
Prototype Tool for Supporting a Formal
Engineering Approach to Service-Based

Software Modeling

Weikai Miao1(B) and Shaoying Liu2

1 Shanghai Key Laboratory of Trustworthy Computing,
Software Engineering Institute, East China Normal University, Shanghai, China

wkmiao@sei.ecnu.edu.cn
2 Department of Computer Science, Hosei University, Tokyo, Japan

sliu@hosei.ac.jp

Abstract. Despite the advances in service-based software modeling, few
existing approaches and tools support a systematic engineering process in
which precise specification construction and accurate web service selec-
tion are integrated coherently. Due to this reality, how to carry out
service-based software modeling so that existing services can be accu-
rately discovered, selected, and effectively reused in the system
under development is still a challenge. To solve this problem, this paper
describes a prototype tool that supports a formal engineering framework
for service-based software modeling. Formal specification can be con-
structed in an evolutionary manner; meanwhile, appropriate services are
discovered and selected through the specification evolution. We illustrate
the basic principle underlying the tool. The tool design and its imple-
mentation are also described. An example is presented to demonstrate
major features of this tool.

1 Introduction

Research on engineering methods for constructing high quality service-based
software (service-based software) is attracting a growing attention of both
research and industry communities in recent years [13,16]. Constructing for-
mal specifications, including both formal requirements and design specifications,
based on correct understanding of requirements contributes significantly to soft-
ware quality [15]. To effectively support the service-based software modeling,
this fundamental principle needs to be extended.

One major problem with existing service-based software modeling is how to
carry out the modeling so that existing services can be accurately discovered,
selected, and effectively reused in the system under development. To tackle this
challenge, effective engineering methods are demanded. An effective engineering
method for service-based software modeling needs to supply definitive mech-
anisms for eliciting requirements, constructing precise specifications, selecting
appropriate services, and integrating these artifacts coherently into a system
model.

S. Liu and Z. Duan (Eds.): SOFL+MSVL 2013, LNCS 8332, pp. 89–103, 2014.
DOI: 10.1007/978-3-319-04915-1 7, c© Springer International Publishing Switzerland 2014



90 W. Miao and S. Liu

Many research efforts have been advanced service-based software modeling
from different perspectives, including business process modeling and implemen-
tation [1,2,5,18] and service discovery and selection [6,11]. Unfortunately, as
summarized by the authors of work [16], almost no approach supports service
discovery and selection as part of system modeling. That is, service discovery
and selection activities are not coherently integrated into the system modeling
phase. Therefore, services may not be effectively and efficiently adopted in the
system architecture.

To tackle the above challenge, we have proposed a new approach called For-
mal Engineering Framework for Service-based Software Modeling (FEFSSM ) as
a solution [12]. FEFSSM integrates service discovery and selection into the entire
modeling procedure, aiming to provide a unified engineering approach to con-
structing precise, comprehensible, and satisfactory specifications of service-based
software.

To facilitate the application of FEFSSM in practice, in this paper we describe
a supporting tool of the FEFSSM approach. The tool implements the fundamen-
tal principle underlying the FEFSSM, offering basic functions that support the
involved engineering activities. The practitioner can construct the formal speci-
fication gradually through the interaction with the tool.

The rest of this paper is organized as follows. Basic theory of the FEFSSM
approach underlying the tool is presented in Sect. 2. Design and implementation
of the tool is described in Sect. 3. Section 4 describes an example of modeling a
travel agency system to demonstrate the usability of the tool. Section 5 gives the
comparison with the related work. Finally, we conclude the paper and point out
future research directions in Sect. 6.

2 The FEFSSM Approach

The principle of FEFSSM inherits from the well-established SOFL (Structured
Object-oriented Formal Language) formal engineering method [7,9,14,15] but
emphasizes the interleaving and interaction of software modeling and service
adoption in building service-based software. The main principle of FEFSSM is
illustrated in Fig. 1.

