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Abstract. We describe a method for remotely detecting intentional
packet drops on the Internet via side channel inferences. That is, given
two arbitrary IP addresses on the Internet that meet some simple re-
quirements, our proposed technique can discover packet drops (e.g., due
to censorship) between the two remote machines, as well as infer in which
direction the packet drops are occurring. The only major requirements
for our approach are a client with a global IP Identifier (IPID) and a tar-
get server with an open port. We require no special access to the client
or server. Our method is robust to noise because we apply intervention
analysis based on an autoregressive-moving-average (ARMA) model. In
a measurement study using our method featuring clients from multiple
continents, we observed that, of all measured client connections to Tor
directory servers that were censored, 98% of those were from China, and
only 0.63% of measured client connections from China to Tor directory
servers were not censored. This is congruent with current understandings
about global Internet censorship, leading us to conclude that our method
is effective.

1 Introduction

Tools for discovering intentional packet drops are important for a variety of ap-
plications, such as discovering the blocking of Tor by ISPs or nation states [1].
However, existing tools have a severe limitation: they can only measure when
packets are dropped in between the measurement machine and an arbitrary re-
mote host. The research question we address in this paper is: can we detect
drops between two hosts without controlling either of them and without sharing
the path between them? Effectively, by using idle scans our method can turn
approximately 1% of the total IP address space into conscripted measurement
machines that can be used as vantage points to measure IP-address-based cen-
sorship, without actually gaining access to those machines.

Antirez [2] proposed the first type of idle scan, which we call an IPID idle
port scan. In this type of idle scan an “attacker” (which we will refer to as the
measurement machine in our work) aims to determine if a specific port is open
or closed on a “victim” machine (which we will refer to as the server) without
using the attacker’s own return IP address. The attacker finds a “zombie” (client
in this paper) that has a global IP identifier (IPID) and is completely idle. In this
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paper, we say that a machine has a global IPID when it sends TCP RST packets
with a globally incrementing IPID that is shared by all destination hosts. This
is in contrast to machines that use randomized IPIDs or IPIDs that increment
per-host. The attacker repeatedly sends TCP SYN packets to the victim using
the return IP address of the zombie, while simultaneously eliciting RST packets
from the zombie by sending the zombie SYN/ACKs with the attacker’s own
return IP address. If the victim port that SYN packets are being sent to is open,
the attacker will observe many skips in the IPIDs from the zombie. Nmap [3] has
built-in support for the IPID idle scan, but often fails for Internet hosts because
of noise in the IPID that is due to the zombie sending packets to other hosts.
Our method described in this paper is resistant to noise, and can discover packet
drops in either direction (and determine which direction). Nmap cannot detect
the case of packets being dropped from client to server based on destination IP
address, which our results demonstrate is a very important case.

Two other types of idle scans were presented by Ensafi et al. [4], including
one that exploits the state of the SYN backlog as a side channel. Our method
is based on a new idle scan technique that can be viewed as a hybrid of the
IPID idle scan and Ensafi et al.’s SYN backlog idle scan. Whereas Ensafi et al.’s
SYN backlog idle scan required filling the SYN backlog and therefore causing
denial-of-service, our technique uses a low packet rate that does not fill the SYN
backlog and is non-intrusive. The basic insight that makes this possible is that
information about the server’s SYN backlog state is entangled with information
about the client’s IPID field. Thus, we can perform both types of idle scans
(IPID and SYN backlog) to detect drops in both directions, and our technique
overcomes the limitations of both by exploiting the entanglement of information
in the IPID and treating it as a linear intervention problem to handle noise
characteristic of the real Internet.

This research has several major contributions:

– A non-intrusive method for detecting intentional packet drops between two
IP addresses on the Internet where neither is a measurement machine.

– An Internet measurement study that shows the efficacy of the method.
– A model of IPID noise based on an autoregressive-moving-average (ARMA)
model that is robust to autocorrelated noise.

