
Michalis Faloutsos
Aleksandar Kuzmanovic (Eds.)

 123

LN
CS

 8
36

2

15th International Conference, PAM 2014
Los Angeles, CA, USA, March 10-11, 2014
Proceedings

Passive and Active
Measurement



Lecture Notes in Computer Science 8362
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Michalis Faloutsos
Aleksandar Kuzmanovic (Eds.)

Passive and Active
Measurement

15th International Conference, PAM 2014
Los Angeles, CA, USA, March 10-11, 2014
Proceedings

13



Volume Editors

Michalis Faloutsos
University of New Mexico
Computer Science Department
Engineering Building II, Albuquerque, NM 87131, USA
E-mail: michalis@cs.unm.edu

Aleksandar Kuzmanovic
Northwestern University
EECS Department
2145 Sheridan Road, Evanston, IL 60208, USA
E-mail: akuzma@northwestern.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-04917-5 e-ISBN 978-3-319-04918-2
DOI 10.1007/978-3-319-04918-2
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014930886

LNCS Sublibrary: SL 5 – Computer Communication Networks
and Telecommunications

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

Welcome to the proceedings of the 2014 Passive and Active Measurement (PAM)
Conference. The event, which was held in Los Angeles this year, focused on
research in and the practice of Internet measurements. This was the 15th PAM.
Following its genesis in 2000, the conference has maintained a strong workshop
feel, providing an opportunity for the presentation of innovative and early work,
with lively discussion and active participation from attendees.

In 2012 the conference broadened its scope, reflecting the widening uses of
network measurement and analysis methods. The aim was to facilitate the un-
derstanding of the expanding role that measurement techniques play as they
become building blocks for a variety of networking environments, application
profiling, and cross-layer analysis. In 2014 we continued with this wider scope,
although we did not neglect PAM’s core topics.

PAM 2014 attracted 76 submissions. The papers came from academia and
industry from around the world. It was especially pleasing to see the global
nature of submissions.

The Technical Program Committee was chosen from a group of experts in
Internet measurement, drawing on past contributors to PAM including distin-
guished academic and industrial researchers, but also with a group of first-time
members. Additionally, we aimed to have a strong global representation on the
committee, and achieved this with members from around the world.

The final program of 24 papers was selected after each submission was care-
fully reviewed by at least three members of the Program Committee (PC), at
least one of whom rated themselves as knowledgeable with regard to the content
of the paper. We were delighted with the quality of reviews – they were careful,
insightful, and paid attention to detail. The reviews were followed by an exten-
sive discussion phase. PAM has traditionally avoided a large PC meeting and
the difficulties it creates for a global PC and instead uses on-line discussions.
This year, these were impressively robust: Reviewers provided more than 350
comments on papers, some almost as detailed as the reviews themselves. Most
of the final papers were then shepherded by PC members.

This year’s conference also continued the selection criteria related to repro-
ducible research, which was established in 2013. It is our belief that one of the
most pressing issues in the field of Internet measurement research is the fact that
many papers report on data sets that are never disclosed. Hence, PAM strongly
encourages the authors to publish their data sets.

In addition, the PC selected seven papers to appear as posters at the
conference, and these are included in this volume as extended abstracts. The
final program included papers on a wide range of measurement topics, and in-
cluded authors from 13 countries and five continents. Our most sincere thanks
go to the PC members for their diligence and care in reviewing, discussing, and



VI Preface

shepherding the papers that appear here, and to Marcel Flores for organizing
and maintaining the HotCRP site for us.

We are also most grateful to the Steering Committee, Jelena Mirkovic, who
was the local chair, and Jedidiah Crandall who served as the publicity chair. We
hope that you enjoy the papers in these proceedings.

March 2014 Aleksandar Kuzmanovic
Michalis Faloutsos



Organization

Organizing Committee

Conference Chair

Michalis Faloutsos The University of New Mexico, USA

Program Chair

Aleksandar Kuzmanovic Northwestern University, USA

Local Chair

Jelena Mirkovic USC Information Sciences Institute

Publicity Chair

Jedidiah Crandall The University of New Mexico, USA

Steering Committee

Fabio Ricciato University of Salento, Italy
George Riley Georgia Institute of Technology, USA
Ian Graham Endace, New Zealand
Neil Spring University of Maryland, USA
Nevil Brownlee The University of Auckland, New Zealand
Nina Taft Technicolor Palo Alto Research Center, USA
Matthew Roughan University of Adelaide, Australia
Rocky K. C. Chang The Hong Kong Polytechnic University

Program Committee

Alan Mislove Northeastern University, USA
Alberto Dainotti CAIDA, USA
Arun Venkataramani UMass, USA
Bernhard Ager ETH Zurich, Switzerland
Bin Liu Tsinghua University, China
Bruce Maggs Akamai and Duke University, USA
Constantine Dovrolis Georgia Tech, USA
David Choffnes Northeastern University, USA
Dmitri Logiunov Texas A&M, USA
Fernando Silveira Technicolor, USA
Gabor Vattay Eotvos Larand University, Hungary
Han Song Narus Inc, USA



VIII Organization

Jelena Mirkovic ISI, USA
Marios Iliofotou Narus Inc., USA
Mark Allman ICSI, USA
Matthew Luckie CAIDA, USA
Michael Rabinovich Case Western Reserve University, USA
Minaxi Gupta Indiana University, USA
Myungjin Lee University of Edinburgh, UK
Neil Spring University of Maryland, USA
Paul Barford Wisconsin Madison, USA
Rade Stanojevic Telefonica, Spain
Sergey Gorinsky IMDEA, Spain
Thomas Karagiannis Microsoft, UK
Xenofontas Dimitropoulos ETH Zurich, Switzerland
Youngseok Lee CNU, Korea
Zhichun Li NEC Labs, USA
Zhi-Li Zhang University of Minnesota, USA

Sponsoring Institutions

University of New Mexico, USA



Table of Contents

Internet Wireless and Mobility

RadioProphet: Intelligent Radio Resource Deallocation for Cellular
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Junxian Huang, Feng Qian, Z. Morley Mao, Subhabrata Sen, and
Oliver Spatscheck

Mobile Network Performance from User Devices: A Longitudinal,
Multidimensional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Ashkan Nikravesh, David R. Choffnes, Ethan Katz-Bassett,
Z. Morley Mao, and Matt Welsh

Diagnosing Path Inflation of Mobile Client Traffic . . . . . . . . . . . . . . . . . . . . 23
Kyriakos Zarifis, Tobias Flach, Srikanth Nori, David Choffnes,
Ramesh Govindan, Ethan Katz-Bassett, Z. Morley Mao, and
Matt Welsh

An End-to-End Measurement Study of Modern Cellular Data
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Yin Xu, Zixiao Wang, Wai Kay Leong, and Ben Leong

Measurement Design, Experience and Analysis

A Second Look at Detecting Third-Party Addresses in Traceroute
Traces with the IP Timestamp Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Matthew Luckie and kc claffy

Ingress Point Spreading: A New Primitive for Adaptive Active Network
Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Guillermo Baltra, Robert Beverly, and Geoffrey G. Xie

On Searching for Patterns in Traceroute Responses . . . . . . . . . . . . . . . . . . . 67
Nevil Brownlee

Volume-Based Transit Pricing: Is 95 the Right Percentile? . . . . . . . . . . . . . 77
Vamseedhar Reddyvari Raja, Amogh Dhamdhere,
Alessandra Scicchitano, Srinivas Shakkottai, kc claffy, and
Simon Leinen



X Table of Contents

Performance Measurement

Dissecting Round Trip Time on the Slow Path with a Single Packet . . . . 88
Pietro Marchetta, Alessio Botta, Ethan Katz-Bassett, and
Antonio Pescapé

Is Our Ground-Truth for Traffic Classification Reliable? . . . . . . . . . . . . . . . 98
Valent́ın Carela-Español, Tomasz Bujlow, and Pere Barlet-Ros

Detecting Intentional Packet Drops on the Internet via TCP/IP Side
Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Roya Ensafi, Jeffrey Knockel, Geoffrey Alexander, and
Jedidiah R. Crandall

The Need for End-to-End Evaluation of Cloud Availability . . . . . . . . . . . . 119
Zi Hu, Liang Zhu, Calvin Ardi, Ethan Katz-Bassett,
Harsha V. Madhyastha, John Heidemann, and
Minlan Yu

Protocol And Application Behavior

Exposing Inconsistent Web Search Results with Bobble . . . . . . . . . . . . . . . 131
Xinyu Xing, Wei Meng, Dan Doozan, Nick Feamster,
Wenke Lee, and Alex C. Snoeren

Modern Application Layer Transmission Patterns from a Transport
Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Matt Sargent, Ethan Blanton, and Mark Allman

Third-Party Identity Management Usage on the Web . . . . . . . . . . . . . . . . . 151
Anna Vapen, Niklas Carlsson, Anirban Mahanti, and
Nahid Shahmehri

Understanding the Reachability of IPv6 Limited Visibility Prefixes . . . . . 163
Andra Lutu, Marcelo Bagnulo, Cristel Pelsser, and Olaf Maennel

Characterization of Network Behavior

Violation of Interdomain Routing Assumptions . . . . . . . . . . . . . . . . . . . . . . 173
Riad Mazloum, Marc-Olivier Buob, Jordan Augé, Bruno Baynat,
Dario Rossi, and Timur Friedman

Here Be Web Proxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Nicholas Weaver, Christian Kreibich, Martin Dam, and Vern Paxson

Towards an Automated Investigation of the Impact of BGP Routing
Changes on Network Delay Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Massimo Rimondini, Claudio Squarcella, and Giuseppe Di Battista



Table of Contents XI

Peering at the Internet’s Frontier: A First Look at ISP Interconnectivity
in Africa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Arpit Gupta, Matt Calder, Nick Feamster, Marshini Chetty,
Enrico Calandro, and Ethan Katz-Bassett

Network Security and Privacy

Assessing DNS Vulnerability to Record Injection . . . . . . . . . . . . . . . . . . . . . 214
Kyle Schomp, Tom Callahan, Michael Rabinovich, and Mark Allman

How Vulnerable Are Unprotected Machines on the Internet? . . . . . . . . . . . 224
Yuanyuan Grace Zeng, David Coffey, and John Viega

A Closer Look at Third-Party OSN Applications: Are They Leaking
Your Personal Information? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Abdelberi Chaabane, Yuan Ding, Ratan Dey,
Mohamed Ali Kaafar, and Keith W. Ross

On the Effectiveness of Traffic Analysis against Anonymity Networks
Using Flow Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Sambuddho Chakravarty, Marco V. Barbera, Georgios Portokalidis,
Michalis Polychronakis, and Angelos D. Keromytis

Poster Abstracts

Scaling Bandwidth Estimation to High Speed Networks . . . . . . . . . . . . . . . 258
Qianwen Yin, Jasleen Kaur, and F. Donelson Smith

Scalable Accurate Consolidation of Passively Measured Statistical
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Silvia Colabrese, Dario Rossi, and Marco Mellia

A Needle in the Haystack - Delay Based User Identification in Cellular
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Marco V. Barbera, Simone Bronzini, Alessandro Mei, and
Vasile C. Perta

Understanding HTTP Traffic and CDN Behavior from the Eyes
of a Mobile ISP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

Pedro Casas, Pierdomenico Fiadino, and Arian Bär

On Understanding User Interests through Heterogeneous Data
Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Samamon Khemmarat, Sabyasachi Saha, Han Hee Song,
Mario Baldi, and Lixin Gao



XII Table of Contents

Nightlights: Entropy-Based Metrics for Classifying Darkspace Traffic
Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Tanja Zseby, Nevil Brownlee, Alistair King, and kc claffy

Distributed Active Measurement of Internet Queuing Delays . . . . . . . . . . . 278
Pellegrino Casoria, Dario Rossi, Jordan Augé, Marc-Olivier Buob,
Timur Friedman, and Antonio Pescapé

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281



RadioProphet: Intelligent Radio Resource Deallocation
for Cellular Networks

Junxian Huang1, Feng Qian2, Z. Morley Mao3,
Subhabrata Sen2, and Oliver Spatscheck2

1 Google Inc.
2 AT&T Labs – Research
3 University of Michigan

Abstract. Traditionally, radio resources are released in cellular networks by
statically configured inactivity timers, causing substantial resource inefficiencies.
We propose a novel system RadioProphet (RP), which dynamically and
intelligently determines in real time when to deallocate radio resources by
predicting the network idle time based on traffic history. We evaluate RP using 7-
month-long real-world cellular traces. Properly configured, RP correctly predicts
85.9% of idle time instances and achieves radio energy savings of 59.1% at the
cost of 91.0% of signaling overhead, outperforming existing proposals. We also
implement and evaluate RP on real Android devices, demonstrating its negligible
runtime overhead.

1 Introduction

Cellular networks employ a specific radio resource management policy distinguishing
them from wired and Wi-Fi networks. Previous studies [5][10][8] have shown that in
cellular networks, the origin of low resource efficiency comes from the way resources
are released. To avoid high signaling load, radio resources are only released after an idle
time (also known as the “tail time” or Ttail) controlled by statically configured inactivity
timers. During the tail time, energy is essentially wasted by the radio interface.

Without knowing when network traffic will occur, long tail timer settings (e.g., 11.6
seconds configured by an LTE network [8]) are essentially a conservative way to ensure
low signaling overhead, which is known to be a bottleneck for cellular networks. Given
that application behaviors are not random, using a statically configured timer is clearly
suboptimal. A smaller static timer value helps reduce radio energy, but is not an option
due to the risk of overloading cellular networks caused by signaling load increase.

An attractive alternative is to configure the timer dynamically — adaptively per-
forming radio resource release signaled by the handset by monitoring the traffic and
accommodating different traffic patterns. But the key challenge is determining when
to release resources, which essentially comes down to accurate and efficient prediction
of the idle time period. Clearly, the best time to do so is when the handset is about to
experience a long idle time period, otherwise the incurred resource allocation overhead
(i.e., signaling load) might be unacceptably high. Therefore, accurate and efficient
prediction of the idle time period is a critical prerequisite for dynamic timer schemes.

This paper proposes RadioProphet (RP), a practical system running on a handset
that makes dynamic decisions to deallocate radio resources based on accurate and
efficient prediction of network idle times. It makes the following contributions.

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 1–11, 2014.
c© Springer International Publishing Switzerland 2014



2 J. Huang et al.

First, RP utilizes standard online machine learning (ML) algorithms to accurately
predict the network idle time, and performs resource deallocation only when the idle
time is sufficiently long. We explored various ML algorithms and prediction models
with tunable parameters, with the main contribution of using a measurement-driven
approach to find robust and easy-to-measure features, whose complex interaction with
the network idle time can be automatically discovered by the ML algorithms. The model
is validated using seven-month-long traces collected from real users (§5).

Second, we implement RP on a real Android smartphone to demonstrate its negligible
energy and CPU overhead. In contrast, all previous proposals [10][4][7] only perform
trace-driven simulation. To reduce the runtime overhead, RP strategically performs
binary prediction (i.e., whether the idle time is short or long) at the granularity of
a traffic burst consisting of a packet train sent or received in a batch. Compared to
fine-grained prediction of the precise value of packet inter-arrival time, our proposed
approach is much more efficient while yielding similar optimization results.

Third, we overcome critical limitations of previously proposed approaches, i.e.,
RadioJockey [4] and MakeIdle / MakeActive [7] are only applicable to background
applications without user interaction, with the ideal usage scenario of RadioJockey for
a single application only. With multiple concurrent applications, it suffers from low
prediction accuracy with increased overhead. In contrast, RP is specifically designed for
both foreground and background traffic. Since its prediction is based on the aggregate
traffic of all apps, RP incurs no additional overhead for supporting concurrent apps.

Fourth, we conduct comprehensive measurement of RP using real-world smartphone
traces (7 months from 20 users). The overall prediction accuracy is 85.9%. RP achieves
radio energy saving by 59.1%, at the cost of 91.0% additional signaling overhead in LTE
networks, significantly outperforming previous proposals. To achieve the same energy
saving, the additional signaling overheads incurred by MakeIdle [7] and naı̈ve fast
dormancy [1] are 305% and 215%, respectively. The maximal energy saving achieved
by RadioJockey [4] is only 27% since it is only applicable to background traffic.

Paper Organization. We provide sufficient background in §2 before giving an overview
of the RadioProphet (RP) system in §3. We detail how we select relevant features for
idle time prediction in §4, and then systematically evaluate RP in §5. In §6, we describe
related work before concluding the paper.

2 Background

In cellular networks, there is a radio resource control (RRC) state machine that
determines radio resource usage based on application traffic patterns, affecting device
energy consumption and user experience. Conceptually similar RRC state machines
exist in different types of cellular networks from 2G to 4G LTE. In 3G UMTS networks,
there are usually three RRC states [11]: idle, low-power state, and high-power state. In
4G LTE networks, there are only two RRC states: idle and active [8]. Note that RP
works for any type of RRC state machine with fast dormancy (described soon) support.

State Transitions. There are two types of state transitions. State promotions switch
from a low-power state to a high-power state. They are triggered by user data transmis-
sion in either direction. State demotions go in the reverse direction, usually triggered



RadioProphet: Intelligent Radio Resource Deallocation for Cellular Networks 3

by inactivity timers configured by the radio access network (RAN). For example, for a
commercial LTE network [8], at the active state, the RAN resets the timer to a constant
threshold Ttail=11.6 seconds whenever it observes any data frame. If there is no user
data transmission for Ttail seconds, the timer expires and the state is demoted to idle.
Similar timers exist in 3G networks (e.g., 12 seconds [11]).

State promotions incur long “ramp-up” delays of up to several seconds during which
tens of control messages are exchanged between the handset and the RAN for resource
allocation. Excessive state promotions increase the signaling overhead at the RAN and
degrade user experience, especially for short data transfers [3][10]. On the other hand,
state demotions incur tail times (Ttail) causing waste of radio resources and handset
energy [5]. During the tail time, no data is transferred but the handset radio power is
much higher than that at the idle state (e.g., 1060mW vs 11mW for LTE [8]).

Fast Dormancy. Why are tail times necessary? First, the overhead of resource allo-
cation (i.e., state promotions) is high and tail times prevent frequent allocation and
deallocation of radio resources. Second, the RAN has no easy way of predicting the
network idle time of a handset, so it conservatively appends a tail to every network
usage period. This naturally gives rise to the idea of letting the handset actively
request for immediate resource release. Based on this intuition, a feature called Fast
Dormancy has been included in 3GPP since Release 7 [1][2]. It allows a handset
to send a control message to the RAN to immediately demote the RRC state to
idle (or a hibernating state) without experiencing the tail time. Fast dormancy is
supported by many handsets [2]. It can dramatically reduce the radio resource and the
handset energy usage with the potential penalty of increased signaling load when used
aggressively [3][10].

3 The RadioProphet (RP) System

The static tail times are the root cause of low resource efficiency in cellular networks.
RP leverages fast dormancy to dynamically determine when to release radio resources.

Challenge 1: trading off between resource saving and signaling load. The best
time to perform resource deallocation is when the handset is about to experience a long
idle time period t. If t is longer than the tail time, deallocating resources immediately
saves resources without any penalty of signaling load (i.e., state promotions). Other-
wise, doing so incurs an additional state promotion. Balancing such a critical tradeoff
requires predicting the idle time between data transfers so that fast dormancy is only
invoked when the idle time is sufficiently long.

Challenge 2: handling both foreground and background traffic. Idle time pre-
diction is particularly difficult for applications involving user interactions. Previous
systems, such as RadioJockey [4] and MakeActive [7], simply avoid this by only
handling traffic generated by applications running in the background.

Challenge 3: trading off between prediction accuracy and system performance.
RP is a service running on a handset with limited computational capabilities and
more importantly, limited battery life. So we need to minimize the overhead without
sacrificing much of the prediction accuracy.



4 J. Huang et al.

To address Challenge 1, we establish a novel machine-learning-based framework
for idle time prediction. Besides measuring the effectiveness and efficiency of a wide-
range of ML algorithms, our key contribution is addressing the hard problem of
selecting discriminating features that are relevant to idle time prediction. Based on
extensive measurement, we find that strategically using a few simple features (e.g.,
packet direction and size) leads to high prediction accuracy (§4). To address Challenge
2, we designed a general prediction framework that works for the aggregated (possibly
concurrent) traffic containing both foreground and background traffic. In contrast,
previous systems such as RadioJockey have the ideal usage case for a single app.
Further, we leverage the screen status [9], which indicates whether a user is interacting
with the device, to customize the prediction for screen-on and off traffic. Such a novel
approach can better balance the aforementioned tradeoff between resource saving and
signaling load. To address Challenge 3, RP performs binary prediction at the granularity
of a traffic burst consisting of a train of packets. In other words, we find that the
knowledge of whether the inter-burst time (IBT) is short or long (determined by a
threshold) is already accurate enough for guiding the resource deallocation. Such an
approach is much more efficient while yielding similar accuracy compared to the
expensive approach of predicting the precise value of packet inter-arrival time.

RP consists of three components: a traffic monitor, an IBT prediction module, and
a Fast Dormancy (FD) scheduler. The monitor inspects network traffic (only examines
packet headers) and extracts lightweight features for each burst in an online manner. The
features are then fed into the IBT prediction module, which trains models to predict the
IBT for the current burst. Then, the FD scheduler makes decision on whether to invoke
fast dormancy based on the IBT prediction result.

For IBT prediction, we formulate the traffic pattern as follows. The traffic is a
sequence of packets {Pi}(1 ≤ i ≤ n) in both directions. Let the timestamp of Pi be ti.
Using a burst threshold BT, the packets are grouped into bursts, i.e., {Pp, Pp+1, ..., Pq}
belongs to a burst B if and only if: (1) tk+1 − tk ≤ BT for ∀k ∈ {p, ..., q − 1}, (2)
tq+1 − tq > BT, and (3) tp − tp−1 > BT. We define the inter-burst time IBT of burst
B to be the time gap following this burst, i.e., tq+1 − tq. We use a short IBT threshold
called SBT to classify an IBT, i.e., if IBT≤ SBT, the burst is short, otherwise, it is long.

The IBT prediction module trains a model based on historical traffic information,
which consists of an array of bursts {B1, ..., Bm}. Each Bi is a vector (f1, f2, ..., ft,
ibti) where {f1, ..., ft} is the list of features of Bi and ibti is the IBT following burst
Bi observed by the traffic monitor. Whenever there is an idle time of BT, i.e., a new bust
appears, the prediction process starts. The feature vector of the current burst {f1, ..., ft}
is generated and fed to the prediction module, which predicts whether the IBT following
the current burst is short or long. If short, no change is made and the handset stays in the
tail, since a packet is likely to appear soon. Otherwise, the FD scheduler invokes fast
dormancy to save energy. The prediction model is customized for each handset, and is
dynamically updated to adapt to the recent traffic pattern.

4 Feature Selection

We describe the measurement dataset before studying the feature selection in §4.2.



RadioProphet: Intelligent Radio Resource Deallocation for Cellular Networks 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

C
D

F

Inter-burst time (sec)

Port 80
Port 443

Port 5222
Port 5228

Port 53

Fig. 1. IBT distributions of
bursts whose last packets have
specific port numbers

 0

 5

 10

 15

 20

 25

 30

 35

 40  50  60  70  80  90  100  110  120

%
 o

f 
a

ll 
b

u
rs

ts

Packet length (bytes)

Any bursts
Short bursts

Fig. 2. Distributions of bursts
grouped by packet length of
the last packet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60

C
D

F

Inter-burst time (sec)

Facebook
Google services framework

LiveProfile
Yahoo! Sportacular

Fig. 3. IBT distributions of
bursts whose last packets are
associated with specific apps

4.1 The UMICH Dataset

The measurement data used in this study, which we call the UMICH dataset, is collected
from 20 students at University of Michigan for seven months. The students were given
Motorola Atrix (11 of them) or Samsung Galaxy S smartphones (9 of them) running
Android. Our custom data collection software continuously runs in the background and
collects three types of data. (1) Packet traces (only headers are used in this study).
(2) The process name responsible for sending or receiving each packet. (3) Other
system information such as screen status. Over the seven months (May to Dec 2011) we
collected 152 GB data. Although both cellular and Wi-Fi traces were collected, in this
study, we only use cellular traces, which contribute to 57.8% of the total traffic volume.

4.2 Measurement Driven Feature Selection for Burst Classification

We use a measurement-driven approach to derive features for the prediction model by
analyzing the correlation between various features and the IBT. First, to predict whether
an IBT is short or long, we look at the burst right before the IBT, since we observe that
the correlations between the IBT and earlier bursts’ features are much weaker. Second,
the features are extracted from the last three packets of a burst. This is because in most
cases, bursts are small (53% of bursts consist of no more than 3 packets), and even for
large bursts, we can usually tell their nature based on the last three packets, e.g., TCP
three-way handshake. Third, we only inspect packet headers since examining payload
incurs much higher overhead and also because traffic is increasingly being encrypted.

The lightweight features of the last three packets1 used by RP are listed below:
(1) packet direction, (2) server port number, (3) packet length (including header), (4)
protocol field in IP header, (5) TCP flags field in TCP header (0 if not TCP), and (6)
application name associated with the packet. These features are selected empirically so
that they are most relevant to IBT based on our measurement. We show three features
below as examples. We start our analysis with BT =1s and SBT =3s. Later we explore
how different BT and SBT settings affect our results in a quantitative manner (§5.4).

Port Number. Figure 1 shows IBT distributions of the top 5 ports ordered from top to
bottom in the legend, e.g., 80 is the most popular port, across all users. IBT distributions

1 If a burst contains less than three packets, all features for the missing packet(s) have a value of
0.



6 J. Huang et al.

of different ports clearly differ, especially for port 53, whose sudden jump at IBT = 5
seconds corresponds to the DNS retransmission timeout on Android. We also observe
clusters of IBT values for many other ports. For example, most bursts over port 5222
have a 20-second IBT corresponding to the keep-alive periodicity of Facebook.

Packet Length. Figure 2 plots the distributions of last packet lengths of bursts with
short IBT (IBT <SBT) and all bursts. Most bursts end with small packets, i.e., 84.59%
have their last packets ≤ 100 bytes, as a large packet is typically in the middle of a burst.
We observe high correlation for a few packet lengths values. For example, for 121 bytes,
93.04% bursts have short IBTs. The machine learning algorithms could automatically
discover these rules for prediction.

Applications. In Figure 3, the legend shows the sorted list of apps contributing the
largest amount of bursts with Facebook ranked at top 1. The differences in IBT values
are clear across apps. We also observe that for some apps, their periodic transfer
behaviors contribute to clusters of specific IBT values, e.g., Facebook and LiveProfile.
The application information can be very efficiently obtained (e.g., on Android [11]).

5 Implementation and Evaluation

5.1 Implementation

Trace-Driven Evaluation. We implement simulators of RP, MakeIdle [7], and Radio-
Jockey [4] on a desktop (3.16 GHz Xeon CPU with 16GB memory) using Matlab.
They work with an RRC state machine simulator (§5.2). We use them to evaluate the
accuracy and resource savings of RP under various configurations (§5.3, §5.4), as well
as to compare RP with other optimization techniques (§5.5), using the UMICH trace.

Implementation on Real Android Phone. We also implement the full RP system on
a Samsung Galaxy S3 phone running Android 4.0.4 to evaluate its running overhead
(§5.6). A modified TcpDump program is used as the traffic monitor. The IBT prediction
module is implemented as a native Android application running in the background.

5.2 Evaluation Methodology

We use three metrics to evaluate RP: prediction accuracy, saved radio energy, and
increased signaling load. The accuracy is defined as the number of bursts whose
immediate IBT (short or long) are correctly predicted divided by the total number of
bursts in the input trace. The radio energy, denoted as E, is the energy consumed by
the handset radio interface. It is one of the most significant components for the overall
energy usage of a handset, along with screen and CPU energy [11]. We build an RRC
state machine simulator, which takes as input a packet trace and employs the LTE
radio energy model derived in our previous work [8] to calculate E (using a UMTS
model [11] yields qualitatively similar results). The signaling load, denoted as S, is
quantified by the number of state promotions, each incurring a fixed number of signaling
messages [4]. S is also computed by the RRC state machine simulator.

Assume when a specific user trace is evaluated without any optimization performed
(no fast dormancy), E and S are calculated to be Ed and Sd, respectively. When RP



RadioProphet: Intelligent Radio Resource Deallocation for Cellular Networks 7

Table 1. Impact of α, β on the prediction
accuracy (PerUserDynamic model)

α = 100 500 1000 2000 5000
β = 1 81.5% 83.7% 84.2% 82.4% 80.2%
β = 2 80.1% 81.4% 82.9% 82.0% 80.0%
β = 5 79.8% 80.9% 81.4% 81.0% 79.3%
β = 10 79.4% 80.0% 80.9% 80.0% 79.0%
β = 20 78.9% 79.6% 80.2% 79.5% 78.7%

Table 2. Summary of prediction models

Name Description Accuracy
PerUser Use most recent α bursts of a user

84.2%
Dynamic to predict next β bursts for that user
PerUser Use a fixed set of n bursts of a user

80.8%
Static to train a fixed model for that user
AllUser Use a fixed set of k bursts of all users

77.5%
Static train a fixed model for all users

is used, the resulting E and S become E′ and S′, respectively. We define Δ(E) =
(Ed −E′)/Ed and Δ(S) = (S′ −Sd)/Sd (usually both are positive). They correspond
to the reduction of the radio energy and the increase of the signaling load brought by
RP, respectively. RP’s goal is to maximize Δ(E) while minimizing Δ(S).

5.3 Prediction Model Comparison

In RP, we use recent traffic information of a user to train a model, denoted as
PerUserDynamic. Specifically, for each user, the most recent α bursts are used to
predict the next β bursts. We study the impact of α, β in Table 1, using the Ensemble
Bagging [6] learning algorithm as an example (number of trees set to 20). If α is too
small, there is not enough training data for learning; if α is too large, the user is more
likely to switch to new applications that generate different traffic patterns so previously
learned rules may not be useful. Based on Table 1, we choose α = 1000 and β = 1 that
maximize the accuracy. In practice, α and β could also be dynamically adjusted.

Table 2 compares the PerUserDynamic model with two other models,
PerUserStatic (a fixed model for each user) and AllUserStatic (a fixed model for
all 20 users). For fair comparison, we use the same ML algorithm (Ensemble Bagging)
as used in Table 1. We set α = 1000 and β = 1 for the PerUserDynamic model as
discussed previously, and use n = 10,000 for PerUserStatic and k = 10,000 for
AllUserStatic (n and k defined in Table 2). Similar to Table 1, n and k are empiri-
cally selected to yield good prediction accuracies. We observe that PerUserDynamic
has higher prediction accuracy than the other two models, suggesting that it is necessary
to have a dynamic model for each user whose traffic pattern may be different from
others.

5.4 Selecting Burst Thresholds

We study the impact of BT and SBT (previous evaluations use BT =1s and SBT =3s). In
Table 3, S0 to S4 correspond to representative (BT, SBT) pairs. We find that aggressively
using a short SBT (S1) can significantly increase Δ(S). Among all settings, S4 yields
the highest Δ(E)/(1 + Δ(S)) value (the average radio energy saving per unit of
signaling load). It quantifies how well the balance between Δ(E) and Δ(S) is handled.

As mentioned in §3, configuring screen-on and off settings differently may yield
better optimization results, as screen-off traffic is usually generated by background apps
without user interaction, leading to statistically longer IBT. Therefore a more aggressive



8 J. Huang et al.

Table 3. Impact of BT and IBT (Classification Tree
with PerUserDynamic model, α=1000, β=1)

Settings (unit: sec) Accuracy Δ(E) Δ(S) Δ(E)
(1+Δ(S))

S0 BT: 1 SBT: 3 82.65% 52.10% 101.64% 0.26
S1 BT: 1 SBT: 2 84.80% 56.69% 158.99% 0.22
S2 BT: 1 SBT: 4 81.94% 49.07% 83.34% 0.27
S3 BT: 0.5 SBT: 3 84.71% 53.74% 100.36% 0.27
S4 BT: 1.5 SBT: 3 85.39% 58.85% 93.75% 0.30
S5 BT: 1/1.5 off/on

85.88% 59.07% 91.01% 0.31
SBT: 2.5/3 off/on

Table 4. Performance and accuracy of
different ML algorithms

ML Prediction time
Accuracy

Algorithm (Training time)

Naı̈ve Bayes
2.5 ms

76.1%
6.4 ms

Classification 5.9 ms
85.9%

Tree 136.9 ms
Ensemble 106.6 ms

87.4%
Bagging 626.1 ms

setting (smaller BT and SBT) can be applied to screen-off traffic without incurring much
signaling overhead. In Table 3, S5 is such a screen-aware setting. Compared with S4,
S5 saves more energy with less signaling overhead incurred. In fact, S5 achieves results
comparable to the optimal scenario to be shown in Table 5. This also indicates that
dynamically changing BT and SBT can help improve the effectiveness of RP.

5.5 Comparing Fast Dormancy Based Resource Optimization Approaches

Table 5 compares various optimization techniques using the UMICH dataset.
Basic fast dormancy. We set Ttail to a fixed value smaller than its original value.
RadioJockey [4] uses system calls to predict the end-of-session (EOS) for back-

ground app without user interaction, with the ideal usage scenario for a single app.
Given that we do not have system call traces in our dataset, we make two assumptions in
our simulation: (1) we use end-of-burst to approximate end-of-session, (2) RadioJockey
has high prediction accuracies (90% and 100%) for both single and concurrent apps
(although in reality, it performs worse when concurrent apps exist). A key limitation of
RadioJockey is it does not handle foreground traffic and only works when the screen is
idle (see §6), so we only apply RadioJockey to screen-off traffic2.

MakeIdle [7] computes a wait time Twait that maximizes the energy saving if Ttail

is set to Twait for the previous M packets, it then applies this Twait for the next N
packets. The range we search for the optimal Twait is [0.5, 11.5] seconds, as suggested
by the authors. Since no recommendations have been made for the values of M and N ,
we empirically select different combinations of (M,N) pairs.

RadioProphet : we explore three off-the-shelf machine learning algorithms with
the PerUserDynamicmodel (α=1000 and β=1): Naı̈ve Bayes, Classification Tree, and
Ensemble Bagging. Their performance and accuracy are summarized in Table 43.

We now discuss the results in Table 5. “Fast dormancy 1s” is an aggressive approach
incurring unacceptable signaling overhead. “Fast dormancy 3s” reduces Δ(S) with
less energy saving as expected. For both approaches, their Δ(E)/(1 + Δ(S)) values

2 We configured short screen timeout for the 20 phones so screen-off is good approximation for
screen-idle.

3 The performance numbers in Table 4 correspond to the execution time of the scripts written
in Matlab on desktop. Our real implementation on the S3 smartphone uses C++ so it is much
more efficient (§5.6).



RadioProphet: Intelligent Radio Resource Deallocation for Cellular Networks 9

Table 5. Comparison of optimization approaches. For RP, we use the PerUserDynamicmodel
(α=1000, β=1) with setting S5 in Table 3. RadioJockey is only applicable to screen-off traffic.

Name Description & Configuration Δ(E) Δ(S) Δ(E)
(1+Δ(S))

Basic Fast dormancy 1s Invoke fast dormancy after 1s idle time 62.7% 214.9% 0.20
Basic Fast dormancy 3s Invoke fast dormancy after 3s idle time 40.9% 95.8% 0.21

RadioJockey RadioJockey applied to
30.1% 51.7%

0.20
Assuming 100% accuracy only screen-off traffic (screen-off)

RadioJockey RadioJockey applied to
27.2% 52.0%

0.18
Assuming 90% accuracy only screen-off traffic (screen-off)

MakeIdle MakeIdle: based on previous M packets,
64.9% 305.2% 0.16

M:1000, N:100 predict next N packets
MakeIdle MakeIdle: based on previous M packets,

44.9% 195.2% 0.15
M:10, N:10 predict next N packets

RP: Naı̈ve Bayes
Naı̈ve Bayes classification with mvmn:

53.0% 107.9% 0.25
multivariate multinomial distribution

RP: Classification Tree Binary decision tree for classification 59.1% 91.0% 0.31

RP: Ensemble Bagging
Method: Bag; type: classification

59.3% 90.2% 0.31
weak leaner: decision tree; # of trees: 20

RP: Optimal Predict all IBTs correctly 59.8% 85.4% 0.32

(the average radio energy saving per unit of signaling load) are low due to a lack of
adaptation to dynamic traffic patterns.

For RadioJockey, by assuming the prediction accuracy for each background app to be
90%, it saves 27.2% of radio energy with 52% of signaling load, which can be slightly
improved when the accuracy increases to 100%. The overall saving is lower than that
of RP because RadioJockey does not handle foreground traffic usually triggered by
user interaction (§6). For MakeIdle, we use two representative (M,N ) settings. In both
cases, the incurred signaling load is prohibitive, since MakeIdle does not consider the
very important signaling load metric in its optimization framework.

For RP, in the optimal case assuming 100% prediction accuracy, it saves 59.8% of
radio energy with 85.4% of signaling load incurred. The signaling load is not zero,
because for IBTs smaller than Ttail but larger than SBT, even if the prediction is correct,
invoking fast dormancy would still incur an extra state promotion. This is inherent for
any fast dormancy based optimization technique. Among the three machine learning
algorithms, Ensemble Bagging achieves the best results, likely due to its usage of
multiple submodels to avoid overfitting. However, as shown in Table 4, its runtime
overhead is very high. The Classification Tree approach achieves similar optimization
results with much lower runtime overhead. The Δ(E)/(1+Δ(S)) metric indicates that
RP outperforms other approaches in balancing Δ(E) and Δ(S).

5.6 Running Overhead on Real Phone

We implement the RadioProphet system on Android as discussed in §5.1, in order
to demonstrate its practicality on today’s smartphones. We breakdown its runtime



10 J. Huang et al.

overhead into three components: (1) traffic monitoring and feature extraction, (2) model
training and prediction, and (3) fast dormancy invocation. We found invoking fast
dormancy incurs negligible overhead. We therefore focus on (1) and (2) below.

Traffic Monitoring and Feature Selection. Unlike RadioJockey requiring system call
instrumentation, RP only needs to monitor packet traces, which is also needed by
RadioJockey. On the S3 smartphone, our traffic monitor incurs no more than 1% of
CPU overhead for parsing packet headers and generating burst features, although the
overhead is much lower when the throughput is low (e.g., less than 200 kbps). The
additional power to run the data collector is less than 17mW most of the time. In
contrast, the LTE radio power is at least 1000 mW [8].
Model Training and Prediction: Our implementation on S3 uses the Classification
Tree model that balances between accuracy and performance (Table 4). We measure
the average model training time to be 200ms and the average prediction time to be
0.1ms. Its incurred power overhead is always negligible (less than 10 mW).

6 Related Work and Concluding Remarks

We compare RP with three representative adaptive resource deallocation proposals.
TOP [10] leverages fast dormancy to eliminate the tail. It assumes each individual

application can predict an imminent long IBT with reasonable accuracy, and fast
dormancy is only invoked when the aggregate prediction across all concurrent apps
is long enough. TOP provides the prediction framework, but it does not solve the
challenging prediction problem itself, which is the key focus of RP.

MakeIdle [7] uses packet timing to calculate the optimal idle time before invoking
fast dormancy, in order to maximize the radio energy saving. However, MakeIdle
considers minimizing radio energy as the only objective, leading to unacceptably high
signaling overhead shown in Table 5. It leaves the job of reducing the signaling load to
another algorithm called MakeActive [7] that changes the traffic pattern by shifting
packets. MakeActive does not work with foreground traffic that is usually delay-
sensitive, and even for background traffic, there is no guarantee that it does not affect
user experience. In contrast, RP does not rely on changing traffic patterns and it works
with both foreground and background traffic. It can in fact coexist with traffic shaping
based optimization techniques such as MakeActive and TailEnder [5].

RadioJockey [4] uses program execution traces to predict the end of communication
spurts and invoke fast dormancy when necessary. It however has several limitations. (1)
It needs heavy instrumentation i.e., requiring complete system call traces in addition to
packet traces, while RP only examines packet header information. (2) RadioJockey only
works for background app without user interaction, since “predicting EOS events for
foreground applications turns out to be challenging since user interactions can trigger
network communications at any point in time” [4]. (3) RadioJockey treats different
apps separately and does not predict start-of-session, hence when concurrent apps
exist, the prediction accuracy would be affected. In contrast, RP introduces a general,
lightweight, and effective framework that naturally optimizes concurrent traffic from
both foreground and background apps. RP achieves even better optimization results for
all traffic than RadioJockey does for only background traffic (Table 5).



RadioProphet: Intelligent Radio Resource Deallocation for Cellular Networks 11

To conclude, we propose a novel, practical, and effective system called
RadioProphet that intelligently predicts long idle period using off-the-shelf machine
learning algorithms, and deallocate resources based on IBT prediction for cellular net-
works. Using 7-month data collected from 20 real users, we show that RP outperforms
existing proposals in balancing the key tradeoff between resource saving and signaling
load. We present the first implementation of adaptive resource deallocation using fast
dormancy, demonstrating the feasibility of RP on real smartphones. We believe RP is an
important step towards application-aware energy and resource optimization in wireless
networks.

Acknowledgements. This research was supported in part by the National Science
Foundation under grants CNS-1039657, CNS-1059372 and CNS-0964545.

References

1. UE “Fast Dormancy” behavior. 3GPP discussion and decision notes R2-075251 (2007)
2. Configuration of fast dormancy in release 8. 3GPP discussion notes RP-090960 (2009)
3. System Impact of Poor Proprietary Fast Dormancy. 3GPP discussion and decision notes RP-

090941 (2009)
4. Athivarapu, P., Bhagwan, R., Guha, S., Navda, V., Ramjee, R., Arora, D., Padmanabhan, V.,

Varghese, G.: RadioJockey: Mining Program Execution to Optimize Cellular Radio Usage.
In: MobiCom (2012)

5. Balasubramanian, N., Balasubramanian, A., Venkataramani, A.: Energy Consumption in
Mobile Phones: A Measurement Study and Implications for Network Applications. In: IMC
(2009)

6. Breiman, L.: Bagging Predictor. Machine Learning 24(2) (1996)
7. Deng, S., Balakrishnan, H.: Traffic-Aware Techniques to Reduce 3G/LTE Wireless Energy

Consumption. In: CoNEXT (2012)
8. Huang, J., Qian, F., Gerber, A., Mao, Z.M., Sen, S., Spatscheck, O.: A Close Examination of

Performance and Power Characteristics of 4G LTE Networks. In: MobiSys (2012)
9. Huang, J., Qian, F., Mao, Z.M., Sen, S., Spatscheck, O.: Screen-Off Traffic Characterization

and Optimization in 3G/4G Networks. In: Proc. ACM SIGCOMM IMC (2012)
10. Qian, F., Wang, Z., Gerber, A., Mao, Z.M., Sen, S., Spatscheck, O.: TOP: Tail Optimization

Protocol for Cellular Radio Resource Allocation. In: Proc. ICNP (2010)
11. Qian, F., Wang, Z., Gerber, A., Mao, Z.M., Sen, S., Spatscheck, O.: Profiling Resource Usage

for Mobile Applications: a Cross-layer Approach. In: MobiSys (2011)



Mobile Network Performance from User Devices:
A Longitudinal, Multidimensional Analysis

Ashkan Nikravesh1, David R. Choffnes2, Ethan Katz-Bassett3,
Z. Morley Mao1, and Matt Welsh4

1 University of Michigan
2 Northeastern University

3 University of Southern California
4 Google Inc.

Abstract. In the cellular environment, operators, researchers and end users have
poor visibility into network performance for devices. Improving visibility is chal-
lenging because this performance depends factors that include carrier, access
technology, signal strength, geographic location and time. Addressing this re-
quires longitudinal, continuous and large-scale measurements from a diverse set
of mobile devices and networks.

This paper takes a first look at cellular network performance from this per-
spective, using 17 months of data collected from devices located throughout the
world. We show that (i) there is significant variance in key performance metrics
both within and across carriers; (ii) this variance is at best only partially explained
by regional and time-of-day patterns; (iii) the stability of network performance
varies substantially among carriers. Further, we use the dataset to diagnose the
causes behind observed performance problems and identify additional measure-
ments that will improve our ability to reason about mobile network behavior.

1 Introduction

Cellular networks are the fastest growing, most popular and least understood Internet
systems. A particularly difficult challenge in this environment is capturing a view of
network performance that is representative of conditions at end user devices. A num-
ber of factors frustrate our ability to capture this view. For instance, carriers enforce
different policies depending on the traffic types or geographic/social characteristics of
different locations such as population [1, 2], causing user perceived performance to dif-
fer from advertised performance for access technologies. Other environmental factors
have a significant impact on performance, including device model [3], mobility [4],
network load [2], packet size [5, 6] and MAC-layer scheduling [4].

To account for various factors impacting Internet performance in mobile networks,
we need pervasive network monitoring that samples a variety of devices across carriers,
access technologies, locations and over time. This work takes a first look at such a view
using data collected from controlled measurement experiments in 144 carriers during
17 months, comprising 11 cellular network technologies. We use this data to identify
the patterns, trends, anomalies, and evolution of cellular networks’ performance.

This study demonstrates that characterizing and understanding the performance in
today’s cellular networks is far from trivial. We find that all carriers exhibit significant

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 12–22, 2014.
c© Springer International Publishing Switzerland 2014



Mobile Network Performance from User Devices 13

variance in end-to-end performance in terms of latency and throughput. To explain this
variance, we investigate geographic and temporal properties of network performance.
While we find that these properties account for some differences in performance, impor-
tantly we observe that performance is inherently unstable, with some carriers providing
relatively more or less predictable performance. Last, we identify alternative sources
of variance in performance that include routing and signal strength. An important open
question is how to design a measurement platform that allows us to understand reasons
behind most observed performance differences.

This paper differs from previous related work in that our study is longitudinal, con-
tinuous, pervasive and gathered from mobile devices using controlled experiments. In
contrast, some related work [7–9] passively collected network traffic from cellular net-
work infrastructure, using one month of data or less. These studies tend to be limited to
a single carrier, hampering our ability to conduct meaningful comparisons across carri-
ers. Other work collected network performance data at mobile devices [10, 1, 11], but
did not use controlled experiments to capture a continuous view of performance.
Roadmap. We describe our methodology and dataset in §2, then present our findings
regarding network performance across different network technologies, carriers, loca-
tions, and times in §3.1, §3.2, and §3.3 respectively. Then we study the root causes for
performance degradation in §3.4. We discuss related work in §4 and conclude in §5.

2 Methodology and Dataset

This paper studies cellular network performance using a broad longitudinal view of net-
work behavior impacting user-perceived performance. To this end, we consider HTTP
GET throughput, round trip time latency from ping, and DNS lookup time as end-to-end
performance metrics. In addition to gathering raw performance data, we annotate our
measurements with path information gathered from traceroute, the identify of the de-
vice’s carrier, its cellular network technology, signal strength, location and timestamp.

We focus on performance from mobile devices to Google, a large, popular content
provider. We argue that Google is an ideal target for network measurements because it is
highly available and well provisioned, making it easier to isolate network performance
to cell networks vs. Google’s network. Focusing on these measurements, we identify the
performance impact of carrier, network technology, location and time. To reason about
the root cause behind performance changes, we use path information, DNS mappings
and signal strength readings.

Our data is collected by two Android apps using a nearly identical codebase,
Speedometer and Mobiperf.1 Speedometer is an internal Android app developed by
Google and deployed on hundreds of volunteer devices, mainly owned by Google em-
ployees. As such, the bulk of our dataset2 is biased toward locations where Google
employees live and work. Speedometer collected the following measurements from
2011-10 to 2013-2 (17 months): 6.6M ping RTTs to www.google.com (each sam-
ple consists of 10 consecutive probes), 1.7M HTTP GETs to measure TCP throughput

1 http://www.mobiperf.com/
2 This dataset is publicly available at
https://storage.cloud.google.com/speedometer



14 A. Nikravesh et al.

Table 1. Number of Measurement and Carriers for the Network Technologies

HSPA HSDPA UMTS EDGE GPRS LTE EVDO eHRPD 1xRTT
# of Measurements 439K 2326K 563K 506K 58K 1460K 2183K 301K 68K

# of Carriers 50 111 96 85 48 7 8 2 3

using a 224KB file hosted on a Google server, 0.4M UDP burst samples for measuring
packet loss rate, 0.8M DNS resolutions of google.com, and 0.8M traceroute (without
hop RTTs) from 144 carriers and 9 network technologies. The dataset includes ≈ 4-5
measurements per minute. Each measurement is annotated with device model, coarse-
grained location information (k-anonymized latitude and longitude), timestamp, car-
rier, and network type.3 All users consented to participate in the measurement study;
the anonymization process is explained in the dataset’s README file. Because of
anonymization, the number of users who participated in data collection is unknown.

We augment the Speedometer dataset with 11 months of data collected by Mobiperf.
Mobiperf conducts a superset of measurements in Speedometer, and notably adds signal
strength information. The number of measurements collected by Mobiperf for each
task ranges from 17K (HTTP GET) to 58K (ping RTT test) from 71 carriers. We use
Mobiperf data to study the impact of signal strength on measurement results. Table 1
shows the number of measurements collected from the most frequently seen 9 network
technologies (ordered by peak speed) for both GSM and CDMA technologies in the
combined datasets.

3 Data Analysis

3.1 Performance across Carriers

This section investigates the performance of five access technologies for each of several
carriers. Our goal is to understand how observed performance matches with expecta-
tions across access technologies, and how variable this performance is across carriers.
In Fig. 1, we plot percentile distributions (P5, P25, median, P75, and P95) of the latency
and throughput of 9 carriers from Asia, America, Europe, and Australia. We select these
carriers based on their geographic locations and relatively large data sample sizes. One
of the key observations is that performance varies significantly across carriers and ac-
cess technologies; further, the range of values is also relatively large.

For carriers that have high latency, we use traceroute data to investigate if the cause
is inefficient routes to Google [12]. However, approximately half of the carriers such as
SFR (French Carrier) and Swisscom have direct peering points with Google, making
this unlikely to be the cause for high latency.

For carriers such as AT&T, T-Mobile US, and Airtel (India), we observe high vari-
ability in latency. In the following subsections, we investigate whether this is explained
by regional differences, time-of-day effects and/or other factors.

Surprisingly, we do not observe significant latency differences across access tech-
nologies for some carriers. For example, the latency of UMTS, HSDPA, and HSPA

3 https://github.com/Mobiperf/Speedometer



Mobile Network Performance from User Devices 15

 100

 1000

T-M
obile

AT&T
YesOptus

Swisscom

Vodafone(IE)

NTT DoCoM
o

SFR
SK Telecom

Em
obile

P
in

g 
R

T
T

 (
m

s)

GPRS
EDGE
UMTS

HSDPA
HSPA

(a) Ping RTT

 10

 100

 1000

T-M
obile

AT&T
YesOptus

Swisscom

Vodafone(IE)

NTT DoCoM
o

SFR
SK Telecom

Em
obile

H
T

T
P

 T
hr

ou
gh

pu
t (

K
bp

s)

GPRS
EDGE
UMTS

HSDPA
HSPA

(b) HTTP GET throughput for downloading a
224KB file

Fig. 1. Throughput and latency across access technology and carriers

in Emobile (Ireland), SK Telecom (Korea), and Swisscom are almost equal. Users in
these networks may not see noticeable differences in performance for delay-sensitive
applications when upgrading to newer technologies.

In Fig. 1b, we plot HTTP throughput for downloading a 224KB file from a Google
domain. Compared to ping RTT, the difference between the throughput of carriers is
relatively smaller, indicating that the high variability in ping RTTs is often amortized
over the duration of a transfer.

Note that the throughput for UMTS, HSDPA, and HSPA are almost identical. This
occurs because the flow size is not sufficiently large to saturate the link for high-capacity
technologies. This indicates a need for better low-cost techniques to estimate available
capacity in such networks [13]. However, the figure shows significant performance dif-
ference between GPRS/EDGE and other access technologies.

We observe that lower latency is generally correlated with higher HTTP GET
throughput, but this depends on the carrier. We quantify this using the correlation coef-
ficient between HTTP throughput and ping RTT for specific carrier and network type.
The strongest correlation coefficient observed was for Verizon LTE users with −0.53
and lowest was −0.01 for T-Mobile HSDPA users, using one-hour buckets.

Having observed significant differences in performance within and between carriers,
we now investigate some of the potential factors behind this variability.

3.2 Performance across different Locations

We now investigate the impact of geography on network performance. We focus on
four major US carriers in three US regions where our dataset is densest (New York,
Seattle, and Bay Area). Each of these carriers exhibits different topologies (Internet
egress, Google ingress and ASes between) in different regions, potentially leading to
performance differences in each region.



16 A. Nikravesh et al.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

Oct 30 Nov 19 Dec 09 Dec 29 Jan 18 Feb 07 Feb 27 Mar 18 Apr 07 Apr 27 May 17 Jun 06

P
in

g 
R

T
T

 (
m

s)
M

ea
n 

an
d 

S
ta

nd
ar

d 
E

rr
or

Time (Days) 2011-2012

Bay Area
Seattle

New York

Fig. 2. Verizon LTE Ping RTT in Different Locations

Despite the variety in network topologies, we surprisingly find that for AT&T, T-
Mobile, and Sprint, both of the latency and throughput were similar in these three lo-
cations. However, for Verizon, we observe different LTE performance in New York,
Seattle, and Bay Area. Fig. 2 plots these latencies over time, and clearly show that the
RTT latency for the Bay Area is lower than New York and Seattle areas. HTTP through-
put in these regions exhibit similar patterns.

We use DNS data in the Seattle area and observe that 97% of DNS requests for
google.com resolve to an IP for a server in the Los Angeles area instead of Seattle,
in part explaining the gap in latency between the two regions. For the NY area, our
measurements did not provide enough geographic information to understand whether
increased latency was due to path inefficiencies.

The key takeaway from this section is that geography alone doesn’t explain the vari-
ance in performance observed in the previous section; however, for one carrier (Veri-
zon), it explains some of it. Further, we observe that each region experiences changes
in performance independently – the correlation of performance across regions for each
carrier is negligibly small. Last, when correlating ping RTT and HTTP GET throughput
within each region, we find higher correlations than carrier-wide correlations presented
in the previous section. This further suggests that performance is affected by location.

3.3 Performance over Time

We now analyze how performance depends on time – both in terms of time-of-day
effects and the stability of measurement performance over time. These properties allow
us to identify when to measure the network (e.g., during known busy hours) and when
not to measure (e.g., at ten minute intervals), thus allowing us to efficiently allocate the
limited measurement resources that users provide.

Time-of-Day and Long-Term Trends. Fig. 3 plots HTTP throughput for four major
carriers in the US. As expected, throughput decreases (and variance tends to increase)
during the busy hours for mobile usage (8AM to 7PM), likely due to higher load on
the network. Interestingly, different carriers experience minimum throughput at differ-
ent times. T-Mobile and AT&T reach their minimum throughput at 1PM and 5PM, re-
spectively; Sprint experiences minimum performance at 9PM and Verizon, two troughs
occur at 8AM and 9PM. Last, these carriers experience different relative variations in



Mobile Network Performance from User Devices 17

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 0  2  4  6  8  10  12  14  16  18  20  22  24

H
T

T
P

 T
hr

ou
gh

pu
t (

K
bp

s)
, M

ea
n 

an
d 

S
ta

nd
ar

d 
E

rr
or

Local Time from 0 (00:00) to 24 (24:00)

AT&T HSDPA
Sprint EVDO_A

T-Mobile HSDPA
Verizon EVDO_A

Fig. 3. Time of day pattern of HTTP
throughput

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6
 0.7
 0.8
 0.9

 1  3  6  9  12  15  18  21  24  27  30  33  36

E
rr

or
 (%

)

Sampling Period (hour)

Verizon, LTE, BayArea
Sprint, EVDOA, Seattle

Sprint, EVDOA, BayArea
T-Mobile, HSDPA, BayArea

Fig. 4. Weighted Moving Average Error (Me-
dian Ping RTT, W = 2)

performance during busy hours: AT&T and Sprint throughput drops by approximately
a third during busy hours while Verizon drops by 25%, and T-Mobile by 16%.

Next, we investigate the long-term performance trends over the duration of our study,
allowing us to tell if new cellular technologies and infrastructure are keeping pace with
increased mobile Internet usage. Specifically, we look at the change in throughput and
latency of carriers through time over consecutive days for each network technology
they support in different areas. We did not observe improvement; despite technology
upgrades, performance is highly variable over time and there is no statistically signifi-
cant change during the observation period.

Stability of Performance. The predictability and stability of network performance are
important not only for users, who are often frustrated more by variations in performance
than the average value, but also for determining how and when to conduct measure-
ments for future experiments. In this section, we compute stability using a weighted
moving average and autocorrelation.

First, we group the data into 1-hour buckets (to obtain a sufficiently large sample
size). Then for each bucket, we use either the median or 5th percentile latency. We
compute the moving average error for different window sizes and sampling periods.

We compute the moving average error as follows: for a window size W , we pre-
dict the next data point on that series by computing moving average for the previous
consecutive W points. For each W and sampling period (e.g., every N hours for
N = 1, 2, 3, . . .), we compute the average over different offsets.

Fig. 4 plots the average error for all data points with windows size of 2 and differ-
ent sampling periods for median ping RTT (results with larger window sizes of 3, 4,
and 5 are similar). We observe that prediction accuracy varies significantly by carrier,
with Verizon and Sprint in the Bay Area being relatively predictable, and T-Mobile and
Sprint in Seattle being relatively unpredictable. Also, for all of these carriers, prediction
accuracy is best when looking at the most recent data (one hour sampling period) and er-
ror tends to increase with longer durations, with the exception of 24hr (day) and 168hrs
(week) sampling periods, which are local minima. The results from autocorrelation are
similar.



18 A. Nikravesh et al.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

22
Oct

29
Oct

05
Nov

12
Nov

19
Nov

26
Nov

03
Dec

10
Dec

17
Dec

24
Dec

 70

 80

 90

 100

 110

 120

 130

 140

 150
# 

of
 M

ea
su

re
m

en
ts

M
ed

ia
n 

P
in

g 
R

T
T

 (
m

s)

Time (day) - 2011

Mountain View
Seattle

Ping RTT

(a)

 40

 60

 80

 100

 120

 140

 160

11 12 13 14 16 17 18 19 20 21 22

M
ed

ia
n 

P
in

g 
R

T
T

 (
m

s)

Time (day) - Feb 2012

Seattle (25-50-75)
Los Angeles (25-50-75)

(b)

 11

 12

 13

 14

 15

 16

 17

 18

05
Nov

12
Nov

19
Nov

26
Nov

03
Dec

10
Dec

17
Dec

24
Dec

31
Dec

07
Jan

 30

 40

 50

 60

 70

 80

# 
of

 H
op

s

M
ed

ia
n 

P
in

g 
R

T
T

 (
m

s)

Time (day) - 2011

Ping RTT
Hops

(c)

Fig. 5. Performance Degradation in: (a)T-Mobile HSDPA network in Bay Area due to server
selection flapping from Bay Area to Seattle (b)T-Mobile HSDPA network in Seattle due to change
in ingress point of transit AS between T-Mobile and Google (c) Verizon LTE network in Bay Area

These predictability results indicate that despite the large overall variance in cellular
network performance, there are regions and time scales over which performance is rela-
tively predictable, depending on the carrier. Importantly, we can use this information to
inform the design of measurement system that uses prediction to minimize probes that
would provide redundant results. For instance, if we subsample every other value (i.e.,
50% sampling rate) in the Verizon LTE ping data in the Bay Area (which has the lowest
error in the full sample), the distribution of latencies is nearly identical.

3.4 Performance Degradation: Root Causes

We now use our measurements to identify the reasons for persistent performance degra-
dation observed in consecutive days. We focus on cases where the issue affects both
ping RTT and HTTP throughput.

Inefficient Paths. A reason for performance degradation is inefficient paths. Zarifis et
al [14] provide a detailed taxonomy and analysis of path inflation in mobile networks;
here we focus on their time evolution and constrain our analysis to only those cases
where both latency and throughput were impacted.

For example, we observe an increase in ping RTT in T-Mobile’s Bay Area HSDPA
network from Nov 12, 2011 to Dec 10, 2011. Using DNS lookups, we find that clients
previously sent to Mountain View were being sent to Seattle, with the additional delay
explained by path inflation (Fig. 5a). After Dec 10, clients are again directed toward
Mountain View.

We also observed a high-latency event for T-Mobile’s Seattle HSDPA network in
Seattle (Fig. 5b). Prior to the event, traceroutes indicate that traffic from T-Mobile in-
gresses into Level 3 in Seattle, then enters Google’s network. After Feb 15, traffic from
these subscribers ingressed into Level 3 at a peering point in Los Angeles before enter-
ing Google’s network. After Feb 20, routing returns back to its previous state (ingress
and egress point in Seattle area) and the median RTT decreases to its previous value,
strongly implying that the change in performance was due to the topology change.

In Fig. 5c, we observe that ping RTT and the number of traceroute hops increases for
Verizon LTE users in the Bay Area. Previously, clients were sent to a Google frontend
in the Bay Area; after the change clients are sent to the same Google ingress point, but
then traffic is sent to a frontend in Seattle (leading to ≈ 30% higher latency).



Mobile Network Performance from User Devices 19

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0  5  10  15  20  25  30
 400

 600

 800

 1000

 1200

 1400

 1600

 1800
M

ea
n 

P
ac

ke
t L

os
s 

(%
)

M
ea

n 
P

in
g 

R
T

T
 (

m
s)

ASU

Ping RTT
Packet Loss

(a) Ping RTT and packet loss

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0  5  10  15  20  25  30

M
ea

n 
H

T
T

P
 T

hr
ou

gh
pu

t (
K

bp
s)

ASU

HTTP Throughput

(b) HTTP throughput (file size is 100KB)

Fig. 6. Impact of signal strength on latency, packet loss, and throughput

In this section we show that fixed-line inefficiencies can significantly impact the
performance of LTE and HSDPA networks. For these newer technologies, since the
RTT is lower, the impact of inefficient routes is even relatively higher (around 80%
increase in the RTT of T-Mobile HSDPA in Seattle).

Signal Strength. It is well known that weak signal strength reduces channel efficiency
for wireless communication; therefore, it is important to account for this when inter-
preting measurements. Using Mobiperf clients, we gather network measurements an-
notated with the signal strength, in Arbitrary Strength Units (ASUs),4 reported during
the probes and determine the impact of signal strength on performance.

Fig. 6 shows how three performance metrics vary with ASU values for AT&T HS-
DPA users in Seattle. The figures indicate high packet loss, latency and low throughput
for ASU values between 0 and 8 (confirming the results in [15]); at larger ASU values
that increase in signal strength has less impact on performance. These results indicate
that accounting for signal strength is critically important for properly interpreting mea-
surement results. For example, when measuring a carrier’s capacity, it is important to
do such tests in regions with high signal strength.

4 Related Work

Many previous studies attempt to improve our visibility into and understanding of mo-
bile network performance. We can broadly characterize them according to what type
of network performance they measured, where they conducted measurements and how
they performed measurements. In this work, we are the first to use controlled, active
measurement experiments to continuously monitor end-to-end network performance
seen from mobile devices, across more than 100 carriers during a period of 17 months.
Previous work differs as follows.

4 Android shows zero signal bar for the ASU values between 0 and 2 and full signal bars when
ASU value is more than 12.



20 A. Nikravesh et al.

Passive measurements, infrastructure, single carrier. Several studies focus on pas-
sive measurements from inside mobile carriers [7–9]. While important for debugging
the infrastructure components of latency, the view from such locations does not neces-
sarily indicate the performance on mobile devices.

Active measurements, end devices, single carrier. Several projects use active mea-
surements from end devices, but focus on a single carrier for a limited duration of time,
often doing a fine-grained and low-level analysis of performance. In [5], authors mea-
sured goodput, delay, and jitter of HSDPA and WCDMA networks from an operator in
Finland using active measurements from a laptop. In [6], the authors compare LTE and
HSPA networks by conducting high precision latency measurements for an operator
in Austria. In [16, 4, 17, 18], authors studied the TCP performance in CDMA2000 net-
works. In[16], the authors investigate the steady-state TCP performance over CDMA 1x
EV-DO downlink/uplink with the active measurement of long-lived TCP connections
at the end-points for a Korean operator. [18, 4] conducted a cross-layer measurement of
transport, physical and MAC layer parameters. [18] characterizes the wireless scheduler
in a commercial CDMA2000 network and its impact on TCP performance by perform-
ing end-to-end experiments and sending UDP and TCP packets.

Active measurements, end devices, several carriers.: Similar to the previous
examples, several studies also include comparisons across multiple carriers. In [19],
by investigating the performance of three Norwegian operator and conducting active
measurements from end-to-end devices, they studied the impact of the packet size on
the minimal one-way delay for the uplink in 3G mobile networks. In [11], by per-
forming active measurements for more than 6 months from 90 voting locations and by
measuring the round trip delay of three network operator in Norway, they found the
operator-specific network design and configurations as the most important factor for
delays. In [2], by measuring data throughput, latency, and video and voice calls han-
dling capacities, they compared the 3G performance of three carriers in Hong Kong
under saturated conditions by conducting measurements at 170 sites in four months.

Active measurements, end devices, pervasive. Most closely related to our work is
[1] and [3]. Both projects gather active measurements from apps running on mobile
devices; however, they all rely on user-generated tests. In contrast our work uses con-
trolled experiments to schedule measurements independent of user activity. This enables
a more continuous view of performance in mobile networks.

5 Conclusion

This paper took a first look at end-to-end performance as seen from mobile devices,
using a dataset of scheduled network measurements spanning more than 100 carriers
over 17 months. We find that there are significant performance differences across car-
riers, access technologies, geographic regions and over time; however, we emphasize
that these variations themselves are not uniform, making network performance difficult
to diagnose. Using supplemental measurements such as DNS lookups and traceroutes,
we identified the reasons behind persistent performance problems. Further, we exam-
ined the stability of network performance, which can help inform efficient scheduling



Mobile Network Performance from User Devices 21

of future network measurements. Overall, we find that performance in cell networks
is not improving on average, suggesting the need for more monitoring and diagnosis.
As part of our future work, we are investigating how to automatically detect persistent
performance problems in real time, gather additional network measurements to explain
them and provide this information to carriers and end users automatically.

Acknowledgements. We thank our shepherd Han Song and anonymous reviewers for
their valuable comments. This research was supported in part by the National Science
Foundation under grants CNS-1039657, CNS-1059372 and CNS-0964545, as well as
by the NSF/CRA CI Fellowship and a Google Research Award.

References

1. Sommers, J., Barford, P.: Cell vs. WiFi: on the performance of metro area mobile connec-
tions. In: Proc. ACM SIGCOMM IMC (2012)

2. Tan, W.L., Lam, F., Lau, W.C.: An Empirical Study on 3G Network Capacity and Perfor-
mance. In: Proc. IEEE INFOCOM (2007)

3. Huang, J., Xu, Q., Tiwana, B., Mao, Z.M., Zhang, M., Bahl, P.: Anatomizing application
performance differences on smartphones. In: Proc. ACM MOBISYS (2010)

4. Liu, X., Sridharan, A., Machiraju, S., Seshadri, M., Zang, H.: Experiences in a 3G network:
interplay between the wireless channel and applications. In: Proc. ACM MOBICOM (2008)

5. Jurvansuu, M., Prokkola, J., Hanski, M., Perala, P.: HSDPA Performance in Live Networks.
In: IEEE ICC (2007)

6. Laner, M., Svoboda, P., Romirer-Maierhofer, P., Nikaein, N., Ricciato, F., Rupp, M.: A com-
parison between one-way delays in operating HSPA and LTE networks. In: Proc. WINMEE
(2012)

7. Vacirca, F., Ricciato, F., Pilz, R.: Large-Scale RTT Measurements from an Operational
UMTS/GPRS Network. In: WICON (2005)

8. Laner, M., Svoboda, P., Hasenleithner, E., Rupp, M.: Dissecting 3G Uplink Delay by Mea-
suring in an Operational HSPA Network. In: Spring, N., Riley, G.F. (eds.) PAM 2011. LNCS,
vol. 6579, pp. 52–61. Springer, Heidelberg (2011)

9. Romirer-Maierhofer, P., Ricciato, F., D’Alconzo, A., Franzan, R., Karner, W.: Network-Wide
Measurements of TCP RTT in 3G. In: Papadopouli, M., Owezarski, P., Pras, A. (eds.) TMA
2009. LNCS, vol. 5537, pp. 17–25. Springer, Heidelberg (2009)

10. Deshpande, P., Hou, X., Das, S.R.: Performance Comparison of 3G and Metro-Scale WiFi
for Vehicular Network Access. In: Proc. ACM SIGCOMM IMC (2010)

11. Elmokashfi, A., Kvalbein, A., Xiang, J., Evensen, K.R.: Characterizing delays in norwegian
3G networks. In: Taft, N., Ricciato, F. (eds.) PAM 2012. LNCS, vol. 7192, pp. 136–146.
Springer, Heidelberg (2012)

12. Zheng, H., Lua, E.K., Pias, M., Griffin, T.G.: Internet routing policies and round-trip-times.
In: Dovrolis, C. (ed.) PAM 2005. LNCS, vol. 3431, pp. 236–250. Springer, Heidelberg (2005)

13. Huang, J., Qian, F., Guo, Y., Zhou, Y., Xu, Q., Mao, Z.M., Sen, S., Spatscheck, O.: An in-
depth study of lte: Effect of network protocol and application behavior on performance. In:
Proc. ACM SIGCOMM (2013)

14. Zarifis, K., Flach, T., Nori, S., Choffnes, D., Govindan, R., Katz-Bassett, E., Mao, Z.M.,
Welsh, M.: Diagnosing path inflation of mobile client traffic. In: Faloutsos, M., Kuzmanovic,
A. (eds.) PAM 2014. LNCS, vol. 8362, pp. 21–30. Springer, Heidelberg (2014)



22 A. Nikravesh et al.

15. Schulman, A., Navday, V., Ramjeey, R., Spring, N., Deshpandez, P., Grunewald, C., Padman-
abhany, K.J.V.N.: Bartendr: A practical approach to energy-aware cellular data scheduling.
In: Proc. ACM MOBICOM (2010)

16. Lee, Y.: Measured TCP Performance in CDMA 1x EV-DO Network. In: Proc. PAM (2006)
17. Claypool, M., Kinicki, R., Lee, W., Li, M., Ratner, G.: Characterization by Measurement of

a CDMA 1x EVDO Network. In: Proc. WICON (2006)
18. Mattar, K., Sridharan, A., Zang, H., Matta, I., Bestavros, A.: TCP over CDMA2000 net-

works: A cross-layer measurement study. In: Uhlig, S., Papagiannaki, K., Bonaventure, O.
(eds.) PAM 2007. LNCS, vol. 4427, pp. 94–104. Springer, Heidelberg (2007)

19. Arlos, P., Fiedler, M.: Influence of the Packet Size on the One-Way Delay in 3G Networks.
In: Krishnamurthy, A., Plattner, B. (eds.) PAM 2010. LNCS, vol. 6032, pp. 61–70. Springer,
Heidelberg (2010)



Diagnosing Path Inflation of Mobile Client Traffic

Kyriakos Zarifis1, Tobias Flach1, Srikanth Nori1, David Choffnes2,
Ramesh Govindan1, Ethan Katz-Bassett1, Z. Morley Mao3, and Matt Welsh4

1 University of Southern California, Los Angeles, CA 90089, USA
{kyriakos,flach,snori,ramesh,ethan.kb}@usc.edu

2 Northeastern University, Boston, MA 02115, USA
choffnes@ccs.neu.edu

3 University of Michigan, Ann Arbor, MI 48109, USA
zmao@umich.edu

4 Google Inc., Mountain View, CA 94043, USA
mdw@google.com

Abstract. As mobile Internet becomes more popular, carriers and content provi-
ders must engineer their topologies, routing configurations, and server deploy-
ments to maintain good performance for users of mobile devices. Understanding
the impact of Internet topology and routing on mobile users requires broad, longi-
tudinal network measurements conducted from mobile devices. In this work, we
are the first to use such a view to quantify and understand the causes of geograph-
ically circuitous routes from mobile clients using 1.5 years of measurements from
devices on 4 US carriers. We identify the key elements that can affect the Internet
routes taken by traffic from mobile users (client location, server locations, car-
rier topology, carrier/content-provider peering). We then develop a methodology
to diagnose the specific cause for inflated routes. Although we observe that the
evolution of some carrier networks improves performance in some regions, we
also observe many clients - even in major metropolitan areas - that continue to
take geographically circuitous routes to content providers, due to limitations in
the current topologies.

1 Introduction

As mobile Internet becomes more popular, carriers and content providers must engi-
neer their topologies, routing configurations, and server deployments to maintain good
performance for users of mobile devices. A key challenge is that performance changes
over space and time, as users move with their devices and providers evolve their topolo-
gies. Thus, understanding the impact of Internet topology and routing on mobile users
requires broad, longitudinal network measurements from mobile devices.

In this work, we are the first to identify and quantify the performance impact of
several causes for inflated Internet routes taken by mobile clients, based on a dataset of
901,000 measurements gathered from mobile devices during 18 months. In particular,
we isolate cases in which the distance traveled along a network path is significantly
longer than the direct geodesic distance between endpoints. Our analysis focuses on
performance with respect to Google, a large, popular content provider that peers widely
with ISPs and hosts servers in many locations worldwide. This rich connectivity allows

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 23–33, 2014.
c© Springer International Publishing Switzerland 2014



24 K. Zarifis et al.

us to expose the topology of carrier networks as well as inefficiencies in current routing.
We constrain our analysis to devices located in the US, where our dataset is densest.

Our key results are as follows. First, we find that path inflation is endemic: in the last
quarter of 2011 (Q4 2011), we observe substantial path inflation in at least 47% of mea-
surements from devices, covering three out of four major US carriers. While the average
fraction of samples experiencing path inflation dropped over the subsequent year, we
find that one fifth of our samples continue to exhibit inflation. Second, we classify root
causes for path inflation and develop an algorithm for identifying them. Specifically,
we identify whether the root cause is due to the mobile carrier’s topology, the peer-
ing between the carrier and Google, and/or the mapping of mobile clients to Google
servers. Third, we characterize the impact of this path inflation on network latencies,
which are important for interactive workloads typical in the mobile environment. We
show that the impact on end-to-end latency varies significantly depending on the carrier
and device location, and that it changes over time as topologies evolve. We estimate
that additional propagation delay can range from at least 5-50ms, which is significant
for service providers [4]. We show that addressing the source of inflation can reduce
download times by hundreds of milliseconds. We argue that it will become increasingly
important to optimize routing as last-mile delays in mobile networks improve and the
relative impact of inflation becomes larger. Last, we make our dataset publicly available
and provide an online tool for visualizing our network performance data.

2 Background and Related Work

Background. As Internet-connected mobile devices proliferate, we need to understand
factors affecting Internet service performance from mobile devices. In this paper, we
focus on two factors: the carrier topology, and the routing choices and peering arrange-
ments that mobile carriers and service providers use to provide access to the Internet.

The device’s carrier network can have multiple Internet ingress points — locations
where the carrier’s access network connects to the Internet. The carrier’s network may
also connect with a Web service provider at a peering point — a location where these
two networks exchange traffic and routes. The Domain Name System (DNS) resolvers
from (generally) the carrier and the service provider combine to direct the client to a
server for the service by resolving the name of the service to a server IP address.

Idealized Operation. This paper focuses on Google as the service provider. To under-
stand how mobile devices access Google’s services, we make the following assump-
tions about how Google maps clients to servers to minimize latency. First, Google has
globally distributed servers, forming a network that peers with Internet service provider
networks widely and densely [2,5]. Second, Google uses DNS to direct clients (in our
case, mobile devices) to topologically nearby servers. Last, Google can accurately map
mobile clients to their DNS resolvers [6]. Since its network’s rich infrastructure aims
at reducing client latency, Google is an excellent case study to understand how carrier
topology and routing choices align with Google’s efforts to improve client performance.

We use Fig. 1 to illustrate the ideal case of a mobile device connecting to a Google
server. A mobile device uses DNS to look up www.google.com. Google’s resolver



Diagnosing Path Inflation of Mobile Client Traffic 25

Peering ServerUser Cell Tower Ingress
Metro Area

Internet

Fig. 1. Optimal routing for mobile clients

returns an optimal Google destination based on a resolver-server mapping. Traffic from
the device traverses the carrier’s access network, entering the Internet through an ingress
point. Ideally, this ingress point is near the mobile device’s location. The traffic enters
Google’s network through a nearby peering point and is routed to the server.

In this paper, we identify significant deviations from this idealized behavior. Specif-
ically, we are interested in metro-level path inflation [10], where traffic from a mobile
client to a Google server exits the metropolitan (henceforth metro) area even though
Google has a presence there. This metro-level inflation impacts performance by in-
creasing latency.

Example Inflation. Carrier topology determines where traffic from mobile hosts enters
the carrier network. Prior work has suggested that mobile carriers have relatively few
ingress points [11]. Therefore, traffic from a client in the Los Angeles area may enter the
Internet in San Francisco because the carrier does not have an ingress in Los Angeles.
If the destination service has a server in Los Angeles, the topology can add significant
latency compared to having an ingress in LA. Routing configurations and peering ar-
rangements can also cause path inflation. As providers move services to servers located
closer to clients, the location where carriers peer with a provider’s network may signifi-
cantly affect performance. For instance, if a carrier has ingress points in Seattle and San
Francisco, but peers with a provider only in San Francisco, it may route Seattle traffic
to San Francisco even if the provider has a presence in Seattle.

Related Work. Research showed 10 years ago that interdomain routes suffer from
path inflation particularly due to infrastructure limitations like peering points only at
select locations, but also due to routing policies [8]. In recent work, researchers in-
vestigated reasons for suboptimal performance of clients of Google’s CDN, showing
that clients in the same geographical area can experience much different latencies to
Google’s servers [4,12]. Cellular networks present new challenges and opportunities
for studying path inflation. One study demonstrates differences in metro-area mobile
performance but does not investigate the root causes [7]. Other work shows that routing
over suboptimal paths due to lack of nearby ingress points causes a 45% increase in
RTT latency because of the additional distance traveled, compared to idealized rout-
ing [1]. We show how topologies and path inflation have evolved, and that ingress point
location is only one of several factors that can affect performance.

3 Dataset

Data Collected. Our data consists of network measurements (ping, traceroute, HTTP
GET, UDP bursts and DNS lookups) issued from Speedometer, an internal Android app
developed by Google and deployed on thousands of volunteer devices. Speedometer



26 K. Zarifis et al.

conducts approximately 20-25 measurements every five minutes, as long as the device
has sufficient remaining battery life (80%) and is connected to a cellular network.1

Our analysis focuses on measurements toward Google servers including 310K tracer-
outes, 300K pings and 350K DNS lookups issued in three three-month periods (2011
Q4, 2012 Q2 and Q4). We focus on measurements issued by devices in the US, where
the majority of users is located, with a particular density of measurements in areas with
large Google offices. All users running the app have consented to sharing collected data
in an anonymized form.2 Some fields are stripped (e.g. device IP addresses, IDs), oth-
ers are replaced by hash values (e.g. HTTP URLs). Location data is anonymized to the
center of a region that contains at least 1000 users and is larger than 1 km2.

The above measurements are part of a dataset that we published to a Google
Cloud Storage bucket and released under the Creative Commons Zero license3. We
also provide Mobile Performance Maps, a visualization tool to navigate parts of the
dataset, understand network performance and supplement the analysis in this paper:
http://mpm.cs.usc.edu.

Finding Ingress Points. In order to identify locations of ingress points, for each carrier,
we graphed the topology of routes from mobile devices to Google, as revealed by the
traceroutes in our dataset. We observe that traceroutes from clients in the same regions
tend to follow similar paths. We used the DNS names of routers in those paths to identify
the location of hops at which they enter the public Internet. In general, the traceroutes
form well-defined structures, starting with private or unresolvable addresses, where all
measurements from a given region reach the Internet in a single, resolvable location,
generally a point of presence of the carrier’s backbone network. We define this location
as the ingress point.

Finding Peering Points. To infer peering locations between the carriers and Google,
we identified for each path the last hop before entering Google’s network, and the first
hop inside it (identified by an IP address from Google’s blocks). Using location hints
in the hostnames of those hop pairs, we infer peering locations for each carrier [9]. In
cases where the carrier does not peer with Google (i.e., sends traffic through a transit
AS), we use the ingress to Google’s network as the inferred peering location.

4 A Taxonomy of Inflated Routes

Types of Path Inflation. Table 1 shows, for traceroutes in our dataset from the four
largest mobile carriers in the US, the fraction of routes that incurred a metro-level path
inflation.

For three of the four carriers, more than half of all traceoutes to Google experienced
a metro-level deviation in Q4 2011. Further, nearly all measurements from AT&T cus-
tomers traversed inflated paths to Google. Note that these results are biased toward
locations of users in our dataset and are not intended to be generalized. Nevertheless, at
a high-level, this table shows that metro-level deviations occur in routes from the four

1 The app source is available at: https://github.com/Mobiperf/Speedometer
2 Google’s privacy and legal teams reviewed and approved data anonymization and release.
3 http://commondatastorage.googleapis.com/speedometer/README.txt

http://mpm.cs.usc.edu
https://github.com/Mobiperf/Speedometer
http://commondatastorage.googleapis.com/speedometer/README.txt


Diagnosing Path Inflation of Mobile Client Traffic 27

Table 1. Fraction of traceroutes from major US carriers that show metro-level inflation

AT&T Sprint T-Mobile Verizon
Q4 2011 0.98 0.10 0.65 0.47
Q2 2012 0.98 0.21 0.25 0.15
Q4 2012 0.00 0.21 0.20 0.38

major carriers, even though Google deploys servers around the world to serve nearby
clients [4]. However, we also observe that the fraction of paths experiencing metro-level
inflation decreases significantly over the subsequent 12 months. As we will show, we
can directly link some of these improvements to the topological expansion of carriers.

In the rest of the paper, we examine path inflation to understand its causes and to
explore what measures carriers have adopted to reduce or eliminate it. We begin by
characterizing the different types of metro-level inflations we see in our dataset. We
split the end-to-end path into three logical parts: client to carrier ingress point (Carrier
Access), carrier ingress point to service provider ingress point (Interdomain), and ser-
vice provider ingress point to destination server (Provider Backbone). Then we define
the following observed traffic patterns of inflated routes:

Carrier Access Inflation. Traffic from a client in metro area L (Local) enters the Internet
in metro area R (Remote), and is directed to a Google server in R.

Interdomain Inflation. Traffic from a client in area L enters the carrier’s backbone in
L, then enters Google’s network in area R and is directed to a Google server there.

Carrier Access-Interdomain Inflation. Traffic from a client in metro area L enters the
carrier’s backbone in metro area R, then enters Google’s network back in area L and is
directed to a Google server there.

Provider Backbone Inflation. Traffic from a client in area L enters the carrier’s back-
bone and Google’s network in area L, but is directed to a Google server in a different
area R. In all cases, Google servers are known to exist in both metro areas L and R.

Possible Causes of Path Inflation. If a carrier lacks sufficient ingress points from its
cellular network to the Internet, it can cause Carrier Access Inflation. For example, if a
carrier has no Internet ingress points in metro area L, it must send the traffic from L to
another area R (Fig. 2, user B). If a carrier’s access network ingresses into the Internet
in metro-area L, a lack of peering between the mobile carrier and Google in metro-
area L causes traffic to leave the metro area, resulting in Interdomain Inflation (Fig. 2,
user C). If a carrier has too few ingresses and lacks peering near its ingresses, we may
observe Carrier Access-Interdomain Inflation. In this case a carrier, lacking ingress in
area L, hauls traffic to a remote area R, where it lacks peering with Google. A peer-
ing point exists in area L, so traffic returns there to enter Google’s network. Though a
provider like Google has servers in most major metropolitan areas, it can still experi-
ence Provider Backbone Inflation if either Google or the mobile carrier groups together
clients in diverse regions when making routing decisions. In this case, Google directs
at least some of the clients to distant servers. Google may also route a fraction of traffic
long distances across its backbone for measurement or other purposes.



28 K. Zarifis et al.

Internet

Metro Area A
User BCell Tower

Metro Area B

PeeringServer

Metro Area C

ServerNo Peering

No Ingress Ingress

Cell Tower

Ingress

User A

ServerPeering

Cell Tower

Ingress

User A

ServerPeering

User BCell Tower

Peering Server

No Ingress g

Cell TowerUser C

Fig. 2. Different ways a client can be directed to a server. User A is the ideal case, where the
traffic never leaves a geographical area. User B and C’s traffic suffers path inflation, due to lack
of ingress point and peering point respectively.

Identifying Root Causes. We run one or more of the following checks, depending on
the inflated part(s) of the path, to perform root cause analysis (illustrated in Fig. 3).

Examining Carrier Access Inflation. For inflated carrier access paths, we determine
whether the problem is the lack of an available nearby ingress point. To do so, we
examine the first public IP addresses for other traceroutes issued by clients of the same
carrier in the same area. If none of those addesses are in the client’s metro area, we
conclude there is a lack of available local ingress.

Examining Interdomain Inflation. For paths inflated between the carrier ingress point
and the ingress to Google’s network, we determine whether it is due to a lack of peering
near the carrier’s ingress point. We check whether any traceroutes from the same carrier
enter Google’s network in that metro area, implying that a local peering exists. If no
such traceroutes exist, we infer a lack of local peering.

Examining Provider Backbone Inflation. For paths inflated inside Google’s network,
we check for inefficient mappings of clients to servers. We look for groups of clients
from different metro areas all getting directed to servers at either one or the other area
for some period, possibly flapping between the two areas over time. If we observe that
behavior, we infer inefficient client/resolver clustering.

A small number of traceroutes (< 2%) experienced inflated paths but did not fit
any of the above root causes. These could be explained by load balancing, persistent
incorrect mapping of a client to a resolver/server, or a response to network outages.

5 Results

We first present examples of the three dominant root causes for metro-level inflation. We
then show aggregate results from our inflation analysis, its potential impact on latency,
and the evolution of causes of path inflation over time.

Case Studies. For each root cause, we now present one example. For each example, we
describe what the traceroutes show, what the diagnosis was, and note the estimated per-
formance hit, ranging from 7-72% extra propagation delay. We constrain our analysis
to the period between late 2011 and mid 2012, where the dataset is sufficiently dense.



Diagnosing Path Inflation of Mobile Client Traffic 29

Lack of local ingress point Lack of local peering point Inefficient client clustering

Are there any traces with 
first hop in this area?

Are there any traces served by 
local target without exiting area?

Are all traces directed to exactly 
one destination at any given time?

YESNO NO

End-to-end path

Carrier Access Part Inflated? Interdomain Part Inflated? Provider Backbone Part Inflated?

Carrier Access Interdomain Provider Backbone

YES YES YES

Fig. 3. Root cause analysis for metro-level inflation

Lack of ingress point. We observe that all traceroutes to Google from AT&T clients in
the NYC area enter the public Internet via an ingress point in Chicago. Thus, Google
directs these New York clients to a server in the Chicago area, even though it is not the
server geographically closest to the clients. These Chicago servers are approximately
1074km further from the clients than the New York servers are, leading to an expected
minimum additional round-trip latency of 16ms (7% overhead) [3].

Lack of peering. We observe AT&T peering with Google near San Francisco (SF),4

but not near Los Angeles (LA) or Seattle. Therefore, Google directs clients in those
two areas to servers in SF rather than in their local metros. While our data in these
regions become sparse after mid 2012, we verified that this inflation persists for clients
from LA in Q2 2013. The observed median RTT for Seattle users served by servers in
SF is 90ms. Since those servers are 1089km farther away from the servers nearest to
the Seattle users, they experience a delay inflation of at least 16ms (21%). As a result,
loading even a simple website like the Google homepage requires an additional 160ms.

Coarse client-server mapping granularity or Inefficient client/resolver clustering. We
observe a behavior for Verizon clients that suggests that Google is jointly directing
clients in Seattle and SF. At any given time, traffic from both areas was directed towards
the same Google servers, either in the Seattle or in the SF area, therefore exhibiting
suboptimal performance for some distant clients. Figure 4 illustrates this behavior over a
2-month period. Normally, users served by servers in their metro area observe a median
RTT of 22ms and 45ms for SF and Seattle respectively. However, when users in one
area served by servers in the other area (indicated by the filled pattern in the figure), the
additional 1089km one-way distance adds an extra 16ms delay (an overhead of 72%
and 35% for SF and Seattle users respectively).

Inflation Breakdown by Root Cause. In this section, we show aggregated statistics of
some of the observed anomalies that cause performance degradation. We focus on Q4
2011 and on AT&T and Verizon Wireless, the period and carriers for which the dataset
is the densest. We also focus on three large metropolitan areas that were populated
enough to generate significant data (SF, New York and Seattle). Google servers exist in
all three areas. For all measurements issued from those areas, we quantify the fraction

4 For the granularity of our analysis, we treat all locations in the Bay Area as equivalent.



30 K. Zarifis et al.

(a) SF clients (b) Seattle clients

Fig. 4. Server selection flapping due to coarse client-server mapping. Dashed areas denote mea-
surements where the client was directed to a remote server.

Table 2. Overall results for two carriers for 2011 Q4. The table shows what fraction of all
traceroutes from clients in three different locations presented a deviation, cause of the devia-
tion (I = Ingress, P = Peering, D = DNS/clustering), extra distance traveled (round-trip), extra
round trip time (RTT), and extra page load time (PLT) when accessing the Google homepage.

Closest
Server

Count Fraction
Inflated

I P D Extra
Dst. (km)

Extra
RTT (ms)

Extra
PLT (ms)

A
T

&
T SF 7759 1.00 x x 4200 31.5 315

Seattle 303 1.00 x 2106 15.8 158
NYC 2720 1.00 x 2148 16.1 161

V
er

iz
on SF 20528 0.30 x 2178 16.3 163

Seattle 2435 0.33 x 1974 14.8 148
NYC 7029 0.98 694 5.2 52

of metro-level inflations and determine the root cause. We believe that the path inflation
observed in those areas implies probable inflation in less-populated regions.

Table 2 shows aggregate results for the three regions. For each case, it includes the
extra round-trip distance traveled as well as a loose lower bound of the additional delay
incurred by traveling that distance, based on the speed of data through fiber [3]. We
observed inflated routes from all regions for both carriers. Most of the traceroutes from
Verizon clients in the NYC area went to servers near Washington, D.C., but we were
unable to discern the exact cause. This represents a small geographic detour and may
not impact performance in practice. Verizon clients from the Seattle and SF metro were
routed together, possibly as a result of using the same DNS resolvers, as described in
our case study above. For all traces from AT&T clients in the NYC area, the first public
AT&T hop is in Chicago, indicating a lack of a closer ingress point. AT&T clients from
the SF area were all served by a nearby Google server. However, traffic went from SF to
Seattle before returning to the server in SF. In the traceroutes, the first public IP address
was always from an AT&T router in Seattle, suggesting a lack of an ingress point near
SF, and increasing the RTT by at least 31ms for all traffic. This behavior progressively
disappeared in early 2012, with the observed appearance of an AT&T ingress point in
the SF area. An informal discussion with the carrier confirms initial deployment of this
ingress in 2011. Note that traceroutes from clients in Seattle were also routed to Google
targets in the SF area. Though Seattle traffic reached a local ingress, AT&T routed it to
SF before handing it to Google’s network, indicating a lack of peering in Seattle and
explaining why traffic from SF clients returned to SF after detouring to Seattle.



