
Shaoying Liu
Zhenhua Duan (Eds.)

 123

LN
CS

 8
33

2

Third International Workshop, SOFL+MSVL 2013
Queenstown, New Zealand, October 29, 2013
Revised Selected Papers

Structured Object-Oriented
Formal Language and Method

Lecture Notes in Computer Science 8332

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

For further volumes:
http://www.springer.com/series/7407

http://www.springer.com/series/7407

Shaoying Liu • Zhenhua Duan (Eds.)

Structured Object-Oriented
Formal Language and Method

Third International Workshop, SOFL?MSVL 2013
Queenstown, New Zealand, October 29, 2013
Revised Selected Papers

123

Editors
Shaoying Liu
Hosei University
Koganei-shi, Tokyo
Japan

Zhenhua Duan
Xidian University
Xi’an
People’s Republic of China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-319-04914-4 ISBN 978-3-319-04915-1 (eBook)
DOI 10.1007/978-3-319-04915-1
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014932685

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

� Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Both formal methods and conventional software engineering techniques face various
challenges; they must be properly integrated to establish more effective technologies
for future software engineering. The development of the Structured Object-Oriented
Formal Language (SOFL) over the last two decades has shown some possibilities of
achieving effective integrations to build practical formal techniques and tool support
for requirements analysis, specification, design, inspection, review, and testing of
software systems. SOFL integrates: Data Flow Diagram, Petri Nets, and VDM-SL to
offer a graphical and formal notation for writing specifications; a three-step approach
to requirements acquisition and system design; specification-based inspection and
testing methods for detecting errors in both specifications and programs; and a set of
tools to support modeling and verification. Meanwhile, the Modeling, Simulation and
Verification Language (MSVL) is a parallel programming language developed over
the last decade. Its supporting tool MSV has been developed to enable us to model,
simulate, and verify a system formally. The two languages complement each other.

Following the success of the second SOFL workshop held in Kyoto in 2012, the 3rd
International Workshop on SOFL?MSVL (SOFL?MSVL 2013) is jointly organized
by the Shaoying Liu research group at Hosei University, Japan, and the Zhenhua Duan
research group at Xidian University, China, with the aim of bringing industrial,
academic, and government experts and practitioners of SOFL or MSVL to commu-
nicate and to exchange ideas. The workshop attracted 22 submissions on formal
specification, specification-based testing, specification pattern, modeling checking,
specification animation, simulation, application of SOFL, and supporting tools for
SOFL or MSVL. Each submission is rigorously reviewed by two Program Committee
members on the basis of technical quality, relevance, significance, and clarity, and 13
papers were accepted for publication in the workshop proceedings. The acceptance
rate is approximately 59 %.

We would like to thank the ICFEM 2013 organizers for supporting the organization
of the workshop, all of the Program Committee members for their great efforts and
cooperation in reviewing and selecting papers, and our postgraduate students for their
help. We would also like to thank all of the participants for attending presentation
sessions and actively joining discussions at the workshop. Finally, our gratitude goes
to Alfred Hofmann and his team for their continuous support in the publication of the
workshop proceedings.

January 2014 Shaoying Liu
Zhenhua Duan

Organization

Program Co-Chairs

Shaoying Liu (Co-chair) Hosei University, Japan
Zhenhua Duan (Co-chair) Xidian University, China

Program Committee

Michael Butler University of Southampton, UK
Steve Cha Korea University, Korea
Jian Chen Shaanxi Normal University, China
Yuting Chen Shanghai Jiaotong University, China
Jin Song Dong National University of Singapore
Mo Li Hosei University, Japan
Xiaohong Li Tianjin University, China
Abdul Rahman Mat University Malaysia Serawak, Malaysia
Huaikou Miao Shanghai University, China
Weikai Miao East China Normal University, China
Fumiko Nagoya Aoyama Gakuyin University, Japan
Shengchao Qin University of Teesside, UK
Wuwei Shen Western Michigan University, USA
Jing Sun University of Auckland, New Zealand
Cong Tian Xidian University, China
Xi Wang Hosei University, Japan
Jinyun Xue Jiangxi Normal University, China
Fauziah Zainuddin Hosei University, Japan
Hong Zhu Oxford Brookes University, UK

Contents

Testing and Verification

Combining Specification-Based Testing, Correctness Proof,
and Inspection for Program Verification in Practice 3

Shaoying Liu and Shin Nakajima

Theory of Test Modeling Based on Regular Expressions 17
Pan Liu and Huaikou Miao

Simulation and Model Checking

Integrating Separation Logic with PPTL . 35
Xu Lu, Zhenhua Duan, Cong Tian, and Hongjin Liu

Improved Net Reductions for LTLnX Model Checking 48
Ya Shi, Zhenhua Duan, Cong Tian, and Hua Yang

Formalizing and Implementing Types in MSVL . 62
Xiaobing Wang, Zhenhua Duan, and Liang Zhao

Present-Future Form of Linear Time l-Calculus . 76
Yao Liu, Zhenhua Duan, Cong Tian, and Bo Liu

SOFL Tools

Prototype Tool for Supporting a Formal Engineering Approach
to Service-Based Software Modeling. 89

Weikai Miao and Shaoying Liu

A Supporting Tool for Syntactic Analysis of SOFL Formal Specifications
and Automatic Generation of Functional Scenarios 104

Shenghua Zhu and Shaoying Liu

SOFL Specification Animation with Tool Support 118
Mo Li and Shaoying Liu

Formal Specification and Application

An Approach to Declaring Data Types for Formal Specifications 135
Xi Wang and Shaoying Liu

Detection Method of the Second-Order SQL Injection in Web Applications. . . . 154
Lu Yan, Xiaohong Li, Ruitao Feng, Zhiyong Feng, and Jing Hu

http://dx.doi.org/10.1007/978-3-319-04915-1_1
http://dx.doi.org/10.1007/978-3-319-04915-1_1
http://dx.doi.org/10.1007/978-3-319-04915-1_2
http://dx.doi.org/10.1007/978-3-319-04915-1_3
http://dx.doi.org/10.1007/978-3-319-04915-1_4
http://dx.doi.org/10.1007/978-3-319-04915-1_4
http://dx.doi.org/10.1007/978-3-319-04915-1_5
http://dx.doi.org/10.1007/978-3-319-04915-1_6
http://dx.doi.org/10.1007/978-3-319-04915-1_6
http://dx.doi.org/10.1007/978-3-319-04915-1_7
http://dx.doi.org/10.1007/978-3-319-04915-1_7
http://dx.doi.org/10.1007/978-3-319-04915-1_8
http://dx.doi.org/10.1007/978-3-319-04915-1_8
http://dx.doi.org/10.1007/978-3-319-04915-1_9
http://dx.doi.org/10.1007/978-3-319-04915-1_10
http://dx.doi.org/10.1007/978-3-319-04915-1_11

Applying SOFL to Constructing a Smart Traffic Light Specification. 166
Wahyu Eko Sulistiono and Shaoying Liu

Checking Internal Consistency of SOFL Specification: A Hybrid Approach 175
Yuting Chen

Author Index . 193

X Contents

http://dx.doi.org/10.1007/978-3-319-04915-1_12
http://dx.doi.org/10.1007/978-3-319-04915-1_13

Testing and Verification

Combining Specification-Based Testing,
Correctness Proof, and Inspection for Program

Verification in Practice

Shaoying Liu1(B) and Shin Nakajima2

1 Hosei University, Tokyo, Japan
sliu@hosei.ac.jp

2 NII, Tokyo, Japan
nkjm@nii.ac.jp

Abstract. Specification-based testing is limited in detecting program
errors; correctness proof based on Hoare logic is difficult to perform in
practice; and inspection is heavily dependent on human decisions. Each of
these three is difficult to do a satisfactory job alone, but they complement
each other when they come together in an appropriate manner. This
paper puts forward a new method that makes good use of Hoare logic
and inspection to improve the effectiveness of specification-based testing
in detecting errors. The underlying principle of the method is first to
use specification-based testing to discover traversed program paths and
then to use Hoare logic to prove their correctness, but when proof is
impossible to conduct, a special inspection is applied. During the proof
or inspection process, all faults on the paths are expected to be detected.
A case study is conducted to show its feasibility; an example taken from
the case study is used to illustrate how the proposed method is applied;
and a discussion on the important issues to be addressed in the future is
presented.

1 Introduction

Given a formal specification S and an implementation P , how to verify whether P
satisfies S (or P is correct with respect to S) in practice still remains a challenge.
Formal verification (or proof) based on Hoare logic (also Flody-Hoare logic) [1]
provides a possibility to establish the correctness for programs, but due to the
difficulty in deriving appropriate invariants for iterations and the difficulties in
managing side effect, complex data structures, and invocations of subroutines
(methods, functions, or procedures) in programming languages, formal proof for
realistic programs is impractical.

On the other hand, specification-based testing (SBT) is a practical technique
for detecting program errors. A strong point of SBT superior to formal correct-
ness verification is that it is much easier to be performed, even automatically if

This work is supported by NII Collaborative Program, SCAT research foundation,
and Hosei University.

S. Liu and Z. Duan (Eds.): SOFL+MSVL 2013, LNCS 8332, pp. 3–16, 2014.
DOI: 10.1007/978-3-319-04915-1 1, c© Springer International Publishing Switzerland 2014

4 S. Liu and S. Nakajima

formal specifications are adopted [2,3], but a weak point is that existing errors
on a program path may still not be uncovered even if it has been traversed using
a test case. Liu’s previous work on combining Hoare Logic and SBT presented a
novel technique for formally proving the correctness of all of the traversed pro-
gram paths [4], which shows the potential of strengthening testing by applying
Hoare logic. In spite of the great potential of improvement of this technique,
there still exists a difficulty when testing encounters crash or non-termination in
running the program. Another practical technique that is likely to perform bet-
ter in some circumstances than testing is software inspection [5], but inspection
usually heavily depends on human decisions and therefore lacks repeatability [6].
We believe, as many others do, that each of these three approaches is difficult to
do a satisfactory job, but they complement each other when they come together
in an appropriate manner.

In this paper, we propose an approach to verifying programs by combining
the specific SBT we have developed before with the Hoare logic and a formal
specification-based program inspection technique. This new approach is known
as testing-based formal verification (TBFV). The essential idea is first to generate
a test case from each functional scenario, derived from the formal specification
using pre- and post-conditions, to run the program, and then repeatedly apply
the axiom for assignment in Hoare logic to formally verify the correctness of the
path that is traversed by using the test case. When such a proof is impossible to
conduct due to complex data structures or other reasons, the inspection method
will be applied. As described in Sect. 2, any pre-post style formal specification
can be automatically transformed into an equivalent disjunction of functional
scenarios and each scenario defines an independent function of the corresponding
program in terms of the relation between input and output. A test case can be
generated from each functional scenario and can be used to run the program
to find a traversed path, which is a sequence of conditions or statements, but
the correctness of the path with respect to the pre-condition and the functional
scenario is unlikely to be established by means of testing. This deficiency can be
eliminated by repeatedly applying the axiom for assignment in Hoare logic or by
specification-based inspection when Hoare logic is hard to apply. The superiority
of our approach to both SBT and formal verification is that it can verify the
correctness of all traversed paths and can be performed automatically because
the derivation of invariants from iterations is no longer needed.

Our focus in this paper is on the explanation of the new idea in combining
specification-based testing with Hoare logic. Therefore, we deliberately choose
small examples to explain the principle, which is expected to facilitate the reader
in understanding the essential idea. The feasibility of applying the new technique
to deal with a realistic program system has been demonstrated in our case study.

The rest of the paper is organized as follows. Section 2 gives a brief intro-
duction to both the functional scenario-based testing (FSBT) and the formal
specification-based inspection method. Section 3 describes the essential idea of
our TBFV approach. In Sect. 4, we give an example to illustrate the TBFV
approach systematically. Section 5 elaborates on how method invocation is dealt

Combining Specification-Based Testing 5

with in TBFV. Section 6 discusses the potential challenges to the proposed app-
roach. Section 7 gives a brief overview of the related work. Finally, in Sect. 8, we
conclude the paper and point out future research direction.

2 Introduction to FSBT and Inspection

This section briefly introduces the relevant parts of FSBT and the inspection
technique we use to pave the way for discussing the proposed TBFV. Since Hoare
logic is well known in the field, we omit the introduction but will briefly explain
the axioms when they are used.

2.1 FSBT

FSBT is a specific specification-based testing approach that takes both the pre-
condition and post-condition into account in test case generation [3]. Applying
the principle of “divide and conquer”, the approach treats a specification as a
disjunction of functional scenarios (FS), and to generate test sets and analyze
test results based on the functional scenarios. A functional scenario in a pre-post
style specification is a logical expression that tells clearly what condition is used
to constrain the output when the input satisfies some condition.

Specifically, let S(Siv, Sov)[Spre, Spost] denote the specification of an opera-
tion S, where Siv is the set of all input variables whose values are not changed by
the operation, Sov is the set of all output variables whose values are produced or
updated by the operation, and Spre and Spost are the pre- and post-conditions
of S, respectively. The characteristic of this style specification is that the post-
condition Spost is used to describe the relation between initial states and final
states. We assume that in the post-condition, a decorated variable, such as ˜x,
is used to denote the initial value of external (or state) variable x before the
operation and the variable itself, i.e., x, is used to represent the final value of
x after the operation. Thus, ˜x ∈ Siv and x ∈ Sov. Of course, Siv also contains
all other input variables declared as input parameters and Sov includes all other
output variables declared as output parameters.

A practical strategy for generating test cases to exercise the behaviors
expected of all functional scenarios derived from the specification is established
based on the concept of functional scenario. To precisely describe this strategy,
we first need to introduce functional scenario.

Definition 1. Let Spost ≡ (C1 ∧ D1) ∨ (C2 ∧ D2) ∨ · · · ∨ (Cn ∧ Dn), where
each Ci (i ∈ {1, ..., n}) is a predicate called “ guard condition” that contains
no output variable in Sov; Di a “ defining condition” that contains at least one
output variable in Sov but no guard condition. Then, a functional scenario fs
of S is a conjunction ˜Spre ∧ Ci ∧ Di, and the expression (˜Spre ∧ C1 ∧ D1) ∨
(˜Spre ∧ C2 ∧ D2) ∨ · · · ∨ (˜Spre ∧ Cn ∧ Dn) is called a functional scenario form
(FSF) of S.

6 S. Liu and S. Nakajima

The decorated pre-condition ˜Spre = Spre˜(σ/σ) denotes the predicate result-
ing from substituting the initial state ˜σ for the final state σ in pre-condition
Spre. We treat a conjunction ˜Spre ∧ Ci ∧ Di as a scenario because it defines
an independent behavior: when ˜Spre ∧ Ci is satisfied by the initial state (or
intuitively by the input variables), the final state (or the output variables) is
defined by the defining condition Di. The conjunction ˜Spre ∧ Ci is known as
the test condition of the scenario ˜Spre ∧ Ci ∧ Di, which serves as the basis for
test case generation from this scenario.

To support automatic test case generation from functional scenarios, the
vital first step is to obtain an FSF from a given specification. A systematic
transformation procedure, algorithm, and software tool support for deriving an
FSF from a pre-post style specification have been developed in our previous work
[7]. Generating test cases based on a specification using the functional scenario-
based test case generation method is realized by generating them from its all
functional scenarios. The production of test cases from a functional scenario is
done by generating them from its test condition, which can be divided further
into test case generations from every disjunctive clause of the test condition. In
the previous work [3], a set of criteria for generating test cases are defined in
detail. To effectively apply FSBT, the FSF of the specification must satisfy the
well-formed condition defined below.

Definition 2. Let the FSF of specification S be (˜Spre ∧ C1 ∧ D1) ∨ (˜Spre ∧
C2 ∧D2)∨ · · · ∨ (˜Spre ∧Cn ∧Dn). If S satisfies the condition (∀i,j∈{1,...,n} · (i ∅=
j ⇒ (Ci ∧ Cj ⇔ false))) ∧ (˜Spre ⇒ (C1 ∨ C2 ∨ · · · ∨ Cn ⇔ true)), S is said to
be well-formed.

The well-formedness of specification S ensures that each functional scenario
defines an independent function and the guard conditions completely cover the
restricted domain (a subdomain of the operation in which all of the values satisfy
the pre-condition). Thus, for any input satisfying the pre-condition, S is guaran-
teed to define an output satisfying the defining condition of only one functional
scenario.

Under the assumption that S is well-formed, we can focus on test case gen-
eration from a single functional scenario, say ˜Spre ∧ Ci ∧ Di, at a time using
our approach. The test case is then used to run the program, which will enable
one program path to be executed. Let us take operation ChildFareDiscount,
a process of the IC card system for JR commute train service used in our case
study that is briefly explained in Sect. 4, as an example. The functionality of
the process is specified using the SOFL specification language [8] below, which
is similar to VDM-SL for operation specifications.

process ChildFareDiscount(a : int, n_f : int) a_f : int
pre a > 0 andn_f > 1
post (a > 12 => a_f = n_f)

and
(a <= 12 => a_f = n_f − n_f ∗ 0.5)

end_process

Combining Specification-Based Testing 7

The specification states that the input a (standing for age) must be greater
than 0 and n_f (normal_fare) must be greater than 1. When a is greater than
12, the output a_f (actual_fare) will be the same as n_f ; otherwise, a_f will
be 50 % discount on n_f .

According to the algorithm reported in our previous work [7], three functional
scenarios can be derived from this formal specification:

(1) a > 0 and n_f > 1 and a > 12 and a_f = n_f
(2) a > 0 and n_f > 1 and a <= 12 and a_f = n_f − n_f ∗ 0.5
(3) a <= 0 or n_f <= 1 and anything

where anything means that anything can happen when the pre-condition is
violated.

Assume the formal specification is refined into the following program
(a Java-like method):

int ChildFareDiscount(int a, int n_f) {
(1) If (a > 0 && n_f > 1){
(2) if (a > 12)
(3) a_f := n_f ;
(4) else a_f := n_f ∗ ∗2 − n_f − n_f ∗ 0.5;
(5) return a_f ; }
(6) else System.out.println(“the precondition is violated.j);

}

where the symbol := is used as the assignment operator in order to distin-
guish from the equality symbol = used in the specification. It is evident that
we can derive the following paths: [(1)(2)(3)(5)], [(1)(2)≤(4)(5)], and [(1)≤(6)]. In
the path [(1)(2)≤(4)(5)], (2)≤ means the negation of the condition a > 12 (i.e.,
a <= 12), and the similar interpretation applies to (1)≤ in path [(1)≤(6)]. We also
deliberately insert a defect in the assignment a_f = n_f ∗ ∗2 − n_f − n_f ∗
0.5 (thecorrectoneshouldbe a_f = n_f −n_f ∗0.5), where n_f ∗∗2 means n_f
to the power 2 (i.e., n_f2).

The weakness of the testing approach is that it can only find the presence
of errors but cannot find their absence. For example, we generate a test case,
{(a, 5), (n_f, 2)}, from the test condition a > 0 and n_f > 1 and a <= 12 of
functional scenario (2), as illustrated in Table 1. Executing the program with this
test case, the path [(1)(2)≤(4)(5)] will be traversed. The result of the execution is
a_f = 2∗∗2−2−2∗0.5 = 1. This result does not indicate the existence of error
because when the test condition a > 0 and n_f > 1 and a <= 12 is satisfied by
the test case, the defining condition a_f = n_f − n_f ∗ 0.5 is also satisfied by
the output a_f = 1 (because 1 = 2−2∗0.5 <=> true), which proves that in this
case, the program correctly implements the functional scenario. But obviously
the path contains an error.

One solution to this problem is to perform a formal verification based on
Hoare logic to check whether the traversed path is correct with respect to the
functional scenario. But if the program path involves expressions in assignments

8 S. Liu and S. Nakajima

Table 1. A test example

Test case: a = 5, n_f = 2
Test condition: a > 0 and n_f > 1 and a <= 12
Functional scenario: a > 0 and n_f > 1 and a <= 12 and

a_f = n_f − n_f ∗ 0.5

with side effect or complex data structures, such as arraylist of objects in Java,
the axioms in Hoare logic may not be applied successfully. In this case, the formal
specification-based inspection method can be applied to replace the formal proof.

2.2 Formal Specification-Based Inspection

The formal specification-based inspection method we developed previously
exploits the ability to decompose a pre-post style specification into a set of func-
tional scenarios (or simply scenarios) and to decompose a program into a set of
program paths (or simply paths) [9]. In principle, each functional scenario should
be implemented by a set of paths (can be single path). If the program correctly
implements the specification, every path of the program must contribute to the
implementation of some functional scenario in the specification. Therefore, the
underlying principle of inspection using the method is to check whether every
scenario in the specification is implemented correctly by some paths in the pro-
gram and whether every path in the program contributes to the implementation
of some scenario in the specification. The characteristic of the method is that
the checklist, containing a set of questions for inspection, is derived from the
functional scenarios in the specification and the judgement of the correctness of
each path with respect to the corresponding functional scenario will be made by
the human inspector.

3 Principle of TBFV

TBFV proposed in this paper provides a specific technique for verifying the
correctness of traversed program paths identified using FSBT. The principle
underlying the technique includes the following three points:

– Using FSBT to generate adequate test cases to identify all of the represen-
tative paths in the program under testing; each path is traversed by using at
least one test case. A representative path is formed by treating an iteration as
an if-then-else construct to ensure that the body of the iteration is executed
at least once and the iteration terminates, and by treating all of the other
constructs as same as their original form.

– Let ˜Spre ∧ Ci ∧ Di (i = 1, ..., n) denote a functional scenario and test case t
be generated from the test condition ˜Spre ∧ Ci. Let p = [sc1, sc2, ..., scm] be
a program path in which each scj (j = 1, ...,m) is called a program segment,
which is a decision (i.e., a predicate), an assignment, a “return” statement,

Combining Specification-Based Testing 9

or a printing statement. Assume path p is traversed by using test case t. To
verify the correctness of p with respect to the functional scenario, we form a
path triple

{˜Spre} p {Ci ∧ Di} .

The path triple is similar in structure to Hoare triple, but is specialized to a
single path rather than the whole program. It means that if the pre-condition
˜Spre of the program is true before path p is executed, the post-condition
Ci ∧ Di of path p will be true on its termination.

– Repeatedly applying the axiom for assignment or the axiom we provide below
for other relevant statements, we can derive a pre-condition, denoted by ppre,
to form the following expression:

{˜Spre(˜x/x)} {ppre(˜x/x)} p {Ci ∧ Di(˜x/x)} .

where ˜Spre(˜x/x), ppre(˜x/x) and Ci ∧ Di(˜x/x) are a predicate resulting
from substituting every decorated input variable ˜x for the corresponding
input variable x in the corresponding predicate, respectively. These substitu-
tions are necessary to avoid confusion between the input variables and the
internally updated variables (which may share the same name as the input
variables).

Finally, if the implication ˜Spre(˜x/x) => ppre(˜x/x) can be proved, it
means that no error exists on the path; otherwise, it indicates the existence
of some error on the path.

The axioms for the other relevant statements or decisions are given below.

{Q}S{Q} [1],

where S is one of the three kinds of program segments: “return” statement,
and printing statement. The axiom describes that the pre-condition and post-
condition for any of the three kinds of program segments are the same because
none of them changes states.

{S∧Q}S{Q} [2],

where S is a condition (predicate), which may be used in a if-then-else statement
or a while statement. this axiom states that if the program segment is a condition,
the derived pre-condition should be a conjunction of the condition and the post-
condition. We call axioms [1] and [2] axioms for non-change segment.

It is worth mentioning that since the application of the axioms for assignment
and for non-change segment involves only syntactical manipulation, deriving the
pre-condition ppre(˜x/x) can be automatically carried out, but formally proving
the implication ˜Spre(˜x/x) => ppre(˜x/x) , which we simply write as ˜Spre =>
ppre below in this paper, may not be done automatically, even with the help

10 S. Liu and S. Nakajima

of a theorem prover such as PVS, depending on the complexity of ˜Spre and
ppre. If achieving a full automation is regarded as the highest priority, as taken
in our approach, the formal proof of this implication can be “replaced” by a
test. That is, we first generate sample values for variables in ˜Spre and ppre,
and then evaluate both of them to see whether ppre is false when ˜Spre is true.
If this is true, it tells that the path under examination contains an error. Since the
testing technique is already available in the literature [3,10], we do not repeat the
detail in this paper for the sake of space. Our experience suggests that in many
realistic circumstances, testing can be both practical and beneficial. However, if
the correctness assurance is regarded as the highest priority, a formal proof of
the implication must be performed.

In fact, both the testing and formal proof approaches have drawbacks. If
the traversed path contains no bugs, the implication ˜Spre => ppre will always
hold for all the possible values of free variables in the implication. Using testing
to determine this fact usually requires an exhaustive testing, which is gener-
ally impossible in practice unless the scope of the program is small enough. In
this case, inspection of the implication can be adopted after a sufficiently large
number of testing have been carried out. The rigorous inspection method based
on an inspection task tree notation proposed in our previous work [11] can be
utilized for this task. The reader can refer to that publication for details. As far
as the formal proof is concerned, inspection can also be adopted to detect bugs
contained on the traversed path. If the path contains bugs, the formal proof of
the implication ˜Spre => ppre should not be done successfully. Bugs on the path
must be first removed before another trial of formal proof, but how to find the
bugs is still an open problem for formal proof: no general way of using formal
proof to locate bugs is suggested in the literature. In this case, our rigorous
inspection method can also be adopted for debugging of the path.

4 Example

We have conducted a case study to apply our TBFV approach to test and verify
a simplified version of the IC card system for JR commute train service in Tokyo.
Our experience shows that the approach is feasible and can be effective in general
but also faces some challenges or limitations that need to be addressed in the
future research, as elaborated in Sect. 6. The system we used is designed to offer
the following functional services: (1) Controlling access to and exit from a railway
station, (2) Buying tickets using the IC card, (3) Recharging the card by cash or
through a bank account, and (4) Buying a railway pass for a certain period (e.g.,
for one month or three months). Due to the limit of space, we cannot present all
of the details, but take one of the internal operations used in the system, which
is ChildFareDiscount mentioned above, as an example to illustrate how TBFV
is applied to rigorously test the corresponding program. The program contains
three paths, it is necessary to formally verify all of the three paths. Since the
process of the verification is the same for all the paths, we only use the path
[(1)(2)≤(4)(5)] that is traversed by using the test case {(a, 5), (n_f, 2)} as an
example for explanation.

Combining Specification-Based Testing 11

Firstly, we form the path triple:

{˜a > 0 and ˜n_f > 1}
[a > 0 && n_f > 1
a <= 12,
a_f := n_f ∗ ∗2 − n_f − n_f ∗ 0.5,
return a_f]

{˜a <= 12 and a_f = ˜n_f − ˜n_f ∗ 0.5}
where ˜a > 0 and ˜n_f > 1 is the result of substituting ˜a and ˜n_f for
input variables a and n_f , respectively, in the pre-condition of the program,
and ˜a <= 12 and a_f = ˜n_f − ˜n_f ∗ 0.5 is the result of completing the
similar substitution in the post-condition.

Secondly, we repeatedly apply the axiom for assignment or the one for non-
change segment to this path triple, starting from the post-condition. As a result,
we form the following path, known as asserted path, with derived internal asser-
tions between two program segments:

{˜a > 0 and ˜n_f > 1}
{˜a <= 12 and
˜n_f ∗ ∗2 − ˜n_f − ˜n_f ∗ 0.5 = ˜n_f − ˜n_f ∗ 0.5}
a > 0 && n_f > 1

{a <= 12 and ˜a <= 12 and
n_f ∗ ∗2 − n_f − n_f ∗ 0.5 = ˜n_f − ˜n_f ∗ 0.5}
a <= 12

{˜a <= 12 and
n_f ∗ ∗2 − n_f − n_f ∗ 0.5 = ˜n_f − ˜n_f ∗ 0.5}
a_f := n_f ∗ ∗2 − n_f − n_f ∗ 0.5

{˜a <= 12 and a_f = ˜n_f − ˜n_f ∗ 0.5}
return a_f

{˜a <= 12 and a_f = ˜n_f − ˜n_f ∗ 0.5}

where the assertion ˜a <= 12 and˜n_f ∗∗2−˜n_f −˜n_f ∗0.5 = ˜n_f −˜n_f ∗
0.5, the second from the top of the sequence, is the result of substituting ˜a for a
and ˜n_f for n_f in the derived assertion {˜a <= 12 and ˜a <= 12 and n_f ∗
∗2 − n_f − n_f ∗ 0.5 = ˜n_f − ˜n_f ∗ 0.5. As explained previously, this is
necessary in order to keep consistency of the input variables a and n_f in the
original pre-condition (appearing as ˜a and ˜n_f) and the derived pre-condition.

Thirdly, we need to judge the validity of the implication ˜a > 0 and ˜n_f >
1 => ˜a <= 12 and ˜n_f ∗ ∗2 − ˜n_f − ˜n_f ∗ 0.5 = ˜n_f − ˜n_f ∗ 0.5. Using
the test case {(˜a, 5), (˜n_f, 8)}, we can easily prove that the implication is false
(the evaluation detail is omitted due to space limit).

From this example, we can see that sometimes testing can be even more
efficient than formal proof in judging the validity of the implication when an
error exists on the path, but if the path contains no error, testing will be almost
impossible to give a firm conclusion in general. In that case, the specification-
based inspection can be applied to check whether the path correctly implements
the corresponding functional scenario. The inspection can also be valuable if the
path cannot be formally proved for the reasons as mentioned previously.

12 S. Liu and S. Nakajima

5 Dealing with Iteration and Method Invocation

For the sake of space, we only briefly discuss how our method deals with itera-
tions and method invocations that are frequently used in programs.

5.1 Iteration

Let us take a while loop, while B do S, as an example. When using a test case
to run the program that entails running of this loop, a subpath generated by
executing the loop will be traversed. Assume the subpath is as follows:

[B, S, B, S, B, S, not B],

since this is a single program path, the same method explained in the previous
section can be applied to derive a pre-condition, and the same principle of using
formal proof or testing can also be used to determine the correctness of the path.
Because there is no new technique involved in dealing with iterations, we omit
the further discussion.

5.2 Method Invocation

If a method invocation is used as a statement, it may change the current state of
the program. Therefore, the traversed path within the invoked method will have to
be taken into account in deriving the pre-condition of the program under testing.

Let us change the program ChildFareDiscount and organize the implemen-
tation into a class called FareDiscount below.

class FareDiscount {
int tem; //instance variable

int ChildFareDiscount1(int a, int n_f) {
(1) Discount(n_f);
(2) if (a > 0 && n_f > 1){
(3) if (a > 12)
(4) a_f := n_f ;
(5) else a_f := n_f ∗ ∗2 − n_f − tem;
(6) return a_f ; }
(7) else System.out.println(“the precondition is violated.j);

}

void Discount(int x){
int r;

(1.1) r := x ∗ 0.5;
(1.2) tem := r; }

}

When running the method ChildFareDiscount1 in which the method
Discount(n_f) is invoked, we obtain three paths: [(1)(2)(3)(4)(6)], [(1)(2)(3)≤(5)

Combining Specification-Based Testing 13

(6)], and [(1)(2)≤(7)], where segment (1) is a subpath [(1.1)(1.2)](n_f/x), denot-
ing the path resulting from substituting actual parameter n_f for formal para-
meter x in the subpath [(1.1)(1.2)]. Thus, [(1)(2)(3)≤(5)(6)] for example, actually
means the path after inserting the traversed path in Discount into the traversed
path in ChildFareDiscount1, which is simply represented by [(1.1)(1.2)(2)(3)≤(5)
(6)]. Selecting the same test case {(a, 5), (n_f, 2)} as before to run the program,
we make the path [(1.1)(1.2)(2)(3)≤(5)(6)] traversed. We then form the asserted
path as follows:

{˜a > 0 and ˜n_f > 1}
{˜a <= 12 and
˜n_f ∗ ∗2 − ˜n_f − ˜n_f ∗ 0.5 = ˜n_f − ˜n_f ∗ 0.5}
r := n_f ∗ 0.5

{˜a <= 12
n_f ∗ ∗2 − n_f − r = ˜n_f − ˜n_f ∗ 0.5}
tem := r

{˜a <= 12 and
n_f ∗ ∗2 − n_f − tem = ˜n_f − ˜n_f ∗ 0.5}
a > 0 && n_f > 1

{˜a <= 12 and
n_f ∗ ∗2 − n_f − tem = ˜n_f − ˜n_f ∗ 0.5}

a <= 12
{˜a <= 12 and
n_f ∗ ∗2 − n_f − tem = ˜n_f − ˜n_f ∗ 0.5}
a_f := n_f ∗ ∗2 − n_f − tem

{˜a <= 12 and a_f = ˜n_f − ˜n_f ∗ 0.5}
return a_f

{˜a <= 12 and a_f = ˜n_f − ˜n_f ∗ 0.5}

where the subpath [r := n_f ∗ 0.5, tem := r] is the result of substituting actual
parameter n_f used in the method invocation Discount(n_f) for
formal parameter x used in the method definition in the original subpath [r :=
x ∗ 0.5, tem := r]. Similarly, we can easily use testing to prove that the implica-
tion ˜a > 0 and ˜n_f > 1 => ˜a <= 12 and ˜n_f ∗ ∗2 − ˜n_f − ˜n_f ∗ 0.5 =
˜n_f − ˜n_f ∗ 0.5 is false, indicating that an error is found on the path.

6 Potential Challenges

While our experience in the case study mentioned above shows that applying
TBFV to practical systems is feasible and can be effective, we have also learned
two major potential challenges or limitations. One is that if the expression E in
the assignment x := E has a side effect (e.g., in addition to returning a value,
it also modifies some state or has an observable interaction with calling func-
tions), the axiom for assignment in Hoare logic is no longer valid. TBFV inherits
this limitation from Hoare logic, but how to automatically resolve the side effect
without affecting the semantics of the original expression remains a topic for

14 S. Liu and S. Nakajima

further research. A possible solution is to train programmers to avoid side effect
in expressions, but there is no guarantee of its effect in practice. Another way
to deal with this problem is to apply the inspection method to allow human
to check the correctness, but this would be extremely difficult to be performed
automatically in general. The other challenge is that if the program under test-
ing invokes a method (as a call statement) of a software component (e.g., a
class in Java API) whose source code is not available to the tester, TBFV
may not work well. The difficulty is that automatically inserting probes (mon-
itors) to identify traversed program paths is impossible in this case. However,
since most embedded programs are small in size and independent of any
existing software components, applying TBFV should encounter few problems
in this aspect.

To deal with realistic programs in general, TBFV can be applied flexibly. For
the programs whose source code is available and expressions do not have side
effect, the technique described in this paper can be applied, but for those with
the above two challenges or limitations, the functional scenario-based testing
technique combined with inspection can be more exploited.

7 Related Work

Research on integration of Hoare logic and testing seems to mainly concentrate
on using pre- and post-assertions in Hoare triple for test case generation and
test result analysis, but none of them takes the same approach as our TBFV to
solve the same problem in specification-based testing.

One of the earliest efforts is Meyer’s view of Design By Contract (DBC)
implemented in the programming language Eiffel [12,13]. Eiffel’s success in check-
ing pre- and post-conditions and encouraging the DBC discipline in programming
partly contributed to the development of the similar work for other languages
such as the Sunit testing system for Smalltalk [14]. Cheon and Leavens describe
an approach to unit testing that uses a formal specification language’s run-
time assertion checker to decide whether methods are working correctly with
respect to a formal specification using pre- and post-conditions, and have imple-
mented this idea using the Java Modeling Language (JML) and the JUnit testing
framework [15]. Gray and Microsoft describe another approach to testing Java
programs using Hoare-style specifications [16]. They show how logical test speci-
fications with a more relaxed post-condition than existing restricted Hoare-style
post-condition can be embedded within Java and how the resulting test spec-
ification language can be compiled into Java for executable validation of the
program. There are many other similar results in the literature, but we have to
omit them due to the space limit.

8 Conclusion and Future Research

We presented a new approach, known as testing-based formal verification
(TBFV), for error detection in programs by integrating specification-based test-
ing, Hoare logic, and specification-based inspection. The principle underlying

Combining Specification-Based Testing 15

TBFV is first to use the functional scenario-based testing (FSBT) to achieve a
(representative) path coverage in the program under testing, and then to apply
the Hoare logic-based approach to formally verify the correctness of every tra-
versed path. When the verification is impractical, inspection is adopted to replace
the role of proof.

While focusing on the presentation of the essential idea of the TBFV app-
roach and an example from the case study to show its feasibility and potential
effectiveness in this paper, a controlled experiment needs to be conducted to
systematically assess the effectiveness and to compare with the related testing
and formal verification approaches. Further research is also needed to address
the two major challenges mentioned in Sect. 6 and tool support issues.

References

1. Hoare, C.A.R., Wirth, N.: An axiomatic definition of the programming language
PASCAL. Acta Inf. 2(4), 335–355 (1973)

2. Khurshid, S., Marinov, D.: TestEra: specification-based testing of Java programs
using SAT. Autom. Softw. Eng. 11(4), 403–434 (2004)

3. Liu, S., Nakajima, S.: A decompositional approach to automatic test case gen-
eration based on formal specifications. In: 4th IEEE International Conference on
Secure Software Integration and Reliability Improvement (SSIRI 2010), Singapore,
9–11 June 2010, pp. 147–155. IEEE CS Press (2010)

4. Liu, S.: Utilizing Hoare logic to strengthen testing for error detection in programs.
In: Proceedings of the Turing Centenary Conference, June 2012. EPiC Series,
Manchester, UK, pp. 229–238 (2012)

5. Parnas, D.L., Madey, J., Iglewski, M.: Precise documentation of well-structured
programs. IEEE Trans. Softw. Eng. 20(12), 948–976 (1994)

6. Aurum, A., Petersson, H., Wohlin, C.: State-of-the-art: software inspections after
25 years. Softw. Test. Verification Reliab. 12(3), 133–154 (2002)

7. Liu, S., Hayashi, T., Takahashi, K., Kimura, K., Nakayama, T., Nakajima, S.:
Automatic transformation from formal specifications to functional scenario forms
for automatic test case generation. In: 9th International Conference on Software
Methodologies, Tools and Techniques (SoMet 2010), Yokohama City, Japan, Sep-
tember 29–October 1 (page to appear). IOS International Publisher (2010)

8. Liu, S.: Formal Engineering for Industrial Software Development Using the SOFL
Method. Springer, Heidelberg (2004). ISBN 3-540-20602-7

9. Liu, S., Chen, Y., Nagoay, F., McDermid, J.: Formal specification-based inspection
for verification of programs. IEEE Trans. Softw. Eng. 38(5), 1100–1122 (2012)

10. Liu, S., Nakajima, S.: A “Vibration” method for automatically generating test
cases based on formal specifications. In: 18th Asia-Pacific Software Engineering
Conference (APSEC 2011), HCM city, Vietnam, 5–8 December 2011, pp. 73–80.
IEEE CS Press (2011)

11. Liu, S., McDermid, J.A., Chen, Y.: A rigorous method for inspection of model-
based formal specifications. IEEE Trans. Reliab. 59(4), 667–684 (2010)

12. Meyer, B.: Applying design by contract. IEEE Comput. 25(10), 40–51 (1992)
13. Meyer, B.: Eiffel: The Language. Object-Oriented Series. Prentice Hall, Upper

Saddle River (1991)
14. Castellon, M.C., Molina, J.G., Pimentel, E., Repiso, I.: Design by contract in

smalltalk. J. Object-Oriented Program. 9(7), 23–28 (1996)

16 S. Liu and S. Nakajima

15. Cheon, Y., Leavens, G.T.: A simple and practical approach to unit testing: the
JML and JUnit way. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp.
231–234. Springer, Heidelberg (2002)

16. Gray, K.E., Mycroft, A.: Logical testing: Hoare-style specification. In: Chechik, M.,
Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 186–200. Springer, Heidelberg
(2009)

Theory of Test Modeling Based on Regular
Expressions

Pan Liu1,2(&) and Huaikou Miao3

1 College of Computer Engineering and Science, Shanghai Business School,
Shanghai 201400, China
Panl008@163.com

2 Shanghai Key Laboratory of Computer Software Testing and Evaluating,
Shanghai 201112, China

3 School of Computer Engineering and Science, Shanghai University,
Shanghai 200072, China

Abstract. This paper presents a theory of test modeling by using regular
expressions for software behaviors. Unlike the earlier modeling theory of
regular expression, the proposed theory is used to build a test model which can
derive effective test sequences easily. We firstly establish an expression alge-
braic system by means of transition sequences and a set of operators. And we
then give the modeling method for behaviors of software under test based on
this algebraic system. Some examples are also given for illustrating our test
modeling method. Compared with the finite state machine model, the expres-
sion model is more expressive for the concurrent system and can provide the
accurate and concise description of software behaviors.

Keywords: Test modeling � Regular expression � Expression algebraic
system � Concurrent operation

1 Introduction

Software testing is a critical activity to assure software quality [1]. However, earlier
studies have shown that software testing can consume more than fifty percent of the
development costs [2]. Therefore automating software testing as a long-term goal has
been highlighted in the industry for many years. Model-based testing [3–5], as a
method of automatic test, has been widely studied to generate abstract test sequences.
The finite state machine (FSM [6, 7]), a formal notation for describing software
behaviors, is often employed for test modeling and test generation, forming a series of
test generation methods [8–10].

For a concurrent system, however, it is hard to build a model by FSM due to the
limitation of the expressive power of FSM. Therefore the other modeling methods
have been suggested for modeling concurrent systems. For example, Petri nets [11,
12] was used for modeling software behaviors and generating test cases for accessi-
bility test [13]. However, Petri nets easily causes the state-space explosion problem
[14] when the system is complex. Regular expressions are also used to build the model
of distributed systems, such as path expressions [15], behavior expressions [16] and

S. Liu and Z. Duan (Eds.): SOFL+MSVL 2013, LNCS 8332, pp. 17–31, 2014.
DOI: 10.1007/978-3-319-04915-1_2, � Springer International Publishing Switzerland 2014

extended regular expression [17]. Garg et al. [16, 18] proposed an algebraic model
called concurrent regular expressions for modeling and analysis of distributed sys-
tems. However, this algebraic model is suitable for model checking and not for test
generation because it lacks of the essential path information, which consists of the
initial node, the terminal node and path sequences. Ravi et al. [19] proposed a novel
methodology for high-level testability analysis and optimization of register-transfer
level controller/data path circuits based on regular expressions. Qian et al. [20] pre-
sented a method to generate test sequences from regular expressions describing
software behaviors. This method firstly uses the FSM to build the model of software
behaviors. And then the FSM is converted into a regular expression according to three
construction rules. Finally, test sequences are obtained from this regular expression.
However, the suggested expression model does not have the capability for describing
concurrent operations because regular expressions are derived from FSM.

In this paper, we suggest constructing the test model by regular expressions for
software behaviors. Referring to the modeling theories of concurrent regular
expressions in [16, 18] and that of FSM in [7, 21], we set up an expression algebraic
system. And some examples are employed for illustrating our modeling approaches.

The rest of this paper is organized as follows. Section 2 presents the expression
algebraic system. Section 3 introduces the method of test modeling by regular
expressions. Some examples of test modeling are presented in Sect. 4. Section 5
discusses the advantages and disadvantages between the traditional test generation
method and our test generation method. Section 6 concludes the whole paper.

2 Expression Algebraic System

Before we introduce the expression algebraic system, the definition of FSM needs to
be introduced so that we can build the bridge between the regular expression and
FSM.

A finite-state machine (FSM) [22, 23] M ¼ \S; I;O; f ; g; s0 [consists of a finite
set S of states, a finite input alphabet I, a finite output alphabet O, a transition function
f that assigns to each state and input pair a new state, an output function g that assigns
to each state and input pair an output, and an initial state s0. According to the defi-
nition of FSM, we give the definitions of both transition and transition sequence.

Definition 1 (transition): A transition of FSM is defined by t ¼ s1; i=o; s2ð Þ, where
f s1; ið Þ ¼ s2; i 2 I; g s1; ið Þ ¼ o; o 2 O; s1 is the pre-state of t, s2 is the next-state of t,
i is the transition condition of t and o is the output result of t.

Definition 2 (transition sequence): For any transition a, the syntax of the transition
sequence ts can be defined via Backus-Naur form:

ts ::¼ e j a j a:ts j ts:a j ts:ts;

Where e denotes the empty and ts is any transition sequence.

Let R be a nonempty set of transition sequences in FSM, and e ¼ a0 for any a 2 R.
Let #ts denote the number of transitions in ts.

18 P. Liu and H. Miao

Definition 3 (software regular expression): A software regular expression
describing software behaviors is an expression consisting of symbols from R and the
operators |, +,., *, a (), �, and ||, which are defined as follows:

| denotes the choice operator;
. denotes the concatenation operator;
* is the Kleene closure;
+ is the positive closure;
a is a positive integer which denotes the alpha closure;
() denotes the range;
� denotes the synchronization;
|| indicates the concurrent operator

In Defintion 3, the descriptions of four operators |,., * and ? refer to the statements
in [16, 20]. We set the priority of operators high to low: (), *, ? and a,., � and ||, |.

Definition 4 (expression algebraic system): An expression algebraic system con-
sists of both R and the operators |, +,., *, a (), �, and ||, denoted as \ R, |, +,., *, a (), �,
|| [, and e is the identity element of this system.

3 Test Modeling

In this section, we do not take account of the inputs and outputs on transitions and all
transitions are directly labeled on the edges of the graphs.

3.1 Concatenation Operator

A software behavior model with the concatenation operator shown in Fig. 1 can be
described by t1.t2, where t1 and t2 are two transitions, and t2 is occurred after t1. The
concatenation operator satisfies the following properties:

(1) 8a; b 2 R � a:b 6¼ b:a) a 6¼ b ^ a 6¼ e ^ b 6¼ e
(2) 8a; b; c 2 R � a:b:c ¼ a:bð Þ:c ¼ a: b:cð Þ
(3) 8a 2 R � a:e ¼ e:a ¼ a

3.2 Choice Operator

Let the symbol | denote the choice operator. In the model shown in Fig. 2, the
transitions t3 and t2 are alternative. So the model can be described by t1.(t3|t2), where t3

s0 s2s1
t1 t2

Fig. 1. The software behavior model with the concatenation operator.

Theory of Test Modeling Based on Regular Expressions 19

or t2 is executed in accordance with the different inputs on s1. The choice operator
satisfies the following properties:

(1) 8a; b 2 R � ajb) a _ b:
(2) 8a; b 2 R � ajb ¼ bja Commutativityð Þ
(3) 8a; b; c 2 R � ajbjc ¼ ajbð Þjc ¼ aj bjcð Þ Associativityð Þ
(4) 8a 2 R � aje ¼ eja ¼ a
(5) 8a 2 R � aja ¼ a Identityð Þ
(6) 8a; b1; b2; . . .; bn 2 R � a: b1jb2j. . .jbnð Þ ¼ a:b1ja:b2j. . .ja:bn Distributivityð Þ
(7) 8a1; a2; . . .; an; b 2 R � a1ja2j. . .janð Þ:b ¼ a1:bja2:bj. . .jan:b Distributivityð Þ

3.3 Kleene Closure

Let the symbol * denotes the Kleene closure. Then the model shown in Fig. 3 can be
described as t1.t2

*.t3, where t2 can be executed repeatedly. The Kleene closure satisfies
the following properties:

(1) 8a 2 R � a� ¼
S

i¼0;1;...
ai

(2) 8a 2 R � a�ð Þ�¼ a� Absorptionð Þ
(3) ai 2 R ^ 1� i� n � a1ja2j. . .janð Þ�¼ a�1ja�2j. . .ja�n Distributivityð Þ
(4) e� ¼ e

3.4 Positive Closure

Let the symbol ? denote the positive closure. E.g., a+ denotes that a is executed at
least once. The model of a temperature control system is shown in Fig. 4, where

– s0 is the initial state,
– s2 is the terminal state,

s0 s2s1
t1 t2

s3

t3

Fig. 2. The software behavior model with the choice operator.

s0 s2s1
t1 t3

t2

Fig. 3. The software behavior model with the Kleene closure.

20 P. Liu and H. Miao

– t0 denotes that the engine of the temperature control system is launched,
– t2 denotes the heating-up process when the temperature on s1 is lower than the given

threshold x,
– t3 denoted that the engine stops working,
– t4 denotes the cooling process when the temperature on s2 is still greater than x,
– t5 denoted the warming process is triggered and the system will return to s1.

This model can be described by t1: tþ2 :t3:t
þ
4 :t5

� ��
:tþ2 :t3:t

þ
4 . The positive closure

satisfies the following properties:

(1) 8a 2 R � aþ ¼
S

i¼1;2;...
ai

(2) 8a 2 R � aþ ¼ a:a� ¼ a�:a
(3) 8a 2 R � a:aþ ¼ aþ:a ¼ aþ

(4) 8a 2 R � aþð Þþ¼ aþ Absorptionð Þ
(5) ai 2 R ^ 1� i� n � a1ja2j. . .janð Þþ¼ aþ1 jaþ2 j. . .jaþn Distributivityð Þ
(6) eþ ¼ e

3.5 Alpha-closure

Let a be the alpha-closure, which denotes a maximum cycle times. E.g., ba denotes
that the transition b is executed repeatedly a times. The model of an online bank login
system is shown in Fig. 5. If the user types the wrong username or password for three

s0 s2
t1 t3

t2
s1

t4

t5

Fig. 4. The software behavior model with the positive closure.

s0 s1

s2

t1
t2

t3

Fig. 5. The software behavior model with the alpha-closure.

Theory of Test Modeling Based on Regular Expressions 21

times, the system will be automatically locked for 24 h. The symbols in this model
denote as follows:

– s0 denotes the login page,
– s1 is the main page,
– s2 denotes the locked page,
– t1 denotes the self-check on s0,
– t2 denotes the login success,
– t3 denotes the login failure.

According to the above description of system, there exists a ¼ 3 and this system
can be described by t3

1:t3jt2jt1:t2jt2
1:t2. The alpha-closure satisfies the following

Properties:

(1) 8a 2 R � aa ¼ a:a. . .a
zfflfflffl}|fflfflffl{

a

(2) 8a 2 R � a:aa ¼ aa:a ¼ aa

(3) ai 2 R ^ 1� i� n � a1ja2j. . .janð Þa¼ aa
1jaa

2j. . .jaa
n Distributivityð Þ

(4) 8a 2 R � a�ð Þa¼ ðaaÞ� ¼ aa Absorptionð Þ
(5) 8a 2 R � aþð Þa¼ ðaaÞþ ¼ aa Absorptionð Þ
(6) ea ¼ e

3.6 Synchronous Operator

Let the symbol � denote the synchronous operator, which can describe the synchro-
nization between two or more transition sequences. E.g., a � b denotes that both a and
b are synchronized in the system. A simple model of the bus scheduling system at the
terminal station is shown in Fig. 6. In this system, buses entering and leaving the
station are synchronous. The symbols in this model denote as follows:

– s0 denotes the initial state of the terminal station,
– s1 denotes the state of the terminal station after a period of time,
– t1 denotes the sequences of the buses entering the station,
– t2 denotes the sequences of the buses leaving the station.

