pictures over Σ that M accepts.

In principle it could happen that M does not terminate on some input picture,
as it may get stuck on a column, just moving up and down. Therefore, it is
required explicitly that M halts on all input pictures (see [9])! To avoid this
cumbersome requirement, we now modify this model by allowing only move-
right and move-down steps, albeit in an extended form.

Definition 2. A deterministic two-dimensional extended two-way ordered re-
starting automaton, a det-2D-x2W-ORWW-automaton for short, is given through
a 7-tuple M = (Q,Σ, Γ,S, q0, δ, >), where all components are defined as for a
det-2D-3W-ORWW-automaton with the restriction that H = {R,D} is taken in
the definition of the transition function δ. However, the move-right and move-
down steps are extended as follows:

1. As long as the window does neither contain the right border marker nor the
bottom marker, move-right and move-down steps can be used freely.

2. When the widow contains the right border marker, but not the bottom marker,
then an extended move-right step shifts the window to the beginning of the
next row, that is, if the central position of the window is on the last field of
row i for some i < �1(P ), then it is now placed on the first field of row i+1.

3. When the widow contains the bottom marker, but not the right border marker,
then an extended move-down step shifts the window to the top of the next
column, that is, if the central position of the window is on the bottom-most
field of column j for some j < �2(P ), then it is now placed on the top-most
field of column j + 1.
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4. In any cycle, as soon as M executes an extended move-right (move-down)
step, then for the rest of this cycle, it cannot execute any extended move-down
(move-right) step.

Finally, M is called a stateless det-2D-x2W-ORWW-automaton (or a stl-det-
2D-x2W-ORWW-automaton) if it has just a single state. To simplify the presen-
tation, the components Q and q0 are suppressed for such an automaton.

Acceptance is defined in the same way as for det-2D-3W-ORWW-automata, and
the language consisting of all pictures accepted by M is denoted as L(M).

When restricted to one-row pictures P ∈ Σ1,∗, then the det-2D-x2W-ORWW-
automaton coincides with the det-ORWW-automaton of [9]. Thus, we obtain the
following result, where the part on stateless variants is an easy extension.

Corollary 3. When restricted to one-dimensional input, then the det-2D-x2W-
ORWW-automaton just accepts the regular string languages. This also holds for
the stateless variant.

We start our investigation with a simple example.

Example 4. Let Σ = {0, 1}, and let Lperm ⊆ Σ∗,∗ be the picture language

Lperm = {P ∈ Σ∗,∗ | �1(P ) = �2(P ) ≥ 1,
each row and column contains exactly one symbol 1 }.

We describe a stl-det-2D-x2W-ORWW-automaton Mperm that accepts this lan-
guage. Obviously, a det-2D-x2W-ORWW-automaton (i.e. with states) could easily
check whether each row (column) of the given input picture P contains exactly
one occurrence of the symbol 1 by traversing P row by row (column by column)
using extended move-right (move-down) steps. However, as it could not do both
these traversals in a single cycle, it must use its ability to perform rewrite op-
erations for switching from the one traversal to the other. As Mperm is reset to
the initial state and the initial position after each rewrite step, it cannot remem-
ber which traversal it has already completed. A stateless automaton must use
markings on its tape to control which phase of the above computations it is in.

Let Γ = Σ ∪ {0′, 1′, 0′1, 0′′, 1′′, 0′′1}, and let 1 > 0 > 1′ > 0′ > 0′1 > 1′′ >
0′′ > 0′′1 be the ordering on Γ to be used. Let us describe how a stl-det-2D-x2W-
ORWW-automaton can check that a given row contains exactly one occurrence
of the symbol 1.

If the first symbol in the row is from Σ, then Mperm moves across this row
from left to right. In order to check that there is a unique occurrence of the
symbol 1 in this row, the automaton starts to rewrite symbols in the row from
right to left. The symbol 0 is rewritten into 0′ only if it is followed by the right
sentinel or by another 0′. The symbol 1 is rewritten into 1′ only if it is followed
by the right sentinel or by 0′. If 1 is followed by 1′, then the automaton rejects,
as this row of the input picture contains at least two occurrences of the symbol 1.
If the symbol 0 is followed by 1′, then it is rewritten into 0′1 with the meaning
that there is already one occurrence of the symbol 1 to the right of this tape
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cell in the original picture. Similarly, if the symbol 0 is followed by 0′1, it is also
rewritten into 0′1. Clearly, if the first symbol in a row is not from Σ and it is
neither 1′ nor 0′1, then the automaton rejects.

The automaton Mperm can perform the above process row by row in the
bottom-up order. When the symbol at position (1,1) is already 0′1 or 1′, the
automaton can check that there is exactly one occurrence of the symbol 1′ in
each column. This time it will rewrite the columns in the right-to-left order in a
similar way as the rows in the first phase. For rewriting the columns it will use
the symbols 0′′, 1′′, and 0′′1 . At last, Mperm accepts when the field (1,1) contains
either 0′′1 or 1′′. In that case, the given input P is a square that belongs to the
language Lperm. Hence, we see that L(Mperm) = Lperm.

Given an input picture P over Σ of size m×n, a det-2D-x2W-ORWW-automaton
M = (Q,Σ, Γ,S, q0, δ, >) can execute at most m · n · (|Γ | − 1) many cycles, as
in each cycle it rewrites one of the m · n many symbols of the current picture
by a symbol that is strictly smaller. In each cycle M can either execute up to n
move-right steps, n · (m− 1) move-down steps, and (n− 1) extended move-down
steps, or m move-down steps, m · (n−1) move-right steps, and (m−1) extended
move-right steps. Thus, each cycle takes at most m ·n many steps, and hence, M
executes at most m2 · n2 · (|Γ | − 1) many steps. Thus, a two-dimensional Turing
machine can simulate M in time O(m2 ·n2). A multi-tape Turing machine T that
stores P column by column needs m steps to simulate a single move-right step
of M , and it needs m · n steps to simulate an extended move-right step. Thus,
we see from the considerations above that T may need up to O(m3 · n2) many
steps to simulate M on an input picture of size m × n. Hence, we obtain the
following upper bound for the time complexity, where L(M) is used to denote
the class of picture languages that are accepted by the automata of classM.

Theorem 5. L(det-2D-x2W-ORWW) ⊆ DTIME((size(P))3).

3 On the Language Class L(det-2D-x2W-ORWW)

First we compare our automaton to the Sgraffito automaton of [11]. A two-dimen-
sional Sgraffito automaton (SA) is given by a 7-tuple A = (Q,Σ, Γ, δ, q0, QF , μ),
where Σ is an input alphabet and Γ is a working alphabet such that Σ ⊆ Γ , Q
is a set of states containing the initial state q0 and the set of final states QF ,
μ : Γ → N is a weight function, and δ : (Q � QF ) × (Γ ∪ S) → 2Q×(Γ∪S)×H

is a transition relation, where H = {R,L,D,U,Z} is the set of possible head
movements (the first four elements denote directions (right, left, down, up) and
Z represents no movement), such that the following two properties are satisfied:

1. A is bounded, that is, whenever it scans a symbol from S, then it immediately
moves to the nearest field of P without changing this symbol,

2. A is weight-reducing, that is, for all q, q′ ∈ Q, d ∈ H, and a, a′ ∈ Γ , if
(q′, a′, d) ∈ δ(q, a), then μ(a′) < μ(a).

Finally, A is deterministic (a 2DSA), if |δ(q, a)| ≤ 1 for all q ∈ Q and a ∈ Γ∪S .
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The notions of configuration and computation are defined as usual. In the
initial configuration on input P , the tape contains P̂ , A is in state q0, and its
head scans the top-left corner of P . The automaton A accepts P iff there is a
computation of A on input P that finishes in a state from QF .

In [9] it is shown that each deterministic Sgraffito automaton can be simulated
by a det-2D-3W-ORWW-automaton. By using essentially the same proof idea also
the following result can be derived.

Theorem 6. L(2DSA) ⊆ L(stl-det-2D-x2W-ORWW).

We compare the det-2D-x2W-ORWW-automaton to the det-2D-3W-ORWW-
automaton of [9]. For this we first establish two closure properties for the classes
L(det-2D-x2W-ORWW) and L(stl-det-2D-x2W-ORWW).

Proposition 7. The classes of picture languages L(det-2D-x2W-ORWW) and
L(stl-det-2D-x2W-ORWW) are closed under transposition and complementation.

Proof. (a) The transpose P t of a picture P is obtained from P by interchanging
the columns and rows. If M is a (stateless) det-2D-x2W-ORWW-automaton for
L ⊆ Σ∗,∗, then by interchanging move-right steps with move-down steps, and
by transposing all the 3 × 3 pictures used in the description of the transition
function of M , we obtain a (stateless) det-2D-x2W-ORWW-automaton M t such
that L(M t) = {P t | P ∈ L(M) }.
(b) Let M be a (stateless) det-2D-x2W-ORWW-automaton on Σ that accepts a
language L ⊆ Σ∗,∗. From M we obtain a (stateless) det-2D-x2W-ORWW-auto-
maton M c by interchanging undefined transitions and Accept transitions. Then
L(M c) = Σ∗,∗ � L = Lc, the complement of the language L = L(M). �
In [9] it is shown that the language L1col, which is defined by

L1col = {P ∈ Σ2n,1 | n ≥ 1, P (1, 1) . . . P (n, 1) = (P (n+ 1, 1) . . . P (2n, 1))R },

is accepted by a det-2D-3W-ORWW-automaton. The transpose Lt
1col of this

language is essentially the string language Lpal = {w ∈ {a, b}∗ | |w| ≡ 0
mod 2 and w = wR }, the language of palindromes of even length, which is not
regular. However, we observed above that det-2D-x2W-ORWW-automata can
only accept string languages that are regular. Thus, Lt

1col is not accepted by
any det-2D-x2W-ORWW-automaton, and hence, by Proposition 7, L1col is not
accepted by any det-2D-x2W-ORWW-automaton, either. It follows that there are
some det-2D-3W-ORWW-automata which cannot be simulated by det-2D-x2W-
ORWW-automata. However, also the converse holds.

Example 8. Let Lpal,2 be the following picture language over Σ = {a, b,#}:

Lpal,2 = {P ∈ Σ2,2n | n ≥ 1, P (1, 1) . . . P (1, n) = (P (1, n+ 1) . . . P (1, 2n))R,
P (1, i) ∈ {a, b} and P (2, i) = # for all 1 ≤ i ≤ 2n },

that is, Lpal,2 consists of all two-row pictures such that the first row contains
a palindrome of even length over {a, b}, and the second row just contains #-
symbols. We claim that Lpal,2 is accepted by a det-2D-x2W-ORWW-automaton.
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Let Mpal,2 = (Q,Σ, Γ,S, q0, δ, >) be the det-2D-x2W-ORWW-automaton that
is defined by taking Γ = Σ ∪ {a1, a2, b1, b2, ↑} with a > b > a1 > b1 > a2 > b2 >
# > ↑, and defining δ in such a way that Mpal,2 proceeds as follows:

Similar to the ORWW-automaton M of Example 1 of [9], Mpal,2 marks the
letters in the first row alternatingly with indices 1 and 2, alternating between
marking the first unmarked letter from the left and the first unmarked letter from
the right. In order to determine which of these two cases it is currently working
on, the second row is used as follows: First M scans the first row completely
from left to right. If during this sweep it realizes that the first unmarked letter
from the right must be marked, then it simply does this and restarts. If, however,
it realizes at the end of this sweep that the first unmarked letter from the left
should have been marked, then it executes an extended move-right operation at
the right end of the first row, and then it replaces the letter in row 2 that is
below the first unmarked letter from the left in row 1 by the symbol ↑, in this
way indicating that the corresponding letter in row 1 must be marked in the
next cycle. It is clear that in this way the language Lpal,2 is accepted.

In [9] it is shown that the language Ldub (see below) is not accepted by any det-
2D-3W-ORWW-automaton. Using the same proof technique also the following
result can be shown.

Proposition 9. Lpal,2 �∈ L(det-2D-3W-ORWW).

These results yield the following incomparability result.

Corollary 10. The class of picture languages L(det-2D-x2W-ORWW) is incom-
parable under inclusion to the class of picture languages L(det-2D-3W-ORWW).

Actually, Lpal,2 also separates the det-2D-x2W-ORWW-automata from their
stateless variants.

Proposition 11. Lpal,2 �∈ L(stl-det-2D-x2W-ORWW).

Proof. Assume that M = (Σ,Γ,S, δ, >) is a stl-det-2D-x2W-ORWW-automaton
over Σ = {a, b,#} such that L(M) = Lpal,2. For w = a1 . . . an, where n ≥ 1

and a1, . . . , an ∈ {a, b}, let Pw =

[
a1 . . . an a a an . . . a1
# . . . # # # # . . . #

]
∈ Lpal,2 be an

input picture. Given Pw as input, M will perform an accepting computation,
which consists of a finite sequence of cycles that is followed by an accepting
tail computation. We now split this computation into a finite number of phases,
where we distinguish between four types of phases:

1. A left-only phase consists of a sequence of cycles in which the window of M
stays on the left half of the picture.

2. An upper-right phase consists of a sequence of cycles in which all rewrite
steps (and possibly an accept step) are performed on the right half of the
picture, and in addition, in the first of these cycles, M enters the right half
of the picture through a move-right step in row 1.
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3. A lower-left phase is a sequence of cycles in which all rewrite steps (and
possibly an accept step) are performed in the left half of the picture, and
in addition, the first of these cycles contains an extended move-right step,
that is, in the first of these cycles, M scans the first row completely from
left to right, executes an extended move-right step at the right end of that
row, and performs a rewrite step within the left half of the second row.

4. A lower-right phase is a sequence of cycles in which all rewrite steps (and
possibly an accept step) are performed in the right half of the picture, and
in addition, in the first of these cycles, M enters the right half of the picture
through a move-right step in row 2 or through an extended move-down step.

Obviously, the sequence of cycles of the computation of M on input Pw can
uniquely be split into a sequence of phases if we require that each phase is of
maximum length. Thus, this computation can be described in a unique way by a
string α over the alphabet Ω = {O,U, L,R}, where O denotes a left-Only phase,
U stands for an Upper-right phase, L denotes a lower-Left phase, and R stands
for a lower-Right phase.

Concerning the possible changes from one phase to the next there are some
restrictions based on the fact that M is stateless.
- While M is in a lower-right phase (R), it just moves through the left half of the
current picture after each rewrite/restart step. Thus, M cannot get into another
phase until it performs a rewrite step that replaces a symbol in the first column
of the right half of the picture. Only then may follow a left-only phase (O) or a
lower-left phase (L). However, in a fixed column, less than 2 · |Γ | many rewrite
steps can be performed, and so |α|R ≤ 1 + 2 · |Γ |.
- When M is in a lower-left phase (L), then it can next get into a lower-right
phase (R) or into an upper-right phase (U). However, when M got into the
lower-left phase, then it moved all the way right across the first row. Thus, it
cannot get into an upper-right phase (U) before a rewrite step is performed that
replaces a symbol in the last column of the left half of the picture. As there are
less than 2 · |Γ | many rewrite steps that can be performed on this column, we
see that |α|L ≤ 1 + |α|R + 2 · |Γ |.
- When M is in an upper-right phase (U), then it can next get into a lower-
left phase (L), a lower-right phase (R) or a left-only phase (O). However, when
M got into the upper-right phase, then it moved across the left half of the
first row, and so it can get into a left-only phase only after a symbol in the
first column of the right half of the picture has been rewritten. It follows that
|α|U ≤ 1 + |α|L + |α|R + 2 · |Γ |.
- A left-only phase (O) can be followed by any other phase. Thus, we obtain that
|α|O ≤ 1 + |α|R + |α|L + |α|U .

It follows that |α| ≤ |α|O + |α|R + |α|L + |α|U ≤ 15 + 28 · |Γ |, that is, each
computation of M consists of at most 15 + 28 · |Γ | many phases.

Finally, we associate a generalized crossing sequence GCS(w) with the com-
putation of M on the input picture Pw as follows:

Let α(w) ∈ {O,U, L,R}+ be the description of the sequence of phases of the
accepting computation of M on input Pw. Now after each letter X of α(w), we
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insert a 2-by-2 picture

(
c d
e f

)
such that

(
c
e

)
is the contents of the rightmost

column of the left half and
(
d
f

)
is the contents of the leftmost column of the

right half of the picture at the end of the phase represented by the letter X .
Thus, GCS(w) is a string of length at most 30+ 56 · |Γ | over the finite alphabet
Ω ∪ Γ 2,2 of size 4 + |Γ |4, that is, there are only finitely many different such
crossing sequences.

If n is sufficiently large, then there are two strings w1, w2 ∈ {a, b}n, w1 =
a1 . . . an and w2 = b1 . . . bn, such that w1 �= w2, but GCS(w1) = GCS(w2).
As M accepts both Pw1 and Pw2 , it follows that M will also accept on input

P ′ =

[
a1 . . . an a a bn . . . b1
# . . . # # # # . . . #

]
, which contradicts our assumption on M , as

P ′ �∈ Lpal,2. This completes the proof of Proposition 9. �

Together with Example 8 this yields the following separation result.

Theorem 12. L(stl-det-2D-x2W-ORWW) � L(det-2D-x2W-ORWW).

Let Σ = {0, 1}, and let Ldub denote the language of duplicates that consists of
all pictures P �P , where P is any quadratic picture over Σ and P �P denotes
the column concatenation of two copies of P , that is, two copies of P are put
in a row. It is shown in [11] that Ldub �∈ L(2SA), and it is shown in [9] that
Ldub �∈ L(det-2D-3W-ORWW). However, by using the technique from Example 8,
the following can be shown.

Proposition 13. Ldub ∈ L(det-2D-x2W-ORWW).

Thus, we see that L(det-2D-x2W-ORWW) is not contained in L(2SA), but it
remains the question of whether L(2SA) ⊂ L(det-2D-x2W-ORWW) holds. We
continue with some more closure properties.

Theorem 14. L(det-2D-x2W-ORWW) is closed under intersection.

Proof. Let M1 = (Q1, Σ, Γ1,S, q(1)0 , δ1, >1) be a det-2D-x2W-ORWW-automaton
on Σ = {a1, . . . , ak} that accepts a picture language L1 = L(M1) ⊆ Σ∗,∗, and

let M2 = (Q2, Σ, Γ2,S, q(2)0 , δ2, >2) be a det-2D-x2W-ORWW-automaton on Σ
that accepts a picture language L2 = L(M2) ⊆ Σ∗,∗. We now construct a det-2D-
x2W-ORWW-automaton M = (Q,Σ, Γ,S, q0, δ, >) such that L(M) = L1 ∩ L2.
Essentially, M will work as follows:

1. M first simulates M1, that is, it behaves exactly like M1. If M1 should get
stuck on the given input, that is, M1 does not accept, then neither does M .
If, however, M1 accepts, then instead of accepting, M marks the position
(i, j) at which M1 accepts, using a special symbol.

