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Abstract. Data type declaration is an important activity in formal
specification construction, which results in a collection of custom types
for defining variables to be used in writing formal expressions such as
pre- and post-conditions. As the complexity of software products rises,
such a task will become more and more difficult to be handled by practi-
tioners. This paper proposes an approach to facilitate the declaration of
data types based on a set of function patterns, each designed for guiding
the description of one kind of function in formal expressions. During the
application of these patterns, necessary data types will be automatically
recognized and their definitions will be gradually refined. Meanwhile, for-
mal expressions will be modified to keep their consistency with the type
definitions. A case study on a banking system is presented to show the
validity of the approach in practice.

1 Introduction

Formal specification serves as the foundation of many software verification tech-
niques, such as formal specification-based testing and inspection. It documents
software behaviors in formal expressions, such as pre- and post-conditions, with
a set of state variables of the envisioned system. These state variables needs to
be formally defined with custom data types. Therefore, declaring appropriate
data types is the first and important step for formal specification construction.

As the complexity of software rises, data type declaration becomes more dif-
ficult to manage and more likely to result in defected data types. Type checking
technique and model transformation have been introduced to facilitate such an
activity [1–3]. The former detects static type errors to prevent erroneous formal
descriptions while the latter allows data to be described in certain intermedi-
ate language easier to use and provides a method for transforming the data
model into formal data types. Unfortunately, they fall short of meeting practi-
tioners’ demand. First, relations between types and functions to be described
is not considered, i.e., type definitions incapable of or unsuitable for describing
the intended functions are not able to be identified. Secondly, no guidance or
automated assistant is provided during the declaration process. Lastly, the con-
sistency between formal expressions and type definitions cannot be guaranteed.
In a formal specification f , if a type definition t is changed into t′, all the formal
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expressions involving state variables defined with t need to be manually modified
to be consistent with the new definition t′.

To deal with the above problems, this paper puts forward an approach to
supporting data type declarations for formal specifications. Its underlying prin-
ciple is that types should be defined to meet the need of correctly and concisely
describing related functions. Type definitions will evolve as function descrip-
tion proceeds until all the expected functions are properly represented in formal
expressions.

In this approach, function pattern is adopted to assist the writing of formal
expressions [4]. Each function pattern provides a framework for formalizing one
kind of function through interactions. Describing functions in formal expressions
is to select appropriate patterns and apply them. During the application process,
necessary data types can be automatically recognized and their definitions will be
refined. Specifically, when applying each selected pattern, we use function-related
declaration to guide the refinement of the related data types. It consists of two
steps for different stages of the application process: property-guided declaration
and priority-guided declaration.

We also give a method for updating formal expressions as their involved data
types are refined to keep the consistency. When a type definition is modified after
the application of a pattern, the formal expressions affected by such modification
will be fully explored. For each formal expression, the method first retrieves the
pattern applied for writing it and the application process of the pattern. Based on
the retrieved information and the modified type definition., the formal expression
is automatically updated.

Since we believe that object identification is an intelligent activity that cannot
be manipulated by machines, the approach is not expected to be total automatic
and requires human effort when creative decisions need to be made.

It should be noted that the proposed approach is language-independent. We
choose SOFL as an example formal notation to illustrate the approach because
of our expertise. A formal specification in SOFL comprises a set of modules in a
hierarchical structure where lower level modules describe the detailed behavior of
their upper level modules. Each module is an encapsulation of processes, which
describe functions in terms of pre- and post-conditions, within the specific speci-
fication context of the module. Relation between these processes are reflected by
a CDFD (Condition Data Flow Diagrams) which specifies interactions between
them via data flows and stores. The independency of each module allows us to
discuss the production approach on the module level and a complete set of data
types will be achieved after applying the approach to all the modules included
in the specification. For more details in SOFL, one can refer to [5,6].

The remainder of this article is organized as follows. Section 2 summarizes
the related work. To facilitate the understanding of the proposed approach, some
fundamental concepts are first introduced in Sect. 3, including data context and
function pattern. Based on these concepts, the declaration approach is explained
in detail in Sect. 4 and a case study is presented in Sect. 5 to illustrate the
approach. Finally, Sect. 6 concludes the paper and points out the future works.
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2 Related Work

We know of no existing approach that provides assistance throughout the whole
data type declaration process, although some researches have been concerned
with certain aspects of the problem.

