
SOFL Specification Animation
with Tool Support

Mo Li1(B) and Shaoying Liu2

1 Graduate School of Computer and Information Sciences,
Hosei University, Tokyo, Japan
mo.li.3e@stu.hosei.ac.jp

2 Department of Computer and Information Sciences,
Hosei University, Tokyo, Japan

sliu@hosei.ac.jp

Abstract. Formal specification animation is a very useful technique for
verification and validation. It provides the end users and field experts
with an intuitive way to observe the operational behaviour of software
system described by the formal specification. Several tools have already
been built to support animations of specifications written in different
formal languages. In this paper, we describe the design of a tool that
can support the animation of specification written in Structure Object-
oriented Formal Language (SOFL). The animation strategy underlying
the tool uses system functional scenario as a unit and data as connec-
tion among independent operations involved in one system functional
scenario. A system functional scenario defines a behaviour that trans-
forms input data into the output data through a sequential execution of
operations. It is the target of animation. In the animation, data is used
to connect each operation in a specific scenario. The data can be pro-
vided by the user or generated automatically. It will help the user and
the developer to understand the system. We explain the whole animation
process step by step and present a prototype at the end of the paper.

Keywords: Formal method · Specification · Animation · Tool

1 Introduction

Formal specification animation is an effective technique for specifications verifi-
cation and validation. The purpose of animation is to provide an intuitive way
for the end user and domain expert to monitor the states of a behaviour so that
they do not need to read the formal specification which is fulfilled with mathe-
matical or logical formulas. Usually, a tool is required to support the animation

This work has been conducted as a part of “Research Initiative on Advanced Software
Engineering in 2012” supported by Software Reliability Enhancement Center (SEC),
Information Technology Promotion Agency Japan (IPA).

S. Liu and Z. Duan (Eds.): SOFL+MSVL 2013, LNCS 8332, pp. 118–131, 2014.
DOI: 10.1007/978-3-319-04915-1 9, c© Springer International Publishing Switzerland 2014



SOFL Specification Animation with Tool Support 119

process since it faces a lot of challenges in practice and one of the challenge is
that formal specification is complex and difficult to understand. A tool is needed
to hide the complexity and derive the intuitive information for the user. Several
tools have been built to support animation of specification written in different
formal languages, such as ANGOR [1], B-Model animator [2], and ZAL anima-
tion system [3]. Most of them require a translation from a formal specification
language to an executable programming language, so that the animation can
be done automatically. But the translation may imposes many restrictions to
the style of the specifications written in a formal notation and this would bring
inconvenience to the developer.

In this paper, we describe the design of a tool for SOFL [4] specification ani-
mation. There is no further restrictions to the language or style of specification.
In the tool, the end user or field expert can animate the specification on the Con-
ditional Data Flow Diagram (CDFD, a part of SOFL specification) directly, and
we think it is a very good way to connect user, developer and formal specifica-
tion. The animation strategy underlying the tool uses system functional scenario
as a unit and data as connection among independent operations involved in one
system functional scenario. System functional scenario is used as unit of an ani-
mation since it presents a specific behaviour of the system, and the behaviour is
the target or object of animation. In order to animate the entire specification, all
of the potential behaviours, or system functional scenarios, should be animated.
Usually, a system functional scenario is defined as a sequence of operations that
process a group of input data to a group of output data. Each operation in sce-
nario is connected by intermediate data, and it is the reason why we use data
as connection in animation.

One of the advantages of using data for animation is that the end user can
observe each behaviour by monitoring the states of it. The states of behaviours
are presented as the input and output data of each operation involved. The
tool allows users to select providing the data themselves or letting the data
generated automatically. If users select to provide the data for animation, they
usually provide the most typical data of the system. Meanwhile, the users need
to guarantee that the data they provide satisfies the pre- and post-conditions. If
users want to let the data generated automatically, the data generation method
would generate the data that satisfies the pre- and post-conditions. But the
generated data may not present the specific circumstance users want to animate.
We will introduce how to animate a scenario step by step in Sects. 2 and 3.