Diagnosing Path Inflation of Mobile Client Traffic 31

Fig. 5. Observed ingress points for major US carriers. Locations are labeled with airport codes
belonging to the ingress metro area.

Evolution of Root Causes. As suggested above, carriers’ topologies have evolved
over time. Since our dataset is skewed towards some regions, we cannot enumerate
the complete evolution of carrier topology and routing configuration, but can provide
insight into why we see fewer path inflation instances over time for some carriers.

Ingress Points. Figure 5 maps the observed ingress points at the end of 2011. While our
dataset is limited, we can see indications of improvement. An earlier study [11] found
4-6 ingress points per carrier, whereas our results indicate that some carriers doubled
this figure. This expansion opens up the possibility of much more direct routes from
clients to services. Additionally, we noticed the appearance of AT&T ingresses in SF
and LA, and of at least one Sprint ingress point in LA during the measurement period.

Peering points. Table 3 summarizes the peering points that we observe. In 2011, most
traceroutes from Sprint users in LA are directed to Google servers in Texas or SF. In
measurements from Q2 2012, we observed an additional peering point between Sprint
and Google near LA. Around the same time, we observe that Google started directing
Sprint’s LA clients to LA servers.

Table 3. Observed peering locations between carriers and Google. Locations are identified by
airport codes belonging to the metro area.

Carrier Peering locations (2011 Q4) (2012 Q2) (2012 Q4)
AT&T CHI, DFW, HOU, MSP, PDX, SAT, SFO + ATL, CMH + DEN
Sprint ASH, ATL, CHI, DFW, LGA, SEA, SFO + LAX
T-Mobile DCA, DFW, LAX, LGA, MSP, SEA, SFO + MIL + MIA
Verizon ATL, CHI, DAL, DCA, DFW, HOU, LAX, + ASH, MIA

SCL, SEA, SFO



32 K. Zarifis et al.

6 Path Inflation Today

Our measurements show that many instances of path inflation in the US disappeared
over time. However, in addition to the persistent lack of AT&T peering in the LA area
mentioned earlier, we see evidence for inflated paths in other regions of the world (from
Q3 2013 measurement data). For example, clients of Nawras in Oman are directed to
servers in Paris, France instead of closer servers in New Delhi, India. This increases the
round trip distance by over 7000km, and may be related to a lack of high-speed paths
to the servers in India. We also see instances of path inflation in regions with well-
developed infrastructure. E-Plus clients in southern Germany are delegated to Paris or
Hamburg servers instead of a close-by server in Munich, and Movistar clients in Spain
are directed to servers in London instead of local servers in Madrid. These instances
suggest that path inflation is likely to be a persistent problem in many parts of the
globe, and motivate the design of a continuous measurement infrastructure for identify-
ing instances of path inflation, and diagnosing their root causes.

7 Conclusions

This paper took a first look into diagnosing path inflation for mobile client traffic, us-
ing a large collection of longitudinal measurements gathered by smartphones located
in diverse regions and carrier networks. We provided a taxonomy of causes for path
inflation, identified the reasons behind observed cases, and quantified their impact. We
found that a lack of carrier ingress points or provider peering points can cause lengthy
detours, but, in general, routes improve as carrier and provider topologies evolve. Our
dataset is publicly available at http://mpm.cs.usc.edu and our ongoing work
includes developing techniques for automatic detection of evolving topology issues.

References

1. Dong, W., Ge, Z., Lee, S.: 3G Meets the Internet: Understanding the Performance of Hierar-
chical Routing in 3G Networks. In: ITC (2011)

2. Gill, P., Arlitt, M., Li, Z., Mahanti, A.: The Flattening Internet Topology: Natural Evolution,
Unsightly Barnacles or Contrived Collapse? In: Claypool, M., Uhlig, S. (eds.) PAM 2008.
LNCS, vol. 4979, pp. 1–10. Springer, Heidelberg (2008)

3. Katz-Bassett, E., John, J.P., Krishnamurthy, A., Wetherall, D., Anderson, T., Chawathe, Y.:
Towards IP geolocation using delay and topology measurements. In: IMC (2006)

4. Krishnan, R., Madhyastha, H.V., Srinivasan, S., Jain, S., Krishnamurthy, A., Anderson, T.,
Gao, J.: Moving Beyond End-to-End Path Information to Optimize CDN Performance. In:
IMC (2009)

5. Labovitz, C., Iekel-Johnson, S., McPherson, D., Oberheide, J., Jahanian, F.: Internet inter-
domain traffic. In: SIGCOMM (2010)

6. Mao, Z.M., Cranor, C.D., Douglis, F., Rabinovich, M., Spatscheck, O., Wang, J.: A Pre-
cise and Efficient Evaluation of the Proximity Between Web Clients and Their Local DNS
Servers. In: USENIX ATC (2002)

7. Sommers, J., Barford, P.: Cell vs. WiFi: on the performance of metro area mobile connec-
tions. In: IMC (2012)

http://mpm.cs.usc.edu


Diagnosing Path Inflation of Mobile Client Traffic 33

8. Spring, N.T., Mahajan, R., Anderson, T.E.: The causes of path inflation. In: SIGCOMM
(2003)

9. Spring, N.T., Mahajan, R., Wetherall, D., Anderson, T.E.: Measuring ISP topologies with
Rocketfuel. IEEE/ACM Trans. Netw. 12(1) (2004)

10. Tangmunarunkit, H., Govindan, R., Shenker, S., Estrin, D.: The Impact of Routing Policy on
Internet Paths. In: INFOCOM (2001)

11. Xu, Q., Huang, J., Wang, Z., Qian, F., Gerber, A., Mao, Z.M.: Cellular data network infras-
tructure characterization and implication on mobile content placement. In: SIGMETRICS
(2011)

12. Zhu, Y., Helsley, B., Rexford, J., Siganporia, A., Srinivasan, S.: LatLong: Diagnosing Wide-
Area Latency Changes for CDNs. IEEE TNSM 9(3) (2012)



An End-to-End Measurement Study
of Modern Cellular Data Networks

Yin Xu, Zixiao Wang, Wai Kay Leong, and Ben Leong

Department of Computer Science, National University of Singapore
{xuyin,zixiao,waikay,benleong}@comp.nus.edu.sg

Abstract. With the significant increase in cellular data usage, it is critical to bet-
ter understand the characteristics and behavior of cellular data networks. With
both laboratory experiments and crowd-sourcing measurements, we investigated
the characteristics of the cellular data networks for the three mobile ISPs in Sin-
gapore. We found that i) the transmitted packets tend to arrive in bursts; ii) there
can be large variations in the instantaneous throughput over a short period of time;
iii) large separate downlink buffers are typically deployed, which can cause high
latency when the throughput is low; and iv) the networks typically implement
some form of fair queuing policy.

1 Introduction

Cellular data networks are carrying an increasing amount of traffic with their ubiquitous
deployments and their data rates have increased significantly in recent years [1]. How-
ever, networks such as HSPA and LTE have very different link-layer protocols from
wired and WiFi networks. It is thus important to have a better understanding of the
characteristics and behavior of cellular data networks.

In this paper, we investigate and measure the characteristics of the cellular data net-
works for the three ISPs in Singapore with experiments in the laboratory as well as
with crowd-sourced data from real mobile subscribers. The latter was obtained using
our custom Android application that was used by real users over a 5-month period from
April to August 2013. From our results, we make the following observations on the cel-
lular data networks investigated: i) transmitted packets tend to arrive in bursts; ii) there
can be large variations in the instantaneous throughput over a short period of time, even
when the mobile device is stationary; iii) large separate downlink buffers are typically
deployed in mobile ISPs, which can cause high latency when the throughput is low; and
iv) mobile ISPs typically implement some form of fair queuing policy.

Our findings confirm that cellular data networks behave differently from conven-
tional wired and WiFi networks, and our results suggest that more can be done to op-
timize protocol performance in existing cellular data networks. For example, the fair
scheduling in such networks might effectively eliminate the need for congestion con-
trol if the cellular link is the bottleneck link. We also found that different ISPs and
devices use different buffer configurations and queuing policies.

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 34–45, 2014.
c© Springer International Publishing Switzerland 2014



An End-to-End Measurement Study of Modern Cellular Data Networks 35

2 Related Work

A number of existing works have measured commercial cellular data networks. One
common finding is that the throughput and latency in such networks vary significantly
[9,13]. Other works have focused on measuring and characterizing the one-way delay of
3G/HSPA networks [4,7]. Winstein et al. also mentioned in passing that packet arrivals
on LTE links do not follow an observable isochronicity [16]. Jiang et al. measured
the buffers of 3G/4G networks for the four largest U.S. carriers as well as the largest
ISP in Korea using TCP and examined the bufferbloat problem [6]. Our work extends
their work by investigating the buffer sizes and queuing policies of mobile ISPs, and
we found some surprising differences among the three local ISPs. Aggarwal et al. dis-
cussed the fairness of 3G networks and found that the fairness of TCP is adversely
affected by a mismatch between the congestion control algorithm and the network’s
scheduling mechanism [3]. A recent study also showed various interesting effects of
network protocols and application behaviors on the performance of LTE networks [5].

3 Methodology

In this section, we describe our measurement study methodology. Our experiments were
conducted on the cellular data networks of the three local ISPs in Singapore, which we
anonymize as A, B and C. Some measurements were taken in our laboratory at the Na-
tional University of Singapore, while the rest were crowd-sourced with the assistance
of real users using their personal mobile devices. For the laboratory experiments, we
purchased 3G/LTE cellular data plans from each ISP and took measurements with dif-
ferent models of smartphones and USB modems. The LTE data plans were backward-
compatible with the older HSPA and HSPA+ networks and allowed us to also access
these older networks and use non-LTE-enabled mobile devices.

To obtain crowd-sourced measurements, we developed and published a measurement
application, ISPCheck [2], on the Android Play Store. To date, it has about 50 instal-
lations and the data presented in this paper was obtained over a 5-month period from
April to August 2013. During this period, 6,048 sets of experiments from 23 different
users were collected, with 2,301 sets for HSPA networks and 3,747 sets for the faster
HSPA+ networks. We did not include the data for LTE networks because we had rela-
tively little data for these networks, since the LTE networks in Singapore are relatively
new and the majority of subscribers have not yet upgraded to LTE.

In our experiments, the measured UDP throughput was never lower than the mea-
sured TCP throughput. This suggests that the local ISPs do not throttle UDP flows,
unlike the ISPs for other countries [15]. As such, we decided to use UDP flows in all
our experiments because UDP provides us with full control over the packet size and
sending rate. Also, unless otherwise stated, the packet size for our experiments was
1,420 bytes (including IP headers), since we found that this was the default MTU ne-
gotiated by TCP connections in the local networks. For the experiments conducted in
the laboratory, we synchronized the clock of the mobile phones to that of our server by
pinging the phone over a USB connection with our server. By using pings with RTTs
that are less than 2 ms, we were able to synchronize the clocks to within 1 ms accuracy.



36 Y. Xu et al.

This allows us to count the packets in flight and determine the exact one-way delay in
our measurements precisely. While tcpdump was used to log the packets in our labo-
ratory experiments, we could not use it in ISPCheck because it requires root access to
the device. So ISPCheck simply logs packet traces at the application layer. All of our
results are available online1.

4 Packet Flow Measurement

In this section, we investigate the packet flow characteristics of cellular data networks.
In particular, we demonstrate that the arrival pattern of cellular data packets is bursty,
and it is thus necessary to take this pattern into account when we try to estimate the
instantaneous throughput for cellular data networks. Finally, we investigate how the
instantaneous throughput of cellular data networks varies over time and find that it can
vary by as much as two orders of magnitude within a 10-min interval.

4.1 Burstiness of Packet Arrival

In cellular data networks, packets are typically segmented and transmitted over several
frames in the network link and then reconstructed at the receiver. Such networks also
incorporate an ARQ mechanism that automatically retransmits erroneous frames, and
this can cause packets to be delayed or reordered. To investigate the effect of the link
layer protocols on the reception pattern of IP packets, we saturated the mobile link by
sending UDP packets from our server to a mobile device at a rate that is higher than the
receiving rate. A HTC Desire (HSPA-only) phone was used to measure existing HSPA
networks and a Samsung Galaxy S4 phone was used to measure existing HSPA+ and
LTE networks. We cannot use the Galaxy S4 to measure HSPA networks because it
would always connect to existing HSPA+ networks by default.

One key observation is that packets tend to arrive in bursts. In Fig. 1, we plot the
inter-packet arrival times of a representative trace from one of our experiments. We can
clearly see that packets tend to arrive in clusters at 10 ms intervals, and that within each
cluster, most packets tend to arrive within 1 ms of one another. In Fig. 2, we plot the
cumulative distribution of the inter-packet arrival times for 5 traces for networks with
different data rates. From these results, we can see that packet arrival is bursty at 10 ms
intervals in HSPA networks and at 4 ms in the faster HSPA+ and LTE networks.

In Fig. 3(a), we plot the cumulative distribution of the inter-packet arrival times for
the crowd-sourced data collected with ISPCheck. In total, the data set consisted of more
than 1 million downstream packets and over 400,000 upstream packets. Again, we can
see that the packets arrive in distinct bands even when the packet traces are recorded
at the application layer. We consider packets that arrive within 1 ms of each other to
constitute a burst, and plot the cumulative distribution of burst sizes in Fig. 3(b). We can
see that the majority of downstream packets arrive in bursts. This is likely because the
downlink of cellular data networks allows for the parallel transmission of frames which
could result in multiple packets being reconstructed at the same time at the receiver.

1 Our data set is currently available at http://www.opennat.com/ispcheck

http://www.opennat.com/ispcheck


An End-to-End Measurement Study of Modern Cellular Data Networks 37

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0  5  10  15  20

In
te

r-
pa

ck
et

 A
rr

iv
al

 T
im

e 
(m

s)

Time (s)

Fig. 1. Trace of the inter-packet arrival time
of a downstream UDP flow for ISP C’s HSPA
network

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  10  20  30  40  50

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Inter-packet Arrival Time (ms)

LTE 32.8Mbps
HSPA+ 6.6Mbps

HSPA 6.2Mbps
HSPA 2.2Mbps
HSPA 0.4Mbps

Fig. 2. Cumulative distribution of the inter-
packet arrival times for ISP C

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  20  40  60  80  100

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

HSPA+ Download
HSPA Download

HSPA+ Upload
HSPA Upload

(a) Inter-packet arrival time (ms)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  2  4  6  8  10

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

HSPA Upload
HSPA+ Upload

HSPA Download
HSPA+ Download

(b) Number of packets in one burst

Fig. 3. Inter-packet arrival times and number of packets in one burst for ISPCheck

The arrival of packets at distinct intervals of either 10 ms or 4 ms is likely due to
the polling duty cycle of the radio driver in the mobile devices, but we were not able
to verify this from the available hardware specifications. We noticed that older (and
slower) phones like the HTC Desire had a longer interval of 10 ms, while the newer
Galaxy S4 has an interval of only 4 ms. To ascertain that this was independent of the
kernel tick interval, we performed the same experiments over a 802.11g WiFi network,
and confirmed that there was no distinct banding of packets.

4.2 Measuring Instantaneous Throughput

Our observation of bursty packet arrivals suggests that traditional bandwidth measure-
ment techniques using packet pairs [11] or packet trains [12] will not work well for
cellular data networks. In order to obtain a reasonably good estimate of the instanta-
neous throughput, we would likely have to observe at least two bursts worth of packets,
but even that might not be sufficient because of the coarse granularity of the clock.

To investigate the effect of bursty packet arrival on instantaneous throughput estima-
tion, we initiated a large number of saturating downstream UDP flows (each 30 s long)
over a period of time, until we found a trace where the flow seemed to be stable. Since
this flow achieved an average throughput of 6.9 Mbps over the entire period, and the



38 Y. Xu et al.

 0

 0.05

 0.1

 0.15

 0.2

 0  200  400  600  800  1000
 0

 0.5

 1

 1.5

 2

 2.5
A

vg
. E

rr
or

S
td

. D
ev

. (
M

bp
s)

Number of Bursts in the Measurement Window

Avg. Error
Std. Dev.

Fig. 4. The accuracy of throughput estimation
with different window

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Throughput (Mbps)

HSPA Upload
HSPA+ Upload

HSPA Download
HSPA+ Download

Fig. 5. Plot of cumulative distribution of the
throughput for data from ISPCheck

maximum speed of our data plan was 7.2 Mbps, we assumed that there was very little
interference from other users and network traffic for this trace. Hence, any variations
could be attributed to the burstiness of the packet arrivals and the transmission medium.

The packet arrivals in the trace were segmented into bursts of packets all arriving
within 1 ms of each other. Next, we estimated the instantaneous throughput by using a
consecutive number of n bursts. That is, we ignored the first burst and divided the data
in the last n− 1 bursts over the total time elapsed between the n bursts. We computed
all possible windows of n-bursts in the flow and plot the standard deviation and error
between the estimates and the long-term average throughput of 6.9 Mbps (normalized
against 6.9 Mbps) in Fig. 4 for the estimates obtained as n varies from 2 to 1,000.

As expected, the accuracy and the standard deviation of our estimates will improve
if we use a larger number of bursts. However, it is not feasible to use too much data be-
cause doing so is not only costly, it might cause the measurement to take too long and
the resulting instantaneous measurement might not be too meaningful. Our results in
Fig. 4 suggest that using 50 bursts of packets achieves a reasonable trade-off between
accuracy and data required. This translates to about 100 KB and 300 KB of data re-
spectively, or at least 400 ms and 325 ms respectively in terms of time, for measuring
the upstream and downstream throughputs of 2 Mbps upstream/7.2 Mbps downstream
HSPA networks.

4.3 Variations in Mobile Data Network Throughput

We now present our findings on the variations in the networks that we investigated.
In Fig. 5, we plot the cumulative distribution of the crowd-sourced data obtained from
ISPCheck. As expected, HSPA+ networks are generally faster than HSPA networks.
While HSPA+ can in principle achieve speeds higher than 7.2 Mbps, we rarely found
speeds higher than that because most of the local data plans have a maximum rate limit
of 7.2 Mbps. Overall, we see significant asymmetry in the upstream and downstream
data rates and also that the actual throughput achieved by the local subscribers can vary
significantly from a few Kbps to several Mbps.

To understand temporal variation, we initiated a 10-min long UDP flow in the HSPA+
network of ISP C and maintained a constant number of packets in flight to keep the



An End-to-End Measurement Study of Modern Cellular Data Networks 39

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0  2  4  6  8  10

T
hr

ou
gh

pu
t (

M
bp

s)

Time (minutes)

Download
Upload

Fig. 6. The huge variation of the download and
upload throughput for ISP C’s HSPA+ network

 0

 500

 1000

 1500

 2000

 2500

 0  5  10  15  20  25  30  35  40  45

N
um

be
r 

of
 P

ac
ke

ts
 in

 F
lig

ht

Time (s)

Pkt Size = 1420
Pkt Size = 1000
Pkt Size = 500
Pkt Size = 200

Fig. 7. The number of packets in flight for
downloads with different packet size for ISP
C’s HSPA network

buffer filled and ensure that the cellular link is always busy. We estimated the instan-
taneous throughput over the entire period using windows of 50 bursts of packets, as
discussed in Section 4.1. We plot the estimated instantaneous throughput for both an
upstream flow and a downstream flow in Fig. 6. We can see that not only does the
throughput change fairly quickly, it also varies by as much as over two orders of mag-
nitude several times within a 10-min interval. This corroborates the claims of previ-
ous work [13,16] and may lead to significant degradation in TCP and HTTP perfor-
mance [5].

5 Buffer and Queuing Policy

This section highlights our measurements of the buffer configurations on both ends of
the cellular data networks and our investigation into the queuing policies.

Downlink Buffer Size. We estimate the buffer size by sending UDP packets at a rate
higher than the receiving rate, which causes the buffer to fill over time with packets and
eventually overflow. We can accurately determine the number of outstanding packets in
the network, or packets in flight, by synchronizing the clock of our mobile phones to
that of the server. Finally, we can estimate the buffer size by subtracting the measured
bandwidth-delay product from the total packets in flight. Interestingly, we found that
instead of being conventionally sized in bytes, the downstream buffers at the ISPs are
sized in packets. In these experiments, we vary the size of the packets from 200 to
1,420 bytes. We could not use packets smaller than 200 bytes because our receiving
devices and tcpdump are not able to process such small packets fast enough when we
try to saturate the networks to measure the buffer size.

Fig. 7 shows the plot of packets in flight against time for one of our experiments
using different packet sizes over ISP C’s HSPA network. We can see that the number of
packets in flight plateaus at the same value for different packet sizes. In this instance, the
bandwidth delay product was small (≈ 50 packets), and so we deduced that the buffer
size was fixed at about 2,000 packets. We observed similar behavior in the downstream
buffers for all the networks studied, with the exception of ISP A’s LTE network.



40 Y. Xu et al.

 0

 1

 2

 3

 4

 0  1  2  3  4  5

B
uf

fe
r 

S
iz

e 
(M

B
)

Throughput (MB/s)

y = 0.8x

Fig. 8. In ISP A’s LTE network, the effective
buffer size seems to be proportional to the
throughput.

Table 1. Downlink buffer characteristics for lo-
cal ISPs

ISP Network Buffer Size Drop Policy

ISP A
HSPA(+) 4,000 pkts Drop-tail
LTE (≤ 800 ms) AQM

ISP B
HSPA(+) 400 pkts Drop-head
LTE 600 pkts Drop-tail

ISP C
HSPA(+) 2,000 pkts Drop-tail
LTE 2,000 pkts Drop-tail

The downstream buffer for ISP A’s LTE network behaved quite differently from the
rest. As shown in Fig. 8, the buffer size seems to be a linear function of the throughput
(c.f. y = 0.8x). In other words, the size of the buffer appears to vary proportionally to
the throughput in a way that keeps the maximum queuing delay constant at 800 ms. We
suspect that ISP A might have implemented a Codel-like [10] AQM mechanism in their
network, i.e., packets are timestamped when they arrive, and checked at the head of the
queue. Packets that spent more than 800 ms in the buffer would be dropped. While there
is certainly an absolute limit of the buffer in terms of physical memory space, we were
not able to exceed that even when we sent packets at the maximum supported data rate.
A summary of the estimated buffer sizes for all three local ISPs is shown in Table 1.

Overall, we observed that the downstream buffers for most of the ISP networks are
fairly large. Because the variation in the throughput can be very large, it is possible on
occasion for the latency to become very high when throughput is too low to drain the
buffer fast enough [6]. By controlling the maximum time that a packet can spend in the
buffer (like in ISP A’s LTE network), the maximum latency can however be kept at a
stable value (about 800 ms for ISP A’s LTE network) independent of the throughput.

Drop Policy. We also investigated the drop policy of the various ISPs by studying the
traces of the packet losses and found that a drop-tail policy was implemented in all
the networks except for ISP B’s HSPA(+) and ISP A’s LTE network. We repeated our
experiments several times with different parameter settings and at different physical
locations, and consistently obtained the results summarized in Table 1.

We explain how we inferred the drop policies with the following examples: in
Fig. 9(a), we plot the number of packets sent, packets lost and packets in flight over
time for ISP C’s HSPA(+) network, and in Fig. 9(b), we plot a corresponding trace for
ISP B’s HSPA(+) network. Because the traces are analyzed offline, we could determine
the lost packets by observing that they were sent but never received. However, we can-
not determine precisely when the packet losses happened. Hence, the “Lost” line in
our graphs refers to the time when the lost packets were sent and not when they were
actually dropped. We see in Fig. 9(a), that for ISP C’s network, packet losses only oc-
cur to packets sent after time t = 5. This also coincides with the start of a plateau in
the number of packets in flight because we exclude known lost packets when plotting
the number of packets in flight. Thus, we can infer that Fig. 9(a) suggests a drop-tail



An End-to-End Measurement Study of Modern Cellular Data Networks 41

 0

 1000

 2000

 3000

 4000

 5000

 0  2  4  6  8  10  12  14

N
um

be
r 

of
 P

ac
ke

ts

Time (s)

Sent
In Flight

Lost

(a) ISP C HSPA(+)

 0

 500

 1000

 1500

 2000

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

N
um

be
r 

of
 P

ac
ke

ts

Time (s)

Sent
In Flight

Lost

(b) ISP B HSPA(+)

Fig. 9. Trace of the packets sent, lost and in flight in a UDP downstream flow

queue, where the buffer is fully saturated around time t = 5 and newly sent packets are
dropped until no more packets are sent at time t = 7.2 and the buffer starts to empty.

In contrast, Fig. 9(b) paints a very different picture for ISP B’s network. We see
that packet losses start to occur very early in the trace and stop after time t = 2.4,
i.e., there were no losses for the final batch of 400 packets sent after time t = 2.4.
This suggests a drop-head queuing policy. In addition, the packets in flight plateaus at
a lower value before increasing to a peak from time t = 2.4 to t = 3. The explanation
for this observation is that the line for packets in flight excludes the lost packets even
though for a drop-head queue, they would have occupied space in the buffer before they
get dropped at the head of the queue. Thus, our estimate of the packets in flight is an
underestimate of the actual value while packets are dropped at the head of the buffer.
From time t = 2.4 to t = 3, the older packets in the buffer are still being dropped
but no new packet are lost. Hence, the proportion of packets dropped decreases, which
explains why our estimate of the packets in flight gradually increases to the true value
at t = 3.

Uplink Buffer Size. The uplink buffer is at the radio interface of the mobile device,
and for all the mobile phones we tested, the buffer is sized in terms of bytes rather than
number of packets like the downlink buffer. In Fig. 10, we plot the bytes in flight over
time for the experiments carried out on a HTC Desire phone. We see that the number
of bytes in flight remained constant for different packet sizes. On the other hand, the
Huawei USB modems we tested had buffers that were sized in terms of number of
packets. Our results are summarized in Table 2.

Another interesting finding is that the newer Samsung Galaxy S3 LTE and Galaxy
S4 phones seem to buffer packets in the kernel (which is sized in packets), in addition
to the regular buffer in the radio interface (which is sized in bytes). Our measurement
application was blocked from sending UDP packets once there were about 200 packets
in the kernel buffer. This behavior was unexpected because we do not typically expect
UDP packet transmissions to be blocked and indeed, this was not observed in the older
Android phones. It is plausible that the phone manufacturers have come to realize that
because the uplink bandwidth can sometimes be very low, not blocking UDP transmis-
sions would likely cause packets to be dropped even before the phone can get a chance
to transmit them, and thus have modified the kernel to implement blocking even for



42 Y. Xu et al.

 0

 20

 40

 60

 80

 100

 120

 0  2  4  6  8  10  12

B
yt

es
 in

 F
lig

ht
 (

K
B

)

Time (s)

Pkt Size = 1420
Pkt Size = 1000

Pkt Size = 500
Pkt Size = 200

Fig. 10. The bytes in flight for uploads with
different packet sizes for HTC Desire

 0

 500

 1000

 1500

 2000

 0  5  10  15  20  25  30  35  40  45

N
um

be
r 

of
 P

ak
ce

ts
 in

 F
lig

ht

Time (s)

Phone 1
Phone 2

Fig. 11. The number of packets in flight for
two concurrent downloads for ISP C’s HSPA
network

Table 2. The radio interface buffer size of different devices

Device Type Model Network Buffer Size

Android Phone

HTC Desire HSPA 64 KB
Galaxy Nexus HSPA+ 1.5 MB

Galaxy S3 LTE† HSPA+ 200 KB
LTE 400 KB

Galaxy S4† HSPA+ 200 KB
LTE 400 KB

USB Modem
Huawei E3131 HSPA+ 300 pkts
Huawei E3276 LTE 1,000 pkts

†These devices have additional buffering of 1,000 packets in the kernel.

UDP transmissions. To further investigate this phenomenon, we tethered the phone to
a desktop computer via USB and used the desktop as the packet source, instead of an
Android application. By running tcpdump on the USB and the radio interfaces of the
phone, we can directly observe the flow of packets through the phone. In these experi-
ments, we found that the buffering in the kernel was 1,000 packets for both the Galaxy
S3 LTE and S4. There was no evidence that packets were buffered in the kernel for the
other Android phone models that we investigated.

Separate Downlink Buffers. Winstein et al. claimed that ISPs implement a separate
downlink buffer for each device in a cellular data network [16]. To verify this claim, we
performed an experiment where we started saturating UDP flows to two mobile phones
concurrently connected to the same radio cell. If there was a common buffer, we will
likely see differences as the packets for the two flows jostle for a place in the common
buffer. Instead, in Fig. 11, we can see that the packets in flight reach the same and
constant value for both phones, indicating that it is unlikely for the buffer to be shared
between the devices. We observed the same behavior for all the three ISPs.

Queuing Policy and Fairness. To investigate if the ISPs implement a fair schedul-
ing algorithm such as Round Robin, Maximum C/I and Proportional Fair as specified
in [14], we ran the following experiment: using two mobile phones connected to the



An End-to-End Measurement Study of Modern Cellular Data Networks 43

 0.01

 0.1

 1

 10

 100

 0  50  100  150  200  250  300
 0

 0.5

 1

 1.5

 2

 2.5

 3
O

ne
 W

ay
 D

el
ay

 (
s)

T
hr

ou
gh

pu
t(

M
bp

s)

Time (s)

OWD of flow 2
Throughput of flow 2

OWD of flow 1

Fig. 12. Comparison of delay-sensitive flow
and high-throughput flow for ISP C’s HSPA
network

 0

 1000

 2000

 3000

 4000

       

T
hr

ou
gh

pu
t (

kb
ps

)

UDP 1
UDP 2

TCP

 1

 10

 100

 1000

0 10 20 30 40 50 60

P
kt

s 
in

F
lig

ht

Time (s)

Fig. 13. The throughput and packets in flight
of three downlink flows for ISP C’s HSPA net-
work

same cell with the same signal strength, we sent a UDP flow to one of the phones at the
constant rate of one 50-byte packet every 10 ms. After 2 min, we started a saturating
UDP flow to the other phone using 1,420-byte packets and saturated the buffer by main-
taining 1,000 packets in flight. The first flow mimics a low-throughput, delay-sensitive
application, while the second mimics a high-throughput application. In Fig. 12, we plot
the downstream one-way delay (OWD) of both flows together with the throughput of
the second saturating UDP flow. If the queuing policy were FIFO, we would expect that
since flow 2 saturates the buffer, the one-way delay for flow 1 would greatly increase.
Instead, our results show that the delay of flow 1 remains low and stable throughout.

To investigate if the scheduling policy was fair among devices, we designed another
experiment using three HTC Desire mobile phones connected to the same cell with
similar signal strength. A downstream flow was initiated to each phone: i) a UDP flow
that maintains 1,420 KB of data in flight, ii) a UDP flow that maintains 64 KB of data
in flight, and iii) a TCP flow whose maximum receiver window was set at 64 KB. In
Fig. 13, we plot the throughput of all three flows with the number of packets in flight. It
turns out that the throughput is fairly distributed among the three devices, independent
of the number of packets in their buffer. We repeated this experiment for the HSPA(+)
networks of all three local ISPs and found similar results.

We make several observations from the results of our experiments. First, all the ISPs
clearly implement some form of fair queuing and unlike in the core Internet, UDP and
TCP traffic seem to be treated equally by our local mobile ISPs. While we could ob-
serve this behavior end-to-end, we could not determine if the fairness was enforced
at the MAC layer or within the network. Second, having more data in flight may not
help increase throughput because flows are effectively separated and do not compete
for the same buffer space at a cellular base station. Instead, if the throughput is low, sat-
urating the buffer will only result in increased latency. Third, since the fairness among
connected mobile devices is enforced by a scheduling policy, congestion control at the
transport layer (i.e. TCP) may not be necessary across a cellular link. This suggests that
if the cellular link is the bottleneck link, which is common in the older HSPA networks,
an end-to-end approach to congestion control may be possible [16]. Also, it is possible
for an end-to-end flow to be split at the gateway of the cellular data network and a more
efficient protocol can be used on the cellular link [17,8].



44 Y. Xu et al.

6 Conclusion

In this paper, we showed that the packet arrivals in cellular data networks are bursty
and that this burstiness needs to be taken into account when estimating instantaneous
throughput. We verified that the throughput of existing networks can vary by as much
as two orders of magnitude within a 10-min interval, and found that mobile ISPs often
maintain large and separate downlink buffers for each user. The ISPs also implement
some form of fair queuing, but for different networks, the buffer management policies
may be quite different. Whether these configurations are optimal and what makes a
configuration optimal are candidates for further study. We believe that our observations
would be useful for the design and optimization of protocols that work with cellular
data networks.

Acknowledgment. This research was carried out at the SeSaMe Centre. It is supported
by the Singapore NRF under its IRC@SG Funding Initiative and administered by the
IDMPO.

References

1. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update (2012-2017)
2. ISPCheck, https://play.google.com/store/apps/details?id=com.ispcheck
3. Aggarwal, V., Jana, R., Ramakrishnan, K., Pang, J., Shankaranarayanan, N.K.: Characteriz-

ing Fairness for 3G Wireless Networks. In: Proceedings of LANMAN 2011 (October 2011)
4. Elmokashfi, A., Kvalbein, A., Xiang, J., Evensen, K.R.: Characterizing Delays in Norwegian

3G Networks. In: Taft, N., Ricciato, F. (eds.) PAM 2012. LNCS, vol. 7192, pp. 136–146.
Springer, Heidelberg (2012)

5. Huang, J., Qian, F., Guo, Y., Zhou, Y., Xu, Q., Mao, Z.M., Sen, S., Spatscheck, O.: An In-
depth Study of LTE: Effect of Network Protocol and Application Behavior on Performance.
In: Proceedings of SIGCOMM 2013 (August 2013)

6. Jiang, H., Wang, Y., Lee, K., Rhee, I.: Tackling Bufferbloat in 3G/4G Networks. In: Proceed-
ings of IMC 2012 (November 2012)

7. Laner, M., Svoboda, P., Hasenleithner, E., Rupp, M.: Dissecting 3G Uplink Delay by Mea-
suring in an Operational HSPA Network. In: Spring, N., Riley, G.F. (eds.) PAM 2011. LNCS,
vol. 6579, pp. 52–61. Springer, Heidelberg (2011)

8. Leong, W.K., Xu, Y., Leong, B., Wang, Z.: Mitigating Egregious ACK Delays in Cellular
Data Networks by Eliminating TCP ACK Clocking. In: Proceedings of ICNP 2013 (October
2013)

9. Liu, X., Sridharan, A., Machiraju, S., Seshadri, M., Zang, H.: Experiences in a 3G Network:
Interplay Between the Wireless Channel and Applications. In: Proceedings of MobiCom
2008 (September 2008)

10. Nichols, K., Jacobson, V.: Controlling Queue Delay. Queue 10(5), 20:20–20:34 (2012)
11. Paxson, V.: End-to-end Internet Packet Dynamics. In: Proceedings of SIGCOMM 1997

(September 1997)
12. Ribeiro, V.J., Riedi, R.H., Baraniuk, R.G., Navratil, J., Cottrell, L.: pathChirp: Efficient

Available Bandwidth Estimation for Network Paths. In: Proceedings of PAM 2003 (April
2003)

13. Tan, W.L., Lam, F., Lau, W.C.: An Empirical Study on the Capacity and Performance of 3G
Networks. IEEE Transactions on Mobile Computing 7(6), 737–750 (2008)

https://play.google.com/store/apps/details?id=com.ispcheck


An End-to-End Measurement Study of Modern Cellular Data Networks 45

14. Tapia, P., Liu, J., Karimli, Y., Feuerstein, M.J.: HSPA Performance and Evolution: A Practical
Perspective. Wiley (2009)

15. Tso, F.P., Teng, J., Jia, W., Xuan, D.: Mobility: A Double-Edged Sword for HSPA Networks.
In: Proceedings of MobiHoc 2010 (September 2010)

16. Winstein, K., Sivaraman, A., Balakrishnan, H.: Stochastic Forecasts Achieve High Through-
put and Low Delay over Cellular Networks. In: Proceedings of NSDI 2013 (October 2013)

17. Xu, Y., Leong, W.K., Leong, B., Razeen, A.: Dynamic Regulation of Mobile 3G/HSPA Up-
link Buffer with Receiver-Side Flow Control. In: Proceedings of ICNP 2012 (October 2012)



A Second Look at Detecting Third-Party

Addresses in Traceroute Traces
with the IP Timestamp Option

Matthew Luckie and kc claffy

CAIDA, UC San Diego, USA
{mjl,kc}@caida.org

Abstract. Artifacts in traceroute measurement output can lead to false
inferences of AS-level links and paths when used to deduce AS topology.
One traceroute artifact is caused by routers that respond to traceroute
probes with a source address not in the path towards the destination,
i.e. an off-path address. The most well-known traceroute artifact, the
third-party address, is caused by off-path addresses that map to ASes
not in the corresponding BGP path. In PAM 2013, Marchetta et al. pro-
posed a technique to detect off-path addresses in traceroute paths [14].
Their technique assumed that a router IP address reported in a tracer-
oute path towards a destination was off-path if, in a subsequent probe
towards the same destination, the router did not insert a timestamp into
a pre-specified timestamp option in the probe’s IP header. However, no
standard precisely defines how routers should handle the pre-specified
timestamp option, and implementations are inconsistent. Marchetta et
al. claimed that most IP addresses in a traceroute path are off-path,
and that consecutive off-path addresses are common. They reported no
validation of their results. We cross-validate their approach with a first-
principles approach, rooted in the assumption that subnets between con-
nected routers are often /30 or /31 because routers are often connected
with point-to-point links. We infer if an address in a traceroute path
corresponds to the interface on a router that received the packet (the in-
bound interface) by attempting to infer if its /30 or /31 subnet mate is
an alias of the previous hop. We traceroute from 8 Ark monitors to 80K
randomly chosen destinations, and find that most observed addresses are
configured on the in-bound interface on a point-to-point link connecting
two routers, i.e. are on-path. Because the technique from [14] reports
70.9%–74.9% of these addresses as being off-path, we conclude it is not
reliable at inferring which addresses are off-path or third-party.

1 Introduction

The AS-level view of the Internet afforded by public BGP data is severely lim-
ited by a well-known visibility issue: peer-to-peer links between ASes are ob-
servable only if one of the ASes or their downstream customer provides a public
view [15], which few ASes do. Traffic data collected at IXPs [2], although typi-
cally proprietary, can reveal many AS peering links established at the IXP. IXP

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 46–55, 2014.
c© Springer International Publishing Switzerland 2014



A Second Look at Detecting Third-Party Addresses in Traceroute Traces 47

route-servers used to establish multilateral peering [6] may also support a query
interface that reveals peering activity at the IXP. But many important peerings
are established bilaterally using the IXP fabric, or at private exchange points,
so traceroute retains an important role in uncovering AS-level topology [4].

Using traceroute to infer AS links and paths involves many recognized chal-
lenges [9,16,20]. Inferring AS paths from traceroute IP paths relies on an accurate
AS inference for each IP address in traceroute, i.e. an IP2AS mapping. The most
widely used IP2AS mapping technique is to associate each IP address in a path
with the origin AS in a BGP path for the longest matching prefix. However,
real-world practices such as (1) operators not announcing IP prefixes used to
number their routers, (2) multiple ASes announcing the same prefix, and (3)
organizations which own multiple ASes announcing different prefixes with dif-
ferent ASNs, all complicate IP2AS mapping. A further complication is routers
which respond to traceroute probes using an off-path address; i.e. an address
that does not represent the path through the router that the packet would have
taken towards the destination. Off-path addresses are derived when (1) a router
sets the source address of ICMP response packets to the outgoing interface used
to send the response packet, and (2) that interface is not the in-bound or out-
bound interface the router would have used to receive or transmit the packet if
the router had forwarded the packet. A third-party address is an off-path address
that resolves to a third-party AS that is not in the corresponding BGP path.

There has been considerable debate about the prevalence of third-party ad-
dresses. In PAM 2003, Hyun et al. [9] reported that third-party addresses were
rare, often observed close to the destination probed, and caused by multi-homing
and stale configurations. In PAM 2010, Zhang et al. [20] reported that the ma-
jority of false links in AS topology data derived from traceroute were due to
third-party addresses. In PAM 2013, Marchetta et al. [14] proposed a technique
to detect third-party addresses in traceroute paths using the pre-specified IP
timestamp option. This option allows a host to request a timestamped response
from a specific IP address (i.e., the associated router) in the path. RFC 791 [17]
does not describe precisely how to implement this option, in particular whether
the IP packet must actually traverse the IP interface configured with the pre-
specified IP address in order to trigger the timestamp recording.

Figure 1 illustrates the technique from [14]. Using the same notation as Sherry
et al. [18], a probe to destination G that requests B, C, D, and E include times-
tamps is denoted as G|BCDE. The technique from [14] assumes the behavior
of a router with address B can be inferred from the response to an ICMP echo
probe B|BBBB. If B embeds between one and three timestamps in the ICMP
echo packet, [14] infers that the router embeds timestamps as the packet ar-
rives or departs on the interface with address B; if B embeds four timestamps,
[14] infers the router with B will insert timestamps regardless of the interface
it arrived or departed from and therefore B cannot be classified as an on-path
or off-path address. The technique from [14] also cannot classify routers that
embed zero timestamps, remove the option, or do not reply to the ICMP probe.
Because only destinations that quote the IP options in ICMP responses can be



48 M. Luckie and k. claffy

R3

Port unreach w/ IP timestamp option quoted1. UDP Timestamp G|GGGG

G
E

B
2. UDP Traceroute G

4. ICMP Timestamp E|EEEE ICMP response w/ 1−3 timestamps from E

Port unreach w/ 0 timestamps from E6. UDP Timestamp G|EEEE

5. UDP Timestamp G|BBBB Port unreach w/ 1−3 timestamps from B

3. ICMP Timestamp B|BBBB ICMP response w/ 1−3 timestamps from B

GF
R2

E
DC

R1
BA

Fig. 1. Using pre-specified IP timestamps to infer third party addresses with the tech-
nique described in [14]. If G returns probes with the IP timestamp option quoted (1),
then [14] evaluates the traceroute path B-E-G (2) for third-party addresses. First, [14]
determines if routers will set timestamps for their IP address when a packet is sent
directly to them (3, 4). For the routers that set 1-3 timestamps (i.e. set timestamps
when the packet arrives and/or departs), [14] sends probes to the destination which
also request those interfaces to embed a timestamp. [14] infers interface B is on-path
because it does embed a timestamp (5), and infers E is a third-party address because
it does not (6). However, RFC791 [17] is under-specified and it is not safe to assume
E is a third-party address because it did not insert a timestamp.

evaluated for third-party addresses, the first step shown in figure 1 is to ensure
a destination will respond to probes containing IP options and also quote the
IP option in responses. The technique from [14] uses UDP probes for traceroute
(step 2) and determining whether or not an address is on-path or off-path (steps
5, 6) because G quotes the timestamp option as the option was when G received
the packet. Therefore, if B is observed in a traceroute path to G, and B embeds
1-3 timestamps to a probe G|BBBB, then the technique from [14] infers the in-
terface with B is on-path toward G; if no timestamps are embedded by B then
B is inferred by [14] to be off-path and could lead to a third-party address.

Marchetta et al. used their technique to estimate the prevalence of third-party
IP addresses in traceroute paths. They used 53 PlanetLab nodes to obtain 12M
traces towards 327K destinations among 14K ASes. They reported that most
classified IP addresses in their data are off-path, and that consecutive off-path
addresses are common [14]; Hyun et al. considered this to be a remote possibility.
Further, they inferred that 17% of AS links in their dataset were inferred using
third-party addresses. However, they reported no validation of their results. We
revisit the effectiveness of their technique by attempting to determine which
addresses in a traceroute path are likely to be the in-bound interface and thus on-
path, and then examining the classification made using the technique from [14]



A Second Look at Detecting Third-Party Addresses in Traceroute Traces 49

for these in-bound interfaces. We find most in-bound interfaces are incorrectly
classified by the technique from [14] to be off-path. Further, most addresses
observed in our traceroute paths are assigned by operators to the in-bound
interface. We believe that the results reported in [14] are not robust because
their technique is unreliable; RFC791 under-specifies how the option should be
implemented and there is considerable heterogeneity in how it is implemented.

2 Method and Data

In this section we describe the method and data collected to evaluate the utility of
pre-specified timestamps for inferring third party addresses. Our cross-validation
of [14] involves two steps. First, we infer which addresses in a traceroute path
represent the in-bound interface on the router receiving the packet, and therefore
are not off-path addresses. Then, we evaluate the classification made by the
technique from [14] using the pre-specified timestamp IP option for the interfaces
we infer to be in-bound interfaces.

We use the prefixscanmethod implemented in scamper and described in [12] to
infer which addresses in a traceroute path are the in-bound address on a router.
An address B is the in-bound interface of a router in a traceroute path if we find
an alias A′ of the address A returned for the previous hop and A′ is a /31 or /30
mate of B, i.e. the link between A and B is a point-to-point (pt2pt) link. The
prefixscan method infers A and A′ are aliases if (1) the IPIDs in responses to five
alternating probes sent one second apart monotonically increase and differ by no
more than 5,000, or (2) probes to A and A′ elicit responses with a common source
address. The first technique is a pairwise comparison similar to Ally [19], and
the second is the Mercator technique [7]. A threshold of 5,000 allows aliases to
be inferred for routers with fast moving IPID counters and has a 7.6% chance of
falsely inferring aliases, in the worst case, between two routers with fast moving
but overlapping counters.

Because we may falsely infer aliases when two independent counters happen
to overlap when we probe them [5], or when two routers randomly generated
IPID values that happened to fall within the threshold, we probe A and A′ six
further times approximately ten minutes apart, with five probes per round. We
do not classify a link as pt2pt if any of these subsequent probes do not solicit
a monotonically increasing sequence or if the IPID distance falls outside of the
threshold. For each hop in a traceroute path, we prefixscan with ICMP-echo,
TCP-ack, and UDP probes (in that order) to maximize our potential to infer
pt2pt links. We use this ordering because in previous cross-validation efforts, we
found this order to produce the most accurate inferences [13]. We believe our
pt2pt inferences are robust because other researchers have previously validated
IPID-based alias inferences [19,5,10].

Table 1 lists the eight CAIDA Archipelago (Ark) vantage points (VPs) we
use for our study. We chose the eight VPs that were operational on 2 Septem-
ber 2013 that also provide a complete BGP view publicly. We chose these VPs
because we could also evaluate traceroute-inferred and BGP-observed AS path



50 M. Luckie and k. claffy

Table 1. To support future study of traceroute and BGP incongruities, we chose for
our measurement study 8 Ark VPs that also provide a complete BGP view publicly

Ark VP Hosting Network (AS) Public BGP view (peer IP)

ams3-nl RIPE NCC (3333) RIPE rrc00 (193.0.0.56)
gva-ch IP-Max SA (25091) RIPE rrc04 (192.65.185.244)
nrt-jp APAN (7660) Routeviews 2 (203.181.248.168)
per-au AARnet (7575) Routeviews ISC (198.32.176.177)
sin-sg DCS1 Pte Ltd (37989) RIPE rrc00 (203.123.48.6)
syd-au AARnet (7575) Routeviews ISC (198.32.176.177)
sql-us ISC (1280) RIPE rrc14 (198.32.176.3)
zrh2-ch Kantonsschule Zug (34288) RIPE rrc12 (80.81.194.119)

incongruities on pt2pt links, shedding further light on how incongruities from
on-path addresses arise in practice. We leave this analysis for future work and
invite the research community to study this problem further using these VPs.

From each VP, we randomly chose 10,000 destinations that quoted a probe’s
IP options in an ICMP destination unreachable message; these destinations were
useful because they quote the IP options (step 1 in figure 1). Each VP randomly
selected a different set of destinations to probe. To maximize our chances of
selecting useful destinations, we selected the 2.5M of the 14.5M addresses in
the ISI hitlist [1] with a score of at least 80 (where 99 represents an address
that has always responded to ISI’s ICMP echo probes [8]). Despite selecting
destinations that were generally responsive to ping, we found that only 15.1% to
18.8% (depending on the VP) responded and echoed the pre-specified timestamp
option; i.e. we tried between 53K and 66K addresses to obtain 10,000 useful
destinations. Of the destinations that were not useful because we did not receive
a response with a quote of the IP options, only 3.5% to 5.9% did not quote the
timestamp option; another 94.1% to 96.5% of them did not respond at all. When
we probed the same destinations without the timestamp option, 36.4% to 36.8%
responded, implying that including a timestamp option in a UDP probe reduced
the fraction of responsive destinations by at least half.

Overall, we obtained 80,004 traces containing 150,188 IP addresses, inferring
197,335 IP-level links between 7,401 ASes. Many IP interfaces are observed from
multiple VPs; in our dataset, we observed 28.0% of interfaces (IP addresses) from
at least two VPs even though we only used eight VPs total. We received responses
to ICMP B|BBBB probes from 119,594 interfaces. For the 30,594 (25.6%) inter-
faces for which we received responses to ICMP B|BBBB probes from more than
one VP, all VPs observed the same timestamp behavior except for 538 interfaces
(1.8%). 324 of these (60.2%) were in one AS, suggesting routers in our data
behaved the same regardless of probing location for ICMP B|BBBB probes. For
each VP, the technique from [14] classified between 42.5% and 47.3% of inter-
faces in our data as appearing as on-path or off-path because they responded
with 1-3 timestamps when we probed them with ICMP B|BBBB packets. In
total, 77,348 of the 150,188 (51.5%) interfaces observed in our data embedded
1-3 timestamps when we probed them with ICMP B|BBBB probes.



A Second Look at Detecting Third-Party Addresses in Traceroute Traces 51

50%: 75

50%: 42

prefixscan N=86152

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000

C
D

F

IP−ID difference (log scale)

pairwise N=81315

 0

Fig. 2. IPID differences between inferred aliases A and A′. The smaller the difference,
the more likely the alias inference is reliable. In our pairwise measurements, we rejected
4,837 initial pt2pt link inferences because either the IPIDs did not monotonically in-
crease, or the counters increased too fast to reliably infer aliases. Of the 81K links
remaining, 33% of the IPID values were strictly incremented between alias pairs.

We resolved the IP-level links to AS-level links using the longest matching
prefix observed by peers at RouteViews; 31K (15.8%) have addresses that map
to two different ASes (are inter-AS links), 153K (77.8%) have addresses that map
to a single AS (are links internal to an AS), and 13K (6.4%) have addresses that
are either not announced publicly, or whose longest matching prefix is originated
by multiple ASes. In total, we infer 10,175 AS-level links from these traces. Of
the 197,335 IP-level links, we inferred a /30 or /31 link for 86,152 links with
an initial prefixscan; our followup pairwise measurements discarded 5K links
because the returned IPID sequence did not meet our requirements, leaving us
with 81,315 pt2pt links. Figure 2 shows the IPID differences where aliases were
inferred between A and A′. The solid line corresponds to the initial prefixscan
measurement that inferred a /30 or /31 mate A′ as an alias of A; we plotted
the maximum IPID difference between any two samples in the sequence of five
probes. 50% of the samples had a maximum difference of 75. The dashed line
corresponds to the subsequent pairwise measurements; for each inferred alias, we
plotted the minimum IPID difference between responses from the same probed
address; i.e. the alias’ IPID had to fit within the two IPID values. 50% of the
samples had a minimum difference of 42, and 33.2% had a minimum difference of
2; in these latter cases the IPID of the alias fell immediately between a monotonic
sequence. We therefore believe most of our pt2pt inferences are robust.

3 Results

In this section, we focus on addresses in traceroute paths that we inferred to be
the address of the in-bound interface on a router and visited across a pt2pt link
(i.e. were on-path). Of the 197,335 IP-level links, we inferred 81,315 (41.2%) to
be pt2pt. Figure 3 plots the distribution of the fraction of in-bound interfaces in
traceroutes observed by each VP. In our data, we inferred that more than half



52 M. Luckie and k. claffy

Fr
ac

tio
n 

of
 in

bo
un

d

 0.2

 0.4

 0.6

 0.8

 1

ams3−nl gva−ch nrt−jp per−au sin−sg sql−us syd−au zrh2−ch
Ark VP

in
te

rf
ac

es
 in

 p
at

hs

 0

Fig. 3. Distribution of the fraction of in-bound interfaces observed by each VP at the
2nd, 25th, 50th, 75th, and 98th percentiles. For 7 of the 8 VPs, more than half of the
interfaces in paths represent the in-bound interface for at least half of their traceroutes.

Table 2. Consistency of timestamps embedded by interfaces that we infer to be the in-
bound interface on a pt2pt link. Between 70.9% and 74.6% of interfaces do not insert
a timestamp despite being on-path. Between 1.0% and 1.5% of interfaces behaved
differently depending on the destination probed (mixed column).

VP 1-3 TS Zero TS 4 TS mixed
(on-path) (off-path) (juniper)

ams3-nl 1631 (26.1%) 4550 (72.8%) 1 (0%) 64 (1.0%)
gva-ch 1678 (26.4%) 4600 (72.3%) 0 (0%) 83 (1.3%)
nrt-jp 1543 (27.6%) 3958 (70.9%) 1 (0%) 84 (1.5%)
per-au 1547 (24.8%) 4610 (73.8%) 2 (0%) 89 (1.4%)
sin-sg 1649 (25.8%) 4657 (72.9%) 0 (0%) 80 (1.3%)
sql-us 1583 (24.8%) 4698 (73.7%) 1 (0%) 90 (1.4%)
syd-au 1524 (24.0%) 4731 (74.6%) 0 (0%) 91 (1.4%)
zrh2-ch 1404 (26.1%) 3900 (72.5%) 0 (0%) 74 (1.4%)

of the interfaces in each path were the in-bound interface for at least half of the
VP’s traceroutes for 7 of the 8 VPs. This is a lower bound on the actual fraction
of in-bound interfaces for these VPs because some routers do not respond to
our prefixscan probes that we use to infer pt2pt links. In particular, many paths
from the Ark node in Amsterdam (ams3-nl) traverse AS7018 (AT&T), but none
of AT&T’s routers will respond to probes.

We next examine the classification made using the technique from [14] for
the addresses we inferred to represent the in-bound interface on the router for
paths that traversed a pt2pt link. Of the 77,348 interfaces that embedded 1-3
timestamps in the pre-specified timestamp option in response to ICMP B|BBBB
probes, we inferred 29,930 (38.7%) of these to represent the in-bound interface
on the router on at least one pt2pt link. However, the majority of UDP G|BBBB
probes across these pt2pt links obtain zero timestamps and would be classified
by [14] as off-path. In our data, between 77.1% and 90.0% of interfaces visited
embedded zero timestamps, depending on the VP. Techniques relying on pre-
specified timestamps to infer off-path addresses are unreliable.



A Second Look at Detecting Third-Party Addresses in Traceroute Traces 53

1,104 (5.6%)

 0.4
 0.5
 0.6
 0.7

 1  10  100  1K
Number of source−destination pairs probed with UDP G|BBBB

C
C

D
F

mixed N=1247
off−path N=19727

 0
 0.1
 0.2
 0.3 on−path N=8956

Fig. 4. CCDF of the number of source-destination pairs an interface was observed in
a traceroute path, grouped by classifications made with UDP G|BBBB probes and the
technique from [14]. 1,104 (5.6%) of interfaces always inferred to be off-path using the
technique from [14] that we infer to represent the in-bound interface of the router were
traversed in at least eight source-destination pairs in our data.

Because hop B might be observed in multiple traceroutes to destinations G1,
G2, GN , and therefore be counted N times, particularly for interfaces close
to our VP [11], we next examine the variability of classifications made using
pre-specified timestamps. Table 2 reports the number of interfaces that behave
consistently regardless of the destination probed; 70.9% – 74.5% do not insert a
timestamp when the in-bound interface is visited regardless of the destination
probed. This result partly explains Marchetta et al.’s surprising result that most
classified addresses in traceroute paths are off-path: it seems routers that insert
1-3 timestamps when probes are addressed to them with ICMP B|BBBB probes
often do not insert timestamps when they forward UDP G|BBBB probes.

We next investigate the possibility that the prevalence of off-path inferences
are due to load-balancing routers. As with Marchetta et al. [14], the UDP probes
for the traceroute towards G contain no IP options, while the UDP probes
G|BBBB to infer on- and off- path interfaces do. Routers that per-flow load-
balance IPv4 packets using bytes 20-23 (where the transport header would be
located if the IP header contained no options) may forward probes based on the
first four bytes of a pre-specified timestamp option rather than on the first four
bytes of the UDP header (source and destination ports). However, this explana-
tion is unlikely to explain the prevalence of off-path inferences for two reasons.
First, per-destination load-balancers are the most common form of load balancer,
i.e. they do not consider bytes 20-23 when forwarding a packet. Augustin et al.
reported that 70% of source-destination pairs traversed such a load balancer in
their data, while 39% traversed a per-flow load balancer [3]. Second, figure 4
presents a CCDF of the number of source-destination pairs an interface was ob-
served in a traceroute, grouped by the classifications made using the technique
from [14]. 5.6% of interfaces were consistently inferred to be off-path despite
being traversed by at least eight source-destination pairs with UDP G|BBBB
probes. We are at least 99% confident the hop prior to B did not per-flow load
balance these probes on a path avoiding B. Figure 5 shows a scatter-plot of
interfaces that we inferred to be received on the in-bound interface on a pt2pt



54 M. Luckie and k. claffy

2−3

>10

139
437 102

100

1

1K

10K

 1  10  100
1−3 timestamps (on−path)

Z
er

o 
tim

es
ta

m
ps

 (
of

f−
pa

th
)

1

10

4−10

Fig. 5. Scatter plot of in-bound interfaces inferred to be on-path toward some desti-
nations and off-path toward others (i.e. have mixed timestamp behavior). The symbol
shape reflects the frequency of the on-path:off-path ratio in our data. Most interfaces
are inferred to be on-path for just one source-destination pair using the technique
from [14] despite being the in-bound interface of a pt2pt link.

link, but which were inferred to be on-path for some source-destination pairs and
off-path for others using the technique from [14]; that technique infers the major-
ity of interfaces to be on-path for a few destinations, and off-path for most. We
attempted to traverse some interfaces with hundreds of UDP G|BBBB probes;
the technique from [14] inferred these interfaces to be on-path only a few times.

4 Conclusion and Future Work

Traceroute has an important role in overcoming the visibility issue of AS topol-
ogy data because we have no other way of uncovering some peerings. However,
researchers must first overcome traceroute artifacts such as third-party addresses
which cause us to deduce false AS links and paths. Using traceroutes from eight
Ark monitors to 80K randomly chosen destinations and a method derived from
first principles, we showed (counter to the result in [14]) that the majority of IP
addresses in traceroute paths are the in-bound interface on a pt2pt link, and that
current techniques using pre-specified timestamps to infer third-party addresses
are not reliable. We also release our code used to collect these measurements so
others can reproduce our work. In future work, we plan to use these eight Ark
VPs with public BGP data available to investigate incongruities between BGP
and traceroute paths where the incongruity is inferred on a pt2pt link. Deriving
a technique that accurately infers AS links from traceroute paths remains an
important and currently unsolved problem.

Acknowledgments. The work was supported by U.S. NSF grant CNS-0958547,
DHS S&T Cyber Security Division (DHS S&T/CSD) BAA 11-02 and SPAWAR



A Second Look at Detecting Third-Party Addresses in Traceroute Traces 55

Systems Center Pacific via N66001-12-C-0130, and by Defence Research and
Development Canada (DRDC) pursuant to an Agreement between the U.S. and
Canadian governments for Cooperation in Science and Technology for Critical
Infrastructure Protection and Border Security. This material represents the po-
sition of the author and not of NSF, DHS, or DRDC.

References

1. IP address hitlist, PREDICT ID USC-LANDER/internet address hitlist it52w
(January 2, 2013), http://www.isi.edu/ant/lander

2. Ager, B., Chatzis, N., Feldmann, A., Sarrar, N., Uhlig, S., Willinger, W.: Anatomy
of a large European IXP. In: SIGCOMM 2012 (2012)

3. Augustin, B., Friedman, T., Teixeira, R.: Measuring load-balanced paths in the
Internet. In: IMC 2007 (2007)

4. Augustin, B., Krishnamurthy, B., Willinger, W.: IXPs: Mapped? In: IMC 2009
(2009)

5. Bender, A., Sherwood, R., Spring, N.: Fixing Ally’s growing pains with velocity
modeling. In: IMC 2008 (2008)

6. Giotsas, V., Zhou, S., Luckie, M., Claffy, K.: Inferring multilateral peering. In:
CoNEXT 2013 (2013)

7. Govindan, R., Tangmunarunkit, H.: Heuristics for Internet map discovery. In: IN-
FOCOM 2000 (2000)

8. Heidemann, J., Pradkin, Y., Govindan, R., Papadopoulos, C., Bartlett, G., Ban-
nister, J.: Census and survey of the visible Internet. In: IMC 2008 (2008)

9. Hyun, Y., Broido, A., Claffy, K.: On third-party addresses in traceroute paths. In:
PAM 2003 (2003)

10. Keys, K., Hyun, Y., Luckie, M., Claffy, K.: Internet-scale IPv4 alias resolution with
MIDAR. IEEE/ACM Transactions on Networking 21(2) (April 2013)

11. Lakhina, A., Byers, J.W., Crovella, M., Xie, P.: Sampling biases in IP topology
measurements. In: INFOCOM 2003 (2003)

12. Luckie, M.: Scamper: a scalable and extensible packet prober for active measure-
ment of the Internet. In: IMC 2010 (2010)

13. Luckie, M., Dhamdhere, A., Claffy, K., Murrell, D.: Measured impact of crooked
traceroute. CCR 14(1) (January 2011)

14. Marchetta, P., de Donato, W., Pescapé, A.: Detecting third-party addresses in
traceroute traces with IP timestamp option. In: Roughan, M., Chang, R. (eds.)
PAM 2013. LNCS, vol. 7799, pp. 21–30. Springer, Heidelberg (2013)

15. Oliveira, R., Pei, D., Willinger, W., Zhang, B., Zhang, L.: In search of the elusive
ground truth: the Internet’s AS-level connectivity structure. In: SIGMETRICS
2008 (2008)

16. Oliveira, R., Zhang, B., Zhang, L.: Observing the Evolution of Internet AS Topol-
ogy. In: SIGCOMM 2007 (2007)

17. Postel, J.: Internet protocol (September 1981)
18. Sherry, J., Katz-Bassett, E., Pimenova, M., Madhyastha, H.V., Anderson, T., Krish-

namurthy,A.:Resolving IPaliaseswith prespecified timestamps. In: IMC2010 (2010)
19. Spring, N., Mahajan, R., Wetherall, D.: Measuring ISP topologies with Rocketfuel.

In: SIGCOMM 2002, Pittsburgh, PA, USA (2002)
20. Zhang, Y., Oliveira, R., Zhang, H., Zhang, L.: Quantifying the pitfalls of traceroute

in AS connectivity inference. In: Krishnamurthy, A., Plattner, B. (eds.) PAM 2010.
LNCS, vol. 6032, pp. 91–100. Springer, Heidelberg (2010)

http://www.isi.edu/ant/lander


Ingress Point Spreading: A New Primitive

for Adaptive Active Network Mapping

Guillermo Baltra, Robert Beverly, and Geoffrey G. Xie

Naval Postgraduate School, Monterey, CA
{gbaltra,rbeverly,xie}@nps.edu

Abstract. Among outstanding challenges to Internet-wide topology
mapping using active probes is balancing efficiency, e.g. induced load
and time, with coverage. Toward maximizing probe utility, we introduce
Ingress Point Spreading (IPS). IPS utilizes ingress diversity discovered
in prior rounds of probing to rank-order available vantage points such
that future probes traverse all known paths into a target network. We
implement and deploy IPS to probe ∼49k random prefixes drawn from
the global BGP table using a distributed collection of vantage points.
As compared to existing mapping systems, we discover 12% more unique
vertices and 12% more edges using ∼50% fewer probes, in half the time.

1 Introduction

Accurate and complete maps of the Internet topology are important to both se-
curity and networking research. As a piece of critical infrastructure, understand-
ing network structure, interconnectivity and vulnerabilities is a first step toward
protecting the Internet and making it more robust. Further, topology data is
essential to network research that creates new protocols, performs modeling,
designs clean-slate architectures, or examines Internet evolution and economics.

However, obtaining Internet topologies remains a challenging task [4]. The
sheer size of the network implies that the accuracy of collected topologies can
depend on the number, location, and probing rate of available vantage points
(VPs) [16]. Topological inferences of paths, aliases, and structure can be brit-
tle or lead to false conclusions [19]. Compounding the measurement difficulty,
the Internet is non-stationary and dynamic. While mapping systems such as
Archipelago (Ark) [10], Rocketfuel [17], and iPlane [13] have achieved Inter-
net scale and produced important research insights [20][5], recent research, e.g.
[2][18][7], shows that their performance, particularly in terms of probing effi-
ciency as measured by the return of topological data per probing packet, can
benefit significantly from an adaptive approach where the source and destina-
tion of each probe packet are judiciously chosen based on knowledge gained from
prior probes and an understanding of network provisioning.

In this paper, we propose a new adaptive interface-level network mapping
technique which we term “Ingress Point Spreading” (IPS). Underlying IPS is
the observation that a target autonomous system (AS) is typically multi-homed
and multi-connected. According to two 2010 studies [12,6], the number of these
peering links, and thus the number of distinct ingress router interfaces for ex-
ternal traffic to enter the AS, are on the rise. We henceforth call these interfaces

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 56–66, 2014.
c© Springer International Publishing Switzerland 2014



Ingress Point Spreading 57

the ingress points of the target network. Intuitively, two probes would likely re-
veal more of a target network’s topological structure if the probes were to enter
the network via distinct ingress points. IPS aims to increase probing efficiency
by first inferring the number of ingress points for a target network and then,
for each new probe, selecting the VP with the highest likelihood to traverse an
ingress point that has not yet been covered.

To evaluate the performance of IPS, we implement and deploy an Internet
mapping system that integrates IPS with another recently proposed adaptive
mapping primitive (subnet centric probing [2]). The system uses one day’s worth
of prior probing results to infer potential ingress points at different notional
network boundaries for each target prefix. Rather than being agnostic to network
structure, our system is designed to discover: i) the degree of subnetting within
edge networks through an iterative interrogation process; and ii) sources of path
diversity into networks by finding and exploiting the target’s ingress points. This
paper therefore makes the following three primary contributions:

1. Design and implementation of an Internet mapping system that integrates
IPS with a complementary adaptive primitive originally proposed in [2].

2. Real-world deployment of the new mapping system. Specifically, we probed
a sample set of 49,000 random destination prefixes in December, 2013.

3. Compared to data collected by a popular, currently deployed mapping sys-
tem in the same time period for the same set of prefixes, our system finds
more interfaces and edges, using only half of the total number of probes.
This result is in contrast to prior efforts that demonstrate probing savings,
but at the expense of lower topological recall.

2 Methodology

At the heart of our methodology is discovering network ingresses and predict-
ing the ingress through which traffic from an available VP will enter a target
network. Our intuition is straightforward: by ensuring that our probing uses all
available ingresses, we more completely explore the target network, as well as
exercise diverse paths to reach the target. As an additional benefit, a focus on
ingress diversity matches an explicit higher-level goal of understanding topo-
logical connectivity, mapping disjoint paths, and characterizing ways in which
portions of the network can become disconnected.

This section first describes probing properties that motivate a focus on ingress
points, then details modifications to existing algorithms to support an ingress-
centric approach. We then provide our algorithm to rank-order VPs on a per-
destination network basis in order to maximize each probe’s topological coverage.

2.1 Vantage Point Importance

It is well-known that the VPs used in active probing strongly influence the
inferred topology [16]. A natural question is why we focus on the order of VPs
employed when probing a particular destination network. If all VPs are used,



58 G. Baltra, R. Beverly, and G.G. Xie

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300
Cu

m
ula

tiv
e f

ra
cti

on
 of

 p
re

xe
s

Probes per pre x

Fig. 1. Distribution of probes required per prefix probed by SCP. Because more than
half of the prefixes are probed fewer than 10 times, VPs selection is important.

then the order in which they are used assumes only small importance. Instead, we
consider two situations that commonly arise in topology probing: i) the set of VPs
is large; or ii) the system must balance coverage and efficiency. For example, we
may wish to use a subset of the VPs that result in the most topological coverage
while exploring the destination network – thereby saving needless probing.

To characterize VP importance, we examine the popular CAIDA Ark system
[10]. Ark divides the entire routed address space into logical /24 subnetworks,
and in each “cycle,” probes a random address within each /24 using a random
VP. Ark assimilates the union of 21 of probing to obtain a high resolution map.
For N cycles and M VPs, the expected number of unique VPs that explore a
given /24 prefix (Y ) in Ark is given by:

E[Y ] = M − (M − 1)N

MN−1
(1)

Examining one team of CAIDA probing from June, 2013, we see that M = 18
VPs were used. Thus, on average, each /24 in the union of N = 21 cycles is
explored by: E[Y ] = 12.6 VPs, and not all VPs are utilized even though N > M .

As a second example, the Subnet Centric Probing (SCP) algorithm of [2],
which we also employ in our complete system, uses a variable number of probes
per prefix in order to balance efficiency and coverage. To better understand the
implications of SCP on VP selection, we used SCP with 60 Ark VPs to probe
1500 prefixes selected at random from the global Routeviews BGP view [14].
Figure 1 shows the number of probes per prefix versus the cumulative fraction
of prefixes when using SCP. We observe that over half of the prefixes are probed
fewer than 10 times, while ≈ 90% of the prefixes see 50 or fewer probes.

This exploratory analysis of CAIDA’s data and SCP support two observations.
First, even when the number of probes is larger than the number of VPs, using
randomly selected VPs is sub-optimal. Second, for systems such as SCP that
attempt to maximize efficiency, the number of VPs used is frequently less than
the total available. Thus, the order in which VPs are employed matters.

2.2 Recursive Subnet Inference

Intelligent selection of VPs, described in detail in the next subsection, is only
a partial topology mapping solution. Just as important is the selection of des-
tinations to probe. To this end, we take inspiration from the SCP algorithm



Ingress Point Spreading 59

proposed in [2]. However, our practical experience in implementing SCP directly
revealed two impediments. First, per-flow load-balancing, as commonly found
in the Internet, perturbs SCP’s stopping criterion by artificially influencing the
path edit distance. Second, SCP’s dependence on edit distance requires pair-wise
comparisons between probes that originate at the same VP – and thus prevents
the full utilization of multiple VPs.

Instead, we implement the Recursive Subnet Inference (RSI) technique which
takes inspiration from SCP. The input to RSI is a network prefix, i.e. network
and subnet mask. Rather than simply splitting the prefix into its constituent
/24 subnetworks, as is done with e.g. Ark, RSI attempts to discover the internal
subnetting structure of the given prefix. Abstractly, RSI performs a binary search
over the address space represented by an input prefix, pruning those branches
of the tree that do not reveal new topology information.

To interrogate a prefix, RSI uses the same Least Common Prefix (LCP) prin-
ciple as defined in [2]. Given an input prefix and mask p/m, LCP splits the prefix
into two halves and probes a center address of each from a different VP. More
formally, LCP (p/m) = (d1, d2) where the two destination addresses are:

d1 = p+ 232−m−2 + 1 (2)

d2 = p+ 3
(
232−m−2

)
+ 1 (3)

Note that LCP readily adapts to 128bit IPv6 prefixes in the future. We term
the initial two probes to the two halves of the input prefix the “parent probes.”
For each input prefix, RSI maintains the set of discovered interfaces within the
destination AS. By only considering those interfaces within the destination AS,
RSI is agnostic to which VP issues the probes, thereby accommodating IPS.

Let I denote the set of all unique router interfaces discovered that belong to
the AS of the target prefix. Let Pi denote the set of router interfaces within the
target’s AS discovered by the i’th probe. Then, RSI splits an input prefix into
two halves and recursively operates on those two smaller prefixes (which leads
to additional probing using different VPs) if the following condition holds:

|Pi \ I| ≥ τ (4)

where we set τ = 1 such that probing terminates for a prefix only if no new
interfaces are discovered. The interface set is then updated: I = I

⋃
Pi.

2.3 Ingress Point Spreading

Given our analysis of the importance of VPs (§2.1), and a probing strategy that
may use fewer probes than VPs (§2.2), we turn to implementing a primitive that
extracts the most benefit from each probe via intelligent VP selection.

At a high-level, we assume M VPs that will explore X destinations within a
prefix (p/m), where it is frequently the case that X < M . The problem is to
select the VP for each of the X destinations to be probed. Practically, we view
RSI as requiring a pool of VPs to serve as the origin of RSI’s probes, where we
rank-order the VPs to provide maximum per-probe topological coverage.



60 G. Baltra, R. Beverly, and G.G. Xie

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  10  100  1000  10000
C

D
F

 o
f 

V
ir
tu

a
l P

re
fix

e
s

Number of Notional Ingresses

/20
/16
/12
/10
/8

Fig. 2. Distribution of ingresses into prefixes of different logical size, as discovered
during a prior round of probing. By expanding the size of the notional prefix, all VPs
can be rank-ordered by their path diversity.

The Ingress Point Spreading (IPS) algorithm computes a per-destination net-
work rank-ordered list of VPs based on prior rounds of probing. IPS seeks to
utilize all of the ingress points discovered in prior rounds of probing such that
future probing can induce probe traffic to flow through each of these known
ingresses, thereby exploring more of the destination network’s topology. By uti-
lizing specific VPs, IPS spreads probes across ingresses. By spreading the probes
across ingresses, RSI explores diverse paths, thereby preventing its early termi-
nation (as per the stopping criterion in eq. 4).

IPS employs an abstraction we term the “notional prefix ingress.” A notional
prefix is simply an expansion to a larger prefix aggregate containing the target
prefix, while a notional prefix ingress is the first router interface hop that leads
to a next hop whose IP is within the notional prefix.

IPS maintains a mapping of VPs to ingresses, i.e. which VP resulted in which
ingress being traversed while probing the prefix. The notional prefix is impor-
tant as there may be too few ingresses discovered from prior probing into the
destination network. To obtain as much path diversity as possible, we perform
an expansion to utilize ingresses into notional prefixes that represent a larger
IP address aggregate containing the target prefix. Note that the notional prefix
has no implied relationship to real-world BGP route aggregation; it is simply a
means for IPS to expand its ingress search space for a given target network.

To provide intuition over the available notional ingresses as a function of the
size of the notional prefix, we analyzed an entire cycle of probing data from
CAIDA’s Ark spanning June 2-4, 2013 in Figure 2. While using a /20 results in
99.4% of the notional /20 prefixes having 10 or fewer ingresses, expansion to a /16
provides more than 10 ingresses for more than half of the notional prefixes. Taken
further, more than 60% of the notional /8’s have 1,000 or more notional ingresses.
Thus, by using our expansion technique combined with notional ingresses, IPS
can adapt to best utilize any number or location of available VPs.

To illustrate, consider probing the prefix 205.155.0.0/16. Figure 3(a) is a
simplified example showing traces from prior rounds of probing from six VPs
(numbered 1-6) to various destinations (the red colored nodes). The /16 prefix to
be probed in the current round is shaded in red and encompasses three previous
destinations and two ingresses into the /8 that lead to known paths into the /16
prefix. The VPs 1 and 2 are selected as the first two VPs in the rank order list



Ingress Point Spreading 61

1 

2 

3 

4 

5 

6 

RANK ORDER: 

Destinations VPs

/8 

/16 /16//8 

1 2 3 

(a) Target /16 prefix with two ingresses

1 

2 

3 

4 

5 

6 

RANK ORDER: 

Destinations VPs

/8 

/8 /15 

1 2 4 3 5 

(b) Expansion to find notional ingresses

Fig. 3. Ingress Point Spreading (IPS): Example where six VP are rank-ordered relative
to the destination prefix on the basis of the notional ingresses the VPs traversed in
prior probing

depicted at the bottom of Figure 3, as these two VPs resulted in traversing the
diverse ingresses in the prior round. Since VPs 2 and 3 share the same ingress
router into the /8 prefix, the latter is included at the end of the list.

However, we wish to obtain a total order over all of the VPs (typically,
many more than six). IPS then expands its ingress search space to include
205.154.0.0/15 as shown in Figure 3(b) (green shaded box). In this exam-
ple, the expansion results in one additional destination and one more ingress.
VP 4 then becomes the third in the rank-order as it traversed the diverse ingress
into the notional prefix in the prior round. Following the same reasoning used
for VP 3, VP 5 is included at the end of the list.

IPS continues to expand its search space, i.e. 205.152.0.0/14, 205.152.
0.0/13, . . . , 205.0.0.0/8, where the larger aggregates are notional prefixes
containing 205.155.0.0/16, until all VPs are ordered. At each step, more no-
tional ingress points may be identified which are used to rank order additional
VPs to be used with RSI. RSI sends at least as many parent traces as there were
notional ingresses to the original input prefix, but may send more.

3 Results

This section details our initial findings from deploying the combined RSI and
IPS primitives described in §2. As a baseline, we implement the current Ark
strategy1 of subdividing the routed address space into /24’s and select a random
VP from which to probe a random address within the /24. Herein, we refer to
the Ark method and resulting topology data synonymously as “Ark.”

As part of the pre-probing process, we provide IPS with one day’s worth of
probing results as published by CAIDA [1]. We use CAIDA data as input to IPS
to demonstrate that IPS can utilize not only prior rounds of our own probing,
but also external sources of data (which, from a probing load perspective, are

1 Direct comparison with published Ark data is not possible as we do not use “teams.”



62 G. Baltra, R. Beverly, and G.G. Xie

Table 1. Comparing RSI+IPS and Ark performance metrics. The same 49k random
prefixes were probed in December, 2013.

Metric Ark RSI+IPS RSI+IPS
(Aug. 2013 trained) (Dec. 2013 trained)

Prefixes Probed 48,905 48,905 48,905
Vertices 464,544 521,513 520,903
Edges 906,680 1,024,295 1,034,101
Probes 4,041,289 2,056,562 2,052,842
Vertices (inside dest) 121,137 135,209 134,575
Vertices (intersection w/ ark) 309,997 309,971
Ingresses 31,138 38,532 39,020
Time 26h 55m 13h 38m 14h 47m

a sunk cost). To gain some initial understanding of IPS’s sensitivity to training
data and age, we perform two experiments, one where IPS is trained using data
from Aug 28, 2013, and the second with Dec 18, 2013 training data. However,
the probing itself was all performed between Dec 20-22, 2013.

From Routeviews [14], we randomly select 50,000 prefixes without regard to
prefix size or origin AS. Of these original prefixes, we find 48,905 that were
probed by both our IPS and Ark method. The natural changes in availability
of VPs and routing require us to eliminate the 1,095 prefixes in order to fairly
compare the two techniques. We probe these 48,905 prefixes using CAIDA’s
“topology-on-demand” service [9], where we have implemented RSI+IPS using
59 globally distributed VPs.

Table 1 summarizes our aggregate results. Two findings bear highlighting:
not only is our combined RSI and IPS system significantly more efficient (using
≈ 50% of the number of probes as compared to Ark and taking approximately
half the time), we discover more topological information.

Examining the intersection of vertices, we observe that 309,997 vertices are
common to both RSI+IPS (August) and Ark. RSI+IPS discovers 211,516 ver-
tices not in Ark, while Ark discovers 154,547 vertices that RSI+IPS does not.

Figure 4(a) shows the distribution of the per-prefix difference of discovered
vertex counts between our system versus Ark. Surprisingly, we find that our
system performs worse than Ark for approximately 66% of the prefixes. Rather,
RSI+IPS is significantly superior to Ark for a small number of prefixes, thereby
contributing to the overall superior topological coverage. In contrast, Figure 4(b)
shows that Ark and our system perform comparably in terms of edge discovery
for approximately 80% of the prefixes, while we are superior for 10%. Again, the
tail of the distribution is long – there are a small number of prefixes where we
discover significantly more topological information. For future work, we will ex-
plore ways of refining the RSI stopping criterion as expressed in Eq. 4 to increase
the percentage of networks for which our system has a better coverage. The fact
that RSI+IPS performs better on some prefixes while Ark does better on others
explains why a high number of interfaces and edges are uniquely discovered by
each method.

To understand the performance variations, we examine the distribution of
the number of notional ingresses discovered for each prefix. Figure 5 shows two
interesting phenomena. First, neither Ark nor our system discovers any ingresses



Ingress Point Spreading 63

for approximately 70% of the prefixes, as ICMP blocking and other forms of
packet filtering may be prevalent, particularly for enterprise networks. However,
among those destination where probing within the target network is feasible,
IPS finds significantly more ingresses than Ark. Based on the prefix’s origin AS,
we find that the top three prefixes for which IPS performs the best against Ark
(as measured by additional vertices) are national ISP networks with hundreds of
peering links while the bottom three prefixes belong to enterprise networks that
have a small number of peering links. Furthermore, for those prefixes with at least
one notional ingress, the relative performance of IPS has a medium correlation
(with a Pearson correlation efficient of ∼0.35) with the number of ingresses
discovered. The correlation is more significant (∼0.45) if we consider only the
set of∼2000 prefixes with at least five discovered ingresses. Both of these findings
confirm that IPS does a good job of leveraging available ingresses to increase
probing efficiency. Of particular interest is that the size of the network prefix
(in terms of IP address space) has a correlation of ∼0.52 to the performance
difference, implying that our system performs better on smaller networks, while
it often prematurely stops probing large prefixes. Adding a random component to
RSI, or a lower probing threshold proportional to the network size may alleviate
the performance differential of these prefixes. The results also suggest that the
performance of IPS may be enhanced with a more effective network ingresses
inference. We defer these to future work.

4 Related Work

Ever since the advent of network mapping research, emphasis has been placed
on eliminating unnecessary probes to increase probing efficiency. Earlier notable
efforts on this front include the development of the Rocketfuel [17], Doubletree [7]
and DIMES [15] systems. These systems avoid traversing the same hops more
than once by carefully choosing the starting point and the time to live (TTL) of
each new traceroute packet used for probing. Follow-on studies [8,2,18] generalize
and extend such techniques into a class of adaptive probing primitives, termed
“set cover,” characterized by a common requirement for determining a minimum
number of probes to cover a set of previously discovered interfaces.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1500 -1000 -500  0  500  1000  1500  2000  2500  3000

Fr
ac

tio
n 

of
 p

re
xe

s

IPS - Ark pre x vertex di erence

August
December

(a) Vertex difference

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1000  0  1000  2000  3000  4000  5000  6000

Fr
ac

tio
n 

of
 p

re
xe

s

IPS - Ark pre x edge di erence

August
December

(b) Edge difference

Fig. 4. CDF of per-prefix coverage difference ((RSI + IPS)−Ark)



64 G. Baltra, R. Beverly, and G.G. Xie

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  200  400  600  800  1000  1200

F
ra

ct
io

n
 o

f 
p
re

fix
e
s

Discovered ingresses to destination prefix

IPS
Ark

Fig. 5. CDF of per-prefix number of notional ingresses discovered

Recent efforts (e.g., [2,16,3,11]) in developing adaptive mapping approaches
center around leveraging information beyond the hops traversed before. The
additional information considered includes knowledge of common subnetting
practice, BGP route data, network latency characteristics, and potential path
diversity from different VPs. The work that is most related to this paper is the
vantage point spreading (VPS) primitive proposed in [2]. IPS shares with VPS
a similar intuition for increasing path diversity into target networks. The key
difference is that IPS uses a more refined criterion of path diversity to drive the
selection of VPs, and as such, is able to explicitly maximize the likelihood that
a new probe will enter a destination network through a new ingress point. While
IPS requires prior probing data in order to infer possible ingress points into each
destination network, this data is naturally accumulated by production mapping
systems as part of their functionality.

5 Conclusion

Significant prior work has considered the problem of balancing efficiency and
coverage in active probing-based topology collection. We contribute to this body
of work by explicitly taking into consideration target network ingresses, and the
diversity of available vantage points (VPs) toward those ingresses, by developing
the Ingress Point Spreading (IPS) algorithm. IPS rank-orders VPs for a given
target prefix on the basis of ingresses discovered from prior rounds of probing.
Thus, unlike prior approaches, IPS is not memoryless.

Via real-world probing of 49k randomly selected prefixes, we find that IPS
not only reduces the probing load and time by approximately 50% as compared
to CAIDA’s Ark methodology, but also returns more vertices and edges. Crucial
to many critical infrastructure questions, we also discover more ingresses.

While we have demonstrated promising results by utilizing ingresses to our
advantage, significant future work remains. We wish to scale our probing by one
more order of magnitude to encompass all advertised prefixes on the Internet, and
run continually. Our practical experience has shown that VPs are unreliable, yet
IPS cannot simply use the next VP in the ordered list when the preferred VP is
down, as the complete ordering is perturbed. In addition, we have found prefixes
with significant topology that goes undiscovered by RSI due to the particular



Ingress Point Spreading 65

deterministic selection of destinations causing premature termination. We must
accommodate all of these issues in future work.

Our hope is that this work contributes to the continual progress being made
on topology mapping systems. Moving forward, we additionally plan to integrate
IPS with recent advances in topology set coverage and change detection.

Acknowledgments. We thank Young Hyun, kc claffy, Justin Rohrer, Arthur
Berger, our shepherd Bruce Maggs, and the anonymous reviewers for invalu-
able feedback and support. This work supported in part by the Department
of Homeland Security (DHS) Cyber Security Division under contract N66001-
2250-58231. Views and conclusions are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of
the U.S. government or DHS.

References

1. The CAIDA UCSD IPv4 Routed/24 Topology Dataset (2013),
http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml

2. Beverly, R., Berger, A., Xie, G.G.: Primitives for active Internet topology map-
ping: Toward high-frequency characterization. In: Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement, pp. 165–171 (2010)

3. Chen, M., Xu, M., Xu, K.: A delay-guiding source selection method in network
topology discovery. In: IEEE International Conference on Communications (2011)

4. Claffy, K., Hyun, Y., Keys, K., Fomenkov, M.: Internet mapping: From art to
science. In: IEEE Cybersecurity Applications and Technologies Conference (March
2009)

5. Dainotti, A., Squarcella, C., Aben, E., Claffy, K., Chiesa, M., Russo, M., Pescap,
A.: Analysis of Country-wide Internet Outages Caused by Censorship. In: Internet
Measurement Conference (IMC), pp. 1–18 (November 2011)

6. Dhamdhere, A., Dovrolis, C.: The Internet is flat: Modeling the transition from a
transit hierarchy to a peering mesh. In: Proceedings of ACM CoNEXT (2010)

7. Donnet, B., Raoult, P., Friedman, T., Crovella, M.: Efficient algorithms for large-
scale topology discovery 33(1), 327–338 (2005)

8. Gonen, M., Shavitt, Y.: An O(logn)-approximation for the set cover problem with
set ownership. Inf. Process. Lett. 109(3) (2009)

9. Hyun, Y.: On-demand IPv4 and IPv6 topology measurements (2012)
10. Hyun, Y., Claffy, K.: Archipelago measurement infrastructure (2013),

http://www.caida.org/projects/ark/

11. Kardes, H., Gunes, M., Oz, T.: Cheleby: A subnet-level Internet topology mapping
system. In: COMSNETS, pp. 1–10. IEEE (2012)

12. Labovitz, C., Iekel-Johnson, S., McPherson, D., Oberheide, J., Jahanian, F.: Inter-
net inter-domain traffic. In: Proceedings of ACM SIGCOMM (2010)

13. Madhyastha, H.V., Isdal, T., Piatek, M., Dixon, C., Anderson, T., Krishnamurthy,
A., Venkataramani, A.: iPlane: An information plane for distributed services. In:
Proceedings of NSDI, pp. 367–380 (2006)

14. Meyer, D.: University of Oregon RouteViews (2013), http://www.routeviews.org
15. Shavitt, Y., Shir, E.: DIMES: Let the Internet measure itself. SIGCOMM Com-

puter Communication Review 35(5), 71–74 (2005)

http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
http://www.caida.org/projects/ark/
http://www.routeviews.org


66 G. Baltra, R. Beverly, and G.G. Xie

16. Shavitt, Y., Weinsberg, U.: Quantifying the importance of vantage points distri-
bution in Internet topology measurements. In: IEEE INFOCOM (March 2009)

17. Spring, N., Mahajan, R., Wetherall, D.: Measuring ISP topologies with Rocketfuel.
ACM SIGCOMM Computer Communication Review 32(4), 133–145 (2002)

18. Bourgeau, T., Friedman, T.: Efficient IP-level network topology capture. In:
Roughan, M., Chang, R. (eds.) PAM 2013. LNCS, vol. 7799, pp. 11–20. Springer,
Heidelberg (2013)

19. Willinger, W., Alderson, D., Doyle, J.C.: Mathematics and the Internet: A source
of enormous confusion and great potential. Notices of the AMS 56(5) (2009)

20. Wu, J., Zhang, Y., Mao, Z.M., Shin, K.G.: Internet routing resilience to failures:
analysis and implications. In: Proceedings of ACM CoNEXT (2007)



On Searching for Patterns

in Traceroute Responses

Nevil Brownlee

The University of Auckland, New Zealand
nevil@auckland.ac.nz

Abstract. We study active traceroute measurements from more than
1,000 vantage points towards a few targets over 24 hours or more. Our
aim is to detect patterns in the data that correspond to significant oper-
ational events. Because traceroute data is complex and noisy, little work
in this area has been published to date. First we develop a measure for
the differences between successive traceroute measurements, then we use
this measure to cluster changes across all vantage points and assess the
meaning and descriptive power of these clusters. Large-scale operational
events stand out clearly in our 3D visualisations; our clustering technique
could be developed further to make such events visible to the operator
community in near-real time.

1 Introduction

In April 2012 the author spent some time at RIPE NCC in Amsterdam, working
with traceroute data from RIPE’s Atlas project. Atlas is “a global network of
probes that measure Internet connectivity and reachability” [7]. By mid-2013 it
had about 3600 tiny Linux probes deployed world-wide providing Atlas ‘vantage
points;’ about 1500 of them made half-hourly traceroute measurements, three
UDP probes per step, to a set of fixed destinations. The resulting data provides
a view of the global Internet. This paper reports on efforts to find and display
patterns observable in the traceroute responses.

Of particular interest were patterns caused by routing changes that affected
significant parts of the Internet, for example because a high-capacity router or
backbone link had failed. To detect such patterns we needed to find sets of
probes that saw traceroute changes that occurred at about the same time, and
that involved similar sets of IP addresses. A simple strategy to achieve that was
to use hierarchical agglomerative clustering to group probes that saw similar
changes, and to develop simple visualisations that allowed us to see patterns in
the probes’ traceroutes.

Traceroute can produce unexpected results in many different ways, so tracer-
oute data is inherently noisy. Any technique for clustering relies on computed
‘distances’ between pairs of objects. We realised early on that we would have to
‘clean up’ our data before using it to compute distances; section 4 presents our
data-cleaning methods. Our objects are Atlas probes, each of which provides a
set of half-hourly traceroutes. We needed to compute distances between probes

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 67–76, 2014.
c© Springer International Publishing Switzerland 2014



68 N. Brownlee

Table 1. Dataset summary information. The last three columns show average values
for the 14 destinations.

start active varying
name date hours probes probe % traces

tdi 22 Feb 48 1340 99.25 121736
may1 1 May 24 1591 94.72 70475
may7 1 May 24 1533 97.46 70812

based on their traceroutes. Our algorithms for measures of distance between
probes are presented in subsections 4.1 and 4.2. Section 5 presents results of our
analyses. Section 6 summarises our contributions and future plans.

2 Related Work

Many researchers have investigated global Internet routing behaviour by collect-
ing and analysing BGP data. For example, Lad et al. [3] used BGP data from
RouteViews1 and RIPE RIS2 to create a topology graph that “weighs a link by
the number of routes using that link.” Their tool, Link-Rank, visualises aggre-
gate route changes within the AS-level topology; they demonstrate how that can
be used to detect various kinds of routing problems.