2. Now M should simulate M2. However, unless the marked position (i, j) hap-
pens to be inside the initial position of the window, M does not know that it
should now simulate M2. Therefore, it still behaves just like M1 during the
tail of its accepting computation. Hence, no rewrite will be performed, but
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the marked position (i, j) will be reached eventually. Now M adds a mark
also to the position (i′, j′) that it reached prior to the position (i, j).

However, here a problem arises if position (i, j) was reached by an ex-
tended move-right (move-down) step, as then the previous position (i′, j′)
is not inside the window when the position (i, j) is reached. In that case,
M marks the first unmarked position to the right (below) position (i, j).
Continuing in this manner, row j (column i) will eventually be completely
marked. Hence, when M reaches position (i′, j′), then it already sees that
the symbol in the next row (column) is marked, and instead of performing
an extended move-right (move-down) step, the symbol at position (i′, j′) is
marked. Thus, after finitely many cycles a path from the position (i, j), at
which M1 accepted, to the initial position (1, 1) is completely marked.

3. When the symbol at position (1, 1) is marked, then M starts to simulate M2.
It keeps on doing that until M2 halts. Now M accepts iff M2 accepts.

Obviously, with the above strategy M accepts the language L = L1 ∩L2. There
are a few technical difficulties with this strategy, but they can be overcome. �

As the class L(det-2D-x2W-ORWW) is closed under complement and intersection,
we also have the following closure property.

Corollary 15. L(det-2D-x2W-ORWW) is closed under union.

Actually, the construction used in the proof of Theorem 14 can be extended to
stateless det-2D-x2W-ORWW-automata. Thus, we also have the following result.

Corollary 16. L(stl-det-2D-x2W-ORWW) is closed under union and
intersection.

4 Concluding Remarks

We have introduced a class of two-dimensional restarting automata, the det-
2D-x2W-ORWW-automata, and their stateless variants, and we have seen that
already the stateless automata of this type are at least as expressive as the
deterministic Sgraffito automata, although they still only accept regular string
languages. The classes of picture languages obtained are closed under transposi-
tion and under the Boolean operations, but it is still open whether they are closed
under projection, under horizontal product, or under vertical product. Also it
remains open whether the stateless det-2D-x2W-ORWW-automata accept any
language that cannot be accepted by a deterministic Sgraffito automaton, or
whether these two types of automata have exactly the same expressive power. In
fact, it is not even known whether the stateless det-2D-x2W-ORWW-automata
can be simulated by det-2D-3W-ORWW-automata with states. The det-2D-x2W-
ORWW-automata (with states), however, are known to be incomparable under
inclusion to the det-2D-3W-ORWW-automata, but as the former are closed un-
der transposition, they appear to be more natural than the latter. However, it
still remains to study the language class L(det-2D-x2W-ORWW) in more detail.
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12. Pr̊uša, D., Mráz, F., Otto, F.: Comparing two-dimensional one-marker automata
to sgraffito automata. In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982,
pp. 268–279. Springer, Heidelberg (2013)
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Abstract. We present a constructive variant of the Hennie machine. It
is demonstrated how it can facilitate the design of finite-state machines.
We focus on the deterministic version of the model and study its de-
scriptional complexity. The model’s succinctness is compared with com-
mon devices that include the nondeterministic finite automaton, two-way
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1 Introduction

Regular languages are naturally defined via finite automata. Various extensions
of this basic model preserve its recognition power (nondeterminism, two-way
movement, use of a pebble). However, measured in the number of states or
transitions, they provide a more economic mean of a language description.

Great attention has been paid to the cost of transformations among the models
[15,8,13,4]. From our point of view, the related studies usually do not cover
automata which, in some restricted way, can rewrite the content of the tape. A
two-way finite automaton with write-once tracks presented by Durak [2] is one
of the few.

A very general representative of rewriting devices we have in mind is a Hen-
nie machine. It is a bounded, single-tape Turing machine performing constantly
many transitions over each tape field, independently on the input’s length. Hen-
nie proved that the machine recognizes only regular languages and also general-
ized this result on any Turing machine working in linear time [6]. Hartmanis later
showed that even time O(n logn) still leads to recognition of regular languages
[5]. Only going beyond this time complexity allows to recognize a non-regular
language.

Generality of the model causes some unpleasant properties. It is undecidable
whether a given Turing machine is a Hennie machine. Moreover, there is no
computable function bounding the blowup in states when transforming to a finite
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automaton. The aim of this paper is to define a reasonable constructive subclass
of deterministic Hennie machines and study its descriptional complexity. To
achieve this, a weight-reducing property is utilized – each transition is required
to lower a weight of the scanned symbol.

A two-dimensional variant of the weight-reducing Hennie machine has already
been introduced in [10]. Relation to other two-dimensional models with respect
to the recognition power was investigated there.

The paper is structured as follows. In the next section we demonstrate that
the possibility of rewriting can greatly facilitate the design of a finite automaton.
Then we define the weight-reducing Hennie machine and compare it with the
original one. Section 4 focuses on the descriptional complexity. The relation to
other automata is studied. The paper closes with a short summary and some
open problems in Section 5.

2 Motivation

Consider a system of objects aligned in a row. The leftmost one is a transmitter
that sends a signal and the rightmost one is a receiver that waits for it. The
signal can be in two states, it is either normal or amplified. The objects between
the transmitter and receiver are of three types: silencer, reflecting silencer and
amplifier. The silencer changes the first amplified signal it receives to normal.
After that it becomes passive and, from that time, it does not influence incoming
signals at all. The reflecting silencer behaves like the silencer, but in addition,
it reflects the first received amplified signal back. Finally, the amplifier changes
a normal signal to amplified, however, a signal (normal or amplified) can pass
trough it only k times. If it passes there k + 1-st time, the amplifier is burned
and the signal is lost.

Now, given such a system, the question is whether a normal signal sent by
the transmitter will get to the receiver. Examples are shown in Figure 1.

r a r s r s a a r

Fig. 1. Two systems composed of amplifiers (a), silencers (s) and reflecting silencers
(r). On the left, the signal passes to the receiver provided that k ≥ 3, on the right,
it returns back to the transmitter. The signal is normal in the dashed parts of the
trajectory and amplified in the solid parts.

Each system is encoded by a string over Σ = {a, r, s}. It is clear that systems
complying with the condition can be recognized by a finite automaton. However,
if we try to design such an automaton, even for k = 3, we find that it is not
entirely easy task, despite the fact there is a deterministic solution with 8 states,
depicted in Figure 2 (one “dead” state is hidden there).
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Fig. 2. A deterministic finite automaton accepting codes of systems in which the signal
reaches the receiver for k = 3. All the displayed states are accepting. Missing transitions
are heading to a hidden dead state which is rejecting.

One the other hand, it is not difficult to construct a Turing machine that
tracks the signal, marks objects that become inactive and counts in amplifiers
how many times the signal passed trough them. In fact, the machine will be a
Hennie machine. This demonstrates that a usage of tape rewriting could simplify
the design of a finite automaton, by the assumption, we have an automatic
procedure that converts the rewriting device to it.

The following table lists sizes of minimal deterministic finite automata ac-
cepting our systems for greater (odd) values k. It suggests that, in this case, the
dependency is bounded by an exponential function.

k 3 5 7 9 11 13 15
states 8 16 30 56 102 188 346

3 Weight-Reducing Hennie Machines

Given an input string w, a bounded Turing machine M operates on a tape which
initially stores " w ., where ", . are special end markers, not contained in the
working alphabet of M . Whenever the machine reaches " or . it immediately
moves the head back and does not rewrite the end marker. If w is the empty
string, the head scans " in the initial configuration. The computation ends after
performing one transition. A computation is accepting if M finishes in a final
state and rejecting when it is not finite or M terminates due to non-applicability
of any instruction. The language accepted by M is denoted as L(M).

We say that a bounded Turing machine M a is a Hennie machine if there is
a constant k limiting the number of transitions performed over any tape field
during any computation. Let ν(M) denote the smallest such k for M .

Proposition 1 ([6]). If M is a Hennie machine, L(M) is a regular language.

Theorem 2. It is undecidable if a Turing machine T is a Hennie machine.

Proof. The halting problem reduces to the stated question. Assume T has its
working tape unbounded in one direction. Let w be an input and t(w) the length
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of the computation of T for w. It is possible to construct a bounded Turing
machine M fulfilling these two conditions.

– If T halts on w, M is a Hennie machine with ν(M) ≤ t(w).

– If T does not halt on w, for any input v such that |v| ≥ |w|, M either does
not halt or it visits the leftmost tape field at least |v| times.

The idea is to take the tape fields storing an input v as the only space available
for M to perform the simulation of T on w. Thus, M memorizes w in states,
writes it on the tape and erases all remaining symbols of v (if |v| < |w|, it halts).
After that it simulates T . If the simulation exceeds the space |v|, M visits the
leftmost tape field |v| times and halts. �

A weight-reducing Hennie machine is a bounded Turing machine equipped by a
weight function defined on working symbols. A transition has to lower the weight
of the scanned symbol. A formal definition follows.

Definition 3. A weight-reducing Hennie machine is a tuple

M = (Q,Σ, Γ, δ, q0, QF , μ) where

– Q is a finite set of states,

– Γ is a working alphabet,

– Σ ⊆ Γ is an input alphabet,

– q0 ∈ Q is the initial state,

– QF ⊆ Q is a set of final states,

– δ : (Q�QF )× (Γ ∪ {",.})→ 2Q×(Γ∪{�,�})×{�,0,�} is a transition relation,
with the set of the head movements {�, 0,�},

– μ : Γ → N is a weight function.

Moreover, the following properties are fulfilled:

– (Q,Σ, Γ, δ, q0, QF ) is a bounded Turing machine,

– the transition relation is weight-reducing:

for all q, q′∈ Q, d ∈ {�, 0,�}, a, a′∈ Γ : (q′, a′, d)∈δ(q, a) ⇒ μ(a′)<μ(a).

M is deterministic (det-wr Hennie machine) iff |δ(q, a)| ≤ 1 for all q ∈ Q and
a ∈ Γ ∪ {",.}.

Observe that the weight-reducing property of δ can be easily algorithmically
verified and that ν(M) ≤ |Γ |.

Lemma 4. LetM = (Q,Σ, Γ, δ, q0, QF ) be a Hennie machine. There is a weight-
reducing Hennie machine A such that L(A) = L(M) and the working alphabet of
A has no more than (ν(M)+ 1)|Γ | symbols. Moreover, if M is deterministic, then
A is deterministic as well.
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Proof. Denote k = ν(M). Define A = (Q,Σ, Γ ′, δ′, q0, QF , μ), where Γ ′ = Σ ∪
(Γ × {1, . . . , k}) and each instruction (q, a) → (q′, a′, d) from δ where a ∈ Γ is
represented in δ′ by the following instruction set:

(q, a)→ (q′, (a′, 1) , d) ,
(q, (a, i))→ (q′, (a′, i+ 1) , d) ∀i ∈ {1, . . . , k − 1}.

Finally, define

μ(a) = k + 1 ∀a ∈ Σ,
μ ((a, i)) = k + 1− i ∀(a, i) ∈ Γ × {1, . . . , k} .

It is easy to see that L(A) = L(M) and that every deterministic δ produces
deterministic δ′. �
When designing a weight-reducing Hennie machine accepting some language L,
it suffices to describe a Hennie machineM accepting L and derive ν(M). ThenM
can be transformed by Lemma 4. This will be applied in constructions presented
in Section 4.

For a Turing machine T , it is natural to count the number of its transitions
to measure the size of its description. It would not make much sense to count
solely states, since each Turing machine has an equivalent with only two active
states [14]. We apply this measure based on transitions also to Hennie machines.

Let τ(T ) denote the number of transitions of T . Let Q be the set of states
of T and Γ be its working alphabet. Note that τ(T ) = O(|Q|2|Γ |). If T is
deterministic, then τ (T ) = O(|Q||Γ |). If a Hennie machine M is transformed by
Lemma 4 to a weight-reducing Hennie machine M ′, then τ (M ′) ≤ ν(M) τ (M).

4 Results on Descriptional Complexity

In this section we give results on trade-offs between a det-wr Hennie machine
and common models including a deterministic finite automaton (1DFA), nonde-
terministic finite automaton (1NFA), their two-way generalizations (2DFA, 2NFA),
alternating finite automaton (1AFA) and deterministic one-pebble automaton.

Theorem 5. There is no recursive function bounding the blowup in transitions
when transforming a deterministic Hennie machine to a 1DFA.

Proof. We utilize busy beaver function S(n), defined as the maximum number
of steps performed by a halting 2-state Turing machine with a binary working
alphabet when started over a blank tape. It is known that S(n) is noncomputable
and grows asymptotically faster than any computable function [11].

For each n > 0, let wn be the string overΣ = {a} of the length S(n). Moreover,
define one-string languages Ln = {wn}. Each Ln is accepted by a Hennie machine
with O(n) states and O(1) working tape symbols. The machine works as follows.
Simulate an n-state busy beaver. Whenever the beaver performs an i-th step,
mark the i-th tape field and return to the original position. Accept if and only
if the simulation marks all the input tape fields and does not attempt to mark
the right-end marker ..

On the other hand, a 1DFA accepting Ln has at least |wn| = S(n) states. �
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The following theorem is implied by results in [6]. We present a simplified proof
for deterministic machines, because the procedure is essential for an automatic
conversion to 1DFA.

Theorem 6. For each n-state, m-working symbol det-wr Hennie machine, there

is a 22
O(m log n)

-state 1DFA accepting the same language.

Proof. Let M = (Q,Σ, Γ, δ, q0, QF , μ) be a det-wr Hennie machine such that
|Q| = n and |Γ | = m. Assume M can never reenter its initial state q0. Moreover,
assume M can reach a final state in QF only by that transition which moves
the head from the right-end marker . to the preceding input field. Any det-wr
Hennie machine can be modified to fulfill these restrictions by adding a constant
number of states and working symbols.

Consider a sequence R = ((r1, d1), . . . , (r	, d	)) where each ri ∈ Q and di ∈
{�, 0,�}. Such a sequence records in which states M performs transitions over
some tape field, possibly including the last state in which M terminates. A pair
(ri, di) says that the i-th transition over the field starts in state ri. Moreover,
di indicates, which head movement precedes reaching ri in the field. We can see
R as a variant of the crossing sequence, however, defined over a tape field, not
over the border between two neighboring fields. Let R be the set of all such
nonempty sequences of length at most m + 1. Since ν(M) ≤ m, this covers all
those sequences emerging during the computation of M .

Construct a 1NFA A with the set of states R. Let A be in a state R =
((r1, d1), . . . , (r	, d	)) and the scanned symbol be a. Define transitions by the
following rules.

– R is initial iff (r1, d1) = (q0, 0). In such a state, A checks if R is consistent
with the behavior of M over the prefix " a.

– If R is not initial, M only checks whether it is consistent with the scanned
symbol a. It is also required that d1 =�, because the field is reached first
time after moving the head there from the left neighboring field.

– The next state R′ ∈ R is nondeterministically guessed. It has to be consistent
with transitions in R that move the A’s head to the right.

– R is accepting iff r	 ∈ QF . A can enter such a state only if R is consistent
with the behavior of M over the suffix a ..

A has |R| =
∑m+1

i=1 (3n)i = 2O(m logn) states. If it is transformed to a minimal
1DFA, the desired automaton is obtained. �
The next step is to prove that the trade-off between a det-wr Hennie machine
and a 1DFA is really double exponential. For n ∈ N, define a language Bn over
{0, 1, $} consisting of strings v1$v2$ . . . $vj where j ∈ N, every vi ∈ {0, 1}∗,
|vj | ≤ n and there is � < j such that v	 = vj .

Informally, every string in Bn is a sequence of binary substrings which are
separated by the symbol $. Moreover, the last substring is of length at most n
and it is a copy of one of the preceding substrings. For example,

v1$v2$v3$v4$v5$v6 = 11$0101110$011$0011$001$011 ∈ B4

since v3 = v6 and |v6| ≤ 4.
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Lemma 7. Every Bn is accepted by a det-wr Hennie machine with O(1) states
and O(n) working symbols.

Proof. Let Σ = {0, 1, $}. To accept Bn, we will construct a det-wr Hennie ma-
chine A with the working alphabet Γ = Σ ∪ {0, 1, $, x, f} × {1, . . . , 2n}. The
numeric part i of each (a, i) ∈ Γ is used to count the number of transitions over
a tape field. In the next description, we omit technical details on it and focus
rather on the role of elements in {0, 1, $, x, f}.

Let w ∈ Σ∗ be an input string. Write it as w = v1$v2$ . . . $vj where each vj ∈
{0, 1}∗. Let s = |vj | and vj = a1 . . . as. A iterates trough symbols as, as−1, . . . , a1
and for each of them performs a traversal trough the tape to detect in which
substrings vi the symbol appears at the same position from the back. Specifically,
the first iteration starts by moving the head to the right end of w. Then, as is
memorized in the control unit and replaced on the tape by x. After that, the
head moves leftwards until it scans the left-end marker. Whenever it enters a
new binary substring vj (i.e., it has passed symbol $), it checks if its last symbol
equals as. If so, it is replaced by x, otherwise it is replaced by f (indicating that
the check has failed). When the left-end marker is reached, A moves the head to
the right end of w and starts the next iteration by locating as−1, which is the
first tape field leftwards not marked by x. The initial tape and the outcome of
all iterations are illustrated by the following example.

11$0101110$011$0011$001$011
1x$010111f$01x$001x$00x$01x
xx$01011xf$0xx$00xx$0fx$0xx
xx$0101fxf$xxx$0xxx$xfx$xxx

A accepts w during the last iteration iff there is some v	 (� < n) whose all
symbols have been rewritten by x, including one symbol rewritten during the
last iteration (this guaranteers that |v	| = |vn|). In the example above, A accepts
since it rewrites all three symbols in v3, each of them in one of the three iterations.

Finally, if |vj | > n, A terminates and rejects, since it cannot reduce weights
of symbols during the n+ 1-st iteration. �

Lemma 8. Every 1DFA accepting Bn has at least 22
n

states.

Proof. Encode each subset of {0, 1}n as a sequence of its elements separated by
the symbol $. There are 22

n

such subsets. Let w1 and w2 encode two different
subsets and let u be a binary substring represented in w1 but not in w2 (or
vice versa). Then, w1$u ∈ Bn and w2$u /∈ Bn (or vice versa), hence $u is a
distinguishing extension and, by Myhill-Nerode theorem, each 1DFA accepting
Bn has at least 22

n

states. �

We use the following proposition to show 2Ω(
√
n) trade-off in transitions when

transforming det-wr Hennie machine to 2NFA.

