
Idea: Towards a Working Fully Homomorphic

Crypto-processor

Practice and the Secret Computer

Peter T. Breuer1 and Jonathan P. Bowen2,�

1 Department of Computer Science, University of Birmingham, UK
ptb@cs.bham.ac.uk

2 School of Computing, Telecommunications and Networks,
Birmingham City University, UK

jonathan.bowen@bcu.ac.uk

Abstract. A KPU is a replacement for a standard RISC processor that
natively runs encrypted machine code on encrypted data in registers and
memory – a ‘general-purpose crypto-processor’, in other words. It works
because the processor’s arithmetic is customised to make the chosen en-
cryption into a mathematical homomorphism, resulting in what is called
a ‘fully-homomorphic encryption’ design. This paper discusses the prob-
lems and solutions associated with implementing a KPU in hardware.

1 Introduction

A KPU (‘Krypto-Processor Unit’) is a simple general purpose processor and
processor architecture that works on data in encrypted form. To input data into
the machine, the owner prepares it in encrypted form and receives encrypted
data back. In theory, a KPU need never decrypt, even as it places encrypted
data in memory and registers and runs the encrypted program. That makes it of
interest for cloud computation, and also the reverse situation, where, for example,
a bank wishes to securely devolve responsibility for transactions on individual
bank accounts to personal chips held by the untrusted account owners.

The mathematics relates a KPU to the science of fully-homomorphic encryp-
tion, first introduced as privacy homomorphisms in [10]. Well-known encryptions
such as RSA private/public key cryptography [11] exhibit partial homomor-
phism, in the case of RSA with respect to multiplication, in that RSA(a)∗RSA(b)
mod m = RSA(a ∗ b), where RSA stands for the encryption and m is its asso-
ciated (large) arithmetic modulus. An encryption that supports homomorphism
both with respect to addition and to multiplication is said to be a fully homo-
morphic encryption (FHE). The operations on encrypted data corresponding to
multiplication and addition on the unencrypted data need not be as simple as
multiplication or addition in the general case, but Gentry [6] constructed a FHE
in which those operations, while complex, do not compromise the encryption

� Jonathan Bowen acknowledges the support of Museophile Limited.

J. Jürjens, F. Piessens, and N. Bielova (Eds.): ESSoS 2014, LNCS 8364, pp. 131–140, 2014.
c© Springer International Publishing Switzerland 2014



132 P.T. Breuer and J.P. Bowen

and thus may still be carried out by untrusted parties. In a KPU, the corre-
sponding operations are embedded in the hardware. A KPU can be handed out
to an untrusted party just as the software algorithms for the operations that
work on FHE-encrypted data can be handed out. However, a KPU design al-
lows more flexibility in the choice of the underlying encryption, and engineering
tradeoffs come to the fore. One may entertain, for example, the possibility of
operations that would reveal the encryption if they were exposed, but which are
implemented in hardware that physically secures them, as for SmartCards [8].

In terms of its construction, a KPU is a processor in which the standard
arithmetic logic unit (ALU) has been replaced by a different design satisfying
certain special properties. A standard processor is the trivial case. A KPU is
described in mathematical terms in [1], where it is shown that, whatever the
detail of the implementation, provided the modified ALU satisfies the required
properties then a KPU operates correctly, in that the machine states that obtain
during the execution of an encrypted program are encryptions of the states that
would result in an ordinary RISC [9] processor running the unencrypted program.
A RISC design is a convenient point of departure for the proof, because of its
simplicity, but it is equally possible to build a KPU by starting from another
class of modern von Neumann processor.

The modified ALU in a KPU, instead of 1 + 1 = 2, does 6769875#6769875 =
87997001 (for example), those numbers being encodings of 1 and 2 under the
encryption. In its most general form, this is a homomorphism statement, and
the ‘special properties’ of the modified ALU alluded to above are the require-
ments that its operations, functions and relations be homomorphic images of the
standard operations.