Web service discovery, filtering, and selection activities are carried out sequen-
tially in coupling with the corresponding specification construction activities in a
three-step modeling process through the informal, semi-formal and formal stages
of specification construction. The rational and technical details of each step are
described below.

(1) Informal specification construction
The goal of informal specification construction is to acquire requirements

as completely as possible at an informal level and discover sufficient candidate
services based on the informal requirements. Requirements acquisition is usually
achieved through communication between the client and the developer. Since
requirements are imprecise at this stage, candidate services are preliminarily
explored and filtered using keywords that abstract the corresponding informal



Prototype Tool for Supporting a Formal Engineering Approach 91

Informal
Specification

SYSTEM_Example

Functions
1. A
1.1 a_s

...
1.3 W
/* can be associated
to services

S1 and S3 */
...
Data Resource
1. ...
Constraints
1. ...

service
discovery requirements

acquisition

static behavior
analysis requirements

reformulation

incorporating
services into the

system architecture

Semi-formal Specification

var
d: nat0
...

process W_1 (f_1: nat0 )
f_3: nat0

ext wr d
post f_1>0 and f_3 =f_1

and d=~d+f_1
or f_1<=0 and

f_3=~d*f_1
and d=~d+f_1

end_process;

process W_2
(f_2: nat0 ) f_4: nat0

ext rd d
post f_4=d+f_2
end_process;
...

Formal Specification
...
process a_s
(f_0: string ) f_1: nat0
post f_0 = s and

f_1 > 10 ...
end_process;

process W_1
(f_1: nat0 ) f_3: nat0
ext wr d: nat0
post f_1>0 and
f_3=f_1 and d=~d+f_1

or f_1<=0 and
f_3=~d*f_1 and

d=~d+f_1
end_process;
...specification-

based testing

Fig. 1. The FEFSSM approach

requirements. The derived keywords are used to either partially or completely
match with the service names or informal descriptions stored in the service
repositories. A precise criterion for associating a service as a candidate service
to an expected function is defined below.

Criterion 1. Let Kr = {a1, a2, ..., an} be a set of keywords derived from func-
tion F in the informal specification and Ks = {b1, b2, ..., bm} be a set of key-
words derived from the name and informal descriptions of a service S. Then,
S is accepted as a candidate service to be associated with F if and only if the
following condition holds:

∃a∈Kr
∃b∈Ks

· is substring(a, b)

This criterion states that if there exists a keyword derived from a function
F in the specification that is a substring (case insensitive) of a keyword derived
from the name and informal descriptions of a service S, S is accepted as a
candidate service to be associated with F .



92 W. Miao and S. Liu

In FEFSSM, service searching is in parallel with the functional decompo-
sition. For example, since the developer does not find any candidate service
for function A, then A is decomposed into several sub-functions. For each sub-
function, the developer tries to explore candidate services. As the result, the
sub-function W is associated to two candidate services S1 and S3. Detailed
algorithm that encompasses the procedure of service discovery and functional
decomposition is proposed in our previous work [12].

The ultimate informal specification contains three sections: functions, data
resources, and constraints. The functions section briefly describes the desired
functions of the target system, which are usually organized in a hierarchical struc-
ture. The data resources section presents the necessary data items for building
the system function. The constraints section documents the required constraints
on either the functions or the data resources.

(2) Semi-formal specification construction
The purpose of semi-formal specification construction is to evolve the infor-

mal specification into a more precise, complete, and well structured specification
that encompasses accurately selecting services as some of its functional compo-
nents; meanwhile, the services can be used for reformulating the specification.
In regard to service selection, services are accurately selected through static
behavior analysis and specification-based conformance testing.

– Static behavior analysis
The essential idea of the static behavior analysis is to judge which candidate
service is most suitable for implementing each service-associated function.
Specifically, the developer extracts potential functions of the services by ana-
lyzing their descriptions files (e.g., WSDL file) and finally identify the most
relevant services for each service-associated function. The relevance of each
candidate service to its associated function is represented by a ranking score.
The service with the highest ranking score is selected as the most relevant
service of its associated function. The ranking procedure can be referred to
the corresponding algorithm in our work [12].