In 2012 King et al. [2] presented several different methods of visualising Inter-
net outages, and pointed out that using “coordinated views” can help in under-
standing those outages. For packets sent from “malware-infected PCs” they used
Mercator projections for the number of hosts and packets using symbols plotted
in geolocated positions showing where the packets originated. To visualise the
address blocks for those packets they used Wessels’ IPv4 heat-map tool3, colour-
ing pixels on a Hilbert curve for each /24 subnet to show the number of source
IPv4 addresses in each /24 subnet. They displayed both of those visualisations
in successive frames of a movie, with each frame covering a 320-second interval.

In [6], Quan et al assumed that events occurring at the same time suggest a
common root cause. They developed a “simple clustering algorithm that helps
identify spatial clusters of network events based on correlations in event timing,”
and used it to make a 2D visualisation of such events – essentially a simple plot
of address block vs time, with coloured dots showing when events occurred.

3 Datasets

In this project our data sources are Atlas probes. Each probe provides a time
series of IPv4 traceroutes (Traces), one for each half-hour (TimeBin). A Trace
is a sequence of Hops, each with two components: the responding host’s IP ad-
dress(es), the RTTs for responses from those addresses, and an error indication.

1 http://www.routeviews.org/
2 https://www.ripe.net/data-tools/stats/ris/routing-information-service
3 http://maps.measurement-factory.com/software/

http://www.routeviews.org/
https://www.ripe.net/data-tools/stats/ris/routing-information-service
http://maps.measurement-factory.com/software/


On Searching for Patterns in Traceroute Responses 69

Table 2. Statistics for may1 dataset

% multi-responder % A % A % * % *
ID destination inst hops hops traces probes traces probes traces probes

5016 j.root-servers.net 70 585381 9.12 34.01 39.26 1.00 1.25 0.95 5.27
5001 k.root-servers.net 17 608995 5.65 22.26 26.12 7.57 8.62 1.93 6.12
5004 f.root-servers.net 49 633507 9.12 31.61 36.25 0.18 0.26 0.03 0.66
5008 labs.ripe.net 1 639826 6.55 27.96 32.08 0.25 0.33 0.08 0.66
5005 i.root-servers.net 43 663644 9.77 29.35 37.83 0.13 0.20 0.02 0.66
5002 tt01.ripe.net 1 685521 12.32 50.84 63.03 0.13 0.20 0.03 1.12
5006 m.root-servers.net 6 800726 22.26 81.69 85.92 14.69 32.50 12.58 28.09
5017 ronin.atlas 1 812731 21.75 92.47 96.78 0.13 0.26 0.02 0.66
5011 c.root-servers.net 8 848329 27.10 92.63 95.60 0.19 0.33 0.07 0.72
5009 a.root-servers.net 8 961161 14.31 79.13 89.01 15.17 83.62 14.06 83.68
5010 b.root-servers.net 1 979508 17.68 76.34 83.75 0.13 0.20 0.09 0.86
5012 d.root-servers.net 1 985951 17.02 57.32 61.29 0.19 0.33 0.20 4.28
5015 h.root-servers.net 2 1073730 21.50 77.36 83.41 0.14 0.26 0.12 3.16
5020 carson 1 1137892 16.70 55.29 59.83 0.47 0.53 0.18 1.58

We analysed datasets from early 2012, as set out in Table 1. Each dataset has
Traces for all of its online probes to 14 fixed destinations (see Table 2). Dataset
tdi covers two days that include the Telstra-Dodo incident[10], which occurred
at 1340-1425 (AEDST) – i.e. 0240-1525 UTC – on 23 Feb 12, leaving “millions
of customers without Internet connectivity.” Thus, tdi covers a 48-hour period
around a large known Internet routing incident. may1 and may7 cover two single
days selected arbitrarily. The number of probes on-line increased from 1340 in
February to about 1560 in May 2012, showing that more probes were deployed
over that interval.

Table 2 shows summary statistics for the 14 fixed destinations in dataset
may1; our other two datasets have similar variations among the destinations.
Most of Table 2’s destinations are root servers, the number of anycast instances
each has is shown in the ‘inst’ column. The other destinations are individual
servers. The total number of hops seen in each trace is shown on the ‘hops’
column; j.root has the smallest, most likely because it has the most instances,
allowing shorter paths from probes to reach it. The same is true for f, k and i
roots. On the other hand, labs.ripe.net also saw a fairly low number of hops, we
surmise that is because the Atlas project has the highest concentration of its
probes in Europe.

On average, between 95% and 99% of the online probes in each dataset saw
some changes in their Traces to the 14 destinations. Within the may1 dataset,
the number of probes that saw varying Traces was between 26% and 98%. These
high percentages demonstrate the variability of Internet routing.

Table 2’s ‘% A’ columns show the percentage of traces and probes that con-
tained an A error response. m.root and a.root have unusually high A percentages;
we surmise that they are connected to ISPs that block traceroutes close to the
end of many Traces. Table 2’s ‘% *’ columns show precentages for Hops that
received no responses, and thus no IP address information.



70 N. Brownlee

4 Methodology

Traces can misbehave in many different ways. Inspecting our data showed one
common behaviour: incomplete Traces (those that did not reach their desti-
nation) often continue for many unanswered (* RTTs, with no IP addresses) or
administratively blocked (‘A’ error code) Hops. For such Traces, we find the first
‘A’ Hop, delete any following Hops, then we delete any unanswered Hops before
the ‘A’ Hop. ‘Cleaning up’ Traces in this way deletes Hops that do not provide
any address information, thereby preventing them from producing misleadingly
high Trace edit distance values.

4.1 Measuring Changes between Successive Traces: Edit Distances

For each probe we needed to measure how often, and by how much, its source-
to-destination path changed. We chose to do that using Levenshtein Edit Dis-
tance [4], ed, i.e. the number of inserts, deletes or swaps needed to construct a
Trace from the one in its preceding TimeBin, using Hop IP addresses as sym-
bols. That approach yields a vector of ed values for each probe, with high values
indicating Timebins when large path changes occured.

We compute ed for each pair of Traces using a linear programming implemen-
tation similar to the one described in [1]; that requires a method of computing
the difference between any two Hops in the Traces. If both Hops have only single
responding hosts – i.e. IP addresses – the Hop difference is either 0 if the two IP
addresses are the same, or 1. However, up to 27% of the Hops we observed for a
single destination had multiple responders, indicating that their Traces include
load-balanced sections. Considering Table 2 again, we see that load-balanced
Hops appear in up to 93% of the Traces, and as many as 96% of the probes saw
at least one load-balanced path segment.

For load-balanced paths, we decided to use values between 0 and 1 to indicate
how different the sets of addresses in pairs of hops were. We assume that router
interfaces within an ISP PoP are most likely to have addresses within a /24
address block. That allows us to use an approximate match where each of two
Hop IP addresses have the same leading 24 bits. Figure 1 shows the match length
cumulative distributions for each destination. About 30% of these matches differ
at bit 0, i.e. they are completely different, but more than 90% differ by bit 25,
indicating path changes that used a different PoP. For pairs of Hops where one
or both Hops have multiple IPv4 addresses, we compute the Hop difference as
hd = u/(u +m), where m is the number of approximately matched addresses,
and u the number of unmatched addresses.

When our datasets were collected the Atlas probes could only perform ‘classic’
traceroutes; our approximate matching algorithm works well to reduce the noise
level in our edit distance calculations. Our project was only concerned with
observing patterns of changes in our Traces. For us, classic traceroute gives an
effective view of all the paths in the Traces for every TimeBin.

At this point, we made 3D plots of ed over time (x axis), with the probes
in probe ID order on our y axis. We refer to these as cornfield plots – the edit



On Searching for Patterns in Traceroute Responses 71

 30

 40

 50

 60

 70

 80

 90

 100

 0  4  8  12  16  20  24  28  32
first bit different

traceroute Hop match lengths observed on 22-23 Feb 2012%

16 bits

destination

8 bits

24 bits

5001
5002
5004
5005
5006
5008
5009
5010
5011
5012
5015
5016
5017
5020

Fig. 1. tdi dataset: Hop match lengths cumulative distributions for 14 fixed destina-
tions, for all matches with at least one multi-responding Hop. More than 90% of these
matches differ by bit 25, indicating path changes that used a different PoP.

distances are upright (z axis) like corn stalks, and patterns caused by route
changes stand out like crop circles in a cornfield. These plots clearly showed
lines of high ed values at times when paths to a (single) destination changed for
many probes at the same time, as shown in Fig. 2(a).

To gain insight into which probes had changing paths, we needed to group
together the probes with similar changes. We chose to do that using single-link
clustering (slink) [8], a simple form of hierarchical agglomerative clustering, and
implemented it by following its very clear description in [5]. Clustering algorithms
need to know a distance between any two of the objects being clustered. Our
objects to be clustered are probes, for each probe we have a vector of edit
distances; we compute cs, the cosine similarity [9] of two such vectors, then use
1 − cs as the distance between them. Since we are trying to detect significant
changes, we exclude the probes that showed no change at all.

We used slink to compute a dendrogram for the probes; that dendrogram lists
the probes in an order that gathers the ‘least-different’ probes close together.
Since our datasets include 1340 to 1533 probes, it is difficult to see clear probe
clusters in a tree-style visualisation of a destination’s dendrogram. Instead, we
modified our cornfield plots to show the probes in dendrogram order on the y
axis, as shown in Fig. 2(b).

Our first attempts to interpret our cornfield plots were inconclusive, mostly
because our edit distance (ed) values are rather noisy. In particular, they are
dependent on the number of Hops in any probe’s Traces. To minimise that effect
we compute the standard deviation of each probe’s ed values, then colour the ed
stalks so that we can distinguish those with unusually high ed values (plotted in
red).



72 N. Brownlee

0000/22

0400/22

0800/22

1200/22

1600/22

2000/22

0000/23

0400/23

0800/23

1200/23

1600/23

2000/23

0000/24 0
200

400
600

800
1000

1200
1400

1
3

10
30

tdi, 5017, ronin.atlas (@Hetzner):  route changes per time bin,  -p -u -50+50   

probe index

time
hhmm/dd

edit distance

>= 2.0
>= 1.0
>= 0.5
>= 0.0

(a) ronin.atlas, y-axis in probe ID order

0000/22

0400/22

0800/22

1200/22

1600/22

2000/22

0000/23

0400/23

0800/23

1200/23

1600/23

2000/23

0000/24 1
100

200
299

401
499

598
700

798
896

1
3

10
30

tdi, 5017, ronin.atlas (@Hetzner):  route changes per time bin,  -d -u -50+50   

probe index

time
hhmm/dd

edit distance

>= 2.0
>= 1.0
>= 0.5
>= 0.0

(b) ronin.atlas, y-axis in dendrogram order

Fig. 2. Dataset tdi cornfield plots for destination ronin.atlas. Colour shows edit distance
in ‘probe standard deviation’ units for each probe. Using dendrogram order brings
similarly-behaving probes together.

Displaying the probes in dendrogram order makes the behaviour of similar
probes much more obvious. Figure 2(a) plots the probes in ID order. There were
three times (1430-1530 on 22 Feb 13 UTC) when many probes saw changes,
but those probes are spread out across the y axis. Figure 2(b) shows probes in
dendrogram order; the same probes show changes at the same times, but we can
see that there are several obvious probe clusters. Probes that saw few changes
appear as almost empty lines along the x axis, i.e. over time, while probes that
saw frequent changes have many high ed values. Overall, because similar probes
are grouped together, we can see their behaviour over time more clearly.

4.2 Trace Uncommon Distances

Although edit distance is sensitive to changes that occur at the same time for
different probes, it is insensitive to changes of IP addresses. In order to distin-
guish probes for which different addresses changed at the same time, we needed
another measure based on changes in path addresses.

Figure 3 shows the Hop addresses for probe IDs 1324 and 2602 for Traces to i-
root in ourmay1 dataset. The integers at the start of each Trace show the number
of times that path was used. For both these probes, the most common path had
no multi-address Hops, four Traces (occurring within the same TimeBins) had
one multi-address Hop, and the third used a path to a different i-root instance.
The lines starting with uncommon show the probe’s uncommon IP addresses,
i.e. those that did not appear in every Trace.

To compute the uncommon distance, ucd, between two Traces, we count the
number of uncommon address blocks that appear in both Traces, ubt, and in the
Trace with most uncommon blocks, mub. Then ucd = 1 − (ubt/mub). Pairs of
traces that saw similar sets of uncommon blocks will have smaller ucd values.



On Searching for Patterns in Traceroute Responses 73

probe 1324, dest=192.36.148.17, i-root:

43 89.37.15.5/20 37.128.239.42/32 80.97.248.13/32 145.236.18.91/32 95.158.131.242/22 85.29.25.10/32

193.140.13.2/32 192.36.148.17/32 s

4 89.37.15.5/20 37.128.239.42/32 80.97.248.13/32 145.236.18.91/32 95.158.131.242/22 82.222.10.157/18

85.29.8.165/19 193.140.13.2/32 192.36.148.17/32 s

1 89.37.15.5/20 37.128.239.5/32 62.40.125.137/20 109.105.97.5/32 194.146.105.187/32 192.36.148.17/32 s

uncommon: 80.97.248.13/32,145.236.18.91/32,95.158.131.242/22,85.29.25.10/32,193.140.13.2/32,

82.222.10.157/18,62.40.125.137/20,109.105.97.5/32,194.146.105.187/32

probe 2602, dest=192.36.148.17, i-root:

42 77.70.97.1/32 89.190.204.244/32 193.169.198.199/32 95.158.131.242/22 85.29.25.10/32 193.140.13.2/32 f

4 77.70.97.1/32 89.190.204.244/32 193.169.198.199/32 95.158.131.242/22 82.222.10.157/18

85.29.8.165/19 193.140.13.2/32 f

1 77.70.97.1/32 89.190.198.146/19 80.81.192.229/25 192.36.148.17/32 s

uncommon: 193.169.198.199/32,95.158.131.242/22,85.29.25.10/32,193.140.13.2/32,82.222.10.157/18,

80.81.192.229/25,192.36.148.17/32

Fig. 3. Examples of paths showing addresses for Hops that succeeded and failed. The
uncommon lines show blocks that did not appear in all paths.

4.3 Clustering Distance between Probe Pairs

On testing our uncommon distance algorithms, we found that the distances it
yields are not sufficient for single-link clustering to work well. Instead we use both
algorithms together, with equal weight. The resulting dendrograms separate out
clusters of probes that saw path changes at the same time, and those clusters
are made up of sub-clusters of probes that saw the same uncommon addresses
at those times.

5 Observations

We made sheets of cornfield plots for all 14 destinations for each of our datasets.
Unfortunately we did not find any patterns in our tdi data that could have been
caused by the Telstra-Dodo incident; we believe that is because on 23 February
2012 there were only 40 Atlas probes were deployed in all of Australia.

In Figure 4 we show four examples of cornfield plots, all for our may1 dataset.
To understand events in them, we analysed their ‘uncommon Hops’ log files,
mapping IP addresses to network providers by using whois at the Regional In-
ternet Registry (RIR) websites.

Figure 4(a) shows edit distances for Traces to m-root (RIPE NCC), an anycast
nameserver with six instances. Probes numbered 365-550 on this plot have high
ed values at 1230, followed by ed values below 0.5 standard deviations for the
rest of the day. All the Traces to probes 365-550 reached m-root via SFINX, the
French Internet Exchange, hence they were destined for the Paris instance of
m-root. The event at 1230 was caused by a routing change; the first 26 Traces
went via Cogent, the remaining 22 went via Tiscali. Since the ed’s after 1230
were much lower than before, it is clear that during that time the route via
Tiscali was more stable than before.

Again, probes numbered 271-362 have high ed values at 2230. Their Traces
were mostly carried by Level3; at 2230 a different route, still within Level3 but
two hops shorter, appeared, producing the observed high ed values.



74 N. Brownlee

0000/01

0200/01

0400/01

0600/01

0800/01

1000/01

1200/01

1400/01

1600/01

1800/01

2000/01

2200/01

0000/02
1

126
250

379
503

629
755

882

1
3

10
30

may1, 5006, m.root-servers.net:  route changes per time bin,  -d -u -50+50   

probe index

time
hhmm/dd

edit distance

>= 2.0
>= 1.0
>= 0.5
>= 0.0

(a) m.root, path change to Paris instance

0000/01

0200/01

0400/01

0600/01

0800/01

1000/01

1200/01

1400/01

1600/01

1800/01

2000/01

2200/01

0000/02
1

63
127

189
253

318
382

444

1
3

10
30

may1, 5005, i.root-servers.net:  route changes per time bin,  -d -u -50+50   

probe index

time
hhmm/dd

edit distance

>= 2.0
>= 1.0
>= 0.5
>= 0.0

(b) i.root, switch between anycast instances

0000/01

0200/01

0400/01

0600/01

0800/01

1000/01

1200/01

1400/01

1600/01

1800/01

2000/01

2200/01

0000/02
1

140
279

424
563

706
846

988
1128

1
3

10
30

may1, 5015, h.root-servers.net:  route changes per time bin,  -d -u -50+50   

probe index

time
hhmm/dd

edit distance

>= 2.0
>= 1.0
>= 0.5
>= 0.0

(c) h.root, path changes within UUNET

0000/01

0200/01

0400/01

0600/01

0800/01

1000/01

1200/01

1400/01

1600/01

1800/01

2000/01

2200/01

0000/02
1

54
107

161
215

269
322

376
429

1
3

10
30

may1, 5001, k.root-servers.net:  route changes per time bin,  -d -u -50+50   

probe index

time
hhmm/dd

edit distance

>= 2.0
>= 1.0
>= 0.5
>= 0.0

(d) k.root, admin blocking

Fig. 4. Cornfield plots for four destinations. -d = probes in dendrogram order probes,
-u = ed in std dev units, 50+50 = equal weight for ed and uncommon distances.

Traces to i-root (Netnod), an anycast nameserver with 43 instances, are shown
in Figure 4(b). Probes numbered 120-212 on this plot have high ed values at 1130
and 1200. Most of their traces reached the i-root instance in Ankara via Novatel
(Bulgaria) and ULAK, the Turkish national academic network, but a few reached
its Stockholm instance via NORDUnet and Netnod, or its Frankfurt instance via
various European providers. Also, many of these traces stopped one hop short
of their destination instance; perhaps this could indicate short-term overloads
at the destination instances.

Figure 4(c) shows edit distances for Traces to h-root (U.S. Army Research
Lab), which has two instances. Probes numbered 190-300 on this plot have high
ed’s. No Traces from the Atlas probes reached h-root, their last hop was always to
DoD NIC in the DREN network. Perhaps DREN simply discards DNS requests
to h-root from most of the Internet? Further, all the Traces for probes 190-300
pass through UUNET; the high ed values we see were caused by routing changes
within that network.

Traces to k-root (RIPE NCC), an anycast nameserver with 17 instances, are
shown in Figure 4(d). Probes numbered 139-180 on this plot have high ed values
at 1800. All their traces reach the London instance of k-root via PacketExchange



On Searching for Patterns in Traceroute Responses 75

Abovenet. From 1800 through the rest of 1 May, Traces were administratively
blocked.

6 Conclusions and Future Work

We have shown that simple clustering algorithms are sufficient to reveal patterns
in traceroute data caused by path changes that are seen by different probes –
presumably because of routing changes, or link or router failures – at the same
times. To implement single-link clustering we have used two simple distance
measures: edit distance, using Levenshtein distance between pairs of Traces, and
uncommon distance, using sets of IP address blocks that do not appear in all
the Traces for a pair of probes.

We handle Trace hops that include load-balanced paths, i.e. those that re-
turn RTTs for several different IP addresses, by using an approximate match
algorithm. For each address pair we compute the number of their leading bits
that match, and assume that the addresses match if their first 24 bits are the
same, i.e. that ISPs use at most /24 subnets for router interfaces in their PoPs.
Our cornfield plots reveal changes for quite small sets of probes, indicating that
noise from approximate-matching errors is not sufficient to impair our clustering
process.

We find that a total clustering distance using 50% edit distance + 50% un-
common distance works well for clustering our Atlas probe data, enabling us not
only to observe changes in the Traces (visualised as ‘cornfield plots,’) but also
to discover which addresses were involved in those changes.

In developing our algorithms we were not concerned with computing speed. All
our programming is done in Ruby, producing code that is simple to understand.
Nonetheless, running them on a Lenovo T61 laptop, for each destination in a
day’s dataset, we find that the elapsed time for processing Trace data took at
most 15.7 minutes, with 69% of that time spent computing the edit distances.
For all 14 destinations, one day’s data takes about 3.5 hours.

In the three datasets we have analysed, events occur over one to three Time-
Bins, i.e. they appear to last no longer that 1.5 hours. They are of two kinds:
short-term changes followed by a return to the ‘normal’ state, and longer-term
changes in global routing. Long-term changes can be distinguished in our corn-
field plots, for example where routing stability improves the edit distances de-
crease. We find that our cornfield plots are an effective way to visualise Trace
changes, since one can see a whole dataset in a single 2D projection of the 3D
cornfield. We propose several topics for future work:

– We will investigate other probe distance measures and clustering algorithms.
– So far we have recognised path change clusters by observing them as visual

patterns in our cornfield plots. We need to automate that process.
– In section 5 we comment on which address blocks were involved in clusters

of probes with paths that changed. Again, that process could be automated.

With these two processes automated, it would be possible to run this analysis
in near-real time, for example to produce a report every few hours, or perhaps



76 N. Brownlee

cornfield plots that were updated every half-hour. Such reports could make ser-
vice providers aware of large-scale path changes before large numbers of end
users are affected by them.

Acknowledgment. Thank-you to my colleagues at RIPE NCC for their help
and encouragement through the early stages of this project, especially Emile
Aben, Robert Kisteleki and Daniel Karrenberg. Thanks to Bradley Huffaker at
CAIDA, for our helpful discussions of visualisation and clustering. Last, thanks
to the PAM referees for their very helpful comments.

Atlas data is available from RIPE NCC, the Ruby programs we developed for
this project can be obtained by emailing a request to this paper’s author.

References

1. Allison, L.: Dynamic programming algorithm (dpa) for edit-distance,
http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Dynamic/Edit/

2. King, A., Huffaker, B., Dainotti, A., Claffy, K.: A coordinated view of the tem-
poral evolution of large-scale internet events. In: First IMC Workshop on Internet
Visualization, WIV 2012 (2012), http://ant.isi.edu/wiv2012/program.html

3. Lad, M., Massey, D., Zhang, L.: Visualizing internet routing changes. IEEE Trans-
actions on Visualization and Computer Graphics 12(6) (November 2006)

4. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady 10, 707 (1966)

5. Matteucci, M.: Hierarchical clustering algorithms, http://home.dei.polimi.it/
matteucc/Clustering/tutorial html/hierarchical.html

6. Quan, L., Heidemann, J., Pradkin, Y.: Visualizing sparse internet events: network
outages and route changes. In: First IMC Workshop on Internet Visualization,
WIV 2012 (2012), http://ant.isi.edu/wiv2012/program.html

7. RIPE Network Coordination Centre. Ripe atlas, https://atlas.ripe.net/
8. Sibson, R.: Slink: An optimally efficient algorithm for the single-link cluster

method. The Computer Journal 16(1), 30–34 (1973)
9. Singhal, A.: Modern information retrieval: a brief overview. IEEE Data Engineering

Bulletin 24, 35–43 (2001)
10. Taylor, J.: How did dodo break the internet? (February 24, 2012),

http://www.zdnet.com/how-did-dodo-break-the-internet-1339332390/

http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Dynamic/Edit/
http://ant.isi.edu/wiv2012/program.html
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html
http://ant.isi.edu/wiv2012/program.html
https://atlas.ripe.net/
http://www.zdnet.com/how-did-dodo-break-the-internet-1339332390/


Volume-Based Transit Pricing:
Is 95 the Right Percentile?

Vamseedhar Reddyvari Raja1, Amogh Dhamdhere2, Alessandra Scicchitano3,
Srinivas Shakkottai1, kc claffy2, and Simon Leinen3

1 Texas A&M University, College Station, TX 77843, USA
2 CAIDA/UCSD, San Diego, CA 92093, USA

3 SWITCH, Switzerland
vamseedhar.reddyvaru@neo.tamu.edu

Abstract. The 95th percentile billing mechanism has been an industry de facto
standard for transit providers for well over a decade. While the simplicity of the
scheme makes it attractive as a billing mechanism, dramatic evolution in traf-
fic patterns, associated interconnection practices and industry structure over the
last two decades motivates an obvious question: is it still appropriate? In this
paper, we evaluate the 95th percentile pricing mechanism from the perspective
of transit providers, using a decade of traffic statistics from SWITCH (a large
research/academic network), and more recent traffic statistics from 3 Internet Ex-
change Points (IXPs). We find that over time, heavy-inbound and heavy-hitter
networks are able to achieve a lower 95th-to-average ratio than heavy-inbound
and moderate-hitter networks, possibly due to their ability to better manage their
traffic profile. The 95th percentile traffic volume also does not necessarily reflect
the cost burden to the provider, motivating our exploration of an alternative met-
ric that better captures the costs imposed on a network. We define the provision
ratio for a customer, which captures its contribution to the provider’s peak load.

1 Introduction

The industry standard for transit billing is the 95th percentile billing method [1, 2]
wherein a transit provider measures the utilization of a customer link in 5-minute bins
over the duration of a month, and then computes the 95th Percentile of these utilization
values as the billing volume. The 95th Percentile method has several attractive prop-
erties. First, this method is simple to implement, and uses data (e.g., SNMP) that the
provider typically already collects. Second, it approximates the load that a customer
causes the provider, while “forgiving” a few bursts (the top 5% of samples are ignored).
While this transit billing method has remained fairly standard for over a decade, traffic
patterns have evolved dramatically, from the dominance of client-server traffic in the
early days of the Internet, to the rise and fall in popularity of peer-to-peer applications,
to the rise of streaming video. Given that the traffic profile of a transit customer depends
on the popularity of underlying applications, it is not clear that a transit billing scheme
that may have been rational a decade ago is still appropriate.

In this work, we revisit the 95th Percentile billing scheme from the perspective of a
provider, to investigate whether this scheme approximately achieves its intended ob-
jective of providing an easy-to-compute approximation of a customer’s traffic load

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 77–87, 2014.
c© Springer International Publishing Switzerland 2014



78 V. Reddyvari Raja et al.

to the provider. We first use 10 years of historical data from SWITCH, a Swiss re-
search/academic network, and more recent data from 3 Internet Exchange Points (IXPs)
to investigate how the 95th Percentile of a customer’s traffic relates to: (1) its total traf-
fic volume, (2) its nature as a predominantly inbound/outbound customer, and (3) its
behavior as a heavy vs. moderate hitter. Second, we study the fairness of the 95th per-
centile scheme, and define a new metric called the provision ratio to investigate the
relationship between the 95th Percentile of customer and the contribution of that cus-
tomer to the provider’s traffic load.

Analysis of these data sets reveals evidence that over the years the customers with a
predominantly outbound traffic profile are able to maintain a lower 95th-to-average ratio
than predominantly inbound customers, meaning that they have a lower billing volume
for the same amount of traffic sent. Furthermore, the 95th-percentile pricing mechanism
is unfair, because for many customers the 95th Percentile may not reflect their cost bur-
den to the provider, as there is little overlap between the customer’s peak and the overall
(provider) peak traffic. Our results motivate the need to look for alternatives to the 95th

Percentile billing method that can better approximate a customer’s cost burden to the
provider without adding too much additional measurement or computational overhead.

2 Datasets

SWITCH Dataset: Our first dataset comes from SWITCH, a Swiss Research/Academic
network which provides Internet connectivity to major universities and organizations in
Switzerland. Currently, SWITCH connects about 50 research and education sites, acting
as a transit provider for traffic that originates or is destined to those networks. SWITCH
also provides connectivity to the public Internet via commercial providers, and hosts
content caches of two large content providers. For traffic billing, SWITCH measures
the utilization of each border router interface in both inbound and outbound directions
in 5-minute intervals. To present a longitudinal analysis, we use historical datasets from
SWITCH from January 2003 to December 2012.

IXP Dataset: The second dataset consists of traffic statistics published by 3 Internet Ex-
change Points (IXPs) – Budapest Internet Exchange (BIX), Slovak Internet Exchange
(SIX), and Interlan Internet Exchange (ILAN). These IXPs publish MRTG graphs with
5-minute utilization (inbound and outbound) for each network connected to the public
peering fabric of the IXP. We collected these graphs every day for the month of Au-
gust 2013 and used Optical Character Recognition tools [3] to parse them. BIX had
62 networks connected to its public peering fabric, while SIX and ILAN had 48 and
55 networks, respectively. Networks connect to IXPs to create (settlement-free) peering
connections with other participating networks, and so the traffic statistics we see at an
IXP are for a connected network’s peering traffic1. Castro et al. [3] showed that transit
traffic and peering traffic have similar diurnal patterns and peak-to-valley ratios; in fact,
the transit traffic for a network can be well-approximated as a multiplicative factor of
the peering traffic. In our analysis we consider the IXP as proxy for a transit provider,
and the networks connected to it as its customers.

1 While not explicitly disallowed, transit sale over the shared IXP fabric is rare [4].



Volume-Based Transit Pricing: Is 95 the Right Percentile? 79

3 Longitudinal Study of 95th Percentile Billing

We first describe two common methods of computing the 95th Percentile traffic volume,
and how the two methods can treat customers differently. We then classify networks
based on two criteria: (i) major direction of traffic (inbound, outbound, and balanced);
and (ii) volume of traffic (heavy-hitter and moderate-hitter), and present a longitudinal
view of the traffic properties of these network types.

3.1 Calculation of 95th Percentile

Although 95th Percentile billing is the industry standard, there are two common im-
plementations and several possible variations. The first method measures the inbound
and outbound traffic in every 5 minutes over the month, calculates the 95th percentile
for each direction, and uses the maximum of these two values. Most transit provider
references to computing the 95th Percentile use this method, e.g., [5, 6], so we use it in
our subsequent analysis. The second method records the maximum of inbound and out-
bound traffic in each five minute interval, and calculates the 95th Percentile value from
the resulting data set. This second method seems to be less common although we found
a few transit providers that bill using this method [7, 8]. The second method will yield a
value greater than or equal to the first method, and the results will differ significantly for
customers with balanced traffic profiles, but with inbound peaks occurring at different
times from outbound peaks. We computed the 95th Percentile for each network in the
SWITCH dataset over 10 years. We found that the median ratio of the 95th Percentile
value for each network, computed using these two methods is close to 1, but the widest
difference induces a 20% higher transit bill using the second method.

3.2 Classification of Networks

Direction of Traffic: We divide networks into three categories based on the dominant
direction of traffic. For each network, we measure the traffic that terminates within that
network (inbound) and traffic that originates from that network (outbound). If the in-
bound traffic of the network is more than twice the outbound traffic we classify it as
heavy-inbound, and if the outbound traffic is more than twice the inbound traffic we
classify the network as heavy-outbound. Networks that do not satisfy either condition
are classified as balanced. Typically, content providers are heavy-outbound, while eye-
ball providers are heavy-inbound.

Volume of Traffic: We next classify networks based on the volume of traffic they gen-
erate/consume over a month into heavy-hitter and moderate-hitter networks. To define
the two classes we evaluated the traffic contribution by the top 20% of networks in each
month of the SWITCH and IXP datasets. The top 20% of networks consistently con-
tributed between 80 and 90% of total traffic in the SWITCH dataset, and 75% of total
traffic in the IXP dataset. Based on this observation, we classify the top 20% of net-
works in each month as heavy-hitter networks and the rest as moderate-hitter networks.



80 V. Reddyvari Raja et al.

Jan
 2003

Jan
 2004

Jan
2005

Jan
2006

Jan
2007

Jan
2008

Jan
2009

Jan
2010

Jan
2011

Jan
2012

Months

1

2

3

4

5

6

R
a
ti

o
 o

f 
9
5
 %

le
 t

o
 A

v
g

Ratio of 95 Percentile to Average

Heavy-Inbound Networks

Balanced Networks

Heavy-Outbound-Networks

Jan
 2003

Jan
 2004

Jan
2005

Jan
2006

Jan
2007

Jan
2008

Jan
2009

Jan
2010

Jan
2011

Jan
2012

Months

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
Ratio of 95 Percentile to Average

Heavy-Hitter Networks

Moderate-Hitter Networks

Fig. 1. Mean 95th Percentile to average ratio for different network types in the SWITCH dataset.
Heavy-inbound networks have a larger 95th Percentile to average ratio than heavy-outbound
networks. Also, moderate-hitter networks have a larger ratio than heavy-hitter networks.

3.3 95th Percentile to Average Ratio

For each customer network, we first evaluate the 95th Percentile to average traffic ratio;
the average reflects the total volume of traffic, whereas the 95th Percentile value gives
an idea of the peak, and is also the traffic volume for which the customer is billed. If the
two significantly differ, it suggests that the customer is paying primarily for its bursti-
ness. Figure 1 shows the mean of the 95th Percentile to average traffic ratio over time
for networks in the SWITCH dataset classified by traffic direction and traffic volume.

First, we observe that the 95th Percentile to average ratio has been fairly stable over
the years for each type of network, despite the dramatic changes in overall inter-domain
traffic patterns that have occurred during the same time. In the last 4 years, the mean ra-
tio for heavy-outbound networks is between 2 and 3, while the mean for heavy-inbound
networks is between 3.25 and 4. For balanced networks, the ratio is less than 3.25.
Hence, heavy-inbound networks in general have higher 95th Percentile traffic compared
to heavy-outbound or balanced networks for the same average traffic. Consequently,
heavy-inbound networks have a higher billing volume than heavy-outbound networks
for the same amount of total traffic sent. We observe that the mean ratio is between 2.25
and 3 for heavy-hitter networks, especially in the last 4 years. However, the mean ratio
always exceeds 3 for moderate-hitter networks in those 4 years.

Table 1 shows the mean 95th Percentile to average ratio for different classes of net-
works in the IXP dataset. We observe that the mean ratio is higher for heavy-inbound
networks than for heavy-outbound networks, consistent with our analysis of the
SWITCH dataset. With the exception of BIX, the mean 95th Percentile to average ra-
tio for networks at the other two IXPs is larger for moderate-hitter networks than for
heavy-hitter networks, meaning that moderate-hitter networks have a burstier traffic
profile than heavy-hitter networks.

3.4 Skewness of the Traffic Distribution

The above analysis shows that heavy-inbound and moderate-hitter networks have a
higher 95th-to-average ratio as compared to other networks, meaning that their traf-



Volume-Based Transit Pricing: Is 95 the Right Percentile? 81

Table 1. Mean 95th Percentile to average ratio for IXPs, using different network classifications.
Heavy-inbound and moderate-hitter networks (except at BIX) generally have higher ratios.

IXP Heavy-inbound Balanced Heavy-outbound Heavy-hitter Moderate-hitter
SIX 2.6 - 1.7 1.4 1.9
BIX 2.82 2.3 2.1 2.59 1.94

ILAN 2.62 1.9 2.21 1.7 2.386

Jan
 2003

Jan
 2004

Jan
2005

Jan
2006

Jan
2007

Jan
2008

Jan
2009

Jan
2010

Jan
2011

Jan
2012

Months

0

5

10

15

20

25

S
k
e
w

n
e
s
s

Skewness of Networks Traffic

Heavy-Inbound Networks

Balanced Networks

Heavy-Outbound Networks

Jan
 2003

Jan
 2004

Jan
2005

Jan
2006

Jan
2007

Jan
2008

Jan
2009

Jan
2010

Jan
2011

Jan
2012

Months

0

2

4

6

8

10

12
Skewness of Networks Traffic

Heavy-Hitter Networks

Moderate-Hitter Networks

Fig. 2. Mean skewness for different network types in the SWITCH dataset. Heavy-outbound net-
works have a higher skewness, especially in the last 4 years. Heavy-hitter networks have larger
skewness than moderate-hitter networks.

fic profile is likely to be burstier. Figure 2 illustrates the difference by plotting the mean
skewness of the traffic distribution for each network type.

Skewness reveals how much the traffic distribution leans to one side of the mean;
for a random variable X : Skewness = E

[
(X − μ)3

]
/
(
E
[
(X − μ)2

])3/2
, where μ is

the mean. If a probability distribution function is unimodal, then higher positive skew
implies few values higher than the mean, i.e., the 95th Percentile value would be closer
to the average. The empirical probability mass function for the traffic of each network
is unimodal for our data sets. Heavy-outbound networks have high positive skew (the
mean is between 5 and 25), especially in the last 4 years2, compared to heavy-inbound
networks or balanced networks, whose mean skewness is between 0 and 12 and 5
and 15, respectively. Similarly, heavy-hitter networks have higher positive skew than
moderate-hitter networks. Table 2 shows the mean skew of traffic for networks at each
IXP, classified according to dominant traffic direction and traffic volume. As in the
SWITCH dataset, heavy-outbound and heavy-hitter networks generally have a larger
skewness than heavy-inbound and moderate-hitter networks.

In summary, the 95th-to-average ratio has been stable for various classes of networks
in our dataset over the last decade, indicating that a high-percentile billing scheme is
still useful. Certain networks (particularly heavy-outbound and heavy-hitter networks)
are able to achieve a lower 95th Percentile to average ratio (perhaps using intelligent
means of traffic shaping), and hence a lower billing volume for the same total amount

2 The level shifts around 2009 coincide with SWITCH connecting to AMS-IX, acquiring hun-
dreds of new peers, though the set of customers over which we compute statistics is unchanged.



82 V. Reddyvari Raja et al.

Table 2. Mean skewness for networks in the IXP dataset. Heavy-hitter networks and heavy-
outbound networks generally have higher skewness.

IXP Heavy-inbound Balanced Heavy-outbound Heavy-hitter Moderate-hitter
SIX -0.56 - 0.04 0.3 -0.88
BIX -1.6 -0.4 -0.19 -0.88 0.317

ILAN -0.122 0.07 0.29 0.253 -0.11

80 85 90 95 100

Percentile Charged

0

1

2

3

4

5

6

N
o
 o

f 
N

e
tw

o
rk

s

Shapley Percentiles of SWITCH Data

55 60 65 70 75 80 85 90 95 100

Percentile Charged

Shapley Percentiles of IXP data

Fig. 3. Shapley value percentiles: SWITCH dataset (Mar 2012) and IXP dataset (SIX, Aug 2013)

of transit traffic. Traffic smoothing may allow networks to achieve a lower transit bill,
but this says little about the contribution of those networks to the provider’s peak traffic.
The 95th Percentile of a network does not account for when the peaks occur, and so it
is unclear whether it is fair to charge each customer using the same percentile.

4 Fairness of 95th Percentile Billing

Motivated by the preceding discussion, we now focus on the fairness of the 95th Per-
centile billing mechanism. We consider a billing mechanism fair if the amount of re-
sources used by a network is reflected in the amount it is charged. An appealing idea in
this context is the Shapley value, which assigns costs to the members in a cooperative
game [9]. It possesses many attractive properties – it is efficient, i.e., the sum of costs
assigned to each member is the total cost to the system, and it is symmetric, i.e., two
members that have the same contribution will be assigned the same cost.

4.1 Shapley Value Percentile Billing

Stanojevic et al. [10] presented a model of the ISP cost allocation problem as a coopera-
tive game. The cost function of a group is the 95th Percentile of the total traffic obtained
by adding the traffic of all members in that group. This cost estimate is consistent with
the idea that the transit provider must provision for peak traffic, and is itself billed by
its provider based on this value. The Shapley value (φi) of network i is then uniquely
defined by φi =

1
N !

∑
π∈Π (V(S(π, i)− V(S(π, i)\i)) where V is the cost function,Π

is the set of all possible permutations of players N and S(π, i) is the set of all players
in ordering π before i and including i.



Volume-Based Transit Pricing: Is 95 the Right Percentile? 83

Once we determine the Shapley value of each network, we need to map it to a billing
percentile. Let the volume corresponding to the 95th Percentile value of the total traffic
be V . Then (by efficiency) the Shapley values of the customer networks will satisfy
V =

∑
i φi. Let the volume corresponding to the 95th Percentile of network i be xi.

Then the total volume billed by the transit provider under the 95th Percentile billing
scheme is

∑
i xi, which we define as X . Trivially, X ≥ V . For an apples-to-apples

comparison between the two billing schemes, we define the normalized Shapley value
of network i as si = φiX/V , so that the total billing volume in both cases is X . Then
each network can be charged based on a percentile that yields the traffic volume closest
its normalized Shapley value, which is the “Shapley value percentile” of that network.

Computation of the Shapley value is quite complex—with N users, it has complexity
order ofO(N !). Even for a moderate size ISP, which has around 50 users, the complexity
is of the order of 1064. Stanojevic et al. [10] used a Monte Carlo approximation, which
achieves a good trade-off between accuracy and complexity. We used this approximation
to find the Shapley value percentile for the SWITCH dataset (month of March 2012) and
the SIX IXP (August 2013). The results are shown in Figure 3. Clearly, the Shapley value
percentiles are widely different from the 95th Percentile .

In addition to computational complexity, the Shapley value percentile can be any-
where between 0 and 100. This approach lacks the ability of restricting the charging
percentiles to a fixed range. The handicaps of directly using the Shapley value motivate
a need for a simple proxy that captures its essence. A key observation is that a traffic
profile has greater Shapley value when it is concentrated during the peak periods when
demand is highest. Thus, Shapley value percentile billing would charge users with high
peak traffic higher than users with off peak traffic.

4.2 Overlap Rank

Building on the intuition developed in the last section that it is fair to charge more to
networks with traffic during peak periods than off-peak periods, we will show how the
current 95th Percentile billing mechanism can lead to unfairness as it does not consider
peak and off-peak periods. We define the peak periods of a transit provider as those
in which the total traffic carried by the transit provider exceeds the 95th Percentile of
the provider’s total traffic. We similarly define the peak slots for customer networks.
Based on the number of peak slots of networks that overlap with peak slots of the total
traffic, we rank the networks from highest to lowest and call it the overlap rank. Thus, a
network with rank 0 has the maximum number of peak slots that occur during the same
time intervals as the peak slots of the transit provider. We also rank networks based on
their 95th Percentile and call it the 95th Percentile rank.

Figure 4 plots overlap rank vs. percentile rank (normalized to 100) for the IXP dataset
(first 3 plots) and one month (January 2012) from the SWITCH dataset (far right). If
networks with high 95th Percentile rank also had high overlap rank, most points would
appear on the diagonal, and imply that 95th Percentile billing is charging the contrib-
utors who necessitate the provisioning of large transit links. Figure 4 tells a different
story. The points below the diagonal, especially those in the red shaded area (16%
of networks for SWITCH) have a high 95th Percentile rank but a low overlap rank,
which means that their peaks are mostly in the peak period, but their billing volume is



84 V. Reddyvari Raja et al.

Fig. 4. Overlap rank vs 95th Percentile rank for IXP dataset (Aug 2013) and one month of
SWITCH dataset (Jan 2012). A large fraction of networks lie far from the diagonal, meaning
they have a large billing volume but little overlap with the provider’s peaks, or vice versa.

relatively lower. Analogously, the points above the diagonal line, especially in the gray
region (15% of networks for SWITCH) correspond to low 95th Percentile rank and high
overlap rank. Their contribution to the peak period is low but they have a relatively high
billing volume. Similar observations can also be made from the IXP graphs in Figure 4.

4.3 Provision Ratio

The overlap rank considers only the cardinality of overlap slots, without accounting for
diverse traffic volumes. A good proxy for the Shapley value should capture the volume
during peak slots, appropriately normalized with the amount of traffic generated by the
network. We define the provision ratio (PR) of a network as the ratio of the average
traffic during the peak slots of total traffic to the 95th Percentile of that network’s traffic.

PR of network i =
Total traffic of network i during peak slots / # of peak slots

95th Percentile of network i’s traffic
.

The PR is essentially the ratio of traffic contributed by the network during the peak
time slots (or average capacity provided to that network during these peaks) to the peak
traffic of that network (excluding the top 5% of bursts); It can be viewed as the fraction
of a network’s peak traffic that occurs during the provider’s peak periods. We propose
that the PR can be an important component of a billing mechanism, because it captures
the contribution of a network’s traffic to the provider’s peak. The PR is also robust to
the exact thresholds used to compute it – we found that in our datasets, the provision
ratio is robust to the exact threshold for defining a peak slot, e.g., if we change the 95th

Percentile to 85th percentile, the provision ratio does not change significantly.
The provision ratio is not equal to the Shapley value percentile in an absolute sense,

but in a relative sense it appears to have the right characteristics. To quantify the simi-
larity between the two, we find the percentage of orders preserved between all possible
pairs of networks in both datasets. A transit provider with N customers will have NC2

customer pairs. For each pair, order is preserved if the network that is charged a higher
Shapley percentile also has a higher provision ratio. We find that for the SWITCH
dataset, the provision ratio preserves between 76% and 82% of orders in the SWITCH
dataset (each month of 2012) and 89%, 75%, and 82% for the SIX, BIX, and ILAN
IXPs, respectively (August 2013). The strong similarity of orders indicates that provi-
sion ratio is indeed order preserving.



Volume-Based Transit Pricing: Is 95 the Right Percentile? 85

4.4 Towards a New Billing Mechanism

One could argue that the 95th Percentile billing scheme is an approximation, aiming
for simplicity and predictability over fairness. At the other extreme is Shapley value
pricing, which charges each user differently based on their actual contribution to the
provider’s costs. An open challenge is how to achieve both objectives – fairness and
low computational complexity. We are currently exploring the use of the provision
ratio in a scheme that determines the optimal percentile to charge a given customer.
The objective of this scheme would be to vary the billing percentile per customer,
and to use the provision ratio as a measure of the contribution of a customer to the
provider’s peak traffic. This pricing scheme would automatically assign lower billing
percentiles (i.e., give discounts) to customers whose peak traffic does not contribute
significantly to the provider’s peak, and higher percentiles to customers that contribute
most to the provider’s peak. An important criterion for such a scheme is that the provider
should be able to communicate information about its peak and off-peak periods to cus-
tomers, without having to make its traffic profile available publicly. For this purpose,
the provider could design a tool that accepts a customer’s traffic profile and analyzes
it in relation to its own traffic to determine the percentile at which it would charge the
customer. Such a scheme would retain the attractive properties of burstable billing (be-
cause it is still based on a billing percentile), while better accounting for a network’s
contribution to total provider costs. Our initial investigation indicates that this problem
can be formulated as a convex optimization, and hence solved efficiently.

5 Related Work

While network service pricing has been studied extensively, relatively little work has
focused on specific mechanisms in the transit business, i.e., volume based pricing based
on the 95th Percentile rule. As early as 1999, Brownlee et al. [11] experimented with
an alternative to the 95th Percentile pricing mechanism, the “third quartile day”, which
they showed was a better estimate of the bandwidth requirements for customers of New
Zealand’s Kawaihiko network. Norton discussed 95th Percentile pricing in his white pa-
pers, particularly the possibility of ISPs gaming the scheme to get free transit [12], and
the impact of streaming video on the statistics of customer traffic [13]. Dmitropoulos et
al. [2] studied the 95th Percentile billing method using traffic traces, and investigated
how the 95th Percentile computed for a given network depends on factors such as the
averaging window size and the effect of flow aggregation. In the context of broadband
users, Stanojevic et al. [10] used the Shapley value approach to quantify the contribu-
tion of each broadband user to the total costs of the access provider. Valancius et al. [14]
proposed that transit providers implement tiered pricing using just a few tiers based on
the volume of traffic and the cost of carrying it to maximize their profits. However, their
approach was targeted at properly structuring pricing tiers, i.e., the price per unit of traf-
fic that the provider charges to a customer. The focus of our work is on the underlying
traffic percentile at which a provider charges its customers.



86 V. Reddyvari Raja et al.

6 Conclusions

In this paper, our goal was to empirically examine the effectivenvess of the 95th per-
centile pricing scheme, using a decade of historical traffic data from a transit provider
network and more recent data from three European IXPs. Our analysis shows that
over the years, certain networks have lower 95th-to-average ratio than others – for the
datasets we studied, networks with predominantly inbound traffic have higher 95th-to-
average ratios, and would incur a higher billing volume than those with predominantly
outbound traffic (for the same amount of total traffic), and similarly for moderate hitters
vs. heavy hitters. Furthermore, we find that the 95th percentile pricing scheme can be
unfair, as the 95th Percentile traffic of a network is often unrelated to the amount of time
that network’s peak traffic overlaps that of its provider, nor does it accurately represent
the contribution of that network to the provider’s peak traffic. We define a new metric,
the Provision Ratio (PR) for a network, which is easy to compute and is able to capture
the contribution of a customer traffic to the provider’s peak.

Acknowledgements. We thank our shepherd, Sergey Gorinsky, and the anonymous
reviewers for their constructive comments. This material is based upon work supported
in part by NSF grants CNS-1149458, CNS-1017064 and a Cisco URP grant. Any opin-
ions, findings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of NSF or Cisco.

References

[1] Odlyzko, A.: Internet pricing and the history of communications. Computer Networks 36
(2001)

[2] Dimitropoulos, X., Hurley, P., Kind, A., Stoecklin, M.P.: On the 95-percentile billing
method. In: Moon, S.B., Teixeira, R., Uhlig, S. (eds.) PAM 2009. LNCS, vol. 5448, pp.
207–216. Springer, Heidelberg (2009)

[3] Castro, I., Stanojevic, R., Gorinsky, S.: Using Tuangou to reduce IP transit costs.
IEEE/ACM Transactions on Networking (2013)

[4] Norton, W.B.: Transit Traffic at Internet Exchange Points? Drpeering.net blog:
http://drpeering.net/AskDrPeering/blog

[5] G4 Communications: 95th Percentile Usage Billing Policy,
http://www.g4communications.com/docs/
G4_95th_Percentile_Usage.pdf

[6] Axis Internet: 95th Percentile, http://www.axint.net/95th
[7] AboveNet: Monitoring 95-percentile, http://john.de-graaff.net/wiki/

doku.php/links/95-percentile
[8] Cline Communications: 95th Percentile billing,

http://clinecommunications.net/?ID=33
[9] Roth, A.E.: The Shapley Value: Essays in Honor of Lloyd S. Shapley (1988)

[10] Stanojevic, R., Laoutaris, N., Rodriguez, P.: On Economic Heavy Hitters: Shapley Value
Analysis of 95th-percentile Pricing. In: Proceedings of IMC (2010)

http://drpeering.net/AskDrPeering/blog
http://www.g4communications.com/docs/G4_95th_Percentile_Usage.pdf
http://www.g4communications.com/docs/G4_95th_Percentile_Usage.pdf
http://www.axint.net/95th
http://john.de-graaff.net/wiki/doku.php/links/95-percentile
http://john.de-graaff.net/wiki/doku.php/links/95-percentile
http://clinecommunications.net/?ID=33


Volume-Based Transit Pricing: Is 95 the Right Percentile? 87

[11] Brownlee, N., Fulton, R.: Kawaihiko and the Third-Quartile Day. IEEE Communications
38(8) (2000)

[12] Norton, W.B.: Transit Tactic - Gaming the 95th Percentile. Drpeering.net white paper:
http://drpeering.net/

[13] Norton, W.B.: Video Internet: The Next Wave of Massive Disruption to the U.S. Peering
Ecosystem. Drpeering.net white paper: http://drpeering.net/

[14] Valancius, V., Lumezanu, C., Feamster, N., Johari, R., Vazirani, V.V.: How many tiers?:
pricing in the Internet transit market. In: Proceedings of ACM SIGCOMM (2011)

http://drpeering.net/
http://drpeering.net/


Dissecting Round Trip Time on the Slow Path

with a Single Packet

Pietro Marchetta1, Alessio Botta1, Ethan Katz-Bassett2, and Antonio Pescapé1

1 University of Napoli Federico II, Napoli, Italy
2 University of Southern California, Los Angeles, USA

Abstract. Researchers and operators often measure Round Trip Time
when monitoring, troubleshooting, or otherwise assessing network paths.
However, because it combines all hops traversed along both the forward
and reverse path, it can be difficult to interpret or to attribute delay to
particular path segments.

In this work, we present an approach using a single packet to dissect
the RTT in chunks mapped to specific portions of the path. Using the IP
Prespecified Timestamp option directed at intermediate routers, it pro-
vides RTT estimations along portions of the slow path. Using multiple
vantage points (116 PlanetLab nodes), we show that the proposed ap-
proach can be applied on more than 77% of the considered paths. Finally,
we present preliminary results for two use cases (home network contri-
bution to the RTT and per-Autonomous System RTT contribution) to
demonstrate its potential in practical scenarios.

1 Introduction and Motivation

A common metric used to estimate the delay over a network path is the Round
Trip Time (RTT) [1], defined as the length of time it takes to send a data packet
toward a destination and receive its response. Monitoring RTT provides useful
information about the network status when managing testbeds and operational
networks [28]. However, an RTT sample comprises all the delays experienced
by the data packet and its response along the forward and reverse path respec-
tively, and it also includes the time the destination takes to inspect the incoming
packet and generate the proper response. As a consequence, it can be difficult
to interpret RTT values or tease apart the contributing factors.

From this point of view, dissecting the RTT into chunks related to specific
portions of the network path may be helpful, making it possible to evaluate the
relative impact of each subpath on the total experienced RTT. This approach
is particularly useful in several scenarios. In a home network, one could isolate
the impact of the home network on the RTT experienced toward a destination
of interest, such as a website or network service. A large corporatation with
multiple providers may want to evaluate the impact of its access networks when
considering performance optimization and traffic engineering. Service providers
may be interested in assessing if the ISP of a particular user has a great impact
on the RTT, thus potentially representing the main cause of poor performance
perceived by the user.

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 88–97, 2014.
� Springer International Publishing Switzerland 2014



Dissecting Round Trip Time on the Slow Path with a Single Packet 89

c

AS2907

AS7527

AS4675

min / average / max / std

c

(a) A sample traceroute trace from
planet1.pnl.nitech.ac.jp.

09:55 09:57 09:59 10:01 10:03 10:05
−10

−5

0

5

Time

D
es

tin
at

io
n 

R
T

T
−

In
te

rm
ed

ia
te

 H
op

 R
T

T
[m

s]

(b) Difference between the average RTTs
up to the destination and up to the last

hop within AS2907.

Fig. 1. Inaccuracy of traditional approaches for dissecting RTT

Unfortunately, accurately dissecting RTT is not a trivial task, especially
through active measurements. One possibility is to rely on the RTTs reported
by traceroute, i.e. the time it takes to send the TTL-limited probe and receive
the ICMP Time Exceeded reply. However, it is not uncommon to observe RTT
of intermediate hops higher than the RTT of the destination, as reported in the
sample trace of Fig. 1(a)1. Another possibility is to use the ping command to
monitor both the RTT to an intermediate hop and to the destination. For exam-
ple, let us assume that our goal is to evaluate the impact of the provider, AS2907
(SINET-AS), on the RTT experienced toward the destination. We monitored the
RTTs up to the last hop within AS2907 (150.99.2.54) and the destination by is-
suing pairs of ICMP Echo Request packet probes closely in time with the ping
command. We launched one probe pair every 200 ms for 10 minutes and com-
puted the average RTT obtained in one second bins. Finally, we computed the
difference between the average RTT to the destination and to the intermediate
hop. Fig. 1(b) presents the results. For about half of the bins, the intermedi-
ate hop had an average RTT higher than the RTT of the destination, making
it hard to understand how the intermediate hop contributes to overall latency.
Preliminary analysis suggests the this problem holds even for sophisticated ping
variants that control RTT variance [21].

The inaccuracy of the two methods described above is determined by specific
factors: (i) due to path asymmetry [12], the intermediate hop may not be part
of the reverse path from the destination, thus its RTT is not part of the RTT
of the destination; (ii) the two RTT samples are obtained by employing two
distinct packet probes that potentially experience different network conditions
or paths;2 (iii) the two solicited devices may require a different amount of time
to inspect the probe and generate the response [11]; finally (iv) when using ping,
the forward path up to the intermediate hop may not represent a subpath of the
forward path toward the destination, since fowarding is destination-based.

1 This forward path is stable and unique, according to paris-traceroute [2].
2 For example, due to load balancers located along the reverse paths [2].



90 P. Marchetta et al.

In this work, we introduce a new approach to dissect the RTT experienced to-
ward a given destination into two distinct chunks, using a single purposely crafted
probe packet to avoid the complications introduced in the previous paragraph.
Our approach uses the IP Timestamp option and needs an intermediate router
that honors the option and appears on both the forward and reverse paths. In
these cases, the technique dissects the RTT into (a) the time the probe spends
between the source and an intermediate router (in both directions) and (b) the
time the probe spends between the intermediate router and the destination (in
both directions). While our approach requires a preliminary phase to identify
compliant intermediate routers, it uses only widely adopted network diagnostic
tools such as traceroute and ping.

Using multiple vantage points (116 PlanetLab nodes), we provide experimen-
tal results about the degree of applicability of our approach as well as case studies
demonstrating its utility in practical scenarios.

2 Dissecting Round Trip Time

In this section, after a brief recap of the IP Prespecified Timestamp option, we
describe the approach we propose to dissect the RTT in chunks.

Background. Although IP options headers [22] are not universally supported
on the Internet [5, 9], researchers have used them as the basis for a number of
recent measurement techniques [8, 14, 16, 17, 19, 20, 25, 26]. In this work, we use
the IP Prespecified Timestamp option [22] (hereafter TS option) to dissect the
RTT. This option lets the sender specify up to four IP addresses in the header
of the packet, to request timestamps from the corresponding routers. We adopt
the notation proposed by Sherry at al. [25]: X

∣∣ABCD refers to an ICMP Echo
Request packet where X is the targeted destination and ABCD is the ordered
list of prespecified IPs from which a timestamp is requested. Note that the
position of each prespecified address in the ordered list ABCD is essential since
it implies that B cannot insert its own timestamp before A, C before B, and so
on. Typically, when the packets are not filtered along the path [9], the incoming
option is replicated by the destination inside the ICMP Echo Reply. The TS
option has been used to infer aliases [19, 25], to infer routers statistics such as
traffic shape and CPU load [8], to identify third-party addresses and hidden
routers in traceroute trace [17,20], to reconstruct reverse paths [14], to infer link
latency [24], and to identify symmetric link traversal [15].

Dissecting RTT. Our approach makes it possible to dissect the RTT toward
a destination that (i) provides at least one timestamp when probed with D∣∣DDDD and (ii) is not an extra-stamper [25], i.e. it does not provide more than

one timestamp when probed with D
∣∣DXXX where X is an IP address surely

not involved on the traversed path. On these paths, we can dissect the RTT
into chunks by exploiting a compliant router located along the path (see Fig. 2):
a compliant node W (i) is part of both the forward and reverse path under
investigation; (ii) honors the TS option and provides standard timestamps [22],



Dissecting Round Trip Time on the Slow Path with a Single Packet 91

Fig. 2. Baseline scenario (S: source - W:
compliant node - D: destination)

Fig. 3. Timestamps collected with
D
∣
∣WDDW and related RTT chunks

i.e milliseconds since midnight UT; (iii) provides timestamps both on the forward
and reverse path. Hereafter we adopt the following notation: RTTS,D(X, Y) is
the time taken by probes sent from the source S to the destination D to travel
from X to Y on the forward path and from Y to X on the reverse path. This
is a portion of the RTT of the entire path, i.e. RTTS,D(S, D).

Let W be a compliant node between the source S and the destination D.
Besides RTTS,D(S, D), our approach estimates RTTS,D(S, W) and RTTS,D(W,
D) by using the same single-packet probe. To this end, we send a D

∣∣WDDW

probe from S to D. Once S receives the reply, six timestamps are available:
(a) the sending and receiving time at the source (TS1 and TS2); (b) the times-
tamp provided by W along the forward (TW1) and reverse path (TW2); (c) the
two timestamps provided by the targeted destination D (TD1 and TD2). These
timestamps allow us to easily compute the RTT chunks (see Fig. 3 as refer-
ence): RTTS,D(S, D) as TS2-TS1, RTTS,D(W, D) as TW2-TW1 and RTTS,D(S,
W) as RTTS,D(S, D)-RTTS,D(W, D) .3 When the destination provides only one
timestamp when probed with D

∣∣DDDD, we send probe packets formatted like

D
∣∣WDWW, rather than D

∣∣WDDW, to dissect the RTT.
To identify the compliant nodes and to monitor the path, we use widely

adopted network diagnostic tools such as traceroute and ping: the ping option
-T tsprespec sends ICMP Echo Request packets with a customized TS option.

The Slow Path. Packets can traverse a router either through the fast (hard-
ware) or the slow (route processor/software) path. The IP option on our probes
causes routers to inspect them and process them on the slow path. Previous work
showed that IP options traffic experiences higher RTT, jitter, and packet loss,

3 Note how it would be possible to estimate also several one way delays: from S to
D (TD1-TS1), D to S (TS2-TD2), S to W (TW1-TS1), W to D (TD1-TW1), D to
W (TW2-TD2) and W to S (TS2-TW2). However, unlike the RTT considered in this
paper, one way delays are potentially biased if clocks at the various nodes are not
properly synchronized, a common case in the Internet.



92 P. Marchetta et al.

compared to traffic without IP options [10]. Ferguson et al. [8] recently observed
that the processing time of packets with the TS option depends on the status
of the router (traffic and CPU load). Accordingly, the estimated RTTs provide
insight into the current condition of network links and routers, a different view
of network path performance.

Accuracy Concerns. Concerns about the accuracy of the estimated RTTs may
arise since we exploit timestamps provided by distinct network nodes potentially
not synchronized. However, we compute each RTT using only the timestamps
provided by a single router’s clock. Accordingly, any clock offsets do not affect
the estimated RTTs. Our measurements are subject to local clock drift, but we
assume this impact is negligible over the short duration of a typical RTT.

3 Evaluation

In this section we first describe the results of an experimental campaign aiming
at evaluating the applicability of the proposed approach. Then, we describe two
use cases to show the utility of the proposed approach.

Degree of Applicability. We conducted a study to evaluate how many nodes
per path will allow our approach to dissect the RTT (i.e. are compliant). To
identify compliant nodes on a path between a source S and a destination D, we
first need to discover all the nodes along the path. To this end, we collect an
ICMP traceroute from S toward D. Let us suppose that the destination D pro-
vides two timestamps when probed with D

∣∣DDDD. For each discovered address

Y, we send two packet probes D
∣∣YDDY and D

∣∣DYYY: if D
∣∣YDDY collects four

timestamps, then Y is a compliant node. Indeed, four timestamps imply that
Y inserted the first timestamp along the forward path (otherwise, D would not
have been able to insert its own timestamp), and Y inserted its second times-
tamp along the reverse path (because the destination D inserted its timestamp
before).4 Non-compliant nodes (i) simply ignore the TS option (D

∣∣YDDY and

D
∣∣DYYY collect none and one timestamp, respectively) or (ii) provide a times-

tamp only on the forward path (D
∣∣YDDY and D

∣∣DYYY collect between two
and three timestamps and one timestamp respectively) or (iii) provide a times-
tamp only on the reverse path (D

∣∣YDDY and D
∣∣DYYY collect one and more

than one timestamp, respectively). We refer to the latter two cases as forward
and backward stampers. Forward stampers are nodes that do not appear on the
reverse path while backward stampers are more challenging to explain: these
nodes are discovered along the forward path but insert a timestamp only when
traversed on the reverse path. Load balancing and off-path addresses [13,17,18]
may explain this behavior.5 When the destination provides only one timestamp,

4 Previous work exploited a similar approach to assess symmetric link traversal [15,16].
5 Standard-compliant routers set as source address of Time Exceeded replies the
address associated to the outgoing interface causing Traceroute to report addresses
associated to interfaces not actually traversed by the traffic sent to the Traceroute
destination [13,17,18].



Dissecting Round Trip Time on the Slow Path with a Single Packet 93

0 2 4 6 8 10 12
0

0.5

1

Nodes per path (absolute)

C
D

F

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Nodes per path (fraction)

C
D

F

 

 

Compliant Nodes
Forward Stampers
Backward Stampers

Fig. 4. Compliant nodes per path

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Window (ν)

G
lo

ba
l B

ou
nd

ed
 C

om
pl

ia
nt

 N
od

es
 (

Ψ
)

Fig. 5. Compliant nodes relative position

we make use of D
∣∣YDYY probes instead of D

∣∣YDDY. In this case, a node is

compliant when D
∣∣YDYY collects at least three timestamps.

To generate a hitlist of suitable destinations, we extracted the addresses that
provided at least one timestamp when probed with D

∣∣DDDD in a large-scale ex-
perimental campaign from our previous work [5]. Of 1.7M IP addresses probed,
36% replied providing timestamps. From these addresses, we randomly selected
one representative IP for each AS [4]. The final hitlist comprises 3, 133 distinct
ASes, including all Tier-1 ISP networks6 and 35 out of 50 top-10 ASes for each
region, according to the APNIC weekly routing table report. We then performed
another experimental campaign using 116 PlanetLab nodes [3] as vantage points
(VPs). Each VP made the following steps for each destination of the hitlist:
first, it sent two probes, D

∣∣DDDD and D
∣∣DXXX, to check if the destination is

still responsive and is not an extra-stampers (see Sec. 2). Second, it performed
a traceroute toward the destination. Third, for each address Y discovered along
the path, it sent a D

∣∣YDDY (or D
∣∣YDYY depending on the number of times-

tamps provided by the destination) and D
∣∣DYYY. After removing about 90 K

paths toward extra-stamping destinations and 50 K paths toward addresses un-
responsive for a subset of vantage points due to in-transit filtering, our final
dataset comprises 223, 548 distinct paths.

Fig. 4 reports the compliant nodes observed per path. Ideally, we would like
all intermediate routers to be compliant, in order to split the RTT into all the
available chunks. On the other hand, just a single compliant node (W ) allows
us to split the RTT into RTTS,D(S, W) and RTTS,D(W, D), thus providing
much more information on the network status than a classic RTT estimation.
We found that about 77.4% of the paths contain at least one compliant node
and 27.3% contain more than four compliant nodes. On average, we observed 2.5
compliant nodes, 2.1 forward stampers, and 2.7 backward stampers per path.
This result means that, on average, about 17% of the nodes in each scanned
path are compliant.

6 http://en.wikipedia.org/wiki/Tier_1_network#List_of_tier_1_networks. Au-
gust 1, 2013.

http://en.wikipedia.org/wiki/Tier_1_network#List_of_tier_1_networks


94 P. Marchetta et al.

Since compliant nodes represent meeting points between the forward and re-
verse path and most paths in the Internet are asymmetric at the router level [12,
23], we expect most compliant nodes to appear close to the source or the desti-
nation. Our experimental results partially confirm this hypothesis. Let Ω be the
set of traceroute traces and p a particular trace comprising n nodes (a1, .. , ai,
.. , an). Also, let C be the overall number of compliant nodes contained in the
dataset. To investigate the position of the compliant nodes, we used a window
ν to compute the bounded compliant nodes Φ(p, ν) representing the number of
compliant nodes on the path p appearing within ν hops from the source or the
destination, i.e the compliant nodes contained in (a1, .. aν) and (an−ν , .. an).

The global bounded compliant nodes Ψ(ν) =
∑

p∈Ω Φ(p,ν)

C represent the global
fraction of compliant nodes contained within ν hops from the source or the des-
tination when considering all the paths. Fig. 5 depicts how the global bounded
compliant nodes varies with ν. If the hypothesis is true, then the global bounded
compliant nodes should quickly tend to one. The figure shows evident though
not sharp growth: about 72% of all the compliant nodes occur within 5 hops
from the source or the destination, with about 15% appearing just one hop after
the source or before the destination. These results confirm that the majority of
the compliant nodes are located near the two end points of the paths, while there
is also a significant percentage of compliant nodes in the middle of the paths.

Applications. We now report preliminary potential use cases of the proposed
approach.

Per-Autonomous System RTT contribution. Our approach can isolate the RTT
contribution of entire ASes. Consider again the trace in Fig. 1(a). Our goal is to
isolate the RTT contribution of the provider network, AS2907. To this end, we
monitored the path by using both the ping command and our approach (the last
hop within AS2907, 150.99.2.54, is a compliant node). As anticipated in Sec. 1,
when using ping to estimate the RTT up to the last hop within AS2907 and up to
the destination with packet probes sent closely in time, we observed inconsistent
results, as reported in Fig. 1(b). Often, the average RTT up to the intermediate
hop is higher than the RTT up to the destination (see the negative difference
values in Fig. 1(b)). Our approach, instead, always provides coherent results. As
shown in Fig. 6(a), the estimated contribution of the AS2907 is always a fraction
of the whole RTT. Results obtained with ping do not provide any meaningful
information about the impact of the AS2907 on the end-to-end performance. As
shown in Fig. 6(b), according to ping, the AS2907 RTT contribution represents
on average 106% of the whole RTT, an unreasonable result. On the other hand,
thanks to our approach, we can conclude that the AS2907 RTT contribution on
the slow path is on average 76.8% of the whole RTT. The packet probes spent
more than two-third of the time within the provider network.

Our approach also isolates the RTT contribution of a target AS network
when the first hop within this AS is a compliant node. In the dataset collected
to evaluate the applicability, the last hop within the provider AS (the first hop
within the targeted AS) is a compliant node in 44, 846 (22, 236) paths, about
20% (9.95%) of the paths.



Dissecting Round Trip Time on the Slow Path with a Single Packet 95

09:55 09:57 09:59 10:01 10:03 10:05
−5

0

5

10

15

20

25

Time

D
es

tin
at

io
n 

R
T

T
−

In
te

rm
ed

ia
te

 H
op

 R
T

T
[m

s]

(a) Difference between the average RTTs
up to the destination and up to the last

hop within AS2907.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

AS2907 RTT contribution / RTT entire path

C
D

F

 

 

Our Approach
Ping

(b) AS2907 RTT contribution as fraction
of the entire RTT.

Fig. 6. Isolating the RTT contribution of AS2907 over the path of Fig.1(a)

Home network contribution to the RTT. The impact of home networks on Inter-
net performance has recently attracted an increasing interest from the research
community [6,27]. However, classic diagnostic tools or simply probing the home
gateway are not always able to reliably state if the home network is the cause of
the performance degradation [7].

When the home gateway behaves as a compliant node, our approach allows
us to evaluate the RTT toward any destination, as well as the contribution of
the home network, by using a single packet probe. 7 As a case study, we moni-
tored the RTT toward a top-ranked Italian journal website (repubblica.it). The
monitored home network is connected to the Internet via an ADSL connection
provided by Telecom Italia. The laptop in charge of monitoring is connected via
Wi-Fi to a NETGEAR DGN2200v3, a common commercial modem-router compli-
ant with our approach. To monitor the RTT, we used D

∣∣WDDW packet probes
where W is the private address of the modem-router: We approximate the home
network contribution as RTTS,D(S, W).

Fig. 7(a) shows the trend over time of the RTT chunks. In the beginning, the
home network is unloaded. However, from 9:14 to 9:23, another Wi-Fi connected
host started downloading and uploading large files through the Internet. Dur-
ing the overloaded period, the RTT grows in median by 356% (from 69.8 ms to
249 ms) but the home network played just a marginal role (see Fig. 7(b)). On
average, packets spent 4.7% and 2.6% of the entire RTT within the home net-
work during the unloaded and overloaded period, respectively. At the same time,
we observed spurious latency spikes inside the home network probably caused
by the packet-by-packet impact of contention-induced transmission delays over
the wireless link (these spikes disappear on the wired connection). In the worst
cases, the spikes represent more than 60% of the total RTT experienced in both

7 In these experiments, the precise border of the home network clearly depends on
when and how the home router handles the IP option. For instance, if the home
router inserts its own timestamp before putting the probe on an overloaded buffer
(an instance of home network bufferbloat), such buffering delay is not included in
the home network contribution.



96 P. Marchetta et al.

09:14 09:21 09:28
0

200

400

600

800

1000

Sending Time

R
ou

nd
 T

rip
 T

im
e 

C
hu

nk
s 

[m
s]

 

 

Remaining Path
Home Network

(a) RTT chunks over time.
Another host transferred large

files from 9:14 to 9:23.

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

Home Network RTT chunk / Entire RTT

C
D

F

 

 

Entire Period
Unloaded Period
Overloaded Period

(b) Home network RTT
contribution as a fraction of

the entire RTT.

12:38 12:40 12:42 12:44 12:46 12:48
0

200

400

600

800

1000

Sending Time

R
ou

nd
 T

rip
 T

im
e 

C
hu

nk
 [m

s]

 

 

Last Mile
Home Network

(c) Home network RTT
contribution over last mile.

Fig. 7. Home network RTT contribution toward repubblica.it monitored through a
wireless link and an ADSL connection.

the unloaded and overloaded period. These results suggest that the stable per-
formance degradation observed during the overloaded period is not caused by
the home network but by congestion of the last mile.8 Indeed, by replicating
the experiment while monitoring the RTT on the last mile and isolating the
home network contribution, we observed that downloading and uploading large
files through the Internet does not affect the intra-home network delay while it
determines a dramatic growth of the delay on the last mile (see Fig. 7(c)).

4 Conclusion

We presented an approach using a single packet to accurately dissect the RTT on
the slow path in chunks mapped to specific portions of the end-to-end path. We
observed how using other techniques based on ping and traceroute to this end
may provide misleading results. Our approach uses the IP Timestamp option
and a compliant router along the path. A large-scale measurement study we
performed from 116 vantage points comprising 223K traced paths showed that
2.5 router per path on average are compliant. As preliminary evidence of the
use of our approach, we presented two case studies, showing how it allows us to
isolate the RTT contribution of the home network and of an entire AS.

Acknowledgements. This work is partially funded by the MIUR projects:
PLATINO (PON01 01007), SMART HEALTH (PON04a2 C), and S2−MOVE

(PON04a3 00058).

References

1. Almes, G., Kalidindi, S., Zekauskas, M.: A round-trip delay metric for IPPM.
Technical report, RFC 2681 (September 1999)

2. Augustin, B., et al.: Avoiding traceroute anomalies with Paris traceroute. In: ACM
SIGCOMM IMC, pp. 153–158. ACM (2006)

3. Bavier, A., et al.: Operating system support for planetary-scale network services.
In: NSDI (2004)

4. Cymru, T.: (2012), http://www.team-cymru.org/Services/ip-to-asn.html

8 The physical connection between a customer’s home and the DSLAM or the CMTS.

http://www.team-cymru.org/Services/ip-to-asn.html


Dissecting Round Trip Time on the Slow Path with a Single Packet 97

5. de Donato, W., Marchetta, P., Pescapé, A.: A hands-on look at active probing
using the IP prespecified timestamp option. In: Taft, N., Ricciato, F. (eds.) PAM
2012. LNCS, vol. 7192, pp. 189–199. Springer, Heidelberg (2012)

6. DiCioccio, L., Teixeira, R., May, M., Kreibich, C.: Probe and pray: Using UPnP for
home network measurements. In: Taft, N., Ricciato, F. (eds.) PAM 2012. LNCS,
vol. 7192, pp. 96–105. Springer, Heidelberg (2012)

7. DiCioccio, L., Teixeira, R., Rosenberg, C.: Impact of home networks on end-to-end
performance: controlled experiments. In: ACM HomeNets (2010)

8. Ferguson, A., Fonseca, R.: Inferring router statistics with IP timestamps. In: ACM
CoNEXT Student Workshop (2010)

9. Fonseca, R., Porter, G., Katz, R., Shenker, S., Stoica, I.: IP options are not an
option, Univ. of California, Berkeley (2005)

10. Fransson, P., Jonsson, A.: End-to-end measurements on performance penalties of
IPv4 options. In: IEEE GLOBECOM (2004)

11. Govindan, R., Paxson, V.: Estimating router ICMP generation delays. In: PAM
(2002)

12. He, Y., Faloutsos, M., Krishnamurthy, S.: Quantifying routing asymmetry in the
Internet at the AS level. In: IEEE GLOBECOM (2004)

13. Hyun, Y., Broido, A., et al.: On third-party addresses in traceroute paths. In:
“Passive and Active Measurement” Workshop 2003 (2003)

14. Katz-Bassett, E., et al.: Reverse traceroute. In: NSDI (2010)
15. Madhyastha, H.V.: An information plane for Internet applications. UW dissertation

(2008)
16. Madhyastha, H.V., Katz-Bassett, E., Anderson, T., Krishnamurthy, A., Venkatara-

mani, A.: iPlaneNano: Path prediction for peer-to-peer applications. In:NSDI (2009)
17. Marchetta, P., de Donato, W., Pescapé, A.: Detecting third-party addresses in

traceroute traces with IP timestamp option. In: Roughan, M., Chang, R. (eds.)
PAM 2013. LNCS, vol. 7799, pp. 21–30. Springer, Heidelberg (2013)

18. Marchetta, P., Persico, V., Katz-Bassett, E., Pescapé, A.: Don’t trust traceroute
(completely). In: ACM CoNEXT Student Workshop (2013)

19. Marchetta, P., Persico, V., Pescapé, A.: Pythia: yet another active probing tech-
nique for alias resolution. In: ACM CoNEXT, pp. 229–234 (2013)

20. Marchetta, P., Pescapè, A.: Drago: Detecting, quantifying and locating hidden
routers in traceroute IP paths. In: IEEE Global Internet Symposium (2013)

21. Pelsser, C., Cittadini, L., Vissicchio, S., Bush, R.: From Paris to Tokyo: On the
suitability of ping to measure latency. In: IMC 2013, pp. 427–432. ACM (2013)

22. Postel, J.: Internet protocol: DARPA Internet program protocol specification. RFC
791 (1981)

23. Schwartz, Y., Shavitt, Y., Weinsberg, U.: On the diversity, stability and symmetry
of end-to-end Internet routes. In: IEEE INFOCOM Workshops (2010)

24. Sherry, J.: Applications of the IP timestamp option to Internet measurement. Un-
dergraduate Honor Thesis (2010)

25. Sherry, J., Katz-Bassett, E., Pimenova, M., Madhyastha, H., Anderson, T., Krish-
namurthy, A.: Resolving IP aliases with prespecified timestamps. In: ACM SIG-
COMM IMC (2010)

26. Sherwood, R., Spring, N.: Touring the Internet in a TCP sidecar. In: ACM SIG-
COMM IMC, pp. 339–344. ACM (2006)

27. Sundaresan, S., de Donato, W., Feamster, N., Teixeira, R., Crawford, S., Pescapè,
A.: Broadband Internet performance: A view from the gateway. SIGCOMM
2011 41(4), 134 (2011)

28. Zeng, H., Kazemian, P., Varghese, G., McKeown, N.: A survey on network trou-
bleshooting. Technical report, TR12-HPNG-061012, Stanford University (2012)



Is Our Ground-Truth for Traffic Classification
Reliable?�

Valentín Carela-Español1, Tomasz Bujlow2, and Pere Barlet-Ros1

1 UPC BarcelonaTech, Spain
{vcarela,pbarlet}@ac.upc.edu
2 Aalborg University, Denmark

tbu@es.aau.dk

Abstract. The validation of the different proposals in the traffic classi-
fication literature is a controversial issue. Usually, these works base their
results on a ground-truth built from private datasets and labeled by tech-
niques of unknown reliability. This makes the validation and comparison
with other solutions an extremely difficult task. This paper aims to be
a first step towards addressing the validation and trustworthiness prob-
lem of network traffic classifiers. We perform a comparison between 6
well-known DPI-based techniques, which are frequently used in the lit-
erature for ground-truth generation. In order to evaluate these tools we
have carefully built a labeled dataset of more than 500 000 flows, which
contains traffic from popular applications. Our results present PACE, a
commercial tool, as the most reliable solution for ground-truth genera-
tion. However, among the open-source tools available, NDPI and espe-
cially Libprotoident, also achieve very high precision, while other, more
frequently used tools (e.g., L7-filter) are not reliable enough and should
not be used for ground-truth generation in their current form.

1 Introduction and Related Work

During the last decade, traffic classification has considerably increased its rel-
evance, becoming a key aspect for many network related tasks. The explosion
of new applications and techniques to avoid detection (e.g., encryption, proto-
col obfuscation) have substantially increased the difficulty of traffic classification.
The research community have thrown itself into this problem by proposing many
different solutions. However, this problem is still far from being solved [1].

Most traffic classification solutions proposed in the literature report very high
accuracy. However, these solutions mostly base their results on a private ground-
truth (i.e., dataset), usually labeled by techniques of unknown reliability (e.g.,
ports-based or DPI-based techniques [2–5]). That makes it very difficult to com-
pare and validate the different proposals. The use of private datasets is derived
� This research was funded by the Spanish Ministry of Economy and Competitiveness

under contract TEC2011-27474 (NOMADS project), by the Comissionat per a Uni-
versitats i Recerca del DIUE de la Generalitat de Catalunya (ref. 2009SGR-1140)
and by the European Regional Development Fund (ERDF).

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 98–108, 2014.
c© Springer International Publishing Switzerland 2014



Is Our Ground-Truth for Traffic Classification Reliable? 99

Table 1. DPI-based techniques evaluated

Name Version Applications
PACE 1.41 (June 2012) 1000

OpenDPI 1.3.0 (June 2011) 100
NDPI rev. 6391 (March 2013) 170

L7-filter 2009.05.28 (May 2009) 110
Libprotoident 2.0.6 (Nov 2012) 250

NBAR 15.2(4)M2 (Nov 2012) 85

from the lack of publicly available datasets with payload. Mainly because of pri-
vacy issues, researchers and practitioners are not allowed to share their datasets
with the research community. To the best of our knowledge, just one work has
tackled this problem. Gringoli et al. in [6] published anonymized traces without
payload, but accurately labeled using GT. This dataset is very interesting to
evaluate Machine Learning-based classifiers, but the lack of payload makes it
unsuitable for DPI-based evaluation.

Another crucial problem is the reliability of the techniques used to set the
ground-truth. Most papers show that researchers usually obtain their ground-
truth through port-based or DPI-based techniques [2–5]. The poor reliability of
port-based techniques is already well known, given the use of dynamic ports or
well-known ports of other applications [7, 8]. Although the reliability of DPI-
based techniques is still unknown, according to conventional wisdom they are,
in principle, one of the most accurate techniques.

Some previous works evaluated the accuracy of DPI-based techniques [3, 5,
9, 10]. These studies rely on a ground-truth generated by another DPI-based
tool [5], port-based technique [3] or a methodology of unknown reliability [9,10],
making their comparison very difficult. Recently, a concomitant study to ours [10]
compared the performance of four DPI-based techniques (i.e., L7-filter, Tstat,
NDPI and Libprotoident). This parallel study confirms some of the findings
of our work presenting NDPI and Libprotoident as the most accurate open-
source DPI-based techniques. In [11] the reliability of L7-filter and a port-based
technique was compared using a dataset obtained by GT [6] showing that both
techniques present severe problems to accurately classify the traffic.

This paper presents two main contributions. First, we publish a reliable la-
beled dataset with full packet payloads [12]. The dataset has been artificially
built in order to allow us its publication. However, we have manually simulated
different behaviours to make it as representative as possible. We used VBS [13]
to guarantee the reliability of the labeling process. This tool can label the flows
with the name of the process that created them. This allowed us to carefully
create a reliable ground-truth that can be used as a reference benchmark for the
research community. Second, using this dataset, we evaluated the performance
and compared the results of 6 well-known DPI-based techniques, presented in
Table 1, which are widely used for the ground-truth generation in the traffic
classification literature.

These contributions pretend to be a first step towards the impartial validation
of network traffic classifiers. They also provide to the research community some



100 V. Carela-Español, T. Bujlow, and P. Barlet-Ros

insights about the reliability of different DPI-based techniques commonly used
in the literature for ground-truth generation.

2 Methodology

The Testbed. Our testbed is based on VMWare virtual machines (VM). We
installed three VM for our data generating stations and we equipped them with
Windows 7 (W7), Windows XP (XP), and Ubuntu 12.04 (LX). Additionally,
we installed a server VM for data storage. To collect and accurately label the
flows, we adapted Volunteer-Based System (VBS) developed at Aalborg Univer-
sity [13]. The task of VBS is to collect information about Internet traffic flows
(i.e., start time of the flow, number of packets contained by the flow, local and
remote IP addresses, local and remote ports, transport layer protocol) together
with detailed information about each packet (i.e., direction, size, TCP flags,
and relative timestamp to the previous packet in the flow). For each flow, the
system also collects the process name associated with that flow. The process
name is obtained from the system sockets. This way, we can ensure the appli-
cation associated to a particular traffic. Additionally, the system collects some
information about the HTTP content type (e.g., text/html, video/x-flv). The
captured information is transmitted to the VBS server, which stores the data in
a MySQL database. The design of VBS was initially described in [13]. On every
data generating VM, we installed a modified version of VBS. The source code of
the modified version was published in [14] under a GPL license. The modified
version of the VBS client captures full Ethernet frames for each packet, extracts
HTTP URL and Referer fields. We added a module called pcapBuilder, which
is responsible for dumping the packets from the database to PCAP files. At the
same time, INFO files are generated to provide detailed information about each
flow, which allows us to assign each packet from the PCAP file to an individual
flow. We also added a module called logAnalyzer, which is responsible for ana-
lyzing the logs generated by the different DPI tools, and assigning the results of
the classification to the flows stored in the database.

Selection of the Data. The process of building a representative dataset, which
characterizes a typical user behavior, is a challenging task, crucial on testing and
comparing different traffic classifiers. Therefore, to ensure the proper diversity
and amount of the included data, we decided to combine the data on a multidi-
mensional level. Based on w3schools statistics, we selected Windows 7 (55.3 %
of all users), Windows XP (19.9 %), and Linux (4.8 %) - state for January 2013.
Apple computers (9.3 % of overall traffic) and mobile devices (2.2 %) were left
as future work. The selected applications are shown below.

– Web browsers: based on w3schools statistics: Chrome and Firefox (W7, XP,
LX), Internet Explorer (W7, XP).

– BitTorrent clients: based on CNET ranking: uTorrent and Bittorrent (W7,
XP), Frostwire and Vuze (W7, XP, LX)



Is Our Ground-Truth for Traffic Classification Reliable? 101

– eDonkey clients: based on CNET ranking: eMule (W7, XP), aMule (LX)
– FTP clients: based on CNET ranking: FileZilla (W7, XP, LX), SmartFTP

Client (W7, XP), CuteFTP (W7, XP), WinSCP (W7, XP)
– Remote Desktop servers: built-in (W7, XP), xrdp (LX)
– SSH servers: sshd (LX)
– Background traffic: DNS and NTP (W7, XP, LX), NETBIOS (W7, XP)

The list of visited websites was based on the top 500 websites according to
Alexa statistics. We chose several of them taking into account their rank and
the nature of the website (e.g., search engines, social medias, national portals,
video websites) to assure the variety of produced traffic. These websites include:
Google, Facebook, YouTube, Yahoo!, Wikipedia, Java, and Justin.tv. For most
websites we performed several random clicks to linked external websites, which
should better characterize the real behavior of the real users and include also
other websites not included in the top 500 ranking. This also concerns search
engines, from which we manually generated random clicks to the destination
web sites. Each of the chosen websites was processed by each browser. In case
it was required to log into the website, we created fake accounts. In order to
make the dataset as representative as possible we have simulated different hu-
man behaviors when using these websites. For instance, on Facebook, we log
in, interact with friends (e.g., chat, send messages, write in their walls), upload
pictures, create events or play games. On YouTube, we watched the 10 most
popular videos, which we randomly paused, resumed, and rewound backward
and forward. Also, we randomly made some comments and clicked Like or Not
like buttons. The detailed description of actions performed with the services is
listed in our technical report [15]. We tested the P2P (BitTorrent and eDonkey)
clients by downloading files of different sizes and then leaving the files to be
seeded for some time, in order to obtain enough of traffic in both directions. We
tried to test every FTP client using both the active transfer mode (PORT) and
passive transfer mode (PASV), if the client supports such mode.

Extracting theData forProcessing. Each DPI tool can have different require-
ments and features, so the extracting tool must handle all these issues. The PCAP
files provided to PACE, OpenDPI, L7-filter, NDPI, and Libprotoident are accom-
panied by INFO files, which contain the information about the start and end of
each flow, together with the flow identifier. Because of that, the software, which
uses the DPI libraries, can create and terminate the flows appropriately, as well
as to provide the classification results together with the flow identifier. Preparing
the data for NBAR classification is more complicated. There are no separate INFO
files describing the flows, since the classification is made directly on the router. We
needed to extract the packets in a way that allows the router to process and cor-
rectly group them into flows. We achieved that by changing both the source and
destination MAC addresses during the extraction process. The destination MAC
address of every packet must match up with the MAC address of the interface of
the router, because the router cannot process any packet which is not directed to
its interface on the MAC layer. The source MAC address was set up to contain the



102 V. Carela-Español, T. Bujlow, and P. Barlet-Ros

Table 2. Application classes in the dataset

Application No. of flows No. of Megabytes
Edonkey 176581 2823.88

BitTorrent 62845 2621.37
FTP 876 3089.06
DNS 6600 1.74
NTP 27786 4.03
RDP 132907 13218.47

NETBIOS 9445 5.17
SSH 26219 91.80

Browser HTTP 46669 5757.32
Browser RTMP 427 3026.57
Unclassified 771667 5907.15

identifier of the flow to which it belongs, so the flows were recognized by the router
according to our demands. To the best of our knowledge, this is the first work to
present a scientific performance evaluation of NBAR.

The Classification Process. We designed a tool, called dpi_benchmark, which
can read the PCAP files and provide the packets one-by-one to PACE, OpenDPI,
L7-filter, NDPI and Libprotoident. All the flows are started and terminated
based on the information from the INFO files. After the last packet of the flow is
sent to the classifier, the tool obtains the classification label associated with that
flow. The labels are written to the log files together with the flow identifier, which
makes us later able to relate the classification results to the original flows in the
database. A brief description of the DPI-tools used in this study is presented
in Table 1. Although some of the evaluated tools have multiple configuration
parameters, we have used in our evaluation the default configuration for most of
them. A detailed description of the evaluated DPI-tools and their configurations
can be found in [15].

Classification by NBAR required us to set up a full working environment.
We used GNS3 - a graphical framework, which uses Dynamips to emulate our
Cisco hardware. We emulated the 7200 platform, since only for this platform
supported by GNS3 was available the newest version of Cisco IOS (version 15),
which contains Flexible NetFlow. The router was configured by us to use Flexible
NetFlow with NBAR on the created interface. Flexible NetFlow was set up to
create the flows taking into account the same parameters as are used to create
the flow by VBS. On the computer, we used tcpreplay to replay the PCAP files
to the router with the maximal speed, which did not cause packet loss. At the
same time, we used nfacctd, which is a part of PMACCT tools, to capture the
Flexible NetFlow records sent by the router to the computer. The records, which
contain the flow identifier (encoded as source MAC address) and the name of
the application recognized by NBAR, were saved into text log files. This process
is broadly elaborated in our technical report [15].

The Dataset. Our dataset contains 1 262 022 flows captured during 66 days,
between February 25, 2013 and May 1, 2013, which account for 35.69 GB of pure
packet data. The application name tag was present for 520 993 flows (41.28 % of
all the flows), which account for 32.33 GB (90.59 %) of the data volume. Addition-
ally, 14 445 flows (1.14 % of all the flows), accounting for 0.28 GB (0.78 %) of data



Is Our Ground-Truth for Traffic Classification Reliable? 103

volume, could be identified based on the HTTP content-type field extracted from
the packets. Therefore, we were able to successfully establish the ground truth
for 535 438 flows (42.43 % of all the flows), accounting for 32.61 GB (91.37 %)
of data volume. The remaining flows are unlabeled due to their short lifetime
(below ∼1 s), which made VBS incapable to reliably establish the corresponding
sockets. Only these successfully classified flows will be taken into account dur-
ing the evaluation of the classifiers. However, all the flows are included in the
publicly available traces. This ensures data integrity and the proper work of the
classifiers, which may rely on coexistence of different flows. We isolated several
application classes based on the information stored in the database (e.g., appli-
cation labels, HTTP content-type field). The classes together with the number
of flows and the data volume are shown in Table 2. We have published this la-
beled dataset with full packet payloads in [12]. Therefore, it can be used by the
research community as a reference benchmark for the validation and comparison
of network traffic classifiers.