The prototype is implemented on the bases of a framework that is built
to help developers specifying SOFL specification. The framework includes the
editors of informal specification, formal specification, and CDFD, etc. All the
specifications are well organized and stored in the well formatted files under
this framework. It provides a fundamental to further utilization of the formal
specifications. The prototype is now a part of the framework, and it contains
functions of deriving system functional scenario and animating a specific sce-
nario. Section 4 describes the framework and prototype in details.



120 M. Li and S. Liu

The remainder of this paper is organized as fellows. Section 2 describes the
animation strategy and the animation process. Section 3 briefly introduces the
specific methods of system functional scenarios derivation and data generation
used in the tool. The framework for specifying SOFL specifications and the
prototype is described in Sect. 4. Section 5 gives a brief overview of related work.
Finally, in Sect. 6 we conclude the paper and point out future research directions.

2 Animation Strategy and Process

As mentioned previously, we use the system functional scenario as the basic
unit in animation. Each system scenario presents a specific function of the
system. Since the goal of a formal specification animation is to validate the
potential behaviours of the specification, we suggest that every possible system
functional scenario defined in the specification should be animated. A system
scenario defines a specific kind of operational behaviour of the system through
a sequential executions of operations. And a specific operational behaviour is
usually presented to end users as a pair of input and output, that is, given an
input, the result of a behaviour of the system results in a certain output. The
definition of a system functional scenario is detailed in Definition 1.

Definition 1. A system functional scenario, or system scenario for short,
of a specification is a sequence of operations di[OP1, OP2, ..., OPn]do, where di
is the set of input variables of the behaviour, do is the set of output variables,
and each OPi(i ∈ {1, 2, ..., n}) is an operation.

The system scenario di[OP1, OP2, ..., OPn]do defines a behaviour that trans-
forms input data item di into the output data item do through a sequential
execution of operations OP1, OP2, ..., OPn. Actually, other data items are used
or produced within the process of executing the entire system scenario but not
being presented. For example, the first operation OP1 in the system scenario
receives the input data item di and produces a data item, which is the input
data item of operation OP2. Operation OP2 cannot be executed without the
output data item of OP1. We call these data items implicit data items. In order
to show the behaviour of system step by step in an animation, the implicit data
items in system scenario should be presented explicitly. When presenting implicit
data items explicitly is necessary, we use [di, OP1, d1, OP2, d2, ..., dn−1, OPn, do]
to present a system scenario, where d1 indicates the output data item of OP1 or
input data item of OP2.

For example, Fig. 1 shows the CDFD of a simplified ATM. There are only
to functions included in this simple specification: withdraw and show balance.
Based on the definition of system functional scenario, five scenarios defined in
the specification is listed as follows:

– {withdraw com}[Receive Command, Check Password, Withdraw]{cash}
– {withdraw com}[Receive Command, Check Password, Withdraw]{err2}
– {withdraw com}[Receive Command, Check Password]{err1}



SOFL Specification Animation with Tool Support 121

Fig. 1. CDFD of a simple ATM

– {balance com}[Receive Command, Check Password]{err1}
– {balance com}[Receive Command, Check Password, Show Balance]{balance}

Such a system functional scenario clearly describes how the final output data
is produced by a sequence of processes based on the input data. Note that the
input data and output data indicate the sets of variables when talking about the
concept of system scenario or a specific system scenario of an behaviour. Under
the context of animation, the input and output data are instances rather than
concepts. They indicate sets of values of the input and output variables.

To animate a specific system scenario, the data is used to connect each oper-
ation involved in the scenario. Since the data is restricted by the pre- and post-
conditions of process, the data present a real environment of the behaviour. The
user and experts can observe the behaviour by monitoring the data. There are
two ways to collect the data for animation. The first way is to let the user pro-
viding the data. The advantage of this way is that the data provided by user
is usually the most typical data. The provided data presents the circumstance
that the user cares about. Meanwhile, the user have to guarantee that the data
satisfies the pre- and post-condition, otherwise the data would be meaningless.
The alternative way of collecting data is to generate data automatically. The
generation method does not require translating the formal specification to any
executable program. One of the obvious disadvantage of the method is that the
generated data may not present the specific circumstance users want to animate.
No matter which way the user use, the data provide a concrete point of views of
the behaviour.