Source code and data are available upon request, and a web demonstration
version of the hybrid idle scan is at http://spookyscan.cs.unm.edu. The types
of measurements we describe in this paper raise ethical concerns because the
measurements can cause the appearance of connection attempts between arbi-
trary clients and servers. In China there is no evidence of the owners of Internet
hosts being persecuted for attempts to connect to the Tor network, thus our mea-
surements in this paper are safe. However, we caution against performing similar
measurements in other countries or contexts without first evaluating the risks
and ethical issues. More discussion of ethical issues, additional details about the
ARMA model, and other information not included here due to space limitations
are available in the extended version of this paper [5].

http://spookyscan.cs.unm.edu
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Fig. 1. Three different cases that our method can detect. MM is the measurement
machine.

The rest of the paper is structured as follows: After describing the implemen-
tation of our method in Section 2, we present our experimental methodology for
the measurement study in Section 3 and the ARMA model in Section 4. Results
from the measurement study are in Section 5, followed by a discussion of related
work in Section 6 and then the conclusion.

2 Implementation

In order to determine the direction in which packets are being blocked, our
method is based on information flow through both the IPID of the client and
the SYN backlog state of the server, as shown in Figure 1. Our implementation
queries the IPID of the client (by sending SYN/ACKs from the measurement
machine and receiving RST responses) to create a time series to compare a base
case to a period of time when the server is sending SYN/ACKs to the client
(because of our forged SYNs). We assume that the client has global IPIDs and
the server has an open port.

Global IPIDs were explained in Section 1. The SYN backlog is a buffer that
stores information about half-open connections where a SYN has been received
and a SYN/ACK sent but no ACK reply to the SYN/ACK has been received.
Half-open connections remain in the SYN backlog until the connection is com-
pleted with an ACK, aborted by a RST or ICMP error, or the half-open con-
nection times out (typically between 30 and 180 seconds). The SYN/ACK is
retransmitted some fixed number of times that varies by operating system and
version, typically three to six SYN/ACKs in total. This SYN backlog behav-
ior on the server, when combined with the global IPID behavior of the client,
enables us to distinguish three different cases (plus an error case):

– Server-to-client-dropped: In this case SYN/ACKs are dropped in transit
from the server to the client based on the return IP address (and possibly
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other fields like source port), and the client’s IPID will not increase at all
(except for noise).

– No-packets-dropped: In the case that no intentional dropping of packets is
occurring, the client’s IPID will go up by exactly one. This happens because
the first SYN/ACK from the server is responded to with a RST from the
client, causing the server to remove the entry from its SYN backlog and not
retransmit the SYN/ACK. Censorship that is stateful or not based solely on
IP addresses and TCP port numbers may be detected as this case, including
filtering aimed at SYN packets only. Also, if the packet is not dropped, but
instead the censorship is based on injecting RSTs or ICMP errors, it will be
detected as this case. Techniques for distinguishing these other possibilities
are left for future work.

– Client-to-server-dropped: In this case RST responses from the client to
the server are dropped in transit because of their destination IP address
(which is the server). When this happens the server will continue to retrans-
mit SYN/ACKs and the client’s IPID will go up by the total number of
transmitted SYN/ACKs including retransmissions (typically three to six).
This may indicate the simplest method for blacklisting an IP address: null
routing.

– Error: In this case networking errors occur during the experiment, the IPID
is found to not be global throughout the experiment, a model is fit to the
data but does not match any of the three non-error cases above, the data
is too noisy and intervention analysis fails because we are not able to fit a
model to the data, and/or other errors.

Noise due to packet loss and delay or the client’s communications with other
machines may be autocorrelated. The autocorrelation comes from the fact that
the sources of noise, which include traffic from a client that is not idle, packet
loss, packet reordering, and packet delay, are not memoryless processes and of-
ten happen in spurts. The accepted method for performing linear intervention
analysis on time series data with autocorrelated noise is ARMA modeling, which
we describe in Section 4.

3 Experimental Setup

All measurement machines were Linux machines connected to a research network
with no packet filtering. Specifically, this network has no stateful firewall or egress
filtering for return IP addresses.