3 Performance Comparison

This section provides a detailed insight into the classification results of different
types of traffic by each of the classifiers. All these results are summarized in
Table 3, where the ratio of correctly classified flows (i.e., precision or true posi-
tives), incorrectly classified flows (i.e., errors or false positives) and unclassified
flows (i.e., unknowns) are respectively presented. The complete confusion matrix
can be found in our technical report [15].

Regarding the classification of P2P traffic, Edonkey is the first application
studied. Only PACE, and especially Libprotoident, can properly classify it (pre-
cision over 94 %). NDPI and OpenDPI (that use the same pattern), as well as
NBAR, can classify almost no Edonkey traffic (precision below 1 %). L7-filter
classifies 1/3 of the flows, but it also produces many false positives by classifying
more than 13 % of the flows as Skype, NTP, and finger. The wrongly classified
flows in NDPI were labeled as Skype, RTP and RTCP, and in NBAR as Skype.
The classification of BitTorrent traffic, the second P2P application studied, is not
completely achieved by any of the classifiers. PACE and Libprotoident achieve
again the highest precision (over 77 %). The rest of the classifiers present se-
vere problems to identify this type of traffic. When misclassified, the BitTorrent
traffic is usually classified as Skype.

The performance of most DPI tools with more traditional applications is sig-
nificantly higher. FTP traffic is usually correctly classified. Only L7-filter and
NBAR present problems to label it. The false positives produced by L7-filter are
because the traffic is classified as SOCKS. Table 3 also shows that all the clas-
sifiers can properly classify DNS traffic. Similar results are obtained for NTP,
which almost all the classifiers can correctly classify it. However, NBAR com-
pletely miss the classification of this traffic. SSH was evaluated in its Linux
version. Table 3 shows that NBAR almost classified all the flows while the rest
of classifiers labeled more than 95 % of them.



104 V. Carela-Español, T. Bujlow, and P. Barlet-Ros

Similar performance is also obtained with RDP, usually employed by VoIP
applications, as shown in Table 3. Again, L7-filter and NBAR can not classify
this application at all. The false positives for L7-filter, Libprotoident, and NBAR
are mainly due to Skype, RTMP, and H323, respectively.

Unlike previous applications, the results for NETBIOS are quite different.
Surprisingly, NBAR and NDPI are the only classifiers that correctly label NET-
BIOS traffic. PACE can classify 2/3 of this traffic and OpenDPI only 1/4. On
the other hand, the patterns from L7-filter and Libprotoident do not properly
detect this traffic. The wrongly classified flows in Libprotoident are labeled as
RTP and Skype, and in L7-filter as Edonkey, NTP, and RTP.

We also evaluated RTMP traffic, a common protocol used by browsers and
plugins for playing FLASH content. It is important to note that only Libpro-
toident has a specific pattern for RTMP. Because of that, we have also counted
as correct the RTMP traffic classified as FLASH although that classification is
not as precise as the one obtained by Libprotoident. L7-filter and NBAR can not
classify this type of traffic. The rest of the classifiers achieve a similar precision,
around 80 %. The surprising amount of false positives by NDPI is because some
traffic is classified as H323. L7-filter errors are due to wrongly classified traffic
as Skype and TSP.

Table 3 also presents the results regarding the HTTP protocol. All of them
but L7-filter can properly classify most of the HTTP traffic. L7-filter labels
all the traffic as finger or Skype. NDPI classifies some HTTP traffic as iMes-
sage_Facetime. The amount of errors from PACE is surprising, as this tool is
usually characterized by very low false positive ratio. All the wrong classifica-
tions are labeled as Meebo traffic. The older Meebo pattern available in OpenDPI
and the newer from NDPI seems not to have this problem.

Most incorrect classifications for all the tools are due to patterns that easily
match random traffic. This problem especially affects L7-filter and, in particular,
with the patterns used to match Skype, finger and ntp traffic. The deactivation
of those patterns would considerably decrease the false positive ratio but it
would disable the classification of those applications. In [4], the authors use a
tailor-made configuration and post-processing of the L7-filter output in order to
minimize this overmatching problem.

3.1 Sub-classification of HTTP Traffic

Our dataset also allows the study of HTTP traffic at different granularity (e.g.,
identify different services running over HTTP). However, only NDPI can sub-
classify some applications at this granularity (e.g., Youtube, Facebook). Newer
versions of PACE also provide this feature but we had no access to it for this
study. Table 4 presents the results for four applications running over HTTP
identified by NDPI. Unlike the rest of tools that basically classify this traffic
as HTTP, NDPI can correctly give the specific label with precision higher than
97 %. Furthermore, the classification errors are caused by traffic that NDPI clas-
sifies as HTTP without providing the lower level label.



Is Our Ground-Truth for Traffic Classification Reliable? 105

Table 3. DPI evaluation
Application Classifier % correct % wrong % uncl.

PACE 94.80 0.02 5.18
OpenDPI 0.45 0.00 99.55

Edonkey L7-filter 34.21 13.70 52.09
NDPI 0.45 6.72 92.83

Libprotoident 98.39 0.00 1.60
NBAR 0.38 10.81 88.81
PACE 81.44 0.01 18.54

OpenDPI 27.23 0.00 72.77
BitTorrent L7-filter 42.17 8.78 49.05

NDPI 56.00 0.43 43.58
Libprotoident 77.24 0.06 22.71

NBAR 27.44 1.49 71.07
PACE 95.92 0.00 4.08

OpenDPI 96.15 0.00 3.85
FTP L7-filter 6.11 93.31 0.57

NDPI 95.69 0.45 3.85
Libprotoident 95.58 0.00 4.42

NBAR 40.59 0.00 59.41
PACE 99.97 0.00 0.03

OpenDPI 99.97 0.00 0.03
DNS L7-filter 98.95 0.13 0.92

NDPI 99.88 0.09 0.03
Libprotoident 99.97 0.00 0.04

NBAR 99.97 0.02 0.02
PACE 100.00 0.00 0.00

OpenDPI 100.00 0.00 0.00
NTP L7-filter 99.83 0.15 0.02

NDPI 100.00 0.00 0.00
Libprotoident 100.00 0.00 0.00

NBAR 0.40 0.00 99.60

Application Classifier % correct % wrong % uncl.
PACE 95.57 0.00 4.43

OpenDPI 95.59 0.00 4.41
SSH L7-filter 95.71 0.00 4.29

NDPI 95.59 0.00 4.41
Libprotoident 95.71 0.00 4.30

NBAR 99.24 0.05 0.70
PACE 99.04 0.02 0.94

OpenDPI 99.07 0.02 0.91
RDP L7-filter 0.00 91.21 8.79

NDPI 99.05 0.08 0.87
Libprotoident 98.83 0.16 1.01

NBAR 0.00 0.66 99.34
PACE 66.66 0.08 33.26

OpenDPI 24.63 0.00 75.37
NETBIOS L7-filter 0.00 8.45 91.55

NDPI 100.00 0.00 0.00
Libprotoident 0.00 5.03 94.97

NBAR 100.00 0.00 0.00
PACE 80.56 0.00 19.44

OpenDPI 82.44 0.00 17.56
RTMP L7-filter 0.00 24.12 75.88

NDPI 78.92 8.90 12.18
Libprotoident 77.28 0.47 22.25

NBAR 0.23 0.23 99.53
PACE 96.16 1.85 1.99

OpenDPI 98.01 0.00 1.99
HTTP L7-filter 4.31 95.67 0.02

NDPI 99.18 0.76 0.06
Libprotoident 98.66 0.00 1.34

NBAR 99.58 0.00 0.42

Table 4. HTTP sub-classification by NDPI

Application % correct % wrong % unclassified
Google 97.28 2.72 0.00

Facebook 100.00 0.00 0.00
Youtube 98.65 0.45 0.90
Twitter 99.75 0.00 0.25

Another sub-classification that can be studied with our dataset is the FLASH
traffic over HTTP. However, the classification of this application is different for
each tool making its comparison very difficult. PACE, OpenDPI and NDPI have
a specific pattern for this application. At the same time, these tools (as well as
L7-filter) have specific patterns for video traffic, which may or may not run over
HTTP. In addition, NDPI has specific labels for Google, Youtube and Facebook
that can also carry FLASH traffic. Libprotoident and NBAR do not provide any
pattern to classify FLASH traffic over HTTP. Table 5 shows that NDPI can
correctly classify 99.48 % of this traffic, 25.48 % of which is classified as Google,
Youtube or Facebook. PACE and OpenDPI can properly classify around 86 % of
the traffic. The errors produced in the classification are almost always related to
traffic classified as HTTP with the exception of L7-filter that classifies 86.49 %
of the traffic as finger.

Table 5. FLASH evaluation

Classifier % correct % wrong % unclassified
PACE 86.27 13.18 0.55

OpenDPI 86.34 13.15 0.51
L7-filter 0.07 99.67 0.26
NDPI 99.48 0.26 0.26

Libprotoident 0.00 98.07 1.93
NBAR 0.00 100.00 0.00



106 V. Carela-Español, T. Bujlow, and P. Barlet-Ros

4 Discussion

This section extracts the outcomes from the results obtained during the perfor-
mance comparison. Also, we discuss the limitations of our study. Table 6 presents
the summary of the results from Section 3. The Precision (i.e., first column) is
computed similarly to Section 3, but we take into account all the applications
together (i.e., 100 * # correctly classified flows / # total flows). However, this
metric is dependent on the distribution of the dataset. Because of that, we also
compute a second metric, the Average Precision. This statistic is independent
from the distribution and is calculated as follow:

Avg. Precision =

∑N
i=1

correctly classified i flows
total i flows

N
(1)

where N is the number of applications studied (i.e., N = 10).
As it can be seen in Table 6, PACE is the best classifier. Even while we were

not using the last version of the software, PACE was able to properly classify
94 % of our dataset. Surprisingly for us, Libprotoident achieves similar results,
although this tool only inspect the first four bytes of payload for each direction.
On the other hand, L7-filter and NBAR perform poorly in classifying the traffic
from our dataset. The more fair metric, Avg. Precision, presents similar results.
PACE is still the best classifier, however, it has increased the difference by several
points to the second best classifier, Libprotoident. Unlike before, NDPI is almost
as precise as Libprotoident with this metric. L7-filter and NBAR are still the
tools that present the worst performance.

Table 6. Summary

Classifier % Precision % Avg. Precision
PACE 94.22 91.01

OpenDPI 52.67 72.35
L7-filter 30.26 38.13
NDPI 57.91 82.48

Libprotoident 93.86 84.16
NBAR 21.79 46.72

Nonetheless, the previous conclusions are obviously tied to our dataset. Al-
though we have tried our best to emulate the real behavior of the users, many
applications, behaviors and configurations are not represented on it. Because
of that, it has some limitations. In our study we have evaluated 10 well-known
applications, however adding more applications as Skype or Spotify is part of
our ongoing future work. The results obtained from the different classifiers are
directly related to those applications. Thus, the introduction of different ap-
plications could arise different outcomes. The traffic generated for building the
dataset, although has been manually and realistically created, is artificial. The
backbone traffic would carry different behaviors of the applications that are not
fully represented in our dataset (e.g., P2P clients running on port 80). Therefore,



Is Our Ground-Truth for Traffic Classification Reliable? 107

the performance of the tools studied could not be directly extrapolated from the
current results, but it gives an idea of their precision in the evaluated set of ap-
plications. At the same time, the artificially created traffic allowed us to publish
the dataset with full packet payloads.

5 Conclusions

This paper presents the first step towards validating the reliability of the accu-
racy of the network traffic classifiers. We have compared the performance of six
tools (i.e., PACE, OpenDPI, L7-filter, NDPI, Libprotoident, and NBAR), which
are usually used for the traffic classification. The results obtained in Section 3
and further discussed in Section 4 show that PACE is, on our dataset, the most
reliable solution for traffic classification. Among the open-source tools, NDPI
and especially Libprotoident present the best results. On the other hand, NBAR
and L7-filter present several inaccuracies that make them not recommendable
as a ground-truth generator.

In order to make the study trustworthy, we have created a dataset using
VBS [13]. This tool associates the name of the process to each flow making its
labeling totally reliable. The dataset of more than 500 K flows contains traffic
from popular applications like HTTP, Edonkey, BitTorrent, FTP, DNS, NTP,
RDP, NETBIOS, SSH, and RDP. The total amount of data properly labeled is
32.61 GB. Furthermore, and more important, we release to the research commu-
nity this dataset with full payload, so it can be used as a common reference for
the comparison and validation of network traffic classifiers.

As the future work, we plan to extend this work by adding new applications
to the dataset (e.g., Skype, Games) and especially focus on HTTP-based appli-
cations. We also plan to introduce new tools to the study (e.g., NBAR2).

References

1. Dainotti, A., et al.: Issues and future directions in traffic classification. IEEE Net-
work 26(1), 35–40 (2012)

2. Valenti, S., Rossi, D., Dainotti, A., Pescapè, A., Finamore, A., Mellia, M.: Re-
viewing Traffic Classification. In: Biersack, E., Callegari, C., Matijasevic, M. (eds.)
Data Traffic Monitoring and Analysis. LNCS, vol. 7754, pp. 123–147. Springer,
Heidelberg (2013)

3. Fukuda, K.: Difficulties of identifying application type in backbone traffic. In: Int.
Conf. on Network and Service Management (CNSM), pp. 358–361. IEEE (2010)

4. Carela-Español, V., et al.: Analysis of the impact of sampling on NetFlow traffic
classification. Computer Networks 55, 1083–1099 (2011)

5. Alcock, S., et al.: Libprotoident: Traffic Classification Using Lightweight Packet
Inspection. Technical report, University of Waikato (2012)

6. Gringoli, F., et al.: Gt: picking up the truth from the ground for internet traffic.
ACM SIGCOMM Computer Communication Review 39(5), 12–18 (2009)

7. Dainotti, A., et al.: Identification of traffic flows hiding behind TCP port 80. In:
IEEE Int. Conf. on Communications (ICC), pp. 1–6 (2010)



108 V. Carela-Español, T. Bujlow, and P. Barlet-Ros

8. Karagiannis, T., et al.: Transport layer identification of P2P traffic. In: 4th ACM
Internet Measurement Conf. (IMC), pp. 121–134 (2004)

9. Shen, C., et al.: On detection accuracy of L7-filter and OpenDPI. In: 3rd Int. Conf.
on Networking and Distributed Computing (ICNDC), pp. 119–123. IEEE (2012)

10. Alcock, S., Nelson, R.: Measuring the Accuracy of Open-Source Payload-Based
Traffic Classifiers Using Popular Internet Applications. In: IEEE Workshop on
Network Measurements (2013)

11. Dusi, M., et al.: Quantifying the accuracy of the ground truth associated with
Internet traffic traces. Computer Networks 55(5), 1158–1167 (2011)

12. [Online]: Traffic classification at the Universitat Politècnica de Catalunya, UPC
BarcelonaTech (2013),
http://monitoring.ccaba.upc.edu/traffic_classification

13. Bujlow, T., et al.: Volunteer-Based System for classification of traffic in com-
puter networks. In: 19th Telecommunications Forum TELFOR, pp. 210–213. IEEE
(2011)

14. [Online]: Volunteer-Based System for Research on the Internet (2012),
http://vbsi.sourceforge.net/

15. Bujlow, T., et al.: Comparison of Deep Packet Inspection (DPI) Tools for Traffic
Classification. Technical report, UPC BarcelonaTech (2013)

http://monitoring.ccaba.upc.edu/traffic_classification
http://vbsi.sourceforge.net/


Detecting Intentional Packet Drops

on the Internet via TCP/IP Side Channels

Roya Ensafi, Jeffrey Knockel, Geoffrey Alexander, and Jedidiah R. Crandall

Department of Computer Science, University of New Mexico, USA
{royaen,jeffk,alexandg,crandall}@cs.unm.edu

Abstract. We describe a method for remotely detecting intentional
packet drops on the Internet via side channel inferences. That is, given
two arbitrary IP addresses on the Internet that meet some simple re-
quirements, our proposed technique can discover packet drops (e.g., due
to censorship) between the two remote machines, as well as infer in which
direction the packet drops are occurring. The only major requirements
for our approach are a client with a global IP Identifier (IPID) and a tar-
get server with an open port. We require no special access to the client
or server. Our method is robust to noise because we apply intervention
analysis based on an autoregressive-moving-average (ARMA) model. In
a measurement study using our method featuring clients from multiple
continents, we observed that, of all measured client connections to Tor
directory servers that were censored, 98% of those were from China, and
only 0.63% of measured client connections from China to Tor directory
servers were not censored. This is congruent with current understandings
about global Internet censorship, leading us to conclude that our method
is effective.

1 Introduction

Tools for discovering intentional packet drops are important for a variety of ap-
plications, such as discovering the blocking of Tor by ISPs or nation states [1].
However, existing tools have a severe limitation: they can only measure when
packets are dropped in between the measurement machine and an arbitrary re-
mote host. The research question we address in this paper is: can we detect
drops between two hosts without controlling either of them and without sharing
the path between them? Effectively, by using idle scans our method can turn
approximately 1% of the total IP address space into conscripted measurement
machines that can be used as vantage points to measure IP-address-based cen-
sorship, without actually gaining access to those machines.

Antirez [2] proposed the first type of idle scan, which we call an IPID idle
port scan. In this type of idle scan an “attacker” (which we will refer to as the
measurement machine in our work) aims to determine if a specific port is open
or closed on a “victim” machine (which we will refer to as the server) without
using the attacker’s own return IP address. The attacker finds a “zombie” (client
in this paper) that has a global IP identifier (IPID) and is completely idle. In this

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 109–118, 2014.
c© Springer International Publishing Switzerland 2014



110 R. Ensafi et al.

paper, we say that a machine has a global IPID when it sends TCP RST packets
with a globally incrementing IPID that is shared by all destination hosts. This
is in contrast to machines that use randomized IPIDs or IPIDs that increment
per-host. The attacker repeatedly sends TCP SYN packets to the victim using
the return IP address of the zombie, while simultaneously eliciting RST packets
from the zombie by sending the zombie SYN/ACKs with the attacker’s own
return IP address. If the victim port that SYN packets are being sent to is open,
the attacker will observe many skips in the IPIDs from the zombie. Nmap [3] has
built-in support for the IPID idle scan, but often fails for Internet hosts because
of noise in the IPID that is due to the zombie sending packets to other hosts.
Our method described in this paper is resistant to noise, and can discover packet
drops in either direction (and determine which direction). Nmap cannot detect
the case of packets being dropped from client to server based on destination IP
address, which our results demonstrate is a very important case.

Two other types of idle scans were presented by Ensafi et al. [4], including
one that exploits the state of the SYN backlog as a side channel. Our method
is based on a new idle scan technique that can be viewed as a hybrid of the
IPID idle scan and Ensafi et al.’s SYN backlog idle scan. Whereas Ensafi et al.’s
SYN backlog idle scan required filling the SYN backlog and therefore causing
denial-of-service, our technique uses a low packet rate that does not fill the SYN
backlog and is non-intrusive. The basic insight that makes this possible is that
information about the server’s SYN backlog state is entangled with information
about the client’s IPID field. Thus, we can perform both types of idle scans
(IPID and SYN backlog) to detect drops in both directions, and our technique
overcomes the limitations of both by exploiting the entanglement of information
in the IPID and treating it as a linear intervention problem to handle noise
characteristic of the real Internet.

This research has several major contributions:

– A non-intrusive method for detecting intentional packet drops between two
IP addresses on the Internet where neither is a measurement machine.

– An Internet measurement study that shows the efficacy of the method.
– A model of IPID noise based on an autoregressive-moving-average (ARMA)
model that is robust to autocorrelated noise.

Source code and data are available upon request, and a web demonstration
version of the hybrid idle scan is at http://spookyscan.cs.unm.edu. The types
of measurements we describe in this paper raise ethical concerns because the
measurements can cause the appearance of connection attempts between arbi-
trary clients and servers. In China there is no evidence of the owners of Internet
hosts being persecuted for attempts to connect to the Tor network, thus our mea-
surements in this paper are safe. However, we caution against performing similar
measurements in other countries or contexts without first evaluating the risks
and ethical issues. More discussion of ethical issues, additional details about the
ARMA model, and other information not included here due to space limitations
are available in the extended version of this paper [5].

http://spookyscan.cs.unm.edu


Detecting Intentional Packet Drops on the Internet 111

No direction blocked

Time

MMServerClient

RST

SYN/ACK 

RST

SYN

IPID=1380

IPID=1381

IPID=1382

IPID=1383

SYN/ACK 

SYN/ACK 

RST

Client to server blocked

Time

MMServerClient

RST

SYN/ACK 

RST

SYN

X

X

X

IPID=1380

IPID=1381

IPID=1382

IPID=1383

IPID=1384

IPID=1385

SYN/ACK 

SYN/ACK 

RST

SYN/ACK 

SYN/ACK 

RST

Server to client blocked

Time

MMServerClient
SYN/ACK 

RST

SYN

X

X

X

IPID=1380

IPID=1381

IPID=1382

SYN/ACK 

SYN/ACK 

SYN/ACK 

SYN/ACK 

RST

RST

Fig. 1. Three different cases that our method can detect. MM is the measurement
machine.

The rest of the paper is structured as follows: After describing the implemen-
tation of our method in Section 2, we present our experimental methodology for
the measurement study in Section 3 and the ARMA model in Section 4. Results
from the measurement study are in Section 5, followed by a discussion of related
work in Section 6 and then the conclusion.

2 Implementation

In order to determine the direction in which packets are being blocked, our
method is based on information flow through both the IPID of the client and
the SYN backlog state of the server, as shown in Figure 1. Our implementation
queries the IPID of the client (by sending SYN/ACKs from the measurement
machine and receiving RST responses) to create a time series to compare a base
case to a period of time when the server is sending SYN/ACKs to the client
(because of our forged SYNs). We assume that the client has global IPIDs and
the server has an open port.

Global IPIDs were explained in Section 1. The SYN backlog is a buffer that
stores information about half-open connections where a SYN has been received
and a SYN/ACK sent but no ACK reply to the SYN/ACK has been received.
Half-open connections remain in the SYN backlog until the connection is com-
pleted with an ACK, aborted by a RST or ICMP error, or the half-open con-
nection times out (typically between 30 and 180 seconds). The SYN/ACK is
retransmitted some fixed number of times that varies by operating system and
version, typically three to six SYN/ACKs in total. This SYN backlog behav-
ior on the server, when combined with the global IPID behavior of the client,
enables us to distinguish three different cases (plus an error case):

– Server-to-client-dropped: In this case SYN/ACKs are dropped in transit
from the server to the client based on the return IP address (and possibly



112 R. Ensafi et al.

other fields like source port), and the client’s IPID will not increase at all
(except for noise).

– No-packets-dropped: In the case that no intentional dropping of packets is
occurring, the client’s IPID will go up by exactly one. This happens because
the first SYN/ACK from the server is responded to with a RST from the
client, causing the server to remove the entry from its SYN backlog and not
retransmit the SYN/ACK. Censorship that is stateful or not based solely on
IP addresses and TCP port numbers may be detected as this case, including
filtering aimed at SYN packets only. Also, if the packet is not dropped, but
instead the censorship is based on injecting RSTs or ICMP errors, it will be
detected as this case. Techniques for distinguishing these other possibilities
are left for future work.

– Client-to-server-dropped: In this case RST responses from the client to
the server are dropped in transit because of their destination IP address
(which is the server). When this happens the server will continue to retrans-
mit SYN/ACKs and the client’s IPID will go up by the total number of
transmitted SYN/ACKs including retransmissions (typically three to six).
This may indicate the simplest method for blacklisting an IP address: null
routing.

– Error: In this case networking errors occur during the experiment, the IPID
is found to not be global throughout the experiment, a model is fit to the
data but does not match any of the three non-error cases above, the data
is too noisy and intervention analysis fails because we are not able to fit a
model to the data, and/or other errors.

Noise due to packet loss and delay or the client’s communications with other
machines may be autocorrelated. The autocorrelation comes from the fact that
the sources of noise, which include traffic from a client that is not idle, packet
loss, packet reordering, and packet delay, are not memoryless processes and of-
ten happen in spurts. The accepted method for performing linear intervention
analysis on time series data with autocorrelated noise is ARMA modeling, which
we describe in Section 4.

3 Experimental Setup

All measurement machines were Linux machines connected to a research network
with no packet filtering. Specifically, this network has no stateful firewall or egress
filtering for return IP addresses.

One measurement machine was dedicated to developing a pool of both client
and server IP addresses that have the right properties for use in measurements.
Clients were chosen by horizontally scanning China and other countries for ma-
chines with global IPIDs, then continually checking them for a 24-hour period
to cull out IP addresses that frequently changed global IPID behavior (e.g., be-
cause of DHCP), went down, or were too noisy. A machine is considered to have a
global IPID if its IPID as we measure it by sending SYN/ACKs from alternating



Detecting Intentional Packet Drops on the Internet 113

source IP addresses and receiving RSTs never incrementing outside the ranges
[−40, 0) or (0, 1000] per second when probed from two different IP addresses.
This range allows for non-idle clients, packet loss, and packet reordering. It is
possible to build the time series in different ways where negative IPID differences
are never observed, but in this study our time series was the differences in the
client’s IPIDs in the order in which they arrived at the measurement machine.
Our range of [−40, 0) or (0, 1000] is based on our observations of noise typical of
the real Internet. The IPID going up by 0 is a degenerate case and means the
IPID is not global.

Servers were chosen from three groups: Tor directory authorities, Tor bridges,
and web servers. The ten Tor directory authorities were obtained from the Tor
source code and the same ten IPs were tested for every day of data. Three Tor
bridges were collected daily both through email and the web. Every day seven
web servers were chosen randomly from the top 1000 websites on the Alexa Top
1,000,000 list [6]. All web server IPs were checked to make sure that they stood
up for at least 24 hours before being selected for measurement. Furthermore,
we checked that the client and server were both up and behaving as assumed
between every experiment (i.e., every five minutes).

A round of experiments was a 24-hour process in which measurements were
carried out on the two measurement machines. Each 24-hour period had 22 hours
of experiments and 2 hours of down time for data synchronization. For each mea-
surement period on each of the two machines performing direct measurements,
ten server machines and ten client machines from the above process were cho-
sen for geographic diversity: 5 from China, 2 from countries in Asia that were
not China, 1 from Europe, and 2 from North America. IP addresses were never
reused except for the Tor directory authorities, so that every 24-hour period was
testing a set of 20 new clients, 10 new servers, and the 10 directory authorities.

For each of the twenty clients and twenty servers geographical information
provided by MaxMind was saved. MaxMind claims an accuracy of 99.8% for
identifying the country an IP address is in [7]. For each of the twenty server
machines, a series of SYN packets was used to test and save its SYN/ACK
retransmission behavior for the analysis in Section 4.

Every hour, each of our two main measurement machines created ten threads.
Each thread corresponded to one client machine. Each thread tested each of the
ten server IP addresses sequentially using our idle scan based on the client’s
IPID. No forged SYNs were sent to the server during the first 100 seconds of a
test, and forged SYNs with the return IP address of the client were sent to the
server at a rate of 5 per second for the second 100-second period. Then forged
RST packets were sent to the server to clear the SYN backlog and prevent
interference between sequential experiments. A timeout period of sixty seconds
was observed before the next test in the sequence was started, to allow all other
state to be cleared. Each experiment lasted for less than five minutes, so that
ten could be completed in an hour. Every client and server was involved in
only one experiment at a time. Each client/server pair was tested once per hour
throughout the 24-hour period, for replication and also to minimize the effects



114 R. Ensafi et al.

of diurnal patterns. Source and destination ports for all packets were carefully
chosen and matched to minimize assumptions about what destination ports the
client responds on.

4 Analysis

In this section we give an overview of our intervention analysis based on ARMA
modeling. More details are available in the extended version of the paper [5].

We model each time series y1, . . . , yn as a linear regression with ARMA errors,
a combination of an autoregressive-moving-average (ARMA) model with exter-
nal linear regressors. An ARMA(p, q) model combines an AR model of order
p and an MA model of order q. We use a linear regression with ARMA errors
to model our time series data. This specifies that every element in a time series
can be written as a constant plus the linear combination of regressors x1, . . . , xr

with an ARMA-modeled error term, et:

yt = c+

r∑
i=1

βixit + et, et = zt +

p∑
i=1

φiet−i +

q∑
i=1

θizt−i

where zt is a white noise series and φi, θi, and βi are ARMA model parameters
to be fitted. We use the regressors xi for intervention analysis, i.e., for analyzing
our experimental effect on the time series at a specific time.

For each experiment, we pick regressors according to which times the server
(re)transmits SYN/ACK’s in response to SYN’s. For a server that (re)transmits
r SYN/ACK’s in response to each SYN, we have r regressors. We call time t1 the
time of the first transmission in response to the first of our forged SYN’s, and
we call ti+1 the time the server would send the ith retransmission in response
to that SYN. Then we define regressor xi as the indicator variable

xij =

{
1 if ti ≤ j and either j < ti+1 or i = r

0 otherwise

In other words, x1 is zeros until the time the server transmits the first SYN/ACK
then ones until the server begins retransmitting SYN/ACK’s. The remaining xi

are zeros until the time the server would begin retransmitting its ith SYN/ACK
then ones until if/when the (i+1)th SYN/ACK’s would begin being retransmit-
ted. This definition allows us to model any of the possible level shifts in any case
of packet drop as a linear combination of all xi. See Figure 2 for an illustration.

For intervention analysis, we use hypothesis testing over a value βr, which
represents the difference in IPID differences between when we do or do not send
forged SYN packets to the server. Then we determine the case by a series of
one-sided hypothesis tests performed with significance α = 0.01 according to the
following breakdown, where k1 and k′2 are thresholds between cases:



Detecting Intentional Packet Drops on the Internet 115

Fig. 2. For a server that retransmits r− 1 SYN/ACK’s, each case can be expressed as
the linear combination of regressors x1, . . . , xr; shown is when r = 3 with SYN/ACK
transmissions responding to the first forged SYN occurring at t1, t2, and t3

– Server-to-client-dropped if we reject the null hypothesis that βr ≥ k1.

– No-packets-dropped if we reject the null hypotheses that βr ≤ k1 and
that βr ≥ k′2.

– Client-to-server-dropped if we reject the null hypothesis that βr ≤ k′2.
– Error if none of the above cases can be determined.

For details about the linear regression step, removal of outliers, and how we
choose the thresholds, see the extended version of the paper [5].

5 Results

Table 1 shows results from 5 days of data collection, where S → C is Server-to-
client-dropped, None is No-packets-dropped, C → S is Client-to-server-
dropped, and Error is Error. CN is China, Asia-CN is other Asian countries,
EU is Europe, and NA is North America. For server types, Tor-dir is a Tor
directory authority, Tor-bri is a Tor bridge, and Web is a web server.

Our expectation would be to observe Server-to-client-dropped for clients
in China and Tor servers because of Winter and Lindskog’s observation that the
SYN/ACKs are statelessly dropped by the “Great Firewall of China” (GFW)
based on source IP address and port [8]. We would expect to see No-packets-
dropped for most web servers from clients in China, unless they host popular
websites that happen to be censored in China. Similarly, in the expected case we
should observe No-packets-dropped for clients outside of China, regardless of
server type. We expect a few exceptions, because censorship happens outside of
China and because the GFW is not always 100% effective. In particular, Tor
bridges are not blocked until the GFW operators learn about them, and some
routes might not have filtering in place. Our results are congruent with all of
these expectations.

In 5.9% of the client/server pairs we tested, multiple cases were observed in
the same day. In some cases it appears that noise caused the wrong case to be
detected, but other cases may be attributable to routes changing throughout the
day [9]. That the data is largely congruent with our expectations demonstrates



116 R. Ensafi et al.

Table 1. Results from the measurement study

Client,Server S → C (%) None (%) C → S (%) Error (%)

CN,Tor-dir 2200 (73.04) 19 (0.63) 504 (16.73) 289 (9.59)
Asia-CN,Tor-dir 0 (0.00) 1171 (96.38) 1 (0.08) 43 (3.54)

NA,Tor-dir 1 (0.07) 1217 (90.69) 49 (3.65) 75 (5.59)
EU,Tor-dir 2 (0.28) 695 (97.89) 2 (0.28) 11 (1.55)
CN,Tor-bri 1012 (58.91) 565 (32.89) 31 (1.80) 110 (6.40)

Asia-CN,Tor-bri 0 (0.00) 626 (80.88) 9 (1.16) 139 (17.96)
NA,Tor-bri 0 (0.00) 657 (78.21) 30 (3.57) 153 (18.21)
EU,Tor-bri 0 (0.00) 313 (78.25) 9 (2.25) 78 (19.50)
CN,Web 28 (2.15) 995 (76.30) 36 (2.76) 245 (18.79)

Asia-CN,Web 1 (0.17) 569 (97.43) 1 (0.17) 13 (2.23)
NA,Web 0 (0.00) 606 (93.37) 0 (0.00) 43 (6.63)
EU,Web 0 (0.00) 305 (90.24) 0 (0.00) 33 (9.76)

All Web 29 (1.01) 2475 (86.09) 37 (1.29) 334 (11.62)
All Tor-bri 1012 (27.12) 2161 (57.90) 79 (2.12) 480 (12.86)
All Tor-dir 2203 (35.09) 3102 (49.40) 556 (8.85) 418 (6.66)

the efficacy of the approach, and some of the data points that lie outside our
expectations have patterns that suggest that a real effect is being measured,
rather than an error. For example, of the 28 data points where web servers were
blocked from the server to the client in China, 20 of those data points are the
same client/server pair.

38% of the data we collected does not appear in Table 1 because it did not
pass liveness tests. Every 5-minute data point has three associated liveness tests.
If a server sends fewer than 2.5 SYN/ACKs in response to SYNs from the mea-
surement machine, a client responds to less than 3

5 of our SYN/ACKs, or a
measurement machine sending thread becomes unresponsive, that 5-minute data
point is discarded.

Two out of the ten Tor directory authorities never retransmitted enough
SYN/ACKs to be included in our data. Of the remaining eight, two more ac-
count for 98.8% of the data points showing blocking from client to server. These
same two directory authorities also account for 72.7% of the Error cases for
directory authorities tested from clients in China, and the case of packets being
dropped from server to client (the expected case for China and the case of the
majority of our results) was never observed for these two directory authorities.

When Winter and Lindskog [8] measured Tor reachability from a virtual pri-
vate server in China, there were eight directory authorities at that time. One of
the eight was completely accessible, and the other seven were completely blocked
in the IP layer by destination IP (i.e., Client-to-server). In our results, six
out of ten are at least blocked Server-to-client and two out of ten are only
blocked Client-to-server (two had all results discarded). Winter and Lindskog
also observed that Tor relays were accessible 1.6% of the time, and we observed
that directory authorities were accessible 0.63% of the time. Our results have



Detecting Intentional Packet Drops on the Internet 117

geographic diversity and their results can serve as a ground truth because they
tested from within China. In both studies the same special treatment of direc-
tory authorities compared to relays or bridges was observed, as well as a small
percentage of cases where filtering that should have occurred did not.

To evaluate the assumption that clients with a global IPID are easy to find
in a range of IP addresses that we desire to measure from, take China as an
example. On average, 10% of the IP addresses in China responded to our probes
so that we could observe their IPID, and of those 13% were global. So, roughly
1% of the IP address space of China can be used as clients for measurements
with our method, enabling experiments with excellent geographic and topological
diversity.

6 Related Work

Related work directly related to idle scans [2,3,4] was discussed in Section 1.
Other advanced methods for inferring remote information about networks have
been proposed. Qian et al. [10] demonstrate that firewall behavior with respect
to sequence numbers can be used to infer sequence numbers and perform off-path
TCP/IP connection hijacking. Chen et al. [11] use the IPID field to perform ad-
vanced inferences about the amount of internal traffic generated by a server, the
number of servers in a load-balanced setting, and one-way delays. Morbitzer [12]
explores idle scans in IPv6.

iPlane [13] sends packets from PlanetLab nodes to carefully chosen hosts,
and then compounds loss on specific routes to estimate the packet loss between
arbitrary endpoints without access to those endpoints. This does not detect IP-
address-specific packet drops. Our technique, in contrast, can be used to detect
intentional drops of packets based on IP address and requires no commonalities
between the measurement machine’s routes to the server or client and the routes
between the server and client. Queen [14] utilizes recursive DNS queries to mea-
sure the packet loss between a pair of DNS servers, and extrapolates from this
to estimate the packet loss rate between arbitrary hosts.

7 Conclusion

We have presented a method for detecting intentional packet drops (e.g., due
to censorship) between two almost arbitrary hosts on the Internet, assuming
the client has a globally incrementing IPID and the server has an open port.
Our method can determine which direction packets are being dropped in, and is
resistant to noise due to our use of an ARMAmodel for intervention analysis. Our
measurement results are congruent with current understandings about global
Internet censorship, demonstrating the efficacy of the method.

Acknowledgments. We would like to thank the anonymous PAM 2014 review-
ers and our shepherd, Jelena Mirkovic, as well as Terran Lane, Patrick Bridges,



118 R. Ensafi et al.

Michalis Faloutsos, Stefan Savage, and Vern Paxson for helpful feedback on this
work. This material is based upon work supported by the National Science Foun-
dation under Grant Nos. #0844880, #1017602, #0905177, and #1314297.

References

1. arma: Research problem: Five ways to test bridge reachability. Tor Blog (December
1, 2011), https://blog.torproject.org/blog/research-problem-five-ways-

test-bridge-reachability

2. Antirez: new tcp scan method. Posted to the bugtraq mailing list (December 18,
1998)

3. Lyon, G.: Nmap Network Scanning: The Official Nmap Project Guide to Network
Discovery and Security Scanning. Insecure.Org LLC, Sunnyvale, CA, USA (2009)

4. Ensafi, R., Park, J.C., Kapur, D., Crandall, J.R.: Idle port scanning and non-
interference analysis of network protocol stacks using model checking. In: Proceed-
ings of the 19th USENIX Security Symposium, USENIX Security 2010. USENIX
Association (2010)

5. Ensafi, R., Knockel, J., Alexander, G., Crandall, J.R.: Detecting intentional
packet drops on the Internet via TCP/IP side channels: Extended version CoRR
abs/1312.5739 (2013), http://arxiv.org/abs/1312.5739

6. Alexa: Alexa top 1,000,000 sites, http://www.alexa.com/topsites
7. MaxMind: How accurate are your GeoIP databases?

http://www.maxmind.com/en/faq#accurate

8. Winter, P., Lindskog, S.: How the Great Firewall of China is Blocking Tor. In: Free
and Open Communications on the Internet. USENIX Association (2012)

9. Paxson, V.: End-to-end internet packet dynamics. SIGCOMM Comput. Commun.
Rev. 27(4), 139–152 (1997)

10. Qian, Z., Mao, Z.M.: Off-path TCP sequence number inference attack - how firewall
middleboxes reduce security. In: Proceedings of the 2012 IEEE Symposium on
Security and Privacy, SP 2012, pp. 347–361. IEEE Computer Society, Washington,
DC (2012)

11. Chen, W., Huang, Y., Ribeiro, B.F., Suh, K., Zhang, H., de Souza e Silva, E.,
Kurose, J., Towsley, D.: Exploiting the IPID field to infer network path and end-
system characteristics. In: Dovrolis, C. (ed.) PAM 2005. LNCS, vol. 3431, pp.
108–120. Springer, Heidelberg (2005)

12. Morbitzer, M.: TCP Idle Scans in IPv6. Master’s thesis, Radboud University Ni-
jmegen, The Netherlands (2013)

13. Madhyastha, H.V., Isdal, T., Piatek, M., Dixon, C., Anderson, T., Krishnamurthy,
A., Venkataramani, A.: iPlane: an information plane for distributed services. In:
Proceedings of the 7th Symposium on Operating Systems Design and Implemen-
tation, OSDI 2006, pp. 367–380. USENIX Association, Berkeley (2006)

14. Wang, Y.A., Huang, C., Li, J., Ross, K.W.: Queen: Estimating packet loss rate
between arbitrary internet hosts. In: Moon, S.B., Teixeira, R., Uhlig, S. (eds.)
PAM 2009. LNCS, vol. 5448, pp. 57–66. Springer, Heidelberg (2009)

https://blog.torproject.org/blog/research-problem-five-ways-test-bridge-reachability
https://blog.torproject.org/blog/research-problem-five-ways-test-bridge-reachability
http://arxiv.org/abs/1312.5739
http://www.alexa.com/topsites
http://www.maxmind.com/en/faq#accurate


The Need for End-to-End Evaluation

of Cloud Availability

Zi Hu1,2, Liang Zhu1,2, Calvin Ardi1,2, Ethan Katz-Bassett1,
Harsha V. Madhyastha3, John Heidemann1,2, and Minlan Yu1

1 USC/CS Dept.
2 USC/ISI

3 U. of California, Riverside

Abstract. People’s computing lives are moving into the cloud, making
understanding cloud availability increasingly critical. Prior studies of In-
ternet outages have used ICMP-based pings and traceroutes. While these
studies can detect network availability, we show that they can be inacc-
urate at estimating cloud availability. Without care, ICMP probes can
underestimate availability because ICMP is not as robust as application-
level measurements such as HTTP. They can overestimate availability
if they measure reachability of the cloud’s edge, missing failures in the
cloud’s back-end. We develop methodologies sensitive to five “nines” of
reliability, and then we compare ICMP and end-to-end measurements
for both cloud VM and storage services. We show case studies where one
fails and the other succeeds, and our results highlight the importance
of application-level retries to reach high precision. When possible, we
recommend end-to-end measurement with application-level protocols to
evaluate the availability of cloud services.

1 Introduction

Cloud computing is a distributed computing paradigm that allows users to easily
access and configure remote computing resources in a scalable manner. As the
cloud grows in importance, it will host more applications and services from the
small (such as new and developing web applications) to the large (Amazon,
Netflix, etc.).

As we depend on them more and more, services that run in the cloud need to
be highly available. Despite this need and news reports highlighting major cloud
outages [17], there have been few systematic, third party studies of how reliable
the cloud actually is. While recent systems might use one [25] or multiple [2]
cloud providers to improve reliability, there is a poor understanding of reliable
methods to externally and empirically measure cloud reliability.

Many general network availability and measurement studies use ICMP-based
methodologies [14,15,12,23,10], sometimes focusing on routing problems [15] or
outages in edge networks [12,23]. Studies likely use ICMP because more routers
respond to it than to other types of probes [18,19] and because ICMP probes are
less likely to elicit complaints [24,18]. However, distrust of ICMP in the network

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 119–130, 2014.
c© Springer International Publishing Switzerland 2014



120 Z. Hu et al.

Table 1. Datasets used in this paper

duration target sources method
start (days) service (provider) (VPs) tries/interval

2013-03-11 +33 VM (Amazon) 23 3× / 10 min.
2013-03-11 +33 storage (Amazon, Google, Microsoft) 23 3× / 10 min.
2013-06-18 +17 VM (Amazon) 54 9× / 11 min.
2013-06-18 +75 storage (Amazon, Google, Microsoft) 54 9× / 11 min.

operator community [1] calls into question the accuracy and reliability of using
only ICMP to measuring availability. While effective for network measurements,
ICMP is not perfect, and care must be taken to consider filtering, rate limiting,
and depreferential service.

The contribution of this paper is to develop and compare mechanisms to mea-
sure cloud reliability. We show that ICMP-based measurements are inaccurate
at measuring cloud availability and that end-to-end measurements are necessary
to establish cloud availability.

We first compare ICMP and HTTP to measure cloud reliability at the network
and application levels, and then apply them to several cloud VM and storage
services. We evaluate the effect of retries and show that ICMP has a higher loss
rate than random packet loss alone predicts (Section 3). While ICMP and HTTP
nearly always agree, they sometimes disagree. ICMP occasionally experiences
a period of loss from some vantage points and thus will overestimate cloud
outages—a weakness of the methodology. Less frequently, we see that HTTP
probing shows outages that last for extended periods from some vantage points;
ICMP would underestimate these outages because of its failure to reach the
provided service. We conclude that, although application-level methods such as
HTTP probing incur the cost of provisioning and accessing cloud resources, they
are necessary to accurately assess cloud reliability.

2 Methodology

We use two methods to study availability: ICMP probes at the network level,
and end-to-end probes with HTTP at the application level. We target both cloud
VMs and storage services of three providers. Our work results in four datasets
(Table 1), all available on request.

2.1 Outage Causes

We measure outages in cloud services by taking observations from many van-
tage points (VPs). Section 2.4 details our VP selection and infrastructure. To
understand what these measurements tell us, we must consider potential sources
of failure that can occur from the VP to the cloud. These problems may occur
near the VP, in the network, near the cloud provider, at the cloud front-end, or
inside the cloud infrastructure.



The Need for End-to-End Evaluation of Cloud Availability 121

We see several possible failures: (1) DNS lookup failures; (2) routing problems,
either near the VP, in the network, or at the provider; (3) random packet loss
in the network; (4) rate limiting, either near the VP, in the network, or at the
provider; and (5) service outages inside the cloud infrastructure.

While all of these problems can interfere with use of the cloud, some, such
as packet loss, are commonplace and the end user is responsible to recover from
them. Others affect some measurements differently. Our goal is to understand
how the choice of measurement methodologies emphasizes different failures.

2.2 Outage Detection at the Network and Application Level

We measure cloud status every 10 or 11 minutes (see Table 1), sending ICMP
and HTTP probes with retries. We record the results from many vantage points.
We consider the overall response to be positive if the initial probe or any of the
retries succeeds.

For network-level tests, we send an ICMP echo request, considering only pos-
itive replies as successful, and lack of a reply or any error code as negative. For
end-to-end testing, we retrieve a short file over HTTP with curl. A positive
response is a HTTP status code of 200 OK; any other HTTP status code is a
negative response. We record curl error codes to distinguish some failure cases.

In both cases, if the initial request fails, we try two and eight additional times
for the datasets that begin on 2013-03-11 and 2013-06-18, respectively. We then
record the result as I or I for ICMP success or failure, and H or H for HTTP. In
the 2013-03-11 datasets, we do not do ICMP retries unless HTTP probes fail, in
which case we then perform ICMP retries in conjunction with HTTP retries.

To diagnose problems, we observe the probe at the service itself (when possi-
ble), and we record ICMP and TCP traceroutes between the VP and service.

Since routing outages near the vantage point will skew our observations, we cal-
ibrate our measurements by probing two control sites at USC/ISI and University
of Washington. We probe these sites with the same method as probing the cloud.
We discard cloud measurements when either of these control sites is unavailable.

2.3 Targets: Cloud Storage and VMs

We probe two cloud targets: virtual machines (VMs) and online storage.

Virtual Machines: We test VMs at Amazon only. Google’s VM service is not
yet public, and Microsoft VMs filter inbound and outbound ICMP traffic.

For Amazon VMs, we instantiate a micro VM on Amazon’s Elastic Compute
Cloud (EC2) running Ubuntu 12.04 in all eight regions (May 2013). We install
lighttpd HTTP daemon and serve static, 1 kB files. We modify the firewall on
each VM to allow all traffic. Each VM is given a public IP address. We probe
this IP address directly. We expect both ICMP and HTTP probes to reach our
VM at the kernel and application-level.

Storage: We test storage on three providers: Amazon Simple Storage Service
(S3), Microsoft Azure, and Google Cloud Storage. Each provider exports an



122 Z. Hu et al.

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

0.01

0.1

 0.005  0.01  0.015  0.02  0.025  0.03

0.99999

0.9999

0.999

0.99

0.9

P
r(

fa
ls

e
 o

u
ta

g
e

 b
y
 p

k
t 

lo
s
s
|k

 p
ro

b
e

s
)

c
o

rr
e

s
p

o
n

d
in

g
 n

in
e

s
 o

f 
a

v
a

ila
b

ili
ty

Pr (packet loss)

k=1

k=2

k=3

k=4

k=5

Fig. 1. Probability of false positive caused by random packet loss

HTTP-based storage abstraction. We store 1 kB files on all available regions in
each provider.

For ICMP probes to storage, we ping the hostname in the URL of the stored
object. We expect that this probe contacts only the front-end for the service.
HTTP probes retrieve data from the storage back-end. Providers do not, in
general, provide details about their back-end storage architecture, and we expect
data to be replicated in each datacenter and often across datacenters. HTTP,
however, is an end-to-end test for storage.

2.4 Sources: Vantage Points

We probe each of our targets from vantage points in PlanetLab [5], using 23
starting 2013-03-11 and 54 starting 2013-06-18. We limit the number of VPs
to reduce cloud costs, and select them from universities around the world. We
expect PlanetLab nodes to be well connected, allowing us to focus on cloud avail-
ability. We follow best practices in taking measurements from PlanetLab [24].

3 Evaluating the Need for Retries

A range of possible root causes can explain an outage (Section 2.1). To under-
stand what measurement says about the cloud, we must first rule out mundane
causes like packet loss.

While packet loss is rare, cloud outages are much rarer, so random packet loss
will dominate careless observations. We next show that ICMP requires at least
5 retries, and even HTTP benefits from application-level retries in addition to
kernel-level TCP retransmissions.

3.1 A Simple Analytic Model

Packet loss in the network can be correlated (burst losses due to congestion,
filtering) and random (queue overflow over medium timescales). We limit distor-
tion from congestive loss by spacing probes 2 s apart, avoiding most short-term



The Need for End-to-End Evaluation of Cloud Availability 123

Pr(first try fails)
Target ICMP HTTP

Amazon/VM .00585 .00232

Amazon/storage .00574 .00435
Google/storage .00631 .00217

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  2  3  4  5  6  7  8  9  10

P
r(

la
s
t 

tr
y
 f

a
ils

 |
a

ll 
p

re
v
io

u
s
 o

n
e

s
 f

a
il)

number of tries

ICMP HTTP

Amazon/storage

Amazon/VM

Google/storage

Fig. 2. Comparing loss and reties for each target and method. Left: table of probability
first try fails. Right: conditional probability kth retry fails, given failure of prior tries.
Dataset: VMs (2013-06-18+17), storage (2013-06-18+75).

outages [22,9]. Our probe rate (a few packets per second) is low enough to avoid
rate limiting, although, in Section 4.1, we see some cases where all packets are
dropped.

Having ruled out most sources of correlated loss, we next evaluate random loss.
We first establish an analytic model of packet loss, assuming a fixed loss rate
that affects packets independently. We then compare that to our experimental
observations.

The curved lines in Figure 1 evaluate the probability of falsely inferring an
outage caused by random packet loss, as a function of packet loss rate (the x-
axis). We assume k tries for each probe and declare the service down when all
tries fail. For packet loss p, we model loss of the request or response:

Pr (outage | k probes) = (p+ (1− p)p)k (1)

Without retries (k = 1), the false outage rate approximates the loss rate. Since
wide area packet loss can be around 1%, measurement without retries will show
false outages and skew estimates of cloud reliability. Fortunately, if we assume
packet loss is independent, then a few retries drive the false outage rate well
below typical cloud outage rates. For example, with three tries and 1% packet
loss, probe loss will be around 10−5, or five nines of availability. If we assume
network loss rates peak at a few percent, 4–6 tries may be appropriate. Our data
starting 2013-06-18 uses 9 retries to rule out random loss.

3.2 ICMP Measurements

We next compare our model against experimental results for ICMP. The dotted
lines in Figure 2 show the probability the kth try fails if all previous k − 1 tries
failed. We evaluate this by considering the first k tries from each observation.

With ICMP, we see that retries help. An initial loss is followed by a second
loss only 35-45% of the time, so 55–65% of the time the second try succeeds,
suggesting that the first try was random loss. This effect diminishes with more
retries, generally plateauing around 5 or 6 retries. When we compare long-term



124 Z. Hu et al.

observed loss rates to short-term ICMP retries, we see that losses are generally
more correlated than predicted by our analytic model. That is, it usually takes
more retries to recover from an initial loss than are predicted, but, with enough
retries, we often recover from an initial loss.

3.3 Retries and HTTP Probes

For HTTP-based probing, we retry at the application level, but the kernel also
does retries for the TCP connection. Our HTTP client (curl) has a 10 s appli-
cation timeout. The OS (Linux-2.6.32) does 3 SYN transmissions in this time,
providing 2 network-level retries “for free” for each application retry.

We see this benefit in the Figure 2’s left table, where single-try HTTP losses
rates are much lower than ICMP. Kernel-level retries help even with application
retries, as seen in Figure 2’s right graph where the basic HTTP failure rate for
Amazon/storage and Google/storage is half that of ICMP. However, even HTTP
benefits from multiple application-level retries before the conditional benefit of
additional tries plateaus. We recommend 6 application-level tries even for HTTP
probes.

Application-level probes show even higher levels of conditional failure than
network-level, with 50% of second HTTP attempts failing on average, presum-
ably because of the additional kernel-level retries. However, this result means
that 50% of second attempts succeed—application-level failures are sometimes
transient. We thus recommend retries even for end-to-end tests.

4 Comparing Network and Application-Level Probing

We next compare network- and application-level probes to judge cloud availabil-
ity. We use our control sites to rule out problems near vantage points, and we
use sufficient retries to avoid effects of random packet loss and transient network
issue in the middle, leaving outages at or near the cloud as the primary prob-
lem. Cloud services are made up of Internet-facing front-ends with sophisticated
back-end clusters. In some cases, ICMP may be handled by the front-ends, while
HTTP’s end-to-end tests reach into the back-end. Our goal is to compare this
difference. While the protocols almost always agree, there are many small dis-
agreements. We next show several causes of disagreement through representative
examples.

4.1 Comparing ICMP and HTTP Probing

We first compare ICMP and HTTP probing, showing representative examples
of several causes of disagreement. These results show the need for end-to-end
measurement with application-level protocols.

Method Agreement: Figure 3 shows the percent of disagreement between
ICMP and HTTP over 17 days. Both approaches give the same result in the
vast majority of measurement rounds. They disagree in at most 3% of rounds



The Need for End-to-End Evaluation of Cloud Availability 125

 0

 0.5

 1

 1.5

 2

 2.5

 3

June 18

June 19

June 20

June 21

June 22

June 23

June 24

June 25

June 26

June 27

June 28

June 29

June 30

July 01

July 02

July 03

July 04

%
 o

f 
ro

u
n

d
s
 a

g
g

re
g

a
te

d
 o

v
e

r 
a

ll 
V

P
s

Amazon EC2 (N. California)

      

      

H & I

H & I

Fig. 3. Quantifying disagreements between HTTP and ICMP probes. This includes
either HTTP success and ICMP failure (red striped bar) or HTTP failure and ICMP
success (blue bar). Dataset: 2013-06-18+17.

Univ of Sao Paulo, BR

Monash Univ, AU

Moscow State Univ, RU

Moscow EE Institute, RU

Univ of Basel, CH

Tampere Univ, FI

Tech Univ of Koszalin, PL

Univ of Waterloo, CA

Northwestern Univ, US

Indiana Univ, US

Univ of Michigan, US

05:00

2013-04-15

09:00 13:00 17:00 21:00 00:00 PDT

2013-04-16

provider outage

HTTP: 3 fails

ICMP: 3 fails

HTTP: 2 fails

ICMP: 2 fails

HTTP: 1 fail

ICMP: 1 fail

HTTP: success

ICMP: success

Fig. 4. Strip chart: Amazon VM (Singapore). Dataset: 2013-03-11+33.

in a given day, and, on most days, they disagree in 0.5% or less of the rounds.
The high agreement is because the monitored service is almost always up, and
both methods detect it as such. On three days (June 23, 25, 29), we see complete
agreement (no outages). We also see that both methods report outages on some
days (for example, June 18 and 24).

To illustrate the details of an outage, Figure 4 shows a strip chart for a
provider-confirmed outage at one Amazon EC2 site [3]; ICMP and HTTP report
the outage consistently. In this chart, each column of data shows one round of
measurements (with 24-hour boundaries as vertical black lines), and each pair of
rows shows ICMP and HTTP observations from one VP (the blue top is ICMP,
and the lower red is HTTP). Light colors represent successful probes, medium
colors represent failures of some tries (but eventual success). Dark blue diamonds
show ICMP-determined outages (all ICMP tries fail); dark red squares show an
HTTP outage (all HTTP tries fail). White areas show cases where one of the
control nodes failed to respond to either ICMP or HTTP, or where we are unable
to upload data to our collection site.

As a second example, Figure 5 shows a case where both ICMP and HTTP
report intermittent failures from one VP. We see intermittent problems from
Koszalin University of Technology in Poland to Amazon S3’s Singapore site. In
fact, we observe intermittent failures between that source and destination pair
for the entire duration of our measurement. This case shows that sometimes
network problems between the VP and cloud (such as routing problems) persist
for some time. Both ICMP and HTTP report outages for this VP.



126 Z. Hu et al.

Moscow State Univ, RU
Moscow EE Institute, RU
Moscow EE Institute, RU
Zhongshan Univ, CN
Univ of Basel, CH
Univ of Neuchatel, CH
ETHZ, CH
Indiana Univ, US
Northwestern Univ, US
Tech Univ of Koszalin, PL
Princeton Univ, US

00:00 PDT

2013-06-23

06:00 12:00 18:00 00:00 PDT

2013-06-24

one VP at Tech Univ of Koszalin, PL
shows intermittent failures

two VPs observe a HTTP-only outage

HTTP: 9 fails

ICMP: 9 fails

HTTP: 0<fails<9

ICMP: 0<fails<9

HTTP: success

ICMP: success

Fig. 5. Strip chart: Amazon S3 (Singapore). Dataset: 2013-06-18+75.

Moscow State Univ, RU
Tsinghua Univ, CN
USTC, CN
Zhongshan Univ, CN
Univ of Basel, CH
Univ of Neuchatel, CH
ETHZ, CH
Ege Univ, TR
Northwestern Univ, US
Tech Univ of Koszalin, PL
Princeton Univ, US

00:00 PDT

2013-07-01

06:00 12:00 18:00 00:00 PDT

2013-07-02

three VPs observe an ICMP-only outage

HTTP: 9 fails

ICMP: 9 fails

HTTP: 0<fails<9

ICMP: 0<fails<9

HTTP: success

ICMP: success

Fig. 6. Strip chart: Amazon VM (N. California). Dataset: 2013-06-18+17.

Method Disagreement: However, HTTP and ICMP probes can also show
disagreement. We see disagreement in 0.01% to 3% of observations, as shown by
the stacked bars in Figure 3. The source of the disagreement is usually ICMP
failures with HTTP success (the bottom, red striped bars), but sometimes ICMP
succeeds and HTTP fails (the much smaller blue bars on top).

As a first example where ICMP fails but HTTP succeeds, Figure 6 shows a
case where three Swiss universities could not reach Amazon/VM in California.
We see with tcpdump that filtering happens on the return path. Since the three
VPs reporting this ICMP-only outage are at different sites in the same country,
we hypothesize that reverse path changes–possibly to a path that filtered ICMP–
caused the outage. In this case, despite ICMP reporting multiple outages, we can
still fetch the data in the cloud, meaning that ICMP over-counts outages.

We also see the reverse case, where HTTP fails but ICMP succeeds, overes-
timating cloud availability. Figures 5 and 7 show two VPs in Russia observing
an HTTP-only outage to both Amazon S3 and EC2 in Singapore. We observe
route changes before and after the outage, and we confirm our probes (here TCP
SYNs) reach the VM and replies are sent but do not reach the VP. We cannot
confirm the root cause for this outage, although we guess there may be problems
in a load-balancer at the cloud’s edge.

4.2 Differences between Probing VMs and Storage

In addition to comparing network and application probing, we also probe differ-
ent targets: virtual machines and storage. The target affects what the probing



The Need for End-to-End Evaluation of Cloud Availability 127

Moscow State Univ, RU
Moscow EE Institute, RU
Moscow EE Institute, RU
Zhongshan Univ, CN
Univ of Basel, CH
Univ of Neuchatel, CH
ETHZ, CH
Indiana Univ, US
Northwestern Univ, US
Tech Univ of Koszalin, PL
Princeton Univ, US

00:00 PDT

2013-06-23

06:00 12:00 18:00 00:00 PDT

2013-06-24

two VPs observe a HTTP-only outage

HTTP: 9 fails

ICMP: 9 fails

HTTP: 0<fails<9

ICMP: 0<fails<9

HTTP: success

ICMP: success

Fig. 7. Strip chart: Amazon VM (Singapore). Dataset: 2013-06-18+17.

Univ of Sao Paulo, BR
Monash Univ, AU
Moscow State Univ, RU
Moscow EE Institute, RU
Univ of Basel, CH
Tampere Univ, FI
Tech Univ of Koszalin, PL
Univ of Waterloo, CA
Northwestern Univ, US
Indiana Univ, US
Univ of Michigan, US

13:00

2013-04-16

17:00 21:00 00:00 PDT

2013-04-17

04:00 08:00 12:00

back-end outage causing

HTTP-only failures to

many VPs

HTTP: 3 fails

ICMP: 3 fails

HTTP: 2 fails

ICMP: 2 fails

HTTP: 1 fail

ICMP: 1 fail

HTTP: success

ICMP: success

Fig. 8. Strip chart: Amazon S3 (Japan). Dataset: 2013-03-11+33.

mechanism sees. We next show that end-to-end measurements are essential to
observe outages in cloud storage and other systems with complex back-ends.

Figure 8 shows an outage for Amazon S3 in Tokyo on April 16. Only HTTP
measurements detect this outage; ICMP reports that all is well. This outage is
confirmed by Amazon outage report [3].

To understand this discrepancy, we must consider what exactly ICMP and
HTTP measure when observing a storage system. For storage systems, a user
accesses a front-end system with a URL, but data retrieval exercises the back-end
storage system. ICMP measures only to this front-end, while HTTP provides an
end-to-end test, verifying that the storage system is functioning (at least for one
stored object). We can therefore infer this outage was inside Amazon’s storage
system and not in the network from the VP to the datacenter. We conclude
that ICMP will overestimate the availability of cloud storage, supporting our
recommendation for end-to-end outage testing for higher-level cloud services.

To understand the root cause of these storage outages, we next use errors
reported by our storage retrieval tool (curl). We look at the error returned from
each failed attempt of storage retrieval from the 2013-06-18+75 storage dataset.
We see that most of these (87%) are due to DNS lookup failure, with the second
largest cause (10%) due to TCP connection setup failure. In contrast, for VMs
(dataset: 2013-06-18+17), almost all failures (99%) are caused by TCP connec-
tion setup failures. All of the storage systems use DNS to map a request into
the storage back-end systems. These DNS failures can represent either random
loss of the request in the network, or failure of the storage system’s DNS mech-
anism to identify a storage server. Since applications that use cloud storage will
follow a similar process as curl which is used in our measurements, these types
of outages reflect intermittent problems that should be reported.



128 Z. Hu et al.

Based on our measurement results, we show that ICMP probes can be inaccu-
rate at estimating cloud availability. ICMP is not as robust as application-level
measurements such as HTTP. ICMP’s failure to solicit a response does not mean
that the service is down, so ICMP can underestimate availability. At the same
time, ICMP can also overestimate availability as it measures reachability of the
cloud’s edge, missing failures in the cloud’s back-end. We therefore suggest us-
ing application-level probes such as HTTP rather than network-level probes to
evaluate cloud reliability; the examples in this section present the motivation for
a longer-term study.

5 Related Work

Our work builds upon previous efforts in two broad areas: characterizing the
Internet’s availability and measurement of cloud services.

Internet Availability: To date, a large number of measurement studies have
probed the Internet from a distributed set of vantage points in order to char-
acterize the Internet’s availability. While some studies rely on passive measure-
ments of Internet traffic to detect the onset of outages (for example, [27,4]),
such monitoring is possible only by instrumenting a popular service. Therefore,
most measurement studies of the Internet’s availability have instead relied on
continuous probing of a large number of end-hosts. These studies have focused
on identifying outages [14,23], network failures [6,28], characterizing the typical
duration of outages [14,10,15], and pinpointing their root causes [8,13]. Some
studies have paid particular attention to measurement methodology of paths [7]
and of the edge [23]. However, all of these studies have in common a reliance
on ICMP-based probes. While ICMP may be necessary for Internet-wide stud-
ies, our results show that application-level measurements should be used when
possible, and they are essential to understanding availability of cloud services,
where ICMP-based probing can both over- and under-predict outages.

Measurements of Cloud Services: Some recent work has begun on measure
and characterize the performance offered by cloud services. CloudCmp mea-
sures the compute, storage, and network performance offered by various cloud
services with the goal of enabling application providers to choose from these
services [16]. Others have performed measurements of cloud services in order to
determine when it is beneficial for applications to be hosted in the cloud [11,21].
To the best of our knowledge, we are the first to investigate the methodology
of active monitoring of the availability of cloud services. Motoyama et al. pur-
sue a complementary approach of inferring outages from indirect information in
Twitter posts [20]; further investigation is necessary to correlate outages in web
services to outages of the underlying cloud services on which they are deployed.



The Need for End-to-End Evaluation of Cloud Availability 129

6 Conclusion

This paper compared network and application level measurements sensitive of
cloud service availability. We compare ICMP and HTTP over two types of
services (VMs and storage) and three providers. We find that ICMP can both
over- and under-report outages, suggesting that it is important to use end-to-
end measures (such as HTTP) to best characterize cloud service availability. Our
study raises concerns about the use of ICMP for monitoring availability and sug-
gests that earlier results should be revisited. We are using these approaches as
part of a long-term study of cloud availability. Part of our ongoing work is to
understand cloud availability in order to deploy highly-available systems at low
cost across various cloud providers, just as existing work uses multiple providers
to provide low latency at low cost [26].

References

1. Outages mailing list. Mailing List, http://www.outages.org
2. Abu-Libdeh, H., Princehouse, L., Weatherspoon, H.: RACS: A case for cloud stor-

age diversity. In: SoCC (2010)
3. Amazon. AWS Service Health Dashboard, http://status.aws.amazon.com/
4. Choffnes, D.R., Bustamante, F.E., Ge, Z.: Crowdsourcing service-level network

event monitoring. In: SIGCOMM (2010)
5. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bow-

man, M.: PlanetLab: An overlay testbed for broad-coverage services. In: SIG-
COMM CCR (2003)

6. Cunha, I., Teixeira, R., Feamster, N., Diot, C.: Measurement methods for fast and
accurate blackhole identification with binary tomography. In: IMC (2009)

7. Cunha, I., Teixeira, R., Veitch, D., Diot, C.: Predicting and tracking internet path
changes. In: SIGCOMM (2011)

8. Dhamdhere, A., Teixeira, R., Dovrolis, C., Diot, C.: Netdiagnoser: troubleshooting
network unreachabilities using end-to-end probes and routing data. In: CoNEXT
(2007)

9. Flach, T., Dukkipati, N., Terzis, A., Raghavan, B., Cardwell, N., Cheng, Y., Jain,
A., Hao, S., Katz-Bassett, E., Govindan, R.: Reducing web latency: the virtue of
gentle aggression. In: SIGCOMM (2013)

10. Gummadi, K.P., Madhyastha, H.V., Gribble, S.D., Levy, H.M., Wetherall, D.: Im-
proving the reliability of Internet paths with one-hop source routing. In: OSDI
(2004)

11. Hajjat, M., Sun, X., Sung, Y.-W.E., Maltz, D., Rao, S., Sripanidkulchai, K., Tawar-
malani, M.: Cloudward bound: planning for beneficial migration of enterprise ap-
plications to the cloud. In: SIGCOMM (2010)

12. Heidemann, J., Pradkin, Y., Govindan, R., Papadopoulos, C., Bartlett, G., Ban-
nister, J.: Census and survey of the visible Internet. In: IMC (2008)

13. Javed, U., Cunha, I., Choffnes, D.R., Katz-Bassett, E., Krishnamurthy, A., An-
derson, T.: PoiRoot: Investigating the root cause of interdomain path changes. In:
SIGCOMM (2013)

14. Katz-Bassett, E., Madhyastha, H.V., John, J.P., Krishnamurthy, A., Wetherall, D.,
Anderson, T.: Studying black holes in the Internet with Hubble. In: NSDI (2008)

http://www.outages.org
http://status.aws.amazon.com/


130 Z. Hu et al.

15. Katz-Bassett, E., Scott, C., Choffnes, D.R., Cunha, I., Valancius, V., Feamster,
N., Madhyastha, H.V., Anderson, T., Krishnamurthy, A.: LIFEGUARD: Practical
repair of persistent route failures. In: SIGCOMM (2012)

16. Li, A., Yang, X., Kandula, S., Zhang, M.: Cloudcmp: comparing public cloud
providers. In: IMC (2010)

17. Lohr, S.: Amazon’s trouble raises cloud computing doubts (April 2011),
http://www.nytimes.com/2011/04/23/technology/23cloud.html

18. Luckie, M., Hyun, Y., Huffaker, B.: Traceroute probe method and forward IP path
inference. In: IMC (2008)

19. Madhyastha, H.V., Isdal, T., Piatek, M., Dixon, C., Anderson, T., Krishnamurthy,
A., Venkataramani, A.: iPlane: An information plane for distributed services. In:
OSDI (2006)

20. Motoyama, M., Meeder, B., Levchenko, K., Voelker, G.M., Savage, S.: Measuring
online service availability using Twitter. In: WOSN (2010)

21. Palankar, M.R., Iamnitchi, A., Ripeanu, M., Garfinkel, S.: Amazon S3 for science
grids: a viable solution? In: DADC (2008)

22. Paxson, V.: End-to-end internet packet dynamics. In: SIGCOMM (1997)
23. Quan, L., Heidemann, J., Pradkin, Y.: Trinocular: understanding internet reliabil-

ity through adaptive probing. In: SIGCOMM (2013)
24. Spring, N., Peterson, L., Bavier, A., Pai, V.: Using PlanetLab for network research:

Myths, realities, and best practices. SIGOPS Oper. Syst. Rev. (2006)
25. Wood, T., Cecchet, E., Ramakrishnan, K.K., Shenoy, P., van der Merwe, J.,

Venkataramani, A.: Disaster recovery as a cloud service: economic benefits & de-
ployment challenges. In: HotCloud (2010)

26. Wu, Z., Butkiewicz, M., Perkins, D., Katz-Bassett, E., Madhyastha, H.V.:
Spanstore: Cost-effective geo-replicated storage spanning multiple cloud services.
In: SOSP 2013 (2013)

27. Zhang, M., Zhang, C., Pai, V., Peterson, L., Wang, R.: PlanetSeer: Internet path
failure monitoring and characterization in wide-area services. In: OSDI (2004)

28. Zhang, Z., Zhang, Y., Hu, Y.C., Mao, Z.M., Bush, R.: iSPY: Detecting IP prefix
hijacking on my own. In: SIGCOMM (2008)

http://www.nytimes.com/2011/04/23/technology/23cloud.html


Exposing Inconsistent Web Search Results with Bobble

Xinyu Xing1, Wei Meng1, Dan Doozan1, Nick Feamster1,
Wenke Lee1, and Alex C. Snoeren2

1 Georgia Institute of Technology
2 University of California, San Diego

{xxing8,wei,ddoozan3,feamster,wenke}@gatech.edu,
snoeren@cs.ucsd.edu

Abstract. Given their critical role as gateways to Web content, the search results
a Web search engine provides to its users have an out-sized impact on the way
each user views the Web. Previous studies have shown that popular Web search
engines like Google employ sophisticated personalization engines that can oc-
casionally provide dramatically inconsistent views of the Web to different users.
Unfortunately, even if users are aware of this potential, it is not straightforward
for them to determine the extent to which a particular set of search results differs
from those returned to other users, nor the factors that contribute to this person-
alization.

We present the design and implementation of Bobble, a Web browser exten-
sion that contemporaneously executes a user’s Google search query from a vari-
ety of different world-wide vantage points under a range of different conditions,
alerting the user to the extent of inconsistency present in the set of search results
returned to them by Google. Using more than 75,000 real search queries issued
by over 170 users during a nine-month period, we explore the frequency and
nature of inconsistencies that arise in Google search queries. In contrast to pre-
viously published results, we find that 98% of all Google search results display
some inconsistency, with a user’s geographic location being the dominant factor
influencing the nature of the inconsistency.

1 Introduction

Web search engines have emerged as the de facto gateway to the Internet, with the ma-
jor players like Google and Bing locked in a heated battle to attract users from around
the world. Personalization is a key tool for adding value to search results: Each search
engine tailors search results not only to the query term, but also based on the profile
of the user [1, 3]. Web search personalization aims to return the search results that are
most relevant to each user, based upon the user’s past search history, clicks, geographic
location, device type, and other features that may help identify the user’s preferences
and predispositions [3]. Ideally, personalization identifies results that closely match the
user’s preferences and intent, improving user satisfaction and ultimately increasing rev-
enue for the search engine.

In practice, Web search personalization may also hide certain results from users,
when personalized results preempt search results that would have otherwise been in-
cluded [7]. Because search personalization algorithms are effectively a “black box”,

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 131–140, 2014.
c© Springer International Publishing Switzerland 2014



132 X. Xing et al.

users have little to no information about the information that personalization algorithms
might prevent them from seeing. Moreover, personalization frequently occurs without
the user’s involvement—or even explicit agreement—so users may not even be aware
that their search results have been tailored according to their profile and preferences.
The goal of our work is to expose and characterize inconsistencies that result from
personalization. In particular, we seek to quantify the extent to which search personal-
ization algorithms return results that are inconsistent with those that would be returned
to other users, and expose any differences to the user—in real time.

We present Bobble, a Chrome Web browser extension that allows users to see how
the search results that Google returns to them differ from the results that are returned
to other users. Bobble captures a user’s search query and reissues it from a subset of
over 300 world-wide vantage points, including both dedicated PlanetLab measurement
nodes and the hosts of other consenting Bobble users. In contrast to research tools that
have been developed to measure search personalization offline [5], we intend users to
use Bobble while they browse the Web, providing them critical insight into how their
online experience is being potentially distorted by personalization.

To understand the nature of the inconsistencies uncovered by Bobble, we study more
than 75,000 real search queries issued by hundreds of Bobble users over nine months.
We quantify the extent to which personalization affects search results and determine
how users’ Google search results vary based on factors ranging from their geographic
locations to their past search histories. Our study study focuses exclusively on Google
search, one of the more widely used search engines, but we expect that similar phenom-
ena exist for other popular search engines. We find that 98% of Google Web searches
return at least one set of inconsistent search results—typically from a vantage point in a
different geographic region than the user, even though Bobble performs these searches
without exposing any information that links to the searchers’ Google profiles.

In sum, our study provides the first large-scale glimpse into the nature of inconsis-
tent results that arise from search personalization and opens many avenues for future
research. We quantify on how geography and search history may influence search re-
sults, but others have noted that many other factors (e.g., device type, time of day) may
also affect the results that a user sees for a given search term [5]. Bobble has been
deployed and publicly available for 21 months; users and researchers can extend it to
measure how other factors might induce inconsistencies in search results.

2 Related Work

Researchers have previously studied means to personalize Web search results. Dou et al.
performed a large-scale evaluation and analysis of five personalized search algorithms
using a twelve-day MSN query log [2]. They find that profile-based personalization
algorithms are sometimes unstable. Teevan et al. conduct a user study to investigate
the value of personalized Web search [11]. In contrast, we are less interested in the
distinction between different personalization methods, and focus instead on the effects
of a single search personalization algorithm. We aim to quantify the effects of different
personalization factors on search inconsistency.

In a contemporaneous study, Hannak et al. measure the personalization of Google
search. The bulk of their effort focuses on understanding the features leading to person-



Exposing Inconsistent Web Search Results with Bobble 133

alization, but they also conduct a limited study of real-world personalization by hiring
200 US-based workers to search a fixed set of 120 search terms using their own Google
accounts [5]. They find that any given slot in the first page of search results has less
than a 12% chance of being personalized. Directly comparing their result to ours is
challenging, because we do not consider reordering. We instead focus on the set of re-
sults returned, not their order. Moreover, our study considers a larger set of real queries
from a global set of locations, conducted over a longer time period. We find that almost
all results are subject to some form of personalization. We do, however, replicate their
method in Section 6 and find that personalization is more than twice as likely than their
work suggests.

Personalization is not limited to Web search. Previous research has built distributed
systems to understand the effect of information factors in a number of online services.
For example, Mikians et al. develop a distributed system to demonstrate the existence of
price discrimination on e-commerce sites and discover the effects of information factors
on price discrimination [6]. They find the factors that contribute to price discrimina-
tion include the customer’s geographic location, personal information, and origin URL.
Guha et al. explore several approaches to determine how advertising networks adjust
the advertisements that they display based on users’ personal information [4].

3 Bobble

To identify inconsistencies in Google search results that result from personalization
based upon geography or personal history, we design, implement and deploy Bobble,
a distributed system that monitors and displays inconsistent search results that Google
returns for user search queries in real time.

3.1 Design and Implementation

Bobble has three components: a Chrome browser extension, hundreds of Chrome
browser agents, and a centralized data collection server. Our Chrome browser exten-
sion1 runs on a Google user’s Chrome browser, and passively collects the Google user’s
searching activities including the Google user’s search terms and corresponding search
results. Chrome browser agents—running both inside users’ Chrome browser exten-
sions and in Chrome browser emulators that we install on PlanetLab nodes across the
Internet—perform Google searches without signing in to a Google account or revealing
a trackable browser cookie to Google. The central Bobble server coordinates the agents
and archives users’ search activities, their IP addresses, and the search results from the
Chrome browser agents.

Bobble follows four steps to reveal inconsistencies in search results. When a user
issues a Google search query (Step 1), Bobble browser extension delivers the search
terms to the central Bobble server (Step 2), where they are placed in a global work
queue. To protect user privacy, all subjects’ Google identities are hashed by a one-
way SHA-1 hash function. Asynchronously, Chrome browser agents periodically poll

1 The Bobble Chrome browser extension is available from the Google Chrome store and our
project website http://bobble.gtisc.gatech.edu/.

http://bobble.gtisc.gatech.edu/


134 X. Xing et al.

Table 1. The number of terms that generate inconsistent sets of search results when searching
1,000 distinct terms from Chrome browsers / agent on different OSes

with same browser with Chrome agent p-value
Windows 11 / 1,000 16 / 1,000 0.1725
Linux 23 / 1,000 21 / 1,000 0.7517
Mac 15 / 1,000 15 / 1,000 1.0

the Bobble server for pending search terms (Step 3) and reissue them locally as search
queries to Google without signing into a Google account or revealing Google a trackable
browser cookie (Step 4). Each agent pushes the results it receives from Google to the
Bobble server.

To establish a baseline for comparing inconsistencies in search results, we would
ideally like to also reissue the user’s query locally from a separate browser session
that is not signed into Google and does not pass session cookies to Google. We call
these anonymous queries “organic”, as they are as free as possible from user-specific
influences (in contrast to queries that are issued when a user is logged in or passing
browser cookies to Google). Unfortunately, collecting true organic results is challeng-
ing due to the technical and usability obstacles surrounding logging the user out in
order to issue such a query from an extension running within the same Web browser. In-
stead, Bobble collects organic search results by issuing a duplicate query from a nearby
Chrome browser agent. (Section 3.2 presents a detailed discussion of the effects of using
a nearby agent to stand-in for the user’s browser.)

3.2 Validation

To evaluate whether Bobble accurately reports results that regular users would actually
receive, we first validate that Bobble’s Chrome browser agent correctly emulates major
version releases of Chrome browsers—specifically, that the results returned to a Bobble
agent reflect those that would be returned to an actual query issued by a user in her Web
browser. Second, we measure the effects of collecting organic search results indirectly
by issuing queries from nearby agents as opposed to inside the user’s browser.

Do Bobble Agents Emulate Browser Behavior? We begin by ensuring that the
Google search results collected using the Chrome browser agent do not differ statis-
tically from the results obtained when the query is issued from the Google home page
viewed with the Chrome browser itself. We randomly select 1,000 unique search terms
from the daily top-20 Google trending search terms between August 2011 and Decem-
ber 2011 and search each of these terms three times from machines running Linux,
Windows, and Mac operating systems. On each machine, we run a Chrome browser
agent and two Google Chrome browsers with the same release version. We use the Se-
lenium Chrome driver [9] to automate the two Chrome browsers and one browser agent
to perform the same Google search simultaneously.



Exposing Inconsistent Web Search Results with Bobble 135

Fig. 1. The count variations of inconsistent sets of search results vs. the distance variations be-
tween a pair of PlanetLab nodes

One might expect that simultaneously issued queries from identical Web browsers
would return identical sets of results, since the queries do not involve any search his-
tory and are issued from the same location at essentially the same time. While this
expectation generally rings true, it is not always the case. Table 1 shows the number of
terms that generate inconsistent search results when comparing the first set of results
returned to a Web browser to those returned to both the second instance of the browser
and the Bobble agent; neither are non-zero. To test if the proportion of inconsistent re-
sults generated by our browser agent is statistically different from that of the browser,
we conduct a two-sample proportion test. Table 1 shows that the proportion tests for the
three operating systems are not statistically significant at the 0.05 level (i.e., all p-values
are greater than .05). In other words, we observe no significant difference observed in
the proportion of inconsistent results generated by the Bobble browser agents and a real
Chrome browser. We thus conclude that Bobble agents are reasonably accurate substi-
tutes for real users executing search queries from within browser.

Are PlanetLab queries similar to real users? Bobble does not collect organic search
results from within a user’s own browser since this would require issuing duplicate
queries from the user’s browser and forcibly signing out the user and clearing the user’s
cookies. Instead, Bobble issues queries from an agent running on the closest Planet-
Lab node to obtain an approximation of what the Google user’s organic search results
would be. To identify how well this approximation holds with distance, we conduct the
following experiment from 308 PlanetLab [8] nodes on which Bobble was deployed.

Using the same 1,000 search terms as before, Bobble browser agents search every
term twice, back-to-back. Across the 308 nodes, 8–13 out of 1,000 terms generate in-
consistent Google results with a 95% statistical confidence level2. This inconsistency
may be due to caching, a sudden DNS change, updates to Google’s indicies with their
data center, or a myriad other possibilities. Regardless, we view this as a “noise floor”
against which to judge inconsistency.

We now consider the number of terms that generate inconsistent search results when
searches are performed on different PlanetLab nodes in the same country at varying

2 When constructing confidence intervals, we consider searches from distinct browser agents to
be independent trials from the same underlying distribution.



136 X. Xing et al.

geographic distances from each other. Figure 1 plots the average number of terms that
result in inconsistent search results with a 95% confidence interval as a function of the
distance between the two agents (according to Maxmind). The pink band represents
the inconsistency observed from queries issued from the same node. Although there is
no clear relationship between distance and consistency, only results returned to nodes
within 50 km of another node bear the same statistical level of resemblance as back-
to-back queries issued by the same node. Hence, for the purposes of our study, we
only consider queries where Bobble was able to collect organic search results from
a PlanetLab node located within 50 km of the issuing agent. We selected the 50-km
threshold because of the geographic distribution of PlanetLab nodes.

4 Data

On January 17, 2012, we released Bobble on both our project website and the Google
Chrome store. As of October 25, 2012, we had collected 100,451 search queries. For
each query, we record the corresponding Google search results returned to both the
browser on which a Google user installs our Bobble Chrome extension and the Chrome
browser agents that reissued the query. We obtain organic search results browser agents
running on PlanetLab nodes no further than 50 kilometers from the user issuing the
query. Using this criterion, we obtained organic search results for 76,307 of the search
queries (75.96%).

To use 76,307 search queries for our analysis, we divided our data set into two cate-
gories: search queries issued by Google users while signed in to their Google accounts
(signed-in Google users) and search queries issued by Google users while signed out
(i.e.., anonymous Google users). There are 66,138 search queries (86.67%) issued by
174 distinct signed-in users, and 10,169 search queries (13.33%) issued by anonymous
Google users.

5 Location-Based Inconsistency

We now analyze how geographic location affects search inconsistency. Search inconsis-
tency contributed by geographic locations is a joint consequence of both location-based
personalization and data diversity across different data centers. We analyze how geo-
graphic location contributes to search inconsistency that appears in different Google
searches (Section 5.1) and validate that the inconsistencies we observe are in fact due
to personalization, as opposed to inconsistencies across data centers (Section 5.2).

For each search query, we group the sets of search results from PlanetLab nodes
into sets, each of which contains a unique result set. We compare the number of search
results on the first page, as well as the rank, title and URL of each Google result. We use
a nearby PlanetLab node’s search results to represent the set of organic search results
for a Google user in that region. If there is more than one unique search result set for
a user’s search query, we consider the results to be inconsistent, and we also deem
geographic location to be a contributing factor to this inconsistency.



Exposing Inconsistent Web Search Results with Bobble 137

0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of unique search result sets

F
ra

c
ti
o
n
 o

f 
q
u
e
ri

e
s
 (

C
D

F
)

Fig. 2. CDF plot: the distribution of the
number of search queries

0 5 10 15 20 25 30 35

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of unique search result sets

F
ra

c
ti
o
n
 o

f 
q
u
e
ri

e
s
 (

C
D

F
)

Search google.com

Search same Google IP

Fig. 3. The distribution of the number of
search queries when sending queries to
google.com and a Google IP address, re-
spectively

5.1 Results

We find that 74,594 out of the 76,307 search queries (97.76%) generate at least one
inconsistent set of organic search results due to geographic location. Figure 2 shows
the fraction of search queries that generate different numbers of inconsistent sets of
search results. This result indicates that organic search results of most Google search
queries are tailored on the basis of the location where these searches are performed,
even though Google users neither sign into their accounts nor uncover their browser
cookies to Google personalized search services. In the following section, we further de-
sign a careful examination to explore whether the observed search inconsistency results
from location-based personalization rather than data diversity across different Google
data centers.

To quantify the effect of geographic location on search inconsistency, we classified
the inconsistent search results in three ways:

– At least one search result appears in the top-three search results of other PlanetLab
nodes but not at all in a Google user’s organic search result set. We find that 23,394
out of 76,307 search queries (30.66%) give rise to this situation.

– At least one search results appears in the top-10 (but not top-3) search results of
other PlanetLab nodes, but does not appear in a Google user’s organic search result
set; 65,939 out of 76,307 search queries (86.41%) fit this situation.

– At least one search result appears in the Google user’s organic search result set but
does not appear in search results of other PlanetLab nodes; 1,434 search queries
out of 76,307 search queries (1.88%) fit this situation.

Considering the fact that the top-10 Google search results receive about 90% of clicks
and the top-3 Google search results usually receive the most attention [10], the in-
consistency that arises due to location likely has significant implications for a user’s
experience.

5.2 Distributed Index Inconsistencies

To validate the observed search inconsistency is in fact derived from location-based
personalization rather than data diversity across different data centers, we conduct an



138 X. Xing et al.

experiment. In particular, we modify Bobble to attempt to isolate the inconsistency con-
tributed by location-based personalization from that contributed by inconsistencies in
the search index that may result from the index being stored across a globally distributed
set of servers. We call these inconsistencies distributed index inconsistencies.

Experiment Setup. We direct the Chrome browser agents running on PlanetLab to
send search queries not only to google.com but also to one particular Google IP ad-
dress (74.125.130.100). Sending search queries to the same IP address can increase the
likelihood that the search queries are processed by the same Google data center. Since
the Chrome browser agents must perform any Google search twice (one on a particu-
lar data center and the other on a data center geographically nearby), which increases
the risk of our Chrome browser agents being profiled as a search bot and challenged
by Google CAPTCHA system, we limit our experiment to a subset of submitted daily
search queries.

Quantifying Distributed Index Inconsistencies. We collect 23,362 search queries
from 149 Google users. We then compare the numbers of unique search result sets
for each collected search query when it is searched on google.com and the particu-
lar Google IP address. For all of the collected search queries, we observed that every
search query sent to google.com nearly always generates a larger number of unique
search result sets than it is sent to the particular Google IP address. Figure 3 shows that
searching on google.com produces more inconsistent result sets than searching on
the particular Google IP address does. This discrepancy likely results from the fact that
directing a search to a particular Google IP address significantly reduces the influence
of data diversity upon search inconsistency.

Another interesting observation from Figure 3 is that approximately 98% of search
queries have at least one set of inconsistent search results, even though the influence
of data diversity upon search inconsistency is nearly removed. Note Appendix indi-
cates that the inconsistency within a single data center is minimal. We therefore believe
that (1) these observed search inconsistency results from location-based personalization
when the search terms are searched on the particular Google IP address, (2) location-
based personalization contributes significantly to search inconsistency.

6 Profile-Based Inconsistency

We also explore how a user’s profile (i.e., search history) contributes to search inconsis-
tencies. In particular, we treat the search queries (and corresponding results) indepen-
dently based on the way that a user issues a search query. Table 2 summarizes our
results. For the case of queries corresponding to signed-in users, 42,454 of 66,138
search queries (64.19%) generate results that are inconsistent with respect to the organic
search results. For the anonymous users, 5,976 out of 10,169 search queries (58.77%)
yield inconsistent search results.

In contrast to Hannak et al.’s prior study [5], we find that the profile-based per-
sonalization results in significant inconsistencies. Here, we replicate Hannak et al.’s

google.com
google.com
google.com
google.com


Exposing Inconsistent Web Search Results with Bobble 139

1 2 3 4 5 6 7 8 9 10

Search result rank

C
h
a
n
g
e
d
 r

e
s
u
lt
s

0
.0

0
.1

0
.2

0
.3

0
.4

Fig. 4. % of search results changed at each
rank

Table 2. How location and user profile
contribute to search inconsistency. Loca-
tion has more effect on inconsistency than
search history does.

Signed-in data set Signed-out data set
Location Profile Location Profile
97.64% 64.19 % 97.80% 58.77%

experimental method. Figure 4 shows the percentage of search results changed at each
rank in our data set. The average is 28.6%, compared to 11.7% as reported by Hannak
et al. (see Figure 5 in previous work [5]). One possible reason for this discrepancy is the
difference in the measurement method. Previous work recruited differnt Google users
to search the same set of keywords, where the keywords were chosen such that they
were deemed to not be related to user profiles. In contrast, we perform our study in a
more natural setting because it measures the influence of the profile-based personaliza-
tion using each user’s own search queries. Because a user’s past queries are typically
relevant to personalization that may occur in the future, we observe that profile-based
personalization has more influence on Google users’ search results.

In addition to inconsistencies in the search result sets, we also discovered the follow-
ing inconsistencies:

– For signed-in users, 22,405 out of 66,138 search queries (33.88%) have at least one
search result that shows in the profile-based personalized search result set but not
in the organic search result set.

– For anonymous users, 3,148 out of 10,169 search queries (30.96%) have at least
one search result that shows in the profile-based personalized search result set but
not in the organic search result set.

– For signed-in users, 7,352 out of 66,138 search queries (11.12%) have at least one
search result that shows in the top 3 of the organic search result set but not in the
profiled-based personalized search result set.

– For anonymous users, 1,484 out of 10,169 search queries (14.59%) have at least
one search result that shows in the top 3 of organic search result but not in the
profiled-based personalized search result set.

Table 2 also shows that the Google search inconsistencies resulting from signed-in
users’ profiles are stronger than those resulting from signed-out users’ profiles. Finally,
we also observe location-based factors introduce more inconsistencies than profile-
based factors do.