Proposition 9 ([7]). Let L be a finite language over an unary alphabet accepted
by a 2NFA with n states. The longest string in L has length at most n+ 2.
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For n ∈ N, define Un = {a2n} – a one-string language over the unary alphabet
Σ = {a}. Every 2NFA accepting Un has Ω(2n) states.

Lemma 10. There is a O(n)-state, O(n)-working symbol det-wr Hennie ma-
chine accepting Un.

Proof. For n ∈ N, we first construct a deterministic Hennie machineM accepting
Un. It will have O(n) states and the working alphabet Γ = {a, 0, 1}. To process
a given input w ∈ {a}∗, M uses a binary counter of length n. At the beginning,
the counter is represented in the first n tape fields and it is initialized by value
n. The least significant bit is in its leftmost field, see Figure 3(a). To perform the
initialization, M memorizes in states the binary representation of n and fills the
counter in each step accordingly. In the subsequent phase, it repeatedly increases
the counter by one and simultaneously shifts its representation on the tape by
one field to the right (the former leftmost field of the counter is rewritten to a).
This guaranteers that the position of the right end of the counter representation
always equals the counter’s value. Hence, M easily checks if the counter has
been increased to value 2n − 1 just when there is exactly one tape field between
the right end of the counter and the right-end marker ., see Figure 3(b). The
counter’s increment as well as its shift is done by one traversal trough the related
tape fields. This means that ν(M) = O(n), hence, by Lemma 4, M can be
transformed to a det-wr Hennie machine with O(n) states and O(n) working
symbols. �

1 1 0 a a a a a

n=3︷ ︸︸ ︷
(a)

a a a a 1 1 1 a

n=3︷ ︸︸ ︷
(b)

Fig. 3. A binary counter of length n = 3 is used by a det-wr Hennie machine to check
if the input’s length is 2n = 8. It store value 3 at the beginning (a) and value 7 at the
end (b).

The acceptance of a 1NFA relates to the following problem. Given an undirected
graph G = (V,E) and two its vertices s, t, the undirected s-t connectivity prob-
lem (USTCON) is to determine if there is a path between s and t. USTCON is
solvable by a deterministic logarithmic-space algorithm [12]. We utilize this fact
in the proof of the next theorem.

Theorem 11. Let A be an n-state 1NFA working over an input alphabet Σ of
size s = |Σ|. There is a det-wr Hennie machine M accepting L(A), with the
number of transitions polynomial in n and s.

Proof. Let Q be the set of states of A. Without loss of generality, A has one
initial (qI) and one accepting (qA) state. We distinguish two cases by the length
of the input string w ∈ Σ∗.
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If |w| ≤ n, M solves the question whether 1NFA A accepts w as an instance
of USTCON problem. The related graph is depicted in Figure 4(a). Each column
corresponds to one tape field and contains a vertex for each state of A. Vertices
are thus pairs (q, p) where q ∈ Q and p ∈ {1, . . . , |w|}. Two vertices are con-
nected by an edge iff they are in neighboring columns and a transition from the
configuration on the left to the configuration on the right is allowed. The input
is accepted iff (qI , 1) and (qA, |w|) are connected. How many states are needed
for M? First, to memorize O(sn2) transitions of A. Second, to provide O(log n)
space required to solve USTCON. This space permits polynomially many (in n)
different configurations, hence polynomially many states of M are sufficient.

1 2 3 4

q1

q2

q3
q4

(a)

1

q1

1 1 0

q2 q3 q4

(b)

Fig. 4. (a) An undirected graph of configurations and transitions induced by a 1NFA
A over an input string of length 4. State q1 is initial, state q2 is accepting. (b) A block
representing states reachable by M when its head scans the third input’s symbol.

If |w| > n, M has enough space to record states reachable by A on the tape.
The tape is split into blocks of length n, with the exception of the last block
whose length is n + (|w| mod n). The i-th field of a block stores a one-bit flag
indicating the reachability of the i-th state of A, see Figure 4(b). Each block is
used only when the simulated head of A is inside the block. When the head of
A leaves the block, M copies the flags to the next one. This ensures that the
number of transitions done by M over a tape field depends only on n (not on
|w|). More precisely, the simulation inside a block is done in time O(n3) since M
carries out three nested cycles – trough fields scanned by A in the block, states
of A marked as reachable and transitions of A. �

It would be possible to apply a similar approach to the simulation of an n-
state 2NFA A by a det-wr Hennie machine, however, two things will change. The
question of acceptance of A reduces to the directed s-t connectivity problem
(STCON). We know it is solvable by a nondeterministic algorithm in logarithmic
space [9], thus, by Sawitch theorem, deterministically in space O(log2 n). How-
ever, this leads to O(nlog n) different configurations and this amount of states
would be needed by a det-wr Hennie machine. The other thing is that the sim-
ulation of a two-way automaton on inputs w such that |w| > n would require a
different technique.

As an n-state 2NFA can be simulated by a n2-state 1AFA [1], we also cannot
expect an easy cheap simulation of 1AFA by a det-wr Hennie machine.
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Nevertheless, we can show that the blowup in transitions is polynomial when
simulating deterministic one-pebble automata.

Theorem 12. Each deterministic one-pebble n-state automaton can be simu-
lated by a det-wr Hennie machine with the number of transitions polynomial
in n.

Proof. Let A be a deterministic one-pebble automaton with the set of states Q
and the input alphabet Σ. We will design a Hennie machine M simulating A.
Throughout the proof, assume that A always halts, i.e., it never goes into a loop.
It will be clear in the end of the construction that all looping computations of
A result in a det-wr Hennie machine which terminates since it scans a symbol
with the lowest weight.

Given an input w ∈ Σ∗. If |w| ≤ n, M simply represents the pebble on the
tape by a marker and simulates A transition by transition. There are

(
|Q||w|2)

different configurations of A, thus M finishes in time O(n3), visiting each tape
field at most n|w| = O(n2) times.

If |w| > n, a direct simulation could easily exceed the targeted polynomial
number of transitions performed over a tape field. To handle this, M splits the
input into blocks1 of length n (all blocks except the last one) or n+(|w| mod n)
(the last block) and computes what happens whenever the head of A moves
outside a block B in a state q while the marker is left inside B. A either returns
back in a state fromQ or finishes, thus, two mappings fL, fR : Q→ Q×{acc, rej}
are computed for each block: fL determines the outcome when the head crosses
the left border of B, while fR relates to the right border. The constants acc and
rej represent accepting and rejecting by A. An example is given in Figure 5.
Values of both mappings are recorded in B. Its i-th field stores the pair fL(qi)
and fR(qi). There are (n + 2)2 different values of these pairs, required to have
representatives in the working alphabet of M .

1

B1

2

3
4

B2

1

4

Fig. 5. The simulation of a deterministic one-pebble automaton with the set of states
Q = {1, 2, 3, 4} where 4 is a final state. All transitions done after leaving the block B2

without the pebble are displayed for all the states. Mapping fL for B2 is as follows:
fL(1) = 1, fL(2) = 1, fL(3) = acc, fL(4) = acc.

If all mappings are stored, M performs the simulation of A transition by
transition inside blocks as well as in cases when A moves the pebble. When A
leaves a block without the pebble, the corresponding mapping is used to decide
what happens. This again ensures that time spent by M in a block is polynomial
in n.
1 Splitting points are located by counting to n in states.
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The remaining task is to efficiently compute the mappings. We describe the
computation of fL. Let B1, B2, . . . , Bs be all the blocks from left to right. To
compute fL for B1 is trivial. When the head of A leaves its left border, it moves
to the left-end marker. Assume fL has been already computed and represented
for a block Bi. It is used to determine fL for the next block Bi+1. For each state
q ∈ Q, M simulates in Bi what happens when the head of A enters the rightmost
field of Bi and the control unit is in state q. Whenever A is about to enter Bi−1,
the mapping fL of Bi is used to continue the tracking. Note that mappings fR
can be computed analogously, taking them in the reversed order.

Since time spent by M in each block is polynomial in n, it can be converted
to a det-wr Hennie machine with polynomially many transitions. �

5 Conclusion

We presented deterministic weight-reducing Hennie machines as a constructive
subclass of Hennie machines. We showed that their ability to rewrite symbols
can significantly facilitate design of devices accepting regular languages. When
we get rid of rewriting by converting the machine to a 1DFA, the blowup in
transitions is at most double exponential. This is the same order of blowup as
exhibited, e.g., by alternating automata or two-way one-pebble automata [3].

The power of the model is further illustrated by the other proved trade-offs. It
can simulate at a low cost a pebble used by a deterministic two-way automaton.
It cannot be replaced at a low cost by a 2NFA.

Sakoda and Sipser stated two famous open problems [13]. Is it possible to
simulate an n-state 1NFA or 2NFA by a 2DFA with polynomially many states?
We studied these questions for a more powerful device and showed that det-wr
Hennie machine can do it in the case of 1NFA. This result can be interpreted as
a sort of 1NFA’s determinization which keeps the size of its description small.
An open question remains what is the trade-off in the case of 2NFA. We have
suggested that an n-state 2NFA could be simulated by a det-wr Hennie machine
with O(nlogn) transitions. Can we achieve a polynomial blowup here as for 1NFA?
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10. Pr̊uša, D., Mráz, F.: Two-dimensional sgraffito automata. In: Yen, H.-C., Ibarra,

O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 251–262. Springer, Heidelberg (2012)
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Abstract. We study novel arithmetic algorithms on a canonical number
representation based on the Catalan family of combinatorial objects.

For numbers corresponding to Catalan objects of low structural
complexity our algorithms provide super-exponential gains while their
average case complexity is within constant factors of their traditional
counterparts.

Keywords: hereditary numbering systems, arithmetic algorithms for
Combinatorial objects, structural complexity of natural numbers, run-
length compressed numbers, Catalan families.

1 Introduction

Number representations have evolved over time from the unary “cave man” rep-
resentation where one scratch on the wall represented a unit, to the base-n (and
in particular base-2) number system, with the remarkable benefit of a logarith-
mic representation size. Over the last 1000 years, this base-n representation has
proved to be unusually resilient, partly because all practical computations could
be performed with reasonable efficiency within the notation.

While alternative notations like Knuth’s “up-arrow” [2] or tetration are useful
in describing very large numbers, they do not provide the ability to actually
compute with them – as, for instance, addition or multiplication with a natural
number results in a number that cannot be expressed with the notation anymore.

The novel contribution of this paper is a Catalan family based numbering
system that allows computations with numbers comparable in size with Knuth’s
“arrow-up” notation. Moreover, these computations have a worst case complex-
ity that is comparable with the traditional binary numbers, while their best
case complexity outperforms binary numbers by an arbitrary tower of expo-
nents factor. Simple operations like successor, multiplication by 2, exponent of
2 are constant time and a number of other operations benefit from significant
complexity reductions.

For the curious reader, it is basically a hereditary number system [1], based on
recursively applied run-length compression of the usual binary digit notation. To
evaluate best and worst cases, a concept of structural complexity is introduced,
based on the size of representations and algorithms favoring large numbers of
small structural complexity are designed for arithmetic operations.

A.-H. Dediu et al. (Eds.): LATA 2014, LNCS 8370, pp. 565–575, 2014.
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We have adopted a literate programming style, i.e. the code described in the pa-
per forms a self-containedHaskellmodule (testedwith ghc 7.6.3), also available as a
separate file at http://logic.cse.unt.edu/tarau/research/2013/catco.hs .
We hope that this will encourage the reader to experiment interactively and vali-
date the technical correctness of our claims.

The paper is organized as follows. Section 2 introduces recursively run-length
compressed natural numbers seen as a member of the Catalan family of com-
binatorial objects. Section 3 describes constant time successor and predecessor
operations on our numbers. Section 4 describes novel algorithms for arithmetic
operations taking advantage of our number representation. Section 5 defines a
concept of structural complexity and studies best and worst cases. Section 6
discusses related work. and section 7 concludes the paper.

2 Recursively Run-Length Compressed Natural Numbers
as Objects of the Catalan Family

The Catalan family of combinatorial objects [6,5] spans over a wide diversity
of concrete representation ranging from balanced parentheses expressions and
rooted plane trees to non-crossing partitions and polygon triangulations.

2.1 The “cons-list”-View of Catalan Objects

For simplicity, we will pick here as a representative of the Catalan family a
language of balanced parentheses.

We fix our set of two parentheses to be {L,R} corresponding to the Haskell
data type Par.

data Par = L | R deriving (Eq,Show,Read)

Definition 1. A Dyck word on the set of parentheses {L,R} is a list consisting
of n L’s and R’s such that no prefix of the list has more L’s than R’s.

The set of Dyck words is a well-known member of the Catalan family of com-
binatorial objects [6]. Let T be the language obtained from the set Dyck words
on {L,R} with an extra L parenthesis added at the beginning of each word and
an extra R parenthesis added at the end of each word. Assuming syntactic well-
formedness, we represent the language T in Haskell as the type T and we will
call its members terms.

type T = [Par]

It is convenient to view T as the set of rooted ordered binary trees through the
operations cons and decons, that ensure syntactic well-formedness:

cons :: (T,T) → T

cons (xs,L:ys) = L:xs++ys

http://logic.cse.unt.edu/tarau/research/2013/catco.hs
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decons :: T→(T,T)

decons (L:ps) = count_pars 0 ps where

count_pars 1 (R:ps) = ([R],L:ps)

count_pars k (L:ps) = (L:hs,ts) where (hs,ts) = count_pars (k+1) ps

count_pars k (R:ps) = (R:hs,ts) where (hs,ts) = count_pars (k-1) ps

The forest of subtrees corresponds to the toplevel balanced parentheses compos-
ing an element of T as defined by the bijections to list and from list.

to_list :: T → [T]

to_list [L,R] = []

to_list ps = hs:hss where

(hs,ts) = decons ps

hss = to_list ts

We will call subterms the terms extracted by to list.

from_list :: [T]→T

from_list [] = [L,R]

from_list (hs:hss) = cons (hs,from_list hss)

We will assume for purposes of complexity analysis that an ordered rooted tree
data structure is used for the language T, a representation ensuring that the
from list and to list operations are constant time.

2.2 The Catalan Encoding of Natural Numbers

We are ready for an arithmetic interpretation of the language T, associating a
unique natural number to each of its terms t:

– The term t=[L,R] corresponds to zero
– if xs is obtained by applying the to list operation to t, then each x on the

list xs counts the number of b ∈ {0, 1} digits, followed by alternating counts
of 1-b and b digits, with the conventions that the most significant digit is 1
and the counter x represents x+1 objects.

– the same principle is applied recursively for the counters, until [L,R] is
reached.

One can see this process as run-length compressed base-2 numbers, unfolded as
an object of the Catalan family, after applying the encoding recursively.

By convention, as the last (and most significant) digit is 1, the last count on
the list xs is for 1 digits. The following simple fact allows inferring parity from
the number of subterms of a term.

Proposition 1. If the length of to list x is odd, then x encodes an odd num-
ber, otherwise it encodes an even number.

Proof. Observe that as the highest order digit is always a 1, the lowest order
digit is also 1 when length of the list of counters is odd, as counters for 0 and 1

digits alternate.
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This ensures the correctness of the Haskell definitions of the predicates odd and
even , the last defined true for terms different from [L,R] only.

oddLen [] = False

oddLen [_] = True

oddLen (_:xs) = not (oddLen xs)

odd_ :: T→Bool

odd_ x = oddLen (to_list x)

even_ :: T→Bool

even_ x = f (to_list x) where

f [] =False
f (y:ys) = oddLen ys

Note that while these predicates work in time proportional to the length of the list
representing a term in T, with a (dynamic) array-based list representation that
keeps track of the length or keeps track of the parity bit explicitly, one can assume
that they can be made constant time with an optimal data structure choice , as
we will do in the rest of the paper, while focusing, for simplicity, on the language
of balanced parentheses T.

Definition 2. The function n : T→ N shown in equation (1) defines the unique
natural number associated to a term of type T.

n(a) =

⎧⎪⎨⎪⎩
0 if a = [L,R],

2n(x)+1n(xs) where (x,xs) = decons a, if a is even ,

2n(x)+1n(xs)− 1 where (x,xs) = decons a, if a is odd .

(1)

For instance, the computation of [L,L,R,L,L,R,L,R,R,R] = 14 expands to
(20+1(2(2

0+1(20+1−1))+1 − 1)). The Haskell equivalent is:

type N = Integer

n :: T→N

n ([L,R]) = 0

n a | even_ a = 2^(n x + 1)∗(n xs) where (x,xs) = decons a

n a | odd_ a = 2^(n x + 1)∗(n xs+1)-1 where (x,xs) = decons a

The following example illustrates the values associated with the first few natural
numbers.

0: [L,R]

1: [L,L,R,R]

2: [L,L,R,L,R,R]

3: [L,L,L,R,R,R]

4: [L,L,L,R,R,L,R,R]

5: [L,L,R,L,R,L,R,R]

Definition 3. The function t : N → T defines the unique term of type T asso-
ciated to a natural number as follows:
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t :: N→T

t 0 = [L,R]

t k | k>0 = zs where

(x,y) = if even k then split0 k else split1 k

ys = t y

zs = if x==0 then ys else cons (t (x-1),ys)

It uses the helper functions split0 and split1 that extract a block of contiguous
0 digits and, respectively, 1 digits from the lower end of a binary number.

split0 :: N→(N,N)

split0 z | z> 0 && even z = (1+x,y) where

(x,y) = split0 (z ‘div‘ 2)

split0 z = (0,z)

split1 :: N→(N,N)

split1 z | z>0 && odd z = (1+x,y) where

(x,y) = split1 ((z-1) ‘div‘ 2)

split1 z = (0,z)

They return a pair (x,y) consisting of a count x of the number of digits in the
block, and the natural number y representing the digits left over after extracting
the block. Note that div, occurring in both functions, is integer division.

The following holds:

Proposition 2. Let id denote λx.x and ◦ function composition. Then, on their
respective domains

t ◦ n = id, n ◦ t = id (2)

Proof. By induction, using the arithmetic formulas defining the two functions.

Figure 1 shows the DAG obtained by folding together identical subterms at each
level for the term corresponding to the natural number 12345, where we have
mapped of L symbols to strings built of ‘(’ and R symbols mapped to ‘)’

characters, for readability. Note that integer labels mark the order of the edges
outgoing from a vertex.