As pointed out by Guideline 1 [12], if function F is associated to its most
relevant service S, then F is refined into a set of sub-functions {f1, ..., fn} (n ≥
1) where each sub-function fi is associated to the corresponding operation
provided by S. These sub-functions are then transformed into formal processes
that specify the intended functions precisely. A formal process is written in the
SOFL specification language [14], which includes a signature, a pre-condition
and a post-condition. The signature includes the input, output, and external
variables (or state variables); the pre-condition imposes a constraint on the
input variables before executing the process; and the post-condition describes
a condition that must be satisfied by the output and external variables after
the execution of the process.

After analyzing the descriptions of two candidate services S1 and S3 of
function W, the developer identifies S1 as the most relevant service. Then
function W is refined into two sub-functions W 1 and W 2. These two sub-
functions are further formalized as formal processes W 1 and W 2.



Prototype Tool for Supporting a Formal Engineering Approach 93

– Specification-based testing
The specification-based conformance testing is aimed at dynamically checking
whether a service satisfies the required functions defined by the corresponding
formal processes. Test cases are generated from the pre- and post-conditions
of the processes and the final decision to accept or reject the service is made
by the developer based upon test results analysis and engineering judgements.
To facilitate a rigorous testing, each process is converted into an equivalent
disjunction of functional scenarios, each describing an independent function
in terms of the input and output relation [8].

Definition 1. Let P denote a process and its post-condition Ppost ≡ (C1 ∧
D1) ∨ (C2 ∧D2) ∨ ... ∨ (Cn ∧Dn), where each Ci (i = 1, ..., n) is a predicate
called a guard condition that contains no output variable and Di a defining
condition that contains at least one output variable but no guard condition.
Then, each Ppre ∧ Ci ∧ Di is called a functional scenario.

Functional scenarios are used as the foundation of test data derivation and
also the test oracles. One intuitive way to test each service operation is to
generate test cases that cover every functional scenario of the associated for-
mal process. To test stateless service operations (i.e. execution results are
determined by only the input values), test cases are directly derived from
single functional scenarios. To sufficiently test stateful service operations (i.e.
executions results are determined by both the input values and internal state-
ful variables that cannot be directly monitored from the user-end), all pairs
of functional scenarios produced by the inter-related processes (i.e. processes
that share the same data stores) are adopted for generating test sequences of
the corresponding service operations [12].

When services are determined via the conformance testing, the specification
can be transformed into a semi-formal specification. All of the related functions,
data resources, and constraints in the informal specification are grouped into
SOFL modules, each containing declarations of types, state variables, invariants,
and processes. In each module, all of the declarations of types and variables are
expressed formally but the logic-related parts such as invariants and processes
are expressed informally to represent the expected functions (except service-
associated functions, as explained below).

(3) Formal specification construction
The final stage of modeling is to transform the semi-formal specification

into a formal design specification. The transformation is achieved by formally
defining the system architecture into a hierarchical structure and formalizing
the pre- and post-conditions of all the processes. The key point is that service-
associated processes in the semi-formal specification are used as the foundation
for gradually formalizing the entire specification since they have been determined
to be part of the target system at the previous modeling stage.

In the formal specification shown in Fig. 1, all the processes including the
service-associated process W 1 and process a s that is not associated to any
service, are formally defined.



94 W. Miao and S. Liu

3 Design and Implementation of the FEFSSM Tool

3.1 Tool Design

The tool is designed and implemented to facilitate the usability of the FEF-
SSM. It guides the practitioner to follow the entire engineering process of the
FEFSSM approach and support the automation of some specific activities such
as the service discovery, service ranking and functional scenario pairs genera-
tion. Meanwhile, it also offers appropriate interfaces to handle the interactions
between the practitioner and the specification components.

The tool is designed as a three-layered system which provides the major
functionalities supporting the application of the FEFSSM. The architecture of
this supporting tool is described by Fig. 2.