To ensure type compliance and absence of erroneous descriptions, typecheck-
ers are designed and implemented for various formal specification languages with
different type systems. Jian Chen et al. [2] develop a simple but useful set of rules
for type checking the object-oriented formal specification language Object-Z and
an earlier version of the type checker for Z is given in [7]. For the Vienna Develop-
ment Method (VDM), the most feature-rich analytic tool available is VDMTools
which includes syntax- and type-checking facilities [1,8]. Syntax checking results
in positional error reporting supported by an indication of error points. Type-
checking can be divided into static type-checking and dynamic type-checking.
The former checks for static semantics errors of specifications including incor-
rect values applied to function calls, badly typed assignments, use of undefined
variables and module imports/exports, while the latter aims at avoiding seman-
tic inconsistency and potential sources of run-time errors. As one of the major
components in the Rodin tool for Event-B, static checker analyses Event-B con-
texts and Event-B machines and generates feedback to the user about syntactical
and typing errors in them [9,10]. Prototype Verification System (PVS) extends
higher order logic with dependent types and structural and predicate subtypes.
In addition to conventional type-checking, it returns a set of proof obligations
TCCs (Type Correctness Conditions) as potent detectors of erroneous specifica-
tions and provides a powerful interactive theorem prover that implements several
decision procedures and proof automation tools [11,12]. Tan et al.[13] presents a
type checker for formal specifications of software systems described in Real-Time
Process Algebra, which is able to handle three tasks: identifier type compliancy,
expression type compliancy and process constraint consistency. Xavier et al.[14]
defines the type system of formal language Circus which combines Z, CSP and
additional constructors of Morgan’s refinement calculus, and describes the design
and implementation of a corresponding type checker based on the typing rules
that formalize the type system of Circus.

The quality of the declared data types can be significantly improved by the
supporting tools listed above, unfortunately practitioners are still complaining
about the difficulties in identifying real objects by formal data type definitions,
the lack of effective guidelines throughout the declaration process and everlasting
appearance of errors implicitly explained. Despite the use of “semantic analysis”
in some of these tools’ underlying theories, it refers to the semantics of the
embedded type system that is part of the built-in mechanism, rather than the
semantics of ideas in users’ mind. By contrast, our approach tries to connect
the semantics of specifications with the corresponding system behaviors through
data types and evaluate the appropriateness of the declared types on the real
semantic level. Moreover, the given systematic guidance in the overall declaration
process specifies how to reach the appropriate data types step by step while
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checking the correctness of the result of each step, which alleviates burdens of
manual design.

There are also some researches done for transforming models in intermediate
languages to formal data type definitions. These intermediate languages pro-
vide accessible visualization of object relation models and therefore simplify the
object identification process. In [3], entity relationship models are treated as the
basis for producing VDM data types in specifications. Colin Snook et al. [15] pro-
pose a formal modeling technique that emerge UML and B to benefit from both
languages where the semantics of UML entities is defined via a translation into
B. Anastasakis et al.[16] presents an automated transformation method from
UML class diagrams with OCL constraints to Alloy which is a formal language
supported by a tool for automated specification analysis. The problem, however,
lies in the fact that identifying and defining objects are separated from functions
to be described in these methods and totally depending on the developer’s initial
understanding of the real system. Hence our approach would be more reliable in
declaring data types for function description and practitioners can utilize models
in graphical representations as supplementary materials.

3 Preliminaries

3.1 Data Context

Constants and variables compose a data context under which formal expres-
sions in formal specifications can be written and become analyzable. The formal
definition of data context is given as follows.

Definition 1. A data context is a 4-tuple (C, T, V, vt) where C is the set of
constants, T is the set of custom data types, V is the set of variables and vt :
V → T is the type function that determines the data type of each variable in V .

To facilitate automated analysis and improve specification readability, each
variable in the data context is required to be defined as a custom type in our
approach, i.e., for each v ∈ V , there exists a type t in T that satisfies vt(v) = t.
For example, when describing an ATM system, a password should be defined as
a variable of a custom type declared as string. Although the built-in type string
itself is capable of representing the nature of password and one can define the
required password as a variable of string type, it fails to distinguish the object
from others that are also defined as string, such as error messages. In addition,
modification on the definitions of all the password entities in the specification can
be easily manipulated by modifying the definition of the corresponding custom
type.

3.2 Function Pattern

A function pattern provides a framework for formalizing one kind of function.
Different from traditional ones, function pattern is designed to be applied in a full
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automated way. For each unit function intended to be described, the developer
will be first guided to select a proper function pattern and then a formal expres-
sion will be generated by automatic application of the pattern. The definition of
function pattern is given as follows.