Counter-intuitively for those who appreciate that the slightest change inside
the processor may snowball, the grossly changed arithmetic results in states that
are ‘correct’, but encrypted. One can liken it to changing from speaking ‘English’
in a CPU to speaking ‘Chinese’ in the KPU, with the added difficulty of very
many ‘Chinese’ words for every ‘English’ word. The detail in a practical KPU de-
sign is merely aimed at avoiding design features that may inadvertently sabotage
this principle. It is important, for example, to separate the circuitry that does
arithmetic on program addresses from that which does arithmetic on data, or the
encrypted ‘+1’ on the address at most every tick of the clock would leak signifi-
cant information, as well as compromise program loading and caching localities.
In consequence, while data addresses and contents and program instructions are
encrypted in a KPU, program addresses should be encrypted differently and
may not be encrypted at all. Running programs must be written to keep the two
kinds apart, so that encrypted values are acted on by instructions that expect
encryption, and unencrypted values are acted on by instructions that do not
expect encryption [2].

The idea behind KPU design is ‘problem reduction’. It reduces the problem of
encrypted general purpose computing to the lower order problem of constructing
an appropriately modified ALU. In principle a very large lookup table suffices to
drive the ALU, but replacing every gate in the standard ALU with an ‘encrypted



Practice and the Secret Computer 133

version’ of the same gate also works. Between those extremes lie many other
possibilities, which will be explored in this paper.

Speed is not a primary concern — IBM’s FHE implementations take on the
order of seconds per single bit operation on a vector mainframe [7], though this
shows signs of being improved by means of special techniques on GPU-based
hardware [12] — and there are many other factors to consider. There is, for
example, a hardware aliasing problem, which arises because ciphers are one–
many and thus many different (‘Chinese’) encryptions of a single (‘English’)
memory address may crop up and be used during the execution of a program.
Since all the different aliases designate physically different locations in memory,
a working program for a KPU must be written to access only one of them, which
means every address must be calculated the same way at every use [3].

This paper focuses on two areas in working KPU design in particular. Section 2
discusses hardware options and Section 3 discusses encoding strategies.

2 Word Size and Hardware Design

The first issue in processor design is ‘how big is a data word’, the physical extent
of the standard unit of data. ‘Large’ means the processor needs long registers
and many traces and wide busses to carry the data internally, which is costly.
The quick answer here is that nobody yet really knows what word size is best,
because different design approaches indicate different solutions.

In a KPU, the data word size is the encryption block size, the size of a unit of
encrypted data. For strong encryption, about 128 bits is reasonable for many of
the common ciphers in the medium to long term, whereas 64 bits is borderline,
but sufficient for real time protection, supposing key size the same as encryption
block size. Neither is technically impossible, but 64 bits would be very favourable
from the manufacturer’s point of view as the associated technology is already
in use. Fewer bits would be even better from that perspective, however. The
trade-off is small size (low cost, low power) against greater security.

How many plaintext bits does a 64-bit encrypted data word contain? It can
be anywhere from 1 to close to 64, leaving room for padding bits that make the
encryption one–many overall; 32 plaintext bits and 32 padding bits would result
in 232 different encodings of each 32-bit plaintext number. The numbers are
significant because if an attacker guesses the encryption for 1 and also guesses
which operation is the ‘+’ in the ALU, then, given access, the attacker can
generate the encryption of 2 via 1 + 1, of 3 via 2 + 1, etc, and thus obtain
a complete codebook. Many encodings for each plaintext number imply many
codebooks and only relatively few encountered in any program run. That is
reassuring because, in general, there is no mathematical analysis available of the
security of arithmetic in a KPU. That is also the case for white-box access, but
note that the example of the encrypted arithmetic in Gentry’s software solution
[5] shows that it is not a priori unsafe to permit unfettered access to hardware.
To make the discussion concrete, five designs are set out below.