This model can be described by t1 � t2. The synchronous operator satisfies the
following Properties:

(1) 8a; b 2 R � a � b ¼ b � a Commutativityð Þ
(2) 8a 2 R � a � e ¼ a

s0 s1

t1

t2

Fig. 6. The software behavior model with the synchronous operator.

22 P. Liu and H. Miao

(3) 8a; b; c 2 R � a � b � c ¼ ða � bÞ � c ¼ a � ðb � cÞ Associativityð Þ
(4) 8a; b 2 R �#a ¼ #b ¼ 1) a � b ¼ a:bjb:a
(5) 8a; b; c 2 R � a � b:c ¼ a � bð Þ:cð Þj b: a � cð Þð Þ
(6) 8a; b; c 2 R � a:b � c ¼ a � cð Þ:bð Þj a: b � cð Þð Þ
(7) 8a; b1; . . .; bn 2 R � a � b1jb2j. . .jbnð Þ

¼ a � b1ð Þj a � b2ð Þj. . .j a � bnð Þ Distributivityð Þ

Theorem 1
8a; b; c; d 2 R �#a ¼ #b ¼ #c ¼ #d ¼ 1) ða:b � c:d ¼ a:b:c:dja:c:b:dj

a:c:d:bjc:a:b:djc:a:d:bjc:d:a:bÞ:

Proof. According to the Property (5) of � ,

a:b � c:d ¼ a:b � cð Þ:dð Þj c: a:b � dð Þð Þ ð1Þ

By the Property (6) of � ,

a:b � c ¼ a � cð Þ:bja: b � cð Þ ð2Þ

By the Property (4) of � and #a ¼ #b ¼ #c ¼ #d ¼ 1,

a � c ¼ a:cjc:a ð3Þ

b � c ¼ b:cjc:b ð4Þ

From Eqs. (2)–(4) and the Properties (3) and (7) of |,

a:b � c ¼ a:cjc:að Þ:bja: b:cjc:bð Þ
¼ a:c:bjc:a:bð Þ a:b:cja:b:cð Þ
¼ a:c:bjc:a:bja:b:cja:c:b ð5Þ

By the Property (6) of � ,

a:b � d ¼ a � dð Þ:bja: b � dð Þ ð6Þ

According to the Property (4) of � and #a ¼ #b ¼ #c ¼ #d ¼ 1,

a � d ¼ a:djd:a ð7Þ

b � d ¼ b:djd:b ð8Þ

From Eqs. (6)–(8) and the Properties (3) and (7) of |,

a:b � d ¼ a:djd:að Þ:bja: b:djd:bð Þ
¼ a:d:bjd:a:bð Þj a:b:dja:d:bð Þ
¼ a:d:bjd:a:bja:b:d ð9Þ

Theory of Test Modeling Based on Regular Expressions 23

By the Properties (3), (6) and (7) of |,

a:b � cð Þ:d ¼ a:c:bjc:a:bja:b:cja:c:bð Þ:d
¼ a:c:b:djc:a:b:dja:b:c:dja:c:b:d ð10Þ

c: a:b � dð Þ ¼ c: a:d:bjd:a:bja:b:dja:d:bð Þ
¼ c:a:d:bjc:d:a:bjc:a:b:d ð11Þ

From Eqs. (1) (10) and (11),
a:b � c:d ¼ a:c:b:djc:a:b:dja:b:c:dja:c:b:djc:a:d:bjc:d:a:bjc:a:b:d

¼ a:c:b:djc:a:b:dja:b:c:dja:c:b:djc:a:d:bjc:d:a:b
h

Theorem 2: The synchronous operator between any two transition sequences is equal
to the Choice Operator of the Finite Transition Sequences, denoted as COFTS.

Proof. Assume that two transition sequences are A ¼ a1:a2. . .ai and B ¼ b1:b2. . .bj,
where ak 1� k� ið Þ and bl 1� l� jð Þ are two transitions. The Proof of Theorem 2
includes two phases: (1) let i = 1 and then prove A � B ¼ a1 � b1:b2. . .bj

� �
is

COFTS, and (2) prove A � B ¼ a1:a2. . .aið Þ � b1:b2. . .bj

� �
is COFTS.

Base case 1: i = 1 and j = 1.
According to the Property (4) of � and the assumption that a1 and b1 are two

transitions,
A � B ¼ a1 � b1 ¼ a1:b1jb1:a1; ð12Þ

which are the choice operation of two transition sequences.

Base case 2: i = 1 and j = 2.
According to the Properties (4) and (5) of � and the Properties (3), (6) and (7) of |,

A � B ¼ a1 � b1:b2

¼ a1 � b1ð Þ:b2ð Þj b1: a1 � b2ð Þð Þ
¼ a1:b1jb1:a1ð Þ:b2ð Þ ðb1:ða1:b2j jb2:a1ÞÞ
¼ a1:b1:b2 b1:a1:b2j jb1:a1:b2jb1:b2:a1 ð13Þ

which are the choice operation of four transition sequences.

Inductive hypothesis 1. Assume that Theorem 2 is true for i = 1 and j = m–1. That is,

A � B ¼ C1jC2j. . .jCk; ð14Þ

where C1…Ck are transition sequences and k is a finite positive integer.
We need to prove A� B is also COFTS for i = 1 and j = m. Assume

B1 = b1.b2…bm–1. Then according to the property (5) of � ,

A � B ¼ a1 � B1:bm

¼ ða1 � B1Þ:bmj B1:ða1 � bmÞ ð15Þ

24 P. Liu and H. Miao

According to Inductive hypothesis 1,

a1 � B1 ¼ C1 C2j j. . .jCk ð16Þ

By the property (4) of � , and both a1 and bm are two transitions,

a1 � bm ¼ a1:bmjbm:a1 ð17Þ

which is COFTS.
Hence according to the Property (6) of |,

B1: a1 � bmð Þ ¼ B1: a1:bmjbm:a1ð Þ
¼ ðb1:b2. . .bm�1Þ:ða1:bmjbm:a1Þ
¼ b1:b2. . .bm�1:a1:bmjb1:b2. . .bm�1:bm:a1 ð18Þ

which is COFTS.
From Eqs. (15), (17)–(18),

A � B ¼ a1:bmjbm:a1jb1:b2. . .bm�1:a1:bmjb1:b2. . .bm�1:bm:a1 ð19Þ

which is COFTS.

Hence theorem 2 is true for i ¼ 1 and any j: ð20Þ

Inductive hypothesis 2. Assume that Theorem 2 is true for i = n–1 and any j. That is,

A � B ¼ D1jD2 . . .j jDl; ð21Þ

where D1…Dl are transition sequences and l is a finite positive integer.
We need to prove A � B is also COFTS for i = n and any j. Assume A1 ¼

a1:a2. . .an�1. Then according to the property (6) of � ,

A � B ¼ A1:an � B

¼ A1:an � b1:b2. . .bj

¼ ðA1 � b1:b2. . .bjÞ:anjA1:ðan � b1:b2. . .bjÞ ð22Þ

According to Inductive hypothesis 2,

ðA1 � b1:b2. . .bjÞ ¼ D1jD2 . . .j jDl ð23Þ

which is COFTS.
From (22) and the Property (7) of |,

ðA1 � b1:b2. . .bjÞ:an ¼ ðD1jD2 . . .j jDlÞ:an

¼ D1:anjD2:an . . .j jDl:an ð24Þ

which is COFTS.
By (20), an � b1.b2…bj is COFTS. Assume that

an � b1:b2. . .bj ¼ K1jK2 . . .j jKp ð25Þ

where K1…Kp are transition sequences and p is a finite positive integer.

Theory of Test Modeling Based on Regular Expressions 25

Then according to the Property (6) of |,

A1:ðan � b1:b2. . .bjÞ ¼ A1:ðK1jK2j. . .jKpÞ
¼ A1:K1jA1:K2j. . .jA1:Kp ð26Þ

which is COFTS.
From Eqs. (24) and (26), A� B is also COFTS for i = n and any j. To sum up,

Theorem 2 is proved. h

According to Theorem 2, we always make use of the choice operator of finite
transition sequences to denote the synchronous operations among some transition
sequences.

3.6.1 Concurrent Operator
Let the symbol || denote the concurrent operator. a || b denotes a or b is a single
occurrence, or the synchronous occurrence denoted as a� b. The model described as
the stock trading requests is shown in Fig. 7. In the stock trading system, the trading
requests that the buyers and the sellers are concurrent. The symbols in the model are
described as follows:

– s0 denotes the current state of the stock trading,
– s1 denotes the next state of the stock trading,
– t1 denotes the sequences of the buyer requests,
– t2 denotes the sequences of the seller requests,
– t3 denotes the next state is converted into the current state.

The model shown in Fig. 7 can be described by ððt1jjt2Þ:t3Þ�. The concurrent
operator satisfies the following properties:

(1) a b ¼ aj jbj ja � b8a; b 2 R
(2) a b ¼ bj jj ja8a; b 2 R Commutativityð Þ
(3) ajje ¼ ejja ¼ a8a 2 R Commutativity and Identityð Þ
(4) a bj jj jc ¼ ajjbð Þ c ¼ aj jj j bjjcð Þ8a,b,c 2 R Associativityð Þ
(5) a1 a2j j. . .janð Þ b ¼ ða1j jj jbÞ ða2j j bÞj j. . . ðanj jjbÞ8a1; . . .; an; b 2 R Distributionð Þ

Corollary 1: The concurrent operation of any two transition sequences is COFTS.

Proof. Assume that two transition sequences are A and B. Then A || B = A | B |
A� B. According to Theorem 2, A� B is COFTS, hence A || B is also COFTS.
Corollary 1 is proved. h

s1

t1
t2s0

t3

Fig. 7. The software behavior model with the concurrent operator.

26 P. Liu and H. Miao

Corollary 2: The concurrent operations among finite transition sequences are
COFTS.

Proof. Assume that there are a suite of test sequences A1, A2, …, and Ai, where i is a
finite positive integer. Then Corollary 2 can be rewritten as A1|| A2|| …||Ai is COFTS.

Base case: i = 1
Since A1 is a transition sequence, Corollary 2 is true.

Base case: i = 2
By Corollary 1, A1||A2 is COFTS, hence Corollary 2 is true.

Inductive hypothesis. Assume that Corollary 2 is true for i = n-1. That is,

A1 A2j jj j. . . An�1 ¼ B1j jB2j j. . .jBk; ð27Þ

where Bi (1 B iBk) is a transition sequence.
We need to prove A1|| A2|| …||An is also COFTS for i = n.
By Inductive hypothesis and the property (5) of ||,

A1 A2j jj j. . . An ¼ ðA1j jj jA2 . . .j jj jAn�1ÞjjAn

¼ B1 B2j j. . .jBkð ÞjjAn

¼ B1jjAnð Þ ðB2j j AnÞj j. . . ðBkj jjAnÞ ð28Þ

By Corollary 1,

BijjAnð1� i� nÞ is COFTS: ð29Þ

From (27)–(29),

A1 A2j jj j . . .jjAn is COFTS: ð30Þ

To sum up, Corollary 2 is proved. h

According to Corollary 2, any one of regular expressions with concurrent opera-
tors can be denoted as the choice operation of finite transition sequences.

4 Modeling Capability

Using the expression algebraic system, we can construct the model of the complex
system. Now we consider building the expression models for two complex systems
with the different software requirements.

Figure 8 shows two FSM models. Assume that there exist many different software
requirements for two models shown in Fig. 8.

Case 1: Software requirements for the model shown in Fig. 8 (a) include that

– s0 is the start state,
– s3 is the terminal state,
– t1.t3 and t2.t4 are choice,
– t5 is a return transition.

Theory of Test Modeling Based on Regular Expressions 27

Therefore the system in Case 1 can be described by (t1.t3 | t2.t4).(t5.(t1.t3 | t2.t4))*.
Case 2: Software requirements for the model shown in Fig. 8 (a) include that

– s0 is the start state,
– S3 is the terminal state,
– t1.t3 and t2.t4 are concurrent,
– t5 must be executed at least once.

Therefore the system in Case 2 can be described by (t1.t3 || t2.t4).(t5.(t1.t3||t2.t4))+.
Case 3: Software requirements for the model shown in Fig. 8 (b) include that

– s0 is the start state
– s2 is the terminal state.

Therefore the system in Case 3 can be described by t1.(t2
*.(t4.t1.t2

)).t3.
Case 4: Software requirements for the model shown in Fig. 8 (b) include that

– s0 is the start state
– s2 is the terminal state.
– t2 and t4 are choice.

Therefore the system in Case 4 can be described by t1.(t2
* | (t4.t1) *).t3.

Discussion 1: Through Cases 1–4, we find the fact that the FSM model can’t
distinguish the system with the nice distinctions in software requirements, while the
expression model can distinguish them. Therefore the modeling capability of regular
expressions is more expressive than that of the FSM.

5 Test Sequences

In the traditional test generation method, a graph (or FSM) is usually transformed to a
test tree. And then all paths from the root to all leaves in this tree are produced.
According to this method, we obtain two test sequences (as test paths) t1.t3.t5 and
t2.t4.t5 from the test tree shown in Fig. 9 (b) for the model shown in Fig. 9 (a).
However, t1.t3.t5 and t2.t4.t5 are two ineffective test segments because the last state s0

in two sequences is not the terminal state s3 of the system shown in Fig. 9(a).
Now we demonstrate the method of test sequence generation from regular

expressions.

s0 s2s1s0

s1

s2 s3

(a) (b)

t1 t3

t2 t4

t5

t1
t2

t3

t4

Fig. 8. Two models of the complex systems.

28 P. Liu and H. Miao

Assume that software requirements satisfy case 1 in Sect. 4. The model shown in
Fig. 9 (a) can be described by (t1.t3 | t2.t4).(t5.(t1.t3 | t2.t4))*. Then we assign 0, 1 and k
for * in regular expression. Hence

t1:t3 j t2:t4ð Þ: t5: t1:t3 j t2:t4ð Þð Þ�¼ t1:t3 j t2:t4ð Þ: t5: t1:t3 j t2:t4ð Þð Þ0 j ðt1:t3 j
t2:t4Þ:ðt5:ðt1:t3 j t2:t4ÞÞ1 j ðt1:t3 j t2:t4Þ: t5: t1:t3 j t2:t4ð Þð Þk

¼ t1:t3 j t2:t4ð Þ:e j ðt1:t3 j t2:t4Þ: t5: t1:t3 j t2:t4ð Þð Þ j ðt1:t3 j t2:t4Þ: t5: t1:t3 j t2:t4ð Þð Þk

¼ t1:t3 j t2:t4ð Þ j ðt1:t3 j t2:t4Þ: t5: t1:t3 j t2:t4ð Þð Þ j ðt1:t3 j t2:t4Þ: t5: t1:t3 j t2:t4ð Þð Þk j ðt1:t3 j
t2:t4Þ: t5: t1:t3 j t2:t4ð Þð Þk

¼ t1:t3 j t2:t4 j t1:t3: t5: t1:t3 j t2:t4ð Þð Þ j t2:t4:ðt5:ðt1:t3 j t2:t4ð ÞÞ j t1:t3:ðt5:ðt1:t3 j
t2:t4ÞÞk j t2:t4:ðt5:ðt1:t3 j t2:t4ÞÞk

¼ t1:t3 j t2:t4 j t1:t3:t5:t1:t3 j t1:t3:t5:t2:t4 j t2:t4:t5:t1:t3 j t2:t4:t5:t2:t4 j t1:t3:

t5:t1:t3ð Þk j t5:t2:t4ð Þk
� �

j t2:t4:ð t5:t1:t3ð Þk j t5:t2:t4ð ÞkÞ

¼ t1:t3 j t2:t4 j t1:t3:t5:t1:t3 j t1:t3:t5:t2:t4 j t2:t4:t5:t1:t3 j t2:t4:t5:t2:t4 j
t1:t3: t5:t1:t3ð Þk j t1:t3: t5:t2:t4ð Þk j t2:t4: t5:t1:t3ð Þk j t2:t4: t5:t2:t4ð Þk

Discussion 2: (1) Sometimes, test sequences generated from the traditional method
can’t be taken as the effective test paths. For example, the terminal node in test path
t1.t3.t5 is s0 which deviates from the actual software requirements. (2) Test coverage of
test sequences generated from the traditional method is not complete, resulting in the
low fault detection capability. (3) Based on the operations in the algebraic system, we
can obtain test sequences from regular expressions. And all operations can be auto-
matically achieved. (4) Test sequences derived from our method include all possible
paths, hence they have the higher fault detection capability than those derived from
the traditional method. (5) A shortcoming of our method is that the number of test
sequences is too much. Therefore the redundant test sequences need to be reduced
according to some techniques in Ref. [24].

s0

s1

s2 s3

t1 t3

t2 t4

t5

s0

s1 s2

s3 s3

s0 s0

t1 t2

t3 t4

t5 t5

(a) (b)

Fig. 9. The traditional test generation method.

Theory of Test Modeling Based on Regular Expressions 29

6 Conclusions

In this paper, we present an expression algebraic system to support test modeling. This
system consists of regular expressions denoted by transition sequences and operators,
including., |, *, +, a (), � and ||. Some examples are given to illustrate our modeling
method and test generation method. Compared with the FSM model, the expression
model not only is more expressive for the concurrent system, but also can generate
high quality test sequences from the model. In the future, we will plan to unify test
modeling and test generation into a frame by regular expressions. And we will also
research the techniques for reduced-order modeling and redundant reduction.

Acknowledgments. This work is supported by National Natural Science Foundation of China
(NSFC) under grant No. 61170044 and No. 61073050, Shanghai Natural Science Fund (No.
13ZR1429600), Innovation Program of Shanghai Municipal Education Commission (No.
13YZ141), and Young teacher training scheme of Shanghai Universities (No. SXY12014).

References

1. Liu, P., Miao, H.: A new approach to generating high quality test cases. In: 2010 19th IEEE
Asian Test Symposium (ATS), pp. 71–76. IEEE (2010)

2. Bertolino, A.: Software testing research: achievements, challenges, dreams. In: Future of
Software Engineering, FOSE’07, pp. 85–103. IEEE (2007)

3. Dalal, S.R., Jain, A., Karunanithi, N., Leaton, J., Lott, C.M., Patton, G.C., Horowitz, B.M.:
Model-based testing in practice. In: Proceedings of the 21st International Conference on
Software Engineering, pp. 285–294. ACM (1999)

4. Utting, M., Legeard, B.: Practical Model-Based Testing: a Tools Approach. Morgan
Kaufmann, San Francisco (2010)

5. Hemmati, H., Arcuri, A., Briand, L.: Achieving scalable model-based testing through test
case diversity. ACM Trans. Softw. Eng. Methodol. (TOSEM) 22, 6 (2013)

6. Belinfante, A., Frantzen, L., Schallhart, C.: 14 tools for test case generation. In: Broy, M.,
Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of
Reactive Systems. LNCS, vol. 3472, pp. 391–438. Springer, Heidelberg (2005)

7. Liu, P., Miao, H.-K., Zeng, H.-W., Liu, Y.: FSM-based testing: Theory, method and
evaluation. Jisuanji Xuebao(Chinese J. Comput.) 34, 965–984 (2011)

8. Fujiwara, S., Khendek, F., Amalou, M., Ghedamsi, A.: Test selection based on finite state
models. IEEE Trans. Softw. Eng. 17, 591–603 (1991)

9. Sidhu, D.P., Leung, T.-K.: Formal methods for protocol testing: a detailed study. IEEE
Trans. Softw. Eng. 15, 413–426 (1989)

10. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans. Softw.
Eng. 4, 178–187 (1978)

11. Lai, R.: A survey of communication protocol testing. J. Syst. Softw. 62, 21–46 (2002)
12. Wu, N.Q., Zhou, M.: Modeling, analysis and control of dual-arm cluster tools with

residency time constraint and activity time variation based on Petri nets. IEEE Trans.
Autom. Sci. Eng. 9, 446–454 (2012)

13. Notomi, M., Murata, T.: Hierarchical reachability graph of bounded Petri nets for
concurrent-software analysis. IEEE Trans. Softw. Eng. 20, 325–336 (1994)

30 P. Liu and H. Miao

14. Chu, F., Xie, X.-L.: Deadlock analysis of Petri nets using siphons and mathematical
programming. IEEE Trans. Robot. Autom. 13, 793–804 (1997)

15. Li, Q., Moon, B.: Indexing and querying XML data for regular path expressions. In: VLDB,
pp. 361–370 (2001)

16. Garg, V.K., Ragunath, M.: Concurrent regular expressions and their relationship to Petri
nets. Theoret. Comput. Sci. 96, 285–304 (1992)

17. Sen, K., Ros�u, G.: Generating optimal monitors for extended regular expressions. Electron.
Notes Theoret. Comput. Sci. 89, 226–245 (2003)

18. Garg, V.K.: Modeling of Distributed Systems by Concurrent Regular Expressions. In:
FORTE, pp. 313–327 (1989)

19. Ravi, S., Lakshminarayana, G., Jha, N.K.: TAO: regular expression-based register-transfer
level testability analysis and optimization. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 9, 824–832 (2001)

20. Qian, Z.S.: Model-based approaches to generating test cases for web applications. Ph.D.
thesis, Shanghai University (2008)

21. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-Based
Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005)

22. Hopcroft, J.E.: Introduction to Automata Theory, Languages, and Computation, 3/E.
Pearson Education India (2008)

23. Rosen, K.H., Krithivasan, K.: Discrete Mathematics and Its Applications, 5th edn.
McGraw-Hill, New York (2003)

24. Miao, H.K., Liu, P., Mei, J., Zeng, H.W.: A new approach to automated redundancy
reduction for test sequences. In: 15th IEEE Pacific Rim International Symposium on
Dependable Computing, 2009. PRDC’09, pp. 93–98. IEEE (2009)

Theory of Test Modeling Based on Regular Expressions 31

Simulation and Model Checking

Integrating Separation Logic with PPTL

Xu Lu1, Zhenhua Duan1(B), Cong Tian1, and Hongjin Liu2

1 ICTT and ISN Lab, Xidian University,
Xi’an 710071, People’s Republic of China

xulu@stu.mail.xidian.edu.cn, {zhhduan,ctian}@mail.xidian.edu.cn
2 Beijing Institute of Control Engineering, Haidian, Beijing, China

lhjbuaa@hotmail.com

Abstract. In this paper, we integrate Separation Logic with proposi-
tional Projection Temporal Logic (PPTL) to obtain a two-dimensional
logic, named PPTLSL. The spatial dimension is realized by a decidable
fragment of separation logic which can be used to describe linked lists,
and the temporal dimension is expressed by PPTL. Furthermore, we
prove that any PPTLSL formula can be transformed into its normal form.
Example are given to show how to specify temporal heap properties by
this hybrid logic.

Keywords: Temporal logic · Separation logic ·Heap ·Many-dimensional
logic

1 Introduction

Heap is an area of memory for dynamic memory allocation, pointers are refer-
ences to heap cells. It is hard to detect errors of heap-manipulating programs
with inappropriate management of heap. Verification of such programs is a very
active research field today and has been a long history ever since the early 1970s
[1]. However, it is still a big challenge because of aliasing, that is, the same heap
cell can be accessed through different pointers which yields what Hoare and He
call “the complexity of pointer swing” [2]. Programs become more error-prone
with serious problems involving the existence of memory violation, the emer-
gence of memory leaks, etc. In addition, reasoning about temporal properties of
such programs is yet quite difficult.

Several advanced logics have been developed for verifying and analyzing heap.
Alias analysis [3], as the name implies, is a point-to analysis which naively checks
whether pointers can be aliased. Shape analysis [4] is another form of pointer
analysis that goes beyond the shallow alias analysis. It attempts to discover the

This research is supported by the NSFC Grant Nos. 61133001, 61272118, 61272117,
61202038, 91218301, 61322202, 61373043 and National Program on Key Basic
Research Project (973 Program) Grant No. 2010CB328102.

S. Liu and Z. Duan (Eds.): SOFL+MSVL 2013, LNCS 8332, pp. 35–47, 2014.
DOI: 10.1007/978-3-319-04915-1 3, c© Springer International Publishing Switzerland 2014

36 X. Lu et al.

possible shapes of pointer structures inside the heap at each program point and
to prove that these structures are not misused or corrupted during the execution
of a program. One of the most prominent works on shape analysis formalized
by Sagiv et al. [5] exploits “shape graphs” as heap abstraction and three-valued
logic as a basis that makes the successful development of Three-Valued-Logic
Analyzer (TVLA) [6].

A great progress in this realm has been made at the beginning of this century
by Reynolds and O’Hearn who propose a Hoare-style logic well known as sep-
aration logic [7]. More recently, separation logic is increasingly being used and
extended for automated assertion checking [8] and shape analysis [9]. Separation
logic is famous for its flexible, intuitionistic and modular characteristics. Intu-
itively speaking, it allows each component of a system to only talk about the
portion of the global heap it refers to during its execution. In particular, it intro-
duces a novel specific form of binary logical connective, separation conjunction ∈.
The formula P ∈Q specify properties hold respectively for disjoint portions of the
heap, one makes P true and the other makes Q true. The strength of separation
logic lies in its reasoning style rather than its expressive power [10].

Temporal logic is another highly successful formalism for verification. Inter-
val Temporal Logic (ITL) [11] is a specific form in temporal logic families. Duan
et al. [12] introduced Projection Temporal Logic (PTL) and propositional PTL
(PPTL) which extended ITL with a new projection construct (p1, . . . , pm) prjq,
and generalized ITL to infinite time intervals. Using PTL as a basis, Duan further
developed an executable subset, called the Modeling Simulation and Verification
Language (MSVL) [13] which is an extension of Framed Tempura [14]. However,
neither MSVL nor PPTL has the ability to reason about heaps so far. There
are various temporal logics previously designed for heap verification in many
literatures. Evolution Temporal Logic (ETL) [15] is a first-order Linear Tempo-
ral Logic (LTL) for the description of program behaviors that causes dynamic
allocation and deallocation of heap to evolve. Based on a tableau model check-
ing algorithm, Navigation Temporal Logic (NTL) [16] extends LTL with pointer
assertions for reasoning about the evolution of heap cells during program execu-
tion. In [17], LTL and CTL (Computation Tree Logic) are combined, in time and
space, to specify complex properties of programs with dynamic heap structures.

Motivation. In fact, temporal logic describes all computations (or traces) of a
system in terms of time, while separation logic is a static logic and focuses on
pre- and post-conditions for partial correctness of program blocks. It is useful
if we can integrate the two types of logics such that heap evolutions properties
over discrete time can be specified and verified in a unified manner.

The work closest to ours is LTLmem [18] that introduced by Brochenina
et al. However, they devised the two-dimensional logic LTLmem by means of a
quantifier-free fragment of separation logic as the underlying assertion language
on top of which is propositional LTL (PLTL). LTLmem is of very limited use
because the fragment of the separation logic employed by them cannot account
for reachability in some way. In this paper, we utilize a decidable fragment of
separation logic including formulas for describing complex heap structures such

Integrating Separation Logic with PPTL 37

as linked list segments. In addition, PPTL is more powerful than PLTL with
regard to expressiveness since the expressiveness of PPTL is full regular. By
contrast, PLTL is star free regular. The spatial-temporal logic introduced in this
paper contains temporal connectives “;” for sequentially combining formulas
which enable us easily to express the occurrence of sequential events, whereas
“+” or “∈” enables us to state loop properties. For instance, the formula p; q
asserts that p holds from now until some point in the future, and from that
point on, q holds. p∈ means that p is repeatedly executed a finite or infinite
number of times. All these properties cannot be expressed in LTL, but they
are very useful for verification. Moreover, we have a powerful and mature tool
supporting verification of PPTL.

The remainder of this paper is organized as follows. In the following Sect.
the syntax, semantics of PPTLSL is presented. In Sect. 3, we give some logic
laws and a straight forward example that is easy for understanding to show the
expressiveness of PPTLSL. In Sect. 4, the proof of a normal form of PPTLSL

formulas is presented. Finally, conclusions are drawn in Sect. 5.

2 The Hybrid Logic PPTLSL

The decidability of the satisfiability problem for full separation logic is known
undecidable [19]. Several decidable fragments of the separation logic have been
intensively studied. In this subsection, we first introduce one of them [20] which
succinctly consists of formulas for describing linked list structures. Then we make
a temporal extension to SL by adding temporal connectives of PPTL.

2.1 A Decidable Separation Logic for Linked Lists

Syntax. We call this logic SL for short. Let V ar = {l, l≤, . . .} be an infinite
countable set of pointer variables; V al = Loc ≡ {nil } an infinite set of values,
where Loc is the set of memory addresses while nil is a distinguished value that
is non-addressable. l, l≤, . . ., are ranged over V al.

Terms e ::= nil | x simple Pures σ ::= e1 = e2 | ¬σ
Pures β ::= true | β ∧ σ simple Spatials γ ::= e1 ∨∀ e2 | lsn(e1, e2) |

ls(e1, e2)
Spatials δ ::= emp | δ ∈ γ Symbolic heaps ϕ ::= β ∧ δ

When writing properties, we are not interested in the value of variables.
Rather, we care about the heap cells to which pointed by variables or other
heap cells. e1 = e2 states that e1 and e2 are aliases in pure formulas. The
atomic formulas emp is true just in the empty heap whose defined element of its
domain is ∅; for e1 ∨∀ e2, we mean e1 points to e2, where e1 uniquely represents
an address in the heap and e2 is the value stored in that address. The separation

38 X. Lu et al.

conjunction formula δ ∈ γ means the current heap can be split into two disjoint
components (two heaps with non-overlap domains) such that one component is
for δ to hold and the other for γ to hold. Moreover, the two forms of ls formulas,
lsn(e1, e2) (where n > 0), as well as ls(e1, e2), formulate non-empty segments of
linked lists, or potential incomplete linked lists structures in heaps. A complete
linked list formula may be written as ls(e, nil), which can be considered as a
special case of nil-tailed list segments. ls(e1, e2) is equivalent to a nonempty list
segment containing at least one heap cell. Symbolic heaps are formulas of pairs,
including heap-independent part called pure formulas connected by conjunctions
∧ and heap-dependent part known as spatial formulas separated by separation
conjunctions ∈.

Semantics. Following the standard semantics of the separation logic, we refer
to a pair (Is, Ih) as a memory state s, where Is represents a stack and Ih a
heap. Is serves as valuations of variables and Ih as valuations of heap cells. It is
noteworthy that nil does not exist in the domain of any heap. Notation ψfin is
employed to indicate partial functions with finite domain. Heaps are not stacks.
They need not define on all elements of the domain.

Is ⇒ Stacks def= V ar ∀ V al Ih ⇒ Heaps def= Loc ψfin V al

s ⇒ States def= Stacks × Heaps

We call this logic SL for short. The semantics of SL is given as follows by a
forcing relation |=

SL
equipped with a subscript SL. Terms depend only on the

stack Is and fv(e) denotes the set of all free variables that appear in term e.
We specify the domain of a mapping f by dom(f) and write f1 ⇔ f2 to denote
two mappings f1 and f2 with disjoint domains, i.e., dom(f1) ∗ dom(f2) = ∅.
Moreover, we use f1 ∈ f2 to denote the union of two mappings f1 ≡ f2 which is
undefined when f1 �⇔ f2. The notation f [x ∀ v] is introduced for describing a
mapping that maps x into v and keeps all values of other members in f ’s domain
unchanged.

�x�Is
def= Is(x) �nil�Is

def= nil
Is, Ih |=

SL
e1 = e2 iff �e1�Is = �e2�Is.

Is, Ih |=
SL

¬σ iff Is, Ih �
SL

σ.
Is, Ih |=

SL
true always.

Is, Ih |=
SL

β ∧ σ iff Is, Ih |=
SL

β and Is, Ih |=
SL

σ.
Is, Ih |=

SL
e1 ∨∀ e2 iff Ih = { �e1�Is, �e2� Is}.

Is, Ih |=
SL

lsn(e1, e2) iff

⎧
⎪⎪⎨

⎪⎪⎩

�e1�Is �= �e2� Is and Is, Ih|=
SL

e1 ∨∀ e2 ifn = 1,
�e1�Is �= �e2�Is and there exists v ⇒ V al :
Is[x ∀ v], Ih|=

SL
e1 ∨∀ x ∈ lsn−1(x, e2) ifn > 1.

for x �⇒ fv(e1, e2)
Is, Ih |=

SL
ls(e1, e2) iff there exists n : Is, Ih |=

SL
lsn(e1, e2).

Integrating Separation Logic with PPTL 39

Is, Ih |=
SL

emp iff Ih = ∅.
Is, Ih |=

SL
δ ∈ γ iff there exists Ih1 , Ih2 : Ih = Ih1 ∈ Ih2 and Is, Ih1 |=

SL
δ

and Is, Ih2 |=
SL

γ.
Is, Ih |=

SL
β ∧ δ iff Is, Ih |=

SL
β and Is, Ih |=

SL
δ.

2.2 Temporal Extension to Separation Logic

Syntax. In order to express temporal properties of heap systems, we integrate
SL with PPTL, and name the hybrid logic as PPTLSL. The formula p of PPTLSL

is given by the following grammar:

Terms e ::= nil | x
State Formulas φ ::= e1 = e2 | emp | e1 ∨∀ e2 | lsn(e1, e2) |

ls(e1, e2) | φ1 ∈ φ2 | ¬φ | φ1 ∧ φ2

PPTLSL Formulas p ::= φ | ¬p | p1 ∧ p2 | ©p | (p1, . . . , pm) prj p | p+

where p1, . . . , pm are all well-formed PPTLSL formulas. SL is a strict subset of
PPTLSL. © (next), prj (projection) and + (plus) are basic temporal operators.
A formula is said to be a state formula if it does not contain any temporal
operators (that is, ©, +(plus), prj), otherwise it is a temporal formula. It is
easy to see that a state formula φ is also a SL formula.

Semantics. An interval σ = 〈s0, s1, . . .⊕ is a sequence of states, possibly finite
or infinite. Ω denotes an empty interval. The length of σ, denoted by |σ|, is ω if
σ is infinite, otherwise it is the number of states minus one. To have a uniform
notation for both finite and infinite intervals, we will use extended integers as
indices. That is, we consider the set N0 of non-negative integers and ω, define
Nω = N0 ≡ {ω }, and extend the comparison operators, =, <, ≤, to Nω by
considering ω = ω, and for all i ⇒ N0, i < ω. Moreover, we define ⊂ as ≤
−{ (ω, ω) }. With such a notation, σ(i...j)(0 ≤ i ⊂ j ≤ |σ|) denotes the sub-
interval 〈si, . . . , sj⊕ and σ(k)(0 ≤ k ⊂ |σ|) denotes the suffix interval 〈sk, . . . , s|σ|⊕
of σ. The concatenation of σ with another interval (or empty string) σ≤ is denoted
by σ ·σ≤. To define the semantics of the projection operator we need an auxiliary
operator for intervals.

Let σ = 〈sk, . . . , s|σ|⊕ be an interval and r1, . . . , rh be integers (h ≥ 1) such
that 0 ≤ r1 ≤ r2 ≤ · · · ≤ rh ⊂ |σ|. The projection of σ onto r1, . . . , rh is the
interval (called projected interval), is

σ ↓ (r1, . . . , rh) = 〈st1 , . . . , stl⊕
where t1, . . . , tl is obtained from r1, . . . , rh by deleting all duplicates. That is,
t1, . . . , tl is the longest strictly increasing subsequence of r1, . . . , rh. For example,

〈s0, s1, s2, s3, s4⊕ ↓ (0, 0, 2, 2, 2, 3) = 〈s0, s2, s3⊕

40 X. Lu et al.

This is convenient to define an interval obtained by taking the endpoints
(rendezvous points) of the intervals over which p1, . . . , pm are interpreted in the
projection construct.

The binary operators interval concatenation · operating on intervals and
yielding to a combined fresh interval is defined as follows:

—– Interval concatenation ·

σ · σ≤ =

⎧
⎪⎨

⎪⎩

σ if |σ| = ω or σ≤ = Ω,

σ≤ if σ = Ω,

〈s0, . . . , si, si+1, . . .⊕ if σ = 〈s0, . . . , si⊕ and σ≤ = 〈si+1, . . .⊕.

An interpretation for a PPTLSL formula is a quadruple I = (σ, i, k, j) where
σ = 〈s0, s1, . . .⊕ is an interval, i and k are non-negative integers and j is an integer
or ω such that i ≤ k ⊂ j ≤ |σ|. We write (σ, i, k, j) to mean that a formula is
interpreted over a sub-interval σ(i...j) with the current state being sk. The notation
sk = (Ik

s , Ik
h) indexed by k represents the kth state of an interval σ.

Using those notions illustrated above, it follows that the satisfaction corre-
lation for PPTLSL formulas |= is inductively defined as follows.

I |= φ iff Ik
s , Ik

h |=
SL

φ.
I |= ¬p iff I �|= p.
I |= p1 ∧ p2 iff I |= p1 and I |= p2.
I |= ©p iff k < j and (σ, i, k + 1, j) |= p.
I |= (p1, . . . , pm) prj p iff there exists integers k = r0 ≤ r1 ≤ · · · ≤ rm ⊂ j

such that (σ, i, r0, r1) |= p1, (σ, rl−1, rl−1, rl) |= pl

(for1 < l ≤ m), and (σ≤, 0, 0, |σ≤|) |= p
for one of the following σ≤ :
(a) rm < j and σ≤ = σ ↓ (r0, . . . , rm) · σ(rm+1...j)

(b) rm = j and σ≤ = σ ↓ (r0, . . . , rh)
for some 0 ≤ h ≤ m.

I |= p+ iff there are finitely many r0, . . . , rn ⇒ Nωsuch that
k = r0 ≤ r1 ≤ · · · ≤ rn−1 ⊂ rn = j(n ≥ 1) and
(σ, i, r0, r1) |= p and for all 1 < l ≤ n
(σ, rl−1, rl−1, rl) |= p;
or there are infinitely many integers
k = r0 ≤ r1 ≤ r2 ≤ · · · such that lim

i∧∞
ri = ω and

(σ, i, r0, r1) |= p and for all l > 1
(σ, rl−1, rl−1, rl) |= p.

With the convention, a formula p is satisfied by an interval σ, denoted by
σ |= p, if (σ, 0, 0, |σ|) |= p holds. When σ |= p holds for some interval σ, we say

Integrating Separation Logic with PPTL 41

that formula p is satisfiable. A formula p is valid, denoted by |= p, if σ |= p holds
for all σ. In principle, we can define other connectives true, false,∧,∀,↔ in
the standard way. Also we have the following derived formulas:

ε
def= ¬ © true more

def= ¬ε

len(0) def= ε len(n) def= ©len(n − 1), n ≥ 1
skip

def= len(1) ·©p
def= ε ∨ ©p

p; q def= (p, q) prj ε ♦p
def= true; p

�p
def= ¬♦¬p p∈ def= ε ∨ p+

©0p
def= p ©np

def= ©(©n−1p), n ≥ 1

where
⊙

(weak next), � (always), ♦ (sometimes) and ; (chop) are derived tem-
poral operators, ε (empty) denotes an interval with zero length, and more means
the current state is not the final one over an interval. In order to avoid an exces-
sive number of parentheses, the precedence rules is shown in Table 1, where 1 is
the highest and 6 the lowest.

Table 1. Precedence rules

Precedence Operators Precedence Operators
1 ¬ 4 ∨
2 ©,♦,�,+ ,∈ 5 ∀,↔
3 ∈,∧ 6 ; , prj

Example 1. PPTLSL does not allow arbitrary nesting of connectives in SL and
PPTL. For instance, ♦p1 ∈ �p2 is illegal according to the syntax of PPTLSL

since ∈ can only appear in state formulas. Hence it cannot connect two temporal
formulas. Further, ♦(φ1 ∈ φ2) is a legal formula.

Example 2. As another example, formula ls(x, nil);♦emp means that now in
the heap, there exists a complete linked list ls(x, nil) whose head pointer is x,
and after some time units in the future, the heap becomes empty. This prop-
erty enable us to characterize the sequential behavior of a list disposal program
which accepts a linked list as input and deletes all elements of the list in the
end.

Example 3. (©2(ls(x, nil)∧ε))+ states that ©2(ls(x, nil)∧ε) repeatedly holds
for a finite or infinite number of times (more than once). Besides, ©2(ls(x, nil)∧
ε) asserts that ls(x, nil) holds in the 3-rd state from now on and specifies exactly

42 X. Lu et al.

two units of time over an interval. We can see that ∈ or + is suitable for describing
loop properties, e.g., loop invariants in programs.

3 Logic Laws Of PPTLSL Formulas

Sometimes, we denote |= �(p ↔ q) by p ≡ q which is called “strong equivalence”.
Similarly, we denote |= �(p ∀ q) by p ⊃ q which is called “strong implication”.
The former means that p and q have the same truth value in all states of every
model. Similar explanations can be given for the strong implication. Table 2
shows some useful logic laws. φ, φi, φp, φs are state formulas and also SL formulas.
We say a state formula is pure, it means that formula only has the form φp,
whereas a state formula is spatial when it has the form φs. Other laws associated
with temporal connectives are the same as those in PPTL. See [22] for more
details.

Pure Formulas φp ::= e1 = e2 | ¬φp | φp1 ∧ φp2

Spatial Formulas φs ::= emp | e1 ∨∀ e2 | lsn(e1, e2) | ls(e1, e2) | φs1 ∈ φs2

Table 2. Logic laws for PPTLSL

L1 φ ∈ emp ≡ φ
L2 φ1 ∈ φ2 ≡ φ2 ∈ φ1

L3 (φ1 ∈ φ2) ∈ φ3 ≡ φ1 ∈ (φ2 ∈ φ3)
L4 (φ1 ∨ φ2) ∈ φ ≡ (φ1 ∈ φ) ∨ (φ2 ∈ φ)
L5 (φ1 ∧ φ2) ∈ φ ⊃ (φ1 ∈ φ) ∧ (φ2 ∈ φ)
L6 (φ1 ∧ φ2) ∈ φ ≡ (φ1 ∈ φ) ∧ (φ2 ∈ φ) when φ is spatial
L7 φ1 ∧ φ2 ⊃ φ1 ∈ φ2 when φ1 or φ2 is pure
L8 φ1 ∈ φ2 ⊃ φ1 ∧ φ2 when φ1 and φ2 are pure

L9
φ0 ⊃ φ1 φ2 ⊃ φ3

φ0 ∈ φ2 ⊃ φ1 ∈ φ3

L10 (φ1 ∧ φ2) ∈ φ3 ⊃ (φ1 ∈ φ3) ∧ φ2 when φ2 is pure

Proof. We only prove L1, L4, L5, L6 of the laws. In the proofs, we use some inter-
pretation rules, abbreviations, and proved logic laws without declaration. Let σ
be an interval, and i, j, k integers, 0 ≤ k ⊂ |σ| and (Ik

s , Ik
h) be the k-th state of σ.

The proof of L1 : φ ∈ emp ≡ φ

(σ, 0, k, |σ|) |= φ ∈ emp
⇐⇒ (Ik

s , Ik
h) |=

SL
φ ∈ emp

⇐⇒ (Ik
s , Ik

h) |=
SL

φ
⇐⇒ (σ, 0, k, |σ|) |= φ

Integrating Separation Logic with PPTL 43

The proof of L4 : (φ1 ∨ φ2) ∈ φ ≡ (φ1 ∈ φ) ∨ (φ2 ∈ φ)

(σ, 0, k, |σ|) |= (φ1 ∨ φ2) ∈ φ
⇐⇒ (Ik

s , Ik
h) |=

SL
(φ1 ∨ φ2) ∈ φ

⇐⇒ (Ik
s , Ik

h1
) |=

SL
φ1 ∨ φ2 and (Ik

s , Ik
h2

) |=
SL

φ for some Ik
h1

, Ik
h2

, Ik
h1

∈ Ik
h2

= Ik
h

⇐⇒ ((Ik
s , Ik

h1
) |=

SL
φ1 or (Ik

s , Ik
h1

) |=
SL

φ2)
and
(Ik

s , Ik
h2

) |=
SL

φ for some Ik
h1

, Ik
h2

, Ik
h1

∈ Ik
h2

= Ik
h

⇐⇒ (Ik
s , Ik

h1
) |=

SL
φ1 and (Ik

s , Ik
h2

) |=
SL

φ
or
(Ik

s , Ik
h1

) |=
SL

φ2 and (Ik
s , Ik

h2
) |=

SL
φ for some Ik

h1
, Ik

h2
, Ik

h1
∈ Ik

h2
= Ik

h

⇐⇒ (Ik
s , Ik

h1
∈ Ik

h2
) |=

SL
φ1 ∈ φ or (Ik

s , Ik
h1

∈ Ik
h2

) |=
SL

φ2 ∈ φ
⇐⇒ (Ik

s , Ik
h) |=

SL
(φ1 ∈ φ) ∨ (φ2 ∈ φ)

⇐⇒ (σ, 0, k, |σ|) |= (φ1 ∈ φ) ∨ (φ2 ∈ φ)

The proof of L5 : (φ1 ∧ φ2) ∈ φ ⊃ (φ1 ∈ φ) ∧ (φ2 ∈ φ).

(σ, 0, k, |σ|) |= (φ1 ∧ φ2) ∈ φ
⇐⇒ (Ik

s , Ik
h) |=

SL
(φ1 ∧ φ2) ∈ φ

⇐⇒ (Ik
s , Ik

h1
) |=

SL
φ1 ∧ φ2 and (Ik

s , Ik
h2

) |=
SL

φ for some Ik
h1

, Ik
h2

, Ik
h1

∈ Ik
h2

= Ik
h

⇐⇒ ((Ik
s , Ik

h1
) |=

SL
φ1 and (Ik

s , Ik
h1

) |=
SL

φ2)
and
(Ik

s , Ik
h2

) |=
SL

φ for some Ik
h1

, Ik
h2

, Ik
h1

∈ Ik
h2

= Ik
h

=⇒ (Ik
s , Ik

h1
) |=

SL
φ1 and (Ik

s , Ik
h2

) |=
SL

φ for some Ik
h1

, Ik
h2

, Ik
h1

∈ Ik
h2

= Ik
h

and
(Ik

s , Ik
h1

) |=
SL

φ2 and (Ik
s , Ik

h2
) |=

SL
φ for some Ik

h1
, Ik

h2
, Ik

h1
∈ Ik

h2
= Ik

h

⇐⇒ (Ik
s , Ik

h1
∈ Ik

h2
) |=

SL
φ1 ∈ φ and (Ik

s , Ik
h1

∈ Ik
h2

) |=
SL

φ2 ∈ φ
⇐⇒ (Ik

s , Ik
h) |=

SL
(φ1 ∈ φ) ∧ (φ2 ∈ φ)

⇐⇒ (σ, 0, k, |σ|) |= (φ1 ∈ φ) ∧ (φ2 ∈ φ)

However, its converse are not valid for all state formulas. For example, sup-
pose x �= y, the formula

(x ∨∀ z ∈ (x ∨∀ z ∨ y ∨∀ z)) ∧ (y ∨∀ z ∈ (x ∨∀ z ∨ y ∨∀ z))

is true, but
(x ∨∀ z ∧ y ∨∀ z) ∈ (x ∨∀ z ∨ y ∨∀ z)

is obviously false. However, the converse is valid when φ is spatial. Hence, we
can prove L6.

The proof of L6 : (φ1 ∧ φ2) ∈ φ ≡ (φ1 ∈ φ) ∧ (φ2 ∈ φ) when φ is spatial

44 X. Lu et al.

We have already proved (φ1 ∧ φ2) ∈ φ ⊃ (φ1 ∈ φ) ∧ (φ2 ∈ φ) (L5), now we need
to prove the converse.

(σ, 0, k, |σ|) |= (φ1 ∈ φ) ∧ (φ2 ∈ φ)
⇐⇒ (Ik

s , Ik
h) |=

SL
(φ1 ∈ φ) ∧ (φ2 ∈ φ)

⇐⇒ (Ik
s , Ik

h) |=
SL

φ1 ∈ φ and (Ik
s , Ik

h) |=
SL

φ2 ∈ φ
⇐⇒ (Ik

s , Ik
h1

) |=
SL

φ1 and (Ik
s , Ik

h2
) |=

SL
φ for some Ik

h1
, Ik

h2
, Ik

h1
∈ Ik

h2
= Ik

h

and
(Ik

s , Ik
h3

) |=
SL

φ2 and (Ik
s , Ik

h4
) |=

SL
φ for some Ik

h3
, Ik

h4
, Ik

h3
∈ Ik

h4
= Ik

h

=⇒ (†) (Ik
s , Ik

h1
) |=

SL
φ1 and (Ik

s , Ik
h1

) |=
SL

φ2

and
(Ik

s , Ik
h2

) |=
SL

φ for some Ik
h1

, Ik
h2

, Ik
h1

∈ Ik
h2

= Ik
h

⇐⇒ (σ, 0, k, |σ|) |= (φ1 ∧ φ2) ∈ φ

The step (†) is proved in detail here. Since φ is spatial, then Ik
h2

= Ik
h4

. Moreover,
we know Ik

h1
∈ Ik

h2
= Ik

h and Ik
h3

∈ Ik
h4

= Ik
h . Thus, Ik

h1
= Ik

h3
.

Example 4. Let’s consider the formula p ≡ (©2(ls(x, nil)∧ ε))+ of Example 3.
We claim that (σ, 0, 0, |σ|) |= p, where σ is given in Fig. 1. Note that each state is
associated with a state (Ii

s, I
i
h). Suppose for all states (I2n

s , I2n
h), (I2n

s , I2n
h) |=

SL

ls(x, nil), where n ≥ 1, while other states could be any state in the set States.

Fig. 1. An example interval σ

Proof. Since |σ| = ω, (σ, 0, 0, |σ|) |= (©2(ls(x, nil) ∧ ε))+ if and only if there
exists infinitely many integers 0 = r0 ≤ r1 ≤ r2 ≤ · · · such that lim

i∧∞
ri = ω

and (σ, 0, r0, r1) |= ©2(ls(x, nil) ∧ ε) and for all l > 1, (σ, rl−1, rl−1, rl) |=
©2(ls(x, nil)∧ε). Let ri = 2n for all i ≥ 1, n ≥ 1. We need to prove (σ, 0, 0, 2) |=
©2(ls(x, nil) ∧ ε) and (σ, 2n, 2n, 2(n + 1)) |= ©2(ls(x, nil) ∧ ε).

(σ, 0, 0, 2) |= ©2(ls(x, nil) ∧ ε)
⇐⇒ (σ, 0, 1, 2) |= ©(ls(x, nil) ∧ ε)
⇐⇒ (σ, 0, 2, 2) |= ls(x, nil) ∧ ε
⇐⇒ (σ, 0, 2, 2) |= ls(x, nil) and (σ, 0, 2, 2) |= ε
⇐⇒ (I2s , I2h) |=

SL
ls(x, nil) and true

⇐⇒ true

The proof for (σ, 2n, 2n, 2(n+1)) |= ©2(ls(x, nil)∧ε) is analogous to the proof
of (σ, 0, 0, 2) |= ©2(ls(x, nil)∧ε). Therefore, (σ, 0, 0, |σ|) |= (©2(ls(x, nil)∧ε))+.