Definition 2. A function pattern p is a 6-tuple (id, E, PR,Δ,Φ, Ψ) where

– id is a unique identify of p written in natural language
– E is a set of elements that needs to be specified to apply p, which can be

assigned with 3 kinds of values: choice value (CV) generated by choosing from
several candidate items, variable value (VV) composed of constants and system
variables, and property value (PV) that specifies properties of certain objects

– PR is a property set including properties of the pattern p or properties of the
elements in E

– Δ : PR → P(E ∪{p}) indicates the objects involved in each property pr ∈ PR
which may include p and elements in E.

– Φ : SN ×(E∪P(PR)) → E∪P(PR) indicates a set of rules including element
rules and property rules where

• each sn : SN denotes the sequence number of the rule it associated with
• ∃1x : E ∪ P(PR) · Φ(1, null) → x
• ∀i : SN, e : E · e′ = Φ(i, e) ⇒ e′ ∈ E ∧ e′ 	= e(e′ = Φ(i, e) denotes an

element rule where e′ should be specified after e)
• ∀i : SN,PRi : P(PR) ·PRj = Φ(i, PRi) ⇒ PRj ∈ P(PR)∧ (∀pr : PRi ·

pr /∈ PRj)(PRj = Φ(i, PRi) denotes a property rule where properties
in PRj will be hold if each property in PRi is satisfied)

• ∀PRi, PRj : P(PR)·(∃i : SN ·(i, PRi) ∈ dom(Φ)∧(i, PRj) ∈ dom(Φ)) ⇒
((∀pri : PRi · pri = true) ⇒ (∃prj : PRj · prj = false))

– Ψ : P(PR) → exp produces a formal result exp when certain properties in PR
are satisfied iff
∀PRi, PRj : dom(Ψ) · (∀pri : PRi · pri = true) ⇒ (∃prj : PRj · prj = false)

Since patterns are categorized and each pattern holds a distinguishable id
that reflects, on an abstract level, the function it is able to describe, developers
can easily select the most suitable pattern. After the selection decision of certain
pattern p is made, elements in Ep will be required to be specified under the
guidance produced by the rules in Φp. The obtained element information is then
analyzed within the context of Ψp to determine its corresponding formal result.

But such a formal result may still contain informal statements composed of
pattern id and element information, which indicates that further formalization
needs to be conducted by applying the reused patterns with the attached element
information. For example, suppose a formal result involving informal statement
“p′(v1, v2)” is achieved where Ep′ = {e1, e2, e3} and ∃i,j∈SNp′ · (i, e1) → e2 ∧
(j, e2) → e3, it should be further formalized by replacing the informal statement
with the formal result generated by applying p′ with e1 and e2 set as v1 and
v2 respectively. This procedure will not be terminated until reaching a formal
expression.
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Fig. 1. The outline of the data type declaration approach

4 The Approach to Declaring Data Types

4.1 Approach Outline

The proposed approach regards data type declaration as an evolution process
along with the writing of formal expressions based on function patterns. This
evolution process starts with a modulized formal specification and terminates
when the detailed behavior of each module is precisely given. Figure 1 shows the
outline of the approach where x-axis and y-axis indicate the pattern application
process and the formal specification construction process respectively.

On the assumption that specification architecture is already established where
modules are organized in a hierarchical structure and processes of each module
are connected by their interfaces, developers will first be required to manually
declare data types for defining these interfaces. Since process behaviors is not
considered in this stage, the declared data types only reflects the initial idea of
the intended functions and will be refined as the function details are clarified.

Then the description of individual processes is started where each process
should be attached with a pair of pre- and post-condition. For each pre-/post-
condition, a pattern suitable for describing the expected function will first be
selected. The selected pattern is then applied. Step 1 is to guide the specifying of
its elements and step 2 is to generate an intermediate formal result based on the
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specified elements. During these two steps, function-related declaration is carried
out to declare new types and refine the existing type definitions where property-
guided declaration is carried out on step 1 and priority-guided declaration is
carried out on step 2. The former guides the refinement of type definitions under
the principle that all the properties inferred from the specified elements should
be satisfied while the latter provides suggested definition of certain types accord-
ing to the priority attribute associated to Ψ of the selected pattern. These two
techniques share a type combination method that refines the existing type defin-
itions by combining different definitions of the same type. For example, suppose
pattern p is selected to write a formal expression and type t is initially declared
as definition def1 for specifying element e1 of p. When specifying element e2,
property-guided declaration leads to a suggestion that t should be defined as def-
inition def2 to enable the correct representation of the value assigned to e2. If
def1 is not equal to def2, the combination method will be applied to refine def1
with def2 by combining them into a new definition for declaring t.