When collecting input and output data for a single process, the operation
functional scenarios of the process have to be extracted first. By operation func-
tional scenario, we mean an predicate expression derived from the pre- and post-
condition of a process, which precisely defines the relation of a set of input and
output data. Liu first gives a formal definition of operation functional scenario
[5] and we repeat it here to help the reader understand the rest of this paper.



122 M. Li and S. Liu

Fig. 2. Specification of process “Check Password”

Definition 2. Let OP (OPiv, OPov)[OPpre, OPpost] denote the formal specifi-
cation of an operation OP , where OPiv is the set of all input variables whose
values are not changed by the operation, OPov is the set of all output variables
whose values are produced or updated by the operation, and OPpre and OPpost

are the pre and post-condition of operation OP , respectively.

Definition 3. Let OPpost ≡ (C1 ∧ D1) ∨ (C2 ∧ D2) ∨ ... ∨ (Cn ∧ Dn), where
each Ci(i ∈ {1, ..., n}) is a predicate called a “guard condition” that contains
no output variable in OPov and ∀i,j∈{1,...,n} ·i �= j ⇒ Ci ∧ Cj = false ; Di a
“defining condition” that contains at least one output variable in OPov but no
guard condition. Then, a formal specification of an operation can be expressed as
a disjunction (∼OPpre∧C1∧D1)∨(∼OPpre∧C2∧D2)∨...∨(∼OPpre∧Cn∧Dn).
A conjunction ∼OPpre ∧Ci ∧Di is called an operation functional scenario,
or operation scenario for short.

Note that we use ∼x and x to represent the initial value before the operation
and the final value after the operation of external variable x, respectively. The
decorated pre-condition ∼OPpre = OPpre[∼x/x] denotes the predicate resulting
from substituting the initial state ∼x for the final state x in pre-condition OPpre.
We treat a conjunction ∼OPpre ∧ Ci ∧ Di as an operation functional scenario
because it defines an independent behaviour: when ∼OPpre ∧ Ci is satisfied by
the initial state (or intuitively by the input data), the final state (or the output
data) is defined by the defining condition Di.

The reason why we need the operation functional scenario is that the
definition of SOFL allows the process to receive more than one exclusive input
or output data. In a specific system functional scenario, only one pair of input
and output data of each process is involved. For instance, the process
“Check Passwork” of the simple ATM system in Fig. 1 is formally defined in
the specification shown in Fig. 2. There are three operation functional scenario
contained in this specification.



SOFL Specification Animation with Tool Support 123

1. (∃x ∈ Account file·x.id = id ∧ x.password = pass) ∧ sel = true ∧ acc1 = x
2. (∃x ∈ Account file·x.id = id ∧ x.password = pass) ∧ sel = false ∧ acc2 = x
3. ¬(∃x ∈ Account file·x.id = id∧x.password = pass)∧ err1 = “Reenter your

password or insert the correct card”

If the system functional scenario {balance com}[Receive Command, Check
Password, Show Balance]{balance} is under animation, there is no doubt that
the second operation functional scenario should be selected to collect input and
output data for the process “Check Passwork”.

After the introduction of our animation strategy, we would describe how to
apply the strategy in practice. For a given formal specification, the following
stages supply a procedure for systematically performing the animation.

Stage 1. Derive all possible system scenarios from the formal specification.

Different methods are used to derived system functional scenario from formal
specification written in different formal languages. For example, for a formal
specification language containing graphic specification, the system scenarios can
be derived based on the topology of the graph. On the other hand, for a formal
specification language that does not contain graphic specification, the system
scenarios can be derived based on the data dependency among operations. For
SOFL specification, we derive system functional scenarios from the topology of
the CDFD. We will introduce the specific automatic approach for deriving all
possible system scenarios in next section.

Stage 2. Let di[P1, P2, ..., Pn]do be a selected system scenario. Derive related
operation scenarios of each Pi(i ∈ {1, 2, ..., n}) from its specification and get
a set of operation scenarios {OS1, OS2, ..., OSn}, where OSi is the related
operation scenario of Pi.

According to our animation strategy, only one system scenario should be
selected to animate each time. For any selected system scenario, the related
operation scenario of each operation involved should be derived from the formal
specification. Since an operation scenario of an operation defines an indepen-
dent relation between its input and output under a certain condition, only one
operation scenario of an operation can be involved in the selected system sce-
nario. Therefore, the second stage of entire animation process should be deriving
related operation scenarios.