1. Embedded codecs: We may create an encrypted ALU by placing codecs
on inputs and outputs of a standard ALU, as in Fig. 1. The codecs (D, C) contain



134 P.T. Breuer and J.P. Bowen

keys that must be transferred securely into the hardware, perhaps via a Diffie-
Hellman protocol [4], and they must be invulnerable to electronic probes. That
is within the capabilities of SmartCard manufacturers today. The key should be
volatile, so it does not survive disconnection, and the hardware’s internal traces
protected by overlying circuit elements. A 64-bit (encrypted) word is inherently
feasible, but stripping out and replacing 32 bits of padding requires extra hard-
ware. The simplest implementation has the data bits in the middle of the word
and routes them to a 32-bit ALU. The output padding is generated by a separate
unit (P); it can multiply input paddings and take the middle 32 bits (‘mid-out’
hash), folding in extra randomness as desired.

One problem with this kind of design,

ALU

D

D P

C

64

64

32

32 64

32

ALU’

Fig. 1. Building an encrypted ALU us-
ing codecs (D, C) with embedded keys,
and a padding unit (P). 64-bit inputs at
left, 64-bit outputs at right.

apart from potential vulnerabilities with
harbouring keys, is that the speed of the
codecs limits the speed of the processor.
Some encryptions when done in hardware
can run at a few hundred MHz (CuBox
run an ARM v6-based chip doing AES
encryption clocked at 800MHz).

Nevertheless, the design is easily re-
alised with present-day silicon technolo-
gies, requiring no radical innovations, and
represents the most likely initial imple-
mentation technique. A small company
with processor expertise can already pro-
duce chip wafers based on this idea.

2. Lookup tables: Fig. 2 shows a 16-bit ‘black-box’

RAM table store

16

16

16

ALU’

Lookup

Fig. 2. Building an
encrypted ALU as
a ‘black-box’ lookup
table requires large
amounts of on-board
RAM. 16-bit inputs
at left, 16-bit outputs
at right.

ALU design. It contains tables for encrypted arithmetic
on two 16-bit encrypted inputs, producing one 16-bit en-
crypted output. Leaving security questions aside (16-bit
cipherspaces are easily searched, but that is not the end of
the story), each binary operator requires tables occupying
(216)2 × 16 = 236 bits, or 8GB. That is too large to go
in-processor at present, but it can reside in RAM. Every
arithmetic operation must access the tables, which limits
speeds to 200MHz to 400MHz, in practice. But we expect
advances in technology to make the numbers feasible in a
few years, returning focus to the security question here.

This solution focuses on encrypted arithmetic tables as
the encryption ‘key’. Those 8GB lumps of data in RAM
need to be supplied, probably over the Internet, at rel-
atively frequent intervals as different configurations are
adopted for different encryptions, but sending them be-
forehand, or in parallel while computation proceeds, is an
option. The transfer need not be in public view, but if it



Practice and the Secret Computer 135

is, then can an attacker work out an encoding given the full tables, together with
observations of what computations are done in practice?

The answer is formally ‘no’ (one may place two and in practice ‘very many’
encodings simultaneously in the same tables; see Section 3), but observations of
a running CPU may aid the attacker. If this solution is secure, then it can also
be implemented in software, leading to the safe running of a KPU in simulation.

The problematic aspect of this solution is the short 16-bit input and output
sizes. If, say, 8 bits of that is padding, it only leaves room for 8 bits of data
beneath the encryption. While 8-bit computation is feasible (and from 4 to
16 times as slow as 32-bit computation), it is disadvantaged in security terms
because 32-bit calculations take several cycles, and the carry in to the second
cycle will be highly constrained and yet encrypted in the same way as the other
inputs, which makes decoding relatively easy.

On the plus side, however, is that algebraic attacks using the ring structure of
addition and multiplication under the homomorphism do not work. One might
look for, say, 3 as one of the highest-order elements of the tables under self-
multiplication (it should take or 216 or 16 self-multiplications to get back to 3
again, depending how one counts), but that approach is scotched because the
padding makes the result still look different from the original.