If the generated intermediate result contains informal expressions, formal-
ization of the result is needed. Since it is performed by applying the patterns
indicated by the informal expressions, function-related declaration can be repeat-
edly manipulated to further refine the data types of the specification. When the
formalization process terminates with a formal expression, a refined data con-
text is obtained. Finally, expression update is carried out where all the formal
expressions that are inconsistent with the refined data context are updated.

Serving as the critical techniques in the described declaration approach,
function-related declaration and expression update will be presented in details
respectively.

4.2 Function-Related Declaration

Function-related declaration guides the refinement of data types to enable the
application of the selected function patterns. It adopts property-guided decla-
ration and priority-guided declaration in declaring data types for specifying
element and generation intermediate result, respectively. Before presenting the
detailed techniques in function-related declaration, some necessary concepts are
introduced first.

Definition 3. Given a data context dc and a pattern p, esdc
p : Ep →

P(Choices)∪ Expdc ∪ P(Propsdc) is an element state of p under dc revealing
the value of each element e ∈ Ep where

– Choices denotes the universal set of choice values
– Expdc is the universal set of formal expressions within context dc and each

expdc ∈ Expdc is a sequence: N+ → Cdc ∪ Vfsc ∪ Operator where Operator
is the set of operators in formal notations

– Propsdc denotes the universal set of property values within context dc and for
each prop ∈ Propsdc, inV ar(prop) is adopted to denote the variables involved
in prop.
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It should be noted that esp denotes all the possible element states of p, i.e., set
{esdc1

p , ..., esdci
p , ...} where {dc1, ..., dci, ...} is the universal set of data contexts.

Definition 4. Given a data context dc and a pattern p, function satisfydc
p :

PRp × ESdc
p → boolean denotes satisfaction relations between properties and

element states where each esdc
p ∈ ESdc

p is a possible element state of p under dc

and satisfydc
p (pr, esdc

p ) indicates ∀e∈Δ(pr) · esdc
p (e) 	= ∅ ∧ pr is satisfied by esdc

p .

Definition 5. Given a data context dc and a pattern p, condSatisfydc
p : esp →

P(
p) is a conditional satisfaction function iff

– es0 ∈ esp ∧ ∀e∈dom(es0) · es0(e) = ∅ ⇒
condSatisfydc

p (es0) = 
p

– condSatisfydc
p (esdc

p ) = R ⇒
∀PRi∈dom(R) · ∀pr∈PRi

· (satisfydc
p (pr, esdc

p )∨
((∃e∈Δ(pr) · esdc

p (e) = ∅)∧
(pr, es′) /∈ dom(satisfydc

p )))
where es′ ⊂ esdc

p ∧ ∀e∈dom(esdc
p −es′)·

esdc
p (e) = ∅ ∧ (∀e′∈dom(es′) · es(e′) 	= ∅)

Due to the fact that the type combination method is employed in both
property-guided declaration and priority-guided declaration, it is first introduced.

Type Combination. Type combination is an operation that combines two
different definitions of the same type into an appropriate new definition for
declaring that type. The result of the operation is determined by certain proper-
ties held by the definition pair. Considering that it is impossible to combine all
kinds of definition pairs automatically, the strategy of the operation is to deal
with syntactic issues by machines and ask the developer to handle the semantic
problems.

In order to precisely describe various properties of definition pairs, the con-
cept of subtype is introduced and formally defined as follows.

Definition 6. Given a custom type ct, subType(ct) denotes the subtype of ct
where

– ct is basic type ⇒ subType(ct) = ∅

– ct is composite type with each field fi defined as type ti ⇒ subType(ct) =
{(f1, t1), ..., (fn, tn)}

– ct is product type with the ith field defined as type ti ⇒ subType(ct) = {1 →
ti, ..., n → tn}

– ct is set or sequence type with each element defined as type t ⇒ subType(ct) = t
– ct is mapping type with domain defined as type ti and range defined as tj

⇒ subType(ct) = (ti, tj)
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Table 1. Solution table for type combination

Based on the definition, we try to summarize possible properties of defini-
tion pairs and figure out the corresponding combination solutions. Table 1 (with
formal notations in SOFL) shows part of the work where buildIn(t) denotes the
built-in type that type t belongs to and def indicates the result definition of the
combination operation. For each pair of type definition d and d′ where d 	= d′,
a combination solution sol(d, d′) can be found by matching the definition pair
against the properties listed in the table.