As the start point of a system functional scenario, the input data of the first
process in the system scenario should be collected first. Actually, the input data
of the first process is the only input that need to be collected from the user or
generated by data generation method. The input data of the following processes
is the output data of the previous processes.

Stage 3. Let ∼S1
pre ∧ C1

i ∧ D1
i be the related operation scenario of the first

operation P1 in the selected system scenario. The input data should be collected
and satisfy the predicate expression ∼S1

pre ∧ C1
i .



124 M. Li and S. Liu

The input data generated in Stage 3 is actually the input of the selected
system scenario. It can be used as bases to collect output data of P1. The output
data collected should satisfy the predicate expression ∼S1∗

pre∧C1∗
i ∧D1

i , which can
be created by applying the input data to predicate expression ∼S1

pre ∧C1
i ∧D1

i .
The output data of P1 then be used as input data of P2 to collect output data
of P2. Repeating this procedures, the output data of entire system scenario can
be generated eventually. This idea is reflected in Stage 4.

Stage 4. Use the input data generated in Stage 3 and the operation scenarios
derived in Stage 2 to generate the output data for each operation and entire
system scenario.

So far, all of the data involved in a selected system scenario has been gener-
ated. And the behaviour can be simulated by using the data involved in it. The
end users and field experts can monitor the states of the behaviour during its
execution, and analyse whether the specification meets their requirement.

Stage 5. Repeat Stage 2 to Stage 4 until all the system scenarios derived in
Stage 1 are animated.

Animating all possible behaviours of the system is required by our animation
strategy. The process of animating a specific behaviour should be repeated until
all of the potential behaviours have been animated.

3 Design of the Tool

According to our animation strategy, there are two steps in the animation
process. The first step is to derive all possible system functional scenario, and
the second step is to collect input and output data for all involved processes of a
specific system functional scenario. In this section, we first introduce the method
of deriving system functional scenario briefly, and then describe how to collect
input and output data under the two ways mentioned above.

3.1 Deriving System Scenario

We choose deriving functional scenarios from a CDFD because it is extremely
difficult to automatically generate scenarios from a process specification directly.
Form the introduction of SOFL, we know that process specification uses mathe-
matical notation to define processes in a module, and it is not designed to present
the architecture or logic between different processes. If deriving functional sce-
narios from process specifications, it requires parsing the entire specification to
determine which two processes are connected. It is obviously not a cost-effective
approach. On the contrary, deriving scenarios from the CDFD will be more
cost-effective, because the CDFD is specifically designed to describe the rela-
tions among the processes, and we can derive functional scenarios based on the
topology of CDFD.



SOFL Specification Animation with Tool Support 125

Fig. 3. The decomposition of a process

In order to generate all possible scenarios, the first step is to decompose the
CDFD. This can be realized by decomposing every process in the CDFD. Each
process can be decomposed into a corresponding graph. Figure 3 illustrates the
decomposition of a process. In the original CDFD, the port list on the left side
of a process is input port list, in which each input port is ordered from top to
bottom, we use a number to label each port. The output ports of a process are
labelled in the same way. In the corresponding graph, each node represents one
port of the process, one input port or output port.

Each node in the corresponding graph has a name, consisting of three parts:
the first character of the process’s name, the identification of input or output
port, and the port number. Different nodes are connected by two kinds of edges,
solid edges and dotted edges. The solid edge represents the data flow in origi-
nal CDFD and the dotted edge represents the mapping relationship inside the
process. Like the data flows connecting two different processes in CDFD, the
solid edges connect one input port node and one output port node that belong
to different processes. Contrasts to the solid edges, the dotted edges represent
the implicit relation in process. We use dotted edges to explicitly present this
kind of relation because the ports that belong to the same port list are exclusive.
If a process has more than one input port and output port, we need to find all
possible combinations between its input ports and output ports. So that we can
find all possible functional scenarios. The dotted edges represent such possible
combinations or relations. In practice, just one dotted edge in each process can
be valid each time. It means at each time process receiving and sending data from
the input port and output port which are concerned by the valid dotted edge.