3. Modular design: Putting several ALUs in parallel in the hardware allows
the lookup table solution to be ‘ramped up’ to deliver 32-bit computation in one
cycle in hardware, as shown in Fig. 3 for addition. The individual encrypted
adders are 16-bit for a total of 64 bits of input and output, but the encryption
is different in each group of 16 bits. The encryption varies again on each of
the carry outputs and inputs. One may imagine that between each adder an
arbitrary extra encryption has been applied via codecs Di, Ci, shown in dotted
lines, but in reality these are folded into the tables.

In hardware, no internal connections are exposed, but this solution is prob-
lematic in software. Can the units in solid lines be safely stored as lookup tables
in full public view? The answer is formally unknown.

One may embed at least two different ciphers in one 3-bit encrypted arithmetic
table, encoding just one data bit (the technique is explained in Section 3). The
maximum number M of ciphers is much higher than two, but there are too
many configurations to establish M exactly (a 3-bit table for one arithmetic
operation has 64 entries, each 3 bits, thus 864 = 2192 tables to explore). The
significance of that may be seen via an analogy: Suppose that the English word
‘mouse’ is also the Chinese word for ‘sunshine’, with similar overlaps for all
English and Chinese words. The situation here is then that an observer cannot
decide if an observed computation is an ‘English’ conversation about pests or a
‘Chinese’ conversation about weather. The mathematics makes the ‘grammar’
(the arithmetic) look right both ways.

The layout of Fig. 3 may be adapted for 32 3-bit units, each encoding one bit
of data. Then 32-bit computation is implemented with 96-bit encrypted words
and an attacker with full access must explore M32 valid decodings, assuming
it is already known which decodings are valid for those tables (there are only



136 P.T. Breuer and J.P. Bowen

8!/2! = 20160 each to check in the 3-bit case). The tables are small and may be
placed in-processor. Alternatively, 21-bit computation (via 21 3-bit units in the
layout of Fig. 3) can be fitted in 63-bit encrypted words, and 24-bit computation
in 64-bit encrypted words is feasible using trits and base-6 digitisation.

The lemma to remember here is that the arithmetic

+

D2

C3

+

D3

D1

+
C2

C1
+

16

16

16

16
16

16

16
16

16

16
16

16

Fig. 3. Encrypted
adder built from
smaller units, with
4×16-bit inputs at
left, 4×16-bit output
at right, and distinct
encodings in each unit.

tables for coded values do not expose the coding, when
padding makes the coding 1-to-many.

We will elaborate the approach in §5 below. First con-
sider another approach that at first also looks unlikely.

4. Gate-level encryption: One may replace every
single (1-bit) trace in an ALU by a set of 3 or 8 or
16, etc., traces carrying respectively a 3- or 8- or 16-bit
encryption of the single bit; every OR gate is replaced
by a corresponding ‘encrypted-OR gate’, possibly table-
driven. If we consider the units of Fig. 3, then each of
them may be implemented via a network of such ‘en-
crypted gates’.

This reduces the design problem to dealing with just
one bit of data, encrypted in as many bits as may be ad-
visable for security. Fig. 4 shows how a 16-bit encrypted
one-bit half-adder may be implemented like this. Instead
of one table for addition and another for multiplication,
etc., there is one table for 1-bit AND, one for 1-bit OR,
and one for 1-bit inversion, but, in theory, just one table,
for 1-bit NAND, will suffice. So storage requirements are
‘only’ one 8GB table for each 16-bit encryption used.

An entire 16-bit encrypted ALU can be built in this
way, using just one encryption, but it requires 16×16 in-
put and output traces, i.e., encrypted words of 256 bits.
But there is a problem: how to access the arithmetic
tables simultaneously for all the gates that need to. In
practice, with today’s technology, one cannot. Even so,
ALUs tend to be built so that calculation propagates
across them in systolic fashion. If the construction is at
worst n gates wide by m deep (m determines the latency), then the calculation
may in principle be pipelined using just n gates and n tables organised into m
stages. Each stage of the calculation takes time equal to one table lookup, thus
a complete arithmetic calculation should take time equal to m table lookups.
But one complete calculation will exit the pipeline at intervals of one lookup,
so the throughput is normal. Pipelined ALUs (for floating point arithmetic) are
common in processor technology.