Integrating Separation Logic with PPTL 45

4 Normal Form Of PPTLSL

Definition 1. A PPTLSL formula q is in normal form if

q
def=

l∨

i=1

qei
∧ ε ∨

t∨

j=1

qcj ∧ ©qfj

where 0 ≤ l ≤ 1, t > 0, and l + t ≥ 1, qei
(i = 1) and qcj (1 ≤ j ≤ t) are true or

state formulas of the form φ. Each qfj
is a general PPTLSL formula.

Theorem 1. For any PPTLSL formula q, q can be rewritten into its normal form.

Proof. The proof proceeds by induction on the structure of PPTLSL formula. In
the following, A denotes a atomic formula.

A ::=e1 = e2 | emp | e1 ∨∀ e2 | lsn(e1, e2) | ls(e1, e2)

Base: We first prove that for any state formula φ, φ can be rewritten into
its normal form. The proof is simple which is as follows

φ ≡ φ ∧ true ≡ φ ∧ (ε ∨ ©true) ≡ (φ ∧ ε) ∨ (φ ∧ ©true)

If p ≡ A, A is a state formula. Then we have A ≡ (A ∧ ε) ∨ (A ∧ ©true).
Induction: Suppose q and r can be rewritten to their normal forms as

follows,

q ≡ qe ∧ ε ∨
n∨

i=1

qi ∧ ©q≤
i

r ≡ re ∧ ε ∨
n′
∨

j=1

rj ∧ ©r≤
j

If p ≡ q ∈ r, we know q and r are both definitely state formulas according to
our syntax, then q ∈ r is a state formula, the proof is

q ∈ r ≡ ((q ∈ r) ∧ ε) ∨ ((q ∈ r) ∧ ©true)

If p ≡ ©q, then p has already been in its normal form.
If p ≡ q ∧ r,
case 1: if q and r are both state formulas, then q ∧ r is a state formula, the

proof is

q ∧ r ≡ (q ∧ r) ∧ true ≡ (q ∧ r) ∧ (ε ∧ ∨ © true)
≡ (q ∧ r ∧ ε) ∨ (q ∧ r ∧ ©true)

46 X. Lu et al.

case 2: if q or r is a temporal formula, then the proof is

q ∧ r ≡ (qe ∧ ε ∨
n∨

i=1

qi ∧ ©q≤
i) ∧ (re ∧ ε ∨

n′
∨

j=1

rj ∧ ©r≤
j)

≡ (qe ∧ re ∧ ε) ∨
n∨

i=1

n′
∨

j=1

qi ∧ rj ∧ ©(q≤
i ∧ r≤

j)

If p ≡ ¬q,
case 1: if q is a state formula, then ¬q is a state formula, the proof is

¬q ≡ (¬q ∧ ε) ∨ (¬q ∧ ©true)

case 2: if q is a temporal formula, then we can reused the proof method in
[22,23].

If p ≡ (p1, . . . , pm) prj q or p ≡ q+, we can also reused the proof method in
[22,23].

Therefore, we can finally conclude that any PPTLSL formula p can be written
into its normal form. ��

5 Conclusion

This paper integrates a decidable fragment of Separation Logic (SL) with Propo-
sitional Projection Temporal Logic (PPTL) to obtain a two-dimensional (spatial
and temporal) logic PPTLSL. The state formulas of PPTLSL are SL assertions, on
top of which are the outer temporal connectives taken from PPTL. Some exam-
ples are given to show its applications. It is useful to specify temporal properties
of heaps. We also prove a series of logic laws and a useful conclusion that any
PPTLSL formula can be transformed into its normal form. A normal form can be
divided into two parts, one is the present component and the other is the future
component. In the future, the decidability of PPTLSL will be investigated. Then
a model checking approach using PPTLSL as the specification language will also
be studied. In addition, we will develop a model checker based on our approach,
and do case studies to evaluate the approach.

References

1. Burstall, R.M.: Some techniques for proving correctness of programs which alter
data structures. J. Mach. Intell. 7, 23–50 (1972)

2. Hoare, C.A.R., He, J.: A trace model for pointers and objects. In: Guerraoui, R.
(ed.) ECCOP 1999. LNCS, vol. 1628, pp. 1–17. Springer, Heidelberg (1999)

3. Chase, D.R., Wegman, M., Zadeck, F.K.: Analysis of pointers and structures. In:
PLDI, pp. 296–310. ACM Press, New York (1990)

4. Wilhelm, R., Sagiv, S., Reps, T.W.: Shape analysis. In: Watt, D.A. (ed.)
CC/ETAPS 2000. LNCS, vol. 1781, pp. 1–17. Springer, Heidelberg (2000)

Integrating Separation Logic with PPTL 47

5. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. J.
ACM Trans. Program. Lang. Syst. 24, 217–298 (2002)

6. Lev-Ami, T., Sagiv, M.: TVLA: A system for implementing static analyses. In:
Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 280–302. Springer, Heidelberg
(2000)

7. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
17th IEEE Symp. on Logic in Comput. Sci., pp. 55–74. IEEE Press, New York
(2002)

8. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) ALAPS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidel-
berg (2005)

9. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
287–302. Springer, Heidelberg (2006)

10. Calcagno, C., Gardner, P., Hague, M.: From separation logic to first-order logic.
In: Sassone, V. (ed.) FoSSaCS 2005. LNCS, vol. 3441, pp. 395–409. Springer, Hei-
delberg (2005)

11. Moszkowski, B.C.: Reasoning about digital circuits. Ph.D. thesis, Stanford Univer-
sity (1983)

12. Duan, Z.: An extended interval temporal logic and a framing technique for temporal
logic programming. Ph.D. thesis, University of Newcastle Upon Tyne (1996)

13. Duan, Z., Koutny, M.: A framed temporal logic programming language. J. Comput.
Sci. Technol. 19, 341–351 (2004)

14. Duan, Z., Yang, X., Koutny, M.: Framed temporal logic programming. J. Sci.
Comput. Program. 70, 31–61 (2008)

15. Yahav, E., Reps, T., Sagiv, M., Wilhelm, R.: Verifying temporal heap properties
specified via evolution logic. In: Degano, P. (ed.) ESOP 2003. LNCS, vol. 2618, pp.
204–222. Springer, Heidelberg (2003)

16. Distefano, D., Katoen, J.-P., Rensink, A.: Safety and liveness in concurrent pointer
programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2005. LNCS, vol. 4111, pp. 280–312. Springer, Heidelberg (2006)

17. del Mar Gallardo, M., Merino, P., Sanán, D.: Model checking dynamic memory
allocation in operating systems. J. Autom. Reason. 42, 229–264 (2009)

18. Brochenin, R., Demri, S., Lozes, E.: Reasoning about sequences of memory states.
J. Ann. Pure Appl. Logic 161, 305–323 (2009)

19. Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and complexity results for
a spatial assertion language for data structures. In: Hariharan, R., Mukund, M.,
Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 108–119. Springer, Heidelberg
(2001)

20. Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic.
In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97–109.
Springer, Heidelberg (2004)

21. Duan, Z., Tian, C.: A unified model checking approach with projection temporal
logic. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256,
pp. 167–186. Springer, Heidelberg (2008)

22. Duan, Z., Tian, C., Zhang, L.: A decision procedure for propositional projection
temporal logic with infinite models. J. Acta Inform. 45, 43–78 (2008)

23. Tian, C., Duan, Z.: Complexity of propositional projection temporal logic with
star. J. Math. Struct. Comput. Sci. 19, 73–100 (2009)

Improved Net Reductions
for LTL\X Model Checking

Ya Shi1, Zhenhua Duan1(B), Cong Tian1, and Hua Yang2

1 ICTT and ISN Lab, Xidian University,
Xi’an 710071, China

y.shi@stu.xidian.edu.cn,
{zhhduan,ctian}@mail.xidian.edu.cn

2 Beijing Institute of Control Engineering, Beijing 100000, China
yangh@bice.org.cn

Abstract. A set of reduction rules for LTL\X model checking of 1-
safe Petri nets are presented in this paper. Compared with the rules
available, more original transitions and places could be removed from the
synchronization of Büchi automata obtained from LTL\X formulae and
1-safe Petri nets with the new proposed rules. As a result, a compact
synchronization is generated. This is useful in improving efficiency of
LTL\X model checking of 1-safe Petri nets.

Keywords: 1-safe Petri nets · LTL\X · Model checking · Synchroniza-
tion · Reduction rules

1 Introduction

Unfolding method is a partial order technique, introduced in [15,16], to attack
state space explosion problem in model checking of Petri nets by constructing
a complete prefix of the unfolding rather than generating a reachability graph.
The complete prefix of the unfolding encodes global states of a net system with
local places, while the reachability graph explicitly presents these states as nodes
of a graph. It is useful in reducing the state space significantly especially when
a great number of concurrent transitions are involved in the net system.

Unfolding method has been successfully applied in deadlock detection, reach-
ability analysis and invariant checking [6,8,11,14–17]. It is also employed in
LTL\X (short for LTL without next operators) model checking of 1-safe Petri
nets [3,4,19]. To check whether a net system satisfies a desirable property
described by a LTL\X formula, it is required to (1) translate the negation of
the formula as a Büchi automaton that accepts exactly the language defined by

This research is supported by the NSFC Grant Nos. 61133001, 61272118, 61272117,
61202038, 91218301, 61322202, 61373043, and National Program on Key Basic
Research Project (973 Program) Grant No. 2010CB328102.

S. Liu and Z. Duan (Eds.): SOFL+MSVL 2013, LNCS 8332, pp. 48–61, 2014.
DOI: 10.1007/978-3-319-04915-1 4, c© Springer International Publishing Switzerland 2014

Improved Net Reductions for LTL\X Model Checking 49

the negation of the formula [9,13]; (2) construct a combined system, i.e. synchro-
nization, from the net system and Büchi automaton such that the net system
satisfies the property iff the synchronization does not contain infinite transition
sequences: illegal ω-traces and livelocks; and (3) check whether the synchroniza-
tion contains illegal ω-traces or illegal livelocks by constructing unfolding of the
synchronization. However, the construction of unfolding is inefficient especially
the sub-process for building extensions of prefixes is NP-complete [11]. Further,
it is possible that the unfolding of the synchronization grows exponentially along
with the process for looking for illegal ω-traces and livelocks.

To overcome the above shortages, it is important to reduce the synchroniza-
tion as a compact one. In [1,2,10,12,14], several reduction rules are proposed
for various subclasses of Petri nets that preserve different interesting properties
such as deadlock and liveness. Also, a few of reduction rules are proposed for the
synchronization in [7]. However, the synchronization is still very large. Motivated
by this, this paper improves the reducing rules in [7] by improving some of the
rules existing and introducing new rules. By the improved rules, more original
transitions and places can be removed from the synchronization of 1-safe Petri
nets and Büchi automata.

The rest of the paper is organized as follows. Section 2 presents preliminaries
of 1-safe Petri nets and LTL\X. LTL\X model checking of 1-safe Petri nets is
introduced in Sect. 3. In Sect. 4, a set of reduction rules for the synchronization
are proposed. Correctness of the reduction rules is proved in Sect. 5. Finally,
conclusions are drawn and the future research directions are pointed out in
Sect. 6.

2 Preliminaries

This section briefly presents 1-safe Petri nets and LTL\X.

2.1 1-safe Petri Nets

A net is a 3-tuple N = (P, T, F), where P and T are disjoint sets of places and
transitions, respectively, and F ∈ (P ×T)≡(T ×P) is a set of arcs (flow relation).
For a node z ∧ P ≡T , •z ={y ∧ P ≡T |(y, z) ∧ F} and z• ={y ∧ P ≡T |(z, y) ∧ F}
are the input set and output set of z, respectively. For a set of nodes Z ∈ P ≡T ,
•Z =

⋃
z∈Z

•z and Z• =
⋃

z∈Z z•. The marking of a net is a multiset of places
M . A place p is marked by a marking M with M(p) tokens if M(p) > 0. A
marking M enables a transition t if for each place p ∧ •t, it has M(p) > 0. In
case t is enabled by M , it can occur, and its occurrence leads to a new marking
M ≤ = M − •t+ t•, denoted by M

t−∨ M ≤. Two places p1 and p2 complement each
other if •p1 = p•

2 and p1
• = •p2.

A net system is a 4-tuple Σ = (P, T, F,M0), where (P, T, F) is a net, and M0

is the initial marking. A sequence of transitions σ = t1t2 . . . tn is an occurrence
sequence from M if there exist markings M1,M2, . . ., and Mn such that M

t1−∨
M1

t2−∨ . . .
tn−∨ Mn. An occurrence sequence σ = t1t2 . . . tn is finite (infinite) if

50 Y. Shi et al.

n is a natural number (infinity). M
σ−∨ M ≤ means that a marking M ≤ is reached

from M through a finite occurrence sequence σ. Meanwhile, M
σ−∨ denotes that

σ is an infinite occurrence sequence. A marking M is a reachable marking if
there exists a finite occurrence sequence σ with M0

σ−∨ M . We assume that net
systems presented in the rest of the paper are 1-safe, i.e. every reachable marking
marks each place with at most one token. An ω-word induced by Σ is a marking
sequence M0M1 . . . such that there exists an infinite occurrence sequence t1t2 . . .

where M0
t1−∨ M1

t2−∨ . . . is satisfied.

2.2 LTL\X
LTL\X is LTL [18] with next operators X removed. Given a finite set Prop of
atomic propositions, the syntax of LTL\X is defined as follows, where p ∧ Prop:

ϕ ::= p | ¬ϕ | ϕ1 ∀ ϕ2 | ϕ1Uϕ2

An interpretation of a LTL\X formula is an ω-word over alphabet 2Prop.
ξ |= φ is used to indicate the truth of a LTL\X formula φ for an ω-word ξ ∧
(2Prop)ω. ξi is the ith element in ξ, and ξk is the tail of ξ starting from ξk. The
relation |= is defined inductively as follows:

1. ξ |= p if p ∧ ξ0
2. ξ |= ¬φ if p ∅|= φ
3. ξ |= φ1 ⇒ φ2 if ξ |= φ1 or ξ |= φ2

4. ξ |= φ1Uφ2 if ⇔i ∗ 0 : ξi |= φ2 and ∀j < i : ξj |= φ1

In this paper, LTL\X is used to describe properties of a net system Σ =
(P, T, F,M0), hence Prop is identified with P . Since the state of Σ is presented
as a reachable marking M , a proposition p is true at M iff the place p is marked
by M . Let Σ = (P, T, F,M0) be a net system, and ϕ a LTL\X formula over
the set P of atomic propositions. A place p ∧ P is observable for ϕ if the
proposition p ∧ 〈ϕ〉, where 〈ϕ〉 is a set of atomic propositions appearing in ϕ.
A transition t ∧ T is visible for ϕ if the occurrence of t changes the markings
of observable places, i.e. ((•t\t•) ≡ (t•\•t)) ⊕ 〈ϕ〉 ∅= ≤. An infinite occurrence
sequence σ = t1t2 . . ., with M0

t1−∨ M1
t2−∨ . . ., of Σ satisfies ϕ, denoted by

σ |= ϕ, if ω-word M0M1 . . . satisfies ϕ. Σ satisfies ϕ, denoted by Σ |= ϕ, if
every infinite occurrence sequence from M0 of Σ satisfies ϕ. Infinite occurrence
sequences from M0 of Σ violating ϕ are split into two classes: infinite occurrence
sequences of type I that contain infinitely many occurrences of visible original
transitions, and infinite occurrence sequences of type II that contain finitely
many.

A Büchi automaton is a 5-tuple BA = (Q,Γ, q0, δ, F inal), where Q is a finite
non-empty set of states, Γ an alphabet, q0 ∧ Q the initial state, δ ∈ Q × Γ × Q
the transition relation, and Final ∈ Q the set of accepting states. BA accepts
an ω-word ξ if there exists some accepting state that appears infinitely often in
some run of BA on ξ. A Büchi automaton BAϕ can be obtained from a LTL\X
formula ϕ such that an ω-word ξ is accepted by BAϕ if and only if ξ satisfies ϕ
[9,13].

Improved Net Reductions for LTL\X Model Checking 51

3 LTL\X Model Checking of 1-safe Petri Nets

Let Σ = (P, T, F,M0) be a net system, and ϕ a LTL\X formula over the set of
atomic propositions P . The model checking approach [4] for checking whether Σ
satisfies ϕ consists of three steps. First, translate formula ¬ϕ into the correspond-
ing Büchi automaton BA¬ϕ with q0 as the initial state. Second, a synchronization
Σ¬ϕ is constructed from Σ and BA¬ϕ as follows:

1. Translate BA¬ϕ into a net system Ω¬ϕ by treating each state q ∧ Q as a
place, and each transition d = (q, x, q≤) ∧ δ as a net transition. It is pointed
that only q0 is marked initially. For a net transition d = (q, x, q≤), the input
and output sets are {q} and {q≤}, respectively. The set of propositions x is
the observation of d, denoted by Obs(d).

2. For each observable place p of Σ, add a complementary place p to Σ such
that by every reachable marking, either p or p is marked. Obviously, place p
stands for proposition p, while its complementary place p denotes proposition
¬p.

3. Put Ω¬ϕ and Σ side by side. For convenience, we call the places (transitions)
of Ω¬ϕ Büchi places (transitions), and the places (transitions) belonging to
Σ original places (transitions).

4. The input and output sets of each Büchi transition d = (q, x, q≤) are both
extended with places in Obs(d) and complementary places p such that p ∧
〈ϕ〉\Obs(d). As a result, d can be enabled if the observable propositions it
cares about are true, and the others are false.

5. Add two schedule places ss and sf where only sf is marked initially. The
input and output sets of each visible original transition are extended with ss

and sf , respectively, while the input and output sets of each Büchi transition
are extended with sf and ss, respectively. This step guarantees that, initially,
Ω¬ϕ can fire a transition, and all visible transitions of Σ are disabled. After
an occurrence of some transition of Ω¬ϕ, only Σ can fire transitions. When
Σ fires a visible transition, Ω¬ϕ can fire a transition again and again until
neither Ω¬ϕ nor Σ can fire any transition in its turn.

6. For each Büchi transition t = (q, x, q≤), add a new transition t≤ such that
•t≤ = •t and t≤• = t•\{ss}, where •t and t• are the input and output sets of t
after the previous steps. L is the set of the added transitions. I is the set of
Büchi transitions d with d• ⊕ Final ∅= ≤.

An illegal ω-trace of Σ¬ϕ is an infinite occurrence sequence from the ini-
tial marking, where some transition in I occurs infinitely often. An illegal live-
lock of Σ¬ϕ is an infinite occurrence sequence from the initial marking, in the
form σ1dσ2, where σ1 is a finite occurrence sequence from M0, d belongs to
L and ω-word (Obs(d))ω is accepted by BA¬ϕ with a Büchi place in •d being
the initial state, and σ2 consists of invisible original transitions. Let Σ¬ϕ =
(P, T, F,M0, I, L) be the synchronization constructed from a net system Σ and
a Büchi Automaton BA¬ϕ. It has been proved in [4] that Σ satisfies ϕ if and
only if Σ¬ϕ has neither illegal ω-traces nor illegal livelocks.

52 Y. Shi et al.

Finally, an unfolding method is utilized to check whether Σ¬ϕ has any ille-
gal ω-trace or illegal livelock. Usually, unfolding of the synchronization grows
exponentially and the construction of the unfolding is inefficient [11].

4 Reductions Rules for Synchronization

In this section we propose a set of reduction rules for the synchronization. Several
reduction rules for the synchronization have been presented in [7]. Among them,
there are two Linear Programming Rules, named Dead Transition and Implicit
Place Rule. The aim of Dead Transition Rule is to remove places, which never get
any tokens, and their output transitions. Obviously, such transitions can never
be enabled. Implicit Place Rule tries to remove places which never restrict the
firing of their output transitions.

4.1 T-Reduction Rule

T-Reduction Rule is illustrated in Fig. 1. Since transitions t1 and t2 have the same
input and output set, both t1 and t2 belong to L (I), or neither. Further, for
every occurrence sequence σ containing t2, there exits an occurrence sequence
σt1\t2 obtained from σ by replacing t2 with t1. Therefore, t2 is a redundant
transition which can be removed by T-Reduction Rule.

Let Σ¬ϕ = (P, T, F,M0, I, L) be the synchronization constructed from a net
system Σ and a Büchi Automaton BA¬ϕ. If Σ¬ϕ has two distinct transitions
t1 and t2 with •t1 = •t2 and t1

• = t2
•, then T-Reduction Rule will remove t2,

and generate the resulting synchronization Σ≤
¬ϕ = (P, T ≤, F ≤,M0, I, L), where

T ≤ = T ≤\{t2} and F ≤ = F ⊕ ((T ≤ × P ≤) ≡ (P ≤ × T ≤)).

t2

t1

t1

Fig. 1. T-Reduction Rule

4.2 Post-Reduction Rule

Post-Reduction Rule is shown in Fig. 2. Transition t is enabled after the occur-
rence of transition u, and cannot be disabled by the occurrences of any other
transitions. Therefore, every occurrence sequence σ containing u and t can be
reordered into an occurrence sequence σ≤ such that every occurrence of u is
immediately followed by an occurrence of t. This rule aims to hide occurrences
of t after occurrences of u by making u produce tokens immediately into t• rather
than •t.

Improved Net Reductions for LTL\X Model Checking 53

Let Σ¬ϕ = (P, T, F,M0, I, L) be the synchronization constructed from a net
system Σ and a Büchi Automaton BA¬ϕ. If Σ¬ϕ has two distinct transitions u
and t such that •t ∅= t•, •t ∈ u•, and ∀p ∧ •t, p• = {t}, then by Post-Reduction
Rule, we can obtain the resulting synchronization Σ≤

¬ϕ = (P, T, F ≤,M0, I, L),
where F ≤ = (F\({u} × •t)) ≡ ({u} × t•).

Post-Reduction Rule is derived from A-Reduction Rule in [1] by removing
conditions |•t| > 1, ∅ ⇔p ∧ •t such that •p = {u}, and adding restrictions •t ∅= t•

and for all p ∧ •t, it has p• = {t}. The synchronization remains unchanged
if t has the same input and output sets. If ∀p ∧ •t, p• = {t} is ignored, the
occurrence of u cannot make transitions of (•t)•\{t} enabled in Σ≤

¬ϕ.

u

t

u

t

Fig. 2. Post-Reduction Rule

4.3 Pre-Reduction Rule

This rule is described in Fig. 3. Transition t is enabled only after occurrences
of transitions u1 and u2, and cannot be disabled by the occurrences of any
other transitions. Occurrences of u1 and u2 do not affect each other. Thereby,
every occurrence sequence σ containing u1, u2, and t can be reordered into an
occurrence sequence σ≤ containing sub-sequence u1u2t. This rule aims to hide
occurrences of u1 and u2 by merging them with t.

Before introducing Pre-Reduction Rule formally, we present several functions
PreTran, PreSet, Seq, and dec. PreTran is a function T ∨ 2T with PreTran(t) =
{u ∧ T |u• ⊕ •t ∅= ≤}. PreSet is a function T ∨ 22

T

satisfying PreSet(t) =
{U ∈ PreTran(t)|U• = •t,∀u1, u2 ∧ U , (•u1 ⊕ •u2) ≡ (u•

1 ⊕ u•
2) = ≤}. Seq is a

function 2T ∨ T ∧ such that Seq(U) is a transition sequence where each element
of U appears exactly once. dec is a function T ∧ ∨ 2T where dec(s) is the set of
transitions appearing in transition sequence s.

t

u2

u3

u1

u1u2t

Fig. 3. Pre-Reduction Rule

54 Y. Shi et al.

Let Σ¬ϕ = (P, T, F,M0, I, L) be the synchronization constructed from a net
system Σ and a Büchi Automaton BA¬ϕ with q0 being the initial state. If Σ¬ϕ

has a transition t such that •t ⊕ t• = ≤, ∀u ∧ PreTran(t), u• ⊂ •t, ∀p ∧ •t,
•p ∅= ≤, p• = {t}, and M(p) = 0, then by Pre-Reduction Rule, we can obtain
the resulting synchronization Σ≤

¬ϕ = (P ≤, T ≤, F ≤,M0, I, L), where P ≤ = P\•t,
T ≤ = (T\(PreTran(t) ≡ {t})) ≡ D with D = {st|U ∧ PreSet(t), s = Seq(U)},
F ≤ = (F ⊕ ((T ≤ × P ≤) ≡ (P ≤ × T ≤))) ≡ (

⋃
u∈D(•(dec(u)\{t}) × {u})) ≡ (D × t•). To

distinguish the new produced transitions from the ones in the ordinary transition
sequences, u1u2t in Fig. 3 is presented with underline.

4.4 Post-A Rule

This rule is demonstrated in Fig. 4. Both transitions t1 and t2 are enabled after
the occurrence of transition u, since they have only one input place p ∧ u•.
Therefore, every occurrence sequence σ containing u can be reordered into an
occurrence sequence σ≤ such that every occurrence of u is immediately followed
by an occurrence of t1 or t2. This rule aims to hide occurrences of transition t1
(t2) by merging t1 (t2) with u.

Let Σ¬ϕ = (P, T, F,M0, I, L) be the synchronization constructed from a net
system Σ and a Büchi Automaton BA¬ϕ. If Σ¬ϕ has a place p such that •p ∅= ≤,
p• ∅= ≤, ∀t ∧ p•, •t = {p} and p ∅∧ t•, then by Post-A rule, we can obtain the
resulting synchronization Σ≤

¬ϕ = (P, T ≤, F ≤,M0, I, L), where

– T ≤ = (T\•p) ≡ (•p × p•),
– ∀q ∧ P , ∀t ∧ T\•p, F ≤(q, t) = F (q, t), F ≤(t, q) = F (t, q);

∀q ∧ P , ∀t1t2 ∧ (•p × p•), F ≤(q, t1t2) = F (q, t1), F ≤(t1t2, q) = F (t1, q) +
F (t2, q).

Elements in •p × p• with underline are used to denote new transitions.

ut1

ut2
pu

t1

t2 t1

t2

p

Fig. 4. Post-A Rule

Post-A Rule is extended from Post-Agglomeration Rule in [7] by removing
condition M0(p) = 0, and adding restriction ∀t ∧ p•, p ∅∧ t•. Additionally, the
rule preserves p and its output transitions p•. This makes condition M0(p) = 0
unnecessary in the rule. It seems that preservation of p and transitions of p•

Improved Net Reductions for LTL\X Model Checking 55

makes the synchronization worse for unfolding. Actually, p and transitions of
p• can be preserved after the whole reduction process if p is marked initially.
Otherwise, they will be removed by Dead Transition Rule. Although p and tran-
sitions of p• are preserved eventually, transitions of p• are only considered for the
possible extensions in the first run during the construction of unfolding. This is
because the construction algorithm of unfolding is breadth-first [5]. Thus, preser-
vation of p and transitions of p• has little affect on the construction of unfolding.

4.5 Pre-A Rule

Pre-A Rule is shown in Fig. 5. Transition u can be enabled only after the occur-
rence of transition t1 or t2. Here both t1 and t2 have only one output place
p. Thus, every occurrence sequence σ containing u must contain t1 or t2, and
can be reordered into an occurrence sequence σ≤ such that every occurrence of
t1 or t2 is immediately followed by an occurrence of u. This rule aims to hide
occurrences of u by merging u with t1 (t2).

Let Σ¬ϕ = (P, T, F,M0, I, L) be the synchronization constructed from a net
system Σ and a Büchi Automaton BA¬ϕ. If Σ¬ϕ has a place p such that •p ∅= ≤,
p• ∅= ≤, ∀t ∧ •p, t• = {p} and p ∅∧ •t, then by Pre-A Rule, we can obtain the
resulting synchronization Σ≤

¬ϕ = (P, T ≤, F ≤,M0, I), where

– T ≤ = (T\•p) ≡ (•p × p•),
– ∀q ∧ P ≤, ∀t ∧ T\•p: F ≤(q, t) = F (q, t), F ≤(t, q) = F (t, q);

∀q ∧ P ≤, ∀t1t2 ∧ (•p × p•): F ≤(q, t1t2) = F (q, t1) + F (q, t2), F ≤(t1t2, q) =
F (t2, q).

t1u

p u

t1

t2

p u

t2u

Fig. 5. Pre-A Rule

Transitions reduced by Abstract Rule and Pre-Agglomeration Rule in [7] can
be dealt with by this rule. Restriction ∀t ∧ •p, p ∅∧ •t is necessary for Abstract
Rule and Pre-Agglomeration Rule but ignored in [7]. Note that p and transitions
of p• are preserved by this rule. But they are possible to be removed by Dead
Transition Rule if p is not marked by the initial marking M0.

5 Correctness of Reduction Rules

In this section we show that the reduction rules do not affect the result of LTL\X
model checking of 1-safe Petri nets. We first present a Theorem proved in [7].

56 Y. Shi et al.

Theorem 1. Let Σ¬ϕ = (P, T, F,M0, I, L) be the synchronization constructed
from a net system Σ and a Büchi Automaton BA¬ϕ. Σ satisfies ϕ if and only
if at least one of the following conditions hold for Σ¬ϕ:

1. there exists an illegal ω-trace σ in Σ¬ϕ, or
2. there exists a finite occurrence sequence M0

σ0−∨ M in Σ¬ϕ such that
(a) there exists an infinite occurrence sequence M |B σ1−∨ containing infinitely

many transitions of I in Σ¬ϕ|B, and
(b) there exists an infinite occurrence sequence M |N σ2−∨ containing only

invisible original transitions in Σ¬ϕ|N ,

where Σ¬ϕ|B (Σ¬ϕ|N) is the subnet of Σ¬ϕ corresponding to BA¬ϕ (Σ), and
M |B (M |N) is the part of M belonging to Σ¬ϕ|B (Σ¬ϕ|N). �

Let Σ¬ϕ be a synchronization, and Σ≤
¬ϕ the synchronization obtained by

applying a reduction rule on Σ¬ϕ. The reduction rule is correct if each condition
of Theorem 1 holds for both Σ¬ϕ and Σ≤

¬ϕ, or neither.

Theorem 2. T-Reduction Rule is correct.

Proof. Let t1 and t2 be two transitions in Σ¬ϕ satisfying conditions of T-
Reduction Rule, and Σ≤

¬ϕ the synchronization obtained from Σ¬ϕ by removing
t2 by T-Reduction Rule. We prove that condition 1 (2) of Theorem 1 holds for
Σ¬ϕ if and only if it holds for Σ≤

¬ϕ. Unless stated otherwise, σ means an occur-
rence sequence of Σ¬ϕ, while σ≤ denotes an occurrence sequence belonging to
Σ≤

¬ϕ.

≥ 1. Suppose condition 1 of Theorem 1 holds for Σ¬ϕ. Since •t1 = •t2 and
t•1 = t•2, we have that both t1 and t2 belong to L (I), or neither. It follows
that in Σ¬ϕ there exists an illegal ω-trace σt1\t2 , which is obtained from
σ by replacing t2 with t1. Because of M ≤

0 = M0 and none of transitions
in σt1\t2 is affected by T-Reduction Rule, we have that there exists an
illegal ω-trace σt1\t2 in Σ≤

¬ϕ. Therefore, condition 1 of Theorem 1 holds
for Σ≤

¬ϕ.
2. Suppose condition 2 of Theorem 1 holds for Σ¬ϕ. By (≥ 1), we have

that there exists a finite occurrence sequence M0

σ0 t1\t2−−−−−∨ M in Σ≤
¬ϕ.

Since •t1 = •t2 and t•1 = t•2, we have that both t1 and t2 belong to either
Σ¬ϕ|N or Σ¬ϕ|B . Further, t1 and t2 still have the same input and output
sets, respectively, in Σ¬ϕ|N or Σ¬ϕ|B . It follows that (a) there exists

an infinite occurrence sequence M |B
σ1 t1\t2−−−−−∨ containing infinitely many

transitions of I in Σ≤
¬ϕ|B , and (b) there exists an infinite occurrence

sequence M |N
σ2 t1\t2−−−−−∨ containing only invisible original transitions in

Σ≤
¬ϕ|N . Therefore, condition 2 of Theorem 1 holds for Σ≤

¬ϕ.
↓ 1. Suppose condition 1 of Theorem 1 holds for Σ≤

¬ϕ. Since t2 does not
belong to Σ≤

¬ϕ, we have that σ≤ does not contain any t2, and then none
of the transitions in σ≤ has been affected by T-Reduction Rule. Because
of M ≤

0 = M0, there exists an illegal ω-trace σ≤ in Σ¬ϕ. Thus, condition 1
of Theorem 1 holds for Σ¬ϕ.

Improved Net Reductions for LTL\X Model Checking 57

2. Suppose condition 2 of Theorem 1 holds for Σ≤
¬ϕ. Since t2 does not

belong to Σ≤
¬ϕ, we have that σ≤

0, σ≤
1, and σ≤

2 do not contain any t2, and
then none of transitions in them has been affected by T-Reduction Rule.
Since M ≤

0 = M0, it has that condition 2 of Theorem 1 holds for Σ¬ϕ. �

Theorem 3. Let u and t be a pair of transitions in Σ¬ϕ satisfying Post-
Reduction Rule. For a finite occurrence sequence M0

σ1uσ2tσ3−−−−−−∨ M in Σ¬ϕ, if
σ2 does not contain any t, then σ2 does not contain any u either, and there
exists an occurrence sequence M0

σ1utσ2σ3−−−−−−∨ M .

Proof. Assume that M0
σ1u−−∨ M1

σ2−∨ M2
t−∨ M3

σ3−∨ M is a finite occurrence
sequence of Σ¬ϕ where σ2 does not contain any t. From ∀p ∧ •t, p• = {t}, it
has that only t consumes tokens in places of •t. Because of •t ∈ u•, σ2 does not
contain any t, and Σ¬ϕ is 1-safe, it can be obtained that σ2 does not contain
any u. Since •t ∈ u•, we have M0

σ1u−−∨ M1
t−∨ M ≤

1 where M ≤
1 = (M1\•t) ≡ t•.

Since only t consumes tokens in places of •t, and σ2 does not contain any t,
it has that none of transitions in σ2 consumes tokens in places of •t, and then
M0

σ1u−−∨ M1
t−∨ M ≤

1
σ2−∨ M ≤

2 where M ≤
2 = M3. Therefore, M0

σ1u−−∨ M1
t−∨ M ≤

1
σ2−∨

M3
σ3−∨ M . �

Lemma 4. Let u and t be a pair of transitions touched by Post-Reduction Rule.
u and t are original transitions.

Proof.

1. Suppose that t is a Büchi transition. It has sf ∧ •t and there exists one Büchi
place q ∧ •t. Since •t ∈ u•, we have {sf , q} ∈ u•. Further q ∧ u•, it follows
that u is also a Büchi transition. This contradicts with sf ∧ u•. Therefore, t
is an original transition.

2. Suppose that u is a Büchi transition. Since t is an original transition, we have
that t has at least one original place p in its input set. Because of •t ∈ u•, it
has p ∧ u•. Since p is an original place, and u is a Büchi transition, we have
p ∧ •u ⊕ u•. This contradicts with condition ∀p ∧ •t, p• = {t}. Therefore, u
is also an original transition. �

Theorem 5. Post-Reduction Rule is correct.

Proof. Let u and t be a pair of transitions in Σ¬ϕ satisfying conditions of Post-
Reduction Rule, Σ≤

¬ϕ the synchronization obtained from Σ¬ϕ by dealing with
u and t by Post-Reduction Rule. We prove that condition 1 (2) of Theorem 1
holds for Σ¬ϕ if and only if it holds for Σ≤

¬ϕ. Note that u≤ presents transition u
in the new synchronization Σ≤

¬ϕ.

≥ 1. Suppose condition 1 of Theorem 1 holds for Σ¬ϕ. From Theorem 3, it
follows that σ can be reordered into an illegal ω-trace ρ of Σ¬ϕ such that
every occurrence of u is immediately followed by an occurrence of t. Since
F ≤ = (F\({u}×•t))≡({u}×t•), we have •u≤ = •u and u≤• = (u•\•t)≡t•.

58 Y. Shi et al.

Because of M ≤
0 = M0, there exists an infinite occurrence sequence σ≤

from M ≤
0 in Σ≤

¬ϕ, where σ≤ is obtained from ρ by replacing ut with u≤. By
Lemma 4, it has that u and t are original transitions, and thus none of
Büchi transitions in σ≤ has been affected by Post-Reduction Rule. Thus,
σ≤ contains infinitely many transitions of I leading it to be an illegal
ω-trace. Therefore, condition 1 of Theorem 1 holds for Σ≤

¬ϕ.
2. Suppose condition 2 of Theorem 1 holds for Σ¬ϕ and σ0 = σ3v. From the

proof of Theorem 1 in [7], we have v ∧ L and then v is a Büchi transition.
Therefore, Post-Reduction Rule can affect occurrence sequence σ3 in
M0

σ3v−−∨ M . By (≥ 1), it has that there exists an occurrence sequence

M0
σ′
3v−−∨ M in Σ≤

¬ϕ, where σ≤
3 is obtained from σ3 by replacing every u

with u≤, and removing the first t after this u. Since transitions of Σ¬ϕ|B
are Büchi transitions, infinite occurrence sequence σ1 of Σ¬ϕ|B consists
of only Büchi transitions. Thus, none of transitions in σ1 is affected
by Post-Reduction Rule, and thus there exists an infinite occurrence
sequence M |B σ1−∨ containing infinitely many transitions of I in Σ≤

¬ϕ|B .
By (≥ 1), we have that there exists an infinite occurrence sequence

M |N σ′
2−∨ in Σ≤

¬ϕ|N , where σ≤
2 is obtained from σ2 by replacing every u

with u≤, and removing the first t after this u. Therefore, condition 2 of
Theorem 1 holds for Σ≤

¬ϕ.
↓ 1. Suppose condition 1 of Theorem 1 holds for Σ≤

¬ϕ. By •u≤ = •u, u≤• =
(u•\•t)≡ t•, and M ≤

0 = M0, it follows that in Σ¬ϕ there exists an infinite
occurrence sequence σ from M0 which is obtained from σ≤ by replacing
u≤ with ut. Since u≤ is not a Büchi transition, we have that σ contains
infinitely many transitions of I, and then it is an illegal ω-trace. Thus,
condition 1 of Theorem 1 holds for Σ¬ϕ.

2. Suppose condition 2 of Theorem 1 holds for Σ≤
¬ϕ. From (≥ 2), it fol-

lows that transitions in σ0 and σ2 might have been affected by Post-
Reduction Rule. By (↓ 1), we have that there exists an occurrence
sequence M ≤

0
σ0−∨ M ≤ in Σ¬ϕ (M ≤|N σ2−∨ in Σ¬ϕ|N), where σ0 (σ2) is

obtained from σ≤
0 (σ≤

2) by replacing u≤ with ut. Since σ≤
1 consists of only

Büchi transitions, none of transitions in σ≤
1 has been affected by Post-

Reduction Rule. Thus, there exists a finite occurrence sequence M ≤|B σ′
1−∨

in Σ¬ϕ|B where σ≤
1 contains infinitely many transitions of I. Therefore,

condition 2 of Theorem 1 holds for Σ¬ϕ. �

Lemma 6. Let t be a transition satisfying conditions of Pre-Reduction Rule.
For a finite occurrence sequence M1

σt−∨ M2 of Σ¬ϕ, where M1 is a reachable
marking, M1 ⊕ •t = ≤, and σ does not contain any t, it has that there exits

a finite occurrence sequence M1
σ′u1...umt−−−−−−−∨ M2 in Σ¬ϕ, where σ≤ is the finite

occurrence sequence obtained from σ by removing transitions of PreSet(t) and
U = {u1, u2, ...um} ∧ PreSet(t).

Improved Net Reductions for LTL\X Model Checking 59

Proof. Let σ = σ1umσ2, where σ2 does not contain any transition of PreTran(t).
Since ∀u ∧ PreTran(t), u• ⊂ •t, and ∀p ∧ •t, p• = {t}, we have that only t
consumes tokens produced by transitions of PreTran(t). Since σ does not contain
any t, none of transitions in σ2 consumes any tokens produced by um. Thus, we

have M1
σ1σ2−−−∨ M

umt−−∨ M2. It follows that M
σ′u1...umt−−−−−−−∨ Mt, where σ≤ is the

transition sequence obtained from σ by removing transitions of PreTran(t), and
U = {u1, u2, ...um} are the set of transitions of PreTran(t) in σ. From M1⊕•t = ≤,
we have that •t ∈ U•. Since ∀u ∧ PreTran(t), u• ⊂ •t, it has U• ∈ •t and thus
U• = •t. Since Σ¬ϕ is 1-safe, ∀ui, uj ∧ U, (•ui ⊕ •uj) ≡ (u•

i ⊕ u•
j) = ≤ and then

U ∧ PreSet(t). �

Lemma 7. Let t be a transition of Σ¬ϕ satisfying conditions of Pre-Reduction
Rule. Transitions of PreTran(t) and t are original transitions.

Proof.

1. Suppose t is a Büchi transition. It has that sf ∧ •t and there exists one Büchi
place q ∧ •t. Since ∀p ∧ •t, •p ∅= ≤, there exists a transition u with q ∧ u•. It
follows that u is a Büchi transition and then ss ∧ u•. Since u• ⊂ •t, it has
ss ∧ •t. This contradicts with the fact that t is a Büchi transition. Thus, t
is an original transition.

2. Suppose there exists a Büchi transition u ∧ PreTran(t). It has that ss ∧ u•

and there exists one Büchi place s ∧ u•. Since u• ⊂ •t, it has s ∧ •t and
t is a Büchi transition. This contradicts with the fact that t is an original
transition. Therefore, transitions of PreTran(t) are original transitions. �

Theorem 8. Pre-Reduction Rule is correct.

Proof. Let t be a transition in Σ¬ϕ satisfying conditions of Pre-Reduction Rule,
Σ≤

¬ϕ the synchronization obtained from Σ¬ϕ by dealing with t and PreSet(t)
with Pre-Reduction Rule. We prove that condition 1 (2) of Theorem 1 holds for
Σ¬ϕ if and only if it holds for Σ≤

¬ϕ.

≥ 1. Suppose condition 1 of Theorem 1 holds for Σ¬ϕ. By Lemma 6, it fol-
lows that σ can be reordered into an illegal ω-trace ρ of Σ¬ϕ such that
every occurrence of t is immediately preceded by a transition sequence
γ with dec(γ) ∧ PreSet(t). Since F ≤ = (F ⊕ ((T ≤ × P ≤) ≡ (P ≤ × T ≤))) ≡
(
⋃

u∈D(•(dec(u)\{t}) × {u})) ≡ (D × t•), it has that •γt = •(dec(γ))
and γt• = t•. Because of M ≤

0 = M0, there exists an infinite occurrence
sequence σ≤ from M ≤

0 in Σ≤
¬ϕ, where σ≤ is obtained from ρ by replac-

ing transition sequence γt with transition γt. By Lemma 7, it has that
transitions of PreTran(t) and t are original transitions, and then none of
Büchi transitions in σ≤ has been affected by Pre-Reduction Rule. Thus,
σ≤ is an illegal ω-trace. Therefore, condition 1 of Theorem 1 holds for
Σ≤

¬ϕ.
2. The proof is similar to that of Theorem 5.

60 Y. Shi et al.

↓ 1. Suppose condition 2 of Theorem 1 holds for Σ¬ϕ. From •γt = •(dec(γ))
and γt• = t•, it follows that in Σ¬ϕ there exists an illegal ω-trace σ,
which is obtained from σ≤ by replacing every transition γt ∧ D with the
transition sequence γt. Since γt is not a Büchi transition, σ is an illegal
ω-trace. Thus, condition 1 of Theorem 1 holds for Σ¬ϕ.

2. The proof is similar to that of Theorem 5. �

Correctness of Post-A Rule and Pre-A Rule can be proved similarly to Local
Reduction Rules in [7].

6 Conclusion

Five correct reduction rules for reducing synchronization of 1-safe Petri nets and
Büchi automata are presented in this paper. Among them, Post-A Rule and Pre-
A Rule can deal with all transitions and places reduced by Local Reduction Rules
in [7]. Thus, compared with the existing work, a compact synchronization can be
generated by our method. In the near further, all the rules will be implemented
and utilized in reducing synchronization of 1-safe Petri nets and Büchi automata
in practise.

References

1. Desel, J.: Reduction and design of well-behaved concurrent systems. In: Baeten,
J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 166–181. Springer,
Heidelberg (1990)

2. Esparza, J.: Reduction and synthesis of live and bounded free choice petri nets.
Inf. Comput. 114(1), 50–87 (1994)

3. Esparza, J., Heljanko, K.: A new unfolding approach to LTL model checking. In:
Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000. LNCS, vol. 1853, pp.
475–486. Springer, Heidelberg (2000)

4. Esparza, J., Heljanko, K.: Implementing LTL model checking with net unfoldings.
In: Dwyer, M. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 37–56. Springer, Heidelberg
(2001)

5. Esparza, J., Kanade, P., Schwoon, S.: A negative result on depth-first net unfold-
ings. Softw. Tools Technol. Transfer 10(2), 161–166 (2008)

6. Esparza, J., Römer, S., Vogler, W.: An improvement of Mcmillan’s unfolding algo-
rithm. Formal Methods Syst. Des. 20(3), 285–310 (2002)

7. Esparza, J., Schröter, C.: Net reductions for LTL model-checking. In: Margaria,
T., Melham, T. (eds.) CHARME 2001. LNCS, vol. 2144, pp. 310–324. Springer,
Heidelberg (2001)

8. Esparza, J., Schröter, C.: Unfolding based algorithms for the reachability problem.
Fundamenta Informaticae 47(3), 231–245 (2001)

9. Gastin, P., Oddoux, D.: Fast LTL to büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

10. Haddad, S., Pradat-Peyre, J.F.: New efficient petri nets reductions for parallel
programs verification. Parallel Process. Lett. 16(1), 101–116 (2006)

Improved Net Reductions for LTL\X Model Checking 61

11. Heljanko, K.: Deadlock and reachability checking with finite complete prefixes.
Research Report A56, Helsinki University of Technology, Laboratory for Theoret-
ical Computer Science, Espoo (1999)

12. Hyung, L., Favrel, J., Baptiste, P.: Generalized petri net reduction method. IEEE
Trans. Syst. Man Cybern. SMC 17(2), 297–303 (1987)

13. Katoen, J.P.: Concepts, Algorithms, and Tools for Model Checking. IMMD, Erlan-
gen (1999)

14. Khomenko, V., Koutny, M.: Verification of bounded petri nets using integer pro-
gramming. Formal Methods Syst. Des. 30(2), 143–176 (2007)

15. McMillan, K.L.: Symbolic Model Checking. Springer, New York (1993)
16. McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the veri-

fication of asynchronous circuits. In: von Bochmann, G., Probst, D.K. (eds.) CAV
1992. LNCS, vol. 663, pp. 164–177. Springer, Heidelberg (1993)

17. Melzer, S., Römer, S.: Deadlock checking using net unfoldings. In: Grumberg, O.
(ed.) CAV 1997. LNCS, vol. 1254, pp. 352–363. Springer, Heidelberg (1997)

18. Pnueli, A.: Applications of temporal logic to the specification and verification of
reactive systems: a survey of current trends. In: Rozenberg, G., de Bakker, J.W., de
Roever, W.-P. (eds.) Current Trends in Concurrency. LNCS, vol. 224, pp. 510–584.
Springer, Heidelberg (1986)

19. Wallner, F.: Model checking LTL using net unforldings. In: Hu, A.J., Vardi, M.Y.
(eds.) CAV 1998. LNCS, vol. 1427, pp. 207–218. Springer, Heidelberg (1998)

Formalizing and Implementing Types in MSVL

Xiaobing Wang, Zhenhua Duan(B), and Liang Zhao

Institute of Computing Theory and Technology and ISN Laboratory,
Xidian University, Xian 710071, People’s Republic of China

xbwang@mail.xidian.edu.cn, zhenhua duan@126.com, lzhao@xidian.edu.cn

Abstract. This paper investigates techniques for formalizing and imple-
menting types in the temporal logic programming language MSVL, which
is an executable subset of Projection Temporal Logic. To this end, the
data domain of MSVL is extended to include typed values, and then
typed functions and predicates concerning the extended data domain
are defined. Based on these definitions, the statement for type declara-
tion of program variables is formalized. The implementation mechanisms
of the type declaration statement in the MSVL interpreter are also dis-
cussed, which is based on the notion of normal form of MSVL programs.
To illustrate how to program with types, an example of in-place reversing
an integer list is given.

Keywords: Type · Temporal logic programming · MSVL · Projection
Temporal Logic

1 Introduction

In many formal verification fields ranging from digit circuit design to software
engineering, temporal logics have been widely used as an efficient tool for describ-
ing and reasoning about properties of concurrent systems [1–3]. Projection Tem-
poral Logic (PTL) extends Interval Temporal Logic (ITL) and is widely applied
to system specification and verification [4]. In most cases the system modeling
techniques have nothing to do with temporal logics while the desired properties
are described by temporal logic formulas, thus verification has suffered from a
defect that different formal methods have different denotations and semantics.
To improve this situation, one way is to use the same language for modeling sys-
tems and describing properties. Modeling, Simulation and Verification Language
(MSVL) is a temporal logic programming language developed as an executable
subset of PTL, where concurrent systems can be modeled, simulated and verified
[5]. In this method, a concurrent system is modeled by an MSVL program while
properties of this system are specified by Propositional Projection Temporal
Logic (PPTL) formulas [6]. By model checking within the same temporal logic

This research is supported by the NSFC Grant Nos. 61272118, 61272117, 61133001,
61202038, 61373043, 973 Program Grant No. 2010CB328102, and the Fundamental
Research Funds for the Central Universities Nos. K5051203014, K5051303020.

S. Liu and Z. Duan (Eds.): SOFL+MSVL 2013, LNCS 8332, pp. 62–75, 2014.
DOI: 10.1007/978-3-319-04915-1 5, c© Springer International Publishing Switzerland 2014

Formalizing and Implementing Types in MSVL 63

framework, whether or not a concurrent system satisfies the desired properties
can be verified.

Introducing types into a programming languages is important, which enables
us to write more sound and practical programs. As we known, most conven-
tional programming languages such as C, C++ and Java have their own data
types, including integer, array, list, etc. However, most temporal logic program-
ming languages, e.g. MSVL, Tempura [7], XYZ/E [8], TLA [9] and METATEM
[10], have not implemented types yet. To bridge the gap between temporal logic
programming and conventional programming, we are motivated to investigate
techniques for formalzing and implementing types in MSVL.