(()(())(()())(()()())(())) => 12345

(()()()) => 5

3

(()()) => 2

2

(()) => 1

4 1

() => 0

0

2 1 0 1 0 0

Fig. 1. The DAG illustrating the term associated to 12345



570 P. Tarau

The constants e and u correspond to the natural numbers 0 and 1. The pred-
icates e and u are used to recognize them.

e = [L,R]

u = [L,L,R,R]

e_ [L,R] = True

e_ _ = False

u_ [L,L,R,R] = True

u_ _ = False

3 Successor (s) and Predecessor (s’)

We will now specify successor and predecessor on data type T through two
mutually recursive functions, s and s’.

s x | e_ x = u -- 1

s x | even_ x = from_list (sEven (to_list x)) -- 7

s x | odd_ x = from_list (sOdd (to_list x)) -- 8

sEven (a:x:xs) |e_ a = s x:xs -- 3

sEven (x:xs) = e:s’ x:xs -- 4

sOdd [x]= [x,e] -- 2

sOdd (x:a:y:xs) | e_ a = x:s y:xs -- 5

sOdd (x:y:xs) = x:e:(s’ y):xs -- 6

s’ x | u_ x = e -- 1

s’ x | even_ x = from_list (sEven’ (to_list x)) -- 8

s’ x | odd_ x = from_list (sOdd’ (to_list x)) -- 7

sEven’ [x,y] |e_ y = [x] -- 2

sEven’ (x:b:y:xs) | e_ b = x:s y:xs -- 6

sEven’ (x:y:xs) = x:e:s’ y:xs -- 5

sOdd’ (b:x:xs) | e_ b = s x:xs -- 4

sOdd’ (x:xs) = e:s’ x:xs -- 3

Note that the two functions work on a block of 0 or 1 digits at a time. They
are based on simple arithmetic observations about the behavior of these blocks
when incrementing or decrementing a binary number by 1. The following holds:

Proposition 3. Denote T+ = T − {e}. The functions s : T → T+ and s′ :
T+ → T are inverses.

Proof. It follows by structural induction after observing that patterns for rules
marked with the number -- k in s correspond one by one to patterns marked
by -- k in s’ and vice versa.
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More generally, it can be shown that Peano’s axioms hold and as a result <
T, e, s > is a Peano algebra.

Note also that if parity information is kept explicitly, the calls to odd and
even are constant time, as we will assume in the rest of the paper.

Proposition 4. s and s’ are constant time, on the average.

Proof. Observe that the average size of a contiguous block of 0s or 1s in a
number of bitsize n has the upper bound 2 as

∑n
k=0

1
2k

= 2 − 1
2n < 2. As on

2-bit numbers we have an average of 0.25 more calls, we can conclude that the
total average number of calls is constant, with upper bound 2 + 0.25 = 2.25.

A quick empirical evaluation confirms this. When computing the successor on
the first 230 = 1073741824 natural numbers, there are in total 2381889348 calls
to s and s’, averaging to 2.2183 per computation. The same average for 100
successor computations on 5000 bit random numbers oscillates around 2.22.

4 A Few Other Constant Time Operations

We will now describe algorithms for constant on the average basic operations
that take advantage of our number representation and can be used as “building
blocks” for various arithmetic operations.

Doubling a number db and reversing the db operation (hf) are quite sim-
ple. For instance, db proceeds by adding a new counter for odd numbers and
incrementing the first counter for even ones.

db x | e_ x = e

db xs | odd_ xs = cons (e,xs)

db xxs | even_ xxs = cons (s x,xs) where (x,xs) = decons xxs

hf x |e_ x = e

hf xxs = if e_ x then xs else cons (s’ x,xs) where (x,xs) = decons xxs

Note that such efficient implementations follow directly from simple number
theoretic observations.

For instance, exp2, computing an exponent of 2 , has the following definition
in terms of s’.

exp2 x | e_ x = u

exp2 x = from_list [s’ x,e]

as it can be derived, for k = 0, from the identity

(λx.2x + 1)n(k) = 2n(k + 1)− 1 (3)

Proposition 5. The operations db,hf and exp2 are constant time, on the
average.
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Proof. As s,s’ are constant time, on the average, the proposition follows by
observing that at most one call to s,s’ is made in each definition.

Due to space constraints we will just mention that algorithms favoring numbers
with large contiguous blocks of 0s and 1s in their binary representations can
be devised for various arithmetic operations along the lines of [8]. For instance,
addition of odd numbers, will be based on identity 4.

(λx.2x+ 1)
k
(x) + (λx.2x + 1)

k
(y) = (λx.2x+ 2)

k
(x+ y) (4)

5 Structural Complexity

Arguments similar to those about the average behavior of s and s’ can be carried
out to prove that the average complexity of other arithmetic operations matches
their traditional counterparts, using the fact, shown in the proof of Prop. 3, that
the average size of a block of contiguous 0 or 1 bits is at most 2.

To evaluate the best and worst case space requirements of our number repre-
sentation, after defining the bitsize of a term as

bitsize x = sum (map (n.s) (to_list x))

we introduce here a measure of structural complexity, defined by the function
tsize that counts the nodes of a term of type T (except the root).

tsize x =foldr add1 0 (map tsize xs) where

xs = to_list x

add1 x y = x + y +1

It corresponds to the function c : T→ N defined as follows:

c(t) =

{
0 if t = e,∑

x∈xs (1 + c(x)) if xs = to list t.
(5)

The following holds:

Proposition 6. For all terms t ∈ T, tsize t ≤ bitsize t.

Proof. By induction on the structure of t, observing that the two functions have
similar definitions and corresponding calls to tsize return terms inductively
assumed smaller than those of bitsize.

The following example illustrates their use:

*CatCo> map (tsize.t) [0,100,1000,10000]

[0,7,9,13]

*CatCo> map (tsize.t) [2^16,2^32,2^64,2^256]

[5,6,6,6]

*CatCo> map (bitsize.t) [2^16,2^32,2^64,2^256]

[17,33,65,257]
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Fig. 2. Structural complexity (lower line) bounded by bitsize (upper line)

Figure 2 shows the reductions in structural complexity compared with bitsize
for an initial interval of N, from 0 to 210 − 1.

Next we define the higher order function iterated that applies k times the
function f.

iterated f a x |e_ a = x

iterated f k x = f (iterated f (s’ k) x)

We can exhibit, for a given bitsize, a best case

bestCase k = iterated wterm k e where wterm x = cons (x,e)

and a worst case

worstCase k = iterated (s.db.db) k e

The following examples illustrate these functions:

*CatCo> bestCase (t 4)

[L,L,L,L,L,R,R,R,R,R]

*CatCo> n it

65535

*CatCo> bitsize (bestCase (t 4))

16

*CatCo> tsize (bestCase (t 4))

4

*CatCo> worstCase (t 4)

[L,L,R,L,R,L,R,L,R,L,R,L,R,L,R,R]

*CatCo> n it

85

*CatCo> bitsize (worstCase (t 4))

7

*CatCo> tsize (worstCase (t 4))

7
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The function bestCase computes the iterated exponent of 2 (tetration) and
then applies the predecessor to it. For k = 4 it corresponds to

(2(2
(2(2

0+1−1)+1−1)+1−1)+1 − 1) = 22
22 − 1 = 65535.

The average space-complexity of the representation is related to the aver-
age length of the integer compositions of the bitsize of a number. Intuitively,
the shorter the composition in alternative blocks of 0 and 1 digits, the more
significant the compression is.

6 Related Work

Several notations for very large numbers have been invented in the past. Exam-
ples include Knuth’s arrow-up notation [2], covering operations like tetration (a
notation for towers of exponents). In contrast to our approach, such notations
are not closed under arithmetic operations, they cannot be used as a replacement
for ordinary binary or decimal numbers.

The first instance of a hereditary number system, at our best knowledge, oc-
curs in the proof of Goodstein’s theorem [1]. Another hereditary number system
is Knuth’s TCALC program [3] that decomposes n = 2a+b with 0 ≤ b < 2a and
then recurses on a and b with the same decomposition. Given the constraint on a
and b, while hereditary, the TCALC system is not based on a bijection between
N and N×N and therefore the representation is not canonical. In [10] a similar
(non-canonical) exponential-based notation called “integer decision diagrams” is
introduced, providing a compressed representation for sparse integers, sets and
various other data types.

This paper is an adaptation of our online draft at the Cornell arxiv repository
[8], which describes a more complex hereditary number system (based on run-
length encoded “bijective base 2” numbers, first introduced in [4] pp. 90-92 as
“m-adic” numbers). In contrast to [8], we are using here the familiar binary
number system, and we represent our numbers as lists of balanced parentheses
rather than the more complex data structure used in [8].

Arithmetic computations based on a member of the Catalan family (ordered
rooted binary trees) are described in [9]. In [7] a type class mechanism is used to
express computations on hereditarily finite sets and hereditarily finite functions.
However likewise [9] and [7], and by contrast to those proposed in this paper,
they only compress “sparse” numbers, consisting of relatively few 1 bits in their
binary representation.

7 Conclusion

We have provided in the form of a literate Haskell program a specification of
a number system based on a member of the Catalan family of combinatorial
objects.
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We have shown that computations that favor giant numbers with low struc-
tural complexity, are performed in constant time. We have also studied the best
and worst case structural complexity of our representations and shown that, as
structural complexity is bounded by bitsize, computations and data represen-
tations are within constant factors of conventional arithmetic even in the worst
case.
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Abstract. A word is called a reset word for a deterministic finite au-
tomaton if it maps all states of the automaton to one state. Deciding
about the existence of a reset word of given length for a given automa-
ton is known to be a NP-complete problem. We prove that it remains
NP-complete even if restricted on Eulerian automata over the binary
alphabet, as it has been conjectured by Martyugin (2011).

1 Introduction

A deterministic finite automaton is a triple A = (Q,X, δ), where Q and X are
finite sets and δ is an arbitrary mapping Q×X → Q. Elements of Q are called
states, X is the alphabet. The transition function δ can be naturally extended
to Q × X� → Q, still denoted by δ. We extend it also by defining δ (S,w) =
{δ (s, w) | s ∈ S,w ∈ X�} for each S ⊆ Q.

For a given automaton A = (Q,X, δ), we call w ∈ X� a reset word if
|δ (Q,w)| = 1. If such a word exists, we call the automaton synchronizing. Note
that each word having a reset word as a factor is also a reset word.

The Černý conjecture, a longstanding open problem, claims that each syn-
chronizing automaton has a reset word of length (|Q| − 1)

2
. However, there are

many weaker results in this field, see e.g. [6,7] for recent ones.
Various computational problems arises from study of synchronization:

– Given an automaton, decide if it is synchronizing. Relatively simple algo-
rithm which could be traced back to [1] works in polynomial time.

– Given a synchronizing automaton and a number d, decide if d is the length
of shortest reset words. This has been shown to be both NP-hard [2] and
coNP-hard. More precisely, it is DP-complete [5].

– Given a synchronizing automaton and a number d, decide if there exists a
reset word of length d. This problem is of our interest. Lying in NP, it is not
so computationally hard as the previous problem. However, it is proven to be
NP-complete [2]. Following the notation of [4], we call it Syn. Assuming that
M is a class of automata and membership in M is polynomially decidable,
we define a restricted problem:

Syn(M)

Input: synchronizing automaton A = ([n], X, δ) ∈ M, d ∈ N
Output: does A have a reset word of length d?

A.-H. Dediu et al. (Eds.): LATA 2014, LNCS 8370, pp. 576–587, 2014.
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An automaton A = (Q,X, δ) is Eulerian if∑
x∈X

|{r ∈ Q | δ (r, x) = q}| = |X |

for each q ∈ Q. Informally, there must be exactly |X | transitions incoming to
each state. An automaton is binary if |X | = 2. The classes of Eulerian and
binary automata are denoted by EU and AL2 respectively.

Previous results about various restrictions of Syn can be found in [2,3,4].
Some of these problems turned out to be polynomially solvable, others are NP-
complete. In [4] Martyugin conjectured that Syn(EU ∩ AL2) is NP-complete.
This conjecture is confirmed in the rest of the present paper.

2 Main Result

Proof Outline. We prove the NP-completeness of Syn(EU ∩AL2) by polyno-
mial reduction from 3-SAT. So, for arbitrary propositional formula φ in 3-CNF
we construct an Eulerian binary automaton A and a number d such that

φ is satisfiable ⇔ A has a reset word of length d. (1)

For the rest of the paper we fix a formula φ =
∧m

i=1

∨
λ∈Ci

λ on n variables where
each Ci is a three-element set of literals, i.e. subset of

Lφ = {x1, . . . , xn,¬x1, . . . ,¬xn} .

We index the literals by the mapping κ defined by

κ : x1 �→ 0, . . . , xn �→ n− 1,¬x1 �→ n, . . . ,¬xn �→ 2n− 1.

Let A = (Q,X, δ), X = {a, b}. Because the structure of the automaton A
will be very heterogenous, we use an unusual method of description. The basic
principles of the method are:

– We describe the automaton A via labeled directed multigraph G, represent-
ing the automaton in a standard way: edges of G are labeled by single letters
a and b and carry the structure of the function δ. Paths in G are labeled by
words from {a, b}�.

– There is a collection of labeled directed multigraphs called templates. The
graph G is one of them. Another template is SINGLE, which consists of one
vertex and no edges.

– Each template T �=SINGLE is a disjoint union through a set PARTST of its
proper subgraphs (the parts of T), extended by a set of additional edges (the
links of T). Each H ∈ PARTST is isomorphic to some template U. We say
that H is of type U.
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– Let q be a vertex of a template T, lying in subgraph H ∈ PARTST which is
of type U via vertex mapping ρ : H → U. The local adress adrT (q) is a finite
string of identifiers separated by “|”. It is defined inductively by

adrT (q) =

{
H | adrU ρ (q) if U �= SINGLE

H if U = SINGLE.

The string adrG (q) is used as regular vertex identifier.

Having a word w ∈ X�, we denote a t-th letter of w by wt and define the set
St = δ (Q,w1 . . . wt) of active states at time t. Whenever we depict a graph, a
solid arrow stands for the label a and a dotted arrow stands for the label b.

Description of the Graph G

Let us define all the templates and informally comment on their purpose.
Figure 1 defines the template ABS, which does not depend on the formula φ.

in

out

r2r1

q1 q2 q3

Fig. 1. Template ABS Fig. 2. A barrier of ABS parts

The state out of a part of type ABS is always inactive after application of a
word of length at least 2 which does not contain b2 as a factor. This allows us
to ensure the existence of a relatively short reset word. Actually, large areas of
the graph (namely the CLAUSE(. . .) parts) have roughly the shape depicted in
Figure 2, a cylindrical structure with a horizontal barrier of ABS parts. If we use
a sufficiently long word with no occurence of b2, the edges outgoing from the
ABS parts are never used and almost all states become inactive.

in

out

sbsa

in

out

sbsa

s2

sd

s1

Fig. 3. Templates CCA, CCI and PIPE(d)
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Figure 3 defines simple templates CCA, CCI and PIPE(d) for each d ≥ 1. If
we secure constant activity of the in state, the activity of the out state depends
exactly on the last two letters applied. In the case of CCA it gets inactive if
and only if the two letters were equal. In the case of CCI it works oppositely,
equal letters correspond to active out state. One of the key ideas of the entire
construction is the following. Let there be a subgraph of the form

part of type PIPE(d)
↓ a, b

part of type CCA or CCI
↓ a, b

part of type PIPE(d).

(2)

Before the synchronization process starts, all the states are active. As soon
as the second letter of an input word is applied, the activity of the out state
starts to depend on the last two letters and the pipe below keeps a record of
its previous activity. We say that a part H of type PIPE(d) records a sequence
B1 . . . Bd ∈ {0,1}d at time t, if it holds that

Bk = 1⇔ H |sk /∈ St.

In order to continue with defining templates, let us define a set Mφ containing
all literals from Lφ and some auxiliary symbols:

Mφ = Lφ ∪ {y1, . . . , yn} ∪ {z1, . . . , zn} ∪ {q, q′, r, r′} .

We index the 4n+ 4 members of Mφ by the following mapping μ:

ν ∈Mφ q r y1 x1 y2 x2 . . . yn xn

μ (ν) 1 2 3 4 5 6 . . . 2n+ 1 2n+ 2

ν ∈Mφ q′ r′ z1 ¬x1 z2 ¬x2 . . . zn ¬xn

μ (ν) 2n+ 3 2n+ 4 2n+ 5 2n+ 6 2n+ 7 2n+ 8 . . . 4n+ 3 4n+ 4

The inverse mapping is denoted by μ′. For each λ ∈ Lφ we define templates
INC(λ) and NOTINC(λ), both consisting of 12n+ 12 SINGLE parts identified by
elements of {1, 2, 3} ×Mφ. As depicted by Figure 4, the links of INC(λ)are:

(1, ν)
a−→

{
(2, r) if ν = λ or ν = r

(2, ν) otherwise

(2, ν)
a−→

⎧⎪⎨⎪⎩
(3, q) if ν = λ or ν = q

(3, λ) if ν = r

(3, ν) otherwise

(1, ν)
b−→

{
(2, λ) if ν = λ or ν = r

(2, ν) otherwise

(2, ν)
b−→

⎧⎪⎨⎪⎩
(3, r) if ν = λ or ν = q

(3, λ) if ν = r

(3, ν) otherwise

Note that we use the same identifier for an one-vertex subgraph and for its
vertex. The structure of NOTINC(λ) is clear from Figure 5.
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1, x1

2, x1

3, x1

1, λ

2, λ

3, λ

1,¬x1

2,¬x1

3,¬x1

1, r

2, r

3, r

1, q

2, q

3, q

Fig. 4. Template INC(λ)

1, x1

2, x1

3, x1

1, λ

2, λ

3, λ

1,¬x1

2,¬x1

3,¬x1

1, r

2, r

3, r

1, q

2, q

3, q

Fig. 5. Template NOTINC(λ)

part levelx2 of type

{
INC(x2) if x2 ∈ Ci

NOTINC(x2) otherwise

part levelλ of type

{
INC(λ) if λ ∈ Ci

NOTINC(λ) otherwise

part level¬xn of type

{
INC(¬xn) if ¬xn ∈ Ci

NOTINC(¬xn) otherwise

part levelx1 of type

{
INC(x1) if x1 ∈ Ci

NOTINC(x1) otherwise

Fig. 6. Template TESTER
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The key property of such templates comes to light when we need to apply some
two-letter word in order to make the state (3, λ) inactive assuming (1, r) inactive.
If also (1, λ) is initially inactive, we can use the word a2 in both templates. If
it is active (which corresponds to the idea of unsatisfied literal λ), we discover
the difference between the two templates: The word a2 works if the type is
NOTINC(λ), but fails in the case of INC(λ). Such failure corresponds to the idea
of unsatisfied literal λ occuring in certain clause of φ.

For each clause (each i ∈ {1, . . . ,m}) we define a template TESTER(i). It
consists of 2n serially linked parts, namely levelλ for each λ ∈ Lφ, each of type
INC(λ) or NOTINC(λ). The particular type of each levelλ depends on the clause
Ci as seen in Figure 6, so exactly three of them are always of type INC(. . .).
If the corresponding clause is unsatisfied, each of its three literals is unsatisfied,
which causes three failures within the levels. Three failures imply at least three
occurences of b, which turns up to be too much for a reset word of certain length
to exist. Clearly we still need some additional mechanisms to realize this vague
vision.