Fig. 2. Architecture of the FEFSSM tool

The infrastructure layer refers to the necessary documents and artifacts that
support specification construction and service selection. These artifacts mainly
consist of the service repositories information, the specification files and the files
of functional scenario matrices. Usually service repositories information docu-
ments basic descriptions of the available web services. Specifications are docu-
mented in XML files. We use the XML files since the they are machine-readable,
platform-independent and can easily represent the hierarchical structures of the



Prototype Tool for Supporting a Formal Engineering Approach 95

processes and other SOFL components. To store the functional scenario pairs for
web service testing, functional scenario pairs are organized as functional scenario
matrix that is saved as a functional scenario matrix file. Each row of the matrix
is a functional scenario pair that can be read by the tool for further test sequence
generation.

The function layer consists of three modules: service discovery and analy-
sis module, specification construction module, and functional scenario matrix
module. Service discovery and analysis module supports the keyword-based web
service discovery and the static behavior analysis, which is performed by a
WSDL Analyzer. The analyzer can extract detailed interface information from
the WSDL files of the available web services.

The module of specification construction is responsible for documenting the
specifications. Specifically, we provide a graphical tree-navigator as a short-cut
for function decomposition and documentation. The practitioner can directly
manage the hierarchy structures of expected functions rather than manually
typing them. Specification workplace performs the basic functions for editing
specifications in different modeling phases.

Functional scenario matrix module contains a matrix generator for construct-
ing the functional scenario matrices for test sequence generation.

3.2 Tool Implementation

The tool is implemented in Java language under the Eclipse environment.Figure 3
gives a screenshot of the main interface of the tool.

The text edition area located in the left-side is the workplace for specifica-
tion construction. The practitioner can shift the three tabs on the top of the text
edition area to edit the specifications in different stages. This screenshot shows
the interface of informal specification construction. The tree-navigator is in the
middle part, which is labelled as “hierarchical”. A tree structure of expected
functions is described by the navigator in which each node is an expected func-
tion. By right-clicking the node, the practitioner can decompose, delete, edit the
function or search candidate services. Discovered services are listed in the area
labelled as “Discovered Services of Function”. The right-side of this interface
lists all the available services in the service repositories.

Specification Construction. Specification construction is implemented by the
specification workplace and the tree-navigator.

Specification workplace offers the basic functions for constructing specifi-
cations, focusing on the writing and reading operations on the XML files of
the potential informal, semi-formal and formal specifications. Figure 4 shows an
example of the informal specification stored as an XML file.

In this XML file, hierarchical structures of the functions are represented by
the hierarchy of the XML elements. For example, function Lowest 1 is the child
node of function Function 1 Child 1 that is the child node of its higher-level
function Function 1. Associated services of each function are also documented



96 W. Miao and S. Liu

Fig. 3. The screenshot of the main interface of the tool

in the XML file. In this example, after the keyword-based service searching,
basic information of a discovered service JTHotel is recorded and associated to
function Lowest 1. As one advantage of the XML format, we can easily locate
any element of the specification using XPath commands.

The tool provides the practitioner with a tree-navigator to directly decom-
pose, delete or edit the expected functions. Service discovery can also be carried
out by this navigator. In the navigator shown in Fig. 3, function AirTest and its
sub-function airTicket and function Point are displayed in a consistent hierar-
chical structure of the textual specification. By right-clicking any function in the
navigator, the practitioner can decide to modify the function (i.e. decompose,
delete or rename the function) or start the keyword-based service searching for
the function.

3.3 Service Discovery and Analysis

Criterion 1 of the keyword-based service discovery is implemented by a matching
algorithm. A set of keywords stored in array key are splitted into single key-
words. Each keyword is then compared with each service name stored in array
allServices. The discovered services are collected as candidate services that are
associated to the specified function in the informal specification. The associations
between candidate services and the expected function are added into the XML
file of the specification. For example, service JTHotel is associated to function
Lowest 1, which is described in Fig. 4.