In [11], there are two basic built-in types, integer and bool, which can be
given pure set-theoretic definitions in Tempura. Further types can be built from
these basic types by means of the × operator and the power set operator. Also,
they defined a statement type(x, T) to introduce a variable x of a type T . But so
far as we know, no further formalization and implementation details have been
published to clarify a proper way to implement types in Tempura, neither does
the Tempura interpreter consider the execution of type statements.

The main contributions of this paper are as follows. (1) The data domain D
of MSVL is formalized to describe types including integer, float, character, array,
list, etc. (2) Typed functions and predicates, and the type declaration statement
are defined. (3) The normal form for those statements are given and they are
implemented in the MSVL interpreter. With these contributions, the language
MSVL can be used to model, simulate and verify typed programs.

The rest of the paper is organized as follows. Section 2 briefly introduces PTL
and MSVL. In Sect. 3, the data domain, typed functions and predicates, and the
type declaration statement are formalized. Then, Sect. 4 provides the MSVL
interpreter implementation mechanisms based on the notion of the normal form.
In Sect. 5, the MSVL interpreter is used to model and verify an in-place reversal
of an integer list. Finally, conclusions are drawn in Sect. 6.

2 Preliminaries

2.1 Projection Temporal Logic

Let P be a countable set of propositions, and V be a countable set of typed static
and dynamic variables. PTL terms e and formulas p are given by the following
grammar [4].

e ::= x | ∈e | -∈e | f(e1, . . . , em)
p ::= r | e1 = e2 | P (e1, . . . , em) | ¬p | p1 ≡ p2 | ∧v : p |

∈ p | (p1, . . . , pm) prj p

where r ∨ P is a proposition, and x ∨ V is a dynamic or static variable. In
f(e1, . . . , em) and P (e1, . . . , em), f is a function and P is a predicate. Each
function and predicate has a fixed arity. A formula (term) is called a state formula

64 X. Wang et al.

(term) if it does not contain any temporal operators (i.e. ∈ or prj); otherwise it
is a temporal formula (term).

A state s is a pair of assignments (Iv, Ip) where for each variable x defines
s[x] = Iv[x], and for each proposition r defines s[r] = Ip[r]. Iv[x] is a value
in the data domain D or nil which means “undefined”, and Ip[r] is a value in
B = {true, false}. An interval σ = ∀s0, s1, . . .∅ is a non-empty (possibly infinite)
sequence of states. The length of σ, denoted by |σ|, is defined as β if σ is infinite;
otherwise it is the number of states in σ minus one. To have a uniform notation
for both finite and infinite intervals, we will use extended integers as indices.
That is, we consider the set N of natural numbers and β, Nω = N ⇒ {β}, and
extend the comparison operators, =, <,⇔, to Nω by considering β = β, and for
all i ∨ N, i < β. Moreover, we define ∗ as ⇔ −{(β, β)}. With such a notation,
σ(i..j)(0 ⇔ i ∗ j ⇔ |σ|) denotes the sub-interval ∀si, . . . , sj∅ and σ(k)(0 ⇔ k ∗ |σ|)
denotes ∀sk, . . . , s|σ|∅. The concatenation of σ with another interval (or empty
string) σ∈ is denoted by σ •σ∈. To define the semantics of the projection operator
we need an auxiliary operator for intervals. Let σ = ∀s0, s1, . . .∅ be an interval
and n1, . . . , nh be integers (h ≥ 1) such that 0 ⇔ n1 ⇔ n2 ⇔ . . . ⇔ nh ∗ |σ|.
The projection of σ onto n1, . . . , nh is the interval (called projected interval), σ ↓
(n1, . . . , nh) = ∀sm1 , sm2 , . . . , sml

∅, where m1, . . . ,ml is obtained from n1, . . . , nh

by deleting all duplicates. For example,

∀s0, s1, s2, s3, s4∅ ↓ (0, 0, 2, 2, 2, 3) = ∀s0, s2, s3∅

An interpretation for a PTL term or formula is a tuple I = (σ, i, k, j), where
σ = ∀s0, s1, . . .∅ is an interval, i and k are non-negative integers, and j is an
integer or β, such that i ⇔ k ∗ j ⇔ |σ|. We use (σ, i, k, j) to mean that a term or
formula is interpreted over a subinterval σ(i..j) with the current state being sk.
For every term e, the evaluation of e relative to interpretation I = (σ, i, k, j),
denoted as I[e], is a value in D or nil . It is defined by structural induction,
shown in Fig .1.

I[x] = sk[x] = Ik
v [x]

I[e] =
(σ, i, k + 1, j)[e] if k < j
nil otherwise

I[- e] =
(σ, i, k − 1, j)[e] if i < k
nil otherwise

I[f(e1, . . . , em)] =
f (II [[e1]] , . . . , I[em]) if I[eh] = nil for all h

nil otherwise

Fig. 1. Interpretation of PTL terms

The satisfaction relation for formulas |= is inductively defined as follows.

1. I |= r if sk[r] = Ik
p [r] = true.

2. I |= e1 = e2 if I[e1] = I[e2].

Formalizing and Implementing Types in MSVL 65

3. I |= P (e1, . . . , em) if I[eh]
= nil for 1 ⇔ h ⇔ m and I[P] (I[e1], . . . , I[em]) =
true.

4. I |= ¬p if I
|= p.
5. I |= p1 ≡ p2 if I |= p1 and I |= p2.
6. I |= ∧v : p if for some interval σ∈ which has the same length as σ, (σ∈, i, k, j) |=

p and the only difference between σ and σ∈ can be the values of the variable
v at the state k.

7. I |= ∈p if k < j and (σ, i, k + 1, j) |= p.
8. I |= (p1, . . . , pm) prj q if there exist integers k = k0 ⇔ k1 ⇔ . . . ⇔ km ⇔ j

such that (σ, i, k0, k1) |= p1, (σ, kl−1, kl−1, kl) |= pl (for 1 < l ⇔ m), and
(σ∈, 0, 0, |σ∈|) |= q for one of the following σ∈:
(a) km < j and σ∈ = σ ↓ (k0, . . . , km) • σ(km+1..j)

(b) km = j and σ∈ = σ ↓ (k0, . . . , kh) for some 0 ⇔ h ⇔ m.

A formula p is said to be:

1. satisfied by an interval σ, denoted as σ |= p, if (σ, 0, 0, |σ|) |= p.
2. satisfiable if σ |= p for some σ.
3. valid, denoted as |= p, if σ |= p for all σ.
4. equivalent to another formula q, denoted as p ⊕ q, if |= ♦(p ≤ q).

The connectors ⊂, ≥ and ≤ are defined as usual. In particular, the abbrevi-
ations true

def= p ⊂ ¬p and false
def= p ≡ ¬p for any formula p. In Fig. 2 derived

formulas and composite predicates are shown.

empty
def
= true more

def
= ¬empty

p; q
def
= (p, q) prj empty ♦p

def
= true; p

p
def
= ¬♦¬p halt(p)

def
= (empty ∗ p)

keep(p)
def
= (¬empty → p) fin(p)

def
= (empty → p)

skip
def
= empty

len(0)
def
= empty

len(n)
def
= len(n − 1) for n > 0

p∗ def
= empty ∨ (p; p∗) ∨ p ∧ more

Fig. 2. Derived formulas and composite predicates

In order to avoid an excessive number of parentheses, the following prece-
dence rules are used as shown in Table 1. An operator with a smaller number
has a higher precedence, while operators with the same number have the same
precedence.

Table 1. Precedence rules of PTL

1 ¬ 2 © -© ♦ ♦ 3 ∧ 4 ∨
5 := = 6 → ∗ 7 prj 8 ;

66 X. Wang et al.

2.2 MSVL

Let n range over integers and x range over variables. MSVL arithmetic expres-
sions e and boolean expressions b are PTL terms and formulas, respectively [5].
They are given by the following grammar:

e ::= n | x | ∈x | -∈x | e1 + e2 | e1 − e2 | e1 ↓ e2 | e1/e2 | e1 mod e2
b ::= true | false | e1 = e2 | e1 > e2 | e1 ≥ e2 | e1 < e2 | e1 ⇔ e2 | ¬b | b1 ≡ b2

The elementary statements p, q of MSVL are PTL formulas and defined as
follows.

Assignment: x = e

P-I-Assignment: x ⇐ e
def
= x = e ∧ rx

Unit Assignment: x := e
def
= skip ∧ ©x ⇐ e

Sequential Composition: p; q

Conditional Choice: if b then p else q
def
= (b → p) ∧ (¬b → q)

While Loop: while b do p
def
= (b ∧ p)∗ ∧ ♦(empty → ¬b)

Conjunction: p ∧ q
Selection: p ∨ q

Parallel Composition: p ‖ q
def
= p ∧ (q; true) ∨ q ∧ (p; true)

Next: ©p
Always: ♦p
Termination: empty
Local variable: ∃x : p

State Frame: lbf(x)
def
= ¬rx → ∃z : (-©x = z ∧ x = z)

Interval Frame: frame(x)
def
= ♦(more → ©lbf(x))

Projection: (p1, . . . , pm) prj q

Await: await(b)
def
= (frame(x1) ∧ . . . ∧ frame(xh))∧

♦(empty ∗ b) , where x1, . . . , xh are the variables
that occur in b

Among the statements, x = e, x := e, x ↔ e, empty, lbf(x), and frame(x)
are basic statements, while the others are composite statements. An assignment
x = e means that the value of x equals the value of e, while a unit assign-
ment x := e specifies the value of x by e and the length of the interval by 1.
A positive immediate assignment (P-I-Assignment) x ↔ e indicates that the
value of x equals the value of e and that the assignment flag rx for x is true. A
sequential composition p; q indicates that p is executed from the current state
until its termination when q is executed from. Statements of conditional choice
if b then p else q and while loop while b do p are the same as they are in
conventional imperative languages. A conjunction p ≡ q means that p and q are
executed concurrently and share all the variables during the mutual execution,
while a selection p ⊂ q means either p or q is executed. Different from a conjunc-
tion, a parallel composition allows both processes to specify their own intervals,
e.g. len(3) ‖ len(4) can be satisfied but len(3) ≡ len(4) is always false. A next
statement ∈p means that p holds at the next state, while an always statement

Formalizing and Implementing Types in MSVL 67

♦p means that p holds at all states over the current interval. The termination
statement empty means that the current state is the final state of the interval.
An existential quantification ∧x : p intends to hide x within p. A state frame
lbf(x) means the value of x in the current state equals the value of x in the
previous state if no assignment to x is encountered, while frame(x) indicates
that the value of variable x always keeps its old value over an interval if no
assignment to x is encountered. A projection statement can be thought of as a
special parallel execution that is performed on different time scales. Specifically,
(p1, . . . , pm) prj q means that q is executed in parallel with p1, . . . , pm over an
interval obtained by taking the endpoints of the intervals over which the pi’s are
executed. In particular, the sequence of pi’s and q may terminate at different
time points. Finally, an await statement await(b) simply waits until b becomes
true, without changing any variables.

The precedence rules of MSVL statements are listed in Table 2, where 1
means highest and 12 means lowest.

Table 2. Precedence rules of MSVL

1 ¬ 2 © -© ♦ 3 ∗ / mod 4 + − 5 > ≥ < ≤ 6 ∃
7 =⇐ := 8 ∧ 9 ∨ ‖ 10 → ∗ 11 prj 12 ;

3 Typed MSVL

3.1 Data Domain

In Sect. 2, for a state s = (Iv, Ip) and a variable x defined in s, Iv[x] ∨ D. If
a variable y is irrelevant to (i.e. undefined in) s, we write Iv[y] = nil . So, for
any interpretation I and variable x, I[x] ∨ D ⇒ {nil}. In order to extend the
interpretation Iv of variables to typed values, we need to enlarge the data domain
D. We introduce into MSVL a set T of types, including

– basic types: int, float, char,
– list types: int∀∅, float∀∅, char∀∅,
– array types: int[], float[], char[].

The set of values of each basic type are defined as follows.

– int: Z
– float: F def= {n.d1d2 · · · dm | m ∨ N, n ∨ Z, di ∨ {0, . . . , 9}for1 ⇔ i ⇔ m}
– char: C def= {∈a∈, . . . ,∈ z∈,∈ A∈, . . . ,∈ Z ∈,∈ 0∈, . . . ,∈ 9∈,∈ ∈,∈ !∈,∈ @∈,∈ γ∈,∈ $∈, . . .}

Consider typed values (v, T), i.e. values labeled by their types, where T ∨ T .
We define the set of typed values for each type. For a set S, Sn denotes the set
of lists of length n on S (n ∨ N), and S≤ denotes the set of lists on S.

68 X. Wang et al.

– Int def= Z × {int}, Int∀∅ def= Z
≤ × {int∀∅},

Int[n] def= Z
n × {int[]} for n ≥ 1, Int[] def=

⋃
n∧1 Int[n]

– Float def= F × {float}, Float∀∅ def= F≤ × {float∀∅},
Float[n] def= Fn × {float[]} for n ≥ 1, Float[] def=

⋃
n∧1 Float[n]

– Char def= C × {char}, Char∀∅ def= C≤ × {char∀∅},
Char[n] def= Cn × {char[]} for n ≥ 1, Char[] def=

⋃
n∧1 Char[n]

The data domain D of variables is the union of these sets.

D def= Int ⇒ Int∀∅ ⇒ Int[] ⇒ Float ⇒ Float∀∅ ⇒ Float[] ⇒ Char ⇒ Char∀∅ ⇒ Char[]

3.2 Typed Functions and Predicates

Each function and predicate has not only a fixed arity but also a fixed typed.
Specifically, a function f of arity m has a type T1 × . . . × Tm ≥ T , and a
predicate of arity n has a type T1 × . . . × Tn ≥ B, where each Ti and T is a
type in T . For example, the original MSVL function · + · and predicate · > ·
are applied to integers, and their types are denoted as · + · : int × int ≥ int and
· > · : int × int ≥ B, respectively.

Since we extend the interpretation Iv of variables to typed values, we also
need to extend the application of functions and predicates to typed values.
The extension is straightforward. For a function f : T1 × . . . × Tm ≥ T with
f(v1, . . . , vm) = v, we now have f((v1, T1), . . . , (vm, Tm)) = (v, T), and for a
predicate P : T1 × . . . × Tm ≥ B with P (v1, . . . , vm) = true (or false), we now
have P ((v1, T1), . . . , (vm, Tm)) = true (or false). Implicitly, a function with ill-
typed parameters evaluates to nil , and a predicate with ill-typed parameters
is interpreted as false. As a result, I[e] ∨ D ⇒ {nil} for any expression e and
interpretation I, according to the evaluation rules defined in Fig. 1. Notice that
even for type-correct and defined parameters, the result of a function can be
undefined. For example, (3, int)/(0, int) = nil , hd((∀∅, int∀∅)) = nil . However,
this will not cause any problem.

A constant c is regarded as a 0-arity function. The kinds of constants allowed
in MSVL programs are listed below, together with their interpretations.

– Integers, float numbers and characters, e.g. I[8] = (8, int), I[3.1] = (3.1,float)
and I[∈a∈] = (∈a∈, char).

– Non-empty lists, e.g. I[∀∈x∈,∈ y∈∅] = (∀∈x∈,∈ y∈∅, char∀∅).
– Empty lists, I[∀∅i] = (∀∅, int∀∅), I[∀∅f] = (∀∅,float∀∅) and I[∀∅c] = (∀∅, char∀∅).
Notice that we discriminate empty lists of integers (∀∅i), float numbers (∀∅f) and
characters (∀∅c). This is to ensure that every expression has a fixed type.

The original functions +,−, ↓, /,mod and predicates >,≥, <,⇔ are all for
the integer type. We need to define operations for new types. First, we define +
(and then −, ↓ and /) of float numbers. One way is to define a specific function

· +f · : float × float ≥ float

Formalizing and Implementing Types in MSVL 69

for the float type. A more convenient approach is to unify the two addition
operations into one.

· + · : (int × int ≥ int) ⇒ (float × float ≥ float)

That is, we allow a function f (or predicate P) to have a union of more than
one fixed types. Each application of f (or P) takes one of these types.

Arithmetic operators. Besides +, we do the same extension on −, ↓ and / so that

· + ·, · − ·, · ↓ ·, ·/· : (int × int ≥ int) ⇒ (float × float ≥ float)

We keep the function mod : int × int ≥ int. We also extend the predicates
>,≥, <,⇔ to both integer of float types.

· > ·, · ≥ ·, · < ·, · ⇔ · : (int × int ≥ B) ⇒ (float × float ≥ B)

Type cast. We define two functions for type cast between float numbers and
integers.

(int)· : float ≥ int (n.d1d2 · · · dm,float) �≥ (n, int)
(float)· : int ≥ float (n, int) �≥ (n.,float)

Array and list operations. We define a set of standard operations for arrays and
lists. For an array a, the operation a[i] returns its ith element.

·[·] : (int[] × int ≥ int) ⇒ (float[] × int ≥ float) ⇒ (char[] × int ≥ char)
(∀c0, . . . , ck∅, T []), (i, int) �≥ (ci, T) i ∨ {0, . . . , k}
(∀c0, . . . , ck∅, T []), (i, int) �≥ nil i
∨ {0, . . . , k}
k ∨ N, T ∨ {int,float, char}

For a list l, the operation |l| returns the length of l.

| · | : (int∀∅ ≥ int) ⇒ (float∀∅ ≥ int) ⇒ (char∀∅ ≥ int)
(∀c1, . . . , ck∅, T) �≥ (k, int) k ∨ N, T ∨ {int∀∅,float∀∅, char∀∅}

Besides, the operations hd(l) and tl(l) return the head and tail of l, respectively.

hd : (int∀∅ ≥ int) ⇒ (float∀∅ ≥ float) ⇒ (char∀∅ ≥ char)
(∀∅, T ∀∅) �≥ nil
(∀c0, c1, . . . , ck∅, T ∀∅) �≥ (c0, T) k ∨ N, T ∨ {int,float, char}

tl : (int∀∅ ≥ int∀∅) ⇒ (float∀∅ ≥ float∀∅) ⇒ (char∀∅ ≥ char∀∅)
(∀∅, T) �≥ nil
(∀c0, c1, . . . , ck∅, T) �≥ (∀c1, . . . , ck∅, T) k ∨ N, T ∨ {int∀∅,float∀∅, char∀∅}

For two lists l1 and l2 of the same type, the operations l1 • l2 and l1 ⊃ l2 cal-
culates the concatenation and fusion of l1 and l2, respectively. They are defined
as follows.

· • · : (int∀∅ × int∀∅ ≥ int∀∅) ⇒ (float∀∅ × float∀∅ ≥ float∀∅)
⇒(char∀∅ × char∀∅ ≥ char∀∅)
(∀c1, . . . , cj∅, T), (∀d1, . . . , dk∅, T) �≥ (∀c1, . . . , cj , d1, . . . , dk∅, T)
j, k ∨ N, T ∨ {int∀∅,float∀∅, char∀∅}

70 X. Wang et al.

· ⊃ · : (int∀∅ × int∀∅ ≥ int∀∅) ⇒ (float∀∅ × float∀∅ ≥ float∀∅)
⇒(char∀∅ × char∀∅ ≥ char∀∅)
(∀∅, T), (∀d1, . . . , dk∅, T) �≥ (∀d1, . . . , dk∅, T)
(∀c1, . . . , cj , c∅, T), (∀∅, T) �≥ (∀c1, . . . , cj , c∅, T)
(∀c1, . . . , cj , c∅, T), (∀c, d1, . . . , dk∅, T) �≥ (∀c1, . . . , cj , c, d1, . . . , dk∅, T)
(∀c1, . . . , cj , c∅, T), (∀d, d1, . . . , dk∅, T) �≥ nil d
= c
j, k ∨ N, T ∨ {int∀∅,float∀∅, char∀∅}

Other. Besides the above operations, we define an auxiliary predicate Def(). For
an expression e, Def(e) means e is defined, i.e., the value of e is not nil .

Def : (int ≥ B) ⇒ (float ≥ B) ⇒ (char ≥ B) ⇒ (int∀∅ ≥ B) ⇒ (float∀∅ ≥ B)
⇒(char∀∅ ≥ B)
(c, T) �≥ true T ∨ {int,float, char, int∀∅,float∀∅, char∀∅}

Because an expression can evaluate to nil , the meaning of some predicates or
formulas may not precisely reflect our intuition. For example, e1 ⇔ e2 ⊕ ¬(e1 >
e2) is not valid in MSVL. Instead, e1 ⇔ e2 ⊕ Def(e1) ≡ Def(e2) ≡ ¬(e1 > e2).
This is why the predicate Def() is useful. With the predicate, another equivalent
characterization of e1 ⇔ e2 is Def(e1) ≡ Def(e2) ≡ (e1 < e2 ⊂ e1 = e2).

3.3 Type Declaration Statement

Notice that when declaring an array we need to give the specific number of
elements of the array, e.g. int[5] a. So the set of types Td that are used in type
declarations is slightly different from the set T :

Td
def= {int,float, char, int∀∅,float∀∅, char∀∅,

int[1], int[2], . . . ,float[1],float[2], . . . , char[1], char[2], . . .}.

We define predicates isT (·), which means “is of type T”, for each type T ∨ Td.

1. For each basic type T ∨ {int,float, char}, isT : T ≥ B with (c, T) �≥ true,
2. for each list type T ∀∅ ∨ {int∀∅,float∀∅, char∀∅}, isT ∞〉 : T ∀∅ ≥ B with (c, T ∀∅) �≥

true, and
3. for each array type T [n] ∨ {int[1], int[2], . . . ,float[1], . . . , char[1], . . .}, isT [n] :

T [] ≥ B with (c, T []) �≥ true iff |c| = n.

Using these predicates, we define the type declaration statement as a derived
PTL formula.

T x
def= ♦isT (x)

4 Implementation Mechanisms

This section focuses on the implementation mechanisms for the type declaration
statement which plays an important role in program execution in the MSVL
interpreter. In order to carry out the formal verification and analysis of programs

Formalizing and Implementing Types in MSVL 71

in a rigorous way, an operational semantics for the type declaration statement
are needed. For reducing (executing) MSVL programs, we divide the reduction
process into two phases [14]: one for state reduction and the other for interval
reduction. The state reduction is mainly on how to transform a program into
its normal form [5]. The interval reduction is concerned with a program from
one state to another. The state reduction has to change the normal form of
programs after the introduction of the type declaration statement, while the
interval reduction remains unchanged.

4.1 Normal Form of Programs

Definition 1. A typed MSVL program q is in normal form if

q
def= (

k∨

i=1

qei ≡ empty) ⊂ (
h∨

j=1

qcj ≡ ∈qfj)

where k + h ≥ 1 and the following hold:

1. each qei and qcj is either true or a state formula of the form p1 ≡ . . . ≡ pm

(m ≥ 1) such that each pl (1 ⇔ l ⇔ m) is either isT (x) with x ∨ V, T ∨ Td,
or x = e with e ∨ D, or rx, or ¬rx.

2. qfj is an internal program, that is, one in which variables may refer to the
previous states but not beyond the first state of the current interval over which
the program is executed.

When a typed MSVL program q is deterministic k + h = 1 holds, otherwise

k + h > 1 does. We call conjuncts,
k∨

i=1

qei ≡ empty,
h∨

j=1

qcj ≡ ∈qfj basic prod-

ucts: the former is called terminal products whereas the latter is called future
products. Further we call qei and qcj present components which are executed
at the current state, and ∈qfj future components executed in the subsequent
states. An important conclusion is that any typed MSVL program including
type declaration statements can be reduced to its normal form. Therefore, exe-
cute programs in MSVL is to transform them logically equivalent to their normal
forms.

Let p be an MSVL program augmented with type declarations. There is a
program q in normal form such that p ⊕ q.

The proof proceeds by induction on the structure of statements. The proof
of MSVL statements without type declarations can be found in [12,13].

The proof of the type declaration statement T x is given as follows.

T x ⊕ ♦isT (x)
⊕ ♦isT (x) ≡ (empty ⊂ ¬empty) (i)
⊕ ♦isT (x) ≡ empty ⊂ ♦isT (x) ≡ ¬empty (ii)
⊕ isT (x) ≡ empty ⊂ ♦isT (x) ≡ ¬empty (iii)
⊕ isT (x) ≡ empty ⊂ ♦isT (x) ≡ more (iv)
⊕ isT (x) ≡ empty ⊂ isT (x) ≡ ∈♦isT (x) (v)

72 X. Wang et al.

In the above: (i) follows from T1 in [14]; (ii) from Theorem 2.1 in [13]; (iii)
from Law7 in [14]; (iv) from the definition of more; and (v) from Law8 in [14].

4.2 MSVL Interpreter

Microsoft Visual C++ has been used to implement an MSVL interpreter. The
flow chart of the interpreter is shown in Fig. 3. The lexical analyzer and parser
are implemented with flex and bison. In the state reduction based on the normal
form an MSVL program can be rewritten by the reducer module to a logically
equivalent formula Present≡Remains. The formula Present is executed at the
current state. It consists of true, false, empty, immediate variable assignments or
variable input/output. In the interval reduction the formula Remains is executed
in the succeeding state if it exists. The program editor, data input, output view
modules are used to deal with input and output. An MSVL program is inputted
into the interpreter and executed in a sequence of states to try to find its model.
If the program is transformed to true at the final state, its model is found and
it is satisfiable, otherwise it has no model and is unsatisfiable.

Fig. 3. Interpreter structure

The MSVL interpreter is able to work in an modeling, simulation or verifi-
cation mode. In the first mode, an MSVL program is used to describe a system
and executed in the interpreter. All the models of the system are presented as
an Normal Form Graph (NFG) [12]. As show in Fig. 4(a) a path in the NFG
ends with a bicyclic node is a model of the system. The simulation mode is a
little different with the modeling mode, and the interpreter outputs only one

Formalizing and Implementing Types in MSVL 73

(a) (b) (c)

Fig. 4. Three types of nodes. (a)modeling: a path. (b)verification: a satisfiable path.
(c)verification: an unsatisfiable path.

path in the NFG according to the MSVL’s minimal model semantics [12]. The
interpreter can also work in the verification mode. Given an MSVL program to
describe a system, and a PPTL formula to describe its property, the interpreter
can automatically verify whether or not the system satisfies the property. If the
system is unsatisfied with the property, the interpreter will point out a coun-
terexample. As shown in Fig. 4(b) a satisfiable path in the NFG ends with a
circular node, while as shown in Fig. 4(c) an unsatisfiable path in the NFG ends
with a terminative node. It is worth pointing out that the formalization of types
only extends the data domain to typed values. It does not change the structures
of MSVL programs or the finiteness of program states. Therefore, we can still
translate a model checking problem into a satisfiability problem in PPTL since
finite-state MSVL programs are equivalent to PPTL formulas [5].

5 An Application

In Fig. 5, two integer linked list both include three nodes. The integers in the
first list from the head to the tail are 10, 20 and 30, and the integers in the
second one are in the opposite direction. The following MSVL program executes
an in-place reversal of the first integer list and gets the second one. The pointer
operations & and * are defined in [15].

frame(node1, node2, node3, p, q, r, head, tail) and (
int[2] node1, node2, node3;
pointer p,q,r;
node1[0] = 10 and node1[1] := -1;
node2[0] = node1[0] + 10 and node2[1] := -1;
node3[0] = (int)30.0 and node3[1] := -1;
node2[1] := &node3; node1[1] := &node2;
q :=& node1; head := *q[0];
while(q != -1){ tail := *q[0]; q := *q[1] };
p :=& node1; q := -1;

74 X. Wang et al.

Fig. 5. In-place reversal of an integer list

while(p != -1){ r := *p[1]; *p[1] := q; q := p; p := r };
head := *q[0];
while(q != -1){ tail := *q[0]; q := *q[1] }

)

As showed in Fig. 6(a), the program executes successfully in the modeling
mode and outputs 37 states. Before verifying the program, its properties have
been formalized as follows. The proposition prop1 is head = 10 indicates the
list head is 10, and prop2 is tail = 30 indicates the list tail is 30. The meanings
of prop3 and prop4 are similar. The desirable property of the former program
is described by a PPTL formula ♦(prop1 ≡ prop2) ≡ ♦(empty ≥ prop3 ≡ prop4).
The property is coded as follows.

</
define prop1: head = 10; define prop2: tail = 30;
define prop3: head = 30; define prop4: tail = 10;
som(prop1 and prop2) and always(empty -> prop3 and prop4)

/>

The MSVL interpreter executes the program with properties in the verifica-
tion mode and the results are showed in Fig. 6(b). The final node of the execution
path is not a bicyclic node, and it shows that the desirable property is satisfied.

(a) (b)

Fig. 6. Program execution. (a) modeling result. (b) verification result.

Formalizing and Implementing Types in MSVL 75

6 Conclusions

In this paper, we provide a formalization and implementation of types in the
temporal logic programming language MSVL. The data domain of MSVL is
enlarged to include typed values. Typed functions and predicates, and the type
declaration statement are defined. The MSVL interpreter implementation mech-
anisms based on the notion of normal form are also given. In the near future,
much research work is to be done to investigate the operational and axiomatic
semantics of types in MSVL. In addition, we will also try to model and verify
some larger examples within our approach.

References

1. Allen Emerson, E.: Temporal and modal logic. In: Handbook of Theoretical Com-
puter Science, pp. 995–1072. Elsevier, Amsterdam (1995)

2. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

3. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

4. Duan, Z., Maciej, K.: A framed temporal logic programming language. J. Comput.
Sci. Technol. 19, 341–351 (2004)

5. Duan, Z., Tian, C.: A unified model checking approach with projection temporal
logic. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256,
pp. 167–186. Springer, Heidelberg (2008)

6. Tian, C., Duan, Z.: Expressiveness of propositional projection temporal logic with
star. Theor. Comput. Sci. 412, 1729–1744 (2011)

7. Cau, A., Moszkowski, B., Zedan, H.: Itl and tempura home page on the web.
http://www.cse.dmu.ac.uk/STRL/ITL/ (2013)

8. Tang, Z.: Temporal Logic Program Designing and Engineering. Science Press, Bei-
jing (1999)

9. Lamport, L.: The TLA Home Page. http://research.microsoft.com/en-us/um/
people/lamport/tla/tla.html (2013)

10. Fisher, M.: MetateM: the story so far. In: Bordini, R.H., Dastani, M.M., Dix,
J., El Fallah Seghrouchni, A. (eds.) PROMAS 2005. LNCS (LNAI), vol. 3862, pp.
3–22. Springer, Heidelberg (2006)

11. Zhou, S., Zedan, H., Cau, A.: Run-time analysis of time-critical systems. J. Syst.
Archit. 51, 331–345 (2005)

12. Duan, Z., Yang, X., Koutny, M.: Framed temporal logic programming. Sci. Com-
put. Program. 70, 31–61 (2008)

13. Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press, Bei-
jing (2006)

14. Yang, X., Duan, Z.: Operational semantics of framed tempura. J. Logic Algebraic
Program. 78, 22–51 (2008)

15. Duan, Z., Wang, X.: Implementing pointer in temporal logic programming lan-
guages. In: Proceedings of SBMF 2006, pp. 171–184 (2006)

http://www.cse.dmu.ac.uk/STRL/ITL/
http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html
http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html

Present-Future Form of Linear Time μ-Calculus

Yao Liu1, Zhenhua Duan1(B), Cong Tian1, and Bo Liu2

1 ICTT and ISN Lab, Xidian University,
Xi’an 710071, China

yao liu@stu.xidian.edu.cn,

{zhhduan,ctian}@mail.xidian.edu.cn
2 Beijing Institute of Control Engineering, Beijing 100000, China

liubo@bice.org.cn

Abstract. This paper presents the notion of Present-Future form (PF
form) for linear time μ-calculus (νTL) formulas consisting of the present
and future parts: the present part is the conjunction of atomic propo-
sitions or their negations while the future part is a closed νTL formula
under the next operator. We show every closed νTL formula can be
rewritten into its corresponding PF form. Finally, based on PF form, the
idea of constructing a graph that describing models of a νTL formula is
discussed.

Keywords: Linear time μ-calculus · Present-Future form · Present-
Future form graph · Models

1 Introduction

Modal μ-calculus introduced by Kozen [1] is an extension of propositional modal
logic with the least and greatest fixpoint operators and it has received ever grow-
ing interest in the past three decades. It is a formalism of great expressiveness
and succinctness which allows a wide range of properties to be expressed, includ-
ing liveness, safety, and fairness properties. Linear time μ-calculus (νTL) [2,3]
is the linear time counterpart of modal μ-calculus whose expressive power is
ω-regular. νTL has become widely used since though its syntax and semantics
are simple it has enhanced expressive power compared to LTL. It is known that
LTL cannot express counting properties like “q holds in every second position
of a word” [4] since this is an ω-regular property. From an application point of
view, it is of great significance to establish a decision procedure for checking the
satisfiability of νTL formulas. However, the work is not easy due to the nestings
and alternations of fixpoint operators.

Satisfiability and validity of formulas are fundamental issues in the model
theory of a logic. Moreover, satisfiability plays an important role in the model

This research is supported by the NSFC Grant Nos. 61133001, 61272118, 61272117,
61202038, 91218301, 61322202, 61373043, and National Program on Key Basic
Research Project (973 Program) Grant No. 2010CB328102.

S. Liu and Z. Duan (Eds.): SOFL+MSVL 2013, LNCS 8332, pp. 76–85, 2014.
DOI: 10.1007/978-3-319-04915-1 6, c© Springer International Publishing Switzerland 2014

Present-Future Form of Linear Time μ-Calculus 77

checking approach. The decision problem of satisfiability for νTL formulas has
PSPACE-complete complexity [3] and is about how to find a decision procedure
which determines whether a formula is satisfiable. The major milestone of the
decision procedure for μ-calculus is made by Streett and Emerson [5] who intro-
duces the notion of well-founded pre-models and applies the automata theory to
check satisfiability. Related methods [6,7] translate a formula into an equivalent
alternating tree automaton and then check for emptiness. In [8], Banieqbal and
Barringer show that if a formula φ has a model, then φ can generate a good
Hintikka structure and this can be further transformed into a good path search
problem from a graph. Stirling and Walker propose a tableau system for νTL
in [9] and a system for the modal μ-calculus can be found in [10]. Later, [11,12]
improve the system of Stirling and Walker by simplifying the success condition
for a tableau. In their systems, success for a leaf is determined by the path lead-
ing to it, whereas Stirling and Walker’s method requires the examination of a
potentially infinite number of paths extending over the whole tableau. However,
all these methods are extremely intricate and concerned with theoretical aspects
rather than practical applications. Therefore, we are motivated to investigate a
simpler and more intuitive method.

To this end, Present-Future form (PF form) of νTL formulas is presented in
this paper that consists of present and future parts of the formulas: the present
part is the conjunction of atomic propositions or their negations while the future
part is a closed νTL formula under the next operator. We prove that every closed
νTL formula can be transformed into its corresponding PF form. In order to com-
plete the proof, we first need to convert a formula into an equivalent formula in
the guarded positive normal form. Finally, based on PF form, the idea of con-
structing Present-Future form graph (PFG) is introduced, which can be utilized
to describe models of a νTL formula. It is worth noting that PFG can be further
used to achieve a new decision procedure for checking the satisfiability of νTL
formulas as well as a corresponding model checking approach. The idea of this
paper is inspired by the normal form of Propositional Projection Temporal Logic
(PPTL) [13,14]. Normal form and normal form graph have played a vital role in
achieving a decision procedure for checking the satisfiability of PPTL formulas
[15–18]. The occurrence of PF form opens up a new direction to the study of νTL.

The rest of this paper is structured as follows. The syntax and semantics
of νTL and some basic notions are introduced in Sect. 2. The guarded positive
normal form of νTL formulas is presented in Sect. 3. Section 4 defines the PF form
of νTL formulas and proves that every closed νTL formula can be transformed
into its corresponding PF form. Section 5 concludes the paper.

2 Preliminaries

2.1 Syntax of νTL

Let P be a set of atomic propositions, and V a set of variables. νTL formulas
can be defined by the following syntax [2]:

φ ::= p | X | ¬φ | ∈ φ | φ ≡ φ | μX.φ

78 Y. Liu et al.

where p ranges over P and X over V. A variable is called free when it is not
bounded by any fixpoint operators. A formula is called closed when there exists
no free occurrence of variables in that formula. One restriction on μX.φ is that
each free occurrence of X in φ lies within the scope of an even number of nega-
tions. Derived operators are defined in the usual way: φ∧φ is ¬(¬φ≡¬φ); νX.φ
is ¬μX.¬φ[¬X/X], where φ[¬X/X] is the result of substituting ¬X for each
free occurrence of X in φ. We use σ to denote μ or ν ordinarily. X is called a
μ-variable if σX = μX.φ and a ν-variable if σX = νX.φ.

If X is a bound variable of formula φ, there is a unique μ- or ν-subformula
σX.ϕ of φ in which X is quantified.

2.2 Semantics of νTL

νTL formulas are interpreted over linear time structures. A linear time structure
over P is a function K : N ∨ 2P.

The semantics of a νTL formula φ, relative to K and an environment
e : V ∨ 2N, is inductively defined as follows:

[[p]]Ke := {i ∀ N | p ∀ K(i)}
[[X]]Ke := e(X)

[[¬ϕ]]Ke :=N \ [[ϕ]]Ke
[[ϕ ≡ ψ]]Ke := [[ϕ]]Ke ∅ [[ψ]]Ke

[[∈ϕ]]Ke := {i ∀ N | i + 1 ∀ [[ϕ]]Ke }
[[μX.ϕ]]Ke := ⇒ {W ⇔ N | [[ϕ]]Ke[X ∈≤W] ⇔ W}

A formula φ is true at state i of K , denoted by K , i |= φ, iff i ∀ [[φ]]Ke . The
environment e is used to evaluate free variables and it can be dropped when φ
is closed.

2.3 Validity and Satisfiability of νTL Formulas

A formula φ is valid, denoted by |= φ, iff K , j |= φ for all linear time structures
K and all states j of K . A formula φ is satisfiable iff there exists a linear time
structure K and a state j of K such that K , j |= φ.

Example 1. The validity and satisfiability of νTL formulas.

(a) Formula ∈(p≡ ¬p) is valid since K , i |= ∈(p ≡ ¬p) for all linear time struc-
tures K and all states i of K .

(b) Formula μX.(p ≡ ∈X) is satisfiable because there exists a linear time struc-
ture K and a state j of K with p ∀ K(j) such that K , j |= μX.(p ≡ ∈X).

Present-Future Form of Linear Time μ-Calculus 79

3 Guarded Positive Normal Form

In order to prove that any closed νTL formula φ can be rewritten into its PF
form, first of all we need to prove φ can be transformed into a closed formula in
the guarded positive normal form (GPNF).

Definition 1. A closed νTL formula φ is normal if every occurrence of a quan-
tifier μX or νX in φ binds a distinct variable.

It is obvious that every closed νTL formula can be easily converted into an
equivalent normal formula by renaming bound variables. If a formula φ is normal,
then every variable X of φ identifies a unique subformula μX.ϕ or νX.ϕ.

Example 2. Converting formula φ: νX.(μY.(∈Y ≡ νX.(q ∧ ∈X)) ∧ ∈X) into
the equivalent normal formula.

By renaming variable X in the subformula νX.(q ∧ ∈X) to variable Z, we can
obtain the following formula:

νX.(μY.(∈Y ≡ νZ.(q ∧ ∈Z)) ∧ ∈X)

As we can see, every variable in the formula above identifies a unique subformula
of φ.

Definition 2. A closed νTL formula φ is in positive normal form [19] if φ is
normal and negations appearing in φ can only be applied to atomic propositions.

Positive normal form can be obtained by pushing negations inwards using DeMor-
gan’s laws and the rules ¬ ∈ φ = ∈¬φ, ¬μX.φ = νX.¬φ[¬X/X] and ¬νX.φ =
μX.¬φ[¬X/X].

Example 3. Translating formula φ: ¬νX.(μY.(∈Y ≡νX.(q∧∈X))∧∈X) into
positive normal form.

¬νX.(μY.(∈Y ≡ νZ.(q ∧ ∈Z)) ∧ ∈X)
∗ μX.(¬μY.(∈Y ≡ νZ.(q ∧ ∈Z)) ≡ ∈X)
∗ μX.(νY.(∈Y ∧ ¬νZ.(q ∧ ∈Z)) ≡ ∈X)
∗ μX.(νY.(∈Y ∧ μZ.(¬q ≡ ∈Z)) ≡ ∈X)

Therefore, we know that formula μX.(νY.(∈Y ∧ μZ.(¬q ≡ ∈Z)) ≡ ∈X) is the
corresponding positive normal form of φ.

Subsequently, we present the definition of guarded form and this notion is of
great significance for the latter section.

Definition 3. A closed νTL formula is in guarded form if every occurrence of
a bound variable X is in the scope of a ∈ operator.

80 Y. Liu et al.

Example 4. Translating formula φ: νX.(p∧X ∧μY.(q ≡Y ≡X ∧∈Y)) into its
corresponding guarded form.

νX.(p ∧ X ∧ μY.(q ≡ Y ≡ X ∧ ∈Y))
∗ νX.(p ∧ μY.(q ≡ X ∧ ∈Y))
∗ νX.(p ∧ (q ≡ X ∧ ∈μY.(q ≡ X ∧ ∈Y)))
∗ νX.(p ∧ q ≡ p ∧ ∈μY.(q ≡ X ∧ ∈Y))

As we can see, formula νX.(p ∧ q ≡ p ∧ ∈μY.(q ≡ X ∧ ∈Y)) is the guarded form
of formula φ.

According to [20], we have the following proposition.

Proposition 1. Every closed νTL formula is equivalent to a formula in GPNF.

4 PF Form of νTL Formulas

In this section, we define the PF form for a closed νTL formula φ consisting
of the present and future parts: the present part is the conjunction of atomic
propositions or their negations appearing in φ while the future part is a closed
formula under the next operator. We prove that every closed νTL formula in
GPNF can be rewritten into its corresponding PF form.

4.1 Definition of PF Form

Definition 4. Let φ be a closed νTL formula, Pφ the set of atomic propositions
appearing in φ, and C the cardinality of Pφ. PF form of formula φ is defined as
follows:

φ ∗ ∨n
i=1(φpi

∧ ∈φfi
)

where φpi
∗ ∧n1

h=1 ṗih, pih ∀ Pφ, 1 ≤ n1 ≤ C; for any r ∀ Pφ, ṙ denotes r or ¬r;
φfi

is a closed νTL formula.

4.2 Rewriting a νTL Formula into PF Form

Regarding PF form of a formula, we have the following theorem:

Theorem 1. Given a closed νTL formula ϕ, we have
(1) ϕ can be rewritten into its PF form: ϕ ∗ ∨n

i=1(ϕpi
∧ ∈ϕfi

); and
(2) each ϕfi

is a closed νTL formula.

Proof. Let ϕ be a closed νTL formula in GPNF. The proof proceeds by induction
on the structure of ϕ with GPNF.

Present-Future Form of Linear Time μ-Calculus 81

• Base Case:

− ϕ = p: p can be written as
p ∗ p ∧ ∈true

which satisfies the form of Definition 4 and true is indeed a closed νTL
formula. Thus, ϕ can be rewritten into PF form in this case.

− ϕ = ¬p: ¬p can be written as

¬p ∗ ¬p ∧ ∈true

which meets the form of Definition 4 and true is indeed a closed νTL formula.
Therefore, ϕ can be rewritten into PF form in this case.

• Induction:

− ϕ = ∈φ: by induction hypothesis, φ can be transformed into its correspond-
ing PF form:

φ ∗ ∨n
i=1(φpi

∧ ∈φfi
)

We can see that each φfi
is a closed νTL formula. Further, ϕ can be written as

ϕ ∗ ∈φ ∗ ∈∨n
i=1(φpi

∧ ∈φfi
) ∗ ∨n

i=1 ∈(φpi
∧ ∈φfi

)

Each φpi
is the conjunction of atomic propositions or their negations in φ,

then φpi
is a closed νTL formula. Since each φfi

is a closed νTL formula, we
know that each ∈φfi

is also a closed νTL formula. Hence, each φpi
∧ ∈φfi

is a closed νTL formula and ϕ can be transformed into PF form.
− ϕ = φ1 ≡ φ2: by induction hypothesis, both φ1 and φ2 can be rewritten into

their PF forms:

φ1 ∗ ∨n
i=1(φ1pi

∧ ∈φ1fi
), φ2 ∗ ∨m

j=1(φ2pj
∧ ∈φ2fj

)

and we have each φ1fi
and φ2fj

are closed νTL formulas. Subsequently, ϕ
can be written as

ϕ ∗ φ1 ≡ φ2 ∗ ∨n
i=1(φ1pi

∧ ∈φ1fi
) ≡ ∨m

j=1(φ2pj
∧ ∈φ2fj

)

Since each φ1fi
and φ2fj

are closed νTL formulas, ϕ can be transformed
into PF form in this case.

− ϕ = φ1 ∧ φ2: by induction hypothesis, both φ1 and φ2 can be rewritten into
their PF forms:

φ1 ∗ ∨n
i=1(φ1pi

∧ ∈φ1fi
), φ2 ∗ ∨m

j=1(φ2pj
∧ ∈φ2fj

)

82 Y. Liu et al.

and we have each φ1fi
and φ2fj

are closed νTL formulas. Accordingly, ϕ can
be written as

ϕ ∗ φ1 ∧ φ2 ∗ (
∨n

i=1(φ1pi
∧ ∈φ1fi

)) ∧ (
∨m

j=1(φ2pj
∧ ∈φ2fj

))

∗ ∨n
i=1

∨m
j=1(φ1pi

∧ φ2pj
∧ ∈(φ1fi

∧ φ2fj
))

As each φ1pi
is a conjunction of atomic propositions or their negations in

φ1 and each φ2pj
is a conjunction of atomic propositions or their negations in

φ2, each φ1pi
∧φ2pj

is a conjunction of atomic propositions or their negations
in ϕ. Since both φ1fi

and φ2fj
are closed νTL formulas, each φ1fi

∧ φ2fj
is

still a closed νTL formula. Therefore, ϕ can be rewritten into PF form.
− ϕ = μX.φ: by induction hypothesis, φ can be transformed into its correspond-

ing PF form:

φ ∗ ∨n
i=1(φpi

∧ ∈φfi
)

and we can see each φfi
is a closed νTL formula. Thus, ϕ can be written

as

ϕ ∗ μX.(
∨n

i=1(φpi
∧ ∈φfi

))

Due to the definition of PF form, the fixpoint variable X can only appear
in some φfi

. Subsequently, the equivalence μX.ψ = ψ[μX.ψ/X] is employed
to substitute the least fixpoint formula μX.φ for X which occurs in some φfi

and after that we can obtain the following formula

ϕ ∗ ∨n
i=1(φpi

∧ ∈φfi
[μX.

∨n
i=1(φpi

∧ ∈φfi
)/X])

Since each φfi
is still a closed νTL formula after the substitution, ϕ can

be rewritten into PF form.
− ϕ = νX.φ: by induction hypothesis, φ can be transformed into its correspond-

ing PF form:

φ ∗ ∨n
i=1(φpi

∧ ∈φfi
)

and we can find each φfi
is a closed νTL formula. Further, ϕ can be written as

ϕ ∗ νX.(
∨n

i=1(φpi
∧ ∈φfi

))

Similarly, due to the definition of PF form, the fixpoint variable X can only
appear in some φfi

. Then, the equivalence νX.ψ = ψ[νX.ψ/X] is employed
to substitute the greatest fixpoint formula νX.φ for X which occurs in some
φfi

and after that we can obtain the following formula

ϕ ∗ ∨n
i=1(φpi

∧ ∈φfi
[νX.

∨n
i=1(φpi

∧ ∈φfi
)/X])

Present-Future Form of Linear Time μ-Calculus 83

Since each φfi
is still a closed νTL formula after the substitution, ϕ can be

rewritten into PF form.

Thus, it can be concluded that every closed νTL formula in GPNF can be
rewritten into its corresponding PF form.

Example 5. Rewriting the following νTL formulas into their PF forms.

I. μX.(p ≡ ∈X) ∧ νY.(q ∧ ∈Y)
II. νZ.(μX.(p ∧ ∈q ≡ ∈X) ∧ ∈Z)

For formula I we have

μX.(p ≡ ∈X) ∧ νY.(q ∧ ∈Y)
∗ (p ≡ ∈μX.(p ≡ ∈X)) ∧ νY.(q ∧ ∈Y)
∗ (p ≡ ∈μX.(p ≡ ∈X)) ∧ q ∧ ∈νY.(q ∧ ∈Y)
∗ p ∧ q ∧ ∈νY.(q ∧ ∈Y) ≡ q ∧ ∈(μX.(p ≡ ∈X) ∧ νY.(q ∧ ∈Y))

As we can see, both νY.(q∧∈Y) and μX.(p≡∈X)∧νY.(q∧∈Y) appearing
in the future parts of the PF form are closed νTL formulas.

n0

n2

n0: μX.(p X)
n1: true

p
true

true

n1

n2: μX.(p X)

true

n0

n1

true

p

p

n0: μX.(νY.(p Y) X)
n1: νY.(p Y)

(a) (b)

(c)

n0: νZ.μY.(Y ≡ p Z) ∧ μX.(q X)

n0

n1

n1: νZ.μY.(Y ≡ p Z)

true p

ptrue

q p ∧ q

n0

n2

n0: μX.(p X) ≡ νY.(q Y)

n2: μX.(p X)

true

p

p
n3

true

q

q

n3: νY.(q Y)

n1

true

n1: true

(d)

Fig. 1. Examples of PFGs

84 Y. Liu et al.

For formula II we have

νZ.(μX.(p ∧ ∈q ≡ ∈X) ∧ ∈Z)
∗ μX.(p ∧ ∈q ≡ ∈X) ∧ ∈νZ.(μX.(p ∧ ∈q ≡ ∈X) ∧ ∈Z)
∗ (p ∧ ∈q ≡ ∈μX.(p ∧ ∈q ≡ ∈X)) ∧ ∈νZ.(μX.(p ∧ ∈q ≡ ∈X) ∧ ∈Z)
∗ p ∧ ∈(q ∧ νZ.(μX.(p ∧ ∈q ≡ ∈X) ∧ ∈Z))≡

∈(μX.(p ∧ ∈q ≡ ∈X) ∧ νZ.(μX.(p ∧ ∈q ≡ ∈X) ∧ ∈Z))

As we can see, both q ∧ νZ.(μX.(p ∧ ∈q ≡ ∈X) ∧ ∈Z) and μX.(p ∧ ∈q ≡
∈X) ∧ νZ.(μX.(p ∧ ∈q ≡ ∈X) ∧ ∈Z) appearing in the future parts of the PF
form are closed νTL formulas.

For a given closed νTL formula φ, we can further construct the PFG Gφ of
φ according to PF form. First, φ is rewritten into its PF form: φ ∗ ∨n

i=1(φpi
∧

∈φfi
). After that, we can regard φ, φfi

as nodes and φpi
as labels on edges in

Gφ. Next, we can transform each φfi
into its PF form and obtain new nodes and

edges again.
In this way, the PFG of φ can be constructed. A couple of examples of PFGs

are depicted in Fig. 1. As PFG can be utilized to describe models of a νTL
formula, it has become our main work in the future.