7 Conclusion

We have designed, implemented, and deployed Bobble, a distributed system that tracks
and monitors the inconsistency of search results for user search queries. Using Bob-
ble, we collect user search terms and results and measure the search inconsistency that



140 X. Xing et al.

arise from both geographic location and search history. We find that the geographic
location contributes more to search inconsistency than user search history, and that ge-
ographic location causes about 98% of search queries generate some level of search
inconsistency. We have made Bobble publicly available to help users discover inconsis-
tent results resulting from their own queries.

Acknowledgments. This work was partially supported by NSF Awards CNS-1059350,
CNS-1162088, CNS-1255274 and a Google Focused Research Award.

References

1. More personalization on bing with adaptive search,
http://www.youtube.com/watch?v=CgrzhyHCnfw

2. Dou, Z., Song, R., Wen, J.-R.: A large-scale evaluation and analysis of personalized search
strategies. In: Proceedings of the 16th International Conference on World Wide Web. ACM
(2007)

3. Making search more relevant, http://www.google.com/goodtoknow/data-on-
google/more-relevant/

4. Guha, S., Cheng, B., Francis, P.: Challenges in measuring online advertising systems. In: Pro-
ceedings of the 10th ACM SIGCOMM Conference on Internet Measurement. ACM (2010)

5. Hannak, A., Sapieżyński, P., Kakhki, A.M., Krishnamurthy, B., Lazer, D., Mislove, A., Wil-
son, C.: Measuring Personalization of Web Search. In: Proceedings of the Twenty-Second
International World Wide Web Conference (WWW 2013), Rio de Janeiro, Brazil (May 2013)

6. Mikians, J., Gyarmati, L., Erramilli, V., Laoutaris, N.: Detecting price and search discrimina-
tion on the internet. In: Proceedings of the 11th ACM Workshop on Hot Topics in Networks.
ACM (2012)

7. Pariser, E.: The Filter Bubble: What the Internet is Hiding from You. Penguin Press (2011)
8. Planetlab: An open platform for developing, deploying, and accessing planetary-scale ser-

vices, http://planet-lab.org/
9. Selenium - web browser automation, http://seleniumhq.org/

10. What is a #1 google ranking worth? http://training.seobook.com/google-
ranking-value

11. Teevan, J., Dumais, S.T., Horvitz, E.: Beyond the commons: Investigating the value of per-
sonalizing web search. In: Proceedings of the Workshop on New Technologies for Personal-
ized Information Access (2005)

Appendix: Inconsistency within a Single Data Center

As a sanity check, we search the same set of 1,000 keywords in Section 3.2 by send-
ing the corresponding queries twice in succession, but this time explicitly to the same
Google IP address. We repeat the validation process sixteen times. Approximately 8
out of 1,000 (0.8%) keywords generate inconsistent search results on average, presum-
ably because the Google indices stored on different servers in the same data center are
different. We conclude that inconsistency within a single data center is minimal.

http://www.youtube.com/watch?v=CgrzhyHCnfw
http://www.google.com/goodtoknow/data-on-google/more-relevant/
http://www.google.com/goodtoknow/data-on-google/more-relevant/
http://planet-lab.org/
http://seleniumhq.org/
http://training.seobook.com/google-ranking-value
http://training.seobook.com/google-ranking-value


Modern Application Layer Transmission Patterns
from a Transport Perspective�

Matt Sargent1, Ethan Blanton3, and Mark Allman2

1 Case Western Reserve University, Cleveland, OH, USA
2 International Computer Science Institute, Berkeley, CA, USA

3 Independent Scientist, South Bend, IN, USA

Abstract. We aim to broadly study the ways that modern applications use the
underlying protocols and networks. Such an understanding is necessary when
designing and optimizing lower-layer protocols. Traditionally—as prior work
shows—applications have been well represented as bulk transfers, often preceded
by application-layer handshaking. Recent suggestions posit that application evo-
lution has eclipsed this simple model, and a typical pattern is now a series of
transactions over a single transport layer connection. In this initial study we ex-
amine application transmission patterns via packet traces from two networks to
better understand the ways that modern applications use TCP.

1 Introduction

In this study we seek to broadly understand the ways that modern applications use the
underlying protocols and networks. In particular, we are interested in the transmission
patterns of applications as viewed at the transport layer. While previous studies have
documented these issues to some degree, we are motivated by the following two points.

– We aim to ensure that our mental models of application-imposed behavior are up-
to-date. For instance, [14] suggests that while application behavior varies, when
simulating Internet traffic a reasonable rule of thumb is to use connection sizes
described by the log-normal distribution. In other words, a TCP connection is es-
tablished, a given number of bytes sent, and then the connection is torn down. This
behavior approximates traditional applications like HTTP/1.0 and FTP. However,
some in the community have stated their belief that applications’ use of TCP has
evolved to a more transaction-oriented nature wherein an application re-uses con-
nections for a number of small transactions (e.g., as part of a web application) [5].

– Second, good network engineering crucially depends on an empirical understand-
ing of the system. For instance, intrusion detection systems must understand the
difference between an abandoned connection and a quiescent application. Another
example is understanding the importance of the so-called “last window” problems
in TCP (e.g., [6]). The amount of justifiable additional complexity in TCP to deal
with such problems depends on whether there is one “last window” in a connection
(e.g., the bulk transfer case) or there are numerous “last windows” (e.g., at the end
of every transaction in a connection with many transactions).

� Work supported in part by NSF grants CNS-0831535 and CNS-1213157.

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 141–150, 2014.
c© Springer International Publishing Switzerland 2014



142 M. Sargent, E. Blanton, and M. Allman

Table 1. Data overview

CCZ ICSI
Time 2/11–3/12 9/12–3/13
Length (hrs) 98 1,176
Total Conns. 6.5M 56.9M
Conns. w/o Data 2.6M 27.9M
Port Filtered - 1.4M
Remaining 3.9M 27.6M

Table 2. Prevalence of N periods at various po-
sitions

Location CCZ ICSI
No N 31% 51.2%
Internal-only 14.4% 18.3%
Trailing-only 32.3% 20.7%
Internal & Trailing 22.3% 9.8%

As an initial check on these two points we examine packet traces from the Lawrence
Berkeley National Laboratory (LBNL) and the International Computer Science Institute
(ICSI). For each connection we compute the maximum duration between data segments.
Bulk transfers would tend to show sub-second gaps, while multiple distinct transactions
would likely show a larger maximum gap driven by application behavior. We find that
in both datasets, the proportion of connections with maximum gaps of more than one
second and the duration of the gaps increases over time. In the LBNL dataset roughly
55% of the connections have a maximum silent period of at most 275 msec in both 2003
and 2013. The distributions then diverge with 4% more connections containing a gap
of at least 1 second in 2013 than in 2003 and 12% more connections having a gap of at
least 10 seconds. Similarly, in the ICSI data, the distribution of the maximum gap per
connection is similar for 2007 and 2013 data up to 1 second—covering about two-thirds
of the connections. However, 13% more connections have a maximum gap of at least
10 seconds in 2013 than in 2007. While this analysis is simple and anecdotal it suggests
an in-depth exploration of modern application behavior is warranted.

We use packet-level traces from two vantage points—a small research laboratory and
a small residential network—as the basis of an initial study into application patterns
from TCP’s perspective. We contribute both an application agnostic methodology and
an initial understanding of modern TCP-based applications.

2 Related Work

There are two general classes of related work. First, there is a vast and long-standing
vein of work that characterizes and models specific application protocols. These studies
span much time and many protocols, from the largely outdated (e.g., [12]) to a rich
understanding of early web traffic (e.g., [3,4]) to modern applications (e.g., [17]). A
second class of previous work attempts to identify applications based on the behavior
they exhibit on the network (e.g., [8,9]). We do neither of these things, preferring to
understand the traffic patterns applications impose on the transport protocol.



Modern Application Layer Transmission Patterns 143

3 Data

We analyze the two sets of packet traces summarized in Table 1.1 The first dataset is
gathered from the border of a residential fiber-to-the-home network, the Case Connec-
tion Zone (CCZ) [1]. The CCZ connects roughly 90 residences (200-300 users) with
bi-directional 1 Gbps fiber. While the connection is abnormal for US residential users,
we find in previous work that actual use of the bandwidth is modest—topping out at
roughly 10 Mbps in the typical case—and the application mix is in line with previous
studies of residential network users [15]. Our second dataset is gathered from the bor-
der of the International Computer Science Institute, and covers roughly 100 users. In
both cases we gather data between the 11th–17th of each month. We capture all packets
from our ICSI vantage point. Our measurement capabilities within the CCZ network
are more modest and we collect a one-hour trace from a random time for each day. As
we develop in more detail in [15], the CCZ measurement apparatus does not often drop
packets during the collection process, with no detectable measurement-based loss in
the majority of the traces and the loss rate reaching 0.013% in the worst case. The trac-
ing apparatus at ICSI experiences more measurement-based loss than the CCZ monitor,
with an average loss rate of roughly 2.1%. We account for measurement-based loss in
our analysis by either not considering missing packets or inferring their existence (by
noting progression of TCP’s sequence space for missing packets), as appropriate.

We prune the datasets before use for two reasons. First, we do not consider connec-
tions that do not have at least one byte of data flowing form the monitored network
to the remote network. This rule largely removes scanning and backscatter. Further, in
the ICSI dataset we noticed two large traffic anomalies that turned out to be part of
an independent experiment: (i) a large crawl of the whois databases and (ii) a large
backhauling of data to Amazon’s EC2. These activities are sufficiently voluminous to
affect our results. Therefore, since this traffic is also abnormal, we filter it from further
analysis. Table 1 shows the number of connections we remove from further analysis.

4 Dividing Connections

Our general strategy for analyzing application behavior is to take stock of the amount
and temporal location of silence in TCP connections. Under this model, traditional bulk
data transmission would show few instances where a connection was not actively trans-
mitting data in one or both directions except at the beginning and end of a connection.
Of course, our approach is not fool-proof. For instance, streaming may look like bulk
transfer in that there are few silent periods, but may be pushing only as fast as required
for the given media and not as hard as a bulk transfer. While this is also an important
aspect of application behavior to understand, we leave it for future work.

Given our data, we do not have details of the precise application operations. Addi-
tionally, our lack of application payload precludes a study based on application protocol
semantics.2 We approximate application behavior with the following process:

1 Note, the LBNL data we present in § 1 is anecdotal in that each trace covers only a single hour.
We believe it is useful for motivating the problem, it is not sufficient for deeper analysis and
therefore not used in the remainder of the paper.

2 Additionally, encrypted traffic is not amenable to such analysis.



144 M. Sargent, E. Blanton, and M. Allman

ON/OFF Periods: As a first cut we divide connections into ON and OFF periods with
respect to the transmission behavior of the local host (the host close to our monitor) in
the connection. Each connection begins in an OFF period and transitions to an ON period
when we observe the local host sending a data segment. Transitioning from an ON

period to an OFF period happens when two conditions are met: (i) all outstanding data
sent by the local host is acknowledged (ACKed)3, and (ii) either the local host sends an
ACK containing no data or at least 5 msec passes without the local host sending another
data segment. Note that once we are in an ON period we are able to deal with loss from
the local host by advancing the TCP sequence number based on local packets being sent
after the loss or by noticing a gap in the sequence space once rule (i) is met and all of
the outstanding data has been ACKed. Lost packets during an ON period will not change
the length of the ON period that we detect. Rule (ii) ensures that the local TCP does not
have application data waiting to be sent. A bare ACK indicates directly that the TCP
buffer is empty. The 5 msec rule is otherwise necessary to account for TCP’s slow start
behavior [7,2]. Consider a local host that sends a single segment; when that segment
is ACKed, criteria (i) is met. However, in slow start, we expect the local host to use
the ACK to open the congestion window and transmit additional data. Therefore, data
coming within a short amount of time should be considered part of TCP’s dynamics and
not part of the application’s dynamics. We studied the length of the OFF periods without
criteria (ii) to find a reasonable threshold, and thresholds of 1–10 msec show similar
results. The 5 msec threshold is a somewhat arbitrary choice within that range.

Refinement: Two-Way Traffic: The ON/OFF analysis only accounts for traffic in one
direction (from the local to the remote). This approach does not reveal the applications’
full complexities, but reconstructing the TCP state of hosts distant from a monitor is
known to be difficult [13]. Therefore, we use the following heuristics to glean enough
information about returning data to conduct our analysis without reconstructing the en-
tire state of the remote host. We couple the ON/OFF classification above with informa-
tion about the data flow from the remote host to the local host to refine our classification
into four types: Local-only periods are ON periods where we do not observe data sent
by the remote host, Remote-only periods are OFF periods where we observe data sent
by the remote host, Both periods are ON periods where we also find data sent by the
remote host, and None periods are OFF periods where we find no data sent from the
remote host. N periods are a first approximation of the silent periods we describe at
the beginning of this section. We find that R periods hide silence at times. Consider the
case where a single data segment is sent from the remote just after the start of an OFF

period and then the connection goes silent for a long period of time. In this case, we
classify the entire period as R, when most of the period is in fact silent. We remedy
this by terminating an R period—at the point of the last data segment arrival—if twice
the minimum observed RTT for the connection elapses without another data segment
from the remote host. Twice the minimum RTT provides some robustness to network
and TCP behaviors while ensuring that the model transitions in a timely fashion. An N
period is inserted for the remaining duration of the shortened R period. R periods that
do not trigger this rule may still contain some silence, but the duration of this error is

3 Note, this criteria naturally keep original transmissions and their retransmissions in the same
period.



Modern Application Layer Transmission Patterns 145

bounded by twice the minimum RTT. Together, these heuristics provide a conservative
estimate of the silent periods. Any N period in the analysis is a true silent period, but
there may be short application silences hidden in L, R, or B periods.

As a next step, we build a map for each connection that consists of a string corre-
sponding to the order of the various periods in the connection. For instance, a map of
NLR indicates an initial OFF period, then a period of local data transmission and the
connection ending with a period of data transmission from only the remote host. We
find over 155 k and 579 k unique maps within our CCZ and ICSI datasets, respectively.
This shows the that applications display significant variety in their behavior. Over mil-
lions of connections, we find an average of 25 and 50 connections share each map in the
CCZ and ICSI datasets, respectively. Further, we find that there are 12 “popular” maps,
or maps that make up at least 1% of the connections, in the CCZ dataset and 10 popular
maps in the ICSI dataset. Three maps—NBN ,NLR and NLRN—are popular in both
datasets. Popular maps account for a total of 63% of the connections in both datasets.
These results underscore the vast heterogeneity in application behavior observed.

Next, we analyze where N periods fall within connections. Since many connections
start with an N period following the three-way handshake due to TCP dynamics, we
ignore initial N periods for this analysis. Table 2 shows the prevalence of N periods in
various locations within the connection. First, we find that about one half to two thirds
of the connections in both datasets contain periods where the application is silent. We
believe this illustrates that the majority of the connections are not simple bulk trans-
fers. Further, we find that of the connections with silent periods a plurality have only
“trailing” silent periods (e.g., persistent HTTP keeping a connection open in case fur-
ther requests are forthcoming, but ultimately closing with no such requests). Finally, we
find that between a quarter and a third of the connections have an internal silent period,
indicating an application pause. We present in-depth analysis in the next two sections.

5 Trailing Silent Periods

We first study trailing silent periods, or connections that transfer data and then go silent
before terminating. Persistent HTTP follows this model, as connections speculatively
persist after the “final” response in case the browser subsequently needs more objects.
This mechanism aids performance by allowing subsequent transactions to avoid the
overhead of starting a new connection [11]. As we note above, 54.6% and 30.5% of
connections from CCZ and ICSI, respectively, end with a silent period. Note that these
connections may not violate the bulk transfer model of TCP behavior, as they may
behave as bulk transfers that simply do not close immediately when activity completes.

The left plot in Figure 1 shows the distribution of the duration of trailing silent pe-
riods. Trailing silence of less than 1 second happens in about 30% and 20% of the
connections for CCZ and ICSI, respectively. These likely represent applications finish-
ing processing tasks before closing the connection. On the other hand, we find that just
under half of the trailing silent periods last longer than 10 seconds in both datasets.
This likely indicates the application speculatively leaving a connection open in case
further work materializes—which never happens in these cases. These trailing silent
periods can be lengthy, with nearly 20–25% of the periods extending beyond 2 minutes.
Further, 10% of the trailing silent periods exceed 4 minutes in each dataset.



146 M. Sargent, E. Blanton, and M. Allman

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.001  0.01  0.1  1  10  100  1000

C
D

F

Time (sec.)

ICSI
CCZ

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

C:80
C:443

C:8332

C:Other

I:80
I:25

I:443
I:53

I:Other

T
im

e 
(s

ec
.)

Trace:Port

76 7 5 12 66 18 11 1 4

Fig. 1. Duration of trailing N periods

We next study the behavior of specific applications 4 with respect to trailing silent
periods. The right plot in Figure 1 shows the characteristics of each port that contributes
at least 1% of the connections with trailing silent periods. The labels on the x-axis
indicate the dataset—“C” for CCZ, “I” for ICSI—and port number for the applications,
with “other” being a combination of all ports not shown independently. The number just
above the x-axis shows the percentage of connections with trailing silent periods that
the given port is responsible for in the given dataset. For each port, the box shows the
quartiles of the distribution of the duration of the trailing silent periods and the whiskers
show the 1st and 99th percentiles.

The figure shows that at least three-quarters of the connections with trailing silent
periods across datasets are likely web traffic (ports 80 and 443) and web traffic gener-
ally shows the longest trailing silent periods. Additionally, we find three times as much
“other” traffic in the CCZ data as in the ICSI data. This is natural in that CCZ traf-
fic contains more peer-to-peer traffic that is widely distributed across the port range
and therefore confounds such simple port-based classification (see [15] for details). We
find that CCZ traffic using port 83325 has short and highly uniform trailing silent pe-
riods. The “other” traffic generally has the largest spread of trailing silent periods, as
one might expect, given that it is an amalgamation of different applications. The ICSI
dataset includes many SMTP connections with trailing silent periods; while half of
these are at least 10 seconds, the 99th percentile is only 19 seconds, which suggests that
a fairly tight timeout is in play. Finally, we find that TCP-based DNS traffic in the ICSI
dataset is responsible for roughly 1% of the trailing silent periods. Two ICSI hosts are
responsible for most of this DNS traffic, and the general pattern of their connections is
consistent with a single, short DNS lookup followed by a 2 minute timeout—which is
consistent with the behavior specified in RFC 1035 [10].

6 Internal Silent Periods

Our next analysis is of silent periods that happen between periods of activity within con-
nections. These periods indicate an application imposing a non-bulk transfer structure

4 Our traces include only packet headers and therefore we rely on port numbers to identify
applications—as crude as that can sometimes be.

5 As discussed in [15], we have not been able to fully disambiguate this traffic between Bitcoin
and an experimental security camera application known to be in use within the CCZ.



Modern Application Layer Transmission Patterns 147

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  10  100

C
D

F

Number of Internal N Periods Per Connection

ICSI
CCZ

 1

 10

 100

 1000

C:80
C:443

C:8332

C:25575

C:59009

C:Other

I:443
I:80

I:25
I:993

I:2121

I:873
I:Other

N
um

be
r 

of
 I

nt
er

na
l N

 P
er

io
ds

Trace:Port

45 20 4 4 1 26 35 28 26 3 2 2 4

Fig. 2. Number of internal N periods per connection

on their activity. There could still be periods in which the application—and therefore
TCP—tries to move data as fast as possible in bulk transfer fashion, but these silent
periods indicate that is not the applications’ exclusive goal.

Silent Periods Per Connection: Recall from Table 2 that 36.7% and 28.1% of the
connections in the CCZ and ICSI datasets, respectively, contain at least one internal
silent period. From this we understand that a non-trivial fraction of the connections are
not solely concerned with bulk transfer. The left plot in Figure 2 shows the distribution
of the number of internal silent periods per connection in our two datasets. We find
general agreement between the datasets with roughly half the connections having only
one internal silent period, and over 90% of the connections having no more than ten
internal silent periods. Therefore, while we find that internal silent periods are not rare,
we also find that they are in general not numerous on a per-connection basis.

The right plot in Figure 2 breaks down the number of silent periods per connection by
port for ports that contribute at least 1% of the connections with internal silent periods.
Again, the overall fraction of connections is given just above the x-axis, the bars repre-
sent quartiles and the whiskers show the 1st and 99th percentiles. We find that over 60%
of the connections with internal silent periods in both datasets are web traffic (ports 80
and 443). Further, most of the popular ports have a median of one internal silent period
per connection and the 75th percentile is under 10 periods across ports. This is consis-
tent with the overall distribution given in the left figure and shows that popular ports do
not drastically depart from the overall distribution. We do find that IMAP connections
at ICSI (port 993) show a large 99th percentile—604 silent periods. This is expected for
email clients that leave connections open for pushed email.

Silent Period Duration: We next assess the duration of internal silent periods, as we
show in Figure 3. This plot shows that most such periods are short—with at least 30%
lasting at most 100 msec and two thirds lasting at most 1 second. These durations are
consistent with the “active off” periods previously identified in web traffic [4]. However,
more than 10% of the internal silent periods across connections last at least 10 seconds.
These periods likely represent applications that run out of networking tasks.

The duration of internal silent periods is not as uniform across applications as their
number, as shown in Figure 3. For example, SMTP (port 25) is largely rapid exchanges,
with 75% of silent periods lasting less than about 100 msec and no silent period last-
ing more than a few seconds. On the other hand, web traffic (ports 80 and 443) show



148 M. Sargent, E. Blanton, and M. Allman

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.0001  0.001  0.01  0.1  1  10  100  1000

C
D

F

Length of N Period (sec.)

ICSI
CCZ

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

C:80
C:443

C:8332

C:25575

C:59009

C:Other

I:443
I:80

I:25
I:993

I:2121

I:873
I:Other

D
ur

at
io

n 
of

 I
nt

er
na

l N
 P

er
io

ds
 (

se
c.

)

Trace:Port

Fig. 3. Duration of internal N periods

significantly longer internal silent periods in both the ICSI and CCZ traces. Interest-
ingly, we note that port 443 has longer internal silent periods than port 80 in both
datasets—but more exaggerated in the ICSI dataset. We speculate that this may be due
to more aggressive caching of HTTPS connections to avoid the higher setup cost of
SSL/TLS.

We now turn from focusing on individual internal silent periods to the amount of
aggregate silence we find across an entire connection. We calculate the total fraction of
each connection with least one internal silent period that is spent in silence. We find that
two thirds of the connections are fairly uniformly distributed between nearly no silence
and roughly 90% silence across the connection. However, in the other one-third of the
connections across datasets over 90% of the connection is silent—with roughly 20%
of the connections in both datasets showing near total silence. The distribution of the
number of silent periods for connections that are at least 90% silent shows that these
connections have more silent periods than the overall distribution (which is shown in
Figure 2)—indicating that a single silent period is not driving the overall behavior.

The Last Window Problem: TCP’s loss recovery depends on the acknowledgment of
packets received. The information in returning ACKs is used to drive retransmission
decisions, by assuming that multiple incoming ACKs that do not acknowledge out-
standing data indicate that the data was lost. However, ACKs are sent only when data
is received, and there is no data after the last window to generate new ACKs. Hence,
it is comparatively more difficult for TCP to determine that the final packets of a win-
dow have been lost; in many algorithms, this situation is detected only by a relatively
long retransmission timeout (RTO). TCP also uses ACKs to trigger the transmission of
new data. However, after a period of silence there are no incoming ACKs, and thus this
“ACK clock” cannot be used to immediately pace out new data. This can lead to either
a large burst of segments [7,16] or the need to wait a full RTT for ACKs for the new
data to return [16]. In other words, events that happen in a routine and timely fashion
most of the time can be problematic at the “end” of a connection. A silent period within
a connection can manifest the same behaviors.

Various proposals exist to deal with TCP’s “last window” (e.g., [6]). However, under-
standing the frequency of this phenomenon is crucial to determining how much com-
plexity should be added to TCP to deal with the issue. Our approach to assess this
is to treat the window before a silent period as a “last window” as long as the silent



Modern Application Layer Transmission Patterns 149

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100

C
D

F

Number of N Periods > (4 * minrtt) Per Connection

ICSI
CCZ

Fig. 4. # of N periods > RTO

Table 3. Length and diversity of con-
nection maps

Class Med. Mean StdDev # Cnns
CCZ Active 2 2.80 1.13 139k
CCZ Simple 3 3.45 1.34 2.5M
CCZ Complex 8 20.0 199 1.4M
ICSI Active 2 2.66 5.15 4.3M
ICSI Simple 4 4.79 3.88 19.8M
ICSI Complex 8 27.2 714 7.8M

period is relatively long, which we define as roughly the length of an RTO. We use this
approximation because of the recommendation that TCP collapse its congestion win-
dow after an RTO worth of idle time [2]. Since the specifics of the RTO vary across
implementations we use 4×minRTT as an approximation.

We find that 65–71% of the connections have internal silent periods that last at least
4×minRTT—which represents at least a doubling of last windows (i.e., one internal
and one actual last window). Figure 4 shows the distribution of the number of silent
periods that exceed 4 × minRTT per connection. We find that 32% and 24% of the
connections that have internal silent periods for CCZ and ICSI, respectively, have 2–10
silent periods of at least 4×minRTT . These results show that a non-trivial number of
connections would benefit from techniques that mitigate last window issues.

7 Application Complexity

We next assess the diversity of patterns of activity within connections. For this analysis,
we classify connections into three types: (i) “active” connections consist only of L,
R, and B periods, with no N period, (ii) “simple” connections may have initial and/or
trailing N periods, but all other periods must be L, R, or B (note that active connections
are a subset of simple connections) and (iii) “complex” connections which may have
any combination of periods. Table 3 shows a summary of our analysis. The data suggests
that active and simple connections are much more likely to consist of a small number
of exchanges followed by termination, whereas complex connections—those with at
least one internal N period—display a large diversity of internal structure, involving a
comparatively larger number of exchanges and period transitions.

The tendency of simple connections to be classic bulk transfers is strong. Out of the
CCZ simple connections, 90% of the maps (2.2M connections) consist of no more than
two periods containing data—with 60% being LR, with or without initial and trailing
N periods—suggesting a simple request-response bulk transfer. The ICSI data is some-
what more diverse, with the corresponding maps accounting for 47% of the simple con-
nections. Further, 40% of the connections are either LR or RL with or without initial
and trailing N periods. This suggests that the simple connections in the ICSI dataset are
somewhat more complicated than in the CCZ dataset, but the overall diversity remains
markedly lower than for complex connections.



150 M. Sargent, E. Blanton, and M. Allman

8 Conclusions

This paper makes several initial contributions: (i) we provide an application agnostic
methodology for studying application patterns from the transport’s perspective, (ii) we
confirm that TCP is non-trivially used for non-bulk transfer applications, which breaks
our often-employed mental model, (iii) while silent periods within connections exist,
they are mostly short, (iv) we find that TCP’s “last window” problem is exacerbated
by the transactional nature of some connections and (v) we find that connections with
internal silent periods have more complicated interactions than those without such pe-
riods. We stress that this is an initial investigation and the results in some sense offer
more questions than answers—which we are grappling with as future work.

References

1. Case Connection Zone, http://caseconnectionzone.org/
2. Allman, M., Paxson, V., Blanton, E.: TCP Congestion Control, RFC 5681 (September 2009)
3. Arlitt, M., Williamson, C.: Web Server Workload Characterization: The Search for Invariants

(Extended Version). IEEE/ACM Transactions on Networking 5(5) (October 1997)
4. Barford, P., Crovella, M.: Generating Representative Web Workloads for Network and Server

Performance Evaluation. In: ACM SIGMETRICS (July 1998)
5. Cheng, Y.: Re: [tcpm] Adopting draft-fairhurst-tcpm-newcwv. IETF TCPM Mailing List

(December 2012)
6. Dukkipati, N., Cardwell, N., Cheng, Y., Mathis, M.: TCP Loss Probe (TLP): An Algorithm

for Fast Recovery of Tail Losses. Internet-Draft draft-dukkipati-tcpm-tcp-loss-probe-00.txt,
Work in progress (July 2012)

7. Jacobson, V.: Congestion Avoidance and Control. In: ACM SIGCOMM (1988)
8. Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: Multilevel Traffic Classification

in the Dark. In: ACM SIGCOMM (2005)
9. Kim, H., Claffy, K., Fomenkov, M., Barman, D., Faloutsos, M., Lee, K.: Internet Traffic

Classification Demystified: Myths, Caveats, and the Best Practices. In: ACM SIGCOMM
CoNEXT (December 2008)

10. Mockapetris, P.: Domain Names - Implementation and Specification. RFC 1035 (November
1987)

11. Nielsen, H., Gettys, J., Baird-Smith, A., Prud’hommeaux, E., Lie, H., Lilley, C.: Network
Performance Effects of HTTP/1.1, CSS1, and PNG. In: ACM SIGCOMM (September 1997)

12. Paxson, V.: Empirically-Derived Analytic Models of Wide-Area TCP Connections.
IEEE/ACM Transactions on Networking 2(4) (August 1994)

13. Paxson, V.: Automated Packet Trace Analysis of TCP Implementations. In: ACM SIG-
COMM (September 1997)

14. Paxson, V., Floyd, S.: Difficulties in Simulating the Internet. IEEE/ACM Transactions on
Networking 9(4), 392–403 (2001)

15. Sargent, M., Stack, B., Dooner, T., Allman, M.: A First Look at 1 Gbps Fiber-To-The-Home
Traffic. Technical Report 12-009, International Computer Science Institute (August 2012)

16. Visweswaraiah, V., Heidemann, J.: Improving restart of idle TCP connections. Technical
Report 97-661, University of Southern California (November 1997)

17. Xu, Y., Yu, C., Li, J., Liu, Y.: Video Telephony for End-consumers: Measurement Study of
Google+, iChat, and Skype. In: ACM Internet Measurement Conference (October 2012)

http://caseconnectionzone.org/


Third-Party Identity Management

Usage on the Web

Anna Vapen1, Niklas Carlsson1, Anirban Mahanti2, and Nahid Shahmehri1

1 Linköping University, Linköping, Sweden
2 NICTA, Sydney, NSW, Australia

Abstract. Many websites utilize third-party identity management ser-
vices to simplify access to their services. Given the privacy and se-
curity implications for end users, an important question is how web-
sites select their third-party identity providers and how this impacts the
characteristics of the emerging identity management landscape seen by
the users. In this paper we first present a novel Selenium-based data
collection methodology that identifies and captures the identity man-
agement relationships between sites and the intrinsic characteristics of
the websites that form these relationships. Second, we present the first
large-scale characterization of the third-party identity management land-
scape and the relationships that makes up this emerging landscape. As
a reference point, we compare and contrast our observations with the
somewhat more understood third-party content provider landscape. In-
teresting findings include a much higher skew towards websites selecting
popular identity provider sites than is observed among content providers,
with sites being more likely to form identity management relationships
that have similar cultural, geographic, and general site focus. These find-
ings are both positive and negative. For example, the high skew in usage
places greater responsibility on fewer organizations that are responsible
for the increased information leakage cost associated with highly aggre-
gated personal information, but also reduces the user’s control of the
access to this information.

1 Introduction

With an increasing demand for personalized services, many websites ask their
users to create personal user accounts and authenticate themselves before ser-
vice. To simplify account creation and increase personalization opportunities,
many sites use third-party identity management services. These services allow a
user’s digital identity and some personal information to be shared across mul-
tiple distinct sites; however, they also come with their own reliability, privacy,
and security concerns [9, 13].

Third-party identity management providers typically offer simplified authen-
tication, using a single-sign-on (SSO) [13] service. In a typical authentication
scenario, the browser of a user wanting to use such identity service interacts
with two additional parties: a relying party (RP) and an identity provider (IDP).

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 151–162, 2014.
c© Springer International Publishing Switzerland 2014



152 A. Vapen et al.

Fig. 1. Huffington Post login example Fig. 2. Methodology overview

An RP such as Yahoo can offer that users use their account with a third-party
IDP such as Facebook or Google, to login to Yahoo and access its services.
In this case, the selected IDP, say Facebook, would provide the authentication
service and the user would only need to remember their digital identity with
Facebook to access Yahoo. More formally, we say that two sites have an RP-IDP
relationship, if the user log in to one of the sites (the RP) using the other site
(the IDP). Figure 1 illustrates a more complex scenario. The Huffington Post
site allows local login as well as authentication at multiple trusted third-party
IDPs, including both Facebook and Google. Notice that Huffington Post uses
Yahoo as IDP, illustrating that Yahoo can act as both IDP and RP. While the
figure only shows a snippet of this complex situation, clearly, the relationships
between these sites are nested.

In this paper we consider any third-party login collaborations in which an
RP is using one or more external IDPs in the login process. In addition to SSO
service, third-party identity providers are increasingly also used to share and
modify information across sites. Following this trend, in addition to authenti-
cation protocols, such as OpenID1 (e.g., used in part by Google), our study
shows that these services are increasingly implemented using authorization pro-
tocols, such as OAuth2 (e.g., used by Facebook). Authorization protocols have
the added functionality that they, on behalf of the user, can allow one site (or
service) to perform actions on a different site.

In this paper, we present (i) a novel Selenium-based data collection method-
ology that allows us to accurately identify and validate RP-IDP relationships
that are not easily captured by pattern-matching crawlers (Section 2), and (ii)
a large-scale characterization of the identified RP-IDP relationships3, study-
ing how websites select their IDPs (Section 3). Our methodology and analysis
capture the impact on IDP selection of things such as relative site popularity,
cultural/geographic biases, and the intrinsic website characteristics. To put dis-
tribution and selection characteristics in perspective, we compare our results
against what is observed for third-party content delivery relationships. To the

1 OpenID (official website), http://openid.net/, May 2013.
2 OAuth (official website), http://oauth.net/, May 2013.
3 Datasets are available at
http://www.ida.liu.se/divisions/adit/data/pam14.html .

http://openid.net/
http://oauth.net/
http://www.ida.liu.se/divisions/adit/data/pam14.html


Third-Party Identity Management Usage on the Web 153

best of our knowledge, at the time of writing, there are no other large-scale
studies of the third-party identity management landscape and its structure.

In general, we find that IDP usage is highly skewed, with a small set of
IDPs accounting for most of the world-wide usage. These IDPs are typically
globally popular sites (such as Facebook, Twitter, and Google) that have a large
user base. The tendency to select popular services as IDPs has resulted in a
pronounced rich-gets-richer effect. For example, 90% of the RP-relationships are
to an IDP among the top-100 most popular sites according to Alexa, and 50%
of the observed RP-IDP relationships have a site-rank ratio of at least 103 (ratio
between the RP and IDP ranks). In contrast, the third-party content provider
relationships are relatively evenly distributed among Alexa ranks, with 50% of
the observed content provider relationships having a site-rank ratio of at least
four, suggesting a relatively weaker bias towards more popular sites. We also find
that IDP selection is more biased towards the same cultural/geographic region
than what is observed for third-party content provider selection, and websites
appear to have a slight preference for selecting IDPs that provide similar service
as the website.

2 Methodology

2.1 Data Collection

At the core of the third-party identity management landscape are the relation-
ships between relaying parties (RPs) and identity providers (IDPs). To identify
relationships for a wide range of sites, we employed a novel two-step approach.
In the first step, we use a logarithmic sampling technique to pick a sample set
of sites with varying popularities. In the second step, we use a Selenium-based
crawling tool that allows us to accurately identify and validate RP-IDP rela-
tionships that are not easily captured by pattern-matching crawlers. Figure 2
summarizes our methodology.

Popularity-Based Logarithmic Sampling: The size of the Web precludes
identification of all RP-IDP relationships. Instead, we collect a “sample” set of
sites and study these for potential IDP usage. For our sampling we retrieved
the Alexa4 list on April 17, 2012 of the top 1 million most popular websites
worldwide. Based on Web popularity following power-law distributions [5], we
then placed 80,000 points uniformly on a logarithmic range [1, 106] (ensuring that
the number of points in segment [10x, 10x+1] is independent of x) and sampled
the sites with a popularity rank closest to each point. After removal of duplicates
we had a sample set with 35,620 sites.

Relationship Identification: To identify RP-IDP relationships of each sam-
pled site, we built a novel Selenium-based5 crawling tool. Our crawler is built
as a cloud-based proxy, and acts like a human user, which may click on many

4 Alexa (official website), http://www.alexa.com, April 2012.
5 Selenium. http://seleniumhq.org/, March 2012.

http://www.alexa.com
http://seleniumhq.org/


154 A. Vapen et al.

different available GUI elements, react to pop-ups, and take a range of other
GUI-driven actions. In comparison with pattern-matching tools, we have found
that our Selenium-based tool does a very good job identifying relationships as-
sociated with more complex Web 2.0 websites. It captures relationships that
are non-trivial and not easily identified even using manual methods. This is im-
portant as many websites today use clickable images which may not match the
actual IDPs, and/or hide the IDPs within their design.

Our crawler is multi-threaded, explores each site down to a depth two from
the starting page, and uses regular-expression-based pattern matching on all el-
ements (including not only links but also clickable images, pop-ups, and similar)
to find elements related to authentication. The tool initially prioritizes clicking
on object elements that match pre-defined patterns and therefore are poten-
tial authentication related elements. When all matched elements on a page are
clicked, the tool continues clicking all other clickable elements until a specified
per-site timeout value of 25 minutes is reached.

2.2 Statistics and Complementary Datasets

For both the sampled sites and the identified IDPs, we used the Selenium-based
crawler and complementing scripts to collect statistics and information about
each site. The crawl included the download of 1.4 · 108 objects (totaling 1.6
TB), the identification and analysis of 2.5 · 107 links. Out of the 35,620 sampled
websites, 1,865 websites were classified as RPs. We also observed 50 IDPs and
3,329 unique RP-IDP relations. Finally, complementing scripts were used to
obtain additional ownership, cultural, and geographic information regarding all
observed (sampled and non-sampled) sites. These complementary datasets are
primarily supportive and are discussed when used.

2.3 Validation

To ensure a fairly clean dataset, our Selenium-based data collection tool is de-
signed to carefully identify true RP-IDP relationships and avoid false positives.
The accuracy of our tool was validated using semi-manual relationship identifi-
cation and classification. To obtain as exhaustive and accurate a list of RP-IDP
relationships as possible we first built yet another crawling tool that identified
candidate relationships much more loosely (and hence resulted in many false
positives!) that we could later manually verify/reject by examining the identi-
fied objects that suggested such a linkage. We also carefully explored all sites on
the top-200 list manually for relationships. By combining these two approaches
we built a list of relationships involving the top-200 sites.

Out of a total of 69 RPs, 32 IDPs, and 186 relationships, the tool identified
23, 12, and 36, respectively. While the tool clearly does not find all relationships,
it is very successful in avoiding false positives. The single false positive for IDPs
(vkontakte.ru), is due to a name change from vkontakte.ru to vk.com. The
three potentially false RPs (wordpress.com, uol.com.br, and onet.pl) are all
blog hosts, portals and website hosts. Their users create sub-sites which may

vkontakte.ru
vkontakte.ru
vk.com
wordpress.com
uol.com.br
onet.pl


Third-Party Identity Management Usage on the Web 155

Table 1. Top-10 list of global IDPs. (a Facebook is a well-known OAuth-only provider,
but has in the past been an RP in OpenID. b Google and Yahoo also occasionally uses
OAuth. c The OpenID field allows general login with any OpenID IDP, although some
restrictions may occur.)

IDP Alexa Number
rank rank IDP/federation Protocol of RPs

1 2 facebook.com OAutha 1293
2 10 twitter.com OAuth 378
3 9 qq.com OAuth 278

4 1 google.com OpenIDb 250

5 4 yahoo.com OpenIDb 141
6 16 sina.com.cn OAuth 127
7 - openID OpenIDc 87
8 4173 vkontakte.ru OAuth 73
9 25 weibo.com OAuth 64
10 12 linkedin.com OAuth 63

0

20

40

60

80

100

0 20 40 60 80 100

C
ov

er
ed

 b
y 

ID
P

 s
et

 (
%

)

Fraction of IDPs (%)

RPs
IDP-RP relationships

0

20

40

60

80

100

1 10 102 103 104 105 106

C
ov

er
ed

 b
y 

ID
P

 s
et

 (
%

)

Alexa site rank of IDPs

RPs
IDP-RP relationships

(a) IDP popularity (b) Alexa rank

Fig. 3. RPs that are served by the most popular IDPs

allow third-party authentication. The third site onet.pl, also shares content
with Facebook. Finally, out of the 13 false relationships, roughly half are due to
sub-domain matches and name changes (as discussed above), and the rest are
due to misclassified content provider relationships.

While omitted, it should be noted that our conclusions have been tested and
validated using multiple crawlers. The use of our semi-manual dataset further
strengthens our belief in the generality of our results. We have not found any
major biases in the set of relationships included.

3 Characterization Results

3.1 The Big Players

Table 1 summarizes the top-10 globally most popular IDPs in our dataset, the
number of (sampled) RPs that these IDPs help, and the primary protocol used

onet.pl


156 A. Vapen et al.

for third-party authentication. For reference, we also provide the Alexa ranks of
the services.

We note that some of the most popular sites on the Web also are the most used
IDPs. The low Alexa rank for vkontakte.ru is largely due to a domain name
change (to vk.com with an Alexa rank of 41), as many RPs use the old domain
name. Interestingly, the general OpenID field that allows the user to input any
OpenID provider is only used by 87 of the sampled sites and no specialized
IDP makes the list. In fact, we observe that OAuth is the dominating protocol.
Among the top-10 IDPs in Table 1, eight IDPs use OAuth as their primary
protocol and nine use OAuth for some of their relationships.

These results suggest that many sites choose to use popular sites as their
IDPs. The users are more likely to already have accounts with these sites, and in
many cases these sites may already have access to large amounts of personal in-
formation that could help the RP improve their personalization and service. This
observation may also provide some insight as to why identity management fed-
erations such as OpenID and third-party services that specialize only in identity
management have struggled to take off [11].

We next take a closer look at the relative popularity of the IDPs. Figures 3(a)
and 3(b) show the fraction of RPs that are served by the most popular IDPs and
the IDPs of a certain global popularity, respectively. We note that more than
75% of the RPs are served by 5% of the IDPs, and the majority of these 75%
are made up by the IDPs with Alexa ranks in the top 100. In fact, only 15 of
the 44 IDPs outside the top-10 Alexa list serve more than 10 sampled IDPs.

3.2 IDP Usage

We next consider the IDP usage. Figure 4 shows the number of IDPs observed
for each sampled site. While the average is highest for the most popular sites,
we note that there are some less popular sites that use a large number of IDPs.
Among the nine sampled websites with more than ten IDPs, six of the sites are
news sites and all nine use a login widget from gigya.com, providing the sites
with a selection of IDPs.

Figure 5 breaks down the IDP usage for each popularity segment, based on
which IDPs the sites in each segment are using. We can see that the RPs with the
most popular sites on average use the most IDPs, and that the top-ranked IDPs
are the most popular IDP choices for sites belonging to all popularity segments.
For all segments, the IDPs that rank in the top-10 contribute for more than 75%
of the IDP usage.

3.3 Comparison with Content Services

To put popularity skew and biases in perspective, in the following we compare
our observations with those observed in the more traditional content delivery
context. First, we consider the site-rank of the biggest service providers and
service users. In the context of identity management, these entities correspond to
the third-party IDPs and the RPs, respectively. In the context of content delivery,

vkontakte.ru
vk.com
gigya.com


Third-Party Identity Management Usage on the Web 157

1
4

8

16

32

1 10 102 103 104 105 106

N
um

be
r 

of
 ID

P
s 

pe
r 

R
P

Alexa site rank of RPs

IDPs per RP
Estimated weighted average

Fig. 4. Number of IDPs per sampled RP

0

1

2

3

4

[1-10]
(10-10 2

]

(10 2
-10 3

]

(10 3
-10 4

]

(10 4
-10 5

]

(10 5
-10 6

]

N
um

be
r 

of
 ID

P
s 

pe
r 

R
P

Alexa site rank of RPs

> 106

(105-106]
(104-105]
(103-104]
(102-103]
(10-102]

[1-10]

Fig. 5. Breakdown of the average number
of IDPs selected per RP and popularity
segment

these entities correspond to the third-party content providers that deliver the
content and the site that the content is delivered on behalf of, respectively. This
comparison provides a natural reference point, as both IDPs and third-party
content providers serve clients on behalf of the origin site.

Figure 6(a) shows the service provider breakdown; i.e., the fraction of user
sites (RPs, for example) that are served by each third-party service provider
(IDP, for example) of varying global Alexa rank. Figure 6(b) shows the service
user breakdown; i.e., the fraction of third-party relationships that these sites are
responsible for. We note that the content provider usage is distributed much
more evenly across popularities than the IDP usage, which is heavily skewed
towards the most popular sites.

In general, we find that IDPs often provide service for less popular RPs,
whereas in the context of content delivery, it is much more common that the
third-party content is served by less popular sites. While these less popular sites
in some cases are backed up by a big company, the differences are striking. Fig-
ure 7 shows the relative difference in site rank between providers (e.g., IDPs)
and service user sites (e.g., RPs) for the two types of relationships. These re-
sults show that the identity management landscape is significantly more skewed
towards the big players than the content delivery ecosystem. For example, while
50% of the observed content provider relationships have a site-rank ratio of at
least 4 (suggesting only a light bias towards more popular sites), the correspond-
ing RP-IDP site-rank ratio is at least 103 (between the RP and IDP ranks).

3.4 Service-Based Analysis

To gain a better understanding of the sites that are more likely to act as an RP
or IDP, we manually classified the top-200 sites, as well as each of the identified
IDPs, based on the primary service they provide. For this analysis, we manually
labeled each site into one of nine service classes. While alternative classifications
are possible, the classes used here were inspired by those used by Gill et al. [5].
Table 2 lists the service classes and the statistics for each class.

These results show that the use of IDPs is greatest among sites that share
information/news/data. This is consistent with significant use of OAuth. How-



158 A. Vapen et al.

0.01
0.1

1
10

100

1 10 102 103 104 105 106

P
D

F
(%

)

Alexa site rank

Content

0.01
0.1

1
10

100

1 10 102 103 104 105 106

P
D

F
(%

)

ID management

0
20
40
60
80

100

1 10 102 103 104 105 106

C
D

F
(%

)

ID management
Content

0.01
0.1

1
10

100

1 10 102 103 104 105 106

P
D

F
(%

)

Alexa site rank

Content

0.01
0.1

1
10

100

1 10 102 103 104 105 106

P
D

F
(%

)

ID management

0
20
40
60
80

100

1 10 102 103 104 105 106

C
D

F
(%

)

ID management
Content

(a) Service providers (b) Service users

Fig. 6. Comparison with content delivery

Table 2. Manual site classification results for top-200 list

Sites Relationships

Type Total RPs Total Per page Per RP Breakdown

Social/portal 84 23 (27%) 55 0.65 2.39 47 social, 4 tech, 3 commerce, 1 info
Tech 24 8 (33%) 40 1.67 5.00 26 social, 12 tech, 1 commerce, 1 info
Commerce 20 5 (25%) 6 0.30 1.20 3 social, 2 commerce
News 17 11 (65%) 28 1.65 2.55 28 social
Video 18 8 (44%) 24 1.33 3.00 22 social, 1 commerce, 1 info
Info 14 7 (50%) 11 0.79 1.57 10 social, 1 commerce
Filesharing 12 7 (58%) 22 1.83 3.14 22 social
Ads 6 0 (0%) 0 0 0 -
CDN 5 0 (0%) 0 0 0 -

ever, it is also interesting to see that sites of some other service classes (e.g.,
tech and video sites) often use more IDPs per RP, in the case that they decide
to act as an RP. We conjecture that the high number of IDPs per RP for tech
sites reflects that these sites are early adopters of these technologies. This con-
jecture is supported by the fact that these sites to a much larger extent than
other sites give their users the option of using specialized IDPs, which provide
identity management as their only service.

We find that both tech and commerce sites have a relative preference for
picking IDPs from within their own category. For example, the tech sites are
responsible for 12/40 (30%) of the tech IDP relationships observed from the
top-200 sites, and 2/5 (40%) of the IDPs used by RPs classified as commerce
sites are to IDPs that are commerce sites. These sites may have to rely more on
domain knowledge to maintain credibility within their communities than other
type of sites. News and file sharing sites, on the other hand, only use IDPs
classified as social (e.g., Facebook and Twitter). This usage may be motivated
by a desire to form “personal” relationships and connect with more users.



Third-Party Identity Management Usage on the Web 159

Table 3. Percent (%) unique third-party relationships that are to a local IDP or
content provider (CP) in the same geographic region as the sampled site, using each
of our three location mappings

Method (local (%))

Whois Servers Audience

Region IDPs CPs IDPs CPs IDPs CPs

North America 97.0 91.7 95.8 88.8 95.8 82.2
Europe 0.4 21.2 0.9 21.5 0.9 22.0
Asia 61.3 25.7 71.8 45.5 53.6 41.3
Others 0.0 9.1 0.0 10.6 1.3 9.7

0

20

40

60

80

100

-106 -104 -102 1 102 104 106

F
ra

ct
io

n 
of

 r
el

at
io

ns
hi

ps
 (

%
)

RP/IDP Alexa site rank difference

ID management
Content

Fig. 7. Difference in site-rank ra-
tio between service user/provider.
(Alexa rank of user divided by rank
of provider.)

Fig. 8. Geographic distribution of third-party
relationships. Top row: Identity management.
Bottom row: Content delivery.

3.5 Cultural and Geographic Analysis

We next try to glean some insight as to whether there may be some preference
for selecting IDPs with similar geographic or cultural focus. Due to factors such
as global user populations, it is difficult to uniquely assign each site to a single
geographic region. We make no claims regarding the absolute number of sites
that pick a “local” IDP. Instead, our observations are discussed relative to what
is observed for third-party content delivery relationships.

While the general conclusions of our results appear to hold true for a wide
range of mapping approaches, in this section we present results using three di-
verse methods: (i) a whois services based on where sites are registered, (ii) an
online geo-location service located in the US to map the location of the servers,
and (iii) statistics provided by Alexa estimating the region in which the site’s
primary user audience is located.

Table 3 shows the percentage of local relationships, for each of the three
mapping approaches. We use one row for sample sites mapped to different parts
of the world, and list how large a percentage of the third-party providers are
considered local. The region “others”, which includes South America, Africa
and Oceania, is only responsible for 2-3.5% of the relationships. In the above
results we exclude the unmapped relationships.



160 A. Vapen et al.

While the correct geographic location of a service/site in non-trivial and the
exact percentage of sites classified as “local” clearly depends on the method
used, our results allow two major observations. First, we note that there is a
tendency for selecting local IDPs in all geographic regions with major IDPs, with
the exception of Europe and Other, which primarily use major American IDPs.
Second, and more importantly, the fraction of “local” IDPs is larger than the
fraction of “local” content providers for all regions except for Europe and Other.
It should be noted that the IDP usage in Europe and Other overall is much
smaller than in the other regions. This stronger locality preference (with the
exception of European sites) is further illustrated in Figure 8, which shows the
geographic breakdown for sites mapped to the regions with the most usage. Here,
the server-based mapping approach is used and we include a further breakdown
of Asia.

A closer look at the data reveals that info RPs only choose local IDPs, whereas
social, tech, file sharing, and news RPs use more non-local IDPs than other
categories.

4 Related Work

Other works have formally validated OAuth [3, 8], Facebook Connect [7],
OpenID [12], and SSO services in general [1]. For OAuth, a long laundry list
of problems and threats has been identified, including phishing, eavesdropping,
and various problems related to tokens [6]. It has also been shown that SSO
services are vulnerable to cross-site scripting attacks [1] and that OpenID is vul-
nerable to cross-site request forgery attacks [12]. However, perhaps the biggest
weakness in SSO is the implementation of the protocols themselves [3, 10]. For
example, Wang et al. [13] presents an experimental study of the security of some
of the most popular SSO services.

It should also be noted that identity management solutions can greatly affect
user behavior. For example, as users get used to authenticating with unknown
third-parties and following the path of least resistance, they may not take secu-
rity precautions or read privacy agreements, making them increasingly suscepti-
ble to phishing attacks [4]. This last uncertainty has prompted many users to be
cautious and afraid of using (unknown) third-party services, and may be another
reason why we observe that many sites select popular IDPs. This shift away from
specialized OpenID solutions may also hamper the development and/or adoption
of large-scale identity federations with stronger authentication methods [2].

Complementing prior work, we provide a large-scale characterization in which
we analyze relationships and third-party selection in the identity management
landscape.

5 Discussion and Conclusions

This paper studies how websites are using third-party identity providers. We
present a novel data collection methodology, which combines a Selenium-based



Third-Party Identity Management Usage on the Web 161

crawler and a log-based sampling technique, and use the collected datasets to
characterize global IDP usage. To provide a reference point for discussion, we
compare our observations with the selection of third-party content providers.
Our methodology and analysis captures how factors such as relative site popular-
ities, cultural/geographic biases, and the intrinsic characteristics of the websites
influence the relationships between RPs and IDPs.

Our study shows that a small number of IDPs dominate the IDP space. These
IDPs are typically popular web services with a large international user base, and
already have access to large amounts of sensitive user data. As these companies
are under public scrutiny, they will hopefully take greater care to securely store
and handle sensitive user information. However, the many RPs using a few IDPs
can also result in a large attack surface. The fact that OAuth is dominating
OpenID also raises some privacy concerns, as it typically involves sharing of
more user data.

A rich-gets-richer phenomena appears to be at play with the tendency of RPs
selecting highly popular services as IDPs. Instead of picking specialized IDPs,
which provide authentication as their primary service, RPs are choosing IDPs
with higher popularity ranking than themselves. Today, many specialized IDPs,
such as Clickpass, Vidoop, and MyopenID are therefore disappearing, being
acquired, and/or going out of business.

Our characterization and dataset is the first large-scale measurement-based
study of the identity management landscape and its structure, and is expected to
provide an important stepping stone towards better understanding third-party
identity management and their impact on Web users. Future work includes a
large-scale security and privacy evaluation of alternative identity management
solutions that take into account the observed relationship tendencies observed
in the current identity management landscape.

References

1. Armando, A., Carbone, R., Compagna, L., Cuellar, J., Pellegrino, G., Sorniotti,
A.: From multiple credentials to browser-based single sign-on: Are we more secure?
In: Camenisch, J., Fischer-Hübner, S., Murayama, Y., Portmann, A., Rieder, C.
(eds.) SEC 2011. IFIP AICT, vol. 354, pp. 68–79. Springer, Heidelberg (2011)

2. Bonneau, J., Herley, C., van Oorschot, P.C., Stajano, F.: The quest to replace
passwords: A framework for comparative evaluation of web authentication schemes.
In: Proc. IEEE Symposium on S&P (May 2012)

3. Chari, S., Jutla, C., Roy, A.: Universally composable security analysis of oauth
v2.0. Technical report, Cryptology ePrint Archive, Report 2011/526 (2011)

4. Dhamija, R., Dusseault, L.: The seven flaws of identity management: Usability and
security challenges. IEEE Security & Privacy 6(2), 24–29 (2008)

5. Gill, P., Arlitt, M., Carlsson, N., Mahanti, A., Williamson, C.: Characterizing or-
ganizational use of web-based services: Methodology, challenges, observations, and
insights. ACM Transactions on the Web (TWEB) 5(4), 19:1–19:23 (2011)

6. Lodderstedt, T., McGloin, M., Hunt, P.: Oauth 2.0 threat model and security
considerations. Internet-Draft, IETF (October 2011)



162 A. Vapen et al.

7. Miculan, M., Urban, C.: Formal analysis of facebook connect single sign-on au-
thentication protocol. In: Proc. SOFSEM (January 2011)

8. Pai, S., Sharma, Y., Kumar, S., Pai, R.M., Singh, S.: Formal verification of oauth
2.0 using alloy framework. In: Proc. CSNT (June 2011)

9. Pfitzmann, B., Waidner, M.: Analysis of liberty single-sign-on with enabled clients.
IEEE Internet Computing 7(6), 38–44 (2003)

10. Sun, S.-T., Beznosov, K.: The devil is in the (implementation) details: an empirical
analysis of oauth sso systems. In: Proc. ACM CCS (October 2012)

11. Sun, S.-T., Boshmaf, Y., Hawkey, K., Beznosov, K.: A billion keys, but few locks:
The crisis of web single sign-on. In: Proc. NSPW (September 2010)

12. Sun, S.-T., Hawkey, K., Beznosov, K.: Systematically breaking and fixing openid
security: Formal analysis, semi-automated empirical evaluation, and practical coun-
termeasures. Computers & Security 31(4), 465–483 (2012)

13. Wang, R., Chen, S., Wang, X.: Signing me onto your accounts through facebook
and google: a traffic-guided security study of commercially deployed single-sign-on
web services. In: Proc. IEEE Symposium on S&P (May 2012)



Understanding the Reachability
of IPv6 Limited Visibility Prefixes

Andra Lutu1,2, Marcelo Bagnulo2, Cristel Pelsser3, and Olaf Maennel4

1 Institute IMDEA Networks, Spain
2 University Carlos III of Madrid, Spain

3 IIJ Innovation Institute, Japan
4 Loughborough University, UK

Abstract. The main functionality of the Internet is to provide global connectiv-
ity for every node attached to it. In light of the IPv4 address space depletion, large
networks are in the process of deploying IPv6. In this paper we perform an ex-
tensive analysis of how BGP route propagation affects global reachability of the
active IPv6 address space in the context of this unique transition of the Internet
infrastructure. We propose and validate a methodology for testing the reachability
of an IPv6 address block active in the routing system. Leveraging the global vis-
ibility status of the IPv6 prefixes evaluated with the BGP Visibility Scanner, we
then use this methodology to verify if the visibility status of the prefix impacts its
reachability at the interdomain level. We perform active measurements using the
RIPE Atlas platform. We test destinations with different BGP visibility degrees
(i.e., limited visibility - LV, high visibility - HV and dark prefixes). We show
that the IPv6 LV prefixes (v6LVPs) are generally reachable, mostly due to a less-
specific HV covering prefix (v6HVP). However, this is not the case of the dark
address space, which, by not having a covering v6HVP is largely unreachable.

1 Introduction

The fundamental task envisioned for the Internet is to provide reachability for every
node attached to the network. The Border Gateway Protocol (BGP) is currently respon-
sible for the exchange of network reachability information and the selection of paths
according to specified routing policies. By tweaking the BGP configurations, the net-
work operators are able to express their interdomain routing preferences, designed to
accommodate myriad economic and technical goals. However, these routing policies
can at time affect the global visibility of a certain prefix, both willingly or unknow-
ingly/accidentally [13]. Given the complex interactions between policies in the Internet,
the origin AS by itself cannot ensure that only by configuring a routing policy it can also
achieve the anticipated results [7]. Consequently, policies may affect the propagation of
routes, making some paths unavailable at a global level, and sometimes preventing a
prefix to be learned altogether. Moreover, the definition of routing policies is a compli-
cated process, involving a number of subtle tuning operations prone to errors.

Over the last few years, much has been said about global connectivity (or the lack of
it) in the IPv6 Internet due to the routing policies of a few Autonomous Systems(ASes)
(e.g., [2] ). In this paper, we aim to establish if IPv6 prefix visibility at the interdomain

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 163–172, 2014.
c© Springer International Publishing Switzerland 2014



164 A. Lutu et al.

level has an impact on the reachability of the address space advertised in the Internet.
Using the interdomain route propagation process reflected in the global routing tables
as an expression of routing policy interaction, we introduce the concept of Limited-
Visibility Prefix (LVP). We define LVPs as stable long-lived Internet routes that are
advertised by at least two different ASes, but visible in less than 95% of all the global
routing tables analyzed. Though some legitimate routing policies of an AS limit the
visibility of its prefixes in the Internet, the latter can also stem from human operator
errors or unpredicted interplay with the external netting of otherwise correctly defined
routing policies. Contrariwise, we define the High-Visibility Prefixes (HVPs) as the set
of prefixes that are propagated in at least 95% of all the available global routing feeds.
We also identify the Dark Prefixes (DPs) [9], which represent the subset of LVPs that
are not covered by any HV less-specific prefix. These prefixes represent address space
that, in the absence of a default route, may not be globally reachable. We use the BGP
Visibility Scanner [11] to evaluate the visibility status of the IPv6 prefixes announced
in the global routing system. The tool uses the routing data retrieved from the RIPE RIS
and RouteViews projects to performs a differential analysis to retrieve LVPs on a daily
basis, which are then made available on-line.

We further focus on measuring the reachability of the prefixes in all of the three
above-mentioned sets of prefixes, i.e. HVP, LVP and DP. We propose a methodology
for testing the reachability of an IPv6 prefix, which relies on the use of traceroute probes
to test the destination prefix. We calibrate the proposed measurement methodology by
testing a large set of so-called anchor prefixes, which we know a priori to contain at
least one reachable address. We compile a set of approximatively 70,000 such prefixes,
which we test from a major Japanese ISP using different traceroute approaches. We then
apply the proposed methodology from multiple vantage points in the Internet, including
100 RIPE Atlas active probes. We thus show that the IPv6 LVPs (v6LVPs) are generally
reachable, mostly due to the less-specific HV covering prefixes. However, this is not the
case of the dark address space, which is largely unreachable.

2 The BGP Visibility Scanner for IPv6

In this section we describe the BGP Visibility Scanner - a tool we propose for identi-
fying LVPs at the interdomain level. We have publicly released an initial version of the
BGP Visibility Scanner1 in November 2012, allowing any network operator to check if
the AS originates LVPs. The earlier version of this tool is documented in [11]. Since
it became operational, the tool has been well received by the operational community
and it still attracts a large amount of attention and feedback. The methodology used
for the BGP Visibility Scanner is structured in three steps: First, we retrieve the raw
BGP routing data at two different times every day. Second, we clean the raw data in
order to obtain the Global Routing Tables (GRTs), by applying two different cleansing
filters. Third, we verify in two sub-steps the visibility of each prefix within the sample
of identified GRTs using the Visibility Scanner Algorithm. We now further expand on
the steps we take in order to retrieve, parse, clean and process the raw BGP routing data
to distinguish the set of LVPs and DPs.

1 The BGP Visibility Scanner is publicly available at visibility.it.uc3m.es



Understanding the Reachability of IPv6 Limited Visibility Prefixes 165

2.1 Retrieving and Refining the Raw Routing Data

We work with publicly available routing data, retrieved from the RouteViews and RIPE
RIS projects. These two repositories periodically receive BGP routing table snapshots,
i.e. one time instance of a routing table, from over 400 active BGP peers for both IPv4
and IPv6. In this first step of the methodology, we retrieve the publicly available routing
data. We choose to do so at two different times during the day, i.e., at 8h00 and 16h00.
We process these two different snapshots per day in order to be certain that we only
work with routes that are stable expression of routing policies at the interdomain level.

In the second step of our methodology, we parse the raw data in order to identify
what we define to be global routing tables (GRTs). Only by comparing the GRTs from
the BGP peers, we can further identify the sets of HV and LV prefixes. For the purpose
of this paper, we loosely define the GRT as the entire routing table provided by a Default
Free Zone (DFZ)2 network to its customers requesting a full routing feed. The routing
table maintained in one of the so-called DFZ routers is commonly known as the global
routing table. Realistically speaking though, due to the current operational status of
the Internet routing, such a GRT of the BGP routing is an idealized concept. However,
Internet Service Providers (ISPs) do maintain their own version of the global routing
table, which is propagated to customer networks upon request. This is not a formal
definition, but it properly captures the main idea of the kind of data we require.

In order to identify the feeds which constitute a GRT, the primary characteristic of
the routing feeds on which we focus is the actual size of the routing table snapshot.
Based on the BGP Analysis Report [1], we consider that a complete routing feed from a
monitor should have no less than 10,000 IPv6 routing entries. Consequently, we check
over 200 routing feeds collected from the two repositories, and keep approximatively
110 BGP feeds that comply with the imposed lower-limit of prefix number.

Additionally, we perform a couple of “sanitary” checks on the data contained in
the identified GRTs, in order to further discard the information that is of no interest
for our study. Hence, we apply the bogon filter on all the GRTs. Bogon prefixes are a
class of routes that should never appear in the Internet. Bogons are defined as Martians,
representing reserved and local address space or Fullbogons, which include the IP space
that has been allocated to a Regional Internet Registry (RIR), but has not been assigned
by that RIR to an actual Internet Service Provider (ISP) or other end-user. We use the
periodically updated filters from The Bogon Reference [4] in order to make sure that
we eliminate any possible bogon route included in the GRTs.

2.2 The Visibility Scanner Algorithm: The Labeling Mechanism

We now apply the Visibility Scanner Algorithm for identifying prefixes with stable
limited visibility in the Internet. It is important to filter out the cases of limited visibility
caused by other factors unrelated to routing policies, e.g. BGP convergence or internal
routes advertised only to the collector. In order to discard any internal paths leaking
towards the collectors, we remove all the routes learned from only one monitor which

2 Conceptually, the so-called Default Free Zone (DFZ) represents the set of BGP-speaking
routers that do not need a default route to forward packets towards any destination in the
Internet.



166 A. Lutu et al.

is also the route originating AS. Next, in order to further avoid that the converging
prefixes emerge as false positive limited visibility prefixes in our results, we analyze
two samples taken 8-hours apart of routing data. We evaluate the visibility degree at
every sampling moment and assign visibility labels based on our results. We define the
visibility degree as the number of GRTs which contain (i.e., “see”) a certain prefix, and
the visibility label as the visibility status of each prefix, i.e. LV for Limited Visibility
and HV for High Visibility. We then compare the per-prefix visibility of each prefix, as
observed at each sampling time and apply the prefix visibility prevalence sieve.

The Labeling Mechanism: Based on the visibility degree of the prefixes at each of
the two sampling moments (i.e. 08h00 and 16h00), we assign a visibility labels at each
sampling moment to all the prefixes discovered. We define Limited Visibility prefixes as
prefixes present in less than 95% of the active monitors at a sampling time. Otherwise,
the prefixes are defined as High Visibility prefixes. Ideally, a HV prefix should be con-
tained in absolutely all the routing tables contained in the sample. The choice of the
95% allows for a 5% error in the sampling, including possible glitches that may appear
in the data. Moreover, according to our threshold sensitivity analysis, we find that the
set of LVPs is not particularly sensitive to the values of the prevalence sieve threshold.

Visibility Label Prevalence Sieve: When deriving the final per-day visibility label,
we account for the dynamics of a prefix in time. The high visibility of a prefix in at
least one monitor sample hints the fact that the route could reach all the observed ASes.
Should this change during the analyzed time, it might be a cause of, for example, topol-
ogy changes or failures. Therefore, we consider that the HV label always prevails, i.e.
if a prefix is tagged as HV in one of the samples, it is tagged as HV in the final set.

Otherwise, when no HV label is tagged, we analyze the cases of LV prefixes emerg-
ing in our results. If a prefix appears only at one sampling time and it is tagged as LVP,
this might be a sign that the prefix is in the process of being withdrawn or, contrariwise,
in the process of converging after just being injected. These particular routes cannot be
qualified within our study, thus we filter out any prefix with only one label in a day
and that label being LV. The only case where a prefix has limited visibility and mark it
accordingly, is when the two labels assigned at each sampling time are both LVP.

Identifying Dark Prefixes: Once we have identified the two main sets of prefixes,
i.e. the LVPs and the HVPs, we can now identify the set of Dark Prefixes. For each of
the prefix in the LVP category, we build the covering trie of less specific HV prefixes,
from which we ultimately retrieve its root prefix (i.e. the smallest covering HV prefix).
In the eventuality of not identifying any such globally visible less-specific prefix, we
mark the LV prefix as Dark and continue our analysis.

3 The IPv6 Limited Visibility Prefixes

We collect more than 500 routing feeds on a daily basis, for each of the two different
sampling moments, i.e., 8h00 and 16h00. After the cleansing process, we distinguish,
in average, 110 GRTs injected to the public repositories by unique ASes. We then com-
pare the content of the 110 GRTs in order to identify the LVPs. In rough numbers, the
daily overall total number of prefixes identified is approximatively 16,500 prefixes. Out
of these, on average 150 prefixes are singled out as leaked internal routes and, conse-
quently, discarded from our analysis. Furthermore, we remove the converging routes



Understanding the Reachability of IPv6 Limited Visibility Prefixes 167

0 20 40 60 80 100 120 140
10

0

10
1

10
2

10
3

10
4

IPv6 Prefix Length

N
um

be
r o

f I
P

v6
 P

re
fix

es

 

 

10

20

30

40

50

60

70

80

90

Fig. 1. Distribution of IPv6 prefixes on prefix length. The bars are color-coded to show the visi-
bility degree of the prefixes: from dark blue for LV, going to dark red for HV.

that may otherwise emerge as limited visibility in the visibility scanner. This incurs the
elimination of about 10 additional prefixes in average. For the remaining prefixes we
continue our visibility analysis and assign LV/HV visibility tags.

Finally, we identify an average of 3,500 IPv6 prefixes that are tagged LVP and ap-
proximatively 12,500 prefixes marked HVP. Therefore, 20% of all the IPv6 prefixes
identified from the analyzed routing tables are LVPs. This is consistent with the result
for the IPv4 LVPs, where out of all the prefixes learned, 20% have limited visibil-
ity [11]. When checking how the two sets of prefixes overlap, we find that there are
more than 500 LV prefixes without a covering HVP, which we mark DP. This repre-
sents approximatively 14% of the whole set of v6LVPs and 3.75% of the v6HVP set.
When comparing with the situation in IPv4, where in average only 3% of the LVPs
(and 0.6% of the HVPs) are marked as dark, we conclude that we have almost 5 times
more IPv6 dark address space. This is relevant because these prefixes may have limited
reachability. We have observed more than 13% of all IPv6 active ASes inject LVPs,
while less than 5% of all IPv6 active ASes originate DPs. In IPv4, we see that 9% of
all ASes originate LVPs, while only 2% are also injecting DPs. This result further hints
the early stages of development of the IPv6 architecture, previously established in [6].

For the rest of the analysis we perform in the paper, we use the LVP dataset derived
on the 8th of August, 2013. The dataset consists of 12,621 v6HVPs and 3,444 v6LVPs,
out of which 473 are v6DPs. Figure 1 depicts the distribution of IPv6 prefixes per prefix
length, color-coded to match the visibility degree of the prefixes in question. All the pre-
fixes with a length longer than /48 are labeled as v6LVPs by the BGP Visibility Scanner
i.e. /48’s do not propagate globally in the IPv6 routing system. This is consistent with
the status in IPv4, where every prefix more-specific than /24 is labeled LVP.

4 Traceroute Probing for Reachability

In this section, we try to verify if the limited visibility of such prefixes have an actual
impact in the reachability of the addresses in them.

We propose a methodology for determining if a prefix is reachable from a given van-
tage point in the Internet. The challenge for doing this with IPv6 prefixes is that it is



168 A. Lutu et al.

not a simple task to find an address that is actually allocated to a host in a given prefix.
The idea we put forward to probe the reachability of a prefix is to perform traceroute
towards a random address within the prefix and check if the last node responding to the
traceroute belongs to the origin AS of the target prefix or to one of the Internet providers
of the origin AS, as observed in the BGP AS-Path. In other words, the methodology we
propose for determining the reachability of a prefix is as follows. We send a tracer-
oute probe towards a random address within the target prefix. We say that the prefix is
reachable if :

1. The traceroute probe reaches the network to which the prefix has been allocated.
2. The traceroute probe traverses the second-last3 AS along the BGP AS-Path for the

target prefix.

We consider this latter hypothesis because there may be cases where, even if the probe
does reach its destination, it might happen that the origin AS of the source IP for the
last ICMP message received is actually the transit provider of the target AS. This hap-
pens because it is a common operational practice that ASes use addresses from their
providers for their transit links. As a result, the router within the destination network
that issues the last message of the traceroute process will do so using an source ad-
dress from its ISP’s address space. We do acknowledge that this may also be due to
reachability problems in the last hop, which our methodology is unable to distinguish.

4.1 Traceroute Probing Approach

We begin by discussing the different traceroute probing methods and how we select the
most suited approach. Traceroute is one of the most widely used network measurement
tools, useful both to network operators and researchers. The original traceroute tool [8]
sends UDP probes and it will be our default measurement approach. We further refer
to this test as default UDP traceroute probing. The major weakness of the default UDP
traceroute is that, in the current operational routing system, firewalls are likely to filter
the probes sent to these unlikely ports, thus impacting the quality of the measurements.
In order to avoid this problem, several other approaches are available. We use a mod-
ified UDP traceroute method which, instead of using high-numbered unlikely ports,
sends packets on port 53. We further refer to this probing method as “UDP traceroute”.
A second approach we use is the so-called ICMP traceroute, which uses ICMP echo
request instead of UDP probes. The last approach we use is TCP traceroute, which em-
ploys TCP SYN probes to port 80. The advantage of this approach is that the probes
cannot be easily distinguished from normal requests to web servers, so they are less
likely to be discarded along the path.

We establish which of the above-mentioned traceroute approaches is the most effi-
cient by testing the status of a large set of control IPv6 addresses with all the listed
probing methods. We use a set of 70.000 IPv6 addresses which are known to be reach-
able. This is made up of addresses from many sources, including DNS entries, Alexa’s

3 Usually, in the BGP AS-Path the last hop represent the origin AS of the prefix, while the first
hop represents the AS whose routing table we analyze. Following this order, the second-last
hop (2LH) in the AS-Path corresponds to the transit provider of the origin AS.



Understanding the Reachability of IPv6 Limited Visibility Prefixes 169

top sites, and several other sources. We check the reachability status of these 70,000
IPv6 addresses from a machine inside a major Japanese ISP’s network. We do so by
using all the above-mentioned traceroute probing approaches. Our results show that the
most efficient probing method is ICMP traceroute, which successfully reached 99% of
all the 70,000 probable IP addresses. Consequently, the traceroute probing method we
further employ in our study is the ICMP traceroute. This results is consistent with the
observations of Luckie et al. in [10].

4.2 Validating the Measurement Methodology

We validate our methodology by testing a set of reachable IPv6 prefixes, which are
known to contain at least one reachable address. The way we do this is by tacking a
reverse engineering approach. For each of the previously identified 70,000 reachable
IPv6 addresses, we map the covering prefix installed in the BGP routing tables. We use
public routing data information to determine the most-specific prefixes covering each
of these reachable addresses. The set of prefixes determined represents address space
known to contain at least one address which is successful to ICMP traceroute probing.
These prefixes form the target set of prefixes which we use for validation.

We start by sending ICMP traceroute probes from a machine within the major
Japanese ISP towards a randomly selected IPv6 address within each of the prefixes
determined above. According to the proposed methodology, we consider that the tracer-
oute probe reached its destination when the traceroute probe traverses either the origin
AS of the destination address, either the second-last AS appearing in the BGP AS-Path
towards the target prefix. In order to identify the 2LH towards a prefix, we analyze the
AS-Path information in the BGP routing table of the AS from which we are generating
the traceroute messages, i.e., the major Japanese ISP.

After parsing the results of our traceroute tests, we learn that the ICMP traceroute
probes successfully reached more than 96% of these a-priori reachable prefixes. Conse-
quently, the methodology we propose is able to identify with 96% accuracy the reacha-
bility status of an IPv6 prefixes. For the other 4% of prefixes, our methodology is unable
to determine reachability. This may be due to several reasons, including ICMP filtering
or routers silently discarding packets.

5 Reachability Measurements and Results

5.1 Local Reachability Measurements

In order to establish the reachability for prefixes with the three different classes of
interdomain visibility, we perform ICMP traceroute probing from a machine inside a
major Japanese ISP’s network. Regarding the target address space to be tested, we first
re-define the set of LVPs and DPs locally, by analyzing only the routing table snapshot
of the Japanese ISP. We are thus able to identify a total of 13,195 IPv6 prefixes present
in the routing table, which we further label as High-Visibility Prefixes. These prefixes
may not be globally High-Visibility, since there may be other routing tables not “seeing”
some of these prefixes. We label all the rest of prefixes learned from the rest of the



170 A. Lutu et al.

routing tables collected from the public repositories as Limited Visibility, which reach a
total number of 2,359 prefixes. In order to check if any of the Limited Visibility prefixes
are in fact Dark Prefixes from the point of view of the ISP, we check which v6LVPs have
a less-specific v6HVP in the ISP’s routing table to offer global reachability. We are thus
able to single out a total number of 511 Dark Prefixes.

From the results of the measurements we learn that, in the case of the locally-defined
v6HVPs, 92% of the target high-visibility prefixes are reachable from the ISP’s net-
work. This is consistent with the precision of our methodology, so we cannot make
claims about reachability problems in the HVP set. In the case of the locally-defined
v6LVPs which have a covering high-visibility IPv6 prefix (i.e., they are not dark), we
observe that 94% of the prefixes are reachable from the Japanese ISP’s network. Like-
wise, this is consistent with the precision of our tool so we cannot make any claims
about reachability problems in the LVP set. We next evaluate the reachability status
for the DPs and we learn that more than 95% of these prefixes traceroute ended in a
network or destination unreachable error messages. Consequently, less than 5% of the
dark address space is reachable from the Japanese ISP. We can then claim that within
the precision of our methodology, DPs do present reachability problems.

5.2 RIPE Atlas Measurements and Results

Previously, we have seen that the non-dark LVPs defined for the Japanese ISP do not
exhibit reachability issues, due to the covering HVPs. However, this was not the case
for the local dark address space, which has less than 5% reachability. In this section, we
use the RIPE Atlas platform [3] to run larger-scale measurements for characterizing
the reachability of the global dark address space.

We zoom out from the previous localized analysis of reachability, and test the reach-
ability of the DPs from 100 different probes active in the RIPE Atlas platform. We run
the measurements both towards the globally defined set of IPv6 dark prefixes, i.e. the
473 v6DPs derived from analyzing 110 BGP routing tables, and also towards the set of
IPv4 dark prefixes, i.e., 3,200 v4DPs derived from analyzing 154 global BGP routing
tables. We send ICMP traceroute probes towards a random target address within each
of the v6 and v4 DPs.. We proceed to verifying the reachability results in accordance
with the methodology specified in Section 4. Point 2) of the proposed methodology re-
quires to verify if the traceroute probe traverses the provider of the origin AS for the
target prefix. As opposed to the case of the major Japanese ISP for which we have the
BGP routing table to analyze, we now do not have access to the BGP routing tables
corresponding to the 100 Atlas probes used. In order to overcome this issue, we build a
set of probable second-last hops which may be traversed towards all the possible des-
tination ASes. We do so by analyzing all the available routing tables from all the ASes
active in RIPE RIS and/or Routeviews, and monitoring the ASes appearing as 2LHs
towards every active destination AS. Thus, we state that the target prefix is reachable if
the traceroute probe traverses any of the probable second-last ASes to the origin AS of
the target prefix.

After processing all the traceroute results from each of the 100 probes towards a
Dark Prefix, we conclude that the average reachability degree for a v6DP is of 46.5%,
whereas for v4DPs this decreases to only 17.4%. To further understand this result, we



Understanding the Reachability of IPv6 Limited Visibility Prefixes 171

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

v6DPs

Prefix Visibility

P
re

fix
 R

ea
ch

ab
ili

ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

v4DPs

Prefix Visibility

P
re

fix
 R

ea
ch

ab
ili

ty
Fig. 2. Scatterplot of reachability probability against the DP’s visibility, for v6DPs and for v4DPs

verify how the DP reachability correlates with the visibility degree of a DP. We show in
Figure 2 the scatterplots both for IPv6 and IPv4 DPs’ reachability against their visibil-
ity within the corresponding sample of ASes analyzed. We observe that for the v6DPs,
depicted in the left-side plot, there is a stronger correlation between reachability and
visibility than for the v4DPs. This happens because, for the v4DPs, we see a high num-
ber of prefixes with very limited visibility, but which are highly reachable from the
sample of 100 probes chosen. We observe that in the v4 plot from Figure 2 there are
approximatively 8% of IPv4 prefixes with visibilities smaller than 0.2 and reachability
larger than 0.2. As previously noted in [5], this may be due to default routing in IPv4.
In [12], the authors explain many of the real-life operational reasons for which this type
if v4DPs emerge in the Internet. For example, we observe in the lower-left corner of
the IPv4 plot in Figure 2 a very large number of v4DP (approximatively 72% of all the
v4DPs) with a reduced visibility degree and a corresponding low reachability degree.
These v4DPs may be route leaks which, as we learn from [12], often occur in the In-
ternet. Consequently, the lack of reachability observed for v4DPs is largely explained
by the fact that these prefixes are unintended to be visible in the Internet to begin with.
At the same time, even if the v6DPs do not follow the known symptoms of route leaks
or anomalies previously learned from the IPv4 cases, they do struggle with important
lack of reachability. This further supports the hypothesis that, while in IPv4 the DPs
are in majority results of mistakes or slips in the network configuration, for IPv6 we
understand this as a side-effect of the early stages of development of the network.

6 Conclusions

In this paper, we perform an extensive analysis of how BGP route propagation affects
global reachability of the active IPv6 address space, in the context of IPv6 penetration
growing in the Internet.We proposed a methodology to measure the reachability status
of the active LVP IPv6 prefixes, which represent address space that is not present in all
the global routing tables of the operational networks. We find that, while the fraction
of limited visibility address space is similar in the IPv4 and the IPv6 Internet (about



172 A. Lutu et al.

20% of the prefixes), the proportion of dark address space in the IPv6 Internet is sig-
nificantly larger than in the IPv4 Internet (3.75% versus 0.6%). We find an important
correlation between the limited visibility of a dark IPv6 prefix and its reduced reachabil-
ity. Moreover, while the IPv4 dark address space can be largely explained as route leaks
or mistakes, this is not valid for the v6DPs. We believe that this is a serious problem
for the IPv6 Internet, as limited reachability of a non-negligible set of prefixes under-
mines the global connectivity of the Internet. In future work we expect to investigate
the reasons behind the large amount of dark address space in the IPv6 Internet.

Acknowledgements. This work was partially supported by the European Community’s
Seventh Framework Programme (FP7/2007-2013) grant no. 317647 (Leone). We would
like to thank Emile Aben for the discussions which helped improve this work and for
his support while working with the Atlas platform.

References

1. BGP Routing Table Analysis Report, http://bgp.potaroo.net/
2. IPv6 internet broken - NANOG mailing list,

http://mailman.nanog.org/pipermail/nanog/2009-October/013997.
html

3. Ripe Atlas, https://atlas.ripe.net/
4. The Bogon Reference, http://www.cymru.com/BGP/bogons.html
5. Bush, R., Maennel, O., Roughan, M., Uhlig, S.: Internet optometry: Assessing the broken

glasses in internet reachability. In: Proceedings of the 9th ACM SIGCOMM Conference on
Internet Measurement Conference, IMC 2009 (2009)

6. Dhamdhere, A., Luckie, M., Huffaker, B., Claffy, K., Elmokashfi, A., Aben, E.: Measuring
the deployment of ipv6: topology, routing and performance. In: Proceedings of the 2012
ACM Conference on Internet Measurement Conference, IMC 2012 (2012)

7. Griffin, T., Huston, G.: BGP Wedgies, RFC 4264 (2005)
8. Jacobson, V.: Traceroute, ftp://ftp.ee.lbl.gov/traceroute.tar.gz
9. Labovitz, C., Ahuja, A., Bailey, M.: Shining Light on Dark Address Space. Tech. Rep. TR-

2001-01, Arbor Netwoks, Ann Arbor, Michigan, USA (November 2001)
10. Luckie, M., Hyun, Y., Huffaker, B.: Traceroute probe method and forward ip path inference.

In: Proceedings of the 8th ACM SIGCOMM Conference on Internet Measurement (2008)
11. Lutu, A., Bagnulo, M., Maennel, O.: The BGP Visibility Scanner. In: IEEE Global Internet

Symposium, GI 2013 (April 2013)
12. Lutu, A., Bagnulo, M., Cid-Sueiro, J., Maennel, O.: Separating wheat from chaff: Winnow-

ing unintended prefixes using machine learning. In: Proceedings of 33rd IEEE International
Conference on Computer Communications, IEEE INFOCOM 2014 (to appear, 2014)

13. Zhang, K., Yen, A., Zhao, X., Massey, D., Wu, S.F., Zhang, L.: On detection of anomalous
routing dynamics in BGP. In: Mitrou, N.M., Kontovasilis, K., Rouskas, G.N., Iliadis, I., Mer-
akos, L. (eds.) NETWORKING 2004. LNCS, vol. 3042, pp. 259–270. Springer, Heidelberg
(2004)

http://bgp.potaroo.net/
http://mailman.nanog.org/pipermail/nanog/2009-October/013997.html
http://mailman.nanog.org/pipermail/nanog/2009-October/013997.html
https://atlas.ripe.net/
http://www.cymru.com/BGP/bogons.html
ftp://ftp.ee.lbl.gov/traceroute.tar.gz


Violation of Interdomain Routing Assumptions

Riad Mazloum1, Marc-Olivier Buob1, Jordan Augé1, Bruno Baynat1,
Dario Rossi2, and Timur Friedman1,�

1 UPMC Sorbonne Universités
2 Telecom ParisTech

Abstract. We challenge a set of assumptions that are frequently used
to model interdomain routing in the Internet by confronting them with
routing decisions that are actually taken by ASes, as revealed through
publicly available BGP feeds. Our results quantify for the first time the
extent to which such assumptions are too simple to model real-world
Internet routing policies. This should introduce a note of caution into
future work that makes these assumptions and should prompt attempts
to find more accurate models.

1 Introduction

Figure 1a illustrates a case of what is called multi-exit routing in the Inter-
net. From BGPmon’s [1] publicly-available feed of the BGP interdomain route
updates of numerous routers, we know that the autonomous system (AS) in
the middle of the figure, AS6762, has two different routes by which to reach
the address prefix 103.11.245.0/24, the advertisement for which is originated
by AS5845, on the figure’s far right. One route, on top, goes via AS10026 and
AS45932, while the other, on the bottom, goes via AS1299. Which of these routes
will AS6762 advertise to the ASes that neighbor it on the left, AS262589 and
AS26615?

The AS in the middle is Telecom Italia’s Sparkle, the world’s 9th most im-
portant AS as reported by CAIDA’s AS Rank service [2]. The top route goes via
Pacnet, which is a customer of Sparkle according to CAIDA’s AS Relationships
database [3]. The bottom route is via TeliaNet, which the database tells us is
Sparkle’s peer. The standard assumption is that an AS will always route through
a paying customer rather than a peer, from which it receives no revenue. And
indeed Sparkle advertises the route via its paying customer Pacnet to the top-
left neighbor, INTERNEXA. However, the BGP feeds also tell us that Sparkle
advertises a different route, the one via its peer TeliaNet, to the bottom-left
neighbor, Tim Cellular. It appears that the assumption does not hold.

What is wrong? Could there be an error in the AS Relationships database
that we are relying upon? Suppose, for instance, that TeliaNet was in fact a

� Collaboration through the LINCS laboratory. Full institutional affiliation of UPMC
Sorbonne Universités authors: Sorbonne Universités, UPMC Univ Paris 06, UMR
7606, LIP6, F-75005, Paris, France.

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 173–182, 2014.
c© Springer International Publishing Switzerland 2014



174 R. Mazloum et al.

(a) Routing example (b) General case

Fig. 1. Multi-exit routing example and general case

paying customer of Sparkle, rather than its peer. Then, Sparkle’s routing through
both Pacnet and TeliaNet would be perfectly coherent with the assumption that
Sparkle will prefer to route through its customers.

However, this scenario would violate another common assumption: that an AS
with two customers will route through the one that offers a shorter sequence of
AS hops to the destination prefix. Since the route via TeliaNet is just two hops,
it should be chosen instead of the route via Pacnet, which takes three hops, but
this is not the case. If Sparkle were to override this choice, which BGP practices
allow, it would be to select Pacnet in place of TeliaNet, and not advertise routes
via both of them, as it does.

The scientific community already knows that network operators do not al-
ways implement interdomain routing policies in ways that are consistent with
the simplifying assumptions that are made for modeling purposes. However, the
degree to which reality defies the assumptions has not previously been quantified.
This paper looks at 4 million routes that we collected from IPv4 BGP feeds, and
in particular at 204 thousand instances of multi-exit routing that those feeds
reveal. In 33% of the multi-exit cases, the assumption about routing preferen-
tially to customers over peers and to peers over providers is not coherent with
the relationships that are described by CAIDA. In fully 57% of the cases, the
path length assumption does not hold.

This paper proceeds in Sect. 2 by providing some background for readers
who are not familiar with the details of BGP. In this context, we formalize four
commonly-held assumptions, and cite examples in the literature where they are
made. (The assumptions described above are composites of these four assump-
tions.) Sect. 3 describes our methodology for confronting the assumptions with
the data. Results appear in Sect. 4. The paper wraps up with related work
(Sect. 5) and a conclusion pointing to future work (Sect. 6).

Our contributions are to formalize commonly-held assumptions about inter-
domain routing and AS relationships and propose two methods to identify vio-
lations of the models. Also, we provide the first quantification of such violations
to be based upon publicly-available data.



Violation of Interdomain Routing Assumptions 175

2 Interdomain Routing and Our Set of Assumptions

2.1 BGP Background

BGP is the interdomain routing protocol that allows an AS to learn how to route
to destinations in other ASes. A BGP route describes the AS Path, or sequence
of ASes, to be traversed on the way to a prefix, which is a set of contiguous IP
addresses. The BGP next hop is the egress point to use at the IP level in order to
follow the route. Routes are exchanged between routers in the same AS through
iBGP sessions, and between routers in different ASes via eBGP.

In the general case, a BGP router learns several routes toward a given desti-
nation. It is free to accept just some of them and to modify these. The router
then elects one route (the best route) by following the selection steps of the BGP
decision process [4], typically modeled as in Table 1. At each step, routes domi-
nated by at least one other route are discarded. When, after one of these steps,
there remains just one element in the set, this element is the best route.

Table 1. Selection steps of the BGP decision process

1. Highest local preference
2. Shortest AS Path length
3. Lowest origin type
4. Lowest multi-exit discriminator

5. eBGP over iBGP
6. Lowest IGP cost
7. Tie break rules

The router is free to modify a best route before forwarding it to its neighboring
routers and it is free to select which of those routers will receive the route.

One modifiable parameter that affects the choice of best routes is the local
preference. If a router receives two routes � and �′ toward the same destination
with a higher value of local_pref assigned to �, then � is preferred to �′.

2.2 AS Relationships

ASes use BGP to implement their contractual commercial agreements, which
are typically modeled by three types of economic relationship.

– Customer-to-provider (c2p): a customer pays a provider for transit service
to the rest of the Internet for its traffic and its customers’ traffic.

– Peering (peer): a pair of ASes transit traffic between them or their customers
to destinations belonging to them or their customers, free of charge.

– Sibling-to-sibling (s2s): a pair of ASes transit traffic for each other and for
their respective clients to every destination in the Internet, free of charge.

Gao [5] proposed a way to infer AS relationships based upon observed BGP
routes, opening the way to much subsequent work.



176 R. Mazloum et al.

2.3 A Set of Interdomain Routing Assumptions

This section describes four common assumptions about interdomain routing,
citing selected papers that make each assumption.

(A1) iBGP valid
The assumption is that any BGP route has the potential to be propagated
within an AS to all routers of that AS. In other words, route propagation is only
governed by routing decisions taken by the different routers in the AS and there
are no parts of the AS to which a route cannot be forwarded.

This assumption seems justified since an AS should guarantee this property
in order to assure that all of its routers are selecting the best routes [6–10].