By using the decomposition method, one CDFD can be decomposed to a
graph that contains only input port nodes and output port nodes. The nodes
in the decomposed graph is linked by solid and dotted edges. The process of
deriving all possible system functional scenarios can be realized as finding all
possible paths in the decomposed graph. For the space sake, we will not explain
this method further. The details of this method is included in [8].



126 M. Li and S. Liu

3.2 Collecting Data from Users

The process of collecting data from users is the easiest way of collecting data. It
can be separated into two steps. First is let the user provide data, and second
is to check whether the provided data satisfy the related operation functional
scenarios. The two steps are usually mixed in practice. For example, in the
beginning of an animation, users first provides the input data for the first process,
P1, in the selected system functional scenario. Then, the users should check
whether the input data they provide satisfy the predicate expression ∼S1

pre∧C1
i ,

a part of the related operation functional scenario of process P1. If the input data
satisfy the expression, the users can provide output data of P1 based on the input
data. Otherwise, the users should provide the input data again. Once the users
provide the output data of P1 successfully, the output data of P1 will be used as
the input data of the second process, P2. This procedure will continue until the
output of the entire system functional scenario are successfully provided.

To facilitate the users to check whether the data they provide satisfy a specific
predicate expression, we use fault tree in our tool to help the users to do the
judgement. We first apply the provided data to the predicate expression, and
than decompose the expression using a tree structure, Each node in this tree
presents an atomic expression. Since the fault tree technique is well known, we
do not do any further explanation here.

3.3 Generating Data Automatically

The automatic data generation method underlying our tool is first introduced in
[6]. The advantage of this method is that there is no need to translate the formal
specification to any executable program. Here we give a brief introduction of the
principle of the method.

As described previously, an operation scenario is expressed as a conjunction
∼OPpre ∧ Ci ∧ Di. To derive input data based on the operation scenario, it
must be decomposed first. The decomposing process is divided into following
two steps:

– Step 1: Eliminate Defining condition. The defining condition Di is elimi-
nated first since the execution of program only requires input values. The input
data generation depends on the pre-condition and guard condition, and defin-
ing condition usually do not provide the main information for input data gen-
eration. The conjunction after eliminating defining condition is ∼OPpre ∧Ci,
called “testing condition”.

– Step 2: Convert to disjunctive normal form. The remainder of the oper-
ation scenario is translated into an equivalent disjunctive normal form (DNF)
with form P1 ∨P2 ∨ ...∨Pn. A Pi is a conjunction of atomic predicate expres-
sions, say Q1

i ∧ Q2
i ∧ ... ∧ Qm

i .

Let Q(x1, x2, ..., xw) be one of the atomic predicate expressions Q1
i , Q

2
i , ..., Q

m
i

mentioned previously. The variables x1, x2, ..., xw is a subset of all the input



SOFL Specification Animation with Tool Support 127

variables. The values for the input variables involved in each atomic predicate
expression Q can be generated using a set of algorithms that deals with the
following three situations, respectively. Here we are using variables of numerical
types as examples for convenience.

Table 1. Input data generation algorithm

No. of Algorithms � Algorithms of test case generation for x1

1 = x1 = E
2 > x1 = E + Δx
3 < x1 = E − Δx
4 ≤, ≥, �= Similar to above

– Situation 1: If only one input variable is involved and Q(x1) has the format
x1 � E, where � ∈ {=, <,>,≤,≥, �=} is a relational operator and E is a
constant expression, using the algorithms listed in Table 1 to generate test
cases for variable x1.

– Situation 2: If only one input variable is involved and Q(x1) has the format
E1 �E2, where E1 and E2 are both arithmetic expressions which may involve
variable x1, it is first transformed to the format x1 � E, and then apply
Situation 1.

– Situation 3: If more than one input variables are involved and Q(x1, x2, ...,
xw) has the format E1�E2, where E1 and E2 are both arithmetic expressions
possibly involving all the variables x1, x2, ..., xw, first randomly assigning val-
ues from appropriate types to the input variables x2, x3, ..., xw to transform
the format into the format E1 � E2, and then apply Situation 2.

Note that if one input variable x appears in more than one atomic predicate
expression, it needs to satisfy all the expressions in which it is involved.

To define the generated input data precisely, we use a set of states of input
variables, called input case, to present the one-to-one correspondence between
each input variable and its value. The input case is denoted as Ic and defined as
follows.