It can be seen from the table, properties of definition pair are classified into
two categories: properties where d and d′ belong to the same built-in type and
properties where d and d′ belong to different build-in types. The first category
is further divided into five sub-categories that cover all the built-in types (in
SOFL) and a solution is provided for each specific property within each built-in
type. For example, the first “basic” denotes the property that d and d′ belongs
to the same basic type and its corresponding solution “human effort” indicates
the combination of such kind of definition pair needs intelligent decision and the
developer will be asked to give the operation result based on d and d′. More
specific properties are provided with combination solutions if both d and d′ are
composite types. The second property within “composite” category and its cor-
responding solution mean that if d and d′ owns the same fields and some of them
are declared as different types, the combination method should be conducted on
each pair of different types to achieve sol(d, d′). Within the second category, all
combinations of different built-in types are considered and only parts of them
are listed in the table for the sake of space. For instance, if d and d′ are declared
as different basic types, only human effort is able to figure out the proper defin-
ition. In case d is a composite type and d′ is a set type, the combination result
should be d if one of the fields in d is defined as d′.

Property-Guided Declaration. Figure 2 shows the main procedure of property-
guided declaration for each selected pattern p within data context dc where cE
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i=1, cE = null, AR = espdc = ∅

∃ e,e ′∈Ep • Φp(i , e) = e′

cE = Φp(i, cE)

Create a set GS where
∀PRk → PRl ∈AR •

∃pr∈PRl • cE ∈ Δp(pr) ⇒ pr ∈GS

AR = AR ∪
Φp(i, SPR)

Where
∀pr∈SPR •
satisfy(pr,
espdc) = true

∃pr∈GS • inc(pr)

Ask the designer to specify cE
independently and do property matching

Specify cE
and  update

espdc with
input

Update AR and re-define each
involved variables based on the

matched rules

i = i + 1

AR = AR AR′ where AR′ ⊆ AR ∧
∀(i, PR) → PR ′ ∈ Α R • ∃pr∈PR′ • inc(pr) ⇒

(i, PR) → PR′ ∈ ΑR′

∃PR∈ ℘(PRp) •
(i , PR) ∈ dom (Φp)

Terminate

Ask the
designer
to specify
cE based

on GS

Fig. 2. The main procedure of the property-guided declaration

denotes the element currently being specified, AR denotes the set of activated
rules and inc(pr) denotes that the developer identifies the property pr as being
inconsistent with the expected function.

Rules in Φp are applied sequentially according to their attached sequence
numbers and when dealing with those who own the same number, the one with
its required conditions satisfied will be activated. For each i(0 < i ≤ maximum
sequence number), if i corresponds to a set of property rules R ⊂ Φp, the rule
(i, SPR) → SPR′ ∈ R will be identified where all the properties in SPR can be
satisfied. Meanwhile, a set of new properties SPR′ will be obtained and added
to AR. If i corresponds to an element rule, cE will be set as Φp(i, cE) which is
the next element waiting to be specified. To assist the value assignment to cE,
activated rules that lead to properties of cE will be extracted from set AR and
these properties form a property set GS. After confirming that all the properties
in GS are consistent with the desired function, the developer needs to assign a
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value to cE based on GS. In case that certain properties in GS violate the
expected function, the activated rules that lead to these properties form a set
AR′ and will be deleted from AR. Then the developer will be required to specify
cE manually and property matching will be carried out to obtain the rules that
match the given value.

In addition to the value v assigned to cE by the developer, set CR : P(P(Φp))
serves as another critical participant in property matching which satisfies:

∀R∈CR · (∀(m,x),(n,y)∈dom(R) · m = n∧
∀R′∈CS−{R} · ∀(k,x′)∈R,(l,y′∈R′) · k 	= l)

∧∀(no,Pr)∈dom(AR′) · ∃R∈CR · ∀(no′,Pr′)∈dom(Φp)·
(no = no′ ∧ ∃pr∈Φp(no′,Pr′) · cE ∈ Δ(pr))

Each set R ∈ CR comprises all the candidate rules for substituting one of
the rules that lead to properties violating the expected function. With the given
v, dc will be updated accordingly and property matching can be by the following
algorithm where RS denotes the set of rules that match the given v:

RS = temp = {};
for each R ∈ CR{

for each Pr → Pr′ ∈ R
if (satisfydc

p (Pr′, esdc
p ) = true)

temp = temp ∪ {Pr → Pr′};
if (| temp |= 1)

for the only element sr RS = RS ∪ {sr};
else{

tempP = {};
for each Spr → Spr′ ∈ temp

tempP = tempP ∪ {Spr};
display all the items in tempP and
ask the developer to choose

the most appropriate one “item;”
RS = RS ∪ {r} where

r ∈ temp ∧ ∃y∈P(Φp) · r = item → y; }}
return RS;
This algorithm helps explore a set RS containing all the rules in P(Φp)

consistent with the function intended to be described which is reflected by the
values assigned to elements. These rules will then be added into set AR and for
each rule Spr → Spr′, data context dc will be updated according to Spr.

Priority-Guided Declaration. The main idea of priority-guided declaration
is to provide suggested definition of concerned types based on Ψ after assigning
values to pattern elements. Rules in each Ψ are attached with priority attributes
which help select a most appropriate one when elements are incompletely spec-
ified or no rule can be applied according to the specified elements.
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Definition 7. Given a pattern p, PSp : P(P(
p)) is the priority set of p iff

– ∀psi∈PSp
· ∃esdc

p ∈esp
· condSatisfydc

p (esdc
p ) = psi

– ∀R∈P (�p)
·∃esdc

p ∈esp
· condSatisfydc

p (esdc
p ) = R ⇒

R ∈ PSp

Definition 8. Given a pattern p, τp : 
p × PSp → N+ determines the priority
of each rule in 
p where τp(r, psi) = n means that r ∈ 
p is ranked as the nth
rule in set psi.

Based on the definition, priority-guided declaration is conducted as the fol-
lowing steps for each selected pattern p within formal specification context fsc.

1. Ask the developer to provide element information, and define types and vari-
ables when necessary, which results in an element state esfsc

p .
2. Analyze priority set PSp and extract the item ps ∈ PSp that satisfies

condSatisfyfsc
p (esfsc

p ) = ps.
3. Sort set ps into a sequence psSeq where

∀i, j : int · 0 < i < j ≤| psSeq |⇒
τp(psSeq(i), ps) > τp(psSeq(j), ps)

4. Set rule = psSeq(k) where k is initialized as 1. Provide the properties
involved in rule for the developer to assist the declaration of relative types and
variables.

5. If the suggestion is not accepted and k ≤| psSeq |, set k = k + 1 and repeat
step 4-5. Otherwise terminate.

4.3 Expression Update

In contrast to the traditional formal specification construction method that
requires formal expressions to be written manually, function patterns enables
automatic generation of formal expressions based on the given values of nec-
essary elements. Therefore, instead of grammar checking, the essential idea of
expression update in our approach is to record the element values specified dur-
ing the pattern application process and reuse that information to update the
original formal expression. For an expression exp generated through the appli-
cation process ap of the pattern p, if exp becomes erroneous under the refined
data context, it will be replaced by a new expression generated by applying p
again based on ap.

Definition 9. Given a pattern p0, sequence (p0, es
p0
dc0

, exp0, p1, es
p1
dc1

, exp1, ...,
pn, espn

dcn
, expn) is the application process of p0 where

– p1, ..., pn are the reused patterns
– each espi

dci
denotes the element state after all the elements in Epi

are specified
– exp0 denotes the intermediate formal result produced by applying p0 with spec-

ified elements in esp0
dc0

, which can be represented as exp0 = p0(es
p0
dc0

)
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– each expi(0 < i ≤ n) denotes the intermediate formal result generated by
replacing certain informal part in expi−1 with pi(es

pi

fsci
), which can be repre-

sented as expi = expi−1 ⊕ pi(es
pi

dci
) where expi = pi(es

pi

dci
) if expi−1 = ∅

– expn is the resultant formal expression

Definition 10. Given a data context dc, vdeptdc : Tdc → Vdc reveals dependent
relations between types and variables where vdeptdc(t) = V indicates that for
each variable v ∈ V , the definition of vtdc(v) involves type t.