(A2) Policy through eBGP only
Routing policy is only applied by routers through their participation in interdo-
main (i.e., eBGP) sessions. This assumption implies that the local_pref value
is not modified by routers through their iBGP sessions. If a router were to mod-
ify the local_pref value for some or all of the routes in an iBGP session, this
could affect the choices of all routers in the AS to which this route is forwarded.1

This assumption is made to simplify the model of route propagation in an
AS [6, 8–10].

(A3) Customer over peer, peer over provider
The assumption that an AS always prefers to send traffic through a customer
over a peer and through a peer over a provider so as to maximize the presumed
economic benefits. Sending traffic through a customer means that the customer
will pay for it, while sending though a provider means that one has to pay the
provider. [6, 8, 10].

An AS will implement this hierarchy by assigning a higher local_pref value
to routes learned from a customer than to routes learned from a provider.

(A4) Only one relationship type
In the literature, each AS interconnection is typically modeled as a single eco-
nomic relationship [5,8–16]. This assumption rules out, for instance, an AS being
the peer of another AS in one part of the world, while being that AS’s customer
in another location. This is a convenient assumption to make because the main
source of data consists of AS paths conveyed on BGP routes. These paths pro-
vide only AS-level information, and do not reveal, for instance, in cases where
there are several possible egress points through which traffic can pass from one
AS to another, which ones are used.

3 Methodology

If we had detailed knowledge of the routing decisions made by BGP routers,
it would be possible to challenge, and possibly invalidate, the individual as-
sumptions described in the previous section. Unfortunately, this information is

1 There is a way to influence a routing decision before the local preference step, which
is to use a vendor-specific weight attribute. It allows a router to prefer routes based
upon which router it received them from. For the purposes of (A2), modifying weights
through iBGP sessions has the same violation impact as modifying local preferences.



Violation of Interdomain Routing Assumptions 177

unavailable to us. However, the publicly-available BGP feeds do allow us to
challenge combinations of assumptions.

The novelty of our approach lies in the way that we use observed instances
of multi-exit routing as a means to identify assumption violations. An instance,
which we call a multi-exit, arises when an AS uses multiple next-hop ASes to
reach a given destination prefix. Briefly, we process the feeds to identify multi-
exits (Sect. 3.1), and then we examine each one for incoherencies in either the AS
path length, the AS relationships, or both (Sect. 3.2). Each incoherency reveals
a case in which one or more common assumptions have been violated.

3.1 Observing Multi-exits

Not all multi-exits can be observed through BGP feeds, but we can see them
when an AS advertises two or more routes to a common destination prefix to
its neighboring ASes. Fig. 1b illustrates the general case: an AS X announces
to its neighbors W and W ′ different routes to a destination prefix p, each route
having a different next-hop AS, Y or Y ′.

We observe multi-exits as follows. A BGP snapshot at a given instant t is the
set of all of the BGP routes being used by the vantage points at that time. The
AS Path of a route is a sequence of AS numbers (AS1, . . ., ASi, . . ., ASk). For
each AS ASi of the AS Path and for each destination prefix p related to this path,
we extract the next-hop AS ASi+1 used by ASi to reach the destination p. In
this way we build the set of BGP triplets, TBGP = {(ASi, ASi+1, p)}. Looking at
these triplets, a multi-exit is observed whenever we detect two (or more) triplets
of the form (ASi, ASi+1, p) and (ASi, AS

′
i+1, p).

3.2 Observing Incoherencies in Multi-exits

We now present simple criteria for detecting, in a multi-exit, two types of inco-
herency with a set of common assumptions. Each incoherency reveals an instance
in which one or more assumptions have been violated. Note that while observed
incoherencies allow us to reveal assumption violations, the inverse is not nec-
essarily the case. If an assumption is violated by an AS for which there is no
multi-exit in our database, our techniques will not reveal this violation. Further-
more, it is possible, even in a multi-exit, for a violation to not manifest itself
as an observable incoherency. Hence, our results provide a lower bound on the
number of actual violations present at the time of the BGP snapshot.

Incoherent AS Path Lengths. We observe incoherent AS Path lengths as
follows. Assume that X , in Fig. 1b, through a router R (not shown), announces
to its neighbor W a route � that it has received from Y , and simultaneously,
through another router R′ (not shown), announces to its neighbor W ′ a route
�′ that it has received from Y ′. If any of the first four steps of the BGP decision
process (see Table 1) had been decisive, assumptions (A1) and (A2) require that
R and R′ will have selected the same route. Since each has selected a different



178 R. Mazloum et al.

route, the decision process will have passed steps 1 and 2, meaning that routes
� and �′ had the same local_pref values and identical AS Path lengths.

Our first criterion is thus to check the AS path length of routes identified in a
multi-exit. If an AS announces two routes � and �′ toward the same destination,
and the AS Path lengths of � and �′ differ, we deduce that either (A1) or (A2),
or both, have been violated. Since our observations do not allow us to distinguish
violations of (A1) from violations of (A2), we state merely that a path length
incoherency reveals a violation of the composite assumption (A1⊕A2).

Incoherent AS Relationships. We observe incoherent AS relationships as
follows. According to (A3), an AS assigns higher values of local_pref to its
customers than to its peers, which in turn receive higher values than do the
providers. Also, according to (A4), there is only one relationship between two
ASes, which means that there is one value of local_pref per neighboring AS
and that this value further corresponds to the type of the relationship. Further,
according to (A1), if an AS X is observed to do multi-exit routing through two
different ASes Y and Y ′ then routes learned from those ASes have the same
value of local_pref. Finally, according to (A2), Y and Y ′ must have identical
types of relationship with X (e.g., they are both customers of X).

As a consequence, our second criterion is to examine the relationships between
an AS and its next-hop ASes in a multi-exit. This requires the availability of an
AS relationship database. We consider c2p and peer relationships, leaving out
the special case of s2s without affecting our conclusions. If the relationships
differ, then we can infer that at least one of the assumptions in the composite
set (A1⊕A2⊕A3⊕A4) is violated.

4 Results

4.1 Data Sources

Our study is based on two types of data: BGP updates and AS relationships.
We parsed IPv4 BGP updates from BGPmon, which gathers data provided by
RouteViews2 and peers to some other BGP routers [1].

We ran our analysis on snapshots taken in August 2012, then January, March,
and August 2013. Results presented here are based on a snapshot taken on 24
March 2013 at 10:00:00 GMT. Table 2 lists some snapshot statistics and results.
The other snapshots were similar.3

To increase the likelihood that each route that has been introduced has indeed
had a chance to propagate to all of the vantage points, we apply a route stability
filter. We consider a route stable if it is the last one received by a BGP router
concerning a prefix and it has been received at least 24 hours ago without being
withdrawn. The filter causes us to slightly undercount multi-exits, and its effect
on the overall results is negligible.

2 http://www.routeviews.org/
3 All of our data is publicly available at http://top-hat.info/routing-assumptions/.

http://www.routeviews.org/
http://top-hat.info/routing-assumptions/


Violation of Interdomain Routing Assumptions 179

We also remove from AS paths any ASNs reported by CAIDA [3] to belong
to Internet exchange points (IXPs). In principle, these do not play a role in the
routing policy of the ASes they interconnect.

Table 2. Snapshot statistics and results

routes 3,948,447
stable routes 3,493,673

prefixes 459,532

vantage points 35 routers in 32 ASes

triplets 13,852,998
unique triplets 8,257,351

transit ASes 6,762 100%
transit ASes having multi-exits 1,441 21%

MEs (multi-exits) 204,423 100%
MEs with incoherence 129,590 63%
MEs with incoherent path length only 62,051 30%
MEs with incoherent relationships only 12,229 6%
MEs with both incoherencies 55,310 27%

There is limited publicly available ground truth for AS relationships. From the
projects that aim to infer them, we chose CAIDA’s relationship dataset [3] since
it is the only one we know to have a fully public methodology. For the 34.6% of
their inferences that they were able to validate against either public or privately-
obtained ground truth, they report accuracy of 99.6% for c2p relationships and
98.7% for peer relationships [17].

4.2 Quantifying Multi-exits

We observed 204,423 multi-exits, each having usually 2, but in some cases as
many as 5, next-hop ASes. These constitute 2.7% of the (AS, destination prefix)
pairs in our database (the remainder having just one next-hop AS), so by this
metric multi-exits might seem to be rare. However, of the 6,762 transit ASes
in our dataset, we observed 21% to be performing multi-exit routing. We found
multi-exits in the ASes ranked 1 through 38 in CAIDA’s AS ranking [2], including
in all of the dozen or so ASes that are generally considered to be tier 1. So,
multi-exit observations reveal information about ASes that play a central role
in Internet routing.

4.3 Quantifying Incoherences

Fully 63% of the multi-exits in our dataset show incoherencies. AS Path length
incoherencies, implying a violation of composite assumption (A1⊕A2), showed
up in 57% of multi-exits. AS relationship incoherencies, implying a violation of
(A1⊕A2⊕A3⊕A4), appeared in 33% of the multi-exits. There is overlap, with
27% of multi-exits revealing both kinds of incoherency.



180 R. Mazloum et al.

4.4 Possible Causes for Violations

We speculate on reasons for these assumptions to be violated.

Traffic Engineering. From our conversations with people familiar with large
operators, we believe that the assumptions don’t fully capture contemporary
traffic engineering practices. An AS might prefer, for example, to send some
traffic through a peer rather than a customer, or through a provider rather
than a peer, intentionally violating (A3). This could happen when the customer
has insufficient bandwidth. It could also arise when a router in a large AS is
geographically closer to a peer than to a customer, and the revenue that would
be generated by routing via the customer is outweighed by the cost of carrying
the traffic internally to the egress point for that customer.

Complex or HybridASRelationships.Previous work [15,17] has highlighted
the existence of complex or hybrid relationships, in which, for example, one large
ASmight be another’s peer on one continent and its customer elsewhere. Such rela-
tionships violate (A4), and to be implemented (A2) must be violated. The CAIDA
AS relationship database [17] is built using an understanding of this sort of rela-
tionship, but it provides as output only one relationship per AS pair.

Misconfigurations. A router misconfiguration might cause any one of the as-
sumptions to be violated. For example, an incorrect value of local_pref could
result in an AS inadvertently favoring a provider over a customer, violating (A3).

Erroneous AS Relationships. An alternative is that assumptions are not
violated as often as our results indicate, but rather that CAIDA’s database is
not indicating the correct AS relationships, despite its high accuracy in cases
where it has been validated. However, it would need to be incorrect in a large
portion of cases in order to change our overall conclusions.

5 Related Work

As we have described in previous sections, many papers in the literature [5–17]
have employed various assumptions about interdomain routing. Some of these
papers, as well as others, have looked at violations of these assumptions.

Feamster et al. [18] give some examples of violations of (A1) that can appear.
Gill et al. [19] queried 100 network operators for their private data, finding
that 77% of ASes do not modify the value of local preference, i.e., they are
coherent with (A2). The same survey reports that 87% of the concerned ASes
are also coherent with (A3). Mühlbauer et al. [9] compared the routes that
actually propagate to vantage points with the routes that ought to propagate,
revealing violations of (A3). Giotsas et al. [20] show that relationships between
pairs of ASes for IPv4 routes differ in 13% of the cases from those for IPv6
routes. Roughan et al. [21] summarize lessons about modeling ASes based on an
extensive study of common assumptions. They observe, notably, that modeling
an AS interconnection by a single connection is insufficient. Mühlbauer et al. [8]
similarly show the weaknesses in modeling an AS as an atomic entity.



Violation of Interdomain Routing Assumptions 181

Our work goes further by providing a method for detecting violations of com-
monly employed assumptions using publicly available data. We supply the first
quantification of the extent of observable violations.

Our finding that violations can be observed in a large portion of transit ASes,
including all of the biggest ones, does not mean, however, that previous work that
made simplifying assumptions should be considered invalid. Most work on AS
relationship inference [5,11–17] makes only assumption (A4). As we have noted,
our method does not allow us to specify precisely which of a set of assumptions
have been violated, and so we cannot say how often (A4) in particular does not
hold. Furthermore, if (A4) is indeed violated, it might not be to a degree that
would change previous results.

Our results might pose more serious questions for other work. Javed et al. [10]
use the four assumptions to reduce the set of ASes that may be the root cause
for an routing event in the network. If the assumptions are violated, the final set
might not contain the root cause AS. Buob et al. [6] aim to solve a problem in
which the assumptions are respected.

6 Conclusion and Future Work

This paper formalized four assumptions about interdomain routing in the In-
ternet that are commonly used in the literature. We employed a data-driven
method to challenge these assumptions, making novel use of so-called “multi-
exit” scenarios to reveal incoherencies between sets of these assumptions and
actual interdomain routing decisions. We observe multi-exits in 21% of transit
ASes in a BGP snapshot from March 2013, and find that that in 63% of these
multi-exits at least one assumption is violated. Other snapshots showed similar
results. Given this, we believe that future work should use these assumptions
with caution.

We expect that our technique of using multi-exits to reveal characteristics
of interdomain routing behavior can be further developed. Studying how they
change over time could, for instance, tell us more about how ASes perform traffic
engineering. We also believe that much more can be revealed by combining the
BGP data with IP level measurements, which is part of our future work.

Acknowledgments. We thank Martin Levy of Hurricane Electric for taking
the time to impress upon us the weaknesses in assumptions (A2) and (A3). We
also thank the anonymous reviewers and Matthew Luckie for their feedback.
The research leading to these results has received funding from the European
Union’s Seventh Framework Programme (FP7/2007-2013) under grant agree-
ments no. 287581 – OpenLab, and no. 318627 – mPlane.



182 R. Mazloum et al.

References

1. Yan, H., Oliveira, R., Burnett, K., Matthews, D., Zhang, L., Massey, D.: BGPmon:
A real-time, scalable, extensible monitoring system. In: Proc. CATCH (2009)

2. CAIDA: The CAIDA AS Ranking service, http://as-rank.caida.org/
3. CAIDA: The CAIDA AS Relationships dataset,

http://www.caida.org/data/active/as-relationships/

4. Rekhter, Y., Li, T.: A border gateway protocol 4 (BGP-4). RFC 1771, Internet
Engineering Task Force (March 1995)

5. Gao, L.: On inferring autonomous system relationships in the Internet. IEEE/ACM
Trans. Netw. 9(6), 733–745 (2001)

6. Buob, M.O., Meulle, M., Uhlig, S.: Checking for optimal egress points in iBGP
routing. In: Proc. DRCN (2007)

7. Teixeira, R., Shaikh, A., Griffin, T., Voelker, G.M.: Network sensitivity to hot-
potato disruptions. In: Proc. SIGCOMM (2004)

8. Mühlbauer, W., Feldmann, A., Maennel, O., Roughan, M., Uhlig, S.: Building an
AS-topology model that captures route diversity. In: Proc. SIGCOMM (2006)

9. Mühlbauer, W., Uhlig, S., Fu, B., Meulle, M., Maennel, O.: In search for an ap-
propriate granularity to model routing policies. In: Proc. SIGCOMM (2007)

10. Javed, U., Cunha, I., Choffnes, D., Katz-Bassett, E., Anderson, T., Krishnamurthy,
A.: PoiRoot: Investigating the root cause of interdomain path changes. In: Proc.
SIGCOMM (2013)

11. Subramanian, L., Agarwal, S., Rexford, J., Katz, R.: Characterizing the Internet
hierarchy from multiple vantage points. In: Proc. Infocom (2002)

12. Di Battista, G., Patrignani, M., Pizzonia, M.: Computing the types of the relation-
ships between autonomous systems. In: Proc. Infocom (2003)

13. Xia, J., Gao, L.: On the evaluation of AS relationship inferences. In: Proc. Globe-
com (2004)

14. Dimitropoulos, X., Krioukov, D., Huffaker, B., Claffy, K., Riley, G.: Inferring AS
relationships: Dead end or lively beginning? In: Nikoletseas, S.E. (ed.) WEA 2005.
LNCS, vol. 3503, pp. 113–125. Springer, Heidelberg (2005)

15. Dimitropoulos, X., Krioukov, D., Fomenkov, M., Huffaker, B., Hyun, Y., Claffy, K.,
Riley, G.: AS relationships: inference and validation. ACM SIGCOMM CCR 37(1),
29–40 (2007)

16. Shavitt, Y., Shir, E., Weinsberg, U.: Near-deterministic inference of AS relation-
ships. In: Proc. ConTEL (2009)

17. Luckie, M., Huffaker, B., Dhamdhere, A., Giotsas, V., Claffy, K.: AS relationships,
customer cones, and validation. In: Proc. IMC (2013)

18. Feamster, N., Balakrishnan, H.: Detecting BGP configuration faults with static
analysis. In: Proc. NSDI (2005)

19. Gill, P., Schapira, M., Goldberg, S.: A survey of interdomain routing policies. ACM
SIGCOMM CCR (to appear, 2014)

20. Giotsas, V., Zhou, S.: Detecting and assessing the hybrid IPv4/IPv6 As relation-
ships. In: Proc. SIGCOMM (2011)

21. Roughan, M., Willinger, W., Maennel, O., Perouli, D., Bush, R.: 10 lessons from
10 years of measuring and modeling the Internet’s Autonomous Systems. IEEE
JSAC 29(9), 1810–1821 (2011)

http://as-rank.caida.org/
http://www.caida.org/data/active/as-relationships/


Here Be Web Proxies�

Nicholas Weaver1, Christian Kreibich2, Martin Dam3, and Vern Paxson4

1 ICSI / UC San Diego
2 ICSI / Lastline

3 Aalborg University
4 ICSI / UC Berkeley

Abstract. HTTP proxies serve numerous roles, from performance enhancement
to access control to network censorship, but often operate stealthily without ex-
plicitly indicating their presence to the communicating endpoints. In this paper
we present an analysis of the evidence of proxying manifest in executions of
the ICSI Netalyzr spanning 646,000 distinct IP addresses (“clients”). To identify
proxies we employ a range of detectors at the transport and application layer,
and report in detail on the extent to which they allow us to fingerprint and map
proxies to their likely intended uses. We also analyze 17,000 clients that include
a novel proxy location technique based on traceroutes of the responses to TCP
connection establishment requests, which provides additional clues regarding the
purpose of the identified web proxies. Overall, we see 14% of Netalyzr-analyzed
clients with results that suggest the presence of web proxies.

1 Introduction

The World Wide Web continues to take center stage in people’s use of the Internet.
Indeed, for many users the web remains synonymous with the Internet itself. The plain-
text nature of the web’s workhorse protocol, HTTP, makes it particularly tempting to
interpose on its flows using proxy servers, and HTTP remains one of the few proto-
cols with explicit support for proxying. As a consequence, HTTP proxies have become
widespread and different stakeholders employ them for a wide array of reasons. To the
Internet’s users, however, the actual prevalence and nature of web proxies remains a
terra incognita. The typically transparent nature of web proxies means that users may
remain unaware of their existence unless the proxy significantly malfunctions or in-
duces significant changes to the connection payload.

In this work we present the results of extensive measurements probing for the pres-
ence of web proxies by conducting HTTP connections from end-user browsers to cus-
tom web servers under our control. We do so using Netalyzr [11], which contains a
large and growing suite of proxy detection techniques. In 646,000 distinct addresses
(“clients”) analyzed by Netalyzr, 14% of clients show evidence of HTTP proxying
through one or more tests, suggesting that a significant fraction of all end-user HTTP
traffic passes through web proxies either on the host or in the network.

� This work is supported by the National Science Foundation under grants CNS-0831535, CNS-
1213157, and CNS-1223717, and the Department of Homeland Security (DHS) Science and
Technology Directorate, Cyber Security Division (DHS S&T/CSD) Broad Agency Announce-
ment 11-02, and SPAWAR Systems Center Pacific via contract number N66001-12-C-0128,
with additional support from Amazon, Google and Comcast.

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 183–192, 2014.
c© Springer International Publishing Switzerland 2014



184 N. Weaver et al.

We make two contributions. First, compared to the results we presented in the orig-
inal 2010 Netalyzr paper [11], we now substantially broaden both the dataset (roughly
seven times more sessions) and the depth of the analysis: we categorize the actual mod-
ifications, fingerprint proxy implementations, and, when feasible, deduce the purpose
of the proxies’ presence. Second, we introduce additional testing methods, including a
proxy location technique based on traceroutes of the SYN-ACK packets responding to
TCP connection requests. Given the improved measurement apparatus, we find nearly
twice the fraction of HTTP-proxied sessions compared to our 2010 results.

We start by discussing the basic modes of operation in real-world proxies and
presenting related work (Section 2). Next, we summarize Netalyzr’s current proxy-
detection test suite (Section 3), followed by a detailed presentation of our proxy fin-
gerprinting and classification methodology (Section 4). We then present our findings
(Section 5), including both identified proxies as well as a set of proxies whose purpose
remains elusive, and a look at the most heavily proxied countries around the world. We
conclude with a reflection on our findings (Section 6).

2 Background and Related Work

Web proxies examine and potentially alter some or all of a user’s HTTP request and re-
sponse traffic, sometimes even when the user has not explicitly configured the browser to
route traffic through a particular proxy. In this work we consider both proxies co-located
with the user’s computer (such as security products) as well as in-path network elements.

Web proxies can employ two main strategies for modifying payload: TCP termina-
tion, and packet rewriting. A proxy employing TCP termination actively responds to
the browser’s TCP connection request, establishing a full transport connection with the
browser, and creating a new, separate TCP connection with the target server. Once es-
tablished, the proxy relays the content streams from both endpoints, potentially altering
them at will. While we might expect the proxy to use its own IP address for the connec-
tion to the server, some proxies reuse the client’s IP address. Doing so increases imple-
mentation complexity, but also provides transparency, and avoids any server-perceived
centralization of behavior deemed abusive because it emanates in high volume from a
single IP address.1

Packet-rewriting proxies, by contrast, modify traffic as it flows through them, poten-
tially also injecting additional traffic, such as in the case of HTTP 404 error rewriting
we observe in some NATs in Section 5. Packet-rewriting proxies work best for tasks
that require only minor changes that can fit into a single packet, such as replacing a
response entity with a redirection script.

A substantial body of work covers Internet censorship detection [1,16,14], focusing
on the general problem of triggering and understanding censorship mechanisms imple-
mented using proxies or packet-injection tools.

1 For example, BlueCoat’s knowledge base (https://kb.bluecoat.com/index?page
=content&id=KB3119&actp=RSS ) specifically suggests enabling the “reflect-client-ip”
configuration item (namely, use the client’s IP address rather than the proxy’s IP) in transparent
mode, when Google detects a possible abuse situation. Operators can install such a proxy
wherever symmetric routing ensures return traffic will transit it.

https://kb.bluecoat.com/index?page=content&id=KB3119&actp=RSS
https://kb.bluecoat.com/index?page=content&id=KB3119&actp=RSS


Here Be Web Proxies 185

Two academic studies have focused on specific proxy effects. The “Tripwires” work
of Reis et al. [13] detected systems that modified HTTP content by performing an XML-
RPC fetch and checking to see whether the returned content matched the expected con-
tent of the page itself. Huang et al. [10] used web ads in both Flash and Java to detect
proxies based on flaws that make incorrect associations between hostnames and content
to cache (per CERT VU 435052, as discussed below).

Finally, Auger proposed cache-detection using timing [2], where the origin server
returns content after first observing an artificial delay. Objects that load quicker than
the delay indicate the browser must be receiving the content from a caching proxy.

3 Detecting Web Proxies

In principle we can detect the presence of a proxy any time it permutes a connection’s
properties. We base our basic detection approach on employing an HTTP client and
server under our control to exchange precisely known HTTP messages and then look
for deviations from the expected. We implemented this approach using the ICSI Net-
alyzr, our popular user-driven, web-based connectivity analysis service that runs in a
Java applet in the browser. See the original paper [11] for architectural and operational
details, as well as general biases in our dataset, which remain largely unchanged. Ne-
talyzr includes a range of tests that detect proxy implementation technologies, imple-
mentation artifacts and proxy limitations. Each user-initiated test session runs through
a full suite of tests, of which we now describe in detail those relevant to HTTP proxy
analysis. Since we have enhanced Netalyzr’s test suite over time, we include for each
of the test a description of the approximate number of distinct clients that observed the
given results for the particular test.

Non-responsive Server Test (116,500 of clients tested): We expect TCP-terminating
proxies, unless specifically customized, to respond with a SYN-ACK to a client’s con-
nection request before attempting to contact the client’s intended origin server. We can
test for this behavior by connecting to a server that we know will not accept the connec-
tion request [18]. For Netalyzr, we employ a server interface that sends a RST packet
in response to all incoming requests, regardless of port. If the Netalyzr client’s attempt
to connect to this server on port 80 initially succeeds, this indicates the presence of a
TCP-terminating proxy.

Proxy Traceroute (17,000 clients): The previous test indicates the presence of a TCP-
terminating proxy but does not illuminate its location. We added to Netalyzr a new test
to pinpoint the proxy’s location, as follows. For any port on which the previous test
flagged the presence of a proxy, the Netalyzr client attempts a TCP connection to our
traceroute server. Upon receipt of an incoming SYN (likely sent by an in-path proxy),
this server conducts a traceroute from server toward client using SYN-ACK packets.
This traceroute terminates upon receiving the TCP handshake’s pure ACK, rather than
an ICMP “TTL exceeded” response. We do not perform a similar test outbound from
the client, because while the client can technically invoke commands such as traceroute
directly, the issues of platform dependence, increased intrusiveness of the client, and the
potential lack of required user privileges for a TCP-based traceroute make this approach
problematic.



186 N. Weaver et al.

HTTP 404 Fetches (448,000 clients): While investigating DNS “error traffic monetiza-
tion” [17], we discovered a proxy vendor whose product modifies HTTP 404 error re-
sponses. To detect this behavior, Netalyzr attempts to fetch three custom 404 “page not
found” error pages. One returns just a blank 404 page, one returns a copy of Apache’s
default 404 page, and one returns Netalyzr’s custom 404 page. We then watch for any
alterations to the content.

Previously Documented Tests. In addition to the new tests described above, we used
several existing Netalyzr tests in our analysis of web proxies.

Customized HTTP Fetch (633,000 clients): RFC 2616 [6] specifies that systems
should treat HTTP header names as case-insensitive, and, with a few exceptions, free
of ordering requirements. Netalyzr leverages these properties by implementing its own
HTTP engine and fetching a custom page from the server, using mixed-cased request
and response headers in a known order. Any changes indicate a proxy. This test also
aids in the identification of the proxy’s purpose. Some proxies declare their presence
and/or function in a header, while others may modify the HTML document or transfer
encoding in a manner which reflects the proxy’s function, or serve as a base for further
investigation (Section 4).

Non-HTTP Fetch (646,000 clients): In addition to a fetch using standard HTTP, Net-
alyzr attempts to fetch an entity using the protocol declaration ICSI/1.1 instead of
HTTP/1.1. A protocol-parsing proxy will likely reject this request as non-conformant.

Invalid Host Field (646,000 clients): Before Netalyzr’s release, CERT VU 435052 [9]
described how some in-path proxies would interpret the Host HTTP header and at-
tempt to contact the listed host rather than forward the request to the intended address.
We check for this vulnerability by fetching from our server with an alternate Host
header of www.google.com.

Caching and Transcoding (619,000 clients): Netalyzr twice attempts to fetch an im-
age URL from the server using a direct request that bypasses any local browser caching.
Our server tracks first versus second requests, originally returning a particular 67kB im-
age but for the second request returning an alternate version of the image. This process
then repeats three more times, each time with different cache-control headers. If the
client receives identical images for subsequent requests, we can deduce the presence of
caching; altered images indicate transcoding. A more recent addition includes upload-
ing the results of any transcoded images for further analysis.

Filetype Filtering (627,000 clients): Netalyzr attempts to fetch three different filetypes
(.mp3, .exe, and .torrent), each representing a type of content that some network
use policies may prohibit, and thus attempt to block with proxies.

EICAR Test Virus Filtering (296,000 clients): The initial Netalyzr release checked for
the ability to receive the EICAR [5] test “virus,” a benign program that antivirus pro-
grams recognize for testing purposes. We removed this test after receiving complaints
about security software blocking all subsequent connections.

For similar reasons we do not include censorship-triggering tests. While technically
straightforward to implement, we cannot rule out the possibility that such a test could
result in harm to Netalyzr users who might be accused of accessing forbidden content.



Here Be Web Proxies 187

4 Fingerprinting and Classifying Proxies

Using the Netalyzr results we just described, we set out to establish a methodology
for fingerprinting the detected proxies and, in a subsequent stage, classify them into
different categories of functionality.

Some of our tests naturally suggest a proxy’s purpose, such as in the case of our
caching analysis. We combined information gathered from our measurements with a
manual, iterative rule-building approach in which we establish a set of detectors for spe-
cific proxy fingerprints. In each iteration, we identified the most prevalent proxy finger-
prints and used them to infer the manufacturer and/or proxy model. Sometimes this task
proved easy (such as when proxies inject a banner header, e.g., X-BlueCoat-Via);
other times it required online searches and studying product whitepapers. Security and
login gateways that block our requests generally present a page explaining their pres-
ence, while removal of whitespace suggests a transcoding proxy attempting to save
bandwidth. Injected content or changes to the 404 error page also provide handy clues,
as the injected URLs either directly disclose the company involved or help us track
down the responsible parties in discussion forums or blogs.

In total, our resulting detectors comprise 70 generic rules for policy blockers (such
as ’Blocked’ or ’Denied’ keywords) and 29 rules for individual content changes that
alter received content.

5 Identified Proxies

Our analysis identified eight categories of web proxies. We sketch each in decreasing
order of prevalence, and then discuss “dark proxies” that did not introduce any modifi-
cations that we could detect, and apparent country-wide proxies.

Antivirus (6% of clients): even though we removed the EICAR test due to collateral
damage, triggering antivirus systems remains the most prevalent type of proxy for tested
sessions. We also see indications of end-user security software through header changes
validated by web searches. For example, Fortinet software uses a local proxy that adds
an X-FCCKV2 header to HTTP requests (210 clients). Note that we do not consider
antivirus-blocking alone as an indicator of a proxy for other measurements; we only
count sessions in which the HTTP connections exhibit evidence of proxying.

Caches (2.3% of clients): HTTP caches represent the second-most frequent proxy type.
These systems attempt to reduce an ISP’s upstream bandwidth by returning locally
cached content instead of fetching it from origin servers. Since web clients possess
their own cache, this only saves bandwidth on popular content.

Security and Censor Proxies (0.55% of clients): We detect two popular models of
security proxies through the Via headers they inject. 1,156 clients indicate an Iron-
Port/Cisco Web Security Appliance; 631 clients indicate a McAfee Web Gateway. Both
proxies attempt to prevent attacks against web clients.

Similarly, the BlueCoat web filter, evident in 1,993 clients, can act as a security
gateway (filtering dangerous content), an employee web-surfing censor, and/or a login
gateway. This proxy inserts a X-BlueCoat-Via header in traffic to the server, while



188 N. Weaver et al.

changes to the reply traffic consists of just a capitalization change in the Connection
header and header reordering.

Finally, we received a session run by a volunteer behind a McAfee Smartfilter (op-
erating as a censor) deployed in a Middle Eastern country. This proxy added a Via:
Webcat-Skein request header and reordered and changed the capitalization on the
Connection, Host, and Cookie headers, yet induced no reply header changes. We
see 87 clients with this fingerprint.

Transcoding (0.54% of clients): While caches save upstream bandwidth, transcod-
ing [7,8] conserves downstream bandwidth by compressing data into a more compact
form. We observe three different transformations, usually applied in combination. The
first consists of altered content encoding, replacing an uncompressed response with a
gzip-compressed response. We observe 0.5% of clients that gzip-compress our HTTP
404 response or .exe file.

The second case, observed in 0.5% of tested clients, reflected proxies removing
whitespace in the HTML content returned by our server. These transformations preserve
HTML semantics (assuming that no HTML consumer relies on newlines in the rendering
process). A common behavior is to compress the .exe file but newline-strip the HTML.

Finally, we also detect image transcoding that replaces our 67kB image with a
smaller version. We observe 0.2% of tested clients with such modifications, usually
preserving reasonable quality: most transcoding resulted in images greater than 22 kB
(74.3%). The most compressed replacement consisted of a 5 kB image.

404 Rewriters (0.11% of clients): “Error traffic monetization” involves ISPs attempting
to leverage protocol errors as a source of revenue by masking or augmenting the error
delivery in order to include advertising [17]. While this controversial practice most
commonly involves DNS NXDOMAIN errors, at least one company, Barefruit, also
offers monetization of HTTP error traffic. This system requires the use of “a proxy
device or DPI system to intercept returning HTTP errors” that the device replaces with
a redirection to an advertisement-laden page.

We observe two ISPs, Mediacom (398 clients) and Bresnan(17 clients), that em-
ploy HTTP error monetization. The injected content looks identical except for the URL
structure in the contained link, suggesting that both ISPs use a common provider for the
404-redirection, though the URLs differ in structure, which may reflect the ISPs work-
ing with different vendors for the landing page that offers up the ads. We also observed
a bug in the injector: many sessions include the injected JavaScript snippet at the end of
the response headers, as the injector did not insert an additional line break to separate
the header from the injected body.

The DNS and WHOIS information for the Bresnan servers suggests that Xerocole
operates the monetization, while Mediacom redirects to Infospace servers. In both cases
these companies also provide DNS error monetization for these ISPs, suggesting either
the ISPs or the monetization services use a common equipment vendor. Mediacom ap-
pears to have discontinued this technique after a public backlash in August 2012 [3].
According to our data, Bresnan appears to have never fully deployed this system, as we
see indications of its use only among a small fraction of its users.

By leveraging Netalyzr’s ability to query the local network for UPnP-enabled
gateway devices and identify gateway device vendors [4], we can expand the



Here Be Web Proxies 189

analysis to proxying gateway devices. We observe that instances of the Linksys
WRT110 contain 404-monetization (139 clients). This system redirects the user to
http://websearch.linksys.com and does not appear to be part of the initial
firmware, as devices with a manufacturer URL of http://www.linksys.com do
not perform 404-monetization, while many (but not all) with a manufacturer URL of
http://www.linksysbycisco.comdo. This injector simply replaces the initial pay-
load of the HTTP 404 response packet with a redirection, while keeping subsequent
content intact. (Indeed, we observed a case where both Mediacom’s injector (which in-
jects a script but doesn’t change the error code) and the Linksys injector operated on
the same response!)

Login Gateways (0.075% of clients): Most login proxies operate within the private
side of a NAT, enabling them to authorize connections based on a client’s pre-NAT
address. Login proxies that reside outside of a NAT, however, require some other means
to track which clients the proxy has authorized. Some of these NAT-exterior proxies set
a global “authorized” cookie for their own domain. When a new page request arrives
from the browser, the login proxy first redirects to the authorization domain, checks for
the cookie, and if present redirects the browser back to the original page, setting a cookie
within the domain of the original page, whose presence flags subsequent requests to be
passed through unmodified. Other configurations simply require that all requests go
through a manually configured proxy. We observe 433 clients where our HTTP request
encounters blocking by such a proxy.

Content Injectors (0.055% of clients): A comparatively rare class of proxies injects
JavaScript or other content into HTML documents. The most common such injector,
BitDefender (an antivirus solution seen for 318 clients), did not appear in the ear-
lier survey of Reis et al. [13]. We also observed 58 clients containing an injection of
“xpopup.js”, part of the CA Personal Firewall popup-blocking suite running on client
systems, and 11 clients showing evidence of Sunbelt Popup Killer, a dated (early-to-
mid 2000s) anti-popup technology. Reis et al. likewise observed the latter two in their
2008 study [13]. Other injectors in our dataset include the privacy filter Privoxy, a
VPN system by AnchorFree (here injecting advertisements), and Bluecoat and Comodo
TrustConnect security products.

Three advertising injectors that operate on free hotspot connections appear in our
dataset: Meraki toolbar,2 Ovation Networks, and Icomera. These injectors insert a ref-
erence to a JavaScript routine that creates an advertisement-laden information bar on
each page. We also observed an Indian ISP using Streamride to inject advertisements
into all HTTP connections (injectors typically trigger only selectively [13]).

Some transcoding proxies also inject scripts. For example, we recorded a session
by a vodafone.de customer that, in addition to stripping whitespace, injected a script
ups/ytchunk.js into multiple pages. Web reports provide other mentions of such
behavior, such as T-Mobile in the UK injecting a script bmi-int-js/bmi.js.

Finally, we also observed an injector in SouthWest Airline’s in-flight WiFi service.
The injected toolbar conveys both flight information and branding, operating in a man-
ner similar to the advertising injectors without third-party advertisements.

2 Meraki’s HTTP headers include:
X-cool-jobs-contact: jobs+proxyball@meraki.com

http://websearch.linksys.com
http://www.linksys.com
http://www.linksysbycisco.com


190 N. Weaver et al.

All of the above injectors can cause page loading/rendering problems. A common
problem consists of injection-bearing web pages cached by the client that later can no
longer retrieve uncached injected scripts (particularly those originally served from pri-
vate or unallocated IP addresses). The host of Vodafone’s injected scripts, for example,
resides at 1.2.3.50, part of a reserved address block.

Spyware Proxies (0.036% clients): The OSSProxy.exe local proxy, part of the
MarketScore software package (and considered spyware by Symantec) inserts an
X-OSSProxy header with the software version.

Dark Proxies. For 8% of all clients in our dataset, we could detect the presence of
a proxy via the non-responsive server test, changes to the HTTP headers, or diverg-
ing client addresses, but we could not identify any modifications due to the proxy. The
first of these proved the most significant: prior to including a non-responsive server test
in Netalyzr, 7% of clients show evidence of a dark proxy, while after adding the test
this percentage rose to 12%. If we consider those measurements that included the non-
responsive server test, but exclude measurements for which the proxy quickly responded
to the initial SYN (≤ 5 ms), the proportion of dark proxy clients is still 9%, indicating
the likely presence of an in-network proxy on the far side of any NAT. Thus, the majority
of these “dark proxies” reside internal to the network rather than at end systems.

Observations of dark proxies could reflect several possibilities. In settings with a
login proxy (particularly hotspots), the user may have already authenticated to the login
process prior to running Netalyzr, so the proxy at that point only relays content. Caches
or transcoders that our tests do not trigger would likewise appear “dark” (although we
expect to trigger these proxies as we provide numerous opportunities for them to cache
and transcode data), as would proxies that enforce censorship or corporate policies that
our probes did not trigger.3 In a previous interaction with a Netalyzr user, we identified
a workplace environment that uses proxies that only manifest in our measurements due
to changes in the capitalization of the Connection header. In addition, we directly
experienced one setting (the US National Science Foundation’s internal network) that
contains a proxy visible only via the non-responsive server and SYN-ACK traceroute
tests, which locate the proxy in the same network. In both cases, the proxies’ purpose
was confirmed by visiting “forbidden” sites.

For the dark proxy clients where the connections arrived at the server from the same
IP address as non-HTTP traffic, and for which we possess SYN-ACK traceroute results
(1,345 clients), we attempted to determine the proxy’s location via the traceroute data.
We examined the last hop before the ACK-responding system in the traceroutes for both
80/tcp and for a non-standard port (1947/tcp). We considered these different if the last
hop showed a different IP address; or, if one or both of the traceroutes failed to report the
last hop, the hop count differed. Of the clients measured, 13% had a different traceroute
for the two ports, suggesting that the proxy resides in the public network rather than at
or inside any NAT.

Finally, regarding the possibility of dark proxies reflecting censorship proxies, we
note some suggestive geography relating to the 197 clients that only manifested altered
capitalization of the Connection header. When geolocalizing the IP addresses of

3 For our purposes, whether such systems block “bad ideas” or “malicious content”, from a
network viewpoint they appear identical unless triggered.



Here Be Web Proxies 191

these sessions (using MaxMind’s GeoLite database), 113 resided in the United States
(out of 147,000 total US clients), 20 in Kuwait (out of 223 clients), and 12 in Iran (out
of 196 clients).

Country-Level Proxies. Our data also show evidence in some cases of potential
country-level proxying, where most or all of a nation’s traffic passes through proxies.
We examined all countries containing ≥ 50 distinct clients. Of these, the five with the
highest prevalence of proxies are Bahrain (95%), Singapore (85%), Lebanon (79%), the
United Arab Emirates (62%), and Thailand (48%).

Bahrain: While almost all Bahraini clients exhibited proxying, far fewer (42%) ex-
hibited caching. The proxying very likely reflects censorship, as 86% of clients that
successfully performed the customized HTTP fetch detected BlueCoat in the network,
which has been previously linked to censorship in the Middle East [12].

Singapore: Again, a significantly lower percentage (26%) of clients manifest caching.
Although we were unable to identify a common product by name, we noted that many
Singapore clients reside behind a proxy that only adds an X-Forwarded-For header.

Lebanon: We suspect that the proxies we detect in Lebanon represent censors, as
only 29% manifest caching. A common motif (51% of clients) is the addition of a
Cache-Control header (even though almost no sessions actually exhibit caching),
perhaps a Via header, and downcasing the Connection header on requests.

United Arab Emirates: Unlike the previous countries, the UAE manifests a higher de-
gree of caching (41%), but 39% of clients also evince use of BlueCoat.

Thailand: Thailand shows a low degree of caching (17% of clients). There are also two
somewhat common products, one (15% of clients) downcases all request headers, while
the other (11%) adds a Via header.

Kenya: A single traceroute measurement to a client in Kenya indicates an apparent
backbone-level cache. In the measurement session, an HTTP traceroute from our server
to the client terminates after 82.178.159.110 rather than continuing to the next hop
taken by a non-HTTP traceroute, 196.207.31.146. AS-level information for these
addresses indicates that they bridge the borders of Kenya and Oman.

6 Conclusion

Web proxies affect a significant fraction of Internet connections. Netalyzr’s rich proxy-
detection suite highlights proxies in 14% of the clients from which we have collected
measurements to date—a significant increase from our 2010 result of 8%, which we
attribute primarily to the significantly enhanced resolution of Netalyzr’s proxy detection
capabilities.

In addition to detecting the presence of proxies, we can often infer their of including
caching, transcoding, login gateways, 404-rewriting, several types of content injection,
and local antivirus and spyware functionality. For those we cannot identify, we can still
identify the network location as either at/within a NAT near the browser, or further
upstream in the network. We can also detect and locate (but not classify) censorship
proxies that terminate our HTTP connections.



192 N. Weaver et al.

At the country level, we find that Bahrain, Singapore, Lebanon, the United Arab
Emirates, and Thailand all extensively manifest the use of proxies, with rates from 48%
to 95%. Many of these do not appear to provide caching functionality, leaving nation-
wide censorship as a likely explanation.

References

1. Aase, N., Crandall, J., Diaz, A., Knockel, J., Molinero, J.O., Saia, J., Wallach, D., Zhu, T.:
Whiskey, Weed, and Wukan on the World Wide Web: On Measuring Censors’ Resources and
Motivations. In: Proc. USENIX FOCI, Bellevue, WA, USA (August 2012)

2. Auger, R.: Easy method for detecting caching proxies (February 2011),
http://www.cgisecurity.com/2011/02/
easy-method-for-detecting-caching-proxies.html

3. CmdrTaco. Mediacom using DPI to Hijack Searches, 404 errors,
http://yro.slashdot.org/story/11/04/27/137210/
mediacom-using-dpi-to-hijack-searches-404-errors

4. DiCioccio, L., Teixeira, R., May, M., Kreibich, C.: Probe and Pray: Using UPnP for Home
Network Measurements. In: Taft, N., Ricciato, F. (eds.) PAM 2012. LNCS, vol. 7192, pp.
96–105. Springer, Heidelberg (2012)

5. EICAR Anti-Malware Test File,
http://www.eicar.org/86−0−Intended−use.html

6. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.: Hy-
pertext Transfer Protocol – HTTP/1.1. RFC 2616, IETF (June 1999)

7. Fox, A., Goldberg, I., Gribble, S.D., Lee, D.C., Polito, A., Brewer, E.A.: Experience With
Top Gun Wingman, A Proxy-Based Graphical Web Browser for the USR PalmPilot. In: Proc.
Middleware (1998)

8. Fox, A., Gribble, S.D., Brewer, E.A., Amir, E.: Adapting to Network and Client Variability
via On-Demand Dynamic Distillation. In: Proc. ASPLOS-VII (October 1996)

9. Giobbi, R.: CERT Vulnerability Note VU 435052: Intercepting proxy servers may incorrectly
rely on HTTP headers to make connections (February 2009)

10. Huang, L.S., Chen, E.Y., Barth, A., Rescorla, E., Jackson, C.: Talking to yourself for fun and
profit. In: Proceedings of the Web 2.0 Security & Privacy (W2SP) Workshop (2011)

11. Kreibich, C., Weaver, N., Nechaev, B., Paxson, V.: Netalyzr: Illuminating The Edge Network.
In: Proc. ACM IMC, Melbourne, Australia (November 2010)

12. Citizen Lab. Planet Blue Coat: Mapping Global Censorship and Surveillance Tools,
https://citizenlab.org/2013/01/planet-blue-coat-mapping-
global-censorship-and-surveillance-tools/

13. Reis, C., Gribble, S.D., Kohno, T., Weaver, N.C.: Detecting In-Flight Page Changes with
Web Tripwires. In: Proc. USENIX NSDI (2008)

14. Sfakianakis, A., Athanasopoulos, E., Ioannidis, S.: Inferring Mechanics of Web Censorship
Around the World. In: CensMon: A Web Censorship Monitor (August 2011)

15. Somerville, M.: Mobile operators altering (and breaking) web content,
http://www.mysociety.org/2011/08/11/
mobile--operators--breaking--content/

16. Verkamp, J., Gupta, M.: Inferring Mechanics of Web Censorship Around the World. In: Proc.
USENIX FOCI, Bellevue, WA, USA (August 2012)

17. Weaver, N., Kreibich, C., Paxson, V.: Redirecting DNS for Ads and Profit. In: Proc. USENIX
FOCI, San Francisco, CA, USA (August 2011)

18. Wikipedia. Proxy server (June 2012),
http://en.wikipedia.org/wiki/Http_proxy#Detection

http://www.cgisecurity.com/2011/02/easy-method-for-detecting-caching-proxies.html
http://www.cgisecurity.com/2011/02/easy-method-for-detecting-caching-proxies.html
http://yro.slashdot.org/story/11/04/27/137210/mediacom-using-dpi-to-hijack-searches-404-errors
http://yro.slashdot.org/story/11/04/27/137210/mediacom-using-dpi-to-hijack-searches-404-errors
http://www.eicar.org/86-0-Intended-use.html
https://citizenlab.org/2013/01/planet-blue-coat-mapping-global-censorship-and-surveillance-tools/
https://citizenlab.org/2013/01/planet-blue-coat-mapping-global-censorship-and-surveillance-tools/
http://www.mysociety.org/2011/08/11/mobile--operators--breaking--content/
http://www.mysociety.org/2011/08/11/mobile--operators--breaking--content/
http://en.wikipedia.org/wiki/Http_proxy#Detection


Towards an Automated Investigation

of the Impact of BGP Routing Changes
on Network Delay Variations�

Massimo Rimondini, Claudio Squarcella, and Giuseppe Di Battista

Roma Tre University, Rome
{rimondin,squarcel,gdb}@dia.uniroma3.it

Abstract. Understanding fluctuations in network performance is im-
portant as many applications, including streaming, conferencing, gaming,
and financial transactions, rely on timely delivery of data. Awareness of
the effect of routing changes on network delays is key to this understand-
ing, but research in this area is often based on empirical observations that
cannot be easily extended to everyday network scenarios.

We study the relationship between BGP routing changes and round-
trip times (RTTs), bringing several contributions: 1) an automated
methodology that exploits state-of-the-art statistical methods to deter-
mine if a routing change caused a significant RTT variation; 2) an appli-
cation of our methodology on massive RIPE RIS and RIPE Atlas data
sets, showing its effectiveness in the wild (for example, at least 72.5%
of the unique routing changes were consistently associated with an RTT
increase – or decrease – in all their occurrences); 3) various a-posteriori
analyses leading to interesting findings for several practical applications.

1 Introduction and State of the Art

Strict performance requirements characterize an ever-growing base of Internet
services. Keeping certain performance levels is not only critical for the satisfac-
tion of Service Level Agreements (SLAs), but also important to ensure that the
user-perceived quality is always high. Lots of applications, including streaming,
conferencing, gaming, and financial transactions, rely on steady performance
levels. However, it is a matter of fact that performance fluctuations may occur,
depending on several factors like bandwidth, congestion, and routing changes.

In this paper we focus on understanding the relationship between variations of
network performance, measured in terms of round-trip times (RTTs), and inter-
domain routing changes, computed by the Border Gateway Protocol (BGP). We
concentrate on RTTs because they are the most commonly available measure-
ment, ICMP requests are unlikely to be filtered out, and latency is nowadays
regarded as an important performance indicator. Similarly, we consider BGP
routing changes because their impact is significant, as stated in [10].

� Supported by EU FP7 Project “Leone: From Global Measurements to Local Manage-
ment”, grant no. 317647, and by MIUR project AMANDA, prot. 2012C4E3KT 001.

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 193–203, 2014.
c© Springer International Publishing Switzerland 2014



194 M. Rimondini, C. Squarcella, and G. Di Battista

We bring the following contributions: 1) a matching methodology to determine
whether a routing change caused a significant variation of the RTT, with two key
novel aspects: it exploits state-of-the-art statistical methods and it can compute
the matching automatically; 2) an experimental verification of the effectiveness
of our matching methodology in the wild, performed on publicly available data
sets (BGP updates from the RIPE Routing Information Service and RTT mea-
surements from the RIPE Atlas project [1]); 3) a set of a-posteriori analyses
based on the results of our matching methodology, which lead to interesting
findings for several practical applications.

An augmented awareness of performance fluctuations is of course an added
value brought about by our methodology. However, we envision several other ap-
plications. For example, learning that BGP routing changes recorded by certain
vantage points affect more significantly the RTT towards a certain destination
can motivate usage of those vantage points to predict the impact of future rout-
ing changes and drive traffic engineering decisions. In principle, placement of a
delay-sensitive service can also benefit from knowing that routing changes ob-
served at certain network locations are more likely to affect its reachability. Dis-
covering that certain routing changes affect RTTs towards apparently unrelated
destinations can help network administrators in troubleshooting tasks.

In a pioneering contribution [10], the impact of routing changes on RTTs
has been confirmed and shown to be non-negligible. Interesting arguments in
that paper strongly motivate our study: most delay variations are indeed caused
by routing changes rather than congestion, and interdomain routing changes
are those that impact most on the average delay variation. However, the prob-
lem of automatically associating RTT variations with BGP path changes is not
encompassed. In [3], [13,14] the authors study transient network performance
degradations due to routing convergence periods, while we concentrate on RTT
values during stable routing states. A framework for the simultaneous visual-
ization of BGP and RTT data is presented in [4] but, since the focus of the
paper is on the graphical metaphor, the two kinds of data are correlated with a
rather simple technique that is intended to only support the demonstration of
a prototype visualization tool. Other contributions exploit statistical tools for
the analysis of trends in network data. In [8,9] the authors detect the impact
of network upgrades by using statistical rule mining and network configuration
information to identify meaningful patterns in performance changes. A recent
work [12] applies change detection algorithms to compute network coordinates,
i.e., metrics that help predict the network delay between pairs of hosts, in a
realistic environment.

The rest of the paper is organized as follows. In Section 2 we describe our
methodology to match BGP routing changes and significant RTT variations. In
Section 3 we apply the methodology to search for BGP-RTT correlations in the
wild, using data from RIPE RIS and RIPE Atlas. In Section 4 we introduce
various analyses based on the results of our matching methodology. Conclusions
and future work are discussed in Section 5. Some of the approaches and analyses
presented in this paper are described more extensively in [11].



Towards an Automated Investigation of the Impact of BGP Routing Changes 195

Time window

Time shift Elbow slope threshold

Penalty

Probe ID Target

Prefix Tolerance
window

Collector peer

Time window Preprocessing Matching

Preprocessing
Time

alignment

Changepoint

detection

Changepoint

analysis

Raw RTT
measurements

BGP updates Correlation

Fig. 1. Main steps in our matching methodology. Thick-border boxes are inputs and
outputs. Thin-border boxes are operations. Arrows indicate data flows. Tunable pa-
rameters are represented without a box.

2 Matching BGP Routing Changes with RTT Variations

Reference Scenario and Methodology Overview. In the rest of the paper
we assume that the inputs to our methodology are collected in the following
scenario. We consider an Autonomous System (AS) A that is connected to sev-
eral other ASes by means of BGP border routers. A subset of these routers,
called Collector Peers (CPs), forwards all the computed interdomain routes to
a central BGP collector that in turn stores them. AS A also comprises probes
that periodically run standard tools (e.g., ping, traceroute) to measure RTTs
(and, possibly, IP routing paths) towards a fixed set of targets that are external
to AS A: the results of these measurements are stored as well. When leaving AS
A, traffic from a probe to a target traverses a border router that may or may
not be a CP. If it is, a correlation necessarily exists between the measurements
performed by the probe and the BGP updates received by the border router for
a prefix comprising the target. If it is not, a correlation may still exist because
the BGP updates recorded by other CPs for the same prefix may also influence
the behavior of the traversed border router. Our goal is to find such correlations,
using CPs and probes available in the AS under consideration as vantage points.

The main steps of our matching methodology are in Fig. 1. The methodology
takes as input RTT measurements from a set of probes and BGP updates from a
set of CPs. These two data sets are very different in nature: RTTs are recorded on
a periodical basis and are subject to lots of fluctuations, whereas BGP updates
may arrive in bursts and usually involve a limited number of different routing
paths. To fill this gap, and to clean up the inputs, we apply several preprocessing
steps. We then account for a possible time difference between the two data sets
and use a state-of-the-art statistical method to detect significant variations in
RTT values. The output of the methodology is an estimate of how much BGP
routing changes have an observable impact on RTT values. No additional infor-
mation (e.g., network topology) is required to apply our methodology. Although
we are unable to observe routing changes happening on the reverse path from
the target to the probe and RTT measurements may be affected by some biases
(probe clock synchronization, presence of load balancers, etc.), our methodology
is still able to produce significant results.



196 M. Rimondini, C. Squarcella, and G. Di Battista

Processing of RTT Measurements and BGP Updates. We assume that
all the inputs to our methodology are collected within a Time window.

The first input is a sequence of timestamped RTT measurements performed by
a probe identified by a Probe ID towards a destination IP address Target. Being
usually performed with standard tools like ping, we assume each measurement
records a fixed number of RTT values (3 in the case of RIPE Atlas [1] probes)
as well as the IP address that was actually reached. In the Preprocessing

step we discard measurements that recorded fewer RTT values than expected
or reached an unintended IP address. To better isolate the effect of propagation
and transmission delays, which exhibit low variability and depend mostly on the
length of routing paths and on the physical distance of devices (see, e.g., [5]), we
only consider the minimum RTT value in each measurement. RTT timestamps
are then shifted by a fixed Time shift in the Time alignment step, in order to
compensate offsets between the clocks of the probes and those of the CPs, and to
consider possible delays in the propagation of BGP routing changes (depending,
e.g., on the relative position of probes and CPs or on the MRAI timer).

The second input is a sequence of timestamped BGP routing updates observed
by a Collector peer for a specific Prefix. Each update describes how, according
to BGP, traffic should be routed from the CP to the range of IP addresses
falling within Prefix: for this reason, an update carries at least an AS-level path
(possibly empty in the case of a withdrawal). During the Preprocessing step
we retain only BGP routing changes that are eligible for further analysis, based
on the outcome of the Time alignment step: of all the BGP updates happening
between two consecutive RTT measurements we only retain the most recent one;
if the two measurements are separated by a time lapse longer than a Tolerance
window, all the BGP updates in between are discarded. Note that the Tolerance
window should always be longer than the period of RTT measurements. In this
way we get rid of routing changes that can not be “seen” in RTT measurements,
preventing any improper deductions on them.

Detection of Significant Delay Variations. A remarkable challenge in our
methodology is that RTT values are highly variable: in the not-so-extreme case
when every value is representative of an RTT variation, any BGP routing change
could in principle be matched with an RTT measurement that is close in time.

To avoid this, in the Changepoint detection step we seek for time instants
at which the mean values of RTT measurements change persistently. We exploit
a technique called Pruned Exact Linear Time (PELT) [7], one of the most recent
contributions in the field of changepoint analysis statistical methods (for a sur-
vey, see [2]). PELT uses an efficient algorithm to detect mean and variance shifts
in time series data. The precision of the analysis can be tuned by an input pa-
rameter called penalty: using low values considers volatile shifts as valid changes,



Towards an Automated Investigation of the Impact of BGP Routing Changes 197

Path 1

Path 2
A

S
 p

a
th BGP updates

 15
 20
 25
 30

13:00 14:00 15:00 16:00 17:00 18:00

R
T

T
 (

m
s
)

Time

RTT measurements
Significant RTT variations

Fig. 2. BGP path changes (upper plot) and associated significant RTT variations de-
tected by PELT in RTT values (respectively, dashed line and dots in the lower plot)

whereas using high values only detects shifts that affect a considerable portion of
the input. Simpler methods like moving average would fail in equally detecting
long-lasting small changes as well as short-lasting significant ones with as high
precision as PELT did in our experiments. We processed RTT measurements
with PELT and verified that increasing the penalty results in a hyperbolic-like
decay in the number of detected changepoints (see [11]).

Choosing the “right” penalty value is not easy and depends on the nature of
the input data: too high penalties may result in a coarse detection of change-
points, while too low penalties may result in interpreting noise as legitimate
variations. We adopt a rule called elbow method (see, e.g. [6]), traditionally used
in statistics: starting from a base value p0, we run the PELT algorithm for in-
creasing penalties pi, i>0, and stop when the ratio − chpti−chpti−1

pi−pi−1
between the

decrease in the count of detected changepoints chpti and the increase of the
penalty falls below an Elbow slope threshold: the highest tried penalty value is
selected as optimal, because further increasing it would discard too many poten-
tially relevant changepoints. Since PELT operates on values only and does not
consider timestamps, to transform input RTT values into a step-wise function
we associate each changepoint with the timestamp of the RTT value that caused
it. A sample of the result of the application of PELT is in Fig. 2 (lower plot).

Matching and Correlation. In the Matching step we look for a correspon-
dence between routing changes and RTT variations. For each BGP update with
timestamp t, we consider a time window starting at t and as wide as the Tol-
erance window parameter. We associate RTT changepoints falling within this
window with the current BGP update. To mitigate the imprecisions of PELT,
we discard changepoints corresponding to negligible RTT variations (less than
1 ms). A BGP update is marked as “correlated” if there is at least one RTT
changepoint associated with it (see Fig. 2, where route flaps in the upper plot
are matched with RTT changes in the lower one). To produce an overall Corre-
lation estimate, we define the correlation factor as the fraction of preprocessed
BGP updates marked as correlated.



198 M. Rimondini, C. Squarcella, and G. Di Battista

Table 1. Selected measurement targets. α is the percentage of AS paths of length
≤ 5 (global average length) towards the given BGP prefix. β is the percentage of
probes for which the average RTT measured towards the target IP is ≤ 300ms (value
recommended by ITU for VoIP).

ID Target IP address BGP prefix α β

1001 193.0.14.129 (k.root-servers.net) 193.0.14.0/24 (Anycast) 87.5% 99.5%

1003 193.0.0.193 (ns.ripe.net) 193.0.0.0/21 (Unicast) 87.2% 97.3%

1004 192.5.5.241 (f.root-servers.net) 192.5.5.0/24 (Anycast) 57.8% 100%

1005 192.36.148.17 (i.root-servers.net) 192.36.148.0/24 (Anycast) 55.5% 99.1%

3 Experimental Results

Data Sets. In order to apply the methodology in Section 2 to real-world data
sets, we considered BGP data collected by hundreds of worldwide spread CPs
managed by the RIPE Routing Information Service (RIS) and RTT data col-
lected by thousands of probes deployed within the RIPE Atlas project [1]. Several
other projects (e.g., University of Oregon Route Views, CAIDA Archipelago) col-
lect similar data sets: we selected the RIPE projects because, being run by the
same organization, they are likely to gather data from ASes where both probes
and CPs are available, in accordance with the scenario described in Section 2.
As of January 2013 there are 55 such ASes, hosting 126 CPs and 200 probes.

We fixed the Time window to a 2-year period from January 2011 to December
2012, keeping it intentionally large to show the potential of our methodology
in finding interesting correlations even in massive amounts of data. For all the
23 targets available in this window, we downloaded: (a) BGP updates and ta-
ble dumps collected by all available CPs; (b) RTT measurements (performed
every 4 minutes) and traceroute measurements (performed every 20 minutes)
collected by all available Atlas probes (we used traceroutes in further analyses:
see Section 4). Considering that for many targets the amount of measurement
information was too small to identify a significant set of RTT changepoints, we
restricted the application of our methodology to the targets in Table 1. Since
these targets are name servers mostly advertised as anycast BGP prefixes, they
may exhibit less RTT fluctuations than other more localized targets: although
this made interesting correlations harder to find, experimental results show that
our methodology was able to effectively cope with this additional challenge.

Parameter Tuning and Correlation. After processing the downloaded data
as explained in Section 2, we searched for an assignment of the tunable param-
eters in Fig. 1 that could maximize distinction between poorly correlated and
well-correlated information. Although we supervised many steps of this search,
the obtained parameter values fit all the Targets and Prefixes we considered,
eliminating the need to repeat it. At first we arbitrarily fixed the Time shift,
the Elbow slope threshold, and the Tolerance window, picked a single Target and
Prefix, and applied the matching methodology to compute one correlation factor



Towards an Automated Investigation of the Impact of BGP Routing Changes 199

55 %

60 %

65 %

70 %

75 %

80 %

85 %

90 %

95 %

100 %

 0  0.2  0.4  0.6  0.8  1C
um

ul
at

ed
 fr

ac
tio

n 
of

 p
ro

be
/C

P
 p

ai
rs

Correlation factor(Uncorrelated) (Correlated)

193.0.14.0/24
128.8.0.0/16

192.36.148.0/24
192.5.5.0/24
193.0.0.0/21

199.7.83.0/24
202.12.27.0/24

199.7.83.0/24
192.5.5.0/24

202.12.27.0/24
128.8.0.0/16

192.36.148.0/24
193.0.0.0/21

193.0.14.0/24-3
-2

0
1

3
4

Threshold (log
10 ) -600 -400 -200  0  200  400  600

Time shift

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

S
co

re

(a) (b)

Fig. 3. (a) CDFs of the correlation factor for fixed Target ID 1001 and varying Prefixes,
relative to the total number of probe/CP pairs. The Elbow slope threshold was fixed
to 0.001, the Time shift to 0, and the Tolerance window to 5 minutes. (b) Correlation
score for Target 1001 for varying Elbow slope threshold and Time shift. Each surface
is relative to a Prefix. The arrow indicates a choice of parameters that maximizes the
difference between “good” (low) and “bad” (high) correlation scores.

for all the data collected by each pair consisting of a Collector peer that recorded
BGP updates affecting Prefix and a Probe in the same AS that measured RTTs
towards Target. To compare “good” correlations with “bad” ones, we kept the
Target fixed and recomputed the correlation factors for a sample of 7 randomly
chosen Prefixes, including one that comprises the Target. For each Prefix we plot-
ted the Cumulative Distribution Function (CDF) of the values of the correlation
factor, relative to the total number of probe/CP pairs. Fig. 3(a) shows such
CDFs for Target 193.0.14.129. To compare factors for different Prefixes, in the
figure we only considered CPs that recorded BGP updates for all the 7 Prefixes.
As expected, correlation factors with Prefix 193.0.14.0/24, which comprises the
Target, are higher (the CDF is shifted to the right), whereas the trends of CDF
curves for other correlations are much steeper and similar to each other.

Based on this observation, which recurred in all our experiments, we intro-
duced a more aggregate measure, called correlation score, which characterizes
the relationship between a set of RTT measurements towards a Target and a set
of BGP routing changes for a Prefix, regardless of the specific probe and CP.
Considering the CDF of correlation factors for all the probe/CP pairs corre-
sponding to the Target and Prefix of interest, the correlation score is computed
as the area of the portion of the CDF plot that is under the curve. Note that a
lower correlation score indicates a better correlation (the smaller the area under
the CDF, the higher the correlation factors). For example, the correlation score
for Prefix 193.0.14.0/24 in Fig. 3(a) is 0.95 (better), whereas correlation scores
for other prefixes are all higher than 0.99 (worse).

After introducing the correlation score, we could assess the impact of the El-
bow slope threshold and of the Time shift on the computed correlation values. We
computed the correlation score for each combination of a Target from Table 1



200 M. Rimondini, C. Squarcella, and G. Di Battista

and a Prefix in the above sample of 7, varying the threshold and time shift in
a representative set of values. A sample result for Target 1001 is in Fig. 3(b),
where each surface refers to a different Prefix. As it can be seen, higher Elbow
slope thresholds result in better distinction between “good” and “bad” correlation
scores: in fact for higher thresholds the lowest surface, corresponding to the Pre-
fix that comprises the Target, is more separated from the other surfaces. Indeed,
higher thresholds cause the selection of lower Penalty values in the Change-

point detection step, which causes more RTT changepoints to be detected
and possibly matched with BGP updates, thus improving the score. For ex-
tremely high thresholds this phenomenon would equally affect all the Prefixes,
degrading the distinction between “good” and “bad” correlation scores. For this
reason, we chose a maximum threshold of 10000. Moreover, the correlation score
improves significantly for specific values of the Time shift, which is a hint on the
time offset between RTT measurements and BGP updates.

From the results conveyed by plots like the one in Fig. 3(b) we could determine
that picking an Elbow slope threshold equal to 10000 and a Time shift equal to 60
seconds results in an optimal separation between “good” and “bad” correlation
scores for all the Targets and Prefixes we considered. Considering the rate of RTT
measurements (one every 4 minutes), as well as occasional irregularities in the
measurement period, we fixed the Tolerance window at 5 minutes.

4 Analyses Based on Matched BGP-RTT Data

We now discuss a few analyses based on the outcome of our matching methodol-
ogy, which unveil interesting aspects of the input data sets and support potential
applications of our study. Additional details and results can be found in [11].

Statistical Analyses. We performed various statistical analyses on the match-
ings between BGP changes and RTT variations, with results reported in Table 2.

Let a path-change be any occurrence of a transition from an AS path P1 to an
AS path P2 recorded by a Collector peer and matched with an RTT variation seen
by a Probe in the same AS. We first checked whether, in all its occurrences for a
given probe/CP pair, a single path-change was always consistently matched with
an increase (or decrease) of the RTT: for the majority (≥ 72.5%) of the path-
changes we collected, we found this to be true for all probe/CP pairs. At least half
of the other path-changes were consistently matched with an RTT change in at
least 70% of their occurrences. We then considered path-change-pairs, consisting
of a path-change from P1 to P2 and the reversed path-change from P2 to P1,
both seen by the same probe/CP pair. For a good fraction (≥ 43.3%) of path-
change-pairs, a path-change and its reversed counterpart corresponded, in all
their occurrences, to opposite variations of the RTT. We then found that at least
57.4% of the path-changes that increased (decreased) the AS path length were
consistently matched, in all their occurrences, with an RTT increase (decrease).

Next, we switched to more quantitative analyses of RTT variations. We in-
spected the predictability of the effect of a path-change by computing the aver-
age (ΔRTT ) and standard deviation (σΔRTT ) of the RTT variations associated



Towards an Automated Investigation of the Impact of BGP Routing Changes 201

Table 2. Results of our statistical analyses for the Targets listed in Table 1

1001 1003 1004 1005

path-changes with consistent sign(ΔRTT ) 87.5% 78.6% 72.5% 86.4%

pc-pairs with sign(ΔRTTP1→P2)=−sign(ΔRTTP2→P1) 64.8% 52.1% 43.3% 68.8%

path-changes with sign(Δpathlen)=sign(ΔRTT ) 76.4% 57.4% 64% 80.6%

path-changes with σΔRTT/ΔRTT < 0.25 73.6% 75.5% 95.5% 93.1%

with all the occurrences of the path-change for a probe/CP pair. For most path-
changes (≥73.6%) the ratio σΔRTT/ΔRTT was below 0.25, i.e., the same routing
change resulted in fairly similar RTT variations. We also inspected whether the
position of the first modified AS in a path-change influenced the extent of RTT
variations. With the exception of Target 1001, we found that changes happening
close to the AS hosting the probe corresponded to larger average RTT variations,
whereas changes happening far in the AS path were less impactful.

Comparison with Traceroute Data. As specified in Section 3, we also col-
lected traceroute measurements from the RIPE Atlas probes, which we used to
perform a preliminary validation of the results of our matching methodology. We
considered a single probe/CP pair, a specific Target, and the Prefix comprising it.
First of all, we mapped to ASes the IP addresses reported by traceroutes. Then,
we shifted traceroute timestamps by the Time shift value found in Section 3, and
matched them with BGP updates collected by the selected CP for Prefix: simi-
larly to the Matching step in our methodology, we marked each BGP update
as “correlated” if it corresponded to a change in the traceroute path.

Instead of directly comparing AS-level traceroute paths with BGP paths, we
checked whether the correlation between BGP and RTT data was reflected by
the one between BGP and traceroute data. The results of this check, detailed
in [11], give useful insights. The majority of probe/CP pairs with high correlation
factor also exhibit a high percentage of BGP updates correlated with traceroute
path changes (although predictable, this observation further validated the results
of our methodology). Also, for most probe/CP pairs with low correlation factor,
the percentage of BGP updates correlated with traceroutes is close to zero: that
is, for poorly correlated BGP and RTT data there is no evidence of correlation
even with traceroute data.

Further Analyses and Applications. There are a few other analyses that
can be performed based on the results of our methodology. We provide here
a few examples, which also support various practical applications. First of all,
it is possible to single out equivalence classes of CPs and probes that exhibit
a highly correlated behavior. CPs in a class are therefore best candidates to
understand, motivate, and, possibly, predict, delay variations recorded by probes
in the same class, a useful piece of information for traffic engineering decisions.
Moreover, quantifying the influence that routing updates for a Prefix recorded by
different CPs had on the delays towards a Target falling in that Prefix could help



202 M. Rimondini, C. Squarcella, and G. Di Battista

determine the network locations where routing changes are less likely to affect the
reachability of a delay-sensitive service. In addition, the presence of a correlation
between routing updates for a Prefix and delays towards a Target not comprised
in this Prefix can be evidence of a network problem and aid troubleshooting.

5 Conclusions and Future Work

In this paper we describe a methodology to automatically analyze the impact of
BGP routing changes on network delays. We prove its effectiveness using publicly
available data and propose some interesting analyses based on its outcome.

Lots of facets of our study deserve further investigation. Extending the anal-
ysis to different data sources (e.g., CAIDA’s Archipelago), vantage points, and
targets can further validate the effectiveness of our technique. RTT variations
could be analyzed with different statistical methods, in order to extract further
useful information on network behavior from noise, gaps, or complex patterns in
the data. Further, we want to improve our analysis by studying the impact of
intradomain routing changes even on one-way performance indicators, in a con-
trolled scenario where routing events are triggered on purpose. We also envision
an extension of the analyses illustrated in Section 4.

References

1. RIPE Atlas, http://atlas.ripe.net/ – RIPE RIS, http://ris.ripe.net/
2. Basseville, M., Nikiforov, I.: Detection of Abrupt Changes: Theory and Application.

Prentice-Hall, Inc. (1993)
3. Chuah, C.N., Bhattacharyya, S., Diot, C.: Measuring I-BGP updates and their

impact on traffic. Tech. Rep. TR02-ATL-051099, Sprint ATL (2002)
4. Da Lozzo, G., Di Battista, G., Squarcella, C.: Visual discovery of the correlation

between BGP routing and round-trip delay active measurements. Computing, 1–11
(2013)

5. Hernandez, A., Magana, E.: One-way delay measurement and characterization. In:
Proc. ICNS (2007)

6. Ketchen, D., Shook, C.: The application of cluster analysis in strategic management
research: an analysis and critique. Strategic Mgmt. Journal 17(6), 441–458 (1996)

7. Killick, R., Fearnhead, P., Eckley, I.: Optimal detection of changepoints with a
linear computational cost. Jour. Amer. Stat. Assoc. 107(500), 1590–1598 (2012)

8. Mahimkar, A., Ge, Z., Wang, J., Yates, J., Zhang, Y., Emmons, J., Huntley, B.,
Stockert, M.: Rapid detection of maintenance induced changes in service perfor-
mance. In: Proc. CoNEXT (2011)

9. Mahimkar, A., Song, H., Ge, Z., Shaikh, A., Wang, J., Yates, J., Zhang, Y., Em-
mons, J.: Detecting the performance impact of upgrades in large operational net-
works. In: Proc. SIGCOMM (2010)

10. Pucha, H., Zhang, Y., Mao, Z., Hu, Y.: Understanding network delay changes
caused by routing events. In: Proc. SIGMETRICS (2007)

http://atlas.ripe.net/
http://ris.ripe.net/


Towards an Automated Investigation of the Impact of BGP Routing Changes 203

11. Rimondini, M., Di Battista, G., Squarcella, C.: From BGP to RTT and beyond:
Matching BGP routing changes and network delay variations with an eye on tracer-
oute paths, Technical Report arXiv:1309.0632 (2013)

12. Tsamoura, E., Gounaris, A.: Incorporating change detection in network coordinate
systems for large data transfers. In: Proc. PCI (2013)

13. Wang, F., Mao, Z.M., Wang, J., Gao, L., Bush, R.: A measurement study on the
impact of routing events on end-to-end internet path performance. SIGCOMM
Comput. Commun. Rev. 36(4), 375–386 (2006)

14. Zhang, Y., Mao, Z., Wang, J.: A framework for measuring and predicting the
impact of routing changes. In: Proc. INFOCOM (2007)



Peering at the Internet’s Frontier:
A First Look at ISP Interconnectivity in Africa

Arpit Gupta1, Matt Calder2, Nick Feamster1,
Marshini Chetty3,4, Enrico Calandro4, and Ethan Katz-Bassett2

1 Georgia Tech
2 University of Southern California

3 University of Maryland
4 Research ICT Africa

Abstract. In developing regions, the performance to commonly visited destina-
tions is dominated by the network latency, which in turn depends on the con-
nectivity from ISPs in these regions to the locations that host popular sites and
content. We take a first look at ISP interconnectivity between various regions in
Africa and discover many circuitous Internet paths that should remain local often
detour through Europe. We investigate the causes of circuitous Internet paths and
evaluate the benefits of increased peering and better cache proxy placement for
reducing latency to popular Internet sites.

1 Introduction

An Internet user’s experience depends on having reliable paths that offer good per-
formance to the set of sites that a user commonly visits. In the developed world, we
have grown accustomed to rich peering and interconnection between a variety of ISPs,
ranging from access networks to content providers. In developing regions, however, the
story is more nuanced. The servers that host popular content (e.g., Facebook, Google)
may be distant, sometimes even on a different continent. Even when an Internet destina-
tion or content is nearby, a user’s path to that destination may be circuitous, if two ISPs
do not connect directly. For example, a user’s path between South Africa and Kenya
might “detour” through Europe if the African ISPs do not directly connect with one an-
other. These pathologies can significantly degrade Internet performance and can affect
decisions about how and where to place Internet content and services. For example, a
content provider might deploy a cache in a particular ISP in one region, expecting to
serve a large group of users in that region. Yet, if many Internet paths to that ISP from
nearby users are circuitous, the cache will provide limited benefit to local users.

In this paper, we characterize the nature of interdomain Internet connectivity in
Africa, focusing in particular on the connectivity at two major local Internet exchange
points in Africa, JINX in Johannesburg and KIXP in Nairobi. To construct a view of
Internet paths between various destinations in Africa, we perform continual traceroute
measurements from BISmark routers in South Africa to the Measurement Lab servers
deployed in South Africa, Kenya, and Tunisia. We use these traceroutes to explore the
extent to which Internet paths that would otherwise remain local ultimately take a cir-
cuitous path through a remote exchange point (typically in Europe). We then use more

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 204–213, 2014.
c© Springer International Publishing Switzerland 2014



Peering at the Internet’s Frontier 205

detailed BGP routing information from RouteViews, Packet Clearing House (PCH),
and Hurricane Electric, as well as information from PeeringDB and the IXP websites,
to help explain why these Internet paths are circuitous.

We also quantify whether better peering or more extensive placement of caching
proxies (or both) can reduce latency to popular services. We perform a trace-driven em-
ulation to recommend specific steps for improving the performance of specific services
in Africa. For example, we observe that the deployment of a Google cache node in a
particular ISP will provide no benefit to Internet users in other local ISPs unless that ISP
makes specific peering arrangements with ISPs hosting cache nodes. Based on this ob-
servation, we study how certain “surgical” peering arrangements within Africa could
improve Internet performance by short-circuiting longer routes via European IXPs.
Specifically, we study the following two questions:

• What is the nature of interdomain Internet paths between locations in Africa? (Sec-
tion 3) We characterize interdomain peering between various ISPs in Africa. We
measure the presence of local ISPs at various African IXPs, and the extent to which
ISPs (or groups of ISPs) choose to interconnect at these exchanges. We find that
66.8% of the paths between residential access links and Google cache nodes in
Africa leave the continent. Many circuitous paths result from the fact that local
ISPs are often not present at local exchanges, and, when they are, they often do not
peer with one another.

• What can be done to reduce latency to Internet services in Africa? (Section 4) We
explore how both additional peering relationships and proxy cache server deploy-
ments could improve the performance of specific services for users in Africa by
short-circuiting circuitous paths.

To facilitate follow-on work in this area, we have released the measurement and analysis
code for the results in this study [6].

2 Measurements

To measure latency between endpoints and infer peering relationships at IXPs, we rely
on 2 datasets: (1) BGP routing tables from RouteViews, PCH, and Hurricane Electric;
(2) periodic traceroutes from BISmark routers deployed across South Africa to globally
deployed Measurement Lab servers, IXP participants, and Google cache server deploy-
ments across Africa.

Caveats and limitations. Our data has several caveats. First, many of the Internet paths
that we measure are either to or from locations in one country, South Africa. Thus,
our measurements may not reflect the nature of paths in other African countries. We
are expanding the deployment across other countries in Africa, and we hope that this
study will encourage others to study similar phenomena. Second, peering in Africa is
rapidly evolving, and the characteristics we observe from our current measurements
will certainly change. Our study provides a snapshot of the current state of peering in
parts of Africa and an evaluation of the benefits of improved peering.



206 A. Gupta et al.

2.1 Interdomain Routes: BGP Routing Tables

We also use several sources of BGP routing tables: RouteViews, PCH, and Hurricane
Electric. We used the BGP AS path attribute in the routing tables to infer peering rela-
tionships between ASes at each IXP. Each of these data sets provides a complementary
view into the connectivity between ASes in Africa. In the case of RouteViews and PCH,
an AS will peer with a route server at each of these collection points, providing routes
to all of its customer ASes, but not to its peers. Most of the ASes at each IXP do not
provide routes to RouteViews or PCH, making it difficult to determine the complete set
of peering relationships at an IXP. To gain a more complete picture of peering relation-
ships at each IXP, we crawled the Hurricane Electric web portal. This portal allows us
to see many additional inter-AS relationships that are not visible in other data sets. If
two ASes are (1) adjacent in any AS path that we observe and (2) both present at an IXP,
we assume that a peering relationship exists at that IXP. Unfortunately, none of these
datasets allow us to see peering links between customer ASes in these BGP feeds, so
our view of peering is still limited. To augment these measurements, we use traceroute
measurements from BISmark nodes, as described below.

2.2 Router-Level Paths: BISmark Routers

BISmark (Broadband Internet Service Benchmark) is the combination of OpenWrt-
based custom firmware and user-space packages [9]; we deploy the software on home
gateway routers immediately downstream of the residential broadband access link. BIS-
mark runs on any OpenWrt-capable device, but we have primarily deployed the software
on the NetGear WNDR 3700 and 3800. Because the router is always on and connected
directly to the provider, we can perform continuous measurements. The BISmark router
deployment in South Africa provides the primary vantage points from access networks
for this study. We deployed 17 BISmark routers across 7 ISPs and all 9 provinces in South
Africa (Figure 1). We performed regular measurements from these BISmark routers to
nine global Measurement Lab servers (Figure 1), including three locations in Africa:
Tunis, Johannesburg, and Nairobi. We perform traceroutes between the BISmark nodes
and the Measurement Lab servers in both directions every thirty minutes using Paris
traceroute. These traceroutes expose sequence of ASes that these paths traverse. We use
the latency information in each traceroute hop for clues as to when an Internet path may
have left Africa (given the scale of these latency values, the coarse-grained latency mea-
surements are sufficient to make such inferences) and the latency in the last hop of the
traceroute to estimate the latency to the corresponding M-Lab server.

We use the BISmark vantage points to send traceroute probes to all the IXP partici-
pants to infer the peering relationships at these IXPs. If a router at the IXP appears in
the path, we conclude that the peering link is present at the IXP. We discarded measure-
ments if the traceroute had missing hop information at a transition between two ASes,
since such missing data would prevent us from determining if an additional AS was
present between the two that we observed. These measurements revealed 40 additional
links at JINX and 14 additional links at KIXP. In cases where an IXP participant hosts
a BISmark router, this additional visibility is significant. For example, in the case of
AS36874 (Cybersmart), which hosts two BISmark routers, we can verify 15 out of 20
visible peering links using these additional measurements.



Peering at the Internet’s Frontier 207

Table 1. The ISPs that host BISmark
routers in South Africa

ISP ASN Routers
MTN Business Solutions 16637 6
Telkom-Internet 37457 3
Internet Solutions 3741 3
Cybersmart 36874 2
SAIX-NET 5713 1
DPBOL 11845 1
MWEB 10474 1

Fig. 1. The South African BISmark nodes con-
tinuously measure latency to nine global Mea-
surement Lab servers

In 2012–2013, Google dramatically expanded its infrastructure for supporting
search, adding 1,200 new sites across 850 ASes, which more than doubled the num-
ber of countries in which it has a presence [3]. Using data from previous work [3], we
identify the 31 Google cache sites in South Africa and Kenya as of early September
2013. From each BISmark router in South Africa, we issue periodic traceroutes to each
of these 31 sites, as well as sites in London and Amsterdam. In South Africa, we per-
form traceroutes to the following ASes that also host Google cache servers: TENET,
TICSA, IS, MWEB, Google, MTNNS, and Cell C. In Kenya, we perform traceroutes to
the following ASes that host Google cache servers: SafariCom, KENET, AccessKenya,
JTL, and Wananchi. Three Google sites are hosted in ASes that also contain BISmark
routers: IS, SAIX, and MWEB. Two other sites that contain BISmark routers, Cybers-
mart and DataPro, have SAIX as a provider.

3 A First Look at ISP Interconnectivity in Africa

We first explore the prevalence of high-latency paths, as measured from the BISmark
routers in South Africa to the global M-Lab server destinations (Section 3.1); we ex-
plore the nature of these paths in both directions. We then explore the causes of these
circuitous paths (Section 3.2). Based on our findings, the subsequent sections make
recommendations for improving performance to Internet services in Africa.

3.1 High-Latency Paths

Figure 3a shows the distribution of median network latencies observed from the BIS-
mark routers in South Africa to various M-Lab servers around the world. We define
the latency penalty as the ratio of the observed median latencies to the best-case prop-
agation delay between South Africa and that city (determined by speed-of-light propa-
gation). Figure 3b shows the latency penalties observed for each destination. For both
figures, the cities are shown in increasing order of the geographic distance from South
Africa. Due to the nature of peering relationships, the increase in latency does not cor-
relate with geographic distance. For example, even though South Africa is closer ge-
ographically to Porto Allegre, Brazil than it is to London, latencies to Porto Allegre



208 A. Gupta et al.

Fig. 2. The 31 Google sites in
sub-Saharan Africa

(a) Absolute latencies (b) Latencies normalized by
geographic distance

Fig. 3. Latency between BISmark routers and M-Lab servers in
various cities. Cities are ordered by increasing distance from
South Africa. Darker pixels represent larger values.

are higher, since the path between South Africa and Brazil traverses the London In-
ternet Exchange (LINX). Similar pathologies are evident to other destinations, such as
Nairobi, which is geographically close to South Africa but whose paths to South Africa
traverse the LINX.

We find that ASes in Africa often do not peer with each other anywhere on the
continent. As a result, many Internet paths “detour” through Europe. In the next section,
we further explore the extent and causes of these high-latency circuitous paths.

3.2 The Cause of High Latency: Circuitous Paths

We define a circuitous path as one that traverses a geographic location that is far from
the path created by taking the geographically shortest path between two endpoints.
There are two common reasons for circuitous paths: (1) the ASes that provide con-
nectivity along the Internet path between two endpoints are not physically present in
a local Internet exchange point (IXP) that is close to the geographic shortest path; or
(2) the ASes that provide connectivity are present at a geographically proximal IXP but
do not have business relationships with one another or do not prefer that route.

The presence of a local IXP facilitates local peering between multiple ISPs and pre-
vents local traffic from leaving the region. The existence of a local IXP is not enough
to guarantee a low-latency path: local ISPs must also choose to connect at the local
IXPs. When local ISPs do not connect at a local IXP, the resulting paths can be cir-
cuitous. For example, Liquid Telecom (AS 30844) connects at JINX and has a presence
in Nairobi [8], but does not peer at KIXP. As a result, users in South Africa must reach
must reach many Kenyan networks via LINX in London, significantly increasing the
latency of these paths.

Observation: Local IXPs are often not present on local Internet paths. We analyzed
the traceroutes between BISmark routers in South Africa and Measurement Lab server
locations in Tunisia, Kenya, and South Africa to quantify prevalence of different IXPs



Peering at the Internet’s Frontier 209

(a) Johannesburg (b) Nairobi (c) Tunis

Fig. 4. Distribution of IXP prevalence for the paths from BISmark nodes in South Africa to M-
Lab servers in three different cities

along Internet paths between end points within Africa. We confirmed that the routers
at the IXPs responded to our traceroute probes; we used these responses to identify an
IXP’s presence on a particular path. We define IXP prevalence, which quantifies the
pervasiveness of an IXP for various routing paths between the two end hosts. For a pair
of end hosts with N observed routing paths, IXP prevalence for the IXP I , PI , is defined
as: PI =

∑N
i=1 xiPi, ∀xi ∈ {0, 1}, where Pi is the prevalence of the ith routing path

and xi = 1 indicates IXP I is present for this route.
Local IXPs in South Africa keep local traffic within South Africa. In contrast, lo-

cal IXPs are much less prevalent along paths between South Africa and other African
countries. Figure 4 shows the distribution of IXP prevalence for paths between BISmark
routers in South Africa and the three Measurement Lab locations in Africa. Figure 4a
shows the IXP prevalence distribution for the Johannesburg M-Lab server; because most
BISmark routers are located in South Africa, we observe most of the traffic to Johannes-
burg traverses IXPs in Johannesburg (JINX) and Cape Town (CINX). Figure 4b, on the
other hand, shows a completely different story for paths between the BISmark routers
in South Africa and the M-Lab server in Nairobi. The results show a lack of peering at
local IXPs and we also did not observe any private peering. Interestingly, KIXP is not
at all prevalent for these paths. Figure 4c shows that paths to the M-Lab server in Tunis
do not traverse local IXPs in either Tunisia or South Africa.

Cause #1: ISPs do not connect to local IXPs. Sometimes, local ISPs do not connect at
the local IXP at all. For example, we observed that Liquid Telecom (AS 30844) connects
at JINX and has a fiber presence in Nairobi [8], but for some reason decides not to peer
at KIXP, thus causing users in South Africa to take circuitous paths to destinations in
Kenya. ISPs in Africa often prefer to interconnect at European exchange points such
as LINX because of economy of scale. Most ISPs they need to peer with are present at
LINX, not at the local exchanges, so connectivity at LINX is a requirement. Because
African ISPs typically all connect at LINX anyhow, connecting at local IXPs simply
represents an additional cost with limited additional benefit. Further, the absence of IP
traffic between African countries, such as between South Africa and Kenya, reduces



210 A. Gupta et al.

(a) Johannesburg (JINX) (b) Nairobi (KIXP)

Fig. 5. Peering matrices for the ASes at two African IXPs. White squares represent the presence
of peering between an local AS pair, which in many cases we can observe at the IXP itself using
traceroute data. Black squares represent pairs of ASes for which we do not observe peering.

the incentive of ISPs to connect locally. Deploying a cache server in one country to
serve the users in another might increase traffic local to the African continent, but such
a scenario introduces a catch-22: A service provider such as Google cannot improve
performance for South African users by deploying a cache server in Kenya (or vice
versa) until the local interconnectivity improves.

Cause #2: ISPs are present at the local IXP, but do not peer. In other cases, ISPs may
be present at the same local IXP but may choose not to peer with one another. To study
this phenomenon, we analyzed the peering matrix of several IXPs, which shows the
IXP participants that peer with one another. We constructed peering matrices for the
major IXPs in South Africa and Kenya (JINX and KIXP, respectively) using methods
from previous work [2, 7]. We used both PeeringDB and the website of each IXP to
enumerate the IXP participants. We then analyzed the BGP routing tables as described
in Section 2.1 to infer peering relationships at each IXP.

Figure 5 shows the peering matrices for JINX and KIXP. We mapped 51 and 27 ASes
for JINX and KIXP, respectively, but the figure includes only the ASes for which we
could confirm at least one peering link for these peering matrices (30 ASes at JINX
and 22 ASes at KIXP). Figure 5 assumes that if we observe a peering in any path
between local ASes that the peering exists at the local IXP, even when we do not always
directly observe the peering at the IXP itself. Our data sometimes prevents us from
verifying the precise location of the peering link. When we use BGP AS paths, we
cannot locate the peering link; we can only observe the existence of peering. In the case
of our traceroute measurements, occasionally we see a direct peering without address
space from the IXP, but such an observation does not mean a peering at the IXP does not
exist. Peering may exist at the IXP but be numbered from one of the peer AS’s address
ranges, or the path through the IXP may be less preferred than another local private
peering. We assumed that a relationship between two local ASes implies a peering
relationship at the corresponding local IXP. Note that inferring peering links at an IXP
is a hard problem [2] and even after combining multiple data sources, we were not able
to infer all the peering links at these IXPs.



Peering at the Internet’s Frontier 211

(a) Adding more Links (b) Cache servers in local ISPs (c) Adding more cache nodes

Fig. 6. Performance benefits associated with adding additional peering links, placing caching
servers in local ISPs, and adding more cache nodes in a region

Figure 5 suggests that the peering matrices at each of these IXPs may be sparse. Even
when local ISPs are present at an IXP, they do not always peer with one another. When
local ISPs do not peer with one another at these exchanges, paths between the local ISPs
may be circuitous. Specific examples at KIXP are telling: AS 36914 (KENET) is present
at KIXP but we only observed its peering with Ubuntunet and Jamii Telecom. Thus,
most paths between KENET and South Africa take a circuitous path through LINX,
even though several transit providers at KIXP have direct peering relationships with
providers in South Africa (e.g., AS 12556, Internet Solutions, and AS 16637, MTN, are
both present at KIXP but do not peer with KENET).

4 Reducing Latencies to Popular Internet Sites and Services

We now evaluate the expected performance improvements that clients in Africa would
experience as a result of increased peering at major local ISPs. We also evaluate the rel-
ative benefits of adding links versus deploying additional local cache nodes for improv-
ing the performance of distributed services using the recent Google cache expansion.

4.1 Add More Peering Links

We quantify the performance benefits of increasing peering at local IXPs to avoid cir-
cuitous routes between local ASes. We assume that any circuitous path to Europe could
be avoided if the path includes two ASes in Africa that are both present at either JINX
or KIXP. In these cases, we replace the delay associated with traversing a path through
Europe with the propagation delay between JINX and KIXP, which is about 30 mil-
liseconds. Figure 6a shows the distribution of existing latencies between South Africa
and KIXP, and how that distribution would change if these circuitous paths could be
avoided. Adding peering links between the ASes that are already present at these local
exchanges can significantly improve performance.