Figure 7 defines templates FORCER and LIMITER. The idea of template FORCER
is simple. Imagine a situation when q1,0 or r1,0 is active and we need to deactivate
the entire forcer by a word of length at most 2n+ 3. Any use of b would cause
an unbearable delay, so if such a word exists, it starts by a2n+2.

The idea of LIMITER is similar, but we tolerate some occurences of b here,
namely two of them. This works if we assume s1,0 active and it is neccesary to
deactivate the entire limiter by a word of length at most 6n+ 1.

q1,0

s0 s1,0

s2,0

s3,0

s4,0

s5,0

s2,1

s3,1

s4,1

s5,1

s3,2

s4,2

s5,2

s4,3

s5,3

r1,0

q1,1

r1,1

q1,2

r1,2

q2n+1,0

q2n+1,0

s6n−4,0 s6n−4,1 s6n−4,2 s6n−4,3

s6n−5,0 s6n−5,1 s6n−5,2 s6n−5,3

s6n−3,0 s6n−3,1 s6n−3,2 s6n−3,3

s6n−2,0 s6n−2,1 s6n−2,2 s6n−2,3

q2,0

r2,0

q2,1

r2,1

q2,2

r2,2

q2n+1,1

r2n+1,1

q2n+1,2

r2n+1,2

Fig. 7. Templates FORCER and LIMITER respectively
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We also need a template PIPES(d, k) for each d, k ≥ 1. It consists just of k
parallel pipes of length d. Namely there is a SINGLE part sd′,k′ for each d′ ≤ d,
k′ ≤ k and all the edges are of the form sd′,k′ −→ sd′+1,k′ .

The most complex templates are CLAUSE(i) for each i ∈ {1, . . . ,m}. Denote

αi = (i− 1) (12n− 2) ,

βi = (m− i) (12n− 2) .

As shown in Figure 8, CLAUSE(i) consists of the following parts:

– Parts sp1, . . . , sp4n+6 of type SINGLE.
– Parts abs1, . . . , abs4n+6 of type ABS. All the template have a shape similar

to Figure 2, including the barrier of ABS parts.
– Parts pipe2, pipe3, pipe4 of types PIPE(2n − 1) and pipe6, pipe7 of types

PIPE(2n+ 2).
– Parts cca and cci of types CCA and CCI respectively. Together with the pipes

above they realize the idea described in (2). As they form two constellations
which work simultaneously, the parts pipe6 and pipe7 typically record mutu-
ally inverse sequences. We interpret them as an assignment of the variables
x1, . . . , xn. Such assignment is then processed by the tester.

– A part ν of type SINGLE for each ν ∈Mφ.
– The part tester of type TESTER(i).
– A part λ of type SINGLE for each λ ∈ Lφ. While describing the templates

INC(λ) and NOTINC(λ) we claimed that in certain case there arises a need to
make the state (3, λ) inactive. This happens when the border of inactive area
moves down through the tester levels. The point is that any word of length 6n
deactivates the entire tester, but we need to ensure that some tester columns,
namely the κ (λ)-th for each λ ∈ Lφ, are deactivated one step earlier. If some
of them is still active just before the deactivation of tester finishes, the state
λ becomes active, which slows down the sychronizing process.

– Parts pipes1, pipes2 and pipes3 of types PIPES(αi, 4n+4), PIPES(6n−2, 4n+
4) and PIPES(βi, 4n+ 4) respectively. There are multiple clauses in φ, but
multiple testers cannot work in parallel. That is why each of them is padded
by a passive PIPES(. . .) part of size depending on particular i. If αi = 0 or
βi = 0, the corresponding PIPES part is not present in cl i.

– Parts pipe1, pipe5, pipe8, pipe9 of types PIPE(12mn+4n−2m+6), PIPE(4),
PIPE(αi + 6n− 1), PIPE(βi) respectively.

– The part forcer of type FORCER. This part guarantees that only the letter
a is used in certain segment of the word w. This is nessesary for the data
produced by cca and cci to safely leave the parts pipe3, pipe4 and line up in
the states of the form ν for ν ∈Mφ, from where they shift to the tester.

– The part limiter of type LIMITER. This part guarantees that the letter b
occurs at most twice when the border of inactive area passes through the
tester. Because each usatisfied literal from the clause requests an occurence
of b, only a satisfied clause meets all the conditions for a reset word of certain
length to exist.
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sp4n+4 sp4n+5 sp4n+6

q

r

y1

x1

y2

x2

yn

xn

q ′

r ′

z1

¬x1

z2

¬x2

zn

¬xn

x1 x2 xn ¬x1 ¬x2 ¬xn

pipes2

pipes3

tester

forcer

sp4n+6

sp2

sp1 sp2n+8

sp2n+9

sp2n+6

sp2n+7

sp2n+4

sp2n+5

abs3

abs4

abs5

abs6

abs7

abs8

abs1

abs2

abs2n+4 abs2n+6

abs2n+5 abs2n+7

sp1 sp2 sp3 sp4 sp5 sp6 sp7 sp8

abs2n+8 abs2n+10

abs2n+9 abs2n+11

abs4n+6

sp4

sp3

sp6

sp5

sp8

sp7

sp2n+11

sp2n+10

limiter

cca cci

pipes1

pipe3pipe2

pipe5

pipe4

pipe7pipe6

pipe8
pipe1

pipe9

Fig. 8. Template CLAUSE(i)
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Links of CLAUSE(i), which are not clear from the Figure 8 are

ν
a−→

{
pipes1|s1,μ(ν) if ν = ¬xn

μ′ (μ (ν) + 1) otherwise
ν

b−→ pipes1|s1,μ(ν)

for each ν ∈Mφ\ {¬xn} and

pipes3|sβi,k
a,b−→

{
μ′ (k) if μ′ (k) ∈ Lφ

absk+2|in otherwise
λ

a,b−→ absμ(λ)+2|in

for each k ∈ {1, . . . , 4n+ 4}, λ ∈ Lφ.
We are ready to form the whole graph G, see Figure 9. For each i, k ∈

{1, . . .m} there are parts clk, absk of types CLAUSE(i) and ABS respectively and
qk, rk, r

′
k, s1, s2 of type SINGLE. The edge incoming to a cl i part ends in cl i|sp1,

the outgoing one starts in cl i|sp4n+6. When no states outside ABS parts are ac-
tive within each CLAUSE(. . .) part and no out , r1 nor r2 state is active in any
ABS part, the word b2ab4n+m+7 takes all active states to s2 and completes the
sychronization. Graph G does not fully represent the automaton A yet, because
there are

– 8mn+4m vertices with only one outgoing edge, namely cl i|absk|out and spl

for each i ∈ {1, . . . ,m} , k ∈ {1, . . . , 4n+ 6} , l ∈ {7, . . . , 4n+ 4},
– 8mn+ 4m vertices with only one incoming edge: cl i|ν and cl i|pipes1| (1, ν′)

for each i ∈ {1, . . . ,m} , ν ∈Mφ\ {q, q′} , ν′ ∈Mφ\ {xn,¬xn}.

But we do not need to specify the missing edges exactly, let us just say that they
somehow connect the relevant states and the automaton A is complete. Let us
set d = 12mn+ 8n−m+ 18 and prove that the equivalence (1) holds.

r ′1

r ′2

r ′m

cl1

clm

abs1

abs2

absm

cl2

cl1

clm−1

clm

cl2

r1

r2

rm

q1

q2

qm

s1 s2

clm−1r ′m−1 absm−1qm−1 rm−1

Fig. 9. The graph G
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From an Assignment to a Word. At first let us suppose that there is an
assignment ξ1, . . . , ξn ∈ {0,1} of the variables x1, . . . , xn (respectively) satisfying
the formula φ and prove that the automaton A has a reset word w of length d.

For each j ∈ {1, . . . , n} we denote

σj =

{
a if ξj = 1

b if ξj = 0

and for each i ∈ {1, . . . ,m} we choose a satisfied literal λi from Ci. We set

w = a2 (σna) (σn−1a) . . . (σ1a) aba
2n+3b

(
a6n−2v1

)
. . .

(
a6n−2vm

)
b2ab4n+m+7,

where for each i ∈ {1, . . . ,m} we use the word

vi = ui,x1 . . . ui,xnui,¬x1 . . . ui,¬xn ,

denoting

ui,λ =

{
a3 if λ = λi or λ /∈ Ci

ba2 if λ �= λi and λ ∈ Ci

for each λ ∈ Lφ. We see that |vi| = 6n and therefore

|w| = 4n+ 8 +m (12n− 2) + 4n+m+ 10 = 12mn+ 8n−m+ 18 = d.

Let us denote
γ = 12mn+ 4n− 2m+ 9.

Because the first occurence of b2 in w starts by γ-th letter, we have:

Lemma 1. No state of a form cl ...|abs ...|out or abs...|out lies in any of the sets
S2, . . . , Sγ.

Let us fix an arbitrary i ∈ {1, . . . ,m} and describe a growing area of inactive
states within cl i. The following claims follows directly from the definition of w.
Note that the claim 7 relies on the fact that b occurs only twice in vi.

Lemma 2

1. No state of the form sp... lies in any of the sets S2, . . . , Sγ.
2. No state from pipe2 or pipe3 or pipe4 lies in any of the sets S2n+1, . . . , Sγ .
3. No state from cca or cci or pipe5 lies in any of the sets S2n+5, . . . , Sγ .
4. No state from pipe6 or pipe7 or forcer lies in any of the sets S4n+7, . . . , Sγ.
5. No state ν for ν ∈Mφ lies in any of the sets S4n+8, . . . , Sγ .
6. No state from pipes1 or pipes2 or pipe8 lies in any of the sets S10n+αi+6, . . .

. . . , Sγ.
7. No state from limiter or tester lies in any of the sets S16n+αi+6, . . . , Sγ

8. No state from pipe1 or pipe9 or pipes3 lies in any of the sets Sγ−1, Sγ.

For each λ ∈ Lφ we ensure by the word ui,λ that the κ (λ)-th tester column is
deactivated in advance, namely at time t = 16n + αi + 5. The advance allows
the following key claim to hold true.
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Lemma 3. No state cl i|λ for λ ∈ Lφ lies in any of the sets Sγ−1, Sγ.

We see that within cl i only states from the ABS parts can lie in Sγ−1. Since
wγ−2wγ−1 = a2, no state r1, r2 or out from any ABS part lies in Sγ−1. Now we
easily check that all the states possibly present in Sγ−1 are mapped to s2 by the
word wγ . . . wd = b2ab4n+m+7.

From a Word to an Assignment. Since now we suppose that there is a reset
word w of length d = 12mn+ 8n−m+ 18. The following lemma is not hard to
verify.

Lemma 4

1. Up to labeling there is unique pair of paths having length at most d−2, leading
from cl1|pipe1|s1 and cl2|pipe1|s1 respectively to a common end. They are
of length d− 2 and meet in s2.

2. The word w starts by a2.

The second claim implies that for each i ∈ {1, . . . ,m} it holds that cl i|pipe1|s1 ∈
S2, so it follows that

δ (Q,w) = {s2} .
Let us denote d = 12mn+4n−2m+11 and w = w1 . . . wd. The following lemma
holds, because no edges labelled by a are available for final segments of the paths
described in the first claim of Lemma 4.

Lemma 5

1. The word w can be written as w = wb4n+m+7 for some word w.
2. For any t ≥ d, no state from any cl ... part lie in St, except for the sp... states.

The next lemma is based on properties of the parts cl ...|forcer but to prove that
no more a follows the enforced factor a2n+1 we also need to observe that each
cl ...|cca|out or each cl ...|cci |out lies in S2n+4.

Lemma 6. The word w starts by ua2n+1b for some u of length 2n+ 6.

Now we are able to write the word w as

w = ua2n+1b (v1v
′
1c1) . . . (vmv′mcm)wd−2wd−1wd,

where |vk| = 6n − 2, |v′k| = 6n − 1 and |ck| = 1 for each k and denote di =
10n+αi +6. At time 2n+5 the parts cl ...|pipe6 and cl ...|pipe7 record mutually
inverse sequences. Because there is the factor a2n+1 after u, at time di we find
the information pushed to the first rows of testers:

Lemma 7. For each i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} it holds that

cl i|tester |levelx1 | (1, xj) ∈ Sdi ⇔
cl i|tester |levelx1 | (1,¬xj) /∈ Sdi ⇔ w2n−2j+2 �= w2n−2j+3.
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Let us define the assignment ξ1, . . . , ξn ∈ {0,1}. By Proposition 7 the definition
is correct and does not depend on i:

ξj =

{
1 if cl i|tester |levelx1 | (1, xj) /∈ Sdi

0 if cl i|tester |levelx1 | (1,¬xj) /∈ Sdi .

The following lemma holds due to cl ...|limiter parts.

Lemma 8. For each i ∈ {1, . . . ,m} there are at most two occurences of b in the
word v′i.

Now we choose any i ∈ {1, . . . ,m} and prove that the assignment ξ1, . . . , ξn
satisfies the clause

∨
λ∈Ci

λ. Let p ∈ {0, 1, 2, 3} denote the number of unsatisfied
literals in Ci.

As we claimed before, all tester columns corresponding to any λ ∈ Lφ have
to be deactivated earlier than other columns. Namely, if cl i|tester |levelx1 | (1, λ)
is active at time di, which happens if and only if λ is not satisfied by ξ1, . . . , ξn,
the word v′ici must not map it to cl i|pipes3|s1,μ(λ). If cl i|tester |levelλ is of type
INC(λ), the only way to ensure this is to use the letter b when the border of
inactive area lies at the first row of cl i|tester |levelλ. Thus each unsitisfied λ ∈ Ci

implies an occurence of b in corresponding segment of v′i:

Lemma 9. There are at least p occurences of the letter b in the word v′i.

By Lemma 8 there are at most two occurences of b in v′i, so we get p ≤ 2 and
there is at least one satisfied literal in Ci.
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6. Steinberg, B.: The Černý conjecture for one-cluster automata with prime length
cycle. Theoret. Comput. Sci. 412(39), 5487–5491 (2011)

7. Trahtman, A.N.: Modifying the upper bound on the length of minimal synchroniz-
ing word. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914,
pp. 173–180. Springer, Heidelberg (2011)



Probabilistic ω-Regular Expressions

Thomas Weidner�

Institut für Informatik, Universität Leipzig, 04009 Leipzig, Germany
weidner@informatik.uni-leipzig.de

Abstract. We introduce probabilistic ω-regular expressions which are
an extension to classical regular expressions with semantics taking prob-
abilities into account. The main result states that probabilistic ω-regular
expressions are expressively equivalent to probabilistic Muller-automata.
To obtain better decidability properties we introduce a subclass of our
expressions with decidable emptiness and approximation problem.

1 Introduction

Regular expressions are used in nearly every field of theoretical computer science.
Kleene’s famous theorem states that regular languages and finite automata define
the same class of languages [14]. This result has been transferred to various other
settings. Two notable examples are the weighted setting by Schützenberger [21]
and the setting of infinite words by Büchi [4]. Kleene-type results with weights
on infinite words have been obtained in [11,16].

Probabilistic automata are another classical concept in theoretical computer
science. Introduced by Rabin [19], they add probabilistic branching to determin-
istic finite automata. This model has proven very successful and has nowadays
a broad range of applications including speech recognition [20], prediction of
climate parameters [18], or randomized distributed systems [10]. In 2005, prob-
abilistic automata have been extended to infinite words by Baier and Grösser
[1]. This concept led to manifold further research [2,6,7,8,9,22]. We consider the
quantitative behavior of a probabilistic ω-automaton, i.e., a function mapping
infinite words to probability values.

In 2012, Kleene’s result has been transferred to probabilistic pebble automata
by Bollig, Gastin, Monmege and Zeitoun [3]. These automata are more powerful
than classical probabilistic automata, but still only work on finite words. As an ad-
ditional result they obtain probabilistic regular expressions which are equivalent
to probabilistic automata when input words are equipped with an end marker.

In this work, we extend the ideas of Bollig, Gastin, Monmege and Zeitoun
to define probabilistic ω-regular expressions (pωRE) for infinite words. These
expressions arise from the addition of an ω-operator. Intuitively, Eω denotes
the limit of the probability that a word starts with En, for n → ∞. We prove
the expressive equivalence of pωRE and probabilistic Muller-automata by giving
effective constructions.
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Due to this equivalence, undecidability results can be gained from the prob-
abilistic ω-automata setting. In particular, the approximation problem, which
asks given an automaton and a small number ε > 0 for an approximation of
the image of the automaton by finitely many points, is undecidable; even for
probabilistic automata on finite words [17].

Furthermore, we introduce almost limit-deterministic expressions, which are
a subclass of pωRE, where star iteration may only be applied to determinis-
tic expressions or expressions whose semantics are bounded away from 1. Also
ω-iteration may only be applied to deterministic expressions. We show that
these expressions can be translated into almost limit-deterministic probabilis-
tic Muller-automaton and solve the approximation problem for this class of au-
tomata.

2 Preliminaries

For the rest of the work let Σ be an arbitrary, finite alphabet. The set Σ∗ contains
all finite words over Σ and Σω comprises all infinite words. For convenience we
write Σ∞ for Σ∗ ∪ Σω. For a word w ∈ Σ∞ let |w| ∈ N ∪ {∞} be the word’s
length and pre(w) ⊆ Σ∗ the set of all prefixes of w. For a language L ⊆ Σ∞ let
1L : Σ∞ → {0, 1} be its characteristic function.

Given a finite set X , we denote the set of all distributions on X by Δ(X),
i.e. all functions d : X → [0, 1] such that

∑
x∈X d(x) = 1. For Y ⊆ X we define

d(Y ) =
∑

y∈Y d(y).
Let Ω be a set. A system of subsets A ⊆ 2Ω is a σ-algebra, if it contains the

empty set and is closed under complement and countable union. A set M ∈ A is
called measurable. A mapping P : A → [0, 1] is a probability measure if P(Ω) = 1
and P(

⋃
k≥1 Mk) =

∑
k≥1 P(Mk) for every pairwise disjoint family (Mk)k≥1 of

measurable sets. For Ω = Σω we consider the smallest σ-algebra containing the
cone sets ρΣω for ρ ∈ Σ∗. This σ-algebra is sometimes called the Borel-σ-algebra
on Σω. A measure, which is given on all such cone sets, is uniquely determined.

Probabilistic automata generalize deterministic automata by employing a
probability distribution to choose the next state, instead of using a fixed one.