5 Conclusion

In this paper, we present PF form for νTL formulas and prove that every closed
νTL formula can be rewritten into its corresponding PF form. The idea of con-
structing PFG, which is useful in describing models of a νTL formula, based
on PF form is presented. In the near future we will define PFG formally and
study algorithm for constructing PFG of νTL formulas. Based on PFG, a new
decision procedure for checking the satisfiability of νTL formulas is hopefully to
be achieved.

References

1. Kozen, D.: Results on the propositional μ-calculus. Theoret. Comput. Sci. 27(3),
333–354 (1983)

2. Barringer, H., Kuiper, R., Pnueli, A.: A really abstract concurrent model and its
temporal logic. In: Conference Record of the 13th Annual ACM Symposium on
Principles of Programming Languages, pp. 173–183. ACM (1986)

3. Vardi, M.Y.: A temporal fixpoint calculus. In: Conference Record of the 15th
Annual ACM Symposium on Principles of Programming Languages, pp. 250–259.
ACM (1988)

4. Wolper, P.: Temporal logic can be more expressive. Inf. Control 56(1), 72–99 (1983)
5. Streett, R.S., Emerson, E.A.: An automata theoretic decision procedure for the

propositional mu-calculus. Inf. Comput. 81(3), 249–264 (1989)
6. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model-checking for fragments of μ-

calculus. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 385–396.
Springer, Heidelberg (1993)

Present-Future Form of Linear Time μ-Calculus 85

7. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking. J. ACM 47(2), 312–360 (2000)

8. Banieqbal, B., Barringer, H.: Temporal logic with fixed points. In: Banieqbal, B.,
Pnueli, A., Barringer, H. (eds.) Temporal Logic in Specification. LNCS, vol. 398,
pp. 62–74. Springer, Heidelberg (1989)

9. Stirling, C., Walker, D.: CCS, liveness, and local model checking in the linear time
mu-calculus. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 166–178. Springer,
Heidelberg (1990)

10. Stirling, C., Walker, D.: Local model checking in the modal mu-calculus. Theoret.
Comput. Sci. 89(1), 161–177 (1991)

11. Kaivola, R.: A simple decision method for the linear time mu-calculus. In: Pro-
ceedings of the International Workshop on Structures in Concurrency Theory, pp.
190–204. Springer (1995)

12. Bradfield, J., Esparza, J., Mader, A.: An effective tableau system for the linear time
μ-calculus. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol.
1099, pp. 98–109. Springer, Heidelberg (1996)

13. Duan, Z.: An extended interval temporal logic and a framing technique for temporal
logic programming. Ph.D. thesis, University of Newcastle Upon Tyne (1996)

14. Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press, Bei-
jing (2006)

15. Duan, Z., Tian, C.: Decidability of propositional projection temporal logic with
infinite models. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS,
vol. 4484, pp. 521–532. Springer, Heidelberg (2007)

16. Duan, Z., Tian, C., Zhang, L.: A decision procedure for propositional projection
temporal logic with infinite models. Acta Inf. 45(1), 43–78 (2008)

17. Tian, C., Duan, Z.: Complexity of propositional projection temporal logic with
star. Math. Struct. Comput. Sci. 19(1), 73–100 (2009)

18. Duan, Z., Tian, C.: An improved decision procedure for propositional projection
temporal logic. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp.
90–105. Springer, Heidelberg (2010)

19. Stirling, C.: Modal and temporal logics. LFCS, Department of Computer Science,
University of Edinburgh (1991)

20. Walukiewicz, I.: Completeness of Kozen’s axiomatisation of the propositional μ-
calculus. Inf. Comput. 157(1), 142–182 (2000)

SOFL Tools

Prototype Tool for Supporting a Formal
Engineering Approach to Service-Based

Software Modeling

Weikai Miao1(B) and Shaoying Liu2

1 Shanghai Key Laboratory of Trustworthy Computing,
Software Engineering Institute, East China Normal University, Shanghai, China

wkmiao@sei.ecnu.edu.cn
2 Department of Computer Science, Hosei University, Tokyo, Japan

sliu@hosei.ac.jp

Abstract. Despite the advances in service-based software modeling, few
existing approaches and tools support a systematic engineering process in
which precise specification construction and accurate web service selec-
tion are integrated coherently. Due to this reality, how to carry out
service-based software modeling so that existing services can be accu-
rately discovered, selected, and effectively reused in the system
under development is still a challenge. To solve this problem, this paper
describes a prototype tool that supports a formal engineering framework
for service-based software modeling. Formal specification can be con-
structed in an evolutionary manner; meanwhile, appropriate services are
discovered and selected through the specification evolution. We illustrate
the basic principle underlying the tool. The tool design and its imple-
mentation are also described. An example is presented to demonstrate
major features of this tool.

1 Introduction

Research on engineering methods for constructing high quality service-based
software (service-based software) is attracting a growing attention of both
research and industry communities in recent years [13,16]. Constructing for-
mal specifications, including both formal requirements and design specifications,
based on correct understanding of requirements contributes significantly to soft-
ware quality [15]. To effectively support the service-based software modeling,
this fundamental principle needs to be extended.

One major problem with existing service-based software modeling is how to
carry out the modeling so that existing services can be accurately discovered,
selected, and effectively reused in the system under development. To tackle this
challenge, effective engineering methods are demanded. An effective engineering
method for service-based software modeling needs to supply definitive mech-
anisms for eliciting requirements, constructing precise specifications, selecting
appropriate services, and integrating these artifacts coherently into a system
model.

S. Liu and Z. Duan (Eds.): SOFL+MSVL 2013, LNCS 8332, pp. 89–103, 2014.
DOI: 10.1007/978-3-319-04915-1 7, c© Springer International Publishing Switzerland 2014

90 W. Miao and S. Liu

Many research efforts have been advanced service-based software modeling
from different perspectives, including business process modeling and implemen-
tation [1,2,5,18] and service discovery and selection [6,11]. Unfortunately, as
summarized by the authors of work [16], almost no approach supports service
discovery and selection as part of system modeling. That is, service discovery
and selection activities are not coherently integrated into the system modeling
phase. Therefore, services may not be effectively and efficiently adopted in the
system architecture.

To tackle the above challenge, we have proposed a new approach called For-
mal Engineering Framework for Service-based Software Modeling (FEFSSM) as
a solution [12]. FEFSSM integrates service discovery and selection into the entire
modeling procedure, aiming to provide a unified engineering approach to con-
structing precise, comprehensible, and satisfactory specifications of service-based
software.

To facilitate the application of FEFSSM in practice, in this paper we describe
a supporting tool of the FEFSSM approach. The tool implements the fundamen-
tal principle underlying the FEFSSM, offering basic functions that support the
involved engineering activities. The practitioner can construct the formal speci-
fication gradually through the interaction with the tool.

The rest of this paper is organized as follows. Basic theory of the FEFSSM
approach underlying the tool is presented in Sect. 2. Design and implementation
of the tool is described in Sect. 3. Section 4 describes an example of modeling a
travel agency system to demonstrate the usability of the tool. Section 5 gives the
comparison with the related work. Finally, we conclude the paper and point out
future research directions in Sect. 6.

2 The FEFSSM Approach

The principle of FEFSSM inherits from the well-established SOFL (Structured
Object-oriented Formal Language) formal engineering method [7,9,14,15] but
emphasizes the interleaving and interaction of software modeling and service
adoption in building service-based software. The main principle of FEFSSM is
illustrated in Fig. 1.

Web service discovery, filtering, and selection activities are carried out sequen-
tially in coupling with the corresponding specification construction activities in a
three-step modeling process through the informal, semi-formal and formal stages
of specification construction. The rational and technical details of each step are
described below.

(1) Informal specification construction
The goal of informal specification construction is to acquire requirements

as completely as possible at an informal level and discover sufficient candidate
services based on the informal requirements. Requirements acquisition is usually
achieved through communication between the client and the developer. Since
requirements are imprecise at this stage, candidate services are preliminarily
explored and filtered using keywords that abstract the corresponding informal

Prototype Tool for Supporting a Formal Engineering Approach 91

Informal
Specification

SYSTEM_Example

Functions
1. A
1.1 a_s

...
1.3 W
/* can be associated
to services

S1 and S3 */
...
Data Resource
1. ...
Constraints
1. ...

service
discovery requirements

acquisition

static behavior
analysis requirements

reformulation

incorporating
services into the

system architecture

Semi-formal Specification

var
d: nat0
...

process W_1 (f_1: nat0)
f_3: nat0

ext wr d
post f_1>0 and f_3 =f_1

and d=~d+f_1
or f_1<=0 and

f_3=~d*f_1
and d=~d+f_1

end_process;

process W_2
(f_2: nat0) f_4: nat0

ext rd d
post f_4=d+f_2
end_process;
...

Formal Specification
...
process a_s
(f_0: string) f_1: nat0
post f_0 = s and

f_1 > 10 ...
end_process;

process W_1
(f_1: nat0) f_3: nat0
ext wr d: nat0
post f_1>0 and
f_3=f_1 and d=~d+f_1

or f_1<=0 and
f_3=~d*f_1 and

d=~d+f_1
end_process;
...specification-

based testing

Fig. 1. The FEFSSM approach

requirements. The derived keywords are used to either partially or completely
match with the service names or informal descriptions stored in the service
repositories. A precise criterion for associating a service as a candidate service
to an expected function is defined below.

Criterion 1. Let Kr = {a1, a2, ..., an} be a set of keywords derived from func-
tion F in the informal specification and Ks = {b1, b2, ..., bm} be a set of key-
words derived from the name and informal descriptions of a service S. Then,
S is accepted as a candidate service to be associated with F if and only if the
following condition holds:

∃a∈Kr
∃b∈Ks

· is substring(a, b)

This criterion states that if there exists a keyword derived from a function
F in the specification that is a substring (case insensitive) of a keyword derived
from the name and informal descriptions of a service S, S is accepted as a
candidate service to be associated with F .

92 W. Miao and S. Liu

In FEFSSM, service searching is in parallel with the functional decompo-
sition. For example, since the developer does not find any candidate service
for function A, then A is decomposed into several sub-functions. For each sub-
function, the developer tries to explore candidate services. As the result, the
sub-function W is associated to two candidate services S1 and S3. Detailed
algorithm that encompasses the procedure of service discovery and functional
decomposition is proposed in our previous work [12].

The ultimate informal specification contains three sections: functions, data
resources, and constraints. The functions section briefly describes the desired
functions of the target system, which are usually organized in a hierarchical struc-
ture. The data resources section presents the necessary data items for building
the system function. The constraints section documents the required constraints
on either the functions or the data resources.

(2) Semi-formal specification construction
The purpose of semi-formal specification construction is to evolve the infor-

mal specification into a more precise, complete, and well structured specification
that encompasses accurately selecting services as some of its functional compo-
nents; meanwhile, the services can be used for reformulating the specification.
In regard to service selection, services are accurately selected through static
behavior analysis and specification-based conformance testing.

– Static behavior analysis
The essential idea of the static behavior analysis is to judge which candidate
service is most suitable for implementing each service-associated function.
Specifically, the developer extracts potential functions of the services by ana-
lyzing their descriptions files (e.g., WSDL file) and finally identify the most
relevant services for each service-associated function. The relevance of each
candidate service to its associated function is represented by a ranking score.
The service with the highest ranking score is selected as the most relevant
service of its associated function. The ranking procedure can be referred to
the corresponding algorithm in our work [12].

As pointed out by Guideline 1 [12], if function F is associated to its most
relevant service S, then F is refined into a set of sub-functions {f1, ..., fn} (n ≥
1) where each sub-function fi is associated to the corresponding operation
provided by S. These sub-functions are then transformed into formal processes
that specify the intended functions precisely. A formal process is written in the
SOFL specification language [14], which includes a signature, a pre-condition
and a post-condition. The signature includes the input, output, and external
variables (or state variables); the pre-condition imposes a constraint on the
input variables before executing the process; and the post-condition describes
a condition that must be satisfied by the output and external variables after
the execution of the process.

After analyzing the descriptions of two candidate services S1 and S3 of
function W, the developer identifies S1 as the most relevant service. Then
function W is refined into two sub-functions W 1 and W 2. These two sub-
functions are further formalized as formal processes W 1 and W 2.

Prototype Tool for Supporting a Formal Engineering Approach 93

– Specification-based testing
The specification-based conformance testing is aimed at dynamically checking
whether a service satisfies the required functions defined by the corresponding
formal processes. Test cases are generated from the pre- and post-conditions
of the processes and the final decision to accept or reject the service is made
by the developer based upon test results analysis and engineering judgements.
To facilitate a rigorous testing, each process is converted into an equivalent
disjunction of functional scenarios, each describing an independent function
in terms of the input and output relation [8].

Definition 1. Let P denote a process and its post-condition Ppost ≡ (C1 ∧
D1) ∨ (C2 ∧D2) ∨ ... ∨ (Cn ∧Dn), where each Ci (i = 1, ..., n) is a predicate
called a guard condition that contains no output variable and Di a defining
condition that contains at least one output variable but no guard condition.
Then, each Ppre ∧ Ci ∧ Di is called a functional scenario.

Functional scenarios are used as the foundation of test data derivation and
also the test oracles. One intuitive way to test each service operation is to
generate test cases that cover every functional scenario of the associated for-
mal process. To test stateless service operations (i.e. execution results are
determined by only the input values), test cases are directly derived from
single functional scenarios. To sufficiently test stateful service operations (i.e.
executions results are determined by both the input values and internal state-
ful variables that cannot be directly monitored from the user-end), all pairs
of functional scenarios produced by the inter-related processes (i.e. processes
that share the same data stores) are adopted for generating test sequences of
the corresponding service operations [12].

When services are determined via the conformance testing, the specification
can be transformed into a semi-formal specification. All of the related functions,
data resources, and constraints in the informal specification are grouped into
SOFL modules, each containing declarations of types, state variables, invariants,
and processes. In each module, all of the declarations of types and variables are
expressed formally but the logic-related parts such as invariants and processes
are expressed informally to represent the expected functions (except service-
associated functions, as explained below).

(3) Formal specification construction
The final stage of modeling is to transform the semi-formal specification

into a formal design specification. The transformation is achieved by formally
defining the system architecture into a hierarchical structure and formalizing
the pre- and post-conditions of all the processes. The key point is that service-
associated processes in the semi-formal specification are used as the foundation
for gradually formalizing the entire specification since they have been determined
to be part of the target system at the previous modeling stage.

In the formal specification shown in Fig. 1, all the processes including the
service-associated process W 1 and process a s that is not associated to any
service, are formally defined.

94 W. Miao and S. Liu

3 Design and Implementation of the FEFSSM Tool

3.1 Tool Design

The tool is designed and implemented to facilitate the usability of the FEF-
SSM. It guides the practitioner to follow the entire engineering process of the
FEFSSM approach and support the automation of some specific activities such
as the service discovery, service ranking and functional scenario pairs genera-
tion. Meanwhile, it also offers appropriate interfaces to handle the interactions
between the practitioner and the specification components.

The tool is designed as a three-layered system which provides the major
functionalities supporting the application of the FEFSSM. The architecture of
this supporting tool is described by Fig. 2.

Fig. 2. Architecture of the FEFSSM tool

The infrastructure layer refers to the necessary documents and artifacts that
support specification construction and service selection. These artifacts mainly
consist of the service repositories information, the specification files and the files
of functional scenario matrices. Usually service repositories information docu-
ments basic descriptions of the available web services. Specifications are docu-
mented in XML files. We use the XML files since the they are machine-readable,
platform-independent and can easily represent the hierarchical structures of the

Prototype Tool for Supporting a Formal Engineering Approach 95

processes and other SOFL components. To store the functional scenario pairs for
web service testing, functional scenario pairs are organized as functional scenario
matrix that is saved as a functional scenario matrix file. Each row of the matrix
is a functional scenario pair that can be read by the tool for further test sequence
generation.

The function layer consists of three modules: service discovery and analy-
sis module, specification construction module, and functional scenario matrix
module. Service discovery and analysis module supports the keyword-based web
service discovery and the static behavior analysis, which is performed by a
WSDL Analyzer. The analyzer can extract detailed interface information from
the WSDL files of the available web services.

The module of specification construction is responsible for documenting the
specifications. Specifically, we provide a graphical tree-navigator as a short-cut
for function decomposition and documentation. The practitioner can directly
manage the hierarchy structures of expected functions rather than manually
typing them. Specification workplace performs the basic functions for editing
specifications in different modeling phases.

Functional scenario matrix module contains a matrix generator for construct-
ing the functional scenario matrices for test sequence generation.

3.2 Tool Implementation

The tool is implemented in Java language under the Eclipse environment.Figure 3
gives a screenshot of the main interface of the tool.

The text edition area located in the left-side is the workplace for specifica-
tion construction. The practitioner can shift the three tabs on the top of the text
edition area to edit the specifications in different stages. This screenshot shows
the interface of informal specification construction. The tree-navigator is in the
middle part, which is labelled as “hierarchical”. A tree structure of expected
functions is described by the navigator in which each node is an expected func-
tion. By right-clicking the node, the practitioner can decompose, delete, edit the
function or search candidate services. Discovered services are listed in the area
labelled as “Discovered Services of Function”. The right-side of this interface
lists all the available services in the service repositories.

Specification Construction. Specification construction is implemented by the
specification workplace and the tree-navigator.

Specification workplace offers the basic functions for constructing specifi-
cations, focusing on the writing and reading operations on the XML files of
the potential informal, semi-formal and formal specifications. Figure 4 shows an
example of the informal specification stored as an XML file.

In this XML file, hierarchical structures of the functions are represented by
the hierarchy of the XML elements. For example, function Lowest 1 is the child
node of function Function 1 Child 1 that is the child node of its higher-level
function Function 1. Associated services of each function are also documented

96 W. Miao and S. Liu

Fig. 3. The screenshot of the main interface of the tool

in the XML file. In this example, after the keyword-based service searching,
basic information of a discovered service JTHotel is recorded and associated to
function Lowest 1. As one advantage of the XML format, we can easily locate
any element of the specification using XPath commands.

The tool provides the practitioner with a tree-navigator to directly decom-
pose, delete or edit the expected functions. Service discovery can also be carried
out by this navigator. In the navigator shown in Fig. 3, function AirTest and its
sub-function airTicket and function Point are displayed in a consistent hierar-
chical structure of the textual specification. By right-clicking any function in the
navigator, the practitioner can decide to modify the function (i.e. decompose,
delete or rename the function) or start the keyword-based service searching for
the function.

3.3 Service Discovery and Analysis

Criterion 1 of the keyword-based service discovery is implemented by a matching
algorithm. A set of keywords stored in array key are splitted into single key-
words. Each keyword is then compared with each service name stored in array
allServices. The discovered services are collected as candidate services that are
associated to the specified function in the informal specification. The associations
between candidate services and the expected function are added into the XML
file of the specification. For example, service JTHotel is associated to function
Lowest 1, which is described in Fig. 4.

Prototype Tool for Supporting a Formal Engineering Approach 97

Fig. 4. XML file of informal specification

Following the FEFSSM approach, the practitioner needs to analyze the can-
didate services based on their interface descriptions to extract the potential
functional behaviors and then identify the most relevant services for further
conformance testing. The analysis is realized by the Service Analyzer through
analyzing the WSDL files of the services. Figure 5 describes the kernel operations
of this analyzer.

Fig. 5. Operations for analyzing WSDL file

The interface information, including the available operations and their input/
output parameters of each service, is extracted from the WSDL files by two
methods getOperations and singleTypeAnalysis. The tool also offers a graphical
interface for dealing with the relevance score ranking, which will be demonstrated
in the next section.

3.4 Functional Scenario Matrix Establishment

Functional scenario matrix is constructed by the tool for conformance testing.
The code shown in Fig. 6 implements the matrix generation.

For N functional scenarios accepted by method matrixOperation, array result
records the N2 functional scenario pairs. Each element of this array is a pair of
functional scenarios, which is established by the two for loop statements.

98 W. Miao and S. Liu

Fig. 6. Operation of functional scenario matrix generation

4 An Example

To demonstrate the usability of the tool, we have conducted an example of mod-
eling a Travel Agency System (TAS) using this prototype tool. Some students
in our research group act as the practitioner to model the TAS.

TAS modeling starts from the informal specification construction. The prac-
titioner records the expected functions using the tree-navigator of the tool. In
the navigator, the practitioner defines a function Hotel Operation and then tries
to discover available web services to implement this functions. Meanwhile, cor-
responding textual informal specification is updated in the specification edition
area. A set of keywords is then given by the practitioner to search candidate
services. The service discovery procedure is described by Fig. 7.

Fig. 7. Keyword-based service discovery

In the left part of Fig. 7, three keywords “hotel”, “rooms” and “reservation”
are decided. As the result of service searching, six candidate services, for example,
service JTHotel, are listed in the interface, which is shown by the right part of
this figure. Names of all the discovered services match the keyword “hotel”.

Prototype Tool for Supporting a Formal Engineering Approach 99

Fig. 8. Static behavior analysis of services

When the informal specification is finished, by shifting the “semi-formal
stage” tab, the practitioner can start the semi-formal specification construc-
tion. The first step of this stage is to carry out the static behavior analysis of
the candidate services. Figure 8 shows the interface for static behavior analysis
of candidate services.

Static behavior analysis is invoked when the practitioner clicks the button
“Service Analysis”. The interface information, including the service names, oper-
ations, and input/output messages of all the candidate services associated to the
corresponding function, are listed in a table. For example, service EasyHotel has
an operation checkVacancy. The input message of this operation is also named
as checkVacancy. The practitioner can select this message and check its detailed
variables by clicking the button “Check”. For instance, six variables (e.g., hotel-
Code, roomType, rooms and etc.) constitute the message checkVacancy. Based
on the detailed descriptions of each service operation, the practitioner can judge
which operation is necessary for implementing the expected function and then
assign the ranking scores for the operations. The practitioner accepts operation
checkVacancy of service EasyHotel after a thorough understanding of its input
and output variables, then this operation gets one point as its ranking score.

100 W. Miao and S. Liu

Similarly, ranking scores of all the services can be assigned and sorted. Finally,
these ranking scores are displayed the right-side of this interface. In this case
study, the most relevant service is EasyHotel since its gets the highest ranking
score of four points.

By clicking the button “Filtering” on the interface of static behavior analysis,
only the most relevant service will be reserved for conformance testing. The tool
automatically generates the corresponding framework of SOFL processes that
associated to the most relevant service, which is described by Fig. 9.

Fig. 9. Formalizing the processes associated to the most relevant service

For the most relevant service EasyHotel, the tool automatically generates
four processes that correspond to its four operations. The input and output
structures are also constructed. For example, process checkVacancy which takes
variable checkVacancy as its input data is generated. The practitioner can further
clarify the data types referring to the corresponding parameters of the service
operations. When the data structures of the processes are determined, formal
functional scenarios of these processes can be defined. Once all the functional
scenarios of the processes are constructed, functional scenario matrix can then
be generated. Figure 10 describes the procedure of defining formal functional
scenarios of the processes and the generated functional matrix.

Each functional scenario is assigned with an identifier. For instance, func-
tional scenario f 1 stands for the functional scenario of a successful inquiry of
reservation. In our example, for the four processes associated to the candidate

Prototype Tool for Supporting a Formal Engineering Approach 101

Fig. 10. Interface of functional scenarios construction

service EasyHotel, eight functional scenarios are constructed. As the result, a
64*2 functional scenario matrix is generated. For example, the fourth row in the
matrix is functional scenario pair (f 1, f 4).

Based on the functional scenario matrix, test sequences are derived for the
conformance testing of services. Currently, test data generation cannot be fully
supported by the prototype tool. Another testing tool developed by our group
can be exploited to finish the testing [10]. As an important task of our future
research, we will make efforts to integrate the functionalities of the previous
testing tool into the FEFSSM tool so that the conformance testing can be more
effective and efficient.

Assume the services are determined, the practitioner can proceed to con-
struct the semi-formal and formal specifications, which are supported by the
corresponding specification editing areas.

5 Related Work

Various tools have been developed to support service-based software modeling
from different perspectives. One category of them focuses on service-based soft-
ware modeling based on business process modeling techniques (e.g., BPMN).
A CASE tool called WebRatio is extended to support model-driven services inte-
gration [4]. The extended tool supports the high-level business process modeling
of BPMN notations and detailed services mashup application modeling using
WebML language. A service-oriented business process modeling tool is proposed
in work [3]. It supports the generation of business process model from BPMN-
based business process meta-model with highlighted web service characteristic

102 W. Miao and S. Liu

and automatic translation and deployment features. The authors of work [5]
report a prototype tool that provides the functionality of graphically modeling a
BPEL process and running static validation. The methodology underlying this
tool is using the graphical aspect of BPMN in order to facilitate modeling of
executable BPEL service orchestrations. However, since BPMN notation is lack
of formal semantics, these BPMN-based modeling methodologies and their sup-
porting tools do not support precise specification construction of service-based
software. In the work [18], the authors propose a formal semantics of BPMN
defined in terms of a mapping to YAWL nets, for which efficient analysis tech-
niques exists. The proposed mapping has been implemented as a supporting
tool. In the work [17], the authors also propose formal semantics of the BPMN
notation. These approaches and tools contribute to the service-based software
modeling, especially from the perspective of modeling notations while appropri-
ate service-based software modeling methodology is not addressed. Practitioners
are demanding engineering methodologies to guide them effectively exploit these
techniques.

Moreover, web services selection is not considered by these modeling
approaches or techniques. As the authors of work [16] summarize, few approaches
support service discovery and selection as part of the design process of service-
based systems. Work [16] proposes a method that is relevant to our FEFSSM,
in which services discovery and selection are integrated into the entire service-
based software modeling process. Specifically, the service discovery in work [16]
is carried out through semantics-based matching. Services are not required to
be dynamically invoked through the matching process. Service selection in our
FEFSSM methodology is realized via formal specification-based conformance
testing in which services are dynamically tested after a preliminary keyword-
based matching and a static analysis procedures.

6 Conclusion

To facilitate service-based software modeling, we present an interactive tool that
supports the FEFSSM approach. We illustrate the theory of FEFSSM underlying
the tool and describe its design and implementation. An example of modeling a
travel agency system (TAS) is illustrated to demonstrate the usability of the tool.

At present, the tool supports the engineering process and most activities of
the FEFSSM while the conformance testing of service selection has not been fully
realized. In our future research, we will complete the tool so that the FEFSSM
approach can be applied more effectively in practice. We are also interested in
the techniques of constructing high-quality service-based software system.

Acknowledgement. This research is supported by SCAT research Foundation. This
research is also supported by IDEA4CPS, MT-LAB (VKR Centre of Excellence),
Shanghai Knowledge Service Platform for Trustworthy Internet of Things No. ZF1213
and NSFC Project No.91118007.

Prototype Tool for Supporting a Formal Engineering Approach 103

References

1. http://www.bpmn.org/ (2011) (Online)
2. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf (2011) (Online)
3. Bai, L., Wei, J.: A service-oriented business process modeling methodology and

implementation. In: International Conference on Interoperability for Enterprise
Software and Applications China, 2009, IESA ’09, April 2009, pp. 201–205 (2009)

4. Bozzon, A., Brambilla, M., Facca, F., Carughu, G.: A conceptual modeling app-
roach to business service mashup development. In: IEEE International Conference
on Web Services (ICWS), July 2009, pp. 751–758 (2009)

5. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: extending BPEL for
modeling choreographies. In: International Conference on Web Services (ICWS),
July 2007, pp. 296–303 (2007)

6. Klusch, M., Fries, B., Sycara, K.: Automated semantic web service discovery with
OWLS-MX. In: Fifth International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), Hakodate, Japan, May 2006, pp. 915–922 (2006)

7. Liu, S., Chen, Y., Nagoya, F., McDermid, J.: Formal specification-based inspection
for verification of programs. IEEE Trans. Softw. Eng. 99 (2011, PrePrints)

8. Liu, S.: Integrating specification-based review and testing for detecting errors in
programs. In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM
2007. LNCS, vol. 4789, pp. 136–150. Springer, Heidelberg (2007)

9. Liu, S., McDermid, J., Chen, Y.: A rigorous method for inspection of model-based
formal specifications. IEEE Trans. Reliab. 59(4), 667–684 (2010)

10. Liu, S., Nakajima, S.: A “Vibration” method for automatically generating test cases
based on formal specifications. In: 18th Asia-Pacific Software Engineering Confer-
ence (APSEC2011), Ho Chi Minh, Vietnam, December 2011, pp. 73–80 (2011)

11. Meditskos, G., Bassiliades, N.: Structural and role-oriented web service discovery
with taxonomies in OWL-S. IEEE Trans. Knowl. Data Eng. 22(2), 278–290 (2010)

12. Miao, W., Liu, S.: A formal engineering framework for service-based software mod-
eling. IEEE Trans. Serv. Comput. 6(4), 536–550 (2013)

13. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: state of the art and research challenges. Computer 40, 38–45 (2007)

14. Liu, S.: Formal Engineering for Industrial Software Development Using the SOFL
Method. Springer, Heidelberg (2004)

15. Liu, S., Offutt, A.J., Ho-Stuart, C., Sun, Y., Ohba, M.: SOFL: a formal engineering
methodology for industrial applications. IEEE Trans. Softw. Eng. 1, 24–45 (1998)

16. Spanoudakis, G., Zisman, A.: Discovering services during service-based system
design using UML. IEEE Trans. Softw. Eng. 36(3), 371–389 (2010)

17. Wong, P.Y.H., Gibbons, J.: A process semantics for BPMN. In: Liu, S., Maibaum,
T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 355–374. Springer, Heidel-
berg (2008)

18. Ye, J., Sun, S., Song, W., Wen, L.: Formal semantics of BPMN process models using
YAWL. In: Second International Symposium on Intelligent Information Technology
Application, December 2008, vol. 2, pp. 70–74 (2008)

http://www.bpmn.org/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

A Supporting Tool for Syntactic Analysis
of SOFL Formal Specifications and Automatic

Generation of Functional Scenarios

Shenghua Zhu1(&) and Shaoying Liu2

1 Graduate School of Computer and Information Sciences, Hosei University, Tokyo, Japan
shenghua.zhu.7h@stu.hosei.ac.jp

2 Faculty of Computer and Information Sciences, Hosei University, Tokyo, Japan
sliu@hosei.ac.jp

Abstract. SOFL formal specifications have been proved to be useful and
expressive enough in describing functional requirements for software devel-
opment. And based on SOFL formal specifications, many techniques have been
proposed to provide us with effective solutions for software verification and
validation. To support these techniques, a tool support for analysis of specifi-
cations is necessary. However, such a tool is still not available. In this paper,
we present our work on a supporting tool. This tool supplies two fundamental
functions: syntactic analysis of SOFL formal specifications and automatic
generation of functional scenarios. By syntactic analysis, we can get syntactic
information of SOFL formal specifications. The tool creates an xml file for
storing and reusing this syntactic information. Functional scenarios are well-
structured predicate expressions, which could be derived from formal specifi-
cations. Many formal specification-based techniques require the generation of
functional scenarios. Our tool also supports automatic generation of functional
scenarios on the basis of the syntactic information.

Keywords: SOFL � Formal specifications � Syntactic analysis � Functional
scenarios

1 Introduction

SOFL formal specifications generally consist of two parts: modules and corresponding
CDFDs (Control Data Flow Diagram). Modules are responsible for precisely defining
the requirements and CDFDs provide a graphic explanation of the cooperation of
processes in each module. Because SOFL benefits both the advantages of formal
notations and graphic expressions, SOFL has the ‘‘talent’’ to describe both functional
requirements and the architecture of software. In additional, based on SOFL formal
specification, many techniques have been proposed to provide us with effective
solutions for software verification and validation. SOFL could be used practically in
real software development.

However, compared with some other formal language, SOFL is restricted by tool
supporting, especially for some fundamental functions. In order to make it more
practical, we hence implemented a supporting tool for SOFL. This tool supplies two

S. Liu and Z. Duan (Eds.): SOFL+MSVL 2013, LNCS 8332, pp. 104–117, 2014.
DOI: 10.1007/978-3-319-04915-1_8, � Springer International Publishing Switzerland 2014

fundamental functions: syntactic analysis of SOFL formal specifications and auto-
matic generation of functional scenarios. By syntactic analysis, we can get syntactic
information of SOFL formal specifications. The tool creates an xml file for storing and
reusing this syntax information. Functional scenarios are well-structured predicate
expressions, which could be derived from formal specifications. Many formal speci-
fication based techniques require the generation of functional scenarios [1, 2]. In our
tool, we also realized automatic generation of functional scenarios on the basis of
syntax information. Our work is expected to be effective in reducing time and budget
by a large margin in applying SOFL to a real software development.

The remainder of this paper is organized as follows. Section 2 talks about the
background of our work including features of SOFL, definition of functional scenarios
and brief introduction to strategy design. Section 3 describes in details about our tool,
which includes two core components: a parser for SOFL and a processor for gener-
ating functional scenarios. Section 4 mentions some related work. Section 5 makes a
conclusion of our current work and points out how it could support future research.

2 Background

SOFL is short for Structured Object-Oriented Formal Language, which was proposed
in Liu’s paper [3]. In order to make it more adaptable for practical software devel-
opment, the designer considered overall the advantages of formal notation, structured
methods and object-oriented method, and successfully found out a complementary
approach to integrate these three ideas into one formal language. Formal specifications
written in SOFL should be encapsulated in a series of modules. Each module repre-
sents a high-level system or low-level sub-system and one module also could be
decomposed further to lower-level modules. In each module, we should abstract all
involved resources, declare them by classifications and define the main processes
(operations) to complete the functionality. For each process, it uses pre-condition to
describe the assumed initial state and post-condition to clarify the expected final state.
Pre- and post-conditions are common predicate expressions, in which sub-predicate
clauses could be connected by logic connectors without no regular pattern.

As mentioned before, SOFL formal specifications are synthesis of many kinds of
descriptions, including description for resources’ definition and declaration, descrip-
tion for operations, while functional scenarios are predicate expressions which have
been well classified and partitioned according to information mainly extracted from
operations.

In order to generate functional scenarios from formal specifications, firstly we
need to clarify the format of an operation specification and the concept of functional
scenario. Here for simplicity, we adopt Liu’s notation in [4] for operations of SOFL
formal specifications.

Definition 1: Let OPðOPiv; OPovÞ½OPpre; OPpost� denotes an operation of SOFL formal
specifications, in which OPiv represents set of input variables whose values should not
be changed by this operation, and OPov represents set of output variables whose values

A Supporting Tool for Syntactic Analysis of SOFL 105

could be newly produced or updated by this operation, and OPpre OPpost represent pre-
and post-conditions of OP respectively.

Then we define functional scenarios based on the criterion 1.

Definition 2: Functional scenarios are predicate expressions matched with specific
pattern. Let �OPpre ^ Ci ^ Di denotes one function scenario, and each function
scenario serves as one disjunctive clause of the following disjunction: ð�OPpre ^
C1 ^ D1Þ _ ð�OPpre ^ C2 ^ D2Þ _ . . . _ ð�OPpre ^ Cn ^ DnÞ: This disjunction is
called a functional scenario form. In one functional scenario, Ci is called ‘‘guard
condition’’, which contains no output variables and satisfies Ci ^ Cj ¼ falseði 6¼ jÞ; Di

is called ‘‘defining condition’’, which involves at least one output variable, and defines
the expected final state of output variables. Guard conditions and defining conditions
come from OPpost; both of them are a collection of sub-predicates of OPpost.

The algorithm, for generating function scenarios from formal specifications, has
been discussed in Liu’s paper [5]. In order to describe the algorithm, we also need
notations below:

VoeðOP;EÞ: denotes the set of variables from OPov which occur in the predicate E.
1. . .n½ � : denotes the set of integers 1; 2; . . .; nf g:
A : B : means that A is the same with B both syntactically and semantically.

Algorithm:

Step 1: Convert the post-condition OPpost to disjunctive normal form: P1 _ P2 _
. . . _ Pn; where each Ptðt 2 ½1. . .n�Þ is a conjunction of atomic predicates or the
negation of atomic predicates. An atomic predicate could be a relation (saying
x [y � 5þ z), a boolean variable, a truth value, or a strict quantified expression. Here
if OPpost : true or OPpost : false, go to step 8; else go to next.

Step 2: For each Pt � R1 ^ R2 ^ . . . ^ Rmðm� 1Þ; construct the partition {B1, B2} for
the set R1;R2; . . .;Rmf g that satisfies the conditions:

1ð Þ Ri 2 B1) VoeðOP;RiÞ ¼£; i 2 1. . .m½ �
2ð Þ Ri 2 B2) VoeðOP;RiÞ 6¼£; i 2 1. . .m½ �

Step 3: For each predicate set Bk where k 2 1; 2f g; if Bk 6¼£; then form the con-
junction Qt

k � ^i2sRi; where s ¼ i 2 1. . .m½ �jRi 2 Bkf g; otherwise, let Qt
k � true:

Step 4: Express Pt as the conjunction of every such Qt
k : Pt � Qt

1 ^ Qt
2. Here Qt

1
corresponds to the guard condition, which involves no output variables in OPov. Qt

2
corresponds to the defining condition, which contains at least one output variable.

Step 5: Construct the partition A1;A2; . . .;Awf g for the set P1; P2; . . .; Pnf g obtained

from No 4 that satisfies the condition: Pi;Pj 2 Ak) Qi
1 ¼ Q j

1 assuming Pi �
Qi

1 ^ Qi
2 and Pj � Q j

1 ^ Q j
2; i; j 2 1. . .n½ �; k 2 1. . .w½ �:

Step 6: For each Ak, form a predicate PAk � � OPpre ^ Q1 ^ ð_l2 1...u½ � Ql
2Þ; assuming

P1;P2; . . .;Pu are members of Ak, u = n, and each Pt � Q1 ^ Ql
2; where Q1 is the

common guard condition and Ql
2 is a defining condition. The decorated pre-condition

106 S. Zhu and S. Liu

�OPpre ¼ OPpre
� x=x½ � denotes the predicate by substituting the initial state � x for

the final state x in OPpre.

Step 7: Form the disjunction PA1 _ PA2 _ . . . _ PAw ; which is the functional scenarios
form (FSF) for OP, where each PAk denotes a functional scenario. Then go to Step 9.

Step 8: Form the conjunction �OPpre ^ OPpost as the functional scenarios form
(FSF) for OP.

Step 9: The end.

3 Our Work on the Supporting Tool

The tool consists of two core components. One is a parser for SOFL formal specifi-
cations, and the other is a processor in charge of automatic transformation. The parser
is designed to parse SOFL formal specifications and store syntax tree information in
an xml file for reuse. In the xml file, each tag corresponds to one grammar node of
SOFL. The processor will take the syntax tree information (xml file) as input, generate
functional scenario forms, and store these functional scenario forms back into the xml
file. We have defined the format of functional scenario form in the xml file, based on
the definition of functional scenarios as we talked in Sect. 2. Figure 1 shows an
overview constitution of the tool.

3.1 Parser for SOFL Formal Specification

When we are to develop a parser for a specific language, generally the first task is to
know what kind of lexical symbols are legal and how they are arranged in a reasonable
way, defined by the grammar. The two questions determine the design of strategy for
the most important parts of the parser.

Fig. 1. This figure shows the two core components of the tool. The parser produces the syntax
tree information and creates an xml file to store it. After this, the processor will run the
algorithm for generating functional scenarios, and store functional scenario forms back into the
xml file.

A Supporting Tool for Syntactic Analysis of SOFL 107

We have made a summary about all legal classifications of symbols that could be
accepted by SOFL. They are listed as follows in Table 1.

We pick the ‘‘identifier’’ to explain that identifiers in SOFL should maintain what
kind of features and how we construct the acceptor to receive an identifier from the
texture stream. The ‘‘identifier’’ should start with an English letter and after that could
consist of letters and digits (from 0 to 9). This rule can be described in an alternative
way, which is more intuitive. We build a finite state machine for accepting ‘‘identi-
fier’’ in SOFL as figured in Fig. 2.

For the grammar of SOFL, also could referred to Liu’s publication, we find that it
is defined by top-down architecture. In the most top level, the formal specification is
abstracted in one grammar node, which is called ‘‘specification’’. The ‘‘specification’’
is decomposed to some grammar nodes in the lower level, which are restricted to list
in order. Continuously, all grammar nodes could be decomposed further and at last
reach the terminal node, which are symbols that could be accepted directly by lexical
analyzer. We pick up one part of the grammar to give a straightforward image.

One part of the grammar defining the module of SOFL:

Module ::=
“module” Identifier [“/” (Identifier | “SYSTEM_”Identifier)] “;”

 Module_body
“end_module”

Module_body ::=
[“const” Const_declaration “;”]
[“type” Type_declaration “;”]
[“var” Var_declaration “;”]
[“inv” Inv_definition “;”]
[“behav” Behavior “;”]

 Process_function_specifications

Here we use some notations, in which double quotation marks quote a terminal
node (a symbol), brackets mean the content is optional, round brackets and vertical

Table 1. The chart shows all legal classifications of symbols in SOFL.

Key value 1 2 3 4
Classification Enumeration Character String Number
Key value 5 6 7 8
Classification Identifier Reserved word Comment Separator

Fig. 2. The figure shows finite state machine for identifier in SOFL.

108 S. Zhu and S. Liu

bars cooperate to imply a multiple selection. We can find that this kind of description
is easy to understand for readers, but not suitable for syntactic analysis program. So
the first work for us is to rewrite the grammar to make it adaptable for realization. The
translation is like the following.

Module -[‘‘module’’ Identifier S1 ‘‘;’’ Module_body ‘‘end_module’’
S1 -[epsilon | ‘‘/’’ S2
S2 -[Identifier | ‘‘SYSTEM_’’ Identifier
Module_body -[S3 S4 S5 S6 S7 Process_function_specifications
S3 -[epsilon | ‘‘const’’ Const_declaration ‘‘;’’
S4 -[epsilon | ‘‘type’’ Type_declaration ‘‘;’’
S5 -[epsilon | ‘‘var’’ Var_declaration ‘‘;’’
S6 -[epsilon | ‘‘inv’’ Inv_definition ‘‘;’’
S7 -[epsilon | ‘‘behav’’ Behavior ‘‘;’’
Notations used here is almost the same with the ahead. Each line of these sen-

tences is called ‘‘grammar deduction formula’’. In each formula, it contains only
nonterminal grammar nodes and terminal nodes. Terminal nodes are symbols which
could be accepted by lexical analyzer and nonterminal nodes are able to be coded as
methods which are responsible for the syntactic analysis of according units.

So far, we have got an overview about the question domain of the parser. The next
step is to design for the implementation. If we view the parser as a software project,
We need to decompose the whole task and depict the architecture of the software.
Figure 3 shows the architecture of the parser.

The parser includes four components, lexical analyzer, syntactic analyzer, type
generator, and xml file constructor. Each component could be decomposed to the third
level, of which these are able to be implemented by program units. The core function
of a parser is syntactic analysis. As we explained before, the feature of SOFL’s
grammar determines that top-down analysis strategy is convenient. During the
approach of syntactic analysis, we also need to register all symbols and make a
symbol table for potential semantic analysis to some extent. Beside of these, we need
to design a robust mechanism for exception handling and recovery. We use Fig. 4 to
explain the main procedure of top-down syntax analysis.

Fig. 3. The figure shows the whole architecture of the parser.

A Supporting Tool for Syntactic Analysis of SOFL 109

Because terminal nodes could be directly provided by lexical analyzer, terminal
grammar nodes usually are easy to deal with, and do not need to make methods for
them. In Fig. 5, we focus on how to deal with nonterminal grammar nodes. As we
mentioned previously, nonterminal grammar nodes should be realize as methods,
according to the grammar deduction formulae. So when we are faced with multiple
selections about which formula to use and cannot recognize it based on the left-most
symbol, we choose to look forward more symbols for help.

After we have figured out the strategy for both lexical and syntactic analysis, we
need to consider how to record useful information. The corresponding function is
supplied by symbol register. We build a specific data structure named ‘‘symbol table’’
for SOFL. In the symbol table, symbol’s information, such as namespace, value, type
and so on, will be recorded well. The following table shows this data structure.

Fig. 4. The figure shows how top-down syntactic analysis works.

Table 2. This chart shows data structure of symbol table.

Field 1 Field 2 Field 3 Field 4 Field 5
Namespace VariableList BasicTypeList SetTypeList SeqTypeList
Field 6 Field 7 Field 8 Field 9 Field 10
MapTypeList ComTypeList ProdTypeList SignTypeList UnionTypeList

110 S. Zhu and S. Liu

All These lists mean array lists of variables and types. We have also defined data
structure for them. We take SetType for example.

3.2 Processor for Generating Functional Scenarios

After the work of parser, an xml file is created for the storage of syntax tree infor-
mation. Each section, in the formal specifications, could be extracted separately from
this file. As we have analyzed before, functional scenarios are corresponding directly
to the section of process in one module. At this stage, we are able to visit all well-
classified information that may help for generating functional scenarios.

The processor will take this kind of xml file as input and generate functional
scenarios for each process. At last, we shall organize the functional scenarios into
functional scenario forms (FSF), and append FSF to its’ appropriate position in the
xml file. In this way, we can get access to both information of each process and its
correlated FSF.

So far we have been clear about the input and output of this processor. Considering
about the algorithm which has been explained in Sect. 2, the first task should be
transforming post-condition into disjunctive normal form (DNF). From now on, we
are willing to take a predicate ðða _ bÞ ^ cÞ , ðd) eÞ as example to demonstrate
how we implement the algorithm. The predicate stands for post-condition of a process,

Table 3. This chart shows data structure of SetType.

Field 1 Field 2

SymbolName ElementTypeName

Fig. 5. The figure shows the syntax tree of the example post-condition.

A Supporting Tool for Syntactic Analysis of SOFL 111

in which a, b, c, d and e are atomic predicates. It may seem simple, but we think it is
fine and enough to represents general situations when we face with this matter.

First of all, we shall build a syntax tree from what is stored in xml file. In this case,
the syntax tree should look like Fig. 5.

The algorithm for transforming post-condition to DNF is arranged as following:

Step 1: Search nodes of the syntax tree in root-first order, and for each node if the value
of currently visited node is ‘‘\=[’’, replace the node with sub-tree like following

Step 2: Search nodes of the syntax tree in root-first order, and for each node if the
value of current node is ‘‘=[’’, replace the node with sub-tree like the following

Step 3: Search nodes of the syntax tree in root-first order, and for each node if there
exists ‘‘not’’ disorder, that means ‘‘not’’ node’s child is not atomic predicate, replace
the node with sub-tree like the following

112 S. Zhu and S. Liu

Step 4: Search nodes of the syntax tree in root-first order, and for each node if there
exists ‘‘and/or’’ disorder, that means ‘‘or’’ node becomes the child of ‘‘and’’, replace
the node with sub-tree like the following

A Supporting Tool for Syntactic Analysis of SOFL 113

Since the post-condition has been transformed into DNF, considering of the data
structure we used, we have got a binary tree, in which ‘‘or’’ nodes are ancestors of
‘‘and’’ nodes and ‘‘not’’ nodes should be connected directly with atomic predicate
nodes. In case of the example we mentioned before, the Fig. 6 give a view.

We can easily find out each conjunction clause, which is a sub-tree whose root is
the first ‘‘and’’ node. There exist six conjunction clauses in the DNF. They are a ^
c ^ : d; b ^ c ^ :d; a ^ c ^ e; b ^ c ^ e;:a:b ^ d ^ : e; and :c ^ d ^ :e.

According to the algorithm of generating functional scenarios, for each conjunc-
tion clause, we need to make a partition for separating atomic predicates by whether
they contain output variables. If ‘‘a’’ and ‘‘c’’ contain no output variable, they are
called ‘‘guard condition’’. On the other side, ‘‘b’’, ‘‘d’’ and ‘‘e’’ are called ‘‘defining
condition’’. The next step we shall do is to rearrange these conjunction clauses. The
six conjunction clauses should be rewrite to be a ^ c ^ :d; c ^ b ^ : d; a ^ c ^
e; c ^ b ^ e;:a ^ :b ^ d ^ :e; and :c ^ d ^ :e.

The last step is to combine conjunction clauses of which the defining conditions
are the same. Because guard condition and defining condition of a conjunction clause
are stored in an array list, by searching each node in this array list, we can judge
whether one defining condition is covering the other and at the same time the other is
also covering the original one. If A � B ^ B � A; we can make a conclusion two set
of defining conditions are same. If there exist any two conjunction clauses whose
defining conditions is the same, we shall combine them by merging the guard con-
ditions of them by connector of logic ‘‘or’’. In case of this example, the conjunction
clauses should keep themselves, because of the defining conditions of each one are
unique among them.

So we can finally generate functional scenarios in this form �OPpre ^ Ci ^ Di:

All guard conditions and defining conditions of the example are listed in Table 4.

Fig. 6. The figure shows DNF of the example post-condition.

114 S. Zhu and S. Liu

We have tested this tool by several SOFL formal specifications, one of which
defines the requirements of a goods delivery system. We are willing to take that as an
example input to show the main interface of our tool in Fig. 7.

The central textural area demonstrates the SOFL formal specification. If there exist
some syntactic errors, the tool will collect information for the position where error
happens and report them in the below frame. Key words are highlighted in blue and
the character where error is located is highlighted in red in Tables 2, 3 and 4.

After parsing, an xml file storing both syntax tree information and functional
scenario forms is created. For this test case, corresponding xml file is showed in
Fig. 8.

Table 4. This chart shows guard condition and defining condition of each functional scenario
for the example.

C (guard condition) D (defining condition)

Functional scenario 1 a ^ c :d
Functional scenario 2 C b ^ :d
Functional scenario 3 a ^ c E
Functional scenario 4 C b ^ e
Functional scenario 5 :a :b ^ d ^ :e
Functional scenario 6 :c d ^ :e

Fig. 7. The figure shows main interface of this tool.

A Supporting Tool for Syntactic Analysis of SOFL 115

4 Related Work

Tool support is significantly important for applying formal methods into practice.
There are many formal languages with powerful tool. One famous example is VDM.
As introduced in [6], ‘‘Overture’’ is developed to be a common open-source platform
integrating a range of tools for constructing and analyzing formal models of systems
using VDM. Nowadays, ‘‘Overture’’ has been updated to be a stable and mature
platform, but restricted by features of VDM, it could not support effectively on
describing the architecture of whole software. There are also other tools supporting
formal language like JML and Alloy. They are introduced in [7, 8].

Functional scenario-based techniques also gain more and more attentions in
research. Reference [1] proposes an automated functional scenario-based formal
specification animation method. Reference [2] talks about their work on an experiment
for assessment of a functional scenario-based test case generation method, which is
improved from FSBT (functional scenario-based testing) proposed in [9]. For func-
tional scenarios’ generation, a method for automatic generation of functional scenarios
from SOFL CDFD has been talked in [10].