5. Hybrids: We now revisit the modular design of Fig. 3. That has relatively
weak 4× 16-bit security in the configuration shown, but imagine an AES codec
that decrypts a 64-bit ciphertext to a 64-bit plaintext, but which does so in



Practice and the Secret Computer 137

hardware. AES works via addition and multiplication operations on 16-bit seg-
ments. Apply the process that built Fig. 4 to the codec, operation by operation.

Imagine the ith 16-bit segment of plaintext

inv

inv

AND

AND

OR

inv table OR tableAND table

16

16 16

16

16

16
16

Fig. 4. An adder built from en-
crypted gates. 16-bit inputs at left,
16-bit output at right.

output as followed by a new encoder Ei that
produces 16 bits of encrypted output. PassEi

to the input side of the adjacent internal AES
operation G, replacing it with an encrypted
operation G′, such that Ei ·G′ = G ·Ei. Re-
peat, passing the encoders Ei from output to
input side of each successive layer of internal
AES operations in turn.

The process ends in a design analogous to
Fig. 4, shown at left in Fig. 5 as ‘D’. In it,
every 16-bit operation G in the original AES
decoder has been replaced by an ‘encrypted
version’ G′ working on 16-bit encrypted words. Internal changes between en-
cryptions Ei and Ej are notionally handled by extra codecs Di and Cj shown in
Fig. 5, although in reality these are folded into the tables that drive the different
encrypted operations. What does this bizarre construction do?

The answer is that it takes as input 4× 16 =

+

D2

C3

+

D3

D1

+
C2

C1
+

16

16

16

16
16

16

16
16

16

16
16

16

C

D

D

64

64

64

Fig. 5. Increasing encryption
security. 64-bit inputs at left, 64-
bit output at right.

64 bits in which the ith group of 16 is an en-
coding under Ei of the ith 16-bit segment of
the AES encoding of a 64-bit plaintext number
x. The output is a 64-bit word y in which the
ith group of 16 bits is the encoding under Ei

of the ith 16-bit segment of x. In other words,
it decodes doubly encrypted data to singly en-
crypted data that is suitable as input to the de-
sign of Fig. 3. The AES key is kept encrypted
under the Ei in the internals of the modified
decoder.

After decoding by D, doubly encrypted data
is suitable for handling by the encrypted arith-
metic structure of Fig. 3, shown in the centre of
Fig. 5. The output from that may be recoded
again using a modified AES encoder, labelled C
in Fig. 5, producing doubly encrypted data. The
AES keys are stored encrypted, and the ALU of
Fig. 5 does ‘doubly encrypted arithmetic’. An
untrusted party with the encrypted AES keys

can decrypt doubly encrypted data to singly encrypted data, but no more.
What is the advantage of this construction? The input encoding is at least as

safe as AES. The keys, even if uncovered, are themselves encrypted and do not
serve to decrypt the input, or output, or any intermediate. But the number of



138 P.T. Breuer and J.P. Bowen

bits in the construction is most significant: it is just 64 bits. If every trace and
gate had been ‘encrypted’, as in §4, it would have been 32× 64 bits.

So what is the right word size? Every size from 3, 8, 16, 64, 256, 512 bits has
been suggested above. It requires detailed simulation and negotiation with chip
manufacturers to make the decision in practice.

3 ABC Encoding

If the KPU’s ALU contains a division operator – or even if there is a division
routine in software – then an attacker with sufficient access can nearly always
obtain an encryption of 1 by computing x/x for any encrypted x that has been
observed. Even if which operation is division is formally unknown, the choice
of n (usually 64 at most in a conventional ALU) operations merely multiplies
up the number of possibilities to be tried by n, which is not significant. And
obtaining encrypted 1 gives encrypted 2 via 1+1, etc, until a complete codebook
is constructed. This attack has implications for the encodings used in a KPU.