One measurement machine was dedicated to developing a pool of both client
and server IP addresses that have the right properties for use in measurements.
Clients were chosen by horizontally scanning China and other countries for ma-
chines with global IPIDs, then continually checking them for a 24-hour period
to cull out IP addresses that frequently changed global IPID behavior (e.g., be-
cause of DHCP), went down, or were too noisy. A machine is considered to have a
global IPID if its IPID as we measure it by sending SYN/ACKs from alternating
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source IP addresses and receiving RSTs never incrementing outside the ranges
[−40, 0) or (0, 1000] per second when probed from two different IP addresses.
This range allows for non-idle clients, packet loss, and packet reordering. It is
possible to build the time series in different ways where negative IPID differences
are never observed, but in this study our time series was the differences in the
client’s IPIDs in the order in which they arrived at the measurement machine.
Our range of [−40, 0) or (0, 1000] is based on our observations of noise typical of
the real Internet. The IPID going up by 0 is a degenerate case and means the
IPID is not global.

Servers were chosen from three groups: Tor directory authorities, Tor bridges,
and web servers. The ten Tor directory authorities were obtained from the Tor
source code and the same ten IPs were tested for every day of data. Three Tor
bridges were collected daily both through email and the web. Every day seven
web servers were chosen randomly from the top 1000 websites on the Alexa Top
1,000,000 list [6]. All web server IPs were checked to make sure that they stood
up for at least 24 hours before being selected for measurement. Furthermore,
we checked that the client and server were both up and behaving as assumed
between every experiment (i.e., every five minutes).

A round of experiments was a 24-hour process in which measurements were
carried out on the two measurement machines. Each 24-hour period had 22 hours
of experiments and 2 hours of down time for data synchronization. For each mea-
surement period on each of the two machines performing direct measurements,
ten server machines and ten client machines from the above process were cho-
sen for geographic diversity: 5 from China, 2 from countries in Asia that were
not China, 1 from Europe, and 2 from North America. IP addresses were never
reused except for the Tor directory authorities, so that every 24-hour period was
testing a set of 20 new clients, 10 new servers, and the 10 directory authorities.

For each of the twenty clients and twenty servers geographical information
provided by MaxMind was saved. MaxMind claims an accuracy of 99.8% for
identifying the country an IP address is in [7]. For each of the twenty server
machines, a series of SYN packets was used to test and save its SYN/ACK
retransmission behavior for the analysis in Section 4.

Every hour, each of our two main measurement machines created ten threads.
Each thread corresponded to one client machine. Each thread tested each of the
ten server IP addresses sequentially using our idle scan based on the client’s
IPID. No forged SYNs were sent to the server during the first 100 seconds of a
test, and forged SYNs with the return IP address of the client were sent to the
server at a rate of 5 per second for the second 100-second period. Then forged
RST packets were sent to the server to clear the SYN backlog and prevent
interference between sequential experiments. A timeout period of sixty seconds
was observed before the next test in the sequence was started, to allow all other
state to be cleared. Each experiment lasted for less than five minutes, so that
ten could be completed in an hour. Every client and server was involved in
only one experiment at a time. Each client/server pair was tested once per hour
throughout the 24-hour period, for replication and also to minimize the effects
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of diurnal patterns. Source and destination ports for all packets were carefully
chosen and matched to minimize assumptions about what destination ports the
client responds on.

4 Analysis

In this section we give an overview of our intervention analysis based on ARMA
modeling. More details are available in the extended version of the paper [5].

We model each time series y1, . . . , yn as a linear regression with ARMA errors,
a combination of an autoregressive-moving-average (ARMA) model with exter-
nal linear regressors. An ARMA(p, q) model combines an AR model of order
p and an MA model of order q. We use a linear regression with ARMA errors
to model our time series data. This specifies that every element in a time series
can be written as a constant plus the linear combination of regressors x1, . . . , xr

with an ARMA-modeled error term, et:

yt = c+

r∑

i=1

βixit + et, et = zt +

p∑

i=1

φiet−i +

q∑

i=1

θizt−i

where zt is a white noise series and φi, θi, and βi are ARMA model parameters
to be fitted. We use the regressors xi for intervention analysis, i.e., for analyzing
our experimental effect on the time series at a specific time.