4.2 Add More Local Caches

Figure 6b shows the median latencies (from measurements issued every ten minutes
over three days) from BISmark routers in South Africa to two Google cache nodes, one



212 A. Gupta et al.

in Kenya hosted by a peer of Internet Solutions, and one in Uganda hosted by MTN.
Routers in an AS that hosts a cache node or in an AS that peers with an AS that hosts
a cache node see low latency; on the other hand routers that are geographically nearby
but not in the AS or one of its peers see significantly higher latencies (typically, more
than 300 ms round-trip times). We expect that clients in a customer of an AS hosting a
cache node would also see low latencies, but we lack such a vantage point.

This result demonstrates that Internet services such as Google can achieve signifi-
cantly better performance by placing caches to serve local users in the caches’ customer
cones (or, in some cases, in their peers), even if the clients are in a different country from
the caches. Performance from BISmark nodes that are geographically nearby but lack
direct paths typically leave the continent and must traverse exchange points in Europe
(e.g., LINX). Even when direct paths do exist, the performance benefits may depend
on cache placement, since caches typically serve only over customer links and not to
providers and peers. Thus, in the absence of adequate interconnectivity, adding cache
servers may not improve latency performance for local users who are outside the cus-
tomer cone of any Google cache. If, on the other hand, a service provider adds caches
and peers with local ISPs, latencies for local users can improve significantly, even if the
service provider places only a single cache in a local ISP. Figure 6c shows the effects
of adding additional Google cache nodes in Kenya (which we simulated by taking the
minimum latency between a client among k Google cache nodes in Kenya), with and
without additional local peering links. This result suggests that content providers should
encourage local ISPs to connect at local exchanges, which might ultimately reduce the
number of cache server deployments required to achieve a particular level of service.

5 Related Work

A recent study on “boomerang routing” [5] observed that many paths between ISPs in
Canada take indirect paths through the United States. We observe similar phenomena
for Internet paths that are located in Africa, with the exception that the boomerang is
to Europe, as opposed to the United States (and the concern is performance, as op-
posed to security). Other recent work has studied the internal anatomy and intercon-
nectivity of IXPs [1, 2] but do not share our focus on performance or connectivity in
Africa. Other work has highlighted the importance of Internet exchange points for the
development of Internet connectivity [4]. Policy work has highlighted the importance
of self-organization to improve the efficiency of peering at IXPs in developing-world
contexts [10], a behavior that we believe will become increasingly important as peering
and interconnection increases in Africa in the coming years.

6 Conclusion

We have taken a first look at Internet paths between locations in Africa, focusing on
paths between South Africa, Kenya, and Tunisia. Although this initial study does not
represent connectivity across an entire continent, it highlights specific phenomena that
deserve attention and further study. First, a significant fraction of local Internet paths in



Peering at the Internet’s Frontier 213

Africa detour through Europe, resulting in latency penalties of several hundred millisec-
onds. For example, 66.8% of paths between BISmark routers and Google cache servers
in Africa leave the continent. (Latency penalties to other global regions such as South
America are also high.) Second, we find that local ISPs are often either (1) not present
at the local exchanges; or (2) do not peer with one another at the local exchanges.

ISPs may or may not connect at specific IXPs or peer with one another at a given
local IXP for many reasons. These reasons may be economic and political as much
as technical, and this issue deserves further study. In contrast to ISPs in developed
regions, ISPs in Africa must attain “backhaul” connectivity to large, distant IXPs in
Europe, where they can achieve economies of scale with connectivity to other ISPs.
Once an ISP connects to Internet destinations via Europe, it has less incentive to connect
to local IXPs, which impose additional cost but no significant gains, particularly for
ISPs where much traffic is remote. Some disincentives for local peering may relate
to the absence of large volumes of traffic between local ISPs, yet we expect that the
continued expansion of cache nodes into these regions (e.g., from Google) may change
this dynamic. In turn, the deployment of any single cache node may garner much more
significant performance benefits in the presence of richer local peering arrangements.
As more cache nodes are deployed and more traffic could remain local, the peering
ecosystem may rapidly evolve to include more local peering links.

Acknowledgments. This work was partially supported by NSF Awards CNS-1059350
and CNS-1162088, and a Google Focused Research Award.

References

1. Ager, B., Chatzis, N., Feldmann, A., Sarrar, N., Uhlig, S., Willinger, W.: Anatomy of a Large
European IXP. In: Proc. ACM SIGCOMM (2012)

2. Augustin, B., Krishnamurthy, B., Willinger, W.: IXPs: Mapped? In: Proceedings of the 9th
ACM SIGCOMM Internet Measurement Conference, IMC 2009, pp. 336–349. ACM, New
York (2009)

3. Calder, M., Fan, X., Hu, Z., Katz-Bassett, E., Heidemann, J., Govindan, R.: Mapping the
Expansion of Google’s Serving Infrastructure. In: Proceedings of the ACM Internet Mea-
surement Conference, IMC 2013 (October 2013)

4. Chatzis, N., Smaragdakis, G., Feldmann, A.: On the importance of Internet eXchange Points
for Today’s Internet Ecosystem. CoRR, abs/1307.5264 (2013)

5. Clement, A., Obar, J.: Internet Boomerang Routing: Surveillance, Privacy and Network
Sovereignty in a North American Context (2013)

6. Github: Peering-Africa, https://github.com/agupta13/Peering-Africa
7. He, Y., Siganos, G., Faloutsos, M., Krishnamurthy, S.: Lord of the links: a framework for

discovering missing links in the internet topology. IEEE/ACM Trans. Netw. 17(2), 391–404
(2009)

8. Liquid Telecom Fiber, http://www.liquidtelecom.com/fibre/fibre-map
9. Sundaresan, S., de Donato, W., Feamster, N., Teixeira, R., Crawford, S., Pescapè, A.: Mea-

suring home broadband performance. Commun. ACM 55(11), 100–109 (2012)
10. Weller, D., Woodcock, B.: Internet traffic exchange: Market developments and policy chal-

lenges. Technical report. OECD Publishing (2012)

https://github.com/agupta13/Peering-Africa
http://www.liquidtelecom.com/fibre/fibre-map


Assessing DNS Vulnerability to Record Injection�

Kyle Schomp1, Tom Callahan1, Michael Rabinovich1, and Mark Allman2

1 Case Western Reserve University, Cleveland, OH, USA
2 International Computer Science Institute, Berkeley, CA, USA

Abstract. The Domain Name System (DNS) is a critical component of the In-
ternet infrastructure as it maps human-readable names to IP addresses. Injecting
fraudulent mappings allows an attacker to divert users from intended destinations
to those of an attacker’s choosing. In this paper, we measure the Internet’s vul-
nerability to DNS record injection attacks—including a new attack we uncover.
We find that record injection vulnerabilities are fairly common—even years after
some of them were first uncovered.

Keywords: Domain Name System (DNS), Measurement, Security, Cache
Poisoning.

1 Introduction

The Domain Name System (DNS) is a critical component of the Internet infrastruc-
ture. DNS maps human-readable hostnames (e.g., “amazon.com”) to IP addresses and
is involved to some degree in most Internet transactions. Given the foundational role
of DNS in today’s Internet, DNS security has a profound effect on the overall security,
trust, and operability of the network. In particular, substituting an authoritative map-
ping with a fraudulent record allows an attacker to divert user access to nefarious hosts
with implications ranging from replacing the original content and phishing attacks to
installing malware on client hosts. In this paper, we measure the prevalence of DNS
vulnerabilities to attacks designed to substitute the authoritative mapping. Collectively,
these attacks are known as “record injection” attacks. We consider known attacks and a
new vulnerability we uncover, as well as the extent of the adoption of suggested best-
practice defenses.

Fraudulent hostname-to-IP address mappings originate in two places: (i) a compo-
nent in the hostname resolution machinery (e.g., a local DNS resolver) or (ii) a man-in-
the-middle that can monitor DNS transactions and either change or inject responses. A
variant of the first is a cache poisoning attack whereby an attacker populates the cache
of a DNS resolver with an illegitimate record, which the resolver then uses to satisfy
subsequent requests for the given hostname.

Cache poisoning attacks generally rely on open DNS resolvers that will act upon
DNS requests from arbitrary Internet hosts. Open resolvers have long been a known
security issue. However, the prevalence of such resolvers is increasing—from 15M in
2010 [11] to 30M in 2013 [14]. While not all open resolvers are vulnerable, their in-
creasing numbers provide a larger attack surface that we must understand. Moreover, as

� Work supported in part by NSF grants CNS-0831821, CNS-1213157 and CNS-1237265.

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 214–223, 2014.
c© Springer International Publishing Switzerland 2014



Assessing DNS Vulnerability to Record Injection 215

we discuss below, open resolvers often give attackers a vector to attack closed resolvers,
which further weakens the overall system.

The Internet engineering community has spent considerable energy fortifying DNS
with DNSSEC [1] which cryptographically protects the integrity of the authoritative
bindings set by the holder of a name. While DNSSEC is the long-term security strategy
for the DNS, deployment is currently low—with only about 1% of the resolvers vali-
dating DNSSEC records [6,9]. Given the low DNSSEC deployment, understanding the
security landscape of DNS without DNSSEC remains of critical importance.

Unfortunately, assessing the extent of security threats within the DNS infrastructure
is anything but straightforward. The path a DNS transaction takes through a maze of
intermediate resolvers is often both complex and hidden from external view. This paper
develops techniques to attribute vulnerabilities to various actors in this infrastructure.
Our key observations are: (i) that some closed resolvers are still vulnerable to cache
poisoning, (ii) while vulnerability mitigations exist, deployment is not ubiquitous, and
(iii) 7–9% of home networks are vulnerable to a simple new cache poisoning attack
we uncover. Our general finding is that DNS security soft spots are not rare—even
for vulnerabilities that have been known for years. Finally, note that our datasets are
available for community use [13].

2 Terminology and Methodology

The architecture of the client-side DNS resolution infrastructure varies across
providers—which we discuss in depth in companion work [14]. Here we provide a
short overview of our terminology. Generally, client systems do not query authorita-
tive DNS servers (“ADNS”) directly, but rather rely on a recursive resolver, which we
denote “RDNS”, to handle these interactions and return the final address mapping. An
RDNS may optionally leverage additional RDNS servers in the lookup process. We de-
note open resolvers that will answer arbitrary requests as “ODNS”. We often find that
ODNS resolvers do not perform recursive lookup themselves, but rather simply for-
ward requests to an RDNS. We denote a forwarding ODNS as an “FDNS”. The RDNS
querying our ADNS for an FDNS is an indirect RDNS, which we denote “RDNSi”.

Our basic methodology for studying the vulnerability of the client-side DNS infras-
tructure is to probe the Internet in search of ODNS resolvers, similar to previous ef-
forts [5, 14]. We register a domain and deploy an ADNS for this domain.1 We then use
approximately 100 PlanetLab [3] nodes to randomly scan the IP address space with
DNS requests for various hostnames within our domain. We embed the IP address of
the target of our scan in the hostname request. Therefore, the queries arriving at our
ADNS illuminate the set of ODNS servers. Additionally, the ADNS can use the source
IP address to discover the set of RDNS resolvers. Given these two pieces of information,
we can distinguish between ODNS resolvers that are themselves performing recursive
lookup from those that are merely forwarding the requests to another resolver—i.e., the
set of FDNS servers. Table 1 provides information about the datasets we discover and

1 Note, unless otherwise stated, we always work within our own unused namespace as to not
interfere with users’ normal activities.



216 K. Schomp et al.

Table 1. Collected Datasets

Scan Begin Dur. (Days) # ODNS # RDNS
S1 2/29/12 17 1.09M 69.5K
S2 3/1/13 11 40.5K 5.3K
S3 7/19/13 12 2.31M 86.1K

Table 2. RDNS Characteristics

Observation RDNS
No. %

Total 69K 100%
Unclassified 12K 18%
Classified 57K 82%
Complex Trans. ID Seq. 57K 100%
Var. Ephemeral Port 48K 84%
0x20 Encoding 195 0.3%

utilize in the remainder of the paper. While the general methodology we sketch here ap-
plies to all our experiments, the specifics vary across experiments as we study different
aspects of the infrastructure. The specifics are given in the relevant sections below.

Note, we return to methodological issues in § 8. In particular, we use the techniques
we develop in the paper to address two specific issues. First, we aim to understand
whether the ODNS servers we find are actually in operational use by real users. Second,
since we do not probe the entire Internet address space, we seek to understand if our
sample is representative of the broader Internet.

3 Kaminsky’s Attack

Kaminsky [10] describes a DNS cache poisoning attack which leverages the connec-
tionless nature of typical UDP-based DNS requests to insert an NS record2 into the vic-
tim’s cache. The Kaminsky attack proceeds with the attacker A sending a large number
of requests for hostnames within a domain to be poisoned, P.com, to a victim RDNS
V in the form of queries for random string.P.com. A legitimate response to such re-
quests must (i) be from the ADNS for P.com, (ii) be directed to the correct ephemeral
UDP port number (the source port listed in the request message), (iii) contain the query
string from the request and (iv) use the transaction ID assigned in the request. How-
ever, A knows the query string and can readily determine and spoof the IP address
of the ADNS—leaving only checks (ii) and (iv) as protection against illegitimate re-
sponses. By sending a large number of requests with different query strings, A can then
use brute force guessing of port numbers and transaction IDs in forged replies until a
reply is accepted by V .

Mitigating the Kaminsky attack involves increasing the amount of entropy in DNS
requests such that the average cost of mounting a successful attack is prohibitively high.
Resolvers can increase entropy by randomizing both the DNS transaction ID and the
ephemeral port number. While randomizing only the DNS transaction ID is insufficient
protection, randomizing both values is an effective strategy [10]. Another technique to
increasing entropy is “0x20 encoding” [4] in which the RDNS randomly changes the
capitalization throughout query strings. Authoritative servers should be case insensitive

2 An NS record contains the hostname of the ADNS for all hostnames within a particular do-
main. For instance, Google has an NS record that indicates the authoritative source for the
binding of “news.google.com” to an IP address.



Assessing DNS Vulnerability to Record Injection 217

when resolving the query yet retain the capitalization in their response [12]. Hence,
checking that the capitalization in the request and response matches is another way to
decrease an attacker’s likelihood of forming an acceptable response.

To understand the vulnerability to the Kaminsky attack we assess the adoption of
the strategies for enhancing entropy by sending multiple requests for unique hostnames
to each ODNS. Then, in our S1 dataset, we check successive queries from a single
RDNS at our ADNS for variation in the ephemeral port selection, DNS transaction ID,
and for the use of 0x20 encoding. Table 2 shows our results. First, our dataset does
not contain enough requests,3 to accurately characterize 12K (or 18%) of the RDNS
resolvers. For the remainder, we find that nearly all RDNS resolvers employ a complex
(presumably random) method for selecting DNS transaction IDs.4 Further, 84% of the
classified RDNS resolvers use some variation in their ephemeral port selection. That
means 9K RDNS servers use a static ephemeral port on all transactions! Per the dis-
cussion above, both the ephemeral port and the transaction ID values must be random
to thwart attacks and therefore roughly 16% of classified RDNS servers are vulnerable
to the Kaminsky attack. Furthermore, we observe RDNS resolvers using static source
ports in 37% of the autonomous systems in our dataset, which illuminates the breadth of
the issue. Additionally, we find that 0x20 encoding is in use by roughly 0.3% of RDNS
resolvers—showing that resolvers are generally not using this strategy for increasing
the entropy of requests.5 These results are nearly identical when only considering the
RDNSi subset of RDNS resolvers that we know to serve FDNS clients.

Finally, we note that the use of RDNS pools (e.g., [7, 14]) serves to mitigate the
Kaminsky attack as well. Regardless of the IP address the attacker uses as entry point
into the pool, the IP address used to communicate with the ADNS is chosen according
to an algorithm unknown to the attacker. Therefore, to launch a Kaminsky attack against
an RDNS pool, the attacker must either target every RDNS in the pool simultaneously,
know how the pool distributes requests internally, or guess the destination IP address.

4 Bailiwick Rules Violations

Bailiwick rules prevent malicious ADNS servers from inserting fraudulent records into
resolvers’ caches [2]. Under this attack, a legitimate response fromX.com also includes
an “additional answers” section that supplies arbitrary unrelated bindings—e.g., for
www.Y.com. To potentially save time later, a susceptible resolver adds www.Y.com
to its cache. During our S1 scan, we test for this vulnerability by returning legitimate
responses from our domain that also include information for a non-existent google.com
subdomain.6 We then query the ODNS for the google.com subdomain and determine

3 We require at least ten transactions for the results in this paper, but in other experiments we
find the insights are not sensitive to the exact threshold.

4 We conclude that resolvers do not use static, incrementing, or decrementing transactions IDs
by observing a high standard deviation in the transaction ID sequence.

5 Our results may be a lower bound on the adoption of 0x20 encoding as at least one major
RDNS pool—Google Public DNS [8]—uses 0x20 encoding on a white-listed set of domains.
Unfortunately, we have no information on the prevalence of white-listing.

6 This will not interfere with regular Google traffic as the hostnames involved are not in use.



218 K. Schomp et al.

whether the response includes our poisoned result or an error message from Google
indicating a non-existent domain.

Preventing this attack can be accomplished through the implementation of bailiwick
rules—such as checking that any records in the “additional answers” section belong to
the domain owned by the responding ADNS. In the most simplistic attack, we find
675 cases where client-side DNS infrastructure readily caches a DNS response for
a mapping we provide for a bogus google.com subdomain. Furthermore, we observe
231 cases where the resolvers cache any additional record from a response to an MX
query (these are queries for the mail server for the domain in question) and 203 cases
where the resolver caches any additional CNAME-type record. Overall, there are a total
of 749 cases where we find a resolver falling prey to at least one of these record injection
attacks. While a relatively small number, these RDNS resolvers are completely exposed
to crude poisoning by malicious ADNS servers, with no guessing involved.

5 Preplay Attack

The Kaminsky attack requires an attacker to forge an acceptable DNS response. How-
ever, in the course of our investigation we determined that FDNS servers were vulnerable
to a previously unknown injection attack. While FDNS servers do not themselves recur-
sively look up mappings, they often do have caches of previous lookups. The FDNS
servers populate these caches with the responses from upstream RDNS resolvers. In
some cases we find that FDNS servers fail to validate the DNS responses. This leaves
these FDNS servers vulnerable to the crudest form of cache injection: a “preplay” attack
whereby an attacker sends a request to a victim FDNS and then, before the legitimate
response comes back, the attacker answers the request with a fraudulent response. The
FDNS will then forward the fake response to the originator and cache the result. An
FDNS that (i) forwards requests with a new random ephemeral port number and DNS
transaction ID and (ii) verifies these and the upstream RDNS’ IP address on returning
responses would be protected against the preplay attack. Such protections would reduce
an attacker to guessing a variety of values in the short amount of time before the legiti-
mate response from the RDNS arrives. However, we find a non-trivial number of FDNS
servers simply forward on the packets received and/or do not verify the values on DNS
responses. This leaves the door open for a crude attack whereby an attacker does not
have to guess these values, but can just use those from the original request.

To assess the extent of this vulnerability during our S2 and S3 experiments, we send
a request for a hostname within our domain to each ODNS and immediately issue a
fraudulent response containing IP address X . On the other hand, our ADNS responds
to these requests with a binding to IP address Y . The probing host issues a subsequent
request and determines which IP address is in the ODNS’ cache.

In its most primitive form, the preplay attack does not involve spoofing or guessing
to make the fraudulent response appear legitimate—we use the ephemeral port number
and DNS transaction ID from the original request. Additionally, we use the probing
machine’s genuine IP address. We use variants of this attack that attempt to leverage
information arriving at the ADNS (e.g., the RDNS server’s IP address) to craft DNS
responses that look more legitimate. However, to date our variants do not point to higher



Assessing DNS Vulnerability to Record Injection 219

vulnerability rates. Finally, while we use the DNS default port 53 as the ephemeral port
in the results herein, using a random ephemeral port number shows similar results.

We first test the preplay attack during the S2 scan. Unlike our other scans which were
performed from PlanetLab nodes, the S2 scan leverages a single node in a residential
network.7 For each ODNS we attempt each attack variant three times to reduce any
impact from packet loss. Of the roughly 41K ODNS servers we test, we find 3.5K
(or 8.6%) to be vulnerable to the preplay attack. Therefore, we conclude that ODNS
servers are failing to take three simple measures to thwart this attack: (i) use a new and
random DNS transaction ID, (ii) verify that the source IP address in DNS responses
matches the IP address of the upstream RDNS, and (iii) verify the destination port
number on responses. The latter is particularly intriguing as it suggests these devices
are not running a traditional protocol stack in which packets arriving on an unbound port
number are dropped. Given we find no increase in the success rate with our attempts at
spoofing, we return to PlanetLab with the S3 scan to assess the vulnerability at a larger
scale. Of the 2.3M ODNS servers we test, we find 170K (or 7.3%) to be vulnerable to
the preplay attack.

6 DNS Message Rewriting

We now examine DNS record modification by network operators. Depending on one’s
perspective this may or may not be considered a security issue. However, we believe
that responses deviating from the authoritative intent are at least worth understanding.
NXDOMAIN Rewriting: A DNS request for a non-existent name evokes a response
with the “NXDOMAIN” return code. Previous anecdotal observations indicate that such
responses are prone to interception and replacement with valid addresses by some ISPs
and DNS providers. This practice is generally attempting to monetize the unfulfilled re-
quest (e.g., by trying to sell the domain or sending a user to a similar page in an attempt
to meet their intent). In our S1 experiment, we send a request to each ODNS that causes
our ADNS to return an NXDOMAIN message. We find that roughly 258K (23.7%)
of ODNS servers are subject to NXDOMAIN rewriting as we receive an address in
response to our invalid query, which is close to previous measurements [15]8 To under-
stand who may be responsible for rewriting, we analyze the set of RDNS resolvers on
the path of rewritten messages. We determine an RDNS is a probable rewriter if more
than half the open resolvers served by the RDNS experience rewriting. We find over
100 ISPs/DNS providers that we suspect of performing rewriting by default, including
Qwest/Centurylink, OpenDNS, Frontier, Rogers, Airtel, RoadRunner, and TE Data.
Search Engine Hijacking: Previous work shows several ISPs alter DNS responses
from major search engines in an effort to place a proxy between the user and the search
results [15–17]. This allows the ISPs to monetize users’ searching (e.g., by placing ads

7 Due to some of our (unreported) tests using spoofed addresses (against PlanetLab’s AUP).
8 As a methodological note, one must be careful in selecting query strings. For instance, we

initially misclassified OpenDNS as not performing rewriting because our queries began with
dotted-quad IP addresses—a pattern OpenDNS excludes from its rewriting process. A second
pass with a different query string correctly classifies OpenDNS as a rewriter. Thus, our findings
are conservative due to other potential edge cases.



220 K. Schomp et al.

on the results). Since our strategy allows us to assess ISPs’ RDNS resolvers, we inves-
tigate this behavior and find no evidence the practice is now in widespread use. Still,
we find 18 smaller regional ISPs that appear to rewrite DNS responses for google.com.

7 Implications

Duration of Record Injection: The injection attacks we discuss above can only be
successful when part of the DNS infrastructure caches a fraudulent record and then
returns that record in response to a normal user request. An assessment of the caches
of FDNS and RDNS resolvers [14] finds (i) little evidence of cache evictions based
on capacity limits and (ii) that records with long TTLs—which can be set in injected
records—stay in the cache for at least one day in 60% of the RDNSi resolvers and 50%
of the FDNS servers. This shows the impact of record injection can be long-lived.

Indirect Attacks: It is not enough for RDNS resolvers to act on requests only from
authorized devices as these devices are in turn commonly globally accessible and open
RDNS resolvers to indirect attacks. The large and growing set—doubling to over 30M
in the last three years—of open resolvers [14] represents an attack vector to otherwise
inaccessible RDNS resolvers. For instance, we find that 62% of the RDNS resolvers in
the S1 dataset do not answer external queries and yet we are still able to probe these
servers. Further, using ODNS servers to indirectly attack other portions of the DNS
ecosystem provides a layer of obfuscation that helps attackers escape attribution.

Phantom DNS Records: A class of denial-of-service attacks relies on placing a large
DNS record in a cache (at an RDNS, say) and then spoofing requests that will cause
the record to be sent to some victim. This can both hide the actual origin of the attack,
as well as amplify (in volume) an attackers traffic by using records that are larger than
requests. To date this requires attackers to register a domain and serve large records
to insert them into the various caches or find an ADNS that is already serving large
records. However, using record injection techniques, an attacker does not need to be
bound to any centralized infrastructure. In fact, any domain could be readily inserted in
the cache and then used in a subsequent attack. This leaves less of a paper trail that can
potentially trace back to an attacker. The preplay attack allows such record injection
into millions of devices with trivial effort.

8 Context

We now return to contextual issues surrounding our measurements, as sketched in § 2.
Are Open Resolvers Used? We first turn to the question of whether ODNS servers
in fact serve users or are active, yet unused artifacts. This bears directly on whether
the preplay attack represents a real problem. First, in companion work we use several
criteria—including scraping any present HTTP content on the ODNS, consulting black-
lists of residential hosts and observing UDP protocol behavior—to determine that “78%
[of ODNS servers] are likely residential networking devices” [14]. Using the same cri-
teria against the FDNS servers in the S3 scan, we find that 91% of the FDNS servers



Assessing DNS Vulnerability to Record Injection 221

that are vulnerable to the preplay attack are likely residential network devices. While
this result does not speak directly to use, our experience is that these devices act as DNS
forwarders for devices within homes and therefore we believe this suggests actual use.

Additionally, we seek to test directly for evidence that the FDNS servers we probe are
in use by some client population. We start by gathering round-trip time (RTT) samples
for each FDNS and the corresponding RDNS. For the FDNS we use the preplay attack
to measure the RTT by taking the time between sending a fraudulent response to the
FDNS and receiving the response back from the FDNS at our client. Measuring the
RTT to the RDNS is more complicated. The process starts with the client requesting
some name N from our ADNS. The ADNS responds with some CNAME N ′, which the
RDNS then resolves and our ADNS returns a random address A. The mapping between
N and A then returns to the FDNS and ultimately our client. The client then issues a
request for N ′—which will presumably be in the RDNS’ cache, but given the primitive
nature of preplay-vulnerable FDNS devices not in the FDNS’ cache. The response for
N ′ will be A when the RDNS answers the request from the cache.

After we obtain RTTs for both FDNS and RDNS, we seek to understand whether
popular web site names are in the FDNS cache as a proxy for whether the FDNS is in
use by a population of users. We therefore issue DNS requests for the Alexa9 top 1,000
web sites and time the responses.10 Given unreliable TTL reporting by FDNS servers
[14], we determine that a given hostname is in the FDNS cache using the time required
to resolve the name. Since we expect individual FDNS to have diurnal variation, we
perform the lookups on each FDNS every 4 hours for one day. Our own queries will
populate the FDNS cache and therefore we must exercise care with subsequent probes
lest we wrongly conclude users employ the FDNS when it is our own probes we observe.
We mitigate this issue in two ways. First, we probe all names with an authoritative TTL
of 4 hours or more only once, accounting for 415 names. Second, we inject records into
FDNS cache from our ADNS with the same TTLs as the remaining 1,585 records in
our corpus (all of which are less than 4 hours). At each 4 hour interval we check our
own records and if the FDNS incorrectly returns a record that had an initial TTL of x
we exclude all but the initial query for popular names with an initial TTL of at least x.

We determine that a given hostname is in the FDNS cache if the time required to
resolve the name during our S3 scan does not exceed the median FDNS RTT. Figure 1
shows the distribution of the fraction of FDNS servers that hold a given number of
records in their cache. The “All” line shows the distribution for all preplay-vulnerable
FDNS servers. We find 81% of the FDNS servers have at least one popular name in
their cache at some point during the experiment. However, the distribution also shows
that over 30% of the FDNS servers have at least 100 hostnames in the cache. This seems
unlikely and we believe these represent cases where our heuristic is not properly delin-
eating between the FDNS and RDNS cache. Therefore, in an effort to better delineate
the FDNS and RDNS caches we plot the subset of FDNS servers where the maximum
FDNS RTT is at least 10 msec less than the minimum RDNS RTT, which we denote as
“Far from RDNS”. This subset encompasses 8.4K FDNS servers and we do see the tail

9 www.alexa.com
10 Note, we augment the list of sites by prepending each web site name from Alexa with

“www”—which is not included in the list—and we therefore probe for 2,000 names.

www.alexa.com


222 K. Schomp et al.

0 1 10 100 2K
0

0.2

0.4

0.6

0.8

1

Records in Cache

C
C

D
F

 

 

All
Far from RDNS

Fig. 1. Distribution of popular web-
sites in FDNS server caches

1 2 3 4 5 6 7 8 9 10
0.05

0.1

0.15

0.2

Snapshots in chronological order

 

 

FDNS Vulnerable to Preplay
RDNS Vulnerable to Kaminsky

Fig. 2. Vulnerability frequency at
snapshots during discovery

of the distribution fall away. Within this subset, 53% of the FDNS servers are in use.
Additionally, we examine the subset of FDNS servers that are accessible for our en-
tire 24 hour experiment. In this subset, we find more in-use FDNS servers—90% of all
FDNS servers and 68% of FDNS servers that are far from their corresponding RDNS
resolver. We exclude the 24 hour lines from the graph for readability.

Note, our heuristic provides a lower bound on the number of in-use FDNS servers
since we only measure a fraction of the 24 hour period. Indeed, the median TTL for
the popular names is 10 minutes. Assuming the median TTL, an FDNS that enforces
the TTL and an FDNS available for 24 hours, our strategy provides a one-hour window
into the FDNS’ cache—or, just over 4% of the day. Further, our extensive probing of
the FDNS’ cache may actually overflow the cache thus pushing out records added via
use. Therefore, we believe that many of the FDNS servers that do not show as in use
are in fact in use, but that short TTLs and our coarse and extensive probing conspire to
hide the use. Our general conclusion is that the FDNS servers we find are in fact in use
by people during their normal browsing.

Representativeness: Finally, we return to the issue of representativeness of our results
as mentioned in § 2. Since our scans do not encompass the entire Internet our insights
could be skewed by our scanning methodology. To check this we divide our scans into
ten chronological slices and derive the cumulative vulnerability rate at each slice for the
Kaminsky and preplay attacks. The slices are equal in size in terms of the number of
vulnerable RDNS servers and vulnerable ODNS servers for the Kaminsky and preplay
vulnerabilities, respectively. The cumulative vulnerability rate should plateau once the
dataset is typical of the broader population. Figure 2 shows the cumulative vulnerability
rate across the ten slices for both attacks. The FDNS vulnerability rate reaches steady
state immediately, illustrating that we are in fact capturing a representative sample of
FDNS servers with random sampling of IP addresses—which is not surprising.

On the other hand, the figure shows that for the Kaminsky attack, the vulnerability
rate increases as the scan progresses, indicating that the RDNS resolvers we discover
at the beginning of the scan are less vulnerable to the Kaminsky attack than those we
discover later in the scan. While we choose ODNS servers at random, we only indi-
rectly discover RDNS resolvers. In particular, the probability of discovering an RDNS
resolver is directly proportional to the size of the FDNS population that it serves. Thus,
as the scan proceeds the discovery rate decreases and we find smaller scale RDNS re-
solvers. We believe these results sum to indicate that busier RDNS servers are better



Assessing DNS Vulnerability to Record Injection 223

maintained and less vulnerable to the Kaminsky attack. The plot also indicates that our
estimate of the Kaminsky vulnerability rate is a lower bound.

9 Conclusion

In this study, we assess the susceptibility of the client-side DNS infrastructure to record
injection attacks. We find that many open resolvers are still vulnerable to record injec-
tion. Further, these devices provide a back door to attack shared DNS infrastructure.
Through active probing, we assess the extent of known record injection threats and the
deployment of known protective techniques. We further uncover and measure a new
attack vector—the preplay attack. We find 7–9% of the open DNS resolvers are vul-
nerable to the preplay attack and 16% of recursive DNS servers are vulnerable to the
Kaminsky attack. Therefore, we conclude that the client-side DNS ecosystem is non-
trivially vulnerable to record injection attacks.

References

1. Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: DNS Security Introduction and
Requirements. RFC 4033 (2005)

2. Bernstein, D.: http://cr.yp.to/djbdns/notes.html
3. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bowman, M.:

PlanetLab: An Overlay Testbed for Broad-Coverage Services. ACM CCR 33(3) (2003)
4. Dagon, D., Antonakakis, M., Vixie, P., Jinmei, T., Lee, W.: Increased DNS Forgery Resis-

tance Through 0x20-bit Encoding: Security via Leet Queries. ACM CCS (2008)
5. Dagon, D., Provos, N., Lee, C., Lee, W.: Corrupted DNS Resolution Paths: The Rise of a

Malicious Resolution Authority. In: NDSS (2008)
6. Fujiwara, K.: Number of Possible DNSSEC Validators Seen at jp. In: DNS-OARC Workshop

(2012)
7. Google Public DNS. Performance Benefits, https://developers.google.com/

speed/public-dns/docs/performance
8. Google Public DNS. Security Benefits, https://developers.google.com/speed

/public-dns/docs/security
9. Gudmundsson, O., Crocker, S.: Observing DNSSEC Validation in the Wild. In: Workshop

on Securing and Trusting Internet Names, SATIN (2011)
10. Kaminsky, D.: Black Ops 2008: It’s the End of the Cache As We Know It. In: Black Hat

USA (2008)
11. Leonard, D., Loguinov, D.: Demystifying Service Discovery: Implementing an Internet-Wide

Scanner. In: ACM Internet Measurement Conference (2010)
12. Mockapetris, P.: Domain Names Implementation and Specification. RFC 1035 (1987)
13. Schomp, K., Callahan, T., Rabinovich, M., Allman, M.: Client-Side DNS Infrastructure

Datasets, http://dns-scans.eecs.cwru.edu/
14. Schomp, K., Callahan, T., Rabinovich, M., Allman, M.: On Measuring the Client-Side DNS

Infrastructure. In: ACM Internet Measurement Conference (2013)
15. Weaver, N., Kreibich, C., Nechaev, B., Paxson, V.: Implications of Netalyzr’s DNS Measure-

ments. In: Workshop on Securing and Trusting Internet Names (SATIN) (2011)
16. Weaver, N., Kreibich, C., Paxson, V.: Redirecting DNS for Ads and Profit. In: Workshop on

Free and Open Comm. on the Internet (2011)
17. Zhang, C., Huang, C., Ross, K., Maltz, D., Li, J.: Inflight Modifications of Content: Who Are

The Culprits? In: LEET (2011)

http://cr.yp.to/djbdns/notes.html
https://developers.google.com/speed/public-dns/docs/performance
https://developers.google.com/speed/public-dns/docs/performance
https://developers.google.com/speed/public-dns/docs/security
https://developers.google.com/speed/public-dns/docs/security
http://dns-scans.eecs.cwru.edu/


How Vulnerable Are Unprotected Machines
on the Internet?

Yuanyuan Grace Zeng1, David Coffey2, and John Viega1

1 SilverSky
{yzeng,jviega}@silversky.com

2 McAfee, Inc.
david coffey@mcafee.com

Abstract. How vulnerable are unprotected machines on the Internet? Utilizing
Amazon’s Elastic Compute Cloud (EC2) service and our own VMware ESXi
server, we launched and monitored 18 Windows machines (Windows 2008, XP
and 7) without anti-virus or firewall protection at two distinct locations on the
Internet—in the cloud and on-premise. Some machines ran a wide-open config-
uration with all ports open and services emulated, while others had a out-of-the-
box configuration with default ports and services. After launching, all machines
received port scans within minutes and vulnerability probes within a couple of
hours. Although all machines with wide-open configurations attracted exploita-
tions within a day, machines with out-of-the-box configurations observed very
few vulnerability exploitations regardless of their locations. From our months-
long experiment we found that: a) attackers are constantly searching for victims;
b) the more opening ports/listening services a machine has, the more risks it is
exposed to; c) brute-force logins are the most common type of attack; d) exploita-
tions targeting vulnerabilities of software or operating systems are not widely
observed.

1 Introduction

The Internet is a playground for opportunistic attackers. Thousands of threats are cir-
culating around the Internet. Most computers today are protected by firewalls, IDS/IPS
and anti-virus (AV) tools. But what happens in the worst-case scenario when they do
not have any protection? Previous experiments on “Time-to-Live-on-the-Network” [5]
and “Survival Time” [11] of Windows machines were conducted quite a few years ago
with test machines running old Windows operating systems. The Internet Storm Center
of SANS made the “Four-Minute Windows Survival Time” [10] claim in 2008 and was
especially criticized for using a Windows XP RTM or SP1 version in the test.

Since the time of these initial time-to-live studies, the Internet threat environment
has become deadlier. Meanwhile, the Windows operating systems have become more
secure. But in the past five years, we failed to see any study on attacks towards un-
protected machines running current operating systems. To close this gap, we wanted
to investigate how well an unprotected machine with a current operating system does
in today’s threat environment. Left to its own devices, how soon will it be probed and
attacked? And what is the most prevalent attack targeting the unprotected machine?

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 224–234, 2014.
c© Springer International Publishing Switzerland 2014



How Vulnerable Are Unprotected Machines on the Internet? 225

We are interested in testing unprotected machines at two places on the Internet: one is
in the cloud and the other is on-premise connecting directly to a DSL line. We would
like to study the in-cloud scenario because enterprises are increasingly turning to the
cloud for various business purposes. Also, since Windows operating systems account
for more than 80% market share [3], we would like to focus our study on the most
widely-used Windows operating systems. To the best of our knowledge, this is the first
experiment carried out on Windows 2008 and Windows 7 machines. Unlike previous
experiments that only captured the elapsed time for a machine to get infected, our ex-
periment kept track of different stages of a malware infection process. We measured the
time elapsed starting with the initial deployment of the test machine to the first occur-
rence of all following events: port scan, vulnerability probe, and exploitation. Based on
detailed traffic and event logs captured, we were able to conduct a thorough analysis on
the scan/probe/exploitation activities.

2 Related Work

Besides the aforementioned empirical time-to-live studies on Windows machines, there
are other areas of research related to our work. One such area is vulnerability assess-
ment. Ten et al. [13] proposed a framework to quantify and evaluate the vulnerabilities
of SCADA systems at multiple levels. Hartung et al. [6] demonstrated the ease of com-
promising a sensor node and tampering its data, and suggested a few countermeasures to
improve a sensor’s security posture. McQueen et al. [7] created a time-to-compromise
model for a system component that is visible to an attacker, taking into account known
and visible vulnerabilities, and attacker skill level. Another relevant topic is the analy-
sis on the Internet-wide malware propagation. Moore et al. [8] conducted a case study
on the infamous Code-Red worm at the global level, detailing the spread of this worm
and the properties of the infected machines. Shannon et al. [12] monitored the outbreak
of Witty worm through a network telescope and reported findings such as the scan-
ning rate, the infection duration as well as the number of victims over a period of time.
Moore et al. [9] studied the use of public search engines to locate vulnerable servers
and found that as an alternative to vulnerability scanning this approach was widely used
in compromising web servers to host malware and phishing sites.

3 Experiment Design

3.1 Scope of the Experiment

Usually, a machine gets infected through either of the two ways: user-involved infection
or vulnerability exploitation. A user-involved infection requires a user to take certain
actions such as clicking a link or downloading and executing a file. An infection via
vulnerability exploitation normally gets its way into the machine silently without a
user’s awareness. Our experiment only considers the vulnerability exploitation scenario
with no user in the loop. Every Windows machine in our experiment meets the following
requirements:

– Each machine is connected to the Internet with a unique public IP address.
– All incoming traffic (TCP, UDP and ICMP) is allowed by a network-based firewall.



226 Y. Zeng, D. Coffey, and J. Viega

– The in-host Windows firewall is disabled and no anti-virus (AV) is installed.
– Wireshark captures all network traffic; Regshot [4] monitors Registry changes and

Windows event logs keep track of system-wide activities such as logins/logouts and
application status changes. Those logs together are used to decompose probes and
attacks.

3.2 Experiment Set-Up

Our experiment spanned two periods of time: February to April and August to October
of 2012. We set up and collected data from 18 machines in total at two locations—the
Amazon’s Elastic Compute Cloud (EC2) and a VMware ESXi server on-premise.

In-Cloud Experiment. We ran 15 machines in Amazon’s EC2 environment with two
configuration profiles: “wide-open” and “out-of-the-box”. In the wide-open scenario, a
machine opens all ports and emulates all possible services. This way the machine can
attract as many malicious attempts as possible. In the out-of-the-box scenario, a ma-
chine runs only with default open ports and services. This scenario gives us a baseline
of how many malicious attempts an unprotected machine might encounter.

Windows is by far the most popular operating system on the Internet. Its server ver-
sions are generally exposed to more risks than home/professional versions. Our tests
were carried out on Windows Server 2008 R1 SP2 and R2 SP1. As mentioned earlier,
we disabled all firewall and anti-virus programs and configured the security policies
so that Amazon allowed all incoming connections to those machines. To create the
wide-open scenario, we installed a low-interactive honeypot named HoneyBot [1] and
changed several services to avoid interference. After the configuration was complete,
we took a snapshot of the instance and created an AMI (Amazon Machine Image) for
later use. We launched ten instances on EC2 using the same AMI and made sure that
they were hosted in different geographical zones and were allocated different IP ad-
dresses. For the out-of-the-box scenario, we made a clean install of Windows Server
2008 and did not install any programs other than Wireshark and Regshot. By default,
common ports such as 135 (RPC), 139 (NetBIOS), 445 (SMB) and 3389 (RDP) were
open. We ran five such instances on EC2.

On-Premise Experiment. To create a testbed, we installed a VMware ESXi 5.0 server
and connected it to a DSL line at our office location in North Carolina. This time we
wanted to test out non-server Windows OS versions. Since OS platform statistics [3]
showed that Windows 7 and Windows XP accounted for a majority of Windows op-
erating systems being used (55% and 25% in August 2012), we created three virtual
machines on the ESXi server: one running Windows 7 Professional SP1 and two run-
ning Windows XP Professional SP2. Their default open ports included 135 (RPC), 139
(NetBIOS), 445 (SMB) and 3389 (RDP). We later opened port 21 (FTP), 25 (SMTP),
80 (HTTP), 443 (HTTPS), 1433/1434 (MSSQL) on those Windows XP machines. Each
virtual machine was assigned a unique public IP and we ran port scans to confirm that
machines were indeed reachable from the Internet. Other configurations were the same
as the in-cloud machines.



How Vulnerable Are Unprotected Machines on the Internet? 227

4 Experiment Results

4.1 In-Cloud Experiment

Scan, Probe, and Exploitation Times of Occurrence. Malware infections follow a
predictable pattern. Using a port scan, an attacker tests whether a port on a target ma-
chine is open. If so, a vulnerability probe gathers more information about a listening
service, such as the version of the service to identify specific vulnerabilities; and an ex-
ploitation delivers malicious payloads to finally compromise the machine. In the wide-
open scenario, after launching, on average it took about 23.4 minutes to see the first
port scan, and 56.4 minutes to see the first vulnerability probe (the exact number for
each server shown in Figure 1). Probes hit well-known ports such as 22 (SSH), 23 (Tel-
net), 25 (SMTP), 80 (HTTP), 445 (SMB), 1080 (SOCKS Proxy), 1433 (Microsoft SQL
Server) and 3389 (RDP). Looking at each server (honeypot) individually, we found that
honeypots 1, 7, 8 and 9, which were hosted in the same zone on EC2, waited longer
to see the first port scans and probes. We surmised that the IP space of that zone was
new and not yet explored by attackers. With respect to exploitation time windows, we
observed that almost all first exploitation attempts came in within 24 hours, with the av-
erage time being 18.6 hours (Figure 2). We captured exploitation attempts on port 445
(SMB), 1434 (Microsoft SQL Monitor), 2967 (Symantec AV) and 12147 (Symantec
Alert Management System 2). Almost all exploitations during our months-long experi-
ment were known threats. This is expected because the HoneyBot program was able to
emulate many known vulnerabilities to attract attacks. Interestingly, exploits targeting
five to even ten years old vulnerabilities were still floating around. For example, the
attack at port 1434 was the Slammer worm dating back to 2003, and the stack overflow
vulnerability at port 2967 was disclosed in 2006.

In the out-of-the-box scenario, it took an average of 13 minutes for the first port scan
to arrive (Figure 3). Port scans hit ports such as 8080 (HTTP) and 1433 (Microsoft SQL
Server). The first vulnerability probe arrived within 3 hours on average (Figure 3); all
probes were login attempts to the Samba share (445) or via RDP (3389). We monitored
the servers for a few weeks, but failed to see any exploitation attempts mainly due to
the limited number of open ports (services).

Top Targeted Ports. In the wide-open scenario, all ports were open on each test ma-
chine. We analyzed the traffic to see which ports were targeted most often. Table 1 plots
the top 10 ports ordered by the percentage of total traffic each port accounts for. As shown,
1080 (SOCKS) was the most targeted port. The SOCKS protocol is used to tunnel traffic
through firewalls from inside to outside, but it is often misconfigured. Attackers take ad-
vantage of misconfigured SOCKS services to tunnel their attack traffic inward and mask
the origin of their traffic—that’s why this port attracted so many hits. Port 1433, the Mi-
crosoft SQL Server listener, also received much attack traffic. Port 25 (SMTP) was also
popular. Spammers who look for open relays frequently probe this port. Many of the
other top ports were related to the HTTP service, such as 80, 8000, 8080 and 8888. In
the out-of-the-box scenario, we can see that (also in Table 1) more than 60% of traffic
went to port 445 and 3389 which were open by default. Other common ports such as
1433, 80, 4899 and 1080, though not open, also received numerous scans.



228 Y. Zeng, D. Coffey, and J. Viega

0 

50 

100 

150 

200 

250 

1 2 3 4 5 6 7 8 9 10 

M
in

ut
es

 

Wide-Open Servers (Honeypots) 

First Port Scan First Vulnerability Probe Avg Scan:   ~23 min 
Avg Probe: ~56 min 

Fig. 1. Scan and Probe Times of Occurrence on Wide-Open Servers (in minutes)

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 

1 2 3 4 5 6 7 8 9 10 

Ho
ur

s 

Wide-Open Servers (Honeypots) 

First Exploitation Avg Time: ~19 h 

Fig. 2. Exploitation Attempt Times of Occurrence on Wide-Open Servers (in hours)

0 

50 

100 

150 

200 

250 

300 

350 

400 

1 2 3 4 5 

M
in

ut
es

 

Out-of-the-Box Servers 

First Port Scan First Vulnerability Probe Avg Scan:   ~13 min 
Avg Probe: ~3 h 

Fig. 3. Scan and Probe Times of Occurrence on Out-of-the-Box Servers (in minutes)



How Vulnerable Are Unprotected Machines on the Internet? 229

Login Attempts. In our experiment, we observed a huge number of login attempts. Al-
most all of them were failures according to Windows security event logs. Every test ma-
chine, on average, received over 1,000 login requests daily either through port 445/139
(SMB/NetBIOS) or port 3389 (RDP). SMB (Server Message Block) is an application
layer protocol that is mainly used for file sharing on Windows systems. It can run di-
rectly over TCP port 445 or run in the session layer via port 139 over TCP. RDP (Re-
mote Desktop Protocol) provides remote desktop connections for Windows. We looked
at failed login attempts at port 3389 on our test machines. As it turned out, multiple
offending IPs tested out the same dictionary of usernames. Table 2 demonstrates this
set of usernames. In particular, the username administrator—the default administra-
tive account name—was brute-forced the most. Examining the SMB login attempts,

Table 1. Top 10 Targeted Ports

Wide-Open Out-of-the-Box
Port % of Conn Port % of Conn

1080 SOCKS 15.50% 445 SMB 32.26%
445 SMB 10.94% 3389 RDP 28.85%
1433 MSSQL 8.03% 38856 6.07%
3389 RDP 6.29% 139 NetBIOS 2.81%
80 HTTP 6.01% 1433 MSSQL 2.48%
110 POP3 3.18% 22292 1.73%
22 SSH 2.93% 80 HTTP 1.58%
25 SMTP 2.91% 4899 Radmin 1.13%
139 NetBIOS 2.83% 27977 0.93%
8000 HTTP 1.76% 1080 SOCKS 0.90%

Table 2. Brute-Forced Usernames

Usernames

1 administrator root test2
123 aspnet server test3

a backup sql user
actuser console support user1

adm david support 388945a0 user2
admin guest sys user3

admin1 john test user4
admin2 owner test1 user5

we observed that attackers tried several administrator name variations such as admin,
administrator and db2admin. All of those attempts failed except for a few anonymous
(guest) logons. Anonymous logins do not require a username or password to connect to
the SMB server. This is an optional feature of SMB and should generally be disabled.
Anonymous logins may pose a security risk to the system because a remote attacker
could launch exploits to gain user privileges or even control of the affected system.



230 Y. Zeng, D. Coffey, and J. Viega

Exploitations. In our experiment, we found that most exploitations attempted on our
wide-open machines were not new attacks. There was one interesting attack we would
like to highlight—an attack on port 12147 where Symantec’s Alert Management System
2 (AMS2) service listens. AMS2 is a component of multiple Symantec products includ-
ing Symantec AntiVirus Corporate Edition and Symantec Endpoint Protection. AMS2
has multiple known vulnerabilities. For example, in 2009 a remote-code-execution vul-
nerability of AMS2 allowed attackers to execute arbitrary commands by sending a
crafted packet. Our honeypot captured one such packet—the attacker attempted to get
a remote shell to create a VBScript in the target machine. We extracted and reorganized
the exploit packet payload and found that the main purpose of the script was to down-
load an executable named winnew.exe from the attacker, save it as installer.exe to the
C: drive, and then run it. With the remote command shell, the attacker was able to do
whatever he wanted to the target machine. Our honeypots also captured similar exploits
targeting the same vulnerability, but with different payloads.

Table 3. Summary Statistics

Machine Total 1st Port 1st Probe # of Compromises # of Connections # of Offending
Time Scan Daily IPs Daily

Win XP Pro SP2 14 days 50m 1h51m 1 453 69
Win XP Pro SP2 7 days 6m 1h37m 1 2372 54
Win 7 Pro SP1 29 days 3m 2h41m 0 618 45

4.2 On-Premise Experiment

Scan, Probe, and Exploitation Times of Occurrence. In the on-premise experiment,
Table 3 shows the summary statistics of the three virtual machines (Two Windows XP
and one Windows 7) on an ESXi server. They were connected to a DSL line in our
office location. They all received port scans within an hour, probes within a couple of
hours, though only the two XP machines were eventually compromised by attackers.
The average numbers of inbound connections on daily basis were different from one
machine to another. Apparently, some offending IPs behaved more aggressively than
others, which we will show later.

Top Targeted Ports. As far as top targeted ports are concerned (Table 4), Windows
XP and Windows 7 machines shared a similar set of targeted ports such as 1433, 3389,
445 and 139. The MSSQL port 1433 was disproportionally targeted due to the Mi-
crosoft SQL server installed on the XP machines. Note that many ports in the top list
were never open in our experiment—attackers made constant requests to them simply
because most likely services running on those ports had vulnerabilities. Thus, it is im-
portant for network administrators and IT security staff to secure those services at first.

Top Offending IPs. Table 5 lists the top 5 offending IPs along with targeted ports per IP
and the number of connections initiated. The observation is that, as opposed to scanning
all/multiple ports on a machine, the attacker normally focused on one particular port



How Vulnerable Are Unprotected Machines on the Internet? 231

Table 4. Top 10 Targeted Ports

Windows XP Windows 7
Port % of Conn Port % of Conn

1433 MSSQL 36.58% 139 NetBIOS 53.56%
3389 RDP 8.88% 445 SMB 23.10%
445 SMB 1.62% 3389 RDP 13.87%
5900 VNC 1.53% 1433 MSSQL 1.58%

139 NetBIOS 0.59% 5900 VNC 1.55%
25 SMTP 0.40% 22 SSH 0.76%
22 SSH 0.31% 23 Telnet 0.48%

4899 Radmin 0.22% 4899 Radmin 0.45%
110 POP 0.22% 8080 HTTP 0.45%
80 HTTP 0.19% 51595 UDP 0.41%

Table 5. Top 10 Offending IPs with Targeted Ports

Windows XP Windows 7
IP/Port # of Conn IP/Port # of Conn

64.31.*.* 6988 80.90.*.* 5663
1433 6988 139 2790
218.65.*.* 1987 445 2873
3389 1987 184.154.*.* 4628
199.36.*.* 1360 137 2
1433 1360 139 4626
117.41.*.* 1050 122.199.*.* 1463
1433 1050 3389 1463
159.226.*.* 912 205.210.*.* 682
1433 912 135 1

139 454
445 227
200.91.*.* 623
135 1
139 310
445 312

(service). For example, the top one offending IP to XP machines initiated thousands of
connections only to the MSSQL port 1433, whereas the top offending IP to the Windows
7 machine persistently reached out to SMB port 445/139. Apparently, brute-forced login
attempts accounted for a majority of the incoming connections.

Top Countries. We used MaxMind’s GeoIP database [2] to map source offending IPs
to geographic locations. As shown in Figure 4, the top three countries remained the
same for XP and 7 machines. The top one country is China, accounting for over one
third of total malicious traffic. United States is at the second place and followed by
Korea. We need to point out that the location of an offending IP does not necessarily



232 Y. Zeng, D. Coffey, and J. Viega

China 
46% 

United States 
22% 

Korea, 
Republic of 

10% 

Taiwan 
5% 

India 
4% 

Russian 
Federation 

3% 

Japan 
3% 

Canada 
3% 

United 
Kingdom 

2% 

Brazil 
2% 

Win XP 

China 
45% 

United States 
25% 

Korea, 
Republic of 

6% 

Russian 
Federation 

5% 

India 
5% 

Germany 
3% 

Taiwan 
3% 

Japan 
3% Brazil 

3% 

Turkey 
2% 

Win 7 

Fig. 4. Top 10 Countries of Attacks

reflect where the attacker is because an attacker can remotely control compromised
machines all over the world.

Compromises. As mentioned earlier, the Windows 7 machine stayed strong throughout
the experiment, whereas the two Windows XP machines fell victim and were eventually
under attackers’ control. How did the compromises take place? Long story short: both
were due to weak passwords as opposed to OS/software vulnerability exploitations. We
will walk through them one by one.
Compromise I: The compromise of one XP machine was attributed to a Microsoft SQL
Server brute-force attack. The intruder successfully broke the ‘sa’ account password
(“password1”) within 9 hours of service startup, and then enabled the xpcmd shell, an
extended stored procedure, to issue commands directly to the Windows command shell.
With this privileged access, the machine was in the intruder’s hand. The victim machine
subsequently started FTP sessions with its command server and downloaded and exe-
cuted multiple Trojan payloads. Instructed by the command server, the machine made
numerous connection attempts to an online gaming site.
Compromise II: The compromise of another XP machine also resulted from a weak
password (“tryout”) of the Administrator login account. The intruder launched thou-
sands of RDP sessions and finally made a right guess. It was about two days between
our machine going online and being compromised. From the pcap traces, we could tell
that the original intruder did not hold the machine for his own use. It seems that the
compromised machine was given (or even sold) to someone else. Though the break-
in method is a standard one, how the victim machine was used is noteworthy. There
was no system change or file modification on the machine. We caught the wrongdoer
at the scene the moment he was fabricating his eHarmony profile on the compromised
machine. His IP was from Nigeria and there was a picture of an Italian actor on the desk-
top. Looking at the browsing history we found that this person had visited quite a few
online dating sites to create new profiles and browse other peoples’ pages—he logged
on to this machine solely for this purpose. Given all the information, very likely, this



How Vulnerable Are Unprotected Machines on the Internet? 233

is the starting point of an online dating scam. Why did he use someone else’s machine
to do so? Normally, web sites can track users by IP addresses and people conducting
malicious activities are afraid of getting caught if using their own computers.

5 Conclusion and Future Work

In this paper, we presented our experiment on monitoring 18 unprotected Windows
machines at two Internet locations: in the cloud and on-premise. Our key findings are:

– Every machine on the Internet is scanned within minutes after connecting. It does
not matter whether a machine connecting to the Internet opens ports or not—any
machine will be scanned within several minutes. This is not surprising because
attackers don’t know whether a port is open unless they scan it.

– More open ports means more vulnerability probes. The elapsed time between the
machine startup and the arrival of vulnerability probes depends on the specific ser-
vices that are running. The more listening services a machine has, the sooner it will
be probed, and the more risks it will be exposed to.

– More vulnerabilities means more exploitation attempts. It is rare that attackers send
exploitations blindly without first knowing that their targets are vulnerable. On the
other hand, if unprotected machines have holes, chances are good that attackers will
find them and attempt to exploit them. How long it takes depends on the vulnera-
bilities a machine has.

– Brute-force logins are the most common type of attack. We observed that brute-
force login attempts were much more frequent than vulnerability probes or ex-
ploitations. On each machine, we captured dictionary attacks at port 445 (SMB) and
3389 (RDP), attempting thousands of username/password combinations. Most at-
tempts targeted accounts with administrator privileges. Weak or default passwords
can be easily broken and provide the best entry point.

– Vulnerability exploitations without users’ interaction are possible but not widely
observed. Even though every wide-open machine (all ports open and services emu-
lated) received at least one vulnerability exploitation within hours, we saw very few
exploitations on out-of-the-box machines. Generally speaking, exploitations com-
ing directly from the Internet and targeting vulnerabilities of operating systems or
applications are less prevalent nowadays—most exploitations are delivered at the
client-side and require users’ involvement such as opening a file or clicking a link.

As future work, we plan to broaden the scope of the experiment. We would like to 1)
increase the number of test machines; 2) add other operating systems such as OS X and
Linux; 3) deploy machines at more locations such as home and campus networks. We
expect to run this experiment on an ongoing basis and regularly report our findings.

References

1. Honeybot, http://www.atomicsoftwaresolutions.com/honeybot.php
2. Maxmind geoip database,

http://www.maxmind.com/en/geolocation_landing

http://www.atomicsoftwaresolutions.com/honeybot.php
http://www.maxmind.com/en/geolocation_landing


234 Y. Zeng, D. Coffey, and J. Viega

3. Os platform statistics, http://www.w3schools.com/browsers/browsers os.
asp

4. Regshot, http://sourceforge.net/projects/regshot/
5. Avantgarde: Time to live on the network. Tech. rep. (2004)
6. Hartung, C., Balasalle, J., Han, R.: Node compromise in sensor networks: The need for secure

systems. Department of Computer Science University of Colorado at Boulder (2005)
7. McQueen, M.A., Boyer, W.F., Flynn, M.A., Beitel, G.A.: Time-to-compromise model for

cyber risk reduction estimation. Quality of Protection, 49–64 (2006)
8. Moore, D., Shannon, C.: Code-red: a case study on the spread and victims of an internet

worm. In: 2nd ACM SIGCOMM Workshop on Internet Measurment, pp. 273–284 (2002)
9. Moore, T., Clayton, R.: Evil searching: Compromise and recompromise of internet hosts

for phishing. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 256–272.
Springer, Heidelberg (2009)

10. SANS: Four-minute windows survival time,
http://isc.sans.edu/diary.html?storyid=4721

11. SANS: Survival time, http://isc.sans.edu/survivaltime.html
12. Shannon, C., Moore, D.: The spread of the witty worm. IEEE Security & Privacy 2(4), 46–50

(2004)
13. Ten, C.W., Liu, C.C., Manimaran, G.: Vulnerability assessment of cybersecurity for scada

systems. IEEE Transactions on Power Systems 23(4), 1836–1846 (2008)

http://www.w3schools.com/browsers/browsers_os.asp
http://www.w3schools.com/browsers/browsers_os.asp
http://sourceforge.net/projects/regshot/
http://isc.sans.edu/diary.html?storyid=4721
http://isc.sans.edu/survivaltime.html


A Closer Look at Third-Party OSN Applications:

Are They Leaking Your Personal Information?

Abdelberi Chaabane1, Yuan Ding2, Ratan Dey2,
Mohamed Ali Kaafar1,3, and Keith W. Ross2

1 INRIA, France
2 Polytechnic Institute of NYU, USA

3 NICTA, Australia

Abstract. We examine third-party Online Social Network (OSN) appli-
cations for two major OSNs: Facebook and RenRen. These third-party
applications typically gather, from the OSN, user personal information.
We develop a measurement platform to study the interaction between
OSN applications and fourth parties. We use this platform to study the
behavior of 997 Facebook applications and 377 RenRen applications.
We find that the Facebook and RenRen applications interact with hun-
dreds of different fourth-party tracking entities. More worrisome, 22% of
Facebook applications and 69% of RenRen applications provide users’
personal information to one or more fourth-party tracking entities.

1 Introduction

OSN user profiles represent a rich source of personal information, including de-
mographic information, users’ interests and their social relations. Privacy threats
resulting from this direct exposure of personal information have been widely
publicized and researched. Third-party OSN applications are tremendously pop-
ular with some apps being actively used by more than 100 million users in
Facebook. Besides, with apps potentially having access to users’ personal in-
formation, through access permissions, they introduce an alternative avenue for
privacy leakage. With the users’ personal information being exposed outside of
the OSN sphere, the privacy risk becomes even higher.

We examine third-party OSN applications for two major OSNs: Facebook and
RenRen. These third-party applications typically gather, from the OSN, user
personal information, such as user ID, user name, gender, list of friends, email
address, and so on. Third-party applications also typically interact with “fourth
parties,” such as ad networks, data brokers, and analytics services. According
to Facebook’s Terms of Service, third-party applications are prohibited from
sharing users’ personal information, collected from Facebook, with such fourth
parties. We develop a measurement platform to study the interaction between
OSN applications and fourth parties.

We use this platform to analyze the behavior of 997 Facebook applications and
377 applications in RenRen. We observe that 98% of the Facebook applications
gather users’ basic information including full name, hometown and friend list,

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 235–246, 2014.
c© Springer International Publishing Switzerland 2014



236 A. Chaabane et al.

and that 75% of apps collect the users’ email addresses. We also find that the
Facebook and RenRen applications interact with hundreds of different fourth-
party tracking entities. More worrisome, 22% of the Facebook applications and
69% of the RenRen applications provide users’ personal information to one or
more fourth-party tracking entities.

1.1 Related Research

Krishnamurthy and Wills examined privacy leakage that can occur from OSNs
directly to external entities [5,6]. Chaabane et al. evaluated the tracking capa-
bilities of the OSNs in [1]. However, to our knowledge, this is the first paper to
explore indirect privacy leakage to external entities via third-party applications.
Another line of related research has analyzed the permission systems in third-
party applications. Chia et al. showed that community ratings are not reliable
and that most applications request more permissions than needed [2]. Frank et
al. extended this work, showing that Facebook permissions follow a predefined
pattern and that malicious applications deviate from it [4]. Finally, Xia et al.
proposed Tessellation [9] a framework to correlate user identity – using various
OSN identifiers extracted from the social network traffic – to its online behav-
ior. Our approach is complementary as it shows that OSN identifiers can be also
extracted from other sources (i.e., traffic between third party applications and
external entities). None of these works examine the flow of personal information
from the third-party apps to fourth-party entities.

2 Background

This section introduces the general concepts behind third-party applications
for both Facebook and RenRen networks. For concreteness, we discuss these
concepts in the context of Facebook, and point out how RenRen differs at the
end of this section.

As shown in Figure 1, while logged into the OSN, the user selects an app,
which brings the user to a web page that includes a “canvas” served by Face-
book, the application (in an iframe) served by the publisher’s server, and possibly
some advertisements served by ad networks. If it is the user’s first visit, Facebook
displays a dialog frame which asks the user for permissions to access information
in the user’s profile (step 1). This dialog frame indicates the particular set of per-
missions the application is requesting. The application can, for example, request
permission for “basic info” 1, which includes user name, profile picture, gender,
user ID (account number), and user networks. Applications also have access to
friend lists and any other information users choose to make public (e.g., inter-
ests and notes). In order to access additional attributes, or to publish content
to Facebook on behalf of the user, the application needs additional permissions.

The user’s browser then contacts Facebook seeking an access token, which
is used to query Facebook servers to fetch the user’s information (steps 2 and

1 https://developers.facebook.com/docs/graph-api/reference/user/

https://developers.facebook.com/docs/graph-api/reference/user/


A Closer Look at Third-Party OSN Applications 237

App Server

FB Server User

2- Get OAuth Dialog 

3- 302 Redirect with access
token 

5-
 G

et
 /m

e?
ac

ce
ss

_t
ok

en
=.

..
6-

 S
en

d 
us

er
 In

fo

Fourth parties

Fig. 1. An overview of the Facebook application architecture

3). The token is transmitted to the publisher’s server (step 4), which queries
Facebook for user information (steps 5 and 6). Once the server obtains the user
information, it may load all or some of that information in the HTML (for
example, using JavaScript) provided to the user’s browser.

OSN applications typically further interact with “fourth parties” such as ad
networks, data brokers, and analytics services. Different techniques can be used
to contact these external entities, among which include using an iframe (e.g.,
loading an ad) and Javascript (e.g., sending data to an analytics service). Observe
that when these entities are contacted, the referrer field is automatically filled
with the current page (i.e. application main page) URI. Our focus in this paper
is on these external entities and whether the personal information obtained by
the user’s browser is transferred to the external entities.

From an architectural point of view, RenRen has the same conceptual features
and operation as Facebook with a few minor exceptions. In particular, RenRen
has only three permissions: (i) access personal information and friend relations,
(ii) access timeline information (e.g., posts, shared content) and (iii) allowing
the app to post on behalf of the user. The first permission is granted by default
to all applications.

Privacy Issues: Third party applications naturally give rise to several privacy
issues. First, the application code is hosted on the publisher’s own servers and are
out of Facebook’s control. This inherently prevents Facebook from monitoring
and/or controlling the application’s behavior, and impedes any proactive mea-
sures to block malicious activities. Second, as user information is transferred out
of Facebook servers, user information usage and dissemination is out of the user’s
control. Finally, privacy control for third-party apps are very limited due to the
coarse-grain granularity of permissions, and as such it is debatable whether this
is in accordance with the “principle of minimal privilege” which states that only
minimum privileges should be granted to fulfil the task.



238 A. Chaabane et al.

3 Methodology

In December 2012, we investigated each of the 997 working applications listed
on the official Facebook App center.2 To be referenced by the Facebook App
center, the application needs to be reviewed and sanctioned by the Facebook
staff.3 As a result, most of the applications considered in our study are very
popular, as we discuss below. For each of these applications, we first obtain the
application name, ID, installation URL, popularity (in terms of number of users),
category (e.g., game, Health & Fitness, Finance, etc.), publisher (which was not
available for a few applications) and a summary description. We then automate
the process of application installation based on the Selenium WebDriver.4 In
particular, using several different Facebook accounts with distinctly different
user profiles, we install and accept the requested permissions for each of the 997
applications. To monitor the application behavior, we use a modified version of
a Firefox plug-in [7], allowing us to record all the HTTP and HTTPS traffic.
Similarly, we investigated each of the 377 working applications listed on the
RenRen App center.

3.1 Limitations of the Methodology

In our experimental methodology, we aim to measure and characterize third-
party applications in a semi-controlled environment. We note, however, that our
tested applications are all gathered from the official App center and as such do
not represent the totality of the OSN third-party application ecosystem, since
there are many other applications that do not belong to the App Center. For the
privacy leakage analysis, our methodology only examines traffic originating from
the user browser; any information leakage that might happen outside this channel
(e.g., communication between the application servers and external entities) are
not identified. Therefore, the extent of privacy leakage quantified un this paper
serves as a lower bound.

3.2 Basic Characteristics of Applications

Our main interest centers on the applications’ interactions with external
fourth-party servers and resulting privacy leakages. To this end, it is useful
to first understand the basic characteristics of the Facebook and RenRen
applications under investigation. Specifically, in this subsection, we examine the
popularity of the applications, the applications’ publishing companies, and the
permissions the applications request.

Application Popularity: Figure 2a shows the cumulative distribution for the
popularity of our tested Facebook and RenRen applications. We observe that

2 https://www.facebook.com/appcenter/
3 https://developers.facebook.com/docs/appcenter/guidelines/
4 http://seleniumhq.org/

https://www.facebook.com/appcenter/
https://developers.facebook.com/docs/appcenter/guidelines/
http://seleniumhq.org/


A Closer Look at Third-Party OSN Applications 239

both distributions exhibit a similar shape with 60% of the Facebook and RenRen
applications having more than 100 thousands users and 10 thousands users,
respectively. Importantly, the most popular applications have more than 100
million users in Facebook and more than 10 million in RenRen. This shows the
potential of third-party applications to collect large volumes of user data.

Table 1. Most frequent app companies
for Facebook (997 apps)

6waves 2.35%

Zynga 1.66%

Playdom 1.37%

Peak Games 1.17%

Kingnet 1.07%

Electronic Arts 1.07%

MindJolt 0.98%

Table 2. Most frequently requested
permissions for Facebook (997 apps)

User basic information 98%

Personal email address 74.5%

Publish Action 59.6%

Access user’s birthday 33.6%

Publish stream 20.5%

Access user’s likes 12.25%

Access user’s location 9.8%

Application Companies: We were able to collect the publisher’s company
name for 845 applications. Table 1 shows the top seven publishers among the
applications considered. These top seven companies only cover 10% of the appli-
cations; furthermore, there are 536 different publishers for the 997 tested appli-
cations. From a data retention perspective, this suggests that user data is more
likely to be scattered among multiple entities, further reducing the user’s control
over its data.

Permissions: Table 2 shows the most frequently requested permissions. As
expected a large fraction of applications request permission to obtain the basic
information, which as mentioned previously, encompasses not only the user name
but also all information the user makes public in the public profile. Requests for
access to email information is also very frequent (75%). Sensitive information
such as user’ birthday and hometown seems to be less requested with 33% and
10% respectively.

4 Interaction with External Entities

Now we turn our attention to the interaction between the third-party applica-
tion running in the browser and external entities. Since most, if not all, of the
functionalities are very similar in Facebook and RenRen networks, we mainly
discuss features of the Facebook network. However, the figures show our results
for both OSNs.

HTTP Connections. For an application to function properly in Facebook, the
user browser has to contact three main domains: the Facebook login page
at facebook.com to exchange credentials, the Facebook content server at
fbcdn.net to extract user data (e.g., the user’s photo) and the application’s
main server. For each of our tested applications, we capture the traffic exchanged

facebook.com
fbcdn.net


240 A. Chaabane et al.

(a) (b)

Fig. 2. (a) Application popularity, (b) Number of contacted servers for each application

between the browser and the external entities, and extract the external domains
with which the application communicates. Figure 2b shows the CDF of the num-
ber of unique contacted domains per application for both Facebook and RenRen
OSNs. Surprisingly, more than 75% of the Facebook applications exchange traffic
with at least six different domains, and for almost 10% of the tested applications
the number of unique domains exceeds 20.

The RenRen network exhibits a slightly different behavior with 70% of the
tested applications contacting less than 6 servers. The maximum number of do-
mains contacted by RenRen applications is four times smaller than in Facebook.
This suggests that the tracking eco-system in RenRen is less complex and in-
cludes a smaller number of entities.

(a) (b)

Fig. 3. (a) Tracker distribution for third-party apps (b) Distribution of tracker cate-
gories

Tracker distribution. Many of these external entities are “trackers,” including
ad networks and analytics services, which are contacted when the user visits
the application webpage. To identify the tracker domains, we use lists provided
by Ghostery, AdBlock and the Microsoft Tracking Protection List (TPL) to



A Closer Look at Third-Party OSN Applications 241

compile a set of 10,292 tracking domains. The total number of trackers identified
within our set of Facebook and RenRen applications is 410 and 126, respectively.
Their distributions are shown in Figure 3a. These results show that for Facebook
(respectively, RenRen), 39% (respectively, 37%) of the tracking domains are
employed by a single application. The tail of the CDF also shows that a few
trackers are employed by a large number of applications, with less than 5%
of the trackers in both Facebook and RenRen tracking more than 100 different
applications. The top 3 of the observed trackers is composed of Google Analytics
(with 613 tracked applications), smartadserver (416 applications) and Turn.com
(344 apps).

Tracker Categories. We now further classify the set of identified trackers into
five categories: ad networks (e.g., Google Adsense) referred to as Ad; analytical
services (e.g., Google analytics) referred to as analytics; online service plug-ins
(e.g., Twitter connect) referred to as widgets; ad-network tracking services as
special tracking features (e.g., DoubleClick Floodlight), which are referred to
as trackers. Finally, we also consider the trackers not belonging to these classes
but included in the Microsoft Tracking Protection List (Scorecard Research) and
refer to these as tpl.

Figure 3b shows the cumulative distribution of the trackers according to their
different categories (only for Facebook). As expected, we observe that more
than 70% of the applications use analytics services. Notably, Google analytics is
employed by 60% of the applications, far ahead of all other analytics services.
Note that 84% of the applications use a single analytics service, and only 2% of
use more than 3 different analytics services.

More than 60% of the tested applications did not use a known “ad network”,
which puts in question the revenue model of these applications. There are nu-
merous ways for a Facebook application to generate revenue: inserting ads from
a particular ad-network (which is the case for 40% of our tested applications);
by monetizing the “pay more, play more” scheme which allows the users to buy
virtual credits; by selling private advertising space (e.g., through the Facebook
exchange protocol FBX); or selling user data, although this is officially not com-
pliant with the application development agreement. We highlight that the high
proportion of applications not relying on ad-network revenue is surprising, which
merits further investigation.

The sharp slope of the ad CDF curve shows that a large fraction of the
applications that use ad-networks tend to include a variety of different networks;
in particular, 10% of the applications embed at least 5 different ad-networks.
Other types of trackers are less popular and most of them are employed by a
single application.

5 Personal Information Leakage

In this section we present a methodology to detect potential privacy leakage from
Facebook and RenRen apps to fourth parties. We then employ this methodology
to quantify the amount of privacy leakage.



242 A. Chaabane et al.

GET /api/.../?s=USERID&g=male&lc=US&f=1...
Host: api.geo.kontagent.net

GET /__utm.gif?..&utmhn=iframe.
onlinesoccermnager.nl&utmul=en-us
&...& utmhid=110829611
&utmp=userName, ProfilePicture,email
,Network First/LastName, USERID
Host: www.google-analytics.com

Domain Leaking Total

kontagent.net 60 66

ajax.googleapis.com 38 480

google-analytics.com 36 624

6waves.com 18 30

socialpointgames.com 13 16

mindjolt.com 9 10

disney.com 8 9

adobe.com 6 183

Figure 4 & Table 2. Left: (top) Information leakage to Kontagent, (down) Informa-
tion leakage to Google Analytics – Right: Number of leaking Facebook apps vs. total
number apps contacting this domain

5.1 Methodology

Our methodology is as follows. First, we create multiple user accounts with
distinctly different profiles (i.e., attribute values). For each of these accounts,
we then automatically install and run the apps and record the network traffic.
We then examine, for each app and user pair, whether the HTTP requests are
transferring user information to fourth parties. For instance, to assess whether
a user’s gender is leaked, we check all requests that transfer the string “male”
for a male user and “female” for a female user. While this approach allows us
to automatically search for personal data leakages, encrypted or encoded data
are not detected as we only use string matching. We further checked the API
documentation of known services (e.g., kontagent and Google analytics) to assess
the meaning of parameters observed in the traffic.5

5.2 Data Leakage Classification

The process of leaking information to external entities can be categorized into
two types: intentional and unintentional.

Intentional information leakage. In this scenario, the app developer intentionally
transmits user information to external entities (usually analytic services) by
embedding user data into the HTTP request. The total number of Facebook
apps that are leaking user info intentionally is 183. In the following, we study
two representative examples:

Kontagent. This company presents its business as helping customers “derive
insights from app data in ways beyond traditional analytics.” Kontagent provides
detailed statistics about app usage. To achieve this, the app sends a set of user

5 For instance, Kontagent is using a parameter g=m for transmitting the gender
(male).



A Closer Look at Third-Party OSN Applications 243

attributes to Kontagent; the API specification6 provides a set of functions for
transferring user data, among which are year of birth, country of origin, or
friend count. Note also that the API allows the transfer of any other type of
data as an associative array. Figure 4 shows how user ID, gender and location
are transferred to Kontagent.

Google Analytics. As with Kontagent, some developers are using Google An-
alytics to generate statistics about app usage. To do so, they embed user data
inside the request to Google Analytics. This data can then be used (in Google
dashboard) to derive statistics. Figure 4 shows how data is transferred.

Unintentional data leakage. A website may unintentionally leak personal infor-
mation to a third party in a Request URI or referrer. Krishnamurthy et al. [6]
examined this problem for 120 popular websites and found that 48% leaked a
user identifier. We consider user information to be leaked unintentionally if it is
transferred through the referrer. In fact, the referrer is automatically filled by
the browser; thus data leakage through it is generally the result of poor data
sanitisation. The total number of applications leaking info through the referrer
field is 79.

5.3 Statistics

Table 4 shows the number of applications that leak various user attributes. More
than 18% of apps transmit user ID to an external entity. While this information
seems harmless, in fact querying Facebook Graph API7 with the User ID allows
the external entity to gather all public information about the user (i.e., username,
full name, link to Facebook profile, hometown, gender, and so on). Moreover,
as the user ID is unique, it can be used to track a user across different apps.
Finally, there is substantial evidence that user ID (and username) can be used
to (re)identify a user [8]. We observe that 1% of apps are transmitting age to an
external entity; this attribute is considered highly sensitive and only few users
disclose it publicly [3]. Finally, the low value for country and city (only two
apps are leaking this info) can be explained by two facts: First, some apps are
using IP-geo location to identify the user location.8 Second, Facebook provides
a more coarse grained attribute that determines the user language (e.g., fr FR).
In a second step, we analyzed how many attributes are leaked per application.
Table 5 shows that 220 applications (22%) leak at least one attribute, 48 leak
at least 2 attributes and 14 more than 2.

The question remains: To whom is this data being transferred? Table 2 an-
swers this question. From a domain perspective, three main categories are sharing
data gathering in the top 10 domains: analytics services (e.g., Kontagent), social
app companies (e.g., 6waves) and entertainment companies (e.g., disney).

6 https://github.com/whydna/Kontagent-API---ActionScript3-Wrapper
7 http://goo.gl/KlOL8
8 Facebook is using IP-Geo location in its ad platform to determine user location.

https://github.com/whydna/Kontagent-API---ActionScript3-Wrapper
http://goo.gl/KlOL8


244 A. Chaabane et al.

Table 2 shows that analytics services are way ahead of the others for data
gathering. However, there is a significant distinction between them. Kontagent’s
main goal is to draw statistics from social apps and as such is inherently depen-
dent on the user data that the app is leaking. This can clearly be seen by the
large proportion of apps that are using Kontagent and are leaking user informa-
tion (60 apps out of 66). On the other hand, the Google service is not expressly
designed to derive statistics about social apps but is instead adapted to this task.
Not surprisingly, a relatively smaller percentage of applications using a Google
service are leaking user information.

Social app companies are ranked second (6waves, socialpointgames and mind-
jolt). This can be explained by the app publishing process. For instance, 6waves
is the company behind the Astro Garden app. However, this app is not hosted
under the 6waves domain but rather under redspell.ru. As such, 6waves is
considered an external entity as it is not the app main page. To centralize data
gathering, this company sends back user data to the main corporate server (e.g.,
6waves.com) which explains the data leakage. Note that using this process, com-
panies like 6waves can track users across multiple applications. Finally, enter-
tainment companies such as Disney and Adobe are ranked third.

Disney is gathering data in a systematic way which is shown by the high
number of apps that are leaking data (8 out 9). As such, Disney is collecting
data from different (affiliated) apps and collecting the data in a centralized way.
Adobe, on the other hand, is receiving the user information unintentionally. This
claim is confirmed by the small number of apps that are leaking data (6 out of
183). In most cases, the information is transmitted to Adobe in the referrer when
loading the Flash player.

5.4 RenRen Leakage

At a first glance, RenRen apps appear to be privacy preserving as no user data
is transferred to fourth parties. However, a deeper look shows that the situation
is much worse than for Facebook. Recall from Section 2 that the app receives an
access token from the OSN operator, and this token is then used to query the
OSN for the user data. Our measurements reveal that 69% of RenRen tested apps
are transmitting this token to external entities. This behavior represents a major
privacy breach as external entities “inherit” the app privileges and can therefore
query RenRen on behalf of the user. Table 3 shows the top external domains
receiving the access token. In contrast with Facebook, the leaked information is
sent to both Chinese and US tracking companies.

6 Discussion and Conclusion

Several third party applications are leaking user information to “fourth” party
entities such as trackers and advertisers. This behavior affects both Facebook and
RenRen with varying severity. 22% of tested Facebook applications are trans-
mitting at least one attribute to an external entity with user ID being the most

redspell.ru


A Closer Look at Third-Party OSN Applications 245

Table 3. Number of leaking Ren-
Ren apps vs. total Number apps
contacting this domain

scorecardresearch.com 170 377

sinaapp.com 61 64

google-analytics.com 38 51

doubleclick.net 36 51

baidu.com 23 69

linezing.com 12 13

friendoc.net 10 10

Table 4. Infor-
mation leaked by
Facebook apps

Info # App

user ID 181

Name 17

Gender 72

Country 2

City 2

Age 10

Table 5. Number of at-
tributes leaked per appli-
cation

# leaked attribute # Apps

One or more 220

2 or more 48

3 or more 14

More than 3 0

prominent (18%). While in 183 applications the user information is intentionally
transmitted to fourth parties (e.g., through an API call), some leakages are the
result of a poor data sanitization and hence can be considered unintentional.
In the other hand, RenRensuffers from a major privacy breach caused by the
leakage of the access token in 69% of the tested apps. These tokens can be used
by trackers and advertisers to impersonate the app and query RenRen on behalf
of the user.

While user information is transmitted to several entities, some major play-
ers might represent a bigger risk. For instance, Google is able to track 60% of
Facebook applications and receives some user information from 8% of them. In
RenRen, the situation is even worse, as 45% of tested apps transmit the full
user profile to a single tracker (scorecardresearch.com). Hence, a single social
networking app might lead to users being tracked across multiple websites with
their real identity. Web tracking in combination with personal information from
social networks represents a serious privacy violation that shifts the tracking
from a virtual tracking (i.e., the user is virtual) to a real “physical” tracking
(i.e., based on user personal information).

Acknowledgements. Thanks to Alan Mislove for shepherding this manuscript
and the anonymous reviewers for their valuable feedback. This research was
funded by French ANR project PFlower.

References

1. Chaabane, A., Kaafar, M.A., Boreli, R.: Big friend is watching you: Analyzing online
social networks tracking capabilities. In: WOSN (2012)

2. Chia, P.H., Yamamoto, Y., Asokan, N.: Is this app safe?: A large scale study on
application permissions and risk signals. In: WWW (2012)

3. Dey, R., Jelveh, Z., Ross, K.: Facebook users have become much more private: A
large-scale study. In: PERCOM Workshops (2012)

4. Frank, M., Dong, B., Porter Felt, A., Song, D.: Mining permission request patterns
from Android and Facebook applications. In: ICDM (2012)

scorecardresearch.com


246 A. Chaabane et al.

5. Krishnamurthy, B., Wills, C.E.: Characterizing privacy in online social networks.
In: WOSN (2008)

6. Krishnamurthy, B., Wills, C.E.: On the leakage of personally identifiable information
via online social networks. In: WOSN (2009)

7. Mayer, J.R., Mitchell, J.C.: Third-party web tracking: Policy and technology. In:
S&P (2012)

8. Perito, D., Castelluccia, C., Kaafar, M.A., Manils, P.: How unique and traceable are
usernames? In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794,
pp. 1–17. Springer, Heidelberg (2011)

9. Xia, N., Song, H., Liao, Y., Iliofotou, M., Nucci, A., Zhang, Z., Kuzmanovic, A.:
Mosaic: Quantifying privacy leakage in mobile networks. In: SIGCOMM (2013)



On the Effectiveness of Traffic Analysis
against Anonymity Networks Using Flow Records

Sambuddho Chakravarty1, Marco V. Barbera2, Georgios Portokalidis3,
Michalis Polychronakis1, and Angelos D. Keromytis1

1 Columbia University, NY, USA
{sc2516,mikepo,angelos}@cs.columbia.edu

2 Sapienza Universita Di Roma, Rome, Italy
barbera@di.uniroma1.it

3 Stevens Institute of Technology, NJ, USA
gportoka@stevens.edu

Abstract. We investigate the feasibility of mounting a de-anonymization attack
against Tor and similar low-latency anonymous communication systems by using
NetFlow records. Previous research has shown that adversaries with the ability to
eavesdrop in real time at a few internet exchange points can effectively monitor a
significant part of the network paths from Tor nodes to destination servers. How-
ever, the capacity of current networks makes packet-level monitoring at such a
scale quite challenging. We hypothesize that adversaries could use less accurate
but readily available monitoring facilities, such as Cisco’s NetFlow, to mount
large-scale traffic analysis attacks. In this paper, we assess the feasibility and ef-
fectiveness of traffic analysis attacks against Tor using NetFlow data. We present
an active traffic analysis technique based on perturbing the characteristics of user
traffic at the server side, and observing a similar perturbation at the client side
through statistical correlation. We evaluate the accuracy of our method using both
in-lab testing and data gathered from a public Tor relay serving hundreds of users.
Our method revealed the actual sources of anonymous traffic with 100% accuracy
for the in-lab tests, and achieved an overall accuracy of 81.6% for the real-world
experiments with a false positive rate of 5.5%.

1 Introduction

Anonymous communication networks hide the actual source (or destination) address
of internet traffic, preventing the server (or client) and other entities along the network
from determining the actual identities of the communicating parties. Among others [2,
3], Tor [8] is probably the most widely used low-latency anonymity network. To offer
acceptable quality of service, Tor and similar systems try to preserve packet interarrival
times. Unfortunately, this makes them vulnerable to traffic analysis attacks [5, 11, 13,
17, 20, 21], whereby an adversary with access to traffic from/to entry and exit nodes,
can correlate seemingly unrelated traffic flows and reveal the actual endpoints.

As Tor nodes are scattered around the globe and the nodes of circuits are selected
at random, mounting a traffic analysis attack, in practice, would require a powerful ad-
versary with the ability to monitor traffic at a multitude of autonomous systems (AS).

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 247–257, 2014.
c© Springer International Publishing Switzerland 2014



248 S. Chakravarty et al.

Murdoch and Zieliński, however, showed that monitoring traffic at a few major internet
exchange (IX) points could enable traffic analysis attacks against a significant part of the
Tor network [18]. Furthermore, Feamster et al. [12], and later Edman et al. [10], showed
that even a single AS may observe a large fraction of entry and exit-node traffic—a sin-
gle AS could monitor over 22% of randomly generated Tor circuits. Recently, Johnson
et al. [15], extended this study and observed, through simulation, that compromised
high bandwidth Tor relays and IX operators, observing both entry and exit traffic, could
de-anonymize 80% of random Tor circuits.

Packet-level traffic monitoring at this scale requires the installation of passive mon-
itoring sensors capable of processing tens or hundreds of Gbit/s traffic. Although not
impossible, setting up a passive monitoring infrastructure at such a scale is challenging
in terms of cost, logistics, and effort. An attractive alternative for adversaries would be
to use the readily available, albeit less accurate, traffic monitoring functionality built
into the routers of major IXs and ASs, such as Cisco’s NetFlow. Murdoch and Zieliński
showed through simulation that traffic analysis using sampled NetFlow data is possible,
provided there are adequate samples. Still, there have been no prior efforts to explore
the various practical aspects of mounting traffic analysis attacks using NetFlow data.

As a step towards filling this gap, in this paper we study the feasibility and effective-
ness of traffic analysis attacks using NetFlow data, and present a practical active traffic
analysis attack against Tor. Our approach is based on identifying pattern similarities in
the traffic flows entering and leaving the Tor network, using statistical correlation. To
alleviate the uncertainty due to the coarse-grained nature of NetFlow data, our attack
relies on a server under the control of the adversary that introduces deterministic pertur-
bations to the traffic of anonymous visitors. Among all client-to-entry-node flows, the
actual victim flow can be distinguished due to its high correlation with the respective
exit-node-to-server flow, as both carry the induced traffic perturbation pattern.

We evaluated the effectiveness of our traffic analysis attack in a controlled lab en-
vironment, as well as using public Tor relays. In the in-lab environment, our method
revealed the actual sources of anonymous traffic with 100% accuracy. When evaluating
our attack with traffic going through public Tor relays, our method detected the actual
source in 81.6% of the cases, with a a false positive rate of 5.5% and false negative rate
of 12.7%. Due to the sensitivity of the correlation process, especially for flows with
sparse samples, we couple correlation with heuristics to filter out flows that are unlikely
to correspond to a victim, thus reducing false positives.

2 Related Work

Tor [8] safeguards the anonymity of internet users by relaying TCP streams through
a network of overlay nodes, run by volunteers. It typically hides the identity (IP ad-
dress) of the initiator of a connection, although the opposite is also possible through the
use of hidden services. Murdoch and Danezis [17] developed the first practical traffic
analysis attack against Tor. Their technique involved a corrupt server and a client that
buildt one-hop circuits via candidate relays to determine relays participating in a cir-
cuit. Hopper et al. [13] used this method, along with one-way circuit latency and the Vi-
valdi network coordinate system, to determine the possible source of anonymous traffic.



On the Effectiveness of Traffic Analysis against Anonymity Networks 249

In 2009, however, Evans et al. [11] demonstrated that Murdoch and Danezis’ method
was not accurate, due to an increase in the number of relays and the large volume of Tor
traffic. They proposed a modification to amplify the traffic by loops in circuits.

Previously, we proposed a method for performing traffic analysis using remote net-
work bandwidth estimation tools to identify the Tor relays and network routers involved
in Tor circuits [7]. Our method assumed that the adversaries were in a position to per-
turb the victim traffic by colluding with the server, and are in control of various network
vantage points, from where they can remotely observe variations in network bandwidth.
Mittal et al. [16] demonstrated a modified version of the Murdoch and Danezis’ attack
that relies on path bandwidth variation.

In 2007, Murdoch et al. [18] proposed the use of NetFlow data from routers in IXes
to perform traffic analysis attacks against traffic entering and leaving the Tor network.
They discovered that there is a small number of IXes that can potentially observe a
large part of Tor traffic, and allow the use of existing facilities, such as Cisco NetFlow,
to mount traffic analysis attacks. They proposed a traffic and attack model that receives
as input NetFlow traffic gathered from monitoring a Tor relay. They described, through
simulations, how varying the number of flows, bandwidth, and end-to-end delay, af-
fects the accuracy of determining the source of anonymous traffic. In a follow-up work,
Johnson et al. [15] recently showed that a small number of compromised Tor relays
that advertise high bandwidth and IXes observing both entry end exit traffic, can de-
anonymize 80% of various types of Tor circuits within six months.

Previous efforts did not explore the feasibility and effectiveness of using a facility
such as NetFlow to determine the source of anonymous traffic from a practical per-
spective. Our work attempts to assess the possibilities of accurately de-anonymizing
Tor users using NetFlow data by implementing and experimentally evaluating a traffic
analysis attack in realistic settings.