5 Conclusion and Future Work

In this paper, we implemented a tool for automatically generating functional scenarios
from SOFL formal specifications. Based on the algorithm proposed in Liu’s paper, we
explained the construction of the tool and how it works by a simple but fine example.

Fig. 8. The figure shows the main output of this tool: xml file storing syntax information and
functional scenarios.

116 S. Zhu and S. Liu

We also used several SOFL formal specifications as test cases to test the tool. The test
result shows the expected functionalities are well-realized and this tool is able to
effectively support functional scenario based research.

In the future, we intend to develop and improve a support environment for con-
structing system by using SOFL formal specification. This tool is just a prototype tool,
but it completes some fundamental requirements. On the basis of this tool, we are
looking forward to searching a reasonable way to support ‘‘functional scenario- based
test case generation’’ and ‘‘functional scenario-based formal specification translation’’.

Acknowledgments. This work has been conducted as a part of ‘‘Research Initiative on
Advanced Software Engineering in 2012’’ supported by Software Reliability Enhancement
Center (SEC), Information Technology Promotion Agency Japan (IPA).

References

1. Li, M., Liu, S.: Automated functional scenarios-based formal specification animation. In:
19th Asia-Pacific Software Engineering Conference (APSEC 2012), IEEE CS Press, Hong
Kong (2012) (to appear)

2. Li, C., Liu, S., Nakajima, S.: An experiment for assessment of a ‘‘functional scenario-
based’’ test case generation method. In: International Conference on Software Engineering
and Technology (ICSET 2012), pp. 64–71 (2012)

3. Liu, S., Offutt, A.J., Ho-Stuart, C., Sun, Y., Ohba, M.: SOFL: A formal engineering
methodology for industrial applications. IEEE Trans. Softw. Eng. 24(1), 24–45 (1998)

4. Liu, S ., Nakajima, S.: A decompositional approach to automatic test case generation based
on formal specifications. In: 4th IEEE International Conference on Secure Software
Integration and Reliability Improvement, Singapore, pp. 147–155, 9–11 June 2010

5. Liu, S., Chen, Y., Nagoya, F., McDermid, J.: Formal specification-based inspection for
verification of programs. IEEE Trans. Softw. Eng. 38(5), 1100–1122 (2012)

6. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.: The
overture initiative integrating tools for VDM. ACM Softw. Eng. Notes 35(1), 1–6 (2010)

7. Leavens, G.T., Cheon, Y.: Design by contract with JML. http://jmlspecs.org (2005)
8. Jackson, D.: Alloy: a lightweight object modeling notation. ACM Trans. Softw. Eng.

Methodol. 11(2), 256–290 (2002)
9. Liu, S., Nakajima,S.: A decompositional approach to automatic test case generation based

on formal specifications. In: 4th IEEE International Conference on Secure Software
Integration and Reliability Improvement, Singapore, pp. 147–155, 9–11 June 2010

10. Li, M., Liu, S.: Automatically generating functional scenarios from SOFL CDFD for
specification inspection. In: 10th IASTED International Conference on Software
Engineering, Innsbruck, Austria, pp. 18–25, 15–17 Feb 2011

A Supporting Tool for Syntactic Analysis of SOFL 117

SOFL Specification Animation
with Tool Support

Mo Li1(B) and Shaoying Liu2

1 Graduate School of Computer and Information Sciences,
Hosei University, Tokyo, Japan
mo.li.3e@stu.hosei.ac.jp

2 Department of Computer and Information Sciences,
Hosei University, Tokyo, Japan

sliu@hosei.ac.jp

Abstract. Formal specification animation is a very useful technique for
verification and validation. It provides the end users and field experts
with an intuitive way to observe the operational behaviour of software
system described by the formal specification. Several tools have already
been built to support animations of specifications written in different
formal languages. In this paper, we describe the design of a tool that
can support the animation of specification written in Structure Object-
oriented Formal Language (SOFL). The animation strategy underlying
the tool uses system functional scenario as a unit and data as connec-
tion among independent operations involved in one system functional
scenario. A system functional scenario defines a behaviour that trans-
forms input data into the output data through a sequential execution of
operations. It is the target of animation. In the animation, data is used
to connect each operation in a specific scenario. The data can be pro-
vided by the user or generated automatically. It will help the user and
the developer to understand the system. We explain the whole animation
process step by step and present a prototype at the end of the paper.

Keywords: Formal method · Specification · Animation · Tool

1 Introduction

Formal specification animation is an effective technique for specifications verifi-
cation and validation. The purpose of animation is to provide an intuitive way
for the end user and domain expert to monitor the states of a behaviour so that
they do not need to read the formal specification which is fulfilled with mathe-
matical or logical formulas. Usually, a tool is required to support the animation

This work has been conducted as a part of “Research Initiative on Advanced Software
Engineering in 2012” supported by Software Reliability Enhancement Center (SEC),
Information Technology Promotion Agency Japan (IPA).

S. Liu and Z. Duan (Eds.): SOFL+MSVL 2013, LNCS 8332, pp. 118–131, 2014.
DOI: 10.1007/978-3-319-04915-1 9, c© Springer International Publishing Switzerland 2014

SOFL Specification Animation with Tool Support 119

process since it faces a lot of challenges in practice and one of the challenge is
that formal specification is complex and difficult to understand. A tool is needed
to hide the complexity and derive the intuitive information for the user. Several
tools have been built to support animation of specification written in different
formal languages, such as ANGOR [1], B-Model animator [2], and ZAL anima-
tion system [3]. Most of them require a translation from a formal specification
language to an executable programming language, so that the animation can
be done automatically. But the translation may imposes many restrictions to
the style of the specifications written in a formal notation and this would bring
inconvenience to the developer.

In this paper, we describe the design of a tool for SOFL [4] specification ani-
mation. There is no further restrictions to the language or style of specification.
In the tool, the end user or field expert can animate the specification on the Con-
ditional Data Flow Diagram (CDFD, a part of SOFL specification) directly, and
we think it is a very good way to connect user, developer and formal specifica-
tion. The animation strategy underlying the tool uses system functional scenario
as a unit and data as connection among independent operations involved in one
system functional scenario. System functional scenario is used as unit of an ani-
mation since it presents a specific behaviour of the system, and the behaviour is
the target or object of animation. In order to animate the entire specification, all
of the potential behaviours, or system functional scenarios, should be animated.
Usually, a system functional scenario is defined as a sequence of operations that
process a group of input data to a group of output data. Each operation in sce-
nario is connected by intermediate data, and it is the reason why we use data
as connection in animation.

One of the advantages of using data for animation is that the end user can
observe each behaviour by monitoring the states of it. The states of behaviours
are presented as the input and output data of each operation involved. The
tool allows users to select providing the data themselves or letting the data
generated automatically. If users select to provide the data for animation, they
usually provide the most typical data of the system. Meanwhile, the users need
to guarantee that the data they provide satisfies the pre- and post-conditions. If
users want to let the data generated automatically, the data generation method
would generate the data that satisfies the pre- and post-conditions. But the
generated data may not present the specific circumstance users want to animate.
We will introduce how to animate a scenario step by step in Sects. 2 and 3.

The prototype is implemented on the bases of a framework that is built
to help developers specifying SOFL specification. The framework includes the
editors of informal specification, formal specification, and CDFD, etc. All the
specifications are well organized and stored in the well formatted files under
this framework. It provides a fundamental to further utilization of the formal
specifications. The prototype is now a part of the framework, and it contains
functions of deriving system functional scenario and animating a specific sce-
nario. Section 4 describes the framework and prototype in details.

120 M. Li and S. Liu

The remainder of this paper is organized as fellows. Section 2 describes the
animation strategy and the animation process. Section 3 briefly introduces the
specific methods of system functional scenarios derivation and data generation
used in the tool. The framework for specifying SOFL specifications and the
prototype is described in Sect. 4. Section 5 gives a brief overview of related work.
Finally, in Sect. 6 we conclude the paper and point out future research directions.

2 Animation Strategy and Process

As mentioned previously, we use the system functional scenario as the basic
unit in animation. Each system scenario presents a specific function of the
system. Since the goal of a formal specification animation is to validate the
potential behaviours of the specification, we suggest that every possible system
functional scenario defined in the specification should be animated. A system
scenario defines a specific kind of operational behaviour of the system through
a sequential executions of operations. And a specific operational behaviour is
usually presented to end users as a pair of input and output, that is, given an
input, the result of a behaviour of the system results in a certain output. The
definition of a system functional scenario is detailed in Definition 1.

Definition 1. A system functional scenario, or system scenario for short,
of a specification is a sequence of operations di[OP1, OP2, ..., OPn]do, where di
is the set of input variables of the behaviour, do is the set of output variables,
and each OPi(i ∈ {1, 2, ..., n}) is an operation.

The system scenario di[OP1, OP2, ..., OPn]do defines a behaviour that trans-
forms input data item di into the output data item do through a sequential
execution of operations OP1, OP2, ..., OPn. Actually, other data items are used
or produced within the process of executing the entire system scenario but not
being presented. For example, the first operation OP1 in the system scenario
receives the input data item di and produces a data item, which is the input
data item of operation OP2. Operation OP2 cannot be executed without the
output data item of OP1. We call these data items implicit data items. In order
to show the behaviour of system step by step in an animation, the implicit data
items in system scenario should be presented explicitly. When presenting implicit
data items explicitly is necessary, we use [di, OP1, d1, OP2, d2, ..., dn−1, OPn, do]
to present a system scenario, where d1 indicates the output data item of OP1 or
input data item of OP2.

For example, Fig. 1 shows the CDFD of a simplified ATM. There are only
to functions included in this simple specification: withdraw and show balance.
Based on the definition of system functional scenario, five scenarios defined in
the specification is listed as follows:

– {withdraw com}[Receive Command, Check Password, Withdraw]{cash}
– {withdraw com}[Receive Command, Check Password, Withdraw]{err2}
– {withdraw com}[Receive Command, Check Password]{err1}

SOFL Specification Animation with Tool Support 121

Fig. 1. CDFD of a simple ATM

– {balance com}[Receive Command, Check Password]{err1}
– {balance com}[Receive Command, Check Password, Show Balance]{balance}

Such a system functional scenario clearly describes how the final output data
is produced by a sequence of processes based on the input data. Note that the
input data and output data indicate the sets of variables when talking about the
concept of system scenario or a specific system scenario of an behaviour. Under
the context of animation, the input and output data are instances rather than
concepts. They indicate sets of values of the input and output variables.

To animate a specific system scenario, the data is used to connect each oper-
ation involved in the scenario. Since the data is restricted by the pre- and post-
conditions of process, the data present a real environment of the behaviour. The
user and experts can observe the behaviour by monitoring the data. There are
two ways to collect the data for animation. The first way is to let the user pro-
viding the data. The advantage of this way is that the data provided by user
is usually the most typical data. The provided data presents the circumstance
that the user cares about. Meanwhile, the user have to guarantee that the data
satisfies the pre- and post-condition, otherwise the data would be meaningless.
The alternative way of collecting data is to generate data automatically. The
generation method does not require translating the formal specification to any
executable program. One of the obvious disadvantage of the method is that the
generated data may not present the specific circumstance users want to animate.
No matter which way the user use, the data provide a concrete point of views of
the behaviour.

When collecting input and output data for a single process, the operation
functional scenarios of the process have to be extracted first. By operation func-
tional scenario, we mean an predicate expression derived from the pre- and post-
condition of a process, which precisely defines the relation of a set of input and
output data. Liu first gives a formal definition of operation functional scenario
[5] and we repeat it here to help the reader understand the rest of this paper.

122 M. Li and S. Liu

Fig. 2. Specification of process “Check Password”

Definition 2. Let OP (OPiv, OPov)[OPpre, OPpost] denote the formal specifi-
cation of an operation OP , where OPiv is the set of all input variables whose
values are not changed by the operation, OPov is the set of all output variables
whose values are produced or updated by the operation, and OPpre and OPpost

are the pre and post-condition of operation OP , respectively.

Definition 3. Let OPpost ≡ (C1 ∧ D1) ∨ (C2 ∧ D2) ∨ ... ∨ (Cn ∧ Dn), where
each Ci(i ∈ {1, ..., n}) is a predicate called a “guard condition” that contains
no output variable in OPov and ∀i,j∈{1,...,n} ·i ∅= j ⇒ Ci ∧ Cj = false ; Di a
“defining condition” that contains at least one output variable in OPov but no
guard condition. Then, a formal specification of an operation can be expressed as
a disjunction (⇔OPpre∧C1∧D1)∨(⇔OPpre∧C2∧D2)∨...∨(⇔OPpre∧Cn∧Dn).
A conjunction ⇔OPpre ∧Ci ∧Di is called an operation functional scenario,
or operation scenario for short.

Note that we use ⇔x and x to represent the initial value before the operation
and the final value after the operation of external variable x, respectively. The
decorated pre-condition ⇔OPpre = OPpre[⇔x/x] denotes the predicate resulting
from substituting the initial state ⇔x for the final state x in pre-condition OPpre.
We treat a conjunction ⇔OPpre ∧ Ci ∧ Di as an operation functional scenario
because it defines an independent behaviour: when ⇔OPpre ∧ Ci is satisfied by
the initial state (or intuitively by the input data), the final state (or the output
data) is defined by the defining condition Di.

The reason why we need the operation functional scenario is that the
definition of SOFL allows the process to receive more than one exclusive input
or output data. In a specific system functional scenario, only one pair of input
and output data of each process is involved. For instance, the process
“Check Passwork” of the simple ATM system in Fig. 1 is formally defined in
the specification shown in Fig. 2. There are three operation functional scenario
contained in this specification.

SOFL Specification Animation with Tool Support 123

1. (∗x ∈ Account file·x.id = id ∧ x.password = pass) ∧ sel = true ∧ acc1 = x
2. (∗x ∈ Account file·x.id = id ∧ x.password = pass) ∧ sel = false ∧ acc2 = x
3. ¬(∗x ∈ Account file·x.id = id∧x.password = pass)∧ err1 = “Reenter your

password or insert the correct card”

If the system functional scenario {balance com}[Receive Command, Check
Password, Show Balance]{balance} is under animation, there is no doubt that
the second operation functional scenario should be selected to collect input and
output data for the process “Check Passwork”.

After the introduction of our animation strategy, we would describe how to
apply the strategy in practice. For a given formal specification, the following
stages supply a procedure for systematically performing the animation.

Stage 1. Derive all possible system scenarios from the formal specification.

Different methods are used to derived system functional scenario from formal
specification written in different formal languages. For example, for a formal
specification language containing graphic specification, the system scenarios can
be derived based on the topology of the graph. On the other hand, for a formal
specification language that does not contain graphic specification, the system
scenarios can be derived based on the data dependency among operations. For
SOFL specification, we derive system functional scenarios from the topology of
the CDFD. We will introduce the specific automatic approach for deriving all
possible system scenarios in next section.

Stage 2. Let di[P1, P2, ..., Pn]do be a selected system scenario. Derive related
operation scenarios of each Pi(i ∈ {1, 2, ..., n}) from its specification and get
a set of operation scenarios {OS1, OS2, ..., OSn}, where OSi is the related
operation scenario of Pi.

According to our animation strategy, only one system scenario should be
selected to animate each time. For any selected system scenario, the related
operation scenario of each operation involved should be derived from the formal
specification. Since an operation scenario of an operation defines an indepen-
dent relation between its input and output under a certain condition, only one
operation scenario of an operation can be involved in the selected system sce-
nario. Therefore, the second stage of entire animation process should be deriving
related operation scenarios.

As the start point of a system functional scenario, the input data of the first
process in the system scenario should be collected first. Actually, the input data
of the first process is the only input that need to be collected from the user or
generated by data generation method. The input data of the following processes
is the output data of the previous processes.

Stage 3. Let ⇔S1
pre ∧ C1

i ∧ D1
i be the related operation scenario of the first

operation P1 in the selected system scenario. The input data should be collected
and satisfy the predicate expression ⇔S1

pre ∧ C1
i .

124 M. Li and S. Liu

The input data generated in Stage 3 is actually the input of the selected
system scenario. It can be used as bases to collect output data of P1. The output
data collected should satisfy the predicate expression ⇔S1≤

pre∧C1≤
i ∧D1

i , which can
be created by applying the input data to predicate expression ⇔S1

pre ∧C1
i ∧D1

i .
The output data of P1 then be used as input data of P2 to collect output data
of P2. Repeating this procedures, the output data of entire system scenario can
be generated eventually. This idea is reflected in Stage 4.

Stage 4. Use the input data generated in Stage 3 and the operation scenarios
derived in Stage 2 to generate the output data for each operation and entire
system scenario.

So far, all of the data involved in a selected system scenario has been gener-
ated. And the behaviour can be simulated by using the data involved in it. The
end users and field experts can monitor the states of the behaviour during its
execution, and analyse whether the specification meets their requirement.

Stage 5. Repeat Stage 2 to Stage 4 until all the system scenarios derived in
Stage 1 are animated.

Animating all possible behaviours of the system is required by our animation
strategy. The process of animating a specific behaviour should be repeated until
all of the potential behaviours have been animated.

3 Design of the Tool

According to our animation strategy, there are two steps in the animation
process. The first step is to derive all possible system functional scenario, and
the second step is to collect input and output data for all involved processes of a
specific system functional scenario. In this section, we first introduce the method
of deriving system functional scenario briefly, and then describe how to collect
input and output data under the two ways mentioned above.

3.1 Deriving System Scenario

We choose deriving functional scenarios from a CDFD because it is extremely
difficult to automatically generate scenarios from a process specification directly.
Form the introduction of SOFL, we know that process specification uses mathe-
matical notation to define processes in a module, and it is not designed to present
the architecture or logic between different processes. If deriving functional sce-
narios from process specifications, it requires parsing the entire specification to
determine which two processes are connected. It is obviously not a cost-effective
approach. On the contrary, deriving scenarios from the CDFD will be more
cost-effective, because the CDFD is specifically designed to describe the rela-
tions among the processes, and we can derive functional scenarios based on the
topology of CDFD.

SOFL Specification Animation with Tool Support 125

Fig. 3. The decomposition of a process

In order to generate all possible scenarios, the first step is to decompose the
CDFD. This can be realized by decomposing every process in the CDFD. Each
process can be decomposed into a corresponding graph. Figure 3 illustrates the
decomposition of a process. In the original CDFD, the port list on the left side
of a process is input port list, in which each input port is ordered from top to
bottom, we use a number to label each port. The output ports of a process are
labelled in the same way. In the corresponding graph, each node represents one
port of the process, one input port or output port.

Each node in the corresponding graph has a name, consisting of three parts:
the first character of the process’s name, the identification of input or output
port, and the port number. Different nodes are connected by two kinds of edges,
solid edges and dotted edges. The solid edge represents the data flow in origi-
nal CDFD and the dotted edge represents the mapping relationship inside the
process. Like the data flows connecting two different processes in CDFD, the
solid edges connect one input port node and one output port node that belong
to different processes. Contrasts to the solid edges, the dotted edges represent
the implicit relation in process. We use dotted edges to explicitly present this
kind of relation because the ports that belong to the same port list are exclusive.
If a process has more than one input port and output port, we need to find all
possible combinations between its input ports and output ports. So that we can
find all possible functional scenarios. The dotted edges represent such possible
combinations or relations. In practice, just one dotted edge in each process can
be valid each time. It means at each time process receiving and sending data from
the input port and output port which are concerned by the valid dotted edge.

By using the decomposition method, one CDFD can be decomposed to a
graph that contains only input port nodes and output port nodes. The nodes
in the decomposed graph is linked by solid and dotted edges. The process of
deriving all possible system functional scenarios can be realized as finding all
possible paths in the decomposed graph. For the space sake, we will not explain
this method further. The details of this method is included in [8].

126 M. Li and S. Liu

3.2 Collecting Data from Users

The process of collecting data from users is the easiest way of collecting data. It
can be separated into two steps. First is let the user provide data, and second
is to check whether the provided data satisfy the related operation functional
scenarios. The two steps are usually mixed in practice. For example, in the
beginning of an animation, users first provides the input data for the first process,
P1, in the selected system functional scenario. Then, the users should check
whether the input data they provide satisfy the predicate expression ⇔S1

pre∧C1
i ,

a part of the related operation functional scenario of process P1. If the input data
satisfy the expression, the users can provide output data of P1 based on the input
data. Otherwise, the users should provide the input data again. Once the users
provide the output data of P1 successfully, the output data of P1 will be used as
the input data of the second process, P2. This procedure will continue until the
output of the entire system functional scenario are successfully provided.

To facilitate the users to check whether the data they provide satisfy a specific
predicate expression, we use fault tree in our tool to help the users to do the
judgement. We first apply the provided data to the predicate expression, and
than decompose the expression using a tree structure, Each node in this tree
presents an atomic expression. Since the fault tree technique is well known, we
do not do any further explanation here.

3.3 Generating Data Automatically

The automatic data generation method underlying our tool is first introduced in
[6]. The advantage of this method is that there is no need to translate the formal
specification to any executable program. Here we give a brief introduction of the
principle of the method.

As described previously, an operation scenario is expressed as a conjunction
⇔OPpre ∧ Ci ∧ Di. To derive input data based on the operation scenario, it
must be decomposed first. The decomposing process is divided into following
two steps:

– Step 1: Eliminate Defining condition. The defining condition Di is elimi-
nated first since the execution of program only requires input values. The input
data generation depends on the pre-condition and guard condition, and defin-
ing condition usually do not provide the main information for input data gen-
eration. The conjunction after eliminating defining condition is ⇔OPpre ∧Ci,
called “testing condition”.

– Step 2: Convert to disjunctive normal form. The remainder of the oper-
ation scenario is translated into an equivalent disjunctive normal form (DNF)
with form P1 ∨P2 ∨ ...∨Pn. A Pi is a conjunction of atomic predicate expres-
sions, say Q1

i ∧ Q2
i ∧ ... ∧ Qm

i .

Let Q(x1, x2, ..., xw) be one of the atomic predicate expressions Q1
i , Q

2
i , ..., Q

m
i

mentioned previously. The variables x1, x2, ..., xw is a subset of all the input

SOFL Specification Animation with Tool Support 127

variables. The values for the input variables involved in each atomic predicate
expression Q can be generated using a set of algorithms that deals with the
following three situations, respectively. Here we are using variables of numerical
types as examples for convenience.

Table 1. Input data generation algorithm

No. of Algorithms ∗ Algorithms of test case generation for x1

1 = x1 = E
2 > x1 = E + Δx
3 < x1 = E − Δx
4 →, ∨, ∧= Similar to above

– Situation 1: If only one input variable is involved and Q(x1) has the format
x1 � E, where � ∈ {=, <,>,≤,≥, ∅=} is a relational operator and E is a
constant expression, using the algorithms listed in Table 1 to generate test
cases for variable x1.

– Situation 2: If only one input variable is involved and Q(x1) has the format
E1 �E2, where E1 and E2 are both arithmetic expressions which may involve
variable x1, it is first transformed to the format x1 � E, and then apply
Situation 1.

– Situation 3: If more than one input variables are involved and Q(x1, x2, ...,
xw) has the format E1�E2, where E1 and E2 are both arithmetic expressions
possibly involving all the variables x1, x2, ..., xw, first randomly assigning val-
ues from appropriate types to the input variables x2, x3, ..., xw to transform
the format into the format E1 � E2, and then apply Situation 2.

Note that if one input variable x appears in more than one atomic predicate
expression, it needs to satisfy all the expressions in which it is involved.

To define the generated input data precisely, we use a set of states of input
variables, called input case, to present the one-to-one correspondence between
each input variable and its value. The input case is denoted as Ic and defined as
follows.

Definition 4. Let OPiv = {x1, x2, ..., xr} be the set of all input variables of
operation OP and Type(xi) denotes the type of xi(i ∈ {1, 2, ..., r}). Then Ic =
{(xi, vi)|xi ∈ OPiv ∧ vi ∈ Type(xi)}. If (xi, vi) ∈ Ic, we write Ic(xi) = vi.

After automatically collecting the input data, the next step is to generate
output data. The same algorithm can be used. The similar process is described
as follows.

– Step 1: Verify the given input data. For any given input case Ic, evaluate
the predicate (⇔OPpre ∧Ci)[Ic(xi)/xi], which is the result of substituting the
variable xi with the value of variable xi in the testing condition ⇔OPpre ∧Ci.
The result of true means that the given input data can be processed by the
operation, and the output data can be produced based on the input data.

128 M. Li and S. Liu

Fig. 4. Scenario explorer

– Step 2: Substitute input variables. Substitute the input variables in oper-
ation scenario with the corresponding values in Ic, and get a new predicate
⇔OP ≤

pre ∧ C≤
i ∧ D≤

i = (⇔OPpre ∧ Ci ∧ Di)[Ic(xi)/xi], which merely contains
output variables.

– Step 3: Convert to disjunctive normal form. Translate the conjunction
⇔OP ≤

pre ∧ C≤
i ∧ D≤

i into an equivalent disjunctive normal form (DNF) with
form P ≤

1 ∨P ≤
2 ∨ ...∨P ≤

n . A P ≤
i is a conjunction of atomic predicate expressions,

say Q≤1
i ∧ Q≤2

i ∧ ... ∧ Q≤m
i .

– Step 4: Generate values for output. For each Q≤j
i (j ∈ {1, 2, ...,m}), use

the algorithms explained in previous subsection to generate values for output
variables.

Similar to the definition of input case, we define output case to present output
variables and their generated values formally.

Definition 5. Let OPov = {y1, y2, ..., yk} be the set of all input variables of
operation OP and Type(yi) denotes the type of yi(i ∈ {1, 2, ..., k}). Then Oc =
{(yi, vi)|yi ∈ OPov ∧ vi ∈ Type(yi)}. If (yi, vi) ∈ Oc, we write Oc(yi) = vi.

4 Framework and Prototype

The prototype is implemented on the bases of a framework that is built to help
developers specifying SOFL specification. The framework includes the editors of
informal specification, formal specification, and CDFD, etc. All the specifications
are well organized and stored in the well formatted files under this framework.
It provides a fundamental to further utilization of the formal specifications.
Now, the prototype has been a component of the framework. In this section, we
introduce some functions that related to the animation.

The implementation prototype is corresponding to the two steps. The first
step is to derive system functional scenario. Figure 4 shows the snapshot of

SOFL Specification Animation with Tool Support 129

Fig. 5. Animation board

Table 2. Operation scenarios involved in the selected system scenario

Process Operation scenario

Received Command11 withdraw = “withdraw” ∧sel = true
Check Password11 x.id = id ∧ x.password = pass) ∧ sel = true ∧ acc1 = x
Withdraw11 amount → ⇐x.balance ∧ x.balance

= ⇐x.balance − amount ∧ cash = amount

derivation. The CDFD is the system shown in Fig. 1. Here we chose the first sce-
nario {withdraw com}[Receive Command, Check Password, Withdraw]{cash}
to animate. The corresponding operation functional scenario is listed in Table 2.

Figure 5 shows the snapshot of animation. The data collected is listed at
the lower part of the window. Each row shows the input and output data for a
single process. For example, the first row list the input and output of process
“ReceiveCommand11”. The CDFD in the center of the window shows the mid-
step of animation, and the process “CheckP assword11” is under animated.

5 Related Work

Formal specification animation is an effective technique for the communication
between users and developers. Tool support animation can make such commu-
nication easier. In this section, we introduce some existing work on specification
animation.

Liu and Wang introduced an animation tool called SOFL Animator for SOFL
specification animation [7]. It provides syntactic level analysis and semantic level
analysis of a specification. When performing animation, the tool will automati-
cally translate the SOFL specification into Java program segments, and then use
some test case to execute the program. In order to provide reviewers a graphic
presentation of the animation, SOFL Animator uses Message Sequence Chart
(MSC) to present the simulation of the operational behaviours.

130 M. Li and S. Liu

MSC is also adopted in other animation approach as a framework to provide
a graphical user interface to represent animation. Stepien and Logrippo built
a toolset to translate LOTOS traces to MSC and provide a graphic animator
[9]. The translation is based on the mappings between the elements of LOTOS
and MSC. Combes and his colleagues described an open animation tool for
telecommunication systems in [1]. The tool is named as ANGOR, and it offers
an environment based on a flexible architecture. It allows animating different
animation sources, such as formal and executable language like SDL and scenario
languages like MSC.

6 Conclusions and Future Work

In this paper, we describe a tool to support SOFL specification animation. The
animation strategy is introduced first and then the prototype is presented. Com-
paring to other existing tool, the advantage of our work is that there is no require-
ment to translate formal specification to executable program. This means there
is no further request for the developers about the style of specification. We pro-
vide two ways for users to collect data for animation. Each way shows different
aspects of the system to users. We think the data can give the users a con-
crete point of view, and help them to understand the behaviours of the system.
But only the animation is not enough to validate the formal specification, in
the future, we hope to combine the inspection technique with animation. The
inspection contains a list of question and require the users to think rather than
observation only. We hope the combination of these two techniques can make
validation more effective and efficiency.

References

1. Combes, P., Dubois, F., Renard, B.: An open animation tool: application to
telecommunication systems. Int. J. Comput. Telecommun. Netw. 40(5), 599–620
(2002)

2. Waeselynck, H., Behnia, S.: B model animation for external verification. In: Pro-
ceedings of the Second IEEE International Conference on Formal Engineering
Methods, pp. 36–45 (1998)

3. Morrey, I., Siddiqi, J., Hibberd, R., Buckberry, G.: A toolset to support the con-
struction and animation of formal specifications. J. Syst. Softw. 41(3), 147–160
(1998)

4. Liu, S.: Formal Engineering for Industrial Software Development Using the SOFL
Method. Springer, Heidelberg (2004). ISBN 3-540-20602-7

5. Liu, S., Nakajima, S.: A Decompositional approach to automatic test case gener-
ation based on formal specification. In: Fourth IEEE International Conference on
Secure Software Integration and Reliability Improvement, pp. 147–155 (2010)

6. Li, M., Liu, S.: Automated functional scenarios-based formal specification anima-
tion. In: Proceedings of the 19th Asia-Pacific Software Engineering Conference
(APSEC 2012), pp. 107–115. IEEE CS Press, Hong Kong (2012)

7. Liu, S., Wang, H.: An automated approach to specification animation for valida-
tion. J. Syst. Softw. 80, 1271–1285 (2007)

SOFL Specification Animation with Tool Support 131

8. Li, M., Liu, S.: Automatically generating functional scenarios from SOFL CDFD
for specification inspection. In: 10th IASTED International Conference on Software
Engineering, Innsbruck, Austria, pp. 18–25 (2011)

9. Stepien, B., Logrippo, L.: Graphic visualization and animation of LOTOS execu-
tion traces. Comput. Netw.: Int. J. Comput. Telecommun. Netw. 40(5), 665–681
(2002)

10. Liu, S., Chen, Y., Nagoya, F., McDermid, J.A.: Formal specification-based inspec-
tion for verification of programs. IEEE Trans. Softw. Eng. 21(2), 259–288 (2011).
IEEE Computer Society Digital Library, IEEE Computer Society

11. Liu, S.: Integrating specification-based review and testing for detecting errors in
programs. In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM
2007. LNCS, vol. 4789, pp. 136–150. Springer, Heidelberg (2007)

12. Miller, T., Strooper, P.: Model-based specification animation using testgraphs.
In: George, C.W., Miao, H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp. 192–203.
Springer, Heidelberg (2002)

Formal Specification
and Application

An Approach to Declaring Data Types
for Formal Specifications

Xi Wang(B) and Shaoying Liu

Department of Computer Science, Hosei University, Tokyo, Japan
xi.wang.y2@stu.hosei.ac.jp, sliu@hosei.ac.jp

Abstract. Data type declaration is an important activity in formal
specification construction, which results in a collection of custom types
for defining variables to be used in writing formal expressions such as
pre- and post-conditions. As the complexity of software products rises,
such a task will become more and more difficult to be handled by practi-
tioners. This paper proposes an approach to facilitate the declaration of
data types based on a set of function patterns, each designed for guiding
the description of one kind of function in formal expressions. During the
application of these patterns, necessary data types will be automatically
recognized and their definitions will be gradually refined. Meanwhile, for-
mal expressions will be modified to keep their consistency with the type
definitions. A case study on a banking system is presented to show the
validity of the approach in practice.

1 Introduction

Formal specification serves as the foundation of many software verification tech-
niques, such as formal specification-based testing and inspection. It documents
software behaviors in formal expressions, such as pre- and post-conditions, with
a set of state variables of the envisioned system. These state variables needs to
be formally defined with custom data types. Therefore, declaring appropriate
data types is the first and important step for formal specification construction.

As the complexity of software rises, data type declaration becomes more dif-
ficult to manage and more likely to result in defected data types. Type checking
technique and model transformation have been introduced to facilitate such an
activity [1–3]. The former detects static type errors to prevent erroneous formal
descriptions while the latter allows data to be described in certain intermedi-
ate language easier to use and provides a method for transforming the data
model into formal data types. Unfortunately, they fall short of meeting practi-
tioners’ demand. First, relations between types and functions to be described
is not considered, i.e., type definitions incapable of or unsuitable for describing
the intended functions are not able to be identified. Secondly, no guidance or
automated assistant is provided during the declaration process. Lastly, the con-
sistency between formal expressions and type definitions cannot be guaranteed.
In a formal specification f , if a type definition t is changed into t′, all the formal

S. Liu and Z. Duan (Eds.): SOFL+MSVL 2013, LNCS 8332, pp. 135–153, 2014.
DOI: 10.1007/978-3-319-04915-1 10, c∈ Springer International Publishing Switzerland 2014

136 X. Wang and S. Liu

expressions involving state variables defined with t need to be manually modified
to be consistent with the new definition t′.

To deal with the above problems, this paper puts forward an approach to
supporting data type declarations for formal specifications. Its underlying prin-
ciple is that types should be defined to meet the need of correctly and concisely
describing related functions. Type definitions will evolve as function descrip-
tion proceeds until all the expected functions are properly represented in formal
expressions.

In this approach, function pattern is adopted to assist the writing of formal
expressions [4]. Each function pattern provides a framework for formalizing one
kind of function through interactions. Describing functions in formal expressions
is to select appropriate patterns and apply them. During the application process,
necessary data types can be automatically recognized and their definitions will be
refined. Specifically, when applying each selected pattern, we use function-related
declaration to guide the refinement of the related data types. It consists of two
steps for different stages of the application process: property-guided declaration
and priority-guided declaration.

We also give a method for updating formal expressions as their involved data
types are refined to keep the consistency. When a type definition is modified after
the application of a pattern, the formal expressions affected by such modification
will be fully explored. For each formal expression, the method first retrieves the
pattern applied for writing it and the application process of the pattern. Based on
the retrieved information and the modified type definition., the formal expression
is automatically updated.

Since we believe that object identification is an intelligent activity that cannot
be manipulated by machines, the approach is not expected to be total automatic
and requires human effort when creative decisions need to be made.

It should be noted that the proposed approach is language-independent. We
choose SOFL as an example formal notation to illustrate the approach because
of our expertise. A formal specification in SOFL comprises a set of modules in a
hierarchical structure where lower level modules describe the detailed behavior of
their upper level modules. Each module is an encapsulation of processes, which
describe functions in terms of pre- and post-conditions, within the specific speci-
fication context of the module. Relation between these processes are reflected by
a CDFD (Condition Data Flow Diagrams) which specifies interactions between
them via data flows and stores. The independency of each module allows us to
discuss the production approach on the module level and a complete set of data
types will be achieved after applying the approach to all the modules included
in the specification. For more details in SOFL, one can refer to [5,6].

The remainder of this article is organized as follows. Section 2 summarizes
the related work. To facilitate the understanding of the proposed approach, some
fundamental concepts are first introduced in Sect. 3, including data context and
function pattern. Based on these concepts, the declaration approach is explained
in detail in Sect. 4 and a case study is presented in Sect. 5 to illustrate the
approach. Finally, Sect. 6 concludes the paper and points out the future works.

An Approach to Declaring Data Types for Formal Specifications 137

2 Related Work

We know of no existing approach that provides assistance throughout the whole
data type declaration process, although some researches have been concerned
with certain aspects of the problem.

To ensure type compliance and absence of erroneous descriptions, typecheck-
ers are designed and implemented for various formal specification languages with
different type systems. Jian Chen et al. [2] develop a simple but useful set of rules
for type checking the object-oriented formal specification language Object-Z and
an earlier version of the type checker for Z is given in [7]. For the Vienna Develop-
ment Method (VDM), the most feature-rich analytic tool available is VDMTools
which includes syntax- and type-checking facilities [1,8]. Syntax checking results
in positional error reporting supported by an indication of error points. Type-
checking can be divided into static type-checking and dynamic type-checking.
The former checks for static semantics errors of specifications including incor-
rect values applied to function calls, badly typed assignments, use of undefined
variables and module imports/exports, while the latter aims at avoiding seman-
tic inconsistency and potential sources of run-time errors. As one of the major
components in the Rodin tool for Event-B, static checker analyses Event-B con-
texts and Event-B machines and generates feedback to the user about syntactical
and typing errors in them [9,10]. Prototype Verification System (PVS) extends
higher order logic with dependent types and structural and predicate subtypes.
In addition to conventional type-checking, it returns a set of proof obligations
TCCs (Type Correctness Conditions) as potent detectors of erroneous specifica-
tions and provides a powerful interactive theorem prover that implements several
decision procedures and proof automation tools [11,12]. Tan et al.[13] presents a
type checker for formal specifications of software systems described in Real-Time
Process Algebra, which is able to handle three tasks: identifier type compliancy,
expression type compliancy and process constraint consistency. Xavier et al.[14]
defines the type system of formal language Circus which combines Z, CSP and
additional constructors of Morgan’s refinement calculus, and describes the design
and implementation of a corresponding type checker based on the typing rules
that formalize the type system of Circus.

The quality of the declared data types can be significantly improved by the
supporting tools listed above, unfortunately practitioners are still complaining
about the difficulties in identifying real objects by formal data type definitions,
the lack of effective guidelines throughout the declaration process and everlasting
appearance of errors implicitly explained. Despite the use of “semantic analysis”
in some of these tools’ underlying theories, it refers to the semantics of the
embedded type system that is part of the built-in mechanism, rather than the
semantics of ideas in users’ mind. By contrast, our approach tries to connect
the semantics of specifications with the corresponding system behaviors through
data types and evaluate the appropriateness of the declared types on the real
semantic level. Moreover, the given systematic guidance in the overall declaration
process specifies how to reach the appropriate data types step by step while

138 X. Wang and S. Liu

checking the correctness of the result of each step, which alleviates burdens of
manual design.

There are also some researches done for transforming models in intermediate
languages to formal data type definitions. These intermediate languages pro-
vide accessible visualization of object relation models and therefore simplify the
object identification process. In [3], entity relationship models are treated as the
basis for producing VDM data types in specifications. Colin Snook et al. [15] pro-
pose a formal modeling technique that emerge UML and B to benefit from both
languages where the semantics of UML entities is defined via a translation into
B. Anastasakis et al.[16] presents an automated transformation method from
UML class diagrams with OCL constraints to Alloy which is a formal language
supported by a tool for automated specification analysis. The problem, however,
lies in the fact that identifying and defining objects are separated from functions
to be described in these methods and totally depending on the developer’s initial
understanding of the real system. Hence our approach would be more reliable in
declaring data types for function description and practitioners can utilize models
in graphical representations as supplementary materials.

3 Preliminaries

3.1 Data Context

Constants and variables compose a data context under which formal expres-
sions in formal specifications can be written and become analyzable. The formal
definition of data context is given as follows.

Definition 1. A data context is a 4-tuple (C, T, V, vt) where C is the set of
constants, T is the set of custom data types, V is the set of variables and vt :
V ∈ T is the type function that determines the data type of each variable in V .

To facilitate automated analysis and improve specification readability, each
variable in the data context is required to be defined as a custom type in our
approach, i.e., for each v ≡ V , there exists a type t in T that satisfies vt(v) = t.
For example, when describing an ATM system, a password should be defined as
a variable of a custom type declared as string. Although the built-in type string
itself is capable of representing the nature of password and one can define the
required password as a variable of string type, it fails to distinguish the object
from others that are also defined as string, such as error messages. In addition,
modification on the definitions of all the password entities in the specification can
be easily manipulated by modifying the definition of the corresponding custom
type.

3.2 Function Pattern

A function pattern provides a framework for formalizing one kind of function.
Different from traditional ones, function pattern is designed to be applied in a full

An Approach to Declaring Data Types for Formal Specifications 139

automated way. For each unit function intended to be described, the developer
will be first guided to select a proper function pattern and then a formal expres-
sion will be generated by automatic application of the pattern. The definition of
function pattern is given as follows.

Definition 2. A function pattern p is a 6-tuple (id, E, PR,Δ,Φ, Ψ) where

– id is a unique identify of p written in natural language
– E is a set of elements that needs to be specified to apply p, which can be

assigned with 3 kinds of values: choice value (CV) generated by choosing from
several candidate items, variable value (VV) composed of constants and system
variables, and property value (PV) that specifies properties of certain objects

– PR is a property set including properties of the pattern p or properties of the
elements in E

– Δ : PR ∈ P(E ∧{p}) indicates the objects involved in each property pr ≡ PR
which may include p and elements in E.

– Φ : SN ×(E∧P(PR)) ∈ E∧P(PR) indicates a set of rules including element
rules and property rules where

• each sn : SN denotes the sequence number of the rule it associated with
• ∨1x : E ∧ P(PR) · Φ(1, null) ∈ x
• ∀i : SN, e : E · e′ = Φ(i, e) ∅ e′ ≡ E ⇒ e′ ⇔= e(e′ = Φ(i, e) denotes an

element rule where e′ should be specified after e)
• ∀i : SN,PRi : P(PR) ·PRj = Φ(i, PRi) ∅ PRj ≡ P(PR)⇒ (∀pr : PRi ·

pr /≡ PRj)(PRj = Φ(i, PRi) denotes a property rule where properties
in PRj will be hold if each property in PRi is satisfied)

• ∀PRi, PRj : P(PR)·(∨i : SN ·(i, PRi) ≡ dom(Φ)⇒(i, PRj) ≡ dom(Φ)) ∅
((∀pri : PRi · pri = true) ∅ (∨prj : PRj · prj = false))

– Ψ : P(PR) ∈ exp produces a formal result exp when certain properties in PR
are satisfied iff
∀PRi, PRj : dom(Ψ) · (∀pri : PRi · pri = true) ∅ (∨prj : PRj · prj = false)

Since patterns are categorized and each pattern holds a distinguishable id
that reflects, on an abstract level, the function it is able to describe, developers
can easily select the most suitable pattern. After the selection decision of certain
pattern p is made, elements in Ep will be required to be specified under the
guidance produced by the rules in Φp. The obtained element information is then
analyzed within the context of Ψp to determine its corresponding formal result.

But such a formal result may still contain informal statements composed of
pattern id and element information, which indicates that further formalization
needs to be conducted by applying the reused patterns with the attached element
information. For example, suppose a formal result involving informal statement
“p′(v1, v2)” is achieved where Ep′ = {e1, e2, e3} and ∨i,j≤SNp′ · (i, e1) ∈ e2 ⇒
(j, e2) ∈ e3, it should be further formalized by replacing the informal statement
with the formal result generated by applying p′ with e1 and e2 set as v1 and
v2 respectively. This procedure will not be terminated until reaching a formal
expression.

140 X. Wang and S. Liu

Funtion Pattern
Application

pattern
selection

intermediate
result

generation

Data type
Evolvement

Formal
Specification
Construction

defining
process
interface

writing pre-
and post-

condition for
the jth process

in the ith
module

archit-
ecture
design

...

terminate

result
formalization

...

waiting

element
specifying

expression update

property-guided
declaration

manual
declaration

priority-guided
declaration

Applying function-related
declaration recursively

function-
related

declaration

combination
method

Fig. 1. The outline of the data type declaration approach

4 The Approach to Declaring Data Types

4.1 Approach Outline

The proposed approach regards data type declaration as an evolution process
along with the writing of formal expressions based on function patterns. This
evolution process starts with a modulized formal specification and terminates
when the detailed behavior of each module is precisely given. Figure 1 shows the
outline of the approach where x-axis and y-axis indicate the pattern application
process and the formal specification construction process respectively.

On the assumption that specification architecture is already established where
modules are organized in a hierarchical structure and processes of each module
are connected by their interfaces, developers will first be required to manually
declare data types for defining these interfaces. Since process behaviors is not
considered in this stage, the declared data types only reflects the initial idea of
the intended functions and will be refined as the function details are clarified.

Then the description of individual processes is started where each process
should be attached with a pair of pre- and post-condition. For each pre-/post-
condition, a pattern suitable for describing the expected function will first be
selected. The selected pattern is then applied. Step 1 is to guide the specifying of
its elements and step 2 is to generate an intermediate formal result based on the

An Approach to Declaring Data Types for Formal Specifications 141

specified elements. During these two steps, function-related declaration is carried
out to declare new types and refine the existing type definitions where property-
guided declaration is carried out on step 1 and priority-guided declaration is
carried out on step 2. The former guides the refinement of type definitions under
the principle that all the properties inferred from the specified elements should
be satisfied while the latter provides suggested definition of certain types accord-
ing to the priority attribute associated to Ψ of the selected pattern. These two
techniques share a type combination method that refines the existing type defin-
itions by combining different definitions of the same type. For example, suppose
pattern p is selected to write a formal expression and type t is initially declared
as definition def1 for specifying element e1 of p. When specifying element e2,
property-guided declaration leads to a suggestion that t should be defined as def-
inition def2 to enable the correct representation of the value assigned to e2. If
def1 is not equal to def2, the combination method will be applied to refine def1
with def2 by combining them into a new definition for declaring t.

If the generated intermediate result contains informal expressions, formal-
ization of the result is needed. Since it is performed by applying the patterns
indicated by the informal expressions, function-related declaration can be repeat-
edly manipulated to further refine the data types of the specification. When the
formalization process terminates with a formal expression, a refined data con-
text is obtained. Finally, expression update is carried out where all the formal
expressions that are inconsistent with the refined data context are updated.

Serving as the critical techniques in the described declaration approach,
function-related declaration and expression update will be presented in details
respectively.

4.2 Function-Related Declaration

Function-related declaration guides the refinement of data types to enable the
application of the selected function patterns. It adopts property-guided decla-
ration and priority-guided declaration in declaring data types for specifying
element and generation intermediate result, respectively. Before presenting the
detailed techniques in function-related declaration, some necessary concepts are
introduced first.

Definition 3. Given a data context dc and a pattern p, esdc
p : Ep ∈

P(Choices)∧ Expdc ∧ P(Propsdc) is an element state of p under dc revealing
the value of each element e ≡ Ep where

– Choices denotes the universal set of choice values
– Expdc is the universal set of formal expressions within context dc and each

expdc ≡ Expdc is a sequence: N+ ∈ Cdc ∧ Vfsc ∧ Operator where Operator
is the set of operators in formal notations

– Propsdc denotes the universal set of property values within context dc and for
each prop ≡ Propsdc, inV ar(prop) is adopted to denote the variables involved
in prop.

142 X. Wang and S. Liu

It should be noted that esp denotes all the possible element states of p, i.e., set
{esdc1

p , ..., esdci
p , ...} where {dc1, ..., dci, ...} is the universal set of data contexts.

Definition 4. Given a data context dc and a pattern p, function satisfydc
p :

PRp × ESdc
p ∈ boolean denotes satisfaction relations between properties and

element states where each esdc
p ≡ ESdc

p is a possible element state of p under dc

and satisfydc
p (pr, esdc

p) indicates ∀e≤Δ(pr) · esdc
p (e) ⇔= ∅ ⇒ pr is satisfied by esdc

p .

Definition 5. Given a data context dc and a pattern p, condSatisfydc
p : esp ∈

P(∗p) is a conditional satisfaction function iff

– es0 ≡ esp ⇒ ∀e≤dom(es0) · es0(e) = ∅ ∅
condSatisfydc

p (es0) = ∗p

– condSatisfydc
p (esdc

p) = R ∅
∀PRi≤dom(R) · ∀pr≤PRi

· (satisfydc
p (pr, esdc

p)∨
((∨e≤Δ(pr) · esdc

p (e) = ∅)⇒
(pr, es′) /≡ dom(satisfydc

p)))
where es′ ⊂ esdc

p ⇒ ∀e≤dom(esdc
p −es′)·

esdc
p (e) = ∅ ⇒ (∀e′≤dom(es′) · es(e′) ⇔= ∅)

Due to the fact that the type combination method is employed in both
property-guided declaration and priority-guided declaration, it is first introduced.

Type Combination. Type combination is an operation that combines two
different definitions of the same type into an appropriate new definition for
declaring that type. The result of the operation is determined by certain proper-
ties held by the definition pair. Considering that it is impossible to combine all
kinds of definition pairs automatically, the strategy of the operation is to deal
with syntactic issues by machines and ask the developer to handle the semantic
problems.

In order to precisely describe various properties of definition pairs, the con-
cept of subtype is introduced and formally defined as follows.

Definition 6. Given a custom type ct, subType(ct) denotes the subtype of ct
where

– ct is basic type ∅ subType(ct) = ∅

– ct is composite type with each field fi defined as type ti ∅ subType(ct) =
{(f1, t1), ..., (fn, tn)}

– ct is product type with the ith field defined as type ti ∅ subType(ct) = {1 ∈
ti, ..., n ∈ tn}

– ct is set or sequence type with each element defined as type t ∅ subType(ct) = t
– ct is mapping type with domain defined as type ti and range defined as tj

∅ subType(ct) = (ti, tj)

An Approach to Declaring Data Types for Formal Specifications 143

Table 1. Solution table for type combination

Based on the definition, we try to summarize possible properties of defini-
tion pairs and figure out the corresponding combination solutions. Table 1 (with
formal notations in SOFL) shows part of the work where buildIn(t) denotes the
built-in type that type t belongs to and def indicates the result definition of the
combination operation. For each pair of type definition d and d′ where d ⇔= d′,
a combination solution sol(d, d′) can be found by matching the definition pair
against the properties listed in the table.

It can be seen from the table, properties of definition pair are classified into
two categories: properties where d and d′ belong to the same built-in type and
properties where d and d′ belong to different build-in types. The first category
is further divided into five sub-categories that cover all the built-in types (in
SOFL) and a solution is provided for each specific property within each built-in
type. For example, the first “basic” denotes the property that d and d′ belongs
to the same basic type and its corresponding solution “human effort” indicates
the combination of such kind of definition pair needs intelligent decision and the
developer will be asked to give the operation result based on d and d′. More
specific properties are provided with combination solutions if both d and d′ are
composite types. The second property within “composite” category and its cor-
responding solution mean that if d and d′ owns the same fields and some of them
are declared as different types, the combination method should be conducted on
each pair of different types to achieve sol(d, d′). Within the second category, all
combinations of different built-in types are considered and only parts of them
are listed in the table for the sake of space. For instance, if d and d′ are declared
as different basic types, only human effort is able to figure out the proper defin-
ition. In case d is a composite type and d′ is a set type, the combination result
should be d if one of the fields in d is defined as d′.