We have remarked that padding under the encryption is justified by the need
for many codebooks in order to confound this kind of attack, but there is also
a separate ‘defense by construction’ that may be built into the system. It is to
set the ALU so that x opx, always gives a nonsensical or random result, for
any operator. How then to really calculate 1/1, for example? Two different and
disjoint encodings are implemented, a type-A encoding and a type-B encoding,
and AopB gives the right answer of type B, while A opA and BopB always give
nonsense. Symmetrically, B opA gives the right answer of type A. It is simple to
compile programs such that every operation takes place on operands of types A
and B, or B and A, and the program runs correctly. This is called ‘AB encoding’.

Unfortunately, AB encoding does not make things more difficult for an at-
tacker with sufficient access. Doing the calculation (x+y)/(y+x), where x is of
type A and y of type B, still gives 1. An attacker may use any observed x, y.

An improvement called ‘ABC encoding’ resolves the problem. It adds one
more disjoint encoding, a so-called type-C encoding, to the mix. The valid oper-
ations are now of type AopB = C, BopC = A and CopA = B, and everything
else gives nonsense. Again, compiling programs so that all operations have cor-
rect typing is trivial. One may prove that an attacker cannot take an observed
calculation x of type A, reshuffle its parts to obtain a calculation y of type B, and
then compute x/y with ABC encoding, for a known constant result. The logic of
ABC encoding does not allow it. A loophole, however, is that the attacker may
not merely reshuffle parts, but also duplicate or eliminate some parts in a revised
sum, to get a constant. The following calculation is valid in ABC encoding:

(x ∗ y) + (y ∗ (x ∗ y)) = 0 mod 2

So an attacker with the encrypted arithmetic tables for two 1-bit plaintext op-
erations can obtain an encoding of the 1-bit plaintext ‘0’. If the attacker does
not know which operation is which, however, then there is no way of getting a
constant result out (mod 2), and nothing can be gained in this way.



Practice and the Secret Computer 139

A0

A1

B0

B1

C0

C1

5

A1

A0

B0

B1

B1

B0

A0

A1

C0

C1

B1

B0

C1

C0

B0

B1

B1

B0

C1

C0

C0

C1

A1

B1

B0

B0 B1 C0 C1A0 A1

C1

C1 C0

C0

A0

A1 A0

B1 B0

B0 B1

A1

A1

A0

A0
A0 A1

A1 A0

C0 C1

C0C1

A0

A0

A1

A1

B0 B1

B1 B0

A1

A1

A0

C1

C1C0

C0

B1

B1B0

B0

A0

A1

B0

B1

C0

C1

A1

A0

B1

B0

C1

C0

+

2

1

3

4 3

4

2

1 5

6

4

3 4

3

5

6

1 2

12

6

5 6

A0

A0A1 B1 B0C0 C1

1 2 3 4 5 6

1

2

3

4

5

6

5 6

56

1

2

2

1

3 4

4 3

A0

C1

C0

B0

A1

B0

A0

A0

A0

A1

C1

C1

B0

B1

B0

B1

B1

B0

C0 B0

A0

B0

A1 A0

A1

A1

C0

C1

C1

C0

C1

B1 B0C0 C0A1

A1 B0 B1 C0 C1A0

A1

A0

B1

B0

C1

C0

A1

A1

A1

A0

A0

B1

B1

B1

B0

C0

C0

C1

C1

A1 A1

A1 A0

C0 C0

C0 C1

B1

B1

B0

B0

∗

A1 A0 C0 C1 B1 B0

C0

C0C0

C1

B1

B0 B0

B0

A0

A0 A0

3

3

1

2

2

1

5

5 6

5

143

4 3 1

53

4 6 5

6

2

1

1 2 3 4 5 6

4 3

33

2 1

22

66

5 6

5

6

4

3

2

1

Fig. 6. Two different encodings simultaneously embedded in the same 6× 6 tables for
encrypted addition and multiplication mod 2, using ABC encoding. The ‘lower left’
A, B, C encryptions of 0,1 are 1,2;3,4;5,6 respectively. The ‘upper right’ encryptions
are 2,1;6,5;3,4 respectively. Only AB=C, BC=A, CA=B gives valid results, such as
A0+B1=C1, the rest are arbitrary.