Definition 4. Let OPiv = {x1, x2, ..., xr} be the set of all input variables of
operation OP and Type(xi) denotes the type of xi(i ∈ {1, 2, ..., r}). Then Ic =
{(xi, vi)|xi ∈ OPiv ∧ vi ∈ Type(xi)}. If (xi, vi) ∈ Ic, we write Ic(xi) = vi.

After automatically collecting the input data, the next step is to generate
output data. The same algorithm can be used. The similar process is described
as follows.

– Step 1: Verify the given input data. For any given input case Ic, evaluate
the predicate (∼OPpre ∧Ci)[Ic(xi)/xi], which is the result of substituting the
variable xi with the value of variable xi in the testing condition ∼OPpre ∧Ci.
The result of true means that the given input data can be processed by the
operation, and the output data can be produced based on the input data.



128 M. Li and S. Liu

Fig. 4. Scenario explorer

– Step 2: Substitute input variables. Substitute the input variables in oper-
ation scenario with the corresponding values in Ic, and get a new predicate
∼OP ∗

pre ∧ C∗
i ∧ D∗

i = (∼OPpre ∧ Ci ∧ Di)[Ic(xi)/xi], which merely contains
output variables.

– Step 3: Convert to disjunctive normal form. Translate the conjunction
∼OP ∗

pre ∧ C∗
i ∧ D∗

i into an equivalent disjunctive normal form (DNF) with
form P ∗

1 ∨P ∗
2 ∨ ...∨P ∗

n . A P ∗
i is a conjunction of atomic predicate expressions,

say Q∗1
i ∧ Q∗2

i ∧ ... ∧ Q∗m
i .

– Step 4: Generate values for output. For each Q∗j
i (j ∈ {1, 2, ...,m}), use

the algorithms explained in previous subsection to generate values for output
variables.

Similar to the definition of input case, we define output case to present output
variables and their generated values formally.

Definition 5. Let OPov = {y1, y2, ..., yk} be the set of all input variables of
operation OP and Type(yi) denotes the type of yi(i ∈ {1, 2, ..., k}). Then Oc =
{(yi, vi)|yi ∈ OPov ∧ vi ∈ Type(yi)}. If (yi, vi) ∈ Oc, we write Oc(yi) = vi.

4 Framework and Prototype

The prototype is implemented on the bases of a framework that is built to help
developers specifying SOFL specification. The framework includes the editors of
informal specification, formal specification, and CDFD, etc. All the specifications
are well organized and stored in the well formatted files under this framework.
It provides a fundamental to further utilization of the formal specifications.
Now, the prototype has been a component of the framework. In this section, we
introduce some functions that related to the animation.

The implementation prototype is corresponding to the two steps. The first
step is to derive system functional scenario. Figure 4 shows the snapshot of



SOFL Specification Animation with Tool Support 129

Fig. 5. Animation board

Table 2. Operation scenarios involved in the selected system scenario

Process Operation scenario

Received Command11 withdraw = “withdraw” ∧sel = true
Check Password11 x.id = id ∧ x.password = pass) ∧ sel = true ∧ acc1 = x
Withdraw11 amount ≤ ∼x.balance ∧ x.balance

= ∼x.balance − amount ∧ cash = amount

derivation. The CDFD is the system shown in Fig. 1. Here we chose the first sce-
nario {withdraw com}[Receive Command, Check Password, Withdraw]{cash}
to animate. The corresponding operation functional scenario is listed in Table 2.

Figure 5 shows the snapshot of animation. The data collected is listed at
the lower part of the window. Each row shows the input and output data for a
single process. For example, the first row list the input and output of process
“ReceiveCommand11”. The CDFD in the center of the window shows the mid-
step of animation, and the process “CheckP assword11” is under animated.

5 Related Work

Formal specification animation is an effective technique for the communication
between users and developers. Tool support animation can make such commu-
nication easier. In this section, we introduce some existing work on specification
animation.

Liu and Wang introduced an animation tool called SOFL Animator for SOFL
specification animation [7]. It provides syntactic level analysis and semantic level
analysis of a specification. When performing animation, the tool will automati-
cally translate the SOFL specification into Java program segments, and then use
some test case to execute the program. In order to provide reviewers a graphic
presentation of the animation, SOFL Animator uses Message Sequence Chart
(MSC) to present the simulation of the operational behaviours.