Definition 1. A probabilistic automaton is a tuple A = (Q, δ, μ, F ) with
– Q a non-empty, finite set of states
– δ : Q×Σ → Δ(Q) the transition probability function
– μ ∈ Δ(Q) the initial probabilities
– F ⊆ Q a set of final states

Instead of δ(p, a)(q) we simply write δ(p, a, q). For a word w = w1 · · ·wn ∈ Σ∗,
the behavior ‖A‖ : Σ∗ → [0, 1] of A is defined by

‖A‖(w) =
∑

q0,...,qn−1∈Q, qn∈F
μ(q0)

n∏
i=1

δ(qi−1, wi, qi).

Probabilistic ω-automata have been introduced in [1]. The authors consider
Büchi- and Rabin-acceptance in their work. Muller-acceptance is better suited
for our approach, though it is as expressive as Rabin-acceptance.
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Definition 2. A probabilistic Muller-automaton is a tuple A = (Q, δ, μ,Acc)
where Q, δ, and μ are defined as in Theorem 1 and Acc ⊆ 2Q is a Muller-
acceptance condition. For a word w = w1w2 · · · ∈ Σω, the behavior of A is
defined using the unique measure Pw

A on Qω given by

Pw
A(q0 · · · qnQω) = μ(q0)

∏n
i=1 δ(qi−1, wi, qi).

The behavior ‖A‖ : Σω → [0, 1] of A is then ‖A‖(w) = Pw
A(ρ ∈ Qω ; inf(ρ) ∈

Acc), where inf(ρ) designates the set of states occurring infinitely often in ρ.

The existence and uniqueness of the measure Pw
A follows from the Ionescu-Tulcea

extension theorem, cf. [15]. We extend the definition of Pw
A to finite words w ∈ Σ∗

by letting Pw
A(q0 · · · qn) = μ(q0)

∏n
i=1 δ(qi−1, wi, qi) if n = |w| and Pw

A(q0 · · · qn) =
0 if n �= |w|. Then Pw

A is a measure on Q∗.
Let M ⊆ Qω or M ⊆ Q∗ a fixed set. We define the function PA(M) on Σω,

resp. Σ∗, by PA(M)(w) = Pw
A(M).

3 Probabilistic ω-Regular Expressions

In this section we introduce the syntax and semantics of probabilistic ω-regular
expressions, establish some basic results, and give an example of use.

Definition 3. The set pωRE of all probabilistic ω-regular expressions is the
smallest set R satisfying
1. Σω ∈ R
2. If ∅ �= A ⊆ Σ and (Ea)a∈A ∈ RA, then

∑
a∈A aEa ∈ R

3. If p ∈ [0, 1] and E,F ∈ R, then pE + (1− p)F ∈ R and pE ∈ R
4. If EΣω ∈ R and F ∈ R, then EF ∈ R
5. If EΣω + F ∈ R, then E∗F + Eω ∈ R, Eω ∈ R and E∗F ∈ R
6. The set R is closed under distributivity of · over +, associativity, and com-

mutativity of + and multiplication by probability values.

Before we define the semantics of these expressions, we give the corresponding
operations on functions in general. Let f, g : Σ∞ → [0, 1] . We define for w ∈ Σ∞:

(fg)(w) =
∑
uv=w

f(u)g(v), f∗(w) =
∑
n≥0

fn(w), fω(w) = lim
n→∞

(fn1Σ∞)(w),

where fn is defined using the above product operation and f0 as 1{ε}. Note that
in general the infinite sums may not converge or are not bounded by 1.

Definition 4. Let w ∈ Σ∞. The semantics of probabilistic ω-regular expressions
are inductively defined by ‖Σω‖(w) = 1Σω(w) and

‖p‖(w) =
{
p if w = ε

0 otherwise
‖a‖(w) =

{
1 if w = a

0 otherwise

‖E + F‖(w) = ‖E‖(w) + ‖F‖(w) ‖EF‖(w) = (‖E‖‖F‖)(w)
‖E∗‖(w) = ‖E‖∗(w) ‖Eω‖(w) = ‖E‖ω(w),

where a ∈ Σ and p ∈ [0, 1].
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One can show that the set of all expressionsE with ‖E‖well-defined and ‖E‖(w) ≤
1 for all w ∈ Σω satisfies all conditions in Theorem 3. As pωRE is the smallest set
of expressions that satisfies all these conditions, this set is already the whole set
pωRE. Similarly, one shows that the semantics of a probabilistic ω-regular expres-
sions without any probability values coincides with the characteristic function of
the language defined by the expression in the classical sense.

There is a connection to the probabilistic regular expressions defined in [3]:
Let pRE be the set of all probabilistic regular expressions as in [3]. We then have

pRE =
{
E subexpression | EΣω ∈ pωRE

}
.

Furthermore, the semantics defined on pRE in this work and in [3] coincide.
Thus we can consider pRE a fragment of pωRE.

The syntax definition given in Theorem 3 is aimed to be minimal, but some
more general rules to derive new expressions can be shown.

Lemma 5. The following statements hold:
1. If E + F ∈ pωRE, then E ∈ pωRE.
2. If EΣω + F ∈ pωRE and G ∈ pωRE, then EG+ F ∈ pωRE.

Example 6. We consider a communication device for sending messages. At every
point of time either a new input message becomes available or the device is
waiting for a new message. When a new message is available the device tries to
send this message. Sending a message may fail with probability 1

3 . In this case the
message is stored in an internal buffer. The next time the device is waiting for a
message, sending the stored message is retried. Intuitively, as sending a buffered
message has already failed once, it seems to be harder to send this message. So
sending a buffered message is only successful with probability 1

2 . The buffer can
hold one message.

To build an expression for this model, we consider the two letter alphabet
Σ = {w, i} for the events “wait” and “input message”. The expression is built
bottom up. We first construct the expression for the case that the buffer is
already full. The notation E 	 F is used to symbolize, that F can be constructed
from E by application of Theorems 3 and 5. Underlined expressions have zero
semantics and are left out in subsequent steps. We derive

Σω 	 wΣω + iΣω 	 1
2wΣ

ω + 1
2wΣ

ω + 2
3 iΣ

ω

	 (12w)
∗ 1
2wΣ

ω + (12w)
∗ 2
3 iΣ

ω+(12w)
ω

	
(
(12w)

∗ 2
3 i
)∗
(12w)

∗ 1
2wΣ

ω+
(
(12w)

∗ 2
3 i
)ω

.

Let the expression ((12w)
∗ 2
3 i)

∗(12w)
∗ 1
2w be denoted by B. Intuitively, this expres-

sion describes the probability of returning to an empty buffer without overflowing
the buffer until then. For the full expression we continue

Σω 	 wΣω + iΣω 	 wΣω + 2
3 iΣ

ω + 1
3 iΣ

ω 	 w∗ 2
3 iΣ

ω +w∗ 1
3 iΣ

ω +wω

	 (w∗ 2
3 i)

∗w∗ 1
3 iΣ

ω + (w∗ 2
3 i)

∗wω+(w∗ 2
3 i)

ω
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	 (w∗ 2
3 i)

∗w∗ 1
3 iBΣω + (w∗ 2

3 i)
∗wω

	
(
(w∗ 2

3 i)
∗w∗ 1

3 iB
)∗
(w∗ 2

3 i)
∗wω +

(
(w∗ 2

3 i)
∗w∗ 1

3 iB
)ω

In the expression (w∗ 2
3 i)

∗w∗ 1
3 iB the term (w∗ 2

3 i)
∗ describes the iteration of wait-

ing an arbitrary time, then sending an incoming message successfully with prob-
ability 2

3 . The term w∗ 1
3 i describes arbitrary waiting and then failing to send an

incoming message with probability 1
3 . Hence the message is stored in the buffer

and B describes the probability to empty the buffer again without overflowing
the buffer.

4 The Main Theorem

Theorem 7. Let f : Σω → [0, 1]. The following statements are equivalent
1. f = ‖A‖ for some probabilistic Muller-automaton A.
2. f = ‖E‖ for some probabilistic ω-regular expression E.

In the next subsection, we give some results for prefix-free languages which are
required for our proof. The following two subsections give a sketch of the two
directions of the proof of Theorem 7.

4.1 Prefix-Free Languages

Definition 8. Let Q be an alphabet. A language L ⊆ Q∗ is called prefix-free if
pre(w) ∩ L = {w} for all w ∈ L.

Prefix-free languages, also called prefix languages, are a known concept in
language- and coding theory. For example, Prefix-free languages have been used
to define determinism for generalized automata [13]. Prefix-freeness allows for
unique concatenation, i.e. if L is prefix-free, K any language, and w ∈ LK, then
there is exactly one pair u ∈ L, v ∈ K with w = uv. More generally, given a
prefix-free language L ⊆ Q∗ and a word w ∈ Q∞ there is either a decomposition
w = w1w2 · · · for unique wi ∈ L (i ≥ 1) or w = w1 · · ·wnv for unique wi ∈ L and
pre(v) ∩L = ∅. The class of prefix-free languages is closed under concatenation.

Let q1, . . . , qn ∈ Q. For the proof of Theorem 7 we consider words, that contain
all letters q1, . . . , qn in this order and are minimal with that property, w.r.t. the
prefix ordering. Such words will be used to denote minimal runs of an automaton
through states q1, . . . , qn, and, eventually, to construct expressions for loops in
the automaton. Formally, for a sequence q1 · · · qn ∈ Q∗ we define the prefix-free
language Mq1,...,qn by

Mq1,...,qn =

n∏
i=1

(A \ {qi})∗qi and Mε = {ε}. (1)

We consider prefix-free sets of paths in an automaton. These sets allow inter-
changing rational operations and the automaton’s probability measure. In the
following, for an automaton A = (Q, δ, μ,Acc) and q ∈ Q, let Aq denote the
automaton (Q, δ,1{q},Acc).
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Lemma 9. Let A be a probabilistic Muller-automaton, Q its state space, L ⊆
Q∗ and q ∈ Q such that Lq is prefix-free. Let further w ∈ Σω and K ⊆ Qω

measurable. Then the following statements hold:
1.

∑
uv=w Pu

A(Lq) ≤ 1.
2. PA(LqK) = PA(Lq) · PAq (qK).

3. PAq

(
q(Lq)∗

)
=

(
PAq (qLq)

)∗.
4. PAq

(
q(Lq)ω

)
=

(
PAq (qLq)

)ω.

4.2 From Automata to Expressions

For the rest of this subsection let A = (Q, δ, μ,Acc) be a fixed probabilistic
Muller-automaton. We may assume that μ = 1{ι} for a state ι ∈ Q. Let p, q ∈ Q
and R,X ⊆ Q. We inductively construct expressions EX

p,q, EX
p,inf=R, and EX

p

with either X = ∅ or p ∈ X such that the following equalities hold:∥∥EX
p,q

∥∥ = PAp(pX
∗q)∥∥∥EX

p,inf=R

∥∥∥ = PAp(ρ ∈ pXω ; inf(ρ) = R)

EX
p =

∑
r �∈X EX

p,rΣ
ω +

∑
R⊆X EX

p,inf=R .

If X = ∅, such expressions can be constructed directly by definition.
Assume X = {x1, . . . , xn} with n ≥ 1. For convenience let xn+1 = x1. By

induction hypothesis, there exist expressions EX\{xi+1}
xi ∈ pωRE with

EX\{xi+1}
xi

=
∑
r �∈X

EX\{xi+1}
xi,r Σω + EX\{xi+1}

xi,xi+1
Σω +

∑
R⊆X\{xi+1}

E
X\{xi+1}
xi,inf=R . (2)

To ease notation we make the following definitions:

Ck = EX\{x2}
x1,x2

EX\{x3}
x2,x3

· · ·EX\{xk}
xk−1,xk

C = CnE
X\{x1}
xn,x1

.

The expression C denotes a full iteration through all states in X in order starting
in state x1, and Ck denotes a partial iteration only until state xk. For k = 1 the
expression Ck is just the empty expression. By Theorem 9, the behavior of these
expressions can be written using the M··· languages from (1) in Theorem 8:

‖C‖ = PAx1
(x1Mx2,...,xn,x1) and ‖Ck‖ = PAx1

(x1Mx2,...,xk
).

By repeated application of Theorem 5 on (2) for i = 1, . . . , n, we obtain that the
following expression ẼX

x1
is a pωRE:

ẼX
x1

=
∑
r �∈X

n∑
k=1

CkE
X\{xk+1}
xk,r

Σω + CΣω +
∑
R�X

∑
k∈{1,...,n}
xk+1 �∈R

CkE
X\{xk+1}
xk,inf=R

Next, we apply Item 5 in Theorem 3 to ẼX
x1

and obtain

EX
x1

=
∑
r �∈X

n∑
k=1

C∗CkE
X\{xk+1}
xk

Σω +
∑
R�X

∑
xk+1 �∈R

C∗CkE
X\{xk+1}
xk,inf=R + Cω.

Using Theorem 9 one can show that the following equalities hold:∥∥∥∑n
k=1 C

∗CkE
X\{xk+1}
xk,r

∥∥∥ = PAx1
(x1X

∗r)



594 T. Weidner∥∥∥∑xk+1 �∈R C∗CkE
X\{xk+1}
xk,inf=R

∥∥∥ = PAx1
(ρ ∈ x1X

ω ; inf(ρ) = R)

‖Cω‖ = PAx1
(ρ ∈ x1X

ω ; inf(ρ) = X).

For X = Q the expression EQ
ι has the form EQ

ι =
∑

R⊆Q EQ
ι,inf=R. By Theorem 5

we can restrict the sum in EQ
ι to summands R ∈ Acc and obtain the desired

expression E with ‖E‖ = ‖A‖.
Example 10. Consider the automaton A = ({q1, q2}, δ,1{q1}, {{q1, q2}}) over
Σ = {a, b} where δ(q1, a, q1) = 1/2 = δ(q1, a, q2), and δ(q2, a, q2) = δ(q2, b, q1) =
1. This is a partial automaton, which can be made into a probabilistic Muller-
automaton by adding a sink state. To keep the size of the immediate expressions
small, we continue to work with the partial automaton. The following expressions
occur in the construction of EA:

E∅q1 = 1
2aΣ

ω + 1
2aΣ

ω + bΣω E∅q2 = aΣω + bΣω

E
{q1}
q1 = (12a)

∗ 1
2aΣ

ω + (12a)
ω E

{q2}
q2 = a∗bΣω + aω

E
{q1,q2}
q1 =

(
(12a)

∗ 1
2aa

∗b
)ω

+
(
(12a)

∗ 1
2aa

∗b
)∗

(12a)
∗ 1
2aa

ω +
(
(12a)

∗ 1
2aa

∗b
)∗

(12a)
ω

The first summand is the wanted expression E with ‖E‖ = ‖A‖.

4.3 From Expressions to Automata

In order to handle distributivity and commutativity we adopt the idea of using
terms from [3]. The terms of an expression are the summands, when the expres-
sion is maximally expanded by using distributivity. As summands may occur
more than once, we use multisets instead of sets. The notation {{x1, . . . , xn}}
denotes the multiset containing x1, . . . , xn. Formally

Definition 11. The multiset of terms of a (subexpression of a) probabilistic
ω-regular expression is inductively defined by T (Σω) = {{Σω}} and

T (p) = {{p}} T (E∗) = {{E∗}} T (E + F ) = T (E) ∪ T (F )

T (a) = {{a}} T (Eω) = {{Eω}} T (EF ) = T (E) T (F )

The set of head terms HT (E) and tail terms T T (E) is given by

HT (E) = {{E subexpression | EΣω ∈ T (E)}} T T (E) = T (E) \ HT (E)Σω.

For a multiset M ⊆ T (E) let E(M) =
∑

E∈M E.

We use Muller-automata with final states as we need to handle finite and infinite
words, i.e., automata A = (Q, δ, μ,Acc, F ) such that (Q, δ, μ,Acc) is a proba-
bilistic Muller-automaton and F ⊆ Q are final states. The behavior ‖A‖ of A
is then defined on infinite and finite words by either using Acc or F as accep-
tance condition. For a set X ⊆ Q let A[X ] denote the probabilistic automaton
(Q, δ′, μ,X) where δ′ equals zero on X ×Σ and agrees with δ everywhere else.

For an expression E ∈ pωRE with HT (E) = {{E1, . . . , En}}, we construct an
automaton AE = (Q, δ, μ,Acc, F ) such that
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1. Every set in Acc is disjoint from F .
2. All states in F are sinks, i.e. all outgoing transitions are self-loops.
3. ‖A‖(w) = ‖E(T T (E))‖(w) for all w ∈ Σω.
4. There is a partition X1 ∪̇ · · · ∪̇Xn = F such that ‖A[Xi]‖(w) = ‖Ei‖(w) for

all w ∈ Σ∗ and 1 ≤ i ≤ n.
Note that such an automaton can be easily transformed into an automaton A′E
with ‖A′E‖ = ‖E‖ by letting Acc′ = Acc ∪ {{q} | q ∈ F}.

The proof now proceeds by showing that the set of all expressions such that an
automaton AE , as defined above, can be constructed equals the set of all proba-
bilistic ω-regular expressions. The constructions are based on the constructions
given in [3] and are therefore left out here.

5 Decidability Results

There are many decidability results known for probabilistic ω-automata. Unfor-
tunately most of them state that the problem in question is undecidable. The
next proposition states that the emptiness problem under probable and almost
sure semantics, and the approximation problem is undecidable.

Proposition 12 (see [2,5,17]). The following problems are undecidable:
1. Given E ∈ pωRE, is ‖E‖(w) > 0 for some w ∈ Σω.
2. Given E ∈ pωRE, is ‖E‖(w) = 1 for some w ∈ Σω.
3. Given E and ε > 0, such that either ‖E‖(w) ≤ ε for all w ∈ Σω or ‖E‖(w) ≥

1− ε for a w ∈ Σω, decide which is the case.

6 Almost ω-Deterministic Expressions

The poor decidability properties of probabilistic ω-automata motivate the search
for expressive subclasses of automata with better decidability properties. Con-
siderable work has already be done in this direction, c.f. [8,9,12].

We introduce almost ω-deterministic expressions, where ω-iteration may only
be applied to deterministic expressions and every star-iteration has to be deter-
ministic or a probability less than 1 to repeat the iteration.

Definition 13. Given a subexpression E of a probabilistic ω-regular expression,
we call E
1. deterministic if it does not contain any probability values other than 0 or 1,
2. permeable if for every subexpression F ∗ of E we have F = F1pF2 such that

p < 1 and F1F2Σ
ω is a probabilistic regular expression.

We say an expression E is almost ω-deterministic if every subexpression F ∗ of E
is either deterministic or permeable, and every subexpression Fω is deterministic.