Property-Guided Declaration. Figure 2 shows the main procedure of property-
guided declaration for each selected pattern p within data context dc where cE

144 X. Wang and S. Liu

i=1, cE = null, AR = espdc = ∅

∃ e,e ′∈Ep • Φp(i , e) = e′

cE = Φp(i, cE)

Create a set GS where
∀PRk → PRl ∈AR •

∃pr∈PRl • cE ∈ Δp(pr) ⇒ pr ∈GS

AR = AR ∪
Φp(i, SPR)

Where
∀pr∈SPR •
satisfy(pr,
espdc) = true

∃pr∈GS • inc(pr)

Ask the designer to specify cE
independently and do property matching

Specify cE
and update

espdc with
input

Update AR and re-define each
involved variables based on the

matched rules

i = i + 1

AR = AR AR′ where AR′ ⊆ AR ∧
∀(i, PR) → PR ′ ∈ Α R • ∃pr∈PR′ • inc(pr) ⇒

(i, PR) → PR′ ∈ ΑR′

∃PR∈ ℘(PRp) •
(i , PR) ∈ dom (Φp)

Terminate

Ask the
designer
to specify
cE based

on GS

Fig. 2. The main procedure of the property-guided declaration

denotes the element currently being specified, AR denotes the set of activated
rules and inc(pr) denotes that the developer identifies the property pr as being
inconsistent with the expected function.

Rules in Φp are applied sequentially according to their attached sequence
numbers and when dealing with those who own the same number, the one with
its required conditions satisfied will be activated. For each i(0 < i ≤ maximum
sequence number), if i corresponds to a set of property rules R ⊂ Φp, the rule
(i, SPR) ∈ SPR′ ≡ R will be identified where all the properties in SPR can be
satisfied. Meanwhile, a set of new properties SPR′ will be obtained and added
to AR. If i corresponds to an element rule, cE will be set as Φp(i, cE) which is
the next element waiting to be specified. To assist the value assignment to cE,
activated rules that lead to properties of cE will be extracted from set AR and
these properties form a property set GS. After confirming that all the properties
in GS are consistent with the desired function, the developer needs to assign a

An Approach to Declaring Data Types for Formal Specifications 145

value to cE based on GS. In case that certain properties in GS violate the
expected function, the activated rules that lead to these properties form a set
AR′ and will be deleted from AR. Then the developer will be required to specify
cE manually and property matching will be carried out to obtain the rules that
match the given value.

In addition to the value v assigned to cE by the developer, set CR : P(P(Φp))
serves as another critical participant in property matching which satisfies:

∀R≤CR · (∀(m,x),(n,y)≤dom(R) · m = n⇒
∀R′≤CS−{R} · ∀(k,x′)≤R,(l,y′≤R′) · k ⇔= l)

⇒∀(no,Pr)≤dom(AR′) · ∨R≤CR · ∀(no′,Pr′)≤dom(Φp)·
(no = no′ ⇒ ∨pr≤Φp(no′,Pr′) · cE ≡ Δ(pr))

Each set R ≡ CR comprises all the candidate rules for substituting one of
the rules that lead to properties violating the expected function. With the given
v, dc will be updated accordingly and property matching can be by the following
algorithm where RS denotes the set of rules that match the given v:

RS = temp = {};
for each R ≡ CR{

for each Pr ∈ Pr′ ≡ R
if (satisfydc

p (Pr′, esdc
p) = true)

temp = temp ∧ {Pr ∈ Pr′};
if (| temp |= 1)

for the only element sr RS = RS ∧ {sr};
else{

tempP = {};
for each Spr ∈ Spr′ ≡ temp

tempP = tempP ∧ {Spr};
display all the items in tempP and
ask the developer to choose

the most appropriate one “item;”
RS = RS ∧ {r} where

r ≡ temp ⇒ ∨y≤P(Φp) · r = item ∈ y; }}
return RS;
This algorithm helps explore a set RS containing all the rules in P(Φp)

consistent with the function intended to be described which is reflected by the
values assigned to elements. These rules will then be added into set AR and for
each rule Spr ∈ Spr′, data context dc will be updated according to Spr.

Priority-Guided Declaration. The main idea of priority-guided declaration
is to provide suggested definition of concerned types based on Ψ after assigning
values to pattern elements. Rules in each Ψ are attached with priority attributes
which help select a most appropriate one when elements are incompletely spec-
ified or no rule can be applied according to the specified elements.

146 X. Wang and S. Liu

Definition 7. Given a pattern p, PSp : P(P(∗p)) is the priority set of p iff

– ∀psi≤PSp
· ∨esdc

p ≤esp
· condSatisfydc

p (esdc
p) = psi

– ∀R≤P (∧p)
·∨esdc

p ≤esp
· condSatisfydc

p (esdc
p) = R ∅

R ≡ PSp

Definition 8. Given a pattern p, τp : ∗p × PSp ∈ N+ determines the priority
of each rule in ∗p where τp(r, psi) = n means that r ≡ ∗p is ranked as the nth
rule in set psi.

Based on the definition, priority-guided declaration is conducted as the fol-
lowing steps for each selected pattern p within formal specification context fsc.

1. Ask the developer to provide element information, and define types and vari-
ables when necessary, which results in an element state esfsc

p .
2. Analyze priority set PSp and extract the item ps ≡ PSp that satisfies

condSatisfyfsc
p (esfsc

p) = ps.
3. Sort set ps into a sequence psSeq where

∀i, j : int · 0 < i < j ≤| psSeq |∅
τp(psSeq(i), ps) > τp(psSeq(j), ps)

4. Set rule = psSeq(k) where k is initialized as 1. Provide the properties
involved in rule for the developer to assist the declaration of relative types and
variables.

5. If the suggestion is not accepted and k ≤| psSeq |, set k = k + 1 and repeat
step 4-5. Otherwise terminate.

4.3 Expression Update

In contrast to the traditional formal specification construction method that
requires formal expressions to be written manually, function patterns enables
automatic generation of formal expressions based on the given values of nec-
essary elements. Therefore, instead of grammar checking, the essential idea of
expression update in our approach is to record the element values specified dur-
ing the pattern application process and reuse that information to update the
original formal expression. For an expression exp generated through the appli-
cation process ap of the pattern p, if exp becomes erroneous under the refined
data context, it will be replaced by a new expression generated by applying p
again based on ap.

Definition 9. Given a pattern p0, sequence (p0, es
p0
dc0

, exp0, p1, es
p1
dc1

, exp1, ...,
pn, espn

dcn
, expn) is the application process of p0 where

– p1, ..., pn are the reused patterns
– each espi

dci
denotes the element state after all the elements in Epi

are specified
– exp0 denotes the intermediate formal result produced by applying p0 with spec-

ified elements in esp0
dc0

, which can be represented as exp0 = p0(es
p0
dc0

)

An Approach to Declaring Data Types for Formal Specifications 147

– each expi(0 < i ≤ n) denotes the intermediate formal result generated by
replacing certain informal part in expi−1 with pi(es

pi

fsci
), which can be repre-

sented as expi = expi−1 ⊕ pi(es
pi

dci
) where expi = pi(es

pi

dci
) if expi−1 = ∅

– expn is the resultant formal expression

Definition 10. Given a data context dc, vdeptdc : Tdc ∈ Vdc reveals dependent
relations between types and variables where vdeptdc(t) = V indicates that for
each variable v ≡ V , the definition of vtdc(v) involves type t.

Definition 11. Given a data context dc and a pattern p, sdeptpdc : Tfsc ∈
P(esdc

p) reveals dependent relations between types and element values where
sdeptpdc(t) = Esdc

p ∅
∀e∞vl≤Esfsc

p
· (vl ≡ Expdc

p ⇒
∨i≤N+,v≤Vdc

· (i, v) ≡ vl ⇒ v ≡ vdeptdc(t)
∨(vl ≡ Propsdc ⇒ ∨v≤inV ar(vl) · v ≡ vdeptdc(t))

Assume that the data context dc has been modified into dc′, the update of
each formal expressions exp previously written through application process ap =
(p0, es

p0
dc0

, exp0, p1, es
p1
dc1

, exp1, ..., pn, espn

dcn
, expn) is conducted as the following

algorithm where defdc(t) denotes the definition of type t under dc.

if(∨(i,v)≤exp · (vtdc(v) ⇔= vtdc′(v))∨
(∨t≤Tdc

· t ≡ Tdc′ ⇒ v ≡ vdeptdc(t)⇒
v ≡ vdeptdc′(t) ⇒ defdc(t) ⇔= defdc′(t)){

exp−1 = ∅;
for each pi in ap{

if(∨t≤Tdc,e∞vl≤es
pi
dc

· t ≡ Tdc′⇒
defdc(t) ⇔= defdc′(t) ⇒ e ∈ vl ≡ vdeptdc(t))

exp′
i = exp′

i−1 ⊕ pi(es
pi

dc′);
else

exp′
i = exp′

i−1 ⊕ temp where expi = expi−1 ⊕ temp}
exp = exp′

n; }
The algorithm first checks whether there exist variables or types used in

exp with definitions being modified. If so, the application of pattern p0 will
be restarted with element information esp0

dc and further formalization will be
conducted by applying the rest of the reused patterns in ap with their element
information sequentially. Before generating formal expression for each pattern
pi, the value of each element indicated by espi

dc will be analyzed to determine
its change caused by the update of the data context. Expression expi can be
directly used to formalize the current formal result exp′

i−1 if no difference is
found between espi

dc and espi

dc′ . Otherwise, pi(es
pi

dc′) will be produced to replace
the corresponding informal part of exp′

i−1.

5 Case Study

A case study on a banking system is presented to show the feasibility and
effectiveness of the proposed approach in practice. The system allows for the

148 X. Wang and S. Liu

management of various currency types and mainly provides four services for
authorized customers: deposit, withdraw, account information display and cur-
rency exchange. Since architecture design is not discussed in this paper, we
assume that it has already been done and the result is a CDFD shown in Fig. 3
where rectangles drawn with input and output ports are processes and other
three are datastores. It can be seen from the figure, neither type definitions nor
relation between the input and output of each process is provided in the CDFD,
and it only specifies the interfaces of the included processes and demonstrates
their relation with data flows represented as solid lines and control flows repre-
sented as dotted lines. For example, process Id confirm owns one input port and
two output ports, and when receiving data flow inputInf , it will be activated
and generate data flow inf or warning when terminated. If inf is generated,
it will reach process Selection which produces one of the four possible outputs
according to the available control flow.

Based on the CDFD, necessary data types can be declared to meet the need
of accurately describing the behavior of each enclosed process sequentially. Due
to space limitation, we take process Id confirm and Withdraw as examples.
For the process Id confirm, manual declaration is first required for defining its
inputs and outputs. According to the expected behavior of the process, one can
easily response with the following definitions:

Num = string, Psd = string,Msg = string,
Inf = composed of

inf num : Num
inf psd : Psd

end
inputInf : Inf,warning : Msg, inf : Inf

No pre-condition is needed in the process and the informal idea of the post-
condition is that if the provided ID information can be found in the datas-
tore account store, data flow inf will be produced. Otherwise, error message
warning will be displayed to the customer. Such idea leads us to the selection

Fig. 3. The CDFD of the example banking system

An Approach to Declaring Data Types for Formal Specifications 149

Table 2. Pattern “belongTo”

of pattern belongTo as shown in Table 2 where dt(v) indicates the data type of
the element e in E. It is used to describe a relation where one object is part of
another. There are three elements in the pattern: element denoting the mem-
ber object, container denoting object that element belongs to and specifier
denoting constraints on their relations which can be assigned with either null or
a property value. The application of pattern belongTo starts from the require-
ment of specifying these three elements. Apparently, element is inputInf and
container is account store which has not been defined. In case that specifier
is not decided yet, the generation of an intermediate result begins and priority-
guided declaration will be carried out according to the priority knowledge given
in Table 3. Suppose the developer uses “AccountF ile” to represent its type, pri-
ority set ps1(∧) is then selected and rule a is first suggested which indicates that
the type AccountF ile should be defined as set of Inf . Assume that the sugges-
tion is accepted, the formal expression for describing the “belongTo” relation is
automatically generated and the post-condition of process Id confirm will be
written as:

if (inputInf inset account store)
then inf = inputInf
else warning =“Invalid user.”

150 X. Wang and S. Liu

Table 3. Priority in pattern “belongTo”

Table 4. Pattern “alter”

Notice that no formal expression was written before the application of pattern
belongTo, expression update is therefore not needed.

Since the data types and functions involved in the process Selection are
simple enough to be manually written and the data context will not be affected
after the description, data type declaration during the construction of process
Withdraw is presented based on the type definitions declared for the process
Id confirm. Process Withdraw takes the intended currency type and amount

An Approach to Declaring Data Types for Formal Specifications 151

as inputs and currency or error messages as outputs, which can be manually
defined as:

CurrencyType = string,Amount = real,
currencyType : CurrencyType, amount : Amount
currency : Amount, error : Msg

The pre-condition is also true and the post-condition should clarify how the
account information in account store is altered when the withdraw operation is
successfully done. Therefore, pattern alter will be selected to describe such func-
tion, which is shown in Table 4 where constraints(x) denotes certain constraints
on object x. It contains four elements for depicting the altering of system vari-
ables: obj denoting the object to be altered, decompose meaning to replace the
whole given obj by a new value if it is designated as true and to modify parts
of the given obj if it is designated as false, specifier denoting the description
of the parts to be altered within obj, onlyOne meaning there exists only one
part consistent with the description in specifier if it is designated as true and
new indicates the new values for replacing the corresponding parts to be altered.
Figure 4 reveals the property-guided declaration process during the application
of the pattern.

The above application process results in an definition “Inf ∈ AccountInf”
for type AccountF ile that is more appropriate for describing process Withdraw.

cE = obj, AR = ∅

obj = account_sotre, GS = ∅

cE = decompose, GS = ∅

decompose = true, AR = {rule e}

cE = specifier, GS = {rule e}

inc(specifier: ℘({fi})) = true

Ask the designer to specify specifier independently

specifier = AccountInf

tempP = {{dt(obj) = T , decompose = true}, {dt(obj) = set of compite, decompose = true}, ...}

Suppose the designer choose the first property in tempP

AccountFile = Inf AccountInf with AccountInf undefined

Generate formal result alter(account_store(inputInf))

obj = account_store(inputInf), GS = ∅

Repeat the above steps until AccountInf is defined and a formal expression is achieved

Fig. 4. The priority-guided declaration process during the application of the pattern
“alter”

152 X. Wang and S. Liu

Thus, the original definition set of Inf needs to be refined by applying the
combination method. According to the solution table for type combination, the
definition of type AccountF ile should be refined as: Inf ∈ AccountInf .

Due to the refinement of the definition of type AccountF ile and the use of the
type in the post-condition of process Id confirm, formal expression previously
generated by applying the pattern belongTo needs to be updated accordingly.
The application process of the pattern belongTo for the post-condition of process
Id confirm can be described as:

(belongTo, {element ∈ inputInf,
container ∈ account store,
specifier = null},

“inputInf inset account store”)

According to the algorithm for expression update, formal expression
“inputInf inset account store” will be transformed into:

belongTo({element ∈ inputInf,
container ∈ account store,
specifier = dom}, newExp)

where account store is defined as a map type and element specifier is mod-
ified into “dom” in the refined data context. By analyzing the above expression
in the context of the Ψ of the pattern belongTo, formal expression “inputInf
inset dom(account store)” will be generated as the value of newExp to replace
the original one.

Following the similar procedures for describing process Withdraw, the data
context can be gradually refined while the pre- and post-conditions of the rest
processes Deposit, Display and Exchange are specified. After completing the
description of the last process Exchange, a set of appropriate data types for the
example banking system is established.

6 Conclusion

This paper proposes an approach to assist the declaration of data types for
formal specifications along with the function description in formal expressions.
After the architecture of the formal specification is determined, the approach
helps adjust the type definitions to fit the expected functions captured and
formally described by applying function patterns. Besides, as the data types
are refined, their consistency with the written formal expressions will be main-
tained by applying the involved patterns again based on their history application
information.

In order to investigate the performance of the approach when being applied
to more complicated systems, an empirical case study is intended to be held
in the future. For example, as complexity rises, the update of expressions in
accordance with specification context will be more difficult and less likely to be
automatically done.

An Approach to Declaring Data Types for Formal Specifications 153

Furthermore, only tool implementation could bring the proposed approach
into practice and allow practitioners to benefit from the assistance expected to
be provided, which is also part of our future work.

Acknowledgement. This work has been conducted as a part of “Research Initia-
tive on Advanced Software Engineering in 2012” supported by Software Reliability
Enhancement Center (SEC), Information Technology Promotion Agency Japan (IPA).

References

1. Gorm, L.P., Nick, B., Miguel, F., John, F., Kenneth, L., Marcel, V.: The overture
initiative integrating tools for vdm. SIGSOFT Softw. Eng. Notes 35(1), 1–6 (2010)

2. Chen, J., Durnota, B.: Type checking classes in object-z to promote quality of
specifications (1994)

3. Vadera, S., Meziane, F.: From English to formal specifications. Comput. J. 37(9),
753–763 (1994)

4. Wang, X., Liu, S., Miao, H.: A pattern system to support refining informal ideas
into formal expressions. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol.
6447, pp. 662–677. Springer, Heidelberg (2010)

5. Liu, S.: Formal Engineering for Industrial Software Development. Springer, Hei-
delberg (2004)

6. Liu, S., Offutt, A., Ho-Stuart, C., Sun, Y., Ohba, M.: Sofl: a formal engineering
methodology for industrial applications. IEEE Trans. Softw. Eng. 24(1), 24–45
(1998)

7. http://spivey.oriel.ox.ac.uk/mike/fuzz/
8. John, F., Gorm, L.P., Shin, S.: Vdmtools: advances in support for formal modeling

in vdm. SIGPLAN Not. 43(2), 3–11 (2008)
9. Abrial, J.R.: Modelling in Event-B: System and Software Design. Cambridge Uni-

versity Press, Cambridge (2010)
10. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T., Mehta, F., Voisin, L.: Rodin:

an open toolset for modelling and reasoning in event-b. Int. J. Softw. Tools
Technol. Transf. (STTT) 12, 447–466 (2010). doi:10.1007/s10009-010-0145-y.
http://dx.doi.org/10.1007/s10009-010-0145-y (Online)

11. Owre, S., Shankar, N.: A brief overview of PVS. In: Ait Mohamed, O., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 22–27. Springer, Heidelberg
(2008)

12. Rushby, J., Owre, S., Shankar, N.: Subtypes for specifications: predicate subtyping
in pvs. IEEE Trans. Softw. Eng. 24(9), 709–720 (1998)

13. Tan, X., Wang, Y., Ngolah, C.: A novel type checker for software system specifica-
tions in rtpa. In: Canadian Conference on Electrical and Computer Engineering,
vol. 3, May 2004, pp. 1549–1552 (2004)

14. Xavier, M., Cavalcanti, A., Sampaio, A.: Type checking circus spec-
ifications. Electr. Notes Theor. Comput. Sci. 195, 75–93 (2008).
http://dx.doi.org/10.1016/j.entcs.2007.08.027 (Online)

15. Snook, C., Butler, M.: Uml-b: Formal modeling and design aided
by uml. ACM Trans. Softw. Eng. Methodol. 15(1), 92–122 (2006).
http://doi.acm.org/10.1145/1125808.1125811 (Online)

16. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: a challenging model
transformation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MOD-
ELS 2007. LNCS, vol. 4735, pp. 436–450. Springer, Heidelberg (2007)

http://spivey.oriel.ox.ac.uk/mike/fuzz/
http://dx.doi.org/10.1007/s10009-010-0145-y

Detection Method of the Second-Order SQL
Injection in Web Applications

Lu Yan, Xiaohong Li, Ruitao Feng, Zhiyong Feng, and Jing Hu(&)

Tianjin Key Laboratory of Cognitive Computer and Application,
School of Computer Science and Technology, Tianjin University, Tianjin, China
{luyan,xiaohongli,rtfeng,zyfeng,mavis_huhu}@tju.edu.cn

Abstract. Web applications are threatened seriously by SQL injection attacks.
Even though a number of methods and tools have been put forward to detect or
prevent SQL injections, there is a lack of effective method for detecting sec-
ond-order SQL injection which stores user inputs into the back-end database.
This paper proposes a detecting solution that combines both static and dynamic
methods for second-order SQL injection. This solution first analyzes source
code to find out the vulnerable data item pair which probably has second-order
SQL injection vulnerability and then transforms it into an effective test
sequence. After that, test sequence and malicious inputs are combined together
for testing. Assessment of this solution in four applications and practical use
show its effectiveness in the detection of second-order SQL injection.

Keywords: Second-order SQL injection � Static analysis � Dynamic testing �
Web application

1 Introduction

Nowadays, a large number of data-driven web applications have been developed to
provide a variety of services, and thereupon SQL injection vulnerability has become a
serious security threat to such web applications [1, 2]. As one kind of SQL injections,
the second-order SQL injection is just as harmful as the first-order equivalent, which
allows the attacker to access to the back-end database and steal confidential data.
However, it is subtler and more difficult to be detected [4] since the malicious input, as
injected into a web application, is stored in the back-end database rather than executed
immediately [3]. When another request is under processing, the malicious input is
introduced to build SQL statement dynamically, which will change the semantics of
the original SQL statement and achieve attacks.

Currently, there are generally three types of methods to detect SQL injection
vulnerabilities which are static analysis, dynamic testing and run-time monitoring.
However, these methods mainly focus on the first-order SQL injection attack and only
few of them support the second-order SQL injection detection.

In the static analysis, literatures [5, 6] utilize static taint analysis method and
detect vulnerabilities by tracking the flow of untrusted values through a program and
checking whether these values flow into sensitive sinks. They regard user inputs as
untrusted but ignore the credibility of data extracted from the database, so they have

S. Liu and Z. Duan (Eds.): SOFL+MSVL 2013, LNCS 8332, pp. 154–165, 2014.
DOI: 10.1007/978-3-319-04915-1_11, � Springer International Publishing Switzerland 2014

trouble achieving the second-order SQL injection detection. Pietraszek and Berghe [7]
discover vulnerabilities by adding metadata to user inputs so as to distinguish between
the user input and application’s source code and finally perform checks on the parts of
user inputs. However, there is still some uncertainty and mistakes caused by con-
sidering all data retrieving from database as untrusted which expands the scope of
untrusted data. Literatures [8, 14] have the same problem as well. Besides these
problems, misinformation may be introduced because static analysis methods do not
create an actual attack instance to determine vulnerabilities.

For the dynamic testing methods, Halfond et al. [9] define the testing for vul-
nerabilities into three phases: information gathering, attack generation and response
analysis. Testers identify the possible points by using web crawling or social engi-
neering, and then according to the attack pattern library, test cases are generated on
these points. Finally testers analyze the application’s responses to determine whether
the attacks succeed. Most vulnerability scanning tools using the above method are
able to discover the first-order SQL injection, but fail to identify the second-order SQL
injection [10–12]. To discover the second-order SQL injection, currently, it depends
on testers’ experience about the possible points where the malicious input is possibly
stored and then used to build SQL statement [4]. However, with the increase of the
code size and the functionality, manual testing depending on testers’ experience to
generate test cases cannot guarantee results.

As to the runtime monitoring approach, Halfond and Orso [13] model the SQL
queries contained in the application’s code as legitimate queries and then at runtime
check dynamically-generated queries which add user inputs against legitimate queries.
Queries that violate the legitimate one exist SQL vulnerabilities and are prevented.
This method can detect a second-order SQL injection attack, but the accuracy of
modeling the SQL query determines the accuracy of the method. Moreover, runtime
overhead is inevitable. In literature [14], a monitor embedding framework DESERVE
is proposed which identifies exploitable statements from source code based on static
slicing technique and embeds monitor code for those statements. Then the enhanced
programs execute the exploitable statements in a separate test environment. However,
this method suffers from some uncertainty caused by taking the change in the numbers
of fetched, changed rows and objects in database as a sign of judging attacks, which
may not change in an attack. DESERVE also assumes that all data from database are
dangerous which will be improved in their future work [14]. In addition, DESERVE
introduces delay for each exploitable statement and needs to increase 2.1 %–8.5 %
code.

Second-order SQL injections are prevalent (and will continue to be) and existing
methods and tools do not perform well [10]. To the author’s knowledge, it still lacks
effective detection method for the second-order SQL injection. Therefore, in this
paper we put forward a systematic method to achieve the detection of the second-order
SQL injection vulnerability. In the static analysis phase, the source code is analyzed
and the storing process and triggering process which may brings in the second-order
SQL injection vulnerability can be found out. Storing process stores the user input into
database, while triggering process means retrieving input value from the database and
building a SQL statement. In the dynamic testing phase, malicious input is submitted

Detection Method of the Second-Order SQL Injection 155

in the storing process and the existence of vulnerability can be determined by
observing the system response after calling the triggering process.

Paper arrangement is as follows. Section 2 illustrates the principle of the second-
order SQL injection. Section 3 gives the formal definition of data item, the recognition
criterion and test sequence in the detection method. Section 4 presents the second-
order SQL injection detection method. Section 5 shows the experiment results and
analysis. At last is the conclusion.

2 Second-Order SQL Injection Principle

Figure 1 shows a classic example [15] which illustrates the process of the second-
order SQL injection. In a website where an ‘‘admin’’ account exists, the attacker
registers another account ‘‘admin’--’’. Here is the code:

String name = escape(request.getParameter(‘‘Name’’));
String pwd = escape(request.getParameter(‘‘Pwd1’’));
String sql1 = ‘‘insert into user(username, password)
values(‘‘‘+name+’’‘,’’’+pwd+’’‘)’’;
result = stm.executeUpdate(sql1);

The application properly escapes the single quote in the input before storing,
which causes the single quote to be treated as string literal rather than string termi-
nator. By using escaping, it will be stored as ‘‘admin’--’’ in the database but not cause
string termination issues when building the statement. When the attacker wants to
update the password of account ‘‘admin’--’’, the system will first confirm the validity
of the origin password. The code might look like this:

String name = escape(request.getParameter(‘‘Name’’));
String oldpwd = escape(request.getParameter(‘‘oldpwd’’));
String newpwd = escape(request.getParameter(‘‘newpwd’’));
String sql2 = ‘‘select * from user where
username =‘‘‘+name+’’‘ and password =‘‘‘+oldpwd+’’‘‘‘;
result = stm.executeQuery(sql2);

After the validity confirmation, the stored username ‘‘admin’--’’ is retrieved from
database and a new SQL statement is built up by following code:

String sql3 = ‘‘update user set password = ‘‘‘+newpwd+’’‘
where username = ‘‘‘+result.getString(‘‘username’’)+’’‘‘‘;
result = stm.executeQuery(sql3);

The statement executed by database is as follows:

update user set password = ‘1’ where username = ‘admin’--’

156 L. Yan et al.

As double-dash is the standard form of the SQL single-line comment, which
means that we never even execute code after ‘‘--’’, the actual query is update user set
password = ‘1’ where username = ‘admin’. The password of ‘‘admin’’ rather than
‘‘admin’--’’ is changed and thus attack is achieved.

3 Formal Definitions in Detection Method

The implementation of the second-order SQL injection attack contains two processes,
storing process and triggering process. Storing process is to store user input into a field
in database table and triggering process is to retrieve the stored field and concatenate it
into a dynamic SQL statement. Therefore, the two processes can be linked through the
retrieved field. In order to find the interrelated two processes in which the second-
order SQL injection vulnerability may exist, we define the data item and recognition
criterion in the detection method as follows:

Definition 1. Categorical Attribute h is a 2-tuple\p, q[. The symbol p represents the
source of value provided to column in the SQL statement and p [{input, db}. ‘‘Input’’
represents that the value derives from user input and ‘‘db’’ means that the value is
retrieved from the database. The symbol q denotes whether that column is in the
‘‘where’’ clause of SQL statement and q [{true, false}.

Definition 2. Data Item d is a 3-tuple \Y, y, h[where Y represents the name of the
SQL statement operating field, namely column name, y denotes the original parameter
that provides value concatenated to Y and h is the categorical attribute in Definition 1.
Mark the set of data item d as D. If d.h = \input, false[, d is called the input data
item and the set is marked as Di. If d.h = \db, false[or \db, true[, d is called the
database data item and the set is marked as Db. If d.h = \input, true[, d is called
other data item and the set is marked as Do. It can be derived that D = Di [Db [Do

and Di \ Db = U, Db \ Do = U, Do \ Di = U.

Recognition Criterion. We refer to the data item pair \d1, d2[as a vulnerable one
only if d1 [Di, d2 [Db and d1.Y = d2.y. The vulnerable data item pairs denote those
that probably have the second-order SQL injection vulnerabilities.

Fig. 1. An instance of the second-order SQL injection

Detection Method of the Second-Order SQL Injection 157

In addition, in order that dynamic testing can be carried out automatically by
sending the HTTP requests, the vulnerable data item pair needs to be transformed into
HTTP requests which trigger the execution of SQL statements. So we define HTTP
request, functions and test sequence as follows:

Definition 3. The HTTP request sent by web application g = {\m, n[j m [P,
n [V}. P is the set of parameter names in the HTTP request and V is the set of
parameter values. The set of g is marked as .

Definition 4. Function f1 : D?S, 8d 2 D, 9s ¼ f1ðdÞ 2 S. D is the set of data items
shown in Definition 2, S represents the set of SQL statements in the source code,
f1(d) means that data item d builds SQL statement s. Function f2: , 8s 2 S,
9r ¼ f2ðsÞ 2 C, f2(s) means that the statement s is triggered by HTTP request
r. Therefore, function f = f1f2 denotes the mapping of data item to the HTTP request.

Definition 5. Test sequence\r1, r2[, where r1 = f(d1), r2 = f(d2). It is an ordered pair
of HTTP requests sent to test the second-order injection.

4 Detection Method of the Second-Order SQL Injection

The second-order SQL injection detecting method combines both static and dynamic
methods. In the static analysis phase, the source code is analyzed and the vulnerable
data item pair can be found out. In the dynamic testing phase, the test sequence and
the test input are generated and incorporated together and then tests are carried out.
The flow chart of the method is shown in Fig. 2.

4.1 Determine the Vulnerable Data Item Pair

With the aim of finding out the vulnerable data item pair, firstly the source code of
application is scanned and SQL statements (including select, insert, update, delete)
along with the operated fields (the column name in the SQL statement) are extracted
using regular expressions to match.

Secondly, the data item for each field extracted before is built. According to
Definition 2, Y is the extracted column name. Then the static backward slicing tech-
nology [16] is introduced to track the value concatenated to field Y in the SQL state-
ment. The method computes the slice of the execution of the extracted SQL statement,
C(s, V) where s is the line of code executing SQL statement and V initially is the string
variable containing the SQL statement. If a function related to user input is contained in
the slice and it affects the value of the variable concatenated to a specific column in the
computed SQL statement, the value of data item can be determined from user input
(h.p = input) and the parameter name in the function is assigned to y. On the other
hand, if the functions are related to database processing and execute ‘‘select’’ SQL
statement instead of processing user input, the value of data item can be determined
from the database (h.p = db) and the retrieved field name is assigned to y. Table 1 lists
the functions related to user input and database. Afterwards, the method fills h.q with
true or false according to whether Y exits in ‘‘where’’ clause in SQL statement and then
classifies the data item as Di, Db or Do based on h in Definition 2.

158 L. Yan et al.

Thirdly, the data items in set Db are traversed. For a specific database data item d2,
if there is an input data item d1, which meets the recognition criterion d1.Y = d2.y, the
ordered pair\d1, d2[can be regarded as a vulnerable data item pair which probably
has the second-order SQL injection vulnerability.

The instance shown in Sect. 2 is analyzed and the vulnerable data item pair is
demonstrated in Fig. 3 to clarify these definitions and the detection method. Table 2

Fig. 2. Flow chart of the method

Table 1. Related functions to determine the source of the value

Programming language Functions related to user input Functions related to database

Java getParameter ()
getParameterValues ()

executeQuery()
executeUpdate()

getQueryString () execute()
executeBatch()

PHP $_GET mysql_query()
$HTTP_GET_VARS mysql_db_query()
$_POST mysql_unbuffered_query
$HTTP_POST_VARS odbc_execute()
$_REQUEST odbc_exec()

Detection Method of the Second-Order SQL Injection 159

shows the meaning of symbols in Fig. 3. Through scanning the source code of the
application, three SQL statements and their fields are got. In the SQL statement sql1
there are two data items d1 and d2. The first operating field is ‘‘username’’ column in
the ‘‘user’’ table, which means d1.Y = user:username. Since the slice C(stm.excu-
teUpdate(sql1), sql1) contains function processing user input getParameter (‘‘Name’’)
and the function affects the value of variable ‘‘name’’ concatenated to d1.Y, the value
of data item d1 is from user input and the parameter ‘‘Name’’ in the function is
recorded as d1.y = Name. As the value is from user input and the field is not in the
‘‘where’’ clause, d1.h = \input, false[and thus d1 is an input data item.

As to the statement sql3 which contains data items d3 and d4, the operating field
d4.Y = user:username. Since the function executeQuery(sql2) in the slice is related to
database, executes ‘‘select’’ statement and affects the value concatenated to d4.Y, the
value of data item d4 is from database and the retrieved column name of the table is
record, namely d4.y = user:username. As the value is from database, d4 is a database
data item. The other data items d2, d3, d5, d6 can be obtained in the same way.

Since d1.Y = d4.y and d1 [Di, d4 [Db which meet the recognition criterion,\d1,
d4[is a vulnerable data item pair.

Fig. 3. The vulnerable data item pair in the instance

Table 2. Meaning of symbols in Fig. 3

symbol meaning
request HTTP request
sql SQL statement
d Data item in SQL statement

sql d Data item constitutes SQL statement
d1 d2 Vulnerable data item pair <d1,d2>, red means input

data item, green means database data item
request sql SQL statement is triggered by HTTP request

160 L. Yan et al.

4.2 Generation of Test Sequence

In order to get the mapping relationship between the SQL statements and the HTTP
requests, namely function f2 in Definition 4, we employ HTTP proxy and SQL proxy
to catch the HTTP request and the triggered SQL statement separately in the normal
use of the web application. As a result, each HTTP request and the SQL statement that
is triggered by it can be got and also the function f2. And according to scanned result
in the start of Sect. 4.1, we can know which SQL statement the data item belongs to
and thus get function f1 in Definition 4. Then according to the Definition 5, the
vulnerable data item pair\d1, d2[is transformed into the corresponding test sequence
\r1, r2[.

4.3 Generation of Test Input

The principle of triggering the second-order injection is that parts of the malicious
input is interpreted into the code and changes the semantics of the original SQL
statement. Since it is the same as the first-order injection, the malicious inputs of first-
order SQL injection also apply to the second-order. So we refer to the classification
and formal description of the first-order SQL injection in literatures [17] and [18] to
constitute malicious data set. The test input data is constituted by legitimate data set
which contains the data in HTTP requests recorded by HTTP proxy and malicious
data set which contains some instances of the formal description.

4.4 Perform Tests

When incorporating malicious input with the test sequence, the first request in test
sequence is searched to find the parameter which has the same name as d1.y The value
of this parameter is replaced with the data from the malicious data set. The other
parameters use the data from the legitimate data set, which are not changed.

The test cases are executed through sending HTTP requests in the order of the test
sequence. If the storing process fails when sending the first request, the second one
will not be sent and the next test sequence is put into testing. If the malicious input is
successfully stored in the database, the second request is sent and the existence of
vulnerability can be determined through the second response.

5 Test Results and Analysis

5.1 Test Subjects

In order to verify the feasibility and effectiveness of the second-order SQL injection
detection methods proposed in this paper, we evaluated the method on four web
application that reflect in functions and structures the typical characteristics of the
current web applications. Two of them, SchoolMate-1.5.4 and WebChess-1.0.0,
downloaded from http://sourceforge.net use PHP as the programming language and

Detection Method of the Second-Order SQL Injection 161

http://sourceforge.net

MySQL as the back-end database. SchoolMate is a web application for managing
school’s classes and information and WebChess is an online game for playing chess
with other users. The others, SecondhandBookstore and HotelManageSystem,
developed by different teams of students as a project of class, use Java as the pro-
gramming language and MySQL as the back-end database. SecondhandBookstore is
an online second-hand bookstore where users can sell and buy second-hand books and
HotelManageSystem is a web application for booking rooms online.

5.2 Results and Analysis

The test result is shown in Table 3. Through static analysis, 20 vulnerable data item
pairs are found and then through dynamic testing, 4 of them are confirmed having
second-order SQL injection. Static analysis tool Pixy [6] and dynamic testing tool
Appscan8.0 [19] are also used to scan these web applications, but no problems about
the second-order SQL injection are found.

The vulnerabilities found in the applications are shown in Table 4. In SchoolMate,
the method found the second-order injection vulnerability in header.php. The code of
it is shown below and some unimportant code is omitted for brevity.

$query = mysql_query(‘‘select schoolname from schoolinfo’’);
$schoolname = mysql_result($query,0);
…
$query = mysql_query(‘‘UPDATE schoolinfo SET schoolname =
\’’‘‘.htmlspecialchars($_POST[‘‘schoolname’’]).’’\’’, … where
schoolname = ‘$schoolname’ LIMIT 1 ‘‘);

The application updates the value of schoolname in table schoolinfo with user
input and also uses the retrieved value of schoolname to build SQL statement
dynamically. So through static analysis, the vulnerable data item pair is \d1, d12[
where d1 is \schoolinfo:schoolname, schoolname, \input, false[[and d12 is
\schoolinfo: schoolname, schoolinfo:schoolname, \db, true[[.

Table 3. Test result

Program The method in this paper Pixy Appscan
Number of
vulnerable
data item
pairs

Number of
pairs that
finally find
vulnerabilities

Number of
second-order
SQL injection
vulnerabilities

Number of
second-order
SQL injection
vulnerabilities

Number of
second-order
SQL injection
vulnerabilities

SchoolMate 5 1 1 0 0
WebChess 7 0 0 0 0
SecondhandBookstore 3 1 1 0 0
HotelManageSystem 5 2 2 0 0

162 L. Yan et al.

Since r1 = f(d1), r1 = f(d12),\d1, d12[is transformed into test sequence\r1, r1[.
The storing process and the triggering process use the same request r1, but r1 is sent
twice with different inputs. We take one pair of generated malicious inputs for
analysis. The value of parameter schoolname in the first r1 is replaced with ‘‘tju’ or
1 = 1--’’ and sent. After that, the second r1 that retains the original input ‘‘nku’’ in the
legitimate set is sent. We got the second response that schoolname is updated suc-
cessfully to ‘‘nuk’’. In order to compare the response, we repeat the process with
another malicious input‘‘tju’ or 1 = 2--’’ and the response is that schoolname is not
updated to ‘‘nku’’. Due to the difference between two responses of the second r1, we
determine the existence of the vulnerability. The vulnerable pair 2 in Secondhand-
Bookstore is similar to SchoolMate.

For the HotelManageSystem, although most of the SQL statements use parame-
terized statements to avoid injections, the second-order SQL injection still exists.
Because the application only use parameterized statements for SQL statements that
obviously accept user input and use concatenated string for ones not. Consequently,
the malicious input is successfully stored into the database by using parameterized
statements and then the malicious input is retrieved to dynamically build a SQL
statement which causes injection.

Test results verify that the proposed method which combines static analysis and
dynamic testing is an effective method for detecting second-order SQL injection
vulnerabilities in the web applications.

Compared with the previous static method, this method analyzes not only the user
input but also the data out of the database. Moreover, by using recognition criterion,
this paper can find the vulnerable data item pair, which tracks the flow of user input
through the database. At the same time, this method generates concrete attack
instances to determine the existence, which is more convincing.

Compared with the previous dynamic method in which vulnerability scanners fail
to detect any second-order SQL injection, the proposed method takes advantages of
system’s internal information and can associate the storing and triggering processes,
thus identifying existing vulnerabilities. Compared to manual testing, this method
does not rely on the experience of test personnel and is able to recognize the func-
tionality of the program that needs to check, which effectively improves the efficiency
of testing.

Besides, our method does not produce additional load and does not need to modify
the source code in contrast to the run-time monitoring method.

Table 4. Vulnerabilities found in applications

Program Pair
number

Vulnerable
data item
pair

Test
sequence

Parameter
assigned by
malicious
input

Number
of test
cases

Number of test
cases that
exposed
vulnerabilities

SchoolMate 1 \d1, d12[\r1, r1[schoolname 10 4
SecondhandBookstore 2 \p7, p8[\q5, q6[author 10 2
HotelManageSystem 3 \m1, m5[\n1, n4[Name 10 5

4 \m3, m5[\n2, n4[Name 10 5

Detection Method of the Second-Order SQL Injection 163

6 Conclusion

Based on the deep analysis of the second-order injection principle, a detection method
to discover second-order SQL injection vulnerability is proposed and experimentally
demonstrated in this paper. The method combines the advantages of static analysis
and dynamic testing which reduces the false warnings and makes up the lack of inter
information respectively. The static part analyzes not only the user input stored into
database but also the data out of the database. More importantly, by using recognition
criteria to interrelate two parts above, the method successfully tracks the data through
the database and identifies the vulnerable pair. The dynamic part sends HTTP requests
transformed from the vulnerable pair to further verify the existence of the vulnera-
bilities. Further work will focus on developing automated tools for our method and
applying the tools to more open source web applications to analyze the accuracy.

Acknowledgement. This work is funded by the National Natural Science Foundation of China
(No. 91118003, 61272106, 61003080) and 985 funds of Tianjin University.

References

1. 2011 CWE/SANS Top 25 Most Dangerous Software Errors. http://cwe.mitre.org/top25/
index.html

2. OWASP TOP 10 – 2013: The ten most critical web application security risks. https://www.
owasp.org/index.php/Top_10#OWASP_Top_10_for_2013

3. Ollmann, G.: Second-order code injection attacks. Technical report. NGSSoftware Insight
Security Research (2004)

4. Justin, C.: SQL Injection Attacks and Defense. Syngress Publishing Inc., Boston (2009)
5. Livshits, V.B., Lam M.S.: Finding security vulnerabilities in Java applications with static

analysis. In: Proceedings of the 14th USENIX Security Symposium, pp. 271–286 (2005)
6. Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: a static analysis tool for detecting web

application vulnerabilities. In: 2006 IEEE Symposium on Security and Privacy,
pp. 258–263 (2006)

7. Pietraszek, T., Berghe, C.V.: Defending against injection attacks through context-sensitive
string evaluation. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858,
pp. 124–145. Springer, Heidelberg (2006)

8. Wassermann, G., Su, Z.: Sound and precise analysis of web application for injection
vulnerabilities. ACM SIGPLAN Not. 42(6), 32–41 (2007)

9. Halfond, W.G.J., Choudhary, S.R., Orso, A.: Improving penetration testing through static
and dynamic analysis. Softw. Test. Verif. Reliab. 21(3), 195–241 (2011)

10. Bau, J., Bursztein, E., Gupta, D., Mitchell, J.: State of the art: automated black-box web
application vulnerability testing, In: 2010 IEEE Symposium on Security and Privacy,
pp. 332–345 (2010)

11. Doupé, A., Cova, M., Vigna, G.: Why Johnny can’t pentest: an analysis of black-box web
vulnerability scanners. In: Detection of Intrusions and Malware, and Vulnerability
Assessment - 7th International Conference, pp. 111–131 (2010)

12. Khoury, N., Zavarsky, P., Lindskog, D., Ruhl, R.: Testing and assessing web vulnerability
scanners for persistent SQL injection attacks. In: Proceedings of the 1st International
Workshop on Security and Privacy in e-Societies, pp. 12–18 (2011)

164 L. Yan et al.

http://cwe.mitre.org/top25/index.html
http://cwe.mitre.org/top25/index.html
https://www.owasp.org/index.php/Top_10#OWASP_Top_10_for_2013
https://www.owasp.org/index.php/Top_10#OWASP_Top_10_for_2013

13. Halfond, W.G.J., Orso, A.: AMNESIA: analysis and monitoring for NEutralizing SQL-
injection attacks. In: 20th IEEE/ACM International Conference on Automated Software
Engineering, pp. 174–183 (2005)

14. Mohosina, A., Zulkernine, M.: DESERVE: a framework for detecting program security
vulnerability exploitations. In: Proceedings of the 2012 IEEE Sixth International
Conference on Software Security and Reliability, pp. 98–107 (2012)

15. Anley, C.: Advanced SQL injection in SQL server applications. An NGSSoftware Insight
Security Research (2002)

16. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs. ACM
Trans. Program. Lang. Syst. 12(1), 26–60 (1990)

17. Tian, W., Yang, J.F., Xu J., Si G.N.: Attack model based penetration test for SQL injection
vulnerability. In: Proceedings of the 2012 IEEE 36th IEEE Annual Computer Software and
Applications Conference Workshops, pp. 589–594 (2012)

18. Wang, J., Phan, R.C.W., Whitley, J.N., Parish, D.J.: Augmented attack tree modeling of
SQL injection attacks. In: ICIME 2010 - 2010 2nd IEEE International Conference on
Information Management and Engineering, pp. 182–186 (2010)

19. IBM Rational AppScan. http://www-01.ibm.com/software/awdtools/appscan

Detection Method of the Second-Order SQL Injection 165

http://www-01.ibm.com/software/awdtools/appscan

Applying SOFL to Constructing a Smart
Traffic Light Specification

Wahyu Eko Sulistiono1(&) and Shaoying Liu2

1 Graduate School of Computer and Information Sciences,
Hosei University, Tokyo, Japan

sulistiono.eko.wahyu.7x@stu.hosei.ac.jp
2 Department of Computer and Information Sciences,

Hosei University, Tokyo, Japan
sliu@hosei.ac.jp

Abstract. Smart Traffic Light (STL) is a system for controlling traffic lights
based on patterns of traffic loads in related intersection. Since this is a safety-
critical system, we need to construct an accurate specification to build a firm
foundation for implementation of the system. In this paper, we describe how
the SOFL formal engineering method is applied to construct a Smart Traffic
Light specification through the three-step modeling approach of SOFL that
helps us manage the complexity and difficulty of constructing a formal
specification.

Keywords: Formal specifications � SOFL � Smart traffic light

1 Introduction

Traffic lights have been used widely to control the traffic in junctions in order to avoid
collision and congestion. Collision could be avoided by applying safe signal timing to
traffic lights, such as minimum yellow signal duration, while congestion could be
managed by determining signal timing that corresponds to traffic loads of the
junctions.

Currently, many traffic lights are based on fixed signal timing, which works well if
the number of vehicles flowing at each direction does not vary significantly
throughout the day. However, in many junctions, such as ones near business district or
school, the traffic loads at some directions may change significantly at certain hours.
To achieve smooth-flowing traffic, these junctions require traffic lights that could
change their signal timing. In this paper, we specify a system called Smart Traffic
Light (STL) that uses patterns of traffic loads for determining optimal signal timing.

Since STL is safety-critical system and formal methods are considered capable of
delivering accurate specification of such system, we use SOFL, one of the formal
methods, to construct this system specification. Compared to other formal methods,
SOFL offers benefit: SOFL employs an evolutionary approach in constructing a spec-
ification, which helps developers deal with difficulty in creating formal specification.
It combines waterfall method and transformations to allow developers start from
informal specification and progress in steps into formal specification [1–4].

S. Liu and Z. Duan (Eds.): SOFL+MSVL 2013, LNCS 8332, pp. 166–174, 2014.
DOI: 10.1007/978-3-319-04915-1_12, � Springer International Publishing Switzerland 2014

In this paper we describe how SOFL are employed to construct formal specifi-
cation of STL. In particular, we describe the development through SOFL three-step
modeling. First, we define the system using natural language in informal specification.
Second, we define formally all but pre and post condition using SOFL language in
semi-formal specification. And finally, we formalize all parts of the system in formal
specification.

The remainder of this paper is organized as follows. Section 2 briefly describes
SOFL formal engineering method. Section 2 describes the smart traffic light system
we devise for this paper. Section 3 discusses how we construct a specification for
smart traffic light using SOFL. Section 4 describes our experience and lesson learned
from this project. Section 5 discusses related works. Finally, in Sect. 6 we conclude
the paper and provide several suggestions for future research.

2 Smart Traffic Light

Current traffic lights generally set to fixed signal timing. This setting, however, could
lead to less optimal traffic control when traffic load varies significantly. In order to
achieve smooth-flowing traffic, a traffic light needs to adjust its signal timing
responding to traffic condition of its junction. In many places, this traffic condition
varies forming a pattern. For example, at certain hour and day, the traffic load at
direction toward business district increases significantly while at other directions it
remains the same. This pattern could be used as consideration when determining
signal timing for traffic lights as a way for improving traffic flow.

Smart traffic light (STL) in this paper is a system designed to process historical
traffic data to reduce waiting time for vehicles through the traffic roads. In other
words, STL uses feedback mechanism to improve its control function. The change in
traffic condition will result changes in its control behavior. For example, if one side of
the road is getting longer in waiting then the traffic light for that side of the road will
have longer green signal.

This system relies on the ability of the elements of the system to communicate to
each other in order to coordinate in optimal traffic light control [5]. The system itself
comprises of a traffic management center, vehicles, and traffic light controllers, as can
be seen in Fig. 1. A traffic management center will function to manage data gathered
from others. For example, it will compute green signal duration for each junction.
Vehicles are having capability of sending information regarding traffic condition they
experience. Last, traffic light controllers are going to use information from traffic
management center in controlling their lights.

2.1 Vehicle

In this system, vehicles must transmit traffic data they experience to Traffic Man-
agement Center (TMC). To support this, every vehicle is equipped with sensors and
wireless communication. The sensor will detect when the vehicle is in queue behind a
red light. The vehicle also receives information regarding identity of traffic light
where the vehicle in queue for. When the vehicle runs pass through the traffic light,

Applying SOFL to Constructing a Smart Traffic Light Specification 167

also the sensor will detect it. The process inside vehicle will compute the time taken
for queuing and send this information to TMC by wireless communication.

2.2 Traffic Management Center (TMC)

TMC will collect data concerning waiting time to pass a traffic light from all vehicles.
This is done by storing data sent by vehicles. Every week, TMC will calculate the
average waiting time for every traffic light in same hour for weekday and weekend.
For example, TMC will calculate average waiting time for a traffic light in 10.00 in the
morning for weekday by averaging all waiting time happened from 10.00 to 11.00
from Monday to Friday. Similarly, TMC will calculate this for weekend, by averaging
data happened in Saturday and Sunday. The differentiation happened because the
traffic pattern between weekday and weekend is usually different.

By knowing the average waiting time, we can further compute green light timing
for every traffic light. We will determine the green time of a traffic light to be
proportional to the average waiting time for that traffic light. At the end, TMC will
provide this green light timing for all traffic light controllers.

2.3 Traffic Light Controller (TLC)

In each intersection, there are four traffic lights, which are divided to two pairs of
traffic lights with the same operation. In Fig. 1 TL1 operation will be the same as TL3
operation, while TL2 operation will be the same as TL4 operation. The operation of
the traffic lights will depend on the information about green light timing from TMC.
The operation of these traffic lights will be directed by a traffic light controller. One
controller is for each junction.