Definition 11. Given a data context dc and a pattern p, sdeptpdc : Tfsc →
P(esdc

p ) reveals dependent relations between types and element values where
sdeptpdc(t) = Esdc

p ⇒
∀e→vl∈Esfsc

p
· (vl ∈ Expdc

p ∧
∃i∈N+,v∈Vdc

· (i, v) ∈ vl ∧ v ∈ vdeptdc(t)
∨(vl ∈ Propsdc ∧ ∃v∈inV ar(vl) · v ∈ vdeptdc(t))

Assume that the data context dc has been modified into dc′, the update of
each formal expressions exp previously written through application process ap =
(p0, es

p0
dc0

, exp0, p1, es
p1
dc1

, exp1, ..., pn, espn

dcn
, expn) is conducted as the following

algorithm where defdc(t) denotes the definition of type t under dc.

if(∃(i,v)∈exp · (vtdc(v) 	= vtdc′(v))∨
(∃t∈Tdc

· t ∈ Tdc′ ∧ v ∈ vdeptdc(t)∧
v ∈ vdeptdc′(t) ∧ defdc(t) 	= defdc′(t)){

exp−1 = ∅;
for each pi in ap{

if(∃t∈Tdc,e→vl∈es
pi
dc

· t ∈ Tdc′∧
defdc(t) 	= defdc′(t) ∧ e → vl ∈ vdeptdc(t))

exp′
i = exp′

i−1 ⊕ pi(es
pi

dc′);
else

exp′
i = exp′

i−1 ⊕ temp where expi = expi−1 ⊕ temp}
exp = exp′

n; }
The algorithm first checks whether there exist variables or types used in

exp with definitions being modified. If so, the application of pattern p0 will
be restarted with element information esp0

dc and further formalization will be
conducted by applying the rest of the reused patterns in ap with their element
information sequentially. Before generating formal expression for each pattern
pi, the value of each element indicated by espi

dc will be analyzed to determine
its change caused by the update of the data context. Expression expi can be
directly used to formalize the current formal result exp′

i−1 if no difference is
found between espi

dc and espi

dc′ . Otherwise, pi(es
pi

dc′) will be produced to replace
the corresponding informal part of exp′

i−1.

5 Case Study

A case study on a banking system is presented to show the feasibility and
effectiveness of the proposed approach in practice. The system allows for the
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management of various currency types and mainly provides four services for
authorized customers: deposit, withdraw, account information display and cur-
rency exchange. Since architecture design is not discussed in this paper, we
assume that it has already been done and the result is a CDFD shown in Fig. 3
where rectangles drawn with input and output ports are processes and other
three are datastores. It can be seen from the figure, neither type definitions nor
relation between the input and output of each process is provided in the CDFD,
and it only specifies the interfaces of the included processes and demonstrates
their relation with data flows represented as solid lines and control flows repre-
sented as dotted lines. For example, process Id confirm owns one input port and
two output ports, and when receiving data flow inputInf , it will be activated
and generate data flow inf or warning when terminated. If inf is generated,
it will reach process Selection which produces one of the four possible outputs
according to the available control flow.

Based on the CDFD, necessary data types can be declared to meet the need
of accurately describing the behavior of each enclosed process sequentially. Due
to space limitation, we take process Id confirm and Withdraw as examples.
For the process Id confirm, manual declaration is first required for defining its
inputs and outputs. According to the expected behavior of the process, one can
easily response with the following definitions:

Num = string, Psd = string,Msg = string,
Inf = composed of

inf num : Num
inf psd : Psd

end
inputInf : Inf,warning : Msg, inf : Inf

No pre-condition is needed in the process and the informal idea of the post-
condition is that if the provided ID information can be found in the datas-
tore account store, data flow inf will be produced. Otherwise, error message
warning will be displayed to the customer. Such idea leads us to the selection

Fig. 3. The CDFD of the example banking system
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Table 2. Pattern “belongTo”

of pattern belongTo as shown in Table 2 where dt(v) indicates the data type of
the element e in E. It is used to describe a relation where one object is part of
another. There are three elements in the pattern: element denoting the mem-
ber object, container denoting object that element belongs to and specifier
denoting constraints on their relations which can be assigned with either null or
a property value. The application of pattern belongTo starts from the require-
ment of specifying these three elements. Apparently, element is inputInf and
container is account store which has not been defined. In case that specifier
is not decided yet, the generation of an intermediate result begins and priority-
guided declaration will be carried out according to the priority knowledge given
in Table 3. Suppose the developer uses “AccountF ile” to represent its type, pri-
ority set ps1(∪) is then selected and rule a is first suggested which indicates that
the type AccountF ile should be defined as set of Inf . Assume that the sugges-
tion is accepted, the formal expression for describing the “belongTo” relation is
automatically generated and the post-condition of process Id confirm will be
written as:

if (inputInf inset account store)
then inf = inputInf
else warning =“Invalid user.”
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Table 3. Priority in pattern “belongTo”

Table 4. Pattern “alter”

Notice that no formal expression was written before the application of pattern
belongTo, expression update is therefore not needed.