In order to find an analogous concept for probabilistic Muller-automata, we con-
sider automata where every path will almost surely be eventually deterministic,
i.e the set of all paths ρ such that inf(ρ) is deterministic has probability 1.
A similar concept, limit-deterministic probabilistic Büchi automata, has been
considered in [23].
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Fig. 1. Automaton for Fig. 1, SCCs are enclosed by dashed boxes

Definition 14. Given a probabilistic Muller-automaton A = (Q, δ, μ,Acc) a set
of states M ⊆ Q is called
1. deterministic if δ(p, a, q) ∈ {0, 1} for all p, q ∈M and a ∈ Σ,
2. permeable if Pw

Aq
(Mω) = 0 for all w ∈ Σω and q ∈M .

We say A is an almost limit-deterministic probabilistic Muller automaton, for
short: ALDPMA, if every strongly connected component (SCC) is either deter-
ministic or permeable, where we consider the underlying transition graph, i.e.
there is an edge from state p to state q if δ(p, a, q) > 0 for some a ∈ Σ.

In an ALDPMA every bottom SCC, i.e. SCCs with no outgoing transition, has
to be deterministic, but there may be other deterministic SCCs.

Example 15. Consider the almost ω-deterministic expression

a∗b
(
1
2a

)∗ 1
2
2
3a

(
a
(
1
2a

)∗ 1
2
2
3a

)∗
bbω .

An equivalent almost limit-deterministic Muller-automaton is depicted in Fig. 1.

Theorem 16. Let E be an almost ω-deterministic expression.
There is an effectively constructible ALDPMA A with ‖E‖ = ‖A‖.

Proof. The proof works by extending the proof of Theorem 7 carefully.
We use Muller-automata with final states A = (Q, δ, μ,Acc, F ) that are almost

limit-deterministic with the following properties in addition to the properties in
Section 4.3:
5. For every E′ ∈ HT (E) with corresponding acceptance set X ⊆ F let R =
{q ∈ Q | X is reachable from q}. If E′ is deterministic, resp. permeable, then
R is deterministic, resp. permeable.

6. μ(Q) ⊆ {0, 1} if there is at least one deterministic expression in HT (E).
Using a similar inductive construction as in the general case, we obtain an
ALDPMA A which is equivalent to E. �

The next theorem states that the image of an ALDPMA can be approximated
arbitrarily close by a finite, computable set. This does not hold in general even
for probabilistic automata on finite words [17]. In the following for Y, Z ⊆ Rn×m

let Bε(Y ) be the ε-neighborhood with respect to the row-sum-norm ‖·‖∞, resp.,
the absolute value if n = m = 1. The Hausdorff distance dH(Y, Z) is the infimum
of all ε > 0 with Y ⊆ Bε(Z) and Z ⊆ Bε(Y ).

Theorem 17. Given an ALDPMA A and an ε > 0, there is an effectively
computable finite set V ⊆ [0, 1] such that dH(‖A‖(Σω), V ) ≤ ε.
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Proof. The proof uses induction on the number of SCCs in A and removes a top
SCC C in the induction step. To ensure V ⊆ Bε(‖A‖(Σω)) we need not only
to approximate ‖A‖ in the induction, but vectors of acceptance probabilities. In
case that C is permeable the probability of all paths which stay long enough in
C is arbitrarily small. In the other case, C is deterministic, further difficulties
arise: Intuitively the deterministic SCC may delay runs starting at one state
q1 before they leave C, whereas other runs, starting in a state q2 �= q1 may
leave C immediately. To solve this problem we also approximate all transition
probabilities when reading finite words.

Formally, define for any automaton A with state space Q two functions:
νA : Σω → [0, 1]Q and ΘA : Σ∗ → [0, 1]Q×Q which are given by νA(w)q =
‖Aq‖(w) and ΘA(w)p,q = Pw

Ap
(Q∗q), where Aq is the automaton A but with

initial state q. We show by induction on n ≥ 1 that for every n holds: Given
an ALDPMA A with n SCCs, an ε > 0 and regular languages L1 ⊆ Σω and
L2 ⊆ Σ∗ one can effectively compute finite sets Y ⊆ [0, 1]Q and Z ⊆ [0, 1]Q×Q

such that dH(Y, νA(L1)) ≤ ε and dH(Z,ΘA(L2)) ≤ ε.
In the induction base case, the whole automaton A is deterministic and νA(L1)

and ΘA(L2) can be directly computed. Assume n > 1. We consider a top SCC C
in Q, i.e. δ(q, a, p) = 0 for all q ∈ Q\C, a ∈ Σ, and p ∈ C. Let Q′ = Q\C. We can
decompose ΘA(w) and νA(w) for any w1 ∈ Σ∗ and w2 ∈ Σω into components:

ΘA(w1) =

(
M1(w1) M2(w1)

0 M3(w1)

)
, νA(w2) =

(
ν1(w2)
ν′(w2)

)
,

where M1(w) ∈ [0, 1]C×C, M2(w) ∈ [0, 1]C×Q′
, M3(w) ∈ [0, 1]Q

′×Q′
, ν1(w) ∈

[0, 1]C , and ν′(w) ∈ [0, 1]Q
′
. First, assume that C is permeable. We then have

‖M1(w)‖∞ → 0 as |w| → ∞. Choose N large enough, that ‖M1(w)‖∞ ≤ ε
2

for all w with |w| ≥ N . Furthermore, by induction hypothesis there are finite,
computable sets Y ′(u−1L1) and Z ′(u−1L2) with dH(Y

′(u−1L),M3(u
−1L)) ≤ ε

2
and dH(Z

′(u−1L), ν′(u−1L)) ≤ ε
2 . Thus we can choose Y and Z as

Z =
⋃

u∈ΣN

(
M2(u)
M3(u)

)
Z ′

(
u−1L2

)
∪ΘA

(
L2 ∩Σ<N

)
, Y =

⋃
u∈ΣN

(
M2(u)
M3(u)

)
Y ′

(
u−1L1

)
.

Now, we consider the case that C is deterministic. We first construct the set
Z for an arbitrary L2 and then move to Y . For ua ∈ Σ+ (a ∈ Σ) let M̃2(ua) =

M1(u)M2(a) and M̃2(ε) = 0. Note that M̃2(K) is finite and computable for every
regular language K. One shows for every w ∈ Σ∗ that there is a decomposition
w = u1 · · ·unv with n ≤ |C| such that u1 · · ·ui (1 ≤ i ≤ n) are the only prefixes
w′ of w with M̃2(w

′) �= 0. Hence M2(w) =
∑n

i=1 M̃2(u1 · · ·ui)M3(ui+1 · · ·unv).
Let ≡L2 be the syntactic congruence relation of L2. By induction hypothesis
there are sets Z ′(L′) for every recognizable language L′ such that dH(Z

′(L′),
M3(L

′)) ≤ ε. We choose Z by

Z =

|C|⋃
n=1

⋃
D1,P1,...,Dn,Pn,D′

[u1],...,[un]∈Σ∗/≡L2

n∏
i=1

(
Di Pi

0 Z ′
(
K

D1···Di−1

Di,Pi,ui

)) ·(D′ 0

0 Z ′
(
TD1···Dn

D′

))
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where the Di range over M1(Σ
∗) and the Pi over M̃2(Σ

∗). The recognizable
languages K and T are given by

KD0

D,P,u =
{
w ∈ Σ∗

∣∣∣ w ≡L2 u, M1(w) = D, M̃2(w) = P,

D0M̃2(w
′) = 0 for all strict prefixes w′ of w

}
,

TD0

D =
{
w ∈ Σ∗

∣∣∣ M1(w) = D, D0M̃2(w
′) = 0 for all prefixes w′ of w

}
.

We are now ready to construct the set Y . For the acceptance probabilities we
also need to consider paths which never leave C. Hence let B be the restriction
of A to state space C. For a vector τ ∈ {0, 1}C define the regular language
Lτ = {w ∈ Σω | νB(w) = τ}. We construct Y by

Y =
⋃

τ,[u]τ

(
τ
0

)
+ Z([u]τ )

(
0

Z ′(u−1(L1 ∩ Lτ ))

)
,

where τ ranges over {0, 1}C and [u]τ = {w ∈ Σ∗ | w−1(L1 ∩Lτ ) = u−1(L1 ∩Lτ )}
ranges over all u ∈ Σ∗ (but there are only finitely many [u]τ ). This completes the
induction. Thus, we have constructed a finite computable set Y ⊆ [0, 1]Q such that
dH(Y, νA(Σ

ω)) ≤ ε. Hence dH(μY, μνA(Σω)) ≤ ε and μνA(Σ
ω) = ‖A‖(Σω). �

Corollary 18. All problems stated in Theorem 12 are decidable for almost ω-
deterministic expressions.

Proof. For the approximation problem we use Theorem 17. For the two emptiness
problems note that we only need to consider paths with stay eventually in a
deterministic component. Hence we only need to consider countable many paths
and can apply standard graph algorithms.

7 Future Work

Our work does not provide the equivalence between almost ω-deterministic ex-
pressions and almost limit-deterministic automata. We conjecture that these two
concepts are indeed expressively equivalent.

In [3], a Kleene theorem was not only shown for probabilistic automata but
for probabilistic pebble automata. A natural question is, whether our result can
be generalized to include pebbles.

The natural star-free fragment of pωRE consists only of finite, convex com-
binations of star-free languages. Is there a more expressive fragment of pωRE
that exhibits similar properties as classical star-free languages? For example, is
there some notion of counter-freeness for probabilistic ω-automata, or a suitable
probabilistic linear time logic? Is there a connection to a first-order-fragment of
probabilistic MSO, as introduced in [24]?

Considerable research has constructed subclasses of probabilistic ω-automata,
like hierarchical automata [5] or structurally simple automata [9], with better
decidability properties. One may ask if such a subclass corresponds to a natural
fragment pωRE, or if new subclasses of automata can be derived by choosing
appropriate fragments of pωRE.
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Abstract. Some of the most interesting and important results concern-
ing quantum finite automata are those showing that they can recognize
certain languages with (much) less resources than corresponding classi-
cal finite automata. This paper shows three results of such a type that
are stronger in some sense than other ones because (a) they deal with
models of quantum finite automata with very little quantumness (so-
called semi-quantum one- and two-way finite automata); (b) differences,
even comparing with probabilistic classical automata, are bigger than
expected; (c) a trade-off between the number of classical and quantum
basis states needed is demonstrated in one case and (d) languages (or the
promise problem) used to show main results are very simple and often
explored ones in automata theory or in communication complexity, with
seemingly little structure that could be utilized.

1 Introduction

An important way to get deeper insights into the power of various quantum
resources and operations is to explore the power of various quantum variations
of the basic models of classical automata. Of a special interest is to do that for
various quantum variations of the classical finite automata, especially for those
that use limited amounts of quantum resources: states, correlations, operations
and measurements. This paper aims to contribute to such a line of research.

There are several approaches how to introduce quantum features to classical
models of finite automata. Two of them will be dealt with in this paper. The
first one is to consider quantum variants of the classical one-way (deterministic)
finite automata (1FA or 1DFA) and the second one is to consider quantum
variants of the classical two-way finite automata (2FA or 2DFA). Already the
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very first attempts to introduce such models, by Moore and Crutchfields [18] as
well as Kondacs and Watrous [14] demonstrated that in spite of the fact that
in the classical case, 1FA and 2FA have the same recognition power, this is not
so for their quantum variations (in case only unitary operations and projective
measurements are considered as quantum operations). Moreover, already the first
model of two-way quantum finite automata (2QFA), namely that introduced by
Kondacs and Watrous, demonstrated that quantum variants of 2FA are much
too powerful – they can recognize even some non-context free languages and are
actually not really finite in a strong sense [14]. Therefore it started to be of
interest to introduce and explore some “less quantum” variations of 2FA and
their power [2, 3].

A “hybrid” – quantum/classical – variations of 2FA, namely, two-way finite
automata with quantum and classical states (2QCFA), were introduced by Am-
bainis and Watrous [2]. For this model they showed, in an elegant way, that
already an addition of a single qubit to the classical model can much increase
its power. A 2QCFA is essentially a classical 2FA augmented with a quantum
memory of constant size (for states of a fixed Hilbert space) that does not de-
pend on the size of the (classical) input. In spite of such a restriction, 2QCFA
have been shown to be even more powerful than two-way probabilistic finite au-
tomata (2PFA) [2, 26]. A one-way version of 2QCFA was studied in [25], namely
one-way finite automata with quantum and classical states (1QCFA).

Number of states is a natural complexity measure for finite automata. In case
of quantum finite automata by that we understand the number of the basis
states of the quantum space – that is its dimension. In case of hybrid, that
is quantum/classical, finite automata, it is natural to consider both complexity
measures – number of classical and also number of quantum (basis) states – and,
potentially, trade-offs between them.

State complexity is one of the important research fields of computer science
and it has many applications, e.g., in natural language and speech processing,
image generation and encoding, etc. Early in 1959, Rabin and Scott [21] proved
that any n-state one-way nondeterministic finite automaton (1NFA) can be sim-
ulated by a 2n-state one-way deterministic finite automaton (1DFA). Salomaa
[23] began to explore state complexity of finite automata in 1960s. The num-
ber of states of finite automata used in applications were usually small at that
time and therefore investigations of state complexity of finite automata was seen
mainly as a purely theoretical problem. However, the numbers of states of fi-
nite automata in applications can be huge nowadays, even millions of states in
some cases [12]. It becomes therefore also practically important to explore state
complexity of finite automata. State complexity of several variants of finite au-
tomata, both one-way and two-way, were deeply and broadly studied in the past
thirty years [1–5, 8, 9, 16, 17, 24–26].

In this paper we explore the state complexity of semi-quantum finite automata
and their space-efficiency comparing to the corresponding classical counterparts.
We do that by showing that even for several very simple, and often considered,
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languages or promise problems, a little of quantumness can much decrease the
state complexity of the corresponding semi-quantum finite automata. The first of
these problems will be one of the very basic problem that is explored in commu-
nication complexity. Namely, the promise version of strings equality problem [7].

We use a promise problem to model the promise version of strings equality
problem. For the alphabet Σ = {0, 1,#} and n ∈ Z+, let us consider the promise
problem AEQ(n) = (Ayes(n), Ano(n)), where Ayes(n) = {x#y |x = y, x, y ∈
{0, 1}n} and Ano(n) = {x#y |x �= y, x, y ∈ {0, 1}n, H(x, y) = n

2 }. (H(x, y) is
the Hamming distance between x and y, which is the number of bit positions on
which they differ.)

Klauck [13] has proved that, for any language, the state complexity of exact
quantum/classical finite automata, which is a general model of one-way quantum
finite automata, is not less than the state complexity of 1DFA. Therefore, it is
interesting and important to find out whether the result still holds for interest-
ing cases of promise problems or not1. Applying the communication complexity
result from [7] to finite automata, for any n ∈ Z+, we prove that there exists a
promise problem AEQ(n) that can be solved exactly by a 1QCFA with n quan-
tum basis states and O(n) classical states, whereas the sizes of the corresponding
1DFA are 2Ω(n).

As the next we will consider state complexity of the language L(p) = {akp | k ∈
Z+}. It is well know that, for any p ∈ Z+, each 1DFA and 1NFA accepting L(p)
has at least p states. Ambainis and Freivalds [3], proved, using a non-constructive
method, that L(p) can be recognized by a one-way measure-once quantum finite
automaton (MO-1QFA) with one-sided error ε with poly

(
1
ε

)
· log p basis states

(where poly(x) is some polynomial in x). This bound was improved to O( log p
ε3 )

in [6] and to 4 log 2p
ε in [4]. That is the best result known for such a mode of

acceptance and it is an interesting open problem whether this bound can be
much improved. If p is a prime, L(p) can not be recognized by any one-way
probabilistic finite automaton (1PFA) with less than p states [3]. For the case
that p is not a prime, Mereghetti el at. [17] showed that the number of states
of a 1PFA necessary and sufficient for accepting the language L(p) with isolated
cut point is pα1

1 + pα2
2 + · · ·+ pαs

s , where pα1
1 pα2

2 · · · pαs
s is the prime factorization

of p. Mereghetti el at. [17] also proved that L(p) can be recognized by a 2 basis
states MO-1QFA with isolated cut point. However, this mode of acceptance often
leads to quite different state complexity outcome than one-sided error and error
probability acceptance modes.

Concerning two-way finite automata, for any prime p, p states are neces-
sary and sufficient for accepting L(p) on two-way deterministic finite automata
(2DFA) and two-way nondeterministic finite automata (2NFA) [16]. For the case
that p is not prime, the number of states necessary and sufficient for accepting
L(p) on 2DFA and 2NFA is pα1

1 +pα2

2 + · · ·+pαs
s [16], where pα1

1 pα2

2 · · · pαs
s is the

prime factorization of p. Yakaryilmaz and Cem Say [24] showed that there exists

1 Ambainis and Yakaryilmaz showed in [5] that there is a very special case in which
the superiority of quantum computation to classical one cannot be bounded.
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a 7-state one-way finite automaton with restart (1QFAR) which accepts L(p)
with one-sided error ε and expected running time O(1ε sin

−2(πp )|w|), where |w|
is the length of input w. For any n-state 1QFARM1 with expected running time
t(|w|), Yakaryilmaz and Cem Say [24] also proved that there exists a 2QCFAM2

with n quantum basis states, O(n) classical states, and with expected runtime
O(t(|w|)), such thatM2 accepts every input string w with the same probability
as M1 does. Therefore, L(p) can be recognized with one-sided error ε by a
2QCFA with 7 quantum basis states and a constant number of classical states.

In this paper we prove that the language L(p) can be recognized with one-
sided error ε in a linear expected running time O(1εp

2|w|) by a 2QCFA A(p, ε)
with 2 quantum basis states and a constant number of classical states. We also
show that the number of states needed for accepting L(p) on a polynomial time
2PFA is at least 3

√
(log p)/b, where b is a constant.

The problem of checking whether the length of input string is equal to a given
constant m ∈ Z+, is extensively studied in literatures as well. For any m ∈ Z+

and any finite alphabet Σ, it is obvious that the number of states of a 1DFA
for accepting the language C(m) = {w |w ∈ Σm} is at least m. Freivalds [9]
showed that there is an ε error probability 1PFA accepting C(m) with O(log2 m)
states. Ambainis and Freivalds [3] proved that C(m) can be recognized by an
MO-1QFA with O(logm) quantum basis states. Yakaryilmaz and Cem Say [24]
showed that there exists a 7-state 1QFARM which accepts C(m) with one-sided
error ε and the expected running time O((1ε )

m|w|). Thus, for w ∈ C(m), the
expected running time of M is an exponential of m. The 1QFAR M can only
work efficiently on a very small m.