Fig. 1. Smart traffic light

168 W.E. Sulistiono and S. Liu

The TLC will fetch information regarding green timing for each pair of traffic
lights. Then, this controller will calculate yellow and red light timing. After that, it
will turn on traffic lights based on that timing continuously. The same timing will be
used for one hour only. After one hour, new timing can be computed and used to run
the traffic lights for the next one hour.

The traffic lights in one junction are controlled under one controller to make sure
that timing can be run precisely. For example, at the time one pair of traffic lights gets
green, the other pair of traffic lights should already be red. If traffic light is controlled
independently, then it would need timing synchronization that may be difficult to
implement.

In this case study, the system only considers one junction at a time without
considering the effect of traffic in other junctions. Furthermore, it is assumed in the
current case study, to simplify our system, the junctions do not have traffic light
control for pedestrian. Moreover, there is no dedicated turn-right signal.

3 SOFL Specification of Smart Traffic Light

Following SOFL three-step modeling approach, constructing a specification consists
of three steps, namely informal specification, semi-formal specification, and finally
formal specification. In this section we describes each of these steps for the devel-
opment of STL specification. In this development we use SOFL Tool, which provides
text editor and CDFD diagram editor to support the creation of complete specifications
using SOFL language.

3.1 Informal Specification

In informal specification step, we describe requirement of the system using natural
language and we structure the requirement of STL into three sections: functions, data
resources, and constraints, as shown in the Fig. 2. In this specification, function
section describes functionality of STL. We express functionality of vehicle, TMC, and
TLC in function 1.1, 1.2, and 1.3 respectively. In each of these functions, we further
describe detailed functionality of related element of STL. In data resources section we
list two data items: we assume there are 100 junctions for this system and each
junction consists of four traffic lights. In constraints section, we describe three con-
straints. At the end of each constraint, there is a notation (F.1.3), which means this
constraint is applied to function 1.3. Note that this reference notation is optional.

3.2 Semi-formal Specification

In the semi-formal specification, we have three tasks. First, we group related func-
tions, data resources, and constraints in modules. Second, we declare any data type
needed in this module. Finally, we write pre and post condition for every process in
the module using natural language. As an example, Fig. 3 shows semi-formal speci-
fication of module Control_Traffic_Light_decom, which represents Traffic Light
Controller element of STL.

Applying SOFL to Constructing a Smart Traffic Light Specification 169

Fig. 2. Informal specification of smart traffic light

Fig. 3. Semi-formal specification of module Control_Traffic_Light

170 W.E. Sulistiono and S. Liu

3.3 Formal Specification

In formal specification, from semi-formal specification we develop CDFD diagrams
and their module specifications. CDFD will reveal the architecture of the system. It
shows the relation between processes. Figure 4 shows CDFD of the top module of
STL.

In formal specification, all processes are specified in SOFL language. If a process
cannot be specified using pre and post condition, then it may be too complex and
therefore need to be decomposed into other modules. In our top module, all processes
have to be decomposed into other modules. This decomposition continues until simple
processes are achieved. As an example, module Set_Signal_WE does not need
decomposition and it can be specified entirely using SOFL language. The CDFD of
this module can be seen in Fig. 5 and its module specification can be seen in Fig. 6.

As we complete this formal specification, it can serve as a foundation for
implementation of the system.

4 Experience and Lesson

Compared to other formal methods, SOFL has some features that help us reduce the
difficulty of creating formal specifications. One of them is CDFD that help us visualize
the design architecture. This increases the readability of the specification, which is
crucial especially in large specification. Using CDFD we can trace more easily the

Fig. 4. CDFD of top module

Applying SOFL to Constructing a Smart Traffic Light Specification 171

relationships among processes and also the decomposition from top level module to
the lowest ones and trace the transformation flow.

In general, constructing a formal specification faces high barrier. The culprit is the
difficulties in writing and reading mathematical expression both for developer and
user. SOFL method has ameliorated this matter using three-step modeling approach.

Fig. 5. CDFD of module Set_Signal_WE_decom

Fig. 6. Specification of module Set_Signal_WE_decom

172 W.E. Sulistiono and S. Liu

It helps developer and user construct the specification in gradual formality. As a result,
developer and user can proceed more smoothly in developing the specification. From
informal specification which is easily constructed because of the use of natural
language and in turn facilitating communication between developer and user, the
process proceeds to next steps that introduce formality in part where they have deeper
understanding of the system to be built. Finally, they arrived at formal specification.
There all are defined formally when they have understood all very well.

In traditional method, natural language is used for writing specification. With that,
developers will find it difficult to ensure that there is no inconsistency between parts in
the specification. Not only because of the possible ambiguity of natural language, but
also lack of tool to think more thoroughly. One important point of using SOFL is that
it forces developers to clarify thinking. It helps them think in precise what is going
to be built. For example, when the developer defines data type in semiformal
specification, they clarify what kind of data will flow between processes or stored in
data store. Furthermore, when they writes pre and post condition of processes, they
think in precise what kind of input expected and the effect of the transformation to the
output of the processes. The consistency among items on the specification is checked.
As a result, it is less likely there is wrong data type, because it has already been
thought against all related processes.

5 Related Work

SOFL has been used successfully in various case studies. In [3] SOFL is applied to
construct a specification for railway crossing controller, a safety-critical and real-time
system that produce signal of coming trains and control crossing gates. In [6] insulin
pump system, a safety-critical embedded system for controlling insulin injection, also
has been constructed using SOFL. In [7] SOFL is also used to carry out case study of
auto-cruise control for the purpose of hazard analysis. In [8] SOFL has been tried on
non-safety critical system, i.e. university information system. In [9] the specification
of automatic automobile driving simulation system is also constructed using SOFL.
Finally, [2] employs ATM (Automated Teller Machine) as a case study for evaluating
effectiveness of the framework for developing dependable software systems using the
SOFL formal engineering method.

Although SOFL has been applied in various case studies, none has constructed a
specification for traffic light system. Thus, this paper is the first SOFL case study on
traffic light system. Compared to those case studies, this system shares some same
characteristic, such as real-time and safety-critical, which are good reasons to employ
formal methods like SOFL. Moreover, with more potential features, this system
becomes a complex system, which needs such method even more.

6 Conclusion and Future Work

In this paper, we have presented the development of a smart traffic light specification
using SOFL formal engineering method. This method helps us deal with the com-
plexity of the system while maintaining preciseness of the specifications. In this case

Applying SOFL to Constructing a Smart Traffic Light Specification 173

study, the system can be specified through combination of CDFD and module
specification.

In the future, we will add more features to STL. We will consider more collab-
orative work among elements of the system. For example, we are going to coordinate
multiple junctions to provide better traffic control. Furthermore, we will develop
inspection methods to verify the specification.

Acknowledgement. This work has been conducted as a part of ‘‘Research Initiative on
Advanced Software Engineering in 2012’’ supported by Software Reliability Enhancement
Center (SEC), Information Technology Promotion Agency Japan (IPA).

References

1. Liu, S.: Formal engineering for industrial software development – an introduction to the
SOFL specification language and method. In: Davies, J., Schulte, W., Barnett, M. (eds.)
ICFEM 2004. LNCS, vol. 3308, pp. 7–8. Springer, Heidelberg (2004)

2. Liu, S.: A framework for developing dependable software systems using the SOFL formal
engineering method. In: 2010 International Conference on Intelligent Computing and Inte-
grated Systems (ICISS), pp. 561–567 (2010)

3. Liu, S., Asuka, M., Komaya, K., Nakamura, Y.: Applying SOFL to specify a railway
crossing controller for industry. In: Proceedings of the 2nd IEEE Workshop on Industrial
Strength Formal Specification Techniques 1998, pp. 16–27 (1998)

4. Liu, S.: Formal Engineering for Industrial Software Development. Springer, Heidelberg
(2004)

5. Wang, Q., Hu, J., Wang, Y., Zhang, Y.: A simulation study for the communication sub-
system of wireless traffic information service system. In: 7th International Conference on
Information, Communications and Signal Processing 2009, ICICS 2009, pp. 1–6 (2009)

6. Wang, J., Liu, S., Qi, Y., Hou, D.: Developing an insulin pump system using the SOFL
method. In: 14th Asia-Pacific Software Engineering Conference 2007, APSEC 2007,
pp. 334–341 (2007)

7. Abdullah, A.B., Liu, S.: Hazard analysis for safety-critical systems using SOFL. In: 2013
IEEE Symposium on Computational Intelligence for Engineering Solutions, Singapore
(2013)

8. Liu, S., Shibata, M., Sato, R.: Applying SOFL to develop a university information system.
In: Proceedings of Sixth Asia Pacific Software Engineering Conference 1999, APSEC 1999,
pp. 404–411 (1999)

9. Mat, A., Liu, S.: Applying SOFL to construct the formal specification of an automatic
automobile driving simulation system. In: International Conference on Software Technology
and Engineering, vol. 3308, pp. 42–48. World Scientific Publishing, Chennai (2009)

174 W.E. Sulistiono and S. Liu

Checking Internal Consistency of SOFL
Specification: A Hybrid Approach

Yuting Chen1,2(B)

1 School of Software, Shanghai Jiao Tong University, Shanghai 200240, China
2 Shanghai Key Laboratory of Computer Software Testing and Evaluating,

Shanghai, China
chenyt@cs.sjtu.edu.cn

Abstract. A SOFL specification can be written with errors inside, lead-
ing to an untrustable situation for implementation. Some techniques,
such as specification review and testing, have been proposed to detect
and remove the errors from the specification as early as possible. Mean-
while these techniques face strong challenges when applied to practice in
that they strongly rely on human intelligence to either cautiously design
a review task tree for directing the whole review process, or design some
test inputs to “run” the specification. The completeness of the review
or testing tasks also remains a problem. In this paper we propose a
hybrid approach to checking the internal consistency of a SOFL spec-
ification. The internal consistency is an important property indicating
that the entire specification can work properly. The essential idea of the
hybrid approach is to adopt the different strategies to check the differ-
ent aspects of the specification: concrete or abstract values are used to
check the satisfiability of a process, and the symbolic execution and the
deduction techniques can be used to check the internal consistency of the
specification at the integration level. We also use a Sort-Search example
to illustrate the use of the hybrid approach.

Keywords: Internal consistency · Satisfiability · Symbolic execution ·
Loop invariant

1 Introduction

A SOFL specification can be written with errors inside, leading to an untrustable
situation for implementation. Some techniques, such as specification review [1,2]
and testing [3,4], have been proposed to effectively detect and remove the errors
from the specification as early as possible. Specification review means to read
over the specification, and in each time slot only one manageable component is
focused on and one property be selected to be an objective property for review.
Specification testing means to generate test cases and then check whether the
specification can run as expected. Meanwhile the review and testing techniques
face two strong challenges when applied to practice.

S. Liu and Z. Duan (Eds.): SOFL+MSVL 2013, LNCS 8332, pp. 175–191, 2014.
DOI: 10.1007/978-3-319-04915-1 13, c© Springer International Publishing Switzerland 2014

176 Y. Chen

Firstly, these techniques strongly rely on human intelligence to either cau-
tiously design a review task tree for directing the review process, or select some
test cases for executing the specification. Since human intelligence can definitely
cause some occasionality, the review or testing tasks can be various from per-
son to person, leading to the conclusion not convincing. The completeness also
remains a problem, because a completion of all the review or testing tasks arbi-
trarily generated may not be sufficient to conclude that the objective specifica-
tion is absolutely correct.

Secondly, a specification meeting a complicated property usually require one
or more components participate in. Since human engineers (reviewers or testers)
are shortage of their abilities in managing all aspects of a complex system, it
becomes difficult, if not impossible, for them to take an integration review or
testing of the specification and determine whether some complicated proper-
ties can be met because all of the components including processes, datastores,
dataflows, invariants may contribute to the evaluation of these properties.

In this paper we propose a hybrid approach to checking the internal consis-
tency of a SOFL specification. The internal consistency, as defined in [2], is an
important property of a SOFL specification indicating that the entire specifica-
tion can work properly.

Definition 1. The internal consistency of a SOFL specification is a property
that the outputs can be generated based on its inputs under the condition that
the pre- and postconditions of all the processes involved in the execution of the
specification evaluated to true.

The internal consistency of a SOFL specification is obviously necessary for
the correctness of the specification. Otherwise the efforts in the implementation
may be wasted because there can be no inputs to run the program, or some
valid inputs cannot run it. However, a specification against the property is not
easy to either review or test because the property needs to be evaluated by all of
the processes, invariants, dataflows in the specification. Additionally, a process
may not have the unique semantics until the explicit specification is defined.
Thereby it may generate nondeterministic outputs, some of which can drive the
successors to execute, while the others may not. The latter destroys the internal
consistency of the specification, but when and how such outputs are produced is
less than clear. A systematic and rigorous method is needed to help the engineers
check the internal consistency of a SOFL specification.

The approach proposed is used to verify a specification both at a unit level
and at an integration level. As Fig. 1 shows, the approach starts from verifying
the satisfiability of each process, to verifying the internal consistency of the
entire specification. Different strategies are adopted, depending on the objective
sub-properties and the existence of the explicit specifications, to perform the
verification: concrete or abstract values are used to check the satisfiability of a
process, and the symbolic execution and the deduction techniques can be used
to check the internal consistency of the entire specification at the integration
level.

Checking Internal Consistency of SOFL Specification: A Hybrid Approach 177

process P (x: T1, y: T2) z: T3, w: T4
pre P(x, y, ...)
post Q(x, y, z, w...)
explicit

Variable Declara ons;
Statements;

end_process
P

x

y

z

w

P1 P2

P3

Process Level

CDFD Level

Value subs tu on

Deduc on

Symbolic execu on

Fig. 1. A framework of checking of the internal consistency of a SOFL specification

The paper is organized as follows. Sections 2 and 3 describe the strategies
for verification of a SOFL specification at the unit level and at the integration
level, respectively. Section 4 introduces the related work and finally in Sect. 5 we
conclude this paper and point out the future research directions.

2 Checking of Satisfiability of Process

A SOFL specification is internally consistent only if all its processes are satisfi-
able. By saying a process P is “satisfiable” we mean that for any input (along
with the external variables of any state), if the precondition evaluates to true,
there must exist some output (along with the external variables updated) based
on which the postcondition of P evaluates to true. Formally, let

−∈
in,

−∈
out,

−∈
rd,−∈wr be the vectors of the input and output variables, the rd and wr external

variables, respectively.

Definition 2. The satisfiability of a SOFL process P (pre, post) is defined as

≡−∈
in,

−∈
rd, ˜−∈wr · pre(−∈in,−∈rd, ˜−∈wr) ∧ inv ∨ ∀−∈

out,−∈wr · post(−∈in,−∈out,−∈rd, ˜−∈wr,−∈wr) ∧ inv.

For example, let a process Sort1 be defined. Sort1 attempts to, for any array
of length greater than 0, sort it in either an ascending or descending order. More
specifically, the process overwrites the external variable array with a sorted
sequence, and produces its length as the output.

wr array: seq of int
inv len(array) > 0

178 Y. Chen

process Sort1 (ascending: bool) length: int
ext wr array
pre true
post length = len(array) and

if ~ascending = true
then forall[i: inds(array), j: inds(array)]|

i < j => array(i) <= array(j)
else forall[i: inds(array), j: inds(array)]|

i < j => array(i) >= array(j)
end process

The satisfiability of Sort1 says that for array and ascending of any values,
if the invariant (i.e., len(array) > 0) and the precondition (i.e., true) are met
before the execution, the values of array and length after execution meet the
postcondition (and the invariant).

2.1 Using Value Substitution to Verify Process

The satisfiability of a process P (pre, post) can be evaluated through gradually
checking three sub-properties.

Property 1.1. whether the domain of the process defined by pre ∧ inv is non-
empty. Otherwise no inputs can drive the process to execute. For
example, it requires that there exists at least an input and an
array making pre ∧ inv of Sort1 evaluate to true;

Property 1.2. whether the range of the process defined by post ∧ inv is non-
empty. Otherwise the process cannot produce any valid outputs.
For example, it requires that there exists at least an output and
an array making post ∧ inv of Sort1 evaluate to true;

Property 1.3. whether P is satisfiable, i.e., for any input in the domain, some
values in the range correspond to the input. It means that the
process provides with appropriate effects.

A SOFL process can be verified to approve/disapprove the three sub-
properties by taking a strategy called “value substitution”. In principle, value
substitution, like the testing or symbolic execution, is to substitute the process
variables either by using either some concrete values or some abstract ones.

Obviously, the Properties 1.1 and 1.2 can get supported once some concrete
values are selected from the domain and the range, respectively. Let a snapshot
be a state of all external variables assigned with some values. We prefer to
select (1) a snapshot S and an input from the domain, and (2) a snapshot S∅
and an output from the range. We call S and S∈ the pre- and post-snapshots,
respectively.

The concrete values can be intuitively selected or constructed: let all of the
external variables related to the process and all of the input variables be assigned
with some values, as long as they satisfy the precondition and invariants. For
example, S1 and Input1 are values satisfying the Property 1.1.

Checking Internal Consistency of SOFL Specification: A Hybrid Approach 179

S1 = (array = [2, 4, 8, 10, 7, 5, 3, 1])
Input1 = {ascending = true}
The same thing holds for the post-snapshot and the output. A post-snapshot

S2 and Output1 shown next can be selected from the range of Sort1.

S2 = (array = [1])
Output1 = {length = 1}
Note that in this example, the Property 1.3 is certainly met by the process

when the Property 1.2 is met. It denotes that whatever the pre-snapshot and the
input are, S2 and Output1 can always meet the postcondition. One main reason
is that the postcondition of Sort1 is of few relation to the pre-states of the input
and the external variables (i.e., the states of these variables before execution).

Thus it is concluded that Sort1 is satisfiable because (1) the pre- and post-
condition can be true, and (2) for any input and pre-snapshot satisfying the
precondition, we can obtain some output and post-snapshot satisfying the
postcondition.

Challenges exist when the postcondition is strongly related to the inputs/
external variables. For example, let the process Sort2 be defined as follows.
It differs from Sort1 in that it requires len(˜ array) = len(array) in its
postcondition.

wr array: seq of int
inv len(array) > 0
process Sort2 (ascending: bool) length: int
ext wr array
pre true
post len(array) = len(~ array) and

length = len(array) and
if ~ascending = true
then forall[i: inds(array), j: inds(array)]|

i < j => array(i) <= array(j)
else forall[i: inds(array), j: inds(array)]|

i < j => array(i) >= array(j)
end process

Similarly, the Property 1.1 can be met by Sort2 in that the pre-snapshot S1

and the input Input1 can satisfy the precondition. The Property 1.2 can be met
by the post-snapshot S2 and the output Output1 if the input and the external
variables are not considered. However, since the length of ˜ array needs to be
same as that of array, Sort2 meets the Property 1.3 only if all the values of
˜ array are enumerated, while it is not possible for a infinite domain.

A rational solution is to look for a counterexample with respect to the Prop-
erty 1.3. A counterexample is an instance satisfying

(∀−∈
in,

−∈
rd, ˜−∈wr · pre(−∈in,−∈rd,−∈wr)∧ inv)∧ (�

−∈
out,−∈wr · post(−∈in,−∈out,−∈rd, ˜−∈wr,−∈wr)∧ inv).

180 Y. Chen

Hence given a process, human engineers can creatively find a counterexample,
or determine subjectively that no counterexample does exist. In order to verify a
process in a more rigorous way, we can use abstract values to analyze the process.
Like symbolic execution [5,6], we execute the process as in a normal execution
except that input values are either abstract or concrete. An applying of the exe-
cution technique helps reason about all the values of the input and the external
variables, which is effective when the domain and the range space are large.

For example, let the pre-snapshot S3 = (˜ array = ARRAY1) and Input1 =
(ascending = true) and Input2 = (ascending = false), where ARRAY1 be an
abstract sequence whose length is n>0. A value substitution can produce two
constraints on the basis of the pre- and postconditions.

Constraint 1. let(˜ array = ARRAY1, ˜ascending = true) in
(len(array) = len(˜ array) and
length = len(array) and
if ˜ascending = true
then forall[i: inds(array), j: inds(array)]|i < j => array(i) <= array(j)
else forall[i: inds(array), j: inds(array)]|i < j => array(i) >= array(j))

Constraint 2. let(˜ array = ARRAY1, ˜ascending = false) in
(len(array)=len(˜ array) and
length = len(array) and
if ˜ascending = true
then forall[i: inds(array), j: inds(array)]|i < j => array(i) <= array(j)
else forall[i: inds(array), j: inds(array)]|i < j => array(i) >= array(j))

The two constraints can be simplified to

1. len(array)=n and forall[i: inds(array), j: inds(array)] |i < j => array(i) <=
array(j) and length = n

2. len(array)=n and forall[i: inds(array), j: inds(array)] |i < j => array(i) >=
array(j) and length = n

Let ARRAY2 = [1, 2, ...n] and ARRAY3 = [n, n − 1, ..., 1]. It is obvious that
a post-snapshot S4 = (array = ARRAY2) and an output Output2 = (length =
n) meet Constraint 1 when ascending is true, and S5 = (array = ARRAY3)
and Output2 = (length = n) meet Constraint 2 when ascending is false. Since the
pre-snapshot S3 is given using an abstract value, the Property 1.3 gets approved
after S4, S5, and Output2 are obtained.

2.2 Handling Explicit Specification

An explicit specification can make a process not satisfiable. The explicit spec-
ification provides the process with a detailed but abstractly described design,
mainly from an algorithmic point of view. Let a process be defined as P =
{pre}explicit specificaiton{post}. P is of satisfiability if it can consume any input
satisfying the precondition and then reach a state satisfying the postcondition

Checking Internal Consistency of SOFL Specification: A Hybrid Approach 181

through executing the algorithm given in the explicit specification. The process
may not be satisfiable due to the wrong algorithm or errors hidden in the explicit
specification or postcondition leading to the output not appropriately produced.

For example, let Sort2 be equipped with an explicit specification as next
shows. The explicit specification is a SOFL version of an insertion sort algo-
rithm. Insertion sort iterates, consuming one sequence element each repetition
and growing a sorted sequence. Note that swap is a function to swap two ele-
ments in a sequence, whose definition is omitted for the sake of space. A checking
of Sort2 with the explicit specification is then conducted to determine wether
Sort2 can employ the explicit specification to produce the appropriate results.
Since the explicit specification provides with a detailed algorithm, it is of no
doubt that the best choice to check Sort2 is to execute the explicit specification
like a program.

explicit
k: int = 0;
while (k < len(array)) do
begin
t: int = k;
while (t>0 and (ascending = true and array(t-1) > array(t) or

ascending=false and array(t-1) < array(t))) do
begin

swap(array(t-1), array(t));
t = t - 1;

end;
k = k + 1;

end;
length = len(array);

Although the concrete values can be used to “test” the process, we prefer
to adopt the abstract values in the execution due to the completeness. In this
way, we reason about all the inputs that take the same path through the process.
However, the explicit specification cannot be fully executed using abstract values.
The main reason is that a dual loop exists, and the number of iterations is not
estimable in that it relates to the length of ˜ array and its values.

An ancillary aid is to use loop invariants. A loop invariant is a statement of
the conditions that should be true on entry into a loop and that are guaranteed
to remain true on every iteration of the loop. We add two loop invariants into
the explicit specification in order to simplify the checking of Sort2. Note that
j : [0, k) means 0 ⇒ j < k.

explicit
k: int = 0;
while (k < len(array)) do
loop inv (1) 0 <= k and k <= len(array) and (

ascending=true and

182 Y. Chen

forall[j: [0, k), i: [0, k)]| i<j => array(i) <= array(j)
or
ascending=false and

forall[j: [0, k), i: [0, k)]| i<j => array(i) >= array(j))
begin
t: int = k;
while (t>0 && (ascending = true and array(t-1) > array(t) or

ascending=false and array(t-1) < array(t))) do
loop inv (2) 0 <=t and t <=k and

(ascending=true and
forall[j: [1, t), i: [0, j)] |a(i) <= a(j) and

forall[j: [t, k+1), i: [t, j)] | a(i) <= a(j) and
forall[j: [t+1, k+1), i: [0, t)] | a(i) <= a(j) or

ascending=false and
forall[j: [1, t), i: [0, j)] |a(i) >= a(j) and

forall[j: [t, k+1), i: [t, j)] | a(i) >= a(j) and
forall[j: [t+1, k+1), i: [0, t)] | a(i) >= a(j))

begin
swap(array(t-1), array(t));

t = t - 1;
end;
k = k + 1;

end;
length = len(array);

Loop inv (1) ensures that at each time a partial sorted sequence (array[0], ...,
array[k − 1]) exists and waits for the insertion operation. Loop inv (2) ensures

that at each insertion step, let t be the position at which the element to be
inserted, the sequences (array[0], ..., array[t−1]) and (array[t], ..., array[k−
1]) remain sorted.

By using the two loop invariants, we reinterpret the loops, and use the abstract
values to check the explicit specification. Let S3 = (˜ array = ARRAY1) and
Input1 = (ascending = true) and Input2 = (ascending = false) be used to
execute the explicit specification. After the outer loop is completed, it is ensured
that

Constraint 3.
let(˜ array = ARRAY1 and len(array) = n and ascending = true) in
(k = len(array) and 0 <= k and k <= len(array) and
ascending = true and
forall[j: [0, k), i: [0, k)]|i < j => array(i) <= array(j))

Constraint 4.
let(˜ array = ARRAY1 and len(array) = n and ascending = false) in
(k = len(array) and 0 <= k and k <= len(array) and
ascending = false and
forall[j: [0, k), i: [0, k)]|i < j => array(i) >= array(j))

Checking Internal Consistency of SOFL Specification: A Hybrid Approach 183

Constraints 3 and 4 are consistent with the postcondition because we have
inds(array) = len(array). Hence the Property 1.3 gets approved with the
aid of loop invariants. We then conclude that Sort2 equipped with the explicit
specification is satisfiable.

Note that the execution of the explicit specification relies on the loop invari-
ants written by human engineers, but their effectiveness is not determined. A
common approach is to, when writing loop invariants, write them in a form that
is as close as possible to the postcondition [7]. A more sensible approach is to let
the loop invariants be automatically generated on the basis of the explicit spec-
ification, which will be remained as one of our future work. In addition, when
each statement be executed, there exists a fundamental belief that the invariants
need to be held. It should be necessary to monitor the execution and analyze
the state of the system at runtime, while a challenge still remains in that how
the invariants can be handled in a cost-effective way.

3 Checking of Internal Consistency of CDFD

A SOFL specification is composed of a set of processes. A CDFD (Condition
Data Flow Diagram) is used to integrate all the processes, and a formal module
is used to define their semantics. In this paper we call a process a starting one if
it does not consume any input or only consumes some input dataflows outside of
the system. Similarly, we call a process an ending one if it does not produce any
output or produces some dataflows transmitted to the processes outside of the
system. Besides that every process in the specification needs to be satisfiable,
the entire specification should be satisfiable (i.e., hold the internal consistency
property).

Since a formal specification can be regarded as an abstract interpretation of
a set of functional scenarios [8], the internal consistency of the specification can
be checked by checking all of its functional scenarios.

3.1 A Scenario-Based Strategy

Let a SOFL specification Spec be composed of a set of functional scenarios
{Scenario1, Scenario2, ..., Scenarion}. Formally, we write it as

Spec ⇔ {Scenario1, Scenario2, ..., Scenarion}
where a scenario Scenario1≤i≤n is defined as a deterministic sequence of
(sub)processes that consumes a set of input dataflows and produces the out-
put dataflows [9]. Let pre Spec and post Spec combine all the preconditions (of
the starting processes) and all the postconditions (of the ending processes) of
Spec, respectively. Let pre Scenarioi and post Scenarioi combine all the pre-
conditions (of the starting processes) and all the postconditions (of the ending
processes) of Scenarioi, respectively. We enrich the above formula with precon-
ditions and postconditions, as

184 Y. Chen

{pre Spec}Spec{post Spec} ⇔

{{pre Scenario1}Scenario1{post Scenario1},
{pre Scenario2}Scenario2{post Scenario2}, ...,
{pre Scenarion}Scenarion{post Scenarion}}

A checking of the internal consistency of Spec can be conducted through
checking these scenarios, considering that all of the functional scenarios can be
obtained. The internal consistency of Spec can be evaluated through gradually
checking three sub-properties.

Property 2.1. Any input satisfying pre Spec can satisfy the precondition of at
least one scenario. Formally, we have

pre Spec ∧ inv => (∗
1≤i≤n

pre Scenarioi) ∧ inv.

Property 2.1 ensures that a legal input meeting pre Spec can lead
to at least one scenario Scenarioi be selected to execute. For
example, let pre Spec = true, pre Scenario1 = (x >= 0) and
pre Scenario2 = (x <= 0). An x of any value can lead to either
Scenario1 or Scenario2 be executed.

Property 2.2. Any scenario is interconnected by all the processes on it. More
specifically, any output of an intermediate process of a scenario can
be consumed by at least one of its successors as input. Otherwise
the scenario is not feasible. Formally, let a process Pred has a set
of successors {Succ1, Succ2, ..., Succm} in a scenario Scenario. We
have

∀−∈x · post Pred(−∈x) ∧ (∗
1≤i≤m

pre Succi(−∈x)) ∧ inv

where −∈x be a vector of dataflows transmitted between Pred and
its successors.

Property 2.3. Every scenario is internally consistent. That is, Scenario1≤i≤n can
consume some input satisfying pre Scenarioi and produce some
output satisfying post Scenarioi. Formally, we have

∀−∈x ,−∈y · pre Scenarioi(−∈x) ∧ inv => post Scenarioi(−∈y) ∧ inv

where −∈x (and −∈y) be the vector of input (and output) variables
of Scenarioi. Note that the property also implies that some input
satisfying pre Scenarioi may cause another scenario execute.

For facilitating the checking of a specification against to the three sub-
properties, we derive from the specification a set of scenarios covering all
functionality the specification provides with, and then calculate their pre- and
postconditions. Thus we at first define the order of the processes.

Checking Internal Consistency of SOFL Specification: A Hybrid Approach 185

Let a process can be succeeded by its successors in two basic manners:

1. Pred ∈ Succ1|Succ2|...|Succm. It denotes that a completion of Pred leading
to only one of its successors to execute.

2. Pred ∈ Succ1 ·Succ2 ·...·Succm. It denotes that a completion of Pred leading
to all of its successors to execute.

Pred can also be compositely succeeded by its successors. For example,
Pred ∈ (Succ1|Succ2) · Succ3 means that after Pred completes, either Succ1
or Succ2, along with Succ3, is selected to execute.

Similarly we have

1. Pred1|Pred2|...|Predm ∈ Succ. It denotes that a completion of one of the
predecessors leads to Succ to execute.

2. Pred1 · Pred2 · ... · Predm ∈ Succ. It denotes that a completion of all of the
predecessors leads to Succ to execute.

Scenario derivation can benefit from the slicing technique. Given a specifica-
tion, we derive the scenarios by following the next steps. Although a derivation
process, similar to an enumeration of all the possible scenarios, also faces a path
explosion problem, a formal specification is usually abstract enough so that all
the scenarios can be exhaustively enumerated.

1. Choose an arbitrary input i satisfying pre Spec ∧ inv to begin with.
2. Simulate the execution of the specification, and record all the corresponding

processes in a scenario.
(a) If Pred ∈ Succ1|Succ2|...|Succm and Pred is completed, select any one

of the successors to execute;
(b) If Pred ∈ Succ1 · Succ2 · ... · Succm and Pred is completed, select all of

the successors to execute;
3. Take a backward execution of the specification, and record all the correspond-

ing processes in a scenario.
(a) If we have Pred1 ·Pred2 · ... ·Predm ∈ Succ and Succ has been selected

to execute, select all predecessors to participate in;
(b) If we have Pred1|Pred2|...|Predm ∈ Succ and no predecessors but

Succ has been selected to execute, select any of the predecessors to
participate in.

4. Repeat Steps 2 and 3 until no processes can be included in the scenario.
5. Generate the pre- and postconditions of the scenario through combining all

conditions on the scenario, as [9] explains.
6. Revisit the specification, and mutate a scenario to produce a new one.

(a) If Pred ∈ Succ1|Succ2|...|Succm, select a new successor;
(b) If Pred1|Pred2|...|Predm ∈ Succ, select a new predecessor.

7. Return to step 2.

186 Y. Chen

The satisfaction of a SOFL specification to the properties 2.1 and 2.2 can
be conveniently checked after all scenarios have been derived and their pre- and
postconditions been generated. The property 2.1 is checked through finding some
counterexamples, each of which can meet pre Spec, but not the precondition of
any scenario. For example, let

{true}Spec{post} ⇔ {(x > 0)Scenario1(post1), (x < 0)Scenario2(post2)}.

Once a counterexample (e.g., x = 0) is found, the Property 2.1 is not satisfied.
Some off-the-shelf SAT solvers (e.g., SAT4j [10]) can provide the engineers with
support in finding the counterexamples of a propositional expression.

An interconnection of a scenario denotes that the entire scenario can work,
if appropriate values are transferred among the processes. Any scenario can
be determined to meet or violate the Property 2.2 by either using the human
intelligence or using the typical SAT solvers to solve the constraints on the
successive processes. For example, let a scenario segment be Pred1 · Pred2 ∈
Succ1, where post Pred1 = (x >= 0) and post Pred2 = (y >= 0), pre Succ1 =
(x > 0 and y >= 0). The Property 2.2 is held when the outputs of Pred1 and
Pred2 can be consumed by Succ1. For example, (x = 1) and (y = 1) are valid
values transferring from Pred1 and Pred2 to Succ1.

The satisfaction of a scenario Scenarioi to the Property 2.3 relies on pre
Scenarioi and post Scenarioi as well the pre- and postconditions of all the
processes on the scenario. Once again, the engineers can create some snapshots
satisfying pre Scenarioi and some others satisfying post Scenarioi. The inter-
mediate snapshots and dataflow values are also created in order to demonstrate
that the scenario is feasible. A scenario is feasible if the entire scenario can
be instantiated, i.e., at each phase a snapshot and the dataflow values can be
created. The specification meets the Property 2.3 if all the scenarios are feasible.

Next we will use a Sort-Search example to illustrate how the specification is
checked with respect to the Property 2.3 and explain the strategies used.

3.2 A Sort-Search Example

For the sake of space, we link a process Search with Sort2 to form a SOFL
specification, as Fig. 2 shows. In the specification, Sort2 sorts a sequence of
integers, and Search then searches for an element in the sorted sequence. The
process Search is defined as

process Search(key: int, length: int) index: int
ext rd array
pre length = len(array) and

(forall[j: [0, length), i: [0, j)]| array(i) <= array(j) or
forall[j: [0, length), i: [0, j)]| array(i) >= array(j))

post 0 <= index => array(index) = key
or index < 0 => forall[i: [0, len(array))] | array(i) != key

end process

Checking Internal Consistency of SOFL Specification: A Hybrid Approach 187

Sort
ascending

length Search
key index

_array

Fig. 2. A CDFD of the sort-search specification

Since the specification is of a simple structure containing two processes, only
one scenario, which is same as the specification itself, is derived. Thus it can be
concluded that the Property 2.1 is met by the specification. The Property 2.2 is
also met by the specification in that some variable values (e.g., S2 = (array =
[1]) and Output1 = (length = 1)), if produced by Sort, can be transferred to
Search. Actually any sorted sequence can be consumed by Search as input in
this example.

When check the specification against of the Property 2.3, the engineers can
“execute” all the scenarios using the abstract or concrete values. An execution of
a scenario is, in the sense of feasibility, to use the concrete values to instantiate
the scenario. For example, let the pre-snapshot and the input of the process Sort2
be S1 = (array = [2, 4, 8, 10, 7, 5, 3, 1]) and Input1 = (ascending = true), and
a post-snapshot S6 = (array = [1, 2, 3, 4, 5, 6, 7, 8]) and an output Output3 =
(length = 8) can then be produced. Let the pre-snapshot and the input for
Search be S6 and Input3 = (length = 8, key = 5). An output Output4 =
(index = 4) can then be produced. Thus the scenario is feasible in that all
conditions on the scenario can be satisfied, at least by the above values.

The abstract values can also be used to instantiate the scenario in order to
demonstrate its feasibility. For example, let the pre-snapshot and the input of
the process Sort2 be S3 = (array = ARRAY1) and Input1 = (ascending =
true). As explained in Sect. 2.1, let ARRAY2 = [1, 2, ...n], a post-snapshot S4 =
(array = ARRAY2) and an output Output2 = (length = n) can be produced
by Sort2. Let the pre-snapshot and the input for the process Search be S4

and Input4 = (length = n, key = n − 1). A post-snapshot S4 and an output
Output5 = (index = n − 1) can be produced by Search.

The explicit specifications can be available for all the processes on a scenario.
We use the symbolic execution technique and loop invariants to execute the
explicit specifications and find whether the scenario is feasible. For example, let
Search be equipped with an explicit specification (a binary search algorithm)
shown next.

process Search(key: int, length: int) index: int
...
explicit
ascending:boolean = forall[j: [0, length), i: [0, j)]| array(i)
<= array(j);

188 Y. Chen

low:int := 0;
high:int := len(array) - 1;
found:bool := false
while (low <= high and !found)
loop inv (3) high+1 <= len(array) and

0 <= low and
forall[i:[0, low)]| array(i) != key and
forall[i:[high+1, len(array))]| array(i) != key;

begin
mid:int = (low + high) / 2;
midVal:int = array(mid);

if ascending then
if (midVal < key) then low: = mid + 1
else if (key < midVal) then high: = mid - 1
else index: = mid; found: = true

else
if (midVal > key) then low: = mid + 1
else if (key > midVal) then high: = mid - 1
else index: = mid; found: = true

end;
if found = false then index: = -(low + 1);

The abstract values are used to run the scenario. As shown in Sect. 2.2,
when ARRAY1 is assigned to array, an ascending array (say ARRAY4) or a
descending one (say ARRAY5) can be produced. Let KEY be the key to search
for. We deduce that

Constraint 5. found = true = >
(low < = high) and (high+1 < = len(array))
and (0 <= low) and (forall[i:[0, low)] | array(i) != KEY)
and (forall[i:[high+1, len(array))]| array(i) != KEY)

Constraint 6. found = false = >
low > high and index = -(low+1))
and (0 < = low) and (forall[i:[0, low)]| array(i) != KEY)
and (forall[i:[high+1, len(array))]| array(i) != KEY)

Constraints 5 and 6 are consistent with post Search in that (1) when found
is true, we have mid = index = (low + high)/2, midV al = array(mid), and
KEY = midV al; (2) when found is false, no element in array can be the
key. Thus we conclude that the specification meets the Property 2.3, and thus
is internally consistent.

4 Related Work

Specification verification is an important but intricate topic in software engineer-
ing. Theorem proving and model checking are two main approaches to formal

Checking Internal Consistency of SOFL Specification: A Hybrid Approach 189

verification [11]. The former consists of a systematically exhaustive exploration
of the model. The latter consists of generating from the system and/or its specifi-
cations a collection of mathematical proof obligations, the truth of which implies
conformance of the system to its specification. Having been pervasively used in
industry, these techniques have not yet been used in verification of SOFL spec-
ifications. The main reasons include that the domain space can be huge, the
proof obligations are not easy to define, and the inference rules for inferring
some complex properties have not yet been established.

Some practical verification techniques exist in order to verify a requirement
or design specification in a cost-effective manner. Alloy uses the modern SAT
solvers such as SAT4j [10] to search for the domain space, and then checks the
feasibility of an Alloy specification or finds some counterexamples [12]. USE
verifies a UML/OCL design specification by using the system snapshots cre-
ated by engineers [13]. Symbolic execution and concolic testing techniques and
tools (such as NASA’s Jave Pathfinder [14] and KLEE virtual machine [15]),
are also developed, mainly to verify a program, through executing the pro-
gram and explore the program paths. SPEC# is a tool designed by Microsoft
in order to support the idea of design-by-contract in programming. It supports
a modular verification of the program by using an SMT solver and an inference
engine [7].

Specification review [1] and testing [3,4] are two techniques specially designed
for verification of SOFL specifications. They can also be used to verify the specifi-
cations in other formal languages, with slight modifications. However, an appli-
cation of these techniques in practice relies on either reviewers’ experience to
construct the review task tree, or the testers’ intelligence to select the test cases.
The two techniques also face challenges when the objective properties are too
complex to decompose.

Inspired by the related work, we propose a hybrid approach in order to check
the internal consistency of a SOFL specification. The hybrid approach integrates
some typical used techniques, such as interactive theorem proving, symbolic
execution, specification review and testing in order to make it easy to verify
the objective specification. The different strategies are adopted in the hybrid
approach to check whether the specification is internally consistent.

5 Conclusion

In this paper we propose a hybrid approach to verify the internal consistency
of a SOFL specification. The internal consistency of the specification is
checked through checking the satisfiability of each process on the scenario, and
then checking the internal consistency of the entire specification. When
check the satisfiability of a process, we often use the concrete or abstract val-
ues to run the process, and then gradually check whether the process meets
three sub-properties. When check the internal consistency of the entire specifi-
cation, we use the symbolic execution and the deduction techniques, and then

190 Y. Chen

determine the internal consistency of the specification through executing all its
scenarios.

Although the hybrid approach provides a promising approach to verifica-
tion of a SOFL specification, the internal consistency of a specification is not
completely checked. For example, the Property 2.3 ensures that every scenario
can be feasible, but it should not be concluded that the entire specification is
always satisfiable. We would decompose the internal consistency property in a
more rigorous manner. We would also develop the tool, which integrates an SAT
solver and an interactive deduction tool, in order to automate the whole checking
process.

Acknowledgments. We would like to thank the anonymous reviewers for their valu-
able and thorough comments. This work is supported by the National Natural Science
Foundation of China (Grant No. 91118004 and 61100051) and Shanghai Key Labora-
tory of Computer Software Testing and Evaluating (Grant No. SSTL2011 02).

References

1. Liu, S., McDermid, J.A., Chen, Y.: A rigorous method for inspection of model-
based formal specifications. IEEE Trans. Reliab. 59(4), 667–684 (2010)

2. Liu, S.: Formal Engineering for Industrial Software Development. Springer, Hei-
delberg (2004)

3. Liu, S.: Utilizing specification testing in review task trees for rigorous review of
formal specification. In: APSEC, pp. 510–519 (2003)

4. Liu, S., Tamai, T., Nakajima, S.: A framework for integrating formal specification,
review, and testing to enhance software reliability. Int. J. Softw. Eng. Knowl. Eng.
21(2), 259–288 (2011)

5. Sen, K., Agha, G.: CUTE and jCUTE: concolic unit testing and explicit path
model-checking tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 419–423. Springer, Heidelberg (2006)

6. Ma, K.-K., Khoo, Y.P., Foster, J.S., Hicks, M.: Directed symbolic execution. In:
Yahav, Eran (ed.) SAS 2011. LNCS, vol. 6887, pp. 95–111. Springer, Heidelberg
(2011)

7. Barnett, M., DeLine, R., Fähndrich, M., Jacobs, B., Leino, K.R.M., Schulte, W.,
Venter, H.: The spec# programming system: challenges and directions. In: Meyer,
B., Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 144–152. Springer,
Heidelberg (2008)

8. Liu, S., Chen, Y., Nagoya, F., McDermid, J.A.: Formal specification-based inspec-
tion for verification of programs. IEEE Trans. Softw. Eng. 38(5), 1100–1122 (2012)

9. Chen, Y.-T., Liu, S., Nagoya, F.: An approach to integration testing based on data
flow specifications. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp.
235–249. Springer, Heidelberg (2005)

10. Berre, D.L., Parrain, A.: The Sat4j library, release 2.2. JSAT 7(2–3), 59–64 (2010)
11. Clarke, E.M., Wing, J.M.: Formal methods: state of the art and future directions.

ACM Comput. Surv. 28(4), 626–643 (1996)
12. Vaziri, M., Jackson, D.: Checking properties of heap-manipulating procedures with

a constraint solver. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol.
2619, pp. 505–520. Springer, Heidelberg (2003)

Checking Internal Consistency of SOFL Specification: A Hybrid Approach 191

13. Gogolla, M., Bohling, J., Richters, M.: Validation of UML and OCL models by
automatic snapshot generation. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML
2003. LNCS, vol. 2863, pp. 265–279. Springer, Heidelberg (2003)

14. Pasareanu, C.S., Visser, W., Bushnell, D.H., Geldenhuys, J., Mehlitz, P.C., Rungta,
N.: Symbolic pathfinder: integrating symbolic execution with model checking for
java bytecode analysis. Autom. Softw. Eng. 20(3), 391–425 (2013)

15. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In: OSDI, pp. 209–224 (2008)

Author Index

Chen, Yuting 175

Duan, Zhenhua 35, 48, 62, 76

Feng, Ruitao 154
Feng, Zhiyong 154

Hu, Jing 154

Li, Mo 118
Li, Xiaohong 154
Liu, Bo 76
Liu, Hongjin 35
Liu, Pan 17
Liu, Shaoying 3, 89, 104, 118, 135, 166
Liu, Yao 76
Lu, Xu 35

Miao, Huaikou 17
Miao, Weikai 89

Nakajima, Shin 3

Shi, Ya 48
Sulistiono, Wahyu Eko 166

Tian, Cong 35, 48, 76

Wang, Xi 135
Wang, Xiaobing 62

Yan, Lu 154
Yang, Hua 48

Zhao, Liang 62
Zhu, Shenghua 104

	Preface
	Organization
	Contents
	Testing and Verification
	Combining Specification-Based Testing, Correctness Proof, and Inspection for Program Verification in Practice
	1 Introduction
	2 Introduction to FSBT and Inspection
	2.1 FSBT
	2.2 Formal Specification-Based Inspection

	3 Principle of TBFV
	4 Example
	5 Dealing with Iteration and Method Invocation
	5.1 Iteration
	5.2 Method Invocation

	6 Potential Challenges
	7 Related Work
	8 Conclusion and Future Research
	References

	Theory of Test Modeling Based on Regular Expressions
	Abstract
	1 Introduction
	2 Expression Algebraic System
	3 Test Modeling
	3.1 Concatenation Operator
	3.2 Choice Operator
	3.3 Kleene Closure
	3.4 Positive Closure
	3.5 Alpha-closure
	3.6 Synchronous Operator
	3.6.1 Concurrent Operator

	4 Modeling Capability
	5 Test Sequences
	6 Conclusions
	Acknowledgments
	References

	Simulation and Model Checking
	Integrating Separation Logic with PPTL
	1 Introduction
	2 The Hybrid Logic PPTLSL
	2.1 A Decidable Separation Logic for Linked Lists
	2.2 Temporal Extension to Separation Logic

	3 Logic Laws Of PPTLSL Formulas
	4 Normal Form Of PPTLSL
	5 Conclusion
	References

	Improved Net Reductions for LTLX Model Checking
	1 Introduction
	2 Preliminaries
	2.1 1-safe Petri Nets
	2.2 LTLX

	3 LTLX Model Checking of 1-safe Petri Nets
	4 Reductions Rules for Synchronization
	4.1 T-Reduction Rule
	4.2 Post-Reduction Rule
	4.3 Pre-Reduction Rule
	4.4 Post-A Rule
	4.5 Pre-A Rule

	5 Correctness of Reduction Rules
	6 Conclusion
	References

	Formalizing and Implementing Types in MSVL
	1 Introduction
	2 Preliminaries
	2.1 Projection Temporal Logic
	2.2 MSVL

	3 Typed MSVL
	3.1 Data Domain
	3.2 Typed Functions and Predicates
	3.3 Type Declaration Statement

	4 Implementation Mechanisms
	4.1 Normal Form of Programs
	4.2 MSVL Interpreter

	5 An Application
	6 Conclusions
	References

	Present-Future Form of Linear Time -Calculus
	1 Introduction
	2 Preliminaries
	2.1 Syntax of TL
	2.2 Semantics of TL
	2.3 Validity and Satisfiability of TL Formulas

	3 Guarded Positive Normal Form
	4 PF Form of TL Formulas
	4.1 Definition of PF Form
	4.2 Rewriting a TL Formula into PF Form

	5 Conclusion
	References

	SOFL Tools
	Prototype Tool for Supporting a Formal Engineering Approach to Service-Based Software Modeling
	1 Introduction
	2 The FEFSSM Approach
	3 Design and Implementation of the FEFSSM Tool
	3.1 Tool Design
	3.2 Tool Implementation
	3.3 Service Discovery and Analysis
	3.4 Functional Scenario Matrix Establishment

	4 An Example
	5 Related Work
	6 Conclusion
	References

	A Supporting Tool for Syntactic Analysis of SOFL Formal Specifications and Automatic Generation of Functional Scenarios
	Abstract
	1 Introduction
	2 Background
	3 Our Work on the Supporting Tool
	3.1 Parser for SOFL Formal Specification
	3.2 Processor for Generating Functional Scenarios

	4 Related Work
	5 Conclusion and Future Work
	Acknowledgments
	References

	SOFL Specification Animation with Tool Support
	1 Introduction
	2 Animation Strategy and Process
	3 Design of the Tool
	3.1 Deriving System Scenario
	3.2 Collecting Data from Users
	3.3 Generating Data Automatically

	4 Framework and Prototype
	5 Related Work
	6 Conclusions and Future Work
	References

	Formal Specification
and Application
	An Approach to Declaring Data Types for Formal Specifications
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Data Context
	3.2 Function Pattern

	4 The Approach to Declaring Data Types
	4.1 Approach Outline
	4.2 Function-Related Declaration
	4.3 Expression Update

	5 Case Study
	6 Conclusion
	References

	Detection Method of the Second-Order SQL Injection in Web Applications
	Abstract
	1 Introduction
	2 Second-Order SQL Injection Principle
	3 Formal Definitions in Detection Method
	4 Detection Method of the Second-Order SQL Injection
	4.1 Determine the Vulnerable Data Item Pair
	4.2 Generation of Test Sequence
	4.3 Generation of Test Input
	4.4 Perform Tests

	5 Test Results and Analysis
	5.1 Test Subjects
	5.2 Results and Analysis

	6 Conclusion
	Acknowledgement
	References

	Applying SOFL to Constructing a Smart Traffic Light Specification
	Abstract
	1 Introduction
	2 Smart Traffic Light
	2.1 Vehicle
	2.2 Traffic Management Center (TMC)
	2.3 Traffic Light Controller (TLC)

	3 SOFL Specification of Smart Traffic Light
	3.1 Informal Specification
	3.2 Semi-formal Specification
	3.3 Formal Specification

	4 Experience and Lesson
	5 Related Work
	6 Conclusion and Future Work
	Acknowledgement
	References

	Checking Internal Consistency of SOFL Specification: A Hybrid Approach
	1 Introduction
	2 Checking of Satisfiability of Process
	2.1 Using Value Substitution to Verify Process
	2.2 Handling Explicit Specification

	3 Checking of Internal Consistency of CDFD
	3.1 A Scenario-Based Strategy
	3.2 A Sort-Search Example

	4 Related Work
	5 Conclusion
	References

	Author Index