130 M. Li and S. Liu

MSC is also adopted in other animation approach as a framework to provide
a graphical user interface to represent animation. Stepien and Logrippo built
a toolset to translate LOTOS traces to MSC and provide a graphic animator
[9]. The translation is based on the mappings between the elements of LOTOS
and MSC. Combes and his colleagues described an open animation tool for
telecommunication systems in [1]. The tool is named as ANGOR, and it offers
an environment based on a flexible architecture. It allows animating different
animation sources, such as formal and executable language like SDL and scenario
languages like MSC.

6 Conclusions and Future Work

In this paper, we describe a tool to support SOFL specification animation. The
animation strategy is introduced first and then the prototype is presented. Com-
paring to other existing tool, the advantage of our work is that there is no require-
ment to translate formal specification to executable program. This means there
is no further request for the developers about the style of specification. We pro-
vide two ways for users to collect data for animation. Each way shows different
aspects of the system to users. We think the data can give the users a con-
crete point of view, and help them to understand the behaviours of the system.
But only the animation is not enough to validate the formal specification, in
the future, we hope to combine the inspection technique with animation. The
inspection contains a list of question and require the users to think rather than
observation only. We hope the combination of these two techniques can make
validation more effective and efficiency.

References

1. Combes, P., Dubois, F., Renard, B.: An open animation tool: application to
telecommunication systems. Int. J. Comput. Telecommun. Netw. 40(5), 599–620
(2002)

2. Waeselynck, H., Behnia, S.: B model animation for external verification. In: Pro-
ceedings of the Second IEEE International Conference on Formal Engineering
Methods, pp. 36–45 (1998)

3. Morrey, I., Siddiqi, J., Hibberd, R., Buckberry, G.: A toolset to support the con-
struction and animation of formal specifications. J. Syst. Softw. 41(3), 147–160
(1998)

4. Liu, S.: Formal Engineering for Industrial Software Development Using the SOFL
Method. Springer, Heidelberg (2004). ISBN 3-540-20602-7

5. Liu, S., Nakajima, S.: A Decompositional approach to automatic test case gener-
ation based on formal specification. In: Fourth IEEE International Conference on
Secure Software Integration and Reliability Improvement, pp. 147–155 (2010)

6. Li, M., Liu, S.: Automated functional scenarios-based formal specification anima-
tion. In: Proceedings of the 19th Asia-Pacific Software Engineering Conference
(APSEC 2012), pp. 107–115. IEEE CS Press, Hong Kong (2012)

7. Liu, S., Wang, H.: An automated approach to specification animation for valida-
tion. J. Syst. Softw. 80, 1271–1285 (2007)



SOFL Specification Animation with Tool Support 131

8. Li, M., Liu, S.: Automatically generating functional scenarios from SOFL CDFD
for specification inspection. In: 10th IASTED International Conference on Software
Engineering, Innsbruck, Austria, pp. 18–25 (2011)

9. Stepien, B., Logrippo, L.: Graphic visualization and animation of LOTOS execu-
tion traces. Comput. Netw.: Int. J. Comput. Telecommun. Netw. 40(5), 665–681
(2002)

10. Liu, S., Chen, Y., Nagoya, F., McDermid, J.A.: Formal specification-based inspec-
tion for verification of programs. IEEE Trans. Softw. Eng. 21(2), 259–288 (2011).
IEEE Computer Society Digital Library, IEEE Computer Society

11. Liu, S.: Integrating specification-based review and testing for detecting errors in
programs. In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM
2007. LNCS, vol. 4789, pp. 136–150. Springer, Heidelberg (2007)

12. Miller, T., Strooper, P.: Model-based specification animation using testgraphs.
In: George, C.W., Miao, H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp. 192–203.
Springer, Heidelberg (2002)


	SOFL Specification Animation with Tool Support
	1 Introduction
	2 Animation Strategy and Process
	3 Design of the Tool
	3.1 Deriving System Scenario
	3.2 Collecting Data from Users
	3.3 Generating Data Automatically

	4 Framework and Prototype
	5 Related Work
	6 Conclusions and Future Work
	References