Since the data types and functions involved in the process Selection are
simple enough to be manually written and the data context will not be affected
after the description, data type declaration during the construction of process
Withdraw is presented based on the type definitions declared for the process
Id confirm. Process Withdraw takes the intended currency type and amount
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as inputs and currency or error messages as outputs, which can be manually
defined as:

CurrencyType = string,Amount = real,
currencyType : CurrencyType, amount : Amount
currency : Amount, error : Msg

The pre-condition is also true and the post-condition should clarify how the
account information in account store is altered when the withdraw operation is
successfully done. Therefore, pattern alter will be selected to describe such func-
tion, which is shown in Table 4 where constraints(x) denotes certain constraints
on object x. It contains four elements for depicting the altering of system vari-
ables: obj denoting the object to be altered, decompose meaning to replace the
whole given obj by a new value if it is designated as true and to modify parts
of the given obj if it is designated as false, specifier denoting the description
of the parts to be altered within obj, onlyOne meaning there exists only one
part consistent with the description in specifier if it is designated as true and
new indicates the new values for replacing the corresponding parts to be altered.
Figure 4 reveals the property-guided declaration process during the application
of the pattern.

The above application process results in an definition “Inf → AccountInf”
for type AccountF ile that is more appropriate for describing process Withdraw.

cE = obj, AR = ∅

obj = account_sotre, GS = ∅

cE = decompose, GS = ∅

decompose = true, AR = {rule e}

cE = specifier, GS = {rule e}

inc(specifier: ℘({fi})) = true

Ask the designer to specify specifier independently

specifier = AccountInf

tempP = {{dt(obj) = T , decompose = true}, {dt(obj) = set of compite, decompose = true}, ...}

Suppose the designer choose the first property in tempP

AccountFile = Inf AccountInf with AccountInf undefined

Generate formal result alter(account_store(inputInf))

obj = account_store(inputInf), GS = ∅

Repeat the above steps until AccountInf is defined and a formal expression is achieved

Fig. 4. The priority-guided declaration process during the application of the pattern
“alter”
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Thus, the original definition set of Inf needs to be refined by applying the
combination method. According to the solution table for type combination, the
definition of type AccountF ile should be refined as: Inf → AccountInf .

Due to the refinement of the definition of type AccountF ile and the use of the
type in the post-condition of process Id confirm, formal expression previously
generated by applying the pattern belongTo needs to be updated accordingly.
The application process of the pattern belongTo for the post-condition of process
Id confirm can be described as:

(belongTo, {element → inputInf,
container → account store,
specifier = null},

“inputInf inset account store”)

According to the algorithm for expression update, formal expression
“inputInf inset account store” will be transformed into:

belongTo({element → inputInf,
container → account store,
specifier = dom}, newExp)

where account store is defined as a map type and element specifier is mod-
ified into “dom” in the refined data context. By analyzing the above expression
in the context of the Ψ of the pattern belongTo, formal expression “inputInf
inset dom(account store)” will be generated as the value of newExp to replace
the original one.

Following the similar procedures for describing process Withdraw, the data
context can be gradually refined while the pre- and post-conditions of the rest
processes Deposit, Display and Exchange are specified. After completing the
description of the last process Exchange, a set of appropriate data types for the
example banking system is established.

6 Conclusion

This paper proposes an approach to assist the declaration of data types for
formal specifications along with the function description in formal expressions.
After the architecture of the formal specification is determined, the approach
helps adjust the type definitions to fit the expected functions captured and
formally described by applying function patterns. Besides, as the data types
are refined, their consistency with the written formal expressions will be main-
tained by applying the involved patterns again based on their history application
information.

In order to investigate the performance of the approach when being applied
to more complicated systems, an empirical case study is intended to be held
in the future. For example, as complexity rises, the update of expressions in
accordance with specification context will be more difficult and less likely to be
automatically done.
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Furthermore, only tool implementation could bring the proposed approach
into practice and allow practitioners to benefit from the assistance expected to
be provided, which is also part of our future work.
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