ABC encoding trebles the size of the cipherspace required, and thus requires
nine times as much storage space for arithmetic tables, as well as slightly increas-
ing the number of bits required for an encrypted word. However, several different
encryptions may be placed in the same tables simultaneously. Fig. 6 shows an
example in the minimal possible size ABC tables: 6× 6 in a cipherspace of size
6 for modulo 2 arithmetic.

In practice, 8 coding values would be used for 3 full bits of cipherspace, the
redundancy permitting more overlaps. However, the upper limit for overlap as
the cipherspace size increases is not known, nor is the number M ≥ 2 of different
encryptions that may be fitted in simultaneously. Despite the formal unknowns,
we believe that ABC encodings do make it much more difficult to deduce the
encryption from the encrypted arithmetic tables. An attacker may never hope
to recognise a chance encoding that looks like 1 ∗ 1 = 1 under ABC rules, for
example, because patterns of that form may never be constructed.

Fig. 6 proves that the tables do not determine the encryption uniquely.

4 Conclusion

The construction of the modified arithmetic logic unit in a KPU (a general
purpose fully homomorphic crypto-processor architecture) has been discussed,
with options ranging from monolithic lookup tables to gate-wise encryption. The
objective is the implementation of PC-sized or smaller-sized computers that do
all their work encrypted, with applications in many areas in the realm of secure
computing. There is a close relation with work on fully-homomorphic computing,
with hardware replacing the role of software algorithms. Some design options use



140 P.T. Breuer and J.P. Bowen

no or an incomplete set of keys – meaning that the processor itself does not know
the encryption it uses – which implies that no backdoor can ever be built in.

‘ABC encoding’ has been introduced as a technique that we believe always
improves security in a fully homomorphic context, potentiating the use of smaller
encryption block-sizes.

References

[1] Breuer, P.T., Bowen, J.P.: A Fully Homomorphic Crypto-Processor Design: Cor-
rectness of a Secret Computer. In: Jürjens, J., Livshits, B., Scandariato, R. (eds.)
ESSoS 2013. LNCS, vol. 7781, pp. 123–138. Springer, Heidelberg (2013)

[2] Breuer, P.T., Bowen, J.P.: Typed Assembler for a RISC Crypto-Processor. In:
Barthe, G., Livshits, B., Scandariato, R. (eds.) ESSoS 2012. LNCS, vol. 7159, pp.
22–29. Springer, Heidelberg (2012)

[3] Breuer, P.T., Bowen, J.P.: Certifying Machine Code Safe from Hardware Aliasing:
RISC is not necessarily risky. In: Counsell, S., Núñez, M. (eds.) Proc. OpenCert
2013, collocated with SEFM 2013. LNCS. Springer, Madrid (to appear 2013)

[4] Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976), doi:10.1109/TIT.1976.1055638.

[5] Gentry, C.: Computing arbitrary functions of encrypted data. Communications of
the ACM 53(3), 97–105 (2010)

[6] Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: Proc. 41st
ACM Symposium on Theory of Computing (STOC), pp. 169–178. ACM (2009),
doi:10.1145/1536414.1536440, ISBN: 978-1-60558-506-2

[7] Gentry, C., Halevi, S.: Implementing Gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (2011)

[8] Kömmerling, O., Kuhn, M.G.: Design principles for Tamper-Resistant Smart-
card Processors. In: Smartcard 1999, Chicago, Illinois, USA, May 10-11, pp. 9–20
(1999)

[9] Patterson, D.A.: Reduced Instruction Set Computers. Communications of the
ACM 28(10), 8–21 (1985)

[10] Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homo-
morphisms. Foundations of Secure Computation 32(4), 169–180 (1978)

[11] Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

[12] Wei, W., et al.: Accelerating Fully Homomorphic Encryption on GPUs. In: Proc.
IEEE High Performance Extreme Computing Conference (2012)


	Idea: Towards a Working Fully HomomorphicCrypto-processor
	1 Introduction
	2 Word Size and Hardware Design
	3 ABC Encoding
	4 Conclusion
	References