3 Approach

Threat Model and Attack Methodology: The goal of the attacker is to determine the
network identity (i.e., public IP address) of a client using Tor to access a server. We as-
sume the attacker can observe NetFlow traffic records on routers at or near Tor relays.
In our model, the attacker deliberately injects a traffic variation pattern on one side of
a victim Tor connection, which travels via the relays to the peer. The easiest way for
the attacker to achieve this is by controlling the server; the attacker would then serve
sufficient content volume (e.g., a large volume of “invisible” HTML content) and in-
ject traffic perturbation patterns in the connection between the Tor exit node and the
server. We also assume that attackers can select specific anonymous connections they
are interested in (e.g., those that correspond to a particular user identity in the server).
Alternatively, attackers could de-anonymize all clients accessing the server; our cur-
rent work demonstrates de-anonymization of a single client at a time. Simultaneous
anonymization of multiple clients (with or without correlation between client identities
and anonymous sessions) is left for future work. A powerful adversary could moni-
tor a large part of the relays participating in the Tor network, one of which with high
probability would correspond to the entry node of the targeted user. Alternatively, an



250 S. Chakravarty et al.

Entry 

Middleman 

Exit 

Victim 
Client 

Colluding 
Server 

Computing 
Correlation  

Coefficient (r)   

Tor Network 

N
et

flo
w

 D
at

a 

N
et

flo
w

 D
at

a 

Injected  
Traffic  
Pattern 2 

2 2 

1 

1 

1 

1 

3 

4 

3 

Injected  
Traffic Pattern Travels 
Through the Victim Circuit 

Injected  
Traffic  
Pattern 

Non-Victim 
Client 

Non-Victim 
Client 

Fig. 1. NetFlow-based traffic analysis against Tor: The client is forced to download a file from
the server 1©, while the server induces a characteristic traffic pattern 2©. After the connection is
terminated, the adversary obtains flow data corresponding to the server-to-exit and entry-to-client
traffic 3©, and computes their correlation coefficient 4©.

attacker could follow a more focused approach by employing existing techniques [7, 16]
to identify the actual relays used by the victim’s circuit, and only monitor those.

In a second, related scenario, the attacker is a malicious Tor client seeking to iden-
tify a Tor hidden server. In this case, the attacker injects a traffic perturbation pattern
and observes it between the hidden server and its entry node, against using the Net-
Flow records to perform the correlation. Note that the attacker need not actually control
one end of a Tor circuit. For example, the attacker could inject a pattern in a chosen
anonymous connection between the server and an exit node, without the server know-
ing about it. This scenario introduces additional complexity in terms of victim selection,
especially when the connections between the Tor exit node and the server are encrypted.
We defer further study of this scenario to future work.

As shown in Figure 1, after the transfer ends, the adversary obtains the flow records
of all the client-to-entry-node connections that were monitored (from one or more entry
nodes), and computes their correlation with the given exit-node-to-server flow. Various
factors, such as flow cache eviction timeout values and the inherently bursty nature
of traffic (especially web traffic), commonly result in an inadequate number of flow
samples than what is ideally required for computing the correlation coefficient. The
longer the duration of the fingerprinted transfer, the higher the chances that enough flow
samples will be gathered. In our experiments, we assume that the victim downloads a
large file (in the order of tens of megabytes), generating sustained traffic for a duration
of about 5–7 minutes. Depending on the capabilities of the involved routers, the same
accuracy could be achieved using shorter data transfers.

Implementation: In our prototype, the server fluctuates a client’s traffic using Linux
Traffic Controller [14]. We explored two different kinds of traffic perturbation patterns.
The first was a simple “square wave” pattern, achieved by repeatedly fluctuating the



On the Effectiveness of Traffic Analysis against Anonymity Networks 251

victim’s transfer rate between two values. The second a was more complex “step” pat-
tern, achieved by repeatedly switching between several predetermined bandwidth val-
ues. These different perturbations help evaluate our attack accuracy through both simple
and complex injected traffic patterns.

For our initial in-lab experiments, flow records were generated and captured using
the open source tools ipt netflow [4] and flow-tools [1], respectively. In such
a controlled environment, free of congestion and external interference, our approach
achieved 100% success in determining the source of anonymous connections (more
details for this experiment are included in our technical report [6]).

In the experiments presented in this paper, we obtained data from a public Tor relay
serving hundreds of Tor clients. The flow records for the server-to-exit traffic were
generated and captured using the aforementioned flow tools. The flow records for the
entry-to-client traffic were generated first using the flow tools, running on the same
host as the entry node, and later by our institutional edge router. For the latter, the flow
data from the router was often sparse due to aggressive sampling. Multiple intervals
were typically aggregated into a single flow record. This generally happens due to the
combination of flow expiration timeout values and the router’s network load. As such
aggregation is not deterministic, it is difficult to divide a large interval into smaller
ones without knowing the ordinate values of the aggregated intervals. Since correlation
analysis requires the two time series to have the throughput values taken at the same
points, we devised the following strategy to align the time points.

Flow records are arranged as time intervals with the bytes transferred in each of
them [6]. To correctly align the time points, we first take the intervals of all server-to-
exit records and divide them into steps of one second. We then consider the starting
and ending times of every entry-to-client flow record and attempt to align them with the
one-second steps of the server-to-exit flow. For every successfully aligned time point,
we assume the corresponding entry-to-client (and respective server-to-exit) throughput
value to be the average throughput of the entry-to-client (and respective server-to-exit)
interval that covers this time point, obtained by dividing the total bytes transferred in the
corresponding interval by the length of that interval. Unaligned time points are ignored.
Finally, we compute the correlation of throughput values of the two aligned sets.

4 Experimental Evaluation

To evaluate our attack using data obtained from public Tor relays we used the set-up
shown in Figure 1. Victim clients were hosted on three different PlanetLab locations:
Texas (US), Leuven (Belgium) and Corfu (Greece). The clients communicated via Tor
circuits through our relay to a server under our control in Spain.

Flow Collection using NetFlow Tools: In our first set of experiments, the flow records
were obtained from the server and the entry node using the open source flow genera-
tion and capture tools mentioned in the previous section. We configured the active and
inactive timers to 5 seconds each. This resulted in a uniform view of the traffic with an
adequate number of samples for accurately computing correlation. The first experiment
involved the server injecting a “square-wave” like traffic pattern having an amplitude



252 S. Chakravarty et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

38:00 39:00 40:00 41:00 42:00 43:00

T
h

ro
u

g
h

p
u

t 
(M

b
it
/s

)

Time (MM:SS)

Victim Traffic - Server to Exit Node
Entry to Client 974 (Victim)

Entry to Client 995
Entry to Client 677 
Entry to Client 895
Entry to Client 255

(a) Square-wave pattern

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

3
1

:0
0

3
3

:0
0

3
4

:0
0

3
6

:0
0

3
7

:0
0

3
9

:0
0

4
0

:0
0

4
2

:0
0

T
h

ro
u

g
h

p
u

t 
(M

b
it
/s

)

Time (MM:SS)

Victim Traffic
Entry to Client 122(Victim Client)

Entry to Client 93
Entry to Client 264
Entry to Client 246

Entry to Client 72

(b) Step pattern

Fig. 2. A victim flow with a server-induced “square-wave” (a) and “step” (b) pattern. The remain-
ing points correspond to the non-victim flows with the four highest correlation coefficients.

of roughly 2 Mbit/s, achieved by switching the server-to-exit traffic bandwidth between
2 Mbit/s and 30 Kbit/s, every 20 seconds. Figure 2(a) shows sample traffic throughput
variations for five flows, from one such experiment. These five flows are the ones with
the highest correlation to the server-to-exit flow (solid line) that carries the injected traf-
fic pattern. The victim flow had the highest correlation coefficient of 0.83 (among 1100
other clients), while the second-highest correlation, for to a non-victim client, was 0.17.

We repeated similar experiments with the server injecting a more complex “step”
like pattern, achieved by switching the server-to-exit traffic throughput between roughly
1 Mbit/s, 50 Kbit/s, 300 Kbit/s and 100 Kbit/s, every 20 seconds. This pattern was again
repeated several times. Figure 2(b) shows one such sample where the server injected
the “step” like pattern. The victim flow had the highest correlation coefficient of 0.84
(among 874 other clients), while the second-highest correlation, corresponding to a non-
victim client, was 0.25. In general, we observe higher correlation of the server-to-exit
and the victim traffic, when the server injects the “step” like pattern.

These experiments were repeated 90 times (15 times for each traffic pattern, for each
of the three client location). The average correlation between the server-to-exit and
entry-to-victim traffic statistics (corresponding to the flows that were most correlated to
the flow carrying the traffic pattern) was higher than the average correlation to the non-
victim client statistics, as shown in Figures 3(a) and 3(b). We were able to correctly
identify the victim in 76 out of the 90 tests. The average correlation of the injected
pattern for the victim traffic was lower than those for in-lab tests. This happens because
the traffic pattern is distorted when it leaves the Tor entry node and proceeds towards
the victim, reducing the victim’s correlation coefficient.

We also found four instances where the correlation of the injected traffic pattern with
the victim client traffic was lower compared to some other non-victim clients’ traffic.
Such false positives are primarily a combined effect of the background network con-
gestion and routing in Tor relays, which attempts to equally distribute the available
bandwidth among all circuits. To deal with such inaccuracies, we also computed the
average throughput of the clients’ traffic (over the duration of the experiment), and sub-
tracted it from the average throughput of the server-to-exit traffic. For the victim traffic,



On the Effectiveness of Traffic Analysis against Anonymity Networks 253

 0

 0.2

 0.4

 0.6

 0.8

 1

Location 1
(US)

Location 2
(BE)

Location 3
(GR)

C
o

rr
e

la
ti
o

n

Correlation for Victim
Correlation for Non-Victim

(a) Average correlation: Square-wave pattern

 0

 0.2

 0.4

 0.6

 0.8

 1

Location 1
(US)

Location 2
(BE)

Location 3
(GR)

C
o

rr
e

la
ti
o

n

Correlation for Victim
Correlation for Non-Victim

(b) Average correlation: Step pattern

Fig. 3. (a) Average Pearson’s Correlation between server injected “square-wave” like pattern and
the victim and non-victim flows for the different planetlab client locations. (b) Average Pearson’s
Correlation between server injected “step” pattern and the victim and non-victim flows for the
different planetlab client locations.

this difference is often amongst the smallest. This difference between the victim traffic
and server-to-exit traffic can be used to filter out flows that could lead to inaccurate cor-
relation coefficients arising from an inadequate number of flow samples. We used this
observation in the experiments that involved sparse data from Cisco routers, to remove
flows where the average throughput was not comparable to that of the victim’s.

Flow Collection from Cisco Router: To evaluate the attack effectiveness when using
data from our institutional edge router, we used the same experimental set-up that we
used to test our attack using data obtained from open source packages. However, the
entry-node-to-client traffic statistics were gathered from our institutional router. The
router was configured with an active and inactive timeouts of 60 and 15 seconds respec-
tively. We configured the NetFlow packages on the server with the same values. But,
from our initial experience, we realized that the data obtained from the router was sparse
and non-uniformly aligned, compared to the flow records from server-to-exit. We thus
applied our rectification strategy (described previously) to align the flows. The rectified
flow values were then directly used as input to the correlation coefficient formula.

These experiments were essentially the same as those described in the previous sub-
section. The first experiment involved the server injecting a “square-wave” like traffic
pattern with an amplitude of about 1 Mbit/s. However, here the server switched the
throughput every 30 seconds, instead of 20 seconds, enabling us to capture adequate
(≥ 10) samples for computing the correlation coefficient1. Figure 4(a) presents a sam-
ple bandwidth variation pattern for the server-to-exit traffic and the entry-node-to-client
traffic. It shows server-to-exit traffic with more data points and fewer entry-to-client
points. Figure 4(b) presents the same data pattern after it has been rectified.

As mentioned previously, we eliminated flows whose average of the traffic through-
put was not comparable to that of the server-to-exit throughput variation. We computed

1 This was done solely to compensate for the lack of samples obtained when the experiments
ran for a shorter duration of 20 seconds (as previously).



254 S. Chakravarty et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

28:00 30:00 32:00 34:00 36:00 38:00 40:00 42:00 44:00

T
h

ro
u

g
h

p
u

t 
(M

b
it
/s

)

Time (MM:SS)

Victim Traffic
Entry to Client 101 (Victim)

Entry to Client 63
Entry to Client 441
Entry to Client 292

Entry to Client 59

(a) Square-wave pattern (before rectification)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

28:00 30:00 32:00 34:00 36:00 38:00 40:00 42:00 44:00

T
h

ro
u

g
h

p
u

t 
(M

b
it
/s

)

Time (MM:SS)

Victim Traffic
Entry to Client 101 (Victim)

Entry to Client 63
Entry to Client 441
Entry to Client 292

Entry to Client 59

(b) Square-wave pattern (after rectification)

Fig. 4. (a) Server induced “square-wave” pattern of amplitude 1 Mbit/s along with other non-
victim flows from the entry-to-victim and non-victim hosts having the four highest correlation
co-efficient. Victim location: Texas, US. (b) Flows in Figure 4(a) adjusted and corrected using
our rectification strategy.

the difference between average throughput for the server-to-exit and the entry-to-client
traffic (for all clients). From our experience, for the victim traffic, the difference was
within 120 Kbit/s. We removed flows where this difference was over 120 Kbit/s.

These experiments were also repeated with the server injecting a “step” like pat-
tern, achieved by switching the traffic between 1 Mbit/s, 50 Kbit/s, 300 Kbit/s and 100
Kbit/s, every 30 seconds. The average correlation between the server-to-exit and entry-
to-client traffic statistics was higher than the average correlation to the non-victim client
statistics. These can be seen in Figures 5(a) and 5(b). We correctly identified the victim
flow in 71 out of the 90 trials (success rate of 78.9%). There were six false positives in
our measurements, where non-victim clients showed highest correlation to the server-
to-exit traffic. In these false positive, the number of sample intervals for the entry-to-
client traffic were less than half the number of sample intervals corresponding to the
server-to-exit traffic. These fewer sample intervals resulted in correlation representing
an inaccurate relationship. In 13 of the remaining cases we were not able to correctly
select the victim either because the correlation coefficient was statistically not signifi-
cant (< 0.2), or the victim flow was filtered out as its average throughput varied from
the the average server-to-exit throughput by more than 120 Kbit/s.
Monitoring multiple Tor relays: Finally, we evaluated our attack in a scenario involving
an additional relay. We launched a second relay in our institution. The purpose of this
second Tor relay was to judge the effectiveness of our attack in the presence more
clients. The two relays together served about 1500 clients. This scenario indicates what
to expect when an adversary monitors multiple relays.

Our experiments involved injecting the “step” like pattern, described above. These
experiments were repeated 24 times, 8 times for to each of the victim client location.
We observed higher average correlation between server-to-exit and entry to victim client
traffic, compared to non-victim clients’ traffic. We were able to correctly identify the
victim client in 14 out of the 24 trials (success rate 58.3%). There were three false pos-
itives, where the correlation of the server-to-exit traffic was higher to a non-victim than



On the Effectiveness of Traffic Analysis against Anonymity Networks 255

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

Location 1
(US)

Location 2
(BE)

Location 3
(GR)

C
o

rr
e

la
ti
o

n

Correlation for Victim

Correlation for Non-Victim

(a) Average correlation: Square-wave pattern

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

Location 1
(US)

Location 2
(BE)

Location 3
(GR)

C
o

rr
e

la
ti
o

n

Correlation for Victim

Correlation for Non-Victim

(b) Average correlation: Step pattern

Fig. 5. (a)Average Pearson’s Correlation between server injected “square-wave” pattern and the
victim and non-victim flows, for the different planetlab client locations. (b) Average Pearson’s
Correlation between server injected “step” like pattern and the victim and non-victim flows, for
the different planetlab client locations.

to the victim. The remaining seven were false negatives, where the correlation coeffi-
cient was not statistically significant (< 0.2). The false negatives were primarily a result
of the few sample points obtained during the experiment, which were further reduced
by our flow alignment method. This loss of information decreases the correlation of the
server-to-exit and entry-to-victim client traffic.

5 Limitations

Our attack is very accurate in an in-lab set-up with symmetric network paths and capac-
ities (having low congestion and no uncontrolled disturbances). However, in tests with
public Tor relays, the overall correlation between server-to-exit and entry-to-victim traf-
fic is decreased due to congestion and Tor’s traffic scheduling, which distort the injected
traffic pattern. In experiments involving data from the institutional Cisco router, such
effects were quite pronounced. Moreover, the were fewer sample intervals compared
to the data obtained from Linux NetFlow packages. This was due to flow aggregation,
and lead to to flow records with unequal lengths, not evenly spaced. To counter such
effects, we devised an approximation strategy, described in Section 3. Such approxima-
tions decrease the overall correlation of server-to-exit with entry-to-victim traffic, since
the process eliminates data points from flow intervals that cannot be correctly rectified.
This resulted in false positives in our measurements. Although not very precise, these
results are indicative of the capabilities of more powerful adversaries. A powerful ad-
versary could launch a sybil attack [9] by running many high-bandwidth Tor nodes to
attract a large fraction of Tor traffic. Such relay operators, equipped with flow capture
tools, would not require access to network routers for flow records.

6 Conclusion

We have demonstrated the practical feasibility of carrying out traffic analysis attacks
using statistical correlation of traffic measurements obtained from NetFlow, a popular



256 S. Chakravarty et al.

network monitoring framework installed in various router platforms. Our work verifies
the results of previous simulation results for traffic de-anonymization using NetFlow
data [18]. We focused on practically evaluating such an attack to identify the source of
anonymous traffic. We relied on correlation to identify the source of anonymous traffic
amidst various flows. In a controlled lab environment, free from external network con-
gestion, our attack was 100% accurate in identifying the targeted client. In experiments
involving data from public Tor relays, our approach identified correctly the source of
anonymous traffic in 81.6% of the cases, with a false positive rate of 5.5%. Currently,
we are working on methods for defending against such attacks, using ideas related to
selective dummy traffic transmissions schemes [19].

Acknowledgements. This material is based upon work supported by (while author
Keromytis was serving at) the National Science Foundation. Any opinion, findings, and
conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation.

References

[1] Flow Tools Package, http://freecode.com/projects/flow-tools
[2] I2P Anonymous Network, http://www.i2p2.de/
[3] Java Anonymization Proxy, http://anon.inf.tu-dresden.de/
[4] Netflow iptables module, http://sourceforge.net/projects/ipt-netflow/
[5] Bauer, K., McCoy, D., Grunwald, D., Kohno, T., Sicker, D.: Low-resource routing attacks

against tor. In: Proceedings of the 2007 ACM Workshop on Privacy in Electronic Society
(WPES), pp. 11–20 (2007)

[6] Chakravarty, S., Barbera, M.V., Portokalidis, G., Polychronakis, M., Keromytis, A.D.: On
the Effectiveness of Traffic Analysis Against Anonymity Networks Using Flow Records.
Computer Science Department Technical Report (CUCS Tech Report) CUCS-019-13,
Columbia University (July 2013)

[7] Chakravarty, S., Stavrou, A., Keromytis, A.D.: Traffic analysis against low-latency
anonymity networks using available bandwidth estimation. In: Gritzalis, D., Preneel, B.,
Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 249–267. Springer, Heidel-
berg (2010)

[8] Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-Generation Onion Router.
In: Proceedings of the 13th USENIX Security Symposium, pp. 303–319 (August 2004)

[9] Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

[10] Edman, M., Syverson, P.F.: AS-awareness in Tor path selection. In: Al-Shaer, E., Jha, S.,
Keromytis, A.D. (eds.) Proceedings of the 2009 ACM Conference on Computer and Com-
munications Security, CCS 2009, pp. 380–389. ACM (November 2009)

[11] Evans, N., Dingledine, R., Grothoff, C.: A Practical Congestion Attack on Tor Using Long
Paths. In: Proceedings of the 18th USENIX Security Symposium (USENIX Security), pp.
33–50 (August 2009)

[12] Feamster, N., Dingledine, R.: Location Diversity in Anonymity Networks. In: Proceedings
of the ACM Workshop on Privacy in the Electronic Society (WPES), pp. 66–76 (October
2004)

http://freecode.com/projects/flow-tools
http://www.i2p2.de/
http://anon.inf.tu-dresden.de/
http://sourceforge.net/projects/ipt-netflow/


On the Effectiveness of Traffic Analysis against Anonymity Networks 257

[13] Hopper, N., Vasserman, E.Y., Chan-Tin, E.: How Much Anonymity does Network Latency
Leak? In: Proceedings of ACM Conference on Computer and Communications Security
(CCS), pp. 82–91 (October 2007)

[14] Hubert, B., Graf, T., Maxwell, G., Mook, R., Oosterhout, M., Schroeder, P., Spaans, J.,
Larroy, P.: Linux Advanced Routing and Traffic Control HOWTO

[15] Johnson, A., Wacek, C., Jansen, R., Sherr, M., Syverson, P.: Users get routed: Traffic cor-
relation on tor by realisitic adversaries. In: Proceedings of the 20th ACM Conference on
Computer and Communications Security, CCS 2013 (November 2013)

[16] Mittal, P., Khurshid, A., Juen, J., Caesar, M., Borisov, N.: Stealthy traffic analysis of low-
latency anonymous communication using throughput fingerprinting. In: Proceedings of the
18th ACM Conference on Computer and Communications Security, CCS 2011, pp. 215–
226. ACM, New York (2011)

[17] Murdoch, S.J., Danezis, G.: Low-Cost Traffic Analysis of Tor. In: Proceedings of IEEE
Symposium on Security and Privacy, pp. 183–195 (May 2005)

[18] Murdoch, S.J., Zieliński, P.: Sampled traffic analysis by internet-exchange-level adversaries.
In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 167–183. Springer, Hei-
delberg (2007)

[19] Shmatikov, V., Wang, M.-H.: Timing analysis in low-latency mix networks: Attacks and de-
fenses. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189,
pp. 18–33. Springer, Heidelberg (2006)

[20] Wright, M.K., Adler, M., Levine, B.N., Shields, C.: An analysis of the degradation of
anonymous protocols. In: Proceedings of the Network and Distributed Security Sympo-
sium, NDSS (2002)

[21] Fu, X., Ling, Z.: One cell is enough to break tor’s anonymity. In: Proceedings of Black Hat
Technical Security Conference, pp. 578–589 (February 2009)



Scaling Bandwidth Estimation

to High Speed Networks

Qianwen Yin, Jasleen Kaur, and F. Donelson Smith

University of North Carolina at Chapel Hill

Abstract. Existing bandwidth estimation tools fail to perform well at gi-
gabit and higher network speeds. In this paper we study several sources of
noise thatmust be overcome by these tools in high-speed envrionments and
propose strategies for addressing them. We evaluate our Linux implemen-
tation on 1 and 10Gbps testbed networks, showing that our strategies help
significantly in scaling bandwidth estimation to high-speed networks.

1 Introduction

Bandwidth estimation tools perform well on 100Mbps networks [1–3], but they
fail to do so at gigabit and higher speeds. This is because very small inter-packet
gaps(less than 12 microseconds) are needed for probing for higher bandwidth–
they are more susceptible to being disturbed by small-scale buffering at shared
resources. In this paper, we study the impact of buffering-related noise on high-
speed networks, namely, receiver-side interrupt coalescence and

Fig. 1. Lab Testbed Configuration

small-scale burstiness in cross traffic. We
then propose strategies to address them.1

We evaluate our strategies using a Linux
implementation in a lab testbed with 1 and
10 Gbps links. We find that our new mech-
anisms help significantly in scaling band-
width estimation to high-speed networks.

2 Experimental Methodology

Laboratory Testbed. We use the dedicated network illustrated in Fig 1. The
switch-to-switch path in the core of the topology can be either 1Gbps or 10Gbps.
We focus on the latter here. High-end hosts are used to estimate avail-bw
with 10Gbps Ethernet adapters. The network includes additional 12 pairs of
hosts to generate cross traffic sharing the switch-to-switch link. Endace DAG
monitoring NICs are attached to the fiber links between two switches, pro-
viding line-rate capture of all frames with nanosecond precision timestamps.

1 We use the probing framework used by PathChirp[4] for the experimental study.

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 258–261, 2014.
c© Springer International Publishing Switzerland 2014



Scaling Bandwidth Estimation to High Speed Networks 259

−1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Relative AB Estimation Error

E
m

p
ir
a

c
le

 C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

IC=2 micro−second

IC=50 micro−second

IC=100 micro−second

IC=200 micro−second

Fig. 2. AB Estimation Error

With a locally-modified SURGE program,
we generate average 4Gbps cross traffic on
the 10Gbps link simulating synthetic and
highly dynamic web traffic. A complete trace
was obtained from DAG to compute ground
truth avail-bw.

Probe Stream Structure. We use the sim-
ilar probe stream structure as pathChirp.
Each probe stream probes for 10 rates. Each
rate is 20% higher than the previous one.
[1, 5] show that using mutliple packets per
rate for PathChirp leads to more robust esti-
mation. Thus by default, we send 16 packets
at each rate.

Accurate Send-gap Creation. To ensure that inter-packet gaps are created
accurately, we design a Qdisc scheduler as a kernel module for creating send-gaps
with errors smaller than 1 microsecond. The scheduler sits between the bottom
of IP and the NIC device driver. Inter-packet gaps are precisely enforced by
inserting appropriately sized PAUSE frames which will be discarded by the first
inbound switch.

Receiver-side Timestamping. Existing tools timestamp packets for measur-
ing receiver gaps at the application layer. To record software timestamps with
the best-possible accuracy, we implement a kernel module attached as an ingress
Qdisc to the adapter sitting between the device driver and the bottom of IP.

3 Interrupt Coalescence at Receivers

20 40 60 80 100 120 140
0

20

40

60

80

100

Probe Packet Index

In
te

r−
p

a
c
k
e

t 
G

a
p

 (
m

ic
ro

−
s
e

c
o

n
d

)

send gap

recv gap

actual_ab gap

Fig. 3. Sample Stream: Spikes, Dips

The Issue We first study how much effect
the receiver latencies have on the software
timestamps by comparing the receiver-
logged gaps with the corresponders com-
puted from DAG trace taken between the
switches (these gaps are evaluated within
1 micro-second difference from those ob-
tained via hardware timestamps at the re-
ceiver NIC). For interrupt coalesce, we use
interrupt latency(IC) as default, 2, 50, 100,
and 200 microseconds respectively. We find
that:(i) in all cases except 2-microsecond IC, the receiver-logged gaps follow a
bimodal distribution, with one peak at “infeasibly-small” and the other peak
close to IC value; and (ii)overestimation occurs to over 90% probe streams and
the relative estimation error can be up to 160%(Fig 2)!



260 Q. Yin, J. Kaur, and F. Donelson Smith

20 40 60 80 100 120 140
0

5

10

15

20

Probe Packet Index

In
te

r−
p

a
c
k
e

t 
G

a
p

(m
ic

ro
−

s
e

c
o

n
d

)

send gap(spike)

recv gap(spike)

send gap(spike+exp)

recv gap(spike+exp)

actual_ab gap

Fig. 4. Spike Removal & Smoothing

Solutions: Spike Removal, Exponen-
tial Smoothing, Probe Time Scale
Fig 3 illustrates a typical probe stream
with default interrupt coalesce setting,
where alternate spikes-and-dips pattern
completely dominates the structure. Ap-
plying pathChirp algorithm in this stream
results in 19Gbps avail-bw –the maximum
probing rate used by this stream. This is
because the receive gaps are never consis-
tently larger than the send gaps for any
lower probing rate.

−0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

Relative AB Estimation Error

E
m

p
ir
a

c
le

 C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

IC=2 micro−second

IC=50 micro−second

IC=100 micro−second

IC=200 micro−second

IC=default

Fig. 5. Impact of IC Configuration

The spikes-and-dips pattern can be ex-
plained well. For efficiency, arriving packets
are held in the NIC buffers and processed
in a batch after several have arrived–the
first in a batch would experience a large
preceding gap, whereas all subsequent ob-
serve fairly small gaps. While such batch-
ing does destroy the actual receive gaps,
do the average inter-packet gaps observed
within a batch somewhat preserve the in-
tended probe-stream structure? To under-
stand this, we identify the start and end for each buffered batch, and replace
all observations in the interval with that mean gap observed in that interval.
Fig 4 shows the result of applying this process to the same probe stream—we
find that such a buffering-aware averaging mechanism indeed preserves lots of
information about the intended probe-stream.

For robustness, we further use exponential smoothing across all observations,
and then feed the smoothed gaps to the bandwidth estimation logic. The example
probe stream accurately yields avail-bw of 10 Gbps on doing so. Fig 5 shows
that reducing the noise in the measured receive gaps produces more accurate
estimates for all interrupt delays.

−0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

Relative AB Estimation Error

E
m

p
ir
a

c
le

 C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

pkts/rate=16

pkts/rate=32

pkts/rate=64

pkts/rate=128

Fig. 6. Impact of Probing Timescale

Notice also from Fig 4 that spike-
aware smoothing does not preserve
probing granularity within a spike. Larger
probing timescales(i.e. the number of pack-
ets probed at each rate) helps maintain
higher granularity and yield more robust
estimation, which is shown in Fig 6 by in-
creasing probing timescale from 16 to 32,
64 and 128 packets/rate.



Scaling Bandwidth Estimation to High Speed Networks 261

4 Cross Traffic Burstiness

We then repeat the experiments in Section 3, but this time with the bursty
cross-traffic described in Section 2 sharing the 10 Gbps bottleneck link. The
relative estimation error without our mechanisim ranges from 150% to 350%.
In contrast, Fig 7 shows the much improved estimation with spike removal and
exponential smoothing.

5 Conclusion

−0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

Relative AB Estimation Error

E
m

p
ir
a
c
le

 C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n

pkts/rate=64

pkts/rate=128

Fig. 7. Impact of Bursty Cross Traffic

In this paper, we identify the noise caused
by bursty cross traffic and buffering laten-
cies at receiver side that must be over-
come by bandwidth estimation tools on
high-speed links. In our controlled testbed
we demonstrate that current tools fail to
scale to 1Gbps networks. We then present
techniques to address these issues: spike re-
moval, exponential smoothing and increasing probing timescale. We evaluate our
Linux implementation in a 10Gbps testbed using highly-variable cross traffic,
showing that our techniques significantly help in scaling bandwidth estimation
to high-speed networks. As a future work, we will improve our spike-removal
algorithm to deal with all types of batching-related noise. And we plan to con-
duct intensive experiments over multi-hop high-speed networks and on wide-area
100G ESnet testbed.

References

1. Shriram, et al.: Empirical evaluations of techniques for measuring available band-
width. In: IEEE INFOCOM 2007 (2007)

2. Shriram, A., Murray, M., Hyun, Y., Brownlee, N., Broido, A., Fomenkov, M., Claffy,
K.: Comparison of public end-to-end bandwidth estimation tools on high-speed
links. In: Dovrolis, C. (ed.) PAM 2005. LNCS, vol. 3431, pp. 306–320. Springer,
Heidelberg (2005)

3. Strauss, et al.: A measurement study of available bandwidth estimation tools. In:
ACM SIGCOMM on Internet measurement 2003 (2003)

4. Ribeiro, et al.: pathchirp: Efficient available bandwidth estimation for network
paths. In: PAM 2003 (2003)

5. Kang, Loguinov: Characterizing tight-link bandwidth of multi-hop paths using prob-
ing response curves. In: IWQoS (2010)



Scalable Accurate Consolidation
of Passively Measured Statistical Data

Silvia Colabrese1, Dario Rossi1, and Marco Mellia2

1 Telecom ParisTech, Paris, France
{silvia.colabrese,dario.rossi}@enst.fr

2 Politecnico di Torino, Torino, Italy
marco.mellia@polito.it

Abstract. Passive probes continuously collect a significant amount of traffic
volume, and autonomously generate statistics on a large number of metrics. A
common statistical output of passive probe is represented by probability mass
functions (pmf). The need for consolidation of several pmfs arises in two con-
texts, namely: (i) whenever a central point collects and aggregates measurement
of multiple disjoint vantage points, and (ii) whenever a local measurement pro-
cessed at a single vantage point needs to be distributed over multiple cores of
the same physical probe, in order to cope with growing link capacity. Taking
an experimental approach, we study both cases assessing the impact of different
consolidation strategies, obtaining general design and tuning guidelines.

1 Introduction

This paper focuses on consolidation of multiple statistics, and especially of distribution
quantiles, gathered from passive probes. We briefly mention two completely orthogonal
scenarios where this need arises. First, in the case of multiple vantage points, consol-
idation of data coming from multiple sources yields a more statistically representative
population sample. Second, in the case of a single vantage point, it may be necessary to
split traffic processing over multiple independent cores to avoid CPU bottlenecks.

These two scenarios appear to be rather different at first sight. In the former case,
the number of vantage points can vary between a handful to many different collection
points, each of which gathers traffic mixture with likely different characteristics. In
the latter case, processing can be split among a handful of cores in a CPU (possibly
more for GPU-based architectures), each of which is processing a random sample of
the incoming traffic.

Yet, on a closer look these diverse scenarios translate into similar constraints. In the
case of multiple vantage points, the first and foremost constraint is represented by the
amount of data that is required for the consolidation – transferring the least possible
amount of data is hence desirable. In the case of parallel processing at a single vantage
point, the constraint is instead represented by processing power – to limit the computa-
tional overhead tied to the consolidation process, elaborating the least possible amount
of data is hence desirable.

Hence, we argue that a single flexible methodology could fit both purposes, which
we address in this paper.

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 262–264, 2014.
c© Springer International Publishing Switzerland 2014



Scalable Accurate Consolidation of Passively Measured Statistical Data 263

Fig. 1. Synopsis of the experimental workflow

2 Methodology

While from computational complexity or network overhead viewpoints, reducing the
amount of data to be processed and transferred would be desirable, this however clearly
tradeoffs with accuracy: in this paper, we focus on this tradeoff.

While our aim is to obtain general design and tuning guidelines, our experiments are
based on a specific instance of metrics gathered through the Tstat measurement tool,
a passive flow-level monitor that we developed over the last years [4]. For each flow,
Tstat tracks over 100 metrics (see [2] for more details), that are used to build standard
fixed-width histograms. Percentiles of the distribution are then evaluated with linear
interpolation, and stored in Round Robin Databases (RRD).

Our methodology is as in Fig. 1. Input blocks (shaded gray) are quantiles vectors qi
gathered from multiple (local or remote) probes, which are processed to gather consol-
idated quantile vectors as output to the process. We interpolate input quantile vector to
get a cumulative distribution function (CDF). We consider two interpolation strategies,
namely: a Linear (L) and a Monotonic Spline (S) strategy (in the latter case, we ensure
monotonicity using the Piecewise Cubic Hermite Interpolating Polynomial [5]).

These interpolated functions are weighted by the amount of traffic they represent
(weights can be computed in terms of flows, packets or bytes), and added to get the total
CDF. Finally, as output of our workflow, we obtain the consolidated qi deciles vector
from the total CDF with the bisection method. Finally, the consolidated continuous
output is compared to the real quantiles q̃i of the aggregated distribution, obtained from
running Tstat on the aggregated traces. In what follows, we evaluate the accuracy of the
overall workflow by assessing the relative error (qi − q̃i)/q̃i.

As ouput, we limitedly consider deciles of the distribution. However, our methodol-
ogy exploits input quantiles to reconstruct the distributions and operate over CDFs, so
that in principle input and output sets do not need to be homogeneous. We thus argue
that CDF interpolation can benefit of a larger number of samples (i.e., knots in Spline
terms), providing a more accurate description for the intermediate consolidation pro-
cess. As such, we consider two cases: a Single (S) case, where deciles are both input
and output, and a Double (D) case where we additionally use intermediate quantiles
(i.e., 5th, 15th, 25th to 95th) as input to the process.



264 S. Colabrese, D. Rossi, and M. Mellia

 0.0001

 0.001

 0.01

 0.1

 1

Line
ar 

Sing
le

(L
S)

Line
ar 

Dou
ble

(L
D)

Spli
ne

 S
ing

le

(S
S)

Spli
ne

 D
ou

ble

(S
D)

Line
ar 

Sing
le

(L
S)

Line
ar 

Dou
ble

(L
D)

Spli
ne

 S
ing

le

(S
S)

Spli
ne

 D
ou

ble

(S
D)

R
el

at
iv

e 
er

ro
r

Gain: LS→LD=55%   LS→SS=64%
SS→SD=40%   LD→SD=53%

Homogeneous Heterogenous
Gain: LS→LD=70%   LS→SS=38%

SS→SD=75%   LD→SD=48%

Fig. 2. Error in the consolidation process

3 Experiments

We use several traces, some of which are publicly available. Vantage points pertain to
different network environments (e.g., Campus [1, 3] and ISP networks [6]), countries
(e.g., EU [3,6] and Australia [1]) and have been collected over a period of over 8 years.

We compactly represent consolidation errors in Fig. 2 (meand and stdev bars over
all metrics and quantiles), indicating with homogeneous and heterogeneous the case
of multiple local and distributed vantage points respectively. We further annotate the
picture with relative accuracy gain with respect to different consolidation strategies.
Shortly, (i) consolidation error is practically negligible for local processes (median error
is about 0.1% and maximum 1%), but large for heterogeneous probes (median 1%,
maximum 30%, and possibly >100% for naïve strategies); (ii) the use of intermediate
quantiles (e.g., 5th, 15th, and so on), is desirable as it significantly improves accuracy
(up to 75% in the case of multiple vantage points); (iii) interpolation via Splines is
preferable, as it yields to an accuracy gain over Linear interpolation of 40% in our
dataset.

Acknowledgement. This work has been carried out at LINCS http://www.
lincs.fr and funded by the FP7 mPlane project (grant agreement no. 318627).

References

1. Auckland traces, http://www.wand.net.nz/
2. Tstat homepage, http://tstat.tlc.polito.it
3. Unibs traces, http://www.ing.unibs.it/ntw/tools/traces/
4. Finamore, A., Mellia, M., Meo, M., Munafo, M., Rossi, D.: Experiences of internet traffic

monitoring with tstat. IEEE Network (2011)
5. Fritsch, F.N., Carlson, R.E.: Monotone piecewise cubic interpolation. SIAM Journal on Nu-

merical Analysis 17(2), 238–246 (1980)
6. Tammaro, D., Valenti, S., Rossi, D., Pescape, A.: Exploiting packet sampling measurements

for traffic characterization and classification. In: Wiley IJNM, pp. 451–476 (2012)

http://www.lincs.fr
http://www.lincs.fr
http://www.wand.net.nz/
http://tstat.tlc.polito.it
http://www.ing.unibs.it/ntw/tools/traces/


A Needle in the Haystack - Delay Based User
Identification in Cellular Networks�

Marco V. Barbera, Simone Bronzini, Alessandro Mei, and Vasile C. Perta

Sapienza University, Rome, Italy
{barbera,bronzini,perta,mei}@di.uniroma1.it

Abstract. In this work, we discuss a technique for identifying users in cellular
networks that exploits the effect that RRC state machine transitions have on the
measured round-trip time of mobile devices. Our preliminary experiments per-
formed in a controlled environment, show that it is possible to leverage popular
real-time messaging apps, such as Facebook, WhatsApp and Viber, to trigger an
observable delay pattern on a user’s device, and use it to identify the device.

Keywords: Cellular Networks, Security, Privacy.

1 Introduction

With respect to broadband fixed networks, cellular networks are very constrained in
terms of both energy and radio resources available to each mobile device. To balance
between efficiency and user experience, mobile devices (referred to as “user equip-
ment” by the standard) are assigned radio resources depending on the volume of data
they send or receive from the network. This process is regulated by means of transitions
in a Radio Resource Control (RRC) state machine that is associated to each device.
RRC states are typically CELL IDLE, CELL FACH, and CELL DCH, corresponding to
no, low, or full radio resources respectively. Promotions from lower to higher resource
states are not immediate. Rather, they introduce an observable extra delay (i.e., 1 or 2
seconds) to packets sent to a mobile device that has not recently used network resources
(e.g., is in the CELL IDLE state). Because of this, round-trip times are sufficient to re-
motely characterise the RRC state machine used by devices in a target cellular network,
as recently shown by Qian et al. [3]. In this work we verify whether round-trip time
variations due to RRC state machine transitions, in conjunction with network activity
triggered by mobile push notifications, may, in principle, allow to remotely identify the
IP address of users of popular mobile messaging apps. This could represent a potential
threat to mobile users, as it would permit an adversary to perform focused attacks on
a specific set of devices, such as the stealth-spam-attack discussed by Peng et al. [2].
More in general, this is another example of attack exploiting the unique characteristics
of mobile networks and devices [1,5,4].

� This work has been partially supported by a Google Faculty Research Grant 2013.

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 265–267, 2014.
c© Springer International Publishing Switzerland 2014



266 M.V. Barbera et al.

2 Identifying Mobile Devices from RTT Variations

In our model, an adversary produces some network traffic on the target user device
(e.g., using a sequence of instant messages), which triggers RRC state transitions on
the device and induce some observable pattern on the round-trip times towards it. At
the same time, the adversary looks for similar delay patterns towards all, or a subset
of, the devices of the mobile network operator. This results in a set of candidate IPs
IP range that is reduced in size by iteratively applying the same procedure multiple
times. To produce traffic on the user’s device, we propose the use of real-time messaging
apps such as Google Talk, or near real-time apps such as Facebook Messenger, Viber,
and Whatsapp. In fact, to improve the detection accuracy, messages to the user’s device
should be delivered within a short time after they have been sent, assuming the user
is online. Note that it is not necessary for the adversary to be socially very close to
the target user. For instance, both WhatsApp and Viber allow messages to be sent to
any user, given her mobile phone number. To measure round-trip times, the adversary
has to be able to directly reach the target user device from a vantage point. This is
possible if the cellular network assigns public, reachable IP addresses to the devices, or,
if device-to-device probing is allowed between devices with a private IP address. This
has been recently estimated to be the case for around 50% of the cellular networks [4].
The initial IP range can be set to the whole set of IPs of the cellular network carrier,
if no extra information on the target user is known. If the user’s coarse-grained location
is known, to speed up the process, the set can instead be restricted by mapping IP
addresses of mobile devices to a given geographical area using the method proposed by
Qian et al. [4].

3 Evaluation

To test the effectiveness of our detection methodology, we used as a target device a
Samsung Galaxy S Plus attached to a popular Italian cellular network. During th test,
the device was left idle, under stable network conditions and signal strength. The de-
vice was assigned an IP in a /19 subnet, which we used as the initial IP range set. The
adversary, a Linux host attached to our university’s network, continuously probed the
round-trip times (RTTs) towards the IP range set by means of low-rate ping packets
sent every 10 seconds. The probing rate has to be chosen in such a way that ping packets
alone cannot keep the devices’ state-machines at a high-power state (i.e., CELL DCH).
If a too-high rate is used, then all the devices IP range would roughly show the same
low-delay pattern, thus making detection impossible. To trigger periods of network traf-
fic on the target’s user device pattern we alternated a 3 minutes interval where no data is
sent to the device, with a 2 minutes interval where the RRC machine state of the device
is kept on CELL DCH by means of, e.g., Facebook, WhatsApp, or Viber instant mes-
sages. To restrict IP range to the set of possible IPs of the target device, the adversary
looks for devices whose RTT suddenly drops by at least α milliseconds after the mes-
sage sequence has been sent. These corresponded to the devices that, during the probing
period, switched from a low-power state to a higher-power state (e.g., CELL IDLE→
CELL DCH). This is exemplified in Figure 1, where it can also be observed how network



A Needle in the Haystack - Delay Based User Identification in Cellular Networks 267

Number of RTTs (one every 10sec)

R
T

T
 (

m
s)

0 6 12 18 24 30

10
0

50
0

30
00

α

Fig. 1. Sudden drop in the RTT when the target
device passes from CELL IDLE to CELL DCH

Number of iterations

S
iz

e 
of

 IP
_r

an
ge

1
5

50
50

0
50

00

1 3 5 7 9 11

50
100
150
200
250
300

α

Fig. 2. Convergence of the algorithm with dif-
ferent values of α (in ms). Each iteration lasts 5
minutes.

delays are at least an order of magnitude lower than delays produced by RRC state tran-
sitions. In Figure 2 we show how the IP range set shrinks by iteratively applying our
detection methodology with different values of α. Interestingly, with just one iteration,
the IP range candidate set shrinks by around the 90% almost independently on the α
parameter used. This is probably because many devices in the initial IP range set are
in CELL IDLE state. Discarding these devices is very easy, as they always yield very
high RTTs. After some iterations, the percentage of devices that is discarded each time
slowly decreases, while the parameterα has a higher impact. In this case, increasing the
threshold α helps taking into account only the strong delay variations given by actual
RRC machine state transitions. Overall, we were able to correctly guess the IP of the
target user’s device in a few iterations (around 8 in the example). Detecting the user’s
device IP address with this level of accuracy may take more time when starting with
a larger IP range set. However, depending on the scenario, the number of iterations
could be reduced by terminating the search when the IP range set becomes smaller
than a certain threshold. For instance, to save bandwidth resources in a spam attack [2],
an adversary could be satisfied with just a small enough set of possible IPs of the target
user’s device.

References

1. Lee, P.P., Bu, T., Woo, T.: On the detection of signaling DoS attacks on 3G wireless networks.
In: INFOCOM. IEEE (2007)

2. Peng, C., Li, C.Y., Tu, G.H., Lu, S., Zhang, L.: Mobile data charging: new attacks and coun-
termeasures. In: CCS. ACM (2012)

3. Qian, F., Wang, Z., Gerber, A., Mao, Z.M., Sen, S., Spatscheck, O.: Characterizing radio
resource allocation for 3G networks. In: IMC. ACM (2010)

4. Qian, Z., Wang, Z., Xu, Q., Mao, Z.M., Zhang, M., Wang, Y.M.: You can run, but you cant
hide: Exposing network location for targeted DoS attacks in cellular networks. In: NDSS
(2012)

5. Traynor, P., Lin, M., Ongtang, M., Rao, V., Jaeger, T., McDaniel, P., La Porta, T.: On cellular
botnets: measuring the impact of malicious devices on a cellular network core. In: CCS. ACM
(2009)



Understanding HTTP Traffic and CDN

Behavior from the Eyes of a Mobile ISP�

Pedro Casas, Pierdomenico Fiadino, and Arian Bär

Telecommunications Research Center Vienna - FTW, Vienna, Austria
surname@ftw.at

Abstract. Today’s Internet is dominated by HTTP services and Con-
tent Delivery Networks (CDNs). Popular web services like Facebook and
YouTube are hosted by highly distributed CDNs like Akamai and Google.
Understanding this new complex Internet scenario is paramount for net-
work operators, to control the traffic on their networks and to improve
the quality experienced by their customers, specially when something
goes wrong. This paper studies the most popular HTTP services and
their underlying hosting networks, through the analysis of a full week of
HTTP traffic traces collected at an operational mobile network.

Keywords: HTTP Traffic, Content Delivery Networks, Mobile Net-
works.

1 Introduction

Today’s Internet is shaped by the success of large services running on top of
HTTP. HTTP is currently the dominating content delivery protocol, accounting
for more than 75% of the residential customers traffic [1]. HTTP-based services
such as YouTube and Facebook are forcing the Internet to shift the content as
close as possible to the users. The very last few years have seen an astonishing
development in Content Delivery Networks (CDNs) technology, and nowadays
Internet content is delivered by large CDNs like Akamai or Google.

This paper studies the dynamics of the top Internet services running on HTTP.
Using a full week of HTTP traffic traces collected at the mobile broadband net-
work of a major European ISP, we study the associations between services and
the hosting organizations providing the content. The dataset consists of more
than half a billion HTTP flows. For each flow, the dataset contains the con-
tacted URL, the server IP address, the total bytes exchanged with this server
IP, the duration of the flow, and a timestamp. The dataset includes the organiza-
tion/AS owning the server IP hosting the content, extracted from the MaxMind
databases1. The services running on top of the HTTP flows are classified us-
ing HTTPTag [6]. HTTPTag is an on-line HTTP classification system based on
pattern matching, applied to the requested URL.

� This work has been performed in the framework of the EU-IP project mPlane, funded
by the European Commission under the grant 318627.

1 MaxMIND GeoIP databases, http://www.maxmind.com

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 268–271, 2014.
� Springer International Publishing Switzerland 2014

http://www.maxmind.com


Understanding HTTP Traffic and CDN Behavior 269

0 50 100 150 200
20

30

40

50

60

70

80

Services (ordered by traffic volume)

%
 o

f H
T

T
P

 T
ra

ffi
c 

V
ol

um
e

Top 10 Services ≈ 58% 
HTTP traffic volume 

0 50 100 150 200
45

50

55

60

65

70

75

80

85

90

Services (ordered by number of users)

%
 o

f H
T

T
P

 U
se

rs

Top 10 Services ≈ 80%
HTTP users 

0 50 100 150 200
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Services (ordered by daily traffic volume)

%
 o

f H
T

T
P

 T
ra

ffi
c 

V
ol

um
e

 

 

sunday
monday
tuesday
wednesday
thursday
friday
saturday

(a) HTTP volume per service. (b) Users per service. (c) Daily HTTP volume.

2 4 6 8 10 12 14 16 18 20 22 24
0

200

400

600

800

1000

1200

Time of the day (hours)

# 
un

iq
ue

 IP
s 

pe
r 

ho
ur

 

 
Google
Facebook
YouTube
AVS 2
MS Update
Apple
AVS 1

(d) Top hosting ASes. (e) Shares of IPs per ASes. (f) IPs per hour.

Fig. 1. (up) HTTP traffic classification using HTTPTag. (down) IPs and top ASes
hosting the top services on a single day.

The study and characterization of the Internet traffic hosted and delivered
by the top content providers and CDNs has gained important momentum in
the last few years [2–4]. In the specific case of HTTP traffic, classification and
analysis has been the focus of many recent studies [1, 5–7].

2 HTTP Services, CDNs, and Content Providers

Figs. 1(a) and 1(b) depict the distribution of HTTP traffic volume and number
of users covered by HTTPTag on a normal day. HTTPTag classifies more than
70% of the total HTTP traffic volume caused by almost 90% of the web users in
the studied network. The top-10-volume services account for almost 60% of the
overall HTTP traffic, and the 10 most popular services are accessed by about
80% of the users. Fig. 1(c) shows the HTTP volume labeled by HTTPTag on
the studied dataset. The list of top-volume services include YouTube, Facebook,
Google Search, Apple Store and iTunes, two Adult Video Streaming services
(AVS 1 and AVS 2), and Windows Update.

These services are hosted by multiple ASes. Fig. 1(d) depicts the fraction of
HTTP traffic volume hosted by the top ASes and CDNs. The local ISP ASes
host more than 30% of the total traffic, evidencing the large usage of content
caching. Google hosts the lion share of YouTube, whereas Akamai hosts contents
such as Facebook static files, Apple Store/iTunes, and Windows updates among
others. Figs. 1(e) and 1(f) depict the share and daily number of unique server
IPs hosting the top services. Google and Akamai are the most distributed orgs.
in terms of server IPs. The change in the number of IPs being used by Google
Search, Facebook, and YouTube is impressive, going from about 250 IPs per
service at 5 am to up to 1200 in the case of Google Search.



270 P. Casas, P. Fiadino, and A. Bär

0 5 10 15 20 25 30 35 40 45 50
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Average MB per Flow

C
D

F

 

 

Local ISP
Google
Akamai
LimeLight
Level 3
LeaseWeb
Amazon
YouTube
Microsoft

0 100 200 300 400 500 600
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Average Flow Duration (seconds)

C
D

F

 

 

Local ISP
Google
Akamai
LimeLight
Level 3
LeaseWeb
Amazon
YouTube
Microsoft

0 1 2 3 4 5 6 7 8 9 10
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Average Download Throughput (Mbps)

C
D

F

 

 

Local ISP
Google
Akamai
LimeLight
Level 3
LeaseWeb
Amazon
YouTube
Microsoft

(a) Flow size. (b) Flow duration. (c) Download throughput.

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

RTT (ms)

%
 H

T
T

P
 fl

ow
s 

fr
om

 to
p−

7 
se

rv
ic

e 
 IP

s

 

 

YouTube
Facebook
Google
Apple
AVS 1
AVS 2
MS Update

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

min RTT (ms)

%
 H

T
T

P
 fl

ow
s 

fr
om

 to
p 

ho
st

in
g 

A
S

es

 

 

Akamai EU
Google Inc.
YouTube
Facebook
LimeLight

Time of the day (hour)

m
in

 R
T

T
 (

m
s)

 

 

00 12 00 12 00 12 00 12 00

20

30

40

50

60

70

10

20

30

40

50

60

(d) Min RTT per services. (e) Min RTT per hosting org. (f) Min RTT in YouTube.

Fig. 2. (up) Characterization of the flows served by different organizations. (down)
Distribution and variation of min RTT per service and per hosting organization.

3 Content Location and Performance

We study now the characteristics of the flows provisioned by each organization,
focusing only on the largest flows, bigger than 1 MB. Figs. 2(a) and 2(b) depict
the distribution of the average flow size and duration for some of the top or-
ganizations hosting content. Flows provided by LeaseWeb and Akamai are the
biggest in terms of volume and duration, and specially LeaseWeb delivers very
big and long flows. In terms of throughput, Fig. 2(c) depicts the average down-
load throughput distribution; flows cached at the local ISP are served the fastest,
with an average download throughput of about 2.7 Mbps, followed by Akamai,
Amazon, and Microsoft.

To conclude, we analyze the location of the servers hosting the content. We
consider the min Round Trip Time (RTT) to the hosting servers as a measure
of the servers distance from the vantage point. Figs. 2(d) and 2(e) depict the
min RTT values per service and per hosting organization. A large fraction of
the Facebook, Apple, and Windows Update flows come from servers probably
located in the same city of the vantage point, as min RTT values are below 5ms.
These three services are largely provided by Akamai. The AVS 2 service seems
to be mainly served from two locations in Europe (min RTT ≈ 30ms), perfectly
matching the results for Limelight (the hosting CDN). Fig. 2(f) depicts the
hourly evolution of the min RTT for YouTube flows during 4 consecutive days.
Each column depicts the CDF of the min RTT. Most of the flows are delivered
from the two Google locations depicted in Fig. 2(b) at 61ms and 63ms. Markedly
min RTT shifts occur every day at exactly the same time slots, suggesting the
usage of time/load-based server selection policies by Google.



Understanding HTTP Traffic and CDN Behavior 271

References

1. Maier, G., Feldmann, A., Paxson, V., Allman, M.: On Dominant Characteristics of
Residential Broadband Internet Traffic. In: IMC (2009)

2. Gehlen, V., Finamore, A., Mellia, M., Munafò, M.M.: Uncovering the Big Players of
the Web. In: Pescapè, A., Salgarelli, L., Dimitropoulos, X. (eds.) TMA 2012. LNCS,
vol. 7189, pp. 15–28. Springer, Heidelberg (2012)

3. Krishnan, R., Madhyastha, H., Srinivasan, S., Jain, S., Krishnamurthy, A., Ander-
son, T., Gao, J.: Moving Beyond End-to-End Path Information to Optimize CDN
Performance. In: IMC (2009)

4. Nygren, E., Sitaraman, R., Sun, J.: The Akamai Network: A Platform for High-
Performance Internet Applications. SIGOPS 44(3) (2010)

5. Erman, J., Gerber, A., Sen, S.: HTTP in the Home: It is not just about PCs. ACM
CCR 41(1) (2011)

6. Fiadino, P., Bär, A., Casas, P.: HTTPTag: A Flexible On-line HTTP Classification
System for Operational 3G Networks. In: INFOCOM (2013)

7. Schneider, F., Ager, B., Maier, G., Feldmann, A., Uhlig, S.: Pitfalls in HTTP Traffic
Measurements and Analysis. In: Taft, N., Ricciato, F. (eds.) PAM 2012. LNCS,
vol. 7192, pp. 242–251. Springer, Heidelberg (2012)



On Understanding User Interests

through Heterogeneous Data Sources

Samamon Khemmarat1, Sabyasachi Saha2, Han Hee Song2,
Mario Baldi2, and Lixin Gao1

1 University of Massachusetts Amherst, MA, USA
2 Narus Inc., CA, USA

Abstract. User interests can be learned from multiple sources, each of
them presenting only partial facets. We propose an approach to merge
user information from disparate data sources to enable a more complete,
enriched view of user interests. Using our approach, we show that merg-
ing different sources results in three times of more interest categories in
user profiles than with each single source and that merged profiles can
capture much more common interests among a group of users, which is
key to group profiling.

1 Introduction

User interest profiles allow businesses and service providers to customize their
services and products to better suit users’ needs and likings. User “footprints”
left in cyberspace, spread across different services, contain a large amount of
information about them. While many research works focused on joining user
data across various services of the same type (e.g., online social networks) [2],
aggregating users’ interests at various social networks or websites can only cap-
ture a very specialized, partial view of the user, the persona that user wants the
world to see. A more comprehensive user profile can be captured by combining
user information from different types of services. However, it is not trivial to
do so because of each service having its own representation of user data. In the
last few years, Internet users are increasingly interactive and form groups with
shared interests (e.g., meetup.com, Google Hangouts, etc.). Understanding the
common interests of groups of users allows services to be tailored to groups [3].
However, such group profiling requires finding commonality in information from
different users, which needs to be done at a semantic level.

The goal of this research work is to represent user interests as they can be
learned from different data sources in a single format that can be easily ex-
plained, compared, and combined. We propose a generalized method that flexi-
bly joins user interests from heterogeneous sources of data. Using the proposed
approach, we create user profiles from two representative data sets, online social
network (OSN) profiles and web browsing traces collected from a Cellular Service
Provider (CSP) and combine them. We show that our approach (i) can create
a richer user profile from heterogeneous information sources, and (ii) can cre-
ate more effective group profile by finding more common interests among users,
compared to using a single information source.

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 272–274, 2014.
c© Springer International Publishing Switzerland 2014



On Understanding User Interests through Heterogeneous Data Sources 273

2 Reconstructing User Interest

We construct a profile Pur of a user, u, analyzing raw data from a single in-
formation source, r. To allow comparing and merging interests across different
sources and users (or to group interests of users), interests from each source are
mapped on a category hierarchy H. Then we create the unified user profile Pu

combining the interest categories in all Pur . In particular, the process includes
the following key steps.

1. Interest Item Extraction. We define an interest item as a unit of data that
provides information about coherent topics of interests, e.g., a URL requested
by a user in browsing activity logs. We built specific parsers and noise filters, for
each data source, to extract a set of interest items Iu for user u.

2. Interest Item Enhancement. In this step we create a vector ,Vk, of terms,
tkj , that enrich the semantics of each interest item, ik ∈ Iu, using additional
resources and processes, e.g., using synonyms of words or metadata of URLs.
Vk, is used to aid interest item categorization (next step).

3. Interest-to-Category Mapping. Each interest item, ik, is mapped into an
interest category hierarchyH. Using Machine Learning techniques, we categorize
ik to one or few interest categories {hs}(∈ H).

4. User Profile Creation. A user’s (u) interest profile, Pur , can be created by
aggregating all of his interest categories, represented as a single vector of interest
categories along with the frequencies {(hs, fs)} with which interest items map
on them. We, then, create the unified user profile Pu combining all Pur of the
user.

3 Experimental Results

Our dataset contains data of 15,428 users. The association between the browsing
traces and OSN’s ID of a user was done with the Mosaic system [4].The browsing
traces, T1 and T2 are 5-day long and were collected from a backbone router of
a major CSP in North America. The categories from the ODP directory [1] are
used as reference interest categories, to which the extracted interest items from
different data sources are mapped to.

For each individual user, we study interest items overlap between profiles.
Figure 1 plots quantities of interest categories that overlap between the profiles

Fig. 1. Overlaps between browsing and
OSN profiles

Fig. 2. Overlaps between the browsing
profiles from T1 and T2



274 S. Khemmarat et al.

Table 1. Effectiveness of group profiling

Profile 10 user group 50 user group
type grp int top-1 cov. grp int top-1 cov.

Uncat.
Browse 0 0.27 1 0.46
OSN 0 0.01 0 0.00

Cat.
Browse 4 0.86 5 0.80
OSN 6 0.92 7 0.93

Cat.& Merged 13 0.97 14 0.96

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

C
u

m
u

la
t.

 C
o

ve
ra

g
e

# selected categories (n)

uncat_browsing

uncat_OSN

cat_merged

Fig. 3. Group coverage

from the two sources. We contrast this result with Figure 2, which plots the
same quantities for two browsing profiles created from two periods of time, T1
and T2. The smaller overlap in Figure 1 suggests that a richer profile can be cre-
ated by combining data from disparate sources. The average number of interest
categories per user increases by up to 3 times when the profiles are combined.

Group Profile. Now, we show the effectiveness of merging profiles when we
want to discover interests commonly shared among a group of users, e.g., gath-
ered in a coffee shop. The effectiveness is measured as (i) the number of group
interests, interests shared by more than 50% of users, and (ii) the fraction of users
in the group that have the most popular interest, referred to as top-1 coverage.
The comparison is performed between three types of profiles, original OSN and
browsing profiles with no categorization, categorized OSN and browsing profiles,
and merged categorized profiles. We generate 50 groups of 10 and 50 randomly
selected users from our dataset. Table 1 shows that using the categorized &
merged profiles results in the highest number of group interests as well as the
best top-1 coverage. Furthermore, we define coverage for a set of categories to be
the proportion of users for whom at least one of his interests can be found in the
set. In Figure 3 evaluating the number of interest categories required to satisfy
users in the group, we observe that the categorized & merged profiles require
only two interest categories to satisfy all members, whereas the uncategorized
profiles require 25 categories to be picked to cover interests of all members.

With our results, we illustrated that combining interests from multiple sources
leads to increased availability of user data and higher utility in profiling a group
of users.

References

1. Open directory project, http://www.dmoz.org
2. Malhotra, A., Totti, L.C., Meira Jr., W., Kumaraguru, P., Almeida, V.: Studying

user footprints in different online social networks. CoRR, abs/1301.6870 (2013)
3. Tang, L., Wang, X., Liu, H.: Group profiling for understanding social structures.

ACM Transactions on Intelligent Systems and Technology 3(1), 15 (2011)
4. Xia, N., Song, H.H., Liao, Y., Iliofotou, M., Nucci, A., Zhang, Z.-L., Kuzmanovic,

A.: Mosaic: Quantifying privacy leakage in mobile networks. In: ACM SIGCOMM
(2013)

http://www.dmoz.org


Nightlights: Entropy-Based Metrics

for Classifying Darkspace Traffic Patterns

Tanja Zseby1, Nevil Brownlee2,3, Alistair King3, and kc claffy3

1 Vienna University of Technology, 1240 Vienna, Austria
2 University of Auckland, Auckland 1010, New Zealand

3 CAIDA, UC San Diego, CA 92093, USA

An IP darkspace is a globally routed IP address space with no active hosts. All
traffic destined to darkspace addresses is unsolicited and often originates from
network scanning or attacks. A sudden increases of different types of darkspace
traffic can serve as indicator of new vulnerabilities, misconfigurations or large
scale attacks. In our analysis we take advantage of the fact that darkspace traffic
typically originates from processes that use randomly chosen addresses or ports
(e.g. scanning) or target a specific address or port (e.g. DDoS, worm spreading).
These behaviors induce a concentration or dispersion in feature distributions
of the resulting traffic aggregate and can be distinguished using entropy as a
compact representation. Its lightweight, unambiguous, and privacy-compatible
character makes entropy a suitable metric that can facilitate early warning capa-
bilities, operational information exchange among network operators, and com-
parison of analysis results among a network of distributed IP darkspaces.

Using traffic from five months from a large /8 darkspace monitor, we inves-
tigate the use of an entropy vector for IP darkspace traffic classification. As
reference we perform an in-depth analysis with the tool iatmon [2] to classify
the traffic into 15 different traffic types. We then compare our entropy results
to the detailed iatmon analysis. We use the approach and the formula presented
in [3] to calculate an estimate for Shannon entropy from IP address and port

number distributions: H(X) = −
∑N

i=1
ni

S · log2
(
ni

S

)
, where i...N are the dif-

ferent bins in the frequency distribution (IP addresses or ports). ni denotes the
number of packets that belong to bin i (e.g. all packets with port number 445).
X denotes the distribution of a feature (sIP , dIP , sPort or dPort), formed by
the frequencies n1, ...nN of all bins N . S denotes the total number of observa-
tions (packets received) in the time interval. In the /8 darkspace we get N = 224

possible destination addresses and therefore H(dIP )max = 24.
For each time interval t we compute an entropy vector that contains the

four entropy values: Ht = [Ht(sIP ), Ht(dIP ), Ht(sPort), Ht(dPort)]. We ex-
pect different changes in the entropy vector (+Δh increase, −Δh decrease),
which provide a unique signature for different darkspace events.

A multi-source horizonal scan disperses source IPs and source ports, but
concentrates the destination port distribution. H(dIP ) dispersion is already
close to the maximum (24 bits) in darkspace data, so we expect only small effects
on H(dIP ) (denoted by (+Δh)): ΔHt = [+Δh, (+Δh),+Δh,−Δh]. Backscat-
ter traffic occurs if victims of a DoS attack are attacked with spoofed source
addresses and reply to those spoofed addresses. For backscatter we expect a

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 275–277, 2014.
c© Springer International Publishing Switzerland 2014



276 T. Zseby et al.

concentration of the source IP distribution, because a lot of traffic is sent from
relatively few (victim) sources. We expect a source port concentration toward
the port that was used as destination port to attack the victim machine, whereas
destination ports disperses if the attacker used random source ports. Again we
expect only a small effect on H(dIP ): ΔHt = [−Δh, (+Δh),−Δh,+Δh]. For
a distributed probe we expect a source address and source port dispersion,
caused by the use of bots or spoofed addresses, and a concentration of destination
address and port toward the target: ΔHt = [+Δh,−Δh,+Δh,−Δh].

We analyse darkspace traffic from 5 month: Nov 2008 (Conficker outbreak),
Jan/Feb 2011 and Jan/Feb 2012. We first classify the traffic into 15 traffic classes
using an in-depth analysis with iatmon [2]. The output serves as a baseline
against which to evaluate our entropy-based inferences. Then we calculate one
entropy vector for each hour interval, using the tool Corsaro1 and the statis-
tical package R2. We then compare the detailed iatmon results with the more
lightweight entropy analysis to see if new events follow the expected entropy
patterns and thus can be classified based on entropy.

Multi-Source Scans: The detailed iatmon analysis of Nov 2008 data reveals
an increase of TCP horizontal scan packets, caused by the Conficker outbreak,
where hosts began to scan port 445 trying to spread the worm [1]. The outbreak
of the new worm is clearly visible in entropy vectors, following the expected
entropy pattern for a multi-source scan.

Backscatter is captured effectively by the entropy vector in our experiments.
Figure 1 shows the results from Feb 2012 as an example. It shows the entropies
(1st and 2nd graph) and the amount of backscatter packets according to iatmon’s
classification (3rd graph). As expected, if backscatter increases we observe an
increase in H(dPort), a decrease in H(sPort) and H(sIP ) and no significant
changes for H(dIP ). Table 1 lists the correlation coefficients between entropy
and backscatter traffic. The observations also conform to the expected behavior.
While the increase in backscatter traffic does not always affect the overall packet
count (last row in table 1), it always shows significant changes in entropy.

Table 1. Correlation coefficients for time series of amount of backscatter (bs) traffic
(as seen by iatmon) and entropy (rows 1,2) and bs traffic and packet count (row 3)

corr. coeff. Jan11 Feb11 Jan12 Feb12 corr. coeff. Jan11 Feb11 Jan12 Feb12

bs,H(sIP) -0.48 -0.38 -0.37 -0.75 bs,H(dIP) 0.14 0.29 0.36 0.44

bs,H(sPort) -0.60 -0.52 -0.58 -0.83 bs,H(dPort) 0.69 0.62 0.69 0.91

bs,pktcount 0.28 0.39 0.48 0.76

Large probing events are also visible in entropy. The iatmon analysis for Jan
2011 shows a large distributed probe originating from many sources (spoofed
and/or bots) directed to a specific IP address and port. The new probe traffic
is clearly visible in the entropy statistics (figure 2); the increase in new sources

1 http://www.caida.org/tools/measurement/corsaro/
2 http://www.r-project.org/



Nightlights: Entropy-Based Metrics for Classifying Darkspace Traffic Patterns 277

 6

 12

 18

 24
en

tro
py

H(sIP)
H(dIP)

 4

 8

 12

en
tro

py

H(sPort)
H(dPort)

 30

 60

 90

 120

15 Feb 18 Feb 21 Feb

Mp
kts

Backscatter

Fig. 1. Entropy correlation with backscatter traffic (February 2012), showing IP ad-
dress entropies H(sIP ), H(dIP ) (1st graph), port entropies H(sPort), H(dPort) (2nd
graph), amount of backscatter traffic according to iatmon analysis (3rd graph)

 6

 12

 18

 24

ent
rop

y

H(sIP)
H(dIP)

 4

 8

 12

10 Jan 11 Jan 12 Jan 13 Jan 14 Jan

ent
rop

y

H(sPort)
H(dPort)

Fig. 2. Entropy during TCP Probe

drives up H(sIP ). High concentration of traffic to one address and one port
causes H(dIP ) and H(dPort) to drop significantly.

Our results show that entropy-based metrics can reveal noteworthy events in
IP darkspace. We plan to further investigate the use of entropy to also detect
smaller changes or nested events, and evaluate the utility of this method for early
warning and privacy-respecting information sharing among darkspace operators.

References

1. Aben, E.: Conficker/Conflicker/Downadup as seen from the UCSD Network Tele-
scope. Technical report, CAIDA (February 2009)

2. Brownlee, N.: One-way traffic monitoring with iatmon. In: Taft, N., Ricciato, F.
(eds.) PAM 2012. LNCS, vol. 7192, pp. 179–188. Springer, Heidelberg (2012)

3. Lakhina, A., Crovella, M., Diot, C.: Mining Anomalies Using Traffic Feature Distri-
butions. SIGCOMM Comput. Commun. Rev. 35(4), 217–228 (2005)



Distributed Active Measurement
of Internet Queuing Delays

Pellegrino Casoria1,3, Dario Rossi1, Jordan Augé2,
Marc-Olivier Buob2, Timur Friedman2, and Antonio Pescapé3

1 Telecom ParisTech
first.last@enst.fr

2 UPMC Sorbonne Universites
first.last@lip6.fr

3 Universitá di Napoli Federico II
first.last@unina.it

Abstract. Despite growing link capacities, over-dimensioned buffers are still caus-
ing, in the Internet of the second decade of the third millennium, hosts to suffer
from severe queuing delays (or bufferbloat). While maximum bufferbloat possibly
exceeds few seconds, it is far less clear how often this maximum is hit in practice.
This paper reports on our ongoing work to build a spatial and temporal map of
Internet bufferbloat, describing a system based on distributed agents running on
PlanetLab that aims at providing a quantitative answer to the above question.

1 Introduction

Given the abundance of active measurement approaches, it may seem at first sight
redundant to focus on bufferbloat measurement via active techniques. Yet, this work
nicely fit in a gap of the design space explored by the research community.

Our system targets large-scale high-frequency scanning, customized to periodically
report very detailed per-host statistics (e.g., percentiles). As individual probes are ca-
pable of scanning about 10K hosts in a second, it follows that using 100 PlanetLab
nodes we could in principle follow about 1 million hosts every second or, trading space
for time, cover the whole Internet in about one hour. Interest of our approach can be
summarized as follows.

Due to architectural similarities with scanners [1, 10] and systems based on dis-
tributed agents [2, 3], our approach allows to achieve spatial scales larger than [8, 11]
(already in this paper) and [4,5] (prospectively). Additionally, our efficient implementa-
tion allows much higher scan frequency than [2–5,8,11], where the frequency of back-
ground latency measurement is typically too sparse to offer an adequate bufferbloat
characterization from the user perspective. Finally, in terms of the delay statistics, we
avoid to measure maximum latency under controlled load as in [8, 9, 11], and rather
gather the (typical) delay by continuous host measurement, hence sampling the user
load during their normal activities.

2 Bufferbloat Scanner Architecture

Building over TopHat [6], we design a distributed architecture for Internet bufferbloat
scanning. At the core of our scanner, lay an efficient tool to ping a large amount of hosts

M. Faloutsos and A. Kuzmanovic (Eds.): PAM 2014, LNCS 8362, pp. 278–280, 2014.
c© Springer International Publishing Switzerland 2014



Distributed Active Measurement of Internet Queuing Delays 279

 0

 0.2

 0.4

 0.6

 0.8

 1

10 100 1000

maximum

Queuing delay [ms]

C
D

F

win:dsl

*:ftt

*:cable

10 100 1000

90th prc

win:dsl

win:cable

10 100 1000

50th prc

nix:cable
nix:ftt
net:ftt

win:cable
win:dsl
win:ftt

Fig. 1. Validation of the Internet measurement campaign

with the least possible resources. While our tool is far less efficient than the recently
released zMap, it is still an order of magnitude faster than the fastest settings of the
Nmap Scripting Engine.

We divide measurement periods (of 5 minutes by default), at the beginning of which
each measurement server ask for instructions (essentially, a list of destinations/subnets
and the sampling frequency, 1 Hz by default). At the end of each measurement period,
per-hosts statistics (delay percentiles, etc.) are collected for further post-processing.

For each target, we gauge the queuing delay via ICMP measurements as qi = RTTi−
minj≤i RTTj . By ensuring that queuing does not happens at the measurement servers,
we can however correctly infer the remote queuing delay. We validate this approach
(i) to be very accurate with non-NATted hosts, (ii) to yield a coarse queuing indication
(e.g., a binary bufferbloat flag) for NATted hosts.

We notice that the generally measurement are initiated by the end-host [4, 5, 8, 9]
(SamKnows/BISmark [11] slightly differ in that measurement starts from the HGW).
In our case, measurement are instead targeting the end-hosts: this is common in large-
scale census studies [1, 10] (of which we inherit the scalability property) but has not
been explored so far, to the best of our knowledge, for bufferbloat measurements.

3 Measurement Campaign

We report results on a preliminary measurement campaign. We focus on moderate num-
ber of hosts O(104) on the same ISPs, that we continuously probe at 0.5 Hz frequency
from 2 separate PlanetLab nodes for a period of about 8 continuous hours. Overall, we
receive replies to 47% of our sent packets, for a total of O(108) valid samples – using
only two PlanetLab servers, we already achieve a quite significant scale in terms of
spatial reach and temporal frequency.

For validation purposes, we infer (i) the access type (AT) of our target hosts by issu-
ing reverse DNS queries, as well as (ii) the remote operating system (OS) through nmap
fingerprinting. As for the access type, we expect the breakdown of queuing delay along
DSL, FTTH and cable access to yield an intuitive validation of the observed statistics.
Additionally, we argue that in case the remote OS is reliably found to be a Windows OS,



280 P. Casoria et al.

then queuing delay are representative of non-NATted host statistics (where our method-
ology is more reliable). Overall, we manage to infer both AT and OS information for
2546 hosts: while this subset is not statistically significant, it nevertheless allows to
validate our methodology as it covers the full AT× OS cross-product.

We collect per-host percentiles during 5 minutes windows: Fig. 1 reports the Cumu-
lative Distribution Function (CDF) of a few per-host queuing delay statistics, gathered
over all hosts and measurement rounds. Left plot reports the maximum queuing delay
CDF: as expected, from the picture clearly emerges that (a) fiber access suffers the low-
est delays irrespectively from the OSs, (b) cable delays are only slightly higher, whereas
(c) DSL end-hosts may seldom suffer from delays close to 1 sec. We further report the
50th (right) and 90th (middle) percentiles CDF. Notice further that (d) from practical
purposes, the 90th percentile is lower than 100 ms under any combination of OS and
AT – including end-hosts behind DSL. Moreover, since the win:cable and win:dsl lines
now clearly separate from the others, we infer that the methodology needs to be refined
as it likely underestimates bufferbloat delay for NATted hosts – although observation
(d) suggests bufferbloat to be a not necessarily frequent problem.

Acknowledgements. This work has been carried out during Pellegrino Casoria intern-
ship at LINCS http://www.lincs.fr. The research leading to these results has
received funding from the European Union under the FP7 Grant Agreement n. 318627
(Integrated Project ”mPlane”).

References

1. http://internetcensus2012.bitbucket.org/
2. http://www.caida.org/projects/ark/
3. http://www.netdimes.org/new/
4. Bischof, Z., Otto, J., Sánchez, M., Rula, J., Choffnes, D., Bustamante, F.: Crowdsourcing ISP

characterization to the network edge. In: ACM SIGCOMM W-MUST (2011)
5. Bischof, Z.S., Otto, J.S., Bustamante, F.E.: Up, down and around the stack: ISP characteri-

zation from network intensive applications. In: ACM SIGCOMM W-MUST (2012)
6. Bourgeau, T., Augé, J., Friedman, T.: Tophat: supporting experiments through measurement

infrastructure federation. In: TridentCom (2010)
7. Chirichella, C., Rossi, D.: To the moon and back: are internet bufferbloat delays really that

large. In: IEEE INFOCOM Workshop on Traffic Measurement and Analysis, TMA (2013)
8. Jiang, H., Wang, Y., Lee, K., Rhee, I.: Tackling bufferbloat in 3G/4G networks. In: ACM

IMC (2012)
9. Kreibich, C., Weaver, N., Nechaev, B., Paxson, V.: Netalyzr: Illuminating the edge network.

In: ACM IMC (2010)
10. Leonard, D., Loguinov, D.: Demystifying service discovery: implementing an internet-wide

scanner. In: ACM IMC (2010)
11. Sundaresan, S., de Donato, W., Feamster, N., Teixeira, R., Crawford, S., Pescapè, A.: Broad-

band internet performance: a view from the gateway. In: ACM SIGCOMM (2011)

http://www.lincs.fr
http://internetcensus2012.bitbucket.org/
http://www.caida.org/projects/ark/
http://www.netdimes.org/new/


Author Index

Alexander, Geoffrey 109
Allman, Mark 141, 214
Ardi, Calvin 119
Augé, Jordan 173, 278

Bagnulo, Marcelo 163
Baldi, Mario 272
Baltra, Guillermo 56
Bär, Arian 268
Barbera, Marco V. 247, 265
Barlet-Ros, Pere 98
Baynat, Bruno 173
Beverly, Robert 56
Blanton, Ethan 141
Botta, Alessio 88
Bronzini, Simone 265
Brownlee, Nevil 67, 275
Bujlow, Tomasz 98
Buob, Marc-Olivier 173, 278

Calandro, Enrico 204
Calder, Matt 204
Callahan, Tom 214
Carela-Español, Valent́ın 98
Carlsson, Niklas 151
Casas, Pedro 268
Casoria, Pellegrino 278
Chaabane, Abdelberi 235
Chakravarty, Sambuddho 247
Chetty, Marshini 204
Choffnes, David R. 12, 23
claffy, kc 46, 77, 275
Coffey, David 224
Colabrese, Silvia 262
Crandall, Jedidiah R. 109

Dam, Martin 183
Dey, Ratan 235
Dhamdhere, Amogh 77
Di Battista, Giuseppe 193
Ding, Yuan 235
Doozan, Dan 131

Ensafi, Roya 109

Feamster, Nick 131, 204
Fiadino, Pierdomenico 268
Flach, Tobias 23
Friedman, Timur 173, 278

Gao, Lixin 272
Govindan, Ramesh 23
Gupta, Arpit 204

Heidemann, John 119
Hu, Zi 119
Huang, Junxian 1

Kaafar, Mohamed Ali 235
Katz-Bassett, Ethan 12, 23, 88, 119, 204
Kaur, Jasleen 258
Keromytis, Angelos D. 247
Khemmarat, Samamon 272
King, Alistair 275
Knockel, Jeffrey 109
Kreibich, Christian 183

Lee, Wenke 131
Leinen, Simon 77
Leong, Ben 34
Leong, Wai Kay 34
Luckie, Matthew 46
Lutu, Andra 163

Madhyastha, Harsha V. 119
Maennel, Olaf 163
Mahanti, Anirban 151
Mao, Z. Morley 1, 12, 23
Marchetta, Pietro 88
Mazloum, Riad 173
Mei, Alessandro 265
Mellia, Marco 262
Meng, Wei 131

Nikravesh, Ashkan 12
Nori, Srikanth 23

Paxson, Vern 183
Pelsser, Cristel 163
Perta, Vasile C. 265
Pescapé, Antonio 88, 278



282 Author Index

Polychronakis, Michalis 247
Portokalidis, Georgios 247

Qian, Feng 1

Rabinovich, Michael 214
Reddyvari Raja, Vamseedhar 77
Rimondini, Massimo 193
Ross, Keith W. 235
Rossi, Dario 173, 262, 278

Saha, Sabyasachi 272
Sargent, Matt 141
Schomp, Kyle 214
Scicchitano, Alessandra 77
Sen, Subhabrata 1
Shahmehri, Nahid 151
Shakkottai, Srinivas 77
Smith, F. Donelson 258
Snoeren, Alex C. 131
Song, Han Hee 272

Spatscheck, Oliver 1
Squarcella, Claudio 193

Vapen, Anna 151
Viega, John 224

Wang, Zixiao 34
Weaver, Nicholas 183
Welsh, Matt 12, 23

Xie, Geoffrey G. 56
Xing, Xinyu 131
Xu, Yin 34

Yin, Qianwen 258
Yu, Minlan 119

Zarifis, Kyriakos 23
Zeng, Yuanyuan Grace 224
Zhu, Liang 119
Zseby, Tanja 275


	Preface
	Organization
	Table of Contents
	Internet Wireless and Mobility
	RadioProphet: Intelligent Radio Resource Deallocation
for Cellular Networks
	1 Introduction
	2 Background
	3 The RadioProphet (RP) System
	4 Feature Selection
	4.1 The UMICH Dataset
	4.2 Measurement Driven Feature Selection for Burst Classification

	5 Implementation and Evaluation
	5.1 Implementation
	5.2 EvaluationMethodology
	5.3 PredictionModel Comparison
	5.4 Selecting Burst Thresholds
	5.5 Comparing Fast Dormancy Based Resource Optimization Approaches
	5.6 Running Overhead on Real Phone

	6 Related Work and Concluding Remarks
	References

	Mobile Network Performance from User Devices:
A Longitudinal, Multidimensional Analysis
	1 Introduction
	2 Methodology and Dataset
	3 DataAnalysis
	3.1 Performance across Carriers
	3.2 Performance across different Locations
	3.3 Performance over Time
	3.4 Performance Degradation: Root Causes

	4 Related Work
	5 Conclusion
	References

	Diagnosing Path Inflation of Mobile Client Traffic
	1 Introduction
	2 Background and RelatedWork
	3 Dataset
	4 A Taxonomy of Inflated Routes
	5 Results
	6 Path Inflation Today
	7 Conclusions
	References

	An End-to-End Measurement Study
of Modern Cellular Data Networks
	1 Introduction
	2 Related Work
	3 Methodology
	4 PacketFlowMeasurement
	4.1 Burstiness of Packet Arrival
	4.2 Measuring Instantaneous Throughput
	4.3 Variations in Mobile Data Network Throughput

	5 Buffer and Queuing Policy
	6 Conclusion
	References


	Measurement Design, Experience and Analysis
	A Second Look at Detecting Third-PartyAddresses in Traceroute Traces
with the IP Timestamp Option
	1 Introduction
	2 Method and Data
	3 Results
	4 Conclusion and Future Work
	References

	Ingress Point Spreading: A New Primitive
for Adaptive Active Network Mapping
	1 Introduction
	2 Methodology
	2.1 Vantage Point Importance
	2.2 Recursive Subnet Inference
	2.3 Ingress Point Spreading

	3 Results
	4 Related Work
	5 Conclusion
	References

	On Searching for Patterns
in Traceroute Responses
	1 Introduction
	2 Related Work
	3 Datasets
	4 Methodology
	4.1 Measuring Changes between Successive Traces:
	4.2 Trace Uncommon Distances
	4.3 Clustering Distance between Probe Pairs

	5 Observations
	6 Conclusions and Future Work
	References

	Volume-Based Transit Pricing:
Is 95 the Right Percentile?
	1 Introduction
	2 Datasets
	3 Longitudinal Study of 95th Percentile Billing
	3.1 Calculation of 95th Percentile
	3.2 Classification of Networks
	3.3 95th Percentile to Average Ratio
	3.4 Skewness of the Traffic Distribution

	4 Fairnessof95th Percentile Billing
	4.1 Shapley Value Percentile Billing
	4.2 Overlap Rank
	4.3 Provision Ratio
	4.4 Towards a New Billing Mechanism

	5 Related Work
	6 Conclusions
	References


	Performance Measurement

	Dissecting Round Trip Time on the Slow Path
with a Single Packet
	1 Introduction and Motivation
	2 Dissecting Round Trip Time
	3 Evaluation
	4 Conclusion
	References

	Is Our Ground-Truth for Traffic Classification
Reliable?
	1 Introduction and Related Work
	2 Methodology
	3 Performance Comparison
	3.1 Sub-classification of HTTP Traffic

	4 Discussion
	5 Conclusions
	References

	Detecting Intentional Packet Drops
on the Internet via TCP/IP Side Channels
	1 Introduction
	2 Implementation
	3 Experimental Setup
	4 Analysis
	5 Results
	6 Related Work
	7 Conclusion
	References

	The Need for End-to-End Evaluation
of Cloud Availability
	1 Introduction
	2 Methodology
	2.1 Outage Causes
	2.2 Outage Detection at the Network and Application Level
	2.3 Targets: Cloud Storage and VMs
	2.4 Sources: Vantage Points

	3 Evaluating the Need for Retries
	3.1 A Simple Analytic Model
	3.2 ICMP Measurements
	3.3 Retries and HTTP Probes

	4 Comparing Network and Application-Level Probing
	4.1 Comparing ICMP and HTTP Probing
	4.2 Differences between Probing VMs and Storage

	5 Related Work
	6 Conclusion
	References


	Protocol And Application Behavior

	Exposing InconsistentWeb Search Results with Bobble
	1 Introduction
	2 Related Work
	3 Bobble
	3.1 Design and Implementation
	3.2 Validation

	4 Data
	5 Location-Based Inconsistency
	5.1 Results
	5.2 Distributed Index Inconsistencies

	6 Profile-Based Inconsistency
	7 Conclusion
	References

	Modern Application Layer Transmission Patterns
from a Transport Perspective
	1 Introduction
	2 Related Work
	3 Data
	4 Dividing Connections
	5 Trailing Silent Periods
	6 Internal Silent Periods
	7 Application Complexity
	8 Conclusions
	References

	Third-Party Identity Management
Usage on the Web
	1 Introduction
	2 Methodology
	2.1 Data Collection
	2.2 Statistics and Complementary Datasets
	2.3 Validation

	3 Characterization Results
	3.1 The Big Players
	3.2 IDP Usage
	3.3 Comparison with Content Services
	3.4 Service-Based Analysis
	3.5 Cultural and Geographic Analysis

	4 Related Work
	5 Discussion and Conclusions
	References

	Understanding the Reachability
of IPv6 Limited Visibility Prefixes
	1 Introduction
	2 The BGP Visibility Scanner for IPv6
	2.1 Retrieving and Refining the Raw Routing Data
	2.2 The Visibility Scanner Algorithm: The Labeling Mechanism

	3 The IPv6 Limited Visibility Prefixes
	4 Traceroute Probing for Reachability
	4.1 Traceroute Probing Approach
	4.2 Validating the Measurement Methodology

	5 Reachability Measurements and Results
	5.1 Local ReachabilityMeasurements
	5.2 RIPE Atlas Measurements and Results

	6 Conclusions
	References


	Characterization of Network Behavior

	Violation of Interdomain Routing Assumptions
	1 Introduction
	2 Interdomain Routing and Our Set of Assumptions
	2.1 BGP Background
	2.2 AS Relationships
	2.3 A Set of Interdomain Routing Assumptions

	3 Methodology
	3.1 Observing Multi-exits
	3.2 Observing Incoherencies in Multi-exits

	4 Results
	4.1 Data Sources
	4.2 Quantifying Multi-exits
	4.3 Quantifying Incoherences
	4.4 Possible Causes for Violations

	5 Related Work
	6 Conclusion and Future Work
	References

	Here BeWeb Proxies
	1 Introduction
	2 Background and RelatedWork
	3 Detecting Web Proxies
	4 Fingerprinting and Classifying Proxies
	5 Identified Proxies
	6 Conclusion
	References

	Towards an Automated Investigation of the Impact of BGP Routing Changes
on Network Delay Variations
	1 Introduction and State of the Art
	2 Matching BGP Routing Changes with RTT Variations
	3 Experimental Results
	4 Analyses Based on Matched BGP-RTT Data
	5 Conclusions and Future Work
	References

	Peering at the Internet’s Frontier:
A First Look at ISP Interconnectivity in Africa
	1 Introduction
	2 Measurements
	2.1 Interdomain Routes: BGP Routing Tables
	2.2 Router-Level Paths: BISmark Routers

	3 A First Look at ISP Interconnectivity in Africa
	3.1 High-Latency Paths
	3.2 The Cause of High Latency: Circuitous Paths

	4 Reducing Latencies to Popular Internet Sites and Services
	4.1 Add More Peering Links
	4.2 Add More Local Caches

	5 Related Work
	6 Conclusion
	References


	Network Security and Privacy

	Assessing DNS Vulnerability to Record Injection
	1 Introduction
	2 Terminology and Methodology
	3 Kaminsky’s Attack
	4 Bailiwick Rules Violations
	5 Preplay Attack
	6 DNS Message Rewriting
	7 Implications
	8 Context
	9 Conclusion
	References

	How Vulnerable Are Unprotected Machines
on the Internet?
	1 Introduction
	2 Related Work
	3 Experiment Design
	3.1 Scope of the Experiment
	3.2 Experiment Set-Up

	4 Experiment Results
	4.1 In-Cloud Experiment
	4.2 On-Premise Experiment

	5 Conclusion and Future Work
	References

	A Closer Look at Third-Party OSN Applications:
Are They Leaking Your Personal Information?
	1 Introduction
	1.1 Related Research

	2 Background
	3 Methodology
	3.1 Limitations of the Methodology
	3.2 Basic Characteristics of Applications

	4 Interaction with External Entities
	5 Personal Information Leakage
	5.1 Methodology
	5.2 Data Leakage Classification
	5.3 Statistics
	5.4 RenRen Leakage

	6 Discussion and Conclusion
	References

	On the Effectiveness of Traffic Analysis�against Anonymity Networks Using Flow Records
	1 Introduction
	2 Related Work
	3 Approach
	4 Experimental Evaluation
	5 Limitations
	6 Conclusion
	References


	Poster Abstracts

	Scaling Bandwidth Estimation
to High Speed Networks
	1 Introduction
	2 Experimental Methodology
	3 Interrupt Coalescence at Receivers
	4 Cross Traffic Burstiness
	5 Conclusion
	References

	Scalable Accurate Consolidation
of Passively Measured Statistical Data
	1 Introduction
	2 Methodology
	3 Experiments
	References

	A Needle in the Haystack - Delay Based User
Identification in Cellular Networks
	1 Introduction
	2 Identifying Mobile Devices from RTT Variations
	3 Evaluation
	References

	Understanding HTTP Traffic and CDN
Behavior from the Eyes of a Mobile ISP
	1 Introduction
	2 HTTP Services, CDNs, and Content Providers
	3 Content Location and Performance
	References

	On Understanding User Interests
through Heterogeneous Data Sources
	1 Introduction
	2 Reconstructing User Interest
	3 Experimental Results
	References

	Nightlights: Entropy-Based Metrics
for Classifying Darkspace Traffic Patterns
	References

	Distributed Active Measurement
of Internet Queuing Delays
	1 Introduction
	2 Bufferbloat Scanner Architecture
	3 Measurement Campaign
	References


	Author Index