For each experiment, we pick regressors according to which times the server
(re)transmits SYN/ACK’s in response to SYN’s. For a server that (re)transmits
r SYN/ACK’s in response to each SYN, we have r regressors. We call time t1 the
time of the first transmission in response to the first of our forged SYN’s, and
we call ti+1 the time the server would send the ith retransmission in response
to that SYN. Then we define regressor xi as the indicator variable

xij =

{
1 if ti ≤ j and either j < ti+1 or i = r

0 otherwise

In other words, x1 is zeros until the time the server transmits the first SYN/ACK
then ones until the server begins retransmitting SYN/ACK’s. The remaining xi

are zeros until the time the server would begin retransmitting its ith SYN/ACK
then ones until if/when the (i+1)th SYN/ACK’s would begin being retransmit-
ted. This definition allows us to model any of the possible level shifts in any case
of packet drop as a linear combination of all xi. See Figure 2 for an illustration.

For intervention analysis, we use hypothesis testing over a value βr, which
represents the difference in IPID differences between when we do or do not send
forged SYN packets to the server. Then we determine the case by a series of
one-sided hypothesis tests performed with significance α = 0.01 according to the
following breakdown, where k1 and k′2 are thresholds between cases:
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Fig. 2. For a server that retransmits r− 1 SYN/ACK’s, each case can be expressed as
the linear combination of regressors x1, . . . , xr; shown is when r = 3 with SYN/ACK
transmissions responding to the first forged SYN occurring at t1, t2, and t3

– Server-to-client-dropped if we reject the null hypothesis that βr ≥ k1.

– No-packets-dropped if we reject the null hypotheses that βr ≤ k1 and
that βr ≥ k′2.

– Client-to-server-dropped if we reject the null hypothesis that βr ≤ k′2.
– Error if none of the above cases can be determined.

For details about the linear regression step, removal of outliers, and how we
choose the thresholds, see the extended version of the paper [5].

5 Results

Table 1 shows results from 5 days of data collection, where S → C is Server-to-
client-dropped, None is No-packets-dropped, C → S is Client-to-server-
dropped, and Error is Error. CN is China, Asia-CN is other Asian countries,
EU is Europe, and NA is North America. For server types, Tor-dir is a Tor
directory authority, Tor-bri is a Tor bridge, and Web is a web server.

Our expectation would be to observe Server-to-client-dropped for clients
in China and Tor servers because of Winter and Lindskog’s observation that the
SYN/ACKs are statelessly dropped by the “Great Firewall of China” (GFW)
based on source IP address and port [8]. We would expect to see No-packets-
dropped for most web servers from clients in China, unless they host popular
websites that happen to be censored in China. Similarly, in the expected case we
should observe No-packets-dropped for clients outside of China, regardless of
server type. We expect a few exceptions, because censorship happens outside of
China and because the GFW is not always 100% effective. In particular, Tor
bridges are not blocked until the GFW operators learn about them, and some
routes might not have filtering in place. Our results are congruent with all of
these expectations.

In 5.9% of the client/server pairs we tested, multiple cases were observed in
the same day. In some cases it appears that noise caused the wrong case to be
detected, but other cases may be attributable to routes changing throughout the
day [9]. That the data is largely congruent with our expectations demonstrates
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Table 1. Results from the measurement study

Client,Server S → C (%) None (%) C → S (%) Error (%)

CN,Tor-dir 2200 (73.04) 19 (0.63) 504 (16.73) 289 (9.59)
Asia-CN,Tor-dir 0 (0.00) 1171 (96.38) 1 (0.08) 43 (3.54)

NA,Tor-dir 1 (0.07) 1217 (90.69) 49 (3.65) 75 (5.59)
EU,Tor-dir 2 (0.28) 695 (97.89) 2 (0.28) 11 (1.55)
CN,Tor-bri 1012 (58.91) 565 (32.89) 31 (1.80) 110 (6.40)

Asia-CN,Tor-bri 0 (0.00) 626 (80.88) 9 (1.16) 139 (17.96)
NA,Tor-bri 0 (0.00) 657 (78.21) 30 (3.57) 153 (18.21)
EU,Tor-bri 0 (0.00) 313 (78.25) 9 (2.25) 78 (19.50)
CN,Web 28 (2.15) 995 (76.30) 36 (2.76) 245 (18.79)