Prototype Tool for Supporting a Formal Engineering Approach 97

Fig. 4. XML file of informal specification

Following the FEFSSM approach, the practitioner needs to analyze the can-
didate services based on their interface descriptions to extract the potential
functional behaviors and then identify the most relevant services for further
conformance testing. The analysis is realized by the Service Analyzer through
analyzing the WSDL files of the services. Figure 5 describes the kernel operations
of this analyzer.

Fig. 5. Operations for analyzing WSDL file

The interface information, including the available operations and their input/
output parameters of each service, is extracted from the WSDL files by two
methods getOperations and singleTypeAnalysis. The tool also offers a graphical
interface for dealing with the relevance score ranking, which will be demonstrated
in the next section.

3.4 Functional Scenario Matrix Establishment

Functional scenario matrix is constructed by the tool for conformance testing.
The code shown in Fig. 6 implements the matrix generation.

For N functional scenarios accepted by method matrixOperation, array result
records the N2 functional scenario pairs. Each element of this array is a pair of
functional scenarios, which is established by the two for loop statements.



98 W. Miao and S. Liu

Fig. 6. Operation of functional scenario matrix generation

4 An Example

To demonstrate the usability of the tool, we have conducted an example of mod-
eling a Travel Agency System (TAS ) using this prototype tool. Some students
in our research group act as the practitioner to model the TAS.

TAS modeling starts from the informal specification construction. The prac-
titioner records the expected functions using the tree-navigator of the tool. In
the navigator, the practitioner defines a function Hotel Operation and then tries
to discover available web services to implement this functions. Meanwhile, cor-
responding textual informal specification is updated in the specification edition
area. A set of keywords is then given by the practitioner to search candidate
services. The service discovery procedure is described by Fig. 7.

Fig. 7. Keyword-based service discovery

In the left part of Fig. 7, three keywords “hotel”, “rooms” and “reservation”
are decided. As the result of service searching, six candidate services, for example,
service JTHotel, are listed in the interface, which is shown by the right part of
this figure. Names of all the discovered services match the keyword “hotel”.



Prototype Tool for Supporting a Formal Engineering Approach 99

Fig. 8. Static behavior analysis of services

When the informal specification is finished, by shifting the “semi-formal
stage” tab, the practitioner can start the semi-formal specification construc-
tion. The first step of this stage is to carry out the static behavior analysis of
the candidate services. Figure 8 shows the interface for static behavior analysis
of candidate services.

Static behavior analysis is invoked when the practitioner clicks the button
“Service Analysis”. The interface information, including the service names, oper-
ations, and input/output messages of all the candidate services associated to the
corresponding function, are listed in a table. For example, service EasyHotel has
an operation checkVacancy. The input message of this operation is also named
as checkVacancy. The practitioner can select this message and check its detailed
variables by clicking the button “Check”. For instance, six variables (e.g., hotel-
Code, roomType, rooms and etc.) constitute the message checkVacancy. Based
on the detailed descriptions of each service operation, the practitioner can judge
which operation is necessary for implementing the expected function and then
assign the ranking scores for the operations. The practitioner accepts operation
checkVacancy of service EasyHotel after a thorough understanding of its input
and output variables, then this operation gets one point as its ranking score.



100 W. Miao and S. Liu

Similarly, ranking scores of all the services can be assigned and sorted. Finally,
these ranking scores are displayed the right-side of this interface. In this case
study, the most relevant service is EasyHotel since its gets the highest ranking
score of four points.

By clicking the button “Filtering” on the interface of static behavior analysis,
only the most relevant service will be reserved for conformance testing. The tool
automatically generates the corresponding framework of SOFL processes that
associated to the most relevant service, which is described by Fig. 9.