In this paper we prove that the language C(m) can be recognized with one-
sided error ε in a polynomial expected running time O(1εm

2|w|4) by a 2QCFA
A(m, ε) with 2 quantum basis states and a constant number of classical states.
The expected running time is a polynomial of m. We show also that the num-
ber of states needed for accepting C(m) on a polynomial 2PFA is at least
3
√
(logm)/b, where b is a constant.
Since 1QCFA and 2QCFA have both quantum and classical states, it is inter-

esting to ask when there is some trade-off between these two kinds of states. We
prove such a trade-off property for the case a 1QCFA accepts the language L(p).
Namely, it holds that for any integer p with prime factorization p = pα1

1 pα2
2 · · · pαs

s

(s > 1), for any partition I1, I2 of {1, . . . , s}, and for q1 =
∏

i∈I1 p
αi

i and
q2 =

∏
i∈I2 p

αi

i , the language L(p) can be recognized with a one-sided error
ε by a 1QCFA A(q1, q2, ε) with O(log q1) = O(

∑
i∈I1 αi log pi) quantum basis

states and O(q2) = O(
∏

i∈I2 p
αi

i ) classical states.
The paper is structured as follows. In Section 2 Semi-quantum finite automata

models involved are described in some details. State complexities for the string
equality problems will be discussed in Section 3. State succinctness for two fami-
lies of regular languages is explored in Section 4. A trade-off property for 1QCFA
is demonstrated in Section 5.
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2 Models

We introduce in this section the models of 1QCFA and 2QCFA. Concerning
some basic concepts and also notations on quantum information processing for
this paper we refer the reader to Section 2.1 in [27]. Concerning more on quan-
tum information processing we refer the reader to [22], and concerning more on
classical and quantum automata [10, 11, 19].

2QCFA were introduced by Ambainis and Watrous [2] and explored also by
Yakaryilmaz, Qiu, Zheng and others [24–26]. Informally, a 2QCFA can be seen as
a 2DFA with an access to a quantum memory for states of a fixed Hilbert space
upon which at each step either a unitary operation is performed or a projective
measurement and the outcomes of which then probabilistically determine the
next move of the underlying 2DFA.

Definition 1. A 2QCFA A is specified by a 9-tuple

A = (Q,S,Σ,Θ, δ, |q0〉, s0, Sacc, Srej) (1)

where:

1. Q is a finite set of orthonormal quantum basis states.
2. S is a finite set of classical states.
3. Σ is a finite alphabet of input symbols and let Σ′ = Σ ∪ {|c, $}, where |c will

be used as the left end-marker and $ as the right end-marker.
4. |q0〉 ∈ Q is the initial quantum state.
5. s0 is the initial classical state.
6. Sacc ⊂ S and Srej ⊂ S, where Sacc ∩ Srej = ∅ are sets of the classical

accepting and rejecting states, respectively.
7. Θ is a quantum transition function

Θ : S \ (Sacc ∪ Srej)×Σ′ → U(H(Q)) ∪O(H(Q)), (2)

where U(H(Q)) and O(H(Q)) are sets of unitary operations and projective
measurements on the Hilbert space generated by quantum states from Q.

8. δ is a classical transition function. If the automaton A is in the classical
state s, its tape head is scanning a symbol σ and its quantum memory is in
the quantum state |ψ〉, then A performs quantum and classical transitions
as follows.
(a) If Θ(s, σ) ∈ U(H(Q)), then the unitary operation Θ(s, σ) is applied on

the current state |ψ〉 of quantum memory to produce a new quantum
state. The automaton performs, in addition, the following classical tran-
sition function

δ : S \ (Sacc ∪ Srej)×Σ′ → S × {−1, 0, 1}. (3)

If δ(s, σ) = (s′, d), then the new classical state of the automaton is s′

and its head moves in the direction d.
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(b) If Θ(s, σ) ∈ O(H(Q)), then the measurement operation Θ(s, σ) is applied
on the current state |ψ〉. Suppose the measurement Θ(s, σ) is specified by
operators {P1, . . . , Pn} and its corresponding classical outcome is from
the set NΘ(s,σ) = {1, 2, . . . , n}. The classical transition function δ can be
then specified as follow

δ : S \ (Sacc ∪ Srej)×Σ′ ×NΘ(s,σ) → S × {−1, 0, 1}. (4)

In such a case, if i is the classical outcome of the measurement, then the
current quantum state |ψ〉 is changed to the state Pi|ψ〉/‖Pi|ψ〉‖. More-
over, if δ(s, σ)(i) = (s′, d), then the new classical state of the automaton
is s′ and its head moves in the direction d.

The automaton halts and accepts (rejects) the input when it enters a classical
accepting (rejecting) state (from Sacc(Srej)).

The computation of a 2QCFA A = (Q,S,Σ,Θ, δ, |q0〉, s0, Sacc, Srej) on an input
w ∈ Σ∗ starts with the string |cx$ on the input tape. At the start, the tape head
of the automation is positioned on the left end-marker and the automaton begins
the computation in the classical initial state and in the initial quantum state.
After that, in each step, if its classical state is s, its tape head reads a symbol σ
and its quantum state is |ψ〉, then the automaton changes its states and makes
its head movement following the steps described in the definition.

The computation will end whenever the resulting classical state is in Sacc ∪
Srej . Therefore, similarly to the definition of accepting and rejecting probabil-
ities for 2QFA [14], the accepting and rejecting probabilities Pr[A accepts w]
and Pr[A rejects w] for an input w are, respectively, the sums of all accepting
probabilities and all rejecting probabilities before the end of computation on the
input w.

Remark 2. 1QCFA are one-way versions of 2QCFA [25]. In this paper, we only
use 1QCFA in which a unitary transformation is applied in every step after
scanning a symbol and an measurement is performed after scanning the right
end-marker. Such model is an measure-once 1QCFA and corresponds to a variant
of MO-1QFA.

Three basic modes of language acceptance to be considered here are the following
ones: Let L ⊂ Σ∗ and 0 < ε < 1

2 . A finite automaton A recognizes L with a one-
sided error (an error probability) ε if, for w ∈ Σ∗, (1) ∀w ∈ L, Pr[A accepts w] =
1 (≥ 1− ε) and (2) ∀w /∈ L, Pr[A rejects w] ≥ 1− ε.

Obviously, one-sided error acceptance is stricter than an error probability
acceptance.

Language acceptance is a special case of so called promise problem solving. A
promise problem is a pair A = (Ayes, Ano), where Ayes, Ano ⊂ Σ∗ are disjoint
sets. Languages may be viewed as promise problems that obey the additional
constraint Ayes ∪ Ano = Σ∗.

A promise problem A = (Ayes, Ano) is solved by exactly by a 1QCFA A if (1)
∀w ∈ Ayes, Pr[A accepts w] = 1 and (2) ∀w ∈ Ano, Pr[A rejects w] = 1.
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3 State Succinctness for Promise Problem AEQ(n)

Theorem 3. The promise problem AEQ(n) can be solved exactly by a 1QCFA
A(n) with n quantum basis states and O(n) classical states, whereas the sizes of
the corresponding 1DFA are 2Ω(n).

A1: Description of the behavior of A(n) when solving the promise problem AEQ(n).
1. Read the left end-marker |c, perform Us on the initial quantum state |1〉,

change its classical state to δ(s0, |c) = s1, and move the tape head one cell
to the right.

2. Until the currently scanned symbol σ is not #, do the following:
2.1 Apply Θ(si, σ) = Ui,σ to the current quantum state.
2.2 Change the classical state si to si+1 and move the tape head one cell

to the right.
3. Change the classical state sn+1 to s1 and move the tape head one cell to

the right.
4. While the currently scanned symbol σ is not the right end-marker $, do

the following:
2.1 Apply Θ(si, σ) = Ui,σ to the current quantum state.
2.2 Change the classical state si to si+1 and move the tape head one cell

to the right.
5. When the right end-marker is reached, perform Uf on the current quantum

state, measure the current quantum state with M = {Pi = |i〉〈i|}ni=1. If
the outcome is |1〉, accept the input; otherwise reject the input.

Proof. Let x = x1 · · ·xn and y = y1 · · · yn with x, y ∈ {0, 1}n. Let us consider an
MO-1QCFA A(n) with n quantum basis states {|i〉 : i = 1, 2, . . . , n}. A(n) will
start in the quantum state |1〉 = (1, 0, . . . , 0)T . We use classical states si ∈ S
(1 ≤ i ≤ n+1) to point out the positions of the tape head that will provide some
information for quantum transformations. If the classical state of A(n) will be
si (1 ≤ i ≤ n) that will mean that the next scanned symbol of the tape head
is the i-th symbol of x(y) and sn+1 means that the next scanned symbol of the
tape head is #($). The automaton proceeds as Algorithm A1, where

Us|1〉 =
1√
n

n∑
i=1

|i〉; (5)

Ui,σ|i〉 = (−1)σ|i〉 and Ui,σ|j〉 = |j〉 for j �= i; (6)

Uf (
n∑

i=1

αi|i〉) = (
1√
n

n∑
i=1

αi)|1〉+ · · · . (7)

Transformations Us and Uf are unitary, where the first column of Us is
1√
n
(1, . . . , 1)T and the first row of Uf is 1√

n
(1, . . . , 1).

The quantum state after scanning the left end-marker is |ψ1〉 = Us|1〉 =∑n
i=1

1√
n
|i〉, the quantum state after Step 2 is |ψ2〉 =

∑n
i=1

1√
n
(−1)xi |i〉, and
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the quantum state after Step 4 is |ψ3〉 =
∑n

i=1
1√
n
(−1)xi+yi |i〉. The quantum

state after scanning the right end-marker is therefore

|ψ4〉 = Uf

(
n∑

i=1

1√
n
(−1)xi+yi |i〉

)
= Uf

1√
n

⎛⎜⎜⎜⎝
(−1)x1+y1

(−1)x2+y2

...
(−1)xn+yn

⎞⎟⎟⎟⎠ (8)

=

⎛⎜⎜⎝
1
n

∑n
i=1(−1)xi+yi

...

...

⎞⎟⎟⎠ . (9)

If the input string w ∈ Ayes(n), then xi = yi for any i and | 1n
∑n

i=1(−1)xi+yi |2
= 1. The amplitude of |1〉 is 1, and that means |ψ4〉 = |1〉. Therefore the input
will be accepted with probability 1 at the measurement in Step 5.

If the input string w ∈ Ano(n), then H(x, y) = n
2 . Therefore the probability

of getting outcome |1〉 in the measurement in Step 5 is | 1n
∑n

i=1(−1)xi+yi |2 = 0.
The deterministic communication complexity for the promise version of equal-

ity problem is at least 0.007n [7]. Therefore, the sizes of the corresponding 1DFA
are 2Ω(n) [15].

4 State Succinctness for 2QCFA

State succinctness for 2QCFA was explored by Yakaryilmaz, Zheng and others
[24, 26]. In [26], Zheng et al. showed the state succinctness for polynomial time
2QCFA for families of promise problems and for exponential time 2QCFA for
a family of languages. In this section, we show the state succinctness for linear
time 2QCFA and polynomial time 2QCFA for two families of languages.

4.1 State Succinctness for the Language L(p)

Theorem 4. For any p ∈ Z+ and 0 < ε ≤ 1
2 , the language L(p) can be recog-

nized with one-sided error ε by a 2QCFA A(p, ε) with 2 quantum basis states and
a constant number of classical states (not depending on p) in a linear expected
running time O(1εp

2n), where n is the length of input.

Proof. The main idea of the proof is as follows: Consider a 2QCFA A(p, ε) with
2 orthogonal quantum basis states |q0〉 and |q1〉. A(p, ε) starts computation in
the initial quantum state |q0〉 and with the tape head on the left end-marker.
Every time when A(p, ε) reads a symbol ‘a’, the current quantum state is rotated
by the angle π

p . When the right end-marker $ is reached, A(p, ε) measures the



On the State Complexity of QCFA 609

A2: Description of the behavior of A(p, ε) when recognizing the language L(p).
Repeat the following ad infinity:

1. Move the tape head to the right of the left end-marker.
2. Until the scanned symbol is the right end-marker, apply Up to the current

quantum state and move the head one cell to the right.
3 Measure the current quantum state in the basis {|q0〉, |q1〉}.

3.1 If quantum outcome is |q1〉, reject the input.
3.2 Otherwise apply Up,ε to the current quantum state |q0〉.

4 Measure the quantum state in the basis {|q0〉, |q1〉}. If the result is |q0〉,
accept the input; otherwise apply a unitary operation to change the quan-
tum state from |q1〉 to |q0〉 and start a new iteration.

current quantum state. If the resulting quantum state is |q1〉, the input string is
rejected, otherwise the automaton proceeds as Algorithm A2, where

Up =

(
cos π

p − sin π
p

sin π
p cos π

p

)
and Up,ε =

⎛⎜⎝ 1√
p2/4ε

−
√

p2/4ε−1√
p2/4ε√

p2/4ε−1√
p2/4ε

1√
p2/4ε

⎞⎟⎠ . (10)

See Section 4.1 in [27] for a detail proof. (Similar unitary matrixes of Up and
proof methods can be found in[3, 4, 17, 24].)

Theorem 5. For any integer p, any polynomial expected running time 2PFA
recognizing L(p) with error probability ε < 1

2 has at least 3
√
(log p)/b states,

where b is a constant.

In order to prove this theorem, we need

Lemma 6 ([8]). For every ε < 1/2, a > 0 and d > 0, there exists a constant
b > 0 such that, for any integer c, if a language L is recognized with an error
probability ε by a c-state 2PFA within time and, where n = |w| is the length of

input, then L is recognized by some DFA with at most cbc
2

states.

Proof. Assume that a c-state 2PFA A(p) recognizes L(p) with an error proba-
bility ε < 1/2 and also within a polynomial expected running time. According

to Lemma 6, there exits a 1DFA that recognizes L(p) with cbc
2

states, where
b > 0 is a constant. As we know, any DFA recognizing L(p) has at least p states.
Therefore,

cbc
2 ≥ p⇒ bc2 log c ≥ log p⇒ c3 > (log p)/b⇒ c > 3

√
(log p)/b. (11)

4.2 State Succinctness for the Language C(m)

Theorem 7. For any m ∈ Z+ and 0 < ε ≤ 1
2 , the language C(m) can be rec-

ognized with one-sided error ε by a 2QCFA A(m, ε) with 2 quantum basis states
and a constant number of classical states (not depending on m) in a polynomial
expected running time O(1εm

2n4), where n is the length of input.
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A3: Description of the behavior of A(m, ε) when recognizing the language C(m).
Repeat the following ad infinity:

1. Move the tape head to the left end-marker, read the end-marker |c, apply
U|c on |q0〉, and move the tape head one cell to the right.

2. Until the scanned symbol is the right end-marker, apply Uα to the current
quantum state and move the tape head one cell to the right.

3.0 When the right end-marker is reached, measure the quantum state in the
basis {|q0〉, |q1〉}.
3.1 If quantum outcome is |q1〉, reject the input.
3.2 Otherwise repeat the following subroutine two times:

3.2.1 Move the tape head to the first symbol right to the left end-
marker.

3.2.2 Until the currently read symbol is one of the end-markers simulate
a coin-flip and move the head right (left) if the outcome of the
coin-flip is “head” (“tail”).

4. If the above process ends both times at the right end-marker, apply Um,ε

to the current quantum state and measure the quantum state in the basis
{|q0〉, |q1〉}. If the result is |q0〉, accept the input; otherwise apply a unitary
operation to change the quantum state from |q1〉 to |q0〉 and start a new
iteration.

Proof. The main idea of the proof is as follows: Consider a 2QCFA A(m, ε) with
2 orthogonal quantum basis states |q0〉 and |q1〉. A(m, ε) starts computation with
the initial quantum state |q0〉. When A(m, ε) reads the left end-marker |c, the
current quantum state will be rotated by the angle −

√
2mπ and every time when

A(m, ε) reads a new symbol σ ∈ Σ, the state is rotated by the angle α =
√
2π

(notice that
√
2mπ = mα). When the right end-marker $ is reached, A(m, ε)

measures the current quantum state with projectors {|q0〉〈q0|, |q1〉〈q1|}. If the
resulting quantum state is |q1〉, the input string w is rejected, otherwise, the
automaton proceeds as Algorithm A3, where

U|c =

(
cosm

√
2π sinm

√
2π

− sinm
√
2π cosm

√
2π

)
, Uα =

(
cos
√
2π − sin

√
2π

sin
√
2π cos

√
2π

)
, (12)

Um,ε =

⎛⎜⎝ 1√
2m2/ε

−
√

2m2/ε−1√
2m2/ε√

2m2/ε−1√
2m2/ε

1√
2m2/ε

⎞⎟⎠ . (13)

See Section 4.2 in [27] for a detail proof. (A similar proof method can be found
in [2].)

Remark 8. Using the above theorem and the intersection property of languages
recognized by 2QCFA [20], it is easy to improve the result from [26] related to
the promise problem2 Aeq(m) to a language Leq(m) = {ambm} = Leq ∩C(2m),
where the language Leq = {anbn |n ∈ N}. Therefore, the open problem from
[26] is solved.

2 See page 102 in [26].
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It is obvious that the number of states of a 1DFA to accept the language C(m)
is at least m. Using a similar proof as of Theorem 5, we get:

Theorem 9. For any integer m, any polynomial expected running time 2PFA
recognizing C(m) with error probability ε < 1

2 has at least 3
√
(logm)/b states,

where b is a constant.

The sizes of 1PFA and 1QFA recognizing languages L(p) or C(m) with an error
ε depend on the error ε in most of the papers. For example, in [4], the size of
MO-1QFA accepting L(p) with one-sided error ε is 4 log 2p

ε . If ε < 4
p , the state

complexity advantage of MO-1QFA disappears. However, in our model, the sizes
of 2QCFA do not depend on the error ε, which means that 2QCFA have state
advantage for any ε > 0.

5 A Trade-Off Property of 1QCFA

Quantum resources are expensive and hard to deal with. One can expect to
have only very limited number of qubits in current quantum system. In some
cases, one cannot expect to have enough qubits to solve a given problem (or to
recognize a given language). It is therefore interesting to find out whether there
are some trade-off between needed quantum and classical resources. We prove
in the following that it is so in some cases. Namely, we prove that there exist
trade-offs in case 1QCFA are used to accept the language L(p).

Theorem 10. For any integer p > 0 with prime factorization p = pα1
1 pα2

2 · · · pαs
s

(s > 1), for any partition I1, I2 of {1, . . . , s}, and for q1 =
∏

i∈I1 p
αi

i and
q2 =

∏
i∈I2 p

αi

i , the language L(p) can be recognized with one-sided error ε by
a 1QCFA A(q1, q2, ε) with O(log q1) = O(

∑
i∈I1 αi log pi) quantum basis states

and O(q2) = O(
∏

i∈I2 p
αi

i ) classical states.

Proof. See Section 5 in [27] for a detail proof.
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Müller, David 453

Niehren, Joachim 490

Otto, Friedrich 541

Pinet, François 503
Pirola, Yuri 126
Popescu, Ştefan 101
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Weidner, Thomas 588
Woodhouse, Brent 173

Xue, Xingran 308
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