Asia-CN,Web 1 (0.17) 569 (97.43) 1 (0.17) 13 (2.23)
NA,Web 0 (0.00) 606 (93.37) 0 (0.00) 43 (6.63)
EU,Web 0 (0.00) 305 (90.24) 0 (0.00) 33 (9.76)

All Web 29 (1.01) 2475 (86.09) 37 (1.29) 334 (11.62)
All Tor-bri 1012 (27.12) 2161 (57.90) 79 (2.12) 480 (12.86)
All Tor-dir 2203 (35.09) 3102 (49.40) 556 (8.85) 418 (6.66)

the efficacy of the approach, and some of the data points that lie outside our
expectations have patterns that suggest that a real effect is being measured,
rather than an error. For example, of the 28 data points where web servers were
blocked from the server to the client in China, 20 of those data points are the
same client/server pair.

38% of the data we collected does not appear in Table 1 because it did not
pass liveness tests. Every 5-minute data point has three associated liveness tests.
If a server sends fewer than 2.5 SYN/ACKs in response to SYNs from the mea-
surement machine, a client responds to less than 3

5 of our SYN/ACKs, or a
measurement machine sending thread becomes unresponsive, that 5-minute data
point is discarded.

Two out of the ten Tor directory authorities never retransmitted enough
SYN/ACKs to be included in our data. Of the remaining eight, two more ac-
count for 98.8% of the data points showing blocking from client to server. These
same two directory authorities also account for 72.7% of the Error cases for
directory authorities tested from clients in China, and the case of packets being
dropped from server to client (the expected case for China and the case of the
majority of our results) was never observed for these two directory authorities.

When Winter and Lindskog [8] measured Tor reachability from a virtual pri-
vate server in China, there were eight directory authorities at that time. One of
the eight was completely accessible, and the other seven were completely blocked
in the IP layer by destination IP (i.e., Client-to-server). In our results, six
out of ten are at least blocked Server-to-client and two out of ten are only
blocked Client-to-server (two had all results discarded). Winter and Lindskog
also observed that Tor relays were accessible 1.6% of the time, and we observed
that directory authorities were accessible 0.63% of the time. Our results have
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geographic diversity and their results can serve as a ground truth because they
tested from within China. In both studies the same special treatment of direc-
tory authorities compared to relays or bridges was observed, as well as a small
percentage of cases where filtering that should have occurred did not.

To evaluate the assumption that clients with a global IPID are easy to find
in a range of IP addresses that we desire to measure from, take China as an
example. On average, 10% of the IP addresses in China responded to our probes
so that we could observe their IPID, and of those 13% were global. So, roughly
1% of the IP address space of China can be used as clients for measurements
with our method, enabling experiments with excellent geographic and topological
diversity.

6 Related Work

Related work directly related to idle scans [2,3,4] was discussed in Section 1.
Other advanced methods for inferring remote information about networks have
been proposed. Qian et al. [10] demonstrate that firewall behavior with respect
to sequence numbers can be used to infer sequence numbers and perform off-path
TCP/IP connection hijacking. Chen et al. [11] use the IPID field to perform ad-
vanced inferences about the amount of internal traffic generated by a server, the
number of servers in a load-balanced setting, and one-way delays. Morbitzer [12]
explores idle scans in IPv6.

iPlane [13] sends packets from PlanetLab nodes to carefully chosen hosts,
and then compounds loss on specific routes to estimate the packet loss between
arbitrary endpoints without access to those endpoints. This does not detect IP-
address-specific packet drops. Our technique, in contrast, can be used to detect
intentional drops of packets based on IP address and requires no commonalities
between the measurement machine’s routes to the server or client and the routes
between the server and client. Queen [14] utilizes recursive DNS queries to mea-
sure the packet loss between a pair of DNS servers, and extrapolates from this
to estimate the packet loss rate between arbitrary hosts.

7 Conclusion

We have presented a method for detecting intentional packet drops (e.g., due
to censorship) between two almost arbitrary hosts on the Internet, assuming
the client has a globally incrementing IPID and the server has an open port.
Our method can determine which direction packets are being dropped in, and is
resistant to noise due to our use of an ARMAmodel for intervention analysis. Our
measurement results are congruent with current understandings about global
Internet censorship, demonstrating the efficacy of the method.
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