Fig. 9. Formalizing the processes associated to the most relevant service

For the most relevant service EasyHotel, the tool automatically generates
four processes that correspond to its four operations. The input and output
structures are also constructed. For example, process checkVacancy which takes
variable checkVacancy as its input data is generated. The practitioner can further
clarify the data types referring to the corresponding parameters of the service
operations. When the data structures of the processes are determined, formal
functional scenarios of these processes can be defined. Once all the functional
scenarios of the processes are constructed, functional scenario matrix can then
be generated. Figure 10 describes the procedure of defining formal functional
scenarios of the processes and the generated functional matrix.

Each functional scenario is assigned with an identifier. For instance, func-
tional scenario f 1 stands for the functional scenario of a successful inquiry of
reservation. In our example, for the four processes associated to the candidate



Prototype Tool for Supporting a Formal Engineering Approach 101

Fig. 10. Interface of functional scenarios construction

service EasyHotel, eight functional scenarios are constructed. As the result, a
64*2 functional scenario matrix is generated. For example, the fourth row in the
matrix is functional scenario pair (f 1, f 4 ).

Based on the functional scenario matrix, test sequences are derived for the
conformance testing of services. Currently, test data generation cannot be fully
supported by the prototype tool. Another testing tool developed by our group
can be exploited to finish the testing [10]. As an important task of our future
research, we will make efforts to integrate the functionalities of the previous
testing tool into the FEFSSM tool so that the conformance testing can be more
effective and efficient.

Assume the services are determined, the practitioner can proceed to con-
struct the semi-formal and formal specifications, which are supported by the
corresponding specification editing areas.

5 Related Work

Various tools have been developed to support service-based software modeling
from different perspectives. One category of them focuses on service-based soft-
ware modeling based on business process modeling techniques (e.g., BPMN).
A CASE tool called WebRatio is extended to support model-driven services inte-
gration [4]. The extended tool supports the high-level business process modeling
of BPMN notations and detailed services mashup application modeling using
WebML language. A service-oriented business process modeling tool is proposed
in work [3]. It supports the generation of business process model from BPMN-
based business process meta-model with highlighted web service characteristic



102 W. Miao and S. Liu

and automatic translation and deployment features. The authors of work [5]
report a prototype tool that provides the functionality of graphically modeling a
BPEL process and running static validation. The methodology underlying this
tool is using the graphical aspect of BPMN in order to facilitate modeling of
executable BPEL service orchestrations. However, since BPMN notation is lack
of formal semantics, these BPMN-based modeling methodologies and their sup-
porting tools do not support precise specification construction of service-based
software. In the work [18], the authors propose a formal semantics of BPMN
defined in terms of a mapping to YAWL nets, for which efficient analysis tech-
niques exists. The proposed mapping has been implemented as a supporting
tool. In the work [17], the authors also propose formal semantics of the BPMN
notation. These approaches and tools contribute to the service-based software
modeling, especially from the perspective of modeling notations while appropri-
ate service-based software modeling methodology is not addressed. Practitioners
are demanding engineering methodologies to guide them effectively exploit these
techniques.

Moreover, web services selection is not considered by these modeling
approaches or techniques. As the authors of work [16] summarize, few approaches
support service discovery and selection as part of the design process of service-
based systems. Work [16] proposes a method that is relevant to our FEFSSM,
in which services discovery and selection are integrated into the entire service-
based software modeling process. Specifically, the service discovery in work [16]
is carried out through semantics-based matching. Services are not required to
be dynamically invoked through the matching process. Service selection in our
FEFSSM methodology is realized via formal specification-based conformance
testing in which services are dynamically tested after a preliminary keyword-
based matching and a static analysis procedures.

6 Conclusion

To facilitate service-based software modeling, we present an interactive tool that
supports the FEFSSM approach. We illustrate the theory of FEFSSM underlying
the tool and describe its design and implementation. An example of modeling a
travel agency system (TAS) is illustrated to demonstrate the usability of the tool.

At present, the tool supports the engineering process and most activities of
the FEFSSM while the conformance testing of service selection has not been fully
realized. In our future research, we will complete the tool so that the FEFSSM
approach can be applied more effectively in practice. We are also interested in
the techniques of constructing high-quality service-based software system.

Acknowledgement. This research is supported by SCAT research Foundation. This
research is also supported by IDEA4CPS, MT-LAB (VKR Centre of Excellence),
Shanghai Knowledge Service Platform for Trustworthy Internet of Things No. ZF1213
and NSFC Project No.91118007.



Prototype Tool for Supporting a Formal Engineering Approach 103

References

1. http://www.bpmn.org/ (2011) (Online)
2. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf (2011) (Online)
3. Bai, L., Wei, J.: A service-oriented business process modeling methodology and

implementation. In: International Conference on Interoperability for Enterprise
Software and Applications China, 2009, IESA ’09, April 2009, pp. 201–205 (2009)

4. Bozzon, A., Brambilla, M., Facca, F., Carughu, G.: A conceptual modeling app-
roach to business service mashup development. In: IEEE International Conference
on Web Services (ICWS), July 2009, pp. 751–758 (2009)

5. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: extending BPEL for
modeling choreographies. In: International Conference on Web Services (ICWS),
July 2007, pp. 296–303 (2007)

6. Klusch, M., Fries, B., Sycara, K.: Automated semantic web service discovery with
OWLS-MX. In: Fifth International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), Hakodate, Japan, May 2006, pp. 915–922 (2006)

7. Liu, S., Chen, Y., Nagoya, F., McDermid, J.: Formal specification-based inspection
for verification of programs. IEEE Trans. Softw. Eng. 99 (2011, PrePrints)

8. Liu, S.: Integrating specification-based review and testing for detecting errors in
programs. In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM
2007. LNCS, vol. 4789, pp. 136–150. Springer, Heidelberg (2007)

9. Liu, S., McDermid, J., Chen, Y.: A rigorous method for inspection of model-based
formal specifications. IEEE Trans. Reliab. 59(4), 667–684 (2010)

10. Liu, S., Nakajima, S.: A “Vibration” method for automatically generating test cases
based on formal specifications. In: 18th Asia-Pacific Software Engineering Confer-
ence (APSEC2011), Ho Chi Minh, Vietnam, December 2011, pp. 73–80 (2011)

11. Meditskos, G., Bassiliades, N.: Structural and role-oriented web service discovery
with taxonomies in OWL-S. IEEE Trans. Knowl. Data Eng. 22(2), 278–290 (2010)

12. Miao, W., Liu, S.: A formal engineering framework for service-based software mod-
eling. IEEE Trans. Serv. Comput. 6(4), 536–550 (2013)

13. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: state of the art and research challenges. Computer 40, 38–45 (2007)

14. Liu, S.: Formal Engineering for Industrial Software Development Using the SOFL
Method. Springer, Heidelberg (2004)

15. Liu, S., Offutt, A.J., Ho-Stuart, C., Sun, Y., Ohba, M.: SOFL: a formal engineering
methodology for industrial applications. IEEE Trans. Softw. Eng. 1, 24–45 (1998)

16. Spanoudakis, G., Zisman, A.: Discovering services during service-based system
design using UML. IEEE Trans. Softw. Eng. 36(3), 371–389 (2010)

17. Wong, P.Y.H., Gibbons, J.: A process semantics for BPMN. In: Liu, S., Maibaum,
T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 355–374. Springer, Heidel-
berg (2008)

18. Ye, J., Sun, S., Song, W., Wen, L.: Formal semantics of BPMN process models using
YAWL. In: Second International Symposium on Intelligent Information Technology
Application, December 2008, vol. 2, pp. 70–74 (2008)

http://www.bpmn.org/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

	Prototype Tool for Supporting a Formal Engineering Approach to Service-Based Software Modeling
	1 Introduction
	2 The FEFSSM Approach
	3 Design and Implementation of the FEFSSM Tool
	3.1 Tool Design
	3.2 Tool Implementation
	3.3 Service Discovery and Analysis
	3.4 Functional Scenario Matrix Establishment

	4 An Example
	5 Related Work
	6 Conclusion
	References


